
www.it-ebooks.info

http://www.it-ebooks.info/


RESTful Java Patterns  
and Best Practices

Learn best practices to efficiently build scalable, 
reliable, and maintainable high performance  
RESTful services

Bhakti Mehta

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/


RESTful Java Patterns and Best Practices

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2014

Production reference: 1150914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-796-3

www.packtpub.com

www.it-ebooks.info

http://www.it-ebooks.info/


Credits

Author
Bhakti Mehta

Reviewers
Dustin R. Callaway

Masoud Kalali

Kausal Malladi

Antonio Rodrigues

Commissioning Editor
Pramila Balan

Acquisition Editor
Vinay Argekar

Content Development Editor
Adrian Raposo

Technical Editor
Edwin Moses

Copy Editors
Janbal Dharmaraj

Karuna Narayanan

Alfida Paiva

Project Coordinator
Kinjal Bari

Proofreaders
Paul Hindle

Jonathan Todd 

Indexers
Mariammal Chettiyar

Monica Ajmera Mehta

Graphics
Ronak Dhruv

Abhinash Sahu

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.it-ebooks.info

http://www.it-ebooks.info/


About the Author

Bhakti Mehta is the author of Developing RESTful Services with JAX-RS 2.0, 
WebSockets, and JSON, Packt Publishing, published in 2013. She has more than  
13 years of experience in architecting, designing, and implementing software 
solutions on top of Java EE and other related technologies. She is passionate  
about open source software development and has been one of the founding  
members of GlassFish Open Source Application Server.

Bhakti has a Bachelor's degree in Computer Engineering and a Master's degree in 
Computer Science. Her areas of research include architecting solutions for resiliency, 
scalability, reliability, and performance with respect to server-side technologies,  
web services, and cloud applications.

Currently, Bhakti is a Senior Software Engineer at Blue Jeans Network. As part of her 
current role, she works on developing RESTful services that can be consumed by ISV 
partners and the developer community. She also works on the backend infrastructure 
and is responsible for performance, scalability, and reliability of the services.

Bhakti is a regular speaker at different conferences and has authored numerous 
articles, blogs, and tech tips at different portals such as https://home.java.net/ 
and Dzone. In her spare time, she enjoys kickboxing, traveling, and reading.

Bhakti's tweets can be followed at @bhakti_mehta.

www.it-ebooks.info

http://www.it-ebooks.info/


Acknowledgments

Writing a book is a gratifying as well as demanding experience and I thank my family 
for putting up with my late nights and weekends while I was working on this book.  
I would like to acknowledge my husband, Parikshat, and my in-laws for their support. 
Thank you Mansi for always being so positive and standing by me when times got 
tough! This is for my two little kids who are a constant source of inspiration for me,  
to believe in the power of dreams and work hard to achieve them.

I would like to extend my gratitude towards my parents, my brother Pranav and  
his family for their encouragement throughout the course of the book's development. 
I am blessed to be surrounded by a group of very supportive friends especially from 
my undergraduate school days and would like to thank them for their motivation. 
Words cannot express my gratitude to all my wonderful colleagues at Blue Jeans 
Network and I truly appreciate their enthusiastic support and good wishes.

Thanks to the staff at Packt Publishing, especially Vinay Argekar, Adrian Raposo, 
and Edwin Moses for contacting me, reviewing the content, and keeping track  
of the schedule. Last but not least, I take this opportunity to thank the reviewers, 
Masoud Kalali, Dustin R. Callaway, Kausal Malladi, and Antonio Rodrigues, for  
their invaluable feedback and attention to detail.

www.it-ebooks.info

http://www.it-ebooks.info/


About the Reviewers

Dustin R. Callaway is a software consultant, author, instructor, and full-stack 
developer. He currently works as a staff software engineer for Intuit Inc., a leading 
provider of financial software. He holds a B.S. degree in Computer Science from 
Brigham Young University and is the author of the book Inside Servlets, Addison-Wesley. 
His experience and interests include building RESTful web services with Java and 
Node.js as well as web and mobile applications.

Masoud Kalali is a Consulting Member of Technical Staff at Oracle. He is the 
author of the books, Developing RESTful Services with JAX-RS 2.0, WebSockets, and JSON 
published in 2013 and GlassFish Security published in 2010, both by Packt Publishing.  
He is also the author of numerous articles and quick references from Java.Net to Dzone.

Since 2001, when he started working in different software development roles, he 
has been blessed enough to work on multiple loosely-coupled architecture for high 
throughput message-based systems with JMS at heart and the rest of the components 
forming the stops around the JMS as the main messaging bus.

Performance analysis and performance consulting on architecture, design, code, 
and deployment configuration is another challenge he has spent some time working 
on. RESTful services and use of RESTful endpoints for data integration is one of 
the other practices he worked on for data integration for industry leading software 
systems: IJC and TIBCO Spotfire, during his work at ChemAxon.

Masoud has worked on security integration as another area, specifically in 
integration OpenSSO with a solid SOA framework used for developing BPEL  
flow-oriented software. At his current position at ORACLE, he works as the 
lead engineer in the design and development of application server and PaaS 
infrastructure of the ORACLE cloud service on top of both OVM/OVAB and 
Nimbula virtualization providers.

Masoud's Twitter handle is @MasoudKalali if you want to know what he is up to.

www.it-ebooks.info

http://www.it-ebooks.info/


Kausal Malladi is a result-driven software engineer, inclined towards constantly 
exploring the latest advances in technology, to solve existing problems in the field 
of Computer Science and develop innovative products. He has done his Master of 
Technology in IT, specialized in Computer Science, from the International Institute  
of Information Technology, Bangalore (IIIT-B). He has more than two years of 
software design and development experience and is currently working at Intel.

At Intel, Kausal is a part of the Android Graphics Software Development team.  
He also worked for a couple of years in Infosys Ltd., before pursuing his Master's 
degree. At Infosys, he was part of an internal team that does R&D of effective 
solutions for challenging problems in the infrastructure space.

Kausal is an avid researcher, having more than six publications in reputed 
international journals. He also applied for a couple of Indian patents in 2013.  
He delivered a talk on ATM Terminal Services the RESTful Way at the JavaOne  
India 2013 conference.

Kausal likes to play around with hobby projects in the areas of cloud computing  
and machine learning, apart from web development and open source advocacy.  
He is also passionate about music. In his free time, he listens to, sings, and plays 
(violin) Carnatic music. He also volunteers for the Society for Promotion of Indian 
Classical Music And Culture Amongst Youth (SPIC MACAY), a voluntary youth 
movement, both on organizational and technical fronts.

Visit http://www.kausalmalladi.com for more details about him.

Antonio Rodrigues is a software engineer with extensive experience in  
server-side development and mobile applications. In the past 17 years, he 
has worked with a range of companies including IT consulting companies, 
telecommunication companies, government agencies, digital agencies, and  
start-ups. He believes that APIs, in special Restful services, are crucial parts  
of software engineering in the current world of mobility.

You can follow Antonio on Twitter at @aaadonai.

www.it-ebooks.info

http://www.it-ebooks.info/


www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related 
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,  
sign up for a range of free newsletters and receive exclusive discounts and offers  
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online  
digital book library. Here, you can access, read and search across Packt's entire 
library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials 
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents
Preface	 1
Chapter 1: REST – Where It Begins	 7

Introduction to REST	 8
REST and statelessness	 8

The Richardson Maturity Model	 8
Level 0 – Remote Procedure Invocation	 9
Level 1 – REST resources	 9
Level 2 – more HTTP verbs	 9
Level 3 – HATEOAS	 10

Safety and idempotence	 10
Safe methods	 10
Idempotent methods	 10

Design principles for building RESTful services	 11
Identifying the resource URIs	 11
Identifying the methods supported by the resource	 12

HTTP verbs and REST	 13
PUT versus POST	 14

Identifying the different representations of the resource	 15
Implementing the APIs	 15

The Java API for RESTful Services (JAX-RS)	 15
Deploying the RESTful services	 17
Testing the RESTful services	 18

The Client API with JAX-RS 2.0	 18
Accessing RESTful resources	 20

Best practices when designing resources	 22
Recommended reading	 23
Summary	 24

www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

[ ii ]

Chapter 2: Resource Design	 25
REST response patterns	 25
Content negotiation	 26

Content negotiation using HTTP headers	 27
Content negotiation based on URL patterns	 29

Entity providers and different representations	 30
StreamingOutput	 32
ChunkedOutput	 32
Jersey and JSON support	 34

POJO-based JSON binding support	 34
JAXB-based JSON binding support	 34
Low-level JSON parsing and processing support	 35

API versioning	 36
Version in the URI approach	 36
Version as part of the request query parameter	 37
Specifying the version in the Accept header	 37

Response codes and REST patterns	 38
Recommended reading	 40
Summary	 40

Chapter 3: Security and Traceability	 41
Logging REST APIs	 42

Best practices for the logging REST API	 43
Including a detailed consistent pattern across service logs	 43
Obfuscating sensitive data	 44
Identifying the caller or the initiator as part of the logs	 44
Do not log payloads by default	 44
Identifying meta-information related to the request	 44
Tying the logging system with a monitoring system	 44

Validating RESTful services	 45
Validation exception handling and response codes	 47

Error handling with RESTful services	 47
Authentication and authorization	 49

What is authentication?	 50
SAML	 50

What is authorization?	 52
OAuth	 52

Differences between OAuth 2.0 and OAuth 1.0	 54
An authorization grant	 55

Refresh tokens versus access tokens	 55
Jersey and OAuth 2.0	 56

Best practices for OAuth in the REST API	 56
Limiting the lifetime for an access token	 56
Support providing refresh tokens in the authorization server	 56

www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

[ iii ]

Using SSL and encryption	 57
OpenID Connect	 57

REST architecture components	 58
Recommended reading	 60
Summary	 60

Chapter 4: Designing for Performance	 61
Caching principles	 62

Caching details	 62
Types of caching headers	 62

Strong caching headers	 62
Weak caching headers	 63
Expires and Cache-Control – max-age	 63

The Cache-Control header and directives	 63
Last-Modified and ETag	 64

The Cache-Control header and the REST API	 64
ETags	 65

The ETag header and the REST API	 67
Types of ETags	 67

The Facebook REST API and ETags	 68
RESTEasy and caching	 68

Asynchronous and long-running jobs in REST	 69
Asynchronous request and response processing	 70

Asynchronous resources best practices	 73
Sending a 202 Accepted message	 73
Setting expiration for objects in the queue	 74
Using message queues to handle tasks asynchronously	 74

HTTP PATCH and partial updates	 74
JSON Patch	 76
Recommended reading	 77
Summary	 77

Chapter 5: Advanced Design Principles	 79
Rate-limiting patterns	 80

The project's layout	 81
A detailed look at the rate-limiting sample	 83
Best practices to avoid reaching the rate limits	 87

Caching	 87
Not making calls in loops	 87
Logging requests	 87
Avoiding polling	 87
Supporting the streaming API	 87

Response pagination	 88
Types of pagination	 89

Offset-based pagination	 89

www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

[ iv ]

Time-based pagination	 89
Cursor-based pagination	 90

The project's layout	 91
Internationalization and localization	 92
Miscellaneous topics	 94

HATEOAS	 94
The PayPal REST API and HATEOAS	 95
REST and extensibility	 96
Additional topics for the REST API	 96
Testing RESTful services	 96

Documenting RESTful services	 97
Recommended reading	 97
Summary	 98

Chapter 6: Emerging Standards and the Future of REST	 99
Real-time APIs	 100
Polling	 100

The PuSH model – PubSubHubbub	 101
The streaming model	 102

Server-sent events	 102
Server-sent events and JavaScript	 104
Server-sent events and Jersey	 105

WebHooks	 105
WebSockets	 107

Additional real-time API supporters	 109
XMPP	 109
BOSH over XMPP	 109

Comparisons between WebHooks, WebSockets,  
and server-sent events	 110
REST and Micro Services	 111

Simplicity	 111
Isolation of problems	 111
Scale up and scale down	 111
Clear separation of capabilities	 112
Language independence	 112

Recommended reading	 112
Summary	 113

Appendix	 115
Overview of the REST API from GitHub	 115

Getting details from GitHub	 116
Verbs and resource actions	 117
Versioning	 118

www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

[ v ]

Error handling	 118
Rate limiting	 118

Overview of the Facebook Graph API	 119
Verbs and resource actions	 121
Versioning	 121
Error handling	 121
Rate limiting	 122

Overview of the Twitter API	 122
Verbs and resource actions	 123
Versioning	 124
Error handling	 124

Recommended reading	 124
Summary	 124

Index	 127

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Preface
The confluence of social networking, cloud computing, and the era of mobile 
applications creates a generation of emerging technologies that allow different 
networked devices to communicate with each other over the Internet. In the 
past, there were traditional and proprietary approaches for building solutions, 
encompassing different devices, and components communicating with each other 
over an unreliable network or through the Internet. Some of these approaches, 
such as RPC CORBA, and SOAP-based web services, which evolved as different 
implementations for service-oriented architecture (SOA), required a tighter  
coupling between components along with greater complexities in integration.

As the technology landscape evolves, today's applications are built on the notion 
of producing and consuming APIs instead of using web frameworks that invoke 
services and produce web pages. This API-based architecture enables agile 
development, easier adoption and prevalence, and scale and integration with 
applications, both within and outside the enterprise.

The widespread adoption of REST and JSON opens up the possibilities of 
applications incorporating and leveraging functionality from other applications 
as needed. Popularity of REST is mainly because it enables building lightweight, 
simple, and cost-effective modular interfaces, which can be consumed by a variety  
of clients.

The advent of mobile applications calls for a stricter delineated client-server model. 
Companies that build applications on iOS and Android platform can consume 
the REST-based API and extend and deepen their reach by combining data from 
multiple platforms because of the REST-based architecture that is API centric.

REST has the additional benefit of being stateless, easing scalability, visibility,  
and reliability as well as being platform and language agnostic. Many companies  
are adopting OAuth 2.0 for security and token management.

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

[ 2 ]

This book aims to provide avid readers with an overview of the REST architectural 
style, focuses on all the mentioned topics, and then dives deep into best practices and 
commonly used patterns for building RESTful services that are lightweight, scalable, 
reliable, and highly available.

What this book covers
Chapter 1, REST – Where It Begins, starts with the basic concepts of REST, how to 
design RESTful services, and best practices around designing REST resources.  
It covers the JAX-RS 2.0 API to build RESTful services in Java.

Chapter 2, Resource Design, discusses different request response patterns; it covers 
topics such as content negotiation, resource versioning, and response codes in REST.

Chapter 3, Security and Traceability, covers advanced details in security and traceability 
around the REST API. It includes topics such as access control, authentication using 
OAuth, exception handling, and auditing and validation patterns.

Chapter 4, Designing for Performance, covers the design principles needed for 
performance. It discusses the caching principles, asynchronous and long running 
jobs in REST, and how to use the partial updates using PATCH.

Chapter 5, Advanced Design Principles, covers advanced topics such as rate limiting, 
response pagination, and internationalization and localization principles with 
detailed samples. It covers extensibility, HATEOAS, and topics such as testing  
and documenting REST services.

Chapter 6, Emerging Standards and the Future of REST, covers real-time APIs  
using WebHooks, WebSockets, PuSH, and Server-sent event services, and  
compares and contrasts them in various areas. Additionally, this chapter covers  
case studies demonstrating how the emerging technologies such as WebSockets  
and WebHooks are being used in real-time applications. It also outlines the role  
of REST with micro services.

Appendix, covers different REST API from GitHub, Twitter, and Facebook, and  
how they tie into the principles discussed in Chapters 2, Resource Design, through 
Chapter 5, Advanced Design Principles.

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

[ 3 ]

What you need for this book
To be able to build and run samples provided with this book, you will need  
the following:

•	 Apache Maven 3.0 and higher: Maven is used to build the samples.  
You can download Apache Maven from http://maven.apache.org/
download.cgi.

•	 GlassFish Server Open Source Edition v4.0: This is a free community 
supported Application Server providing implementation for Java EE 7 
specifications. You can download the GlassFish Server from http://dlc.
sun.com.edgesuite.net/glassfish/4.0/promoted/.

Who this book is for
This book is a perfect reading source for application developers to get familiar 
with REST. It dives deep into the details, best practices, and commonly used REST 
patterns as well as gives insights on how Facebook, Twitter, PayPal, GitHub, Stripe, 
and other companies are implementing solutions with RESTful services.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"GET and HEAD are safe methods."

A block of code is set as follows:

    @GET
    @Path("orders")
    public List<Coffee> getOrders() {
        return coffeeService.getOrders();    }

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

@Path("v1/coffees")
public class CoffeesResource {

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

[ 4 ]

    @GET
    @Path("orders")
    @Produces(MediaType.APPLICATION_JSON)
    public List<Coffee> getCoffeeList( ){
      //Implementation goes here

    }

Any command-line input or output is written as follows:

#  curl -X GET http://api.test.com/baristashop/v1.1/coffees

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

[ 5 ]

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to  
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring  
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


REST – Where It Begins
Web services in the traditional SOA formats have been around for a long time to 
implement heterogeneous communication between applications. One way to support 
this kind of communication is to use the Simple Object Access Protocol (SOAP)/Web 
Services Description Language (WSDL) approach. SOAP/WSDL is an XML-based 
standard and works well when there is a strict contract between the services. We are 
now in the era of distributed services where different clients from the Web, mobile, as 
well as other services (internal or external), can make use of APIs exposed by different 
vendors and open source platforms. This requirement enforces the need for easier 
exchange of information between distributed services along with predictable, robust, 
well-defined interfaces.

HTTP 1.1 is defined in RFC 2616, and is ubiquitously used as the standard protocol 
for distributed, collaborative hypermedia information systems. Representational 
State Transfer (REST) is inspired by HTTP and can be used wherever HTTP is used. 
This chapter will go over the basics of the RESTful services design and show how to 
produce and consume RESTful services, based on the standard Java API.

This chapter covers the following topics.

•	 Introduction to REST
•	 Safety and idempotence
•	 Design principles for building RESTful services
•	 Java Standard API for RESTful services
•	 Best practices when designing RESTful services

www.it-ebooks.info

http://www.it-ebooks.info/


REST – Where It Begins

[ 8 ]

Introduction to REST
REST is an architectural style that conforms to the web standards such as using  
HTTP verbs and URIs. It is bound by the following principles:

•	 All resources are identified by the URIs
•	 All resources can have multiple representations
•	 All resources can be accessed/modified/created/deleted by standard  

HTTP methods
•	 There is no state information on the server

REST and statelessness
REST is bound by the principle of statelessness. Each request from the client  
to the server must have all the details to understand the request. This helps to 
improve visibility, reliability, and scalability for requests.

Visibility is improved, as the system monitoring the requests does not have  
to look beyond one request to get details. Reliability is improved as there is  
no check-pointing/resuming in case of partial failures. Scalability is improved  
because the number of requests that can be processed by the server increases,  
as the server is not responsible for storing any state.

Roy Fielding's dissertation on the REST architectural style provides 
details on the statelessness of REST. Check http://www.ics.uci.
edu/~fielding/pubs/dissertation/rest_arch_style.htm 
for more information.

With this initial introduction to the basics of REST, we shall cover the different 
maturity levels and how REST falls in it in the following section.

The Richardson Maturity Model
The Richardson Maturity Model is a model developed by Leonard Richardson.  
It talks about the basics of REST in terms of resources, verbs, and hypermedia 
controls. The starting point for the maturity model is to use the HTTP layer as  
the transport. This is shown in the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 9 ]

Level 3:
HATEOAS

Level 2:
Multiple URI-based
resources and verbs

Level 1:
Multiple URI based

resources and single verbs

Level 0:
Single URI and a single verb

Richardson Maturity Model

Level 0 – Remote Procedure Invocation
Level 0 contains SOAP or XML-RPC sending data as Plain Old XML (POX). Only the 
POST methods are used. This is the most primitive way of building SOA applications 
with a single POST method and using XML to communicate between services.

Level 1 – REST resources
Level 1 uses the POST methods and instead of using a function and passing arguments 
it uses the REST URIs. So, it still uses only one HTTP method. It is better than Level 0 
as it breaks a complex functionality into multiple resources with the use of one POST 
method to communicate between services.

Level 2 – more HTTP verbs
Level 2 uses other HTTP verbs such as GET, HEAD, DELETE, and PUT along with the POST 
methods. Level 2 is the real use case of REST, which advocates using different verbs 
based on the HTTP request methods and the system can have multiple resources.

www.it-ebooks.info

http://www.it-ebooks.info/


REST – Where It Begins

[ 10 ]

Level 3 – HATEOAS
Hypermedia as the Engine of Application State (HATEOAS) is the most mature 
level of Richardson's model. The responses to the client requests contain hypermedia 
controls, which can help the client decide what is the next action they can take.  
Level 3 encourages easy discoverability and makes it easy for the responses to be  
self-explanatory. There is debate about whether HATEOAS is truly RESTful because 
the representation contains more information beyond just describing the resource. 
We will show details on how some platforms such as PayPal have implemented 
HATEOAS as part of their APIs in Chapter 5, Advanced Design Principles.

The next section covers safety and idempotence, the two important terminologies 
when dealing with RESTful services.

Safety and idempotence
The following section discusses in detail what are safe and idempotent methods.

Safe methods
Safe methods are methods that do not change the state on the server. For example, 
GET /v1/coffees/orders/1234 is a safe method.

Safe methods can be cached. GET and HEAD are safe methods.
The PUT method is not safe as it will create or modify a resource on the 
server. The POST method is not safe for the same reasons. The DELETE 
method is not safe as it deletes a resource on the server.

Idempotent methods
An idempotent method is a method that will produce the same results irrespective of 
how many times it is called.

The GET method is idempotent, as multiple calls to the GET resource will 
always return the same response.
The PUT method is idempotent as calling the PUT method multiple times 
will update the same resource and not change the outcome.
POST is not idempotent and calling the POST method multiple times can 
have different results and will result in creating new resources. DELETE 
is idempotent because once the resource is deleted, it is gone and calling 
the method multiple times will not change the outcome.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 11 ]

Design principles for building  
RESTful services
Here is the process of designing, developing, and testing RESTful services. We will 
cover each of these in detail in this chapter:

•	 Identifying the resource URIs
This process involves deciding what nouns will represent your resource.

•	 Identifying the methods supported by the resource
This process involves using the various HTTP methods for CRUD operations.

•	 Identifying the different representations supported by the resource
This step involves choosing whether the resource representation should  
be JSON, XML, HTML, or plain text.

•	 Implementing the RESTful services using JAX-RS APIs
The API needs to be implemented based on the JAX-RS specification

•	 Deploying the RESTful services
Deploy the service on an application container such as Tomcat, Glassfish, 
and WildFly. The samples show how to create a WAR file and deploy on 
Glassfish 4.0 and it can work with any JavaEE 7-compliant container.

•	 Testing the RESTful services
Write the client API for testing the services or use curl-or-browser-based 
tools to test the REST requests.

Identifying the resource URIs
RESTful resources are identified by resource URIs. REST is extensible due to the use 
of URIs for identifying resources.

The following table shows sample URIs, which can represent different resources in 
the system:

URI Description of the URI
/v1/library/books This is used to represent a collection of 

book resources in a library
/v1/library/books/isbn/12345678 This is used to represent a single book 

identified by its ISBN "12345678"

www.it-ebooks.info

http://www.it-ebooks.info/


REST – Where It Begins

[ 12 ]

URI Description of the URI
/v1/coffees This is used to represent all the coffees 

that are sold by a coffee shop
/v1/coffees/orders This is used to represent all the coffees 

that are ordered
/v1/coffees/orders/123 This is used to represent a single order  

of coffee identified by "123"
/v1/users/1235 This is used to represent a user in a 

system identified by "1235"
/v1/users/5034/books This is used to represent all the books for 

a user identified by "5034"

All the preceding samples show a clear readable pattern, which can be interpreted by 
the client. All these resources could have multiple representations. These examples 
of resources shown in the preceding table can be represented by JSON, XML, HTML, 
or plain text and can be manipulated by HTTP methods: GET, PUT, POST, and DELETE.

Identifying the methods supported by  
the resource
HTTP verbs comprise a major portion of the uniform interface constraint, which 
defines the association between the actions identified by the verb, to the noun-based 
REST resource.

The following table summarizes HTTP methods and descriptions for the actions 
taken on the resource with a simple example of a collection of books in a library.

HTTP method Resource URI Description
GET /library/books This gets a list of books
GET /library/books/isbn/12345678 This gets a book 

identified by ISBN 
"12345678"

POST /library/books This creates a new book 
order

DELETE /library/books/isbn/12345678 This deletes a book 
identified by ISBN 
"12345678"

PUT /library/books/isbn/12345678 This updates a specific 
book identified by ISBN 
"12345678'

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 13 ]

HTTP method Resource URI Description
PATCH /library/books/isbn/12345678 This can be used to do 

a partial update for a 
book identified by ISBN 
"12345678"

The next section will cover the semantics of each HTTP verb in the context of REST.

HTTP verbs and REST
HTTP verbs inform the server what to do with the data sent as part of the URL.

GET
The GET method is the simplest verb of HTTP, which enables us to get access to a 
resource. Whenever the client clicks a URL in the browser, it sends a GET request to 
the address specified by the URL. GET is safe and idempotent. The GET requests are 
cached. Query parameters can be used in GET requests.

For example, a simple GET request to retrieve all active users is as follows:

curl http://api.foo.com/v1/users/12345?active=true

POST
POST is used to create a resource. The POST requests are neither idempotent nor safe. 
Multiple invocations of the POST requests can create multiple resources.

The POST requests should invalidate a cache entry if it exists. Query parameters with 
the POST requests are not encouraged.

For example, a POST request to create a user can be as follows:

curl –X POST  -d'{"name":"John Doe","username":"jdoe",  
  "phone":"412-344-5644"}' http://api.foo.com/v1/users

PUT
PUT is used to update a resource. PUT is idempotent but not safe. Multiple invocations 
of the PUT requests should produce the same results by updating the resource.

The PUT requests should invalidate the cache entry if it exists.

For example, a PUT request to update a user can be as follows:

curl –X PUT  -d'{ "phone":"413-344-5644"}'
http://api.foo.com/v1/users

www.it-ebooks.info

http://www.it-ebooks.info/


REST – Where It Begins

[ 14 ]

DELETE
DELETE is used to delete a resource. DELETE is idempotent but not safe. This is 
idempotent because based on the RFC 2616, the side effects of N > 0 requests is  
the same as for a single request. This means once the resource is deleted, calling 
DELETE multiple times will get the same response.

For example, a request to delete a user can be as follows:

curl –X DELETE http://foo.api.com/v1/users/1234

HEAD
HEAD is similar to the GET request. The difference is that only HTTP headers are 
returned and no content is returned. HEAD is idempotent and safe.

For example, a request to send a HEAD request with curl is as follows:

curl –X HEAD http://foo.api.com/v1/users

It can be useful to send a HEAD request to see if the 
resource has changed before trying to get a large 
representation using a GET request.

PUT versus POST
According to RFC, the difference between PUT and POST is in the Request URI. The 
URI identified by POST defines the entity that will handle the POST request. The URI 
in the PUT request includes the entity in the request.

So, POST /v1/coffees/orders means to create a new resource and return an 
identifier to describe the resource. In contrast, PUT /v1/coffees/orders/1234 
means to update a resource identified by "1234" if it exists; else create a new order 
and use the orders/1234 URI to identify it.

PUT and POST can both be used to create or update 
methods. The usage of the method depends on the 
idempotence behavior expected from the method as 
well as the location of the resource to identify it.

The next section will cover how to identify the different representations of the resource.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 15 ]

Identifying the different representations of  
the resource
The RESTful resources are abstract entities, which need to be serialized to a 
representation before they can be communicated to the client. The common 
representations for a resource can be XML, JSON, HTML, or plain text. A resource 
can provide the representation to the client based on what the client can handle. A 
client can specify which language and media type it prefers. This is known as content 
negotiation. Chapter 2, Resource Design, covers the content negotiation topic in detail.

Implementing the APIs
Now that we have some idea on designing RESTful resources and associating HTTP 
verbs to take actions on the resources, we will cover what it takes to implement the 
APIs and build a RESTful service. This section will cover the following topic:

•	 Java API for RESTful Services (JAX-RS)

The Java API for RESTful Services (JAX-RS)
The Java API for RESTful services provides portable APIs for building and developing 
applications based on the REST architectural style. Using JAX-RS, Java POJOs can 
be exposed as RESTful web resources, which are independent of the underlying 
technology and use a simple annotation-based API.

JAX-RS 2.0 is the latest version of the specification and has newer features compared 
to its predecessor JAX-RS 1.0, especially in the following areas:

•	 Bean validation support
•	 Client API support
•	 Asynchronous invocation support

Jersey is the implementation of JAX-RS specification.

We will cover all these topics in detail in the subsequent chapters. We are 
demonstrating a simple coffee shop example where you can create a REST  
resource called CoffeesResource, which can do the following:

•	 Give details of the orders placed
•	 Create new orders
•	 Get details on a specific order

www.it-ebooks.info

http://www.it-ebooks.info/


REST – Where It Begins

[ 16 ]

To create a RESTful resource, we begin with a POJO called CoffeesResource.  
An example of a JAX-RS resource is shown as follows:

@Path("v1/coffees")
public class CoffeesResource {

    @GET
    @Path("orders")
    @Produces(MediaType.APPLICATION_JSON)
    public List<Coffee> getCoffeeList( ){
      //Implementation goes here

    }

1.	 As shown in the preceding code, we create a small POJO called 
CoffeesResource. We annotate the class with @Path("v1/coffees"),  
which identifies the URI path this class serves requests for.

2.	 Next, we define a method called getCoffeeList(). This method has the 
following annotations:

°° @GET: This indicates that the annotated method represents a HTTP 
GET request.

°° @PATH: In this example, the GET requests for v1/coffees/orders  
will be handled by this getCoffeeList() method.

°° @Produces: This defines the media types produced by this resource. 
In our preceding snippet, we define the MediaType.APPLICATION_
JSON that has the application/json value.

3.	 Another method to create an order is as follows:
    @POST
    @Consumes(MediaType.APPLICATION_JSON)
    @Produces(MediaType.APPLICATION_JSON)
    @ValidateOnExecution
    public Response addCoffee(@Valid Coffee coffee) {
    //Implementation goes here
    }

For the second method of creating an order, we defined a method called addCoffee(). 
This method has the following annotations:

•	 @POST: This indicates that the annotated method represents the HTTP  
POST request.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 17 ]

•	 @Consumes: This defines the media types consumed by this resource. In our 
preceding snippet, we define the MediaType.APPLICATION_JSON that has  
the application/json value.

•	 @Produces: This defines the media types produced by this resource. In our 
preceding snippet, we define the MediaType.APPLICATION_JSON that has  
the application/json value.

•	 @ValidateOnExecution: This specifies which methods should have their 
parameters or return values validated on execution. More details on the  
@ValidateOnExecution and @Valid annotations will be covered in  
Chapter 3, Security and Traceability.

Thus, we saw with a simple sample on how easy it is to convert a simple POJO to a 
REST resource. Now, we will cover the Application subclass, which will define the 
components of a JAX-RS application including the metadata.

The following is the code for a sample Application subclass named 
CoffeeApplication:

@ApplicationPath("/")
public class CoffeeApplication extends Application {

    @Override
    public Set<Class<?>> getClasses() {
        Set<Class<?>> classes = new HashSet<Class<?>>();
        classes.add(CoffeesResource.class);
        return classes;
    }

As shown in the preceding code snippet, the getClasses() method has been 
overridden and we add the CoffeesResource class to the Application subclass. 
The Application classes can be part of WEB-INF/classes or WEB-INF/lib in the 
WAR file.

Deploying the RESTful services
Once we have created the resource and added the meta-information to the Application 
subclass, the next step is to build the WAR file .The WAR file can be deployed on any 
servlet container.

The source for the samples is available as part of the downloadable bundle with this 
book, which will have detailed steps to deploy and run the samples.

www.it-ebooks.info

http://www.it-ebooks.info/


REST – Where It Begins

[ 18 ]

Test the RESTful services
We can then use the Client API functionality provided by JAX-RS 2.0 to access  
the resources.

This section will cover the following topics:

•	 Client API with JAX-RS 2.0
•	 Accessing RESTful resources using curl, or a browser-based extension  

called Postman

The Client API with JAX-RS 2.0
JAX-RS 2.0 had newer Client APIs for accessing RESTful resources. The entry point 
of the client API is javax.ws.rs.client.Client.

With the newly introduced Client API in JAX-RS 2.0, the endpoint can be accessed  
as follows:

Client client = ClientFactory.newClient();
WebTarget target = client.target("http://. . ./coffees/orders");
String response = target.request().get(String.class);

As shown in the preceding snippet, the default instance of the client is obtained 
using the ClientFactory.newClient() method. Using the target method, we 
create a WebTarget object. These target objects are then used to prepare the request 
by adding the method and the query parameters.

Prior to these APIs, the way we would get access to REST resources was like this:

URL url = new URL("http://. . ./coffees/orders");
HttpURLConnection conn = (HttpURLConnection) url.openConnection();
conn.setRequestMethod("GET");
conn.setDoInput(true);
conn.setDoOutput(false);
BufferedReader br = new BufferedReader(new InputStreamReader(conn.
getInputStream()));
String line;
while ((line = br.readLine()) != null) {
    //. . .
}

Thus, we can see how there has been an improvement in the JAX-RS 2.0 Client-side API 
support to avoid using HTTPURLConnection and instead use the fluent Client API.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 19 ]

If the request is a POST request:

Client client = ClientBuilder.newClient();
Coffee coffee = new Coffee(...);
WebTarget myResource = client.target("http://foo.com/v1/coffees");
myResource.request(MediaType.APPLICATION_XML 
  ) .post(Entity.xml(coffee), Coffee.class);

The WebTarget.request() method returns a javax.ws.rs.client.
InvocationBuilder, which takes a post() method to invoke a HTTP POST  
request. The post() method takes an entity from the Coffee instance and  
specifies that the media type is "APPLICATION_XML".

A MessageBodyReaderWriter implementation is registered with the client.  
More on MessageBodyReader and MessageBodyWriter will be covered in  
Chapter 2, Resource Design.

The following table summarizes some of the main JAX-RS classes/annotations  
we covered so far.

Name of annotation Description
javax.ws.rs.Path This identifies the URI path that the resource 

serves a method for
javax.ws.rs.ApplicationPath This is used by a subclass of Application 

as a base URI for all URIs supplied by the 
resources in application

javax.ws.rs.Produces This defines the media type that the resource 
can produce

javax.ws.rs.Consumes This defines the media type that the resource 
can consume

javax.ws.rs.client.Client This defines the entry point for client requests
javax.ws.rs.client.WebTarget This defines a resource target identified by 

the URI

Clients are heavyweight objects that help facilitate the 
client-side communication infrastructure. It is therefore 
advised to construct only a small number of client 
instances in the application, as initialization as well as 
disposal of a client instance may be a rather expensive 
operation. Additionally, client instances must be properly 
closed before being disposed to avoid leaking resources.

www.it-ebooks.info

http://www.it-ebooks.info/


REST – Where It Begins

[ 20 ]

Accessing RESTful resources
The following section covers the different ways REST resources can be accessed and 
tested by clients.

cURL
cURL is a popular command-line tool for testing REST APIs. The cURL library and 
the cURL command give the user the ability to create a request, put it on the pipe, 
and explore the response. The following are a few samples of curl requests for  
some basic functions:

curl request Description
curl http://api.foo.com/v1/
coffees/1

This is a simple GET request

curl -H "foo:bar" http://api.foo.
com/v1/coffees

This is an example of a curl request for 
adding request headers using -H

curl -i http://api.foo.com/v1/
coffees/1

This is an example of a curl command 
to view response headers using -i

curl –X POST  -d'{"name":"John 
Doe","username":"jdoe", 
"phone":"412-344-5644"} http://
api.foo.com/v1/users

This is an example of a curl request for 
a POST method to create a user

Even though cURL is extremely powerful, it has a lot of options to remember and 
use. Sometimes, it helps to use a browser-based tool to develop REST API such as 
Postman or Advanced REST client.

Postman
Postman on the Chrome browser is an excellent tool to test and develop REST API. 
It has a JSON and XML viewer for rendering the data. It can also allow previewing 
HTTP 1.1 requests, replay, and organize requests for future use. Postman shares the 
same environment as the browser and can display browser cookies too.

An advantage of Postman over cURL is that there is a nice user interface for  
entering parameters so that the user does not need to deal with commands or  
scripts. Various authorization schemes such as a basic user authentication and  
digest access authentication are also supported.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 21 ]

The following is a screenshot, which shows how to send queries in Postman:

As shown in the preceding screenshot, we see the Postman application. A simple 
way to test Postman is to launch the Postman Application from Chrome.

Then, select the HTTP method GET and paste the api.postcodes.io/random/
postcodes URL. (PostCodes is a free, open source service based on geodata.)

You will see a JSON response like this:

{
    "status": 200,
    "result": {
        "postcode": "OX1 9SN",
        "quality": 1,
        "eastings": 451316,
        "northings": 206104,
        "country": "England",
        "nhs_ha": "South Central",
        "admin_county": "Oxfordshire",
        "admin_district": "Oxford",
        "admin_ward": "Carfax",
…}
}

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/


REST – Where It Begins

[ 22 ]

On the left pane of the preceding screenshot are different queries, which have been 
added to a collection like getting all the coffee orders, getting a specific order, creating 
orders, and so on based on testing the various samples in this book. You can create 
custom collections of queries similarly.

For more details, check http://www.getpostman.com/.

Other tools
Here are some additional tools, which can be very useful when working with  
REST resources.

Advanced REST Client
Advanced REST Client is another Chrome extension based on Google WebToolkit, 
which allows the user to test and develop REST API.

JSONLint
JSONLint is a simple online validator that ensures the JSON is valid. When sending 
JSON data as part of requests, it is useful to validate if the format of the data conforms 
to the JSON specification. In such cases, the client can validate the input using 
JSONLint. For more details, check http://jsonlint.com/.

Best practices when designing resources
The following section highlights some of the best practices when designing  
RESTful resources:

•	 The API developer should use nouns to understand and navigate through 
resources and verbs with the HTTP method, for example, the /user/1234/
books is better than /user/1234/getBook URI.

•	 Use associations in the URIs to identify subresources. For example, to get 
the authors for book 5678, for user 1234, use the following /user/1234/
books/5678/authors URI.

•	 For specific variations, use query parameters. For example, to get all the 
books with 10 reviews, use /user/1234/books?reviews_counts=10.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 23 ]

•	 Allow partial responses as part of query parameters if possible. An example 
of this case is to get only the name and age of a user, the client can specify, 
?fields as a query parameter and specify the list of fields that should be sent 
by the server in the response using the /users/1234?fields=name,age URI.

•	 Have defaults for the output format for the response in case the client does 
not specify which format it is interested in. Most API developers choose to 
send JSON as the default response mime type.

•	 Have camelCase or use _ for attribute names.
•	 Support a standard API for counts, for example users/1234/books/count, 

in case of collections so that the client can get an idea of how many objects 
can be expected in the response.
This will also help the client with pagination queries. More details on 
pagination will be covered in Chapter 5, Advanced Design Principles.

•	 Support a pretty printing option, users/1234?pretty_print. Also, it is  
a good practice to not cache queries with a pretty print query parameter.

•	 Avoid chattiness by being as verbose as possible in the response. This is 
because if the server does not provide enough details in the response, the 
client needs to make more calls to get additional details. That is a waste  
of network resources as well as counts against the client's rate limits. More 
details on rate limiting are covered in Chapter 5, Advanced Design Principles.

Recommended reading
The following links may be useful to review for more details:

•	 RFC 2616: http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html
•	 Richardson Maturity Model:  

http://www.crummy.com/writing/speaking/2008-QCon/act3.html

•	 Jersey implementation of JAX-RS: https://jersey.java.net/
•	 InspectB.in: http://inspectb.in/
•	 Postman: http://www.getpostman.com/
•	 Advanced REST Client:  

https://code.google.com/p/chrome-rest-client/

www.it-ebooks.info

http://www.it-ebooks.info/


REST – Where It Begins

[ 24 ]

Summary
In this chapter, we covered the fundamentals of REST, CRUD API, and how to 
design RESTful resources. We worked with JAX-RS 2.0-based annotations that can 
represent HTTP methods and Client APIs that can be used to target the resources. 
Additionally, we iterated the best practices when designing RESTful services.

The next chapter will dig deeper into the concepts covered here. We will also cover 
topics such as content negotiation, entity providers in JAX-RS 2.0, error handling, 
versioning schemes, and response codes in REST. We will look into techniques the 
server can use to send responses to the client using Streaming or Chunking.

www.it-ebooks.info

http://www.it-ebooks.info/


Resource Design
Chapter 1, REST – Where It Begins, covered the basics of REST as well as best practices 
while designing RESTful resources. This chapter continues the discussion with an 
understanding of request response patterns, how to deal with different representations 
of resources, what are the different strategies when versioning API, and how standard 
HTTP codes can be used with REST responses. Subsections of this chapter will cover 
the following topics:

•	 REST response patterns
•	 Content negotiation
•	 Entity providers and different representations
•	 API versioning
•	 Response codes and REST patterns

We will also cover custom entity providers for serializing and de-serializing request 
and response entities as well as other approaches such as streaming and chunking.

REST response patterns
In the earlier chapter, we saw how we can work with domain-related data to create 
readable URIs, use HTTP methods for different CRUD functionality, and transfer 
data to and fro from the clients and server using standardized MIME types and 
HTTP response codes.

www.it-ebooks.info

http://www.it-ebooks.info/


Resource Design

[ 26 ]

The following is a diagram that shows standard REST request/response patterns:

HTTP Codes

Mime Type
REST Response

REST Request

HTTP Methods

Mime Types

URI

ServerClient

As seen from the preceding diagram, the client makes a REST request, which 
consists of standard HTTP methods, MIME types, and the URI to target. The server 
processes the request and sends back a response, which comprises standard HTTP 
response codes and MIME types. We covered the HTTP methods and how to use 
JAX-RS annotations earlier. Also, we enumerated the best practices for designing 
Resource URIs. In this chapter, we will cover the commonly used HTTP response 
codes as well as how to handle the different MIME types.

Content negotiation
Content negotiation means allowing different representations of a resource in the 
same URI so that clients can make a choice on what suits them best.

"HTTP has provisions for several mechanisms for "content negotiation" - the 
process of selecting the best representation for a given response when there are 
multiple representations available."

– RFC 2616, Fielding et al.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 27 ]

There are different patterns for content negotiation. These are as follows:

•	 Using HTTP headers
•	 Using URL patterns

Content negotiation using HTTP headers
When the client sends requests to create or update a resource, there is some form  
of payload that should be transferred from the client to the endpoint. Also, when  
a response is generated, a payload can be sent back to the client. These payloads  
are handled by HTTP request and response entities, which are sent as part of the 
HTTP messages body.

Entities are sent via a request, usually for HTTP POST and PUT methods, or they 
are returned in a response for the HTTP methods. The Content-Type HTTP header 
is used to indicate the MIME type of the entity being sent by the server. Common 
examples of content types are "text/plain", "application/xml", "text/html", 
"application/json", "image/gif", and "image/jpeg".

A client can make a request to the server and specify what media types it can  
handle and what is its order of preference as part of the "Accept" HTTP header.  
The client can also specify in what language it wants the response as part of the 
"Accept-Language" header to be. If no Accept header is present in the request,  
the server can send the representation it chooses.

The JAX-RS specification provides standard annotations to support content 
negotiation. These are javax.ws.rs.Produces and javax.ws.rs.Consumes 
annotations. The following snippet shows an example of the @Produces  
annotation in a resource method:

    @GET
    @Path("orders")
    @Produces(MediaType.APPLICATION_JSON)
    public List<Coffee> getCoffeeList(){
        return CoffeeService.getCoffeeList();

    }

The getCoffeeList() method returns a list of coffees and is annotated with  
@Produces(MediaType.APPLICATION_JSON). The @Produces annotation is used  
to specify which MIME types the resource can send back to the client and match  
it up to the client's Accept header.

www.it-ebooks.info

http://www.it-ebooks.info/


Resource Design

[ 28 ]

This method will produce a response as shown:

X-Powered-By: Servlet/3.1 JSP/2.3 (GlassFish Server Open Source 
Edition  4.0  Java/Oracle Corporation/1.7)
Server: GlassFish Server Open Source Edition  4.0 
Content-Type: application/json
Date: Thu, 31 Jul 2014 15:25:17 GMT
Content-Length: 268
{
    "coffees": [
        {
            "Id": 10,
            "Name": "Cappuchino",
            "Price": 3.82,
            "Type": "Iced",
            "Size": "Medium"
        },
        {
            "Id": 11,
            "Name": "Americano",
            "Price": 3.42,
            "Type": "Brewed",
            "Size": "Large"
        }
    ]
}

In a resource, if no methods are able to produce the MIME type requested by a client 
request, the JAX-RS runtime sends back an HTTP 406 Not Acceptable error. 

The following snippet shows a resource method annotated with the  
@Consumes annotation:

    @POST
    @Consumes(MediaType.APPLICATION_JSON)
    @Produces(MediaType.APPLICATION_JSON)
    public Response addCoffee(Coffee coffee) {
        // Implementation here
    }

The @Consumes annotation specifies which media types the resource can consume. 
When a client makes a request, JAX-RS finds all the methods that will match the path, 
and it will then invoke the method based on the content type sent by the client.

If a resource is unable to consume the MIME type of a client request, the JAX-RS 
runtime sends back an HTTP 415 ("Unsupported Media Type") error.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 29 ]

Multiple MIME types can be specified in the @Produces or @Consumes annotation  
as @Produces(MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML).

Along with the support for static content negotiation, JAX-RS also contains runtime 
content negotiation support using the javax.ws.rs.core.Variant class and the 
javax.ws.rs.core.Request objects. A Variant object in a JAX-RS specification 
is a combination of media types, content-language, and content encoding as well 
as ETags, last-modified headers, and other preconditions. The Variant object 
defines the resource representation that is supported by the server. The Variant.
VariantListBuilder class is used to build a list of representation variants.

The following code snippet shows how to create a list of resource representation 
variants:

List<Variant>  variants = Variant.mediatypes("application/xml",  
  "application/json").build();

The code snippet calls the build method of the VariantListBuilder class.  
The Request.selectVariant method takes a list of Variant objects and chooses  
the one based on the client's Accept header, as shown in the following snippet:

@GET
public Response getCoffee(@Context Request r) { 
    List<Variant> vs = ...;
    Variant v = r.selectVariant(vs);
    if (v == null) {
        return Response.notAcceptable(vs).build();
    } else {
        Coffee coffee = ..//select the representation based on v
        return Response.ok(coffee, v);
    }
}

Content negotiation based on URL patterns
Another approach for content negotiation adopted by some APIs is to send the 
resource representation based on the extension of a resource in the URL. For 
example, a client can ask for details using http://foo.api.com/v2/library/
books.xml or http://foo.api.com/v2/library/books.json. The server has 
different methods, which can handle the two URIs. However, both of these are 
representations of the same resource.

@Path("/v1/books/")
public class BookResource {

www.it-ebooks.info

http://www.it-ebooks.info/


Resource Design

[ 30 ]

    @Path("{resourceID}.xml")
    @GET 
    public Response getBookInXML(@PathParam("resourceID") String  
      resourceID) {
        //Return Response with entity in XML 
             }

    @Path("{resourceID}.json")
    @GET
    public Response getBookInJSON(@PathParam("resourceID") String  
      resourceID) {
        //Return Response with entity in JSON
    }
}

As you can see in the preceding snippet, there are two methods defined: 
getBookInXML() and getBookInJSON(), and the response is returned based  
on the path of the URL.

It is a good practice to use the HTTP content negotiation Accept 
header. Using headers for content negotiation provides a clear 
separation of IT concerns from business. The other advantage with 
using the Accept header for content negotiation is that there is 
only one resource method for all the different representations.

The following section covers how to serialize and de-serialize a resource to and from 
the different representations respectively using entity providers in JAX-RS.

Entity providers and different 
representations
In the previous examples, we passed literal parameters picked from a URI path 
fragment as well as from the request's query parameters to the resource method. 
However, there are cases when we want to pass a payload in the request body, 
for example a POST request. JAX-RS provides two interfaces that can be used: one 
for handling the inbound entity representation-to-Java de-serialization known 
as javax.ws.rs.ext.MessageBodyReader, and the other one for handling the 
outbound entity Java-to-representation serialization known as javax.ws.rs.ext.
MessageBodyWriter.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 31 ]

MessageBodyReader de-serializes entities from the message body representation  
into Java classes. MessageBodyWriter serializes a Java class to a specific 
representation format.

The following table shows the methods that need to be implemented:

Method of MessageBodyReader Description
isReadable() This is used to check if the 

MessageBodyReader class can support 
conversion from a stream to Java type

readFrom() This is used to read a type from the 
InputStream class

As shown in the table, the isReadable() method of the MessageBodyReader 
implementation class is called to check if MessageBodyReader can handle the 
specified input. When the readFrom() method of the MessageBodyReader class is 
called, it can convert an input stream to a Java POJO.

The following table shows the methods of MessageBodyWriter that must be 
implemented along with a short description of each of its methods:

Method of MessageBodyWriter Description
isWritable() This is used to check if the 

MessageBodyWriter class can support the 
conversion from the specified Java type

getSize() This is used to check the length of bytes if the 
size is known or -1

writeTo() This is used to write from a type to the stream

The isWritable() method of the MessageBodyWriter implementation class is 
called to check if the MessageBodyWriter class can handle the specified input.  
When the writeTo() method of MessageBodyWriter is called, it can convert  
a Java POJO to the output stream. The samples in the download bundle of this  
book show how to use MessageBodyReader and MessageBodyWriter.

However, there are lightweight implementations such as the StreamingOutput 
and ChunkingOutput classes, and the following sections will cover how Jersey 
implementation of JAX-RS already has support for basic formats such as text,  
JSON, and XML.

www.it-ebooks.info

http://www.it-ebooks.info/


Resource Design

[ 32 ]

StreamingOutput
The javax.ws.rs.core.StreamingOutput class is a callback that can be implemented 
to send the entity in the response when the application wants to stream the output. 
The StreamingOutput class is a lightweight alternative to the javax.ws.rs.ext.
MessageBodyWriter class.

The following is a sample code that shows how to use StreamingOutput as part of 
the response:

    @GET
    @Produces(MediaType.TEXT_PLAIN)
    @Path("/orders/{id}")
    public Response streamExample(@PathParam("id") int id) {
        final Coffee coffee = CoffeeService.getCoffee(id);
        StreamingOutput stream = new StreamingOutput() {
            @Override
            public void write(OutputStream os) throws IOException,
                    WebApplicationException {
                Writer writer = new BufferedWriter(new  
                  OutputStreamWriter(os));
                writer.write(coffee.toString());
                writer.flush();
            }
        };
        return Response.ok(stream).build();
    }

As shown in the preceding snippet, the write() method of the StreamingOutput 
class has been overridden to write to the output stream. StreamingOutput is useful 
in case of streaming binary data in a streaming fashion. For more details, have a look 
at the samples code that are available as part of the download bundle.

ChunkedOutput
With Jersey implementation of JAX-RS, the server can use the org.glassfish.
jersey.server.ChunkedOutput class to immediately send a response to a client in 
chunks as soon as they become available, without waiting for the other chunks to 
become available too. The size object's value of -1 is sent in the Content-Length 
header of the response to indicate that the response will be chunked. On the client 
side, it will know that the response will be chunked, so it reads each chunk of the 
response separately and processes it and waits for more chunks to come on the 
same connection. The server keeps on sending response chunks until it closes the 
connection after sending the last chunk and the response processing is finished.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 33 ]

The following is an example code to show the use of ChunkedOutput:

    @GET
    @Produces(MediaType.TEXT_PLAIN)
    @Path("/orders/{id}/chunk")
    public ChunkedOutput<String> chunkExample(final @PathParam("id") 
int id) {
        final ChunkedOutput<String> output = new 
ChunkedOutput<String>(String.class);

        new Thread() {
            @Override
            public void run() {
                try {
                    output.write("foo");
                    output.write("bar");
                    output.write("test");
                } catch (IOException e) {
                   e.printStackTrace();
                } finally {
                    try {
                        output.close();
                    } catch (IOException e) {
                        e.printStackTrace();
                    }
                }
            }
        }.start();
        return output;

    }
}

As shown in the snippet, the chunkExample method returns a ChunkedOutput object.

On the client side, org.glassfish.jersey.client.ChunkedInput can be used to 
receive messages in "typed" chunks. This data type is useful for consuming partial 
responses from large or continuous data input streams. The following snippet shows 
how the client can read from a ChunkedInput class:

ChunkedInput<String> input = target().path("..").request().get(new Gen
ericType<ChunkedInput<String>>() {
        });
while ((chunk = chunkedInput.read()) != null) {
    //Do something
}

www.it-ebooks.info

http://www.it-ebooks.info/


Resource Design

[ 34 ]

Differences between ChunkedOutput and StreamingOutput
ChunkedOutput is an internal class provided by Jersey. It lets  
the server send chunks of data without closing the client connection. 
It uses a series of convenient calls to the ChunkedOutput.write 
methods that take POJO and media type input and then use the 
JAX-RS MessageBodyWriter class to convert the POJO to bytes. 
ChunkedOutput writes are non-blocking.
StreamingOutput is a low-level JAX-RS API that works with 
bytes directly. The server has to implement StreamingOutput, 
and its write(OutputStream) method will be invoked only 
once by JAX-RS runtime, and the call is blocking.

Jersey and JSON support
Jersey provides support for the following approaches when working with a  
JSON representation.

POJO-based JSON binding support
POJO-based JSON binding support is very generic and allows mapping from  
any Java object to JSON. This is done via a Jackson org.codehaus.jackson.map.
ObjectMapper instance. For example, to read a JSON in a Coffee object, we use  
the following:

ObjectMapper objectMapper = new ObjectMapper();
Coffee coffee = objectMapper.readValue(jsonData, Coffee.class);

For more details, check https://jersey.java.net/documentation/1.18/json.
html.

JAXB-based JSON binding support
JAXB-based JSON binding support is useful if the resource can produce and 
consume XML or JSON. To implement this, you can annotate a simple POJO  
with @XMLRootElement, as shown in the following code:

@XMLRootElement
public class Coffee {
    private String type;
    private String size;
}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 35 ]

Using the preceding JAXB bean to produce the JSON data format from the resource 
method is then as simple as using the following:

 @GET
 @Produces("application/json")
 public Coffee getCoffee() { 
     //Implementation goes here
}

The Produces annotation will take care of converting into a JSON representation of 
the Coffee resource.

Low-level JSON parsing and processing support
This is best used to get fine-grained control over the JSON format using JSONArray 
and JSONObject to create the JSON representation. The advantage here is that the 
application developer will gain full control over the JSON format produced and 
consumed. The following is an example code to use JSONArray:

JsonObject myObject = Json.createObjectBuilder()
        .add("name", "Mocha")
        .add("size", "Large")
        .build();

On the other hand, dealing with the data model objects will probably be a bit more 
complex. For example, the following code shows how the pull parsing programming 
model works with JSONParser:

JsonParser parser = Json.createParser(…)
Event event = parser.next(); // START_OBJECT
event = parser.next(); //END OBJECT

The next section covers the topic of how to version the API so that it can evolve 
over a period of time as well as how to ensure the basic functionality of a client 
application does not break with API versioning changes on the server side.

www.it-ebooks.info

http://www.it-ebooks.info/


Resource Design

[ 36 ]

API versioning
For the evolution of the application, the URI design should have some constraints to 
identify the version. It is hard to foresee all the resources, which will change during 
the life of the application. The goal with API versioning is to define the resource 
endpoints and the addressing schemes and associate a version with them. The API 
developers must ensure the HTTP verbs' semantics and status codes should continue 
to work without human intervention as the version changes. Over the life span of 
the application, the version will evolve, and the APIs may need to be deprecated. 
Requests to older versions of the API can be redirected to the latest code path or 
there can be appropriate error codes that indicate the API is obsolete.

There can be different approaches to version APIs. These are as follows:

•	 Specify the version in the URI itself
•	 Specify the version in the request query parameter
•	 Specify the version in the Accept header

All of these could work fine. The next section covers the approaches in detail and 
highlights the advantages and disadvantages of each.

Version in the URI approach
In this approach, the version is part of the URI for the resource exposed by the server.

For example, in the following URL, there is a "v2" version exposed as part of the path 
to the resource:

http://api.foo.com/v2/coffees/1234

Additionally, API developers can provide a path, which defaults to the latest version 
of the API. Thus, the following request URIs should behave identically:

•	 http://api.foo.com/coffees/1234

•	 http://api.foo.com/v2/coffees/1234

This indicates v2 is the latest API version. If the clients point to the older versions, 
they should be informed to use the newer versions by using the following HTTP 
code for redirection:

•	 301 Moved permanently: This indicates that the resource with a requested 
URI is moved permanently to another URI. This status code can be used to 
indicate an old or unsupported API version, informing the API client that  
a versioned resource URI has been replaced by a resource permalink.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 37 ]

•	 302 Found: This indicates that the requested resource is temporarily located 
at another location, while the requested URI might still be supported.

Version as part of the request query parameter
The other way to use API versioning could be to send the version in the request 
parameter. The resource method can choose the flow of code based on the 
version, which is sent with the request. For example, in the http://api.foo.
com/coffees/1234?version=v2 URL, v2 has been specified as part of the query 
parameter ?version=v2.

The disadvantage with this format is that the responses may not be cached. 
Additionally, the source code for the resource implementation will have  
different flows based on the version in the query parameter, which is not  
very intuitive or maintainable.

More details on the best practices of caching will be 
covered in Chapter 4, Designing for Performance.

In contrast, if the URI contains the version, it is cleaner and more readable. Also, there 
could be a standardized lifespan for a version of URI, after which all the requests to 
older versions get redirected to the latest version.

Facebook, Twitter, and Stripe API all use versions as part of the 
URI. The Facebook API makes a version unusable two years after 
the date on which the subsequent version is released. If a client 
makes an unversioned call, the server will default to the oldest 
available version of the Facebook API.
The Twitter API provides six months to completely transition 
from v1.0 to v1.1.
More details on these APIs will be found in the Appendix.

Specifying the version in the Accept header
Some APIs prefer to put version as part of the Accept header. For example, take a 
look at the following code snippet:

Accept: application/vnd.foo-v1+json

In the preceding snippet, vnd stands for vendor-specific MIME type. This removes 
the version for the URL and is preferred by some API developers.

www.it-ebooks.info

http://www.it-ebooks.info/


Resource Design

[ 38 ]

The GitHub API recommends you send an Accept header 
explicitly, as shown:

Accept: application/vnd.github.v3+json

For more details, check https://developer.github.com/
v3/media/.

The next section covers what the standard HTTP response codes that should be sent 
to the client are.

Response codes and REST patterns
HTTP provides standardized response codes that can be returned for every request. 
The following table summarizes the REST response patterns based on CRUD API. 
There are subtle differences based on the operation used as well as whether the 
content is sent or not as part of the response:

Group Response code Description
Success 2XX 200 OK This can be used for the create, 

update, or delete operations with 
PUT, POST, or DELETE. This returns 
content as part of the response.

201 Created This can be used when creating a 
resource with PUT. This must contain 
the Location header of the resource.

204 No Content This can be used for the DELETE, 
POST, or PUT operation. No content  
is returned as part of the response.

202 Accepted This sends a response later as 
processing has not been completed 
as yet. This is used for asynchronous 
operations. This should also return a 
Location header, which can specify 
where the client can monitor for  
the request.

Redirectional 3XX 301 Permanent This can be used to show that all 
requests are directed to a new location.

302 Found This can be used to show the resource 
already exists and is valid.

Client Errors 4XX 401 Unauthorized This is used to show the request can't 
be processed based on the credentials.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 39 ]

Group Response code Description
404 Not Found This is used to show the resource  

is not found. It is a good practice to 
return a 404 Not Found error to  
the unauthenticated requests to 
prevent information leaks.

406 Not Acceptable This can be used when the resource 
cannot produce the MIME type 
specified by the client. This happens 
when the MIME type specified in the 
Accept header does not match any 
media type in the resource method/
class annotated with @Produces.

415 Unsupported 
Media Type

This can be used when the client  
sends a media type that cannot be 
consumed by the resource. This 
happens when the MIME type 
specified in the Content-Type 
header does not match any media 
type in the resource method/class 
annotated with @Consumes.

Server Errors 5XX 500 Internal 
Server error

This internal server error is a  
generic message when no specific 
details are available.

503 Service 
Unavailable

This can be used when the server  
is under maintenance or too busy  
to handle requests.

JAX-RS defines a javax.ws.rs.core.Response class, which has static methods to 
create an instance using javax.ws.rs.core.Response.ResponseBuilder:

@POST
 Response addCoffee(...) {
   Coffee coffee = ...
   URI coffeeId = UriBuilder.fromResource(Coffee.class)...
   return Response.created(coffeeId).build();
 }

The preceding code snippet shows a method addCoffee(), which returns a 201 
Created response using the Response.created() method. For more details on  
other response methods, check https://jersey.java.net/apidocs/latest/
jersey/javax/ws/rs/core/Response.html.

www.it-ebooks.info

http://www.it-ebooks.info/


Resource Design

[ 40 ]

Recommended reading
•	 https://jersey.java.net/documentation/latest/representations.

html: Jersey documentation for content negotiation
•	 http://docs.jboss.org/resteasy/docs/2.2.1.GA/userguide/html/

JAX-RS_Content_Negotiation.html: RESTEasy and URL-based content 
negotiation

•	 https://dev.twitter.com/docs/api/1.1/overview: Twitter REST API 
and versioning strategy

•	 https://developers.facebook.com/docs/apps/versions: The Facebook 
API and versioning

Summary
We covered topics such as content negotiation, API versioning, and REST  
response codes in this chapter. One of the primary takeaways from this chapter 
was to understand how important it is to support various representations of the 
same resource so that the client can choose the right one for their case. We covered 
differences between streaming and chunking output and how they can be used as 
lightweight options with custom entity providers such as MessageBodyReader and 
MessageBodyWriter. We saw case studies of companies that use versioning in their 
solutions as well as best practices and design principles scattered throughout the 
various topics.

The next chapter will cover advanced details such as security, traceability, and 
validation in REST programming models.

www.it-ebooks.info

http://www.it-ebooks.info/


Security and Traceability
In the era of open platforms, developers can build apps, which can be easily and 
quickly decoupled from the platform's business cycle. This API-based architecture 
enables agile development, easier adoption, prevalence, and scale and integration 
with applications within and outside the enterprise. One of the most important 
considerations for the apps is dealing with security. The developers building apps 
should not be concerned with the user's credentials. Additionally, there can be other 
clients consuming the REST services including but not limited to browsers and 
mobile applications to other services. The clients can be acting on behalf of other 
users and must be authorized to perform actions for them without the user having 
to share his credentials for a username and password. This is where the OAuth 2.0 
specification comes into the picture.

Another important aspect to consider when building distributed applications is 
traceability, which will involve logging the data related to requests for debugging 
purposes in an environment encompassing multiple micro services, which can be 
geographically distributed and deal with thousands of requests. Requests to the REST 
resources and status codes must be logged to help debug issues in production and  
can also serve as an audit trail. This chapter will cover advanced details in security  
and traceability in REST programming models. The topics covered are as follows:

•	 Logging REST APIs
•	 Exception handling with RESTful services
•	 Validation patterns
•	 Federated identity

°° SAML 2.0
°° OAuth 2.0
°° OpenID Connect

www.it-ebooks.info

http://www.it-ebooks.info/


Security and Traceability

[ 42 ]

This chapter will conclude with what it takes to work with the various building 
blocks for scalable, highly performing RESTful services.

Logging REST APIs
Complex distributed applications can introduce many points of failure. Problems are 
hard to find and fix, thus delaying incident response and creating costly escalations. 
Application developers and administrators may not have direct access to the machine 
data they need.

Logging is a very important aspect of building RESTful services, especially in the  
case of debugging production issues in distributed nodes running various micro 
services. It helps to link events or transactions between the various components  
that make an application or a business service. A complete sequence of logs can  
help replay the course of events that occurred in a production system. Additionally, 
logs can help index, aggregate, slice the data, analyze the patterns of requests  
coming in, and provide a lot of potentially helpful information.

The following code covers how to write a simple logging filter, which can be 
integrated with the REST resources. The filter will log request-related data such  
as timestamp, query string, and inputs:

@WebFilter(filterName = "LoggingFilter",
        urlPatterns = {"/*"}
)
public class LoggingFilter implements Filter {
    static final Logger logger =  
      Logger.getLogger(LoggingFilter.class);
    @Override
    public void doFilter(ServletRequest servletRequest,  
      ServletResponse servletResponse,
            FilterChain filterChain) throws IOException,  
              ServletException {

        HttpServletRequest httpServletRequest =  
          (HttpServletRequest) servletRequest;

logger.info("request"  
  +httpServletRequest.getPathInfo().toString());
        filterChain.doFilter(servletRequest, servletResponse);

    }

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 43 ]

The LoggingFilter class is a simple filter that implements a javax.servlet.
Filter interface. The logger will log all messages with the request path and  
inputs. The sample uses Apache Log4j to set up logging.

For more details on Apache Log4J, check 
http://logging.apache.org/log4j/2.x/.

These logs can then be collected and mined from a distributed log server application, 
for example, Splunk (http://www.splunk.com/), which can give the developer 
information and root causes analysis for outages or performance issues in production. 
An example in our coffee shop analogy could be that there was a problem processing 
a coffee order. If the request details were logged in a distributed log server application 
such as Splunk, the developer can query based on the time, and see what the client 
tried to send and why the request failed.

The next section will cover numerous best practices to keep in mind when logging 
REST API.

Best practices for the logging REST API
In a large-scale distributed environment, the log data may be the only information 
that is available to the developer for debugging issues. Auditing and logging, if done 
right, can help tremendously in figuring such production issues and replaying the 
sequence of steps that occurred before an issue. The following sections list a few best 
practices for logging to understand system behavior and reasoning for performance 
and other issues.

Including a detailed consistent pattern across 
service logs
It is a good practice for a logging pattern to at least include the following:

•	 Date and current time
•	 Logging level
•	 The name of the thread
•	 The simple logger name
•	 The detailed message

www.it-ebooks.info

http://www.it-ebooks.info/


Security and Traceability

[ 44 ]

Obfuscating sensitive data
It is very important to mask or obfuscate sensitive data in production logs to protect 
the risk of compromising confidential and critical customer information. Password 
obfuscators can be used in the logging filter, which will mask passwords, credit 
card numbers, and so on from the logs. Personally identifiable information (PII is 
information that can be used by itself or along with some other information to identify 
a person. Examples of PII can be a person's name, e-mail, credit card number, and 
so on. Data representing PII should be masked using various techniques such as 
substitution, shuffling, encryption, and other techniques.

For more details, check http://en.wikipedia.org/
wiki/Data_masking.

Identifying the caller or the initiator as part of  
the logs
It is a good practice to identify the initiator of the call in the logs. The API may  
be called by a variety of clients, for example, mobile, the Web, or other services. 
Adding a way to identify the caller may help debug issues in case the problems  
are specific to a client.

Do not log payloads by default
Have a configurable option to log payloads so that by default no payload is logged. 
This will ensure, for resources dealing with sensitive data, the payloads do not get 
logged in the default case.

Identifying meta-information related to the request
Every request should have some details on how long it took to execute the request, 
the status of the request, and the size of the request. This will help to identify  
latency issues as well as any other performance issues that may come up with  
large messages.

Tying the logging system with a monitoring system
Ensure the data from the logs can also be tied to a monitoring system, which can 
collect data related to SLA metrics and other statistics in the background.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 45 ]

Case studies of logging frameworks in distributed environments in 
various platforms
Facebook has developed a homegrown solution called Scribe, which 
is a server for aggregating streaming log data. This can handle the 
large number of requests per day across servers distributed globally. 
The servers send data, which can be processed, diagnosed, indexed, 
summarized, or aggregated. Scribe is designed to scale to a very large 
number of nodes. It is designed to be robust to survive network and 
node failures. There is a scribe server running on every node in the 
system. It is configured to aggregate messages and sends them to a 
central scribe server in larger groups. If the central scribe server goes 
down, messages are written to a file by the local scribe server on the 
local disk and sends them when the central server recovers. For more 
details, check https://github.com/facebookarchive/scribe.
Dapper is Google's tracing system, which samples data from the 
thousands of requests and provides sufficient information to trace data. 
Traces are collected in local logfiles and then pulled in Google's BigTable 
database. Google has found out that sampling sufficient information 
for common cases can help trace the details. For more details, check 
http://research.google.com/pubs/pub36356.html.

The next section will cover how to validate REST API requests and/or  
response entities.

Validating RESTful services
When exposing REST- or HTTP-based service APIs, it is important to validate that the 
API behaves correctly and that the exposed data format is structured in an expected 
manner. For example, it is important to validate an input to a RESTful service, such as 
e-mails sent as part of the request body, must conform to the standards, certain values 
in the payload must be present, the zip code must follow a particular format, and so 
on. This can be done by validations with RESTful services.

JAX-RS supports the Bean Validation to verify JAX-RS resource classes. This support 
consists of:

•	 Adding constraint annotations to resource method parameters
•	 Ensuring entity data is valid when the entity is passed in as a parameter

www.it-ebooks.info

http://www.it-ebooks.info/


Security and Traceability

[ 46 ]

The following is a code snippet of a CoffeesResource class, which contains the  
@Valid annotation:

    @POST
    @Consumes(MediaType.APPLICATION_JSON)
    @Produces(MediaType.APPLICATION_JSON)
    @ValidateOnExecution
    public Response addCoffee(@Valid Coffee coffee) {
        …
            }

The javax.validation.executable.ValidateOnExecution annotation can help 
specify which method or constructor should have their parameters and return values 
validated on execution. The javax.validation.Valid annotation on the request 
body will ensure the Coffee object will conform to the rules as specified in the POJO.

The following is the snippet of the Coffee POJO:

@XmlRootElement
public class Coffee {

    @VerifyValue(Type.class)
    private String type;

    @VerifyValue(Size.class)
    private String size;

    @NotNull
    private String name;
    // getters and setters
}

The field name has a javax.validation.constrains.NotNull annotation, which 
enforces that the name of the coffee in the order cannot be null. Similarly, we have 
defined custom annotations in the sample, which will verify the type and size and 
check if the values in the request body follow the right format.

For example, Size can be either of the following values as shown: Small, Medium, 
Large, or ExtraLarge:

public enum Size {
    Small("S"), Medium("M"), Large("L"), ExtraLarge("XL");
    private String value;
}

The @VerifyValue(Size.class) annotation is a custom annotation defined in the 
downloadable sample.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 47 ]

Validation exception handling and  
response codes
The following table provides a quick summary of the type of response codes when 
various validation-related exceptions are thrown. The type of error code depends on 
the exception thrown as well as whether the validation performed is on the request 
or the response of the HTTP method.

HTTP Response code returned Type of exception
500 Internal Server 
Error

This error code is returned when javax.
validation.ValidationException or any 
subclass of ValidationException including 
ConstraintValidationException is 
thrown while validating a method return type

400 Error When ConstraintViolationException is 
thrown in all other cases for validating method 

The next section covers how the API developers can throw application-specific 
exceptions and map HTTP error codes based on the exceptions.

Error handling with RESTful services
When building RESTful APIs, it is necessary to throw application-specific exceptions 
and provide specific HTTP responses containing the details of these exceptions. The 
following section covers how to deal with user-defined exceptions and map them 
to HTTP responses and status codes. The javax.ws.rs.ext.ExceptionMapper 
classes are custom, application provided, components that catch thrown application 
exceptions and write specific HTTP responses. Exception mapper classes are 
annotated with the @Provider annotation.

The following snippets show how to build your custom exception mapper:

    @GET
    @Produces(MediaType.APPLICATION_JSON)
    @Path("/orders/{id}")
    public Response getCoffee(@PathParam("id") int id) {
        Coffee coffee =  CoffeeService.getCoffee(id);
        if (coffee == null)

www.it-ebooks.info

http://www.it-ebooks.info/


Security and Traceability

[ 48 ]

            throw new CoffeeNotFoundException("No coffee found for  
              order " + id);
        return Response.ok(coffee).type(MediaType.APPLICATION_JSON_
TYPE).build();
    }

As shown in the preceding code snippet, the getCoffees() method returns a 
Coffee object with the ID specified in the path parameter. If no coffee is found  
with the ID specified, the code throws a CoffeeNotFoundException.

The following is the code of an ExceptionMapper class implementation:

@Provider
public class MyExceptionMapper implements ExceptionMapper<Exception> {

    public Response toResponse(Exception e) {
        ResourceError resourceError = new ResourceError();

        String error = "Service encountered an internal error";
        if (e instanceof CoffeeNotFoundException) {
            resourceError.setCode( 
              Response.Status.NOT_FOUND.getStatusCode());
            resourceError.setMessage(e.getMessage());

            return Response.status( 
              Response.Status.NOT_FOUND).entity(resourceError)
                    .type(MediaType.APPLICATION_JSON_TYPE)
                    .build();
        }
        return Response.status(503).entity( 
          resourceError).type(MediaType.APPLICATION_JSON_TYPE)
                .build();
    }
}

The preceding code shows an implementation of ExceptionMapper whose 
toResponse() method has been overridden. The code checks if the exception  
thrown is an instance of CoffeeNotFoundException, then returns a response  
whose entity is of the type ResourceError.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 49 ]

The ResourceError class is a POJO annotated with @XMLRootElement and  
sent as part of the response:

@XmlRootElement
public class ResourceError {

    private int code;
    private String message;
    //getters and setters
…}

You can run the sample as part of the downloadable bundle and the output is  
as follows:

HTTP/1.1 404 Not Found
X-Powered-By: Servlet/3.1 JSP/2.3 (GlassFish Server Open Source 
Edition  4.0  Java/Oracle Corporation/1.7)
Server: GlassFish Server Open Source Edition 4.0
Content-Type: application/json
Content-Length: 54

{"code":404,"message":"No coffee found for order 100"}

Authentication and authorization
In the past, organizations needed a way to unify the authentication for users in an 
enterprise. Single sign-on is a solution to keep one repository for usernames and 
passwords that can be used across the different applications in an enterprise.

With the evolution of service-oriented architectures, organizations needed a way  
so that the partners and other services could use the APIs and there needed to be a 
way to simplify the sign-on process across the various applications and platforms. 
The need grew with the generation of social media with various platforms opening 
up, the APIs and an ecosystem built with a myriad of applications, and a multitude 
of devices using the platforms such as Twitter, Facebook, and LinkedIn.

Thus, it has become increasingly important to decouple the authentication and 
authorization functions from the consumer application. Also, it is not mandatory  
for every application to be aware of the user's credentials.  The following section  
will cover SAML 2.0 and OAuth 2.0 for authorization as part of the federated 
identities effort to simplify sign-on and increase security.

www.it-ebooks.info

http://www.it-ebooks.info/


Security and Traceability

[ 50 ]

Subsections will enumerate over the following topics:

•	 SAML
•	 OAuth
•	 Refresh tokens versus Access tokens
•	 Jersey and OAuth 2.0
•	 When to use SAML or OAuth?
•	 OpenID Connect

What is authentication?
Authentication is the process of establishing and communicating that the person 
operating a browser or native app is who he/she claims to be.

SAML
Security Assertion Markup Language (SAML) is a standard that encompasses 
profiles, bindings, and constructs to achieve Single sign-on (SSO), federation,  
and identity management.

The SAML 2.0 spec provides a web browser SSO profile, which defines how single 
sign-on can be achieved for web applications. It defines three roles:

•	 Principal: This is where the user is typically looking to verify his or her 
identity

•	 Identity provider (IdP): This is the entity that is capable of verifying the 
identity of the end user

•	 Service provider (SP): This is the entity looking to use the identity provider 
to verify the identity of the end user

The following flow shows a simple example of SAML. Say, an employee wants to 
access the corporate travel website. The corporate travel application will request the 
identity provider the employee is associated with to verify his identity and then take 
actions for him.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 51 ]

The flow is explained as follows:

1.	 The user accesses a corporate application, say, travel application.
2.	 The travel application will generate a SAML request and redirects the user  

to the employer's identity provider (IdP).
3.	 The user is redirected to the employer's identity provider to obtain a SAML 

authentication assertion.
4.	 The IdP parses the SAML request, authenticates the user, and generates a 

SAML response.
5.	 The browser sends the SAML response to the travel application.
6.	 On receiving the access token, the corporate travel app is then able to access 

the web resource by passing the token in the header of the HTTP request.  
The access token acts as a session token that encapsulates the fact that the 
travel app is acting on behalf of the user.

www.it-ebooks.info

http://www.it-ebooks.info/


Security and Traceability

[ 52 ]

SAML has binding specifications for web browsers, SSO, SOAP, and WS-Security but 
no formal binding for the REST API.

The next section covers OAuth, which has been widely used by platforms such as 
Twitter, Facebook, and Google for authorization.

What is authorization?
Authorization is the process of checking whether the requestor has permissions to 
perform the requested operation.

OAuth
OAuth stands for open authorization and provides a way for a user to authorize an 
application to access their account-related data without giving out their username 
and password.

Traditionally in client/server authentication, the client uses its credentials to access 
resources on the server. The server does not care if the request comes from the client 
or if the client is requesting the resource for some other entity. The entity can be 
another application or another person and thus the client is not accessing its own 
resource but that of another user. Anyone requesting access to a resource that is 
protected and requires authentication must be authorized to do so by the resource 
owner. OAuth is a way to open up the REST APIs for companies such as Twitter, 
Facebook, Google+, GitHub, and so on, and the myriad of third-party applications 
built on top of them. OAuth 2.0 completely relies on SSL.

The number of legs in an OAuth request refers to the number of parties involved. 
A flow where there is client, server, and resource owner indicates 3-legged OAuth. 
When the client is acting on behalf of itself, it is known as 2-legged OAuth.

OAuth achieves this functionality with the help of access tokens. Access tokens are 
like valet keys that give access to limited functionality for a limited period of time. 
Tokens have a limited lifespan from hours to a few days. The following diagram 
shows the flow of OAuth:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 53 ]

The preceding diagram shows the authorization code grant flow.

In this example, a user has his photos on a service provider site, say, Flickr. Now, the 
user needs to call a print service to print his photos, for example, Snapfish, which is a 
consumer application. Instead of the user sharing his username and password to the 
consumer application, the user can use OAuth to allow the print service to access his 
photos for a limited period of time.

So in our example, we have three roles as described:

•	 User or resource owner: The user is the resource owner who wants to  
print his photos

•	 Consumer application or client: This is the print service application,  
which will act on behalf of the user

•	 Service provider or server: The service provider is the resource server  
that will store the user's photos

www.it-ebooks.info

http://www.it-ebooks.info/


Security and Traceability

[ 54 ]

With this example in mind, we can see the steps involved in the OAuth dance:

1.	 User wants to allow an application to do a task on his behalf. In our example, 
the task is to print photos, which are on a server using a consumer application.

2.	 The consumer application redirects the user to the service provider's 
authorization URL.
Here, the provider displays a web page asking the user if they can grant  
the application access to read and update their data.

3.	 The user agrees to grant the application access by the print service  
consumer application.

4.	 The service provider redirects the user back to the application (via the 
redirect URI), passing an authorization code as a parameter.

5.	 The application exchanges the authorization code for an access grant.  
The service provider issues the access grant to the application. The grant 
includes an access token and a refresh token.

6.	 Now that the connection is established, the consumer application can now 
obtain a reference to the service API and invoke the provider on behalf of  
the user. Thus, the print service can now access the user's photos from the 
service provider's site.

The advantage of OAuth is that a compromised application will not 
create much havoc as access tokens are used instead of actual credentials. 
The SAML bearer flow is actually very similar to the classic OAuth 3-leg 
flow covered earlier. However, instead of redirecting the user's browser 
to the authorization server, the service provider works with the identity 
provider to get a simple authentication assertion. The service provider 
application swaps a SAML bearer assertion for the user instead of 
exchanging an authorization code.

Differences between OAuth 2.0 and OAuth 1.0
OAuth 2.0 specification clearly lays out how to use OAuth entirely inside a browser 
using JavaScript that has no way to securely store a token. This also explains at a 
high level how to use OAuth on a mobile phone or even on a device that has no 
web browser at all, covering interactions to apps and native applications on both 
smartphones and traditional computing devices, in addition to websites.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 55 ]

OAuth 2.0 defines the following three types of profiles:

•	 Web application (In this case, the client password is stored on the server,  
and access tokens are used.)

•	 Web browser client (In this case, the OAuth credentials are not trusted;  
some providers won't issue a client secret. An example is JavaScript in  
the browser.)

•	 Native application (In this case, access tokens or refresh tokens that are 
generated can provide an acceptable level of protection. An example  
includes mobile applications.)

OAuth 2.0 does not require encryption and uses HTTPS not HMAC. Additionally, 
OAuth 2.0 allows limiting the lifetime of an access token.

An authorization grant
An authorization grant is a credential representing the resource owner or the user's 
authorization, which allows a client to access its protected resources to obtain an 
access token. The OAuth 2.0 specification defines four grant types as follows:

•	 The authorization code grant
•	 The implicit grant
•	 The resource owner password credentials grant
•	 The client credentials grant

Additionally, OAuth 2.0 also defines an extensibility mechanism for defining 
additional types.

Refresh tokens versus access tokens
Refresh tokens are credentials used to obtain access tokens. Refresh tokens are used 
to obtain the access token when the current access token becomes invalid or expires. 
Issuing a refresh token is optional at the discretion of the server.

Unlike access tokens, refresh tokens are intended for use only with authorization 
servers and are never sent to resource servers to access a resource.

www.it-ebooks.info

http://www.it-ebooks.info/


Security and Traceability

[ 56 ]

Jersey and OAuth 2.0
Even though OAuth 2.0 is widely used by various enterprises, OAuth 2.0 RFC is a 
framework to build solutions on top of it. There are numerous gray areas in the RFC 
where the specification leaves it to the implementer. There were indecisions in areas 
where there is no required token type, no agreement on the token expiration, or no 
specific guidance on the token size.

Read this page for more details:
http://hueniverse.com/2012/07/26/oauth-2-
0-and-the-road-to-hell/

Currently, Jersey support for OAuth 2.0 is only on the client side. OAuth 2.0 
specification defines many extension points and it is up to service providers 
to implement these details. Additionally, OAuth 2.0 defines more than one 
authorization flow. The Authorization Code Grant Flow is the flow currently 
supported by Jersey and none of the other flows are supported. For more details, 
check https://jersey.java.net/documentation/latest/security.html.

Best practices for OAuth in the REST API
The following section lists some of the best practices that can be followed by service 
providers implementing OAuth 2.0.

Limiting the lifetime for an access token
The protocol parameter expires_in allows an authorization server to limit the lifetime 
of an access token and to pass this information to the client. This mechanism can be 
used to issue short-living tokens.

Support providing refresh tokens in the 
authorization server
A refresh token can be sent along with a short lifetime access token to grant longer 
access to resources without involving user authorization. This offers an advantage 
where resource servers and authorization servers may not be the same entity. For 
example, in a distributed environment, the refresh token is always exchanged at the 
authorization server.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 57 ]

Using SSL and encryption
OAuth 2.0 heavily relies on HTTPS. This will make the framework simpler but  
less secure.

The following table provides a quick summary of when to use SAML and when to 
use OAuth.

Scenario SAML OAuth
If one of the parties is an 
enterprise

Use SAML

If the application needs to 
provide temporary access to 
some resources

Use OAuth

If the application needs a 
custom identity provider

Use SAML

If the application has mobile 
devices accessing it

Use OAuth 

If the application has no 
restrictions on the transport, 
for example, SOAP and JMS

Use SAML

OpenID Connect
There is work going on at the OpenID foundation with OpenID Connect. OpenID 
Connect is a simple REST- and JSON-based interoperable protocol built on top of 
OAuth 2.0. It is simpler than SAML, easy to maintain, and covers the various security 
levels from social networks to business applications to highly secure government 
applications. OpenID Connect and OAuth are the future for authentication and 
authorization. For more details, check http://openid.net/connect/.

Case studies of companies using OAuth 2.0 and OpenID Connect
Google+ Sign-In is built on the OAuth 2.0 and OpenID Connect protocols. 
It supports over-the-air installs, social features, and a sign-in widget on 
top of standardized OpenID Connect sign-in flows.

The next section will summarize some of the various components that we have 
covered so far when building RESTful services.

www.it-ebooks.info

http://www.it-ebooks.info/


Security and Traceability

[ 58 ]

REST architecture components
The following section will cover the various components that must be considered 
when building RESTful APIs. All of these will be covered in various sections of 
this book. We will also cover best practices for each pitfall to avoid when designing 
and developing the REST API. The REST architecture components are shown in the 
following diagram:

xml

HTTP
requests

Auth

REST
resources

Content
negotiation

Mobile and web
clients

Proxy servers

Rate
limiting Caching LoggingAuth

Micro
services

HTTP responses
and status codes

Pagination

Asynchronous
processing

Exception handling
and validationsHATEOAS

As seen from the preceding diagram, REST services can be consumed from a variety 
of clients and applications running on different platforms and devices such as mobile 
devices and web browsers.

These requests are sent through a proxy server. The REST architectural components 
in the diagram can be chained one after the other as shown in the preceding diagram. 
For example, there can be a filter chain, consisting of the Auth, Rate limiting, Caching, 
and Logging related filters. This will take care of authenticating the user, checking if 
the requests from the client are within rate limits, then a caching filter that can check 
if the request can be served from the cache respectively. This can be followed by a 
logging filter, which can log the details of the request.

On the response side, there can be Pagination, to ensure the server sends a subset 
of results. Also, the server can do Asynchronous processing, thus improving 
responsiveness and scale. There can be links in the response, which deals with 
HATEOAS.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 59 ]

These are some of the REST architectural components we have covered so far:

•	 HTTP requests to use the REST API with HTTP verbs for the uniform 
interface constraint

•	 Content negotiation to select a representation for a response when there  
are multiple representations available

•	 Logging to provide traceability to analyze and debug issues
•	 Exception handling to send application-specific exceptions with HTTP codes
•	 Authentication and authorization with OAuth 2.0 to give access control  

to other applications and to take actions without the user having to send  
their credentials

•	 Validation to send back detailed messages with error codes to the client as 
well as validations for the inputs received in the request

The next few chapters will focus on advanced topics as well as best practices for the 
following blocks. We will provide code snippets to show how to implement these 
with JAX-RS.

•	 Rate limiting to ensure the server is not burdened with too many requests 
from a single client

•	 Caching to improve application responsiveness
•	 Asynchronous processing so that the server can asynchronously send  

back the responses to the client
•	 Micro services that comprise breaking up a monolithic service into  

fine-grained services
•	 HATEOAS to improve usability, understandability, and navigability  

by returning a list of links in the response
•	 Pagination to allow clients to specify items in a dataset that they are 

interested in

We will also cover how major platforms such as Facebook, Google, GitHub,  
and PayPal have approached each of these solutions in their REST API.

www.it-ebooks.info

http://www.it-ebooks.info/


Security and Traceability

[ 60 ]

Recommended reading
The following links can be useful to get additional information related to the topics 
in this chapter:

•	 https://developers.google.com/oauthplayground/: Google OAuth 
playground to create and test signed requests

•	 http://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-
hell/: OAuth 2.0 and road to hell

•	 https://developers.google.com/accounts/docs/OAuth2Login:  
Google Accounts Authentication and Authorization

•	 https://github.com/facebookarchive/scribe: Scribe log server  
for Facebook

•	 http://static.googleusercontent.com/media/research.google.com/
en/us/pubs/archive/36356.pdf: Google Dapper large-scale distributed 
tracing architecture

Summary
This chapter started off with a brief introduction to logging RESTful APIs  
and the key principles were to recognize the importance of logging requests  
and best practices for logging including security compliance. We learned how  
to validate JAX-RS 2.0 resources using Bean Validation. In this chapter, we also  
saw how to write generic exception mappers for application-specific cases.

We covered how federated identities are a necessity in the current era of 
interconnected hybrid systems, protocols, and devices. We covered SAML  
and OAuth 2.0 similarities between SAML and 3-legged OAuth as well as  
best practices for OAuth.

The next chapter will walk through topics such as caching patterns and 
asynchronous REST API to improve performance and scalability, followed  
by a closer look at how to perform partial updates with HTTP Patch and  
the newer JSON Patch.

www.it-ebooks.info

http://www.it-ebooks.info/


Designing for Performance
REST is an architectural style confirming to the web architecture design and needs to 
be properly designed and implemented so that it allows you to take advantage of the 
scalable web. This chapter covers advanced design principles related to performance 
that every developer must know when building RESTful services.

Topics covered in this chapter include the following:

•	 Caching principles
•	 Asynchronous and long-running jobs in REST
•	 HTTP PATCH and partial updates

We will elaborate on the different HTTP cache headers and learn how to send 
conditional requests to see whether the new content or the cached content needs to be 
returned. We will then show with samples how to use JAX-RS to implement caching.

Additionally, we will cover how the Facebook API uses ETags for caching. Next, we 
will walk through asynchronous request response processing with JAX-RS and best 
practices. Finally, we will cover HTTP PATCH method and learn how to implement 
partial updates and common practices around partial updates.

Different snippets of code are included in the chapter, but complete samples 
that show these snippets in action are included as part of this book's source code 
download bundle.

www.it-ebooks.info

http://www.it-ebooks.info/


Designing for Performance

[ 62 ]

Caching principles
In this section, we will cover the different programming principles when designing 
RESTful services. One of the areas we will cover is caching. Caching involves storing 
response information related to the requests in a temporary storage for a specific 
period of time. This ensures the server is not burdened with processing those requests 
in future when the responses can be fulfilled from the cache.

The cache entries can be invalidated after a specific time interval. The cache entries 
can also be invalidated when the objects, which are in the cache, change, for example, 
when some API modifies or deletes a resource.

There are many benefits to caching. Caching helps to reduce latency and improve 
application responsiveness. It helps in reducing the number of requests the server 
has to deal with and thus the server is able to handle more requests, and the clients 
will get responses quicker.

Generally, assets such as images, JavaScript files, and stylesheets can all be cached 
fairly heavily. Also, it is advisable to cache responses, which may require intensive 
computation on the backend.

Caching details
The following section covers the topics related to caching. The key to making caching 
work effectively is to use HTTP caching headers that specify how long a resource is 
valid and when it was last changed.

Types of caching headers
The next section covers the types of caching headers followed by examples of each 
type of caching header. The following are the types of headers:

•	 Strong caching headers
•	 Weak caching headers

Strong caching headers
The strong caching headers specify for how long a cached resource is valid and the 
browser does not need to send any more GET requests till that period. Expires and 
Cache-Control max-age are strong caching headers.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 63 ]

Weak caching headers
The weak caching headers help the browser decide if it needs to fetch an item  
from the cache by issuing a conditional GET request. Last-Modified and ETag  
are examples of weak caching headers.

Expires and Cache-Control – max-age
The Expires and Cache-Control headers specify the time period during which 
the browser can use the cached resource without checking for a newer version. The 
newer resource will not be fetched until the expiry date or maximum age specified 
is reached if these headers are set. The Expires header takes a date after which 
the resource becomes invalid. Instead of specifying a date, the max-age attribute 
mentions how long the resource is valid after it is downloaded.

The Cache-Control header and directives
In HTTP 1.1, the Cache-Control header specifies the resource caching behavior as 
well as the maximum age the resource can be cached. The following table shows the 
different directives of the Cache-Control header:

Directive Meaning
private When this directive is used, the browser can 

cache the object, but proxies and content 
delivery networks cannot

public When this directive is used, an object can 
be cached by browser, proxies, and content 
delivery networks

no-cache When this directive is used, an object will not 
be cached

no-store When this is used, an object can be cached in 
memory but should not be stored on disk

max-age This denotes the time for which the resource 
is valid

Here is an example of a response with the Cache-Control HTTP/1.1 header in  
a response:

HTTP/1.1 200 OK Content-Type: application/json
Cache-Control: private, max-age=86400
Last-Modified: Thur, 01 Apr 2014 11:30 PST

www.it-ebooks.info

http://www.it-ebooks.info/


Designing for Performance

[ 64 ]

The preceding response has a Cache-Control header with directives as private  
and max-age set to 24 hours or 86400 seconds.

Once a resource is invalid based on the max-age or Expires header, the client can 
request the resource again or send a conditional GET request that gets the resource 
only if it has changed. This can be achieved by the weaker caching headers: the 
Last-Modified and ETag headers as shown in the next section.

Last-Modified and ETag
These headers enable the browser to check if the resource has changed since the 
last GET request. In the Last-Modified header, there is a date associated with 
the modification of the resource. In the ETag header, there can be any value that 
uniquely identifies a resource (like a hash). However, these headers allow the 
browser to efficiently update its cached resources by issuing conditional GET 
requests. Conditional GET requests will return the full response only if the  
resource has changed at the server. This ensures conditional GET requests  
will have lower latency than full GET requests.

The Cache-Control header and the REST API
The following code shows how to add the Cache-Control header to a JAX-RS 
response. The sample is available as part of the book's downloadable source bundle.

@Path("v1/coffees")
public class CoffeesResource {

    @GET
    @Path("{order}")
    @Produces(MediaType.APPLICATION_XML)
    @NotNull(message = "Coffee does not exist for the order id  
      requested")
    public Response getCoffee(@PathParam("order") int order) {
        Coffee coffee = CoffeeService.getCoffee(order);
        CacheControl cacheControl = new CacheControl();
        cacheControl.setMaxAge(3600);
        cacheControl.setPrivate(true);
        Response.ResponseBuilder responseBuilder =  
          Response.ok(coffee);
        responseBuilder.cacheControl(cacheControl);
        return responseBuilder.build();

    }

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 65 ]

JAX-RS has a javax.ws.rs.core.Cache-Control class, which is an abstraction for the 
HTTP/1.1 Cache-Control header. The setMaxAge() method on the cacheControl 
object corresponds to the max-age directive and setPrivate(true) corresponds to 
the private directive. The response is built using the responseBuilder.build() 
method. The cacheControl object is added to the Response object that is returned  
by the getCoffee() method.

The following is the response with headers produced by this application:

curl -i http://localhost:8080/caching/v1/coffees/1
HTTP/1.1 200 OK
X-Powered-By: Servlet/3.1 JSP/2.3 (GlassFish Server Open Source 
Edition  4.0  Java/Oracle Corporation/1.7)
Server: GlassFish Server Open Source Edition  4.0 
Cache-Control: private, no-transform, max-age=3600
Content-Type: application/xml
Date: Thu, 03 Apr 2014 06:07:14 GMT
Content-Length: 143

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<coffee>
<name>Mocha</name>
<order>1</order>
<size>Small</size>
<type>Chocolate</type>
</coffee>

ETags
HTTP defines a powerful caching mechanism that includes the following headers:

•	 The ETag header
•	 The If-Modified-Since header
•	 The 304 Not Modified response code

www.it-ebooks.info

http://www.it-ebooks.info/


Designing for Performance

[ 66 ]

How ETags work
The following section digs into some basics of how ETags work. The following 
diagram gives a better picture of this:

GET api.com/coffee/1234

GET api.com/coffee/1234

How ETags Work

304 Not Modified

If - None - Match : " 123456789 "

200 ETag: " 123456789 "OK

Client Server1

2

3

4

Let's have a look at each of the processes related to ETags:

1.	 The client sends a GET request to the http://api.com/coffee/1234  
REST resource.

2.	 The server sends back a 200 OK with an ETag value, for example, 
"123456789".

3.	 After some time, the client sends another GET request to api.com/
coffee/1234 REST resource along with the If-None-Match:  
"123456789" header.

4.	 The server checks if the resource MD5 hash has not been modified,  
then sends a 304 Not-Modified response with no response body.

If the resource had changed, a 200 OK would be sent as the response. Additionally, 
as part of the response, a new ETag is sent by the server.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 67 ]

The ETag header and the REST API
The following code shows how to add the ETag header to the JAX-RS response:

    @GET
    @Path("/etag/{order}")
    @Produces(MediaType.APPLICATION_JSON)
    @NotNull(message = "Coffee does not exist for the order id  
      requested")
    public Response getCoffeeWithEtag(@PathParam("order")  
      int order,
                                      @Context Request request
    ) {
        Coffee coffee = CoffeeService.getCoffee(order);
        EntityTag et = new EntityTag(
                "123456789");
        Response.ResponseBuilder responseBuilder  =  
          request.evaluatePreconditions(et);
        if (responseBuilder != null) {
            responseBuilder.build();
        }
        responseBuilder = Response.ok(coffee);
        return responseBuilder.tag(et).build();

In the preceding snippet of code, the instance of javax.ws.core.EntityTag object is 
created by using a hash of the resource, which for simplicity, we have "123456789".

The request,evalautePreconditions method checks for the value of the EntityTag 
et object. If the preconditions are met, it returns a response with 200 OK.

The EntityTag object, et, is then sent with the response, which is returned by the 
getCoffeeWithETag method. For more details, please refer to the sample available 
as part of the source bundle for the book.

Types of ETags
A strongly validating ETag match indicates that the content of the two resources is 
byte-for-byte identical and that all other entity fields (such as Content-Language)  
are also unchanged.

A weakly validating ETag match only indicates that the two resources are semantically 
equivalent, and that cached copies can be used.

www.it-ebooks.info

http://www.it-ebooks.info/


Designing for Performance

[ 68 ]

Caching helps reduce the number of requests made by the client. It also helps in 
reducing the number of complete responses saving bandwidth and computational 
time with the conditional GET requests and ETags, IF-None-Match headers, and 
304-Not Modified response.

It is a good practice to specify either Expires or Cache-Control max-
age along with one of the two Last-Modified and ETag headers in the 
HTTP response. Sending both Expires and Cache-Control max-age is 
redundant. Similarly, sending both Last-Modified and ETag is redundant.

The Facebook REST API and ETags
The Facebook Marketing API supports ETags on the Graph API. When the consumer 
makes a Graph API call, the response header includes an ETag with a value that is the 
hash of the data returned in the API call. Next time the consumer makes the same API 
call, he can include the If-None-Match request header with the ETag value saved from 
the first step. If the data has not changed, the response status code will be 304 –Not 
Modified and no data is returned.

If the data on the server side has changed since the last query, the data is returned  
as usual with a new ETag. This new value of ETag can be used for subsequent calls. 
For more details, check http://developers.facebook.com.

RESTEasy and caching
RESTEasy is a JBoss project that provides various frameworks to help build RESTful 
web services and RESTful Java applications. RESTEasy can run in any servlet container, 
but has a tighter integration with the JBoss Application Server.

RESTEasy provides an extension to JAX-RS that allows setting Cache-Control 
headers on a successful GET request automatically.

It also provides a server-side, local, in-memory cache that can sit in front of the JAX-
RS services. It automatically caches marshalled responses from HTTP GET JAX-RS 
invocations if the JAX-RS resource method sets a Cache-Control header.

When a HTTP GET request arrives, the RESTEasy server cache will check to see if 
the URI is stored in the cache. If it does, it returns the already marshalled response 
without invoking the JAX-RS method.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 69 ]

For more information, check http://www.jboss.org/resteasy.

Tips when caching on the server side
Invalidate the cache entry for a PUT or a POST request. Do not cache 
a request that has a query parameter, as once the query parameter 
value changes the cached response from the server may not be valid.

Asynchronous and long-running jobs  
in REST
A common pattern in developing RESTful API is to deal with asynchronous  
and long-running jobs. API developers need to create resources that might take a 
considerable amount of time. They cannot have the clients wait on the API to finish.

Consider placing an order for a coffee at a coffee shop. The order details are stored 
in a queue and when the barista is free, he processes your order. Till then you get a 
receipt acknowledging your order but the actual coffee arrives later.

Asynchronous resource processing works on the same principles. Asynchronous 
resources mean the resources cannot be created immediately. Maybe it will be  
placed inside a task/message queue that will handle the actual creation of the 
resource or something similar.

Consider the following request to order a small coffee in our sample:

POST v1/coffees/order HTTP 1.1 with body
<coffee>
  <size> SMALL</coffee>
  <name>EXPRESSO</name>
  <price>3.50</price>
<coffee>

The response can be sent back as the following:

HTTP/1.1 202 Accepted
Location: /order/12345

The response sends back a 202 Accepted header. The Location header can provide 
details about the coffee resource.

www.it-ebooks.info

http://www.it-ebooks.info/


Designing for Performance

[ 70 ]

Asynchronous request and response 
processing
The asynchronous processing is included in both client- and server-side APIs  
of JAX-RS 2.0 to facilitate asynchronous interaction between client and server 
components. The following list shows the new interfaces and classes added  
to support this feature on the server and the client side:

•	 Server side:
°° AsyncResponse: This is an injectable JAX-RS asynchronous response 

that provides means for asynchronous server-side response processing
°° @Suspended: The @Suspended annotation instructs the container that 

the HTTP request processing should happen in a secondary thread
°° CompletionCallback: This is a request-processing callback that 

receives request-processing completion events
°° ConnectionCallback: This is an asynchronous request-processing 

lifecycle callback that receives connection-related asynchronous 
response lifecycle events

•	 Client side:
°° InvocationCallback: This is a callback that can be implemented  

to receive the asynchronous processing events from the  
invocation processing

°° Future: This allows the client to poll for completion of the 
asynchronous operation or to block and wait for it

The Future interface introduced in Java SE 5 provides two different 
mechanism to get the result of an asynchronous operation: first by 
invoking the Future.get(…) variants that blocks until the result 
is available or a timeout occurs, and the second way is to check for 
completion by invoking the isDone() and isCancelled(), which 
are Boolean methods that return the current status of Future. For 
more details, check http://docs.oracle.com/javase/1.5.0/
docs/api/java/util/concurrent/Future.html.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 71 ]

The following diagram shows the asynchronous request/response processing  
in JAX-RS:

Client

GET v1/coffee/orders

request thread is released

response is returned to
client on another thread

Asynchronous request/response processing in JAX-RS

work on request

ctx.resume sends response

some
operation

CoffeeResource Thread

The client makes a request for an asynchronous method on CoffeeResource.  
The CoffeeResource class creates a new thread, which can do some intensive 
operation and then send back the response. Meanwhile, the request thread is 
released and can handle other requests. When the thread working on the  
operation finishes the processing, it returns the response to the client.

The following sample code shows how an asynchronous resource can be  
developed using JAX-RS 2.0 API:

@Path("/coffees")
@Stateless
public class CoffeeResource {   
  @Context private ExecutionContext ctx;
  @GET @Produce("application/json")
  @Asynchronous
  public void order() {

www.it-ebooks.info

http://www.it-ebooks.info/


Designing for Performance

[ 72 ]

        Executors.newSingleThreadExecutor().submit( new Runnable()  
          {
         public void run() { 
              Thread.sleep(10000);     
              ctx.resume("Hello async world! Coffee Order is  
                1234");
          } });
ctx.suspend();
return;
  }
}

The CoffeesResource class is a stateless session bean, which has a method called 
order(). This method is annotated with the @Asynchronous annotation, which will 
work in the fire-and-forget manner. When the resource is requested by the client 
through the order() method's resource path, a new thread is spawned to work on 
preparing the request's response. The thread is submitted to the executor for execution 
and the thread processing the client request is released (via ctx.suspend) to process 
other incoming requests.

When the worker thread, created to prepare the response, is done with preparing 
the response, it invokes the ctx.resume method, which lets the container know the 
response is ready to be sent back to the client. If the ctx.resume method is invoked 
before the ctx.suspend method (the worker thread has prepared the result before 
the execution reaching the ctx.suspend method), the suspension is ignored and the 
result will be sent to the client.

The same functionality can be achieved using the @Suspended annotation that is 
shown in the following snippet:

@Path("/coffees")
@Stateless
public class CoffeeResource {
@GET @Produce("application/json")
@Asynchronous
  public void order(@Suspended AsyncResponse ar) {
    final String result = prepareResponse();
    ar.resume(result)
  }
}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 73 ]

Using the @Suspended annotation is cleaner as this does not involve the use of the 
ExecutionContext variable to instruct the container to suspend and then resume the 
communication thread when the worker thread, aka the prepareResponse() method 
in this case, is finished. The client code to consume the asynchronous resource can use 
the callback mechanism or polling at the code level. The following code shows how to 
use polling via the Future interface:

Future<Coffee> future = client.target("/coffees")
               .request()
               .async()
               .get(Coffee.class);
try {
   Coffee coffee = future.get(30, TimeUnit.SECONDS);
} catch (TimeoutException ex) {
  System.err.println("Timeout occurred");
}

The code begins with forming the request to the Coffee resource. It uses the  
javax.ws.rs.client.Client instance to call the target() method, which  
creates a javax.ws.rs.client.WebTarget instance for the Coffee resource.  
The Future.get(…) method blocks until the response is back from the server  
or the 30 seconds timeout is reached.

Another API for the asynchronous client is to use the javax.ws.rs.client.
InvocationCallback instance, which is a callback that can be implemented  
to get asynchronous events from the invocation. For more details, check  
https://jax-rs-spec.java.net/nonav/2.0/apidocs/javax/ws/rs/ 
client/InvocationCallback.html.

Asynchronous resources best practices
The following section lists the best practices when working with asynchronous 
RESTful resources.

Sending a 202 Accepted message
For asynchronous requests/responses, the API should send back a 202 Accepted 
message, in case the request is valid and the resource may be available in time, 
even if it is a few seconds. 202 Accepted means the request has been accepted for 
processing and the resource will be available shortly. The 202 Accepted message 
should specify the Location header, which can be used by the client to know where 
the resource will be available once it is created. The API should not send back a 201 
Created message if the response is not available immediately.

www.it-ebooks.info

http://www.it-ebooks.info/


Designing for Performance

[ 74 ]

Setting expiration for objects in the queue
The API developer should expire the objects after a certain amount of time in  
the queue. This ensures queue objects do not accumulate over time and are  
purged periodically.

Using message queues to handle tasks 
asynchronously
The API developer should consider using message queuing for asynchronous 
operations so that the messages are placed in the queue until a receiver receives 
them. Advanced Messaging Queuing Protocol (AMQP) is a standard that enables 
reliable and secure routing, queuing, publishing, and subscribing of messages. For 
more details, check Advanced Message Queuing Protocol at http://en.wikipedia.
org/wiki/Advanced_Message_Queuing_Protocol.

For example, when an asynchronous resource method is invoked, use message 
queuing to send messages and handle different tasks based on messages and  
events asynchronously.

In our sample, if a coffee order is placed, a message can be sent using RabbitMQ 
(http://www.rabbitmq.com/) to trigger the COMPLETED event. Once the order is 
completed, the details can be moved to an inventory system.

The next section covers another important detail for RESTful services for doing 
partial updates.

HTTP PATCH and partial updates
A common problem for API developers is to implement partial updates. This can 
happen when the client sends a request that must change just one part of a resource's 
state. For example, imagine that there is a JSON representation of your Coffee 
resource that looks like the following code snippet:

{
 "id": 1,
 "name": "Mocha"
 "size": "Small",
 "type": "Latte",
 "status":"PROCESSING"
}

Once the order is completed, the status needs to be changed from "PROCESSING"  
to "COMPLETED".

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 75 ]

In an RPC-style API, this could be handled by adding a method as follows:

GET myservice/rpc/coffeeOrder/setOrderStatus? 
  completed=true&coffeeId=1234

In the REST case using the PUT method, all the data like this needs to be sent,  
which will waste bandwidth and memory.

PUT /coffee/orders/1234
{
 "id": 1,
 "name": "Mocha"
 "size": "Small", 
 "type": "Latte", 
 "status": "COMPLETED"
}

To avoid sending the whole data for a minor update, another solution is to use  
PATCH to do a partial update:

PATCH /coffee/orders/1234
{
"status": "COMPLETED"
}

However, not all web servers and client will provide support for PATCH, so people 
have been supporting both partial updates with POST and PUT:

POST /coffee/orders/1234
{
"status": "COMPLETED"
}

Partial updates with PUT:

PUT /coffee/orders/1234
{
"status": "COMPLETED"
}

To summarize, using either PUT or POST for partial updates are both acceptable.  
The Facebook API uses POST to update partial resources. Using partial PUT would  
be more consistent with how we implement RESTful resources and methods as 
CRUD operations.

www.it-ebooks.info

http://www.it-ebooks.info/


Designing for Performance

[ 76 ]

To implement support for the PATCH method, here is how to add an annotation  
in JAX-RS:

  @Target({ElementType.METHOD}) 
    @Retention(RetentionPolicy.RUNTIME) 
    @HttpMethod("PATCH") 
    public @interface PATCH { 
  }

The preceding snippet shows how to associate the annotation of javax.ws.rs.
HTTPMethod with the name "PATCH". Once this annotation is created, then the  
@PATCH annotation can be used on any JAX-RS resource method.

JSON Patch
JSON Patch is part of RFC 6902. It is a standard designed to allow performing 
operations on JSON documents. JSON Patch can work with the HTTP PATCH 
method. It is useful to provide partial updates to JSON documents. The media type 
"application/json-patch+json" is used to identify such patch documents.

It takes the following members:

•	 op: This identifies the operation to be performed on the document.  
The acceptable values are "add", "replace", "move", "remove",  
"copy", or "test". Any other value is an error.

•	 path: This is the JSON pointer that represents the location in the  
JSON document.

•	 value: This denotes the value to be replaced in the JSON document.

The move operation takes a "from" member, which identifies the location in the 
target document to move the value from.

Here is an example of a JSON Patch document sent in a HTTP PATCH request:

PATCH /coffee/orders/1234 HTTP/1.1
Host: api.foo.com
Content-Length: 100
Content-Type: application/json-patch

[
  {"op":"replace", "path": "/status", "value": "COMPLETED"}
]

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 77 ]

The preceding request shows how JSON Patch can be used to replace the status of 
a coffee order identified by resource coffee/orders/1234 .The operation, that is, 
"op" in the preceding snippet, is "replace", which sets the value "COMPLETED" to  
the status object in the JSON representation.

The JSON Patch is very useful for single-page applications, real-time collaboration, 
offline data changes, and can also be used in applications that need to make small 
updates in large documents. For more details, check http://jsonpatchjs.com/, 
which is an implementation of JSON Patch.(RFC 6902) and JSON Pointer.(RFC 
6901) under the MIT License.

Recommended reading
The following section lists some of the online resources that are related to the topics 
covered in this chapter and may be useful for review:

•	 RESTEasy: http://resteasy.jboss.org/
•	 Couchbase: http://www.couchbase.com/
•	 Facebook Graph API Explorer: https://developers.facebook.com/
•	 RabbitMQ: https://www.rabbitmq.com/
•	 JSON Patch RFC 6902: http://tools.ietf.org/html/rfc6902
•	 JSON Pointer RFC 6901: http://tools.ietf.org/html/rfc6901

Summary
This chapter covered some serious ground introducing fundamental concepts of 
caching, demonstrating the different HTTP caching headers such as Cache-Control, 
Expires, and so on. We also saw how headers work and how ETags and Last-
Modified headers work for conditional GET requests that can improve performance. 
We covered best practices for caching, how RESTEasy supports server-side caching, 
and how Facebook API uses ETags. This chapter addressed asynchronous RESTful 
resources and best practices when working with an asynchronous API. We covered 
HTTP Patch and partial updates along with JSON Patch (RFC 6902).

The next chapter will deal with advanced topics that every developer building RESTful 
services should know related to commonly used patterns and best practices in areas of 
rate limiting, response pagination, and internationalization of REST resources. It will 
also cover additional topics such as HATEOAS, REST, and their extensibility.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Advanced Design Principles
This chapter covers advanced design principles that every developer must know 
when designing RESTful services. It also provides pragmatic insights that give the 
developer enough information to build complex applications with REST API.

This chapter will cover the following topics:

•	 Rate-limiting patterns
•	 Response pagination
•	 Internationalization and localization
•	 REST pluggability and extensibility
•	 Additional topics for REST API developers

Different snippets of code are included in the chapter, but the complete samples 
that show these snippets in action are included as part of the book's source code 
download bundle.

As we have done with the prior chapters, we'll attempt to cover the minimal level 
of detail required to empower the reader with a solid general understanding of 
inherently complex topics, while also providing enough of a technical drill-down  
so that the reader will be able to immediately get to work easily.

www.it-ebooks.info

http://www.it-ebooks.info/


Advanced Design Principles

[ 80 ]

Rate-limiting patterns
Rate limiting involves restricting the number of requests that can be made by a client. 
A client can be identified based on the access token it uses for the request as covered 
in Chapter 3, Security and Traceability. Another way the client can be identified is the 
IP address of the client.

To prevent abuse of the server, APIs must enforce throttling or rate-limiting 
techniques. Based on the client, the rate-limiting application can decide whether  
to allow the request to go through or not.

The server can decide what the natural rate limit per client should be, say for 
example, 500 requests per hour. The client makes a request to the server via an API 
call. The server checks if the request count is within the limit. If the request count is 
within the limit, the request goes through and the count is increased for the client.  
If the client request count exceeds the limit, the server can throw a 429 error.

The server can optionally include a Retry-After header, which indicates how long 
the client should wait before it can send the next request.

Every request from an application can be subjected to two different throttles: those 
with an access token and those without an access token. The quota of requests made 
by an application with an access token can vary from an application without an 
access token.

Here are the details of the HTTP 429 Too Many Requests error code.

429 Too Many Requests (RFC 6585)
The user has sent too many requests in a given amount of time. 
This is intended for use with rate-limiting schemes.

The response for a 429 Too Many Requests error may include a Retry-After 
header, indicating how long the client needs to wait before making a new request. 
The following is an example code snippet:

HTTP/1.1 429 Too Many Requests
Content-Type: text/html
Retry-After: 3600
 <html>
       <head>
   <title>Too Many Requests</title>
   </head>
 <body>

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 81 ]

 <h1>Too many Requests</h1>
       <p>100 requests per hour to this Web site per 
            logged in use allowed.</p>
   </body>
   </html>

The preceding example of an HTTP response sets a Retry-After header to 3600 
seconds to indicate when the client can retry later. Additionally, servers can send an 
X-RateLimit-Remaining header that can indicate how many requests are pending 
for this client.

Now that we have some ideas on what rate limiting is and how the rate-limiting 
error and Retry-After and X-RateLimit-Remaining headers work, let's get down 
to code with JAX-RS.

The following code in the The project's layout section shows how to implement a 
simple rate-limiting filter in JAX-RS.

The project's layout
The project's directory layout follows the standard Maven structure, which is briefly 
explained in the following table. This sample produces a WAR file, which can be 
deployed on any Java EE 7-compliant application server such as GlassFish 4.0.

This sample demonstrates a simple coffee shop service where clients can query for a 
particular order they placed.

Source code Description
src/main/java This directory contains all the sources 

required by the coffee shop application

The CoffeeResource class is a simple JAX-RS resource, shown as follows:

@Path("v1/coffees")
public class CoffeesResource {
    @GET
    @Path("{order}")
    @Produces(MediaType.APPLICATION_XML)
    @NotNull(message="Coffee does not exist for the order id  
      requested")
    public Coffee getCoffee(@PathParam("order") int order) {
        return CoffeeService.getCoffee(order);
    }
}

www.it-ebooks.info

http://www.it-ebooks.info/


Advanced Design Principles

[ 82 ]

The project has a CoffeeResource class that is used to get details about the coffee 
orders. The getCoffee method returns a Coffee object that contains the details of 
the order.

To enforce rate limiting, we will add a RateLimiter class that is a simple servlet 
filter as shown in the following diagram.

The RateLimiter class will check the IP address of the client and check if the number 
of requests that are made by the client exceeds the limit or not. The following diagram 
depicts the rate-limiting functionality covered by the sample in detail:

Case 1: Client request does not exceed rate limit

Client
GET <api.com>/foo

Rate
Limit
Filter Server

RESPONSE  { ...... }

GET <api.com>/foo

The preceding diagram shows a client making a GET request to http://api.com/foo. 
The Rate Limit Filter checks the access count of the client based on the IP address.  
As the client does not exceed the rate limit, the request is forwarded to the server.  
The server can return a JSON or XML or a text response.

The following diagram shows the client making a GET request to http://api.com/
foo. The Rate Limit Filter checks the access count of the client based on the IP address. 
Since the client exceeds the rate limit, the request is not forwarded to the server, and the 
Rate Limiter returns an error code of 429 Too Many Requests in the HTTP response.

Case 2: Client request exceeds rate limit

Client GET <api.com>/foo
Rate
Limit
Filter

Server

420 error
Retry-After header
X - RateLimit - Limit header

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 83 ]

A detailed look at the rate-limiting sample
To implement a rate limiter with JAX-RS, we need to implement a Filter class.  
This is shown in the following code snippet:

@WebFilter(filterName = "RateLimiter",
        urlPatterns = {"/*"}
        )
public class RateLimiter implements Filter {
    private static final int REQ_LIMIT = 3;
    private static final int TIME_LIMIT = 600000;
    private static AccessCounter accessCounter =  
      AccessCounter.getInstance();
}

The preceding snippet shows an implementation of the WebFilter interface of the 
javax.servlet.annotation package. The @WebFilter annotation indicates that 
this class is a filter for the application.

The @WebFilter annotation must have at least one urlPatterns or value attribute 
in the annotation.

The REQ_LIMIT constant stands for the number of requests that can be made in a time 
period. The TIME_LIMIT constant stands for the time duration for the rate limit after 
which new requests from a client can be accepted.

For simplicity, we have smaller limit values in the samples. In real-world scenarios, 
the limits could be, for example, 60 requests per minute or 1,000 requests per day.  
If the request count reaches the limit, the Retry-After header will indicate the time  
for which the client will have to wait before the server can process the next request.

To keep track of the request count associated with a client, we have created  
a class called AccessCounter. Here is the code for the AccessCounter class.  
The AccessCounter class is a Singleton class annotated with @Singleton.  
It stores a ConcurrentHashMap class that contains IP addresses as the keys  
and data related to the client, known as AccessData, as values.

@Singleton
public class AccessCounter {

    private static AccessCounter accessCounter;

    private static ConcurrentHashMap<String,AccessData> accessDetails 
= new ConcurrentHashMap<String, AccessData>();
}

www.it-ebooks.info

http://www.it-ebooks.info/


Advanced Design Principles

[ 84 ]

The AccessData class is responsible for storing the details for a client, such as the 
number of requests and when the last request was made. It is a simple Plain Old 
Java Object (POJO), as shown in the following code snippet:

public class AccessData {
    private long lastUpdated;
    private AtomicInteger count;

    public long getLastUpdated() {
        return lastUpdated;
    }

    public void setLastUpdated(long lastUpdated) {
        this.lastUpdated = lastUpdated;
    }

    public AtomicInteger getCount() {
        return count;
    }

    public void setCount(AtomicInteger count) {
        this.count = count;
    }

 …

As shown in the preceding snippet, the AccessData class has a field called count 
and a field called lastUpdated. Whenever a new request arrives, the count is 
incremented, and the lastUpdated field is set to the current time.

The doFilter() method of the RateLimiter class is used in the following  
code snippet:

@Override
    public void doFilter(ServletRequest servletRequest,  
      ServletResponse servletResponse,
                         FilterChain filterChain) throws  
                           IOException, ServletException {

        HttpServletRequest httpServletRequest =  
          (HttpServletRequest) servletRequest;
        HttpServletResponse httpServletResponse =  
          (HttpServletResponse) servletResponse;

        String ipAddress = getIpAddress(httpServletRequest);
        if (accessCounter.contains(ipAddress)) {

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 85 ]

            if (!requestLimitExceeded(ipAddress)) {
                accessCounter.increment(ipAddress);
                accessCounter.getAccessDetails(ipAddress 
                  ).setLastUpdated(System.currentTimeMillis());

            } else {
                
                httpServletResponse.addIntHeader( 
                  "Retry-After",TIME_LIMIT);
                httpServletResponse.sendError(429);

            }
        } else {
            accessCounter.add(ipAddress);

        }
        filterChain.doFilter(servletRequest, servletResponse)

    }

The preceding code shows the doFilter() method of the javax.servlet.Filter 
class, which is overridden in the RateLimiter implementation. In this method,  
the IP address of the client is first determined.

If the accessCounter class contains the IP address, a check is made to see if the 
request limit has exceeded in the requestLimitExceeded() method.

If the rate limit has exceeded, then the Retry-After headers are sent in the 
httpServletResponse along with a 429 Too Many Requests error. If there is  
a new request that comes from the same client after some time, and it is greater  
than the TIME_LIMIT value, then the counter is reset back to 0, and the request  
from the client can be processed again.

The following are the headers for rate limiting that can be sent back in the response 
to the client:

•	 X-RateLimit-Limit: The maximum number of requests that the client can 
make during a specific time period

•	 X-RateLimit-Remaining: The number of requests remaining in the current 
rate-limit window

A detailed sample is included with this book. After the sample is deployed on an 
application server, the client can make multiple requests to get order details for coffees.

www.it-ebooks.info

http://www.it-ebooks.info/


Advanced Design Principles

[ 86 ]

For the sake of simplicity, we have enforced the rate limit as 3 and the time limit as 
10 minutes. The following is a sample curl request:

curl -i http://localhost:8080/ratelimiting/v1/coffees/1

HTTP/1.1 200 OK

X-Powered-By: Servlet/3.1 JSP/2.3 (GlassFish Server Open Source Edition  
4.0  Java/Oracle Corporation/1.7)

Server: GlassFish Server Open Source Edition  4.0 

Content-Type: application/json

Date: Mon, 23 Jun 2014 23:27:34 GMT

Content-Length: 57

{

  "name":"Mocha",

  "order":1,

  "size":"Small",

  "type":"Brewed"

}

Once the rate limit has been crossed, you will see a 429 error:

curl -i http://localhost:8080/ratelimiting/v1/coffees/1

HTTP/1.1 429 CUSTOM

X-Powered-By: Servlet/3.1 JSP/2.3 (GlassFish Server Open Source Edition  
4.0  Java/Oracle Corporation/1.7)

Server: GlassFish Server Open Source Edition  4.0 

Retry-After: 600000

Content-Language: 

Content-Type: text/html

Date: Mon, 23 Jun 2014 23:29:04 GMT

Content-Length: 1098

This sample showed how to build your custom filters to implement 
rate limiting. Another option is to use an open source project 
called Repose, which is a scalable and extensive rate-limiting 
implementation. Repose is an open source HTTP proxy service that 
provides rate-limiting, client-authentication, versioning, and so on. 
For more details, check http://openrepose.org/.

In the next section, we will discuss the best practices that must be followed to avoid 
reaching rate limits when consuming a REST API.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 87 ]

Best practices to avoid reaching the rate limits
Here are the best practices that can be followed to avoid reaching rate limits when 
consuming a REST API.

Caching
Caching API responses on the server side can help avoid reaching the rate limits. 
Setting reasonable expiry time intervals ensures the database is not thrashed with 
queries, and responses can be sent from the cache if the resource has not changed. 
For example, an application that displays tweets fetched from Twitter can cache  
the response from the Twitter API or use the Twitter Streaming API (covered in  
the following section). Ideally, API consumers should not make identical requests 
more than once a minute. This is generally a waste of bandwidth, as in most cases  
the exact same result will be returned.

Not making calls in loops
It is a good practice to not make API requests inside loops. The server API should be 
designed to be as verbose as possible and help the clients by sending as much detail as 
possible in the response. This ensures the consumers can fetch a collection of objects in 
one API operation instead of fetching individual objects inside a loop.

Logging requests
It is a good practice to use logging on the client side to see how many requests the 
client is making. Observing the logs will help the clients analyze as to which are the 
non-redundant queries that add to the rate limits and can be eliminated.

Avoiding polling
Additionally, consumers should not poll for changes. Instead of polling to see if the 
content has changed, the client can use WebHooks (http://en.wikipedia.org/
wiki/Webhook) or Push Notifications (http://en.wikipedia.org/wiki/Push_
technology) to receive a notification. More details on WebHooks will be given in 
Chapter 6, Emerging Standards and the Future of REST.

Supporting the streaming API
API developers can support a streaming API. This can help the client avoid reaching 
the rate limits. The set of streaming APIs offered by Twitter gives developers low 
latency access to Twitter's global stream of tweet data. A streaming client does not 
need to bear the overhead, associated with polling a REST endpoint and will get 
messages indicating tweets and other events that have occurred.

www.it-ebooks.info

http://www.it-ebooks.info/


Advanced Design Principles

[ 88 ]

Once applications establish a connection to a streaming endpoint, they are delivered 
a feed of tweets, without worrying about polling or REST API rate limits.

Case study of Twitter REST API rate limits
Twitter has a rate limit of 150 requests per hour per unauthenticated 
client.
OAuth calls are permitted 350 requests per hour based on the access 
token in the request.
An application that exceeds the rate limitations of the Search API 
will receive an HTTP 420 response code. The best practice is to 
watch for this error condition and honor the Retry-After header that 
is returned. The Retry-After header's value is the number of seconds 
the client application should wait before requesting data from the 
Search API again. In case the client sends more than the allowed 
requests per hour, the client gets a 420 Enhance Your Calm error.

420 Enhance Your Calm (Twitter)
This is not part of the HTTP standard but returned by the Twitter 
Search and Trends API when the client is being rate-limited. 
Applications should ideally implement the 429 Too Many 
Requests response code instead.

Response pagination
REST APIs are consumed by other systems from web to mobile clients and hence, 
responses that return multiple items should be paged with a certain number of items 
per page. This is known as Response pagination. Along with the response, it is always 
good to add some additional metadata about the total count of objects, the total number 
of pages, and the links that refer to the next set of results. The consumers can specify a 
page index to query for results and the number of results per page.

Implementing and documenting default settings for the number of results per page  
is a recommended practice in case the client does not specify the number of results 
per page. For example, GitHub's REST API sets the default page size to 30 records 
with a maximum of 100, and sets a rate limit on the number of times the client can 
query the API. If the API has a default page size, then the query string can just 
specify the page index.

The following section covers the different types of pagination techniques that can 
be used. API developers may choose to implement one or more of these techniques 
based on their use cases.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 89 ]

Types of pagination
The following are the different techniques of pagination that can be used:

•	 Offset-based pagination
•	 Time-based pagination
•	 Cursor-based pagination

Offset-based pagination
Offset-based pagination is the case when the client wants results specified by a page 
number and the number of results per page. For example, if a client wants to query 
all the details of books checked out, or the coffees ordered, they can send in a query 
request as follows:

GET v1/coffees/orders?page=1&limit=50

The following table details what query parameters the offset-based pagination  
would include:

Query parameter Description
page This specifies which page to return
limit This specifies the number of maximum results 

per page that can be included in the response

Time-based pagination
The time-based pagination technique will be used when the client wants to query for 
a set of results between a specific timeframe.

For example, to get a list of coffees ordered between a specific timeframe, a client can 
send in a query as follows:

GET v1/coffees/orders?since=140358321&until=143087472

The following table details what query parameters a time-based pagination  
would include:

Query parameter Description
until: This is a Unix timestamp that points to the end of the time range
since This is a Unix timestamp that points to the beginning of the time range
limit This specifies the number of max results per page that can be included 

in the response

www.it-ebooks.info

http://www.it-ebooks.info/


Advanced Design Principles

[ 90 ]

Cursor-based pagination
The cursor-based pagination is a technique where the results are separated into 
pages by a cursor, and the results can be navigated forwards and backwards using 
the next and previous cursors that are provided in the response.

The cursor-based pagination API avoids returning duplicate records in cases where 
additional resources are added between pagination requests. This is because the 
cursor parameter is a pointer that indicates where to resume the results from, for  
the subsequent call.

Twitter and cursor-based pagination
Here is an example of how Twitter uses cursor-based pagination. A query to get the 
IDs of a user who has a large number of followers could be paginated and returned 
in the following format:

{
    "ids": [
        385752029, 
        602890434, 
        ...
        333181469, 
        333165023
    ],
    "next_cursor": 1374004777531007833, 
    "next_cursor_str": "1374004777531007833", 
    "previous_cursor": 0, 
    "previous_cursor_str": "0"
}

The next_cursor value could be passed to the next query to get the next set of results:

GET https://api.twitter.com/1.1/followers/ids.json? 
screen_name=someone &cursor=1374004777531007833

Using the next_cursor and the previous_cursor values, it is easy to navigate 
between the set of results.

Now that we have covered the different pagination techniques, let's go over a sample 
in detail. The following sample shows how to implement a simple offset-based 
pagination technique with JAX-RS.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 91 ]

The project's layout
The project's directory layout follows the standard Maven structure, which is briefly 
explained in the following table.

The example used is that of a coffee shop service that can be queried for all orders 
placed so far.

Source code Description
src/main/java This directory contains all the sources required 

by the coffee shop application

Here is the CoffeeResource class:

@Path("v1/coffees")
public class CoffeesResource {
    @GET
    @Path("orders")
    @Produces(MediaType.APPLICATION_JSON)
    public List<Coffee> getCoffeeList( 
@QueryParam("page")  @DefaultValue("1") int page,
                                       @QueryParam("limit") @
DefaultValue("10") int limit ) {
        return CoffeeService.getCoffeeList( page, limit);

    }
}

The getCoffeeList() method takes two QueryParam values: page and limit. The 
page QueryParam value corresponds to the page index and limit corresponds to 
the number of results per page. The @DefaultValue annotation specifies the default 
values that can be used if the query parameters are absent.

Here is the output when the sample is run. The metadata element contains details  
of the totalCount value that is the total number of records. Additionally, there is  
the links attribute of JSONArray that contains details such as self, which is the 
current page, and next, which is the next link to fetch more results.

{
    "metadata": {
        "resultsPerPage": 10,
        "totalCount": 100,
        "links": [
            {
                "self": "/orders?page=1&limit=10"
            },

www.it-ebooks.info

http://www.it-ebooks.info/


Advanced Design Principles

[ 92 ]

            {
                "next": "/orders?page=2&limit=10"
            }
        ]
    },
    "coffees": [
        {
            "Id": 10,
            "Name": "Expresso",
            "Price": 2.77,
            "Type": "Hot",
            "Size": "Large"
        },
        {
            "Id": 11,
            "Name": "Cappuchino",
            "Price": 0.14,
            "Type": "Brewed",
            "Size": "Large"
        },
…..
       ……
    ]
}

The sample is bundled with this book's downloadable source code bundle.

It is always a good practice to include the default values for the number of 
results per page in REST API for pagination. Also, it is recommended that 
the API developers add metadata on the response, so consumers of the 
API can fetch additional information easily to get the next set of results.

Internationalization and localization
Often, services need to operate in a global environment and responses need to be 
tailored based on the country and locale. Localization parameters can be specified  
in one of the following fields:

•	 HTTP headers
•	 Query parameters
•	 Content of the REST response

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 93 ]

Language negotiation is similar to content negotiation; the HTTP header Accept-
Language can take different language codes based on any two-letter initial for 
ISO-3166 country codes (http://www.iso.org/iso/country_codes.htm). The 
Content-Language header is similar to the Content-Type header and can specify 
the language for the response.

For example, here is a Content-Language header sent in the response to a request 
sent by a client:

HTTP/1.1 200 OK
X-Powered-By: Servlet/3.1 JSP/2.3 (GlassFish Server Open Source  
  Edition  4.0  Java/Oracle Corporation/1.7)
Server: GlassFish Server Open Source Edition  4.0 
Content-Language: en
Content-Type: text/html
Date: Mon, 23 Jun 2014 23:29:04 GMT
Content-Length: 1098

The preceding response sets Content-Language to en as part of the response.

JAX-RS supports runtime content negotiation using the javax.ws.rs.core.Variant 
class and Request objects. The Variant class may contain a media type, a language, 
and an encoding. The Variant.VariantListBuilder class is used to build a list of 
representation variants.

The following code snippet shows how to create a list of resource representation 
variants:

List<Variant> variantList = 
    Variant.
      .languages("en", "fr").build();

The preceding code snippet calls the build method of the VariantListBuilder class 
with languages "en" and "fr".

Query parameters can include locale-specific information so that the server can 
return the information in that language.

The following is an example:

GET v1/books?locale=fr

This query shows an example that will include the locale in the query parameter 
to get details of books. Additionally, the content of the REST response can contain 
country-specific details such as currency codes, and other details based on the  
HTTP headers or the query parameters sent in the request.

www.it-ebooks.info

http://www.it-ebooks.info/


Advanced Design Principles

[ 94 ]

Miscellaneous topics
The following sections cover some details on miscellaneous topics such as HATEOAS, 
and Extensibility in REST.

HATEOAS
Hypermedia as the Engine of Application State (HATEOAS) is a constraint of the 
REST application architecture.

A hypermedia-driven API gives details about the APIs that are available and the 
corresponding actions that can be taken by the consumer, by providing hypermedia 
links in the response sent by the server.

For example, a book representation for a REST resource that contains data such as 
the name and ISBN would look as follows:

{ 
   "Name":" Developing RESTful Services with JAX-RS 2.0,
            WebSockets, and JSON",
   "ISBN": "1782178120"
}

A HATEOAS implementation would return the following:

{
    "Name":" Developing RESTful Services with JAX-RS 2.0, 
             WebSockets, and JSON",
    "ISBN": "1782178120"
    "links": [
       {
        "rel": "self",
        "href": "http://packt.com/books/123456789"
       }
    ]
}

In the preceding sample, the links element has the rel and href JSON objects.

The rel attribute in this example is a self-referencing hyperlink. More complex 
systems might include other relationships. For example, a book order might have  
a "rel":"customer" relationship, linking the book order to its customer. href is  
a complete URL that uniquely defines the resource.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 95 ]

The advantage of HATEOAS is that it helps client developers explore the protocol. 
The links give client developers a hint as to what may be the possible next action to 
take. While there is no standard for hypermedia controls, the recommendations are 
to follow the ATOM RFC (4287).

According to the Richardson Maturity Model, HATEOAS is 
considered the final level of REST. This means that each link is 
presumed to implement the standard REST verbs of GET, POST, PUT, 
and DELETE. Adding details using the links element as shown in 
the preceding code snippet gives the client the information they need 
to navigate the service and take the next action.

The PayPal REST API and HATEOAS
PayPal REST API provides HATEOAS support, so with every response, there is a 
collection of links that can help the consumer decide the next action to take.

For example, a sample response from the PayPal REST API includes the JSON objects 
shown in the following code:

{
    "href": "https://www.sandbox.paypal.com/webscr?cmd 
      =_express-checkout&token=EC-60U79048BN7719609",
    "rel": "approval_url",
    "method": "REDIRECT"
  },
  {
    "href": "https://api.sandbox.paypal.com/v1/payments/ 
      payment/PAY-6RV70583SB702805EKEYSZ6Y/execute",
    "rel": "execute",
    "method": "POST"
  }

A brief description of the attributes is as follows.

•	 href: This contains information about URLs that can be used for future  
REST API calls

•	 rel: This link shows how it is related to the previous REST API calls
•	 method: This shows which method is to be used for the REST API calls

For more details, check https://developer.paypal.com/docs/
integration/direct/paypal-rest-payment-hateoas-links/.

www.it-ebooks.info

http://www.it-ebooks.info/


Advanced Design Principles

[ 96 ]

REST and extensibility
RESTful applications are more extensible as well as more maintainable over 
time. RESTful applications based on constraints of the design style are easier to 
understand and work with, mainly due to their simplicity. They are also more 
predictable, since it's all about the resources. Also, RESTful applications are easier 
to work with as opposed to an XML-RPC application, where the consumer needs to 
parse a complex WSDL document to even begin to understand what's happening.

Additional topics for the REST API
The following section lists additional topics that may be useful for REST developers. 
We have covered topics in earlier chapters, from the designing of RESTful services, 
error handling, validations, authentication, and caching to rate limiting. This section 
focuses on additional utilities to empower the REST API developer with better 
testing and documentation.

Testing RESTful services
It is always efficient to have an automated set of tests, which can validate responses 
sent by the server. One such framework to build automated tests for RESTful services 
is REST Assured.

REST Assured is the Java DSL for easy testing of RESTful services. It supports GET, 
PUT, POST, HEAD, OPTIONS, and PATCH, and can be used to validate as well as verify 
responses that the server sends.

The following is an example of getting a coffee order and verifying the ID returned 
in the response:

    get("order").
    then().assertThat().
    body("coffee.id",equalTo(5));

In the preceding snippet, we make a call to get a coffee order and verify that the 
coffee.id value is 5.

REST Assured supports specifying and validating, for example, parameters,  
headers, cookies, and body easily. It also supports mapping Java objects to and  
from JSON and XML. For more details, you can check https://code.google.
com/p/rest-assured/.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 97 ]

Documenting RESTful services
It is always a good practice to provide documentation on the RESTful services built 
for the consumers, whether they are from within the same enterprise or whether the 
consumer is an external application or a mobile client. The following section covers 
some frameworks for providing good documentation for RESTful services.

Swagger is a framework implementation for describing, producing, consuming,  
and visualizing RESTful web services. The documentation of methods, parameters, 
and models are tightly integrated into the server code. Swagger is language-agnostic 
and implementations for Scala, Java, and HTML5 are available.

The tutorial on how to add Swagger to the REST API is found at the following URL:

https://github.com/wordnik/swagger-core/wiki/Adding-Swagger-to-your-
API

Recommended reading
The following links refer to some of the topics that are covered in this chapter,  
and they will be useful to review and get detailed information:

•	 https://dev.twitter.com/docs: The Twitter API documentation
•	 https://dev.twitter.com/console: The Twitter Developer console
•	 https://dev.twitter.com/docs/rate-limiting/1.1: The Twitter  

API rate limiting in v1.1
•	 https://dev.twitter.com/docs/misc/cursoring: The Twitter  

API and cursoring
•	 https://dev.twitter.com/docs/api/streaming: The Twitter  

streaming APIs
•	 https://developers.facebook.com/docs/reference/ads-api/api-

rate-limiting/: Facebook API rate limiting
•	 https://developer.github.com/v3/rate_limit/: GitHub API  

rate limiting
•	 https://developers.facebook.com/docs/opengraph/guides/

internationalization/: Facebook localization

www.it-ebooks.info

http://www.it-ebooks.info/


Advanced Design Principles

[ 98 ]

Summary
This chapter covered advanced topics that every RESTful API developer should know. 
In the beginning, we saw the rate-limiting sample that demonstrated how to enforce 
throttling so that the server is not blasted with API calls. We also saw how Twitter, 
GitHub, and Facebook APIs enforce rate limiting. We covered different pagination 
techniques and a basic pagination sample and best practices. Then, we moved on to 
internationalization and other miscellaneous topics. Finally, we covered HATEOAS 
and how it is the next level of REST API, REST, and extensibility topics.

The next chapter will cover other emerging standards such as WebSockets, WebHooks, 
and the role of REST in the future of evolving web standards.

www.it-ebooks.info

http://www.it-ebooks.info/


Emerging Standards and  
the Future of REST

This chapter covers the emerging and evolving technologies that will augment  
the functionality of RESTful services and provide some perspective on the future of 
REST as well as other real-time API supporters. We will cover some of the real-time 
APIs and see how they can help with respect to older ways such as polling. Given 
the ubiquitous popularity of platforms such as Twitter, Facebook, and Stripe, it is  
no surprise that they have adopted a paradigm shift and thus provide real-time  
APIs to give information to the client as and when an event occurs.

This chapter will cover the following topics:

•	 Real-time APIs
•	 Polling
•	 WebHooks
•	 WebSockets
•	 Additional real-time API supporters, which include the following:

°° PubSubHubbub
°° Server-sent events
°° XMPP
°° BOSH over XMPP

•	 Case studies on companies using WebHooks and WebSockets
•	 Comparison between WebHooks and WebSockets
•	 REST and Micro Services

www.it-ebooks.info

http://www.it-ebooks.info/


Emerging Standards and the Future of REST

[ 100 ]

We will start with defining what a real-time API refers to, and then, we will cover 
polling and its disadvantages. Next, we will walk through the different models 
that are widely used for asynchronous real-time communication. Finally, we will 
elaborate the pragmatic approaches to WebHooks and WebSockets in detail.

Real-time APIs
In our context, a real-time API helps the API consumer receive the events that they are 
interested in, as they occur. An example of a real-time update is when someone posts 
a link on Facebook or someone you follow on Twitter tweets about a topic. Another 
example of a real-time API is to receive the feed of stock price changes as they occur.

Polling
Polling is the most traditional way to get data from a data source that produces the 
stream of events and updates. The client makes requests periodically, and the server 
sends data if there is a response. In case there is no data to be sent by the server,  
an empty response is returned. The following diagram shows how continuous 
polling works:

How polling works

Client Server
request

response 200 OK : empty
...

request n

response 200 OK : message body sent in response

means repetition of request / responses

Polling comes with multiple drawbacks such as empty responses for requests 
made when there is no update on the server; this results in waste of bandwidth and 
processing time. Polling with lower frequencies will result in the client missing the 
updates close to the time the updates happen, and polling too frequently results in 
waste of resources as well as facing the rate limitation imposed by the server.

To eliminate these drawbacks of polling, we will cover the following topics:

•	 The PuSH model—PubSubHubbub
•	 The streaming model

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 101 ]

The PuSH model – PubSubHubbub
PuSH is a simple topic based on the publish/subscribe protocol, which is based  
on ATOM/RSS. Its goal is to convert atom feeds to real-time data and eliminate  
the polling that affects the consumers of the feeds. The subscribers register their 
interests in a topic, and the original publisher tells the interested subscribers that 
there is something new that interests them.

To distribute the tasks of publishing and content distributing, there is a notion of the 
Hub, which can be delegated to send the content to the subscribers. The following 
diagram depicts the PubSubHubbub model:

Subscriber

subscribe to the hub
with the feed URI

How PubSubHub works

publishes
updates

send
updates
to subscribers

discover the hub

Hub

Publisher

1.

2 3
4

Let's look at how this model works:

1.	 The Subscriber discovers the Hub by fetching the feed from the Publisher.
2.	 Once the Hub is discovered, the Subscriber subscribes to the Hub with the 

feed URI it is interested in.
3.	 Now, when the Publisher has updates to send, it will let the Hub get  

the updates.
4.	 The Hub then sends the updates to all the publishers.

The advantage of this model is that the publisher does not have to be concerned with 
sending updates to all the subscribers. Also, on the other end, the subscribers have 
an advantage as they get the updates from the hub as and when they occur, without 
continuously polling the publisher.

The WebHooks paradigm, discussed in the subsequent sections, uses this protocol.

www.it-ebooks.info

http://www.it-ebooks.info/


Emerging Standards and the Future of REST

[ 102 ]

The streaming model
The streaming model for asynchronous communication involves keeping a channel 
open and sending the data as it occurs. In this case, a socket connection needs to be 
kept open.

Server-sent events
Server-sent events (SSE) is a technology based on the streaming model, where a 
browser gets automatic updates from a server via an HTTP connection. The W3C  
has standardized the Server-Sent Events EventSource API as part of HTML5.

With SSEs, the client initiates a request to the server using the "text/eventstream" 
MimeType. Once the initial handshake has taken place, the server can keep sending 
events to the client as and when they occur. The events are plain text messages sent 
from the server to the clients. They can be data that can be consumed in the client side 
by the event listener, and the event listener can interpret and react to the received event.

SSEs define a message format for the events that are sent from the server to the 
clients. The message format is composed of plain text line separated by a stream of 
characters. Lines that carry the message body or data start with data: and end with 
\n\n, as shown in the following snippet:

data: My message \n\n

Lines that carry some Quality of Service (QoS) directives (for example, retry and 
id) start with the QoS attribute name, followed by :, and then the QoS attribute's 
value. The standard format makes it possible to develop generic libraries around  
SSE to make software development easier.

The following diagram shows how SSEs work:

Client Serverrequest(ID)

Structured request response messages

How server-sent events work

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 103 ]

As shown in the diagram, the client subscribes to an event source. The server keeps 
sending updates as and when they occur.

Additionally, the server can associate and send IDs along with the whole message,  
as shown in the following code snippet:

id: 12345\n
data: Message1\n
data: Message 2\n\n

The preceding snippet shows how multiline messages with event IDs and data can 
be sent, with the last line that terminates with two \n\n characters.

Setting an ID lets the client keep track of the last event fired so that if the connection 
to the server is dropped, a special HTTP header (Last-Event-ID) is set with the new 
request sent by the client.

The upcoming sections cover how to associate IDs with SSEs, how SSE works with 
connection loss and retries, and how to associate event names with SSEs.

Associating an ID with an event
Each SSE message can have a message identifier, which can be used for a variety of 
purposes, for example, to keep track of the messages that the client has received and 
also to keep a checkpoint for it. When the message ID is used in SSE, the client can 
supply the last message ID as one of the connection parameters to instruct the server 
to resume from a specific message onwards. Of course, the server-side code should 
implement a proper procedure to resume a communication from the message ID as 
requested by the client.

An example of the SSE message with the ID is shown in the following snippet:

id: 123 \n
data: This is a single line event \n\n

Retrying in case of connection failures
Firefox, Chrome, Opera, and Safari support server-sent events. In case there is a 
connection loss between the browser and server, the browser can try reconnecting  
to the server. There is a retry directive, which can be configured by the server to  
enable the retries from a client. The default value for the retry interval is 3 seconds.  
To increase the retry interval to 5 seconds, the server can send a retry event as shown:

retry: 5000\n
data: This is a single line data\n\n

www.it-ebooks.info

http://www.it-ebooks.info/


Emerging Standards and the Future of REST

[ 104 ]

Associating event names with events
Another SSE directive is the event name. Each event source can generate more than 
one type of event, and a client can decide how to consume each event type based on 
what event type it subscribes for. The following code snippet shows how the name 
event directive incorporates into the message:

event: bookavailable\n
data: {"name" : "Game of Thrones"}\n\n
event: newbookadded\n
data: {"name" :"Storm of Swords"}\n\n

Server-sent events and JavaScript
The API that is considered the foundation of SSE in the client side for JavaScript 
developers is the EventSource interface. The EventSource interface contains a  
fair number of functions and attributes, but the most important ones are listed  
in the following table:

Function name Description
addEventListener This function adds an event listener to 

handle the incoming events based on the 
event type.

removeEventListener This function removes an already 
registered listener.

onmessage This function is invoked on message 
arrival. There is no custom event handling 
available when using the onmessage 
method. Listeners manage the custom 
event handling.

onerror This function is invoked when something 
goes wrong with the connection.

onopen This function is invoked when a 
connection is opened.

onclose This function is invoked when a 
connection is closed.

The following snippet shows how to subscribe for different event types omitted by 
one source. The snippet assumes that the incoming messages are JSON-formatted 
messages. For example, there is an application that can stream updates to users as 
and when new books are available in some storage. The 'bookavailable' listener 
uses a simple JSON parser to parse the incoming JSON.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 105 ]

Then, it will use this to update the GUI, while the 'newbookadded' listener uses the 
reviver function to filter out and selectively process the JSON pairs.

var source = new EventSource('books');
source.addEventListener('bookavailable', function(e) {
  var data = JSON.parse(e.data);
  // use data to update some GUI element...
}, false);

source.addEventListener('newbookadded', function(e) {
  var data = JSON.parse(e.data, function (key, value) {
    var type;
    if (value && typeof value === 'string') {
return "String value is: "+value;
    }
    return value;

Server-sent events and Jersey
SSEs are not part of the standard JAX-RS specification. However, they are  
supported in the Jersey implementation of JAX-RS. For more details, check  
out https://jersey.java.net/documentation/latest/sse.html.

WebHooks
WebHooks are a form of user-defined custom HTTP callbacks. With the  
WebHook model, a client provides the event producer with an endpoint to  
which the event producer can post the events. When an event is posted to 
the endpoint, the client application that is interested in such events can take 
appropriate actions. An example of WebHooks is triggering an event such  
as a Hudson job using a GIT post-receive hook.

To acknowledge that the subscriber received the WebHook without any problem,  
the subscriber's endpoint should return a 200 OK HTTP status code. The event 
producer will ignore the request body and any other request header, other than  
the status. Any response code outside the 200 ranges, including 3xx codes, will 
indicate that they did not receive the WebHook, and the API might retry sending  
the HTTP POST request.

WebHooks events generated by GitHub deliver a payload of information about 
activity in a repository. WebHooks can trigger across several different actions.  
For example, a consumer might request for a payload of information any time  
a commit is made, a repository is forked, or an issue is created.

www.it-ebooks.info

http://www.it-ebooks.info/


Emerging Standards and the Future of REST

[ 106 ]

The following diagram depicts how WebHooks work with GitHub or GitLab:

How WebHooks work

User Git commit HTTP POST
Your custom WebHook script

7acb12e

<...
..
php...
>

Store
data in

dB

Let's look at how WebHooks work:

1.	 The user makes a Git push.
2.	 There is a custom WebHook URL to post the event object registered by  

the consumer with GitHub. When an event occurs, for example, when a 
commit is made, the GitHub service will send the payload of information 
regarding the commit, using a POST message to the endpoint provided  
by the consumer.

3.	 The consumer application can then store data in the dB or take some other 
action such as triggering a continuous integration build.

Some of the popular WebHooks case studies
Twilio uses WebHooks to send SMS messages. GitHub uses WebHooks 
to send repository change notification and, optionally, some payloads.
PayPal uses Instant Payment Notification (IPN), a message service 
that automatically notifies merchants of events related to PayPal 
transactions, and it is based on WebHooks.
Facebook's real-time API uses WebHooks and is based on 
PubSubHubbub (PuSH).

As mentioned earlier, if an API does not offer a form of WebHooks for notification, 
its consumers will have to keep polling for data, which is not only inefficient but  
also not real time.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 107 ]

WebSockets
The WebSocket protocol is a protocol that provides full-duplex communication 
channels over a single TCP connection.

The WebSocket protocol is an independent TCP-based protocol, and its only 
relationship to HTTP is that the handshake to switch over to WebSockets is 
interpreted by HTTP servers as an Upgrade request.

It provides the option to have full-duplex, real-time communication between clients 
(for example, a web browser) and an endpoint without the constant cost of establishing 
a connection or polling resource intensively. WebSockets are extensively used in social 
feeds, multiplayer games, collaborative editing, and so on.

The following lines show a WebSocket Protocol handshake, which starts with an 
Upgrade request:

GET /text HTTP/1.1\r\n Upgrade: WebSocket\r\n Connection:  
  Upgrade\r\n Host: www.websocket.org\r\n …\r\n 
HTTP/1.1 101 WebSocket Protocol Handshake\r\n 
Upgrade: WebSocket\r\n 
Connection: Upgrade\r\n 
…\r\n

The following diagram shows an example of a handshake with the HTTP/1.1 
Upgrade request and HTPP/1.1 Switching Protocols response:

How WebSockets work

Client Server

Handshake

HTTP / 1.1 Upgrade request

HTTP / 1.1 Switching Protocols

Bidirectional messages on TCP

Close Connection

Once the connection has been established between the client and the server with the 
Upgrade request and HTTP/1.1 response, WebSocket data frames, binary or text, can 
be sent back and forth between the client and server from both directions.

www.it-ebooks.info

http://www.it-ebooks.info/


Emerging Standards and the Future of REST

[ 108 ]

WebSockets data is minimally framed between 2 bytes; this dramatically reduces the 
overhead compared to what HTTP headers would transfer.

A very basic example of using the JavaScript WebSockets API is shown as follows:

//Constructionof the WebSocket object
var websocket = new WebSocket("coffee"); 
//Setting the message event Function
websocket.onmessage = function(evt) { 
onMessageFunc(evt)
};
//onMessageFunc which when a message arrives is invoked.
function onMessageFunc (evt) { 
//Perform some GUI update depending the message content
}
//Sending a message to the server
websocket.send("coffee.selected.id=1020"); 
//Setting an event listener for the event type "open".
addEventListener('open', function(e){
        onOpenFunc(evt)});

//Close the connection.
websocket.close();

The following table will describe the WebSockets functionality and various functions 
in detail:

Function name Description
send This function can be used to send a message to  

the server's specified URL.
onopen This function is invoked when the connection  

is created. The onopen function handles the  
open event type.

onmessage When a new message arrives, the onmessage  
function is invoked to handle the message event.

onclose This function is invoked when the connection is  
being closed. The onclose method handles the 
close event type.

onerror This function is invoked to handle the error event 
when an error occurs in the communication channel.

close This function is used to close the communication 
socket and end the interaction between the client  
and server.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 109 ]

Popular WebSockets Case Studies
Zynga Poker is one of the first games to utilize WebSockets connections 
on a massive scale. Using WebSockets in Zynga Poker HTML5 delivers a 
smooth, high-speed gameplay that allows for a synchronous experience 
on the mobile web. It varies based on connections, but the game loads 
and refreshes almost immediately.

Additional real-time API supporters
There are some more commonly used real-time or near real-time communication 
protocols and APIs that are mostly used outside of the browser. Some of these 
protocols and APIs are described in the subsequent sections.

XMPP
The XMPP protocol was developed to address the requirements of text messaging 
and Internet-chat-oriented solutions. XMPP's basic model of communication is  
client to server, server to server, server to client. In support of this, it defines a  
client to server protocol and a server to server protocol based on XML messages 
encoded and transmitted directly over TCP.

XMPP is a mature protocol with many implementations in different languages  
and platforms. The main drawback associated with XMPP is the long polling  
and open sockets to handle the inbound and outbound communications.

BOSH over XMPP
Bidirectional streams Over Synchronous HTTP (BOSH) specified in XEP-0124 is  
the standardized way to do XMPP over HTTP. For the client-initiated protocol, the 
client simply sends XMPP packets on HTTP, and for the server-initiated protocol, the 
server uses long polling with the connection open for a prespecified period of time.

The main advantage of BOSH is the possibility that it provides to use a web browser 
as an XMPP client by taking advantage of any of the JavaScript implementations of 
BOSH. Emite, JSJaC, and xmpp4js are some of the libraries that support BOSH.

www.it-ebooks.info

http://www.it-ebooks.info/


Emerging Standards and the Future of REST

[ 110 ]

Comparisons between WebHooks, 
WebSockets, and server-sent events
SSEs are sent over HTTP unlike WebSockets. SSEs offer only one-way communication 
of events from the server to the client and do not support a full-duplex communication 
as WebSockets do. SSEs have the ability to automatically retry a connection; they also 
have event IDs that can be associated with messages to provide Quality of Service 
(QoS) features. The WebSockets specification does not support these features.

On the other hand, WebSockets support full-duplex communication, and reduce the 
latency and help improve throughput, as there is an initial handshake over HTTP, 
but then, the messages are transferred between endpoints over TCP.

In comparison to the two protocols mentioned earlier, WebHooks has a lower barrier 
to entry and offers an easy way for applications and services to integrate with one 
another. This enables the capability of having an interconnected and interchangeable 
set of loosely coupled cloud services talking to each other via HTTP requests.

The following table compares and contrasts WebHooks, WebSockets, and SSEs in 
different areas:

Criteria WebHooks WebSockets Server-sent events
Asynchronous real-time 
communication support

Yes Yes Yes

Callback URL registered Yes No No
Long-lived open 
connection

No Yes Yes

Bidirectional No Yes No
Error handling No Yes Yes
Easy to support and 
implement

Yes Needs browsers and 
proxy server support

Yes

Needs fallback to polling No Yes No

The next section will cover how highly available cloud applications are moving 
toward the Micro Services-based architecture.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 111 ]

REST and Micro Services
The dream of SOA has become a reality with the emergence of Micro Services 
architecture, which comprises breaking a monolithic application into sets of  
fine-grained services. We will now look at the different advantages of Micro  
Services as compared to monolithic services.

Simplicity
Instead of using the more complicated traditional enterprise, many developers are 
finding that building the same application using lightweight API services proves to 
be more resilient, scalable, and maintainable. This style is the Micro Services-based 
architecture. This is in contrast with approaches such as the legacy RPC approaches 
of CORBA and RMI, or the bulky Web Services protocols such as SOAP.

Isolation of problems
In the monolithic applications, all the components of a service are loaded in a single 
application artifact (a WAR, EAR, or JAR file), which is deployed on a single JVM. 
This implies that if the application or the application server goes down, it would 
mean a failure of all the services.

However, with the Micro Services architecture, the services can be independent 
WAR/EAR files. The services can communicate with one another with REST and 
JSON, or XML. Another way to communicate between services in the Micro  
Services architecture is to use a messaging protocol such as AMQP/Rabbit MQ.

Scale up and scale down
With monolithic services, not all services in the deployed application's file might 
need to be scaled, but they all are forced to follow the same scale-up and scale-down 
rules laid down at deployment level.

With the Micro Services architecture, applications can be built by smaller services 
that can be deployed and scaled independently. This results in an architecture that 
is resilient to failures, scalable and agile, for developing, building, and deploying 
services quickly from the feature definition phase to production phase.

www.it-ebooks.info

http://www.it-ebooks.info/


Emerging Standards and the Future of REST

[ 112 ]

Clear separation of capabilities
In the Micro Services architecture, these services can be organized based on  
business capabilities. For example, an inventory service can be separated from  
a billing service, which can be separate from a shipping service. In case one of  
the services fails, the others can still continue serving requests as mentioned in  
the Isolation of Problems section.

Language independence
Another advantage of the Micro Services architecture is that the services are built with 
a simple and easy-to-consume REST/JSON-based API that can be easily consumed by 
other languages or frameworks such as PHP, Ruby-On-Rails, Python, and node.js.

Amazon and Netflix are some of the pioneers in the Micro Services architecture. eBay 
has open sourced Turmeric, a comprehensive, policy-driven SOA platform that can 
be used to develop, deploy, secure, run, and monitor SOA services and consumers.

Recommended reading
The following are the links to additional resources that interested readers can take a 
look at to get a more complete picture of use cases mentioned in this chapter:

•	 https://stripe.com/docs/webhooks: WebHooks support
•	 https://github.com/sockjs: GitHub SockJs
•	 https://developer.github.com/webhooks/testing/: GitHub WebHooks
•	 http://www.twilio.com/platform/webhooks: Twilio WebHooks
•	 http://xmpp4js.sourceforge.net/: XMPP4JS BOSH library
•	 https://code.google.com/p/emite/: Emite BOSH library

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 113 ]

Summary
In this chapter we covered advanced topics such as WebHooks, SSEs, WebSockets, 
and where and how they are being used in this chapter. One of the primary takeaways 
from this chapter was to understand how important it is to provide real-time APIs 
to avoid inefficiencies related to repeated polling. We saw case studies of companies 
using both WebHooks and WebSockets in their solutions. We saw different best 
practices and design principles sprinkled throughout the various chapters in the book; 
this chapter, as a finale, provided a substantial introduction to the future of REST and 
asynchronous communication. The proliferation of social data has the potential to be 
a great catalyst for the development of a semantic web that will enable agents to make 
nontrivial actions on our behalf and get real-time updates using the various patterns 
we discussed.

Also, we saw how highly available cloud applications tend to move to a networked 
component model where applications are decomposed into micro services, which 
can be deployed and scaled independently using the Micro Services architecture. 
For more detailed information on building RESTful services, check out the book 
Developing RESTful Services with JAX-RS2.0, WebSockets, and JSON, Bhakti Mehta  
and Masoud Kalali, Packt Publishing.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Appendix
In this era of social networking, cloud computing, and mobile applications, people 
want to be connected to each other, voice opinions, build applications collaboratively, 
share inputs, and ask questions. This is evident from the data mentioned in http://
www.statisticbrain.com/twitter-statistics/ that shows Twitter has around 
6.5 million users and 58 million tweets per day. Similarly, the statistics for Facebook 
are mindboggling: 1.3 billion users making it the heart of the social web platform. 
Over the years, GitHub has evolved as the default social coding platform. Thus, 
Twitter, Facebook, and GitHub are among the most widely used platforms to build 
applications, mine data, as well as build analytics-related information.

While the previous chapters covered topics such as building RESTful services, adding 
performance, caching, security, and scaling of RESTful services, this chapter will focus 
on some popular REST platforms and how they tie in to the different patterns covered 
in earlier chapters as part of their API infrastructure.

This chapter will cover the following topics:

•	 Overview of the REST API from GitHub
•	 Overview of the Open Graph API from Facebook
•	 Overview of the REST API from Twitter

Overview of the REST API from GitHub
GitHub has become extremely popular as the social collaborative coding platform for 
building code as well as contributing to other repositories. It is used by developers 
to create, build, and deploy software, with usage varying from individual projects 
to various enterprises using it as part of their processes. GitHub has extensive API 
documentation for its services at https://developer.github.com/v3/.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix

[ 116 ]

The following section covers in detail how GitHub handles all the different patterns 
we covered in earlier chapters.

Getting details from GitHub
The following commands show how to use unauthenticated cURL commands to get 
data for a user, to get details for the repositories, and so on.

The following command gets details for the javaee-samples user:

curl https://api.github.com/users/javaee-samples

{

  "login": "javaee-samples",

  "id": 6052086,

  "avatar_url": "https://avatars.githubusercontent.com/u/6052086?",

  "gravatar_id": null,

  "url": "https://api.github.com/users/javaee-samples",

  "html_url": "https://github.com/javaee-samples",

  "followers_url": "https://api.github.com/users/javaee-samples/
followers",

  "following_url": "https://api.github.com/users/javaee-samples/
following{/other_user}",

  "gists_url": "https://api.github.com/users/javaee-samples/gists{/gist_
id}",

  "starred_url": "https://api.github.com/users/javaee-samples/starred{/
owner}{/repo}",

  "subscriptions_url": "https://api.github.com/users/javaee-samples/
subscriptions",

  "organizations_url": "https://api.github.com/users/javaee-samples/
orgs",

  "repos_url": "https://api.github.com/users/javaee-samples/repos",

  "events_url": "https://api.github.com/users/javaee-samples/events{/
privacy}",

  "received_events_url": "https://api.github.com/users/javaee-samples/
received_events",

  "type": "Organization",

  "site_admin": false,

  "name": "JavaEE Samples",

  "company": null,

  "blog": "https://arungupta.ci.cloudbees.com/",

  "location": null,

  "email": null,

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix

[ 117 ]

  "hireable": false,

  "bio": null,

  "public_repos": 11,

  "public_gists": 0,

  "followers": 0,

  "following": 0,

  "created_at": "2013-11-27T17:17:00Z",

  "updated_at": "2014-07-03T16:17:51Z"

As shown in the preceding commands, there are different URLs in the 
preceding response, which can be used to get details such as followers, 
commits, and so on. This style of presenting the URLs is different from 
the HATEOAS samples we covered earlier in the book using links, 
href, rel, and so on. This shows how different platforms choose 
various ways to provide a connected service, which is self-explanatory.

To get repos for a user with pagination, we can use the query as shown:

curl https://api.github.com/users/javaee-samples/repos?page=1&per_page=10

…..

GitHub API uses OAuth2 for authenticating users for the requests. All developers 
working with GitHub API need to register their application. A registered application 
is assigned a unique client ID and client secret.

For more details on getting authenticated requests for a user, check  
https://developer.github.com/v3/oauth/.

Verbs and resource actions
The following table covers how GitHub API uses verbs for a specific action to  
a resource:

Verb Description
HEAD This is used to get the HTTP header info 
GET This is used to retrieve resources such as  

user details
POST This is used for creating resources such as 

merging pull requests
PATCH This is used for partial updates to resources

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix

[ 118 ]

Verb Description
PUT This is used for replacing resources such as 

updating users
DELETE This is used for deleting resources such as 

removing a user as a collaborator

Versioning
GitHub API uses version v3 in its URI. The default version of the API may change in 
the future. In case the client is depending on a particular version, they recommend 
sending an Accept header explicitly, as shown:

Accept: application/vnd.github.v3+json

Error handling
As covered in Chapter 2, Resource Design, client-side errors are indicated by 400 error 
codes. GitHub uses a similar convention for denoting errors.

If a client using the API sends an invalid JSON, a 400 Bad Request response is 
returned back to the client. If a client using the API misses to send a field as part of 
the request body, a 422 Unprocessable Entity response is returned to the client.

Rate limiting
The GitHub API also supports rate limiting so that the server is not overburdened with 
too many requests from some rogue client causing it to fail. In case of requests using 
Basic authentication or OAuth, the client is allowed to make up to 5,000 requests 
per hour. In case of unauthenticated requests, the rate limit is up to 60 requests per 
hour for a client. GitHub uses the X-RateLimit-Limit, X-RateLimit-Remaining, and 
X-RateLimit-Reset headers to tell the status of the rate limits.

Thus, we have covered details on the GitHub API on how they choose to implement 
some of the REST principles we have covered so far in this book. The next section 
covers the Facebook Open Graph REST API for topics such as versioning, error 
handling, rate limiting, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix

[ 119 ]

Overview of the Facebook Graph API
The Facebook Graph API is a way to get information from Facebook data. Using the 
HTTP REST API, clients can do a variety of tasks such as query data, post updates 
and pictures, get albums and create albums, get the number of likes for a node,  
get comments, and so on. The following section covers how to get access to the 
Facebook Graph API.

On the Web, Facebook uses a variant of the OAuth 2.0 protocol 
for authentication and authorization. The native Facebook App 
is used on iOS and Android.

To use the Facebook API, the client needs to procure an access token to work with 
OAuth 2.0. The following steps shows how to create the App ID and secret key and 
then get the access token to execute queries for Facebook data:

1.	 Go to developers.facebook.com/apps. You can create a new app.  
Once the app is created, you will be assigned the App ID and secret  
as shown in the following screenshot:

2.	 Once you have the App ID and secret, you can get the access token and 
execute queries for Facebook data.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix

[ 120 ]

Facebook has a special /me endpoint, which corresponds to 
the user whose access token is being used. To get photos for 
your user, the request can be of the following form:
GET /graph.facebook.com/me/photos

3.	 To post a message, the user can invoke a simple API as shown:
      POST /graph.facebook.com/me/feed?message="foo"
       &access_token="…."

4.	 To get details of your ID, name, and photos using the Graph Explorer,  
the query is as follows:
https://developers.facebook.com/tools/explorer?method=GET&path=me%
3Ffields=id,name

5.	 The following screenshot shows a Graph API Explorer query with node 
dalailama. Clicking on the ID gives more details for the node.

Thus, we saw how to use the Graph API Explorer application to build up a query for 
a node in the Social Graph. We can query by various fields such as ID and name and 
try using methods such as GET, POST, or DELETE.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix

[ 121 ]

Verbs and resource actions
The following table summarizes the commonly used verbs in the Facebook Graph API:

Verb Description
GET This is used to retrieve resources such as 

feeds, albums, posts, and so on
POST This is used for creating resources such 

as feeds, posts, albums, and so on
PUT This is used for replacing resources
DELETE This is used for deleting resources

An important observation is that the Facebook Graph API 
uses POST instead of PUT to update resources.

Versioning
The Graph API currently uses version 2.1 released on August 7, 2014. The client can 
specify a version in the request URL. In case a client does not specify a version, the 
Facebook Open Graph API defaults to the latest version available. Every version 
is guaranteed to work for 2 years after which if the client makes any calls using an 
older version, they get redirected to the latest version of the API.

Error handling
The following snippet shows the error response from a failed API request:

    {
       "error": {
         "message": "Message describing the error",
         "type": "OAuthException",
         "code": 190 ,
        "error_subcode": 460
       }
     }

As shown in the preceding code, there are JSON Objects called code and error_
subcode in the error message, which can be used to figure out what the problem is 
and what the recovery action will be. In this case, the value of code is 190, which is 
an OAuthException value, and the error_subcode value of 460 indicates that the 
password may have changed and hence the access_token is not valid.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix

[ 122 ]

Rate limiting
The Facebook Graph API has different rate-limiting policies based on whether  
the entity using the API is a user, an application, or an advertisement. When the  
calls from a user exceed a limit, there is a 30-minute block-out period for the user.  
For more details, check https://developers.facebook.com/docs/reference/
ads-api/api-rate-limiting/. The next section covers the details of the Twitter 
REST API.

Overview of the Twitter API
The Twitter API has REST APIs and Streaming APIs, which allow developers to 
access core data such as timelines, status data, user information, and so on.

Twitter uses three-legged OAuth to make requests.

Important aspects of OAuth with Twitter API
The client application doesn't need to store a login ID and 
password. The application sends an access token representing 
the user with each request instead of using user credentials.
The POST variables, query parameters, and the URL of the 
request always remain intact for a request to successfully 
complete.
The user decides what applications can act on his behalf and 
can remove authorization at any time.
A unique identifier for each request (the oauth_nonce 
identifier) prevents replaying the same request again in  
case it gets snooped.

To send requests to Twitter, most developers may find the initial setup a bit confusing. 
The article at https://blog.twitter.com/2011/improved-oauth-10a-experience 
shows how to create an application, generate the keys, and generate a request using 
the OAuth tool.

Here is an example of a request generated by the OAuth tool in Twitter, showing a 
query to get statuses for the twitterapi handle:

The Twitter API does not support unauthenticated 
requests and has very strict rate-limiting policies.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix

[ 123 ]

curl --get 'https://api.twitter.com/1.1/statuses/user_timeline.
json' --data 'screen_name=twitterapi' --header 'Authorization: OAuth 
oauth_consumer_key="w2444553d23cWKnuxrlvnsjWWQ", oauth_nonce="dhg2222324
b268a887cdd900009ge4a7346", oauth_signature="Dqwe2jru1NWgdFIKm9cOvQhghmdP
4c%3D", oauth_signature_method="HMAC-SHA1", oauth_timestamp="1404519549", 
oauth_token="456356j901-A880LMupyw4iCnVAm24t33HmnuGOCuNzABhg5QJ3SN8Y", 
oauth_version="1.0"'—verbose.

This gives an output as shown:

GET /1.1/statuses/user_timeline.json?screen_name=twitterapi HTTP/1.1

Host: api.twitter.com

Accept: */*

 HTTP/1.1 200 OK

…

"url":"http:\/\/t.co\/78pYTvWfJd","entities":{"url":{"urls":[{"url
":"http:\/\/t.co\/78pYTvWfJd","expanded_url":"http:\/\/dev.twitter.
com","display_url":"dev.twitter.com","indices":[0,22]}]},"descriptio
n":{"urls":[]}},"protected":false,"followers_count":2224114,"friends_
count":48,"listed_count":12772,"created_at":"Wed May 23 06:01:13 +0000 
2007","favourites_count":26,"utc_offset":-25200,"time_zone":"Pacific Time 
(US & Canada)","geo_enabled":true,"verified":true,"statuses_count":351
1,"lang":"en","contributors_enabled":false,"is_translator":false,"is_
translation_enabled":false,"profile_background_color":"C0DEED","profile_
background_image_url":"http:\/\/pbs.twimg.com\/profile_background_
images\/656927849\/miyt9dpjz77sc0w3d4vj….

Verbs and resource actions
The following table summarizes the commonly used verbs in the Twitter REST API:

Verb Description
GET This is used to retrieve resources such as users, 

followers, favorites, subscribers, and so on.
POST This is used to create resources such as users, 

followers, favorites, subscribers, and so on.
POST with verb update This is used to replace resources. For example, 

to update the friendships, the URL will be POST 
friendships/update.

POST with verb destroy This is used to delete resources such as deleting 
direct messages, unfollowing someone, and 
so on. For example, the URL will be POST 
direct_messages/destroy.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix

[ 124 ]

Versioning
The current version for the Twitter API is 1.1. It only supports JSON and no longer 
supports XML, RSS, or Atom. With the Twitter API Version 1.1, all clients need to be 
authenticated using OAuth to make queries. The Twitter API Version 1.0 has been 
deprecated and there is a 6-month window to move to the new version.

Error handling
The Twitter API returns standard HTTP error codes in the responses to the REST 
API. It returns 200 OK in case of success. It returns 304 Not Modified when there 
is no data to return, 401 Not Authorized in case authentication credentials were 
missing or incorrect, 500 Internal Server Error when something is broken and 
needs to be posted to the forum, and so on. Along with detailed error messages, the 
Twitter API produces machine-readable error codes. For example, an error code 32 
in the response implies the server could not authenticate the user. For more details, 
check https://dev.twitter.com/docs/error-codes-responses.

Recommended reading
The following section provides some links, which may be useful to review:

•	 Facebook Tools: https://developers.facebook.com/tools/
•	 Twurl (OAuth-enabled cURL for Twitter):  

https://github.com/twitter/twurl

•	 GitHub API documentation: https://developer.github.com/v3/
•	 Twitter API documentation: https://dev.twitter.com/docs/api/1.1
•	 Stripe API documentation: https://stripe.com/docs/api

Summary
This appendix is a modest collection of APIs implemented by popular platforms such 
as GitHub, Facebook, and Twitter and the approaches they have taken to handle the 
various REST patterns. Though there are a myriad of possibilities for what a user 
can do with the data from the REST API, the commonality between the frameworks 
is the usage of REST and JSON. The REST APIs from these platforms are consumed 
by web and mobile clients. This appendix covered how these platforms handle 
versioning, verbs, error handling, and authenticating and authorizing the requests 
based on OAuth 2.0.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix

[ 125 ]

This book started off with the basics of REST and how to build your own RESTful 
services. Since then, we covered various topics as well as tips, and best practices for 
building scalable and highly performant REST services. We have also referred to 
various libraries and tools to improve testing and documentation of REST services 
along with emerging standards for real-time APIs. We also covered case studies  
with WebSockets, WebHooks, and the future of REST.

We hope this humble attempt from our end helps you understand, learn, design,  
and develop better REST APIs in the future.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Index
Symbols
202 Accepted message

sending  73
429 Too Many Requests (RFC 6585)  80
@Consumes annotation  28
@DefaultValue annotation  91
@Suspended annotation  70
@WebFilter annotation  83

A
Accept header

API version, specifying in  37
AccessCounter class  83
AccessData class  84
access tokens

versus refresh tokens  55
addCofee() method

@Consumes annotation  17
@POST annotation  16
@Produces annotation  17
@ValidateOnExecution annotation  17

addEventListener function  104
Advanced Messaging Queuing  

Protocol (AMQP)
about  74
URL  74

Advanced REST Client
about  22
URL  22

Apache Log4J
URL  43

APIs, RESTful services
implementing  15
JAX-RS  15-17

API versioning
about  36
version, specifying in Accept header  37
version, specifying in request  

query parameter  37
version, specifying in URI  36

architecture components,  
RESTful API  58, 59

asynchronous processing  59
asynchronous resource

about  69
asynchronous request/response  

processing   70-73
best practices  73

asynchronous resource, best practices
202 Accepted message, sending  73
message queues, using  74
object expiration, setting  74

AsyncResponse  70
Auth  58
authentication

about  49
SAML  50, 51

authorization
about  49, 52
OAuth  52-54
OpenID Connect  57
refresh tokens, versus access tokens  55

authorization grant
about  55
authorization code grant  55
client credentials grant  55
implicit grant  55
resource owner password  

credentials grant  55

www.it-ebooks.info

http://www.it-ebooks.info/


[ 128 ]

B
basic authentication  118
best practices, logging REST API

detailed consistent pattern, including  
across service logs  43

initiator, identifying  44
logging system, tying with monitoring 

system  44, 45
log payloads, avoiding  44
meta-information, identifying of request  44
sensitive data, obfuscating  44

best practices, OAuth
encryption, using  57
lifetime, limiting for access token  56
providing, support for refresh tokens  56
SSL, using  57

Bidirectional streams Over Synchronous 
HTTP (BOSH)

about  109
advantage  109

C
Cache-Control header

about  62, 63
adding, to JAX-RS response  64, 65
directives  63, 64

caching
about  58, 62
benefits  62
caching headers  62
RESTEasy  68, 69

caching headers
about  62
strong caching headers  62
weak caching headers  62

ChunkedOutput
about  32-34
versus StreamingOutput  34

Client API  18, 19
close function  108
CoffeesResource class  15
CompletionCallback function  70
ConcurrentHashMap class  83
ConnectionCallback function  70
content negotiation

about  26

performing, based on URL patterns  29, 30
performing, HTTP headers used  27-29
URL  40

Couchbase
URL  77

cURL  20
cursor-based pagination  90

D
Dapper  45
data masking

reference link  44
dB  106
DELETE method  14
directives, Cache-Control header

max-age  63
no-cache  63
no-store  63
private  63
public  63

doFilter() method  84, 85

E
Emite BOSH library

URL  112
entity providers  30, 31
entity representation

about  30, 31
ChunkedOutput  32-34
Jersey  34
StreamingOutput  32

error handling, RESTful services  47, 48
ETag

about  63-65
and JAX-RS  67
Facebook REST API  68
strongly validating ETag  67, 68
weakly validating ETag  67, 68
working with  66

EventSource interface
about  104
addEventListener function  104
onclose function  104
onerror function  104
onmessage function  104
onopen function  104

www.it-ebooks.info

http://www.it-ebooks.info/


[ 129 ]

removeEventListener function  104
exception handling, RESTful service  

validation
response codes  47

Expires header  62, 63
extensibility

and REST  96

F
Facebook API

URL, for creating App ID  119
URL, for rate limiting  97
URL, for versioning  40

Facebook Graph API
error handling  121
overview  119, 120
rate limiting  122
verbs  121
versioning  121

Facebook Graph API Explorer
URL  77

Facebook localization
URL  97

Facebook REST API  68
Facebook Tools

URL  124
Filter class

implementing  83
Future interface

about  70
URL  70

G
getCoffeeList() method

@GET annotation  16
@PATH annotation  16
@Produces annotation  16
about  91

getCoffee method  82
GET method  13
GET request  64
getSize() method  31
GitHub

about  115
details, obtaining from  116, 117
URL, for API documentation  115

GitHub API
error handling  118
rate limiting  118
URL, for documentation  124
URL, for rate limiting  97
verbs  117
versioning  118

GitHub SockJs
URL  112

GitHub WebHooks
URL  112

Git push  106
Google OAuth playground

reference link  60
Google+ Sign-In  57

H
HATEOAS

about  10, 94
advantages  95
and PayPal REST API  95

HEAD method  14
href attribute  95
HTTP headers

used, for performing content  
negotiation  27-29

HTTP methods
identifying  12

HTTP PATCH  74-76
HTTP verbs

about  13
DELETE method  14
GET method  13
HEAD method  14
POST method  13
PUT method  13

Hub  101
Hypermedia as the Engine of Application 

State. See  HATEOAS

I
idempotent methods

about  10
DELETE method  10
GET method  10
PUT method  10

www.it-ebooks.info

http://www.it-ebooks.info/


[ 130 ]

identity provider (IdP)  50, 51
Instant Payment Notification (IPN)  106
internationalization

principles  92
InvocationCallback function  70
ISO-3166 country codes

URL  93
isReadable() method  31
isWritable() method  31

J
Java API for RESTful Services. See  JAX-RS
JavaScript

and SSE  104, 105
javax.ws.rs.ApplicationPath annotation  19
javax.ws.rs.client.Client annotation  19
javax.ws.rs.client.WebTarget annotation  19
javax.ws.rs.Consumes annotation  19
javax.ws.rs.ext.ExceptionMapper class  47
javax.ws.rs.Path annotation  19
javax.ws.rs.Produces annotation  19
JAXB-based JSON binding support  34
JAX-RS  15-17
JAX-RS 2.0  15
Jersey

and OAuth 2.0  56
and SSE  105
JSON support  34
URL, for authorization code grant flow  56

JSONLint
about  22
URL  22

JSON Patch
about  76
op  76
path  76
URL  77
value  76

JSON Patch RFC 6902
URL  77

JSON Pointer RFC 6901
URL  77

JSON support
JAXB-based JSON binding support  34
low-level JSON parsing support  35
low-level JSON processing support  35

POJO-based JSON binding support  34

L
Last-Modified  63, 64
localization parameters  92
logging  58
logging REST API

about  42
best practices  43
creating  42, 43

low-level JSON parsing support  35
low-level JSON processing support  35

M
MessageBodyReader

about  31
isReadable() method  31
readFrom() method  31

MessageBodyWriter
about  31
getSize() method  31
isWritable() method  31
writeTo() method  31

metadata element  91
method attribute  95
Micro Services, advantages

clear separation of capabilities  112
isolation of problems  111
language independence  112
scale down  111
scale up  111
simplicity  111

O
OAuth

about  52-54, 118
advantages  54
best practices  56
diagrammatic representation  52
example  53
important aspects  122
versus SAML  57

OAuth 1.0
differentiating, with OAuth 2.0  54

www.it-ebooks.info

http://www.it-ebooks.info/


[ 131 ]

OAuth 2.0
about  54
and Jersey  56
authorization grant  55
differentiating, with OAuth 1.0  54
reference link  60

OAuth, example
consumer application/client  53
service provider/server  53
user/resource owner  53

offset-based pagination  89
onclose function  104, 108
onerror function  104, 108
onmessage function  104, 108
onopen function  104, 108
open authorization. See  OAuth
OpenID Connect

about  57
case study  57
URL  57

P
pagination

about  58
project's layout  91, 92
types  89, 90

pagination, types
cursor-based pagination  90
offset-based pagination  89
time-based pagination  89

partial update  74-76
PayPal REST API

and HATEOAS  95
Personally identifiable information (PII)  44
Plain Old Java Object. See  POJO
Plain Old XML (POX)  9
POJO  84
POJO-based JSON binding support

about  34
URL  34

polling
about  100
drawbacks  100
PuSH model  101
streaming model  102

Postman
about  20-22
URL  22

Post message  106
POST method

about  9, 13
versus PUT method  14

principal, SAML 2.0  50
Publisher  101
PubSubHubbub (PuSH model)

about  101, 106
advantage  101

Push Notifications  87
PUT method

about  13
versus POST method  14

Q
Quality of Service (QoS)  102, 110

R
RabbitMQ

about  74
URL  74, 77

RateLimiter class  82
Rate Limit Filter  82
rate limiting

about  58, 80, 81
headers  85
project's layout  81, 82
reach, avoiding  87
sample  83-86
X-RateLimit-Limit header  85
X-RateLimit-Remaining header  85

rate limiting, best practices
caching  87
calls in loops, avoiding  87
log requests  87
polling, avoiding  87

readFrom() method  31
real-time APIs

about  100
BOSH  109
XMPP  109

www.it-ebooks.info

http://www.it-ebooks.info/


[ 132 ]

refresh tokens
versus access tokens  55

rel attribute  94, 95
reliability  8
removeEventListener function  104
Repose

about  86
URL  86

Representational State Transfer. See  REST
REQ_LIMIT constant  83
request query parameter

API version, specifying in  37
resource URIs

identifying  11
response codes

about  38, 39
validation exception handling  47

response pagination
about  88
types  89

REST
about  7, 8
and extensibility  96
principles  8
statelessness  8

REST API  96
RESTEasy

about  68, 69
URL  69, 77

RESTful API
architecture components  58, 59

RESTful resources
accessing  20
best practices, for designing  22
cURL  20
Postman  20, 22
representations, identifying  15
tools  22

RESTful services
APIs, implementing  15
building  11
Client API  18, 19
deploying  17
documenting  97
error handling  47, 48

HTTP methods, identifying  12
HTTP verbs  13
resource URIs, identifying  11
RESTful resources, accessing  20
testing  18, 96
validating  45, 46

REST request patterns  25, 26
REST response patterns  25, 26, 38, 39
Retry-After header  80, 81
Richardson Maturity Model

about  8
level 0 - Remote Procedure Invocation  9
level 1 - REST resources  9
level 2 - more HTTP verbs  9
level 3 - HATEOAS  10

S
safe methods

about  10
GET method  10
HEAD method  10

SAML
about  50, 51
versus OAuth  57

SAML 2.0
identity provider (IdP)  50
principal  50
service provider (SP)  50

scalability  8
Scribe

about  45
URL  45, 60

Security Assertion Markup Language.  
See  SAML

send function  108
Server-Sent events. See  SSE
service provider (SP)  50
Simple Object Access Protocol. See  SOAP
single sign-on (SSO)  50
SOAP  7
SOAP/WSDL  7
Splunk

URL  43
SSE

about  102, 103

www.it-ebooks.info

http://www.it-ebooks.info/


[ 133 ]

and JavaScript  104, 105
and Jersey  105
comparing, with WebSockets and  

WebHooks  110
connection, retrying  103
event names, associating with  104
ID, associating with  103

statelessness, REST
about  8
URL  8

streaming model
about  102
SSE  102, 103

StreamingOutput
about  32
versus ChunkedOutput  34

Stripe API
URL, for documentation  124

strong caching headers
about  62
Cache-Control  62
Expires  62

strongly validating ETag  67, 68
Subscriber  101
Swagger

adding, to REST API  97

T
time-based pagination  89
TIME_LIMIT constant  83
tools, RESTful resources

Advanced REST Client  22
JSONLint  22

Twilio WebHooks
URL  112

twitter
and cursor-based pagination  90

Twitter API
error handling  124
overview  122
references  97
URL, for documentation  124
verbs  123
versioning  124

Twitter REST API
rate limits  88
URL  40

Twurl
URL  124

U
URI

API version, specifying in  36
URL patterns

content negotiation, performing  
based on  29, 30

V
validation, RESTful services

about  45, 46
exception handling  47
response codes  47

Variant class  93
Variant.VariantListBuilder class  93
visibility  8

W
weak caching headers

about  63
ETag  63
Last-Modified  63

weakly validating ETag  67, 68
WebHooks

about  87, 101, 105, 106
case studies  106
comparing, with WebSockets and SSE  110
reference link  112
WebSockets  107, 108

Web Services Description Language.  
See  WSDL

WebSockets
about  107, 108
case studies  109
comparing, with WebHooks and SSE  110

write() method  32
writeTo() method  31
WSDL  7

www.it-ebooks.info

http://www.it-ebooks.info/


[ 134 ]

X
XMPP  109
XMPP4JS BOSH library

URL  112
X-RateLimit-Limit header  85, 118
X-RateLimit-Remaining header  81, 85, 118
X-RateLimit-Reset header  118

www.it-ebooks.info

http://www.it-ebooks.info/


Thank you for buying  
RESTful Java Patterns and Best Practices

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order  
to continue its focus on specialization. This book is part of the Packt Open Source brand,  
home to books published on software built around Open Source licenses, and offering 
information to anybody from advanced developers to budding web designers. The Open 
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty 
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like 
to discuss it first before writing a formal book proposal, contact us; one of our commissioning 
editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/


RESTful Java Web Services 
Security
ISBN: 978-1-78398-010-9              Paperback: 144 pages

Secure your RESTful applications against  
common vulnerabilities

1.	 Learn how to use, configure, and set up tools 
for applications that use RESTful web services 
to prevent misuse of resources.

2.	 Get to know and fix the most common 
vulnerabilities of RESTful web services APIs.

3.	 A step-by-step guide portraying the importance 
of securing a RESTful web service with simple 
examples applied to real-world scenarios.

Developing RESTful Services  
with JAX-RS 2.0, WebSockets,  
and JSON
ISBN: 978-1-78217-812-5             Paperback: 128 pages

A complete and practical guide to building RESTful 
Web Services with the latest Java EE7 API

1.	 Learning about different client/server 
communication models including but not 
limited to client polling, server-sent events,  
and WebSockets.

2.	 Efficiently use WebSockets, server-sent events, 
and JSON in Java EE applications.

3.	 Learn about JAX-RS 2.0 new features  
and enhancements.

 
Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/


RESTful Java Web Services
ISBN: 978-1-84719-646-0            Paperback: 256 pages

Master core REST concepts and create RESTful  
web services in Java

1.	 Build powerful and flexible RESTful web 
services in Java using the most popular  
Java RESTful frameworks to date (Restlet,  
JAX-RS-based frameworks: Jersey and 
RESTEasy, and Struts 2).

2.	 Master the concepts to help you design and 
implement RESTful web services.

3.	 Plenty of screenshots and clear explanations  
to facilitate learning.

Developing RESTful Web 
Services with Jersey 2.0
ISBN: 978-1-78328-829-8             Paperback: 98 pages

Create RESTful web services smoothly using the 
robust Jersey 2.0 and JAX-RS APIs

1.	 Understand and implement the Jersey and  
JAX-RS APIs with ease.

2.	 Construct top-notch server and client-side  
web services.

3.	 Learn about server-sent events, for showing 
real-time data.

 
Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover

	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: REST – Where It Begins
	Introduction to REST
	REST and statelessness

	The Richardson Maturity Model
	Level 0 – Remote Procedure Invocation
	Level 1 – REST resources
	Level 2 – more HTTP verbs
	Level 3 – HATEOAS

	Safety and idempotence
	Safe methods
	Idempotent methods

	Design principles for building 
RESTful services
	Identify the resource URIs
	Identifying the methods supported by 
the resource
	HTTP verbs and REST
	PUT versus POST

	Identifying the different representations of 
the resource
	Implement the APIs
	The Java API for RESTful Services (JAX-RS)

	Deploy the RESTful services
	Test the RESTful services
	The Client API with JAX-RS 2.0
	Accessing RESTful resources


	Best practices when designing resources
	Recommended reading
	Summary

	Chapter 2: Resource Design
	REST response patterns
	Content negotiation
	Content negotiation using HTTP headers
	Content negotiation based on URL patterns

	Entity providers and different representations
	StreamingOutput
	ChunkedOutput
	Jersey and JSON support
	POJO-based JSON binding support
	JAXB-based JSON binding support
	Low-level JSON parsing and processing support


	API versioning
	Version in the URI approach
	Version as part of the request query parameter
	Specifying the version in the Accept header

	Response codes and REST patterns
	Recommended reading
	Summary

	Chapter 3: Security and Traceability
	Logging REST APIs
	Best practices for the logging REST API
	Including a detailed consistent pattern across service logs
	Obfuscating sensitive data
	Identifying the caller or the initiator as part of 
the logs
	Do not log payloads by default
	Identifying meta-information related to the request
	Tying the logging system with a monitoring system


	Validating RESTful services
	Validation exception handling and 
response codes

	Error handling with RESTful services
	Authentication and authorization
	What is authentication?
	SAML

	What is authorization?
	OAuth

	Differences between OAuth 2.0 and OAuth 1.0
	An authorization grant

	Refresh tokens versus access tokens
	Jersey and OAuth 2.0

	Best practices for OAuth in the REST API
	Limiting the lifetime for an access token
	Support providing refresh tokens in the authorization server
	Using SSL and encryption

	OpenID Connect

	REST architecture components
	Recommended reading
	Summary

	Chapter 4: Designing for Performance
	Caching principles
	Caching details
	Types of caching headers
	Strong caching headers
	Weak caching headers
	Expires and Cache-Control – max-age

	Cache-Control header and directives
	Last-Modified and ETag

	The Cache-Control header and the REST API
	ETags
	The ETag header and the REST API
	Types of ETags

	The Facebook REST API and ETags
	RESTEasy and caching


	Asynchronous and long-running jobs 
in REST
	Asynchronous request and response processing

	Asynchronous resources best practices
	Sending a 202 Accepted message
	Set expiration for objects in the queue
	Use message queues to handle tasks asynchronously


	HTTP PATCH and partial updates
	JSON Patch
	Recommended reading
	Summary

	Chapter 5: Advanced Design Principles
	Rate-limiting patterns
	The project's layout
	A detailed look at the rate-limiting sample
	Best practices to avoid reaching the rate limits
	Caching
	Not making calls in loops
	Logging requests
	Avoiding polling
	Supporting the streaming API


	Response pagination
	Types of pagination
	Offset-based pagination
	Time-based pagination
	Cursor-based pagination

	The project's layout

	Internationalization principles
	Miscellaneous topics
	HATEOAS
	The PayPal REST API and HATEOAS
	REST and extensibility
	Additional topics for REST API
	Testing RESTful services
	Documenting RESTful services

	Recommended reading

	Summary

	Chapter 6: Emerging Standards and  The Future of REST
	Real-time API
	Polling
	The PuSH model – PubSubHubbub
	The streaming model
	Server-sent events
	Server-sent events and JavaScript
	Server-sent Events and Jersey


	WebHooks
	WebSockets

	Additional real-time API supporters
	XMPP
	BOSH over XMPP

	Comparisons between WebHooks, WebSockets, and server-sent events
	REST and Micro Services
	Simplicity
	Isolation of problems
	Scale up and scale down
	Clear separation of capabilities
	Language independence

	Recommended reading
	Summary

	Appendix
	Overview of the REST API from GitHub
	Getting details from GitHub
	Verbs and resource actions
	Versioning
	Error handling
	Rate limiting

	Overview of the Facebook Graph API
	Verbs and resource actions
	Versioning
	Error handling
	Rate limiting

	Overview of the Twitter API
	Verbs and resource actions
	Versioning
	Error handling

	Recommended reading
	Summary

	Index

