RESTful Java Web
Services Security

Secure your RESTful applications against common vulnerabilities

PACKT

www.it-ebooks.info

http://www.it-ebooks.info/

RESTful Java Web
Services Security

Secure your RESTful applications against
common vulnerabilities

René Enriquez

Andrés Salazar C.

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

RESTful Java Web Services Security

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2014
Production reference: 1180714

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-010-9

www . packtpub.com

Cover image by Vivek Thangaswamy (vivekthangaswamy@yahoo . com)

www.it-ebooks.info

http://www.it-ebooks.info/

Authors
René Enriquez

Andrés Salazar C.

Reviewers
Erik Azar

Ismail Marmoush

Debasis Roy

Acquisition Editor
Vinay Argekar

Credits

Project Coordinators
Melita Lobo

Harshal Ved

Proofreaders
Simran Bhogal

Paul Hindle

Indexers
Hemangini Bari

Rekha Nair

Content Development Editor Graphics

Adrian Raposo

Technical Editor
Shruti Rawool

Copy Editor
Sayanee Mukherjee

Abhinash Sahu

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

René Enriquez is currently a software architect for a multinational company
headquartered in India. He has previously worked on many projects related to
security implementation using frameworks such as JAAS and Spring Security to
integrate many platforms based on the Web, BPM, CMS, and web services for
government and private sector companies. He is a technology and innovation
enthusiast, and he is currently working with several programming languages.
He has achieved the following certifications:

* Oracle Certified Professional, Java SE 6 Programmer

* Microsoft Technology Associate

* Cisco Network Operating Systems
Over the past few years, he has worked as a software consultant on various projects
for private and government companies and as an instructor of courses to build

enterprise and mobile applications. He is also an evangelist of best practices for
application development and integration.

Andrés Salazar C. is currently working at one of the most prestigious government
companies in Ecuador, performing tasks related to software development and security
implementation based on JAAS and digital signatures for secure applications. He

also has extensive knowledge of OAuth implementation on web projects. He is a
technology and Agile enthusiast, and he has worked on several projects using the

JEE technology and TDD. He has achieved the following certifications:

* Oracle Certified Professional, Java SE 6 Programmer

* Certified Scrum Developer

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Erik Azar is a professional software developer with over 20 years of experience in
the areas of system administration, network engineering and security, development,
and architecture. Having worked in diverse positions in companies ranging from
start-ups to Fortune 500 companies, he currently works as a REST API architect

for Availity, LLC in Jacksonville, FL. He is a dedicated Linux hobbyist who enjoys
kernel hacking while experimenting with Raspberry Pi and BeagleBone Black boards.
In his spare time, he works on solutions using embedded microprocessor platforms,
Bluetooth 4.0, and connects to the cloud using RESTful APlIs.

Ismail Marmoush is a Java and Machine Learning Certified Expert. He has
published the open source projects RESTful Boilerplates for IAAS and PAAS (GAE),
an artificial neural network framework, and crawlers/dataminers and some language
code examples. You can find more about him, his work, and his tutorials on his
personal blog (http://marmoush.com).

Thanks to my family and the Packt Publishing team.

www.it-ebooks.info

http://www.it-ebooks.info/

Debasis Roy is working as the Team Lead / Scrum Master of the sports team
for Vizrt Bangladesh based at Dhaka. He has 7 years of professional working
experience as a software engineer in Java/C++-relevant technologies.

He has been working at Vizrt for the past 5 years. He started his journey here with a
product called the Online Suite, also known as Escenic Content Engine/Studio, and
he is now continuing with products related to Viz Sports. Vizrt provides real-time
3D graphics, studio automation, sports analysis, and asset management tools for the
broadcast industry —interactive and virtual solutions, animations, maps, weather
forecasts, video editing, and compositing tools.

Previously, he worked at SDSL/ AfriGIS for 2 years, where he was involved mainly
in the projects, Marbil and Grid. AfriGIS is a technology innovation company that
creates geographic information and communication solutions.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www. PacktPub. com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www . PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[ﬂ] PACKT

http://PacktLib.PacktPub.com

(C)

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print and bookmark content

* On demand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

This book is dedicated to my wife and son, who supported me through so many
days and nights of work and gave me their love and support; my brother,
who has always lent me his support; my father, who has been an example of
struggle and tireless work; my mother, who has always been concerned about
me and has supported me throughout life, gracias mami; and finally, my great
friends, who have always been supportive of me.
René Enriquez

I dedicate this book to my family. It is because of the work and love of my parents
that I have had the chance to study and become a professional software engineer,
and because of the support and love of my sisters that I want to keep improving
myself. Also, I want to dedicate this book to my grandmother, Mariana, who is
the strongest person in the world. Muchas gracias abuelita! Finally, I dedicate
the book to my bear man, Steve, for his support and English lessons.
Andrés Salazar C.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1: Setting Up the Environment 7
Downloading tools 7
Downloading links 8
Creating the base project 8
First functional example 13
Testing the example web service 18
Summary 20
Chapter 2: The Importance of Securing Web Services 21
The importance of security 22
Security management options 23
Authorization and authentication 24
Authentication 24
Authorization 24
Access control 25
Transport layer security 25
Basic authentication by providing user credentials 26
Digest access authentication 32

An example with explanation 32
Authentication through certificates 37
API keys 41
Summary 44
Chapter 3: Security Management with RESTEasy 45
Fine-grained and coarse-grained security 46
Securing HTTP methods 49
HTTP method — POST 50
HTTP method — GET 51

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Fine-grained security implementation through annotations 55
The @RolesAllowed annotation 55
The @DenyAll annotation 59
The @PermitAll annotation 60

Programmatical implementation of fine-grained security 60

Summary 62
Chapter 4: RESTEasy Skeleton Key 63
OAuth protocol 64
OAuth and RESTEasy Skeleton Key 64

What is RESTEasy Skeleton Key? 64

OAuth 2.0 authentication framework 64
Main features 65

OAuth2 implementation 66
Updating RESTEasy modules in JBoss 66
Setting up the configuration in JBoss 67
Implementing an OAuth client 67

SSO configuration for security management 77
OAuth token via Basic Auth 79

Running the application 81
Custom filters 82

Server-side filters 83

Client-side filters 84

Example usage of filters 84

Summary 90
Chapter 5: Digital Signatures and Encryption of Messages 91
Digital signatures 92

Updating RESTEasy JAR files 94

Applying digital signatures 96

Testing the functionality 100

Validating signatures with annotations 103

Message body encryption 112

Testing the functionality 114

Enabling the server with HTTPS 115
Testing the functionality 120

Summary 123
Index 125

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

The inherent advantages of the use of web services in computer systems development
are the same that create the need for security management over them. Today, we

can say that no company is able to work in complete isolation, without the need to
interact with others and share and consume information. Furthermore, this is the
most important asset of any company. For this reason, these requirements are also
common between lines of code. This book presents real scenarios with applicable
solutions, leading you by the hand all the way, so you can easily learn solutions

and implementations that will resolve the most common needs that can arise.

RESTful web services offer several advantages over those based on SOAP.

For example, when handling data types, depending on the programming language
or the libraries you use to create them, you can find inconsistencies when using
empty values ("") instead of NULL. Also, you may find difficulties in mapping
complex objects and compatibility issues in file transferring when using different
versions of libraries to create/consume the web service. In certain situations, even
when consuming a web service created in Java from a .NET application, it ends up
creating a service implemented in Java in the middle of both. This does not occur in
RESTful web services, since in this case, the functionality is exposed through HTTP
method invocations.

In order to protect information, the world of securities has many features that help

to achieve this. For example, understanding how some issues such as authentication
and authorization assist in the implementation of any selected mechanism, where the
main objective is to make our applications safer and secure, is essential. The selection
of each of the different ways to secure applications goes along with the problem you
want to resolve; for this, we show usage scenarios for each of them.

Many times, we have seen large organizations spend time and effort in creating their
own implementations to handle securities rather than using the standard that has
already resolved what we need. Through the knowledge that we want to share with
you, we hope to avoid this process of reinventing the wheel.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

What this book covers

Chapter 1, Setting Up the Environment, helps us create our first functional application,
something very similar to a Hello World example, but with some more functionality
and very close to the real world. The main aim of this chapter is to familiarize
ourselves with the tools we are going to use.

Chapter 2, The Importance of Securing Web Services, goes through all possible models of
authentication in the Java platform. For your better understanding, we will go step by
step and dive deep into how we can leverage each available authentication model. We
will show you how the information is exposed and how it can be intercepted by third
parties, and we will play with Wireshark, which is a very good tool to explain it.

Finally, in this chapter, we will review the differences between authentication and
authorization. Both concepts are very important and definitely impossible to put
aside in the context of securities terms.

Chapter 3, Security Management with RESTEasy, shows how RESTEasy offers
mechanisms to handle security, starting from a fairly basic model (coarse-grained) to a
more elaborate one (fine-grained) in which you can perform more exhaustive controls,
including managing not only configuration files, but also programmatical files.

Chapter 4, RESTEasy Skeleton Key, helps us study the OAuth implementation along
with the token bearer implementation and Single Sign-On. All of them are used in
order to limit the way the resources are shared. As always, you will get hands-on
with code and real examples. We want to show you how sharing resources and
information between applications through these technologies has turned into one

of the most useful and powerful techniques by allowing clients or users to use their
credentials only once to access several services, limiting the access to third-party
applications to your information or data, and implementing access control through
the token bearer. You will learn to apply these technologies and concepts in order to
build secure and flexible applications.

Chapter 5, Digital Signatures and Encryption of Messages, helps us understand the
benefits of digital signatures using a simple example; you'll notice how the message's
receiver can validate the identity of the sender. In addition, we will simulate when
an external agent modifies data in transit and see how digital signatures can help us
to detect it, in order to avoid working with corrupted data.

Finally, we will explain SMIME for body encryption and how it works, with an
example that encrypts requests and responses for your better understanding.

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

What you need for this book

In order to implement and test all the examples in this book, we will use many free
tools, such as the following:

* Eclipse IDE (or any other Java IDE)

* JBoss AS7
* Maven
* Wireshark
* SoapUI

Who this book is for

This book is intended for developers, software analysts, architects, or people who
work with software development and RESTful web services. This book requires
some previous knowledge of object-oriented programming concepts in Java or
any other language.

No previous knowledge on security models is required because we explain the
theory and apply it on practical examples in this book.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"We are going to modify the web . xml file."

A block of code is set as follows:

private boolean isUserAllowed(final String username, final String
password, final Set<String> rolesSet) {

boolean isAllowed = false;

if (rolesSet.contains (ADMIN))

isAllowed = true;
}
return isAllowed;
}

}

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

final List<String> authorizationList = headersMap.get (AUTHORIZATION
PROPERTY) ;

Any command-line input or output is written as follows:

mvn clean install

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "From the
pop-up window, select the SSL Settings tab."

& Warnings or important notes appear in a box like this.
i

a1

Q Tips and tricks appear like this.

Reader feedback

Feedback as suggestions or comments from our readers is always welcome. Let us
know what you think about this book —what you liked or may have disliked. Reader
feedback is important for us to develop titles that you really get the most out of and
also to improve the way we transmit knowledge.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Downloading the example code

You can download the example code files for all Packt books you have purchased from
your account at http: //www.packtpub.com. If you purchased this book elsewhere,
you can visit http: //www.packtpub. com/support and register to have the files
e-mailed directly to you. Also, we highly suggest obtaining the source code from
GitHub available at https://github.com/restful-java-web-services-security.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up the Environment

We extend you a very warm welcome to the first chapter of our journey. Let's give

you an idea of what you will achieve here. After reading this chapter, you will have
the basic and stimulating knowledge you need to set up a development environment
to work with RESTful web services. Then, you will familiarize yourself with the
development of a very basic project related to it. In addition, by the end, you will have
a very clear idea of how to create applications using RESTful web services and how
you can achieve this. This chapter will give you the information you need to work with
web services of this kind in a very easy and comprehensive way.

In this chapter, we will cover the following topics:

* Installing the development environment
* Creating our first RESTful web services application
* Testing the RESTful web service

Downloading tools

First, we must obtain our work tools so that we get our hands into code. Tools
specified here are used around the world, but you are free to choose your tools.
Remember, "Tools do not make the artist". It doesn't matter if you use Windows,
MAC OS X, or Linux; tools are available for every OS.

Let's explain briefly what each tool is for. We will develop the examples using
Eclipse as our IDE, JBoss AS 7.1.1.Final as our application server, Maven to
automatize the build process, and SoapUl as a tool to test the functionality of web
services that we will create. In addition, we suggest that you should install the latest
version of JDK, which is JDK 1.7 x. For help, we have obtained and included some
links that you need to use to get the software to implement the first example. Each
link gives you more information about each tool, which can be profitable as you
learn something about each one if you don't know about them already.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up the Environment

Downloading links

The following tools have to be downloaded:

* Eclipse IDE for Java EE Developers 4.3 (http://www.eclipse.org/
downloads/)

* JBoss AS7.1.1 Final (http://www.jboss.org/jbossas/downloads/)
* Apache Maven 3.1.1 or higher (http://maven.apache.org/download.cgi)
* SoapUI 4.6 or higher (http://www.soapui.org/)

* JDK1.7.x (http://www.oracle.com/technetwork/java/javase/
downloads/jdk7-downloads-1880260. html)

Creating the base project

In order to make the process of building our sample project easier, we will use Maven.
This wonderful software will create a base project at the blink of an eye, and our
project can be easily compiled and packaged without depending on a specific IDE.

Maven uses archetypes for a specific kind of project. The archetypes are project
templates that have been previously created; they allow us to create all kinds of
applications from Java desktop applications to multimodule projects, where the
EAR can contain several artifacts such as JAR and WAR. Its main objective is to
get users up and running as quickly as possible by providing a sample project
that demonstrates many of the features of Maven. If you want to learn more about
Maven, you can find more information by visiting http://maven.apache.org/.

However, the information we described here is enough to keep moving on. We will
use an archetype in order to create a basic project; if we want to be more specific, we
will use an archetype to create a web application with Java. To do this, we will type
the following command line in a terminal:

mvn archetype:generate

When we execute this command line in a terminal, we will obtain all available
archetypes in Maven's repository. So, let's look for the archetype we need in order to
create our web application; its name is webapp-javaees, and it belongs to the group
org.codehaus.mojo.archetypes. Also, we can search through it using a number
that represents its ID; this number is 557, as shown in the following screenshot. We
recommend that you search by the name as the numbers are likely to change because
some other archetypes may be added later:

[8]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

® OO W
551: remote -> org.codehaus.mojo.archetypes:netbeans—platform-app-archetype
NBM project.)

552: remote -> org.codehaus.mojo.archetypes:osgi-archetype (Archetype for de
553: remote -> org.codehaus.mojo.archetypes:pom-root (Root project archetype
554: remote -> org.codehaus.mojo.archetypes:sample-javafx (Sample archetype
555! remote -> org.codehaus.mojo.archetypes:webapp-j2eell3 (-)

556: remote -> org.codehaus.mojo.archetypes:webapp-j2eeld (-)

557: remote —> org.codehaus.mojo.archetypes:webapp-javaee6 (-)

558: remote -> org.codehaus.mojo.archetypes:webapp-javaee7 (Archetype for a
559: remote -> org.codehaus.mojo.archetypes:webapp-jee5 (-)

Several questions will appear; we must provide the respective information for each
question. Maven will use this information to create the archetype we selected before,
as shown in the following screenshot:

S

=
o

e
/]
0

.0
1
2
3
4

oYU AR WNREO

1.5

Define
Define
Define
Define

org.codehaus.mojo.archetypes:webapp-javaeeé version:

Choose a number: 8: 8

value for property 'groupld': com.packtpub
value for property 'artifactId': resteasy—-examples
value for property 'version': 1.8-SNAPSHOT:
value for property 'package': com.packtpub:

Confirm properties configuration:

groupId: com.packtpub
artifactId: resteasy-examples
version: 1.0-SNAPSHOT

package: com.packtpub

As you have probably noticed, each question asks you to define a property, and each
property is explained as follows:

groupId: This property represents the company's domain reversed order;

this way we can recognize which company is the code's owner

going to be added

artifact1d: This property represents the project's name
version: This property represents the project's version

package: This property represents the base package's name where classes are

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up the Environment

Class names and package names together shape the class's full name. This full name
allows the class names to be identified in a unique way. Sometimes, when there are
several classes with the same name, the package name helps to identify which library

it belongs to.

The next step is to put the project into Eclipse's workspace; to do this, we must
import our project into Eclipse by navigating through File | Import | Maven |
Existing Maven Projects.

We should see the project in the IDE, as shown in the following screenshot:

a0 Java EE - Eclipse - (Users/moe/Documents/workspace-resteasy W
- e QrQr N | = G e @I RIME (A bW e 5
- | G Q Quick Access ‘ oy | @ avace
Project Explorer &2 =0 = 5% Quti R Task = O
=] i e
An outine i not available.
[Markers £ [Properties 4l Servers [Data ; Snippe v=8
3 errors, 1 warning, D others
Description & Resource Path Location Type

» £ JAX=RS Problem (1 item)
» 3 Maven Configuration Problems (1 item)

¥ €3 Maven Problems (2 items)

£ resteasy-examples

Before moving on, let's fix the problems that have occurred in the file pom. xm1l.

The error shown in the following code is related to a bug that comes from Eclipse
and Maven integration. In order to fix this, we have to add the <pluginManagement>
tag after the <builds> tag.

[10]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The pom.xm1 file should look like the following:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance"

Xsi:schemalLocation="http://maven.apache.org/POM/4.0.0 http://maven.
apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupIds>com.packtpub</groupId>
<artifactId>resteasy-examples</artifactId>
<version>1.0-SNAPSHOT</version>
<packagings>war</packaging>

<builds>
<pluginManagement>
<plugins>
<plugins>

</plugin>
</plugins>
</pluginManagement>
</build>

</project>

Downloading the sample code

You can download the sample code files for all Packt books you have
purchased from your account at http: //www. packtpub.com. If
~ you purchased this book elsewhere, you can visit http: //www.
Q packtpub. com/support and register to have the files e-mailed
directly to you. Also, we highly suggest obtaining the source code
from GitHub available at https://github.com/restful-java-
web-services-security.

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up the Environment

This will fix the error, and now we only need to update Maven's configuration in the
project, as shown in the following screenshot:

[|JAX-RS Web Services E COP\J #C
» ‘igDeployment Descriptor: res 3 Copy Qualified Name
> [JAX-WS Web Services “ Paste eV
¥ % Java Resources % Delete ®

» Fsre/main/java

» (S sreftestfjava Remove from Context U {r&

» = Libraries Build Path >
> i, JavaScript Resources Refactor HT >
» L Deployed Resources

| pom.xml Import >
» (= src Export >
P = target

= Refresh 5

Close Project
Close Unrelated Projects

%3 Mark as Deployable

Validate
Show in Remote Systems view
Profile As >
Debug As >
Run As >
Tesm > Add Dependency
Compare With b ﬁdd Plugin)
Restore from Local History... i New Maven Module Project
Checkstyle 2 Download JavaDoc
Download Sources
J:"’iMEETO"'s : 13 Update Project... P |

After refreshing the project, the errors should go away because when we update
Maven's configuration we are actually updating our project's dependencies,
such as missing libraries. Through this, we will include them in our project

and errors will disappear.

Inside the src/main/webapp path, let's create the weB- INF folder.

Now, inside the wEB- INF folder, we will create a new file named web . xm1 with the
following content:

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemalLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd">

</web-app>

This file is very useful when you are securing your applications; this time, we will
create it without any configuration. For now, the /WEB- INF folder and the web . xml
file only define the structure of the web application.

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

First functional example

Now that we have our development environment all set up, it is time to get your
hands dirty and write the first RESTful web service. As we are using JBoss, let's use the
RESTEasy implementation for JAX-RS. We will develop a very simple example; let's
imagine you want to implement a service to save and search for people's information.

First, we create a simple Person domain class that uses JAXB annotations. JAXB
marshals/unmarshals objects between XML and Java. For this example, we'll store
these instances in an in-memory cache instead of a database. In JEE, this typically
represents a table in a relational database, and each entity instance corresponds to a
row in that table, as presented in the following code:

package com.packtpub.resteasy.entities;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement (name = "person")
@XmlAccessorType (XmlAccessType.FIELD)

public class Person {

@XmlAttribute
protected int id;

@XmlElement
protected String name;

@XmlElement
protected String lastname;

public int getId() {
return id;

public void setId(int id) {
this.id = id;

public String getName () {

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up the Environment

return name;

public void setName (String name) {
this.name = name;

public String getLastname () {
return lastname;

public void setLastname (String lastname)
this.lastname = lastname;

}

Next, we create a new class called PersonService in the com.packtpub.resteasy.
services package. This class will have two methods; one to register a new person and
another to search for people by ID. This class will store people using an in-memory
map cache.

The service will have the following implementation:

package com.packtpub.resteasy.services;

import java.net.URI;
import java.util.HashMap;
import java.util.Map;

import javax.ws.rs.Consumes;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

import javax.ws.rs.Produces;

import javax.ws.rs.WebApplicationException;
import javax.ws.rs.core.Response;

import com.packtpub.resteasy.entities.Person;

@Path (" /person")

public class PersonService {
private Map<Integer, Person> dataInMemory;
public PersonService()

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

dataInMemory = new HashMap<Integer, Person> () ;

}

@POST
@Consumes ("application/xml")
public Response savePerson (Person person)
int id = dataInMemory.size() + 1;
person.setId(id) ;
dataInMemory.put (id, person) ;
return Response.created(URI.create("/person/" + id)) .build() ;

@GET

@Path ("{id}")

@Produces ("application/xml")

public Person findById(@PathParam("id") int id) {
Person person = dataInMemory.get (id) ;
if (person == null) {

throw new WebApplicationException (Response.Status.NOT FOUND) ;

}
return person;

}

}

The @epPath annotation defines the path in the URL that will be available on the
functionalities that have been written within this class. The method annotated
with epost indicates that it should make a HTTP POST request. Furthermore, it is
annotated with eConsumes and uses the application/xml value; this means that
the POST request will be performed with a string in XML format, containing the
information of the person to be saved. On the other hand, to find a person from its
ID, you must make an HTTP GET request. The URL must indicate the ID the same
way as indicated by the @path annotation on the method. The @Produces annotation
indicates that we will get the response in XML format. Finally, notice that the
parameter ID, as indicated in the @Path annotation, is used as an argument of the
method using the @PathParam annotation.

Finally, we write a class that will extend the Application class and set the service
we just created as a singleton. So, the information won't get lost in every request,
and we will keep it in memory as follows:

package com.packtpub.resteasy.services;

import java.util.HashSet;

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up the Environment

import java.util.Set;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/services")
public class MyRestEasyApplication extends Application

private Set<Object> services;

public MyRestEasyApplication() {
services = new HashSet<Object>() ;
services.add (new PersonService()) ;

@Override
public Set<Object> getSingletons() {
return services;

}

Note that as we have mapped our entity using JAXB, our methods consume and
produce information in the XML format.

In order to deploy our application in JBoss, we should add a dependency in the pom.
xml file. This dependency must reference to the JBoss plugin. We have to change the
generated artifact name in pom.xml. The default value for this is the artifact1d file,
followed by the version; for example, resteasy-examples-1.0-snapshot.war. We
will set it, so we will use just the artifact1d file; in this case, resteasy-examples.
war. All of these configurations must be included, modified, and implemented in
pom.xml, as shown in the following piece of XML code:

<builds>
<finalName>${artifactId}</finalName>
<pluginManagement>
<plugins>
<plugin>
<groupld>org.jboss.as.plugins</groupId>
<artifactId>jboss-as-maven-plugin</artifactIds>
<version>7.5.Final</version>
<configurations
<jbossHome>/pathtojboss/jboss-as-
7.1.1.Final</jbossHome>
</configurations>
</plugin>

[16]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

</plugin>
</plugins>
</pluginManagement >
</build>

You should change the value of the jbossHome property for the path of your

JBoss installation. After this, we will use the command terminal; head to the project's
directory, and type mvn jboss-as:run. If you make any change on the code after the
command has been executed, then you should use the following command in order
to see the changes:

mvn jboss-as:redeploy

Run and redeploy are the goals of this plugin. If you want to know more goals about
this plugin, you can visit https://docs.jboss.org/jbossas/7/plugins/maven/
latest/). This will compile all project classes again; it will then be packaged in
order to create the .war file. At the end, the modifications will be deployed on the
server. If everything is okay, we should see a message in the terminal saying that the
deployment has been done successfully, as shown in the following screenshot:

® 006 bin — java — 96x14 n
| java [bash [
90:39:15,164 INFO [org.jboss.as.repository] (management-handler-thread - 1) JBAS@149@8: Content
added at location /Users/moe/Documents/Java/jboss-as-7.1.1.Final/standalone/data/content/fa/939
3869a551e881973c3f6b21@9%eelc5dech@l/content
20:39:15,191 INFO [org.jboss.as.server.deployment] (MSC service thread 1-5) JBAS@15877: Stopped
deployment resteasy-examples.war in 22ms
0:39:15,193 INFO [org.jboss.as.server.deployment] (MSC service thread 1-7) JBAS@15876: Startin
g deployment of "resteasy-examples.war"
#0:39:15,230 INFO [org.jboss.web] (MSC service thread 1-7) JBAS01821@: Registering web context:
/resteasy-examples
90:39:15,267 INFO [org.jboss.as.server] (management-handler-thread - 1) JBAS@18562: Redeployed
"resteasy-examples.war"
00:39:15,267 INFO [org.jboss.as.server] (management-handler-thread - 1) JBAS@18565: Replaced de
ployment “resteasy-examples.war" with deployment "resteasy-examples.war"

The source code of this chapter is available on GitHub at the following location:

https://github.com/restful-java-web-services-security/source-code/
tree/master/chapter0l

[17]

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up the Environment

Testing the example web service

At this moment, we will test the functionality we just created. We will use SoapUI as
our test tool; make sure you use the latest version, or at least the version equal to or
greater than 4.6.x because this version offers more features to test the RESTful Web
services. Let's start by performing the following steps:

1. From the main menu, let's create a new REST project by navigating to File |
New REST Project, as shown in the following screenshot:

& Soapul-4.6.4 LN Tools Desktop Help
OO . New SOAP Project %N | SoapUl 4.6

han BOK & New REST Project \C3EN -_Creates a new REST Project in this workspace = |

New Generic Project " {r3N -

; Import Project ®’
| Import Packed Project
Import Remote Project

N

2. Set the URI of our service, as follows:

8 06 New REST Project
| New REST Project @
¥
Creates a new REST Project in this workspace

URLE | hetp:/ /localhost:8080/ resteasy-examples/services/person |

e

() Lok | | Cancel Import WADL...

—

3. After this, let's create a new person using the PoST method from workspace.
In the field Media Type, select application/xml and perform a request
with a string that contains the XML with the information, as shown in
the following text:

<persons><name>Rene</name><lastname>Enriquez</lastname></persons>

[18]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

4. When we click on the Play button, we should obtain an answer where it shows
the created resource URI (hyperlink "http://localhost:8080/resteasy-
examples/services/person/1"), as shown in the following screenshot:

C RN [y 1
Method Endpoint Resource Parameters
LI POST = hutp//localhost:8080 v [resteasy-examples/services/person/ uw+®
€
L™l A (e "P/1.1 201 Created
Hame Valie Style il ser: Apache-Coyote/1.1

ation: http:/ /localhost: 8080/ resteasy-examples/services/person/1
itent-Length: 0
e: Thu, 27 Feb 2014 05:41:49 GMT

o

XML

Required Sets if parameter is required

av

. Media Type application/xml LN | Post QueryString

JSON

on ><nama >Rene </ name ><lastname >*Enriguez </ lastname ></person >

] g
a
A Header... Attachmen... Representatio... M5 He IM5 Proper S5L Info
response time: 3708ms (0 bytes) i
5. If we change the URI from the Resource textbox in SoapUI and use the
GET method, it will show us the data we just entered, as shown in the
following screenshot:
800 %F Request 1
. Method Endpoint Resource P
L GET % | http://localhost:8080 ¥ [resteasy-examples/services/person/1
<
= > =B E S
";': - 'f"} ['.\'_.] ¥ A @] E Fpef:z’:ne i;ene:lenameb
[Name Value Style Level <lastname >Enriguez </lastname >
</person >

Congratulations! We have developed our first functional RESTful web service with
two features. The first is to keep people's information in memory, and the second is
to retrieve people's information through an ID.

If you restart JBoss or deploy the application again, all data will be lost.
" Before searching for people's information, you must first save the data.

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up the Environment

Summary

In this chapter, we created our first functional application —something like a
hello world example but with a bit more functionality close to the real world.

The essential part we covered in this chapter is to familiarize ourselves with the tools
we will use. In later chapters, we will assume that these concepts are already clear.
For example, we will move forward step-by-step when using SoapUI as this is a tool
that will facilitate the task of testing the functionality that we will be developing.
This way, we will avoid the task of writing code for web service clients.

Now we are ready to review the next chapter, which contains some security
models that Java provides. We will understand each one of them and learn
how to implement them.

[20]

www.it-ebooks.info

http://www.it-ebooks.info/

The Importance of Securing
Web Services

Look at you; you have made it to Chapter 2; congratulations! This chapter is quite
important because it is related to a concept that is implicit in software, which is
security. This is very important because software is used by companies and people
like us. Sometimes, we share very important and confidential information through
software, and that is why this topic becomes so important for everybody.

In this chapter, we will take you through the basic aspects related to the management
of security in computer systems.

We will explore and implement each of the different security mechanisms and
scenarios in which they can be used.

Also, you'll learn how to use a protocol analyzer. This will allow us to demonstrate
how an attack can be performed and determine the impact of this attack when it
achieves its target, in this case, our information. Also, you will be able to imagine
more options to implement security in web services.

As everything needs practice, you will go through a simple example of code to
learn the differences between authentication and authorization. Get ready for an
interesting and useful topic.

In this chapter, we will cover the following:

* Understanding the importance of security management
* Exploring and implementing the different available mechanisms of security
* Using a protocol analyzer to intercept requests

* Understanding the difference between authentication and authorization

www.it-ebooks.info

http://www.it-ebooks.info/

The Importance of Securing Web Services

The importance of security

The management of security is one of the main aspects to consider when
designing applications.

No matter what, neither the functionality nor the information of organizations can

be exposed to all users without any kind of restriction. Consider the case of a human
resource management application that allows you to consult the wages of employees,
for example: if the company manager needs to know the salary of one of their
employees, it is not something of great importance. However, in the same context,
imagine that one of the employees wants to know the salary of their colleagues;

if access to this information is completely open, it can generate problems among
employees with varied salaries.

An even more critical example can be the case where the bank XYZ increases a
bank balance every time a customer or a third party makes a deposit into one of
their accounts using an ATM. The IT manager envisions that this functionality
could be common, and decides to implement it as a web service. Right now, this
functionality is limited to bank users logged in to the application that uses this web
service. Suppose that the visions of the future of the IT manager come true, and
this functionality is now required from an ATM; raising this requirement quickly
indicates that such functionality is implemented and can be used by invoking the
web service. So far, there may be no security loopholes since ATMs are likely to
have a security system that controls access, and thus operating system access to the
functionality of the web service is also indirectly controlled.

Now, imagine that the company ABC wants a similar functionality to increase

the balance in one of its employee's bank account by an x amount in recognition

of some kind of contribution to the company. What happens to the functionality

of the web service? Do you think you can again trust the application that handles
its own security scheme to control access to its functionality? Even if we do trust
this mechanism, what if the request is intercepted by a sniffer? Then, anyone who
knows how to perform the request may increase the balance. These questions, when
answered, throw in the response in quite a logical way. Exposed, these scenarios
now sound quite logical so that whoever authenticates the user to have access to
this functionality is the web service, and as such, should be entrusted with the
management scheme security systems under all circumstances. It doesn't matter if
invocations are from the organization itself or from an external institution; security
control must be present in order to expose a sensitive functionality such as the one
we just outlined.

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

When sharing existing information or functionality through web services, it is well
known that we don't depend on programming languages, architectures, or system
platforms to interact with. This gives us flexibility and saves us from having to
rewrite the existing functionality. Going further, we should understand that these
features have an impact on data confidentiality, as we are going to share information
and/or functionality with entities or systems. This way, we can accomplish the
business objectives and definitely prevent intruders from reading our information;
or even worse, a third party not authorized has access to functionalities exposed by
our services. Hence, access to them must be rigorously analyzed and our exposed
services must be correctly ensured.

Security management options

Java provides some options for security management. Right now, we will explain
some of them and demonstrate how to implement them. All authentication methods
are practically based on credential delivery from the client to the server. There are
several methods to perform this, which are:

* BASIC authentication

* DIGEST authentication

e CLIENT CERT authentication
* Using API keys

Security management in applications built with Java, including the ones with
RESTful web services, always rely on JAAS.

Java Authentication and Authorization Service (JAAS) is a framework that is part
of Java Platform Enterprise Edition. Hence, it is the default standard to handle an
application's security in Java; it allows you to implement authorization, and it allows
authentication controls over applications with the purpose of protecting resources
that belong to the application. If you want to know more about JAAS, you can check
out the following link:

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/
tutorials/GeneralAcnOnly.html

If you don't want to use JAAS, of course it is always possible to create our own
implementation to handle securities, but it would be hard. So, why don't we save
ourselves some time, effort, and peace by implementing this useful technology?

It is recommended to use standard implementations whenever possible. In our
development exercise, we will use JAAS for the first three methods of authentication.

[23]

www.it-ebooks.info

http://www.it-ebooks.info/

The Importance of Securing Web Services

Authorization and authentication

When you these terms, it is very easy to get confused, but they have different meanings
when you have a security system approach. In order to clarify these terms, we will
explain them in this section.

Authentication

In a nutshell, this term refers to who you are. It is the process to identify a user,
usually through their username and password. When we use this concept, we are
trying to ensure the identity of the user and we verify the identity the user claims
to be. Also, it doesn't have anything to do with the access rights the user has.

Security research has specified a list of factors that should be verified in order
to achieve positive authentication. This list contains three elements, where it
is very common to use two of them, but preferably we should use all of them.
These elements are the following;:

* Knowledge factors: This element implies something the user knows, for
example, a password, pass phrase, or personal identification number (PIN).
Another example is challenge response, where the user must answer a
question, software token, or phone serving as a software token.

* Ownership factors: This is something the user has, for example, a wrist band
(in case of physical authentication), ID card, security token, or cell phone
with a built-in hardware token.

* Inherence factors: This is something the user is or does, for example,
fingerprint or retinal pattern, DNA sequence, signature, face, voice,
unique bio-electric signals, or other biometric identifiers.

Authorization

In a few words, this term refers to what you can do. It is the process of giving a user
permission to do or have something. When we talk about software, we have a system
administrator that is in charge of defining the system which users are allowed to
access and what the privileges of use are (such as access to which file directories,
access period, amount of allocated storage space, and so forth).

Authorization is often seen as both the introductory setting up of permissions by a
system administrator and the checking of the permission values that have already
been set up when a user is getting access.

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Access control

A very common use of authentication and authorization is access control. A
computer system that is supposed to be used only by authorized users must
attempt to detect and reject unauthorized users. Access is controlled by persisting
on an authentication process to establish the user's identity with a certain level of
confidence, also conferring privileges specified for that identity. Let's name some
examples of access control involving authentication in different scenarios, such as
the following:

* Calling for photo ID when a contractor first arrives at a house to do
some work

* Implementing captcha as a way of verification that a user is a human being
and not a computer program

* When using a One Time Password (OTP) obtained on telenetwork-enabled
devices such as mobile phones as an authentication password/PIN

* A computer program that uses a blind credential in order to authenticate to
another program

* When you enter a country with a passport
* When you log in to a computer

* When a service uses a confirmation e-mail to verify ownership of an
e-mail address

* Using an Internet banking system
* When you withdraw cash from an ATM
Sometimes, the ease of access is adjusted against the strictness of access checks. For

example, a small transaction usually doesn't require a signature of the authenticated
person as proof of the transaction's authorization.

However, security experts argue that it is impossible to prove the user's identity
with absolute certainty. It is only possible to apply a set of tests which, if passed,
have been previously declared as a minimum to confirm the identity. The problem
lies in how to determine which tests are enough; it depends on the company to
determine this set.

Transport layer security

In this section, we highlight some of the main features of TLS:

* Its predecessor is Secure Sockets Layer (SSL)
* Itis a cryptographic protocol

[25]

www.it-ebooks.info

http://www.it-ebooks.info/

The Importance of Securing Web Services

* It provides security communication over the Internet

e It authenticates the counterpart through X.509 certificates
(asymmetric cryptography)

* Itallows client-server applications to communicate over the network and
prevents eavesdropping and tampering

* TLSis often implemented on top of the Transport layer protocols

* It encapsulates application-specific protocols such as HTTP, FTP, SMTP,
NNTP, and XMPP

* The use of TLS should be delegated, especially when credentials, updates,
deletions, and any kind of value transactions are performed

* The overhead of TLS is very low on modern hardware, with a little increase
of latency, but this represents more safety for the end user

Basic authentication by providing user
credentials

Possibly, basic authentication is one of the most used techniques in all types of
applications. The user, before gaining functionality over the application, is requested
to enter a username and password. Both are validated in order to verify whether

the credentials are correct (they belong to an application user). We are 99 percent
sure you have performed this technique at least once, maybe through a customized
mechanism, or if you have used the JEE platform, probably through JAAS. This kind
of control is known as basic authentication.

The main problem with this security implementation is that credentials are
propagated in a plain way from the client to the server. This way, any sniffer could
read the sent packages over the network. We will consider an example using a

tool named Wireshark; it is a protocol analyzer that will show this problem. For
installation, we can go to the link http: //www.wireshark.org/download.html.

The installation is pretty basic (click on Next all the way). For this reason, we will not
show screenshots of these steps.

Now, we are going to modify the project from Chapter 1, Setting Up the Environment,
where the user tries to invoke any of the functions of the web service. The user will
be requested to enter a username and password; once these are verified, the user will
have access to the web service functionality.

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

In order to have a working example, let's start our application server JBoss AS 7;
then, go to the bin directory and execute the file add-user.bat (the . sh file for
UNIX users). Finally, we will create a new user as follows:

MacBook-Pro-de-Rene:bin moe$./add-user.sh

What type of user do you wish to add?

a) Management User (mgmt-users.properties)

b) Application User (application-users.properties)
(a): b

Enter the details of the new user to add.

Realm (ApplicationRealm) : ApplicationRealm

Username : username

Password

Re-enter Password :

What roles do you want this user to belong to? (Please enter a comma separated list,
or leave blank for none) : admin

About to add user 'username' for realm 'ApplicationRealm’

Is this correct yes/no? yes

Added user 'username' to file '/Users/moe/Documents/Java/jboss-as-7.1.1.Final/standal
one/configuration/application-users.properties’

Added user 'username' to file '/Users/moe/Documents/Java/jboss-as-7.1.1.Final/domain/
configuration/application-users.properties’

Added user 'username' with roles admin to file '/Users/moe/Documents/Java/jboss—as-7.
1.1.Final/standalone/configuration/application-roles.properties’

Added user 'username' with roles admin to file '/Users/moe/Documents/Java/jboss-as-7.
1.1.Final/domain/configuration/application-roles.properties'

MacBook-Pro-de-Rene:bin moe$

The most important thing here is that you should select Application User

in the first question and assign it an admin role. This will match with the
information defined in the web . xm1 file, which will be explained later when

we implement securities inside our application. As a result, we will have a new
user in the JBOSS_HOME/standalone/configuration/application - users.
properties file.

JBoss is already set with a default security domain called other; this domain uses
the information stored in the file we mentioned earlier in order to authenticate. Right
now, we will configure the application to use this security domain inside the folder
WEB- INF from the resteasy-examples project. Let's create a file named jboss-web.
xml with the following content:

<?xml version="1.0" encoding="UTF-8"?>
<jboss-web>
<security-domain>other</security-domains>

</jboss-web>

[27]

www.it-ebooks.info

http://www.it-ebooks.info/

The Importance of Securing Web Services

Alright, let's configure the file web.xm1 in order to aggregate the security constraints.
In the following block of code, you will see in bold what you should add:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd">
<!-- Roles -->
<security-role>
<description>Any rol </description>
<role-name>*</role-name>
</security-role>

<!-- Resource / Role Mapping -->
<security-constraint>
<display-name>Area secured</display-name>
<web-resource-collection>
<web-resource-name>protected resources</web-resource-name>
<url-pattern>/services/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<description>User with any role</description>
<role-name>*</role-name>
</auth-constraint>
</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>
</login-config>
</web-app>

From a terminal, let's go to the home folder of the resteasy-examples project and
execute mvn jboss-as:redeploy. Now, we will test our web service as we did in
Chapter 1, Setting Up the Environment, using SOAP Ul We will perform a request
using the POST method to the URL http://localhost:8080/resteasy-examples/
services/person/ with the following XML:

<person><name>Rene</name><lastname>Enriquez</lastname></person>

[28]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

We obtain the following response:

Hea... Attach... Represen... M5 M5 Pro

esponse time: 7ms (958 bytes)

806 i Request 1
Method Endpoint Resource Parameters
P B o 3 e : . %W+ @
: = ttp:/ /localhost: 8080 v [resteasy-examples/services/person/
<
L m v e ® * [HTTP/1.1401 Unauthorized
- = e = | Server: Apache-Coyote/1.1
A, e e e | WWW-Authenticate: Basic realm="Realm"
Content-Type: text/html;charset=utf-§
Content-Length: 958
| |Date: Sun, 08 Jun 2014 16:21:45 GMT
-
=
. * | <html><head> <title>JBoss Web/7.0.13 Final - Error report</title> <+
ﬁ | Required Sets if parameter is requ =
=
| 2
H] -~
E Media Type application/xml = Pc
é [/ name ><lastname ~Enriquez </lastname »</person> |

Em Hvu

SOAP UI shows us the HTTP 401 error, which means that the request wasn't
authorized. This is because we performed the request without delivering the
credentials to the server. In order to do this, we have to click on the (...) button that
is located in the left-bottom spot of SOAP UI and enter the user's credentials we just
created, as shown in the following screenshot:

L.

Media Type application/xml

v

@ P

</ name ><lastname >Enriquez </lastname ></person >

Authentication Type:

~ Global HTTP Settings ~ + |

Username: username

Password: escsssee

| ... | Hea... Attach... Represen... JMS ... JMS Pro...
[29]

www.it-ebooks.info

http://www.it-ebooks.info/

The Importance of Securing Web Services

Now is the time to enable our traffic analyzer. Let's start Wireshark and set it to
analyze the traffic inside the loopback address. From the Main menu, navigate
to Capture | Interfaces.

Check the option 100, as shown in the following screenshot, and then click on
the Start button. This way, all traffic that goes through the address 127.0.0.1
or its equivalent localhost will be intercepted for our analysis.

Also, in the field Filter, we will type http just to intercept the HTTP request and
response, as shown in the screenshot that follows later:

800 '\ Wireshark: Capture Interfaces
Device Description P Packets Packets/s
O @ en0 fe80::6203:8ff:fe8e:37f2)
O ! bridge0 none
O ¢lenl none
O glen2
!
IHelp 4 Start Bstio @® Options | ¥ Close |
Have a look at the following screenshot:
806 %F Request 1
Method Endpoint Resource Parameters ®
LA e POST + hup://localhost:8080 | [resteasy-examples/services/person/ W+ @
<
oL v A ® * |HTTP/1.1201 Created
— |Server: Apache-Coyote/1.1
Mamea Valus Stia Laval |Location: http://localhost: 8080/ resteasy-examples/services/person/2
|Content-Length: 0
Date: Sun, 08 Jun 2014 16:23:36 GMT
=
=
- >
Required Sets if parameter is requ =
2
AV
Media Type application/xml « B Pc

:/nama><lagtname >Enriquez </lastname ></person >

| raw IELDTS

| Authentication Type: Global HTTP Settings +

| Username: username
| Password: [— "
| e,
|
Hea... Attach... Represen... M5 JMS Pro 55L Infc
lresnonse time: 16ms (0 bytes) 1.1

[30]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Once we have done this, we will perform the request operation from SOAP UL Once
again, SOAP Ul shows us a HTTP 201 message; this time, the request is successfully
processed. You can see the following columns of information in Wireshark:

* No: This column identifies the request or response in a unique way

* Time: This column identifies the time to execute the operation

* Source: This column identifies the address where requests/responses
are originated

* Destination: This column identifies the target IP address to perform a
HTTP request/response

* Protocol: This column identifies the protocol where requests/responses
are performed

* Length: This column identifies the request/response length

* Info: This column identifies information related to the request/response

Now, it is time to watch the information traffic on Wireshark, as follows:

File Edit View Go Capture Analyze S5tatistics Telephony Tools Internals Help

OOAE I ERXR AeswFT I BE QR @ DME:

Filter: |http = | Expression... Clear App Save
No. |Tirr|e ‘Source ‘Destination ‘Protocol‘Lengthllnfo

13 2,118380000 127.0.0.1 127.0.0.1 HTTP 232 HTTP/1.1 201 Created
< F — —

P Frame 11: 395 bytes on wire (3160 bits), 395 bytes captured (3160 bits) on interface @
I Null/Loopback
P Transmission Control Protocol, Src Port: 49333 (49333), Dst Port: http-alt (8080), Seq: 1, Ack: 1, Len: 339
= Hypertext Transfer Protocol
b POST /fresteasy-examples/services/person/ HTTP/1,1\r\n
Accept-Encoding: gzip,deflatevrin
Content- Type: application/xmly\rin
* Authorization: Basic dXNlcmShbWUGcGFzc3dvemd=\rin
Credentials: username:password
Content-Length: 63\r\n
Host: localhost:8080\r\n
Connection: Keep-Alive\r\n
User-Agent: Apache-HttpClient/4.1.1 (java 1.5)\r\n
Arin
LFull request URI: http://lecalhost:B80B8/resteasy-examples/services/person/]

-

Notice how Wireshark shows us we are performing a POST (info) operation using
the protocol HTTP with an XML string (protocol) to the target address 127.0.0.1
(destination). Also, you can read the username and password. Hence, this method is
not very safe for security implementation because anyone can access this information
and perform a phishing attack.

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

The Importance of Securing Web Services

You can find the source code for this chapter at the following URL:

https://github.com/restful-java-web-services-security/source-code/
tree/master/chapter02/basic-authentication

Digest access authentication

This authentication method makes use of a hash function to encrypt the password
entered by the user before sending it to the server. This, obviously, makes it much
safer than the basic authentication method, in which the user's password travels

in plain text that can be easily read by whoever intercepts it. To overcome such
drawbacks, digest md5 authentication applies a function on the combination of the
values of the username, realm of application security, and password. As a result, we
obtain an encrypted string that can hardly be interpreted by an intruder.

To better understand this process, we will show you a simple explanation extracted
from Wikipedia.

An example with explanation

The following example was originally given in RFC 2617 and is expanded here

to show the full text expected for each request and response. Note that only the
auth (authentication) quality of protection code is covered — at the time of writing,
only the Opera and Konqueror web browsers are known to support auth-int
(authentication with integrity protection). Although the specification mentions
HTTP Version 1.1, the scheme can be successfully added to the Version 1.0 server,
as shown here.

This typical transaction consists of the following steps:

The client asks for a page that requires authentication but does not provide a
username and password. Typically, this is because the user simply entered the
address or followed a link to the page.

The server responds with the 401 "Unauthorized" response code, providing the
authentication realm and a randomly generated, single-use value called nonce.

At this point, the browser will present the authentication realm (typically, a
description of the computer or system being accessed) to the user and prompt for a
username and password. The user may decide to cancel at this point.

[32]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Once a username and password have been supplied, the client resends the same
request but adds an authentication header that includes the response code.

In this example, the server accepts the authentication and the page is returned. If
the username is invalid and/or the password is incorrect, the server might return
the 401 response code and the client will prompt the user again.

A client may already have the required username and password without
needing to prompt the user, for example, if they have previously been
stored by a web browser.

% If you want to know more about this mechanism, you can visit Wikipedia

L for the complete article following the link http://en.wikipedia.

org/wiki/Digest access authentication.
You can also read the specification RFC 2617, which is available at
https://www.ietf.org/rfc/rfc2617.txt.

Now, let's test this mechanism in our example.

In order to start, we must ensure that the environment variable JAvA HOME is already
set and added to the pPATH variable. So, you can ascertain this by typing the following
command in a terminal:

java -version

This will display the information shown in the following screenshot:

® O O _ bin — bash — 80x9

java l bash l_

Last login: Wed Mar 5 22:19:50 on ttys@eo
MacBook-Pro-de—-Rene:bin moe$ java -version

java version "1.7.0_45"

Java(TM) SE Runtime Environment (build 1.7.0_45-b18)

Java HotSpot(TM) 64-Bit Server VM (build 24.45-b@8, mixed mode)
MacBook-Pro—-de-Rene:bin moe$ n

[33]

www.it-ebooks.info

http://www.it-ebooks.info/

The Importance of Securing Web Services

This command shows us the Java version installed on our PC. In case you obtain an
error instead of the previous output, you should create the environment variable
JAVA_HOME, add it to the PATH variable, and repeat the verification.

Now, in order to perform what we explained before, we need to generate a password
for our example user. We have to generate the password using the parameters we
talked about earlier — username, realm, and password. Let's go to the directory of
JBOSS_HOME/modules/org/picketbox/main/ from a terminal and type the following;:

java -cp picketbox-4.0.7.Final.jar org.jboss.security.auth.callback.
RFC2617Digest username MyRealmName password

We will obtain the following result:

RFC2617 Al hash: 8355c2bclaab3025c¢c8522bd53639¢c168

Through this process, we obtain the encrypted password and use it in our password
storage file (the JBOSS_HOME/standalone/configuration/application-users.
properties file). We must replace the password in the file, and it will be used for the
user username. We have to replace it because the old password doesn't contain the
realm name information of the application. As an alternative, you can create a new
user using the file add-user. sh; you just have to deliver the realm information when
you are requested.

In order to make our application work, we just need to make a little change in the
web . xml file. We have to modify the auth-method tag, change the value FORM to
DIGEST, and set the application realm name in the following way:

<login-configs>

<auth-method>DIGEST</auth-methods>

<realm-name>MyRealmName</realm-name>

</login-config>

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Now, let's create a new security domain in JBoss so that we can manage the
authentication mechanism DIGEST. On the <security-domains> section of
the JBOSS_HOME/standalone/configuration/standalone.xml file, let's add
the following entry:

<security-domain name="domainDigest" cache-type="default">
<authentications>
<login-module code="UsersRoles" flag="required"s
<module-option name="usersProperties" value="${jboss.server.
config.dir}/application-users.properties"/>
<module-option name="rolesProperties" value="${jboss.server.
config.dir}/application-roles.properties"/>
<module-option name="hashAlgorithm" value="MD5"/>
<module-option name="hashEncoding" value="RFC2617"/>
<module-option name="hashUserPassword" value="false"/>
<module-option name="hashStorePassword" value="true"/>
<module-option name="passwordIsAlHash" value="true"/>
<module-option name="storeDigestCallback"
value="org.jboss.security.auth.callback.RFC2617Digest"/>
</login-module>
</authentications>
</security-domains>

Finally, in the application, change the security domain name in the file jboss-web.
xml, as shown in the following code:

<?xml version="1.0" encoding="UTF-8"?>

<jboss-web>
<security-domain>java:/jaas/domainDigest</security-domains>

</jboss-web>

We will change the authentication method from BASIC to DIGEST in the web.xml file.
Also, we will enter the name of the security realm. All these changes must be applied
in the tag login-config in the following way:

<login-configs>
<auth-method>DIGEST</auth-method>
<realm-name>MyRealmName</realm-name
</login-config>

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

The Importance of Securing Web Services

Now, restart the application server and redeploy the application on JBoss. For this,
execute the following command in the terminal command line:

mvn jboss-as:redeploy

Let's enable the catching of traffic through Wireshark and test the web service

again using SOAP UL. First, we should change the field Authentication Type from
Global HTTP Settings to SPNEGO/Kerberos. A very useful trick is to tell SOAP Ul
not to use the basic authentication method. Once we execute the request, Wireshark
will tell us the message shown in the following screenshot:

B00 . Capturing from Loopback: lod _[Wireshark 1.10.5 [SVN Rev 54262 from Jtrunk-1.101]
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help
0® 4 m EXR a¢s»«F2 BB ccam @Bz B
Filter |http '|Exptessmn... Clear v Save
No. |T|m: |Snurce Ims:inaticn]Pmro:n[llength|lnfn
5 0.002214800 127.0.0.1 127.0.0.1 HTTP /XHL 368 FOST jresteasy-exanples/services/person/ HTTP/1. 1
7 0.003225800 127.0.8.1 127.8.0.1 HTTP 1316 HTTP/1.1 481 Unauthorized ([text/html}
11 0. 017902000 127.0.08.1 127.0.0.1 HTTP 233 HTTP/1.1 201 Created
= e =
Content-Type: application/zmlseve

realm: MyRealmMame,rin

Content-Length: 63\r\n

Host: localhost:B8884%ryn

connection: Keap-Alive\rin

User-Agent: Apache-HttpClient/4.1.1 {java 1.51%rn

[truncated] Authorization: Digest username="username”, realm="MyRealmiame=, nonce="1402253036125:94e4383d3637a02118091c2200943F134%, uri="/resteasy- examp
Arim

Full reguest

-

URL: htt

(flocalhost: 0B resteasy-axamples/services/person

As shown in the screenshot, let's first confirm that all the steps described earlier
are performed in this authentication method. Let's keep track using the No field
in Wireshark:

In step 5, the request is performed.

In step 7, the server returns an error message code HTTP 401 with the generated
nonce value. The nonce value helps to avoid replay attacks.

In step 9, the request is performed again. This time, the information required for
authentication is included and all this information is encrypted in the same way
we described earlier.

Finally, in step 11, we obtain the response that tells us the request has been
successfully executed.

As you will notice, this is a more secure authentication method, mainly used if you
don't want the overhead of full transport security through TLS/SSL encryption.

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

You can find the source code for this chapter at the following URL:

https://github.com/restful-java-web-services-security/source-code/
tree/master/chapter02/digest-authentication

Authentication through certificates

This is a mechanism in which a trust agreement is established between the server
and the client through certificates. They must be signed by an agency established to
ensure that the certificate presented for authentication is legitimate, which is known
as CA.

Let's imagine an application that uses this mechanism of security. When the client
attempts to access a protected resource, instead of providing a username or password,
it presents the certificate to the server. This is the certificate that contains the user
information for authentication; in other words, the credentials, besides a unique
private-public key pair. The server determines if the user is legitimate through the CA.
Then, it verifies whether the user has access to the resource. Also, you should know
that this authentication mechanism must use HTTPS as the communication protocol as
we don't have a secure channel and anyone could steal the client's identity.

Now, we will show how to do this in our example.

In our example, we turn ourselves into the CA; they are usually companies such as
VERISIGN or others. However, as we want to save you money, we will do it this
way. The first thing we need is a key for the CA (which is ourselves), and we will
sign the certificates for the application server and users. As the purpose of this book
is to explain how this method works and not how to generate certificates, we will not
include all steps required to generate them, but we include them on GitHub at the
following link:

https://github.com/restful-java-web-services-security/source-code/
tree/master/chapter02/client-cert-authentication

Alright, let's start. First, copy the server.keystore and server.trutstore files to
the folder directory JB0OSS_HOME/standalone/configuration/. You can download
these files from GitHub using the following link:

https://github.com/restful-java-web-services-security/source-code/
tree/master/chapter02/client-cert-authentication/certificates

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

The Importance of Securing Web Services

Now, as we mentioned before, this security mechanism requires our application
server to use HT'TPS as the communication protocol. So, we must enable HTTPS.
Let's add a connector in the standalone.xml file; look for the following line:

<connector name="http"

Add the following block of code:

<connector name="https" protocol="HTTP/1.1" scheme="https" socket-
binding="https" secure="true">

<ssl password="changeit"
certificate-key-file="${jboss.server.config.dir}/server.keystore"
verify-client="want"
ca-certificate-file="${jboss.server.config.dir}/server.truststore"/>

</connectors

Next, we add the security domain, as shown:

<security-domain name="RequireCertificateDomain">
<authentication>
<login-module code="CertificateRoles" flag="required"s>
<module-option name="securityDomain" wvalue
="RequireCertificateDomain"/>
<module-option name="verifier" value="org.
jboss.security.auth.certs.AnyCertVerifier"/>
<module-option name="usersProperties"
value="${jboss.server.config.dir}/my-users.properties"/>
<module-option name="rolesProperties"
value="${jboss.server.config.dir}/my-roles.properties"/>
</login-module>
</authentication>
<jsse keystore-password="changeit" keystore-
url="file:${jboss.server.config.dir}/server.keystore"
truststore-password="changeit" truststore-
url="file:${jboss.server.config.dir}/server.truststore"/>

</security-domain>

As you can see, we need two files: my-users.properties and my-roles.
properties; both are empty and located in the JBOSS_HOME/standalone/

configuration path.

[38]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

We will add the <user-data-constraints> tag in the web.xm1 file in the
following way:

<security-constraints>
...<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantees>
</user-data-constraint>
</security-constraints>

Then, change the authentication method to CLIENT-CERT, as shown:

<login-configs>
<auth-method>CLIENT-CERT</auth-method>
</login-config>

Finally, change the security domain in the jboss-web.xml file in the following way:

<?xml version="1.0" encoding="UTF-8"?>

<jboss-web>
<security-domain>RequireCertificateDomain</security-domains>

</jboss-web>

Now, restart the application server and redeploy the application with Maven using
the following command:

mvn jboss-as:redeploy

In order to test this authentication method, we will have to first perform some
configurations in SOAP UL First, let's go to the installation directory, find the
file vmoptions. txt, and add the following line:

-Dsun.security.ssl.allowUnsafeRenegotiation=true

Now, we will change the SSL settings of SOAP UL For this, you have to navigate to
File | Preferences from the principal menu.

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

The Importance of Securing Web Services

From the pop-up window, select the SSL Settings tab and enter the values shown in
the following screenshot:

806 SoapU| Preferences

SoaplUl Preferences
Set global SoapUl settings

i KeyStore: fUsers/moe/client.pfx Browse...
| KeyStore Password: ssessses

Enable Mock SSL: _ enable S5L for Mock Services
Mock Port:

Mock KeyStore: Browse...
Mock Password:

Mock Key Password:

WSDL Settings

Mock TrustStore: Browse...
Mock TrustStore Password:

Client Authentication: ™ requires client authentication

Ul Settings

Pl

(2]} @ Cancel

KeyStore is the place where you should have copied the .pfx file. Note that KeyStore
Password is changeit and check the option requires client authentication.

Now, we will test the modifications we just did; so, let's enable the traffic analyzer
and execute the request using SOAP Ul again. Wireshark will show the information
shown in the following screenshot:

Eile Edit View Go Capture Analyze Statistics Telephony Toocls [nternals Help

e dm s BEEXS AeswFSE QA e §kmEE B

Filler'| - |Expression.._ lear Apply

No. | Time ISuurte IDeslInaIiun | Pmlocoli Lenglhl Info
19 1,574137060 127.0.0.1 127.0.9.1 TCR 381 51322 > posync-https [PSH, ACK] Seq=246 Ack=146
20 1.574186000 127.0.0.1 127.0.0.1 TP 56 pesync-https > 51322 [ACK] Seq=146 Ack=571 Win]
22 1.600004000 127.0.0.1 127.0.0.1 TP 56 51322 > pcsync-https [ACK] Seq=571 Ack=359 Win=|
23 3, 504583000 1l trl P 84 Source port: 4915% Destination port: 49152
24 3.517272000 ::1 1 P 76 Source port: 45152 Destination port: 49152
25 3.519784000 ::1 t51 uoP B4 Source port: 49152 Destination port: 49152
26 3,531330000 i | uoP 1028 Source port: 49152 Destination port: 49152
27 3, 531344000 til 1 uop 300 Source port: 49152 Destination port: 49152
28 3.531350000 ::1 1 uoP 508 Source port: 49152 Destination port: 48152

< ——

b Frame 21: 269 bytes on wire (2152 bits), 269 bytes captured (2152 bats] on interface 8
b Null/Loopback

gLl D R TS E RS e Rl R TS e A

Version: 4

Header Length: 20 bytes
+ pifferentiated Services Field: 0x00 [DSCP 6x00: Default; ECN: ©Ox00: Not-ECT (Not ECN-Capable Transport])
0000 90.. = Differentiated Services Codepoint: Default [Bx00)
2.0 .00 = Explicit Congestion Motification: Wot-ECT (Not ECN-Capable Transport) (0x00)
Total Length: 265
Identification: Oxdfad (57257)
= Flags: 0x02 (Don't Fragment)

[B0B0 62 00 00 60 45 00 81 05 df a9 40 00 40 66 00 00
o010 7f o2 00 @1 7f 00 B0 81 20 fb cB Ta 48 4d 53 f6
6620 53 ae 3e dB 80 18 23 bf fe fd 00 00 01 01 08 Oa
@030 2B 54 7f a2 28 54 7f Ba 17 03 €1 90 dO 8e cd 30
0040 52 8f c9 dd4 c7 53 f0 ee 13 84 Oa fd c5 e 80 Sc
0050 11 51 b2 db 6f e2 le ab 79 el 2b 21 75 10 bO 31

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

As you can see, all information is encrypted and it can't be interpreted. So, if the
packages are transmitted and they are intercepted in the network, the information is
not vulnerable to attacks.

You can find the source code of this section on GitHub at the following URL:

https://github.com/restful-java-web-services-security/source-code/
tree/master/chapter02/client-cert-authentication/resteasy-examples

API keys

With the advent of cloud computing, it is not difficult to think of applications that
integrate with many others available in the cloud. Right now, it's easy to see how
applications interact with Flickr, Facebook, Twitter, Tumblr, and so on.

To enable these integrations, a new authentication mechanism has been developed
using API keys. This authentication method is used primarily when we need to
authenticate from another application but we do not want to access the private

user data hosted in another application. On the contrary, if you want to access this
information, you must use OAuth. If you are interested in this, don't worry, we will
study this wonderful technology later in this book.

We want to understand how the API keys work, so let's take the case of Flickr.
The important thing here is to understand how the API keys work because the
same concept can be applied to companies like Google, Facebook, and so on.
For those unfamiliar with Flickr, it is an application in the cloud in which we
can store our photos, images, screenshots, or similar files.

To start working with this authentication model, we first obtain an API key; in our
example with Flickr, you can do this using the following link:

https://www.flickr.com/services/developer/api/

[41]

www.it-ebooks.info

http://www.it-ebooks.info/

The Importance of Securing Web Services

When we ask for our API key, we are asked to enter the name of the application that
we will create and with which we use the API key. Once we enter the information
requested and submit it, Flickr will deliver us a couple of values; they are a secret
and a key. Both are displayed in the following screenshot:

The App Garden

Create an App APl Documentation Feeds Whatisthe App Garden?

Done! Here's the API| key and secret for your new app:

/ ' ; 1 resteasy application
o Key:

Editapp details - Editauth flow for this app - View all Apps by You

Each application we create is part of Flickr App Garden. App Garden is nothing but
the set of all applications created by all Flickr members.

Keep in mind that when creating an API key, we consciously accept certain terms of
use of the provider. These terms clearly detail what we can and can't do; for example,
Flickr says:

a. You shall:

Comply with the Flickr Community Guidelines at www . £1ickr.com/
guidelines.gne, the Flickr Terms of Use at http://www.£flickr.com/
terms.gne, and the Yahoo! Terms of Service at http://docs.yahoo.com/
info/terms/.

b. You shall not:

Use Flickr APIs for any application that replicates or attempts to replace the
essential user experience of Flickr.com

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Thus, by requiring that users accept the terms of use, API key providers prevent the
abusive use of its APIs. So, if someone starts disrespecting agreements, the provider
withdraws the API key. Flickr has a large set of methods that we can use in our
applications; we will try one of them to show how they work:

The flickr.photos.getRecent method lists all recent photos that have been posted
in Flickr, and we can invoke it as follows:

https://www.flickr.com/services/rest?method=flickr.photos.
getRecenté&; &api+key=[your api key from flicker]

Let's use the key we just generated earlier, and let's perform the request using the
browser as follows:

B O D en hups: v ickr.com/s %

L © A 2 hips/ jwwwflickr.com /services /rest?method=flickr photos.getRecentd &apl+ key =W NGl st G asigsw

This XML file docs not appear to have any stybe information associated with it. The document tree is shown below.

v<rap stat="ok">

v<photos page="1" pages="10" perpage="100" total="1000">
14192382589°
14192391599" owner="113229972N05" secret="
14192391649" ow 125070555806 secre
14192391779" owner="1124009978X08" sac
il
14192391679" owner="68310298N04" secret="df2fd33256" server="2907" farm="3" titl
14192391929° owner="468431578N08" secret="Jaa6Bdacc5” server="5475° farm="6" ti
family="0"/>

P1040399° ispub
IMG_0271.3pg" 4

& dspublic=
“London Brussels Amsterdas®

1£9b1b0402" server=
If6c662cL” ser
t="fB8a0TEbd]" server="5316"

isfriend="0" isfamily="0"/>
"1" ipfriend="0" isfamily="0"/>
="0" isf

-"0"/>
jiafriend="0"

=*7" ispublic="1" isfriend="0" isfamily="0"/>
e="20140608-113813-21292" dspublic="1" isfriend="Q°

First notice how information travels through a secure channel (HTTPS). Then, when
receiving the request, Flickr authenticates the user by reading the information from
the API key with the secret key that belongs to the user. Once these validations are
successful, the server delivers the response to the client. Thus, we obtain a response
with all the photos that have been recently posted within Flickr. As you'll notice, this
way, you can easily create applications using the provider's API. Also, the provider
will allow you to authenticate, access public information, and be responsible to keep
track of volume or the number of API calls you've made using the API key, in order
to validate that the use complies with the agreements.

[43]

www.it-ebooks.info

http://www.it-ebooks.info/

The Importance of Securing Web Services

Summary

In this chapter, we went through all possible models of authentication. We will
use all of them in the next chapter, and we will apply them to the web service
functionality we just created.

Even if you had trouble with any of the examples, you can continue to the next
chapter. As for your better understanding, we will go step-by-step and more
in-depth into how we can leverage each available authentication model.

As you realize, it is important to choose the correct security management, otherwise
information is exposed and can easily be intercepted and used by third parties.

Finally, in this chapter, we reviewed the differences between authentication and
authorization. Both concepts are very important and definitely impossible to put
aside in the context of security terms.

Now, we will ask you to join us to go ahead and secure our web service.

[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Security Management with
RESTEasy

Welcome to the third chapter. We hope you are enjoying and learning with us. In this
chapter, you will get more involved with security management. You will also work
with some more advanced security concepts.

Security management in applications built with RESTful web services can be
more granular than what we reviewed in the previous chapter. If we think
around authentication and authorization topics, we described the former;
authorization was set aside. This is because we want to treat it slowly and in
a very detailed level in this chapter.

The topics covered in this chapter are:

* Implementing security restrictions related to authentication and
authorization in to an application
* Implementing fine-grained security

* Using annotations to obtain more granularity over resource access control

www.it-ebooks.info

http://www.it-ebooks.info/

Security Management with RESTEasy

Fine-grained and coarse-grained security

There are two levels of security we can manage: fine-grained and coarse-grained.

When we mention the term coarse-grained in the context of security, we refer to
security systems that are generally handled at high levels within the application. The
examples in Chapter 2, The Importance of Securing Web Services, in which a user with
any role can make use of the services, is a perfect example of coarse-grained because
the coarse-grained option is used when the security restrictions give access to users
without worrying about roles or more specific features about the authenticated user.
This means that in order for the system to allow access to functions, we just verify the
user identity; in other words, it authenticates the user. However, it is not enough to
have an authenticated user of the application in real life. It will also be necessary that
the user is authorized to use certain features. We can achieve this using fine-grained
controls. Validating the user's assigned permissions to access functions means using
authorization controls.

To demonstrate these concepts in a practical way, we will make use of the
application we created in the previous chapter. You can access the source
code on GitHub at the following URL, under the basic authentication section:

https://github.com/restful-java-web-services-security/source-code/
tree/master/chapter02/basic-authentication

Let's start; suppose we want only users with the role administrator to be able to
make use of the features in our application. The first thing to do is to change the web.
xml file and add a constraint as follows. Note how the changes appear in bold:

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd">

<security-role>
<description>Application roles</description>
<role-name>administrator</role-name>
</security-roles>
<security-constraints>
<display-name>Area secured</display-name>
<web-resource-collections>
<web-resource-name>protected resources</web-resource-names>
<url-pattern>/services/*</url-patterns>

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

</web-resource-collections>
<auth-constraints>
<description>User with administrator role</description>
<role-name>administrator</role-name>
</auth-constraint>
</security-constraints>
<login-configs>
<auth-method>BASIC</auth-method>
</login-config>
</web-app>

Now, let's try to make the request using the user we just created (username).
You will be surprised when you geta 403 Forbidden error.

Note that if you try to make the request with invalid credentials, you will get

the error HTTP/1.1 401 Unauthorized. The error is pretty clear; the access is
unauthorized. This means that we have sent invalid credentials, and hence the user
can't be authenticated. The error we just gotis HTTP/1.1 403 Forbidden, which
indicates that the user was successfully logged in but was not authorized to use the
functionality that they require. This is demonstrated in the following screenshot:

806 iF Reg 1
Method Endpoint Resource Parameters 'O
L4 = | pPOST + | http://localhost:8080 v [resteasy-examples/services/person LRl
<
L e . 7 1 HTTP/1.1 401 Unauthorized
v) : Taie - |Server: Apache-Coyote/1.1
ame ale Stii¢ e WWW-Authenticate: Basic realm="Realm"
Content-Type: text/htm|,charset=utf-8
Content-Length: 958
Date: Wed, 11 Jun 2014 02:42:30 GMT
=
ol =
g ! * | | zhtml> <head> <title>)Boss Web/7.0.13.Final - Error report< /title> <styles <
Required Sets if parameter =2
2
A
Media Type apolication/xml @ §
ne</name><lastname >Enriguez </ lastname >< 'E
Authentication Type: Global HTTP Settings E
Username: username
Password: ssssssns
e
Hea... Attac... Repres... IM5 IMS5 P 55L Info
kesponse time: 137ms (958 bvtes) 1:1

[47]

www.it-ebooks.info

http://www.it-ebooks.info/

Security Management with RESTEasy

Now, let's create a new user with the role administrator using the JB0SS_HOME/
standalone/bin/adduser. sh file. Enter the requested information as shown in
the following screenshot:

F®@ 0o . bin — bash — 80x25 i

MacBook-Pro-de-Rene:bin moe$./add-user.sh

What type of user do you wish to add?

a) Management User (mgmt-users.properties)

b) Application User (application-users.properties)
(a): b

Enter the details of the new user to add.

Realm (ApplicationRealm)

Username : administratoruser

Password :

Re-enter Password :

What roles do you want this user to belong to? (Please enter a comma separated
ist, or leave blank for none) : administrator

About to add user 'administratoruser' for realm 'ApplicationRealm’

Is this correct yes/no? yes

When we change the credentials in SoapUlI, the result of the request is successful,
as shown in the following screenshot:

806 i Request 1
Method Endpoint Resource Parameters
» 8= rosT v http://localhost:8080 v | [resteasy-examples/services/person
<
LT @y - ® ? HTTP/1.1 201 Created

Server: Apache-Coyote/1.1

Location: http:/ /localhost:8080/resteasy-examples/services/person/1
Content-Length: 0

Date: Wed, 11 Jun 2014 02:48:57 GMT

Name Value Style Level

—
=
. av =

Required: Sets if parameter g
2|

av

Media Type application/xml atl |

[ne </ name ><lastname >Enriquez </lastname ><)

Authentication Type: Global HTTP Settings

(Raw IR

Username: administratoruser

Password: sssssssssssssensenn:

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

As you can see, we used an additional control in which we restricted only
authenticated users with the administrator role assigned to them; they are capable
of using the web service functions. It is very common to use these kinds of controls
when managing security on real-world applications. As we have implemented a
more detailed level of control, the platform offers us the opportunity to implement
more granular controls, such as the ones we will see right now.

Securing HTTP methods

One of the benefits of JAAS is that we have control even at the level of HTTP
methods. Thus, we can implement security controls to allow only users with a
certain role to use certain methods with regards to our convenience; for example,
one role to save information, another to delete it, others to read it, and so on.

To implement these kinds of controls, it is necessary that we understand the HTTP
methods' functionality in the application. In our example, we already know that

in order to save information, the application always uses the HTTP POST method.

Also, when we want to read information, the application uses the HTTP GET method.
Therefore, we will modify our example so that only users with the administrator role
are able to use the savePerson (HTTP POST) method. Meanwhile, only those with the
reader role will be able to read information using the findById (HTTP GET) method.

With this as our objective, we will modify our web.xm1 file as follows:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd">
<!-- Roles -->
<security-roles>
<description>Role for save information</descriptions>
<role-name>administrator</role-name>
</security-roles>
<security-role>
<description>Role for read information</descriptions>
<role-names>reader</role-name>
</security-roles>

<!-- Resource / Role Mapping -->
<security-constraints>
<display-name>Administrator area</display-name>
<web-resource-collection>
<web-resource-name>protected resources</web-resource-names>
<url-pattern>/services/*</url-pattern>
<http-method>POST</http-method>

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

Security Management with RESTEasy

</web-resource-collections>
<auth-constraint>
<description>User with administrator role</descriptions>
<role-names>administrator</role-name>
</auth-constraint>
</security-constraints>
<security-constraints>
<display-name>Reader area</display-name>
<web-resource-collection>
<web-resource-name>protected resources</web-resource-name>
<url-pattern>/services/*</url-pattern>
<http-method>GET</http-method>
</web-resource-collections>
<auth-constraint>
<description>User with reader role</description>
<role-namesreader</role-name>
</auth-constraint>
</security-constraints>

<login-configs>
<auth-method>BASIC</auth-method>
</login-config>

</web-app>

Before we continue, we must create a new user (readeruser) with the role reader
using the JBOSS_HOME/standalone/bin/adduser. sh script.

Now, let's test the roles and their permissions using SoapUI

HTTP method - POST

We are going to test the POST method using a role that doesn't have the required
permissions. You will see the permission error message.

Role: Reader

This method is not allowed when using this role. This is demonstrated in the
following screenshot:

8006 5 Request 1
Method Endpoint Resource Parameters
L POST E http:/ /localhost: 8080 v [resteasy-examples/services/person/ i s
<
Al a ® HTTP/1.1 403 Forbidden

Server: Apache-Coyotef1.1
Content-Type: text/html;charset=utf-8
Content-Length: 1112

Date: Wed, 26 Mar 2014 03:25:39 CMT

Name Value Style Level

<html> <head> <title>JBoss Web/7.0.13.Final - Error report=<,

£5L

o0

=t
=

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Role: Administrator

With this role, you can execute the method successfully. This is demonstrated in the

following screenshot:

806 i Request 1
Method Endpoint Resource Parameters
. [] +E POST a 2 2 i T + @
+ http://localhost:8080 ¥ [resteasy-examples/services/person/
<
ELwE ey - ® > [HTTP/1.1201 Created
< v i Teial Server: Apache-Coyote/1.1
lame alua e e Location: http://localhost:8080/resteasy-examples/services/f
Content-Length: 0
Date: Wed, 26 Mar 2014 03:34:09 GMT
E -
il | =

HTTP method - GET

Now, we are going to use a user with the required permissions to use the GET
method. The execution should be successful with this role.

Role: Reader

Now, the execution is successful with this role. This is demonstrated in the

following screenshot:

806 £f Request 1
N Method Endpoint Resource Parameters
L = GET + http://localhost:B080 v /resteasy-examples/services/person/1 W+ @"
AL ey v @ : El <person id="1">
== == - <name >Rene </ name >
;Name Value Style Level : <lastname *Enriquez </lastname >

</person >

Role: Administrator

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Security Management with RESTEasy

The admin role does not have access to this method. This is demonstrated in the
following screenshot:

e 06 £f Request 1
Method Endpoint Resource Parameters
4 = | GET = http://localhost:8080 + /resteasy-examples/services/person/1 e
€
i m Wl a (7] » HTTP/1.1 403 Forbidden
= Server: Apache-Coyote/1.1
Name Value Style Level

Pragma: No-cache

Cache-Control: no-cache

Expires: Wed, 31 Dec 1969 19:00:00 ECT
Content-Type: text/html;charset=utf-8
Content-Length: 1112

Date: Wed, 26 Mar 2014 03:41:06 GMT

XML

<html> <head> <title>JBoss Web/7.0.13.Final - Error n

The same consideration of roles can be used for URL patterns. In our example, we
apply the restriction on the /services/* pattern. However, you can apply it at a
deeper level, for example /services/person/*. We mean that if we had another
service that is exposed under the URL /services/other-service/, we can set it so
that a role has access to services under the path /services/person/* and different
levels of access under the path /services/other-service/*. This example is quite
simple and is proposed as a basic example to the reader.

After applying all the changes, we set security over all methods listed in the web.xml
file. However, we must ask ourselves a question; what happens with the methods
that haven't been included?

The OWASP (Open Web Application Security Project), a nonprofit organization
dedicated to finding and fixing security holes in software, has written a paper on
this, and it is called the following;:

Bypassing Web Authentication and Authorization with HI'TP Verb Tampering:
How to inadvertently allow attackers full access to your web application.

If you want to check out the complete document, you can do so by accessing the
following link:

http://dl.packetstormsecurity.net/papers/web/Bypassing VBAAC with
HTTP_ Verb Tampering.pdf

What the OWASP describes in the aforementioned document is simple. It shows
that JEE exposes potential security gaps in the web.xml configuration file if we
don't take certain precautions as all methods that are not listed in the file can be
used without any restrictions. This means that a user that hasn't been authenticated
in the application can invoke any other HTTP method.

[52]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The OWASP states the following in the earlier article:

Unfortunately, almost all the implementations of this mechanism work in an
unexpected and insecure war. Rather than denying methods not specified in the
rule, they allow any method not listed. Ironically, by listing specific methods in
their rule, developers are actually allowing more access than they intended.

In order to understand this in a better way, let's focus on an analogy.

Suppose you have a web application to write books that handles two roles —one

for authors who are able to write the pages of the books and another for reviewers
who can only read the books and add notes with comments. Now, suppose a user
ends up getting the URL of your application by mistake. This user does not have any
credentials to deliver, and the obvious thing is that the user should not even be able
to access the application. However, the problem that is demonstrated by the OWASP
is that instead of doing what seems obvious, it actually enables application access

to unauthenticated users with enough permission to perform any operation on the
books, such as removing them.

Let's take an example in order to see this inconvenience, and after that, we will
implement OWASP's suggestions to solve it.

Let's create a new method within the class Personservice; we'll use one of the
methods that has not been listed in the web . xm1 file this time. One of the most used
methods is HTTP DELETE; its functionality is to remove one of the entries stored in
memory using its ID. This will pass the ID of the record as a parameter in the URL,
so the URL of the request will look like the following;:

http://localhost:8080/resteasy-examples/services/person/ [ID]

The method implementation should look like the following;:

@DELETE
@Path("{id}")
public Response delete(@PathParam("id") int id)
Person person = dataInMemory.get (id) ;
if (person == null)
// There is no person with this ID
throw new WebApplicationException (Response.Status.NOT_ FOUND) ;
}
dataInMemory.remove (id) ;
return Response.status (Status.GONE) .build() ;

}

[53]

www.it-ebooks.info

http://www.it-ebooks.info/

Security Management with RESTEasy

In order to test the method, we must first create a couple of registers through SoapUI,
also using the HTTP POST method and a string such as the following;:

<persons><name>Rene</name><lastname>Enriquez</lastname></persons>

Now, select the DELETE method in SoapUI, remove the information on the credentials
we use for authentication, and perform a request using one of the item IDs, as shown
in the following screenshot:

806 £f Request 1
. Method Endpoint Resource
LA B DELETE + http://localhost:8080 v [resteasy-examples/services/perso
<
L@l v e @ * [HTTP/L.1410 Gone

Server: Apache-Coyote/1.1

hiams Malue Sle Leval Content-Type: text/html;charset=utf-8
Content-Length: 998
Date: Wed, 11 Jun 2014 02:57:20 GMT
= | <html> <head> <title>JBoss Web/7.0.13.H
=
3 8
& s 2
Required: Sets if parameter

Type

EE HTML

Authentication Type: Global HTTP Settings
Username:

Password:

As you can see, the item was removed and the server returns the message HTTP/1.1
410 Gone. This indicates that the resource is no longer available. As you have noted,
when we don't specify that this method should be protected by default, it is marked
as available. In our case, any user without the need to authenticate can remove our
application resources.

To overcome this drawback, the OWASP recommends adding another security
constraint in the web . xml file. This new security constraint should not have any
HTTP method listed within itself, which means denying access to all HTTP methods,
as shown in the following code:

<security-constraints>
<display-name>For any user</display-name>
<web-resource-collections>
<web-resource-name>protected resources</web-resource-names>

<url-pattern>/services/*</url-pattern>

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

</web-resource-collections>
<auth-constraint>
<description>User with any role</descriptions>
<role-name>*</role-name>
</auth-constraint>
</security-constraints>

Also, we will have to add a new role in order to determine an authenticated user in
the application, as shown in the following code:

<security-roles>
<description>Any role</descriptions>
<role-name>*</role-name>
</security-role>

Now, we run the request from SoapUI, and we can see the error message HTTP/1.1
401 Unauthorized. This indicates that you cannot execute the request because the
user has not been authenticated, which in turn means that unauthenticated users
cannot use the DELETE or any other method.

Fine-grained security implementation through
annotations

The web . xm1 file, the file that allows all security settings, is not the only way in
which you can achieve fine-grained security implementation; the platform also
offers the possibility of using annotations for security checks. To do this, there are
three options that can be chosen depending on your needs, listed as follows:

® @RolesAllowed
®* @DenyAll

® @PermitAll

The @RolesAllowed annotation

The @RolesAllowed annotation can be applied at the method or class level. With
this annotation, you can define a set of roles that are allowed to use the annotated
resource. As a parameter annotation, let's write all allowed roles. For this example,
we will modify our web.xml file as follows:

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Xsi:schemalLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd">

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Security Management with RESTEasy

<!-- Roles -->
<context-param>
<param-name>resteasy.role.based.security</param-name>
<param-value>true</param-value>
</context-param>
<security-roles>
<description>Any role</descriptions>
<role-name>*</role-name>
</security-role>
<!-- Resource / Role Mapping -->
<security-constraints>
<display-name>Area for authenticated users</display-name>
<web-resource-collection>
<web-resource-name>protected resources</web-resource-name>
<url-pattern>/services/*</url-pattern>
</web-resource-collections>
<auth-constraints>
<description>User with any role</descriptions>
<role-name>*</role-name>
</auth-constraint>
</security-constraints>
<login-configs>
<auth-method>BASIC</auth-method>
</login-config>
</web-app>

In the class PersonService, let's use the annotation on every method with the roles
we want to be able to execute the method, as follows:

@RolesAllowed ({ "reader", "administrator" })
@POST

@Consumes ("application/xml")

public Response savePerson (Person person) (...

@RolesAllowed ({ "administrator" })

@GET

@Path ("{id}")

@Produces ("application/xml")

public Person findById(@PathParam("id") int id) {...

It is now time to test it through SoapUI.

[56]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The savePerson method

Now, we will test the savePerson method of the PersonService class with the

admin role, as shown in the following screenshot:

Content-Length: 0
Date: Wed, 11 Jun 2014 03:03:40 GMT

ﬁi v
Media Type application/xml +* - =
E‘ |ne</name><lastname *Enriquez </ lastname >< 9_1|

 Raw IR

Authentication Type: Global HTTP Settings

Username: administratoruser
Password: sesssssssssesenunnn
| Hea.. Attac... Repres... JM5 M5 P 55L Info

806 [T 1
o Method Endpoint Resource Parameters
LA POST 3| http://localhost: 8080 | [resteasy-examples/services/persan/
<
LBy A ® * HTTP/L.1201 Created
[Hame Value Stvie Tevel Server: Apache-Coyotef1.1

Location: http:/ flocalhost:B080/ resteasy-examples /services/person/1

The execution was successful, as you can see in the preceding screenshot. The reason
is because we included both roles in the @Rolesallowed annotation. Also, we will
test the execution using the reader role for it to be successful, as shown in the

following screenshot:

a06 — i 1
Method Endpoint Resource Parameters
LAl POST + | http:/{localhost: 8080 * | fresteasy-examples /services/person/
£ | o
Ll - #® * | [HTTP/1.1201 Created

|Server: Apache-Coyote/1.1

Name Value Style Lavd |Location: http: f /localhost: 8080/ resteasy-examples/services/person/ 3
|Cantent-Length: 0
|Date: Wed, 11 Jun 2014 03:05:09 GMT
av .
L =
-~
2 Media Type application/xml LA | =
&3 | [ne</name><lantname >Enriques </ lastname »< 8_‘

E HMu

Authentication Type: Global HTTP Settings

Username: readeruser
Password: LTTTTTTTTT T Y
Hea... Attac... Repres... JMS ... IMS F..,

i+ 8

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Security Management with RESTEasy

As you can see, we grant permissions to specific roles when we use the annotation @
RolesAllowed. For this method, we used administrator and reader.

The findByld method

We will now test the method findById with the administrator role, as shown in
the following screenshot:

® 06 ¥ Reguest 1
Method Endpoint Resource
> &% GET 7 http://localhost:8080 v [resteasy-examples/services/person/1l
<
il v A ﬁ1 > B kperson id="1">

<name >Rene </ name >
<lastname >Enriquez </ lastname >

Name Value Style Level ? >
</person >
%
|
=
5 8‘
B A Wl
Required: Sets if parameter iII
- - =
Type: I‘
5
& |
Authentication Type: Global HTTP Settings
Username: administratoruser
Password: SN RRRRRNNI

The screenshot shows that the execution was successful because the @Rolesallowed
annotation includes admin. As we didn't include the reader role, the next execution
should not be authorized. Let's test it right now, as shown in the following screenshot:

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

8086 3 Request 1
% Method Endpoint Resource Parameters =
8 = GET = http://localhost:8080 * [resteasy-examples/services/person/1 T+ e
<
Ly a e HTTP/1.1 401 Unauthorized

Server: Apache-Coyote/1.1

Pragma: No-cache

Cache-Control: no-cache

Expires: Wed, 31 Dec 1969 19:00:00 ECT
Content-Type: text/html;charset=utf-8
Content-Length: 958

Date: Wed, 11 Jun 2014 03:09:40 GMT

Name Value Style Level

XML

<html><head> <title>)Boss Web/7.0.13.Final - Error report<[title> <style> <

JSON

3
gav

Required Sets if parameter

Type

[HTML

Authentication Type: Global HTTP Settings
Username: readeruser

Password: sssssssssnnane

=1

Once again, we used the annotation @RolesAllowed to grant permissions at a
method level, but this time we specified just one role, administrator.

All the source code for this chapter can be found at the following URL:

https://github.com/restful-java-web-services-security/source-code/
tree/master/chapter03

The @DenyAll annotation

The eDenyall annotation allows us to define operations that cannot be invoked
regardless of whether the user is authenticated or the roles are related to the user.
The specification defines this annotation as follows:

Specifies that no security roles are allowed to invoke the specified method(s) - i.e.
that the methods are to be excluded from execution in the J2EE container.

[59]

www.it-ebooks.info

http://www.it-ebooks.info/

Security Management with RESTEasy

The @PermitAll annotation

When we use the @PermitAll annotation, we tell the container that the annotated
resource (a method or all methods of the class) can be invoked by any user who has
logged in to the application. This means that it is only necessary that the user be
authenticated; it's not required to have any specific role assigned.

From these three annotations, the most used is undoubtedly the first one
(erolesAllowed); the others aren't often used since @PermitAll can be easily
replaced in the web . xml file, and @DenyAl1 can be used only in few scenarios.

Programmatical implementation of
fine-grained security

RESTEasy, besides providing options for security management that we have seen,
programmatically provides an additional mechanism for access control.

Within the operations of web services, you can add an additional parameter to the
method. This allows access to the security context, without altering the way clients
invoke the method or the action that the method executes. The parameter must be
included in the following way:

@GET. ..
@Consumes ("text/xml")
public returnType methodName (@Context SecurityContext secContext, ..)

[...

Suppose that in our example, in the method savePerson, we want access to
this functionality. The only change we need to make is shown in the following
code snippets.

Earlier, the method used just one parameter, as shown in the following code:

@POST
@Consumes ("application/xml")
public Response savePerson (Person person) {
int id = dataInMemory.size() + 1;
person.setId(id) ;
dataInMemory.put (id, person) ;
return Response.created (URI.create ("/person/" + id)) .build() ;

}

[60]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Now, the method has another parameter, as shown in the following code:

@POST
@Consumes ("application/xml")

public Response savePerson (@Context SecurityContext secContext,
Person person) {

int id = dataInMemory.size() + 1;

person.setId(id) ;

dataInMemory.put (id, person) ;

return Response.created (URI.create ("/person/" + id)) .build() ;

}

The interface javax.ws.rs.core.SecurityContext offers the following three
interesting features:

® isUserInRole()
® getUserPrincipal ()

® igSecure()

The functionality of the method isUserInrRole () is similar to the annotation
@RolesAllowed; its goal is to perform a check in order to determine if a logged
user belongs to a specified role, as follows:

@POST
@Consumes ("application/xml")

public Response savePerson (@Context SecurityContext secContext,
Person person) {

boolean isInDesiredRole = secContext.isUserInRole
("NameOfDesiredRole") ;

int id = dataInMemory.size() + 1;

person.setId(id) ;

dataInMemory.put (id, person) ;

return Response.created (URI.create ("/person/" + id)) .build() ;

}

The getUserPrincipal () method obtains the primary user in the application, in
other words, the logged user. You can obtain information such as the username that
represents it through this user; this is always useful in scenarios in which you want
to generate audit trails.

Finally, the method isSecure () determines whether the invocation is being made
through a secure means of communication, such as whether you are using HTTPS.

[61]

www.it-ebooks.info

http://www.it-ebooks.info/

Security Management with RESTEasy

As you know, HTTP and HTTPS are protocols to exchange information; the former is
usually used when you share information that is not sensitive, and the latter is often
used when the information is sensitive and we need a secure channel.

Let's imagine the web portal of ABC Bank, particularly the home page where it
shows information about services and stuff related to the bank's business that can

be managed with HTTP. We can't manage the web pages that work with information
about accounts or money transfers with the HTTP protocol; this is because the
information is not protected. Through the HTTPS protocol, we can encrypt the
information; when the information is intercepted by a traffic analyzer such as
Wireshark, it can't be interpreted.

This functionality can be tested by applying the changes to the project to enable
HTTPS, as we show you in Chapter 2, The Importance of Securing Web Services.

When you invoke this method using HTTP, the result will be false, but it will be true
when you invoke the same method using HTTPS.

These three methods we just analyzed are very useful when we want to implement
fine-grained security checks. For example, when we want to implement an audit,
we can determine if one action was executed using a transmission secure protocol
such as HTTPS; also, we can discover information about the user that is executing
the action.

Summary

The needs that we have when implementing application security can be quite varied.
In this chapter, we saw how JAX-RS offers mechanisms to handle security, starting
from a fairly basic model (coarse-grained) to a more elaborate one (fine-grained) in
which you can perform more exhaustive controls, including programmatic controls
and controls through configuration files.

Of course, it is always recommended to keep these checks in configuration files

such as web.xml. Since you have the controls centralized in one place, it facilitates
maintenance. This does not occur when security is handled at the level of source
code, because when there are many classes that are part of the project, the tasks get
complicated when some form of modification to the current functionality is required.

Now, you should prepare for the next chapter, in which we will talk about OAuth.
It's a very exciting topic because this protocol is widely accepted and used across
Internet applications. The rockstar companies of the World Wide Web, such as
Google, Twitter, and Facebook, among others, use it with great success.

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

RESTEasy Skeleton Key

Welcome to the fourth chapter! We hope you are enjoying the book, and even more
important, learning and understanding what we are transmitting and teaching you.
It is time to move forward and immerse yourself in a new chapter.

Once you read this chapter, you will have the knowledge to design, implement, and
aggregate additional security levels to your RESTEasy applications, all of this using
OAuth and RESTEasy Skeleton Key and some other specific requirements of these
technologies, such as setting up an OAuth server. You will learn through practical
and descriptive examples of applications, just as we did in previous chapters; we
won't get stuck in theory only, and we'll implement applications and explain specific
methods and classes to implement OAuth.

In this chapter, you will learn about the following topics:

* OAuth and RESTEasy

* 5SSO configuration for security management
* Access tokens

* Custom filters

* Web services clients for test

As you have probably experienced, if you have an account on one or several social
networks, a lot of these social networks allow you to share information between
them or post something in all of them. This is a sign that applications need to share
information and also use resources that are in other applications. In this example,

it can be your account or your contact list. This involves sensitive information, so it
needs to be protected. Also, limited permissions over resources means that a third-
party application can only read your contacts list. This opens the door to a very
important, attractive, and useful feature among applications, which is the capacity to
use resources on behalf of the user. Of course, you may ask how the latter authorizes
the use? Well, this chapter will show you. So, let's go!

www.it-ebooks.info

http://www.it-ebooks.info/

RESTEasy Skeleton Key

OAuth protocol

This is an open protocol that allows you to grant safe authorization to your private
resources from one site (service provider) to another (consumer) without sharing
your identity.

A practical example is when you grant authorization to a website or an application to
use the contact list in your phone or social network.

OAuth and RESTEasy Skeleton Key

In this section, we will review some concepts related to OAuth as an authentication
framework, RESTEasy Skeleton Key, and how they work together. You will check
out some features of these technologies and get your hands dirty with some code
as a practical example.

What is RESTEasy Skeleton Key?

RESTEasy Skeleton Key provides a unified way for browser and JAX-RS clients to be
secured. This allows executing and forwarding requests in a network of applications
and services in a secure and scalable way, without interacting with a central
authentication server every time a request appears.

OAuth 2.0 authentication framework

This enables third-party applications or services access to an HTTP resource on
behalf of the resource owner. It also prevents the third-party application or service
from getting in contact with the owner's credentials. This is possible through issuing
access tokens via browsers and using a direct grant.

With the two concepts explained in a nutshell, it is time to describe how they

are related. RESTEasy Skeleton Key is an OAuth 2.0 implementation that uses
the JBoss AS 7 security infrastructure in order to secure web applications and
RESTful services.

This means that you can transform a web application into an OAuth 2.0 access token
provider, and you can also transform the JBoss AS 7 security domain into a central
authentication and authorization server, where applications and services can interact
with each other.

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The following diagram describes this process in a better way:

Client applicati

ion (OAuth client)

OAuth server

=

Access ap|

<t—Log in via OAuth server (G

plication——>

ogle, Twitter, and soon)

Access red

<}————————+——Redirect to Client applicz

<}—— User logged in

Log in to Client applical

rect URL————— >

rion using the OAuth serv

ation including authentication cot

Send authentication code,

<+——Return acc

client ID, client secret—>,

£ss token

Main features
We want to help you understand these technologies and clarify what they are used
for; this is why we will name some of their main features. With OAuth 2.0 and

RESTEasy Skeleton Key, you can perform the following functions:

Transform a servlet-form-auth-based web application into an
OAuth 2.0 provider.

Provide distributed Single Sign-On (SSO) throughout a central
authentication server in order to log in once and access any browser-based
application configured in the domain in a secure way.

Use just one link and log out from all the distributed applications that were
configured with SSO.

[

65]

www.it-ebooks.info

http://www.it-ebooks.info/

RESTEasy Skeleton Key

* Make a web application interact with a remote RESTful service using
access tokens.

* Sign access tokens with OAuth 2.0 and use the tokens later to access any
service configured in the domain. The token has Identity and Role Mapping,
and there is no need to overload the central authentication server with every
request that appears because tokens are digitally signed.

You can find more information about these topics at http://docs. jboss.org/
resteasy/docs/3.0-beta-2/userguide/html/oauth2.html.

We will discuss the most important parts, but it might be useful for you.

OAuth2 implementation

We have just reviewed some of the main concepts that we will deal with in this
chapter, but this is not enough. We must implement a descriptive example so
that we can completely understand these topics.

Updating RESTEasy modules in JBoss

In order not to mess with your JBoss configuration or anything else, we will

use another brand new instance of JBoss. We have to update some modules

that are related to RESTEasy. We can do this very easily. Let's visit the link
http://resteasy.jboss.org/; at your right, you will find a panel with the

title Useful Links, which has a download link. Click on it to visit another page
that has a bunch of download links. In this example, we use the 3.0.7.Final Version.
Download this version in order to go forward.

Once you have downloaded and unzipped it, you will find another . zip file named
resteasy-jboss-modules-3.0.7.Final; this file contains some JARs that will update
your JBoss modules. So, unzip it, copy all folders into JB0SS_HOME/modules/, and
replace all coincidences. There is one last step: we have to update the JAR files' version
and modify the module XML in JBoss in order to set org.apache . httpcomponents
touse httpclient-4.2.1.jar, httpcore-4.2.1.jar and httpmime-4.2.1.jar
because the current latest Version is 4.3.4, which works fine too. So, copy these JARs
and update the version in the module .xm1 file in JBOSS_HOME/modules/org/apache
folder. Now, we have updated our modules for RESTEasy.

[66]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Setting up the configuration in JBoss

For the next step in getting our JBoss ready for our example, we must go to https://
github.com/restful-java-web-services-security/source-code/tree/
master/chapter04 and download the chaptero4 examples zip file. Unzip and you
will find a folder named configuration. This folder contains the files necessary for
setting up our JBoss configuration. So, copy the files and replace the configuration
folder in your JBoss located at JBOSS_HOME/standalone/configuration.

Implementing an OAuth client

In order to develop this example, we investigate a very useful example and apply
it to a new project. This example is composed of several projects; each project will
produce a WAR file. The purpose of this example is to demonstrate how OAuth
works and explain the way you can implement this technology at a technical level.
So, we will simulate several things in order to create the environment where we
can apply this implementation. The complete code can be downloaded from the
following link:

https://github.com/restful -java-web-services-security/source-code/
tree/master/chapter04/oauth2-as7-example

The oauth-client project

First we are going to create the oauth-client webapp project. You can use
the Maven command we have used before in previous chapters or you can
use Eclipse IDE in order to perform this.

After that, let's add some dependencies in order to implement our client. These
dependencies are for all the projects. Go to the pom.xm1 file and make sure to add
the following dependencies inside the <dependencies> tag:

<dependencys>
<groupld>org.jboss.spec.javax.servlet</groupIld>
<artifactId>jboss-servlet-api 3.0 spec</artifactIds>
<version>1.0.1.Final</version>
<scope>provided</scope>

</dependency>

<dependencys>
<groupIds>org.jboss.resteasy</grouplds>
<artifactIds>resteasy-client</artifactId>
<version>3.0.6.Final</version>
<scope>provided</scope>

</dependency>

<dependencys>
<groupId>org.jboss.resteasy</grouplds>

[67]

www.it-ebooks.info

http://www.it-ebooks.info/

RESTEasy Skeleton Key

<artifactIds>skeleton-key-core</artifactIds>
<version>3.0.6.Final</version>
<scope>provided</scope>

</dependency>

Let's start by creating the package com.packtpub.resteasy.example.oauth. Then,
create the class public class Loader implements ServletContextListener,
which implements servletContextListener, because we will load a key store and
initialize a context.

Let's add a field into our class private ServletOAuthClient oauthClient, which
will represent our OAuth client object.

Then, let's create the method shown in the following piece of code:

private static KeyStore loadKeyStore(String filename, String password)
throws Exception

{
KeyStore keyStore =
KeyStore.getInstance (KeyStore.getDefaultType()) ;
File keyStoreFile = new File(filename) ;
FileInputStream keyStoreStream = new
FileInputStream(keyStoreFile) ;

keyStore.load (keyStoreStream, password.toCharArray()) ;
keyStoreStream.close () ;
return keyStore;

}

This method receives two parameters, the filename and the password, and creates
the object KeyStore. It also creates a FileInputStream object from the filename
received so that it can use it to load the KeyStore object, and it uses the password
received in the form of a char array.

After this, as our class implements the ServletContextListener interface, we have
to override some methods. The first method to override is contextInitialized.
Let's do it as follows:

@Override
public void contextInitialized(ServletContextEvent sce) {

String truststoreKSPath = "${jboss.server.config.dir}/client-
truststore.ts";

String truststoreKSPassword = "changeit";
truststoreKSPath = EnvUtil.replace(truststoreKSPath) ;
try {

KeyStore truststoreKS = loadKeyStore (truststoreKSPath,
truststoreKSPassword) ;

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

oauthClient = new ServletOAuthClient () ;

oauthClient.setTruststore (truststoreks) ;

ocoauthClient.setClientId ("third-party") ;

ocauthClient.setPassword ("changeit") ;

oauthClient.setAuthUrl ("https://localhost:8443/ocauth-server/login.
isp");

oauthClient.setCodeUrl ("https://localhost:8443/ocauth-server/

j ocauth resolve access code");
oauthClient.start () ;

sce.getServletContext () .setAttribute (ServletOAuthClient.class.
getName (), oauthClient) ;

} catch (Exception e) {
throw new RuntimeException (e) ;

}
}

Through this method, we will accomplish several things. As you can see, we set two
internal variables; one is set with the path to our client-truststore.ts file and the
other is set to the password. Make sure to paste the file in the path we specified in
the variable (JBOSS_HOME/standalone/configuration).

After this, we load the KeyStore object using the path and password we specified in
the variables, obtaining another KeyStore object through this.

Now, it's time to instantiate and set the properties of our OAuth client object. In the
previous code, we set the following properties: trustStore, clientId, password,
authUrl, and codeUrl.

Finally, we create the client to obtain an access token from the code. In order to
accomplish this, we use the start () method. Also, we set the attribute servlet
OAuth client with the OAuth client object we just created.

In order to finish our OAuth client, we need to override a second method named
public void contextDestroyed (ServletContextEvent sce), as shown in the
following code:

@Override
public void contextDestroyed (ServletContextEvent sce)
oauthClient.stop() ;

}

This method will be executed when the servlet context is about to shut down, our
application is redeploying, and so on. The method closes the client instance and all
its associated resources.

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

RESTEasy Skeleton Key

We implemented our OAuth client for our example. We need another resource.

This time, we will create a class that works as a database client for our compact

discs store. So, let's name it CompactDiscsDatabaseClient, and we will get the
two following methods:

® public static void redirect (HttpServletRequest request,
HttpServletResponse response)

® public static List<String> getCompactDiscs (HttpServletRequest
request)

So, let's begin implementing the first method. This method is explained as follows:

public static void redirect (HttpServletRequest request,
HttpServletResponse response) {

ServletOAuthClient oAuthClient = (ServletOAuthClient) request.
getServletContext () .getAttribute (ServletOAuthClient.class.
getName ()) ;
try {

oAuthClient.redirectRelative ("discList.jsp", request, response);
} catch (IOException e) {
throw new RuntimeException (e) ;

}

In the preceding method, we obtain the servletoauthcClient object from the
ServletContext obtained from the request; the servlet OAuth client is in the servlet
context as an attribute named ServletOAuthclient. Remember that in the first class
we created, we set this attribute in the servlet context.

Finally, we start the process of getting an access token by redirecting the browser
to the authentication server through redirectRelative (String relativePath,
HttpServletRequest request, HttpServletResponse response).

Now, let's move on with the next method that loads the discs. The following code
represents the method:

public static List<String> getCompactDiscs (HttpServletRequest request)

{

ServletOAuthClient oAuthClient = (ServletOAuthClient) request.
getServletContext () .getAttribute (

ServletOAuthClient.class.getName ()) ;

ResteasyClient rsClient = new

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

ResteasyClientBuilder () .trustStore (cAuthClient.getTruststore())
.hostnameVerification (ResteasyClientBuilder.
HostnameVerificationPolicy.ANY) .build() ;

String urlDiscs = "https://localhost:8443/store/discs";
try {
String bearerToken = "Bearer" + oAuthClient.getBearerToken (request) ;

Response response = rsClient.target (urlDiscs) .request().
header (HttpHeaders .AUTHORIZATION, bearerToken)

.get () ;
return response.readEntity(new GenericType<List<String>>() {
1)
} finally {
rsClient.close () ;

}

Let's check what we have up here. In the preceding getCompactDiscs () method,
we create a ServletOAuthClient object that is in charge of starting the process

of obtaining an access token by redirecting the browser to the authentication
server. Once again, we obtain the attribute from the ServletContext object from
the request. Then, we create a ResteasyClient object using a new instance of
ResteasyClientBuilder (); this class is an abstraction to create clients and allows
SSL configuration.

We then set the client-side trust store with the trustsStore () method. This
invocation will return a KeyStore object and set the client-side trust store. After this,
we invoke the hostnameVerification () method, which sets an SSL policy used to
verify hostnames. Finally, using the build () method, we build a new client instance
with the entire configuration previously specified in this client builder. This will
return an instance of ResteasyClient.

Let's move on to create an internal variable which will hold the URL of the resource
that we will set as our target resource. Also, we will create another internal variable
to hold the bearer token as a string. This string will comprise the word Bearer
followed by the bearer token from the servlet OAuth client and request.

Now, in order to create the response, we will use the servlet OAuth client we just
created. Let's use the variable urlDiscs as a parameter and create a new web
resource target through the target () method. After this, using the request ()
method, we set up a request to the targeted web resource we just set.

[71]

www.it-ebooks.info

http://www.it-ebooks.info/

RESTEasy Skeleton Key

Finally, we add a header by invoking the header () method, which will receive
two parameters: the first parameter represents the header's name and the second
parameter is the header's value. After this, we invoke the HTTP GET method for the
current request.

Just to clarify, the Ht tpHeaders . AUTHORIZATION constant represents the header
field in the specific case when a user wants to authenticate themselves with a server.
It does so by adding an authorization request-header field along with the request.
On the other hand, the authorization field value is composed of credentials that
contain the authentication information of the user for the realm of the resource
being requested.

Once the response object is created, we use the readEntity () method to read the
message entity input stream as an instance of the specified Java type. With this, we
fill the list with our compact discs example list so that we can present it in the web
page. This means that we accessed the resource.

If you want to explore more about what we just used in the block of code we
described, here are some links as references. You can check them out, expand your
knowledge, and get more details on RestEasyClient and RestEasyClientBuilder:

* http://www.w3.org/Protocols/rfc2616/rfc2616-secld . html

® http://docs.jboss.org/resteasy/docs/3.0.2.Final/javadocs/org/
jboss/resteasy/client/jaxrs/ResteasyClient.html

® http://docs.jboss.org/resteasy/docs/3.0.1.Final/javadocs/
org/jboss/resteasy/client/jaxrs/ResteasyClientBuilder.
html#truststore

The discstore project

The next project we are going to create is the discstore project; the steps to create
the project are the same as the previous one, and you can use the Maven command
or Eclipse IDE.

In this project, we will create a class that will create the list of compact discs. This
class is pretty simple, and it uses some annotations that have already been discussed
in previous chapters. The name of this class will be CompactDiscService, and it will
have only one method with several annotations. Let's start with the code, and we
will add a short description about it after the code block:

@Path("discs")
public class CompactDiscService {
@GET
@Produces ("application/json")
public List<String> getCompactDiscs()

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

ArrayList<String> compactDiscList = new ArrayList<Strings>();
compactDiscList.add ("The Ramones") ;

compactDiscList.add ("The Clash") ;

compactDiscList.add ("Nirvana") ;

return compactDiscList;

}
}

As you can see, the method getCompactDiscs () is in charge of creating a list of
strings, which each item will represent as a compact disc as this is an example in
which we will add three items.

The @Produces annotations are used to specify the MIME media types, and if
applied at the method level, the annotations override any @Produces annotation
applied at the class level. The @GET annotation, as you already know, will represent
the HTTP method GET. Meanwhile, the @Path annotation will help us to set the class
as a resource, and its name will be discs.

All the backend has been implemented; we now need to develop some other
resources in order to let our example function. Remember we specified some
web pages in the classes up there? Well, that is what we will implement now.

The oauth-server project

As before, in order to create this project, you can use Maven commands or
Eclipse IDE.

In order to turn this application, we must create the jboss-web.xml file with the
following content:

<jboss-web>
<security-domains>java:/jaas/commerce</security-domains>
<valve>

<class-name>org.jboss.resteasy.skeleton.key.as7.
OAuthAuthenticationServerValve</class-name>

</valves
</jboss-web>

One last thing: we have to create a JSON file with the purpose of having our
certificates and security configuration in this server. We are going to name it
resteasy-oauth. And as you can see, there is not a big deal with this file; it is a set of
properties and values. Through this file, we specify the KeyStores and passwords, the
truststore path, and so on. This file will be located in the WEBINF folder of this project.

{

"realm" : "commerce",

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

RESTEasy Skeleton Key

"admin-role" : "admin",

"login-role" : "login",

"oauth-client-role" : "oauth",

"wildcard-role" : "*n",

"realm-keystore" : "${jboss.server.config.dir}/realm.jks",
"realm-key-alias" : "commerce",

"realm-keystore-password" : "changeit",
"realm-private-key-password" : "changeit",

"truststore" : "${jboss.server.config.dir}/client-truststore.ts",
"truststore-password" : "changeit",

"resources" : [

"https://localhost:8443/ocauth-client",
"https://localhost:8443/discstore/"

webapp/WEB-INF/ jboss-deployment-structure.xml

We must configure this file in all the projects because we updated some modules
from the instance of JBoss AS. In this file, we must specify the dependencies our
application has with some modules of JBoss. Then, we need to clearly set them
using the <modules> tag inside the <dependenciess tag, as follows:

<jboss-deployment-structures

<deployments>
<!-- This allows you to define additional dependencies, it is
the same as using the Dependencies: manifest attribute -->
<dependencies>

<module name="org.jboss.resteasy.resteasy-jaxrs"
services="import"/>

<module name="org.jboss.resteasy.resteasy-jackson-
provider" services="import"/>

<module name="org.jboss.resteasy.skeleton-key" />

</dependencies>
</deployment>

</jboss-deployment -structures>

Running the application

We have explained the main parts of each project, so in order to run and test

the application, you can download the examples folder of this chapter from
https://github.com/restful-java-web-services-security/source-code/
tree/master/chapter04. After you download the ZIP file, unzip it and you will
find there is a folder named oAuthExample. Inside this folder, there are our three
projects. You can copy them and paste them in your workspace and import the
projects using Eclipse.

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

We have provided you the keystores, and certification and truststore files inside the
configuration folder you just pasted while setting up the JBoss configuration.
In order to make sure the application runs correctly, you may update these files, by
following the instructions in the . txt file named keystoreCommands located inside
the configuration folder.

In order to launch our application, we have to deploy it. So, open a terminal. Let's

go to JBOSS_HOME/bin and start JBoss in standalone mode; this means executing
standalone.bat if you are in Windows or . /standalone. sh if you are in Linux.
Then, open a terminal and go inside the folder of our application in the workspace.
We have to execute the following commands: mvn clean install followed by mvn
jboss-as:deploy on each one of the three projects that we have created: discstore,
oauth-client, and cauth-server.

We have created a special class in the discstore project. This class contains
a void main method, and we test our application through this class. We have
named it OAuthclientTest. The code of this class is as follows:

public class OauthClientTest {
public static void main(String[] args) throws Exception {

String truststorePath =
"C:/Users/Andres/jboss/2do_jboss/jboss-as-
7.1.1.Final/standalone/configuration/client-truststore.ts";

String truststorePassword = "changeit";

truststorePath = EnvUtil.replace (truststorePath) ;

KeyStore truststore = loadKeyStore (truststorePath,
truststorePassword) ;

ResteasyClient client = new ResteasyClientBuilder ()
.disableTrustManager () .trustStore (truststore) .build() ;

Form form = new Form() .param("grant type",
"client credentials");

ResteasyWebTarget target =
client.target ("https://localhost:8443/ocauth-
server/j oauth token grant");

target.register (new BasicAuthentication("andres", "andres"));

AccessTokenResponse tokenResponse =
target.request () .post (Entity.form(form),
AccessTokenResponse.class) ;

[75]

www.it-ebooks.info

http://www.it-ebooks.info/

RESTEasy Skeleton Key

Response response =
client.target ("https://localhost:8443/discstore/discs™")

.request ()
.header (HttpHeaders.AUTHORIZATION,
"Bearer " + tokenResponse.getToken()) .get();
try {
String xml = response.readEntity(String.class) ;

System.out.println(xml) ;
} finally {
client.close() ;

}
}

We are going to explain the preceding code, first, we have two variables,
truststorePath and truststorePassword. The first one is referencing the path of
our client-truststore.ts file located in the configuration folder of our JBoss. You
should change the value of this variable in order to make this test work, so place the
path of your configuration folder. After this, with a method we already explained,
loadKeyStore (), we load the KeyStore using the previous variables and we assign
this value to a KeyStore object named truststore. From truststore, we create the
RestEasyClient object named client.

Now, we will obtain an access token programmatically, so we can request an access
token from the auth-server simply by using HTTPS invocation. Then we have to use
basic authentication to identify our user; as a result, we will get back a signed access
token for that user.

So, we perform a simple POST to the context root of the auth-server with j_oauth_
token_grant at the end of the target URL, because when we use that URL and a
pOST with basic authentication, we will obtain an access token for a specific user.

After that, we obtained the access token, which is a simple string. In order to invoke
on a service protected by bearer token authentication, we have to build a string made
up of the authorization header of your HTTPS request plus the string Bearer and
finally the access token string. This will get back the response object, so we can read
it and print it as we did in the test. In the console, you will see the list of compact
discs as shown in the following screenshot:

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Ble Edn fowce Hefscior lewgae Sewch Project Ben Windew Hep
- G | BrO - Gre ey P Ry o Qpuick Access £ | [owe]

5 indecisp | (I QeuthClientTestjava 11

package com.packtpub.resteasy . cxnsple. cauth;

File;

GauthtlientTesr {

public static void sain(

ing[] args) throws Dxception {

boss/2ds_jboss/jbass-as-7.1.1.Final/standal
tstorefath);

KeyStore Truststore = [oodleyStore(truststorePath, truststorePsssword);

ResteasyCl:

AccessTokenResponse TokenResponse = Target.req
Entity. form{ AtcessTekenResponse ¢

ORIZATION,
nResponse, getTokent)] . get(}:

resdEntity(String.class)

Ol B B R

SSO configuration for security
management

SSO is a mechanism for authentication. It allows a user to access several systems or
applications entering credentials just once. We think you experience this more often
these days because we are living in a social network era, and most of these services
let us use each other's credentials to access several services.

After discussing some concepts of SSO, let's try and implement this mechanism.
In order to achieve this, we will use JBoss 7 Application Server and our earlier
project secure-demo.

As a brief introduction to this implementation, we want to tell you that we will work
with two files; one file belongs to JBoss and the other belongs to our application.

The file that belongs to JBoss is standalone.xml. We will add some lines to this file. In
the following lines of code, let's add the SSO element in the virtual-server definition:

<subsystem xmlns="urn:jboss:domain:web:1.1" default-virtual-
server="default-host" native="false">

<connector name="http" protocol="HTTP/1.1" scheme="http"
socket-binding="http"/>

<virtual-server name="default-host" enable-welcome-
root="true">

[77]

www.it-ebooks.info

http://www.it-ebooks.info/

RESTEasy Skeleton Key

<alias name="localhost"/>
<gsso domain="localhost" reauthenticate="false"/>
</virtual-server>
</subsystem>

The reauthenticate attribute allows us to establish whether each request needs to
be reauthenticated to securityReal. The default value is false.

The next file we must edit is in our application, and its name is jboss-web.xml.
Also, we need to add some lines of code to this file. These lines of code will declare
the valve that will manage the SSO. In other words, every request will go through
this valve, as shown in the following code:

<jboss-web>
<security-domain>java:/jaas/other </security-domains>
<valve>
<class-name>org.apache.catalina.authenticator.SingleSignOn</
class-name>
</valve>
</jboss-web>

Just in case you forgot it or deleted it, we set a security domain in the previous
chapters. The following block of code must exist in the standalone.xml file:

<security-domain name="other" cache-type="default"s>
<authentication>
<login-module code="Remoting" flag="optional"s>
<module-option name="password-stacking" value="useFirstPass"/>
</login-module>
<login-module code="RealmUsersRoles" flag="required"s>
<module-option name="usersProperties" value="${jboss.server.config.
dir}/application-users.properties"/>
<module-option name="rolesProperties" value="${jboss.server.config.
dir}/application-roles.properties"/>
<module-option name="realm" value="ApplicationRealm"/>
<module-option name="password-stacking" value="useFirstPass"/>
</login-module>
</authentications>
</security-domain>

Since we are using the secure-demo example, this is all we must modify in order to
configure SSO.

In order to test this mechanism, we need another application. We must replicate the
configuration we just did in our secure-demo example.

[78]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

When we enter the credentials in one of them, we no longer need to enter the
credentials in the others, since we have applied SSO. We will authenticate in
both applications.

OAuth token via Basic Auth

Now, let's explore and implement a short example of using tokens. In order to
build this example, we will create a class. This class, as in the previous example,
will simulate a database client. It will have the same method, getCompactbiscs (),
but we will modify the internal function in this example. Also, it won't receive any
parameter this time.

Alright, let's do it! First, create two static string fields in the class. The first field will
hold the URL for authentication in the auth-server. The other field will have the URL
showing the compact discs list; you can reuse the same web page from the previous
example. Then, you should have your variables as shown:

private static String urlAuth = "https://localhost:8443/auth-server
/j_oauth token grant";

private static String urlDiscs = "https://localhost:8443/discstore/
discs";

After this, let's create our method to obtain the compact discs list. The following
piece of code shows you exactly how the method is executed:

public static List<String> getCompactDiscs() {
ResteasyClient rsClient = new ResteasyClientBuilder().
disableTrustManager () .build() ;
Form form = new Form() .param("grant type",
"client credentials") ;
ResteasyWebTarget resourceTarget = rsClient.target (urlAuth) ;
resourceTarget.register (new BasicAuthentication ("andres",
"andres")) ;

AccessTokenResponse accessToken = resourceTarget.request().
post (Entity.form(form), AccessTokenResponse.class);

try {
String bearerToken = "Bearer " + accessToken.getToken() ;
Response response = rsClient.target (urlDiscs) .request ().
header (HttpHeaders.AUTHORIZATION, bearerToken) .get () ;
return response.readEntity(new GenericType<List<String>>() ({
i
} finally {

rsClient.close() ;

[79]

www.it-ebooks.info

http://www.it-ebooks.info/

RESTEasy Skeleton Key

It is time to check what we have just done. As a first step, we created a
ResteasyClient object. If you noticed, we used something to disable trust
management and hostname verification. The result of this invocation is that
it turns off server-certificate verification allowing MITM (man-in-the-middle)
attacks. So, use this feature with caution.

After this, we create a form object and pass in some parameters. These parameters
are passed in through the param () method, representing the parameter name

and parameter value, respectively. This means we specify the type of grant being
requested by the application, which will be client credentials.

Then, as we did before in the previous example, let's create a RESTEasy web
target that will target our URL showing the compact discs list. Remember that
this URL was set in a static field we created earlier. This web target will be the
resourceTarget object that we will access.

When we use the register () method and pass in a BasicAuthentication object,
we register an instance of a custom JAX-RS component to be instantiated and used
in the scope of this configurable context.

Moving forward, we create the AccessTokenResponse class by executing a

request to our web target. Then, in the same line, we execute a post in order to

send the entity and the response type we want to obtain for the current request
synchronously. The Entity.form() method creates the application/x-www-form-
urlencoded entity from the form object we created before. Now, this will return an
AccessTokenResponse object; we use this object to build the bearer token by adding
the word Bearer at the beginning of the token.

Finally, let's create the response object by executing a request to the URL that is set
in the urlDiscs variable. We should use the ResteasyClient object to target this
resource, and then execute the request and set the headers field with Ht tpHeaders.
AUTHORIZATION using the bearer token set in the variable bearerToken. In this way,
we gain access to the target resource; in this case, we can see the information.

As we keep using the same application business, we can reuse the web pages of the
previous example. Make sure to incorporate in to your example, in the same path as
in the previous example, the web pages index.html and discsList.jsp. We will
also use the configuration set in the jboss-deployment-structure.xml file since
we are using the same module dependencies.

Our web.xm1 file should look simpler than the previous example, so it might be
something like the following:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/javaee http://
java.sun.com/xml/ns/javaee/web-app 3 0.xsd"
version="3.0">
<security-constraints>
<web-resource-collection>
<url-pattern>/*</url-pattern>
</web-resource-collection>
<user-data-constraints>
<transport-guarantee>CONFIDENTIAL</transport-guarantees>
</user-data-constraints>
</security-constraint>
</web-app>

Running the application

You can download the complete code and configuration from https://github.
com/restful-java-web-services-security/source-code/tree/master/
chapter04. Unzip the file, and inside you will find a folder named token-grant.
You have to deploy this project using the same commands. As a requirement, you
have to deploy the projects oauth-server, oauth-client, and discstore.

It is time to run our application. Let's execute the steps we did in the previous
example, the OAuth example. After this, we have to open our favorite browser and
type the URL https://localhost:8443/token-grant/. This will lead us to the
following web page:

€ Y @& Iocalhust

External Applications That Access To Compact Discs List Using OAuth

access compact discs

[81]

www.it-ebooks.info

http://www.it-ebooks.info/

RESTEasy Skeleton Key

Well, as you notice, we reused the same web page, just for the purpose of these
examples. There is, however, a little difference; when calling a different web page, you
can look in the core we just explained. This will execute a token, where we will perform
a request to the data we want to access through this token. As a result, we will read the
list of our compact discs in the web page, as shown in the following screenshot:

IR - o page 4
€ My & Boathost i1 t-grant o | B - 5o 2 O- &+ #

Compact Discs List
The Rawencs
The Clash

Nevana

The final result is the capability to present the discs list in the web page. However, don't
forget what happened; we just obtained an access token response using the request, the
basic authentication with our credentials, and a form. With the access token response,
we can create the response and present the data with the respective authorization.

Custom filters

As a brief introduction, JAX-RS 2.0 has two different concepts for interceptions:
filters and interceptors.

Interceptors are components that intercept EJB method invocations. They can be
used to audit and log as and when E]Bs are accessed. This is a topic that won't be
included in this book, but if you feel curious and want to find out some more about
it, we give you the following links as references so you can look it up:

® http://docs.oracle.com/javaee/6/tutorial/doc/gkigg.html

® http://www.javacodegeeks.com/2013/07/java-ee-ejb-interceptors-
tutorial-and-example.html

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Filters are mainly used to alter or process incoming and outgoing request or response
headers. They can be executed before and after request and response processing.

Also, JAX-RS 2.0 offers us two categories of filters: server-side filters and client-side
filters. The following diagram shows us a better classification of this concept:

/\
Filters
7N\ \I/ VRS
Server-side filters Client-side filters
NS NS
7 N 7 N
Container request Client request
filters filters
NS NS
I 7 N
Container Client response
response filters filters
SN N

Server-side filters

When we are on the server side, we have another classification for these filters;
container request filters are executed before the JAX-RS resource method is invoked.
Also, we have the container response filters; you've probably guessed, they are
executed after the JAX-RS resource method is invoked. However, this doesn't

end here; there is another classification of container request filters: pre-matching
and post-matching.

You can specify a pre-matching container request filter through the @ePreMatching
annotation, and this means that the filter will be executed before the JAX-RS resource
method is matched with the incoming HTTP request.

Container request filters can abort the request by executing the abortwith
(Response) method. A filter might want to abort if it implements a custom
authentication protocol.

Once the resource class method has been executed, JAX-RS will run all container
response filters. These filters let you modify the outgoing response before it is
marshalled and is sent to the client.

[83]

www.it-ebooks.info

http://www.it-ebooks.info/

RESTEasy Skeleton Key

Client-side filters

As we already told you, there are filters on the client side too, and similar to the
server-side filters, they also have two types of filters: client request filters and client
response filters. Client request filters are executed before your HTTP request is sent
over the wire to the server. On the other hand, client response filters run after a
response is received from the server, but before the response body is assembled.

Client request filters are also capable of aborting the request and providing a
response without going over the wire to the server. Client response filters are capable
of altering the response object before it is handed back to the application code.

Example usage of filters

After looking at some of the necessary theory around this topic, it is time to get
your feet wet. Now, we will implement an example in order to support our new
theoretical knowledge. So, let's start!

We will implement an interceptor that will verify the access permissions for a user,
based on the username and password sent in the request. You can download the
complete code of this example from the following link:

https://github.com/restful-java-web-services-security/source-code/
tree/master/chapter04

We have the topic of our compact discs store. So, the following class will represent
our service, and it will have the functions to find the compact discs by name and
update the compact disc information. The annotations used here have already
been studied in the previous chapter, so you will probably find the following

code understandable:

@Path ("/compactDisc-service")
public class CompactDiscService

@PermitAll

@GET

@Path ("/compactDiscs/{name}")

public Response getCompactDiscByName (@PathParam("name") String name,
@Context Reqguest request)

Response.ResponseBuilder rb =
Response. ok (CompactDiscDatabase.getCompactDiscByName (name)) ;

return rb.build() ;

}

@RolesAllowed ("ADMIN")
@PUT
@Path ("/compactDiscs/{name}")

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

public Response updatePriceByDiscName (@PathParam("name") String
name) {
// Update the User resource
CompactDiscDatabase.updateCompactDisc (name, 10.5);
return Response.status(200) .build() ;

}

As you can see, we have created only two methods, one to retrieve compact discs by
name and the other to update the compact discs' price. The annotations let us know
that the method getCompactDiscByName () can be accessed and executed by all;
meanwhile, the method updatePriceByDiscName () can be accessed and executed
by users with the role ADMIN.

If you noticed in the preceding code, we used the class CompactDiscDatabase,
which simulates a database. We applied the same technique in the previous
examples. As it worked very well, let's do it again. This class doesn't have any
special code. You can get an idea about this from the following code:

public class CompactDiscDatabase {
public static HashMap<String, CompactDisc> compactDiscs = new
HashMap<String, CompactDiscs () ;

static {
CompactDisc ramonesCD = new CompactDisc() ;
ramonesCD. setDiscName ("Ramones Anthology") ;
ramonesCD. setBandName ("The Ramones") ;
ramonesCD.setPrice (15.0) ;

Calendar calendar = Calendar.getInstance() ;
calendar.set (1980, 10, 22);

Date realeaseDate = calendar.getTime() ;
ramonesCD.setReleaseDate (realeaseDate) ;
compactDiscs.put ("Ramones Anthology", ramonesCD) ;

}

public static CompactDisc getCompactDiscByName (String name) {
return compactDiscs.get (name) ;

}

public static void updateCompactDisc (String name, double newPrice) ({
CompactDisc cd = compactDiscs.get (name) ;
cd.setPrice (newPrice) ;

[85]

www.it-ebooks.info

http://www.it-ebooks.info/

RESTEasy Skeleton Key

There is nothing complex here; we just created a map and put one entry there. This
entry is a compact disc object, as you can tell. We have two static methods that will
simulate queries —a SELECT statement and an UPDATE statement.

Now, let's check our CompactDisc class, as shown in the following code:

@XmlAccessorType (XmlAccessType . NONE)

@XmlRootElement (name = "compactDisc")

public class CompactDisc implements Serializable
private static final long serialVersionUID = 1L;
@XmlElement (name = "discName")

private String discName;

@XmlElement (name = "bandName")
private String bandName;

@XmlElement (name = "releaseDate")
private Date releaseDate;

@XmlElement (name = "price")
private double price;
//getters and setters

}

In this class, we just set the fields that represent a common compact disc attribute.
The annotation @exmlElement is used to map a property to an XML element derived
from a property name.

Now, it is time to implement the filter. We will show you the code after this short
introduction, explain what we have done, and explain some technical concepts used
in the implementation. Ready? Here we go!

Since the code of this class is a little bit long, we will split it and include a short
description after each block of code, as follows:

@Provider
public class SecurityFilter implements javax.ws.rs.container.
ContainerRequestFilter {

private static final String ADMIN = "ADMIN";

private static final String RESOURCE METHOD INVOKER = "org.jboss.
resteasy.core.ResourceMethodInvoker";

private static final String AUTHORIZATION PROPERTY =
"Authorization";

private static final String AUTHENTICATION SCHEME = "Basic";

private static final ServerResponse ACCESS DENIED = new
ServerResponse ("Access denied for this resource", 401,

new Headers<Object>());

[86]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

private static final ServerResponse ACCESS FORBIDDEN = new
ServerResponse ("Nobody can access this resource", 403,
new Headers<Object>()) ;

Let's check out this code. The first step, in order to implement a filter, is the
annotation @provider. When we place this annotation at class level, we set the class
as a filter. Our class name is SecurityFilter, and as you can see, it implements the
interface ContainerRequestFilter. If you remember, this filter will execute on the
server side and before the resource method is invoked.

At the start of our class's body, we set some constants that we will use later. The
AUTHORIZATION PROPERTY constant represents just the name of a property, as does
the RESOURCE_METHOD INVOKER constant. The AUTHENTICATION SCHEME constant
represents just a string. Both ACCESS_DENIED and ACCESS_FORBIDDEN constants
represent two different server response objects in order to notify the user of the
result of their request when it is denied or the user doesn't have enough permission.

As we implemented the interface ContainerRequestFilter, we must override the
filter () method. It is inside this method that we will put our logic for the purpose
of filtering the request based on the user that executed the request.

Let's start. As a first step, we obtain the method of the request using the constant
RESOURCE_METHOD INVOKER. After this, we will have a ResourceMethodInvoker
object, and then the Method object, as shown in the following code:

@Override
public void filter (ContainerRequestContext requestContext) {

ResourceMethodInvoker methodInvoker = (ResourceMethodInvoker)
requestContext

.getProperty (RESOURCE METHOD INVOKER) ;
Method method = methodInvoker.getMethod() ;

Next, we will perform some simple validations over method. We will check whether
the method is annotated with @Permitall. If it isn't, then the method continues, and
we check whether it is annotated with @ebenyall. If the method is annotated with
DenyAll, then we abort the request, including the constant ACCESS_FORBIDDEN, as
shown in the following code:

// Access allowed for all
if (!method.isAnnotationPresent (PermitAll.class))
// Access denied for all
if (method.isAnnotationPresent (DenyAll.class)) ({
requestContext .abortWith (ACCESS FORBIDDEN) ;
return;

[87]

www.it-ebooks.info

http://www.it-ebooks.info/

RESTEasy Skeleton Key

Now, we have to obtain the username and password. We must first obtain the
headers of the request and put it in a map. Then, we obtain the authorization string
list using constant AUTHORIZATION_ PROPERTY as a key. This list will let us know
whether the user has enough permission or not. So, we check if the list is empty

or null; if it enters the if () block, we abort the request, including the constant
ACCESS_DENIED, as shown in the following code:

final MultivaluedMap<String, String> headersMap =
requestContext.getHeaders () ;

final List<String> authorizationList =
headersMap.get (AUTHORIZATION PROPERTY) ;

if (authorizationList == null |
authorizationList.isEmpty ()) {
requestContext.abortWith (ACCESS_DENIED) ;
return;

}

This list has the encoded username and password as a string in the first element.
So, we execute a replacement and eliminate the string contained in the constant
AUTHENTICATION_SCHEME. Then, we decode it using the Base64 .decodeBase64
decoder, and through stringTokenizer, we obtain the username and password
separated. Let's look at the following code:

final String encodedUserPassword =
authorizationList.get (0) .replaceFirst (AUTHENTICATION SCHEME +

n II, n II) ;

String usernameAndPassword = new
String (Base64 .decodeBase64 (encodedUserPassword)) ;

// Split username and password tokens

final StringTokenizer tokenizer = new
StringTokenizer (usernameAndPassword, ":");

final String userName = tokenizer.nextToken() ;
final String password = tokenizer.nextToken() ;

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Now is the time to evaluate and check whether the user has enough permission.
First, let's check whether method has the @RolesaAllowed annotation; if it does, we
obtain the set of roles allowed using the object method. Finally, we check whether
the constant ADMIN is included in this list. If it is not, the request is aborted and
ACCESS_DENIED is once again included, as shown in the following code:

// Verify user access
if (method.isAnnotationPresent (RolesAllowed.class)) {

RolesAllowed rolesAnnotation = method.
getAnnotation (RolesAllowed.class) ;

Set<String> rolesSet = new HashSet<Strings (Arrays.
asList (rolesAnnotation.value())) ;

// Is user valid?

if (!isUserAllowed (userName, password, rolesSet)) {
requestContext .abortWith (ACCESS DENIED) ;
return;

private boolean isUserAllowed(final String username, final
String password, final Set<String> rolesSet) ({
boolean isAllowed = false;

if (rolesSet.contains (ADMIN))
isAllowed = true;

}

return isAllowed;

[89]

www.it-ebooks.info

http://www.it-ebooks.info/

RESTEasy Skeleton Key

Summary

In this chapter, we studied and implemented one of the most useful and necessary
techniques with the purpose of sharing and protecting our information. Nowadays,
applications have dramatically increased their interaction with each other because they
want to meet and satisfy the requirements of clients, users, and so on, compromising
neither the security nor the integrity of the data while doing this.

In this chapter, we studied several technologies to secure, limit, and authorize the
use of our resources to a third-party application, starting with brief but descriptive
concepts about OAuth 2.0 authentication, Single Sign-On, filters, and tokens.

Through a practical example and real code, you witnessed how you can grant
permission over specific resources to a third-party application in order to share the
information and maintain control over it. Also, we checked and worked with specific
code to implement one of the most used technologies in recent times, especially in

the world of social networks, Single Sign-On. Now, you can put in to practice these
concepts and technologies in order to build applications to interact with each other,
selecting which resource you want to be shared, which applications you want to use
as Single Sign-On, and filtering the use of certain resources based on the user and role.

[90]

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Signatures and
Encryption of Messages

Since many systems interact with each other to achieve their business goals, we often
feel the obligation to interact with services exposed by others. Also, when security
needs play an important role, we must verify that the information we receive has
been sent from whom we expected, and it has come without being altered. It is here
where digital signatures will play an important role and help us meet this need.

Also, we may sometimes need to encrypt the message body to prevent it from

being read if intercepted by unwanted persons. It is here where we can make use of
Secure/Multipurpose Internet Mail Extensions, or the S/MIME standard, which is
commonly used in the world of e-mail for public keys (http://en.wikipedia.org/
wiki/Publ ic_key), encryption (ht tp://en.wikipedia. org/wiki/Encryption),
and signing (http://en.wikipedia.org/wiki/Digital_signature) of MIME data
(http://en.wikipedia.org/wiki/MIME), and which also offers the ability to adapt
the HTTP protocol and allows us to use it on RESTful web services.

In this chapter, we are going to learn about the following:

* Signing messages
* Verifying signatures

* Encrypting message bodies with S/MIME

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Signatures and Encryption of Messages

Digital signatures

Digital signatures, nowadays, are a widely used mechanism. They are mainly used
to sign digital documents and issue electronic invoices, among other things.

Among the benefits of using them are the following;:

* They allow the receiver to obtain the identity of whoever has made
the signature.

* They provide the ability to verify that the information sent has not been
altered since it has been signed by the issuer.

In order to electronically sign the information that we will exchange through RESTful
web services, we will use the authentication mechanism known as DomainKeys
Identified Mail (DKIM), which allows us to decorate messages with headers using
the rules dictated by the DOSETA specification. This authentication mechanism

is mainly used for e-mail identity verification; however, it also works over other
protocols such as HTTP, and it is because of this fact we can integrate it with RESTful
web services. Thus, we will inject metadata into our messages with the purpose of
signing, and these signatures can be verified by those who wish to consume.

At this time, we will build an example that shows how to sign a message, and then
dissect each part of it to understand its operation.

If you want, you can download the source code using the following link on GitHub:

https://github.com/restful-java-web-services-security/source-code/
tree/master/chapter05/signatures

Otherwise, we will explain it in the following pages. Let's start by creating a new
project. Open the terminal and type the following;:

mvn archetype:generate -DgroupId=com.packtpub -DartifactId=signatures
-DarchetypeArtifactId=webapp-javaee6 -
DarchetypeGroupId=org.codehaus.mojo.archetypes

When it asks you for the version, change the default value 1.0-SNAPSHOT to 1.0

Now, we will generate the keys that allow us to encrypt messages and place them in
the classpath of our application. For this, we will first import the project into Eclipse
IDE and then create a folder within the project in which we place the keys that we
want to generate. In Eclipse, right-click on the new project named signatures and
select the option New | Source folder.

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

In the field Folder name, we will enter src/main/resources, and then we press the
Finish button.

Now, let's go to this directory from the command line and execute the
following instruction:

keytool -genkeypair -alias demo. domainKey.packtpub.com -keyalg RSA
-keysize 1024 -keystore demo.jks

Now, we should enter a password for both the KeyStore and the keys with which
we will sign the message. When it asks you for a password, type changeit, which is
the same password we have been using so far in our examples in this book. Then, we
enter the requested information as shown in the following screenshot:

® O O __ resources — bash — 80x24 "]

java I bash

MacBook-Pro-de-Rene: resources moe$ keytool —-genkeypair -alias demo._domainKey.pa
cktpub.com -keyalg RSA -keysize 1024 -keystore test.jks
Enter keystore password:
Re-enter new password:
What is your first and last name?
[Unknown]: Rene Enriquez
What is the name of your organizational unit?
[Unknown]: IT
wWhat is the name of your organization?
[Unknown]: PacktPub
What is the name of your City or Locality?
[Unknownl: Quito
What is the name of your State or Province?
[Unknown]: Pichincha
wWhat is the two-letter country code for this unit?
[Unknown]: EC
Is CN=Rene Enriquez, O0U=IT, O=PacktPub, L=Quito, ST=Pichincha, C=EC correct?
[no]l: vyes

Enter key password for <demo._domainKey.packtpub.com>
(RETURN if same as keystore password):

Re-enter new password:

MacBook-Pro-de-Rene: resources moe$ [

Now, we will implement some source code to sign a message. We first need to add
the required dependencies to the pom.xml file.

[93]

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Signatures and Encryption of Messages

First, add the JBoss repository from which we get the artifacts, as shown in the
following code:

<repositoriess>
<repositorys>
<id>jboss</id>
<urls>http://repository.jboss.org/maven2</url>
</repository>
</repositoriess>

Now, let's add all the dependencies we need to sign our message, as follows:

<dependenciess>
<dependencys>
<groupId>org.jboss.resteasy</grouplds>
<artifactId>resteasy-jaxrs</artifactIds>
<version>3.0.6.Final</version>
</dependency>
<dependencys>
<groupId>org.jboss.resteasy</grouplds>
<artifactId>resteasy-crypto</artifactIds>
<version>3.0.6.Final</version>
</dependency>
</dependencies>

With the purpose of avoiding duplicated classes in the classpath, we should delete
the following dependency:

<dependencys>
<groupId>javax</groupld>
<artifactId>javaee-web-api</artifactIds>
<versions>6.0</version>
<scope>provided</scope>

</dependency>

Updating RESTEasy JAR files

As we are using the 3.0.6.Final Version to compile the project, it is necessary to update
the existing versions in JBoss. So, we will go to the URL http://sourceforge.net/
projects/resteasy/files/Resteasy%$20JAX-RS/ and download the version we
just described.

[94]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

When we unzip the . zip file, we will find a file named resteasy-jboss-modules-
3.0.6.Final.zip. Let's unzip this file too, and then paste all its content in our
directory JBOSS_HOME/modules. Given RESTEasy modules have dependencies, we
have to update them too. So, after we update the RESTEasy modules, we should
update the module org.apache . httpcomponents. Let's go to the directory gBoss_
HOME/modules/org/apache/httpcomponents and update the following artifacts:

® httpclient-4.1.2.jar tohttpclient-4.2.1.jar

® httpcore-4.1.4.jar tohttpcore-4.2.1.jar

Also, we modify the module.xml file because the names of the JAR files are different,
as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!l--

<module xmlns="urn:jboss:module:1.1" name="org.apache.httpcomponents">
<propertiess
<property name="jboss.api" value="private"/>
</properties>

<resources>
<resource-root path="httpclient-4.2.1.jar"/>
<resource-root path="httpcore-4.2.1l.jar"/>
<resource-root path="httpmime-4.1.2.jar"/>
<!-- Insert resources here -->

</resources>

<dependencies>
<module name="javax.api"/>
<module name="org.apache.commons.codec"/>
<module name="org.apache.commons.logging"/>
<module name="org.apache.james.mime4j"/>
</dependencies>
</module>

[95]

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Signatures and Encryption of Messages

Applying digital signatures

Now that we have everything we need to compile our project, we will create a very
simple operation and apply a signature. In order to achieve this, let's create a class
called signedService in the source code package called com.packtpub.resteasy.
services, as shown in the following screenshot:

® 06 New Java Class

Java Class —
Create a new Java class. (Q
Source folder: signatures/src/main/java Browse...

> SR .)
Package: " com.packtpub.resteasy.services _ ~ Browse...
|_| Enclosing type: Browse...
Name: SignedService
Modifiers: () public) default private protected
abstract | | final static

Superclass: java.lang.Object | Browse...
Interfaces: Add...

Remove
Which method stubs would you like to create?
public static void main(String[] args)

| Constructors from superclass

Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)

| Generate comments
@ Cancel | [Finish |

[96]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

To sign a message, we take a key from the KeyStore and use it. We can identify

the keys in a unique way through their alias and the domain they belong to. For
example, for the key demo._domainKey.packtpub.com, the alias is demo and the
domain it belongs to is the key packtpub.com. Given that we can find several keys
in a KeyStore, RESTEasy offers the capability to select the one we want by using the
annotation @Signed.

Let's add the method highlighted in the following code to the class and watch how
the annotation works:

@POST
@Produces ("text/plain")
@Signed(selector = "demo", domain = "packtpub.com")

public String sign(String input) {
System.out.println("Aplyng signature " + input) ;
return "signed " + input;

}

The following figure shows us in a better way how the key is selected to sign
the message:

abe._domainKey.anydomain.com
xyz._domainKey.another.com dema._domalnKey.paclﬂpub_com] :> I

Now, we will define the path under our signed resources will be available, so let's
annotate the class as follows:

import javax.ws.rs.Consumes;
import javax.ws.rs.POST;
import javax.ws.rs.Path;

import org.jboss.resteasy.annotations.security.doseta.Signed;

@Path("/signed")
public class SignedService ({

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Signatures and Encryption of Messages

In order to make the application work properly, we will give it information so that it
can apply the appropriate signatures.

First, in the folder src/main/webapp, we will create the WEB- INF folder with an
empty web. xml file inside.

Let's start with the web. xm1 file, which should look like the following:

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemalLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd">

<display-name>signatures</display-name>

</web-app>

Now, the first thing we will do is tell our application what resource we want to
sign, which is the class that contains the method that we are signing. For this, let's
configure the parameter resteasy.resources with the corresponding full class
name, as follows:

<context-params>
<param-names>resteasy.resources</param-name>

<param-value>com.packtpub.resteasy.services.SignedResource</param-
values>

</context-param>

Next, we will inform our application of the location of the key with which we apply the
signature (the . jks file we created earlier). For this, we have two context parameters
available, resteasy.doseta.keystore.classpath and resteasy.keystore.
filename. Let's use the first parameter so that our file looks like the following:

<context-params>
<param-name>resteasy.doseta.keystore.classpath</param-name>
<param-value>demo.jks</param-value>

</context-param>

As you remember, we were asked for a password for the KeyStore when creating the
key. We will tell our application what this is using the parameter resteasy.doseta.
keystore.password. Let's add the following content:

<context-param>
<param-name>resteasy.doseta.keystore.password</param-name>
<param-value>changeit</param-value>

</context-param>

[98]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

To create the KeyStore from which we will extract the key that will allow us to sign
the message, we must add the following parameter:

<context-param>
<param-names>resteasy.context.objects</param-name>
<param-value>org.jboss.resteasy.security.doseta.KeyRepository
org.jboss.resteasy.security.doseta.ConfiguredDosetaKey
Repository</param-value>
</context-params>

Finally, we should add the RESTEasy servlet, as follows:

<servlets>
<servlet-name>Resteasy</servlet-name>
<servlet-class>org.jboss.resteasy.plugins.server.servlet.
HttpServlet
Dispatcher</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Resteasy</servlet-name>
<url-pattern>/*</url-pattern>
</servlet-mapping>

Here, we show how the web.xm1 file should look once you have finished adding all
the required information:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd">
<web-app>
<display-names>signatures</display-name>
<context-params>
<param-names>resteasy.resources</param-name>
<param-value>com.packtpub.resteasy.services.Signed
Service</param-value>
</context-param>
<context-params>
<param-name>resteasy.doseta.keystore.classpath</param-name>
<param-value>demo.jks</param-value>
</context-param>
<context-params>
<param-names>resteasy.doseta.keystore.password</param-name>
<param-value>changeit</param-value>
</context-param>
<context-params>

[99]

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Signatures and Encryption of Messages

<param-names>resteasy.context.objects</param-name>
<param-value>org.jboss.resteasy.security.doseta.Key
Repository : org.jboss.resteasy.security.doseta.ConfiguredDosetaKey
Repository</param-value>
</context-params>
<servlets>
<servlet-name>Resteasy</servlet-name>
<servlet-class>org.jboss.resteasy.plugins.server.servlet.
HttpServlet
Dispatcher</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Resteasy</servlet-name>
<url-pattern>/*</url-pattern>
</servlet-mapping>
</web-app>

Now, let's generate the WAR file by executing the following command:
mvn install

After this, we will copy the generated artifact in to the JBoss deploy directory.

Testing the functionality

Now, open SoapUI and test whether the web service is running as expected,
as shown in the following screenshot:

¥ /signatures-1.0/signed/

Method Endpoint Resource Parameters
b= POST + | htp://flocalhost:8080 ¥ [signatures-1.0/signed/ W+
<
L@l A ® HTTP/1.1 200 OK
T Valie Style Laval Server: Apache-Coyote/1.1

DKIM-Signature: d=packtpub.com;s=demo;v=1;a=rsa-sha256;c=simple/sim
Content-Type: text/plain

Content-Length: 19

Date: Fri, 23 May 2014 05:50:09 GMT

XML

b

: signed some content
Required Sets if pa g

JSON

1 AV
Media Type text/plain

some content|

T HTML

H... Arta... Repr... M.. MS .. S5L Info
respanse time: 19ms (19 bytes) Lisd

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

As you can see in the response, we obtain the DKIM-Signature header used to sign
the message. The full content of this header is as follows:

DKIM-Signature: d=packtpub.com;s=demo;v=1;a=rsa-sha256;c=simple/simple
;bh=1c+ECOAgPQCB4ItWLUomBv34m3F9GOpkIBAI8Z/yWecQ=;b=A1JY61iiCtdCnHrJa+0f
9aRgBXeIp7V7cEG7eyUp0CRbDI9W]FodbQGRQjhfwDgd1lWIBzVLIWelTAI85B1G13ACNCML
BjPv2iBBjo+78e/9HcYs81YNLIPRAA]j6jzymA/+jkmpTVethWaEEyoPJUBAISFvP33zH7e
tfkFaGX+bwer0=

From this whole string, what is important for us are the following;

* d=: This is the domain, the value which is indicated at the time we implement
the method.

* a=:This is the algorithm used by RESTEasy to sign the message. In this case,
we use RSA because it is the only algorithm that is supported to date by

the framework.

The other parameters are not very important, and they are only necessary for a

signed message.

Now, in order to validate the authenticity of the signature, we will create a class from
which we will make the verification.

We will use JUnit; so, first add the corresponding dependency in the pom.xm1 file,
as shown in the following code snippet:

<dependency>

</dependency>

<groupId>junit</grouplds>

<artifactId>junit</artifactIds>

<version>4.8.2</version>

<scope>test</scope>

Now, let's create a new source folder named scr/test/java and a package named
com.packtpub.resteasy.services.test inside it. Inside the package, let's create
the class signedserviceTest using the following content:

import
import
import
import
import
import
import
import
import
import

javax.ws.

javax.ws.

javax.ws.

javax.ws.

junit.
org.
org.
org.
org.
org.

jboss.
jboss.
jboss.
jboss.
jboss.

rs.

rs.client
rs.client
rs.client

resteasy.
resteasy.
resteasy.
resteasy.
resteasy.

.Entity;
.Invocation;
.WebTarget;
core.Response;
framework.Assert;

client.jaxrs.ResteasyClient;
client.jaxrs.ResteasyClientBuilder;
security.doseta.DosetaKeyRepository;
security.doseta.Verification;
security.doseta.Verifier;

[101]

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Signatures and Encryption of Messages

import org.junit.Test;
public class SignedServiceTest {

@Test

public void testVerification() {
// Keys repository
DosetaKeyRepository repository = new DosetaKeyRepository() ;
repository.setKeyStorePath ("demo.jks") ;
repository.setKeyStorePassword ("changeit") ;
repository.start () ;
// Building the client

ResteasyClient client = new ResteasyClientBuilder () .build() ;
Verifier verifier = new Verifier();
Verification verification = verifier.addNew/() ;
verification.setRepository (repository) ;
WebTarget target = client

.target (
"http://localhost:8080/signatures-1.0/signed") ;
Invocation.Builder request = target.request () ;

request.property (Verifier.class.getName (), verifier);
// Invocation to RESTful web service

Response response = request.post (Entity.text ("Rene")) ;
// Status 200 OK

Assert.assertEquals (200, response.getStatus());
System.out.println(response.readEntity (String.class)) ;
response.close() ;

client.close() ;

}

If everything goes well, we will see a green bar as a result of our test, as shown in the
following screenshot:

|2 Markers [Properties 4i* Servers §% Data Source Explorer [Snippets [Conscle ' Search gu Junit 82 4/ History =0
a® 5| R g2 ¥
Finished after 0.886 seconds
Runs: 1/1 8 Errors: 0 o Failures: 0 ———
v & com.pac 1/1 b.resteasy.services.test.SignedServiceTest [Runnar: JUnit 4] = Failure Trace oE

_,.

g | testverification (0.827 s)

[102]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Validating signatures with annotations

A simpler way to validate whether a resource is signed is to use annotations. This
solution can be used mainly when you have a flow of signatures that must be met.

For example, imagine that employees of the company Packt Publishing have a
system through which they can apply to increase the RAM of their computers. To
treat such requests as valid, they must be signed by the person making the request.
We mean that we only need that the request be signed to be considered valid, as

shown in the following figure:
J g
VERIFY THE REQUEST g////’F_* y B
YE PROCESS REQUEST

b
»{_ |5 SIGNED?
NO
@ \”8

REQUEST RAM INVALID REQUEST]

For this example, we will add two methods to our signedService class; the first
method will allow us to send the requests, as shown:

@POST
@Path ("ram")
@Signed(selector = "demo", domain = "packtpub.com")

@Consumes ("text/plain")
public String requestRam(int numberOfGB) {
return numberOfGB + "-GB";

}

To meet the business requirements, we will use the @verify annotation in which
we can add restrictions on signatures. For now, we only need to verify that the
request is signed.

The following is the method that shows all the complicated logic used by the boss to
approve or deny memory increases to employee PCs:

@Verify
@POST
@Path("verifier")

[103]

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Signatures and Encryption of Messages

@Produces ("text/plain")
public String processRequestRam (String input) {
int numberOfGbRequested = Integer.valueOf (input.split("-") [0]);
if (numberOfGbRequested > 4)
return "deny";
} else {
return "accepted";

}

Now, let's deploy the application on JBoss and test it with SoapUI. As we have
mentioned, the requests must be signed in order to be processed. So, first make a
request to the method processRequestRam without a signature, as shown in the
following screenshot:

[NaNE) 5F /signatures-1.0/signed/
Method Endpoint Resource Parameters
[N B w3 . . . - s %+ ®
POST ¥ | http://localhost:8080 v [signatures-1.0/signed/verifier
<
L™ a 0"’ HTTP/1.1 401 Unauthorized
- Server: Apache-Coyote/1.1
Hlamse Yalus Styls Loyl Content-Type: text/html
Content-Length: 34
3‘ Date: Fri, 23 May 2014 06:15:45 CMT
>
| av L There was no DKIM-Signature header
: Required: Sets if pa §
 aw
Media Type text/plain =
Zl E
= [s-cr T
‘e
H:: Atta... Repr... m IMS 55L Info
response time: 395ms (34 bytes))

What is essential for the application to be processed is that it comes from the company
domain, in this case, packtpub. com. Later, the boss conducts a rigorous analysis

of the application and issues a judgment to determine whether the application is
approved or rejected.

[104]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

For this example, we will remove the method that we created earlier and add two
methods to our SignedService class; the first method will allow us to send the
requests, as shown:

@POST
@Signed (selector = "demo", domain = "packtpub.com")
@Consumes ("text/plain")
public Response requestRAM(int numberOfGB)
return Response.seeOther (
URI.create("/signed/" + "GB:" + numberOfGB)) .build() ;

}

The output shows us the error very clearly. The request couldn't be processed
because there is no DKIM-Signature header that contains the information to
verify the signature. This means that the headers aren't there because they
weren't signed earlier.

In order to get the request successfully processed, we will call a web service that
signs the request. We will add the headers with the signature information and call
the processRequestRam method again.

Let' start by calling the requestRam operation, as shown in the following screenshot:

806 2 /signatures-1.0/signed/
Method Endpoint Resource Parameters
> et - . . " X %W+ ®
POS_T = http://localhost;: 8080 * | /signatures-1.0/signed/ram =
<
v v A @& * |HTTP/L12000K
. I | - Server: Apache-Coyote/1.1
hagag Value alyle L DKIM-Signature: d=packtpub.com;s=demo;v=1;a=rsa-sha256;c=simple/sim
Content-Type: application/octet-stream
s Content-Length: 4
< | Date: Fri, 23 May 2014 06:22:54 GMT
3 -~
| . o Z 8-GB
Required Sets if pa o
; =
~w
| Media Type text/plain =
E E
2 8 T
e
H... Arma... Repr... M M5 S5L Info
response time: 40ms (4 bytes) gl

[105]

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Signatures and Encryption of Messages

As a result of this callback, we will obtain the following values:

DKIM-Signature: d=packtpub.com;s=demo;v=1;a=rsa-sha256;c=simple/simple
;bh=uAén2udZlWdx+ouwCEeeyM6Q4 8KHOEWa2MnfBwMP+vM=; b=T0drw9QWud7rslw//53
84hs8GCatJdKzmljIhgiTrHWAVx/IhCV1915yycchN+hQ+1jUaS6bPtLYo/ZNspcv2LtAe/
tKTPpng4RW1r52k0TgqnV3XX2KvJI7kBOpEU2Rg6£61BOJT5v+001iV050bagf zKDEQ9009W
PZjQKcBG+/xVE=

RESPONSE: 8 GB

Let's keep moving! Now, we will use these values to make a request. From SoapUI,
let's invoke the processRequestRam operation and focus on the bottom-left area of
our request editor; there is an option that says Header. Let's select this option and
click on the + symbol. Now, we have to enter the DKIM-Signature header and place
the corresponding value. Also, don't forget to send the request parameter 8-GB that
was the response of the invocation of the requestRam operation, as highlighted in
the following screenshot:

806 5 Reguest 1
Method Endpoint Resource Parameters
[. . . -) %W+ ®
POST s http:/ /localhost:8080 v | [signatures-1.0/signed/verifier =
<
t vl a 0 ? HTTP/1.1 200 OK
- |Server: Apache-Coyote/1.1
bam Nalus Style kevel |Content-Type: text/plain
- |Content-Length: 4
e |Date: Fri, 23 May 2014 06:39:46 GMT
' =
=
o > |deny
A
| Media Type text/plain \d i Post QueryString z
§; E-GB i)
-
=
=
T
i \ﬂ.' E
Header value
DKIM-Signature d=packtpub.com;s=demo;v=1,a=rsa...
el
A... Header... Attachment... Representatio... IMS Hea IM5 Propert SL Info
response time: 183ms (4 bytes) 11
[106]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

As we can see, the request was successfully processed, but the boss denied the
increase of memory. Now, we indicate that digital signatures allow us to validate that
the information is not altered once it has been signed. Suppose malicious software
intercepted the response, and instead of 8-GB, it delivered the value 12-GB. Let's make
this request in SoapUI following the theory of digital signatures. This request should
not be valid; however, we must check:

806 #f Reguest 1
Method Endpoint Resource Parameters
[= - ¢ P %+ D
POST + http:f{localhost:8080 v [signatures-1.0/signed/verifier =
< -
o) HER @ * |HTTP/1.1401 Unauthorized
= \Server: Apache-Coyote/1.1
hame ajue St Lavel |Content-Type: text/htm|
|Content-Length: 56
e ¥ Date: Fri, 23 May 2014 06:46:25 GMT
! =
| > | [Failed to verify signatures:
L Body hashes do not match.
3 Media Type text/plain » W Post QueryString g
| l12-em 0
-
=
=
T
|
L ® |
| Header Value
| DKIM-Signature d=packtpub.com;s=demo;v=1,a=rsa...
e
A Header... Attachment... Representatio... IMS Hea JMS Propert SSL Infc
response time: 147ms (56 bytes) i &

The error message clearly indicates that the message body was altered, so the request
is not processed and we get the HTTP 401 Unauthorized message. This corroborates
the statement made before regarding the integrity of the signed messages.

[107]

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Signatures and Encryption of Messages

RESTEasy allows us, however, to do more than just validate that a message has been
signed. We can verify that the signer belongs to a specific domain. In our example,

a firm would be considered valid only when it comes under the packtpub.com
domain. To perform this type of control, we will make the following change:

@Verify(identifierName = "d", identifierValue =

@POST
@Path ("verifier")
@Produces ("text/plain")

public String processRequestRam(String input)

"packtpub.com")

int numberOfGbRequested = Integer.valueOf (input.split("-") [0]);

if (numberOfGbRequested > 4)
return "deny";

} else {
return "accepted";

Parameters

%+ ®

Let's deploy the application in JBoss and execute the request again from SoapUI:
8006 5 Request 1
Pl Method Endpoint Resource
L B POST s | http://localhost:8080 v [signatures-1.0/signed/verifier
¢
i wm @y o HTTP/1.1 200 OK

|Server: Apache-Coyote/1.1
|Content-Type: text/plain
\Content-Length: 4

|Date: Sun, 25 May 2014 02:41:34 GMT

Na...| Va... Style Le...

XML

v e |deny

Required

JSON

L

Media Type text/pl =

12-GB £
i 't}." é
Header Value |

DKIM-5igna... d=packtpu...

response time: 32ms (4 bytes)

[108]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Now, let's force a fault. We will assume that valid messages are only those that are
signed from the domain itpacktpub.com. So, let's apply the following change:

@Verify(identifierName = "4d",
@POST
@Path ("verifier")
@Produces ("text/plain")
public String processRequestRam(String input) {
int numberOfGbRequested = Integer.valueOf (input.split("-") [0]);
if (numberOfGbRequested > 4)
return "deny";
} else {
return "accepted";

identifierValue = "itpacktpub.com")

Let's deploy the application in JBoss again, and execute the request from SoapUI:
e 0o *f Request 1
4 Method Endpoint Resource Parameters .
L B POST s http://localhost:8080 * [/signatures-1.0/signed/verifier B+ @
<
Lo o HTTP/1.1 401 Unauthorized
- . Server: Apache-Coyote/1.1
D hYaiad Styled Lo Content-Type: text/html
Content-Length: 28
Date: Sun, 25 May 2014 02:47:03 GMT
=
= : mey v i
: S > [Failed to verify signatures:
Required %
a
Media Type text/pl S
12-G3 =
|
= (7]]
Header Value
DKIM-Signa... d=packtpu...
‘a
...... S5L Info
response time: 669ms (28 bytes) 1:1

[109]

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Signatures and Encryption of Messages

As we expected, the request failed this time. Obviously, this happened because the
signatures could not be verified as the message was signed with the packtpub.
com domain and not with the itpacktpub.com domain as we set in the operation
processRequestRam.

Suddenly, you wonder why the value of the identified name is d. As we mentioned
before, the letter d represents the domain. The RESTEasy documentation explains
a little more about each of the parameters in the header. Here, we show you an
example from the documentation about JBoss related to this topic:

Here's what an example DKIM-Signature header might look like:
DKIM-Signature: v=1;

a=rsa-sha256;

d=example.com;

s=burke;

c=simple/simple;

h=Content-Type;

x=0023423111111;

bh=2342322111;

b=M232234=

As you can see, it is a set of name value pairs delimited by a ';'. While it's not
THAT important to know the structure of the header, here's an explanation of each
parameter:

v: Protocol version. Always 1.

a: Algorithm used to hash and sign the message. RSA signing and SHA256
hashing is the only supported algorithm at the moment by RESTEasy.

d: Domain of the signer. This is used to identify the signer as well as discover the
public key to use to verify the signature.

s: Selector of the domain. Also used to identify the signer and discover the public
key.

c: Canonical algorithm. Only simple/simple is supported at the moment. Basically,
this allows you to transform the message body before calculating the hash.

[110]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

h: Semi-colon delimited list of headers that are included in the signature
calculation.

x: When the signature expires. This is a numeric long value of the time in seconds
since epoch. Allows signer to control when a signed message's signature expires.

t: Timestamp of signature. Numeric long value of the time in seconds since epoch.
Allows the verifier to control when a signature expires.

bh: Base 64 encoded hash of the message body.
b: Base 64 encoded signature.

Now that we have this information, it is clear to assume that if you want to check
the signer, instead of using the letter d, we must use the letter s, and instead of
packtpub.com, we will use demo. Once you apply these changes, our code should
look like the following:

@Verify(identifierName = "s", identifierValue = "demo")
@POST
@Path ("verifier")
@Produces ("text/plain")
public String processRequestRam(String input)
int numberOfGbRequested = Integer.valueOf (input.split("-") [0]);
if (numberOfGbRequested > 4)
return "deny";
} else {
return "accepted";
}
}

In addition, if you want to verify the signer's name and domain, you must

apply a slight change. This time, we will use the @verifications annotation;

this annotation receives an array of everify annotations as a parameter, which
allows us to perform what we described earlier. In this case, we should add two
controls using the @verify annotation, and our code should look like the following:

@Verifications ({

@Verify(identifierName = "s", identifierValue = "demo"),
@Verify(identifierName = "d", identifierValue = "packtpub.com") })
@POST

@Path ("verifier")

@Produces ("text/plain")

public String processRequestRam(String input)
int numberOfGbRequested = Integer.valueOf (input.split("-") [0]);
if (numberOfGbRequested > 4)

[111]

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Signatures and Encryption of Messages

return "deny";
} else {
return "accepted";

}

Once we have applied the changes, we can perform a request using SoapUI. We
should get a successful execution as the result, as shown in the following screenshot:

e 06 %f Reguest 1
Method Endpoint Resource Parameters
[y : . : - %+ 8
POST + htp://localhost:8080 ¥ [signatures-1.0/signed/verifier
<
tLmEey o HTTP/1.1 200 OK
B Server: Apache-Coyote/1.1
Na...iVa...|StlejLe... Content-Type: text/plain
Content-Length: 4
Date: Sun, 25 May 2014 03:29:57 GMT
—
=
: > | deny
. _AV
Required =
2
~v
Media Type text/pl =
12-GB ':_C
t: — '._i"jl é
Header Value
DKIM-Signa... d=packtpu...
e
esponse time: 13ms (4 bytes) 1]

Message body encryption

In the previous chapter, we saw how to encrypt a complete HTTP message using
HTTPS. Now, we will explain how we can encrypt just the message body and the
differences between each process. We start by constructing a simple example, and
then, as we perform the respective tests of our implementation, we'll understand how
it works.

In order not to spoil our previous project, we will build a new one. For this, we will
execute the following commands in the terminal:

mvn archetype:generate -DgroupId=com.packtpub -DartifactId=encryption
-DarchetypeArtifactId=webapp-javaee6 -DarchetypeGroupId=org.codehaus.
mojo.archetypes

[112]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

As seen earlier in this chapter, when you get asked for a version, change the default
value of 1.0-SNAPSHOT to 1. 0.

Of course, if you want, you can download all the source code from GitHub from the
following URL:

https://github.com/restful-java-web-services-security/source-code/
tree/master/chapter05/encryption

Now, let's import the project into Eclipse, delete the existing default dependence
in the pom.xm1l file, and add dependencies on the artifacts resteasy-jaxrs and
resteasy-crypto.

The dependencies section should look like the following:

<dependencies>
<dependency>
<groupld>org.jboss.resteasy</groupIld>
<artifactIds>resteasy-jaxrs</artifactIds>
<version>3.0.6.Final</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupld>org.jboss.resteasy</groupIld>
<artifactIds>resteasy-crypto</artifactIds>
<version>3.0.6.Final</version>
</dependency>
</dependencies>

Now, let's create the class EncryptedService inside the package com.packtpub. In
this class, we will create a very simple operation, as shown:

package com.packtpub;

import javax.ws.rs.GET;
import javax.ws.rs.Path;

@Path (" /encrypted")
public class EncryptedService {

@GET
public String gretting() {
return "Hello world";

[113]

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Signatures and Encryption of Messages

To register the services of our application, let's create the class
EncryptedApplication, as shown:

package com.packtpub;

import java.util.HashSet;
import java.util.Set;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/services")
public class EncryptedApplication extends Application

private Set<Object> resources = new HashSet<Object>() ;

public EncryptedApplication() throws Exception (
resources.add (new EncryptedService()) ;

@Override
public Set<Object> getSingletons()
return resources;

Testing the functionality

After this, our application should be ready. So, let's execute a test from SoapUI to
watch the traffic using Wireshark, as shown in the following screenshot:

806 £ Request 1
tials Method Endpoint Resource
=i GEly v http://localhost:8080 ¥ | /[encryption-1.0/services/encrypted
<
A e & HTTP/1.1 200 OK

|Server: Apache-Coyote/1.1
Content-Type: application/octet-stream
Content-Length: 11

Date: 5un, 25 May 2014 05:32:42 GMT

Na... | Val...i Style | Le...

Hello world

XML

[114]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Wireshark shows us the following;:

[-Wa¥Gz] %) Capuring from Loopback: lo0 [Wireshark 1.10.5 (SVN Rev 54262 from Jjrrunk-1.10)]
Eile Edit View Go Capture Analyze 5tatistics Telephony Tools Internals Help

e0dE I BERXRIAE+»wTFRLEB QA $VEE B
Fllter.]htlp ;IExplession... Clear Apply Save

No. Time Source Destination Protocol|Length|Info

59 74.729353000 127.0.0.1 iﬂ!_ HTTP/1.1 200 0K (text/html)

P Transmission Control Protocol, Src Port: http-alt (8888), Dst Port: 49247 (49247), Seq: 1, Ack: 352, Len: 139
b rotacol

1 200 OK\rFin
server: Apache Coyote/1,1\r\n
Content- Type: text/htmlyrin
Content-Length: 11\riyn
Date: Sun, 25 May 2014 05:40:39 GMT\r\n
\rn
[HTTP response 1711
[Time since request: ©.976177008 seconds]
Request in frame: 57

= Line-based text data: text/html

4

0600 B2 60 06 60 45 00 00 bf fa 51 40 00 40 06 60 €6E... .0R.@...
0010 7f 80 €8 €1 77 00 00 01 1f 90 cd 5 71 49 8d @a _— ._ql..
0020 4a bc f4 f8 B0 18 23 cc fe b3 00 00 Ol 01 08 Qa N VEdd e
0630 39 bb 25 a2 39 bb 21 d6 48 54 54 50 2f 31 2e 31 9.%.9.!. HTTR/L.1
0040 20 32 30 30 20 4f 4b 0d Da 53 65 72 76 65 72 3a 200 DK. .Server:
0AS0 20 41 78 61 63 68 65 2d 43 6f 79 6f 74 65 2f 31 Apache- Coyote/l
0860 Ze 31 0d 0a 43 6f Be 74 65 Be 74 2d 54 79 7O 65 -1..Cont ent-Type
0870 3a 20 74 65 78 74 2f 68 74 6d 6c Od Oa 43 6f Ge : text/h tml..Con
DOED T4 65 6@ 74 2d 4¢c 65 6@ 67 74 6B 3Ia 20 31 31 ad tent-Len gth: 11,
0096 Ba 44 61 74 65 3a 20 53 75 be 2c 20 32 35 20 ad .Date: Sun, 25 M
08ab 61 79 20 32 30 31 34 20 30 35 3a 34 30 3a 33 39 ay 2014 ©5:40:39
000 20 47 4d 54 6d 0a 0d Ba GHT. ...

00co

As we can see, the traffic analyzer shows how all the information is traveling straight
and how easily it is interpreted. Now, let's enable HTTPS on JBoss to show how the
whole message is encrypted.

Enabling the server with HTTPS

So, first we have to create a certificate KeyStore. We can achieve this by executing the
following command on the terminal:

keytool -genkey -alias tomcat -keyalg RSA

When it asks you for a password, you should use changeit as we have already used
it in this book.

Now, we look at the JB0OSS HOME/standalone/configuration/standalone.xml
file, at the line containing <connector name="http", and add the following:

<connector name="https" protocol="HTTP/1.1" scheme="https"
socket-binding="https" secure="true">

<ssl/>
</connectors

[115]

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Signatures and Encryption of Messages

Once you've made this change, we will restart the application server, deploy
the application, and edit the request. This time, we'll use port 8443 and the
HTTPS protocol. So, the URL should look like the following:

https://localhost:8443/encryption-1.0/services/encrypted

Let's execute the request using SoapUI; our traffic analyzer will now show us the
following result:

800 % *“Loopback: lo0 [Wireshark 1.10.5 (SVN Rev 54262 from [trunk-1.10)]
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

00 AN A ENXAAaedPwFIEB QQAFIEWE
Filterzl jExpression...
No. _ Source _ Destination

Protocol | Length|info

<€
P Frame 31: 237 bytes on wire (1896 bits), 237 bytes captured (1896 bits) on interface 0
P Null/Loopback

I* Transmission Euntrél Prnta&ol, Src : pesync-https (8443), Dﬁt Port: 5546? (58467), Seq: 162, Ack: 689,

b Data (181 bytes)

0000 02 00 DO 0D 45 00 90 e9 48 76 40 0D 40 00 00 0O Sy S
gole 7f 00 00 01 7f 00 00 01 20 fb e4 63 2c 4587 8a
0020 11 89 bf 8e 80 18 23 b7 fe dd 0O 0® D1 B1 @B 0a #.
0030 32 06 27 25 32 06 27 22 17 03 03 00 b0 43 c6 Oc 2.2, T
0040 87 67 7b 80 ed 48 fb ea 95 76 20 83 2d a2 ac f3 .g{..H..
0050 7a 43 5f d3 18 01 26 03 b4 8e 80 ee 29 9d ca f8 zC_. .. &,
0068 59 7d e8 52 81 5c 1la 5Ff 59 2f bc bd d2 d4 ca 75 Y}.R.A\._

pe7e f2 82 75 09 23 dd b6 16 Oc db 09 Ba 3b of d9 3f R TP e
0080 9f 7c da 83 c¢3 4b af 9f 86 79 b9 15 24 4e 81 33 afae K

0090 ©d c3 10 5f Sb 83 1b fc 45 f4 4a 6c 69 3d 42 04 x x i e
0030 37 34 da 23 3c 7a 1b e5S a4 64 c¢9 7d c® fa c3 ef T4.#<z..
00be 85 ed af B85 34 05 f6 33 00 63 e9 b2 da ae 60 1d R P |

00c® 74 e5 db ad e2 46 86 23 12 9d ba 3e fd 12 1c 8e t....F.*

As we expected, this time, the analyzer shows us very clearly that all the information
has been encrypted.

Moving forward with our example, we will now disable HTTPS in JBoss. For this, we
have to remove the connector we added before. Now, we will use S/ MIME in order
to encrypt only the message body of the response. First, let's check some concepts
that will help us understand how it works.

[116]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

S/MIME comes from Secure MIME. MIME stands for Multipurpose Internet Mail
Extension, which helps us to not only send messages such as "Hello world", but also
to send more interesting content such as videos, audio, and so on. MIME works with
e-mail protocols such as SMTP and HTTP. This helps us to work with RESTful S/
MIME web services. On the other hand, MIME offers us the following features:

* Message encryption
* Validating the identity of the user who sends the message

* The capability to verify the information integrity of the message

Given that S/MIME works with certifications, this is where the information of the
message sender is saved. When the receiver gets the message, they observe all the
public part of the message. The message can then be deciphered using a key. Also,

the receiver can access its content. If you want to proceed further with S/MIME, we
recommend you visit the link http://datatracker.ietf.org/wg/smime/charter/.

Let's start by making some changes. First, we will create the source folder src/main/
resources in the application; in this directory, we will place the resources necessary
to encrypt the message.

Then, we generate a certificate using openss1, go to the directory we just created
from the console, and run the following at the command line on a terminal:

openssl req -x509 -nodes -days 365 -newkey rsa:1024 -keyout demokey.pem
-out democert.pem

Now, we have to enter the requested information as shown in the
following screenshot:

806 __ resources — bash — 78x24 '
bash] bash I

MacBook-Pro-de-Rene:resources moe$ openssl req -x509 -nodes -days 365 -newkey
rsa:1024 -keyout demokey.pem -out democert.pem

Generating a 1824 bit RSA private key

....... bt

.. ++btd

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:EC

State or Province Name (full name) [Some-Statel:Pichincha

Locality Name (eg, city) []:Quito

Organization Name (eg, company) [Internet Widgits Pty Ltd]:PacktPub
Organizational Unit Name (eg, section) []1:IT

Common Name (e.g. server FQDN or YOUR name) []:localhost

Email Address []:

[117]

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Signatures and Encryption of Messages

This will generate two files: demokey . pem, which is a private key, and democert .pem,
which is a certificate we will use to encrypt the message body. To represent a signed
response, RESTEasy uses the Envelopedoutput object. In the following figure, we
show you how RESTEasy encrypts messages:

democertpem

Message Enveloped Output

Therefore, we must replace the return type of the method gretting() in the
EncryptedService class. Let's change the string to Envelopedoutput and encrypt
the message body using the certificate we generated before. Applying these changes,
our method should look like the following;:

@GET
public EnvelopedOutput gretting() throws Exception {
InputStream certPem = Thread.currentThread ()
.getContextClassLoader ()
.getResourceAsStream("democert.pem") ;
X509Certificate myX509Certificate = PemUtils.
decodeCertificate (certPem)
EnvelopedOutput output = new
EnvelopedOutput ("Hello world", MediaType.TEXT PLAIN) ;
output.setCertificate (myX509Certificate);
return output;

[118]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Let's make a change in the pom.xm1 file. We will modify the dependencies section in
the following way:

<dependencies>

<dependency>
<groupId>junit</groupld>
<artifactId>junit</artifactIds>
<version>4.8.1l</version>

</dependency>

<dependency>
<groupld>org.jboss.resteasy</groupld>
<artifactIds>resteasy-jaxrs</artifactIds>
<version>3.0.6.Final</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupld>org.jboss.resteasy</groupIld>
<artifactIds>resteasy-jaxb-provider</artifactId>
<version>3.0.6.Final</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupld>org.jboss.resteasy</groupld>
<artifactIds>resteasy-crypto</artifactIds>
<version>3.0.6.Final</version>

</dependency>

</dependencies>

Notice how we changed the scope of the resteasy-jaxrs and resteasy-jaxb-
provider artifacts; this is necessary to avoid duplicate classes when we encrypt the
message. Since these artifacts are modules within the application server, you need to
indicate that we want to load them. For this, we will modify the pom.xm1 file in the
plugin section of maven-war-plugin, as follows:

<plugins>
<groupId>org.apache.maven.plugins</groupIds>
<artifactIds>maven-war-plugin</artifactIds>
<configurations>
<failOnMissingWebXml>false</failOnMissingWebXml >
<archives>
<manifestEntriess
<Dependencies>org.jboss.resteasy.resteasy-jaxb-provider
export, org.jboss.resteasy.resteasy-jaxrs
export</Dependencies>

</manifestEntriess>

[119]

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Signatures and Encryption of Messages

</archives>
</configurations
</plugin>

Since JBoss Version 7 is a module-based application server, by default, only a few
modules are activated when it starts. If you want to access other modules, it is

necessary to indicate these dependencies explicitly. This can be done through the
MANIFEST.MF file or by creating a file called jboss-deployment -structure.xml.

In this case, we will choose the first file by using maven-war-plugin to indicate the
required dependencies.

Testing the functionality

Now, let's make the request again from SoapUI to the URL
http://localhost:8080/encryption-1.0/services/encrypted.

This time, the response we will get is shown in the following screenshot:

v

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename="smime.p7m"

Content-Type: application/pkcs7-mime; smime-type=enveloped-data; name="smime.p7m"
Content-Length: 518

Date: Mon, 26 May 2014 05:49:16 GMT

XML

ISON

MIAGCSqGSIb3DQEHABCAMIACAQAXggENMIIBCQIBEADBYMGUx CzAJEgNVEAY TAKVDMRIWEAYDVQQI
EwlQaWNoaW5jaGExDjAMBgNVBACTBVF laXRvMREwWDwWYDVQOKEWhQYWNrdFB1YJELMAKGATUECXMC
SVOXEJAQBgNVBAMTCWxvY 2FsaGO9zdAlJAPzSrM2TYevQMAOCCSgC5Ib3DQEBAQUABICAavX Bo2 WV
15hrXIMb2nQfkQWpY 158ZYceuAROFS /43 7E4Z9yMCvCCIrB)dwRB+nRN/ySaMUoWUtKTy6Xoge
bRAEF3bLCYTEFe060)GvalqWehjQwF3BXCGHfuLkOyH+BSQ397x5LpXc8gXDOPhhLKIQIpRI21Y/V
EQOWSyLKTmcUwgAYIKoZlhveNAQcBMBOGCCqCSIb3DOMHBAG +VnRhyvB56qCABCgDXhu +QVKuGS53X
SCHUAMr+ehsWkNRK/PDID+ +USOLACSBI7jdDONIvAAAAAAAAAAAAAA = =

Raw [T

806 * Reg 1
Method Endpoint Resource Parameters
[B CET . T : : %+ @
+ | http://localhost:8080 | v | /encryption-1.0/services/encrypted ~
<
Ly &t HTTP/1.1 200 OK
[Naw | val.J5ote Lo | | Server: Apache-Coyote/1.1

lall

response time: 15ms (518 bytes)

Required CipherSuite: TLS_ECDHE_RSA_WITH_AES 128 CBC_SHA

3 PeerPrincipal: CN=Rene Enriquez, OU=IT. O=PacktPub, L=UIO, 5T=Pichincha, C=EC
bt Peer Certificate 1:

Options: [

[
Version: V3

[120]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The following is what we will see from the traffic analyzer:

[B00 '\ *Loopback: Io0 [Wireshark 1.10.5 (SVN Rev 54262 from /jtrunk-1.10)]
Eile gdi'(_giew Go ga_pture Analyze Statistics Telephony Tools [nternals Help

EOANMI EDOXS aevswTE[EE Qe A @EA

FiEter:l - |Expression“. Clear Apply Ve
No. Time Source |Destination |Protoco|| Length|Info
Sa
9 6.864917008 i | i uoP B84 Source port: 4915
1 —

I* Frame 7: 851 bytes on wire (68€8 bits), 851 bytes captured (6888 bits) on interface o

P Null/Loopback

4

[* Transmission Control Protocol, Src Port: http-alt (8088), Dst Port: 59500 (59500), Seq: 1, Ack: 177, Len: 795
b Hypertext Transfer Protocol :

b Madia Tuna

0000 02 00 00 0D 45 00 03 4f Oe 9e 40 00 40 06 00 00 ..0

6016 7f 60 00 01 7T 00 00 01 1f 90 e8 6c fl b8 db f6 . s
0026 960 06 al 67 80 18 23 d7 ©1 44 00 00 O1 01 08 Oa syl e
0030 32 63 fe 33 32 63 fe 27 48 54 54 50 2f 31 2e 31 2c.32c. ' HTTP/L1.1
0046 20 32 30 30 20 4f 4b 0d ©a 53 B5 72 76 65 72 3a 200 DK. .Server:

0056 20 41 70 61 63 68 65 2d 43 6f 79 6f 74 65 2f 31 Apache- Coyote/1
0060 2e 31 Od 0a 43 6f Ge 74 65 Ge 74 2d 54 72 61 Ge -1..Cont ent-Tran
6078 73 66 65 72 2d 45 be 63 b6f 64 BY be 67 3a 20 b2 sfer-enc oding: b
0088 61 73 65 36 34 0d 0a 43 6f 6e 74 65 6e 74 2d 44 asebd. .C ontent-D
0090 69 73 70 6f 73 69 74 69 6f Ge 3a 20 61 74 74 61 ispositi on: atta
00ab 63 68 6d 65 6e 74 3b 20 B6 69 Bc 65 6e 61 6d 65 chment; filename
00b8 3d 22 73 6d 69 6d 65 2¢ 70 37 6d 22 6d 0a 43 6f ="smime. p7m"..Co
00cl 6Ge 74 65 6e 74 2d 54 79 70 65 3a 20 61 70 70 6C ntent-Ty pe: appl
00de 69 63 61 74 59 6f Ge 2f 70 6b 63 73 37 2d 6d 69 ication/ pkcs7-mi
00ed 6d 65 3b 20 73 6d 69 6d 65 2d 74 79 70 65 3d 65 me; smim e-type=e
00f0 6e 76 65 6c 6f 70 65 64 2d 64 61 74 61 3b 20 Ge nveloped -data; n
01086 61 6d 65 3d 22 73 6d 69 6d 65 2e 70 37 6d 22 od ame="smi me,pim".
6118 @a 43 6f 6e 74 65 6e 74 2d 4c B5 6e 67 74 6B 3a .Content -Length:
0120 20 35 31 38 0d 0a 44 61 74 65 3a 20 4d 6f Ge 2c 518..Da te: Mon,
0136 20 32 36 20 4d 61 79 20 32 30 31 34 20 30 35 3a 26 May 2014 B5:
0146 34 39 3a 31 36 20 47 4d 54 0d Ba 0d Da 4d 49 41 49:16 GM T....MIA
0150 47 43 53 71 47 53 49 62 33 44 51 45 48 41 36 43 GCSqGSIb 3DQEHAGC

As we can see, it shows us something very similar to the response from SoapUI.

To decrypt the content, it is necessary that we have the private key and certificate.
Through these two resources, we can obtain the object EnvelopedInput and get the
message from it, as shown in the following figure:

Z Al

demacertpem demacertpem /’emokey.pem

Decrypted message

I P

Message EnvelopedOutput Envelopedinput

[121]

www.it-ebooks.info

http://www.it-ebooks.info/

Digital Signatures and Encryption of Messages

This will be demonstrated in the following code through a unit test. However, before
going forward, we want to show that when encrypting messages with S/MIME,
headers remain readable but the message body is fully encrypted. So, if we do not

have the resources, the information is outdated and cannot be interpreted.

Now, we will write a class that allows us to read the message body. For this, we will

create a new source folder called src/main/test.

Within this folder, let's create the class com.packtpub.EncryptedServiceTest with

the following content:

package com.packtpub;

import java.security.PrivateKey;
import java.security.cert.X509Certificate;

import javax.ws.rs.client.Client;
import javax.ws.rs.client.WebTarget;

import junit.framework.Assert;

import org.jboss.resteasy.client.jaxrs.ResteasyClientBuilder;
import org.jboss.resteasy.security.PemUtils;

import org.jboss.resteasy.security.smime.EnvelopedInput;
import org.junit.Test;

public class EncryptedServiceTest

@Test
public void testEncryptedGet () throws Exception {
// LOADING THE CERTIFICATE

X509Certificate myX509Certificate =
PemUtils.decodeCertificate (

Thread
.currentThread () .getContextClassLoader ()
.getResourceAsStream("democert.pem")) ;
// LOADING THE KEY
PrivateKey myPrivateKey = PemUtils.decodePrivateKey (Thread
.currentThread () .getContextClassLoader ()
.getResourceAsStream("demokey.pem")) ;
// CREATING A CLIENT FOR THE WEB SERVICE
Client client = new ResteasyClientBuilder () .build() ;
WebTarget target = client.target (
"http://localhost:8080/encryption-1.0/services/encrypted"
)i

[122]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

// RETRIEVING THE RESULT OF METHOD EXECUTION
EnvelopedInput<?> input = target.request().
get (EnvelopedInput.class) ;
Assert.assertEquals ("Hello world",
input.getEntity(String.class,
myPrivateKey, myX509Certificate)) ;
client.close() ;

}

Note how we need both the private key and the certificate to decrypt the message
to obtain the entity formed from a string containing the message Hello world.

When we run this unit test, we should get a green bar if all goes well. This indicates
that to decrypt the message, using the previous resources (private key and certificate)
has obtained the expected message.

Summary

In this chapter, we worked with digital signatures and learned how to use them in
RESTful web services. These days, digital signatures are often used because they
guarantee message integrity, and information cannot be compromised while it is
traveling from the sender to the receptor. We already know that information can be
modified in transit, but when you're verifying the signed information, the receiver
can notice it and take the actions that he/she believes are appropriate. For example,
they can send another request to avoid working with corrupt information. At the
end of this chapter, we worked with message body encryption, and we saw the
difference between using these encryptions and HTTPS. Finally, we saw how the
receiver, using the key, figured out the message body to make use of the information
according to their needs.

[123]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Symbols

@DenyAll annotation
used, for fine-grained security
implementation 59
@GET annotation 73
@Path annotation 15,73
@PermitAll annotation
used, for fine-grained security
implementation 60
@Produces annotations 73
@RolesAllowed annotation
findByld method, testing 58, 59
savePerson method, testing 57, 58
used, for fine-grained security
implementation 55, 56
@Verify annotation
using 103
@XmlElement annotation 86

A

access control

examples 25

TLS 25,26
annotations

used, for validating signatures 103-111
Apache Maven 3.1.1

URL 8
API keys

using 41-43
artifactld property 9
authentication

about 24

certificates, using 37-41

Index

authentication, elements
inherence factors 24
knowledge factors 24
ownership factors 24
authorization
about 24
access control 25

B

base project
creating, with Maven 8-12
Basic Auth
OAuth token, implementing via 79, 80
basic authentication 26-31
body messages
encrypting, with S/MIME 112, 113
functionality, testing 114, 115

Cc

client-side filters 84
coarse-grained security
about 46
using 46-49
CompactDisc class 86
custom filters 82

D

digest access authentication
about 32
example 33-36
digital signatures
about 92-94
applying 96-99

www.it-ebooks.info

http://www.it-ebooks.info/

benefits 92

functionality, testing 100-102

RESTEasy jars, updating 95

URL 91

validating, with annotations 103-112
discstore project

creating 72
DomainKeys Identified Mail (DKIM) 92

E

Eclipse IDE
URL 8
encryption
URL 91
example, digest access
authentication 32-36

F

filters
example usage 84-89
filters, JAX-RS 2.0
about 83
client-side filters 83
server-side filters 83
findByld method, @RolesAllowed
annotation
testing 58, 59
fine-grained security
implementing, with
@DenyAll annotation 59
implementing, with @PermitAll
annotation 60
implementing, with @RolesAllowed
annotation 55
programmatical implementation 60-62
flickr.photos.getRecent method 43

G

getCompactDiscs() method 73
getUserPrincipal() method 61
GET method

using 51-55
groupld property 9

H

HTTP methods
GET 51
POST 50
securing 49-55
HTTPS
functionality, testing 120-123
used, for enabling server 115-119

inherence factors, authentication 24
interceptors, JAX-RS 2.0

about 82

reference links 82
isSecure() method 61

J

javax.ws.rs.core.SecurityContext interface
features 61
Java
security management 23
Java Authentication and Authorization
Service (JAAS) 23
JAX-RS 2.0
filters 83
interceptors 82
JBoss AS 7.1.1
URL 8
JBoss configuration, OAuth2
implementation
setting up 67
JDK 1.7.x
URL 8

K

knowledge factors, authentication 24

Maven
URL 8
used, for creating base project 8-12

[126]

www.it-ebooks.info

http://www.it-ebooks.info/

MIME (Multipurpose Internet Mail
Extension)
about 117
features 117
URL 91

O

OAuth
about 64
reference link 66
OAuth 2.0
about 64
features 65, 66
OAuth2 implementation
about 66
JBoss configuration, setting up 67
OAuth client, implementing 67
RESTEasy modules, updating in JBoss 66
OAuth client implementation
application, running 74-76
discstore project 72
oauth-client project 67-71
oauth-server project 73
performing 67
webapp/ WEB-INF/ jboss-deployment-
structure.xml 74
oauth-client project
creating 67-71
OAuth example
executing 81, 82
OAuth protocol 64
oauth-server project
creating 73
OAuth token
example, implementing 80
example, implementing via Basic Auth 79
One Time Password (OTP) 25
OWASP (Open Web Application Security
Project) 52
ownership factors, authentication 24

P

public key
URL 91

R

RESTEasy modules
updating 95
updating, in JBoss 66
URL 66

RESTEasy Skeleton Key
about 64
reference link 66

RESTful web service
testing 18, 19
writing 13-17

RESTful web services environment setup
base project, creating 8
example 13
tools, downloading 7

S

savePerson method, @RolesAllowed
annotation
testing 57, 58
Secure Sockets Layer (SSL) 25
security
coarse-grained security 46
example 22
fine-grained security 46
importance 22, 23
levels 46
overview 21
security management
SSO, configuring for 77,78
security management options
authentication 24
authorization 24
basic authentication 26
digest access authentication 32
server
enabling, with HTTPS 115-119
server-side filters 83
Single Sign-On (SSO) 65

package property 9 SoapUI
POST method test, executing from 114, 115
testing 50, 51 SoapUI 4.6
URL 8
[127]

www.it-ebooks.info

http://www.it-ebooks.info/

SSO
about 77
configuring, for security
management 77,78

T

TLS
features 25, 26
tools, for RESTful web services

JDK1.7.x 8
SoapUl 4.6 8
Transport layer security. See TLS

\'

version property 9

w

environment setup Wireshark
Apache Maven 3.1.1 8 columns 31
Eclipse IDE 8 URL 26
JBoss AS 7.1.1 Final 8
[128]

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
RESTful Java Web Services Security

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub. com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

RESTful Web Services with

Dropwizard
ISBN: 978-1-78328-953-0 Paperback: 112 pages
Over 20 recipes to help you build high-performance,

production-ready RESTful JVM-based backend
services

1. Learn how to build and test your own
RESTful Web Services high-performance web service application.

with Dropwizard 2. Know more about creating and serving custom
database content with web services.

3. Gain insight on how to secure your
web service.

Developing RESTful Web Services
with Jersey 2.0
ISBN: 978-1-78328-829-8 Paperback: 98 pages

Create RESTful web services smoothly using the
robust Jersey 2.0 and JAX-RS APIs

1. Understand and implement the Jersey and
JAX-RS APIs with ease.

Deve_lopmg' RESTful Web 2. Construct top-notch server- and client-side
Services with Jersey 2.0 web services.

3. Learn about server-sent events, for showing
real-time data.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

"PUBLISHING

Developing RESTful Services
with JAX-RS 2.0, WebSockets,

and JSON
ISBN: 978-1-78217-812-5 Paperback: 128 pages

A complete and practical guide to building RESTful
Web Services with the latest Java EE7 API

Developing RESTful 1. Learning about different client/server

Services with JAX-RS 2.0, communication models including but not

WebSockets. and JSON limited to client polling, server-sent events,
: and WebSockets.

2. Efficiently use WebSockets, server-sent events,
Bhat Mhts and JSON in Java EE applications.

3. Learn about JAX-RS 2.0 new features and
enhancements.

ASP.NET Web API

Build RESTful web applications and services
on the .NET framework

ISBN: 978-1-84968-974-8 Paperback: 224 pages

Master ASP.NET Web API using .NET Framework 4.5
and Visual Studio 2013

1. Clear and concise guide to the ASP.NET Web

ASP.NET Web - API API with plentiful code examples.

Build RESTful web applications and services 2 Learn about the advanced Concepts of the
on the .MET framework
WCF-windows communication foundation.

3. Explore ways to consume Web API services
using ASP.NET, ASP.NET MVC, WPF, and
Silverlight clients.

Joydip Kanjilal

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up the Environment
	Downloading tools
	Downloading links

	Creating the base project
	First functional example
	Testing the example web service

	Summary

	Chapter 2: The Importance of Securing Web Services
	The importance of security
	Security management options
	Authorization and authentication
	Authentication
	Authorization

	Access control
	Transport layer security

	Basic authentication by providing user credentials
	Digest access authentication
	An example with explanation

	Authentication through certificates

	API keys
	Summary

	Chapter 3: Security Management with RESTEasy
	Fine-grained and coarse-grained security
	Securing HTTP methods
	HTTP method – POST
	HTTP method – GET

	Fine-grained security implementation through annotations
	The @RolesAllowed annotation
	The @DenyAll annotation
	The @PermitAll annotation

	Programmatical implementation of
fine-grained security

	Summary

	Chapter 4: RESTEasy Skeleton Key
	OAuth protocol
	OAuth and RESTEasy Skeleton Key
	What is RESTEasy Skeleton Key?
	OAuth 2.0 authentication framework
	Main features

	OAuth2 implementation
	Updating RESTEasy modules in JBoss
	Setting up the configuration in JBoss
	Implementing an OAuth client

	SSO configuration for security management
	OAuth token via Basic Auth
	Running the application

	Custom filters
	Server-side filters
	Client-side filters
	Example usage of filters

	Summary

	Chapter 5: Digital Signatures and Encryption of Messages
	Digital signatures
	Updating RESTEasy JAR files
	Applying digital signatures
	Testing the functionality
	Validating signatures with annotations

	Message body encryption
	Testing the functionality
	Enabling the server with HTTPS
	Testing the functionality

	Summary

	Index

