RESTful Java Patterns
and Best Practices

Learn best practices to efficiently build scalable, reliable,
and maintainable high performance RESTful services

PACKT

www.it-ebooks.info

http://www.it-ebooks.info/

RESTful Java Patterns
and Best Practices

Learn best practices to efficiently build scalable,
reliable, and maintainable high performance
RESTful services

Bhakti Mehta

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

RESTful Java Patterns and Best Practices

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2014

Production reference: 1150914

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78328-796-3

www . packtpub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Bhakti Mehta

Reviewers
Dustin R. Callaway

Masoud Kalali
Kausal Malladi

Antonio Rodrigues

Commissioning Editor
Pramila Balan

Acquisition Editor
Vinay Argekar

Content Development Editor
Adrian Raposo

Technical Editor
Edwin Moses

Copy Editors
Janbal Dharmaraj

Karuna Narayanan

Alfida Paiva

Project Coordinator
Kinjal Bari

Proofreaders
Paul Hindle

Jonathan Todd

Indexers
Mariammal Chettiyar

Monica Ajmera Mehta

Graphics
Ronak Dhruv

Abhinash Sahu

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Bhakti Mehta is the author of Developing RESTful Services with JAX-RS 2.0,
WebSockets, and [SON, Packt Publishing, published in 2013. She has more than
13 years of experience in architecting, designing, and implementing software
solutions on top of Java EE and other related technologies. She is passionate
about open source software development and has been one of the founding
members of GlassFish Open Source Application Server.

Bhakti has a Bachelor's degree in Computer Engineering and a Master's degree in
Computer Science. Her areas of research include architecting solutions for resiliency,
scalability, reliability, and performance with respect to server-side technologies,
web services, and cloud applications.

Currently, Bhakti is a Senior Software Engineer at Blue Jeans Network. As part of her
current role, she works on developing RESTful services that can be consumed by ISV
partners and the developer community. She also works on the backend infrastructure
and is responsible for performance, scalability, and reliability of the services.

Bhakti is a regular speaker at different conferences and has authored numerous
articles, blogs, and tech tips at different portals such as https://home.java.net/
and Dzone. In her spare time, she enjoys kickboxing, traveling, and reading.

Bhakti's tweets can be followed at @bhakti mehta.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

Writing a book is a gratifying as well as demanding experience and I thank my family
for putting up with my late nights and weekends while I was working on this book.

I would like to acknowledge my husband, Parikshat, and my in-laws for their support.
Thank you Mansi for always being so positive and standing by me when times got
tough! This is for my two little kids who are a constant source of inspiration for me,

to believe in the power of dreams and work hard to achieve them.

I would like to extend my gratitude towards my parents, my brother Pranav and

his family for their encouragement throughout the course of the book's development.
I am blessed to be surrounded by a group of very supportive friends especially from
my undergraduate school days and would like to thank them for their motivation.
Words cannot express my gratitude to all my wonderful colleagues at Blue Jeans
Network and I truly appreciate their enthusiastic support and good wishes.

Thanks to the staff at Packt Publishing, especially Vinay Argekar, Adrian Raposo,
and Edwin Moses for contacting me, reviewing the content, and keeping track

of the schedule. Last but not least, I take this opportunity to thank the reviewers,
Masoud Kalali, Dustin R. Callaway, Kausal Malladi, and Antonio Rodrigues, for
their invaluable feedback and attention to detail.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Dustin R. Callaway is a software consultant, author, instructor, and full-stack
developer. He currently works as a staff software engineer for Intuit Inc., a leading
provider of financial software. He holds a B.S. degree in Computer Science from
Brigham Young University and is the author of the book Inside Servlets, Addison-Wesley.
His experience and interests include building RESTful web services with Java and
Node.js as well as web and mobile applications.

Masoud Kalali is a Consulting Member of Technical Staff at Oracle. He is the

author of the books, Developing RESTful Services with JAX-RS 2.0, WebSockets, and [SON
published in 2013 and GlassFish Security published in 2010, both by Packt Publishing.

He is also the author of numerous articles and quick references from Java.Net to Dzone.

Since 2001, when he started working in different software development roles, he

has been blessed enough to work on multiple loosely-coupled architecture for high
throughput message-based systems with JMS at heart and the rest of the components
forming the stops around the JMS as the main messaging bus.

Performance analysis and performance consulting on architecture, design, code,
and deployment configuration is another challenge he has spent some time working
on. RESTful services and use of RESTful endpoints for data integration is one of

the other practices he worked on for data integration for industry leading software
systems: IJC and TIBCO Spotfire, during his work at ChemAxon.

Masoud has worked on security integration as another area, specifically in
integration OpenSSO with a solid SOA framework used for developing BPEL
flow-oriented software. At his current position at ORACLE, he works as the
lead engineer in the design and development of application server and PaaS
infrastructure of the ORACLE cloud service on top of both OVM/OVAB and
Nimbula virtualization providers.

Masoud's Twitter handle is @MasoudKalali if you want to know what he is up to.

www.it-ebooks.info

http://www.it-ebooks.info/

Kausal Malladi is a result-driven software engineer, inclined towards constantly
exploring the latest advances in technology, to solve existing problems in the field
of Computer Science and develop innovative products. He has done his Master of
Technology in IT, specialized in Computer Science, from the International Institute
of Information Technology, Bangalore (IIIT-B). He has more than two years of
software design and development experience and is currently working at Intel.

At Intel, Kausal is a part of the Android Graphics Software Development team.
He also worked for a couple of years in Infosys Ltd., before pursuing his Master's
degree. At Infosys, he was part of an internal team that does R&D of effective
solutions for challenging problems in the infrastructure space.

Kausal is an avid researcher, having more than six publications in reputed
international journals. He also applied for a couple of Indian patents in 2013.
He delivered a talk on ATM Terminal Services the RESTful Way at the JavaOne
India 2013 conference.

Kausal likes to play around with hobby projects in the areas of cloud computing
and machine learning, apart from web development and open source advocacy.
He is also passionate about music. In his free time, he listens to, sings, and plays
(violin) Carnatic music. He also volunteers for the Society for Promotion of Indian
Classical Music And Culture Amongst Youth (SPIC MACAY), a voluntary youth
movement, both on organizational and technical fronts.

Visit http://www.kausalmalladi.com for more details about him.

Antonio Rodrigues is a software engineer with extensive experience in
server-side development and mobile applications. In the past 17 years, he
has worked with a range of companies including IT consulting companies,
telecommunication companies, government agencies, digital agencies, and
start-ups. He believes that APIs, in special Restful services, are crucial parts
of software engineering in the current world of mobility.

You can follow Antonio on Twitter at @aaadonai.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www. PacktPub. com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

[a] PACKT

http://PacktLib.PacktPub.com

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
* Fully searchable across every book published by Packt
* Copy and paste, print and bookmark content
* On demand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www. PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1: REST — Where It Begins 7
Introduction to REST 8
REST and statelessness 8
The Richardson Maturity Model 8
Level 0 — Remote Procedure Invocation 9
Level 1 — REST resources 9
Level 2 — more HTTP verbs 9
Level 3 — HATEOAS 10
Safety and idempotence 10
Safe methods 10
Idempotent methods 10
Design principles for building RESTful services 1"
Identifying the resource URIs 11
Identifying the methods supported by the resource 12
HTTP verbs and REST 13
PUT versus POST 14
Identifying the different representations of the resource 15
Implementing the APls 15
The Java API for RESTful Services (JAX-RS) 15
Deploying the RESTful services 17
Testing the RESTful services 18
The Client APl with JAX-RS 2.0 18
Accessing RESTful resources 20
Best practices when designing resources 22
Recommended reading 23
Summary 24

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 2: Resource Design 25
REST response patterns 25
Content negotiation 26

Content negotiation using HTTP headers 27
Content negotiation based on URL patterns 29
Entity providers and different representations 30
StreamingOutput 32
ChunkedOutput 32
Jersey and JSON support 34
POJO-based JSON binding support 34
JAXB-based JSON binding support 34
Low-level JSON parsing and processing support 35
API versioning 36
Version in the URI approach 36
Version as part of the request query parameter 37
Specifying the version in the Accept header 37
Response codes and REST patterns 38
Recommended reading 40
Summary 40

Chapter 3: Security and Traceability 41

Logging REST APIs 42

Best practices for the logging REST API 43
Including a detailed consistent pattern across service logs 43
Obfuscating sensitive data 44
Identifying the caller or the initiator as part of the logs 44

Do not log payloads by default 44
Identifying meta-information related to the request 44
Tying the logging system with a monitoring system 44
Validating RESTful services 45
Validation exception handling and response codes 47
Error handling with RESTful services 47
Authentication and authorization 49
What is authentication? 50
SAML 50
What is authorization? 52
OAuth 52
Differences between OAuth 2.0 and OAuth 1.0 54
An authorization grant 55
Refresh tokens versus access tokens 55
Jersey and OAuth 2.0 56
Best practices for OAuth in the REST API 56
Limiting the lifetime for an access token 56
Support providing refresh tokens in the authorization server 56

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Using SSL and encryption 57
OpenlD Connect 57
REST architecture components 58
Recommended reading 60
Summary 60
Chapter 4: Designing for Performance 61
Caching principles 62
Caching details 62
Types of caching headers 62
Strong caching headers 62
Weak caching headers 63
Expires and Cache-Control — max-age 63
The Cache-Control header and directives 63
Last-Modified and ETag 64
The Cache-Control header and the REST API 64
ETags 65
The ETag header and the REST API 67
Types of ETags 67
The Facebook REST API and ETags 68
RESTEasy and caching 68
Asynchronous and long-running jobs in REST 69
Asynchronous request and response processing 70
Asynchronous resources best practices 73
Sending a 202 Accepted message 73
Setting expiration for objects in the queue 74
Using message queues to handle tasks asynchronously 74
HTTP PATCH and partial updates 74
JSON Patch 76
Recommended reading 77
Summary 77
Chapter 5: Advanced Design Principles 79
Rate-limiting patterns 80
The project's layout 81
A detailed look at the rate-limiting sample 83
Best practices to avoid reaching the rate limits 87
Caching 87

Not making calls in loops 87
Logging requests 87
Avoiding polling 87
Supporting the streaming API 87
Response pagination 88
Types of pagination 89
Offset-based pagination 89

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Time-based pagination 89
Cursor-based pagination 90
The project's layout 91
Internationalization and localization 92
Miscellaneous topics 94
HATEOAS 94
The PayPal REST APl and HATEOAS 95
REST and extensibility 96
Additional topics for the REST API 96
Testing RESTful services 96
Documenting RESTful services 97
Recommended reading 97
Summary 98
Chapter 6: Emerging Standards and the Future of REST 99
Real-time APIs 100
Polling 100
The PuSH model — PubSubHubbub 101
The streaming model 102
Server-sent events 102
Server-sent events and JavaScript 104
Server-sent events and Jersey 105
WebHooks 105
WebSockets 107
Additional real-time API supporters 109
XMPP 109
BOSH over XMPP 109
Comparisons between WebHooks, WebSockets,
and server-sent events 110
REST and Micro Services 111
Simplicity 111
Isolation of problems 111
Scale up and scale down 111
Clear separation of capabilities 112
Language independence 112
Recommended reading 112
Summary 13
Appendix 115
Overview of the REST API from GitHub 115
Getting details from GitHub 116
Verbs and resource actions 117
Versioning 118

[iv]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Error handling 118
Rate limiting 118
Overview of the Facebook Graph API 119
Verbs and resource actions 121
Versioning 121
Error handling 121
Rate limiting 122
Overview of the Twitter API 122
Verbs and resource actions 123
Versioning 124
Error handling 124
Recommended reading 124
Summary 124
Index 127

[v]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

The confluence of social networking, cloud computing, and the era of mobile
applications creates a generation of emerging technologies that allow different
networked devices to communicate with each other over the Internet. In the

past, there were traditional and proprietary approaches for building solutions,
encompassing different devices, and components communicating with each other
over an unreliable network or through the Internet. Some of these approaches,
such as RPC CORBA, and SOAP-based web services, which evolved as different
implementations for service-oriented architecture (SOA), required a tighter
coupling between components along with greater complexities in integration.

As the technology landscape evolves, today's applications are built on the notion
of producing and consuming APIs instead of using web frameworks that invoke
services and produce web pages. This API-based architecture enables agile
development, easier adoption and prevalence, and scale and integration with
applications, both within and outside the enterprise.

The widespread adoption of REST and JSON opens up the possibilities of
applications incorporating and leveraging functionality from other applications

as needed. Popularity of REST is mainly because it enables building lightweight,
simple, and cost-effective modular interfaces, which can be consumed by a variety
of clients.

The advent of mobile applications calls for a stricter delineated client-server model.
Companies that build applications on iOS and Android platform can consume

the REST-based API and extend and deepen their reach by combining data from
multiple platforms because of the REST-based architecture that is API centric.

REST has the additional benefit of being stateless, easing scalability, visibility,
and reliability as well as being platform and language agnostic. Many companies
are adopting OAuth 2.0 for security and token management.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

This book aims to provide avid readers with an overview of the REST architectural
style, focuses on all the mentioned topics, and then dives deep into best practices and
commonly used patterns for building RESTful services that are lightweight, scalable,
reliable, and highly available.

What this book covers

Chapter 1, REST - Where It Begins, starts with the basic concepts of REST, how to
design RESTful services, and best practices around designing REST resources.
It covers the JAX-RS 2.0 API to build RESTful services in Java.

Chapter 2, Resource Design, discusses different request response patterns; it covers
topics such as content negotiation, resource versioning, and response codes in REST.

Chapter 3, Security and Traceability, covers advanced details in security and traceability
around the REST APL. It includes topics such as access control, authentication using
OAuth, exception handling, and auditing and validation patterns.

Chapter 4, Designing for Performance, covers the design principles needed for
performance. It discusses the caching principles, asynchronous and long running
jobs in REST, and how to use the partial updates using PATCH.

Chapter 5, Advanced Design Principles, covers advanced topics such as rate limiting,
response pagination, and internationalization and localization principles with
detailed samples. It covers extensibility, HATEOAS, and topics such as testing
and documenting REST services.

Chapter 6, Emerging Standards and the Future of REST, covers real-time APIs
using WebHooks, WebSockets, PuSH, and Server-sent event services, and
compares and contrasts them in various areas. Additionally, this chapter covers
case studies demonstrating how the emerging technologies such as WebSockets
and WebHooks are being used in real-time applications. It also outlines the role
of REST with micro services.

Appendix, covers different REST API from GitHub, Twitter, and Facebook, and
how they tie into the principles discussed in Chapters 2, Resource Design, through
Chapter 5, Advanced Design Principles.

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

What you need for this book

To be able to build and run samples provided with this book, you will need
the following:

* Apache Maven 3.0 and higher: Maven is used to build the samples.
You can download Apache Maven from http://maven.apache.org/
download.cgi.

* GlassFish Server Open Source Edition v4.0: This is a free community
supported Application Server providing implementation for Java EE 7
specifications. You can download the GlassFish Server from http://dlc.
sun.com.edgesuite.net/glassfish/4.0/promoted/.

Who this book is for

This book is a perfect reading source for application developers to get familiar

with REST. It dives deep into the details, best practices, and commonly used REST
patterns as well as gives insights on how Facebook, Twitter, PayPal, GitHub, Stripe,
and other companies are implementing solutions with RESTful services.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"GET and HEAD are safe methods."

A block of code is set as follows:

@GET
@Path ("orders")
public List<Coffee> getOrders() {
return coffeeService.getOrders() ; }

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

@Path("vl/coffees")
public class CoffeesResource {

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

@GET

@Path ("orders")

@Produces (MediaType .APPLICATION JSON)

public List<Coffee> getCoffeelList() {
//Implementation goes here

}
Any command-line input or output is written as follows:
curl -X GET http://api.test.com/baristashop/vl.1l/coffees
New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit -errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

REST — Where It Begins

Web services in the traditional SOA formats have been around for a long time to
implement heterogeneous communication between applications. One way to support
this kind of communication is to use the Simple Object Access Protocol (SOAP)/Web
Services Description Language (WSDL) approach. SOAP/WSDL is an XML-based
standard and works well when there is a strict contract between the services. We are
now in the era of distributed services where different clients from the Web, mobile, as
well as other services (internal or external), can make use of APIs exposed by different
vendors and open source platforms. This requirement enforces the need for easier
exchange of information between distributed services along with predictable, robust,
well-defined interfaces.

HTTP 1.1 is defined in RFC 2616, and is ubiquitously used as the standard protocol
for distributed, collaborative hypermedia information systems. Representational
State Transfer (REST) is inspired by HTTP and can be used wherever HTTP is used.
This chapter will go over the basics of the RESTful services design and show how to
produce and consume RESTful services, based on the standard Java APIL

This chapter covers the following topics.

* Introduction to REST

* Safety and idempotence

* Design principles for building RESTful services
* Java Standard API for RESTful services

* Best practices when designing RESTful services

www.it-ebooks.info

http://www.it-ebooks.info/

REST - Where It Begins

Introduction to REST

REST is an architectural style that conforms to the web standards such as using
HTTP verbs and URIs. It is bound by the following principles:

* All resources are identified by the URIs
* All resources can have multiple representations

* All resources can be accessed/ modified/ created /deleted by standard
HTTP methods

¢ There is no state information on the server

REST and statelessness

REST is bound by the principle of statelessness. Each request from the client
to the server must have all the details to understand the request. This helps to
improve visibility, reliability, and scalability for requests.

Visibility is improved, as the system monitoring the requests does not have

to look beyond one request to get details. Reliability is improved as there is
no check-pointing/resuming in case of partial failures. Scalability is improved
because the number of requests that can be processed by the server increases,
as the server is not responsible for storing any state.

Roy Fielding's dissertation on the REST architectural style provides

details on the statelessness of REST. Check http://www.ics.uci.
s edu/~fielding/pubs/dissertation/rest arch style.htm
for more information.

With this initial introduction to the basics of REST, we shall cover the different
maturity levels and how REST falls in it in the following section.

The Richardson Maturity Model

The Richardson Maturity Model is a model developed by Leonard Richardson.
It talks about the basics of REST in terms of resources, verbs, and hypermedia
controls. The starting point for the maturity model is to use the HTTP layer as
the transport. This is shown in the following diagram:

[8]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Level 3:
HATEOAS

Level 2:
Multiple URI-based
resources and verbs

Level 1:
Multiple URI based
resources and single verbs

Level O:
Single URI and a single verb

Richardson Maturity Model

Level 0 — Remote Procedure Invocation

Level 0 contains SOAP or XML-RPC sending data as Plain Old XML (POX). Only the
pOST methods are used. This is the most primitive way of building SOA applications
with a single POST method and using XML to communicate between services.

Level 1 — REST resources

Level 1 uses the PoST methods and instead of using a function and passing arguments
it uses the REST URIs. So, it still uses only one HTTP method. It is better than Level 0
as it breaks a complex functionality into multiple resources with the use of one PoST
method to communicate between services.

Level 2 — more HTTP verbs

Level 2 uses other HTTP verbs such as GET, HEAD, DELETE, and PUT along with the POST
methods. Level 2 is the real use case of REST, which advocates using different verbs
based on the HTTP request methods and the system can have multiple resources.

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

REST - Where It Begins

Level 3 - HATEOAS

Hypermedia as the Engine of Application State (HATEOAS) is the most mature
level of Richardson's model. The responses to the client requests contain hypermedia
controls, which can help the client decide what is the next action they can take.

Level 3 encourages easy discoverability and makes it easy for the responses to be
self-explanatory. There is debate about whether HATEOAS is truly RESTful because
the representation contains more information beyond just describing the resource.
We will show details on how some platforms such as PayPal have implemented
HATEOAS as part of their APIs in Chapter 5, Advanced Design Principles.

The next section covers safety and idempotence, the two important terminologies
when dealing with RESTful services.

Safety and idempotence

The following section discusses in detail what are safe and idempotent methods.

Safe methods

Safe methods are methods that do not change the state on the server. For example,
GET /vl1/coffees/orders/1234 is a safe method.

Safe methods can be cached. GET and HEAD are safe methods.
% The PUT method is not safe as it will create or modify a resource on the

server. The POST method is not safe for the same reasons. The DELETE
method is not safe as it deletes a resource on the server.

Idempotent methods

An idempotent method is a method that will produce the same results irrespective of
how many times it is called.

The GET method is idempotent, as multiple calls to the GET resource will
always return the same response.

. The PUT method is idempotent as calling the PUT method multiple times
% will update the same resource and not change the outcome.
A

POST is not idempotent and calling the POST method multiple times can
have different results and will result in creating new resources. DELETE

is idempotent because once the resource is deleted, it is gone and calling
the method multiple times will not change the outcome.

[10]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Design principles for building
RESTful services

Here is

the process of designing, developing, and testing RESTful services. We will

cover each of these in detail in this chapter:

Identifying the resource URIs

This process involves deciding what nouns will represent your resource.

Identifying the methods supported by the resource

This process involves using the various HTTP methods for CRUD operations.

Identifying the different representations supported by the resource
This step involves choosing whether the resource representation should
be JSON, XML, HTML, or plain text.

Implementing the RESTful services using JAX-RS APIs

The API needs to be implemented based on the JAX-RS specification

Deploying the RESTful services

Deploy the service on an application container such as Tomcat, Glassfish,
and WildFly. The samples show how to create a WAR file and deploy on
Glassfish 4.0 and it can work with any JavaEE 7-compliant container.

Testing the RESTful services

Write the client API for testing the services or use curl-or-browser-based
tools to test the REST requests.

Identifying the resource URIs

RESTful resources are identified by resource URIs. REST is extensible due to the use
of URIs for identifying resources.

The following table shows sample URIs, which can represent different resources in

the system:
URI Description of the URI
/v1/library/books This is used to represent a collection of

book resources in a library

/v1l/library/books/isbn/12345678 This is used to represent a single book

identified by its ISBN "12345678"

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

REST - Where It Begins

URI
/vl/coffees

Description of the URI

This is used to represent all the coffees
that are sold by a coffee shop

/v1l/coffees/orders This is used to represent all the coffees

that are ordered

/v1l/coffees/orders/123 This is used to represent a single order

of coffee identified by "123"

/v1l/users/1235 This is used to represent a user in a
system identified by "1235"
/v1l/users/5034/books This is used to represent all the books for

a user identified by "5034"

All the preceding samples show a clear readable pattern, which can be interpreted by
the client. All these resources could have multiple representations. These examples

of resources shown in the preceding table can be represented by JSON, XML, HTML,
or plain text and can be manipulated by HTTP methods: GET, PUT, POST, and DELETE.

Identifying the methods supported by
the resource

HTTP verbs comprise a major portion of the uniform interface constraint, which
defines the association between the actions identified by the verb, to the noun-based
REST resource.

The following table summarizes HTTP methods and descriptions for the actions
taken on the resource with a simple example of a collection of books in a library.

HTTP method Resource URI Description

GET /library/books This gets a list of books

GET /library/books/isbn/12345678 This gets a book
identified by ISBN
"12345678"

POST /library/books This creates a new book
order

DELETE /library/books/isbn/12345678 This deletes a book
identified by ISBN
"12345678"

PUT /library/books/isbn/12345678 This updates a specific
book identified by ISBN
"12345678'

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

HTTP method Resource URI Description

PATCH /library/books/isbn/12345678 This can be used to do
a partial update for a
book identified by ISBN
"'12345678"

The next section will cover the semantics of each HTTP verb in the context of REST.

HTTP verbs and REST

HTTP verbs inform the server what to do with the data sent as part of the URL.

GET

The GET method is the simplest verb of HTTP, which enables us to get access to a
resource. Whenever the client clicks a URL in the browser, it sends a GET request to
the address specified by the URL. GET is safe and idempotent. The GET requests are
cached. Query parameters can be used in GET requests.

For example, a simple GET request to retrieve all active users is as follows:

curl http://api.foo.com/vl/users/12345?active=true

POST

POST is used to create a resource. The POST requests are neither idempotent nor safe.
Multiple invocations of the POST requests can create multiple resources.

The poST requests should invalidate a cache entry if it exists. Query parameters with
the POST requests are not encouraged.

For example, a POST request to create a user can be as follows:

curl -X POST -d'{"name":"John Doe", "username":"jdoe",
"phone":"412-344-5644"}"' http://api.foo.com/vl/users

PUT

PUT is used to update a resource. PUT is idempotent but not safe. Multiple invocations
of the PUT requests should produce the same results by updating the resource.

The pUT requests should invalidate the cache entry if it exists.

For example, a PUT request to update a user can be as follows:

curl -X PUT -d'{ "phone":"413-344-5644"}"
http://api.foo.com/vl/users

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

REST - Where It Begins

DELETE

DELETE is used to delete a resource. DELETE is idempotent but not safe. This is
idempotent because based on the RFC 2616, the side effects of N > 0 requests is
the same as for a single request. This means once the resource is deleted, calling
DELETE multiple times will get the same response.

For example, a request to delete a user can be as follows:

curl -X DELETE http://foo.api.com/vl/users/1234

HEAD

HEAD is similar to the GET request. The difference is that only HTTP headers are
returned and no content is returned. HEAD is idempotent and safe.

For example, a request to send a HEAD request with curl is as follows:

curl -X HEAD http://foo.api.com/vl/users

M It can be useful to send a HEAD request to see if the
Q resource has changed before trying to get a large
representation using a GET request.

PUT versus POST

According to RFC, the difference between pUT and pOST is in the Request URI. The
URI identified by posT defines the entity that will handle the posT request. The URI
in the PUT request includes the entity in the request.

So, POST /v1/coffees/orders means to create a new resource and return an
identifier to describe the resource. In contrast, PUT /v1/coffees/orders/1234
means to update a resource identified by "1234" if it exists; else create a new order
and use the orders/1234 URI to identify it.

. PUT and POST can both be used to create or update
% methods. The usage of the method depends on the
—" idempotence behavior expected from the method as

well as the location of the resource to identify it.

The next section will cover how to identify the different representations of the resource.

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Identifying the different representations of
the resource

The RESTful resources are abstract entities, which need to be serialized to a
representation before they can be communicated to the client. The common
representations for a resource can be XML, JSON, HTML, or plain text. A resource
can provide the representation to the client based on what the client can handle. A
client can specify which language and media type it prefers. This is known as content
negotiation. Chapter 2, Resource Design, covers the content negotiation topic in detail.

Implementing the APIs

Now that we have some idea on designing RESTful resources and associating HTTP
verbs to take actions on the resources, we will cover what it takes to implement the
APIs and build a RESTful service. This section will cover the following topic:

* Java API for RESTful Services (JAX-RS)

The Java API for RESTful Services (JAX-RS)

The Java API for RESTful services provides portable APIs for building and developing
applications based on the REST architectural style. Using JAX-RS, Java POJOs can

be exposed as RESTful web resources, which are independent of the underlying
technology and use a simple annotation-based APL

JAX-RS 2.0 is the latest version of the specification and has newer features compared
to its predecessor JAX-RS 1.0, especially in the following areas:

* Bean validation support

* Client API support

* Asynchronous invocation support
Jersey is the implementation of JAX-RS specification.

We will cover all these topics in detail in the subsequent chapters. We are
demonstrating a simple coffee shop example where you can create a REST
resource called coffeesResource, which can do the following:

* Give details of the orders placed

* Create new orders

* Get details on a specific order

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

REST - Where It Begins

To create a RESTful resource, we begin with a POJO called coffeesResource.
An example of a JAX-RS resource is shown as follows:

@Path("vl/coffees")
public class CoffeesResource

@GET

@Path ("orders")

@Produces (MediaType .APPLICATION JSON)

public List<Coffee> getCoffeelList() {
//Implementation goes here

}

1. Asshown in the preceding code, we create a small POJO called
CoffeesResource. We annotate the class with ePath ("v1l/coffees"),
which identifies the URI path this class serves requests for.

2. Next, we define a method called getcoffeeList (). This method has the
following annotations:

° @GET: This indicates that the annotated method represents a HTTP
GET request.

@PATH: In this example, the GET requests for v1/coffees/orders
will be handled by this getCoffeeList () method.

@Produces: This defines the media types produced by this resource.
In our preceding snippet, we define the MediaType . APPLICATION
JSON that has the application/json value.

3. Another method to create an order is as follows:

@POST

@Consumes (MediaType .APPLICATION JSON)

@Produces (MediaType .APPLICATION JSON)
@ValidateOnExecution

public Response addCoffee(@Valid Coffee coffee) {
//Implementation goes here

}

For the second method of creating an order, we defined a method called addcoffee ().
This method has the following annotations:

* @pOST: This indicates that the annotated method represents the HTTP
POST request.

[16]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

* @Consumes: This defines the media types consumed by this resource. In our
preceding snippet, we define the MediaType . APPLICATION_JSON that has
the application/json value.

* @Produces: This defines the media types produced by this resource. In our
preceding snippet, we define the MediaType . APPLICATION JSON that has
the application/json value.

* @ValidateOnExecution: This specifies which methods should have their
parameters or return values validated on execution. More details on the
@ValidateOnExecution and @valid annotations will be covered in
Chapter 3, Security and Traceability.

Thus, we saw with a simple sample on how easy it is to convert a simple POJO to a
REST resource. Now, we will cover the Application subclass, which will define the
components of a JAX-RS application including the metadata.

The following is the code for a sample Application subclass named
CoffeeRpplication:

@ApplicationPath("/")
public class CoffeeApplication extends Application {

@Override

public Set<Class<?>> getClasses|() {
Set<Class<?>> classes = new HashSet<Class<?>>();
classes.add (CoffeesResource.class) ;
return classes;

}

As shown in the preceding code snippet, the getClasses () method has been
overridden and we add the cof feesResource class to the Application subclass.
The Application classes can be part of WEB-INF/classes Oor WEB-INF/1ib in the
WAR file.

Deploying the RESTful services

Once we have created the resource and added the meta-information to the Application
subclass, the next step is to build the WAR file .The WAR file can be deployed on any
servlet container.

The source for the samples is available as part of the downloadable bundle with this
book, which will have detailed steps to deploy and run the samples.

[17]

www.it-ebooks.info

http://www.it-ebooks.info/

REST - Where It Begins

Test the RESTful services

We can then use the Client API functionality provided by JAX-RS 2.0 to access
the resources.

This section will cover the following topics:

* Client API with JAX-RS 2.0

* Accessing RESTful resources using curl, or a browser-based extension
called Postman

The Client APl with JAX-RS 2.0

JAX-RS 2.0 had newer Client APIs for accessing RESTful resources. The entry point
of the client APl is javax.ws.rs.client.Client.

With the newly introduced Client API in JAX-RS 2.0, the endpoint can be accessed
as follows:

Client client = ClientFactory.newClient () ;
WebTarget target = client.target ("http://. . ./coffees/orders");
String response = target.request () .get(String.class) ;

As shown in the preceding snippet, the default instance of the client is obtained
using the ClientFactory.newClient () method. Using the target method, we
create a WebTarget object. These target objects are then used to prepare the request
by adding the method and the query parameters.

Prior to these APIs, the way we would get access to REST resources was like this:

URL url = new URL("http://. . ./coffees/orders");
HttpURLConnection conn = (HttpURLConnection) url.openConnection() ;
conn.setRequestMethod ("GET") ;
conn.setDoInput (true) ;
conn.setDoOutput (false) ;
BufferedReader br = new BufferedReader (new InputStreamReader (conn.
getInputStream())) ;
String line;
while ((line = br.readLine()) != null) {
//-
}

Thus, we can see how there has been an improvement in the JAX-RS 2.0 Client-side API
support to avoid using HTTPURLConnection and instead use the fluent Client APL

[18]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

If the request is a POST request:

Client client = ClientBuilder.newClient () ;
Coffee coffee = new Coffee(...);
WebTarget myResource = client.target ("http://foo.com/vl/coffees") ;

myResource.request (MediaType .APPLICATION XML
) .post (Entity.xml (coffee), Coffee.class);

The WwebTarget . request () method returns a javax.ws.rs.client.
InvocationBuilder, which takes a post () method to invoke a HTTP posT
request. The post () method takes an entity from the Coffee instance and
specifies that the media type is "APPLICATION_ XML".

A MessageBodyReaderWriter implementation is registered with the client.
More on MessageBodyReader and MessageBodyWriter will be covered in
Chapter 2, Resource Design.

The following table summarizes some of the main JAX-RS classes/annotations
we covered so far.

Name of annotation Description

javax.ws.rs.Path This identifies the URI path that the resource
serves a method for

javax.ws.rs.ApplicationPath This is used by a subclass of Application
as a base URI for all URIs supplied by the

resources in application

javax.ws.rs.Produces This defines the media type that the resource
can produce

javax.ws.rs.Consumes This defines the media type that the resource
can consume

javax.ws.rs.client.Client This defines the entry point for client requests

javax.ws.rs.client.WebTarget This defines a resource target identified by
the URI

Clients are heavyweight objects that help facilitate the
client-side communication infrastructure. It is therefore
advised to construct only a small number of client

% instances in the application, as initialization as well as
disposal of a client instance may be a rather expensive
operation. Additionally, client instances must be properly
closed before being disposed to avoid leaking resources.

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

REST - Where It Begins

Accessing RESTful resources

The following section covers the different ways REST resources can be accessed and
tested by clients.

cURL

cURL is a popular command-line tool for testing REST APIs. The cURL library and
the cURL command give the user the ability to create a request, put it on the pipe,
and explore the response. The following are a few samples of curl requests for
some basic functions:

curl request Description

curl http://api.foo.com/v1l/ This is a simple GET request
coffees/1

curl -H "foo:bar" http://api.foo. Thisisan example of a curl request for
com/vl/coffees adding request headers using -H

curl -i http://api.foo.com/v1l/ This is an example of a curl command
coffees/1 to view response headers using -1
curl -X POST -d'{"name":"John This is an example of a curl request for
Doe", "username":"jdoe", a POST method to create a user

"phone" : "412—344—5644"} http://
api.foo.com/vl/users

Even though cURL is extremely powerful, it has a lot of options to remember and
use. Sometimes, it helps to use a browser-based tool to develop REST API such as
Postman or Advanced REST client.

Postman

Postman on the Chrome browser is an excellent tool to test and develop REST API.
It has a JSON and XML viewer for rendering the data. It can also allow previewing
HTTP 1.1 requests, replay, and organize requests for future use. Postman shares the
same environment as the browser and can display browser cookies too.

An advantage of Postman over cURL is that there is a nice user interface for
entering parameters so that the user does not need to deal with commands or
scripts. Various authorization schemes such as a basic user authentication and
digest access authentication are also supported.

[20]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The following is a screenshot, which shows how to send queries in Postman:

Mgl @ Mo eawvkonmen: « 3
QLU Collections e apiposteodes jn/andom/postoodes GET 4| @URLperams | @ Headers (i)
Cofiee orders
Content-Type appiicationjscn Q Manage prasets
[EZ533 Create a specific coffee order
IG5 Gt a specific coftee order A %]
5] Get cofiees m Preview Add to collection
Bady | sTaTus ELTU0 ive RIELEA

Pretty Raw Praview - =} JSON | XML

“status": 28a,

Upgrade ta Posiman packaged app " “parliamentary_constituency”: "Oxford East”,

As shown in the preceding screenshot, we see the Postman application. A simple
way to test Postman is to launch the Postman Application from Chrome.

Then, select the HTTP method GET and paste the api.postcodes.io/random/
postcodes URL. (PostCodes is a free, open source service based on geodata.)

You will see a JSON response like this:

{
"status": 200,
"result": {
"postcode": "OX1 9SN",
"quality": 1,
"eastings": 451316,
"northings": 206104,
"country": "England",
"nhs ha": "South Central",
"admin county": "Oxfordshire",
"admin district": "Oxford",
"admin ward": "Carfax",
2
}

Downloading the example code

purchased from your account at http://www.packtpub. com. If you
purchased this book elsewhere, you can visit http: //www.packtpub.
com/support and register to have the files e-mailed directly to you.

.\‘Q You can download the example code files for all Packt books you have

[21]

www.it-ebooks.info

http://www.it-ebooks.info/

REST - Where It Begins

On the left pane of the preceding screenshot are different queries, which have been
added to a collection like getting all the coffee orders, getting a specific order, creating
orders, and so on based on testing the various samples in this book. You can create
custom collections of queries similarly.

[For more details, check http://www.getpostman.com/.]

Other tools

Here are some additional tools, which can be very useful when working with
REST resources.

Advanced REST Client

Advanced REST Client is another Chrome extension based on Google WebToolkit,
which allows the user to test and develop REST API.

JSONLint

JSONLint is a simple online validator that ensures the JSON is valid. When sending
JSON data as part of requests, it is useful to validate if the format of the data conforms
to the JSON specification. In such cases, the client can validate the input using
JSONLint. For more details, check http://jsonlint.com/.

Best practices when designing resources

The following section highlights some of the best practices when designing
RESTful resources:

* The API developer should use nouns to understand and navigate through
resources and verbs with the HTTP method, for example, the /user/1234/
books is better than /user/1234/getBook URI.

* Use associations in the URIs to identify subresources. For example, to get
the authors for book 5678, for user 1234, use the following /user/1234/
books/5678/authors URL

* For specific variations, use query parameters. For example, to get all the
books with 10 reviews, use /user/1234 /books?reviews counts=10.

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Allow partial responses as part of query parameters if possible. An example
of this case is to get only the name and age of a user, the client can specify,
?fields as a query parameter and specify the list of fields that should be sent
by the server in the response using the /users/1234?fields=name, age URL

Have defaults for the output format for the response in case the client does
not specify which format it is interested in. Most API developers choose to
send JSON as the default response mime type.

Have camelCase or use _ for attribute names.

Support a standard API for counts, for example users/1234 /books/count,
in case of collections so that the client can get an idea of how many objects
can be expected in the response.

This will also help the client with pagination queries. More details on
pagination will be covered in Chapter 5, Advanced Design Principles.

Support a pretty printing option, users/1234?pretty_print. Also, itis
a good practice to not cache queries with a pretty print query parameter.

Avoid chattiness by being as verbose as possible in the response. This is
because if the server does not provide enough details in the response, the
client needs to make more calls to get additional details. That is a waste

of network resources as well as counts against the client's rate limits. More
details on rate limiting are covered in Chapter 5, Advanced Design Principles.

Recommended reading

The following links may be useful to review for more details:

RFC 2616: http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html

Richardson Maturity Model:
http://www.crummy.com/writing/speaking/2008-QCon/act3.html

Jersey implementation of JAX-RS: https://jersey.java.net/
InspectB.in: http:/ /inspectb.in/
Postman: http://www.getpostman.com/

Advanced REST Client:
https://code.google.com/p/chrome-rest-client/

[23]

www.it-ebooks.info

http://www.it-ebooks.info/

REST - Where It Begins

Summary

In this chapter, we covered the fundamentals of REST, CRUD API, and how to
design RESTful resources. We worked with JAX-RS 2.0-based annotations that can
represent HTTP methods and Client APIs that can be used to target the resources.
Additionally, we iterated the best practices when designing RESTful services.

The next chapter will dig deeper into the concepts covered here. We will also cover
topics such as content negotiation, entity providers in JAX-RS 2.0, error handling,
versioning schemes, and response codes in REST. We will look into techniques the
server can use to send responses to the client using Streaming or Chunking.

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Resource Design

Chapter 1, REST - Where It Begins, covered the basics of REST as well as best practices
while designing RESTful resources. This chapter continues the discussion with an
understanding of request response patterns, how to deal with different representations
of resources, what are the different strategies when versioning API, and how standard
HTTP codes can be used with REST responses. Subsections of this chapter will cover
the following topics:

* REST response patterns

* Content negotiation

* Entity providers and different representations
* APIversioning

* Response codes and REST patterns

We will also cover custom entity providers for serializing and de-serializing request
and response entities as well as other approaches such as streaming and chunking,.

REST response patterns

In the earlier chapter, we saw how we can work with domain-related data to create
readable URIs, use HTTP methods for different CRUD functionality, and transfer
data to and fro from the clients and server using standardized MIME types and
HTTP response codes.

www.it-ebooks.info

http://www.it-ebooks.info/

Resource Design

The following is a diagram that shows standard REST request/response patterns:

REST Request

Mime Types

W HTTP Methods Server

URI

HTTP Codes

Mime Type
REST Response

As seen from the preceding diagram, the client makes a REST request, which
consists of standard HTTP methods, MIME types, and the URI to target. The server
processes the request and sends back a response, which comprises standard HTTP
response codes and MIME types. We covered the HTTP methods and how to use
JAX-RS annotations earlier. Also, we enumerated the best practices for designing
Resource URIs. In this chapter, we will cover the commonly used HTTP response
codes as well as how to handle the different MIME types.

Content negotiation

Content negotiation means allowing different representations of a resource in the
same URI so that clients can make a choice on what suits them best.

"HTTP has provisions for several mechanisms for "content negotiation" - the
process of selecting the best representation for a given response when there are
multiple representations available."

- RFC 2616, Fielding et al.

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

There are different patterns for content negotiation. These are as follows:

* Using HTTP headers
* Using URL patterns

Content negotiation using HTTP headers

When the client sends requests to create or update a resource, there is some form
of payload that should be transferred from the client to the endpoint. Also, when
a response is generated, a payload can be sent back to the client. These payloads
are handled by HTTP request and response entities, which are sent as part of the
HTTP messages body.

Entities are sent via a request, usually for HTTP posT and pUT methods, or they
are returned in a response for the HTTP methods. The Content-Type HTTP header
is used to indicate the MIME type of the entity being sent by the server. Common
examples of content types are "text/plain", "application/xml", "text/html",
"application/json", "image/gif", and "image/jpeg".

A client can make a request to the server and specify what media types it can
handle and what is its order of preference as part of the "Accept " HTTP header.
The client can also specify in what language it wants the response as part of the
"Accept-Language" header to be. If no Accept header is present in the request,
the server can send the representation it chooses.

The JAX-RS specification provides standard annotations to support content
negotiation. These are javax.ws.rs.Produces and javax.ws.rs.Consumes
annotations. The following snippet shows an example of the @Produces
annotation in a resource method:

@GET

@Path ("orders")

@Produces (MediaType .APPLICATION JSON)

public List<Coffee> getCoffeelist ()
return CoffeeService.getCoffeelist () ;

}

The getcoffeeList () method returns a list of coffees and is annotated with
@Produces (MediaType.APPLICATION JSON). The eProduces annotation is used
to specify which MIME types the resource can send back to the client and match
it up to the client's Accept header.

[27]

www.it-ebooks.info

http://www.it-ebooks.info/

Resource Design

This method will produce a response as shown:

X-Powered-By: Servlet/3.1 JSP/2.3 (GlassFish Server Open Source
Edition 4.0 Java/Oracle Corporation/1.7)

Server: GlassFish Server Open Source Edition 4.0

Content-Type: application/json

Date: Thu, 31 Jul 2014 15:25:17 GMT

Content-Length: 268

{

"coffees": [
"Id": 10,
"Name": "Cappuchino",
"Price": 3.82,
llTypell . llIcedll ,
"Size": "Medium"
"Id": 11,
"Name": "Americano",
"Price": 3.42,
"Type": "Brewed",
"Size": "Large"

}

In a resource, if no methods are able to produce the MIME type requested by a client
request, the JAX-RS runtime sends back an HTTP 406 Not Acceptable error.

The following snippet shows a resource method annotated with the
@Consumes annotation:

@POST

@Consumes (MediaType .APPLICATION JSON)

@Produces (MediaType .APPLICATION JSON)

public Response addCoffee (Coffee coffee) {
// Implementation here

}

The @Consumes annotation specifies which media types the resource can consume.
When a client makes a request, JAX-RS finds all the methods that will match the path,
and it will then invoke the method based on the content type sent by the client.

If a resource is unable to consume the MIME type of a client request, the JAX-RS
runtime sends back an HTTP 415 ("Unsupported Media Type") €rror.

[28]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Multiple MIME types can be specified in the @Produces or @Consumes annotation
as @Produces (MediaType .APPLICATION JSON, MediaType.APPLICATION XML).

Along with the support for static content negotiation, JAX-RS also contains runtime
content negotiation support using the javax.ws.rs.core.Variant class and the
javax.ws.rs.core.Request objects. A variant object in a JAX-RS specification

is a combination of media types, content-language, and content encoding as well

as ETags, last-modified headers, and other preconditions. The variant object
defines the resource representation that is supported by the server. The variant.
VariantListBuilder class is used to build a list of representation variants.

The following code snippet shows how to create a list of resource representation
variants:

List<Variant> variants = Variant.mediatypes ("application/xml",
"application/json") .build() ;

The code snippet calls the build method of the VariantListBuilder class.
The rRequest . selectVariant method takes a list of variant objects and chooses
the one based on the client's Accept header, as shown in the following snippet:

@GET
public Response getCoffee (@Context Request r)
List<Variant> vs = ...;
Variant v = r.selectVariant (vs);
if (v == null) {
return Response.notAcceptable (vs) .build() ;
} else {
Coffee coffee = ..//select the representation based on v
return Response.ok (coffee, Vv);

Content negotiation based on URL patterns

Another approach for content negotiation adopted by some APIs is to send the
resource representation based on the extension of a resource in the URL. For
example, a client can ask for details using http://foo.api.com/v2/library/
books.xml or http://foo.api.com/v2/library/books.json. The server has
different methods, which can handle the two URIs. However, both of these are
representations of the same resource.

@Path ("/v1l/books/")
public class BookResource

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

Resource Design

@Path ("{resourceID}.xml")
@GET
public Response getBookInXML (@PathParam("resourceID") String
resourcelID) {
//Return Response with entity in XML

}

@Path ("{resourceID}.json")
@GET
public Response getBookInJSON (@PathParam("resourceID") String
resourcelID) {
//Return Response with entity in JSON

}

As you can see in the preceding snippet, there are two methods defined:
getBookInXML () and getBookInJSON (), and the response is returned based
on the path of the URL.

It is a good practice to use the HTTP content negotiation Accept
M header. Using headers for content negotiation provides a clear
Q separation of IT concerns from business. The other advantage with
using the Accept header for content negotiation is that there is
only one resource method for all the different representations.

The following section covers how to serialize and de-serialize a resource to and from
the different representations respectively using entity providers in JAX-RS.

Entity providers and different
representations

In the previous examples, we passed literal parameters picked from a URI path
fragment as well as from the request's query parameters to the resource method.
However, there are cases when we want to pass a payload in the request body,
for example a POST request. JAX-RS provides two interfaces that can be used: one
for handling the inbound entity representation-to-Java de-serialization known

as javax.ws.rs.ext .MessageBodyReader, and the other one for handling the
outbound entity Java-to-representation serialization known as javax.ws.rs.ext.
MessageBodyWriter.

[30]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

MessageBodyReader de-serializes entities from the message body representation
into Java classes. MessageBodyWriter serializes a Java class to a specific
representation format.

The following table shows the methods that need to be implemented:

Method of MessageBodyReader Description

isReadable () This is used to check if the
MessageBodyReader class can support
conversion from a stream to Java type

readFrom() This is used to read a type from the
InputStream class

As shown in the table, the isReadable () method of the MessageBodyReader
implementation class is called to check if MessageBodyReader can handle the
specified input. When the readFrom () method of the MessageBodyReader class is
called, it can convert an input stream to a Java POJO.

The following table shows the methods of MessageBodyWriter that must be
implemented along with a short description of each of its methods:

Method of MessageBodyWriter =~ Description

isWwritable () This is used to check if the
MessageBodyWriter class can support the
conversion from the specified Java type

getSize () This is used to check the length of bytes if the
size is known or -1

writeTo () This is used to write from a type to the stream

The isWritable () method of the MessageBodyWriter implementation class is
called to check if the MessageBodyWriter class can handle the specified input.
When the writeTo () method of MessageBodyWriter is called, it can convert

a Java POJO to the output stream. The samples in the download bundle of this
book show how to use MessageBodyReader and MessageBodyWriter.

However, there are lightweight implementations such as the st reamingoutput
and ChunkingOutput classes, and the following sections will cover how Jersey
implementation of JAX-RS already has support for basic formats such as text,
JSON, and XML.

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Resource Design

StreamingOutput

The javax.ws.rs.core.StreamingOutput class is a callback that can be implemented
to send the entity in the response when the application wants to stream the output.
The streamingOutput class is a lightweight alternative to the javax.ws.rs.ext.
MessageBodyWriter class.

The following is a sample code that shows how to use streamingoOutput as part of
the response:

@GET
@Produces (MediaType.TEXT PLAIN)
@Path ("/orders/{id}")
public Response streamExample (@PathParam("id") int id) {
final Coffee coffee = CoffeeService.getCoffee(id);
StreamingOutput stream = new StreamingOutput () {
@Override
public void write (OutputStream os) throws IOException,
WebApplicationException

Writer writer = new BufferedWriter (new
OutputStreamWriter (os)) ;

writer.write (coffee.toString()) ;
writer.flush() ;

bi

return Response.ok (stream) .build() ;

}

As shown in the preceding snippet, the write () method of the StreamingOutput
class has been overridden to write to the output stream. StreamingOutput is useful
in case of streaming binary data in a streaming fashion. For more details, have a look
at the samples code that are available as part of the download bundle.

ChunkedOutput

With Jersey implementation of JAX-RS, the server can use the org.glassfish.
jersey.server.ChunkedOutput class to immediately send a response to a client in
chunks as soon as they become available, without waiting for the other chunks to
become available too. The size object's value of -1 is sent in the Content -Length
header of the response to indicate that the response will be chunked. On the client
side, it will know that the response will be chunked, so it reads each chunk of the
response separately and processes it and waits for more chunks to come on the
same connection. The server keeps on sending response chunks until it closes the
connection after sending the last chunk and the response processing is finished.

[32]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The following is an example code to show the use of chunkedoutput:

@GET
@Produces (MediaType.TEXT PLAIN)
@Path ("/orders/{id}/chunk")
public ChunkedOutput<String> chunkExample (final @PathParam("id")
int id)
final ChunkedOutput<String> output = new
ChunkedOutput<String> (String.class) ;

new Thread() {
@Override
public void run() {
try {
output.write("foo") ;
output.write ("bar") ;
output.write("test");
} catch (IOException e) {
e.printStackTrace () ;
} finally {
try {
output.close() ;
} catch (IOException e) {
e.printStackTrace() ;

}
}
}

}.start () ;
return output;

}

As shown in the snippet, the chunkExample method returns a Chunkedoutput object.

On the client side, org.glassfish.jersey.client.ChunkedInput can be used to
receive messages in "typed" chunks. This data type is useful for consuming partial
responses from large or continuous data input streams. The following snippet shows
how the client can read from a ChunkedInput class:

ChunkedInput<String> input = target() .path("..").request () .get (new Gen
ericType<ChunkedInput<String>> () {
3N
while ((chunk = chunkedInput.read()) != null) {
//Do something

[33]

www.it-ebooks.info

http://www.it-ebooks.info/

Resource Design

Differences between ChunkedOutput and StreamingOutput

ChunkedOutput is an internal class provided by Jersey. It lets
the server send chunks of data without closing the client connection.
It uses a series of convenient calls to the ChunkedOutput .write
+ methods that take POJO and media type input and then use the
%»\ JAX-RS MessageBodyWriter class to convert the POJO to bytes.
g ChunkedOutput writes are non-blocking.

StreamingOutput is a low-level JAX-RS API that works with
bytes directly. The server has to implement St reamingOutput,
and its write (OutputStream) method will be invoked only
once by JAX-RS runtime, and the call is blocking.

Jersey and JSON support

Jersey provides support for the following approaches when working with a
JSON representation.

POJO-based JSON binding support

POJO-based JSON binding support is very generic and allows mapping from
any Java object to JSON. This is done via a Jackson org.codehaus. jackson.map.
ObjectMapper instance. For example, to read a JSON in a Cof fee object, we use
the following;:

ObjectMapper objectMapper = new ObjectMapper() ;
Coffee coffee = objectMapper.readValue (jsonData, Coffee.class);

For more details, check https://jersey.java.net/documentation/1.18/json.
html.

JAXB-based JSON binding support

JAXB-based JSON binding support is useful if the resource can produce and
consume XML or JSON. To implement this, you can annotate a simple POJO
with @XMLRootElement, as shown in the following code:

@XMLRootElement

public class Coffee {
private String type;
private String size;

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Using the preceding JAXB bean to produce the JSON data format from the resource
method is then as simple as using the following:

@GET

@Produces ("application/json")

public Coffee getCoffee() {
//Implementation goes here

}

The Produces annotation will take care of converting into a JSON representation of
the coffee resource.

Low-level JSON parsing and processing support

This is best used to get fine-grained control over the JSON format using JSONArray
and JsONObject to create the JSON representation. The advantage here is that the
application developer will gain full control over the JSON format produced and
consumed. The following is an example code to use JSONArray:

JsonObject myObject = Json.createObjectBuilder ()

.add ("name", "Mocha")
.add("size", "Large")
.build() ;

On the other hand, dealing with the data model objects will probably be a bit more
complex. For example, the following code shows how the pull parsing programming
model works with JSONParser:

JsonParser parser = Json.createParser(..)
Event event = parser.next(); // START OBJECT
event = parser.next(); //END OBJECT

The next section covers the topic of how to version the API so that it can evolve
over a period of time as well as how to ensure the basic functionality of a client
application does not break with API versioning changes on the server side.

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

Resource Design

API versioning

For the evolution of the application, the URI design should have some constraints to
identify the version. It is hard to foresee all the resources, which will change during
the life of the application. The goal with API versioning is to define the resource
endpoints and the addressing schemes and associate a version with them. The API
developers must ensure the HTTP verbs' semantics and status codes should continue
to work without human intervention as the version changes. Over the life span of
the application, the version will evolve, and the APIs may need to be deprecated.
Requests to older versions of the API can be redirected to the latest code path or
there can be appropriate error codes that indicate the API is obsolete.

There can be different approaches to version APIs. These are as follows:

* Specify the version in the URI itself
* Specify the version in the request query parameter
* Specify the version in the Accept header

All of these could work fine. The next section covers the approaches in detail and
highlights the advantages and disadvantages of each.

Version in the URI approach
In this approach, the version is part of the URI for the resource exposed by the server.

For example, in the following URL, there is a "v2" version exposed as part of the path
to the resource:

http://api.foo.com/v2/coffees/1234

Additionally, API developers can provide a path, which defaults to the latest version
of the API Thus, the following request URIs should behave identically:

* http://api.foo.com/coffees/1234
* http://api.foo.com/v2/coffees/1234

This indicates v2 is the latest API version. If the clients point to the older versions,
they should be informed to use the newer versions by using the following HTTP
code for redirection:

* 301 Moved permanently: This indicates that the resource with a requested
URI is moved permanently to another URI. This status code can be used to
indicate an old or unsupported API version, informing the API client that
a versioned resource URI has been replaced by a resource permalink.

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

* 302 Found: This indicates that the requested resource is temporarily located
at another location, while the requested URI might still be supported.

Version as part of the request query parameter

The other way to use API versioning could be to send the version in the request
parameter. The resource method can choose the flow of code based on the
version, which is sent with the request. For example, in the http://api.foo.
com/coffees/1234?version=v2 URL, v2 has been specified as part of the query
parameter ?version=v2.

The disadvantage with this format is that the responses may not be cached.
Additionally, the source code for the resource implementation will have
different flows based on the version in the query parameter, which is not
very intuitive or maintainable.

[More details on the best practices of caching will be]
M

covered in Chapter 4, Designing for Performance.

In contrast, if the URI contains the version, it is cleaner and more readable. Also, there
could be a standardized lifespan for a version of URI, after which all the requests to
older versions get redirected to the latest version.

Facebook, Twitter, and Stripe API all use versions as part of the
URI. The Facebook API makes a version unusable two years after
the date on which the subsequent version is released. If a client
" makes an unversioned call, the server will default to the oldest
% available version of the Facebook API.

The Twitter API provides six months to completely transition
from v1.0 to v1.1.

More details on these APIs will be found in the Appendix.

Specifying the version in the Accept header

Some APIs prefer to put version as part of the Accept header. For example, take a
look at the following code snippet:

Accept: application/vnd.foo-vl+json

In the preceding snippet, vnd stands for vendor-specific MIME type. This removes
the version for the URL and is preferred by some API developers.

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

Resource Design

The GitHub API recommends you send an Accept header
explicitly, as shown:

@’@‘\ Accept: application/vnd.github.v3+json
For more details, check https://developer.github.com/
v3/media/.

The next section covers what the standard HTTP response codes that should be sent
to the client are.

Response codes and REST patterns

HTTP provides standardized response codes that can be returned for every request.
The following table summarizes the REST response patterns based on CRUD APL
There are subtle differences based on the operation used as well as whether the
content is sent or not as part of the response:

Group Response code Description

Success 2XX 200 OK This can be used for the create,
update, or delete operations with
PUT, POST, or DELETE. This returns
content as part of the response.

201 Created This can be used when creating a
resource with PUT. This must contain
the Location header of the resource.

204 No Content This can be used for the DELETE,
POST, or PUT operation. No content
is returned as part of the response.

202 Accepted This sends a response later as
processing has not been completed
as yet. This is used for asynchronous
operations. This should also return a
Location header, which can specify
where the client can monitor for
the request.

Redirectional 3XX 301 Permanent This can be used to show that all
requests are directed to a new location.
302 Found This can be used to show the resource
already exists and is valid.

Client Errors 4XX 401 Unauthorized This is used to show the request can't
be processed based on the credentials.

[38]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Group Response code Description

404 Not Found This is used to show the resource
is not found. It is a good practice to
returna 404 Not Found error to
the unauthenticated requests to
prevent information leaks.

406 Not Acceptable This can be used when the resource
cannot produce the MIME type
specified by the client. This happens
when the MIME type specified in the
Accept header does not match any
media type in the resource method/
class annotated with @Produces.

415 Unsupported This can be used when the client

Media Type sends a media type that cannot be
consumed by the resource. This
happens when the MIME type
specified in the Content - Type
header does not match any media
type in the resource method/class
annotated with @Consumes.

Server Errors 5XX 500 Internal This internal server error is a
Server error generic message when no specific
details are available.
503 Service This can be used when the server
Unavailable is under maintenance or too busy

to handle requests.

JAX-RS defines a javax.ws.rs.core.Response class, which has static methods to
create an instance using javax.ws.rs.core.Response.ResponseBuilder:

@POST
Response addCoffee(...) {
Coffee coffee =
URI coffeeld = UriBuilder.fromResource (Coffee.class)...
return Response.created(coffeeld) .build() ;

}

The preceding code snippet shows a method addcoffee (), which returns a 201
Created response using the Response . created () method. For more details on
other response methods, check https://jersey.java.net/apidocs/latest/
jersey/javax/ws/rs/core/Response.html.

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

Resource Design

Recommended reading

https://jersey.java.net/documentation/latest/representations.
html: Jersey documentation for content negotiation

® http://docs.jboss.org/resteasy/docs/2.2.1.GA/userguide/html/
JAX-RS_Content_Negotiation.html: RESTEasy and URL-based content
negotiation

* https://dev.twitter.com/docs/api/1.1/overview: Twitter REST API
and versioning strategy

* https://developers.facebook.com/docs/apps/versions: The Facebook
API and versioning

Summary

We covered topics such as content negotiation, API versioning, and REST

response codes in this chapter. One of the primary takeaways from this chapter
was to understand how important it is to support various representations of the
same resource so that the client can choose the right one for their case. We covered
differences between streaming and chunking output and how they can be used as
lightweight options with custom entity providers such as MessageBodyReader and
MessageBodyWriter. We saw case studies of companies that use versioning in their
solutions as well as best practices and design principles scattered throughout the
various topics.

The next chapter will cover advanced details such as security, traceability, and
validation in REST programming models.

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Traceability

In the era of open platforms, developers can build apps, which can be easily and
quickly decoupled from the platform's business cycle. This API-based architecture
enables agile development, easier adoption, prevalence, and scale and integration
with applications within and outside the enterprise. One of the most important
considerations for the apps is dealing with security. The developers building apps
should not be concerned with the user's credentials. Additionally, there can be other
clients consuming the REST services including but not limited to browsers and
mobile applications to other services. The clients can be acting on behalf of other
users and must be authorized to perform actions for them without the user having
to share his credentials for a username and password. This is where the OAuth 2.0
specification comes into the picture.

Another important aspect to consider when building distributed applications is
traceability, which will involve logging the data related to requests for debugging
purposes in an environment encompassing multiple micro services, which can be
geographically distributed and deal with thousands of requests. Requests to the REST
resources and status codes must be logged to help debug issues in production and
can also serve as an audit trail. This chapter will cover advanced details in security
and traceability in REST programming models. The topics covered are as follows:

* Logging REST APlIs
* Exception handling with RESTful services

* Validation patterns
* Federated identity

° SAML 2.0
° OAuth20
° OpenlD Connect

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Traceability

This chapter will conclude with what it takes to work with the various building
blocks for scalable, highly performing RESTful services.

Logging REST APIs

Complex distributed applications can introduce many points of failure. Problems are
hard to find and fix, thus delaying incident response and creating costly escalations.
Application developers and administrators may not have direct access to the machine
data they need.

Logging is a very important aspect of building RESTful services, especially in the
case of debugging production issues in distributed nodes running various micro
services. It helps to link events or transactions between the various components
that make an application or a business service. A complete sequence of logs can
help replay the course of events that occurred in a production system. Additionally,
logs can help index, aggregate, slice the data, analyze the patterns of requests
coming in, and provide a lot of potentially helpful information.

The following code covers how to write a simple logging filter, which can be
integrated with the REST resources. The filter will log request-related data such
as timestamp, query string, and inputs:

@WebFilter (filterName = "LoggingFilter",
urlPatterns = {"/*"}
)
public class LoggingFilter implements Filter
static final Logger logger =
Logger .getLogger (LoggingFilter.class) ;
@Override
public void doFilter (ServletRequest servletRequest,
ServletResponse servletResponse,
FilterChain filterChain) throws IOException,
ServletException {

HttpServletRequest httpServletRequest =
(HttpServletRequest) servletRequest;

logger.info ("request™"
+httpServletRequest.getPathInfo() .toString()) ;
filterChain.doFilter (servletRequest, servletResponse) ;

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The LoggingFilter class is a simple filter that implements a javax.servlet.
Filter interface. The logger will log all messages with the request path and
inputs. The sample uses Apache Log4j to set up logging.

For more details on Apache Log4], check
S http://logging.apache.org/log4j/2.x/.

These logs can then be collected and mined from a distributed log server application,
for example, Splunk (http://www.splunk.com/), which can give the developer
information and root causes analysis for outages or performance issues in production.
An example in our coffee shop analogy could be that there was a problem processing
a coffee order. If the request details were logged in a distributed log server application
such as Splunk, the developer can query based on the time, and see what the client
tried to send and why the request failed.

The next section will cover numerous best practices to keep in mind when logging
REST API.

Best practices for the logging REST API

In a large-scale distributed environment, the log data may be the only information
that is available to the developer for debugging issues. Auditing and logging, if done
right, can help tremendously in figuring such production issues and replaying the
sequence of steps that occurred before an issue. The following sections list a few best
practices for logging to understand system behavior and reasoning for performance
and other issues.

Including a detailed consistent pattern across
service logs

It is a good practice for a logging pattern to at least include the following:

* Date and current time

* Logging level

* The name of the thread
* The simple logger name

* The detailed message

[43]

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Traceability

Obfuscating sensitive data

It is very important to mask or obfuscate sensitive data in production logs to protect
the risk of compromising confidential and critical customer information. Password
obfuscators can be used in the logging filter, which will mask passwords, credit

card numbers, and so on from the logs. Personally identifiable information (PII is
information that can be used by itself or along with some other information to identify
a person. Examples of PII can be a person's name, e-mail, credit card number, and

so on. Data representing PII should be masked using various techniques such as
substitution, shuffling, encryption, and other techniques.

[For more details, check http://en.wikipedia.org/]
v

wiki/Data masking.

Identifying the caller or the initiator as part of
the logs

It is a good practice to identify the initiator of the call in the logs. The API may
be called by a variety of clients, for example, mobile, the Web, or other services.
Adding a way to identify the caller may help debug issues in case the problems
are specific to a client.

Do not log payloads by default

Have a configurable option to log payloads so that by default no payload is logged.
This will ensure, for resources dealing with sensitive data, the payloads do not get
logged in the default case.

Identifying meta-information related to the request

Every request should have some details on how long it took to execute the request,
the status of the request, and the size of the request. This will help to identify
latency issues as well as any other performance issues that may come up with
large messages.

Tying the logging system with a monitoring system
Ensure the data from the logs can also be tied to a monitoring system, which can
collect data related to SLA metrics and other statistics in the background.

[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Case studies of logging frameworks in distributed environments in
various platforms

Facebook has developed a homegrown solution called Scribe, which
is a server for aggregating streaming log data. This can handle the
large number of requests per day across servers distributed globally.
The servers send data, which can be processed, diagnosed, indexed,
summarized, or aggregated. Scribe is designed to scale to a very large
number of nodes. It is designed to be robust to survive network and
node failures. There is a scribe server running on every node in the
system. It is configured to aggregate messages and sends them to a
central scribe server in larger groups. If the central scribe server goes
down, messages are written to a file by the local scribe server on the
local disk and sends them when the central server recovers. For more

details, check https://github.com/facebookarchive/scribe.

Dapper is Google's tracing system, which samples data from the

thousands of requests and provides sufficient information to trace data.
Traces are collected in local logfiles and then pulled in Google's BigTable

database. Google has found out that sampling sufficient information
for common cases can help trace the details. For more details, check
http://research.google.com/pubs/pub36356.html.

The next section will cover how to validate REST API requests and/or
response entities.

Validating RESTful services

When exposing REST- or HTTP-based service APIs, it is important to validate that the
API behaves correctly and that the exposed data format is structured in an expected
manner. For example, it is important to validate an input to a RESTful service, such as
e-mails sent as part of the request body, must conform to the standards, certain values
in the payload must be present, the zip code must follow a particular format, and so
on. This can be done by validations with RESTful services.

JAX-RS supports the Bean Validation to verify JAX-RS resource classes. This support

consists of:

* Adding constraint annotations to resource method parameters

* Ensuring entity data is valid when the entity is passed in as a parameter

[45]

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Traceability

The following is a code snippet of a CoffeesResource class, which contains the
@valid annotation:

@POST

@Consumes (MediaType .APPLICATION JSON)

@Produces (MediaType .APPLICATION JSON)
@ValidateOnExecution

public Response addCoffee(@Valid Coffee coffee) {

}

The javax.validation.executable.ValidateOnExecution annotation can help
specify which method or constructor should have their parameters and return values
validated on execution. The javax.validation.Valid annotation on the request
body will ensure the cof fee object will conform to the rules as specified in the POJO.

The following is the snippet of the cof fee POJO:

@XmlRootElement
public class Coffee {

@VerifyValue (Type.class)
private String type;

@VerifyValue (Size.class)
private String size;

@NotNull
private String name;
// getters and setters

}

The field name has a javax.validation.constrains.NotNull annotation, which
enforces that the name of the coffee in the order cannot be null. Similarly, we have
defined custom annotations in the sample, which will verify the type and size and
check if the values in the request body follow the right format.

For example, size can be either of the following values as shown: Small, Medium,
Large, Or ExtraLarge

public enum Size {
Small ("S"), Medium("M"), Large("L"), ExtralLarge ("XL");
private String value;

}

The @verifyvalue (Size.class) annotation is a custom annotation defined in the
downloadable sample.

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Validation exception handling and
response codes

The following table provides a quick summary of the type of response codes when
various validation-related exceptions are thrown. The type of error code depends on
the exception thrown as well as whether the validation performed is on the request
or the response of the HTTP method.

HTTP Response code returned Type of exception

500 Internal Server This error code is returned when javax.

Error validation.ValidationException or any
subclass of ValidationException including
ConstraintValidationException is
thrown while validating a method return type

400 Error When ConstraintViolationExceptionis
thrown in all other cases for validating method

The next section covers how the API developers can throw application-specific
exceptions and map HTTP error codes based on the exceptions.

Error handling with RESTful services

When building RESTful APIs, it is necessary to throw application-specific exceptions
and provide specific HTTP responses containing the details of these exceptions. The
following section covers how to deal with user-defined exceptions and map them

to HTTP responses and status codes. The javax.ws.rs.ext.ExceptionMapper
classes are custom, application provided, components that catch thrown application
exceptions and write specific HTTP responses. Exception mapper classes are
annotated with the @Provider annotation.

The following snippets show how to build your custom exception mapper:

@GET

@Produces (MediaType .APPLICATION JSON)

@Path ("/orders/{id}")

public Response getCoffee(@PathParam("id") int id) {
Coffee coffee = CoffeeService.getCoffee(id);
if (coffee == null)

[47]

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Traceability

throw new CoffeeNotFoundException ("No coffee found for
order " + 1id);

return Response.ok (coffee) .type (MediaType.APPLICATION JSON
TYPE) .build() ;

}

As shown in the preceding code snippet, the getCoffees () method returns a
Coffee object with the ID specified in the path parameter. If no coffee is found
with the ID specified, the code throws a Cof feeNot FoundException.

The following is the code of an ExceptionMapper class implementation:

@Provider
public class MyExceptionMapper implements ExceptionMapper<Exceptions>

public Response toResponse (Exception e)
ResourceError resourceError = new ResourceError () ;

String error = "Service encountered an internal error";
if (e instanceof CoffeeNotFoundException) {
resourceError.setCode (
Response.Status.NOT FOUND.getStatusCode()) ;
resourceError.setMessage (e.getMessage ()) ;

return Response.status (
Response.Status.NOT FOUND) .entity (resourceError)

.type (MediaType.APPLICATION JSON TYPE)
.build() ;

}

return Response.status(503) .entity(
resourceError) .type (MediaType.APPLICATION JSON TYPE)
cbuild() ;

}

The preceding code shows an implementation of ExceptionMapper whose
toResponse () method has been overridden. The code checks if the exception
thrown is an instance of Cof feeNotFoundException, then returns a response
whose entity is of the type ResourceError.

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The ResourceError class is a POJO annotated with @XMLRootElement and
sent as part of the response:

@XmlRootElement
public class ResourceError {

private int code;
private String message;
//getters and setters

)

You can run the sample as part of the downloadable bundle and the output is
as follows:

HTTP/1.1 404 Not Found

X-Powered-By: Servlet/3.1 JSP/2.3 (GlassFish Server Open Source
Edition 4.0 Java/Oracle Corporation/1l.7)

Server: GlassFish Server Open Source Edition 4.0

Content-Type: application/json

Content-Length: 54

{"code":404, "message":"No coffee found for order 100"}

Authentication and authorization

In the past, organizations needed a way to unify the authentication for users in an
enterprise. Single sign-on is a solution to keep one repository for usernames and
passwords that can be used across the different applications in an enterprise.

With the evolution of service-oriented architectures, organizations needed a way
so that the partners and other services could use the APIs and there needed to be a
way to simplify the sign-on process across the various applications and platforms.
The need grew with the generation of social media with various platforms opening
up, the APIs and an ecosystem built with a myriad of applications, and a multitude
of devices using the platforms such as Twitter, Facebook, and LinkedIn.

Thus, it has become increasingly important to decouple the authentication and
authorization functions from the consumer application. Also, it is not mandatory
for every application to be aware of the user's credentials. The following section
will cover SAML 2.0 and OAuth 2.0 for authorization as part of the federated
identities effort to simplify sign-on and increase security.

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Traceability

Subsections will enumerate over the following topics:

e SAML

* OAuth

* Refresh tokens versus Access tokens
* Jersey and OAuth 2.0

* When to use SAML or OAuth?

* OpenlD Connect

What is authentication?

Authentication is the process of establishing and communicating that the person
operating a browser or native app is who he/she claims to be.

SAML

Security Assertion Markup Language (SAML) is a standard that encompasses
profiles, bindings, and constructs to achieve Single sign-on (SSO), federation,
and identity management.

The SAML 2.0 spec provides a web browser SSO profile, which defines how single
sign-on can be achieved for web applications. It defines three roles:

* Principal: This is where the user is typically looking to verify his or her
identity

* Identity provider (IdP): This is the entity that is capable of verifying the
identity of the end user

* Service provider (SP): This is the entity looking to use the identity provider
to verify the identity of the end user

The following flow shows a simple example of SAML. Say, an employee wants to
access the corporate travel website. The corporate travel application will request the
identity provider the employee is associated with to verify his identity and then take
actions for him.

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Identity
provider (IdP)

4. 1dP parses SAML request,
authenticates user, and generates
SAML response

3. User redirected to identity
provider

1. User tries to access a corporate

’\ ‘ application
(V)

2. Service provider generates SAML
request and sends to ldentity provider

5. Browser sends SAML response to Service
provider

Service provider

6. Verify SAML response and log the user (sP)

The flow is explained as follows:

1. The user accesses a corporate application, say, travel application.

The travel application will generate a SAML request and redirects the user
to the employer's identity provider (IdP).

3. The user is redirected to the employer's identity provider to obtain a SAML
authentication assertion.

4. The IdP parses the SAML request, authenticates the user, and generates a
SAML response.

The browser sends the SAML response to the travel application.

On receiving the access token, the corporate travel app is then able to access
the web resource by passing the token in the header of the HTTP request.
The access token acts as a session token that encapsulates the fact that the
travel app is acting on behalf of the user.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Traceability

SAML has binding specifications for web browsers, SSO, SOAP, and WS-Security but
no formal binding for the REST APIL

The next section covers OAuth, which has been widely used by platforms such as
Twitter, Facebook, and Google for authorization.

What is authorization?

Authorization is the process of checking whether the requestor has permissions to
perform the requested operation.

OAuth

OAuth stands for open authorization and provides a way for a user to authorize an
application to access their account-related data without giving out their username
and password.

Traditionally in client/server authentication, the client uses its credentials to access
resources on the server. The server does not care if the request comes from the client
or if the client is requesting the resource for some other entity. The entity can be
another application or another person and thus the client is not accessing its own
resource but that of another user. Anyone requesting access to a resource that is
protected and requires authentication must be authorized to do so by the resource
owner. OAuth is a way to open up the REST APIs for companies such as Twitter,
Facebook, Google+, GitHub, and so on, and the myriad of third-party applications
built on top of them. OAuth 2.0 completely relies on SSL.

The number of legs in an OAuth request refers to the number of parties involved.
A flow where there is client, server, and resource owner indicates 3-legged OAuth.
When the client is acting on behalf of itself, it is known as 2-legged OAuth.

OAuth achieves this functionality with the help of access tokens. Access tokens are
like valet keys that give access to limited functionality for a limited period of time.
Tokens have a limited lifespan from hours to a few days. The following diagram
shows the flow of OAuth:

[52]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

User

Consumer

6. Perform action on behalf
of user using access token

1. Show intent
4. Redirect user ba
consumer

2. Redirect to service provider
authorization URL

N

“ 3. User allows consumer application

Service provider

The preceding diagram shows the authorization code grant flow.

In this example, a user has his photos on a service provider site, say, Flickr. Now, the
user needs to call a print service to print his photos, for example, Snapfish, which is a
consumer application. Instead of the user sharing his username and password to the
consumer application, the user can use OAuth to allow the print service to access his
photos for a limited period of time.

So in our example, we have three roles as described:

User or resource owner: The user is the resource owner who wants to
print his photos

Consumer application or client: This is the print service application,
which will act on behalf of the user

Service provider or server: The service provider is the resource server
that will store the user's photos

[53]

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Traceability

With this example in mind, we can see the steps involved in the OAuth dance:

1. User wants to allow an application to do a task on his behalf. In our example,
the task is to print photos, which are on a server using a consumer application.

2. The consumer application redirects the user to the service provider's
authorization URL.

Here, the provider displays a web page asking the user if they can grant
the application access to read and update their data.

3. The user agrees to grant the application access by the print service
consumer application.

4. The service provider redirects the user back to the application (via the
redirect URI), passing an authorization code as a parameter.

5. The application exchanges the authorization code for an access grant.
The service provider issues the access grant to the application. The grant
includes an access token and a refresh token.

6. Now that the connection is established, the consumer application can now
obtain a reference to the service API and invoke the provider on behalf of
the user. Thus, the print service can now access the user's photos from the
service provider's site.

The advantage of OAuth is that a compromised application will not
create much havoc as access tokens are used instead of actual credentials.
. The SAML bearer flow is actually very similar to the classic OAuth 3-leg
% flow covered earlier. However, instead of redirecting the user's browser
s to the authorization server, the service provider works with the identity
provider to get a simple authentication assertion. The service provider
application swaps a SAML bearer assertion for the user instead of
exchanging an authorization code.

Differences between OAuth 2.0 and OAuth 1.0

OAuth 2.0 specification clearly lays out how to use OAuth entirely inside a browser
using JavaScript that has no way to securely store a token. This also explains at a
high level how to use OAuth on a mobile phone or even on a device that has no
web browser at all, covering interactions to apps and native applications on both
smartphones and traditional computing devices, in addition to websites.

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

OAuth 2.0 defines the following three types of profiles:
* Web application (In this case, the client password is stored on the server,
and access tokens are used.)

* Web browser client (In this case, the OAuth credentials are not trusted;
some providers won't issue a client secret. An example is JavaScript in
the browser.)

* Native application (In this case, access tokens or refresh tokens that are
generated can provide an acceptable level of protection. An example
includes mobile applications.)

OAuth 2.0 does not require encryption and uses HTTPS not HMAC. Additionally,
OAuth 2.0 allows limiting the lifetime of an access token.

An authorization grant
An authorization grant is a credential representing the resource owner or the user's
authorization, which allows a client to access its protected resources to obtain an
access token. The OAuth 2.0 specification defines four grant types as follows:

* The authorization code grant

* The implicit grant

* The resource owner password credentials grant

* The client credentials grant

Additionally, OAuth 2.0 also defines an extensibility mechanism for defining
additional types.

Refresh tokens versus access tokens

Refresh tokens are credentials used to obtain access tokens. Refresh tokens are used
to obtain the access token when the current access token becomes invalid or expires.
Issuing a refresh token is optional at the discretion of the server.

Unlike access tokens, refresh tokens are intended for use only with authorization
servers and are never sent to resource servers to access a resource.

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Traceability

Jersey and OAuth 2.0

Even though OAuth 2.0 is widely used by various enterprises, OAuth 2.0 RFC is a
framework to build solutions on top of it. There are numerous gray areas in the RFC
where the specification leaves it to the implementer. There were indecisions in areas
where there is no required token type, no agreement on the token expiration, or no
specific guidance on the token size.

Read this page for more details:

http://hueniverse.com/2012/07/26/ocauth-2-
0-and-the-road-to-hell/

Currently, Jersey support for OAuth 2.0 is only on the client side. OAuth 2.0
specification defines many extension points and it is up to service providers

to implement these details. Additionally, OAuth 2.0 defines more than one
authorization flow. The Authorization Code Grant Flow is the flow currently
supported by Jersey and none of the other flows are supported. For more details,
check https://jersey.java.net/documentation/latest/security.html.

Best practices for OAuth in the REST API

The following section lists some of the best practices that can be followed by service
providers implementing OAuth 2.0.

Limiting the lifetime for an access token

The protocol parameter expires_in allows an authorization server to limit the lifetime
of an access token and to pass this information to the client. This mechanism can be
used to issue short-living tokens.

Support providing refresh tokens in the
authorization server

A refresh token can be sent along with a short lifetime access token to grant longer
access to resources without involving user authorization. This offers an advantage
where resource servers and authorization servers may not be the same entity. For
example, in a distributed environment, the refresh token is always exchanged at the
authorization server.

[56]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Using SSL and encryption
OAuth 2.0 heavily relies on HTTPS. This will make the framework simpler but
less secure.

The following table provides a quick summary of when to use SAML and when to
use OAuth.

Scenario SAML OAuth

If one of the parties is an Use SAML

enterprise

If the application needs to Use OAuth

provide temporary access to
some resources

If the application needs a Use SAML

custom identity provider

If the application has mobile Use OAuth
devices accessing it

If the application has no Use SAML

restrictions on the transport,
for example, SOAP and JMS

OpenlD Connect

There is work going on at the OpenID foundation with OpenID Connect. OpenID
Connect is a simple REST- and JSON-based interoperable protocol built on top of
OAuth 2.0. It is simpler than SAML, easy to maintain, and covers the various security
levels from social networks to business applications to highly secure government
applications. OpenlD Connect and OAuth are the future for authentication and
authorization. For more details, check http://openid.net/connect/.

Case studies of companies using OAuth 2.0 and OpenID Connect

Google+ Sign-In is built on the OAuth 2.0 and OpenID Connect protocols.
/" It supports over-the-air installs, social features, and a sign-in widget on
top of standardized OpenID Connect sign-in flows.

The next section will summarize some of the various components that we have
covered so far when building RESTful services.

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Traceability

REST architecture components

The following section will cover the various components that must be considered
when building RESTful APIs. All of these will be covered in various sections of
this book. We will also cover best practices for each pitfall to avoid when designing
and developing the REST APIL The REST architecture components are shown in the
following diagram:

|

o

HTTP
requests
REST

—» Rate . . resources Micro
—Pp Auth limiting Cachine Logging services
Mobile and web = N O
clients

Proxy servers

<& [
<

HTTP responses
and status codes =
Pagination

Content
negotiation
Q A
<

HATEOAS 1

]

Exception handling Asynchronous
and validations processing

Q
a
o

As seen from the preceding diagram, REST services can be consumed from a variety
of clients and applications running on different platforms and devices such as mobile
devices and web browsers.

These requests are sent through a proxy server. The REST architectural components

in the diagram can be chained one after the other as shown in the preceding diagram.
For example, there can be a filter chain, consisting of the Auth, Rate limiting, Caching,
and Logging related filters. This will take care of authenticating the user, checking if
the requests from the client are within rate limits, then a caching filter that can check

if the request can be served from the cache respectively. This can be followed by a
logging filter, which can log the details of the request.

On the response side, there can be Pagination, to ensure the server sends a subset
of results. Also, the server can do Asynchronous processing, thus improving
responsiveness and scale. There can be links in the response, which deals with
HATEOAS.

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

These are some of the REST architectural components we have covered so far:

HTTP requests to use the REST API with HTTP verbs for the uniform
interface constraint

Content negotiation to select a representation for a response when there
are multiple representations available

Logging to provide traceability to analyze and debug issues
Exception handling to send application-specific exceptions with HTTP codes

Authentication and authorization with OAuth 2.0 to give access control
to other applications and to take actions without the user having to send
their credentials

Validation to send back detailed messages with error codes to the client as
well as validations for the inputs received in the request

The next few chapters will focus on advanced topics as well as best practices for the
following blocks. We will provide code snippets to show how to implement these
with JAX-RS.

Rate limiting to ensure the server is not burdened with too many requests
from a single client

Caching to improve application responsiveness

Asynchronous processing so that the server can asynchronously send
back the responses to the client

Micro services that comprise breaking up a monolithic service into
fine-grained services

HATEOAS to improve usability, understandability, and navigability
by returning a list of links in the response

Pagination to allow clients to specify items in a dataset that they are
interested in

We will also cover how major platforms such as Facebook, Google, GitHub,
and PayPal have approached each of these solutions in their REST APIL

[59]

www.it-ebooks.info

http://www.it-ebooks.info/

Security and Traceability

Recommended reading

The following links can be useful to get additional information related to the topics
in this chapter:

* https://developers.google.com/oauthplayground/: Google OAuth
playground to create and test signed requests

® http://hueniverse.com/2012/07/26/ocauth-2-0-and-the-road-to-
hell/: OAuth 2.0 and road to hell

* https://developers.google.com/accounts/docs/OAuth2Login:
Google Accounts Authentication and Authorization

* https://github.com/facebookarchive/scribe: Scribe log server
for Facebook

* http://static.googleusercontent.com/media/research.google.com/
en/us/pubs/archive/36356.pdf: Google Dapper large-scale distributed
tracing architecture

Summary

This chapter started off with a brief introduction to logging RESTful APIs

and the key principles were to recognize the importance of logging requests
and best practices for logging including security compliance. We learned how
to validate JAX-RS 2.0 resources using Bean Validation. In this chapter, we also
saw how to write generic exception mappers for application-specific cases.

We covered how federated identities are a necessity in the current era of
interconnected hybrid systems, protocols, and devices. We covered SAML
and OAuth 2.0 similarities between SAML and 3-legged OAuth as well as
best practices for OAuth.

The next chapter will walk through topics such as caching patterns and
asynchronous REST API to improve performance and scalability, followed
by a closer look at how to perform partial updates with HTTP Patch and
the newer JSON Patch.

[60]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing for Performance

REST is an architectural style confirming to the web architecture design and needs to
be properly designed and implemented so that it allows you to take advantage of the
scalable web. This chapter covers advanced design principles related to performance
that every developer must know when building RESTful services.

Topics covered in this chapter include the following:

* Caching principles
* Asynchronous and long-running jobs in REST
* HTTP PATCH and partial updates

We will elaborate on the different HTTP cache headers and learn how to send
conditional requests to see whether the new content or the cached content needs to be
returned. We will then show with samples how to use JAX-RS to implement caching.

Additionally, we will cover how the Facebook API uses ETags for caching. Next, we
will walk through asynchronous request response processing with JAX-RS and best
practices. Finally, we will cover HTTP PATCH method and learn how to implement
partial updates and common practices around partial updates.

Different snippets of code are included in the chapter, but complete samples
that show these snippets in action are included as part of this book's source code

download bundle.

www.it-ebooks.info

http://www.it-ebooks.info/

Designing for Performance

Caching principles

In this section, we will cover the different programming principles when designing
RESTful services. One of the areas we will cover is caching. Caching involves storing
response information related to the requests in a temporary storage for a specific
period of time. This ensures the server is not burdened with processing those requests
in future when the responses can be fulfilled from the cache.

The cache entries can be invalidated after a specific time interval. The cache entries
can also be invalidated when the objects, which are in the cache, change, for example,
when some API modifies or deletes a resource.

There are many benefits to caching. Caching helps to reduce latency and improve
application responsiveness. It helps in reducing the number of requests the server
has to deal with and thus the server is able to handle more requests, and the clients
will get responses quicker.

Generally, assets such as images, JavaScript files, and stylesheets can all be cached
fairly heavily. Also, it is advisable to cache responses, which may require intensive
computation on the backend.

Caching details

The following section covers the topics related to caching. The key to making caching
work effectively is to use HTTP caching headers that specify how long a resource is
valid and when it was last changed.

Types of caching headers

The next section covers the types of caching headers followed by examples of each
type of caching header. The following are the types of headers:
* Strong caching headers

* Weak caching headers

Strong caching headers

The strong caching headers specify for how long a cached resource is valid and the
browser does not need to send any more GET requests till that period. Expires and
Cache-Control max-age are strong caching headers.

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Weak caching headers

The weak caching headers help the browser decide if it needs to fetch an item
from the cache by issuing a conditional GET request. Last -Modified and ETag
are examples of weak caching headers.

Expires and Cache-Control — max-age

The Expires and Cache-Control headers specify the time period during which
the browser can use the cached resource without checking for a newer version. The
newer resource will not be fetched until the expiry date or maximum age specified
is reached if these headers are set. The Expires header takes a date after which

the resource becomes invalid. Instead of specifying a date, the max-age attribute
mentions how long the resource is valid after it is downloaded.

The Cache-Control header and directives

In HTTP 1.1, the cache-Control header specifies the resource caching behavior as
well as the maximum age the resource can be cached. The following table shows the
different directives of the Cache-Control header:

Directive Meaning

private When this directive is used, the browser can
cache the object, but proxies and content
delivery networks cannot

public When this directive is used, an object can
be cached by browser, proxies, and content
delivery networks

no-cache When this directive is used, an object will not
be cached

no-store When this is used, an object can be cached in
memory but should not be stored on disk

max-age This denotes the time for which the resource
is valid

Here is an example of a response with the Cache-Control HTTP/1.1 header in
a response:

HTTP/1.1 200 OK Content-Type: application/json
Cache-Control: private, max-age=86400
Last-Modified: Thur, 01 Apr 2014 11:30 PST

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing for Performance

The preceding response has a cache-Control header with directives as private
and max-age set to 24 hours or 86400 seconds.

Once a resource is invalid based on the max-age or Expires header, the client can
request the resource again or send a conditional GET request that gets the resource
only if it has changed. This can be achieved by the weaker caching headers: the
Last-Modified and ETag headers as shown in the next section.

Last-Modified and ETag

These headers enable the browser to check if the resource has changed since the
last GET request. In the Last-Modified header, there is a date associated with
the modification of the resource. In the ETag header, there can be any value that
uniquely identifies a resource (like a hash). However, these headers allow the
browser to efficiently update its cached resources by issuing conditional GET
requests. Conditional GET requests will return the full response only if the
resource has changed at the server. This ensures conditional GET requests

will have lower latency than full GET requests.

The Cache-Control header and the REST API

The following code shows how to add the cache-cControl header to a JAX-RS
response. The sample is available as part of the book's downloadable source bundle.

@Path ("vl/coffees")
public class CoffeesResource

@GET

@Path ("{order}")

@Produces (MediaType .APPLICATION XML)

@NotNull (message = "Coffee does not exist for the order id

requested")

public Response getCoffee (@PathParam("order") int order) {
Coffee coffee = CoffeeService.getCoffee (order) ;
CacheControl cacheControl = new CacheControl () ;
cacheControl.setMaxAge (3600) ;
cacheControl.setPrivate (true) ;
Response.ResponseBuilder responseBuilder =

Response.ok (coffee) ;

responseBuilder.cacheControl (cacheControl) ;
return responseBuilder.build() ;

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

JAX-RS has a javax.ws.rs.core.Cache-Control class, which is an abstraction for the
HTTP/1.1 Cache-Control header. The setMaxaAge () method on the cacheControl
object corresponds to the max-age directive and setpPrivate (true) corresponds to
the private directive. The response is built using the responseBuilder.build ()
method. The cacheControl object is added to the Response object that is returned

by the getCoffee () method.

The following is the response with headers produced by this application:

curl -i http://localhost:8080/caching/vl/coffees/1
HTTP/1.1 200 OK

X-Powered-By: Servlet/3.1 JSP/2.3 (GlassFish Server Open Source
Edition 4.0 Java/Oracle Corporation/1.7)

Server: GlassFish Server Open Source Edition 4.0
Cache-Control: private, no-transform, max-age=3600
Content-Type: application/xml

Date: Thu, 03 Apr 2014 06:07:14 GMT
Content-Length: 143

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<coffee>

<name>Mocha</name>

<orders>l</orders>

<size>Small</size>

<type>Chocolate</type>

</coffee>

ETags

HTTP defines a powerful caching mechanism that includes the following headers:

* The ETag header
* The 1f-Modified-Since header

* The304 Not Modified response code

[65]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing for Performance

How ETags work

The following section digs into some basics of how ETags work. The following
diagram gives a better picture of this:

Client Server
GET api.com/coffee/1234

200 OK ETag: " 123456789 "

GET api.com/coffee/1234
If - None - Match : " 123456789 "

304 Not Modified ®

How ETags Work

Let's have a look at each of the processes related to ETags:

1. The client sends a GET request to the http://api.com/coffee/1234
REST resource.

2. The server sends back a 200 OK with an ETag value, for example,
"123456789".

3. After some time, the client sends another GET request to api.com/
coffee/1234 REST resource along with the If-None-Match:
"123456789" header.

4. The server checks if the resource MD5 hash has not been modified,
then sends a 304 Not-Modified response with no response body.

If the resource had changed, a 200 OK would be sent as the response. Additionally,
as part of the response, a new ETag is sent by the server.

[66]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The ETag header and the REST API

The following code shows how to add the ETag header to the JAX-RS response:

@GET
@Path ("/etag/{order}")
@Produces (MediaType .APPLICATION JSON)

@NotNull (message = "Coffee does not exist for the order id
requested")

public Response getCoffeeWithEtag(@PathParam("order")
int order,

@Context Request request
) {
Coffee coffee = CoffeeService.getCoffee (order) ;
EntityTag et = new EntityTag(
n123456789") ;

Response.ResponseBuilder responseBuilder =
request.evaluatePreconditions (et) ;

if (responseBuilder != null) ({
responseBuilder.build() ;

}

responseBuilder = Response.ok (coffee) ;

return responseBuilder.tag(et) .build() ;

In the preceding snippet of code, the instance of javax.ws.core.EntityTag object is
created by using a hash of the resource, which for simplicity, we have "123456789".

The request, evalautePreconditions method checks for the value of the EntityTag
et object. If the preconditions are met, it returns a response with 200 OK.

The EntityTag object, et, is then sent with the response, which is returned by the
getCoffeeWithETag method. For more details, please refer to the sample available
as part of the source bundle for the book.

Types of ETags

A strongly validating ETag match indicates that the content of the two resources is
byte-for-byte identical and that all other entity fields (such as Content-Language)
are also unchanged.

A weakly validating ETag match only indicates that the two resources are semantically
equivalent, and that cached copies can be used.

[67]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing for Performance

Caching helps reduce the number of requests made by the client. It also helps in
reducing the number of complete responses saving bandwidth and computational
time with the conditional GET requests and ETags, IF-None-Match headers, and
304-Not Modified response.

" It is a good practice to specify either Expires or Cache-Control max-
~ age along with one of the two Last -Modified and ETag headers in the
Q HTTP response. Sending both Expires and Cache-Control max-age is
redundant. Similarly, sending both Last -Modified and ETag is redundant.

The Facebook REST API and ETags

The Facebook Marketing API supports ETags on the Graph APL. When the consumer
makes a Graph API call, the response header includes an ETag with a value that is the
hash of the data returned in the API call. Next time the consumer makes the same API
call, he can include the 1f-None-Match request header with the ETag value saved from
the first step. If the data has not changed, the response status code will be 304 -Not
Modified and no data is returned.

If the data on the server side has changed since the last query, the data is returned
as usual with a new ETag. This new value of ETag can be used for subsequent calls.
For more details, check http://developers.facebook.com.

RESTEasy and caching

RESTEasy is a JBoss project that provides various frameworks to help build RESTful
web services and RESTful Java applications. RESTEasy can run in any servlet container,
but has a tighter integration with the JBoss Application Server.

RESTEasy provides an extension to JAX-RS that allows setting Cache-Control
headers on a successful GET request automatically.

It also provides a server-side, local, in-memory cache that can sit in front of the JAX-
RS services. It automatically caches marshalled responses from HTTP GET JAX-RS
invocations if the JAX-RS resource method sets a Cache-Control header.

When a HTTP GET request arrives, the RESTEasy server cache will check to see if
the URI is stored in the cache. If it does, it returns the already marshalled response
without invoking the JAX-RS method.

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

For more information, check http://www.jboss.org/resteasy.

. Tips when caching on the server side
.‘ .
Q Invalidate the cache entry for a PUT or a POST request. Do not cache

a request that has a query parameter, as once the query parameter
value changes the cached response from the server may not be valid.

Asynchronous and long-running jobs
in REST

A common pattern in developing RESTful API is to deal with asynchronous
and long-running jobs. API developers need to create resources that might take a
considerable amount of time. They cannot have the clients wait on the API to finish.

Consider placing an order for a coffee at a coffee shop. The order details are stored
in a queue and when the barista is free, he processes your order. Till then you get a
receipt acknowledging your order but the actual coffee arrives later.

Asynchronous resource processing works on the same principles. Asynchronous
resources mean the resources cannot be created immediately. Maybe it will be
placed inside a task/message queue that will handle the actual creation of the
resource or something similar.

Consider the following request to order a small coffee in our sample:

POST vl/coffees/order HTTP 1.1 with body

<coffee>
<gize> SMALL</coffees>
<name>EXPRESSO</name>
<price>3.50</price>

<coffee>

The response can be sent back as the following;:

HTTP/1.1 202 Accepted
Location: /order/12345

The response sends back a 202 Accepted header. The Location header can provide
details about the coffee resource.

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing for Performance

Asynchronous request and response
processing

The asynchronous processing is included in both client- and server-side APIs
of JAX-RS 2.0 to facilitate asynchronous interaction between client and server
components. The following list shows the new interfaces and classes added
to support this feature on the server and the client side:

* Server side:

o

AsyncResponse: This is an injectable JAX-RS asynchronous response
that provides means for asynchronous server-side response processing

@Suspended: The @Suspended annotation instructs the container that
the HTTP request processing should happen in a secondary thread

CompletionCallback: This is a request-processing callback that
receives request-processing completion events

ConnectionCallback: This is an asynchronous request-processing
lifecycle callback that receives connection-related asynchronous
response lifecycle events

¢ (lient side:

o

InvocationCallback: This is a callback that can be implemented
to receive the asynchronous processing events from the
invocation processing

Future: This allows the client to poll for completion of the
asynchronous operation or to block and wait for it

The Future interface introduced in Java SE 5 provides two different
mechanism to get the result of an asynchronous operation: first by
invoking the Future.get (..) variants that blocks until the result

is available or a timeout occurs, and the second way is to check for
completion by invoking the isDone () and isCancelled (), which
are Boolean methods that return the current status of Future. For
more details, check http://docs.oracle.com/javase/1.5.0/
docs/api/java/util/concurrent/Future.html.

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The following diagram shows the asynchronous request/response processing
in JAX-RS:

client on another thread

CoffeeResource Thread
Client ! !

| i i
i i i
! GET v1/coffee/orders o !
I Cdl]
| request thread is released | i
> | 1
I I 1
i | work on request . some
i | operation
I 1
E i ctx.resume sends response
i i
i i
le__fesponse is retumed to___ |
| |

]

I

1

Asynchronous request/response processing in JAX-RS

The client makes a request for an asynchronous method on CoffeeResource.
The coffeeResource class creates a new thread, which can do some intensive
operation and then send back the response. Meanwhile, the request thread is
released and can handle other requests. When the thread working on the
operation finishes the processing, it returns the response to the client.

The following sample code shows how an asynchronous resource can be
developed using JAX-RS 2.0 APL:

@Path("/coffees")

@Stateless

public class CoffeeResource {
@Context private ExecutionContext ctx;
@GET @Produce ("application/json")
@Asynchronous
public void order () ({

[71]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing for Performance

Executors.newSingleThreadExecutor () .submit (new Runnable ()

{

public void run() {
Thread.sleep(10000) ;

ctx.resume ("Hello async world! Coffee Order is
1234");

}oh
ctx.suspend () ;
return;

}
}

The cof feesResource class is a stateless session bean, which has a method called
order (). This method is annotated with the @asynchronous annotation, which will
work in the fire-and-forget manner. When the resource is requested by the client
through the order () method's resource path, a new thread is spawned to work on
preparing the request's response. The thread is submitted to the executor for execution
and the thread processing the client request is released (via ctx. suspend) to process
other incoming requests.

When the worker thread, created to prepare the response, is done with preparing
the response, it invokes the ctx. resume method, which lets the container know the
response is ready to be sent back to the client. If the ctx.resume method is invoked
before the ctx. suspend method (the worker thread has prepared the result before
the execution reaching the ctx. suspend method), the suspension is ignored and the
result will be sent to the client.

The same functionality can be achieved using the @Suspended annotation that is
shown in the following snippet:

@Path("/coffees")

@Stateless

public class CoffeeResource {

@GET @Produce ("application/json")

@Asynchronous

public void order (@Suspended AsyncResponse ar) {

final String result = prepareResponse () ;
ar.resume (result)

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Using the @suspended annotation is cleaner as this does not involve the use of the
ExecutionContext variable to instruct the container to suspend and then resume the
communication thread when the worker thread, aka the prepareResponse () method
in this case, is finished. The client code to consume the asynchronous resource can use
the callback mechanism or polling at the code level. The following code shows how to
use polling via the Future interface:

Future<Coffee> future = client.target ("/coffees")
.request ()
.async ()
.get (Coffee.class) ;
try {
Coffee coffee = future.get (30, TimeUnit.SECONDS) ;
} catch (TimeoutException ex) {
System.err.println ("Timeout occurred") ;

}

The code begins with forming the request to the Cof fee resource. It uses the
javax.ws.rs.client.Client instance to call the target () method, which
creates a javax.ws.rs.client .WebTarget instance for the Cof fee resource.
The Future.get (..) method blocks until the response is back from the server
or the 30 seconds timeout is reached.

Another API for the asynchronous client is to use the javax.ws.rs.client.
InvocationCallback instance, which is a callback that can be implemented
to get asynchronous events from the invocation. For more details, check
https://jax-rs-spec.java.net/nonav/2.0/apidocs/javax/ws/rs/
client/InvocationCallback.html.

Asynchronous resources best practices

The following section lists the best practices when working with asynchronous
RESTful resources.

Sending a 202 Accepted message

For asynchronous requests/responses, the API should send back a 202 Accepted
message, in case the request is valid and the resource may be available in time,

even if it is a few seconds. 202 Accepted means the request has been accepted for
processing and the resource will be available shortly. The 202 Accepted message
should specify the Location header, which can be used by the client to know where
the resource will be available once it is created. The API should not send back a 201
Created message if the response is not available immediately.

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing for Performance

Setting expiration for objects in the queue

The API developer should expire the objects after a certain amount of time in
the queue. This ensures queue objects do not accumulate over time and are
purged periodically.

Using message queues to handle tasks
asynchronously

The API developer should consider using message queuing for asynchronous
operations so that the messages are placed in the queue until a receiver receives
them. Advanced Messaging Queuing Protocol (AMQP) is a standard that enables
reliable and secure routing, queuing, publishing, and subscribing of messages. For
more details, check Advanced Message Queuing Protocol at http://en.wikipedia.
org/wiki/Advanced Message Queuing Protocol.

For example, when an asynchronous resource method is invoked, use message
queuing to send messages and handle different tasks based on messages and
events asynchronously.

In our sample, if a coffee order is placed, a message can be sent using RabbitMQ
(http://www.rabbitmg.com/) to trigger the COMPLETED event. Once the order is
completed, the details can be moved to an inventory system.

The next section covers another important detail for RESTful services for doing
partial updates.

HTTP PATCH and partial updates

A common problem for API developers is to implement partial updates. This can
happen when the client sends a request that must change just one part of a resource's
state. For example, imagine that there is a JSON representation of your coffee
resource that looks like the following code snippet:

{

"id": 1,

"name": "Mocha"
"size": "Small",
"type": "Latte",

"status":"PROCESSING"

}

Once the order is completed, the status needs to be changed from "PROCESSING"
to "COMPLETED".

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

In an RPC-style API, this could be handled by adding a method as follows:

GET myservice/rpc/coffeeOrder/setOrderStatus?
completed=true&coffeeId=1234

In the REST case using the PUT method, all the data like this needs to be sent,
which will waste bandwidth and memory.

PUT /coffee/orders/1234

{

"igar: 1,

"name": "Mocha"
"size": "Small",
"type": "Latte",
"status": "COMPLETED"

}

To avoid sending the whole data for a minor update, another solution is to use
PATCH to do a partial update:

PATCH /coffee/orders/1234

{

"status": "COMPLETED"

}

However, not all web servers and client will provide support for PATCH, so people
have been supporting both partial updates with posST and pUT:

POST /coffee/orders/1234

{

"status": "COMPLETED"

}

Partial updates with pUT:

PUT /coffee/orders/1234

{

"status": "COMPLETED"

}

To summarize, using either puT or POST for partial updates are both acceptable.
The Facebook API uses POST to update partial resources. Using partial pUT would
be more consistent with how we implement RESTful resources and methods as
CRUD operations.

[75]

www.it-ebooks.info

http://www.it-ebooks.info/

Designing for Performance

To implement support for the PATCH method, here is how to add an annotation
in JAX-RS:

@Target ({ElementType .METHOD})
@Retention (RetentionPolicy.RUNTIME)
@HttpMethod ("PATCH")
public @interface PATCH ({

}

The preceding snippet shows how to associate the annotation of javax.ws.rs.
HTTPMethod with the name "PATCH". Once this annotation is created, then the
@PATCH annotation can be used on any JAX-RS resource method.

JSON Patch

JSON Patch is part of RFC 6902. It is a standard designed to allow performing
operations on JSON documents. JSON Patch can work with the HTTP PATCH
method. It is useful to provide partial updates to JSON documents. The media type
"application/json-patch+json" is used to identify such patch documents.

It takes the following members:

* op: This identifies the operation to be performed on the document.
The acceptable values are "add", "replace", "move", "remove",
"copy", or "test". Any other value is an error.

* path: This is the JSON pointer that represents the location in the
JSON document.

* value: This denotes the value to be replaced in the JSON document.

The move operation takes a "from" member, which identifies the location in the
target document to move the value from.

Here is an example of a JSON Patch document sent in a HTTP PATCH request:

PATCH /coffee/orders/1234 HTTP/1.1
Host: api.foo.com

Content-Length: 100

Content-Type: application/json-patch

{"op":"replace", "path": "/status", "value": "COMPLETED"}

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The preceding request shows how JSON Patch can be used to replace the status of
a coffee order identified by resource cof fee/orders/1234 .The operation, that is,
"op" in the preceding snippet, is "replace", which sets the value "COMPLETED" to
the status object in the JSON representation.

The JSON Patch is very useful for single-page applications, real-time collaboration,
offline data changes, and can also be used in applications that need to make small
updates in large documents. For more details, check http://jsonpatchjs.com/,
which is an implementation of JSON Patch. (RFC 6902) and JSON Pointer. (RFC
6901) under the MIT License.

Recommended reading

The following section lists some of the online resources that are related to the topics
covered in this chapter and may be useful for review:

* RESTEasy: http://resteasy.jboss.org/

e Couchbase: http://www.couchbase.com/

* Facebook Graph API Explorer: https://developers.facebook.com/
e RabbitMQ: https://www.rabbitmg.com/

* JSON Patch RFC 6902: http://tools.ietf.org/html/rfc6902

* JSON Pointer RFC 6901: http://tools.ietf.org/html/rfc6901

Summary

This chapter covered some serious ground introducing fundamental concepts of
caching, demonstrating the different HTTP caching headers such as cache-Control,
Expires, and so on. We also saw how headers work and how ETags and Last-
Modified headers work for conditional GET requests that can improve performance.
We covered best practices for caching, how RESTEasy supports server-side caching,
and how Facebook API uses ETags. This chapter addressed asynchronous RESTful
resources and best practices when working with an asynchronous API. We covered
HTTP Patch and partial updates along with JSON Patch (RFC 6902).

The next chapter will deal with advanced topics that every developer building RESTful
services should know related to commonly used patterns and best practices in areas of
rate limiting, response pagination, and internationalization of REST resources. It will
also cover additional topics such as HATEOAS, REST, and their extensibility.

[77]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Design Principles

This chapter covers advanced design principles that every developer must know
when designing RESTful services. It also provides pragmatic insights that give the
developer enough information to build complex applications with REST APIL.

This chapter will cover the following topics:

* Rate-limiting patterns
* Response pagination
* Internationalization and localization
* REST pluggability and extensibility
* Additional topics for REST API developers
Different snippets of code are included in the chapter, but the complete samples

that show these snippets in action are included as part of the book's source code
download bundle.

As we have done with the prior chapters, we'll attempt to cover the minimal level
of detail required to empower the reader with a solid general understanding of
inherently complex topics, while also providing enough of a technical drill-down
so that the reader will be able to immediately get to work easily.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Design Principles

Rate-limiting patterns

Rate limiting involves restricting the number of requests that can be made by a client.
A client can be identified based on the access token it uses for the request as covered
in Chapter 3, Security and Traceability. Another way the client can be identified is the
IP address of the client.

To prevent abuse of the server, APIs must enforce throttling or rate-limiting
techniques. Based on the client, the rate-limiting application can decide whether
to allow the request to go through or not.

The server can decide what the natural rate limit per client should be, say for
example, 500 requests per hour. The client makes a request to the server via an API
call. The server checks if the request count is within the limit. If the request count is
within the limit, the request goes through and the count is increased for the client.
If the client request count exceeds the limit, the server can throw a 429 error.

The server can optionally include a Retry-After header, which indicates how long
the client should wait before it can send the next request.

Every request from an application can be subjected to two different throttles: those
with an access token and those without an access token. The quota of requests made
by an application with an access token can vary from an application without an
access token.

Here are the details of the HTTP 429 Too Many Requests error code.

429 Too Many Requests (RFC 6585)

The user has sent too many requests in a given amount of time.
This is intended for use with rate-limiting schemes.

The response for a 429 Too Many Requests error may include a Retry-After
header, indicating how long the client needs to wait before making a new request.
The following is an example code snippet:

HTTP/1.1 429 Too Many Requests
Content-Type: text/html
Retry-After: 3600
<html>
<head>
<title>Too Many Requests</titles>
</head>
<body>

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

<hl1>Too many Requests</hl>

<p>100 requests per hour to this Web site per
logged in use allowed.</p>

</body>
</html>

The preceding example of an HTTP response sets a Retry-After header to 3600
seconds to indicate when the client can retry later. Additionally, servers can send an
X-RateLimit-Remaining header that can indicate how many requests are pending
for this client.

Now that we have some ideas on what rate limiting is and how the rate-limiting
error and Retry-After and X-RateLimit-Remaining headers work, let's get down
to code with JAX-RS.

The following code in the The project's layout section shows how to implement a
simple rate-limiting filter in JAX-RS.

The project's layout

The project's directory layout follows the standard Maven structure, which is briefly
explained in the following table. This sample produces a WAR file, which can be
deployed on any Java EE 7-compliant application server such as GlassFish 4.0.

This sample demonstrates a simple coffee shop service where clients can query for a
particular order they placed.

Source code Description

src/main/java This directory contains all the sources
required by the coffee shop application

The coffeeResource class is a simple JAX-RS resource, shown as follows:

@Path("vl/coffees")
public class CoffeesResource
@GET
@Path ("{order}")
@Produces (MediaType .APPLICATION XML)
@NotNull (message="Coffee does not exist for the order id
requested")
public Coffee getCoffee(@PathParam("order") int order) {
return CoffeeService.getCoffee (order) ;

}

[81]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Design Principles

The project has a coffeeResource class that is used to get details about the coffee
orders. The getCoffee method returns a Coffee object that contains the details of
the order.

To enforce rate limiting, we will add a RateLimiter class that is a simple servlet
filter as shown in the following diagram.

The rateLimiter class will check the IP address of the client and check if the number
of requests that are made by the client exceeds the limit or not. The following diagram
depicts the rate-limiting functionality covered by the sample in detail:

Rate
GET <api.com>/foo Limit GET <api.com>/foo |

Filter

Client

Server

RESPONSE { }

N

Case 1: Client request does not exceed rate limit

The preceding diagram shows a client making a GET request to http://api.com/foo.
The Rate Limit Filter checks the access count of the client based on the IP address.

As the client does not exceed the rate limit, the request is forwarded to the server.

The server can return a JSON or XML or a text response.

The following diagram shows the client making a GET request to http://api.com/
foo. The Rate Limit Filter checks the access count of the client based on the IP address.
Since the client exceeds the rate limit, the request is not forwarded to the server, and the
Rate Limiter returns an error code of 429 Too Many Requests in the HTTP response.

Client | GET <api.com>/foo Server
Rate
Limit
420 error Filter
Retry-After header

X - RateLimit - Limit header

Case 2: Client request exceeds rate limit

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

A detailed look at the rate-limiting sample

To implement a rate limiter with JAX-RS, we need to implement a Filter class.
This is shown in the following code snippet:

@WebFilter (filterName = "RateLimiter",
urlPatterns = {"/*"}
)
public class RatelLimiter implements Filter {
private static final int REQ LIMIT = 3;
private static final int TIME LIMIT = 600000;
private static AccessCounter accessCounter =
AccessCounter.getInstance () ;

}

The preceding snippet shows an implementation of the webFilter interface of the
javax.servlet.annotation package. The eWwebFilter annotation indicates that
this class is a filter for the application.

The ewebFilter annotation must have at least one urlPatterns or value attribute
in the annotation.

The REQ LIMIT constant stands for the number of requests that can be made in a time
period. The TIME LIMIT constant stands for the time duration for the rate limit after
which new requests from a client can be accepted.

For simplicity, we have smaller limit values in the samples. In real-world scenarios,

the limits could be, for example, 60 requests per minute or 1,000 requests per day.

If the request count reaches the limit, the Retry-After header will indicate the time
for which the client will have to wait before the server can process the next request.

To keep track of the request count associated with a client, we have created
a class called Accesscounter. Here is the code for the AccessCounter class.
The AccessCounter class is a Singleton class annotated with @singleton.
It stores a ConcurrentHashMap class that contains IP addresses as the keys
and data related to the client, known as AccessData, as values.

@Singleton
public class AccessCounter {

private static AccessCounter accessCounter;

private static ConcurrentHashMap<String,AccessData> accessDetails
= new ConcurrentHashMap<String, AccessDatax() ;

}

[83]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Design Principles

The AccessData class is responsible for storing the details for a client, such as the
number of requests and when the last request was made. It is a simple Plain Old
Java Object (POJO), as shown in the following code snippet:

public class AccessData
private long lastUpdated;
private AtomicInteger count;

public long getLastUpdated() {
return lastUpdated;
}

public void setLastUpdated(long lastUpdated) {
this.lastUpdated = lastUpdated;
}

public AtomicInteger getCount () {
return count;

public void setCount (AtomicInteger count) {
this.count = count;

As shown in the preceding snippet, the AccessData class has a field called count
and a field called lastUpdated. Whenever a new request arrives, the count is
incremented, and the lastUpdated field is set to the current time.

The doFilter () method of the RateLimiter class is used in the following
code snippet:

@Override
public void doFilter (ServletRequest servletRequest,
ServletResponse servletResponse,
FilterChain filterChain) throws
IOException, ServletException

HttpServletRequest httpServletRequest =
(HttpServletRequest) servletRequest;
HttpServletResponse httpServletResponse =
(HttpServletResponse) servletResponse;

String ipAddress = getIpAddress (httpServletRequest) ;
if (accessCounter.contains (ipAddress))

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

if (!requestLimitExceeded (ipAddress))
accessCounter. increment (ipAddress) ;

accessCounter.getAccessDetails (ipAddress
) .setLastUpdated (System.currentTimeMillis ()) ;

} else {

httpServletResponse.addIntHeader (
"Retry-After", TIME LIMIT) ;

httpServletResponse.sendError (429) ;

}

} else {
accessCounter.add (ipAddress) ;

}

filterChain.doFilter (servletRequest, servletResponse)

}

The preceding code shows the doFilter () method of the javax.servlet.Filter
class, which is overridden in the RateLimiter implementation. In this method,
the IP address of the client is first determined.

If the accessCounter class contains the IP address, a check is made to see if the
request limit has exceeded in the requestLimitExceeded () method.

If the rate limit has exceeded, then the Retry-After headers are sent in the
httpServletResponse along with a 429 Too Many Requests error. If there is
a new request that comes from the same client after some time, and it is greater
than the TIME LIMIT value, then the counter is reset back to 0, and the request
from the client can be processed again.

The following are the headers for rate limiting that can be sent back in the response
to the client:

* X-RateLimit-Limit: The maximum number of requests that the client can
make during a specific time period
* X-RateLimit-Remaining: The number of requests remaining in the current

rate-limit window

A detailed sample is included with this book. After the sample is deployed on an
application server, the client can make multiple requests to get order details for coffees.

[85]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Design Principles

For the sake of simplicity, we have enforced the rate limit as 3 and the time limit as
10 minutes. The following is a sample curl request:

curl -i http://localhost:8080/ratelimiting/vl/coffees/1
HTTP/1.1 200 OK

X-Powered-By: Servlet/3.1 JSP/2.3 (GlassFish Server Open Source Edition
4.0 Java/Oracle Corporation/1.7)

Server: GlassFish Server Open Source Edition 4.0
Content-Type: application/json

Date: Mon, 23 Jun 2014 23:27:34 GMT
Content-Length: 57

{
"name" : "Mocha",
"order":1,
"size":"Small",
"type":"Brewed"
}

Once the rate limit has been crossed, you will see a 429 error:

curl -i http://localhost:8080/ratelimiting/v1/coffees/1
HTTP/1.1 429 CUSTOM

X-Powered-By: Servlet/3.1 JSP/2.3 (GlassFish Server Open Source Edition
4.0 Java/Oracle Corporation/1.7)

Server: GlassFish Server Open Source Edition 4.0
Retry-After: 600000

Content-Language:

Content-Type: text/html

Date: Mon, 23 Jun 2014 23:29:04 GMT
Content-Length: 1098

This sample showed how to build your custom filters to implement
\ rate limiting. Another option is to use an open source project
~ called Repose, which is a scalable and extensive rate-limiting
Q implementation. Repose is an open source HTTP proxy service that
provides rate-limiting, client-authentication, versioning, and so on.
For more details, check http://openrepose.org/.

In the next section, we will discuss the best practices that must be followed to avoid
reaching rate limits when consuming a REST APIL

[86]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Best practices to avoid reaching the rate limits

Here are the best practices that can be followed to avoid reaching rate limits when
consuming a REST APL

Caching

Caching API responses on the server side can help avoid reaching the rate limits.
Setting reasonable expiry time intervals ensures the database is not thrashed with
queries, and responses can be sent from the cache if the resource has not changed.
For example, an application that displays tweets fetched from Twitter can cache
the response from the Twitter API or use the Twitter Streaming API (covered in
the following section). Ideally, API consumers should not make identical requests
more than once a minute. This is generally a waste of bandwidth, as in most cases
the exact same result will be returned.

Not making calls in loops

It is a good practice to not make API requests inside loops. The server API should be
designed to be as verbose as possible and help the clients by sending as much detail as
possible in the response. This ensures the consumers can fetch a collection of objects in
one API operation instead of fetching individual objects inside a loop.

Logging requests
It is a good practice to use logging on the client side to see how many requests the

client is making. Observing the logs will help the clients analyze as to which are the
non-redundant queries that add to the rate limits and can be eliminated.

Avoiding polling

Additionally, consumers should not poll for changes. Instead of polling to see if the
content has changed, the client can use WebHooks (http://en.wikipedia.org/
wiki/Webhook) or Push Notifications (http://en.wikipedia.org/wiki/Push

technology) to receive a notification. More details on WebHooks will be given in
Chapter 6, Emerging Standards and the Future of REST.

Supporting the streaming API

API developers can support a streaming API. This can help the client avoid reaching
the rate limits. The set of streaming APlIs offered by Twitter gives developers low
latency access to Twitter's global stream of tweet data. A streaming client does not
need to bear the overhead, associated with polling a REST endpoint and will get
messages indicating tweets and other events that have occurred.

[87]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Design Principles

Once applications establish a connection to a streaming endpoint, they are delivered
a feed of tweets, without worrying about polling or REST API rate limits.

Case study of Twitter REST API rate limits

Twitter has a rate limit of 150 requests per hour per unauthenticated
client.

OAuth calls are permitted 350 requests per hour based on the access
token in the request.

% An application that exceeds the rate limitations of the Search API
'~ will receive an HTTP 420 response code. The best practice is to
watch for this error condition and honor the Retry-After header that
is returned. The Retry-After header's value is the number of seconds
the client application should wait before requesting data from the
Search API again. In case the client sends more than the allowed
requests per hour, the client gets a 420 Enhance Your Calm error.

420 Enhance Your Calm (Twitter)
M This is not part of the HTTP standard but returned by the Twitter
Q Search and Trends API when the client is being rate-limited.
Applications should ideally implement the 429 Too Many
Requests response code instead.

Response pagination

REST APIs are consumed by other systems from web to mobile clients and hence,
responses that return multiple items should be paged with a certain number of items
per page. This is known as Response pagination. Along with the response, it is always
good to add some additional metadata about the total count of objects, the total number
of pages, and the links that refer to the next set of results. The consumers can specify a
page index to query for results and the number of results per page.

Implementing and documenting default settings for the number of results per page
is a recommended practice in case the client does not specify the number of results
per page. For example, GitHub's REST API sets the default page size to 30 records
with a maximum of 100, and sets a rate limit on the number of times the client can
query the APL. If the API has a default page size, then the query string can just
specify the page index.

The following section covers the different types of pagination techniques that can
be used. API developers may choose to implement one or more of these techniques
based on their use cases.

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Types of pagination

The following are the different techniques of pagination that can be used:
* Offset-based pagination
* Time-based pagination

* Cursor-based pagination

Offset-based pagination

Offset-based pagination is the case when the client wants results specified by a page
number and the number of results per page. For example, if a client wants to query
all the details of books checked out, or the coffees ordered, they can send in a query
request as follows:

GET vl/coffees/orders?page=1&limit=50

The following table details what query parameters the offset-based pagination
would include:

Query parameter Description

page This specifies which page to return

limit This specifies the number of maximum results
per page that can be included in the response

Time-based pagination
The time-based pagination technique will be used when the client wants to query for
a set of results between a specific timeframe.

For example, to get a list of coffees ordered between a specific timeframe, a client can
send in a query as follows:

GET vl/coffees/orders?since=140358321&until=143087472

The following table details what query parameters a time-based pagination
would include:

Query parameter Description

until: This is a Unix timestamp that points to the end of the time range
since This is a Unix timestamp that points to the beginning of the time range
limit This specifies the number of max results per page that can be included

in the response

[89]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Design Principles

Cursor-based pagination

The cursor-based pagination is a technique where the results are separated into
pages by a cursor, and the results can be navigated forwards and backwards using
the next and previous cursors that are provided in the response.

The cursor-based pagination API avoids returning duplicate records in cases where
additional resources are added between pagination requests. This is because the
cursor parameter is a pointer that indicates where to resume the results from, for
the subsequent call.

Twitter and cursor-based pagination

Here is an example of how Twitter uses cursor-based pagination. A query to get the
IDs of a user who has a large number of followers could be paginated and returned
in the following format:

{
llidsll . [
385752029,
602890434,

333181469,
333165023

1,
"next cursor": 1374004777531007833,

"next cursor_str": "1374004777531007833",
"previous_cursor" : 0,
"previous cursor str": "O"

}

The next_cursor value could be passed to the next query to get the next set of results:

GET https://api.twitter.com/1.1/followers/ids.json?
screen_name=someone &cursor=1374004777531007833

Using the next_cursor and the previous_cursor values, it is easy to navigate
between the set of results.

Now that we have covered the different pagination techniques, let's go over a sample
in detail. The following sample shows how to implement a simple offset-based
pagination technique with JAX-RS.

[90]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The project's layout
The project's directory layout follows the standard Maven structure, which is briefly

explained in the following table.

The example used is that of a coffee shop service that can be queried for all orders
placed so far.

Source code Description

src/main/java This directory contains all the sources required
by the coffee shop application

Here is the cof feeResource class

@Path("vl/coffees")
public class CoffeesResource

@GET

@Path ("orders")

@Produces (MediaType .APPLICATION JSON)

public List<Coffee> getCoffeelist (
@QueryParam("page") @DefaultValue("1") int page,

@QueryParam ("limit") @
DefaultValue ("10") int limit) {
return CoffeeService.getCoffeelist(page, limit) ;

}

The getCoffeeList () method takes two QueryParam values: page and 1imit. The
page QueryParam value corresponds to the page index and 1imit corresponds to
the number of results per page. The @Defaultvalue annotation specifies the default
values that can be used if the query parameters are absent.

Here is the output when the sample is run. The metadata element contains details
of the totalCount value that is the total number of records. Additionally, there is
the 1inks attribute of JSONArray that contains details such as self, which is the
current page, and next, which is the next link to fetch more results.

{

"metadata": {
"resultsPerPage": 10,
"totalCount": 100,
"links": [
"self": "/orders?page=1&limit=10"

b

[91]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Design Principles

{

"next": "/orders?page=2&limit=10"
]
"coffees": [
"Id": 10,
"Name": "Expresso",
"Price": 2.77,
n Typell . n Hot n ,
"Size": "Large"
"Id": 11,
"Name": "Cappuchino",
"Price": 0.14,
"Type": "Brewed",
"Size": "Large"

The sample is bundled with this book's downloadable source code bundle.

\ It is always a good practice to include the default values for the number of

~ results per page in REST API for pagination. Also, it is recommended that
Q the API developers add metadata on the response, so consumers of the
API can fetch additional information easily to get the next set of results.

Internationalization and localization

Often, services need to operate in a global environment and responses need to be
tailored based on the country and locale. Localization parameters can be specified
in one of the following fields:

e HTTP headers

* Query parameters

* Content of the REST response

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Language negotiation is similar to content negotiation; the HTTP header Accept -
Language can take different language codes based on any two-letter initial for
ISO-3166 country codes (http://www.iso.org/iso/country codes.htm). The
Content -Language header is similar to the Content - Type header and can specify
the language for the response.

For example, here is a Content - Language header sent in the response to a request
sent by a client:

HTTP/1.1 200 OK

X-Powered-By: Servlet/3.1 JSP/2.3 (GlassFish Server Open Source
Edition 4.0 Java/Oracle Corporation/1.7)

Server: GlassFish Server Open Source Edition 4.0
Content-Language: en

Content-Type: text/html

Date: Mon, 23 Jun 2014 23:29:04 GMT
Content-Length: 1098

The preceding response sets Content -Language to en as part of the response.

JAX-RS supports runtime content negotiation using the javax.ws.rs.core.Variant
class and Request objects. The Variant class may contain a media type, a language,
and an encoding. The Variant .VariantListBuilder class is used to build a list of
representation variants.

The following code snippet shows how to create a list of resource representation
variants:

List<Variant> variantList =
Variant.

.languages ("en", "fr") .build() ;

The preceding code snippet calls the build method of the variantListBuilder class
with languages "en" and "fr".

Query parameters can include locale-specific information so that the server can
return the information in that language.

The following is an example:

GET vl/books?locale=fr

This query shows an example that will include the locale in the query parameter
to get details of books. Additionally, the content of the REST response can contain
country-specific details such as currency codes, and other details based on the
HTTP headers or the query parameters sent in the request.

[93]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Design Principles

Miscellaneous topics

The following sections cover some details on miscellaneous topics such as HATEOAS,
and Extensibility in REST.

HATEOAS

Hypermedia as the Engine of Application State (HATEOAS) is a constraint of the
REST application architecture.

A hypermedia-driven API gives details about the APIs that are available and the
corresponding actions that can be taken by the consumer, by providing hypermedia
links in the response sent by the server.

For example, a book representation for a REST resource that contains data such as
the name and ISBN would look as follows:

{

"Name":" Developing RESTful Services with JAX-RS 2.0,
WebSockets, and JSON",
"ISBN": "1782178120"

}
A HATEOAS implementation would return the following;:
{

"Name":" Developing RESTful Services with JAX-RS 2.0,
WebSockets, and JSON",
"ISBN": "1782178120"
"links": [
{
"rel": "self",
"href": "http://packt.com/books/123456789"

}
}

In the preceding sample, the 1inks element has the rel and href JSON objects.

The rel attribute in this example is a self-referencing hyperlink. More complex
systems might include other relationships. For example, a book order might have
a "rel":"customer" relationship, linking the book order to its customer. href is
a complete URL that uniquely defines the resource.

[94]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The advantage of HATEOAS is that it helps client developers explore the protocol.
The links give client developers a hint as to what may be the possible next action to
take. While there is no standard for hypermedia controls, the recommendations are
to follow the ATOM RFC (4287).

According to the Richardson Maturity Model, HATEOAS is
. considered the final level of REST. This means that each link is
presumed to implement the standard REST verbs of GET, POST, PUT,
s and DELETE. Adding details using the 1inks element as shown in
the preceding code snippet gives the client the information they need
to navigate the service and take the next action.

The PayPal REST APl and HATEOAS

PayPal REST API provides HATEOAS support, so with every response, there is a
collection of links that can help the consumer decide the next action to take.

For example, a sample response from the PayPal REST API includes the JSON objects
shown in the following code:

{

"href": "https://www.sandbox.paypal.com/webscr?cmd
= express-checkout&token=EC-60U79048BN7719609",

"rel": "approval url",

"method": "REDIRECT"

"href": "https://api.sandbox.paypal.com/vl/payments/
payment /PAY-6RV70583SB702805EKEYSZ6Y/execute",

"rel": "execute",

"method": "POST"

}

A brief description of the attributes is as follows.

e href: This contains information about URLs that can be used for future
REST API calls
* rel: This link shows how it is related to the previous REST API calls

¢ method: This shows which method is to be used for the REST API calls

For more details, check https://developer.paypal .com/docs/
S integration/direct/paypal-rest-payment-hateocas-1links/.

[95]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Design Principles

REST and extensibility

RESTful applications are more extensible as well as more maintainable over

time. RESTful applications based on constraints of the design style are easier to
understand and work with, mainly due to their simplicity. They are also more
predictable, since it's all about the resources. Also, RESTful applications are easier
to work with as opposed to an XML-RPC application, where the consumer needs to
parse a complex WSDL document to even begin to understand what's happening.

Additional topics for the REST API

The following section lists additional topics that may be useful for REST developers.
We have covered topics in earlier chapters, from the designing of RESTful services,
error handling, validations, authentication, and caching to rate limiting. This section
focuses on additional utilities to empower the REST API developer with better
testing and documentation.

Testing RESTful services

It is always efficient to have an automated set of tests, which can validate responses
sent by the server. One such framework to build automated tests for RESTful services
is REST Assured.

REST Assured is the Java DSL for easy testing of RESTful services. It supports GET,
PUT, POST, HEAD, OPTIONS, and PATCH, and can be used to validate as well as verify
responses that the server sends.

The following is an example of getting a coffee order and verifying the ID returned
in the response:

get ("order") .
then () .assertThat () .
body ("coffee.id",equalTo(5)) ;

In the preceding snippet, we make a call to get a coffee order and verify that the
coffee.id valueis 5.

REST Assured supports specifying and validating, for example, parameters,
headers, cookies, and body easily. It also supports mapping Java objects to and
from JSON and XML. For more details, you can check https://code.google.
com/p/rest-assured/.

[96]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Documenting RESTful services

It is always a good practice to provide documentation on the RESTful services built
for the consumers, whether they are from within the same enterprise or whether the
consumer is an external application or a mobile client. The following section covers
some frameworks for providing good documentation for RESTful services.

Swagger is a framework implementation for describing, producing, consuming,

and visualizing RESTful web services. The documentation of methods, parameters,
and models are tightly integrated into the server code. Swagger is language-agnostic
and implementations for Scala, Java, and HTMLS5 are available.

The tutorial on how to add Swagger to the REST API is found at the following URL:

https://github.com/wordnik/swagger-core/wiki/Adding-Swagger-to-your-
API

Recommended reading

The following links refer to some of the topics that are covered in this chapter,
and they will be useful to review and get detailed information:

* https://dev.twitter.com/docs: The Twitter API documentation

* https://dev.twitter.com/console: The Twitter Developer console

* https://dev.twitter.com/docs/rate-limiting/1.1: The Twitter
API rate limiting in v1.1

* https://dev.twitter.com/docs/misc/cursoring: The Twitter
API and cursoring

* https://dev.twitter.com/docs/api/streaming: The Twitter
streaming APIs

®* https://developers.facebook.com/docs/reference/ads-api/api-
rate-limiting/: Facebook API rate limiting

* https://developer.github.com/v3/rate limit/: GitHub API
rate limiting

® https://developers.facebook.com/docs/opengraph/guides/
internationalization/: Facebook localization

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Design Principles

Summary

This chapter covered advanced topics that every RESTful API developer should know.
In the beginning, we saw the rate-limiting sample that demonstrated how to enforce
throttling so that the server is not blasted with API calls. We also saw how Twitter,
GitHub, and Facebook APIs enforce rate limiting. We covered different pagination
techniques and a basic pagination sample and best practices. Then, we moved on to
internationalization and other miscellaneous topics. Finally, we covered HATEOAS
and how it is the next level of REST API, REST, and extensibility topics.

The next chapter will cover other emerging standards such as WebSockets, WebHooks,
and the role of REST in the future of evolving web standards.

[98]

www.it-ebooks.info

http://www.it-ebooks.info/

Emerging Standards and
the Future of REST

This chapter covers the emerging and evolving technologies that will augment

the functionality of RESTful services and provide some perspective on the future of
REST as well as other real-time API supporters. We will cover some of the real-time
APIs and see how they can help with respect to older ways such as polling. Given
the ubiquitous popularity of platforms such as Twitter, Facebook, and Stripe, it is
no surprise that they have adopted a paradigm shift and thus provide real-time
APIs to give information to the client as and when an event occurs.

This chapter will cover the following topics:

Real-time APIs

Polling

WebHooks

WebSockets

Additional real-time API supporters, which include the following:
° PubSubHubbub
° Server-sent events

° XMPP

° BOSH over XMPP

Case studies on companies using WebHooks and WebSockets
Comparison between WebHooks and WebSockets
REST and Micro Services

www.it-ebooks.info

http://www.it-ebooks.info/

Emerging Standards and the Future of REST

We will start with defining what a real-time API refers to, and then, we will cover
polling and its disadvantages. Next, we will walk through the different models
that are widely used for asynchronous real-time communication. Finally, we will
elaborate the pragmatic approaches to WebHooks and WebSockets in detail.

Real-time APIs

In our context, a real-time API helps the API consumer receive the events that they are
interested in, as they occur. An example of a real-time update is when someone posts
a link on Facebook or someone you follow on Twitter tweets about a topic. Another
example of a real-time API is to receive the feed of stock price changes as they occur.

Polling

Polling is the most traditional way to get data from a data source that produces the
stream of events and updates. The client makes requests periodically, and the server
sends data if there is a response. In case there is no data to be sent by the server,

an empty response is returned. The following diagram shows how continuous
polling works:

Client Server
request

response 200 OK : empty

request n

response 200 OK : message body sent in response
--> means repetition of request / responses

How polling works

Polling comes with multiple drawbacks such as empty responses for requests
made when there is no update on the server; this results in waste of bandwidth and
processing time. Polling with lower frequencies will result in the client missing the
updates close to the time the updates happen, and polling too frequently results in
waste of resources as well as facing the rate limitation imposed by the server.

To eliminate these drawbacks of polling, we will cover the following topics:

¢ The PuSH model —PubSubHubbub

* The streaming model

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The PuSH model — PubSubHubbub

PuSH is a simple topic based on the publish/subscribe protocol, which is based
on ATOM/RSS. Its goal is to convert atom feeds to real-time data and eliminate
the polling that affects the consumers of the feeds. The subscribers register their
interests in a topic, and the original publisher tells the interested subscribers that
there is something new that interests them.

To distribute the tasks of publishing and content distributing, there is a notion of the
Hub, which can be delegated to send the content to the subscribers. The following
diagram depicts the PubSubHubbub model:

1. discover the hub

BN

Subscriber Publisher

send
) 4 updates .
subscribe to the hub 5 to subscribers 3 publishes
with the feed URI updates

Hub

How PubSubHub works

Let's look at how this model works:

1. The Subscriber discovers the Hub by fetching the feed from the Publisher.

2. Once the Hub is discovered, the Subscriber subscribes to the Hub with the
feed URI it is interested in.

3. Now, when the Publisher has updates to send, it will let the Hub get
the updates.

4. The Hub then sends the updates to all the publishers.
The advantage of this model is that the publisher does not have to be concerned with
sending updates to all the subscribers. Also, on the other end, the subscribers have

an advantage as they get the updates from the hub as and when they occur, without
continuously polling the publisher.

The WebHooks paradigm, discussed in the subsequent sections, uses this protocol.

[101]

www.it-ebooks.info

http://www.it-ebooks.info/

Emerging Standards and the Future of REST

The streaming model

The streaming model for asynchronous communication involves keeping a channel
open and sending the data as it occurs. In this case, a socket connection needs to be
kept open.

Server-sent events

Server-sent events (SSE) is a technology based on the streaming model, where a
browser gets automatic updates from a server via an HTTP connection. The W3C
has standardized the Server-Sent Events EventSource API as part of HTML5.

With SSEs, the client initiates a request to the server using the "text/eventstream"
MimeType. Once the initial handshake has taken place, the server can keep sending
events to the client as and when they occur. The events are plain text messages sent
from the server to the clients. They can be data that can be consumed in the client side
by the event listener, and the event listener can interpret and react to the received event.

SSEs define a message format for the events that are sent from the server to the
clients. The message format is composed of plain text line separated by a stream of
characters. Lines that carry the message body or data start with data: and end with
\n\n, as shown in the following snippet:

data: My message \n\n

Lines that carry some Quality of Service (QoS) directives (for example, retry and
id) start with the QoS attribute name, followed by :, and then the QoS attribute's
value. The standard format makes it possible to develop generic libraries around
SSE to make software development easier.

The following diagram shows how SSEs work:

Client request(ID) Server

Structured request response messages

How server-sent events work

[102]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

As shown in the diagram, the client subscribes to an event source. The server keeps
sending updates as and when they occur.

Additionally, the server can associate and send IDs along with the whole message,
as shown in the following code snippet:

id: 12345\n
data: Messagel\n
data: Message 2\n\n

The preceding snippet shows how multiline messages with event IDs and data can
be sent, with the last line that terminates with two \n\n characters.

Setting an ID lets the client keep track of the last event fired so that if the connection
to the server is dropped, a special HTTP header (Last-Event-1ID) is set with the new
request sent by the client.

The upcoming sections cover how to associate IDs with SSEs, how SSE works with
connection loss and retries, and how to associate event names with SSEs.

Associating an ID with an event

Each SSE message can have a message identifier, which can be used for a variety of
purposes, for example, to keep track of the messages that the client has received and
also to keep a checkpoint for it. When the message ID is used in SSE, the client can
supply the last message ID as one of the connection parameters to instruct the server
to resume from a specific message onwards. Of course, the server-side code should
implement a proper procedure to resume a communication from the message ID as
requested by the client.

An example of the SSE message with the ID is shown in the following snippet:

id: 123 \n
data: This is a single line event \n\n

Retrying in case of connection failures

Firefox, Chrome, Opera, and Safari support server-sent events. In case there is a
connection loss between the browser and server, the browser can try reconnecting

to the server. There is a retry directive, which can be configured by the server to
enable the retries from a client. The default value for the retry interval is 3 seconds.
To increase the retry interval to 5 seconds, the server can send a retry event as shown:

retry: 5000\n
data: This is a single line data\n\n

[103]

www.it-ebooks.info

http://www.it-ebooks.info/

Emerging Standards and the Future of REST

Associating event names with events

Another SSE directive is the event name. Each event source can generate more than
one type of event, and a client can decide how to consume each event type based on
what event type it subscribes for. The following code snippet shows how the name
event directive incorporates into the message:

event: bookavailable\n

data: {"name" : "Game of Thrones"}\n\n
event: newbookadded\n

data: {"name" :"Storm of Swords"}\n\n

Server-sent events and JavaScript

The API that is considered the foundation of SSE in the client side for JavaScript
developers is the EventSource interface. The EventSource interface contains a
fair number of functions and attributes, but the most important ones are listed
in the following table:

Function name Description

addEventListener This function adds an event listener to
handle the incoming events based on the
event type.

removeEventListener This function removes an already

registered listener.

onmessage This function is invoked on message
arrival. There is no custom event handling
available when using the onmessage
method. Listeners manage the custom
event handling.

onerror This function is invoked when something
goes wrong with the connection.

onopen This function is invoked when a
connection is opened.

onclose This function is invoked when a
connection is closed.

The following snippet shows how to subscribe for different event types omitted by
one source. The snippet assumes that the incoming messages are JSON-formatted
messages. For example, there is an application that can stream updates to users as
and when new books are available in some storage. The 'bookavailable' listener
uses a simple JSON parser to parse the incoming JSON.

[104]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Then, it will use this to update the GUI, while the 'newbookadded' listener uses the
reviver function to filter out and selectively process the JSON pairs.

var source = new EventSource ('books') ;
source.addEventListener ('bookavailable', function (e) {
var data = JSON.parse(e.data) ;
// use data to update some GUI element...
}, false);

source.addEventListener ('newbookadded', function(e) {
var data = JSON.parse(e.data, function (key, value) {

var type;
if (value && typeof value === 'string') {
return "String value is: "+value;

}

return value;

Server-sent events and Jersey

SSEs are not part of the standard JAX-RS specification. However, they are
supported in the Jersey implementation of JAX-RS. For more details, check
out https://jersey.java.net/documentation/latest/sse.html.

WebHooks

WebHooks are a form of user-defined custom HTTP callbacks. With the
WebHook model, a client provides the event producer with an endpoint to
which the event producer can post the events. When an event is posted to
the endpoint, the client application that is interested in such events can take
appropriate actions. An example of WebHooks is triggering an event such
as a Hudson job using a GIT post-receive hook.

To acknowledge that the subscriber received the WebHook without any problem,
the subscriber's endpoint should return a 200 0k HTTP status code. The event
producer will ignore the request body and any other request header, other than
the status. Any response code outside the 200 ranges, including 3xx codes, will
indicate that they did not receive the WebHook, and the API might retry sending
the HTTP poST request.

WebHooks events generated by GitHub deliver a payload of information about
activity in a repository. WebHooks can trigger across several different actions.
For example, a consumer might request for a payload of information any time
a commit is made, a repository is forked, or an issue is created.

[105]

www.it-ebooks.info

http://www.it-ebooks.info/

Emerging Standards and the Future of REST

The following diagram depicts how WebHooks work with GitHub or GitLab:

)) Your custom WebHook script
User Git commit HTTP POST
<...
% —> Tacb12e > php...
>
Store
data in
dB
How WebHooks work

Let's look at how WebHooks work:

1. The user makes a Git push.

2. There is a custom WebHook URL to post the event object registered by
the consumer with GitHub. When an event occurs, for example, when a
commit is made, the GitHub service will send the payload of information
regarding the commit, using a POST message to the endpoint provided
by the consumer.

3. The consumer application can then store data in the dB or take some other
action such as triggering a continuous integration build.

Some of the popular WebHooks case studies

Twilio uses WebHooks to send SMS messages. GitHub uses WebHooks
_ tosend repository change notification and, optionally, some payloads.
% PayPal uses Instant Payment Notification (IPN), a message service
S that automatically notifies merchants of events related to PayPal
transactions, and it is based on WebHooks.

Facebook's real-time API uses WebHooks and is based on
PubSubHubbub (PuSH).

As mentioned earlier, if an API does not offer a form of WebHooks for notification,
its consumers will have to keep polling for data, which is not only inefficient but
also not real time.

[106]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

WebSockets

The WebSocket protocol is a protocol that provides full-duplex communication
channels over a single TCP connection.

The WebSocket protocol is an independent TCP-based protocol, and its only
relationship to HTTP is that the handshake to switch over to WebSockets is
interpreted by HTTP servers as an Upgrade request.

It provides the option to have full-duplex, real-time communication between clients
(for example, a web browser) and an endpoint without the constant cost of establishing
a connection or polling resource intensively. WebSockets are extensively used in social
feeds, multiplayer games, collaborative editing, and so on.

The following lines show a WebSocket Protocol handshake, which starts with an
Upgrade request:

GET /text HTTP/1.1\r\n Upgrade: WebSocket\r\n Connection:
Upgrade\r\n Host: www.websocket.org\r\n ..\r\n

HTTP/1.1 101 WebSocket Protocol Handshake\r\n

Upgrade: WebSocket\r\n

Connection: Upgradel\r\n

LA\r\n

The following diagram shows an example of a handshake with the #TTP/1.1
Upgrade request and HTPP/1.1 Switching Protocols response:

Handshake

Client //7 Server
HTTP / 1.1 Upgrade request-”

HTTP / 1.1 Switching Protocols

Bidirectional messages on TCP

Close Connection

A4

How WebSockets work

Once the connection has been established between the client and the server with the
Upgrade request and HTTP/1. 1 response, WebSocket data frames, binary or text, can
be sent back and forth between the client and server from both directions.

[107]

www.it-ebooks.info

http://www.it-ebooks.info/

Emerging Standards and the Future of REST

WebSockets data is minimally framed between 2 bytes; this dramatically reduces the
overhead compared to what HTTP headers would transfer.

A very basic example of using the JavaScript WebSockets API is shown as follows:

//Constructionof the WebSocket object

var websocket = new WebSocket ("coffee") ;

//Setting the message event Function

websocket .onmessage = function(evt) {

onMessageFunc (evt)

}i

//onMessageFunc which when a message arrives is invoked.

function onMessageFunc (evt) {

//Perform some GUI update depending the message content

}

//Sending a message to the server

websocket.send ("coffee.selected.id=1020") ;

//Setting an event listener for the event type "open".

addEventListener ('open', function(e){
onOpenFunc (evt) }) ;

//Close the connection.
websocket.close() ;

The following table will describe the WebSockets functionality and various functions
in detail:

Function name Description

send This function can be used to send a message to
the server's specified URL.

onopen This function is invoked when the connection
is created. The onopen function handles the
open event type.

onmessage When a new message arrives, the onmessage
function is invoked to handle the message event.

onclose This function is invoked when the connection is
being closed. The onclose method handles the
close event type.

onerror This function is invoked to handle the error event
when an error occurs in the communication channel.
close This function is used to close the communication
socket and end the interaction between the client
and server.
[108]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Popular WebSockets Case Studies
. Zynga Poker is one of the first games to utilize WebSockets connections
% on a massive scale. Using WebSockets in Zynga Poker HTMLS5 delivers a
/<~ smooth, high-speed gameplay that allows for a synchronous experience
on the mobile web. It varies based on connections, but the game loads
and refreshes almost immediately.

Additional real-time API supporters

There are some more commonly used real-time or near real-time communication
protocols and APIs that are mostly used outside of the browser. Some of these
protocols and APIs are described in the subsequent sections.

XMPP

The XMPP protocol was developed to address the requirements of text messaging
and Internet-chat-oriented solutions. XMPP's basic model of communication is
client to server, server to server, server to client. In support of this, it defines a
client to server protocol and a server to server protocol based on XML messages
encoded and transmitted directly over TCP.

XMPP is a mature protocol with many implementations in different languages
and platforms. The main drawback associated with XMPP is the long polling
and open sockets to handle the inbound and outbound communications.

BOSH over XMPP

Bidirectional streams Over Synchronous HTTP (BOSH) specified in XEP-0124 is
the standardized way to do XMPP over HTTP. For the client-initiated protocol, the
client simply sends XMPP packets on HTTP, and for the server-initiated protocol, the
server uses long polling with the connection open for a prespecified period of time.

The main advantage of BOSH is the possibility that it provides to use a web browser
as an XMPP client by taking advantage of any of the JavaScript implementations of
BOSH. Emite, JSJaC, and xmpp4;js are some of the libraries that support BOSH.

[109]

www.it-ebooks.info

http://www.it-ebooks.info/

Emerging Standards and the Future of REST

Comparisons between WebHooks,
WebSockets, and server-sent events

SSEs are sent over HTTP unlike WebSockets. SSEs offer only one-way communication
of events from the server to the client and do not support a full-duplex communication
as WebSockets do. SSEs have the ability to automatically retry a connection; they also
have event IDs that can be associated with messages to provide Quality of Service
(QoS) features. The WebSockets specification does not support these features.

On the other hand, WebSockets support full-duplex communication, and reduce the
latency and help improve throughput, as there is an initial handshake over HTTP,
but then, the messages are transferred between endpoints over TCP.

In comparison to the two protocols mentioned earlier, WebHooks has a lower barrier
to entry and offers an easy way for applications and services to integrate with one
another. This enables the capability of having an interconnected and interchangeable
set of loosely coupled cloud services talking to each other via HTTP requests.

The following table compares and contrasts WebHooks, WebSockets, and SSEs in
different areas:

Criteria WebHooks WebSockets Server-sent events
Asynchronous real-time Yes Yes Yes
communication support

Callback URL registered Yes No No
Long-lived open No Yes Yes
connection

Bidirectional No Yes No
Error handling No Yes Yes
Easy to support and Yes Needs browsers and Yes
implement proxy server support

Needs fallback to polling No Yes No

The next section will cover how highly available cloud applications are moving
toward the Micro Services-based architecture.

[110]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

REST and Micro Services

The dream of SOA has become a reality with the emergence of Micro Services
architecture, which comprises breaking a monolithic application into sets of
fine-grained services. We will now look at the different advantages of Micro
Services as compared to monolithic services.

Simplicity

Instead of using the more complicated traditional enterprise, many developers are

finding that building the same application using lightweight API services proves to
be more resilient, scalable, and maintainable. This style is the Micro Services-based

architecture. This is in contrast with approaches such as the legacy RPC approaches
of CORBA and RM]J, or the bulky Web Services protocols such as SOAP.

Isolation of problems

In the monolithic applications, all the components of a service are loaded in a single
application artifact (a WAR, EAR, or JAR file), which is deployed on a single JVM.
This implies that if the application or the application server goes down, it would
mean a failure of all the services.

However, with the Micro Services architecture, the services can be independent
WAR/EAR files. The services can communicate with one another with REST and
JSON, or XML. Another way to communicate between services in the Micro
Services architecture is to use a messaging protocol such as AMQP/Rabbit MQ.

Scale up and scale down

With monolithic services, not all services in the deployed application's file might
need to be scaled, but they all are forced to follow the same scale-up and scale-down
rules laid down at deployment level.

With the Micro Services architecture, applications can be built by smaller services
that can be deployed and scaled independently. This results in an architecture that
is resilient to failures, scalable and agile, for developing, building, and deploying
services quickly from the feature definition phase to production phase.

[111]

www.it-ebooks.info

http://www.it-ebooks.info/

Emerging Standards and the Future of REST

Clear separation of capabilities

In the Micro Services architecture, these services can be organized based on
business capabilities. For example, an inventory service can be separated from
a billing service, which can be separate from a shipping service. In case one of
the services fails, the others can still continue serving requests as mentioned in
the Isolation of Problems section.

Language independence

Another advantage of the Micro Services architecture is that the services are built with
a simple and easy-to-consume REST/JSON-based API that can be easily consumed by
other languages or frameworks such as PHP, Ruby-On-Rails, Python, and node.js.

Amazon and Netflix are some of the pioneers in the Micro Services architecture. eBay
has open sourced Turmeric, a comprehensive, policy-driven SOA platform that can
be used to develop, deploy, secure, run, and monitor SOA services and consumers.

Recommended reading

The following are the links to additional resources that interested readers can take a
look at to get a more complete picture of use cases mentioned in this chapter:

* https://stripe.com/docs/webhooks: WebHooks support

* https://github.com/sockjs: GitHub Sock]s

* https://developer.github.com/webhooks/testing/: GitHub WebHooks

* http://www.twilio.com/platform/webhooks: Twilio WebHooks

* http://xmpp4js.sourceforge.net/: XMPP4]JS BOSH library

* https://code.google.com/p/emite/: Emite BOSH library

[112]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Summary

In this chapter we covered advanced topics such as WebHooks, SSEs, WebSockets,
and where and how they are being used in this chapter. One of the primary takeaways
from this chapter was to understand how important it is to provide real-time APIs

to avoid inefficiencies related to repeated polling. We saw case studies of companies
using both WebHooks and WebSockets in their solutions. We saw different best
practices and design principles sprinkled throughout the various chapters in the book;
this chapter, as a finale, provided a substantial introduction to the future of REST and
asynchronous communication. The proliferation of social data has the potential to be
a great catalyst for the development of a semantic web that will enable agents to make
nontrivial actions on our behalf and get real-time updates using the various patterns
we discussed.

Also, we saw how highly available cloud applications tend to move to a networked
component model where applications are decomposed into micro services, which
can be deployed and scaled independently using the Micro Services architecture.
For more detailed information on building RESTful services, check out the book
Developing RESTful Services with JAX-RS2.0, WebSockets, and [SON, Bhakti Mehta

and Masoud Kalali, Packt Publishing.

[113]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

In this era of social networking, cloud computing, and mobile applications, people
want to be connected to each other, voice opinions, build applications collaboratively,
share inputs, and ask questions. This is evident from the data mentioned in http://
www.statisticbrain.com/twitter-statistics/ that shows Twitter has around
6.5 million users and 58 million tweets per day. Similarly, the statistics for Facebook
are mindboggling: 1.3 billion users making it the heart of the social web platform.
Over the years, GitHub has evolved as the default social coding platform. Thus,
Twitter, Facebook, and GitHub are among the most widely used platforms to build
applications, mine data, as well as build analytics-related information.

While the previous chapters covered topics such as building RESTful services, adding
performance, caching, security, and scaling of RESTful services, this chapter will focus
on some popular REST platforms and how they tie in to the different patterns covered
in earlier chapters as part of their API infrastructure.

This chapter will cover the following topics:

e Overview of the REST API from GitHub
* Overview of the Open Graph API from Facebook
* Overview of the REST API from Twitter

Overview of the REST API from GitHub

GitHub has become extremely popular as the social collaborative coding platform for
building code as well as contributing to other repositories. It is used by developers

to create, build, and deploy software, with usage varying from individual projects

to various enterprises using it as part of their processes. GitHub has extensive API
documentation for its services at https://developer.github.com/v3/.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

The following section covers in detail how GitHub handles all the different patterns
we covered in earlier chapters.

Getting details from GitHub

The following commands show how to use unauthenticated cURL commands to get
data for a user, to get details for the repositories, and so on.

The following command gets details for the javaee-samples user:

curl https://api.github.com/users/javaee-samples

{

"login": "javaee-samples",

"id": 6052086,

"avatar url": "https://avatars.githubusercontent.com/u/6052086?",

"gravatar id": null,

"url": "https://api.github.com/users/javaee-samples",

"html url": "https://github.com/javaee-samples",

"followers url": "https://api.github.com/users/javaee-samples/
followers",

"following url": "https://api.github.com/users/javaee-samples/
following{/other user}",

"gists url": "https://api.github.com/users/javaee-samples/gists{/gist
ld} ",

"starred url": "https://api.github.com/users/javaee-samples/starred{/
owner}{/repo}",

"subscriptions url": "https://api.github.com/users/javaee-samples/
subscriptions",

"organizations url": "https://api.github.com/users/javaee-samples/
orgs",

"repos url": "https://api.github.com/users/javaee-samples/repos",

"events url": "https://api.github.com/users/javaee-samples/events{/

privacy}",

"received events url": "https://api.github.com/users/javaee-samples/
received events",

"type": "Organization",

"site admin": false,

"name": "JavaEE Samples",

"company": null,

"blog": "https://arungupta.ci.cloudbees.com/",
"location": null,

"email": null,

[116]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

"hireable": false,

"bio": null,

"public repos": 11,

"public gists": 0,

"followers": O,

"following": O,

"created at": "2013-11-27T17:17:00Z",
"updated at": "2014-07-03T16:17:51Z"

As shown in the preceding commands, there are different URLs in the
. preceding response, which can be used to get details such as followers,
% commits, and so on. This style of presenting the URLs is different from
K the HATEOAS samples we covered earlier in the book using 1inks,
href, rel, and so on. This shows how different platforms choose
various ways to provide a connected service, which is self-explanatory.

To get repos for a user with pagination, we can use the query as shown:

curl https://api.github.com/users/javaee-samples/repos?page=1&per page=10

GitHub API uses OAuth2 for authenticating users for the requests. All developers
working with GitHub API need to register their application. A registered application
is assigned a unique client ID and client secret.

For more details on getting authenticated requests for a user, check
https://developer.github.com/v3/ocauth/.

Verbs and resource actions

The following table covers how GitHub API uses verbs for a specific action to
a resource:

Verb Description

HEAD This is used to get the HTTP header info

GET This is used to retrieve resources such as
user details

POST This is used for creating resources such as
merging pull requests

PATCH This is used for partial updates to resources

[117]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

Verb Description

PUT This is used for replacing resources such as
updating users

DELETE This is used for deleting resources such as
removing a user as a collaborator

Versioning

GitHub API uses version v3 in its URI. The default version of the API may change in
the future. In case the client is depending on a particular version, they recommend
sending an Accept header explicitly, as shown:

Accept: application/vnd.github.v3+json

Error handling

As covered in Chapter 2, Resource Design, client-side errors are indicated by 400 error
codes. GitHub uses a similar convention for denoting errors.

If a client using the API sends an invalid JSON, a 400 Bad Request response is
returned back to the client. If a client using the API misses to send a field as part of
the request body, a 422 Unprocessable Entity response is returned to the client.

Rate limiting

The GitHub API also supports rate limiting so that the server is not overburdened with
too many requests from some rogue client causing it to fail. In case of requests using
Basic authentication or OAuth, the client is allowed to make up to 5,000 requests

per hour. In case of unauthenticated requests, the rate limit is up to 60 requests per
hour for a client. GitHub uses the X-RateLimit-Limit, X-RateLimit-Remaining, and
X-RateLimit-Reset headers to tell the status of the rate limits.

Thus, we have covered details on the GitHub API on how they choose to implement
some of the REST principles we have covered so far in this book. The next section
covers the Facebook Open Graph REST API for topics such as versioning, error
handling, rate limiting, and so on.

[118]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

Overview of the Facebook Graph API

The Facebook Graph APl is a way to get information from Facebook data. Using the
HTTP REST API], clients can do a variety of tasks such as query data, post updates
and pictures, get albums and create albums, get the number of likes for a node,

get comments, and so on. The following section covers how to get access to the
Facebook Graph API.

On the Web, Facebook uses a variant of the OAuth 2.0 protocol
for authentication and authorization. The native Facebook App
is used on iOS and Android.

To use the Facebook AP], the client needs to procure an access token to work with
OAuth 2.0. The following steps shows how to create the App ID and secret key and
then get the access token to execute queries for Facebook data:

1. Go to developers.facebook.com/apps. You can create a new app.

Once the app is created, you will be assigned the App ID and secret
as shown in the following screenshot:

MyApp Dashboard

I

8 MyApp =

4 Settinge

& StaiUs & Review Show

@ App Details

User Stats

5 Roles

Active Users Trend Promode installs

<1 Open Graph
1B Moy Acives Logeo in win Fcsbook | (B Woekiy &

A Alerts

M Localze

= Payments

ke Ingights

2. Once you have the App ID and secret, you can get the access token and
execute queries for Facebook data.

[119]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

_ Facebook has a special /me endpoint, which corresponds to
& the user whose access token is being used. To get photos for
v your user, the request can be of the following form:

GET /graph.facebook.com/me/photos

3. To post a message, the user can invoke a simple API as shown:

POST /graph.facebook.com/me/feed?message="foo"
&access token="..."

4. To get details of your ID, name, and photos using the Graph Explorer,
the query is as follows:
https://developers.facebook.com/tools/explorer?method=GET&path=me%

3Ffields=id, name

5. The following screenshot shows a Graph API Explorer query with node
dalailama. Clicking on the ID gives more details for the node.

Graph API Explorer Application: Graph APl Explorer v | Locale: English (US) v | API Version: v2i v
Access Token: Debug % Get Access Token
rat query

GET ~ + /v2.1/dalailama?fields=id,name W
Learn more about the Graph AP| syntax.

Node: dalailama {

. “id": "339188887615",
v id "name": "Dalai Lama"

}
¥ name

Thus, we saw how to use the Graph API Explorer application to build up a query for
a node in the Social Graph. We can query by various fields such as ID and name and
try using methods such as GET, POST, or DELETE.

[120]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

Verbs and resource actions

The following table summarizes the commonly used verbs in the Facebook Graph API:

Verb Description

GET This is used to retrieve resources such as
feeds, albums, posts, and so on

POST This is used for creating resources such
as feeds, posts, albums, and so on

PUT This is used for replacing resources

DELETE This is used for deleting resources

1
‘Q An important observation is that the Facebook Graph API

uses POST instead of PUT to update resources.

Versioning

The Graph API currently uses version 2.1 released on August 7, 2014. The client can
specify a version in the request URL. In case a client does not specify a version, the
Facebook Open Graph API defaults to the latest version available. Every version

is guaranteed to work for 2 years after which if the client makes any calls using an
older version, they get redirected to the latest version of the API.

Error handling

The following snippet shows the error response from a failed API request:

{

"error": {
"message": "Message describing the error",
"type": "OAuthException",
"code": 190 ,
"error_subcode": 460

}
}

As shown in the preceding code, there are JSON Objects called code and error_
subcode in the error message, which can be used to figure out what the problem is
and what the recovery action will be. In this case, the value of code is 190, which is
an OAuthException value, and the error subcode value of 460 indicates that the
password may have changed and hence the access_token is not valid.

[121]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

Rate limiting

The Facebook Graph API has different rate-limiting policies based on whether
the entity using the APl is a user, an application, or an advertisement. When the
calls from a user exceed a limit, there is a 30-minute block-out period for the user.
For more details, check https://developers. facebook.com/docs/reference/

ads-api/api-rate-limiting/. The next section covers the details of the Twitter
REST APL

Overview of the Twitter API

The Twitter API has REST APIs and Streaming APIs, which allow developers to
access core data such as timelines, status data, user information, and so on.

Twitter uses three-legged OAuth to make requests.

Important aspects of OAuth with Twitter API

The client application doesn't need to store a login ID and
password. The application sends an access token representing
the user with each request instead of using user credentials.

. The POST variables, query parameters, and the URL of the
% request always remain intact for a request to successfully
o complete.

The user decides what applications can act on his behalf and
can remove authorization at any time.

A unique identifier for each request (the cauth nonce
identifier) prevents replaying the same request again in
- case it gets snooped. -

To send requests to Twitter, most developers may find the initial setup a bit confusing.
The article at https://blog.twitter.com/2011/improved-oauth-10a-experience
shows how to create an application, generate the keys, and generate a request using
the OAuth tool.

Here is an example of a request generated by the OAuth tool in Twitter, showing a
query to get statuses for the twitterapi handle:

The Twitter API does not support unauthenticated
= requests and has very strict rate-limiting policies.

[122]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

curl --get 'https://api.twitter.com/1l.1/statuses/user timeline.

json' --data 'screen name=twitterapi' --header 'Authorization: OAuth
oauth consumer key="w2444553d23cWKnuxrlvnsjWWQ", oauth nonce="dhg2222324
b268a887cdd900009ge4a7346", oauth signature="Dgwe2jrulNWgdFIKm9cOvQhghmdP
4c%3D", oauth signature method="HMAC-SHAl", oauth timestamp="1404519549",
oauth token="456356j901-A880LMupyw4iCnVAm24t33HmnuGOCuNzABhg5QJ3SN8Y",
oauth version="1.0"'—verbose.

This gives an output as shown:

GET /l1.1/statuses/user timeline.json?screen name=twitterapi HTTP/1.1
Host: api.twitter.com

Accept: */*

HTTP/1.1 200 OK

"url":"http:\/\/t.co\/78pYTvWEJId", "entities": {"url":{"urls": [{"url
":"http:\/\/t.co\/78pYTvWEJd", "expanded url":"http:\/\/dev.twitter.
com", "display url":"dev.twitter.com", "indices":[0,22]}]1},"descriptio
n":{"urls":[1}}, "protected":false, "followers count":2224114,"friends
count":48,"listed count":12772,"created at":"Wed May 23 06:01:13 +0000
2007","favourites count":26,"utc offset":-25200,"time zone":"Pacific Time
(US & Canada)","geo enabled":true,"verified":true, "statuses count":351
1,"lang":"en", "contributors enabled":false,"is translator":false,"is
translation enabled":false, "profile background color":"CODEED", "profile
background image url":"http:\/\/pbs.twimg.com\/profile background
images\/656927849\/miyt9dpjz77scO0w3d4vj....

Verbs and resource actions

The following table summarizes the commonly used verbs in the Twitter REST API:

Verb Description

GET This is used to retrieve resources such as users,
followers, favorites, subscribers, and so on.

POST This is used to create resources such as users,
followers, favorites, subscribers, and so on.

POST with verb update This is used to replace resources. For example,
to update the friendships, the URL will be POST
friendships/update.

POST with verb destroy This is used to delete resources such as deleting
direct messages, unfollowing someone, and
so on. For example, the URL will be POST
direct messages/destroy.

[123]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

Versioning

The current version for the Twitter APl is 1.1. It only supports JSON and no longer
supports XML, RSS, or Atom. With the Twitter API Version 1.1, all clients need to be
authenticated using OAuth to make queries. The Twitter API Version 1.0 has been
deprecated and there is a 6-month window to move to the new version.

Error handling

The Twitter API returns standard HTTP error codes in the responses to the REST
APL It returns 200 OK in case of success. It returns 304 Not Modified when there
is no data to return, 401 Not Authorized in case authentication credentials were
missing or incorrect, 500 Internal Server Error when something is broken and
needs to be posted to the forum, and so on. Along with detailed error messages, the
Twitter API produces machine-readable error codes. For example, an error code 32
in the response implies the server could not authenticate the user. For more details,
check https://dev.twitter.com/docs/error-codes-responses.

Recommended reading

The following section provides some links, which may be useful to review:

e Facebook Tools: https://developers.facebook.com/tools/

* Twurl (OAuth-enabled cURL for Twitter):
https://github.com/twitter/twurl

e GitHub API documentation: https://developer.github.com/v3/
e Twitter APl documentation: https://dev.twitter.com/docs/api/1.1

* Stripe API documentation: https://stripe.com/docs/api

Summary

This appendix is a modest collection of APIs implemented by popular platforms such
as GitHub, Facebook, and Twitter and the approaches they have taken to handle the
various REST patterns. Though there are a myriad of possibilities for what a user

can do with the data from the REST API, the commonality between the frameworks
is the usage of REST and JSON. The REST APIs from these platforms are consumed
by web and mobile clients. This appendix covered how these platforms handle
versioning, verbs, error handling, and authenticating and authorizing the requests
based on OAuth 2.0.

[124]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

This book started off with the basics of REST and how to build your own RESTful
services. Since then, we covered various topics as well as tips, and best practices for
building scalable and highly performant REST services. We have also referred to
various libraries and tools to improve testing and documentation of REST services
along with emerging standards for real-time APIs. We also covered case studies
with WebSockets, WebHooks, and the future of REST.

We hope this humble attempt from our end helps you understand, learn, design,
and develop better REST APIs in the future.

[125]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Symbols

202 Accepted message

sending 73
429 Too Many Requests (RFC 6585) 80
@Consumes annotation 28
@DefaultValue annotation 91
@Suspended annotation 70
@WebFilter annotation 83

A

Accept header
API version, specifying in 37
AccessCounter class 83
AccessData class 84
access tokens
versus refresh tokens 55
addCofee() method
@Consumes annotation 17
@POST annotation 16
@Produces annotation 17
@ValidateOnExecution annotation 17
addEventListener function 104
Advanced Messaging Queuing
Protocol (AMQP)
about 74
URL 74
Advanced REST Client
about 22
URL 22
Apache Log4]
URL 43
APIs, RESTful services
implementing 15
JAX-RS 15-17

Index

API versioning
about 36
version, specifying in Accept header 37
version, specifying in request

query parameter 37

version, specifying in URI 36
architecture components,

RESTful API 58, 59
asynchronous processing 59
asynchronous resource

about 69
asynchronous request/response
processing 70-73
best practices 73
asynchronous resource, best practices
202 Accepted message, sending 73
message queues, using 74
object expiration, setting 74
AsyncResponse 70
Auth 58
authentication
about 49
SAML 50, 51
authorization
about 49, 52
OAuth 52-54
OpenlID Connect 57
refresh tokens, versus access tokens 55
authorization grant
about 55
authorization code grant 55
client credentials grant 55
implicit grant 55
resource owner password
credentials grant 55

www.it-ebooks.info

http://www.it-ebooks.info/

B

basic authentication 118
best practices, logging REST API
detailed consistent pattern, including
across service logs 43
initiator, identifying 44
logging system, tying with monitoring
system 44, 45
log payloads, avoiding 44
meta-information, identifying of request 44
sensitive data, obfuscating 44
best practices, OAuth
encryption, using 57
lifetime, limiting for access token 56
providing, support for refresh tokens 56
SSL, using 57
Bidirectional streams Over Synchronous
HTTP (BOSH)
about 109
advantage 109

C

Cache-Control header

about 62, 63

adding, to JAX-RS response 64, 65

directives 63, 64
caching

about 58, 62

benefits 62

caching headers 62

RESTEasy 68, 69
caching headers

about 62

strong caching headers 62

weak caching headers 62
ChunkedOutput

about 32-34

versus StreamingOutput 34
Client API 18,19
close function 108
CoffeesResource class 15
CompletionCallback function 70
ConcurrentHashMap class 83
ConnectionCallback function 70
content negotiation

about 26

performing, based on URL patterns 29, 30
performing, HTTP headers used 27-29
URL 40

Couchbase
URL 77

cURL 20

cursor-based pagination 90

D

Dapper 45
data masking
reference link 44
dB 106
DELETE method 14
directives, Cache-Control header
max-age 63
no-cache 63
no-store 63
private 63
public 63
doFilter() method 84, 85

E

Emite BOSH library
URL 112
entity providers 30, 31
entity representation
about 30, 31
ChunkedOutput 32-34
Jersey 34
StreamingOutput 32
error handling, RESTful services 47, 48
ETag
about 63-65
and JAX-RS 67
Facebook REST API 68
strongly validating ETag 67, 68
weakly validating ETag 67, 68
working with 66
EventSource interface
about 104
addEventListener function 104
onclose function 104
onerror function 104
onmessage function 104
onopen function 104

[128]

www.it-ebooks.info

http://www.it-ebooks.info/

removeEventListener function 104

exception handling, RESTful service

validation
response codes 47
Expires header 62, 63
extensibility
and REST 96

F

Facebook API
URL, for creating App ID 119
URL, for rate limiting 97
URL, for versioning 40
Facebook Graph API
error handling 121
overview 119, 120
rate limiting 122
verbs 121
versioning 121
Facebook Graph API Explorer
URL 77
Facebook localization
URL 97
Facebook REST API 68
Facebook Tools
URL 124
Filter class
implementing 83
Future interface
about 70
URL 70

G

getCoffeeList() method
@GET annotation 16
@PATH annotation 16
@Produces annotation 16
about 91

getCoffee method 82

GET method 13

GET request 64

getSize() method 31

GitHub
about 115
details, obtaining from 116, 117
URL, for API documentation 115

GitHub API
error handling 118
rate limiting 118
URL, for documentation 124
URL, for rate limiting 97
verbs 117
versioning 118
GitHub Sock]s
URL 112
GitHub WebHooks
URL 112
Git push 106
Google OAuth playground
reference link 60
Google+ Sign-In 57

H

HATEOAS
about 10, 94
advantages 95
and PayPal REST API 95
HEAD method 14
href attribute 95
HTTP headers
used, for performing content
negotiation 27-29
HTTP methods
identifying 12
HTTP PATCH 74-76
HTTP verbs
about 13
DELETE method 14
GET method 13
HEAD method 14
POST method 13
PUT method 13
Hub 101

Hypermedia as the Engine of Application

State. See HATEOAS

idempotent methods
about 10
DELETE method 10
GET method 10
PUT method 10

[129]

www.it-ebooks.info

http://www.it-ebooks.info/

identity provider (IdP) 50, 51
Instant Payment Notification (IPN) 106
internationalization
principles 92
InvocationCallback function 70
ISO-3166 country codes
URL 93
isReadable() method 31
isWritable() method 31

J

Java API for RESTful Services. See JAX-RS
JavaScript

and SSE 104, 105
javax.ws.rs.ApplicationPath annotation 19
javax.ws.rs.client.Client annotation 19
javax.ws.rs.client. WebTarget annotation 19
javax.ws.rs.Consumes annotation 19
javax.ws.rs.ext.ExceptionMapper class 47
javax.ws.rs.Path annotation 19
javax.ws.rs.Produces annotation 19
JAXB-based JSON binding support 34
JAX-RS 15-17
JAX-RS 2.0 15
Jersey

and OAuth 2.0 56

and SSE 105

JSON support 34

URL, for authorization code grant flow 56
JSONLint

about 22

URL 22
JSON Patch

about 76

op 76

path 76

URL 77

value 76
JSON Patch RFC 6902

URL 77
JSON Pointer RFC 6901

URL 77
JSON support

JAXB-based JSON binding support 34

low-level JSON parsing support 35

low-level JSON processing support 35

POJO-based JSON binding support 34
L

Last-Modified 63, 64
localization parameters 92
logging 58
logging REST API
about 42
best practices 43
creating 42,43
low-level JSON parsing support 35
low-level JSON processing support 35

MessageBodyReader
about 31
isReadable() method 31
readFrom() method 31
MessageBodyWriter
about 31
getSize() method 31
isWritable() method 31
writeTo() method 31
metadata element 91
method attribute 95
Micro Services, advantages
clear separation of capabilities 112
isolation of problems 111
language independence 112
scale down 111
scale up 111
simplicity 111

(0

OAuth
about 52-54,118
advantages 54
best practices 56
diagrammatic representation 52
example 53
important aspects 122
versus SAML 57
OAuth 1.0
differentiating, with OAuth 2.0 54

[130]

www.it-ebooks.info

http://www.it-ebooks.info/

OAuth 2.0
about 54
and Jersey 56
authorization grant 55
differentiating, with OAuth 1.0 54
reference link 60
OAuth, example
consumer application/client 53
service provider/server 53
user/resource owner 53
offset-based pagination 89
onclose function 104, 108
onerror function 104, 108
onmessage function 104, 108
onopen function 104, 108
open authorization. See OAuth
OpenlD Connect
about 57
case study 57
URL 57

P

pagination
about 58
project's layout 91, 92
types 89, 90
pagination, types
cursor-based pagination 90
offset-based pagination 89
time-based pagination 89
partial update 74-76
PayPal REST API
and HATEOAS 95
Personally identifiable information (PII) 44
Plain Old Java Object. See POJO
Plain Old XML (POX) 9
POJO 84
POJO-based JSON binding support
about 34

Postman
about 20-22
URL 22
Post message 106
POST method
about 9,13
versus PUT method 14
principal, SAML 2.0 50
Publisher 101
PubSubHubbub (PuSH model)
about 101, 106
advantage 101
Push Notifications 87
PUT method
about 13
versus POST method 14

Q

Quality of Service (QoS) 102,110

R

RabbitMQ
about 74
URL 74,77
RateLimiter class 82
Rate Limit Filter 82
rate limiting
about 58, 80, 81
headers 85
project's layout 81, 82
reach, avoiding 87
sample 83-86
X-RateLimit-Limit header 85
X-RateLimit-Remaining header 85
rate limiting, best practices
caching 87
calls in loops, avoiding 87
log requests 87
polling, avoiding 87

URL 34
polling readFrom() method 31
about 100 real-time APIs
drawbacks 100 about 100
PuSH model 101 BOSH 109
streaming model 102 XMPP 109
[131]

www.it-ebooks.info

http://www.it-ebooks.info/

refresh tokens
versus access tokens 55
rel attribute 94, 95
reliability 8
removeEventListener function 104
Repose
about 86
URL 86
Representational State Transfer. See REST
REQ_LIMIT constant 83
request query parameter
API version, specifying in 37
resource URIs
identifying 11
response codes
about 38, 39
validation exception handling 47
response pagination
about 88
types 89
REST
about 7,8
and extensibility 96
principles 8
statelessness 8
REST API 96
RESTEasy
about 68, 69
URL 69, 77
RESTful API
architecture components 58, 59
RESTful resources
accessing 20
best practices, for designing 22
cURL 20
Postman 20, 22
representations, identifying 15
tools 22
RESTful services
APIs, implementing 15
building 11
Client API 18, 19
deploying 17
documenting 97
error handling 47, 48

HTTP methods, identifying 12
HTTP verbs 13
resource URIs, identifying 11
RESTful resources, accessing 20
testing 18, 96
validating 45, 46
REST request patterns 25, 26
REST response patterns 25, 26, 38, 39
Retry-After header 80, 81
Richardson Maturity Model
about 8
level 0 - Remote Procedure Invocation 9
level 1 - REST resources 9
level 2 - more HTTP verbs 9
level 3 - HATEOAS 10

S

safe methods

about 10

GET method 10

HEAD method 10
SAML

about 50, 51

versus OAuth 57
SAML 2.0

identity provider (IdP) 50

principal 50

service provider (SP) 50
scalability 8
Scribe

about 45

URL 45, 60
Security Assertion Markup Language.

See SAML

send function 108
Server-Sent events. See SSE
service provider (SP) 50
Simple Object Access Protocol. See SOAP
single sign-on (SSO) 50
SOAP 7
SOAP/WSDL 7
Splunk

URL 43
SSE

about 102, 103

[132]

www.it-ebooks.info

http://www.it-ebooks.info/

and JavaScript 104, 105 Twitter REST API

and Jersey 105 rate limits 88
comparing, with WebSockets and URL 40
WebHooks 110 Twurl

connection, retrying 103 URL 124

event names, associating with 104

ID, associating with 103 U
statelessness, REST

about 8 URI

URL 8 API version, specifying in 36
streaming model URL patterns

about 102 content negotiation, performing

SSE 102, 103 based on 29, 30
StreamingOutput

about 32 \'

versus ChunkedOutput 34

validation, RESTful services
about 45, 46
exception handling 47
response codes 47

Stripe API
URL, for documentation 124
strong caching headers

about 62 .
Cache-Control 62 Var}ant clas's %3 . .
. Variant.VariantListBuilder class 93
Expires 62 visibility 8
strongly validating ETag 67, 68
Subscriber 101 w
Swagger
adding, to REST APT 97 weak caching headers
about 63
T ETag 63

Last-Modified 63
weakly validating ETag 67, 68
WebHooks
about 87,101, 105, 106
case studies 106
comparing, with WebSockets and SSE 110

time-based pagination 89

TIME_LIMIT constant 83

tools, RESTful resources
Advanced REST Client 22
JSONLint 22

TSEILO ﬁ;bHOOkS reference link 112
. WebSockets 107, 108
twitter . .
o Web Services Description Language.
and cursor-based pagination 90
Twitter API See WSDL
WebSockets

error handling 124
overview 122

references 97

URL, for documentation 124
verbs 123

versioning 124

about 107,108

case studies 109

comparing, with WebHooks and SSE 110
write() method 32
writeTo() method 31
WSDL 7

[133]

www.it-ebooks.info

http://www.it-ebooks.info/

X

XMPP 109
XMPP4JS BOSH library

URL 112
X-RateLimit-Limit header 85,118
X-RateLimit-Remaining header 81, 85,118
X-RateLimit-Reset header 118

[134]

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
RESTful Java Patterns and Best Practices

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub. com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

community experience distilled

[open source

PUBLISHING

RESTful Java Web Services

Security
ISBN: 978-1-78398-010-9 Paperback: 144 pages

Secure your RESTful applications against
common vulnerabilities

1. Learn how to use, configure, and set up tools
for applications that use RESTful web services
to prevent misuse of resources.

RESTful Java Web

Services Security 2. Get to know and fix the most common
vulnerabilities of RESTful web services APIs.

3. A step-by-step guide portraying the importance
of securing a RESTful web service with simple
examples applied to real-world scenarios.

Developing RESTful Services
with JAX-RS 2.0, WebSockets,

and JSON
ISBN: 978-1-78217-812-5 Paperback: 128 pages

A complete and practical guide to building RESTful
Web Services with the latest Java EE7 API

1. Learning about different client/server
communication models including but not
limited to client polling, server-sent events,
and WebSockets.

Developing RESTful
Services with JAX-RS 2.0,
WebSockets, and JSON

2. Efficiently use WebSockets, server-sent events,
and JSON in Java EE applications.

Masoud Kalali

pArKT] enterprise B
Bhakii Mehta [PACKT] .

3. Learn about JAX-RS 2.0 new features
and enhancements.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

RESTful Java Web Services
ISBN: 978-1-84719-646-0 Paperback: 256 pages

Master core REST concepts and create RESTful
web services in Java

1. Build powerful and flexible RESTful web
services in Java using the most popular
Java RESTful frameworks to date (Restlet,
JAX-RS-based frameworks: Jersey and
RESTEasy, and Struts 2).

RESTful Java Web Services

2. Master the concepts to help you design and
implement RESTful web services.

EST concepis and create RESTIUl web e

3. Plenty of screenshots and clear explanations
to facilitate learning,.

Developing RESTful Web
Services with Jersey 2.0
ISBN: 978-1-78328-829-8 Paperback: 98 pages

Create RESTful web services smoothly using the
robust Jersey 2.0 and JAX-RS APIs

1. Understand and implement the Jersey and
JAX-RS APIs with ease.

Developing RESTful Web 2. Construct top-notch server and client-side
Services with Jersey 2.0 web services.

3. Learn about server-sent events, for showing
real-time data.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover

	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: REST – Where It Begins
	Introduction to REST
	REST and statelessness

	The Richardson Maturity Model
	Level 0 – Remote Procedure Invocation
	Level 1 – REST resources
	Level 2 – more HTTP verbs
	Level 3 – HATEOAS

	Safety and idempotence
	Safe methods
	Idempotent methods

	Design principles for building
RESTful services
	Identify the resource URIs
	Identifying the methods supported by
the resource
	HTTP verbs and REST
	PUT versus POST

	Identifying the different representations of
the resource
	Implement the APIs
	The Java API for RESTful Services (JAX-RS)

	Deploy the RESTful services
	Test the RESTful services
	The Client API with JAX-RS 2.0
	Accessing RESTful resources

	Best practices when designing resources
	Recommended reading
	Summary

	Chapter 2: Resource Design
	REST response patterns
	Content negotiation
	Content negotiation using HTTP headers
	Content negotiation based on URL patterns

	Entity providers and different representations
	StreamingOutput
	ChunkedOutput
	Jersey and JSON support
	POJO-based JSON binding support
	JAXB-based JSON binding support
	Low-level JSON parsing and processing support

	API versioning
	Version in the URI approach
	Version as part of the request query parameter
	Specifying the version in the Accept header

	Response codes and REST patterns
	Recommended reading
	Summary

	Chapter 3: Security and Traceability
	Logging REST APIs
	Best practices for the logging REST API
	Including a detailed consistent pattern across service logs
	Obfuscating sensitive data
	Identifying the caller or the initiator as part of
the logs
	Do not log payloads by default
	Identifying meta-information related to the request
	Tying the logging system with a monitoring system

	Validating RESTful services
	Validation exception handling and
response codes

	Error handling with RESTful services
	Authentication and authorization
	What is authentication?
	SAML

	What is authorization?
	OAuth

	Differences between OAuth 2.0 and OAuth 1.0
	An authorization grant

	Refresh tokens versus access tokens
	Jersey and OAuth 2.0

	Best practices for OAuth in the REST API
	Limiting the lifetime for an access token
	Support providing refresh tokens in the authorization server
	Using SSL and encryption

	OpenID Connect

	REST architecture components
	Recommended reading
	Summary

	Chapter 4: Designing for Performance
	Caching principles
	Caching details
	Types of caching headers
	Strong caching headers
	Weak caching headers
	Expires and Cache-Control – max-age

	Cache-Control header and directives
	Last-Modified and ETag

	The Cache-Control header and the REST API
	ETags
	The ETag header and the REST API
	Types of ETags

	The Facebook REST API and ETags
	RESTEasy and caching

	Asynchronous and long-running jobs
in REST
	Asynchronous request and response processing

	Asynchronous resources best practices
	Sending a 202 Accepted message
	Set expiration for objects in the queue
	Use message queues to handle tasks asynchronously

	HTTP PATCH and partial updates
	JSON Patch
	Recommended reading
	Summary

	Chapter 5: Advanced Design Principles
	Rate-limiting patterns
	The project's layout
	A detailed look at the rate-limiting sample
	Best practices to avoid reaching the rate limits
	Caching
	Not making calls in loops
	Logging requests
	Avoiding polling
	Supporting the streaming API

	Response pagination
	Types of pagination
	Offset-based pagination
	Time-based pagination
	Cursor-based pagination

	The project's layout

	Internationalization principles
	Miscellaneous topics
	HATEOAS
	The PayPal REST API and HATEOAS
	REST and extensibility
	Additional topics for REST API
	Testing RESTful services
	Documenting RESTful services

	Recommended reading

	Summary

	Chapter 6: Emerging Standards and The Future of REST
	Real-time API
	Polling
	The PuSH model – PubSubHubbub
	The streaming model
	Server-sent events
	Server-sent events and JavaScript
	Server-sent Events and Jersey

	WebHooks
	WebSockets

	Additional real-time API supporters
	XMPP
	BOSH over XMPP

	Comparisons between WebHooks, WebSockets, and server-sent events
	REST and Micro Services
	Simplicity
	Isolation of problems
	Scale up and scale down
	Clear separation of capabilities
	Language independence

	Recommended reading
	Summary

	Appendix
	Overview of the REST API from GitHub
	Getting details from GitHub
	Verbs and resource actions
	Versioning
	Error handling
	Rate limiting

	Overview of the Facebook Graph API
	Verbs and resource actions
	Versioning
	Error handling
	Rate limiting

	Overview of the Twitter API
	Verbs and resource actions
	Versioning
	Error handling

	Recommended reading
	Summary

	Index

