

Oracle WebLogic
Server 12c Advanced
Administration
Cookbook

Over 60 advanced recipes to configure, troubleshoot,
and tune Oracle WebLogic Server

Dalton Iwazaki

BIRMINGHAM - MUMBAI

Oracle WebLogic Server 12c Advanced
Administration Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: June 2013

Production Reference: 1110613

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-684-6

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

Credits

Author
Dalton Iwazaki

Reviewers
Vivek Acharya

Daniel Amadei

Wickes Potgieter

Acquisition Editor
Martin Bell

Lead Technical Editor
Azharuddin Sheikh

Technical Editors
Vrinda Nitesh Bhosale

Saijul Shah

Copy Editors
Brandt D'Mello

Insiya Morbiwala

Laxmi Subramanian

Project Coordinator
Anurag Banerjee

Proofreaders
Cecere Mario

Lindsey Thomas

Indexer
Monica Ajmera Mehta

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

About the Author

Dalton Iwazaki lives in Sao Paulo, Brazil and started working with technology in 1994 in a
school lab, at the age of 17. As a system administrator, Dalton configured and maintained the
network (Novel 3.12), the computers (Window 3.11, Windows NT 4.0, Windows 95), and the
Internet. He also took his first steps in programming by building the school website in ASP and
a computer voting system to simulate the election process in Delphi.

In 1999, Dalton moved to a new company and started working with Java development. During
this period, he worked on many Java server-side applications and dug deep to understand the
use of JDBC, JMS, JMX, XML, and multithreaded applications. He built some frameworks from
scratch to help the development, and started working on the Application Server world with
IBM Websphere, Resin, Tomcat, JBoss, and BEA WebLogic. Until 2004, Dalton moved around
to other companies working either as a Java developer or Java Architect.

In 2004 and 2005, Dalton worked as a Software Development Manager; he lead 10
developers to build the entire website, provisioning and back office operations of a new ISP
Provider with a variety of integrations and languages, such as Java, VB, C#, Perl, and PHP.
Dalton then moved to a large international bank to work as a project manager in 2005 and
2006. His role was to manage the Internet Banking and Credit Card portals and integrate the
business clients and the development team. From 2006 to 2008, Dalton started and worked
on his own company, a design agency focused on the delivery of web solutions.

In 2008, Dalton started working in partnership with Oracle Consulting on the infrastructure
level of the WebLogic Server. In the following year, Dalton started a new company named
VN Tecnologia, an IT professional services provider and Oracle Partner Network member.
Working together with Oracle's clients and projects, Dalton's solid expertise in infrastructure
and Java development are a rare combination used in his specializations - WebLogic Server
configuration, administration, troubleshooting, and tuning. You can reach Dalton Iwazaki at
dalton.iwazaki@gmail.com.

I want to thank my family for their support and patience. To my lovely wife
Cibele, my son Ian, and my daughter Lia.

About the Reviewers

Vivek Acharya is an Oracle Consultant working as a professional freelancer. He has
been a part of the design, development, consulting, and architect world for approximately 7
years, working in Oracle Practice at GE, IBM, HP. He is an Oracle Certified Expert as Oracle
Fusion—SOA 11g Implementation Specialist and Oracle BPM 11g Implementation Specialist.
He has experience and expertise in Oracle Fusion—SOA, BPM, BAM, Mediator, B2B, BI, AIA,
WebLogic, workflow, Rules, WebCenter, ECM, IDM, Oracle fusion applications, SaaS, On
Demand, and so on. He loves all things to do with Oracle Fusion Applications, Oracle SOA,
Oracle BPM, cloud computing, salesforce, SaaS, and BSM.

He has authored a couple of books on distributed systems, Oracle BPM, and many others.
He likes to play Synthesizer and loves travelling. You can add him to your LinkedIn list by
going to the link http://www.linkedin.com/pub/vivek-acharya/15/377/26a,
write to him on vivek.oraclesoa@gmail.com, and read about him and his works at
http://acharyavivek.wordpress.com/.

Daniel Amadei is a Senior Principal Consultant working for Oracle Consulting Services in
Brazil and has more than 10 years of experience in IT market being a specialized consultant
and solutions architect for SOA and Enterprise Applications. He has strong analytical and
problem-solving abilities with solid experience in development and architecture of applications.

He is a specialist in SOA and EAI Oracle middleware products, web services and related
technologies and the Java Platform, especially Java EE. He has been working with Java since
1999 and SOA/EAI since 2007 and has, at the time of this book' s writing, 8 certifications
related to his specialties, including Oracle Certified SOA Architect, Oracle SOA Foundation
Practitioner and Sun Certified Enterprise Architect for J2EE.

You can write to him on daniel.amadei@gmail.com, and read about his works
at http://www.amadei.com.br.

I'd like to thank the author, Dalton, for writing this great book and for
giving me the chance to learn a lot by reviewing it. I'm mainly a developer,
and getting my hands in this infrastructure book gave me lots of valuable
information.

Wickes Potgieter has worked as a product specialist for over 12 years. His main focus
was on the BEA WebLogic suite of products, and after the Oracle acquisition of BEA Systems,
focused on the Oracle Fusion Middleware suite of products. His experience ranges from
Solution Architecture, Infrastructure Design, administration, development, presales, and
training to performance tuning of the Oracle Fusion Middleware products, JVM, and custom
applications. He specializes in Oracle WebLogic Server, JRockit, Service Bus, SOA, AIA, BPM,
BAM, Enterprise Manager 11g/12c, WebCenter, Identity and Access Management, and
Application Performance Management.

He formed a specialized consulting company in 2003 with offices in the United Kingdom and
South Africa, covering customers in the EMEA region. His company is an Oracle Gold partner
and has a team of specialized Oracle Fusion Middleware consultants servicing customers
both onsite and offsite.

You can visit the TSI-Systems website at www.tsisystems.co.uk, and Wickes can be
contacted on wickes@tsisystems.co.uk.

I would like to thank my wife Mary Jane for her patience and for assisting me
through all the late nights. Thank you to all my friends and family for their
constant encouragement.

www.PacktPub.com
Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read, and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Install, Configure, and Run	 5

Introduction	 5
Installing WebLogic Server 12c	 6
Creating the WebLogic domain	 8
Distributing the domain files to remote machines	 12
Starting the Node Manager	 13
Starting the Administration Server	 15
Saving and activating changes in the Administration Console	 18
Protecting changes in the Administration Console	 21
Extending and customizing the Administration Console	 24
Enabling RESTful Management Services	 28
Starting/Stopping the WebLogic Managed Server	 31
Deploying applications	 35

Chapter 2: High Availability with WebLogic Clusters	 39
Introduction	 39
Creating a WebLogic cluster	 40
Defining a Hostname/Alias for the Listen Address value	 45
Configuring HA WebLogic cluster parameters	 48
Using Unicast for cluster communications	 52
Using Multicast for cluster communications	 54
Installing Apache HTTP Server for the Web tier	 56
Using the Web Server Plug-in to Load Balance HTTP Requests to WebLogic
cluster	 60
Defining a network channel for cluster communications	 67
Configuring high availability for Administration Server	 73

ii

Table of Contents

Chapter 3: Configuring JDBC Resources for High Availability	 77
Introduction	 77
Creating a JDBC data source	 78
Creating a multi data source	 81
Defining the multi data source HA Strategy	 86
Creating a GridLink data source	 88
Managing JDBC data sources	 92
Tuning data sources for reliable connections	 93
Tuning multi data sources – surviving RAC node failures	 97
Updating the Oracle JDBC driver	 102

Chapter 4: Configuring JMS Resources for Clustering
and High Availability	 105

Introduction	 106
Creating the file stores	 106
Creating the JDBC stores	 111
Creating the JMS servers	 117
Creating the JMS module	 121
Configuring the subdeployment target	 124
Creating the distributed queue destination and the connection factory	 127
Starting/stopping consumers for a JMS destination	 132
Using the Server affinity to tune the distributed destinations' load balance	 136
Creating a pinned queue with clustering and HA with service migration	 138
Configuring messaging bridge with source and target distributed
destinations	 143
Relying on SAF to transfer JMS messages to another WebLogic domain	 152

Chapter 5: Monitoring WebLogic Server 12c	 157
Introduction	 157
Customizing the Administration Console tables	 158
Using the JRockit Mission Control Management Console	 160
Monitoring Linux with SAR	 164
Sending e-mail notifications with WLDF	 166
Generating an SNMP trap	 171
Creating a Monitoring Dashboard custom view	 175
Viewing historical data in the monitoring dashboard using a database	 178

Chapter 6: Troubleshooting WebLogic Server 12c	 185
Introduction	 185
Changing log levels to debug	 186
Including the time taken field in access.log	 189
Enabling verbose garbage collection logging	 192
Taking thread dumps	 197

iii

Table of Contents

Enabling the JRockit Mission Control Flight Recorder	 200
Analyzing a heap dump	 202
Recovering the WebLogic admin password	 206
Recovering the data source password	 208

Chapter 7: Stability and Performance	 211
Introduction	 211
Limiting the log disk usage	 212
Rotating the STDOUT logfile	 216
Turning off domain logging	 218
Enabling Linux HugePages	 221
Configuring the transaction (JTA) timeouts	 223
Choosing the JRockit garbage collection mode	 227
Tuning thread concurrency with the default work manager	 229
Tuning the application thread concurrency with custom work managers	 234
Limiting the JMS Queue consumers	 238

Chapter 8: Security	 241
Introduction	 241
Setting up SSL for production environments	 242
Creating a new SQL authentication provider	 246
Assigning a user to a group	 253
Securing a web application with basic authentication	 254
Enabling the Administration Port	 258

Index	 261

iv

Table of Contents

Preface
Oracle WebLogic Server 12c Advanced Administration Cookbook guides you through over
60 recipes covering right from the basics of the WebLogic Server 12c installation to JDBC,
JMS, cluster configuration, and tuning. This book covers the day-to-day tasks of a WebLogic
administrator, and is enhanced with a lot of tips to build a WebLogic production environment
focused on stability, high availability, and performance.

What this book covers
Chapter 1, Install, Configure, and Run, covers the first steps to installing and configuring
WebLogic Server 12c.

Chapter 2, High Availability with WebLogic Clusters, explains how to set up a WebLogic Cluster.

Chapter 3, Configuring JDBC Resources for High Availability, teaches how to configure and
tune the JDBC resources focused on high availability.

Chapter 4, Configuring JMS Resources for Clustering and High Availability, teaches how to set
up JMS resources with WebLogic Clustering.

Chapter 5, Monitoring WebLogic Server 12c, explains how to monitor WebLogic Server 12c
with the included tools.

Chapter 6, Troubleshooting WebLogic Server 12c, teaches how to find solutions to the most
common problems.

Chapter 7, Stability and Performance, teaches how to tune the configuration for a production
environment with resilience, stability, and performance.

Chapter 8, Security, teaches how to configure security, including SSL and authentication.

Preface

2

What you need for this book
You'll need the following:

ff Oracle WebLogic Server 12c: http://www.oracle.com/technetwork/
middleware/weblogic/downloads/index.html

ff Oracle JRockit 6 R28: http://www.oracle.com/technetwork/middleware/
jrockit/downloads/index.html

ff Apache HTTP Server 2.2: http://httpd.apache.org

Who this book is for
The book is targeted at the datacenter operator, system administrator, or Java developer who
already knows the basics of WebLogic Server installation and configuration, but wants to go
deeper into more advanced topics and concepts, such as monitoring, configuration for high
availability, and tuning to achieve a stable and resilient environment.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "The filename is jrockit-
jdk1.6.0_XXX-linux-x64.bin, where XXX stands for the JRockit release and JDK version."

A block of code is set as follows:

<Location /app01>
SetHandler weblogic-handler
WebLogicCluster prodsrv01.domain.local:8001,prodsrv02.domain.
local:8002,prodsrv03.domain.local:8003,prodsrv04.domain.local:8004
</Location>

Any command-line input or output is written as follows:

[wls@prod01]$ cd $WL_HOME/common/bin

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Follow the onscreen
instructions and type /oracle/Middleware for the "Middleware Home" = [Enter new
value or use default] screen".

Preface

3

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Preface

4

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Install, Configure,
and Run

In this chapter, we will cover the following recipes:

ff Installing WebLogic Server 12c

ff Creating the WebLogic domain

ff Distributing the domain files to remote machines

ff Starting the Node Manager

ff Starting the Administration Server

ff Saving and activating changes in the Administration Console

ff Protecting changes in the Administration Console

ff Extending and customizing the Administration Console

ff Enabling RESTful Management Services

ff Starting/Stopping the WebLogic Managed Server

ff Deploying applications

Introduction
WebLogic Server is Oracle's flagship J2EE application server and is the foundation of the Oracle
Fusion Middleware range of products, such as Oracle SOA Suite, Oracle WebCenter, and Oracle
Service Bus. The new 12c version is being fully integrated with Oracle's Middleware products,
and the system administrators who are already familiar with the core WebLogic administration
tasks will be one step ahead of the market demand.

1

Install, Configure, and Run

6

Oracle WebLogic Server 12c applications and systems deployed in production environments
normally require performance, scalability, and high availability; these are usually not needed
in a development environment. The recipes in this book focus on achieving these objectives.

This chapter condenses the core tasks a WebLogic administrator should know, such as
downloading the correct package, installing it, and creating a WebLogic domain, configuring it,
and managing it.

Installing WebLogic Server 12c
You should already be familiar with basic WebLogic installation, so this recipe covers the steps
to a quick installation of WebLogic Server 12c in production environments.

This recipe will focus on a new install rather than upgrades or migrations.

Getting ready
It is important to navigate through Oracle's website and check if the chosen hardware and
operational system architectures are supported in Certification Matrix before installing
WebLogic Server. You should look for system requirements and supported platforms for
WebLogic Server 12c. This is crucial for a production environment since Oracle Support
verifies if you are running a supported configuration when an issue appears.

The book assumes the following hardware and software architectures for WebLogic Server
12c installations:

ff X86-64 processor (such as Intel Xeon or AMD Opteron)

ff Linux x86-64 architecture (such as Red Hat Enterprise Linux or Oracle Linux)

Operational systems based on Linux x86-64 (64-bit) are the most commonly used in production
environments, and these instructions should cover other Unix architectures as well.

The use of WebLogic Server in Microsoft Windows for production
environments will not be considered in this book.

Oracle JRockit 6 for Linux x86-64 is the Java Virtual Machine (JVM) that has been used
through the rest of this book. Download it at http://www.oracle.com/technetwork/
middleware/jrockit/downloads. The filename is jrockit-jdk1.6.0_XXX-
linux-x64.bin, where XXX stands for the JRockit release and JDK version.

The package WebLogic Server 12c (12.1.1) generic installer (997 MB) for use with
64-bit JVMs should also be downloaded at http://www.oracle.com/technetwork/
middleware/weblogic/downloads. The filename is wls1211_generic.jar.

Chapter 1

7

To simplify the reading, we'll use the following terms when referring to the
directories:

ff $JAVA_HOME to JRockit/Java Home directory: /oracle/jvm
ff $MW_HOME to Middleware Home: /oracle/Middleware
ff $WL_HOME to WebLogic Home: /oracle/Middleware/

wlserver_12.1

How to do it...
Carry out the following steps to install WebLogic Server 12c:

1.	 Create a dedicated user to host and run WebLogic Server 12c in Linux. Log in as
the root user and create the user and the group named wls, and define a new
password for it:
[root@prod01]# groupadd wls

[root@prod01]# useradd -g wls wls

[root@prod01]# passwd wls

Changing password for user wls.

New UNIX password: <new password>

Retype new UNIX password: <new password>

2.	 Log in as the wls user and set the correct file permissions:
[wls@prod01]$ umask 027

3.	 Run the JRockit installer in console mode and install JRockit:
[wls@prod01]$./jrockit-jdk1.6_xxx-linux-x64.bin -mode=console

4.	 Follow the onscreen instructions and type/oracle/jvm in the Product
Installation directory. You can just press Enter for all the other options. JRockit
will be installed without the demos and with no source code.

5.	 Run WebLogic Server 12c Generic Installer in console mode:
[wls@prod01]$ /oracle/jvm/bin/java –jar wls1211_generic.jar –
mode=console

6.	 Follow the onscreen instructions and type/oracle/Middleware for the
"Middleware Home" = [Enter new value or use default] screen. Press Enter
to move forward.

7.	 Skip the Register for Security Updates screen by typing 3 to navigate to 3|Receive
Security Update:[Yes], then type No and then Yes. Press Enter to move forward.

8.	 Type 1 to select the 1|Typical option on the Install Type screen.

Install, Configure, and Run

8

9.	 The freshly installed /oracle/jvm JDK should be selected. If not, add it by typing 1
for 1|Add Local Jdk.

10.	 Press Enter to confirm all the other screens.

How it works...
These install instructions will provide a clean and fresh WebLogic Server 12c installation in
the prod01 hostname.

It also covers some basic user administration in Linux that can be skipped if you already have
an operational system user.

Don't forget to set the correct file permissions with
umask before installing WebLogic Server 12c.

Both JRockit and WebLogic Server were installed in the console mode option without any
graphical interface. Production environments are more restricted, and console mode requires
only a terminal; it is faster and does not need an X11 Server.

Generic installer is used to install WebLogic since it is the one that contains the native library
for x86-64. The native library is important because it enables the use of a native socket
reader that is much faster than the pure Java socket reader. This library enables what is
called the performance pack on WebLogic and is mandatory in a production environment.

The installation process is very straightforward and only copies the files to their directories.
The next step is to create a new WebLogic domain.

See also
ff Creating the WebLogic domain

Creating the WebLogic domain
With WebLogic Server 12c installed, you can now create a new WebLogic domain.

The WebLogic domain is the central configuration entity of WebLogic Server. The domain should
have at least one WebLogic Server instance with the role of the Administration Server. The
Administration Server is the access point used for configuration, deployment, and monitoring.

More WebLogic Server instances can be created to be part of the domain. All other WebLogic
Server instances of the domain that are not the Administration Server are called the Managed
Servers. They should host the deployed applications and resources.

Chapter 1

9

A WebLogic cluster can also be added to the domain. The cluster consists of one or
more Managed Servers acting as one single entity. A single WebLogic Server installation
is not restricted to one WebLogic domain, and more domains can be created using the
same installation.

Getting ready
Before creating a new WebLogic domain, you have to plan and define its architecture.
For production environments, it is mandatory to use WebLogic clusters with a minimum
architecture of at least two WebLogic Server instances (the Managed Servers) in two
different machines. The objective is to avoid having a single point of failure.

We will create a new WebLogic domain called PROD_DOMAIN with an administration instance
(AdminServer) named PROD_AdminServer and a WebLogic cluster PROD_Cluster with
the two Managed Servers PROD_Server01 and PROD_Server02. The two machines hosts
are called prod01 and prod02. Since you have already installed WebLogic Server 12c in
prod01, install it in prod02 as well. We will assume these names throughout the entire book.

The machines prod01 and prod02 should also have IP addresses assigned and be visible
through the network. It's recommended to use the fully qualified domain name (FQDN) of the
servers. In this recipe, and the rest of the book, prod01 is prod01.domain.local and the
hostname of the prod02 machine is prod02.domain.local.

To simplify the reading, we'll use the following term when referring to the
directories:
$DOMAIN_HOME to the created WebLogic Domain directory—/oracle/
Middleware/user_projects/domains/PROD_DOMAIN.

How to do it...
To create a new WebLogic domain, follow the ensuing steps:

1.	 Log in as a wls user on the first machine prod01 and navigate to the following folder:

[wls@prod01]$ cd $WL_HOME/common/bin

2.	 Start WebLogic Configuration Wizard in console mode:
[wls@prod01]$./config.sh -mode=console

3.	 Follow the onscreen instructions and type 1, and press Enter to select the Create
a new WebLogic domain option on the Welcome screen.

4.	 Type 1 and press Enter to select the Choose WebLogic Platform components option
on the Select Domain Source screen.

Install, Configure, and Run

10

5.	 Press Enter again to continue with the Basic WebLogic Server Domain - 12.1.1.0
[wlserver_12.1] template.

6.	 On the Edit Domain Information screen, type the domain name PROD_DOMAIN and
press Enter twice.

7.	 Leave /oracle/Middleware/user_projects/domains unchanged on the
Select the target domain directory for this domain screen and press Enter.

8.	 On the Configure Administrator User Name and Password screen, set the WebLogic
administrator username and password. Type the username as wlsadmin and type 2
to set the password and 3 to type the password again and confirm it. Press Enter to
move forward.

9.	 The Domain Mode Configuration screen is where you set the production mode.
Type 2 and press Enter.

10.	 The installed JRockit should already be selected as /oracle/jvm on the Java SDK
Selection screen. Press Enter to continue.

11.	 On the Select Optional Configuration screen, type 1 for the Administration Server
and 2 for the Managed Servers, clusters, and machines.

12.	 On the Configure the Administration Server screen, type 1 to set the Administration
Server name as PROD_AdminServer. Leave the other options in their default values
and press Enter to move to the next screen.

13.	 Then add the two Managed Server instances on the Configure Managed
Servers screen.

14.	 Type PROD_Server01 to add the first server, then type 2 to modify the listen address
to prod01.domain.local. Type 3 to modify the port to 8001, press Enter, and then
type 5 to finish this server.

15.	 Do the same for the second server and type 1 to add, type PROD_Server02 as the
name, and type 2 to modify the listen address to prod02.domain.local. Type 3 to
modify the port to 8002. Press Enter to continue.

16.	 Add the cluster on the Configure Clusters screen. Type PROD_Cluster and press
Enter to create it. Type 3 and modify the Cluster Address field to prod01.domain.
local:8001,prod02.domain.local:8002.

17.	 The next screen is the Assign Servers to Clusters screen. Type 1 to select
PROD_Cluster. Then type 2 to Select All and press Enter. Confirm it by
pressing Enter again.

18.	 Configure the two machines on the Configure Machine screen. Type prod01
and press Enter. Type 2 to change the listen address to prod01.domain.local
as well. Type 4 when done.

19.	 Add the second machine typing 1 and name it as prod02. Press Enter and press
Enter again to skip the Unix Machine screen.

Chapter 1

11

20.	 You will now assign the Managed Servers to their respective machines on the Assign
Servers to Machines screen.

21.	 Type 1.1 to choose prod01 and type 1 and press Enter. Now type 1-2 and press
Enter assigning the PROD_AdminServer and PROD_Server01 servers. Press Enter
again to return.

22.	 Type 1.2 to choose prod02, then type 1 and 1 again, and press Enter to finish.

How it works...
A new domain was created in the console mode using the Configuration Wizard.
Console mode was used instead of graphical interface mode due to the usual restrictions
of a production environment.

The PROD_DOMAIN domain was created with one the Administration Server named
PROD_AdminServer and one cluster PROD_Cluster containing the two Managed
Servers PROD_Server01 and PROD_Server02.

The WebLogic domains can work in two different modes: production and development.
The development mode is only recommended to be used in single WebLogic instance
domains, normally at the developer desktop. The PROD_DOMAIN domain was created
in Production mode, which deactivates some features such as auto-deployment.

It's good practice to use a prefix such as PROD when naming the domain,
the cluster, and the servers. It can be hard to find WebLogic Server when
working with a production farm that contains hundreds of WebLogic
instances.

The domain contains what is considered to be a minimum architecture for a production
environment. With the two Managed Servers of the cluster hosted by different machines,
the platform avoids a single point of failure in the case of a machine crash.

There's more...
You can create the domain using the Configuration Wizard in graphical mode with all the same
options if you have a functional X11 Server.

See also
ff Distributing the domain files to remote machines

Install, Configure, and Run

12

Distributing the domain files to remote
machines

A new domain is installed and configured in one machine (prod01). Since the architecture
includes another machine (prod02), the domain files now have to be distributed in all the
machines of the domain.

This recipe contains the steps to distribute the files either by using the built-in WebLogic tools
pack and unpack or by copying them manually in the command line of the shell.

Getting ready
Create a new template of the domain using the pack command in the prod01 machine.
With the template created in prod01, use the unpack command to distribute the files to
the machine prod02 (and to all machines used by the WebLogic cluster).

How to do it...
Carry out the following steps to distribute the domain files:

1.	 Log in as a wls user on the first machine prod01 and navigate to the folder:
[wls@prod01]$ cd $WL_HOME/common/bin

2.	 Run the following command:
[wls@prod01]$./pack.sh -domain=$DOMAIN_HOME-template=$WL_HOME/
common/templates/domains/PROD_DOMAIN_template.jar -template_
name=PROD_DOMAIN –managed=true

A file $WL_HOME/common/templates/domains/PROD_DOMAIN_template.jar
will be created.

3.	 Log in as a wls user on the second machine prod02 and copy the template from
prod01 to prod02:
[wls@prod02]$ scp wls@prod01:$WL_HOME/common/templates/domains/
PROD_DOMAIN_template.jar $WL_HOME/common/templates/domains/

4.	 Run the following commands to unpack the template:

[wls@prod02]$ cd $WL_HOME/common/bin

[wls@prod02]$./unpack.sh -template=$WL_HOME/common/templates/
domains/PROD_DOMAIN_template.jar –domain=$DOMAIN_HOME

Chapter 1

13

How it works...
The unpack command will create the necessary files to host the WebLogic domain
PROD_DOMAIN on the prod02 machine based on the template created with the pack
command on prod01.

An entry to the PROD_DOMAIN domain will automatically be added to the nodemanager.
properties file.

There's more...
We can also distribute the WebLogic domain files manually. In this section, we will see how
this can be achieved.

Distributing WebLogic domain files manually
You can simply copy the domain files manually too; just don't forget to edit the
nodemanager.domains file and add the domain entry.

As in the prior chapter and the rest of the book, the $DOMAIN_HOME environment variable
points to the/oracle/Middleware/user_projects/domains/PROD_DOMAIN directory.

1.	 Log in as a wls user on the machine prod02 and copy the domain from prod01:
[wls@prod02]$ mkdir –p $DOMAIN_HOME

[wls@prod02]$ scp –rp wls@prod01:$DOMAIN_HOME $DOMAIN_HOME/..

2.	 Edit the nodemanager.domains file:
[wls@prod01]$ vi $WL_HOME/common/nodemanager/nodemanager.domains

3.	 Add the following entry if it doesn't exist:
PROD_DOMAIN=/oracle/Middleware/user_projects/domains/PROD_DOMAIN/

See also
ff Starting the Node Manager

Starting the Node Manager
The Node Manager is the WebLogic Server utility to control the lifecycle—start, stop, restart—of
the WebLogic Managed Server instances and the Administration Server.

In production environments, the Node Manager is needed to meet the high
availability requirements.

In this recipe, the system administrator will learn how to start and stop the Node Manager.

Install, Configure, and Run

14

Getting ready
The Node Manager is already installed with WebLogic Server 12c. There are two versions of
the Node Manager: a Java version and a script version. This recipe will cover the Java version.
The Java version is the most commonly used version, and it is more complete and more
secure than the script version.

How to do it...
1.	 Log in as a wls user on the first machine prod01 and navigate to the folder:

[wls@prod01]$ cd $WL_HOME/server/bin

2.	 Start the Node Manager in the background. Since it's the first time you are
starting it, the $WL_HOME/common/nodemanager/nodemanager.properties
file will be created.
[wls@prod01]$ nohup ./startNodeManager.sh &

[1] <PID>

nohup: appending output to `nohup.out'

3.	 Do the same on the prod02 machine and on all the machines of the
WebLogic domain.

How it works...
You can leave the default values created for nodemanager.properties.

The Node Manager has started and is listening to port 5556. The <PID> value is the number
of the newly created process.

Since the prod01 and prod02 machines were configured when you created the WebLogic
domain PROD_DOMAIN, the Node Manager should be reachable and able to receive start and
stop commands from the Administration Console.

There's more...
In this section, we will see how to shut down the Node Manager:

Shutting down the Node Manager
There is no formal command to shut down the Node Manager, so you'll have to do it manually,
killing the process:

Chapter 1

15

1.	 Find the <PID>value of the Node Manager process:
[wls@prod01]$ ps aux | grep weblogic.NodeManager | grep -v grep |
awk '{print $2} '

<PID>

2.	 Issue a kill command to PID to finish it:
[wls@prod01]$ kill <PID>

Or, force the process to finish:

[wls@prod01]$ kill -9 <PID>

See also
ff Starting the Administration Server

ff Starting/Stopping the WebLogic Managed Server

Starting the Administration Server
Administration Server is a WebLogic Server instance specific to administering a WebLogic
domain through the Administration Console application at the /console URI.

It's a common task to deploy runtime applications to the Administration Server in development
environments, but you should avoid doing it in production. Leave the Administration Server
only to the administrative tasks of the console.

Getting ready
Since there is only one Administration Server per WebLogic domain, you have to start the
Administration Server only in prod01.

How to do it...
To start the Administration Server, follow the ensuing steps:

1.	 Log in as the wls user on the first machine prod01 and navigate to the folder:
[wls@prod01]$ cd $DOMAIN_HOME/bin

2.	 Start the Administration Server:
[wls@prod01]$./startWebLogic.sh

Install, Configure, and Run

16

3.	 The server will initiate the startup process and ask for the WebLogic Administrator
username and password:
Enter username to boot WebLogic server: wlsadmin

Enter password to boot WebLogic server:

4.	 Type wlsadmin as the username and the <password> value you previously
specified during domain creation.

5.	 WebLogic Administration Server will start.

How it works...
The Administration Server is now running and waiting for connections in the host and port that
are specified during domain creation at http://prod01.domain.local:7001/console.

<Started the WebLogic Server Administration Server "PROD_AdminServer" for
domain "PROD_DOMAIN" running in production mode.>

There's more...
The system administrator should also create a boot.properties file to avoid entering the
boot username and password in every WebLogic Server startup.

Creating the boot.properties file
Specify a boot.properties file so the Administration Server doesn't ask for the username
and password at startup.

1.	 Go to the Administration Server root folder:
[wls@prod01]$ cd $DOMAIN_HOME/servers/PROD_AdminServer

2.	 Create and enter a new directory:
[wls@prod01]$ mkdir security

[wls@prod01]$ cd security

3.	 Create a new file called boot.properties with wlsadmin as the username and
the <password> value you specified:
[wls@prod01]$ echo -ne "username=wlsadmin\npassword=<password>" >
boot.properties

[wls@prod01]$ cat boot.properties

username=wlsadmin

password=<password>

Chapter 1

17

4.	 The next time you start WebLogic Administration Server, it will use the credentials
from the boot.properties file. The file will also be encrypted:
[wls@prod01]$ cat boot.properties

password={AES}If68A2GSiO6Fa8w4j0giDJGR0FATHnfPsoZvpmF/Ipc\=

username={AES}UYyIQYkN6z5o8PsS/IccG3VgZv6LP1zj+Ro1JBDb2ZE\=

Starting the Administration Server in the background
You usually start the Administration Server as a background process in Linux.

1.	 Go to the WebLogic domain's bin directory:
[wls@prod01]$ cd $DOMAIN_HOME/bin

2.	 Start the Administration Server in the background:
[wls@prod01]$ nohup ./startWebLogic.sh &

[1] <PID>

The <PID> value is the process ID of the Administration Server.

The standard output (stdout) and standard error (stderr) of the process will be appended
to a file called $DOMAIN_HOME/bin/nohup.out.

Accessing the Administration Console
The Administration Console application is running in the Administration Server. To access it,
follow the ensuing steps:

1.	 Open your web browser and navigate to http://prod01.domain.local:7001/
console:

2.	 Type the wlsadmin username and the password that was specified earlier.

Install, Configure, and Run

18

See also
ff Starting the Node Manager

ff Starting/Stopping the WebLogic Managed Server

Saving and activating changes in the
Administration Console

The Administration Console is the central application for administering your WebLogic domain.
The WebLogic domain PROD_DOMAIN was configured to start in production mode; this means
you'll have to obtain the domain configuration lock before saving and activating changes. This
protection is to prevent changes from other users during your edit session.

Getting ready
WebLogic Administration Server must be up and running.

How to do it...
Carry out the following steps to save and activate changes:

1.	 Access the Administration Console with your web browser at http://prod01.
domain.local:7001/console.

2.	 Obtain the configuration lock by clicking on Lock & Edit:

Chapter 1

19

3.	 Make the necessary changes and click on the Save button to save it.

4.	 If there are any configuration changes pending, the Lock & Edit button should be
labeled now as Activate Changes:

5.	 Click on the Activate Changes button to confirm the changes.

How it works...
All saved changes made before activating the session are saved in the $DOMAIN_HOME/
pending directory. It contains the new version of the configuration files (config.xml).
As soon as the Activate Changes option is clicked on, the Administration Server issues a
command to all the WebLogic Managed Server instances to update the configuration. If any of
the Managed Servers do not accept the new configuration, the changes are rolled back and
the Administration Console will show a message. If the new configuration is accepted by the
Managed Servers, the changes will be activated and the configuration files will be updated by
all the servers and one very machine belonging to the domain.

There's more...
The system administrator can also make configuration changes through WLST.

Making changes using the WLST
Under the hood, WebLogic Server uses a JMX framework that exposes WebLogic MBeans to
manage its configuration. The Administration Console issues JMX commands as you make
changes to Configuration Manager MBean. MBeans can be accessed through WLST.

Install, Configure, and Run

20

Edit, save, and activate the changes through WLST:

1.	 Log in as a wls user to shell and start WLST:
[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

Welcome to WebLogic Server Administration Scripting Shell

Type help() for help on available commands

wls:/offline>

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password, and t3://prod01.domain.local:7001 as the server URL:
wls:/offline>connect("wlsadmin","<pwd>","t3://prod01.domain.
local:7001")

Connecting to t3://prod01.domain.local:7001 with userid wlsadmin
...

Successfully connected to Admin Server 'PROD_AdminServer' that
belongs to domain 'PROD_DOMAIN'.

wls:/PROD_DOMAIN/serverConfig>

3.	 Start the editing, make the necessary changes, and activate it in the end:

wls:/PROD_DOMAIN/serverConfig>edit()

Location changed to edit tree. This is a writable tree with

DomainMBean as the root. To make changes you will need to start

an edit session via startEdit().

For more help, use help(edit)

You already have an edit session in progress and hence WLST will

continue with your edit session.

wls:/PROD_DOMAIN/edit !>startEdit()

Starting an edit session ...

Started edit session, please be sure to save and activate your

changes once you are done.

wls:/PROD_DOMAIN/edit !>< make necessary changes >

wls:/PROD_DOMAIN/edit !> save()

Saving all your changes ...

Saved all your changes successfully.

Chapter 1

21

wls:/PROD_DOMAIN/edit !>activate()

Activating all your changes, this may take a while ...

The edit lock associated with this edit session is released

once the activation is completed.

Activation completed

wls:/PROD_DOMAIN/edit> exit()

Exiting WebLogic Scripting Tool

See also
ff Starting the Administration Server

Protecting changes in the Administration
Console

Change management in a production environment is critical and has to be done with careful
preparation and planning. WebLogic provides a way to save and later track all the changes
made in its configuration.

This recipe focuses on how to enable the embedded configuration backup, how to enable
the configuration changes audit, and how to automatically record a Jython script to all the
changes made in the Administration Console that can be used later with WLST.

Getting ready
WebLogic Administration Server must be up and running.

How to do it...
Carry out the following steps to protect the configuration changes:

1.	 Access the Administration Console with your web browser at http://prod01.
domain.local:7001/console.

2.	 Click on the Preferences link.

Install, Configure, and Run

22

3.	 Enable the following checkboxes:

Show Advanced Sections

Warn If User Holds Lock

Warn User Before Taking Lock

4.	 Click on the Save button.

5.	 Open the WLST Script Recording tab.

6.	 Enable the following checkboxes:

Append to File

Automatic Recording

7.	 Click on the Save button.

8.	 Obtain the configuration lock by clicking on Lock & Edit.

9.	 Click the PROD_DOMAIN link on the Domain Structure on the left.

10.	 Choose Change Log and Audit in the Configuration Audit Type drop-down menu.

11.	 Enable the Configuration Archive Enabled checkbox.

12.	 Set the number of back files in the Archive Configuration Count text field. Type 250
as the value. The default value is 50.

13.	 Click on the Save button.

14.	 Activate the changes by clicking on the Activate Changes button.

15.	 You will have to restart the Administration Server for the changes to take effect.

How it works...
The Preferences section changes will enable some messages in the Administration Console
that will warn the user when the edit lock is already being used in another browser session.
This is important in a production environment to avoid the changes being made by other
administrators at the same time.

The WLST Script Recording changes will enable a Jython script to be recorded to every change
made in the Administration Console. The script is recorded by default in the $DOMAIN_HOME
root directory with a filename Script*.py.

With the backup configuration enabled, every time the domain configuration is modified,
a JAR file containing the old configuration($DOMAIN_HOME/config/*) will be archived until
the limit of 250 archives as you defined in Archive Configuration Count. Change the value
so it suits your needs. JAR will be saved in the directory $DOMAIN_HOME/configArchive/
config-XXX.jar. The lesser the XXX number, the older the configuration archive is.

Chapter 1

23

The audit configuration registers every step and change made in the Administration Server log
file (.log). The following example shows the wlsadmin user changing the JTA timeout from
30 to 300:

<BEA-159904><USER wlsadmin MODIFIED com.bea:Name=PROD_DOMAIN,Type=JTA
ATTRIBUTE TimeoutSeconds FROM 30 TO 300>

There's more...
Enabling the protection changes can also be done through WLST.

Protecting changes using WLST
You can use WLST to make the exact same configuration changes. The exception is the
Preferences section, which is a bunch of parameters from the Administration Console
application and not from the WebLogic domain:

1.	 Log in as a wls user to shell and start WLST:
[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password, and t3://prod01.domain.local:7001 as the server URL:
wls:/offline>connect("wlsadmin","<pwd>","t3://prod01.domain.
local:7001")

3.	 Run the following WLST commands:
edit()

startEdit()

cmo.setConfigurationAuditType('logaudit')

cmo.setConfigBackupEnabled(true)

cmo.setArchiveConfigurationCount(250)

save()

activate()

exit()

See also
ff Starting the Administration Server

ff Saving and activating changes in the Administration Console

Install, Configure, and Run

24

Extending and customizing the
Administration Console

The Administration Console is a Java web application based on the WebLogic portal that
can be modified and extended. These console extensions can be used to customize the
Administration Console layout, style, logos, and images, and also to add extra pages, and
extra functionalities to monitor and manage WebLogic Server and deployed applications.

This recipe will focus on creating a simple console extension to change a few text elements
of the PROD_DOMAIN the Administration Console.

Getting ready
This task requires you to have ANT installed. It can be downloaded at
http://ant.apache.org. Download the latest stable build and install it.
The filename should be apache-ant-XXX-bin.zip where XXX stands for
the ANT version.

All necessary work will be done in a Linux environment. You can
assume the use of the prod01 machine in this recipe.

How to do it...
Carry out the following steps to customize and extend the Administration Console:

1.	 Log in as a wls user to the first machine prod01 and unzip ANT:
[wls@prod01]$ cd /oracle

[wls@prod01]$ unzip apache-ant-XXX-bin.zip

2.	 Create a symbolic link ant pointing to the apache-ant-XXX directory:
[wls@prod01]$ ln -s apache-ant-XXX ant

[wls@prod01]$ ls -l

lrwxrwxrwx 1 wlswls 16 Aug 9 10:37 ant -> apache-ant-XXX

drwxr-xr-x 6 wlswls 4096 May 22 06:24 apache-ant-XXX

3.	 Export the environment variables:
[wls@prod01]$ export JAVA_HOME=/oracle/jvm

[wls@prod01]$ export ANT_HOME=/oracle/ant

[wls@prod01]$ export MW_HOME=/oracle/Middleware

[wls@prod01]$ export WL_HOME=/oracle/Middleware/wlserver_12.1

[wls@prod01]$ export PATH=$ANT_HOME/bin:$JAVA_HOME/bin:$PATH

Chapter 1

25

4.	 Change to the console extension templates directory:
[wls@prod01]$ cd $WL_HOME/server/lib/console-ext/templates

5.	 Run ANT to expand the Look and Feel Template (laf):
[wls@prod01]$ ant -f build-new-laf.xml -Dname=myConsoleExt -Ddir=/
oracle/myConsoleExt

Buildfile: /oracle/Middleware/wlserver_12.1/server/lib/console-
ext/templates/build-new-laf.xml

all:

 [mkdir] Created dir: /oracle/myConsoleExt

 [unzip] Expanding: /oracle/Middleware/wlserver_12.1/
server/lib/console-ext/templates/laftemplate.zip into /oracle/
myConsoleExt

 [move] Moving 1 file to /oracle/myConsoleExt/framework/
markup/lookandfeel

BUILD SUCCESSFUL

Total time: 1 second

6.	 Extract and copy the default message bundle global.properties to the project
from the console.jar file:
[wls@prod01]$ cd /oracle/myConsoleExt/WEB-INF

[wls@prod01]$ mkdir classes

[wls@prod01]$ cd classes

[wls@prod01]$ $JAVA_HOME/bin/jar -xf $WL_HOME/server/lib/
consoleapp/webapp/WEB-INF/lib/console.jar global.properties

7.	 Edit global.properties:
[wls@prod01]$ vi global.properties

8.	 Change the window.title and login.title values from:
window.title=Oracle WebLogic Server Administration Console

login.title=Welcome

To:

window.title=My Company-Oracle WebLogic Server Administration
Console

login.title=Welcome to "My Company"

Install, Configure, and Run

26

9.	 Archive the myConsoleExt extension and move the package to the PROD_DOMAIN
console extensions directory:
[wls@prod01]$ cd /oracle/myConsoleExt

[wls@prod01]$ $JAVA_HOME/bin/jar -cf myConsoleExt.war *

[wls@prod01]$ mv myConsoleExt.war $DOMAIN_HOME/console-ext/

10.	 Restart the Administration Server.

11.	 Access the Administration Console login page and check the text changes.

12.	 Before the changes are made, it should look like the following screenshot:

Chapter 1

27

And afterwards, you will notice the changes highlighted in the following image:

How it works...
You created a myConsoleExt.war console extension application that changes some of the
text of the Administration Console.

Other modifications can be made to the following resources to suit your customization needs:

ff Images:/oracle/myConsoleExt/images/*/oracle/myConsoleExt/
framework/skins/myConsoleExt/images/*

ff Stylesheet:/oracle/myConsoleExt/css/*/oracle/myConsoleExt/
framework/skins/myConsoleExt/css/*

ff JSP:/oracle/myConsoleExt/framework/skeletons/myConsoleExt/*

ff Text:/oracle/myConsoleExt/WEB-INF/classes/global.properties

The global.properties file is the generic resource bundle that holds the text messages.
Depending on the internationalization needs, you may create the appropriate files for each
language. More details can be found at http://docs.oracle.com/cd/E24329_01/
web.1211/e24966/bundles.htm#g1076214.

Install, Configure, and Run

28

There's more...
To remove the Administration Console extension or to add more pages and content to it,
follow the given instructions.

Removing the console extension from the Administration Console
1.	 Remove the myConsoleExt.war file from the PROD_DOMAIN console extensions

directory:
[wls@prod01]$ rm -rf $DOMAIN_HOME/console-ext/myConsoleExt.war

2.	 Restart the Administration Console.

Clean your browser cache before accessing the
Administration Console again.

Adding pages and content to the Administration Console
Adding other content to Console involves developing a WebLogic portal web application, using
NetUI, portlets, JSP, and other J2EE technology. It is a Java programming task, which is beyond
the scope of this book.

You can check Oracle's documentation at http://docs.oracle.com/cd/E24329_01/
web.1211/e24966/addcontrols.htm#CNSLX159.

See also
ff Starting the Administration Server

ff Saving and activating changes in the Administration Console

Enabling RESTful Management Services
WebLogic Server 12c introduces the possibility of monitoring WebLogic Server using RESTful
Web Services with new RESTful Management Services.

RESTful Management Services is disabled by default. This recipe will enable it.

Getting ready
WebLogic Administration Server must be up and running.

To enable WebLogic RESTful Management Services, you have to access the Administration
Console at http://prod01.domain.local:7001/console.

Chapter 1

29

How to do it...
Carry out the following steps to enable RESTful Management Services:

1.	 Access the Administration Console with your web browser at http://prod01.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to create a new change session.

3.	 Navigate to Settings for Domain | General by clicking Home and then Domain or by
clicking the PROD_DOMAIN link.

4.	 Check the Enable RESTful Management Services checkbox, as shown in the
following screenshot:

5.	 Restart WebLogic Administration Server and all Servers of the domain.

How it works...
RESTful Management Services exposes WebLogic Server instances and WebLogic clusters,
applications, and data sources to be monitored using the HTTP GET method and RESTful
formats, such as XML, JSON, and HTML.

The following table displays the resources to be monitored and the corresponding URIs
to be accessed.

Resource URI
Servers http://prod01.domain.local:7001/management/tenant-

monitoring/servers

Specific
Server

http://prod01.domain.local:7001/management/tenant-
monitoring/servers/<servername>

Clusters http://prod01.domain.local:7001/management/tenant-
monitoring/clusters

Specific
Cluster

http://prod01.domain.local:7001/management/tenant-
monitoring/clusters/<clustername>

Applications http://prod01.domain.local:7001/management/tenant-
monitoring/applications

Install, Configure, and Run

30

Resource URI
Specific
Application

http://prod01.domain.local:7001/management/tenant-
monitoring/ applications/<applicationame>

Data Sources http://prod01.domain.local:7001/management/tenant-
monitoring/datasources

Specific Data
Source

http://prod01.domain.local:7001/management/tenant-
monitoring/datasources/<datasourcename>

To access the full response format of each resource, add
"?format=full"at the end of the URI.

The following image illustrates a RESTful request to monitor all servers of the domain. It contains
the name, state, and health of the Administration Server instance PROD_AdminServer.
It also contains the WebLogic version, the machine that this server is running, open sockets,
the Java version, the operational system, the Java heap size, and the Java heap in use. The
PROD_Server01 and PROD_Server02 instances are down, and their state is also displayed
as SHUTDOWN:

Chapter 1

31

There's more...
RESTful Management Services can also be enabled through WLST.

Enabling RESTful using WLST
1.	 Log in as a wls user to shell and start WLST:

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd>
as the password, and t3://prod01.domain.local:7001 as the server URL:
wls:/offline>connect("wlsadmin","<pwd>","t3://prod01.domain.
local:7001")

3.	 Run the following WLST commands:
edit()

startEdit()

cd('/RestfulManagementServices/PROD_DOMAIN')

cmo.setEnabled(true)

save()

activate()

exit()

4.	 Restart WebLogic Administration Server and all servers of the domain.

See also
ff Starting the Administration Server

ff Saving and activating changes in the Administration Console

Starting/Stopping the WebLogic Managed
Server

This recipe will show how to start and stop the WebLogic Managed Server from the
Administration Console.

Getting ready
The Node Manager must be up and running in each of the computers of the
WebLogic domain.

Install, Configure, and Run

32

How to do it...
Carry out the following steps to start and stop the WebLogic Managed Server:

1.	 Access the Administration Console with your web browser at http://prod01.
domain.local:7001/console.

2.	 Navigate to the Settings for Domain page by clicking on Home and then Domain or
by clicking the PROD_DOMAIN link.

3.	 Click on the Control tab.

4.	 Select the checkbox to the left of the WebLogic Server name, and click on the Start
button to start the servers or the Shutdown button to shutdown. The Shutdown
button has two options: When work completes or Force Shutdown Now. Select
Force Shutdown Now.

5.	 Confirm the operation by clicking on the Yes button on the Server Life Cycle
Assistant page.

How it works...
When a start/stop operation is invoked for Managed Server, the Administration Console
issues this command to the Node Manager. The Node Manager receives the startup
parameters and credentials from the Administration Console and starts the Managed Server.

The Managed Server then contacts the Administration Server and checks for configuration
changes and if necessary, updates it. If the Administration Server is not reachable, the
Managed Server uses the local copy of the configuration from the $DOMAIN_HOME/
config/* directory.

It's possible to start the WebLogic Server instances without the Node Manager; but unless
you have your own monitoring and high availability method to the WebLogic domain, it is
recommended to use the Node Manager in production environments.

There's more...
The Managed Server can also be started and stopped using WLST.

Starting/stopping the Managed Servers with WLST and the Node
Manager
Carry out the following steps:

1.	 Log in as a wls user to shell and start WLST:
[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

Chapter 1

33

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password, and t3://prod01.domain.local:7001 as the server URL:
wls:/offline>connect("wlsadmin","<pwd>","t3://prod01.domain.
local:7001")

3.	 Run the following WLST command to start PROD_Server01:
start('PROD_Server01','Server')

4.	 To stop the Managed Server, type the following command:
shutdown('PROD_Server01','Server')

The WLST method works the same way as the Administration Console. The Administration
Console and WLST are both clients accessing the Node Manager, and both invoke start/stop
operations on it.

Starting/stopping with the provided shell script
You can use the startManagedWebLogic.sh and stopManagedWebLogic.sh script
located at the $DOMAIN_HOME/bin directory:

1.	 Go to the WebLogic domain's bin directory:
[wls@prod01]$ cd $DOMAIN_HOME/bin

2.	 Start the Managed Server PROD_Server01 typing:
[wls@prod01]$./startManagedWebLogic.sh PROD_Server01 t3://prod01.
domain.local:7001

3.	 The server will initiate the startup process and ask for a WebLogic administrator
username and password:
Enter username to boot WebLogic server: wlsadmin

Enter password to boot WebLogic server:

4.	 Type wlsadmin as the username and <password> you previously specified at the
domain creation as the password.

5.	 The WebLogic Managed Server will start.

6.	 To stop the PROD_Server01 Managed Server, provide the credentials
wlsadmin/<password>:
[wls@prod01]$./stopManagedWebLogic.sh PROD_Server01 t3://prod01.
domain.local:7001

Stopping Weblogic Server...

Initializing WebLogic Scripting Tool (WLST) ...

Welcome to WebLogic Server Administration Scripting Shell

Install, Configure, and Run

34

Type help() for help on available commands

Please enter your username :wlsadmin

Please enter your password :<password>

Connecting to t3://prod01.domain.local:7001 with userid wlsadmin
...

Successfully connected to Admin Server 'PROD_AdminServer' that
belongs to domain 'PROD_DOMAIN'.

Warning: An insecure protocol was used to connect to the

server. To ensure on-the-wire security, the SSL port or

Admin port should be used instead.

Shutting down the server PROD_Server01 with force=false while
connected to PROD_AdminServer ...

Exiting WebLogic Scripting Tool.

Done

Scripts usage
startManagedWebLogic.sh <serverName> <admin_url>

stopManagedWebLogic.sh <serverName> <admin_url>

stopManagedWebLogic.sh <serverName> <admin_url>
<user> <password>

The boot.properties file must be created the same way it was created before in order to
provide the credentials, otherwise WebLogic will not start.

Chapter 1

35

WebLogic Server will look for the credentials provided in the boot.
properties file under $DOMAIN_HOME/servers/<servername>/
security/ when starting from the script.
On the other hand, the credentials will be stored automatically in
$DOMAIN_HOME/servers/<servername>/data/nodemanager/
boot.properties if the startup command is issued to the Node
Manager. WebLogic Server will not ask for the username/password.

See also
ff Starting the Node Manager

ff Starting the Administration Server

Deploying applications
This recipe will cover the deployment of a J2EE Application archived file (EAR), but it also
applies to Web Application (WAR), Resource Adapters(RAR), and other JAR archived files,
such as libraries, EJBs, and Java classes.

The following steps will walk you through the process to deploy the application. The WebLogic
administrator usually assumes the deployer role in a production environment, so make sure to
define a well-structured procedure to deploy the applications and follow it.

Getting ready
This recipe will deploy an archived application file called myApp.ear. The application will be
target of the PROD_Cluster cluster instead of the individual Managed Servers.

How to do it...
Carry out the following steps:

1.	 Create a new directory to be the application installation directory using the syntax/
oracle/applications/<environment>/<application>/<version>:
[wls@prod01]$ mkdir -p /oracle/applications/prod/myApp/v1

[wls@prod01]$ cd /oracle/applications/prod/myApp/v1

2.	 Create two directories:
[wls@prod01]$ mkdir app

[wls@prod01]$ mkdir plan

Install, Configure, and Run

36

3.	 Copy the myApp.ear file to the app directory.

4.	 Access the Administration Console with your web browser at http://prod01.
domain.local:7001/console.

5.	 Click on the Lock & Edit button to start a new edit session.

6.	 Navigate to the Deployments page by clicking on the link in the domain structure.

7.	 Click on the Install button to install a new application.

8.	 Type the path /oracle/applications/prod/myApp/v1/app and click on Next.

9.	 Select myApp.ear from the list and click on Next.

10.	 Select Install this deployment as an application and click on Next.

11.	 Select the All servers from the cluster radio button from the PROD_Cluster cluster
and click on Next.

12.	 Leave the default options and click on the Finish button.

13.	 A new deployment plan file will automatically be created in /oracle/
applications/prod/myApp/v1/plan/Plan.xml.

14.	 Click on the Activate Changes button to apply the changes.

15.	 The application should be in a Prepared state. Start the application by selecting
the myApp checkbox and clicking on the Start button with the Servicing all
requests option.

How it works...
This procedure installs a simple enterprise application named myApp to the cluster
PROD_Cluster in the WebLogic domain.

The application is distributed to the cluster using the default deployment option stage mode.
In the stage mode deployment, the Administration Server prepares the myApp.ear file to be
copied to the stages directory of each of the Managed Servers of the cluster PROD_Cluster.
The directory is $DOMAIN_HOME/servers/<servername>/stage/<application>.

WebLogic will use this local copy until a new redeployment is made.

There's more...
There are many options to achieve the same results when deploying.

Deploying using the weblogic.Deployer tool
You can use the command-line tool weblogic.Deployer to make deployment changes
in a WebLogic domain.

Chapter 1

37

To perform the same deployment of myApp.ear to the PROD_Cluster cluster,
do the following:

1.	 Go to the WebLogic domain's bin directory:
[wls@prod01]$ cd $DOMAIN_HOME/bin

2.	 Set the environment variables:
[wls@prod01]$. ./setDomainEnv.sh

3.	 Run the weblogic.Deployer command line with the parameters:
[wls@prod01]$ java weblogic.Deployer -adminurl t3://prod01.domain.
local:7001 -username wlsadmin -password <pwd> -deploy -targets
PROD_Cluster /oracle/applications/prod/myApp/v1/app/myApp.ear

4.	 The following should be the output:
weblogic.Deployer invoked with options: -adminurl t3://prod01.
domain.local:7001 -username wlsadmin -deploy -targets PROD_Cluster
/oracle/applications/prod/myApp/v1/app/myApp.ear

<Info><J2EE Deployment SPI><BEA-260121><Initiating deploy
operation for application, myApp [archive: /oracle/applications/
prod/myApp/v1/app/myApp.ear], to PROD_Cluster .>

5.	 The myApp application should be deployed to the PROD_Cluster cluster.

Deploying applications using WLST
Now let's deploy the application through WLST using the following steps:

1.	 Log in as a wls user to shell and start WLST:
[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password, and t3://prod01.domain.local:7001 as the server URL:
wls:/offline>connect("wlsadmin","<pwd>","t3://prod01.domain.
local:7001")

3.	 Run the following WLST command to deploy the myApp.ear application to the
PROD_Cluster cluster:
deploy("myApp", "/oracle/applications/prod/myApp/v1/app/myApp.
ear","PROD_Cluster")

Install, Configure, and Run

38

4.	 The following should be the output:
Deploying application from /oracle/applications/prod/myApp/v1/app/
myApp.ear to targets PROD_Cluster (upload=false) ...

<Apr 6, 2013 11:02:24 PM BRT><Info><J2EE Deployment SPI><BEA-
260121><Initiating deploy operation for application, myApp
[archive: /oracle/applications/prod/myApp/v1/app/myApp.ear], to
PROD_Cluster .>

.Completed the deployment of Application with status completed

Current Status of your Deployment:

Deployment command type: deploy

Deployment State : completed

High Availability with
WebLogic Clusters

In this chapter we will cover the following recipes:

ff Creating a WebLogic cluster

ff Defining a Hostname/Alias for the Listen Address value

ff Configuring HA WebLogic cluster parameters

ff Using Unicast for cluster communications

ff Using Multicast for cluster communications

ff Installing Apache HTTP Server for the Web tier

ff Using the Web Server Plug-in to load balance HTTP Requests to WebLogic cluster

ff Defining a network channel for cluster communications

ff Configuring high availability for Administration Server

Introduction
WebLogic clustering is a highly recommended configuration for production environments.
The WebLogic cluster provides reliability and high availability by distributing the requests
and the load to the WebLogic Server instance members of the cluster.

Using WebLogic cluster also facilitates the administration tasks because WebLogic Server
automatically distributes the configuration and deployment changes to all WebLogic Server
instances, including the distribution of the deploy file to all machines.

2

High Availability with WebLogic Clusters

40

Clustering can also avoid a single point of failure. If a machine crashes, the system can still
operate with the WebLogic Manager Servers of the other machines. The architecture can
grow and scale horizontally by adding more WebLogic Server instances to the cluster and
distributing them to new machines.

Creating a WebLogic cluster
A WebLogic cluster is normally created with the domain using the Configuration Wizard tool.
The cluster can also be created and added to an existing domain by using the Administration
Console. This recipe will cover adding a new cluster to the existing PROD_DOMAIN domain.

A WebLogic cluster was previously created using Configuration Wizard earlier in this book.
The same cluster will be created this time, but with four Manager Server instances instead
of two. So remove the original cluster before creating the new cluster.

The new cluster will be called PROD_Cluster with four WebLogic Server instances
PROD_Server01, PROD_Server02, PROD_Server03, and PROD_Server04. Machine
prod01 will host the instances PROD_Server01 and PROD_Server02 and machine
prod02 will host the instances PROD_Server03 and PROD_Server04.

PROD_DOMAIN Topology:

PROD_DOMAIN
 |___ PROD_AdminServer
 |
 |___ PROD_Cluster
 |___ PROD_Server01
 |___ PROD_Server02
 |___ PROD_Server03
 |___ PROD_Server04

Machine distribution, WebLogic Server instances, and listen ports Topology:

Machine
 |___ prod01
 | |_______ PROD_AdminServer (7001)
 | |_______ PROD_Server01 (8001)
 | |_______ PROD_Server02 (8002)
 |
 |___ prod02
 |_______ PROD_Server03 (8003)
 |_______ PROD_Server04 (8004)

Chapter 2

41

Getting ready
Make sure the Administration Server is up and Node Manager is running on all machines
in the domain.

If the cluster PROD_Cluster was created previously, delete it from the domain before
creating the new one:

1.	 Log in as a wls user to shell and start WLST:
[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password and t3://prod01.domain.local:7001 as the server URL:
wls:/offline> connect("wlsadmin","<pwd>","t3://prod01.domain.
local:7001")

3.	 Run the following WLST commands to delete the original PROD_Cluster cluster and
the Managed Server instances:
edit()

startEdit()

editService.getConfigurationManager().removeReferencesToBean(getMB
ean('/Clusters/PROD_Cluster'))

cd('/')

cmo.destroyCluster(getMBean('/Clusters/PROD_Cluster'))

cd('/Servers/PROD_Server01')

cmo.setCluster(None)

cmo.setMachine(None)

editService.getConfigurationManager().removeReferencesToBean(getMB
ean('/Servers/PROD_Server01'))

cd('/')

cmo.destroyServer(getMBean('/Servers/PROD_Server01'))

cd('/Servers/PROD_Server02')

cmo.setCluster(None)

cmo.setMachine(None)

High Availability with WebLogic Clusters

42

editService.getConfigurationManager().removeReferencesToBean(getMB
ean('/Servers/PROD_Server02'))

cd('/')

cmo.destroyServer(getMBean('/Servers/PROD_Server02'))

activate()

The old cluster has now been removed and the new cluster is ready to be created.

How to do it...
To create the new cluster PROD_Cluster:

1.	 Access Administration Console with your web browser at http://prod01.domain.
local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Environment tree on the left and click on Clusters.

4.	 Click on the New button to start creating a new cluster.

5.	 Type PROD_Cluster on the Name field. Leave the Messaging Mode in the Unicast
mode and the rest of the parameters at their default values. Click on the OK button.

6.	 The PROD_Cluster cluster will be displayed in the Clusters table list. Click on the
PROD_Cluster cluster to navigate to Configuration | General. Click on the Servers
tab to navigate to Configuration | Servers. Click on the Add button, as shown in the
following screenshot:

7.	 Type PROD_Server01 in the Server Name field and 8001 in the Listen Port field.
Click on Finish.

Chapter 2

43

8.	 Repeat the steps to add the three remaining WebLogic Server Instances to the PROD_
Cluster according to the topology: PROD_Server02 port 8002, PROD_Server03
port 8003, and PROD_Server04 port 8004.

9.	 Assign the newly created Managed Server instances to their respective machines. On
the navigation tree to the left, navigate to Environment | Machines and click on the
prod01 machine. Now, go to Configuration | General and click on the Servers tab to
go to Configuration | Servers, (as shown in the following screenshot):

10.	 Click on the Select an existing server option, the and associate it with this
machine radio button, select PROD_Server01 from the Select a server drop-down
menu and click on the Finish button. Now do the same for PROD_Server02.

11.	 Go back to the Machines page and click on the PROD_Cluster cluster to
navigate to Configuration | Servers. Add the Server instances PROD_Server03
and PROD_Server04 to the prod02 machine. Click on the Finish button.

12.	 Click on the Activate Changes button to finish.

How it works...
You have just created the four new WebLogic Managed Server instances, assigned them to
the machines prod01 and prod02, and added them to the new cluster PROD_Cluster.

In the next few recipes, you'll configure other recommended cluster parameters, which are
essential for the cluster to run properly in a production environment.

High Availability with WebLogic Clusters

44

There's more...
The same cluster can also be created using the following WLST.

Creating a WebLogic cluster using WLST
1.	 Log in as wls user to shell and start WLST:

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd>
as the password, and t3://prod01.domain.local:7001 as the server URL:
wls:/offline> connect("wlsadmin","<pwd>","t3://prod01.domain.
local:7001")

3.	 Run the following WLST commands to create the cluster and server instances:
edit()

startEdit()

cd('/')

cmo.createCluster('PROD_Cluster')

cd('/Clusters/PROD_Cluster')

cmo.setClusterMessagingMode('unicast')

cd('/')

cmo.createServer('PROD_Server01')

cd('/Servers/PROD_Server01')

cmo.setListenPort(8001)

cmo.setCluster(getMBean('/Clusters/PROD_Cluster'))

cmo.setMachine(getMBean('/Machines/prod01'))

cd('/')

cmo.createServer('PROD_Server02')

cd('/Servers/PROD_Server02')

cmo.setListenPort(8002)

cmo.setCluster(getMBean('/Clusters/PROD_Cluster'))

cmo.setMachine(getMBean('/Machines/prod01'))

cd('/')

cmo.createServer('PROD_Server03')

Chapter 2

45

cd('/Servers/PROD_Server03')

cmo.setListenPort(8003)

cmo.setCluster(getMBean('/Clusters/PROD_Cluster'))

cmo.setMachine(getMBean('/Machines/prod02'))

cd('/')

cmo.createServer('PROD_Server04')

cd('/Servers/PROD_Server04')

cmo.setListenPort(8004)

cmo.setCluster(getMBean('/Clusters/PROD_Cluster'))

cmo.setMachine(getMBean('/Machines/prod02'))

activate()

exit()

See also
ff Configuring HA WebLogic cluster parameters

ff Using Unicast for cluster communications

ff Using Multicast for cluster communications

Defining a Hostname/Alias for the Listen
Address value

The WebLogic Managed Server instances of the cluster were created in the previous recipe
but a Listen Address value was not assigned to any of it.

The objective of this recipe is to assign a unique hostname or alias as the Listen Address
value for each of the Managed Servers instead of assigning the prod01, prod02 hostnames
or the IP address.

Getting ready
For the cluster PROD_Cluster the FQDNs: prodsrv01.domain.local, prodsrv02.
domain.local, prodsrv03.domain.local, and prodsrv04.domain.localwill be
used as the listen addresses. For example, PROD_Server01, PROD_Server02, PROD_
Server03, and PROD_Server04, will be used respectively.

High Availability with WebLogic Clusters

46

From the WebLogic configuration perspective, it doesn't make any difference if the addresses
prodsrv01.domain.local, prodsrv02.domain.local, prodsrv03.domain.local,
and prodsrv04.domain.local point to the IP addresses of the machines prod01 and
prod02 or to Virtual IP addresses (VIP).

How to do it...
To change and configure the listen addresses of the Managed Servers:

1.	 Access the Administration Console with your web browser at http://prod01.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Environment tree on the left and click on Servers.

4.	 Click on the PROD_Server01 server to navigate to the Configuration | General
tab of the first Managed Server.

5.	 Type prodsrv01.domain.local in the Listen Address field, as shown in the
following screenshot. Click on the Save button.

6.	 Repeat the previous steps to configure PROD_Server02, PROD_Server03, and
PROD_Server04 to use prodsrv02.domain.local, prodsrv03.domain.
local, and prodsrv04.domain.local in the Listen Address field. Click on the
Save button in each step.

7.	 Click on the Activate Changes button.

Chapter 2

47

How it works...
The uniqueness of the Listen Address field is an important configuration as it allows
the WebLogic cluster to provide the flexibility needed for high availability, and to use the
automatic/manual server and service migration. It also guarantees the independence and
decoupling of each of the WebLogic Managed Server configurations.

It's also a good practice to use a different Listen Port for the Managed Servers. Using
different hostname:port combinations should avoid possible port conflicts when two
Managed Servers would possibly listen for the same IP address if a migration situation arises.

As a rule of thumb, use a unique hostname for the Listen Address
field and a unique port for the Listen Port field. Also always use a fully
qualified domain name.

There's more...
Setting the Listen Address value can also be done using WLST.

Defining the Listen Address value using WLST
Carry out the following steps to change the Listen Address value:

1.	 Log in as a wls user to shell and start WLST:
[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password and t3://prod01.domain.local:7001 as the server URL:
wls:/offline> connect("wlsadmin","<pwd>","t3://prod01.domain.
local:7001")

3.	 Run the following WLST commands to create the cluster and the server instances:

edit()

startEdit()

cd('/Servers/PROD_Server01')

cmo.setListenAddress('prodsrv01.domain.local')

cd('/Servers/PROD_Server02')

cmo.setListenAddress('prodsrv02.domain.local')

cd('/Servers/PROD_Server03')

cmo.setListenAddress('prodsrv03.domain.local')

cd('/Servers/PROD_Server04')

High Availability with WebLogic Clusters

48

cmo.setListenAddress('prodsrv04.domain.local')

activate()

exit()

See also
ff Defining a network channel for cluster communications

ff Configuring high availability for Administration Server

Configuring HA WebLogic cluster
parameters

This recipe will cover other WebLogic cluster adjustments needed for high availability in
production. The parameters are Failure Action, Panic Action, Cluster Address, and Number
of Servers in Cluster Address for the cluster, and CrashRecoveryEnabled for Node Manager.

Getting ready
To change the Node Manager CrashRecoveryEnabled parameter, edit the configuration $WL_
HOME/common/nodemanager/nodemanager.properties file in all machines.

The cluster parameters are changed using the Administration Console or WLST.

How to do it...
To change the Node Manager's parameter:

1.	 Log in as a wls user to shell and shutdown Node Manager:
[wls@prod01]$ ps aux | grep weblogic.NodeManager | grep -v grep |
awk '{print $2}'

<PID>

[wls@prod01]$ kill -9 <PID>

2.	 Edit nodemanager.properties:
[wls@prod01]$ vi $WL_HOME/common/nodemanager/nodemanager.
properties

3.	 Locate the CrashRecoveryEnabled parameter and change the line:

From:
CrashRecoveryEnabled=false

Chapter 2

49

To:

CrashRecoveryEnabled=true

4.	 Type :wq! to save the file and exit.

5.	 Start Node Manager:
[wls@prod01]$ cd $WL_HOME/server/bin

[wls@prod01]$ nohup ./startNodeManager.sh &

6.	 Repeat the steps on every machine in the domain.

To change the cluster parameters:

1.	 Access the Administration Console with your web browser at http://prod01.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Environment tree on the left and click on Clusters.

4.	 Click on the PROD_Cluster cluster to navigate to Configuration | General and type
4 in the Number Of Servers In Cluster Address field. Leave the Cluster Address field
empty and click on the Save button.

5.	 Click on the Advanced link to display extra options and then select the WebLogic
Plug-in Enabled checkbox, as shown in the following screenshot:

6.	 Click on the Save button.

7.	 Click on the Overload tab to navigate to Configuration | Overload of PROD_Cluster.

High Availability with WebLogic Clusters

50

8.	 Change the Failure Action drop-down menu to Force immediate shutdown of this
cluster and the Panic Action field to Exit the cluster process (as shown in the
following screenshot):

9.	 Click on the Save button and then the Activate Changes button.

10.	 Restart all Managed Servers of the PROD_Cluster cluster.

How it works...
Failure Action and Panic Action are the WebLogic overload settings that can shutdown a
Managed Server when it reaches a FAIL state or when it throws an Out of Memory (OOM)
PANIC error. Both errors would leave the affected Managed Server in an inconsistent state
and would probably hang or return application errors to client requests. The Node Manager
monitors the Managed Servers and restarts the failed instance automatically. Unless there
is an analysis of the root cause of these errors, it's recommended to enable both parameters.

CrashRecoveryEnabled is the Node Manager parameter that must be enabled so Node
Manager can restart a crashed/failed WebLogic Managed Server instance automatically.

The Cluster Address, Number of Servers in Cluster Address, and WebLogic Plug-in Enabled
are cluster configurations for the distribution of requests and load balancing.

Chapter 2

51

The Cluster Address configuration is used by the Enterprise JavaBeans
(EJB) and RMI objects deployed in the cluster. Leave the Cluster Address
configuration empty so the EJBs create the cluster address dynamically
based on which network channel the request is received.
If the request is received on the default network channel, the cluster address
is created using the default network channel listen address and listen port. If
the request is received on a custom network channel, the cluster address is
created using the custom network channel listen address and listen port.

There's more...
The cluster settings can also be modified through WLST.

Changing the cluster settings using WLST
1.	 Log in as a wls user to shell and start WLST:

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password and t3://prod01.domain.local:7001 as the server URL:
wls:/offline> connect("wlsadmin","<pwd>","t3://prod01.domain.
local:7001")

3.	 Run the following WLST commands to create the cluster and the server instances:
edit()

startEdit()

cd('/Clusters/PROD_Cluster')

cmo.unSet('clusterAddress')

cmo.setNumberOfServersInClusterAddress(4)

cmo.setWeblogicPluginEnabled(true)

cd('/Clusters/PROD_Cluster/OverloadProtection/PROD_Cluster')

cmo.setPanicAction('system-exit')

cmo.setFailureAction('force-shutdown')

cmo.createServerFailureTrigger()

cd('/Clusters/PROD_Cluster/OverloadProtection/PROD_Cluster/
ServerFailureTrigger/PROD_Cluster')

cmo.setMaxStuckThreadTime(600)

High Availability with WebLogic Clusters

52

cmo.setStuckThreadCount(0)

activate()

exit()

Using Unicast for cluster communications
The Oracle WebLogic Server 12c can use either Multicast or Unicast for cluster
communications. Since WebLogic version 10, the default cluster communication is the Unicast.

To improve Unicast reliability it's recommended to enable two extra configurations.

Getting ready
The first thing is to add a JVM argument to every WebLogic Managed Server instance of the
cluster. The Administration Server must be running to make the changes.

After adding the JVM argument, the config.xml configuration file must be manually edited
to make the second change. Therefore you will need to make sure every WebLogic Server
instance is down, including the Administration Server.

How to do it...
Add the JVM argument:

1.	 Access the Administration Console with your web browser at http://prod01.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Navigate to Configuration | Server Start by clicking on the WebLogic Server name,
then on the Server Start tab.

4.	 Add the argument-Dweblogic.unicast.HttpPing=true to the Arguments field.
The argument must be added to all Managed Server instances of PROD_Cluster:
PROD_Server01, PROD_Server02, PROD_Server03, and PROD_Server04. Click
on the Save button for every change.

5.	 Click on the Activate Changes button.

6.	 Navigate to Domain | Control by clicking on the PROD_DOMAIN link to the left and
then on the Control tab.

7.	 Select and shut down all servers from the list.

Chapter 2

53

Edit the config.xml file:

1.	 Log in as a wls user to the first machine prod01 and navigate to the folder:
[wls@prod01]$ cd $DOMAIN_HOME/config

2.	 Make a backup of the config.xml file:
[wls@prod01]$ cp config.xml config.xml_backup

3.	 Open config.xml to be edited:
[wls@prod01]$ vi config.xml

4.	 Find the <cluster> definition tag of PROD_Cluster:
 <cluster>
 <name>PROD_Cluster</name>
 <cluster-messaging-mode>unicast</cluster-messaging-
 mode>
 </cluster>

5.	 Add the <message-ordering-enabled tag:
 <cluster>
 <name>PROD_Cluster</name>
 <cluster-messaging-mode>unicast</cluster-messaging-
 mode>
 <message-ordering-enabled>true</message-ordering-
 enabled>
 </cluster>

6.	 Type :wq! to save the file and exit.

7.	 Copy the file to all machines in the domain:
[wls@prod01]$ scp config.xml wls@prod02:$DOMAIN_HOME/config

8.	 Start the Administration Server.

How it works...
The-Dweblogic.unicast.HttpPing=true argument enables an internal health check on
Unicast communications that improves its reliability.

The <message-ordering-enabled> tag forces Unicast communications to be processed in
order, avoiding some issues with JNDI updates and JMS Topics.

High Availability with WebLogic Clusters

54

See also
ff Configuring HA WebLogic cluster parameters

ff Using Multicast for cluster communications

Using Multicast for cluster communications
WebLogic can also use Multicast for cluster communications.

When configured for using Multicast, the Managed Servers of the cluster subscribe to a
Multicast address and port and listen for heartbeats and cluster messages. Unlike Unicast,
Multicast communication uses UDP and broadcasts the message through the network and
therefore does not guarantee that the message is received.

Getting ready
To configure Multicast, the Administration Server must be running.

How to do it...
To configure the Multicast communication for the cluster:

1.	 Access the Administration Console with your web browser at http://prod01.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Environment tree on the left and click on Clusters.

4.	 Click on the PROD_Cluster cluster to navigate to Configuration | General and click
on the Messaging tab to navigate to Configuration | Messaging.

5.	 Change the Messaging Mode drop-down menu to Multicast. Configure the Multicast
Address value to 239.192.0.0 and the Multicast Port to 7001 (as shown in the
following screenshot):

Chapter 2

55

6.	 Click on the Save button and then on the Activate Changes button.

7.	 Restart all Managed Servers of the PROD_Cluster cluster.

How it works...
Multicast includes additional configuration at the networking and operational system level.

Multicast Address 239.192.0.0 and Multicast Port 7001 are the default values.
The range from 224.0.0.0 to 239.255.255.255 can be used. Do not use an address
within the x.0.0.1 range where x is between 0 and 9.

Don't use two clusters with the same Multicast address
in the same network or they will conflict.

High Availability with WebLogic Clusters

56

There's more...
The Multicast can also be configured through WLST.

Configuring Multicast using WLST
1.	 Log in as a wls user to shell and start WLST:

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password, and t3://prod01.domain.local:7001 as the server URL:
wls:/offline> connect("wlsadmin","<pwd>","t3://prod01.domain.
local:7001")

3.	 Run the following WLST commands to create the cluster and the server instances:

edit()

startEdit()

cd('/Clusters/PROD_Cluster')

cmo.setClusterMessagingMode('multicast')

cmo.setMulticastPort(7001)

cmo.setMulticastAddress('239.192.0.0')

activate()

exit()

See also
ff Configuring HA WebLogic cluster parameters

ff Using Unicast for cluster communications

Installing Apache HTTP Server for the
Web tier

This recipe will describe a quick installation of the Apache HTTP Server because a Web tier
is needed to illustrate the use of WebLogic Web Server plug-in.

The plug-in is used for load balancing and the failover of HTTP requests to WebLogic Server,
and the next recipe will cover its configuration and usage.

Chapter 2

57

Getting ready
This recipe assumes a Web tier with two dedicated Linux x86-64 machines named web01
and web02. Both machines should have Apache HTTP Server 2.2.x running and listening for
HTTP requests on port 80. The Apache HTTP Server runs under the shell user webadmin.

In production, use a minimum of two machines in all
tiers to avoid a single point of failure.

Download Apache HTTP Server 2.2.x at http://httpd.apache.org/docs/2.2/install.
html#download. Make sure you download the Unix Source and the latest stable version. The
filename should be httpd-2.2.xx.tar.gz where the xx stands for the minor version.

Also, verify if the operational system meets the requirements at http://httpd.apache.
org/docs/2.2/install.html#requirements to build and install Apache HTTP Server.

To simplify the reading, we'll use the term $APACHE_HOME when referring
to to the Apache HTTP Server directory, /oracle/apache.

How to do it...
To install Apache HTTP Server, carry out the following steps:

1.	 Create a dedicated user to host and run Apache HTTP Server 2.2.x in Linux. Log in
as the root user and create the user and group named webadmin and set a new
password for it:
[root@web01]# groupadd webadmin

[root@web01]# useradd -g webadmin webadmin

[root@web01]# passwd webadmin

Changing password for user webadmin.

New UNIX password: <new password>

Retype new UNIX password: <new password>

2.	 Log in as a webadmin user, create a temporary directory and extract the downloaded
file to it. Consider that the httpd-2.2.xx.tar.gz file is located in the home
directory:
[webadmin@web01]$ cd

[webadmin@web01]$ gunzip -d httpd-2.2.xx.tar.gz

[webadmin@web01]$ mkdir ~/apache-tmp

High Availability with WebLogic Clusters

58

[webadmin@web01]$ cd ~/apache-tmp

[webadmin@web01]$ tar xfv ../httpd-2.2.xx.tar

3.	 This recipe will use /oracle/apache as the default installation folder for Apache
HTTP Server. Run the configure command from the temporary directory to prepare
the source files:
[webadmin@web01]$ cd ~/apache-tmp/httpd-2-2.xx

[webadmin@web01]$./configure --prefix=/oracle/apache --with-
mpm=worker

4.	 Compile and build Apache:
[webadmin@web01]$ make

5.	 Install Apache:
[webadmin@web01]$ make install

6.	 Apache HTTP Server should be installed at /oracle/apache with the following
directory structure:
[webadmin@web01]$ cd $APACHE_HOME

[webadmin@web01]$ tree -d

.

|-- bin

|-- build

|-- cgi-bin

|-- conf

| |-- extra

| `-- original

| `-- extra

|-- error

| `-- include

|-- htdocs

|-- icons

| `-- small

|-- include

|-- lib

| `-- pkgconfig

|-- logs

|-- man

| |-- man1

Chapter 2

59

| `-- man8

|-- manual

| |-- developer

| |-- faq

| |-- howto

| |-- images

| |-- misc

| |-- mod

| |-- platform

| |-- programs

| |-- rewrite

| |-- ssl

| |-- style

| | |-- css

| | |-- lang

| | |-- latex

| | `-- xsl

| | `-- util

| `-- vhosts

`-- modules

38 directories

7.	 Open and edit the Apache configuration httpd.conf file:
[webadmin@web01]$ vi $APACHE_HOME/conf/httpd.conf

8.	 Locate the following two lines. They are at different locations of the file:
Listen 80

#ServerName www.example.com:80

9.	 Change the location to:
Listen web01:80

ServerName web01:80

10.	 Type :wq! to save the file and exit the editor.

High Availability with WebLogic Clusters

60

11.	 As a root user, change apachectl and httpd file owner to root and add the
setuid file permission so Apache can listen to port 80:
[root@web01]$ cd $APACHE_HOME/bin

[root@web01]$ chown root:webadmin apachectl httpd

[root@web01]$ chmod u+s apachectl httpd

12.	 Apache HTTP Server is now ready to be started with the webadmin user:
[webadmin@web01]$ $APACHE_HOME/bin/apachectl start

13.	 Test if Apache is running:
[webadmin@web01]$ curl http://web01

<html><body><h1>It works!</h1></body></html>

14.	 To shutdown Apache, issue the stop command:
[webadmin@web01]$ $APACHE_HOME/bin/apachectl stop

15.	 Remove the temporary directory:
[webadmin@web01]$ rm –rf ~/apache-tmp

16.	 Repeat all the steps on the web02 machine, using the appropriate web02 hostname
when needed.

How it works...
Apache HTTP Server 2.2.x is now installed with the default options and will be used as
a Web Server example in the next recipe.

Other Apache configurations are not within the scope of this book, so the only setting changed
so far is the default 127.0.0.1 listen address, which is now configured to use the web01
and web02 hostnames.

See also
ff Using the Web Server Plug-in to load balance HTTP Requests to WebLogic cluster

Using the Web Server Plug-in to load
balance HTTP Requests to WebLogic cluster

The WebLogic cluster itself does not distribute the incoming HTTP requests across the
Managed Servers, so the architecture design should foresee a load balance mechanism.

Chapter 2

61

WebLogic can use either an external load balancer appliance/hardware such as the
BIG-IP F5 (http://www.f5.com/products/big-ip), a Web Server such as the
Apache HTTP Server configured with the WebLogic Web Server plug-in, or the embedded
WebLogic HttpClusterServlet configuration.

Load balancing options:

ff External load balancer

ff Web Server with plug-in

ff WebLogic HttpClusterServlet configuration

For production environments, it is recommended to use a mixed architecture that includes
an external load balancer and a Web Server with the proxy plug-in. The HTTP requests will
be received and distributed by the external load balancer to the Web Servers, and the Web
Servers will then proxy the requests through the plug-in across the WebLogic Managed
Servers of the cluster. The WebLogic HttpClusterServlet configuration
is not recommended for use in production. The HTTP request sequence is as follows:

Client -> External Load Balancer -> Web Server + plug-in -> WebLogic cluster

Consider always including a Web Server tier + WebLogic plug-in to
distribute the HTTP requests across the WebLogic cluster.

Although it is possible to use only the external load balancers in the architecture, it's highly
recommended to include the Web Server and the plug-in. The plug-in contains all the logic
for the load balancing, session stickiness, and in particular the clustering failover with the
transparent connection failover.

More importantly, the plug-in is needed when setting up the workload
management through work managers, which will be seen later in this
book.

Getting ready
The Web server plug-in can be used together with an Apache HTTP Server, Netscape IPlanet, or
Microsoft IIS web servers. This recipe will use the Apache installation from the previous recipe.

Unlike previous WebLogic versions, the plug-in is not included in the WebLogic
Server 12c installation.

High Availability with WebLogic Clusters

62

At the time of writing this book, there is no 12c plug-in version released
yet and the version 11g should be used.

To download the plug-in, access My Oracle Support at https://support.oracle.com
and read the note ID: WebLogic Server Web Server Plug-In Support [ID 1111903.1].

An Oracle.com account must be provided to log in to
My Oracle Support.

Click on the link provided in the note ID to download the WebLogic 11g plug-in. The filename
should be of the format WLSPlugins11g-xxx.zip and be about 260 MB in size.

How to do it...
To configure the WebLogic plug-in, carry out the following steps:

1.	 Log in as a webadmin user to the web01 machine, create a temporary directory and
extract the downloaded file to it. Consider that the file WLSPlugins11g-xxx.zip
is located in the home directory. In this example, only the plug-in for Apache 2.2 for
Linux 64-bit (WLSPlugin11g-64bit-Apache2.2-linux64-x86_64.zip) will be
extracted from the zip file:
[webadmin@web01]$ cd

Chapter 2

63

[webadmin@web01]$ mkdir ~/plugin-tmp

[webadmin@web01]$ cd ~/plugin-tmp

[webadmin@web01]$ unzip ../WLSPlugins11g*.zip WLSPlugin11g-64bit-
Apache2.2-linux64-x86_64.zip

[webadmin@web01]$ unzip WLSPlugin11g-64bit-Apache2.2-
linux64-x86_64.zip

2.	 Stop the Apache HTTP Server if it is already running:
[webadmin@web01]$ $APACHE_HOME/bin/apachectl stop

3.	 Copy the plug-in files to Apache lib directory:
[webadmin@web01]$ cp ~/plugin-tmp/lib/* /oracle/apache/lib/

4.	 Create and edit a new file named httpd-weblogic.conf to hold the plug-in
configuration file:
[webadmin@web01]$ vi $APACHE_HOME/conf/extra/httpd-weblogic.conf

5.	 Add the following lines to the file:
LoadModule weblogic_module lib/mod_wl.so
<Location />
 SetHandler weblogic-handler
 WebLogicCluster prodsrv01.domain.local:8001,prodsrv02.domain.
local:8002,prodsrv03.domain.local:8003,prodsrv04.domain.local:8004
</Location>

6.	 Type :wq! to save the file and exit.

7.	 Open and edit the Apache configuration httpd.conf file:
[webadmin@web01]$ vi $APACHE_HOME/conf/httpd.conf

8.	 Locate the following lines at the end of file:
Supplemental configuration
#
The configuration files in the conf/extra/ directory can be
included to add extra features or to modify the default
configuration of
the server, or you may simply copy their contents here and
change as
necessary.

9.	 Include the plug-in configuration file just after the previous lines:
Supplemental configuration
#
The configuration files in the conf/extra/ directory can be
included to add extra features or to modify the default

High Availability with WebLogic Clusters

64

configuration of
the server, or you may simply copy their contents here and
change as
necessary.

WebLogic Plug-in Configuration
Include conf/extra/httpd-weblogic.conf

10.	 Type :wq! to save the file and exit.

11.	 Start the Apache HTTP Server.
[webadmin@web01]$ $APACHE_HOME/bin/apachectl start

12.	 Repeat the previous steps and configure the web02 machine too with the appropriate
web02 hostname.

How it works...
The plug-in distribution files were extracted and the files from the lib directory were copied
to the $APACHE_HOME/lib directory of the Apache installation, including the mod_wl.
so plug-in itself.

Also a new configuration file was created so the WebLogic plug-in configuration is kept apart
from the Apache configuration. The syntax to include the new httpd-weblogic.conf file
was added to the original configuration httpd.conf file. This procedure follows the default
httpd.conf behavior of including extra configuration files.

The httpd-weblogic.conf file used as a sample in this recipe is configured so that all
requests to Apache are distributed to the WebLogic cluster.

The configuration file is displayed with more information:

#Loads the WebLogic plug-in module

LoadModule weblogic_module lib/mod_wl.so

#All requests – from the root path (/) and below – will be handled by the
WebLogic plug-in.

<Location />

 SetHandler weblogic-handler

#Defines the initial Cluster Address the plug-in will try to connect and
distribute the requests

 WebLogicCluster prodsrv01.domain.local:8001,prodsrv02.domain.
local:8002,prodsrv03.domain.local:8003,prodsrv04.domain.local:8004

</Location>

Chapter 2

65

Before, the test request was handled by the Apache:

[webadmin@web01]$ curl http://web01

<html><body><h1>It works!</h1></body></html>

Now the request is proxied to WebLogic. The following result is displayed when the Server
instances of the cluster are down:

[webadmin@web01]$ curl http://web01

<HTML><HEAD><TITLE>Weblogic Bridge Message</TITLE></HEAD>
<BODY><H2>Failure of server APACHE bridge:</H2><P><hr>No backend server
available for connection: timed out after 10 seconds or idempotent set to
OFF or method not idempotent.<hr> </BODY></HTML>

After starting the WebLogic Managed Servers of the cluster, the same request now returns a
HTTP 404 – NOT FOUND code, because no applications are deployed in the cluster yet:

[webadmin@web01]$ curl http://web01

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Draft//EN">

<HTML>

<HEAD>

<TITLE>Error 404--Not Found</TITLE>

</HEAD>

_ code snipped _

There's more...
A single Web Tier with the WebLogic plug-in can be used to balance the requests to other
WebLogic domains and clusters.

Proxying requests to other WebLogic clusters
It's possible to segregate the incoming HTTP requests with a specific context path to a
different WebLogic cluster using the same Apache configuration.

The following is an example of the configuration in httpd-weblogic.conf:

LoadModule weblogic_module lib/mod_wl.so
<IfModule mod_weblogic.c>
 Debug ALL
 WLLogFile /tmp/wl-proxy.log
</IfModule>

<Location /app01>
 SetHandler weblogic-handler

High Availability with WebLogic Clusters

66

 WebLogicCluster prodsrv01.domain.local:8001,prodsrv02.domain.
local:8002,prodsrv03.domain.local:8003,prodsrv04.domain.local:8004
</Location>

<Location /app02>
 SetHandler weblogic-handler
 WebLogicCluster prodsrv21:20001,prodsrv22:20002
</Location>

In the previous example, requests to http://website.domain.local/app01 will
be handled and proxied to the PROD_Cluster cluster. Requests to http://website.
domain.local/app02 will be proxied to another WebLogic domain with a cluster named
PROD2_Cluster. Any other request, http://website.domain.local/anyother, for
example, will be handled by the Apache HTTP Server.

Context Path WLS Cluster Cluster Address
/app01 PROD_Cluster prodsrv01.domain.local:8001,

prodsrv02.domain.local:8002,

prodsrv03.domain.local:8003,

prodsrv04.domain.local:8004

/app02 PROD2_Cluster prodsrv21:20001,prodsrv22:2002

Other None None. Handled by Apache.

The configuration is very flexible and a lot of combinations are possible to fulfil the
architectures requirements.

See also
ff Installing Apache HTTP Server for the Web tier

Chapter 2

67

Defining a network channel for cluster
communications

When configuring the Listen Address value with a hostname as in the previous recipes,
WebLogic Server instances use the specific network interface card (NIC) bound to the
hostname's IP address for network traffic. The traffic includes all inbound and outbound
requests and the Unicast cluster communications.

In a production environment with high network traffic, it is possible to improve network
utilization by adding an additional NIC to be used by the Unicast cluster communications,
segregating the application traffic, and the cluster communication traffic.

This recipe will create a new channel named clusterChannel and configure the
PROD_Cluster cluster to use it.

Getting ready
This recipe assumes that all machines used by the cluster have two network interface cards.
The first NIC is eth0 used by the default WebLogic channel. The second NIC is eth1 and will
be used for the new WebLogic network channel.

All the Managed Server instances of the cluster must define a new channel with the same
name clusterChannel. The clusterChannel points to the IP address or hostname of
the NIC eth1 of the machine that hosts the instance. The hostnames bound to the eth1 for
the PROD_Server01, PROD_Server02, PROD_Server03, and PROD_Server04 Managed
Servers are channel01.domain.local, channel02.domain.local, channel03.
domain.local, and channel04.domain.local respectively.

How to do it...
Carry out the following steps to create a new channel:

1.	 Access the Administration Console with your web browser at http://prod01.
domain.local:7001/console.

2.	 Click Expand the Environment tree on the left and click on Servers.

3.	 Click on the PROD_Server01 link to navigate to General | Configuration of the first
Managed Server of the cluster.

High Availability with WebLogic Clusters

68

4.	 Click on the Protocols tab and then on the Channels tab to navigate to
Protocols | Channels of the PROD_Server01 link. Click on the New button,
as shown in the following screenshot:

5.	 Type clusterChannel in the Name field. Change the Protocol drop-down menu
to cluster-broadcast and click on the Next button.

6.	 Now, type channel01.domain.local in the Listen Address field, type 8001
in both the Listen Port and External Listen Port fields. Leave the External Listen
Address empty. Click on the Next button, as shown in the following screenshot:.

Chapter 2

69

7.	 Select the checkboxes Enabled, HTTP Enabled for This Protocol, and Outbound
Enabled. Leave the Tunneling Enabled checkbox in its default unchecked state.
Click on the Finish button, as shown in the following screenshot:

8.	 Add a new channel to each of the Managed Servers repeating the steps on the
PROD_Server02, PROD_Server03, and PROD_Server04 instances. Use
channel02.domain.local, channel03.domain.local, and channel04.
domain.local as the Listen Address value and 8002, 8003, and 8004 as the
Listen Port and External Listen Port values respectively.

9.	 Click on the Clusters link on the navigation tree on the left and click on
PROD_Cluster to navigate to General | Configuration of the cluster.

High Availability with WebLogic Clusters

70

10.	 Click on the Messaging tab and type clusterChannel on the Unicast Broadcast
Channel text field (as shown in the following screenshot). Click on the Save button.

11.	 Click on the Activate Changes button to finish.

How it works...
The names channel01.domain.local, channel02.domain.local, channel03.
domain.local, and channel04.domain.local are the hostnames bound to the eth1 IP
address of each machine.

The PROD_Cluster cluster is now using the clusterChannel network channel to
communicate through a different NIC. The cluster data is being carried by eth1 and the
application traffic uses eth0.

There's more...
The WLST can also be used to create the network channel.

Defining the cluster channel using WLST
The change can be made using WLST:

1.	 Log in as a wls user to shell and start WLST:
[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

Chapter 2

71

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password and t3://prod01.domain.local:7001 as the server URL:
wls:/offline> connect("wlsadmin","<pwd>","t3://prod01.domain.
local:7001")

3.	 Run the following WLST commands to create the cluster and the server instances:

edit()

startEdit()

cd('/Servers/PROD_Server01')

cmo.createNetworkAccessPoint('clusterChannel')

cd('/Servers/PROD_Server01/NetworkAccessPoints/clusterChannel')

cmo.setProtocol('cluster-broadcast')

cmo.setListenAddress('channel01.domain.local')

cmo.setEnabled(true)

cmo.setHttpEnabledForThisProtocol(true)

cmo.setTunnelingEnabled(false)

cmo.setOutboundEnabled(true)

cmo.setTwoWaySSLEnabled(false)

cmo.setClientCertificateEnforced(false)

cd('/Servers/PROD_Server02')

cmo.createNetworkAccessPoint('clusterChannel')

cd('/Servers/PROD_Server02/NetworkAccessPoints/clusterChannel')

cmo.setProtocol('cluster-broadcast')

cmo.setListenAddress('channel02.domain.local')

cmo.setEnabled(true)

cmo.setHttpEnabledForThisProtocol(true)

cmo.setTunnelingEnabled(false)

cmo.setOutboundEnabled(true)

cmo.setTwoWaySSLEnabled(false)

cmo.setClientCertificateEnforced(false)

cd('/Servers/PROD_Server03')

cmo.createNetworkAccessPoint('clusterChannel')

cd('/Servers/PROD_Server03/NetworkAccessPoints/clusterChannel')

cmo.setProtocol('cluster-broadcast')

High Availability with WebLogic Clusters

72

cmo.setListenAddress('channel03.domain.local')

cmo.setEnabled(true)

cmo.setHttpEnabledForThisProtocol(true)

cmo.setTunnelingEnabled(false)

cmo.setOutboundEnabled(true)

cmo.setTwoWaySSLEnabled(false)

cmo.setClientCertificateEnforced(false)

cd('/Servers/PROD_Server04')

cmo.createNetworkAccessPoint('clusterChannel')

cd('/Servers/PROD_Server04/NetworkAccessPoints/clusterChannel')

cmo.setProtocol('cluster-broadcast')

cmo.setListenAddress('channel04.domain.local')

cmo.setEnabled(true)

cmo.setHttpEnabledForThisProtocol(true)

cmo.setTunnelingEnabled(false)

cmo.setOutboundEnabled(true)

cmo.setTwoWaySSLEnabled(false)

cmo.setClientCertificateEnforced(false)

cd('/Clusters/PROD_Cluster')

cmo.setClusterBroadcastChannel('clusterChannel')

activate()

exit()

See also
ff Using Unicast for cluster communications

ff Using Multicast for cluster communications

ff Defining a network channel for cluster communications

ff Configuring high availability for Administration Server

Chapter 2

73

Configuring high availability for
Administration Server

The Administration Server is a single WebLogic Server instance responsible for the
configuration and management of the WebLogic domain. By default, the Administration
Server runs on the machine that the domain was created.

Unlike WebLogic clustering, WebLogic Server does not provide out of the box high availability
options for the Administration Server, if this machine fails.

Thanks to the Managed Servers Independence Mode (MSI) Managed
Servers will keep running even if the Administration Server is down.
Managed Servers can also be started by using only Node Manager
and WLST or by using the start-up shell scripts without the need of the
Administration Server.

This recipe will provide the steps to prepare the environment in case the machine that hosts
the Administration Server fails.

Getting ready
By default, the Administration Server binds to all IP addresses of the machine, but sets the
prod01 machine as its default hostname.

The first step is to set the Listen Address field to a unique hostname or alias decoupled
from the original hostname of the machine. This recipe will use a new hostname adminhost.
domain.local, which will initially point to the IP Address of prod01 machine or to a VIP to
prod01 that can be migrated later.

Also a copy of the Administration Server directory must be provisioned on all machines in the
domain so the Administration Server can be started on one of them when needed.

How to do it...
Change the Administration Server Listen Address value:

1.	 Access the Administration Console with your web browser at http://prod01.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Environment tree on the left and click on Servers.

High Availability with WebLogic Clusters

74

4.	 Click on the PROD_AdminServer (admin) link to navigate to
General | Configuration of the Administration Server.

5.	 Type adminhost in the Listen Address field.

6.	 Click on the Save button and then on the Activate Changes button.

7.	 Shutdown all Server instances, including the Administration Server.

8.	 Start the Administration Server.

9.	 The Administration Console should now be accessible at http://adminhost.
domain.local:7001/console.

Copy the Administration Server files to all machines:

1.	 Log in as a wls user to prod01 shell and copy to the Administration Server directory
to prod02:
[wls@prod01]$ cd $DOMAIN_HOME/servers

[wls@prod01]$ scp –rp PROD_AdminServer wls@prod02:$DOMAIN_HOME/
servers/

The Administration Server directory must always be updated on
all machines. A recent backup can also be restored when needed.
Remember to define a backup routine of your files.

2.	 Restart all instances and the configuration part is finished.

Starting the Administration Server on the prod02 machine:

1.	 In a situation where prod01 is unavailable, the adminhost.domain.local
hostname must be changed to point to the IP address of prod02 or the adminhost.
domain.local VIP should move to prod02.

2.	 Log in as a wls user to the prod02 shell and start the Administration Server. Make
sure you use a recent copy of the Administration Server directory:
[wls@prod02]$ cd $DOMAIN_HOME/bin

[wls@prod02]$ nohup ./startWebLogic.sh &

3.	 The Administration Server is now running on prod02 and the Administration
Console is still accessible at the same address http://adminhost.domain.
local:7001/console.

Chapter 2

75

How it works...
All instances of the domain are now using the adminhost.domain.local hostname as the
Administration Server hostname.

The Administration Server should be started normally on the prod01 machine and listens for
the IP address bound to adminhost.domain.local, which points to an IP address on the
prod01 machine as well.

If the prod01 machine crashes, change the adminhost.domain.local IP address to the
prod02 machine or move the VIP to prod02 and start the Administration Server on prod02.

This change can be made by setting up the DNS Server or by making
changes to the /etc/hosts file of the machines among a variety of
other options. Please contact your network administrators to change the IP
address of the adminhost.domain.local properly.

Follow the usual procedure to start the Administration Server, but now on prod02 machine.
As soon the Administration Server starts, all Managed Servers will reconnect automatically
to it looking for the adminhost.domain.local new location and new IP address.

In earlier versions, the DNS cache of the JDK didn't have a default
time-to-live (TTL), so a WebLogic Server instance didn't recognize that
a hostname had its IP address changed until restarting the instance.
To avoid the need of a restart, a JVM argument had to be added to
change the TTL.
In WebLogic 12c (using JDK > 1.6), the JVM argument is not needed
anymore. Now the JDK sets a default DNS TTL to 30s.

There's more...
Update the start and stop scripts after changing the Administration Server's Listen
Address value.

High Availability with WebLogic Clusters

76

Changing the start/stop scripts
WebLogic Administrators who use the shell scripts provided in $DOMAIN_HOME/bin to start
and stop WebLogic Managed Servers must change the scripts to use the new Administration
Server hostname adminhost.domain.local:

1.	 Log in as a wls user to the prod01 shell and change to the $DOMAIN_HOME/bin
directory:
[wls@prod01]$ cd $DOMAIN_HOME/bin

2.	 Edit the startManagedWebLogic.sh, stopManagedWebLogic.sh, and
stopManagedWebLogic.sh files and replace all occurrences of the prod01
word to adminhost.domain.local and save the files:
[wls@prod01]$ sed -i 's/prod01/adminhost.domain.local/g'
startManagedWebLogic.sh stopManagedWebLogic.sh stopWebLogic.sh

3.	 Copy the changed files to the other machines in the domain:
[wls@prod01]$ scp startManagedWebLogic.sh stopManagedWebLogic.sh
stopWebLogic.sh wls@prod02:$DOMAIN_HOME/bin

See also
ff Defining a Hostname/Alias for the Listen Address value

3
Configuring JDBC

Resources for High
Availability

In this chapter, we will cover the following recipes:

ff Creating a JDBC data source

ff Creating a multi data source

ff Defining the multi data source HA Strategy

ff Creating a GridLink data source

ff Managing JDBC data sources

ff Tuning data sources for reliable connections

ff Tuning multi data sources – surviving RAC node failures

ff Updating the Oracle JDBC driver

Introduction
WebLogic Server 12c provides database connectivity through the use of the JDBC API.

JDBC API stands for Java database connectivity and allows Java applications to make calls to
a database in the form of SQL statements. The connection to the database is encapsulated by
the vendor's JDBC driver. WebLogic Server 12c provides JDBC drivers for the most commonly
used databases, such as DB2, Informix, Microsoft SQL Server, MySQL, Oracle, PostgreSQL,
Sybase, and others. A third-party JDBC driver can also be added, such as the Teradata
JDBC drivers.

Configuring JDBC Resources for High Availability

78

The JDBC data source contains the parameters, such as the database host address, database
port, instance, and service name, needed to connect to the database. The data source also
includes transaction options and a pool for reusing the database connections, optimizing the
time spent opening these connections.

This chapter will go through some requirements of a hypothetic application named DBApp;
it will show how to create and configure the JDBC resources required by it. With reliability and
high availability in mind, the chapter will focus on connecting to an Oracle database and the
additional steps needed when using Oracle RAC.

Deeper JDBC transaction tunings, such as Two Phase Commit, Logging Last Resource, and
Global Transaction Support with no XA driver, among other options, are dependent on the
application's development and will not be the focus of this chapter.

Creating a JDBC data source
Consider that the DBApp application is deployed on the PROD_Cluster cluster and requires
a data source to connect to the database. The application looks for a non-XA data source with
the Java Naming and Directory Interface (JNDI) as jdbc/ds-nonXA.

The database is an Oracle database that is running in the dbhost hostname and listening
to the port 1521. The listener is accepting requests to the service name dbservice.

In this recipe, a new JDBC data source to connect to the Oracle database will be created
and configured for the application DBApp.

Getting ready
The data source will be named ds-nonXA using the required JNDI jdbc/ds-nonXA.
The target will be the cluster PROD_Cluster, the same target as that of the DBApp
application. The database username is dbuser and the password is dbpwd.

How to do it...
Carry out the following steps to create a JDBC data source:

1.	 Access the Administration Console with your web browser at
http://adminhost.domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the plus sign to open the Services tree on the left, and then click on
Data Sources.

4.	 Click on the New button and then click on Generic Data Source.

5.	 Type ds-nonXA in the Name field and jdbc/ds-nonXA in the JNDI Name field.

Chapter 3

79

6.	 Select the Oracle option from the Database Type drop-down menu. Click on the
Next button.

7.	 Choose *Oracle's Driver (Thin) for Service connections;
Versions:9.0.1 and later from the Database Driver drop-down menu.
Click on the Next button.

8.	 Leave the default values for the Transaction options and click on the Next button.

9.	 On the Connection Properties page, type dbservice in the Database Name field,
dbhost in the Host Name field, and 1521 in the Port field. Complete the Database
User Name, Password, and Confirm Password fields by typing dbuser and dbpwd
as the username and password respectively. Click on the Next button.

10.	 Click on the Next button on the Test Database Connection page.

11.	 Select the All servers in the cluster radio button from the PROD_Cluster cluster.
Click on the Finish button.

12.	 Then, click on the Activate Changes button.

How it works...
A new non-XA JDBC data source was created with the parameters required by the DBApp
application. The non-XA Oracle JDBC driver is the thin version. All other parameters were
left as their default values.

The Oracle driver class name used for non-XA data sources is oracle.jdbc.OracleDriver.

There's more...
We will now see how to create the JDBC data source through WLST.

Creating the JDBC data source using WLST
1.	 Log in as a wls user to shell and start WLST:

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL:
wls:/offline> connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

Configuring JDBC Resources for High Availability

80

3.	 Run the following WLST commands to create the data source:
edit()

startEdit()

cd('/')

cmo.createJDBCSystemResource('ds-nonXA')

cd('/JDBCSystemResources/ds-nonXA/JDBCResource/ds-nonXA')

cmo.setName('ds-nonXA')

cd('/JDBCSystemResources/ds-nonXA/JDBCResource/ds-nonXA/
JDBCDataSourceParams/ds-nonXA')

set('JNDINames',jarray.array([String('jdbc/ds-nonXA')], String))

cd('/JDBCSystemResources/ds-nonXA/JDBCResource/ds-nonXA/
JDBCDriverParams/ds-nonXA')

cmo.setUrl('jdbc:oracle:thin:@dbhost:1521/dbservice')

cmo.setDriverName('oracle.jdbc.OracleDriver')

cmo.setPassword('dbpwd')

cd('/JDBCSystemResources/ds-nonXA/JDBCResource/ds-nonXA/
JDBCConnectionPoolParams/ds-nonXA')

cmo.setTestTableName('SQL SELECT 1 FROM DUAL\r\n')

cd('/JDBCSystemResources/ds-nonXA/JDBCResource/ds-nonXA/
JDBCDriverParams/ds-nonXA/Properties/ds-nonXA')

cmo.createProperty('user')

cd('/JDBCSystemResources/ds-nonXA/JDBCResource/ds-nonXA/
JDBCDriverParams/ds-nonXA/Properties/ds-nonXA/Properties/user')

cmo.setValue('dbuser')

cd('/JDBCSystemResources/ds-nonXA/JDBCResource/ds-nonXA/
JDBCDataSourceParams/ds-nonXA')

cmo.setGlobalTransactionsProtocol('OnePhaseCommit')

cd('/JDBCSystemResources/ds-nonXA')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Cluster,Type=Cluster')], ObjectName))

activate()

exit()

Chapter 3

81

See also
ff Creating a multi data source

Creating a multi data source
The multi data source should be used when connecting to an Oracle RAC database.
The multi data source is a data source abstraction that groups all the individual data
sources that connect to each node of the Oracle RAC database.

Consider that the DBApp application requires an XA connection with a JNDI name
jdbc/ds-XA added to a database.

The database is an Oracle RAC database with two nodes. The first node has an instance name
instance-rac01 and runs in the dbhost-rac01 hostname and listens to the port 1521.
The listener accepts requests to the service name dbservice-rac01. The second node is
the instance instance-rac02, and it runs in the dbhost-rac02 hostname, listens to the
port 1521, and has a service name dbservice-rac02.

In this recipe, a new JDBC multi data source will be created and configured for the
DBApp application.

Getting ready
Before creating the multi data source, the individual data sources pointing to each RAC
node must be created. Two data sources will be created with the names ds-XA-rac01 and
ds-XA-rac02 and with the JNDI names jdbc/ds-XA-rac01 and jdbc/ds-XA-rac02.

The multi data source will be named ds-XA and includes both data sources.

How to do it...
Carry out the following steps to create a multi data source:

1.	 Access the Administration Console with your web browser at
http://adminhost.domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the plus sign to open the Services tree on the left, and then
click on Data Sources.

4.	 Click on the New button and then click on Generic Data Source.

5.	 Type ds-XA-rac01 in the Name field and jdbc/ds-XA-rac01 in the JNDI Name
field. Leave the Database Type drop-down menu with the Oracle option selected.
Click on the Next button.

Configuring JDBC Resources for High Availability

82

6.	 Choose *Oracle's Driver (Thin XA) for RAC Service-Instance
connections; Versions:10 and later from the Database Driver
drop-down menu. Click on the Next button.

7.	 Then, click on the Next button in the Transaction Options page.

8.	 On the Connection Properties page, type dbservice-rac01 in the Service
Name field, instance-rac01 in the Database Name field, dbhost-rac01 in the
Host Name field, and 1521 in the Port field. Complete the Database User Name,
Password, and Confirm Password fields by typing dbuser, and dbpwd as the
username and password respectively. Click on the Next button.

9.	 Click on the Next button in the Test Database Connection page.

10.	 Select the All servers in the cluster radio button from the PROD_Cluster cluster.
Click on the Finish button.

11.	 Repeat the previous steps and create another data source. Add ds-XA-rac02 as
Name, jdbc/ds-XA-rac02 as JNDI Name, dbservice-rac02 as Service Name,
instance-rac02 as Database Name, and dbhost-rac02 in the Host Name field.

12.	 Create the multi data source by clicking on the New button then on the Multi Data
Source link.

13.	 Type ds-XA in the Name field and jdbc/ds-XA in the JNDI Name field. Leave the
other options as their default values. Click on the Next button.

14.	 Select the All servers in the cluster radio button from the PROD_Cluster cluster.
Click on the Next button.

15.	 Select the XA Driver option. Click on Next.

16.	 Select both data sources ds-XA-rac01 and ds-XA-rac02 from the left of the Add
Data Source page. Click on the >> button in the center of both sides to move them to
the right. Click on Finish.

Chapter 3

83

17.	 Finally, click on the Activate Changes button.

How it works...
The multi data source ds-XA was created with the data sources ds-XA-rac01
and ds-XA-rac02 as members.

The multi data source manages the application requests for a database connection
and uses Algorithm Type to define the strategy for high availability.

If using the Failover algorithm, be sure to enable the Failover Request if
Busy checkbox of the multi data source.

The multi data source is responsible for managing the load and failover; so if the Oracle
database uses the SCAN address feature, it's recommended to set up a GridLink data
source instead.

It is still possible to use the SCAN address with the multi data source by
defining the instance name in the data source URL. Also, data source
members of a multi data source must always target to a unique Oracle RAC
node, so using JDBC URL parameters such as LOAD_BALANCE=ON and
FAILOVER=ON is not supported when using XA multi data sources.

The Oracle driver class name used for XA data sources is oracle.jdbc.xa.client.
OracleXADataSource.

Configuring JDBC Resources for High Availability

84

There's more...

Creating the multi data source using WLST
1.	 Log in as a wls user to shell and start WLST:

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL:
wls:/offline> connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands to create the first data source:
edit()

startEdit()

#create the ds-XA-rac01 data source

cmo.createJDBCSystemResource('ds-XA-rac01')

cd('/JDBCSystemResources/ds-XA-rac01/JDBCResource/ds-XA-rac01')

cmo.setName('ds-XA-rac01')

cd('/JDBCSystemResources/ds-XA-rac01/JDBCResource/ds-XA-rac01/
JDBCDataSourceParams/ds-XA-rac01')

set('JNDINames',jarray.array([String('jdbc/ds-XA-rac01')],
String))

cd('/JDBCSystemResources/ds-XA-rac01/JDBCResource/ds-XA-rac01/
JDBCDriverParams/ds-XA-rac01')

cmo.setUrl('jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_
LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=dbhost-rac01)(PORT=1521)))
(CONNECT_DATA=(SERVICE_NAME=dbservice-rac01)(INSTANCE_
NAME=instance-rac01)))')

cmo.setDriverName('oracle.jdbc.xa.client.OracleXADataSource')

cmo.setPassword('dbpwd');

cd('/JDBCSystemResources/ds-XA-rac01/JDBCResource/ds-XA-rac01/
JDBCConnectionPoolParams/ds-XA-rac01')

cmo.setTestTableName('SQL SELECT 1 FROM DUAL\r\n')

cd('/JDBCSystemResources/ds-XA-rac01/JDBCResource/ds-XA-rac01/
JDBCDriverParams/ds-XA-rac01/Properties/ds-XA-rac01')

cmo.createProperty('user')

cd('/JDBCSystemResources/ds-XA-rac01/JDBCResource/ds-XA-rac01/
JDBCDriverParams/ds-XA-rac01/Properties/ds-XA-rac01/Properties/
user')

Chapter 3

85

cmo.setValue('dbuser')

cd('/JDBCSystemResources/ds-XA-rac01/JDBCResource/ds-XA-rac01/
JDBCDataSourceParams/ds-XA-rac01')

cmo.setGlobalTransactionsProtocol('TwoPhaseCommit')

cd('/JDBCSystemResources/ds-XA-rac01')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Cluster,Type=Cluster')], ObjectName))

4.	 Run the following WLST commands to create the second data source:
#create the ds-XA-rac02 data source

cd('/')

cmo.createJDBCSystemResource('ds-XA-rac02')

cd('/JDBCSystemResources/ds-XA-rac02/JDBCResource/ds-XA-rac02')

cmo.setName('ds-XA-rac02')

cd('/JDBCSystemResources/ds-XA-rac02/JDBCResource/ds-XA-rac02/
JDBCDataSourceParams/ds-XA-rac02')

set('JNDINames',jarray.array([String('jdbc/ds-XA-rac02')],
String))

cd('/JDBCSystemResources/ds-XA-rac02/JDBCResource/ds-XA-rac02/
JDBCDriverParams/ds-XA-rac02')

cmo.setUrl('jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_
LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=dbhost-rac02)(PORT=1521)))
(CONNECT_DATA=(SERVICE_NAME=dbservice-rac02)(INSTANCE_
NAME=instance-rac02)))')

cmo.setDriverName('oracle.jdbc.xa.client.OracleXADataSource')

cmo.setPassword('dbpwd');

cd('/JDBCSystemResources/ds-XA-rac02/JDBCResource/ds-XA-rac02/
JDBCConnectionPoolParams/ds-XA-rac02')

cmo.setTestTableName('SQL SELECT 1 FROM DUAL\r\n')

cd('/JDBCSystemResources/ds-XA-rac02/JDBCResource/ds-XA-rac02/
JDBCDriverParams/ds-XA-rac02/Properties/ds-XA-rac02')

cmo.createProperty('user')

cd('/JDBCSystemResources/ds-XA-rac02/JDBCResource/ds-XA-rac02/
JDBCDriverParams/ds-XA-rac02/Properties/ds-XA-rac02/Properties/
user')

cmo.setValue('dbuser')

cd('/JDBCSystemResources/ds-XA-rac02/JDBCResource/ds-XA-rac02/
JDBCDataSourceParams/ds-XA-rac02')

cmo.setGlobalTransactionsProtocol('TwoPhaseCommit')

cd('/JDBCSystemResources/ds-XA-rac02')

Configuring JDBC Resources for High Availability

86

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Cluster,Type=Cluster')], ObjectName))

5.	 Run the following WLST commands to create the multi data source:

#create the multi data source ds-xa

cd('/')

cmo.createJDBCSystemResource('ds-XA')

cd('/JDBCSystemResources/ds-XA/JDBCResource/ds-XA')

cmo.setName('ds-XA')

cd('/JDBCSystemResources/ds-XA/JDBCResource/ds-XA/
JDBCDataSourceParams/ds-XA')

set('JNDINames',jarray.array([String('jdbc/ds-XA')], String))

cmo.setAlgorithmType('Failover')

cmo.setDataSourceList('ds-XA-rac01,ds-XA-rac02')

cd('/JDBCSystemResources/ds-XA')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Cluster,Type=Cluster')], ObjectName))

activate()

exit()

See also
ff Creating a JDBC data source

ff Defining the multi data source HA Strategy

ff Creating a GridLink data source

ff Tuning data sources for reliable connections

ff Tuning multi data sources – surviving RAC node failures

Defining the multi data source HA Strategy
The multi data source has two strategy options for highly available connections for an Oracle
RAC database. The strategy is defined by the Algorithm Type parameter.

In this recipe, the multi data source ds-XA will be changed from the default Failover
algorithm to the Load Balance strategy.

Chapter 3

87

Getting ready
This recipe will change the parameters of the ds-XA data source, so make sure the multi
data source and the individual data sources ds-XA-rac01 and ds-XA-rac02 have already
been created from the previous recipe.

How to do it...
Carry out the following steps to configure the high availability strategy for the multi
data source:

1.	 Access the Administration Console with your web browser at
http://adminhost.domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Services tree on the left, and then click on Data Sources.

4.	 Click on the ds-XA multi data source.

5.	 Change Algorithm Type to Load Balance. Then click on the Save button.

6.	 Finally, click on the Activate Changes button.

How it works...
With the Load Balance algorithm, the multi data source is responsible for load balancing
the application requests to reserve a database connection in a round-robin fashion. If one
Oracle RAC node goes down, the multi data source continues to return good connections
transparently to the applications from the other RAC node.

The Failover algorithm returns a connection from the first data source of the member list.
If the connection fails or all connections of the pool are in use, the other data source
members will be used.

The multi data source does not provide failover for active and
in-use connections.

There's more...
The multi data source algorithm can be changed using WLST.

Configuring JDBC Resources for High Availability

88

Changing the multi data source algorithm type using WLST
1.	 Log in as a wls user to shell and start WLST:

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL:
wls:/offline> connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands to change the multi data source algorithm:

edit()

startEdit()

cd('/JDBCSystemResources/ds-XA/JDBCResource/ds-XA/
JDBCDataSourceParams/ds-XA')

cmo.setAlgorithmType('Load-Balancing')

activate()

exit()

See also
ff Creating a JDBC data source

ff Creating a multi data source

ff Tuning data sources for reliable connections

ff Tuning multi data sources – surviving RAC node failures

Creating a GridLink data source
The GridLink data source is a new type of data source that has been available in WebLogic
Server since Version 10.3.4. The GridLink is used to connect to Oracle RAC databases and is
a recommended alternative to the multi data sources since it provides some useful features,
such as fast connection failover, runtime connection load balancing, graceful handling of
Oracle RAC outages, GridLink affinity, and SCAN addresses.

The same DBApp application requirement from the earlier recipe will be used, but in this
recipe a GridLink data source will be used instead of a multi data source.

Chapter 3

89

Consider that the DBApp application requires an XA connection with a JNDI name jdbc/ds-
GridLinkXA to a database. The database is an Oracle RAC database with two nodes. The
first node runs in the dbhost-rac01 hostname and listens to the port 1521. The second
node runs in the dbhost-rac02 hostname and also listens to the port 1521. The database
has a service name dbservice. The ONS service is running on the onshost hostname,
port 6200.

Getting ready
Create the GridLink data source with the JNDI name jdbc/ds-GridLinkXA in the
Administration Console. Make sure the Administration Server is running.

How to do it...
Carry out the following steps to create a new GridLink data source:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the plus sign to open the Services tree on the left, and then click on
Data Sources.

4.	 Click on the New button and then click on GridLink Data Source.

5.	 Type ds-GridLinkXA in the Name field and jdbc/ds-GridLinkXA in the
JNDI Name field. Choose *Oracle's Driver (Thin XA) for GridLink
Connections Versions:11 and later from the Database Driver drop-down
menu. Click on the Next button.

6.	 Click on the Next button on the Transaction Options page.

7.	 Leave the Enter individual listener information option selected on the GridLink
data source connection Properties Options page and click on the Next button.

8.	 On the Connection Properties page, type dbservice in the Service Name field.
Type dbhost-rac01:1521 in the Host and Port field and click on the Add button.
Add the second host by typing dbhost-rac02:1521 in the Host and Port field
and clicking on the Add button. Complete the database User Name, Password,
and Confirm Password fields by typing dbuser and dbpwd as the username and
password respectively. Leave the Protocol field with the TCP value. Click on the
Next button.

9.	 Click on the Next button on the Test GridLink Database Connection page.

10.	 On the ONS Client Configuration page, type onshost:6200 in the ONS host
and port field and click on the Add button. Then click on Next.

11.	 Click on the Next button on the Test ONS client configuration page.

Configuring JDBC Resources for High Availability

90

12.	 Select the All servers in the cluster radio button from the PROD_Cluster cluster.
Click on the Finish button.

13.	 Finally, click on the Activate Changes button.

How it works...
The GridLink data source has some advantages over the multi data source.

The multi data source uses the test connection feature to guarantee a reliable connection
to the database. The GridLink data source on the other hand uses the call back mechanism
of Oracle RAC Fast Application Notification (FAN). This means that the GridLink data
source actively responds to events and notifications coming from the database, such as the
fluctuation of RAC services.

Another improvement is the load balancing mechanism. The multi data source configured with
the Load Balance algorithm distributes the application requests to borrow a connection
from the data source members of the multi data source in a round-robin fashion. GridLink
improves the distribution load by receiving load balancing events from the database. These
events indicate the recommended connection distribution among the RAC nodes.

If FAN is disabled, GridLink uses the round-robin
Load Balance algorithm.

There's more...
The GridLink data source can also be created using WLST.

Creating a GridLink data source using WLST
1.	 Log in as a wls user to shell and start WLST:

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL:
wls:/offline> connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands to create the GridLink data source:

edit()
startEdit()

cmo.createJDBCSystemResource('ds-GridLinkXA')

Chapter 3

91

cd('/JDBCSystemResources/ds-GridLinkXA/JDBCResource/ds-
GridLinkXA')
cmo.setName('ds-GridLinkXA')
cd('/JDBCSystemResources/ds-GridLinkXA/JDBCResource/ds-GridLinkXA/
JDBCDataSourceParams/ds-GridLinkXA')
set('JNDINames',jarray.array([String('jdbc/ds-GridLinkXA')],
String))
cd('/JDBCSystemResources/ds-GridLinkXA/JDBCResource/ds-GridLinkXA/
JDBCDriverParams/ds-GridLinkXA')
cmo.setUrl('jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_
LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=dbhost-rac01)(PORT=1521))
(ADDRESS=(PROTOCOL=TCP)(HOST=dbhost-rac02)(PORT=1521)))(CONNECT_
DATA=(SERVICE_NAME=dbservice)))\r\n')
cmo.setDriverName('oracle.jdbc.xa.client.OracleXADataSource')
cmo.setPassword('dbpwd')
cd('/JDBCSystemResources/ds-GridLinkXA/JDBCResource/ds-GridLinkXA/
JDBCConnectionPoolParams/ds-GridLinkXA')
cmo.setTestTableName('SQL SELECT 1 FROM DUAL\r\n')

cd('/JDBCSystemResources/ds-GridLinkXA/JDBCResource/ds-GridLinkXA/
JDBCDriverParams/ds-GridLinkXA/Properties/ds-GridLinkXA')
cmo.createProperty('user')
cd('/JDBCSystemResources/ds-GridLinkXA/JDBCResource/ds-GridLinkXA/
JDBCDriverParams/ds-GridLinkXA/Properties/ds-GridLinkXA/
Properties/user')
cmo.setValue('dbuser')
cd('/JDBCSystemResources/ds-GridLinkXA/JDBCResource/ds-GridLinkXA/
JDBCDataSourceParams/ds-GridLinkXA')
cmo.setGlobalTransactionsProtocol('TwoPhaseCommit')
cd('/JDBCSystemResources/ds-GridLinkXA/JDBCResource/ds-GridLinkXA/
JDBCOracleParams/ds-GridLinkXA')
cmo.setFanEnabled(true)
cmo.setOnsWalletFile('')
cmo.unSet('OnsWalletPasswordEncrypted')
cmo.setOnsNodeList('onshost:6200 \r\n')
cmo.setFanEnabled(true)
cmo.setOnsWalletFile('')
cmo.unSet('OnsWalletPasswordEncrypted')
cmo.setOnsNodeList('onshost:6200 \r\n')
cd('/JDBCSystemResources/ds-GridLinkXA')
set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Cluster,Type=Cluster')], ObjectName))

activate()
exit()

Configuring JDBC Resources for High Availability

92

See also
ff Creating a multi data source

Managing JDBC data sources
The WebLogic JDBC subsystem can be controlled when needed. A WebLogic Administrator
can start, stop, shrink, pause, suspend, and reset the data source on demand. The statement
cache can also be cleared if needed.

In this recipe, the ds-nonXA data source will be used as an example.

Getting ready
The JDBC operations use the Administration Console, so make sure the Administration Server
is running.

How to do it...
To control the data source operations, carry out the following steps:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the plus sign to open the Services tree on the left, and then click on
Data Sources.

3.	 Click on the ds-nonXA link to open the data source and then click on the
Control tab.

4.	 Select the checkbox from ds-nonXA and click on the button of the desired operation:
Shrink, Reset, Clear Statement Cache, Suspend, Resume, Shutdown, or Start.

How it works...
The data source control operations are useful in situations such as when an Oracle RAC node
is down or during a database maintenance window.

The Shrink operation closes the idle connections of the pool, freeing the database
connections and resources in use. It reduces the opened connections until the greater value
is between the minimum capacity parameter and the in-use connection.

The Reset operation resets the pool, closing and reopening all the database connections.

Chapter 3

93

The Clear Statement Cache operation clears the callable and prepared statement caches.

The Clear Statement Cache operation is useful when there are
changes in DBMS objects such as stored procedures. Some
exceptions and errors can be caused by deprecated cached
statements.

The Suspend operation disables the data source. Although it leaves the connection state
unchanged in the pool, the applications cannot borrow connections. The Suspend operation
can also be forced. In this case, all connections are closed.

The Resume operation resumes a suspended data source.

The Shutdown operation shuts down the data source. If there are connections in use by the
application, the application operation, in the course of time, will fail and return an error. The
Shutdown operation can be forced. In this case, if the connections are in use, WebLogic will
forcibly close all of them and will shut down the data source.

The Start operation starts a stopped data source.

See also
ff Creating a JDBC data source

ff Creating a multi data source

ff Creating a GridLink data source

Tuning data sources for reliable connections
In the previous recipes, some data sources required by the DBApp application were created.

Some default parameter values are not the best option to use out of the box, so in this recipe
the parameters of the GridLink ds-GridLinkXA data source will be tuned to avoid unreliable
connections being delivered to the applications.

The changes are generic to the GridLink and Generic data source types and can be applied
to all previously created data sources.

Getting ready
Access the Administration Console to tune the ds-GridLinkXA data source parameter.
Make sure the ds-GridLinkXA GridLink was created in the previous recipe and that the
Administration Server is running.

Configuring JDBC Resources for High Availability

94

How to do it...
To set the data source tunings, proceed with the following steps:

1.	 Access the Administration Console with your web browser at
http://adminhost.domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.
3.	 Click on the plus sign to open the Services tree on the left, and then click on

Data Sources.
4.	 Click on the ds-GridLinkXA link to open the data source, and then click on the

Connection Pool tab under the main Configuration tab.
5.	 Type 0 in the Initial Capacity field and 15 in the Maximum Capacity and Minimum

Capacity fields. Click on the Save button and then click on the Advanced link to open
the advanced options.

6.	 Check the Test Connection on Reserve checkbox. Type 900 in the Test Frequency
field and type 0 in the Seconds to Trust an Idle Connection field. Leave the other
options as their default values (as shown in the following screenshot) and click on
the Save button.

7.	 Finally, click on the Activate Changes button.

Chapter 3

95

How it works...
This recipe changes a GridLink data source but this can work for Generic data source types
as well.

During the WebLogic Server startup process, the data sources are deployed and the
connections to the databases are opened according to the Initial Capacity parameter.

If a data source connection cannot be established with the database during startup for some
reason, the Managed Server starts in the ADMIN state instead of in the RUNNING state.
The commonly used procedure in this situation is to click on the Resume button; the server
instance resumes to the RUNNING state and starts accepting and processing the application
requests. However, the data source remains undeployed and uninitialized, and errors will
occur with the applications that use this data source. Even if the database goes back online,
the data source will not start automatically.

To avoid the ADMIN state on startup, set the data source Initial Capacity to
0 so it won't open any connection to the database during the server startup
process. The Managed Server instance will start in the RUNNING state, and
as soon as the database goes back online, the data source will reconnect to it
without intervention.

The drawback is that since WebLogic will start in the RUNNING state, even with the database
out, the application requests that use the data source will return errors. Therefore, it is a good
idea to use the option that best suits the application's requirements.

It's also a common recommendation to set Initial Capacity and Maximum Capacity to the
same value so all connections would already be open when needed. The value of 15 for
Maximum Capacity was used as an example.

In WebLogic Server 12c, a better recommendation for production
environments would be to set Initial Capacity to 0 and Minimum Capacity
and Maximum Capacity to the same value. The Minimum Capacity
parameter was added in WebLogic Server 10.3.6.

With the Test Connection on Reserve option enabled, WebLogic tests the connection with
the database using the query specified in the Test Table Name field, just before lending
the connection to the application. The value of 0 seconds in the Seconds to Trust an Idle
Connection field forces the test to be made in every request. The Test Frequency field was
also increased to 900 seconds instead of the default value of 120 seconds.

Configuring JDBC Resources for High Availability

96

Although this set of configurations increases the database overhead, it
usually compensates by avoiding unreliable connections being delivered
to the application. WebLogic Administrators should be aware that every
unexpected error in a production environment can cause financial
losses and loss of credibility with the final user. So tuning WebLogic for
stability should be a priority.

The values used in this recipe are based on an online application that receives requests
during a 24 x 7 period. A batch application that runs once a day for a few hours should
use some different settings, such as a Minimum Capacity of 0, so the connections to the
database are closed when the application is idle. Tune the parameters according to your
application requirements.

There's more...
The data source configuration changes can be made with WLST.

Tuning the data sources using WLST
1.	 Log in as a wls user to shell and start WLST:

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL:
wls:/offline> connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands to tune the data source:

edit()

startEdit()

cd('/JDBCSystemResources/ds-GridLinkXA/JDBCResource/ds-GridLinkXA/
JDBCConnectionPoolParams/ds-GridLinkXA')

cmo.setInitialCapacity(0)

cmo.setMinCapacity(15)

cmo.setMaxCapacity(15)

cmo.setTestConnectionsOnReserve(true)

cmo.setTestFrequencySeconds(900)

cmo.setSecondsToTrustAnIdlePoolConnection(0)

activate()

exit()

Chapter 3

97

See also
ff Creating a JDBC data source

ff Creating a Multi data source

ff Creating a GridLink data source

ff Tuning multi data sources - surviving RAC node failures

Tuning multi data sources – surviving RAC
node failures

The multi data source default configuration doesn't provide the best settings for surviving
an Oracle RAC node failure properly.

This recipe tunes the ds-XA-rac01 and ds-XA-rac02 data sources and the ds-XA multi
data source.

Getting ready
Access the Administration Console to tune the data sources parameters. Make sure the
ds-XA-rac01 and ds-XA-rac02 data sources and the ds-XA multi data source were
created in the previous recipe and that the Administration Server is running.

How to do it...
To set the multi data source configurations, complete the following steps:

1.	 Access the Administration Console with your web browser at
http://adminhost.domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the plus sign to open the Services tree on the left, and then click
on Data Sources.

4.	 Click on the ds-XA link to open the multi data source configuration page.

Configuring JDBC Resources for High Availability

98

5.	 Check the Failover Request if Busy checkbox and type 5 in the Test Frequency
Seconds field. Click on the Save button, as shown in the following screenshot:

6.	 Click on the Data Sources link on the left navigation tree again. Click on the
ds-XA-rac01 data source link and then on the Connection Pool tab.

7.	 In the URL field, add the following parameters to the text value: (ENABLE=BROKEN)
(LOAD_BALANCE=OFF)(FAILOVER=OFF). The final URL should be
jdbc:oracle:thin:@(DESCRIPTION=(ENABLE=BROKEN)(LOAD_
BALANCE=OFF)(FAILOVER=OFF)(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)
(HOST=dbhost-rac01)(PORT=1521)))(CONNECT_DATA=(SERVICE_
NAME=dbservice-rac01)(INSTANCE_NAME=instance-rac01))).

8.	 Add the line oracle.net.CONNECT_TIMEOUT=10000 to the Properties field.

9.	 If not already tuned from the previous recipe, type 0 in the Initial Capacity field and
15 in the Maximum Capacity and Minimum Capacity fields. Click on the Advanced
link to open the advanced options.

10.	 Check the Test Connection on Reserve checkbox. Type 900 in the Test Frequency
field and type 0 in the Seconds to Trust an Idle Connection field.

11.	 Leave the other options as their default values and click on the Save button.

12.	 Repeat steps 6 to 10 with the ds-XA-rac02 data source.

13.	 Finally, click on the Activate Changes button.

How it works...
This recipe performs some additional tuning on the data sources and multi data sources.

The Failover Request if Busy option is not enabled by default and is recommended to be
enabled when using multi data sources with the Failover algorithm. It works by providing
a connection from the next data source member on the list when all the connections from the
primary data source member are in use (overloaded).

Chapter 3

99

WebLogic Server closes all the connections of a data source and disables it if the connection
to the database fails to be created two consecutive times. By default, the multi data source
rechecks the database every 120 seconds based on the multi data source Test Frequency
Seconds parameter. Changing the Test Frequency Seconds parameter to 5 seconds is
recommended.

The (ENABLE=BROKEN)(LOAD_BALANCE=OFF)(FAILOVER=OFF) parameters added to the
URL field are recommended settings for the data source members of multi data sources.

The ENABLE=BROKEN parameter adds an internal TCP keepalive on the JDBC client side,
improving the network connection reliability with the database.

The JDBC client load balance and JDBC connect time failover must be disabled with the
LOAD_BALANCE=OFF and FAILOVER=OFF parameters since these features must be provided
by the multi data source.

The oracle.net.CONNECT_TIMEOUT=10000 parameter adds a connect timeout of
10 seconds.

All other tunings, such as Initial Capacity, are described in the previous recipe.

There's more...
The data source configuration changes can be made with WLST.

Tuning the multi data sources using WLST
1.	 Log in as a wls user to shell and start WLST:

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL:
wls:/offline> connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands to tune the multi data source:
edit()

startEdit()

cd('/JDBCSystemResources/ds-XA/JDBCResource/ds-XA/
JDBCDataSourceParams/ds-XA')

cmo.setFailoverRequestIfBusy(true)

cd('/JDBCSystemResources/ds-XA/JDBCResource/ds-XA/
JDBCConnectionPoolParams/ds-XA')

cmo.setTestFrequencySeconds(5)

Configuring JDBC Resources for High Availability

100

4.	 Run the following WLST commands to tune the first data source:
tune ds-XA-rac01

cd('/JDBCSystemResources/ds-XA-rac01/JDBCResource/ds-XA-rac01/
JDBCDriverParams/ds-XA-rac01')

cmo.setUrl('jdbc:oracle:thin:@(DESCRIPTION=(ENABLE=BROKEN)(LOAD_
BALANCE=OFF)(FAILOVER=OFF)(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)
(HOST=dbhost-rac01)(PORT=1521)))(CONNECT_DATA=(SERVICE_
NAME=dbservice-rac01)(INSTANCE_NAME=instance-rac01)))')

cd('/JDBCSystemResources/ds-XA-rac01/JDBCResource/ds-XA-rac01/
JDBCDriverParams/ds-XA-rac01/Properties/ds-XA-rac01')

cmo.destroyProperty(getMBean('/JDBCSystemResources/ds-XA-rac01/
JDBCResource/ds-XA-rac01/JDBCDriverParams/ds-XA-rac01/Properties/
ds-XA-rac01/Properties/user'))

cmo.createProperty('user')

cd('/JDBCSystemResources/ds-XA-rac01/JDBCResource/ds-XA-rac01/
JDBCDriverParams/ds-XA-rac01/Properties/ds-XA-rac01/Properties/
user')

cmo.setValue('dbuser')

cd('/JDBCSystemResources/ds-XA-rac01/JDBCResource/ds-XA-rac01/
JDBCDriverParams/ds-XA-rac01/Properties/ds-XA-rac01')

cmo.createProperty('oracle.net.CONNECT_TIMEOUT')

cd('/JDBCSystemResources/ds-XA-rac01/JDBCResource/ds-XA-rac01/
JDBCDriverParams/ds-XA-rac01/Properties/ds-XA-rac01/Properties/
oracle.net.CONNECT_TIMEOUT')

cmo.setValue('10000')

cd('/JDBCSystemResources/ds-XA-rac01/JDBCResource/ds-XA-rac01/
JDBCConnectionPoolParams/ds-XA-rac01')

cmo.setMaxCapacity(15)

cmo.setMinCapacity(15)

cmo.setSecondsToTrustAnIdlePoolConnection(0)

cmo.setTestConnectionsOnReserve(true)

cmo.setTestFrequencySeconds(900)

cmo.setInitialCapacity(0)

5.	 Run the following WLST commands to tune the second data source:

tune ds-XA-rac02

cd('/JDBCSystemResources/ds-XA-rac02/JDBCResource/ds-XA-rac02/
JDBCDriverParams/ds-XA-rac02')

Chapter 3

101

cmo.setUrl('jdbc:oracle:thin:@(DESCRIPTION=(ENABLE=BROKEN)(LOAD_
BALANCE=OFF)(FAILOVER=OFF)(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)
(HOST=dbhost-rac02)(PORT=1521)))(CONNECT_DATA=(SERVICE_
NAME=dbservice-rac02)(INSTANCE_NAME=instance-rac02)))')

cd('/JDBCSystemResources/ds-XA-rac02/JDBCResource/ds-XA-rac02/
JDBCDriverParams/ds-XA-rac02/Properties/ds-XA-rac02')

cmo.destroyProperty(getMBean('/JDBCSystemResources/ds-XA-rac02/
JDBCResource/ds-XA-rac02/JDBCDriverParams/ds-XA-rac02/Properties/
ds-XA-rac02/Properties/user'))

cmo.createProperty('user')

cd('/JDBCSystemResources/ds-XA-rac02/JDBCResource/ds-XA-rac02/
JDBCDriverParams/ds-XA-rac02/Properties/ds-XA-rac02/Properties/
user')

cmo.setValue('dbuser')

cd('/JDBCSystemResources/ds-XA-rac02/JDBCResource/ds-XA-rac02/
JDBCDriverParams/ds-XA-rac02/Properties/ds-XA-rac02')

cmo.createProperty('oracle.net.CONNECT_TIMEOUT')

cd('/JDBCSystemResources/ds-XA-rac02/JDBCResource/ds-XA-rac02/
JDBCDriverParams/ds-XA-rac02/Properties/ds-XA-rac02/Properties/
oracle.net.CONNECT_TIMEOUT')

cmo.setValue('10000')

cd('/JDBCSystemResources/ds-XA-rac02/JDBCResource/ds-XA-rac02/
JDBCConnectionPoolParams/ds-XA-rac02')

cmo.setMaxCapacity(15)

cmo.setMinCapacity(15)

cmo.setSecondsToTrustAnIdlePoolConnection(0)

cmo.setTestConnectionsOnReserve(true)

cmo.setTestFrequencySeconds(900)

cmo.setInitialCapacity(0)

activate()

exit()

See also
ff Creating a JDBC data source

ff Creating a multi data source

ff Creating a GridLink data source

ff Tuning data sources for reliable connections

Configuring JDBC Resources for High Availability

102

Updating the Oracle JDBC driver
Oracle WebLogic Server 12c (Version 12.1.1.0 at the time of writing this book) contains the
Oracle Database 11g Release 2 (Version 11.2.0.3) JDBC drivers.

This recipe shows the steps to update the JDBC drivers to a different version.

Getting ready
Download the updated JDBC drivers from the Oracle website.

The Oracle JDBC driver filename is ojdbc6.jar. Create a temporary folder, such as ~/
jdbctemp, and download the file to it.

The procedure is done manually, so make sure that none of the WebLogic Server instances
are running, including the Administration Server.

How to do it...
Back up the original JDBC driver and copy the updated file to the WebLogic installation folder:

1.	 Log in as a wls user to the prod01 shell and run the following commands:
[wls@prod01]$ cd $WL_HOME/server/lib

[wls@prod01]$ mv ojdbc6.jar ojdbc6.original

[wls@prod01]$ cp ˜/jdbctemp/ojdbc6.jar .

2.	 Repeat the step in prod02 and all machines of the cluster.

3.	 Start the Administration Server and all the Managed Servers.

How it works...
Updating the Oracle JDBC drivers is a straightforward process.

Just make a backup copy of the JDBC driver file ojdbc6.jar, replace it with the new file
version, and start the WebLogic Server instances.

Chapter 3

103

There's more...
The Oracle JDBC driver itself can be invoked to display its version.

Verify the driver version
1.	 Log in as a wls user to shell and navigate to the folder of the downloaded file:

[wls@prod01]$ cd ~/jdbctemp

2.	 Run the following Java command to display the driver version:
[wls@prod01]$ /oracle/jvm/bin/java -jar ojdbc6.jar

3.	 The JDBC driver Version will be displayed on the screen:
Oracle 11.2.0.3.0 JDBC 4.0 compiled with JDK6 on Fri_
Nov_04_08:05:20_PDT_2011

#Default Connection Properties Resource

#Sun Apr 07 04:08:20 BRT 2013

See also
ff Creating a JDBC data source

ff Creating a multi data source

ff Creating a GridLink data source

Configuring JMS
Resources for

Clustering and High
Availability

In this chapter we will cover the following recipes:

ff Creating the file stores

ff Creating the JDBC stores

ff Creating the JMS servers

ff Creating the JMS module

ff Configuring the subdeployment target

ff Creating the distributed queue destination and the connection factory

ff Starting/stopping consumers for a JMS destination

ff Using the Server affinity to tune the distributed destinations' load balance

ff Creating a pinned queue with clustering and HA with service migration

ff Configuring the messaging bridge with source and target distributed destinations

ff Relying on SAF to transfer JMS messages to another WebLogic domain

4

Configuring JMS Resources for Clustering and High Availability

106

Introduction
The Java Message Service (JMS) is a standard Java API that enables an enterprise
application to communicate asynchronously with other applications by sending and receiving
messages. The Oracle WebLogic Server 12c messaging subsystem is fully compatible with the
JMS 1.1 specification.

The JMS API defines two models of communication: point-to-point and publisher/subscriber.
Point-to-point communication uses a JMS queue and publisher/subscriber communication
uses a JMS topic. Although similar in configuration, JMS queues and JMS topics are
destinations that work in very different ways.

In the point-to-point model, a sender first publishes and enqueues a message to the queue.
The message is then dequeued and processed by the single consumer that is listening to
this queue. The enqueue and dequeue processes are independent, loosely coupled, and
asynchronous. The message can be held by the queue until a consumer starts listening for
incoming messages. In the point-to-point model, the message is delivered to only one recipient.

In the publisher/subscriber model, a publisher sends a message to a topic and this message
is consumed by every subscriber of the topic. In the publisher/subscriber model, the message
can be delivered to multiple recipients.

A hypothetical scenario with an JMSApp enterprise application deployed in PROD_Cluster
will be used as an example in this chapter. The application requires performance and high
availability and uses a JMS queue under the JNDI name jms.appqueue, and a connection
factory with the JNDI name jms.appcf. A clustered JMS offers a more reliable solution than
a JMS in a single Managed Server. The platform can be scaled when needed and the load is
distributed across multiple Managed Servers.

The following recipes contain the steps needed by a WebLogic Administrator to properly
configure the JMSApp application to use the WebLogic JMS subsystem with clustering and
high availability. A specific JMS module will be created to isolate the configuration, which
includes the JMS servers and the JMS queue destination.

Creating the file stores
Oracle WebLogic Server 12c makes use of its own storage solution, known as the Persistent
Store. The persistent store can be used by the JMS subsystem to persist the JMS messages of
a JMS destination. It can also be used by the transaction log (TLOG) for keeping information
of committed transactions on course or to store WLDF diagnostic information, among
other functionalities.

The persistent store can be file-based or JDBC-based. All WebLogic Server instances include a
default file-based persistent store. The default persistent store is located at $DOMAIN_HOME/
servers/<instance_name>/data/store/default.

Chapter 4

107

In this recipe a new custom file store will be created in all Managed Servers of the PROD_
Cluster cluster.

Getting ready
For the cluster PROD_Cluster, we will consider the file stores FileStore01,
FileStore02, FileStore03, and FileStore04 for the instances PROD_Server01,
PROD_Server02, PROD_Server03, and PROD_Server04 respectively.

Managed Server Persistent store
PROD_Server01 FileStore01

PROD_Server02 FileStore02

PROD_Server03 FileStore03

PROD_Server04 FileStore04

The file stores will be saved in the $DOMAIN_HOME/filestores directory, so make sure the
directory is created before creating the file stores.

How to do it...
Create the $DOMAIN_HOME/filestores directory in all machines, as follows:

1.	 Log in as a wls user to the prod01 shell and create the directory.
[wls@prod01]$ cd $DOMAIN_HOME

[wls@prod01]$ mkdir filestores

2.	 Repeat this step for prod02.

Create the file stores using the Administration Console, as follows:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Services tree on the left and click on Persistent Stores.

Configuring JMS Resources for Clustering and High Availability

108

4.	 Click on the New button and click on the Create File Store link to start creating a
new persistent store.

5.	 Type FileStore01 in the Name field. Click on the Target drop-down menu
and select the PROD_Server01 option.

6.	 Type /oracle/Middleware/user_projects/domains/PROD_DOMAIN/
filestores in the Directory field to point to the newly created directory and
Click on the OK button.

Chapter 4

109

7.	 Repeat the previous steps and create the remaining file stores, FileStore02,
FileStore03, and FileStore04 targeting the corresponding Managed Servers,
PROD_Server02, PROD_Server03, and PROD_Server04.

8.	 Click on the Activate Changes button to finish.

How it works...
The file stores were created in all Managed Servers of the cluster and will be used as
persistent stores for the JMS servers.

Although it is possible to use the default file store for the JMS servers,
creating a separate file store is recommended to decouple and isolate
the configuration for the JMSApp application. Using the default store also
eliminates the possibility of using a migratable target.

There's more...
In the following section, the file store will be created using WLST.

Creating the file store using WLST
1.	 Log in as a wls user to the shell and start WLST.

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL.
wls:/offline>connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

Configuring JMS Resources for Clustering and High Availability

110

3.	 Run the following WLST commands to create the file stores:
edit()

startEdit()

cd('/')

cmo.createFileStore('FileStore01')

cd('/FileStores/FileStore01')

cmo.setDirectory('/oracle/Middleware/user_projects/domains/PROD_
DOMAIN/filestores')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server01,Type=Server')], ObjectName))

cd('/')

cmo.createFileStore('FileStore02')

cd('/FileStores/FileStore02')

cmo.setDirectory('/oracle/Middleware/user_projects/domains/PROD_
DOMAIN/filestores')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server02,Type=Server')], ObjectName))

cd('/')

cmo.createFileStore('FileStore03')

cd('/FileStores/FileStore03')

cmo.setDirectory('/oracle/Middleware/user_projects/domains/PROD_
DOMAIN/filestores')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server03,Type=Server')], ObjectName))

cd('/')

cmo.createFileStore('FileStore04')

cd('/FileStores/FileStore04')

cmo.setDirectory('/oracle/Middleware/user_projects/domains/PROD_
DOMAIN/filestores')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server04,Type=Server')], ObjectName))

activate()

exit()

Chapter 4

111

See also
ff Creating the JMS servers

Creating the JDBC stores
The persistent store can also persist the data in the database by using the JDBC store. In this
recipe a new JDBC store will be created in all Managed Servers of the PROD_Cluster cluster.

The database that will host the stores is an Oracle RAC database with two nodes. The first
node has an instance name instance-rac01, runs in the dbhost-rac01 hostname, and
listens to the port 1521. The listener accepts requests to the service name dbservice-
rac01. The second node is the instance instance-rac02, runs in the dbhost-rac02
hostname, listens to the port 1521, and has a service name dbservice-rac02.

Getting ready
A multi data source will be created with the name ds-store and JNDI name jdbc/ds-
store. The data source members will be called ds-store-rac01 and ds-store-rac02
with the JNDI names jdbc/ds-store-rac01 and jdbc/ds-store-rac02.

For the cluster PROD_Cluster, we will consider the JDBC stores JDBCStore01,
JDBCStore02, JDBCStore03, and JDBCStore04 for the instances PROD_Server01,
PROD_Server02, PROD_Server03, and PROD_Server04 respectively.

Managed Server Persistent store
PROD_Server01 JDBCStore01

PROD_Server02 JDBCStore02

PROD_Server03 JDBCStore03

PROD_Server04 JDBCStore04

How to do it...
Create the data sources and the multi data source:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the Services tree on the left and then click on Data Sources.

4.	 Click on the New button and click on Generic Data Source.

Configuring JMS Resources for Clustering and High Availability

112

5.	 Type ds-store-rac01 in the Name field and jdbc/ds-store-rac01 in the JNDI
Name. Leave the Database Type drop-down menu with the Oracle option selected.
Click on the Next button.

6.	 Choose *Oracle's Driver (Thin) for RAC Service-Instance
connections; Versions:10 and later from the Database driver drop-down
menu. Click on the Next button.

7.	 Disable the Supports Global Transactions checkbox and click on the Next button.

8.	 In the Connection Properties page, type dbservice-rac01 in the Service Name
field, instance-rac01 in the Database Name field, dbhost-rac01 in the Host
Name field, and 1521 in the Port field. Fill in the Database User Name, Password,
and Confirm Password fields with dbuser and dbpwd. Leave the Protocol field with
the default TCP value. Click on the Next button.

9.	 Click on the Next button in the Test Database Connection page.

10.	 Click on the All servers in the cluster radio button from the PROD_Cluster cluster.
Click on the Finish button.

11.	 Repeat the previous steps and create another data source. Use ds-store-rac02
as Name, jdbc/ds-store-rac02 as JNDI Name, dbservice-rac02 as Service
Name, instance-rac02 as Database Name, and dbhost-rac02 as Host Name.

12.	 Create the multi data source by clicking on the New button and then the Multi Data
Source link.

13.	 Type ds-store in the Name field and jdbc/ds-store in the JNDI Name
field. Leave the Algorithm Type option in the default Failover option. Click on
the Next Button.

14.	 Click on the All servers in the cluster radio button from the PROD_Cluster cluster.
Click on the Next button.

15.	 Click on the Non-XA Driver option in the Select Data Source Type page. Click on Next.

16.	 Select both data sources ds-store-rac01 and ds-store-rac02 from the left of
the Add Data Source page. Click on the >button in the center of both sides to move
them to the right. Click on Finish.

17.	 Click on the Activate Changes button.

Create the JDBC stores using the Administration Console:

1.	 Access the Administration Console again with your web browser
at http://adminhost.domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the plus sign to open the Services tree on the left and click on
Persistent Stores.

4.	 Click on the New button and click the Create JDBCStore link to start creating a new
persistent store.

Chapter 4

113

5.	 Type JDBCStore01 in the Name field. Click on the Target drop-down menu and
select the PROD_Server01 option. Select the ds-store value in the Data Source
field. Type JDBCStore01 again in the Prefix Name field and click on the OK button.

6.	 Repeat the previous steps and create the remaining JDBC stores, JDBCStore02,
JDBCStore03, and JDBCStore04 targeting the corresponding Managed Servers,
PROD_Server02, PROD_Server03, and PROD_Server04. Use the same ds-
store data source for all JDBC stores.

7.	 Click on the Activate Changes button to finish.

How it works...
The JDBC stores were created in all Managed Servers of the cluster and can be used
as persistent stores for the JMS servers.

The JDBC store uses a multi data source pointing to an Oracle RAC database with two
RAC nodes.

It's mandatory to use non-XA data sources and a multi data source
with the Failover algorithm with the JDBC store. Make sure to tune
all JDBC parameters according to how they were tuned in the previous
chapter.

There's more...
The JDBC store can be created using WLST.

Creating the JDBC store using WLST
1.	 Log in as a wls user to the shell and start WLST.

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL.
wls:/offline>connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands to create the first data source:
edit()

startEdit()

create the ds-store-rac01 data source

cd('/')

Configuring JMS Resources for Clustering and High Availability

114

cmo.createJDBCSystemResource('ds-store-rac01')

cd('/JDBCSystemResources/ds-store-rac01/JDBCResource/ds-store-
rac01')

cmo.setName('ds-store-rac01')

cd('/JDBCSystemResources/ds-store-rac01/JDBCResource/ds-store-
rac01/JDBCDataSourceParams/ds-store-rac01')

set('JNDINames',jarray.array([String('jdbc/ds-store-rac01')],
String))

cd('/JDBCSystemResources/ds-store-rac01/JDBCResource/ds-store-
rac01/JDBCDriverParams/ds-store-rac01')

cmo.setUrl('jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_
LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=dbhost-rac01)(PORT=1521)))
(CONNECT_DATA=(SERVICE_NAME=dbservice-rac01)(INSTANCE_
NAME=instance-rac01)))')

cmo.setDriverName('oracle.jdbc.OracleDriver')

cmo.setPassword('dbpwd');

cd('/JDBCSystemResources/ds-store-rac01/JDBCResource/ds-store-
rac01/JDBCConnectionPoolParams/ds-store-rac01')

cmo.setTestTableName('SQL SELECT 1 FROM DUAL\r\n')

cd('/JDBCSystemResources/ds-store-rac01/JDBCResource/ds-store-
rac01/JDBCDriverParams/ds-store-rac01/Properties/ds-store-rac01')

cmo.createProperty('user')

cd('/JDBCSystemResources/ds-store-rac01/JDBCResource/ds-store-
rac01/JDBCDriverParams/ds-store-rac01/Properties/ds-store-rac01/
Properties/user')

cmo.setValue('dbuser')

cd('/JDBCSystemResources/ds-store-rac01/JDBCResource/ds-store-
rac01/JDBCDataSourceParams/ds-store-rac01')

cmo.setGlobalTransactionsProtocol('None')

cd('/JDBCSystemResources/ds-store-rac01')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Cluster,Type=Cluster')], ObjectName))

4.	 Run the following WLST commands to create the second data source:
create the ds-store-rac02 data source

cd('/')

cmo.createJDBCSystemResource('ds-store-rac02')

cd('/JDBCSystemResources/ds-store-rac02/JDBCResource/ds-store-
rac02')

Chapter 4

115

cmo.setName('ds-store-rac02')

cd('/JDBCSystemResources/ds-store-rac02/JDBCResource/ds-store-
rac02/JDBCDataSourceParams/ds-store-rac02')

set('JNDINames',jarray.array([String('jdbc/ds-store-rac02')],
String))

cd('/JDBCSystemResources/ds-store-rac02/JDBCResource/ds-store-
rac02/JDBCDriverParams/ds-store-rac02')

cmo.setUrl('jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_
LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=dbhost-rac02)(PORT=1521)))
(CONNECT_DATA=(SERVICE_NAME=dbservice-rac02)(INSTANCE_
NAME=instance-rac02)))')

cmo.setDriverName('oracle.jdbc.OracleDriver')

cmo.setPassword('dbpwd');

cd('/JDBCSystemResources/ds-store-rac02/JDBCResource/ds-store-
rac02/JDBCConnectionPoolParams/ds-store-rac02')

cmo.setTestTableName('SQL SELECT 1 FROM DUAL\r\n')

cd('/JDBCSystemResources/ds-store-rac02/JDBCResource/ds-store-
rac02/JDBCDriverParams/ds-store-rac02/Properties/ds-store-rac02')

cmo.createProperty('user')

cd('/JDBCSystemResources/ds-store-rac02/JDBCResource/ds-store-
rac02/JDBCDriverParams/ds-store-rac02/Properties/ds-store-rac02/
Properties/user')

cmo.setValue('dbuser')

cd('/JDBCSystemResources/ds-store-rac02/JDBCResource/ds-store-
rac02/JDBCDataSourceParams/ds-store-rac02')

cmo.setGlobalTransactionsProtocol('None')

cd('/JDBCSystemResources/ds-store-rac02')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Cluster,Type=Cluster')], ObjectName))

5.	 Run the following WLST commands to create the multi data source:
create the multi data source

cd('/')

cmo.createJDBCSystemResource('ds-store')

cd('/JDBCSystemResources/ds-store/JDBCResource/ds-store')

cmo.setName('ds-store')

cd('/JDBCSystemResources/ds-store/JDBCResource/ds-store/
JDBCDataSourceParams/ds-store')

set('JNDINames',jarray.array([String('jdbc/ds-store')], String))

Configuring JMS Resources for Clustering and High Availability

116

cmo.setAlgorithmType('Failover')

cmo.setDataSourceList('ds-store-rac01,ds-store-rac02')

cd('/JDBCSystemResources/ds-store')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Cluster,Type=Cluster')], ObjectName))

activate()

6.	 Run the following WLST commands to create the JDBC stores:
edit()

startEdit()

create the JDBC stores

cd('/')

cmo.createJDBCStore('JDBCStore01')

cd('/JDBCStores/JDBCStore01')

cmo.setDataSource(getMBean('/JDBCSystemResources/ds-store'))

cmo.setPrefixName('JDBCStore01')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server01,Type=Server')], ObjectName))

cd('/')

cmo.createJDBCStore('JDBCStore02')

cd('/JDBCStores/JDBCStore02')

cmo.setDataSource(getMBean('/JDBCSystemResources/ds-store'))

cmo.setPrefixName('JDBCStore02')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server02,Type=Server')], ObjectName))

cd('/')

cmo.createJDBCStore('JDBCStore03')

cd('/JDBCStores/JDBCStore03')

cmo.setDataSource(getMBean('/JDBCSystemResources/ds-store'))

cmo.setPrefixName('JDBCStore03')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server03,Type=Server')], ObjectName))

Chapter 4

117

cd('/')

cmo.createJDBCStore('JDBCStore04')

cd('/JDBCStores/JDBCStore04')

cmo.setDataSource(getMBean('/JDBCSystemResources/ds-store'))

cmo.setPrefixName('JDBCStore04')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server04,Type=Server')], ObjectName))

activate()

exit()

See also
ff Creating the JMS servers

Creating the JMS servers
The JMS server is a WebLogic resource that provides a container for the JMS queues and JMS
topics' destinations. A JMS server can manage several destinations at a time and it uses the
specified persistent store to persist the messages. The persistent store of the JMS server can
be the default persistent store of the WebLogic Server instance, a custom file store or a
JDBC store.

Following the roadmap configuration for the JMSApp application, a JMS server will be created
for each of the Managed Servers of the cluster PROD_Cluster, and each one will be
configured to use the file stores created before.

Getting ready
For the cluster PROD_Cluster, we will consider JMSServer01, JMSServer02,
JMSServer03, and JMSServer04 as the JMS Servers for instances PROD_Server01,
PROD_Server02, PROD_Server03, and PROD_Server04 respectively.

Each JMS server will use the custom file store created in the previous recipe. The JDBC stores
can also be used instead of the file stores.

Managed Server JMS server Persistent store
PROD_Server01 JMSServer01 FileStore01

PROD_Server02 JMSServer02 FileStore02

PROD_Server03 JMSServer03 FileStore03

PROD_Server04 JMSServer04 FileStore04

Configuring JMS Resources for Clustering and High Availability

118

How to do it...
To create the JMS servers, carry out the following steps:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the plus sign to open the Services tree on the left; click on Messaging and
then on JMS Servers.

4.	 Click on the New button to open the Create a New JMS Server page.

5.	 Type JMSServer01 in the Name field and choose FileStore01 from the
Persistent Store drop-down menu. Click on the Next button.

6.	 Choose PROD_Server01 from the Target drop-down menu. Click on the
Finish button.

7.	 Repeat the previous steps and create JMSServer02, JMSServer03, JMSServer04
using the file stores FileStore01, FileStore02, FileStore03, and
FileStore04.

8.	 Click on the Activate Changes button to finish.

How it works...
The JMS servers were created pointing to their specific file stores. The JMS servers are still
working as independent units and the configuration for clustering will be achieved with the
creation of the JMS module and the JMS destinations and resources.

The JDBC stores created in the previous recipe can also be used as persistent stores to the
JMS servers.

Chapter 4

119

There's more...
The JMS servers can be created with WLST.

Creating the JMS servers using WLST
1.	 Log in as a wls user to the shell and start WLST.

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL.
wls:/offline>connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands to create the JMS servers:
edit()

startEdit()

cd('/')

cmo.createJMSServer('JMSServer01')

cd('/JMSServers/JMSServer01')

cmo.setPersistentStore(getMBean('/FileStores/FileStore01'))

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server01,Type=Server')], ObjectName))

cd('/')

cmo.createJMSServer('JMSServer02')

cd('/JMSServers/JMSServer02')

cmo.setPersistentStore(getMBean('/FileStores/FileStore02'))

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server02,Type=Server')], ObjectName))

cd('/')

cmo.createJMSServer('JMSServer03')

cd('/JMSServers/JMSServer03')

cmo.setPersistentStore(getMBean('/FileStores/FileStore03'))

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server03,Type=Server')], ObjectName))

cd('/')

Configuring JMS Resources for Clustering and High Availability

120

cmo.createJMSServer('JMSServer04')

cd('/JMSServers/JMSServer04')

cmo.setPersistentStore(getMBean('/FileStores/FileStore04'))

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server04,Type=Server')], ObjectName))

activate()

exit()

Creating the JMS servers with JDBC stores using WLST
1.	 Log in as a wls user to the shell and start WLST.

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL.
wls:/offline>connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands to create the JMS servers:
edit()

startEdit()

cd('/')

cmo.createJMSServer('JMSServer01')

cd('/JMSServers/JMSServer01')

cmo.setPersistentStore(getMBean('/JDBCStores/JDBCStore01'))

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server01,Type=Server')], ObjectName))

cd('/')

cmo.createJMSServer('JMSServer02')

cd('/JMSServers/JMSServer02')

cmo.setPersistentStore(getMBean('/JDBCStores/JDBCStore02'))

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server02,Type=Server')], ObjectName))

cd('/')

cmo.createJMSServer('JMSServer03')

cd('/JMSServers/JMSServer03')

Chapter 4

121

cmo.setPersistentStore(getMBean('/JDBCStores/JDBCStore03'))

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server03,Type=Server')], ObjectName))

cd('/')

cmo.createJMSServer('JMSServer04')

cd('/JMSServers/JMSServer04')

cmo.setPersistentStore(getMBean('/JDBCStores/JDBCStore04'))

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server04,Type=Server')], ObjectName))

activate()

exit()

See also
ff Creating the file stores

ff Creating the JDBC stores

ff Creating the JMS module

Creating the JMS module
The JMS module is a WebLogic global system resource that aggregates and stores JMS
resources and JMS-related configurations such as queues, topics, connection factories,
quotas, distributed queues, and distributed topics.

There are two types of JMS modules: the JMS application module and the JMS system
module. In this recipe, the JMS system module will be covered since it is the module WebLogic
administrators use for creation and configuration. Although it has the same functions as those
of a system module, the JMS application module should be handled by the developer and has
to be included and packaged inside the application's EAR file.

The system module is also preferred over the application module because the application
module can be handled only by manually editing the XML. The system module, on the other
hand, can be managed through the Administration Console, WLST, or JMX.

Continuing the setup process for the JMS resources needed by the JMSApp application,
create a new JMS module called JMSAppModule in PROD_DOMAIN.

Configuring JMS Resources for Clustering and High Availability

122

Getting ready
The JMS module will be created using the Administration Console, so make sure the
Administration Server is running.

How to do it...
Carry out the following steps to create the JMS module:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the plus sign to open the Services tree on the left; click on Messaging
and then on JMS Modules.

4.	 Click on the New button to open the Create JMS System Module page.

5.	 Type JMSAppModule in the Name field. Leave the Descriptor File Name and
Location in Domain text fields blank. Click on the Next button.

6.	 Check the All Servers in the cluster radio button to target the JMSAppModule
to the cluster PROD_Cluster. Click on the Next button.

Chapter 4

123

7.	 Click on the Finish button, leaving the checkbox Would you like to add resources
to this JMS system module? unchecked.

8.	 Click on the Activate Changes button to finish.

How it works...
The JMS module JMSAppModule was created in the PROD_DOMAIN domain and is ready
to be configured and used by the JMSApp application.

The module configuration is saved at the $DOMAIN_HOME/config/jms directory and uses
the filename convention <module-name>-jms.xml. In this case, the filename created is
jmsappmodule-jms.xml.

There's more...
The JMS module can be created with WLST.

Creating the JMS module using WLST
1.	 Log in as a wls user to the shell and start WLST.

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL.
wls:/offline>connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands to create the JMS module:

edit()

startEdit()

Configuring JMS Resources for Clustering and High Availability

124

cd('/')

cmo.createJMSSystemResource('JMSAppModule')

cd('/JMSSystemResources/JMSAppModule')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Cluster,Type=Cluster')], ObjectName))

activate()

exit()

See also
ff Creating the JMS servers

ff Configuring the subdeployment targeting

Configuring the subdeployment target
The JMS module JMSAppModule is targeted to the cluster PROD_Cluster, meaning the
JMS resources added to the module will use the PROD_Cluster cluster as the default target.
Because of the JMS resource, such as a distributed queue, the default target is not the best
option for production.

WebLogic Server has a feature called subdeployment targeting to handle this special
targeting. The subdeployment allows a JMS resource to use a different target from the default
JMS module target, using a single or multiple WebLogic Server instances, WebLogic clusters,
or JMS servers as target.

Subdeployment is a not a precise term and confuses WebLogic
administrators. Subdeployment is better referred to as advanced
targeting.

In this recipe a new subdeployment called JMSAppSub will be created targeting only the JMS
servers created for the JMSApp application.

Getting ready
The subdeployment JMSAppSub will be created using the Administration Console.
Make sure the Administration Server is running and the JMSAppModule module
is created.

Chapter 4

125

How to do it...
Carry out the following steps to configure the JMS subdeployment:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the plus sign to open the Services tree on the left; click on Messaging and
then on JMS Modules.

4.	 Click on the JMSAppModule link and then the Subdeployments tab. Now click on the
New button.

5.	 Type JMSAppSub in the Name text field under Subdeployments and click on the
Next button.

Configuring JMS Resources for Clustering and High Availability

126

6.	 Click and enable only the checkboxes JMSServer01, JMSServer02, JMSServer03,
and JMSServer04 and click on the Finish button.

7.	 Click on the Activate Changes button to finish.

How it works...
The subdeployment JMSAppSub was created for the JMS module JMSAppModule, pointing
to the JMS servers JMSServer01, JMSServer02, JMSServer03, and JMSServer04,
meaning that any JMS resource targeting to the subdeployment will be restricted for use by
the selected JMS servers only.

In the next recipe, the JMS resources required by the JMSApp application will be configured
to target the subdeployment JMSAppModule.

There's more...
The subdeployment can also be created with WLST.

Configuring the subdeployment using WLST
1.	 Log in as a wls user to the shell and start WLST:

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL.
wls:/offline>connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

Chapter 4

127

3.	 Run the following WLST commands:
edit()

startEdit()

cmo.createSubDeployment('JMSAppSub')

cd('/JMSSystemResources/JMSAppModule/SubDeployments/JMSAppSub')

set('Targets',jarray.array([ObjectName('com.bea:Name=JMSServer
01,Type=JMSServer'), ObjectName('com.bea:Name=JMSServer02,Type
=JMSServer'), ObjectName('com.bea:Name=JMSServer03,Type=JMSSer
ver'), ObjectName('com.bea:Name=JMSServer04,Type=JMSServer')],
ObjectName))

activate()

exit()

See also
ff Creating the JMS servers

ff Creating the distributed queue destination and the connection factory

Creating the distributed queue destination
and the connection factory

Oracle WebLogic Server 12c has two types of queues: the queue and the distributed queue.
The queue is a JMS resource targeted to a single Managed Server.

A distributed queue must be used when working with WebLogic clustering. The distributed
queue is a logical entity that groups single queues distributed across the JMS servers and
Managed Servers of the cluster but is accessible as a single and transparent JNDI name. JMS
applications require that all resource and JNDI names be unique across the entire application
environment, including the WebLogic domains involved, the clusters, Managed Servers, and
JMS resources.

The members (queues) of the distributed queue can use weighted or uniform distribution.

Use the uniformly distributed queue for JMS clustering. The weighted
distribution is more complicated to create and manage and it is
deprecated in WebLogic Server 12c.

Configuring JMS Resources for Clustering and High Availability

128

A JMS queue must be created to handle the JMSApp application's messages. In this recipe,
the uniformly distributed queue called JMSAppQueue and the connection factory called
JMSAppConnectionFactory will be created and added to the JMSAppModule module.

Getting ready
The queue will be added using the Administration Console. The persistent stores, JMS servers,
JMS module, and subdeployment of the previous recipes must already be created.

How to do it...
Carry out the following steps to create a new distributed queue:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the plus sign to open the Services tree on the left; click on Messaging
and then on JMS Modules.

4.	 Click on the JMSAppModule link to open the Configuration page. Click on the
New button.

5.	 Select the Distributed Queue option from the Create a New JMS System Module
Resource page and click on the Next button.

Chapter 4

129

6.	 Type JMSAppQueue in the Name field and jms.appqueue in the JNDI Name field.
Leave the default values Uniform in the Destination Type field and None in the
Template drop-down menus. Click on the Next button.

7.	 Click on the Advanced Targeting button.

8.	 From the Subdeployments drop-down menu, select the JMSAppSub option and click
on the Finish button.

9.	 Click on the New button again and choose the Connection Factory radio button.
Click on the Next button.

10.	 Type JMSAppConnectionFactory in the Name field and jms.appcf in the JNDI
Name field. Leave all other fields at their default values and click the Next button.

11.	 Click on the Finish button to confirm the PROD_Cluster cluster as target.

12.	 Click on the Activate Changes button to finish.

Configuring JMS Resources for Clustering and High Availability

130

How it works...
The distributed queue JMSAppQueue and the connection factory
JMSAppConnectionFactory were created and added to the JMS module.

The uniformly distributed queue is targeted to the JMSAppSub subdeployment. The uniform
distribution means that WebLogic create a queue member of the distributed queue in each
of the JMS servers of the subdeployment automatically.

Avoid targeting a uniformly distributed queue to a cluster, otherwise
WebLogic will create a queue member in every JMS server found in the
cluster. Use the subdeployment targeting with specific JMS servers for a
more controlled configuration.

WebLogic has two connection factories enabled by default that can be used by
the application—weblogic.jms.ConnectionFactory and weblogic.jms.
XAConnectionFactory.

It's recommended that an application use a custom connection
factory since the two default connection factories cannot be tuned.

The custom connection factory JMSAPPConnectionFactory was created with the JNDI
name jms.appcf and is ready to be used by the JMSApp.

There's more...
The JMS resources can be created using WLST.

Creating the distributed queue and connection factory
using WLST

1.	 Log in as a wls user to the shell and start WLST.
[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

Chapter 4

131

2.	 Connect to the Administration Server using wlsadmin as user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL.
wls:/offline>connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands:
edit()

startEdit()

cmo.createUniformDistributedQueue('JmsAppQueue')

cd('/JMSSystemResources/JMSAppModule/JMSResource/JMSAppModule/
UniformDistributedQueues/JmsAppQueue')

cmo.setJNDIName('jms.appqueue')

cd('/JMSSystemResources/JMSAppModule/SubDeployments/JMSAppSub')

set('Targets',jarray.array([ObjectName('com.bea:Name=JMSServer01,T
ype=JMSServer'), ObjectName('com.bea:Name=JMSServer02,Type=JMSServ
er'), ObjectName('com.bea:Name=JMSServer03,Ty

pe=JMSServer'), ObjectName('com.bea:Name=JMSServer04,Type=JMSServ
er')], ObjectName))

cd('/JMSSystemResources/JMSAppModule/JMSResource/JMSAppModule/
UniformDistributedQueues/JmsAppQueue')

cmo.setSubDeploymentName('JMSAppSub')

cd('/JMSSystemResources/JMSAppModule/JMSResource/JMSAppModule')

cmo.createConnectionFactory('JMSAppConnectionFactory')

cd('/JMSSystemResources/JMSAppModule/JMSResource/JMSAppModule/
ConnectionFactories/JMSAppConnectionFactory')

cmo.setJNDIName('jms.appcf')

cd('/JMSSystemResources/JMSAppModule/JMSResource/JMSAppModule/
ConnectionFactories/JMSAppConnectionFactory/SecurityParams/
JMSAppConnectionFactory')

cmo.setAttachJMSXUserId(false)

cd('/JMSSystemResources/JMSAppModule/JMSResource/JMSAppModule/
ConnectionFactories/JMSAppConnectionFactory/ClientParams/
JMSAppConnectionFactory')

cmo.setClientIdPolicy('Restricted')

cmo.setSubscriptionSharingPolicy('Exclusive')

cmo.setMessagesMaximum(10)

cd('/JMSSystemResources/JMSAppModule/JMSResource/JMSAppModule/
ConnectionFactories/JMSAppConnectionFactory/TransactionParams/

Configuring JMS Resources for Clustering and High Availability

132

JMSAppConnectionFactory')

cmo.setXAConnectionFactoryEnabled(true)

activate()

exit()

See also
ff Configuring the subdeployment targeting

Starting/stopping consumers for a JMS
destination

The WebLogic JMS subsystem allows a JMS destination queue to have its message operations
controlled when needed. A queue destination can have its consumers paused and resumed
on demand.

Getting ready
In this recipe, the JMSAppQueue queue will be used as an example. The message operations
will use the Administration Console, so make sure the Administration Server is up and running.

How to do it...
To pause the consumers operations for the JMSAppQueue queue, do the following:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the plus sign to open the Services tree on the left; click on Messaging and
then JMS Servers.

4.	 Click on the JMSServer01 link to open the Configuration page. Click on the
Monitoring tab and then on the Active Destinations tab.

5.	 Click on the checkbox from the JMSAppModule!JMSServer01@JmsAppQueue
queue and click on the Consumption button. Then click on the Pause link.

Chapter 4

133

6.	 Click the Yes button to confirm.

7.	 Repeat these steps for the JMSServer02, JMSServer03, and JMSServer04
JMS servers.

To resume the consumers operations of the JMSAppQueue queue, do the following:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Services tree on the left; click on Messaging and then on JMS Servers.

4.	 Click on the JMSServer01 link to open the Configuration page. Click on the
Monitoring tab and then on the Active Destinations tab.

5.	 Click on the checkbox from the JMSAppModule!JMSServer01@JmsAppQueue
queue and click on the Consumption button. Then click on the Resume link.

6.	 Click on the Yes button to confirm.

7.	 Repeat these steps for the JMSServer02, JMSServer03, and JMSServer04
JMS servers.

Configuring JMS Resources for Clustering and High Availability

134

How it works...
The consumer operations can be temporarily paused through the Administration Console
when the JMS messages dequeue must stop in a situation of a maintenance window or
a troubleshooting process.

There's more...
JMS destinations can be controlled through WLST as well. This is discussed in the
following sections.

Pausing the consumers using WLST
This operation can be made by using WLST:

1.	 Log in as a wls user to the shell and start WLST.
[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL.
wls:/offline>connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands:
domainRuntime()

cd('/ServerRuntimes/PROD_Server01/JMSRuntime/PROD_Server01.jms/
JMSServers/JMSServer01/Destinations/JMSAppModule!JMSServer01@
JmsAppQueue')

cmo.pauseConsumption()

cd('/ServerRuntimes/PROD_Server02/JMSRuntime/PROD_Server02.jms/
JMSServers/JMSServer02/Destinations/JMSAppModule!JMSServer02@
JmsAppQueue')

cmo.pauseConsumption()

cd('/ServerRuntimes/PROD_Server03/JMSRuntime/PROD_Server03.jms/
JMSServers/JMSServer03/Destinations/JMSAppModule!JMSServer03@
JmsAppQueue')

cmo.pauseConsumption()

cd('/ServerRuntimes/PROD_Server04/JMSRuntime/PROD_Server04.jms/
JMSServers/JMSServer04/Destinations/JMSAppModule!JMSServer04@
JmsAppQueue')

cmo.pauseConsumption()

exit()

Chapter 4

135

Resuming the consumers using WLST
This operation can be made by using WLST:

1.	 Log in as a wls user to the shell and start WLST.
[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL.
wls:/offline>connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands:
domainRuntime()

cd('/ServerRuntimes/PROD_Server01/JMSRuntime/PROD_Server01.jms/
JMSServers/JMSServer01/Destinations/JMSAppModule!JMSServer01@
JmsAppQueue')

cmo.resumeConsumption()

cd('/ServerRuntimes/PROD_Server02/JMSRuntime/PROD_Server02.jms/
JMSServers/JMSServer02/Destinations/JMSAppModule!JMSServer02@
JmsAppQueue')

cmo.resumeConsumption()

cd('/ServerRuntimes/PROD_Server03/JMSRuntime/PROD_Server03.jms/
JMSServers/JMSServer03/Destinations/JMSAppModule!JMSServer03@
JmsAppQueue')

cmo.resumeConsumption()

cd('/ServerRuntimes/PROD_Server04/JMSRuntime/PROD_Server04.jms/
JMSServers/JMSServer04/Destinations/JMSAppModule!JMSServer04@
JmsAppQueue')

cmo.resumeConsumption()

exit()

See also
ff Creating the JMS servers

Configuring JMS Resources for Clustering and High Availability

136

Using the Server affinity to tune the
distributed destinations' load balance

The connection factory is the JMS resource used by the client application to control the
behavior of the load balance algorithm used when publishing JMS messages to the distributed
destination and its queue or topic members.

An application deployed in a production environment should preferably use a custom connection
factory that can be tuned to fit the application requirements so as to avoid using the default
WebLogic connection factories. The JMS message-publishing and load-balancing behavior can
be tuned by changing the server affinity configuration of the connection factory. By default, the
load-balancing and server-affinity options of the connection factory are enabled.

The JMSApp application uses the connection factory JMSAppCF created in the previous recipe
to connect and publish JMS messages to the distributed queue JMSAppQueue.

Disabling the server affinity of the connection factory will force the load balance when publishing
the JMS messages to the distributed queue. There is the drawback of the overhead of an
additional TCP connection from the source Managed Server where the application request is
running to the target Managed Server where the queue member of the distributed queue
is hosted.

This recipe shows the steps to configure the server affinity.

Getting ready
To change the server affinity configuration, access the Administration Console.

How to do it...
To set the server affinity, follow these steps:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Services tree on the left; click on Messaging and then on JMS Modules.

4.	 Click on the JMSAppModule link to open its Configuration page.

5.	 Click on the JMSAppConnectionFactory link and then click on the Load Balance
tab to open the load-balancing options.

Chapter 4

137

6.	 Disable the Server Affinity Enabled checkbox and click on the Save button.

7.	 Click on the Activate Changes button to finish.

How it works...
To illustrate the flow of the process, suppose an application request is being processed in
the first Managed Server, PROD_Server01. The application will use the connection factory
JMSAppCF to publish a JMS message to the JMSAppQueue distributed queue. Thanks to the
server affinity option being enabled, the JMS message will be published to the local queue
member of the JMSAppQueue distributed queue that is running in the same Managed Server,
PROD_Server01.

In order to prioritize the delivery of a JMS message to a queue member of the distributed queue,
the balancing algorithm verifies some characteristics such as if the queue member is local to
the Managed Server, if it has a consumer, or if it has a persistent store. The disabled server
affinity removes the influence of being a local queue. So, with the server affinity disabled, the
same request running in PROD_Server01 will balance the load and publish the JMS messages
to all queue members of the distributed queue, JMSAppQueue, running in all Managed Servers,
PROD_Server01, PROD_Server02, PROD_Server03, and PROD_Server04.

Disabling the server affinity is useful for distributing the JMS messages to
the members of the distributed queue when the application requests are
not yet balanced across the Managed Servers. An example is when the
application requests are not load-balanced at the web tier or when a single
request publishes a large amount of messages.
Analyze each application case and use the option that better suits an even
distribution of the load in production.

Configuring JMS Resources for Clustering and High Availability

138

There's more...
The server affinity can also be changed using WLST.

Changing the server affinity using WLST
1.	 Log in as a wls user to the shell and start WLST.

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL.
wls:/offline>connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands:
edit()

startEdit()

cd('/JMSSystemResources/JMSAppModule/JMSResource/JMSAppModule/
ConnectionFactories/JMSAppConnectionFactory/LoadBalancingParams/
JMSAppConnectionFactory')

cmo.setServerAffinityEnabled(false)

activate()

exit()

See also
ff Creating the distributed queue destination and the connection factory

ff Configuring messaging bridge with source and target distributed destinations

Creating a pinned queue with clustering and
HA with service migration

WebLogic clustering is used for scalability, high availability, and parallel processing of the user
and server requests. The cluster distributes the load across the cluster's Managed Server
instances, and for the JMS queues each Server instance has its own queue member of a
distributed queue.

An application requirement may need a single JMS queue, pinned to a Managed Server
and not configured as a distributed queue, even though the WebLogic cluster is being used.

Chapter 4

139

The requirement is valid but using a queue pinned to a single Managed Server brings a single
point of failure to a production environment. If the Managed Server hosting the pinned queue
crashes, the queue will be unavailable.

To handle this situation, WebLogic has a feature called Service Migration where the pinned
queue can be moved from one Managed Server to another automatically when needed,
bringing high availability to a pinned service.

In this recipe, we are assuming that the application JMSApp requires a JMSAppPinnedQueue
queue to be configured as a pinned queue. WebLogic will be configured to handle the Service
migration for it.

Getting ready
A new persistent store and a new JMS server targeting a migratable target will be created.
The persistent store will be created as a file store. A JDBC store can also be used.

The directory hosting the file stores must be shared with all machines of
the PROD_Cluster cluster. Use a shared storage solution (NAS, SAS,
and SAN).

The shared storage /shared/filestores directory will be used as a reference
in this recipe.

How to do it...
Follow the ensuing steps to configure the service migration:

Access the Administration Console with your web browser at
http://adminhost.domain.local:7001/console.

1.	 Click on the Lock & Edit button to start a new edit session.

2.	 Expand the Environment tree on the left and then click on the Clusters link.

3.	 Click on the PROD_Cluster link and then on the Migration tab. Select the
Consensus option from the Migration Basis drop-down menu. Click on the
Save button.

4.	 Click on the Migratable Targets link from the navigation tree on the left.

Configuring JMS Resources for Clustering and High Availability

140

5.	 Click on the PROD_Server01 (migratable) link and then on the Migration tab.
Select Auto-Migrate Exactly-Once Services from the Service Migration Policy drop-
down menu. Click on the Save button.

6.	 Click on the Activate Changes button to finish.

Create one migratable file store and one migratable JMS server using the
Administration Console:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Expand the Services tree on the left and then click on Persistent Stores.

3.	 Click on the New button and click on the Create File Store link to start creating a
new persistent store.

Chapter 4

141

4.	 Type FileStoreMigratable in the Name field. Click on the Target drop-down
menu and select the PROD_Server01 (migratable) option. Type /shared/
filestores in the Directory field to point to the shared directory and click on the
OK button.

5.	 Expand the Services tree on the left; click on Messaging and then on JMS Servers.

6.	 Click on the New button to open the Create a New JMS Server page.

7.	 Type JMSServerMigratable in the Name field and choose FileStoreMigratable
from the Persistent Store drop-down menu. Click on the Next button.

8.	 Choose PROD_Server01 (migratable) from the Target drop-down
menu. Click on the Finish button.

9.	 Click on the Activate Changes button to finish.

Create a new JMS module named JMSAppModulePinned, configure the subdeployment
JMSAppSubPinned, and add a new JMS queue named JMSAppPinnedQueue:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the plus sign to open the Services tree on the left; click on
Messaging and then on JMS Modules.

4.	 Click on the New button to open the Create JMS System Module page.

5.	 Type JMSAppModulePinned in the Name field. Leave the Descriptor File Name
and Location in Domain text fields blank. Click on the Next button.

6.	 Check the All Servers in the cluster radio button to target the JMSAppModulePinned
value to the PROD_Cluster cluster. Click on the Next button.

Configuring JMS Resources for Clustering and High Availability

142

7.	 Click on the Finish button, leaving the checkbox Would you like to add resources
to this JMS system module? unchecked.

8.	 Expand the Services tree on the left; click on Messaging and then on
JMS Modules.

9.	 Click on the JMSAppModulePinned link to open the Configuration page.
Then click on the Subdeployments tab and click on the New button.

10.	 Type JMSAppSubPinned in the subdeployment's Name text field and click
on the Next button.

11.	 Enable the checkbox JMSServerMigratable and click on the Finish button.

12.	 Click the Configuration tab to open the JMS Module configuration page and click
on the New button.

13.	 Select the Queue radio button from the Create a New JMS System Module Resource
page and click on the Next button.

14.	 Type JMSAppQueuePinned in the Name field and jms.appqueuepinned
in the JNDI Name text field. Leave the Template option as None. Click on the
Next button.

15.	 Select JMSAppSubPinned in the subdeployment's Name field and click on the
Finish button, leaving the JMSServerMigratable radio button selected.

16.	 Click on the Activate Changes button to finish.

Chapter 4

143

How it works...
The Consensus option is the migration basis configured for the PROD_Cluster
cluster. It requires the Node Manager to be running, to keep the leasing information
updated in the memory.

The new persistent store, FileStoreMigratable, and the new JMS server,
JMSServerMigratable, were created and targeted to the migratable target,PROD_Server01
(migratable), which was configured to use Auto-Migrate Exactly-Once Services as
the migration policy. One migratable target from a Managed Server must be elected to be the
primary host of the service.

A JMS module, JMSAppModulePinned, was created with a new subdeployment,
JMSAppSubPinned, targeting JMSServerMigratable. The queue JMSAppPinnedQueue
was created and uses the JMSAppSubPinned subdeployment.

This configuration guarantees JMSAppPinnedQueue is always running in at least one
Managed Server of the cluster, giving preference to run at the PROD_Server01 server.
If PROD_Server01 goes down or crashes, the queue is automatically migrated to another
running instance with no intervention.

Remember that the file store must reside in a shared
storage so that all machines of the cluster can access it.

See also
ff Creating the distributed queue destination and the connection factory

Configuring messaging bridge with
source and target distributed destinations

The messaging bridge is used to forward JMS messages from one source queue to another
target queue.

In this recipe, a bridge will be created to forward the JMS messages from the JMSAppQueue
distributed queue to a hypothetic distributed queue with a JNDI name jms.remotequeue,
hosted by a separate WebLogic domain named REMOTE_DOMAIN. The REMOTE_DOMAIN
domain is configured with a cluster with two Managed Servers instances running at the
addresses t3://remote01.domain.local:9001 and t3://remote02.domain.
local:9002. A remote connection factory is available under the JNDI name jms.
remoteappcf. Both local and remote queues are distributed destinations.

Configuring JMS Resources for Clustering and High Availability

144

Getting ready
The Administrative Console is used to configure the messaging bridge, so make sure the
Administration Server is up and running.

The bridge destinations use the jms-xa-adp (XA) or jms-notran-adp (non-XA) resource
adapters to connect to the destinations. They are not deployed by default so you have to
deploy them. In this recipe, since the bridge is non-XA, the resource adapter jms-notran-
adp should be deployed. WebLogic can automatically deploy the resource adapter when you
create the bridge, but it's recommended you deploy it manually.

How to do it...
Create the directory to host the deployment plan to all machines, as follows:

1.	 Login as a wls user to the prod01 shell and create the directory.
[wls@prod01]$ cd $DOMAIN_HOME

[wls@prod01]$ mkdir plans

2.	 Repeat this step for prod02.

Deploy the jms-notran-adp resource adapter, as follows:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the Deployments link on the navigation tree to the left.

4.	 Click on the Install button.

5.	 Type /oracle/Middleware/wlserver_12.1/server/lib in the Path field and
click on Next.

6.	 Select the jms-notran-adp.rar resource adapter and click on the Next button.

7.	 Select the Install this deployment as an application radio button and click on Next.

8.	 Select the All servers in the cluster radio button from the PROD_Cluster target and
click on the Next button.

9.	 Select the I will make the deployment accessible from the following location radio
button; leave the other options in their default values and click on Next.

10.	 Click on the Finish button to open the Deployment's Configuration screen.

11.	 Click on the Configuration and then the Outbound Connection Pools tabs.

Chapter 4

145

12.	 Click on the + button from the weblogic.jms.bridge.
AdapterConnectionFactory link and click on the eis/jms/
WLSConnectionFactoryJNDINoTX link.

13.	 Click on the Connection Pool tab and change the Max Capacity field to the desired
value (use 2x the number of bridges). Click on the Save button.

14.	 Type the full path,/oracle/Middleware/user_projects/domains/PROD_
DOMAIN/plans/jms-notran-adp-Plan.xml, in the Path field. Click on the OK
button.

15.	 Replicate the file /oracle/Middleware/user_projects/domains/
PROD_DOMAIN/plans/jms-notran-adp-Plan.xml to all the machines
of the cluster.

16.	 Click on the Activate Changes button to finish.

17.	 Go to the Deployments page again, select the checkbox to the left of the
jms-notran-adp deployment, and click on the Start button and then the
Servicing all request link.

Create the JMS bridge destinations as follows:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

Configuring JMS Resources for Clustering and High Availability

146

3.	 Expand the Services tree on the left and then click on +Messaging,
+Bridges, and JMS Bridge Destinations.

4.	 Click on the New button to open the Create a New JMS Bridge Destination
page. Type BridgeSource_01 in the Name field and select the eis.jms.
WLSConnectionFactoryJNDINoTX value from the Adapter JNDI Name drop-down
menu. Leave the default blank value for the Adapter Classpath field and type t3://
prodsrv01.domain.local:8001 on the Connection URL field, jms.appcf on
the Connection Factory JNDI Name field, and jms.appqueue on the Destination
JNDI Name field. Click on the OK button.

5.	 Repeat the previous steps for creating the BridgeSource_02, BridgeSource_03,
and BridgeSource_04 bridge destinations, using t3://prodsrv02.domain.
local:8002, t3://prodsrv03.domain.local:8003, and t3://prodsrv04.
domain.local:8004 as the values to the Connection URL field.

6.	 Click on the New button again to create the remote destination target.

Chapter 4

147

7.	 Type BridgeTarget in the Name field, select the eis.jms.
WLSConnectionFactoryJNDINoTX from the Adapter JNDI Name field, and
type t3://remote01.domain.local:9001,remote02.domain.local:9002
in the Connection URL field. Type jms.remoteappcf on the Connection Factory
JNDI Name field and jms.remotequeue on the Destination JNDI Name field. Click
on the OK button.

8.	 Click on the Activate Changes button to finish.

Create the messaging bridges as follows:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Services tree on the left; click on Messaging and then
on Bridges.

4.	 Click on the New button to open the Create a New Bridge page.

5.	 Type Bridge_01 in the Name field, leave the Selector field blank and select the
Quality of Service field as the Atmost-once option. Enable the checkbox Started
and click on the Next button.

6.	 In the Select an Existing Source Destination drop-down menu, choose
BridgeSource_01 and click on the Next button.

7.	 Leave the Messaging Provider option in the default WebLogic Server 7.0 or
higher and click on Next.

8.	 Select the BridgeTarget option from the Select an Existing Target Destination
drop-down menu. Click on Next.

9.	 Again, leave the Messaging Provider option in the default WebLogic Server 7.0
or higher and click on Next.

10.	 On the target screen, enable only the PROD_Server01 checkbox and click on Next.

11.	 Click on the Finish button.

12.	 Repeat the previous steps to create the remaining bridges according to the
following table:

Bridge Source Destination Target Destination Target
Bridge_01 BridgeSource_01 BridgeTarget PROD_Server01

Bridge_02 BridgeSource_02 BridgeTarget PROD_Server02

Bridge_03 BridgeSource_03 BridgeTarget PROD_Server03

Bridge_04 BridgeSource_04 BridgeTarget PROD_Server04

13.	 Click on the Activate Changes button to finish.

Configuring JMS Resources for Clustering and High Availability

148

How it works...
One message bridge per queue member must be created when using a distributed destination
like the JMSAppQueue queue to guarantee every message from every member is forwarded.

The target destination, BridgeTarget, uses a remote connection factory, jms.
remoteappcf, to connect to the remote queue. Since the remote queue jms.remotequeue
is also distributed, disable the server affinity option of the remote connection factory jms.
remoteappcf so the messages are load-balanced to all members of the distributed queue
jms.remotequeue.

Depending on the number of bridges created in the WebLogic domain, you should tune the
max connections settings of the resource adapter. The recommendation is to set the max
connections value as 2 times the number of bridges. If you have 20 bridges, change the max
connections to at least 40.

If the resource adapter deployment plan is changed, copy the updated
file to every machine of the cluster. In this case, copy the /oracle/
Middleware/user_projects/domains/PROD_DOMAIN/plans/
jms-notran-adp-Plan.xml file to every machine in the same path.
Using a shared folder to host the file is also a valid option.

There's more...
The message bridge can be configured using WLST.

Configuring the message bridge using WLST:
This change can be made using WLST.

1.	 Log in as a wls user to the shell and start WLST.
[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL:
wls:/offline>connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands to create the bridge sources:
edit()

startEdit()

cd('/')

cmo.createJMSBridgeDestination('BridgeSource_01')

Chapter 4

149

cd('/JMSBridgeDestinations/BridgeSource_01')

cmo.setClasspath('')

cmo.setConnectionURL('t3://prodsrv01.domain.local:8001')

cmo.setAdapterJNDIName('eis.jms.WLSConnectionFactoryJNDIXA')

cmo.setConnectionFactoryJNDIName('jms.appcf')

cmo.setDestinationJNDIName('jms.appqueue')

cd('/')

cmo.createJMSBridgeDestination('BridgeSource_02')

cd('/JMSBridgeDestinations/BridgeSource_02')

cmo.setClasspath('')

cmo.setConnectionURL('t3://prodsrv02.domain.local:8002')

cmo.setAdapterJNDIName('eis.jms.WLSConnectionFactoryJNDIXA')

cmo.setConnectionFactoryJNDIName('jms.appcf')

cmo.setDestinationJNDIName('jms.appqueue')

cd('/')

cmo.createJMSBridgeDestination('BridgeSource_03')

cd('/JMSBridgeDestinations/BridgeSource_03')

cmo.setClasspath('')

cmo.setConnectionURL('t3://prodsrv03.domain.local:8003')

cmo.setAdapterJNDIName('eis.jms.WLSConnectionFactoryJNDIXA')

cmo.setConnectionFactoryJNDIName('jms.appcf')

cmo.setDestinationJNDIName('jms.appqueue')

cd('/')

cmo.createJMSBridgeDestination('BridgeSource_04')

cd('/JMSBridgeDestinations/BridgeSource_04')

cmo.setClasspath('')

cmo.setConnectionURL('t3://prodsrv04.domain.local:8004')

cmo.setAdapterJNDIName('eis.jms.WLSConnectionFactoryJNDIXA')

cmo.setConnectionFactoryJNDIName('jms.appcf')

cmo.setDestinationJNDIName('jms.appqueue')

Configuring JMS Resources for Clustering and High Availability

150

4.	 Run the following WLST commands to create the bridge target:
cd('/')

cmo.createJMSBridgeDestination('BridgeTarget')

cd('/JMSBridgeDestinations/BridgeTarget')

cmo.setClasspath('')

cmo.setConnectionURL('t3://remote01.domain.local:9001,remote02.
domain.local:9002')

cmo.setAdapterJNDIName('eis.jms.WLSConnectionFactoryJNDIXA')

cmo.setConnectionFactoryJNDIName('jms.remoteappcf')

cmo.setDestinationJNDIName('jms.remotequeue')

5.	 Run the following WLST commands to create the bridges and associate the sources
and the target:
cd('/')

cmo.createMessagingBridge('Bridge_01')

cd('/MessagingBridges/Bridge_01')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server01,Type=Server')], ObjectName))

cmo.setSourceDestination(getMBean('/JMSBridgeDestinations/
BridgeSource_01'))

cmo.setTargetDestination(getMBean('/JMSBridgeDestinations/
BridgeTarget'))

cmo.setStarted(true)

cmo.setSelector('')

cmo.setQualityOfService('Atmost-once')

cd('/')

cmo.createMessagingBridge('Bridge_02')

cd('/MessagingBridges/Bridge_02')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server02,Type=Server')], ObjectName))

cmo.setSourceDestination(getMBean('/JMSBridgeDestinations/
BridgeSource_02'))

cmo.setTargetDestination(getMBean('/JMSBridgeDestinations/
BridgeTarget'))

cmo.setStarted(true)

cmo.setSelector('')

cmo.setQualityOfService('Atmost-once')

Chapter 4

151

cd('/')

cmo.createMessagingBridge('Bridge_03')

cd('/MessagingBridges/Bridge_03')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server03,Type=Server')], ObjectName))

cmo.setSourceDestination(getMBean('/JMSBridgeDestinations/
BridgeSource_03'))

cmo.setTargetDestination(getMBean('/JMSBridgeDestinations/
BridgeTarget'))

cmo.setStarted(true)

cmo.setSelector('')

cmo.setQualityOfService('Atmost-once')

cd('/')

cmo.createMessagingBridge('Bridge_04')

cd('/MessagingBridges/Bridge_04')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server04,Type=Server')], ObjectName))

cmo.setSourceDestination(getMBean('/JMSBridgeDestinations/
BridgeSource_04'))

cmo.setTargetDestination(getMBean('/JMSBridgeDestinations/
BridgeTarget'))

cmo.setStarted(true)

cmo.setSelector('')

cmo.setQualityOfService('Atmost-once')

activate()

exit()

See also
ff Creating the distributed queue destination and the connection factory

ff Using the Server affinity to tune the distributed destinations load balance

ff Relying on SAF to transfer JMS messages to another WebLogic domain

Configuring JMS Resources for Clustering and High Availability

152

Relying on SAF to transfer JMS messages
to another WebLogic domain

Store-and-Forward (SAF) is another mechanism WebLogic provides to transfer messages
from one source to a target destination.

The WebLogic messaging bridge and the SAF work in a similar way although the SAF is
recommended over the messaging bridge when used to transfer messages between domains
with WebLogic Version 9.0 or later. JMS SAF also simplifies the configuration since there is no
need to configure a local JMS queue destination as the SAF creates a local representation of
the remote queue.

In this recipe, a SAF agent will be created to forward the JMS messages to a hypothetic
distributed queue with a JNDI name jms.remotequeue, hosted by a separate WebLogic
domain REMOTE_DOMAIN. The REMOTE_DOMAIN domain is configured with a cluster with
the two Managed Servers instances running at the t3://remote01.domain.local:9001
and t3://remote02.domain.local:9002 addresses. The local representation of the
remote queue in the PROD_DOMAIN domain will be configured under the JNDI name jms.
remotequeue-saf.

Getting ready
This recipe assumes the REMOTE_DOMAIN domain is up and running and the SAF agent
can connect to the remote destinations. The configuration is changed by accessing the
Administration Console, so make sure the Administration Server is running.

How to do it...
Create the SAF agents as follows:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the plus sign to open the Services tree on the left; click on +
Messaging and then on Store-and-Forward Agents.

4.	 Click on the New button to open the Create a New Store-and-Forward Agent
page. Type SAFAgent_01 in the Name field and select the FileStore01 option in
the Persistent Store drop-down menu. Change the Agent Type option to Sending-
only and click on the Next button.

5.	 Select the PROD_Server01 server as Target. Click on the Finish button.

Chapter 4

153

6.	 Repeat the previous steps and create the SAFAgent_02, SAFAgent_03, and
SAFAgent_04 agents. Use FileStore02, FileStore03, and FileStore04
as the values for the Persistent Store drop-down menu and PROD_Server02,
PROD_Server03, and PROD_Server04 as the values for the Target drop-down menu.

7.	 Click on the Activate Changes button to finish.

Create the SAF resources as follows:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Services tree on the left; click on Messaging and then on
JMS Modules.

4.	 Click on the JMSAppModule link to open the Configuration page. Click on
the New button and select the Remote SAF Context radio button and then
click on the Next button.

5.	 Type RemoteSAFContextApp in the Name field and t3://remote01.domain.
local:9001,remote02.domain.local:9002 in the URL field. Type in the
username and password of an already registered user of REMOTE_DOMAIN in the
fields User Name, Password, and Confirm Password. Click on the OK button.

6.	 Click on the New button again and select the SAF Imported Destinations radio
button and click on Next.

7.	 Type SAFImportedDestinationsApp in the Name field, choose the
RemoteSAFContextApp value from the Remote SAF Context drop-down menu,
and click on the Next button.

8.	 Click on the Next button to confirm the target to All servers in the cluster of
PROD_Cluster.

9.	 Click on the SAFImportedDestinationsApp value from the JMS resource
list of the JMSAppModule module; then click on the Queues tab.

10.	 Click on the New button and type SAFRemoteQueue in the Name field. Type jms.
remotequeue in the Remote JNDI Name field and click on the OK button.

11.	 Click on the created SAF queue, SAFRemoteQueue, and type jms.remotequeue-
saf in the Local JNDI Name field. Click on the Save button.

12.	 Click on the Activate Changes button to finish.

Configuring JMS Resources for Clustering and High Availability

154

How it works...
The SAF agent and SAF resources were configured in PROD_DOMAIN to forward messages
to the jms.remotequeue queue hosted by the REMOTE_DOMAIN domain. The JNDI
representation of the jms.remotequeue queue in the PROD_DOMAIN domain is jms.
remotequeue-saf.

The SAF agent was configured to use the persistent stores FileStore01, FileStore02,
FileStore03, and FileStore04 to persist the messages.

With this configuration, every message posted to the jms.remotequeue-saf agent
from the PROD_DOMAIN domain is forwarded to the jms.remotequeue queue of the
REMOTE_DOMAIN domain.

There's more...
The SAF agent and resources can be configured using WLST.

Configuring the SAF agents and SAF resources using WLST
This change can be made using WLST:

1.	 Log in as a wls user to the shell and start WLST.
[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL.
wls:/offline>connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Create the SAF agents by running the following WLST commands:
edit()

startEdit()

cd('/')

cmo.createSAFAgent('SAFAgent_01')

cd('/SAFAgents/SAFAgent_01')

cmo.setStore(getMBean('/FileStores/FileStore01'))

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server01,Type=Server')], ObjectName))

cmo.setServiceType('Sending-only')

cd('/')

Chapter 4

155

cmo.createSAFAgent('SAFAgent_02')

cd('/SAFAgents/SAFAgent_02')

cmo.setStore(getMBean('/FileStores/FileStore02'))

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server02,Type=Server')], ObjectName))

cmo.setServiceType('Sending-only')

cd('/')

cmo.createSAFAgent('SAFAgent_03')

cd('/SAFAgents/SAFAgent_03')

cmo.setStore(getMBean('/FileStores/FileStore03'))

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server03,Type=Server')], ObjectName))

cmo.setServiceType('Sending-only')

cd('/')

cmo.createSAFAgent('SAFAgent_04')

cd('/SAFAgents/SAFAgent_04')

cmo.setStore(getMBean('/FileStores/FileStore04'))

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Server04,Type=Server')], ObjectName))

cmo.setServiceType('Sending-only')

activate()

4.	 Connect to the Administration Server using wlsadmin as user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL.
edit()

startEdit()

cd('/JMSSystemResources/JMSAppModule/JMSResource/JMSAppModule')

cmo.createSAFRemoteContext('RemoteSAFContextApp')

cd('/JMSSystemResources/JMSAppModule/JMSResource/JMSAppModule/
SAFRemoteContexts/RemoteSAFContextApp/SAFLoginContext/
RemoteSAFContextApp')

cmo.setLoginURL('t3://remote01.domain.local:9001,remote02.domain.
local:9002')

cmo.setUsername('<remote username>')

Configuring JMS Resources for Clustering and High Availability

156

cmo.setPassword('<remote password>')

cd('/JMSSystemResources/JMSAppModule/JMSResource/JMSAppModule')

cmo.createSAFImportedDestinations('SAFImportedDestinationsApp')

cd('/JMSSystemResources/JMSAppModule/JMSResource/JMSAppModule/
SAFImportedDestinations/SAFImportedDestinationsApp')

cmo.setJNDIPrefix(None)

cmo.setSAFRemoteContext(getMBean('/JMSSystemResources/
JMSAppModule/JMSResource/JMSAppModule/SAFRemoteContexts/
RemoteSAFContextApp'))

cmo.setSAFErrorHandling(None)

cmo.setTimeToLiveDefault(0)

cmo.setUseSAFTimeToLiveDefault(false)

cmo.setDefaultTargetingEnabled(true)

cmo.createSAFQueue('SAFRemoteQueue')

cd('/JMSSystemResources/JMSAppModule/JMSResource/JMSAppModule/
SAFImportedDestinations/SAFImportedDestinationsApp/SAFQueues/
SAFRemoteQueue')

cmo.setRemoteJNDIName('jms.remotequeue')

activate()

exit()

See also
ff Configuring messaging bridge with source and target distributed destinations

Monitoring WebLogic
Server 12c

In this chapter, we will cover the following recipes:

ff Customizing the Administration Console tables

ff Using the JRockit Mission Control Management Console

ff Monitoring Linux with SAR

ff Sending e-mail notifications with WLDF

ff Generating an SMNP trap

ff Creating a Monitoring Dashboard custom view

ff Viewing historical data in the monitoring dashboard using a database

Introduction
Oracle WebLogic Server 12c provides some out of the box monitoring tools that will help
maintain and support WebLogic production environments.

Although there are several other vendors offering WebLogic Server monitoring applications,
it's important for a WebLogic Administrator to learn how to use the embedded tools provided,
such as the Administration Console, the Monitoring Dashboard, and other common tools such
as SAR, WLDF, and SNMP.

This chapter focuses on showing the system administrators how to use the tools and
features to monitor WebLogic. It does not intend to provide the metrics and thresholds
that should be used.

5

Monitoring WebLogic Server 12c

158

Customizing the Administration Console
tables

The Administration Console is the central tool for managing, configuring, and
monitoring WebLogic.

This recipe shows how to customize the Administration Console tables to display more
columns and more information and data that are hidden by default. This is a simple but
essential feature to help monitor the WebLogic Server.

Getting ready
Access the Administration Console. The following procedure customizes the threads'
monitoring table of the Managed Server Self-Tuning's thread pool.

How to do it...
Carry out the following steps to customize the Administration Console tables:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the plus sign to open the Environment tree on the left and then click on the
Servers link.

3.	 Click on any server, such as the PROD_Server01 link. Click on the Monitoring tab
and then on the Threads tab to open the Threads page.

4.	 Click on the second Customize this table link of the Self-Tuning Thread Pool
Threads table.

Chapter 5

159

5.	 Click on the >> button to add the columns Application, Module, and Work
Manager. Change the Number of rows displayed per page value to 1000.
Click on the Apply button.

How it works...
The Administration Console allows the user to customize and add more columns to the
monitoring tables. In this recipe, the Application, Module, and Work Manager columns
are added to the Self-Tuning Thread Pool Threads table.

Monitoring WebLogic Server 12c

160

The added columns are very useful to monitor the application requests being processed.
The following table displays thread 0 processing a request of the testWeb application
and thread 1 processing a request of the myApp application.

Customizing the Administration Console monitoring tables is a common task and can be
applied in a variety of tables, such as the data sources, the JMS queues, and transactions.

Using the JRockit Mission Control
Management Console

Mission Control is a monitoring and troubleshooting application provided with Oracle JRockit.

From a monitoring point of view, Mission Control provides a Management Console to monitor
the garbage-collection behavior, processor utilization by the JVM, memory allocation, thread
utilization, and some other useful monitoring metrics.

Mission Control is a standalone application, so it must be started either locally from the same
machine that WebLogic is running on or from a remote workstation.

If you run Mission Control locally on the Linux server
prod01, an X window must be available.

This recipe will run Mission Control in a Microsoft Windows desktop and will remotely connect
and monitor the PROD_Server01 Managed Server.

Chapter 5

161

Getting ready
Oracle JRockit must be downloaded and installed in the Windows desktop. Download
Oracle JRockit 6 for Microsoft Windows at http://www.oracle.com/technetwork/
middleware/jrockit/downloads. The filename is jrockit-jdk1.6.0_XXX-windows-
iaYY.exe, where XXX stands for the JRockit release and JDK version and YY stands for
32 bits or 64 bits. Choose the version that matches your desktop and accept the license
agreement to download it.

How to do it...
Enable the PROD_Server01 Managed Server to accept JMX connections from
Mission Control:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the plus sign to open the Environment tree on the left and then
click Servers.

4.	 Click on the PROD_Server01 link and then click the Server Start tab.

5.	 Add the following to the Arguments field and click on the Save button:
-Xmanagement:autodiscovery=false,authenticate=false,ssl=fa
lse,interface=prodsrv01.domain.local,port=8081 -Djava.rmi.
server.hostname=prodsrv01.domain.local -Djavax.management.
builder.initial=weblogic.management.jmx.mbeanserver.
WLSMBeanServerBuilder

6.	 Click on the Activate Changes button.

7.	 Restart PROD_Server01.

Monitoring WebLogic Server 12c

162

Start Mission Control on the desktop, as follows:

1.	 Start Mission Control by double-clicking on the Oracle JRockit Mission Control icon.

2.	 On the JVM Browser panel to the left, right-click on the Connectors folder and click
on the New Connection option.

3.	 Type prodsrv01.domain.local in the Host field and 8081 in the Port field
and click on the Finish button.

Chapter 5

163

4.	 Right-click on the newly created connection, prodsrv01.domain.local:8081,
and click on the Start Console menu option.

How it works...
Mission Control connects to the specified host and port defined in the Xmanagement start-up
argument and starts monitoring the PROD_Server01 JVM.

Monitoring WebLogic Server 12c

164

Add the start-up arguments to monitor the other WebLogic instances. Mission Control can
connect to any running JRockit JVM.

Monitoring Linux with SAR
A Linux host with Red Hat Enterprise Linux or Oracle Linux can be monitored using the SAR
command-line utility. The SAR is included in the SYSSTAT package bundle and is usually
included with these Linux distributions.

SAR retrieves activity counters of the operational system, such as CPU, memory, disk, and
network I/O usage. By default, it keeps a history of seven days, so it is a very useful tool to
retrieve past reports and quickly search for behavioral patterns.

This recipe will retrieve some statistics from the prod01 machine using the SAR
command-line utility.

Getting ready
SAR should already be installed in a Red Hat or Oracle Linux distribution. If it is not installed,
you can use the yum package management utility to install the SYSSTAT package, which
includes SAR.

As root user, execute the yum command and follow the onscreen instructions to install
SYSSTAT:

[root@prod01]$ yum install sysstat

All SAR commands are executed from the Linux shell. Log in to the host
first. The root user is used only to install the SYSSTAT package.

How to do it...
To retrieve the queue length and load averages from the current day, as a wls user execute
the following command:

[wls@prod01]$ sar -q

Chapter 5

165

This will display the following result:

To retrieve a past CPU usage from the 21st day of the month, as a wls user execute the
following command:

[wls@prod01]$ sar –u –f /var/log/sa/sa21

This will display the following result:

The default SAR configuration keeps historical data for a week.

How it works...
The SAR utility is very flexible and provides a quick way to watch the host behavior for the
current day and for the past seven days. SAR runs every 10 minutes and saves a summary
at the end of the day.

These are the default values in the crontab and can be adjusted.

Monitoring WebLogic Server 12c

166

There's more...
Apart from the options discussed earlier, we can view more fine-grained data as well.

Collecting SAR data every minute
SAR can store statistical data in a more fine-grained time interval.

Log in as a root user to the shell and execute the following command:

[root@prod01]$ vi /etc/cron.d/sysstat

Locate the following lines:

run system activity accounting tool every 10 minutes

*/10 * * * * root /usr/lib64/sa/sa1 1 1

Change these lines to the following:

run system activity accounting tool every 1 minute

*/1 * * * * root /usr/lib64/sa/sa1 1 1

Type :wq! to save and close the file.

Sending e-mail notifications with WLDF
The WebLogic Diagnostic Framework (WLDF) is a set of functionalities to monitor,
collect, and analyze runtime counters, metrics, and statistical and diagnostic data from
various WebLogic Server components. The metrics can be gathered from the JRockit JVM,
the WebLogic domain, the WebLogic clusters, Managed Servers, applications, and every
component that exposes data through MBeans.

WebLogic Administrators can include active monitoring in production environments with
WLDF. It is possible to configure WebLogic to send e-mail alerts when certain conditions
and metrics are reached.

In this recipe, the WebLogic domain will be configured to send e-mail alerts when the
WebLogic thread pool from a Managed Server has queued requests waiting to be processed.

Getting ready
A mail session called EmailAlertMailSession and a diagnostic module named
EmailAlertModule will be created using the Administration Console, so make sure
the Administration Server is running.

Chapter 5

167

How to do it...
Follow these steps to create the EmailAlertMailSession mail session:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the plus sign to open the Services tree on the left and then click
on Mail Sessions.

4.	 Click on the New button and type EmailAlertMailSession in the Name field.
Type mail/emailAlertMailSession in the JNDI Name field.

5.	 Add to JavaMail the properties needed according to the SMTP Server used:
mail.smtp.host=<smtp-host>

mail.smtp.port=<smtp-port>

6.	 Click on the Next button and select the All servers in the cluster target. Click on the
Finish button.

7.	 Click on the Activate Changes button to finish.

Follow these steps to create the EmailAlertModule WLDF module:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the plus sign to open the Diagnostics tree on the left and then click on
Diagnostic Modules.

Monitoring WebLogic Server 12c

168

4.	 In the Summary of Diagnostic Modules page, click on the New button.

5.	 Type EmailAlertModule in the Name field and click on the OK button.

6.	 Click on the newly created EmailAlertModule WLDF module and then on
the Targets tab. Select the All servers in the cluster radio button and click on
the Save button.

7.	 Click on the Configuration tab and then the Collected Metrics tab. Change the
Sampling Period value to 60000 and click on the Save Button.

8.	 Click on the New button in the Collected Metrics in this Module table to create
a new Harvester.

9.	 Choose ServerRuntime from the MBean Server location drop-down menu and
click on the Next button.

10.	 Select weblogic.management.runtime.ThreadPoolRuntimeMBean from the
MBean Type drop-down menu and click on the Next button.

11.	 Select the QueueLength item from the Collected Attributes table on the
left and click on the > icon to move it to the Chosen table on the right. Click on the
Next button.

12.	 In the Select Instances page, leave the Chosen Collected Instances and Instance
Expressions textboxes empty and then click on the Finish button.

Chapter 5

169

Follow these steps to create the watches and notifications for the WLDF module:

1.	 Click on the Watches and Notifications tab and then on the Notifications tab below.
Click on the New button to create a new notification.

2.	 Select the SMTP (E-Mail) option in the Type drop-down menu and click on the
Next button.

3.	 Type EmailAlertNotification in the Notification Name field and click on the
Next button.

4.	 Select the EmailAlertMailSession option from the Mail Session Name
drop-down menu. Type an e-mail address in the E-Mail Recipients textbox
and click on the Finish button. This e-mail address will receive the alerts.

5.	 Now click on the Watches tab and click on the New button to create a new watch.

6.	 Type EmailAlertWatch in the Watch Name field. Leave the Collected Metrics
option selected in the Watch Type field and click on the Next button.

7.	 Click on the Add Expressions button to add a new expression rule.

8.	 Select the ServerRuntime option from the MBean Server location drop-down
menu and then click on the Next button.

9.	 Select weblogic.management.runtime.ThreadPoolRuntimeMBean from the
MBean Type drop-down menu and click on the Next button.

10.	 Select the Enter a custom Instance radio button and type com.bea:Name=Thread
PoolRuntime,ServerRuntime=PROD_Server*Type=ThreadPoolRuntime in
the Custom Instance field. Click on the Next button.

Monitoring WebLogic Server 12c

170

11.	 Select the QueueLength option from the Message Attribute drop-down menu and
select the > option from the Operator drop-down menu and type 100 in the Value
field. Click on the Finish button.

12.	 On the following screen, click on the Finish button again.

13.	 Click on the EmailAlertWatch to assign the notification. Click the Notifications tab.

14.	 Select EmailAlertNotification from the Available table to the left and click on the >
icon to move it to the Chosen table to the right. Click on the Save button.

15.	 Click on the Activate Changes button to finish.

How it works...
WLDF is a very powerful framework and helps WebLogic Administrators to properly monitor
a WebLogic domain.

The diagnostic module was created with a WLDF Harvester for the QueueLength attribute
of the ThreadPoolRuntimeBean MBean and a sampling period of 60000. The sampling
period is the interval between metric-collection cycles, in milliseconds. The data collected by
the harvester is stored in a WLDF archive.

The default archive is stored in a file-based format at $DOMAIN_HOME/
servers/<serverName>/data/store/diagnostics.

Chapter 5

171

The WLDF archive can use a JDBC-based store to persist
the collected data.

The scenario of 100 queued requests waiting to be processed can indicate a potential
problem because all threads of the WebLogic Server thread pool could be busy and the
requests will not be processed fast enough, causing the incoming requests to pile up. The
EmailAlertWatch watch was created for such situations to observe when the QueueLength
value is greater than 100. When this condition is reached, the watch triggers an event to the
EmailAlertNotification notification and an e-mail is sent to the specified recipients.

The notification can also be configured as an SNMP trap, a JMS message, a JMX operation,
or a Diagnostic Image.

The WLDF is very flexible and can be configured with any attribute
of the exposed MBean. Set up a watch expression that meets the
condition and the monitoring requirements of your environment.

See also
ff Generating a SNMP trap

ff Viewing historical data in the monitoring dashboard using a database

Generating an SNMP trap
WebLogic provides Simple Network Management Protocol (SNMP) standards to monitor the
domain, Managed Servers, and applications the same way the exposed MBean's attributes
were monitored in the last recipe using WLDF.

In this recipe, an SNMP agent will be added to monitor all Managed Servers of the PROD_
Domain, watching for the same QueueLength attribute of the ThreadPoolRuntime MBean.

An SNMP trap will be triggered by adding a gauge monitor to verify if the QueueLength value
is above 100.

Getting ready
The Server SNMP agent called PROD_SNMPAgent will be created using the Administration
Console, so make sure the Administration Server is running.

This recipe assumes there is an SNMP Manager listening for an SNMP trap at the hostname
snmphost on port 162.

Monitoring WebLogic Server 12c

172

How to do it...
Follow these steps to create the Server SNMP Agent:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the plus sign to open the Diagnostics tree on the left and then click
on SNMP.

4.	 Click on the New button from the Server SNMP Agent. Type PROD_SNMPAgent
in the Name field and click on the OK button.

5.	 Click on the newly created SNMP Agent, PROD_SNMPAgent.

6.	 Click on the Enabled checkbox to enable it. Type 1610 in the SNMP UDP Port field
and 7050 in the Master AgentX Port field. Click on the Save button.

7.	 Click on the Targets tab and select the All servers in the cluster option from the
PROD_Cluster target. Click on the Save button.

Follow these steps to create the gauge monitor and the SNMP trap:

1.	 Click on the Configuration tab and then on the Gauge Monitors tab. Click on the
New button to create a new SNMP Gauge Monitor.

2.	 Type QueueLengthGauge in the Name field. Select the ThreadPoolRuntime option
from the Monitored MBean Type drop-down menu. Click on the Next button.

Chapter 5

173

3.	 Select the QueueLength option from the Monitored Attribute Name drop-down
menu and click on the Finish button.

4.	 Click on the newly created QueueLengthGauge gauge and type 100 in the
Threshold High field. Click on the Save button.

5.	 Click on the Servers tab and enable the PROD_Server01, PROD_Server02,
PROD_Server03, and PROD_Server04 checkboxes. Click on the Save button.

6.	 Go to Diagnostics | SNMP on the left tree again and click on the
PROD_SNMPAgent link.

7.	 Click on the Trap Destinations tab and click on the New button.

8.	 Type QueueLengthTrap in the Name field. Type snmphost in the Host field
and 162 in the Port field. Click on the OK button.

9.	 Click on the Activate Changes button to finish.

How it works...
The same notification from the previous recipe was created, but in this recipe instead
of sending an e-mail alert using WLDF, a SNMP trap is generated to a hypothetical SNMP
Manager running at snmphost on port 162.

The threshold condition is the same. The SNMP trap is sent when the QueueLength
attribute from the WebLogic thread pool from a Managed Server of the PROD_Cluster
value is above 100.

The trap generated has the following format:

--- Snmp Trap Received ---
 Version : v1
 Source : UdpEntity:<source_ip>:1610
 Community : public
 Enterprise : enterprises.140.625
 AgentAddr : <source_ip>
 TrapOID : enterprises.140.625.0.75
 RawTrapOID : 1.3.6.1.4.1.140.625.0.75
 Trap Objects : {
 { enterprises.140.625.100.5=Sun Nov 11 15:50:55 BRST 2012 }
 { enterprises.140.625.100.10=PROD_Server02 }
 { enterprises.140.625.100.55=jmx.monitor.gauge.high }
 { enterprises.140.625.100.60=100 }
 { enterprises.140.625.100.65=435 }
 { enterprises.140.625.100.70=com.bea:Name=ThreadPoolRuntime,Server
Runtime=PROD_Server02,Type=ThreadPoolRuntime }
 { enterprises.140.625.100.75=ThreadPoolRuntime }
 { enterprises.140.625.100.80=QueueLength }
}

Monitoring WebLogic Server 12c

174

The previous SNMP trap example was triggered from PROD_Server02
and the QueueLength attribute was 435 at the time.

There's more...
Now we will see how to create an SNMP agent through WLST.

Creating the SNMP Agent by using WLST
1.	 Log in as a wls user to the shell and start WLST.

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL.
wls:/offline> connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands:

edit()

startEdit()

cmo.createSNMPAgentDeployment('PROD_SNMPAgent')

cd('/SNMPAgentDeployments/PROD_SNMPAgent')

cmo.setMasterAgentXPort(7050)

cmo.setEnabled(true)

cmo.setSNMPPort(1610)

cmo.setPrivacyProtocol('NoPriv')

cmo.createSNMPGaugeMonitor('QueueLengthGauge')

cd('/SNMPAgentDeployments/PROD_SNMPAgent/SNMPGaugeMonitors/
QueueLengthGauge')

cmo.setMonitoredMBeanType('ThreadPoolRuntime')

cmo.setMonitoredAttributeName('QueueLength')

set('EnabledServers',jarray.array([ObjectName('com.bea:Name=PROD_
Server01,Type=Server'), ObjectName('com.bea:Name=PROD_
Server02,Type=Server'), ObjectName('com.bea:Name=PROD_
Server03,Type=Server'), ObjectName('com.bea:Name=PROD_
Server04,Type=Server')], ObjectName))

cmo.setThresholdHigh(100)

cmo.setMonitoredMBeanName('(None)')

cmo.setMonitoredMBeanName('')

Chapter 5

175

cd('/SNMPAgentDeployments/PROD_SNMPAgent')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Cluster,Type=Cluster')], ObjectName))

cmo.createSNMPTrapDestination('QueueLengthTrap')

cd('/SNMPAgentDeployments/PROD_SNMPAgent/SNMPTrapDestinations/
QueueLengthTrap')

cmo.setPort(16200)

cmo.setSecurityLevel('noAuthNoPriv')

activate()

exit()

See also
ff Sending e-mail notifications with WLDF

Creating a Monitoring Dashboard custom
view

The Monitoring Dashboard is embedded with the Oracle WebLogic Server 12c. The dashboard
is an application deployed in the Administration Server and is accessible at the URL http://
adminhost.domain.local:7001/console/dashboard.

The Monitoring Dashboard can graphically display the metrics collected from the WLDF
and exposed by the MBeans.

In this recipe, a Dashboard custom view will be created to display the Queue Length
attribute from the ThreadPoolRuntime MBean of the PROD_Server01 Managed Server.
This is the same attribute monitored in the previous recipes.

Getting ready
The Monitoring Dashboard is a functionality of the Administration Console. Make sure the
Administration Server is running.

How to do it...
Carry out the following steps to create a custom view:

1.	 Access the Monitoring Dashboard with your web browser at http://adminhost.
domain.local:7001/console/dashboard.

Monitoring WebLogic Server 12c

176

2.	 From the View List tab, click on My Views and then on the down arrow to display the
drop-down menu. Click on the New View menu option.

3.	 Type QueueLengthView to set the View name.

4.	 Click on the arrow down on the chart of the display pane to the right. Click on
New Chart.

5.	 Click on the Metric Browser tab, select the PROD_Server01 option from the
Servers drop-down menu, and click on the GO button.

6.	 Click on the ThreadPool item from the Types selection list and then on the
ThreadPoolRuntime from the Instances selection list. Click on the QueueLength
(int) option and drag it to the QueueLengthView chart on the right display panel.

7.	 Click on the green start button on the left to start collecting.

Chapter 5

177

How it works...
A custom view was created with a new chart to display the QueueLength counter metrics. The
QueueLength attribute is collected directly from the exposed ThreadPoolRuntime MBean.

Monitoring WebLogic Server 12c

178

Other charts can be created and any other exposed runtime MBean attribute can be added.
The QueueLength attribute from the other Managed Servers of the PROD_Cluster cluster
can also be added to the same chart.

The chart polls for the online and real-time statistics, keeping by default
100 samples of 20 second intervals each, giving about 30 minutes of
time range.

See also
ff View Historical Data in the Monitoring Dashboard using a Database

Viewing historical data in the monitoring
dashboard using a database

In the previous recipe, a Dashboard custom view was created to display the
QueueLength attribute of the ThreadPoolRuntime MBean of the Managed
Servers of the PROD_Cluster cluster.

The Dashboard can collect the data from two sources. One is from the exposed MBeans,
displaying polled runtime statistics like the previous recipe. The other form is from the WLDF
archive data collected from a WLDF harverster. This stored data is called collected metrics by
the Monitoring Dashboard.

In this recipe, the PROD_Server01, PROD_Server02, PROD_Server03, and
PROD_Server04 WLDF archives will be configured to use a database instead of the default
file-based archive to hold the data collected from a WLDF Harvester. A new custom view will
be created to display this data and it will be able to display all the collected historical data
instead of the default 30 minutes collected from the polled collector. The QueueLength
attribute will be used.

The database is an Oracle database, running in the dbhost hostname and listening to the
port 1521. The listener is accepting requests to the service named dbservice.

Getting ready
The recipe will use the database dbhost, so create a new JDBC data source named
ds-wldf-archive, with a JNDI name jdbc/ds-wldf-archive targeted to the
PROD_Cluster cluster.

The database tables WLS_EVENTS and WLS_HVST have to be created. WebLogic uses
these tables to store the WLDF archive data.

Chapter 5

179

The Monitoring Dashboard is a functionality of the Administration Console. Make sure the
Administration Server is running.

How to do it...
Follow these steps to create tables in the Oracle dbhost database:

1.	 Connect to the database at dbhost, port 1521, and service name dbservice.

2.	 Run the following SQL script:

DROP TABLE WLS_EVENTS;
CREATE TABLE WLS_EVENTS (
 RECORDID number NOT NULL,
 TIMESTAMP number default NULL,
 CONTEXTID varchar2(128) default NULL,
 TXID varchar2(32) default NULL,
 USERID varchar2(32) default NULL,
 TYPE varchar2(64) default NULL,
 DOMAIN varchar2(64) default NULL,
 SERVER varchar2(64) default NULL,
 SCOPE varchar2(64) default NULL,
 MODULE varchar2(64) default NULL,
 MONITOR varchar2(64) default NULL,
 FILENAME varchar2(64) default NULL,
 LINENUM number default NULL,
 CLASSNAME varchar2(250) default NULL,
 METHODNAME varchar2(64) default NULL,
 METHODDSC varchar2(4000) default NULL,
 ARGUMENTS clob default NULL,
 RETVAL varchar2(4000) default NULL,
 PAYLOAD blob default NULL,
 CTXPAYLOAD varchar2(4000),
 DYES timestamp default NULL,
 THREADNAME varchar2(128) default NULL
);
DROP TABLE WLS_HVST;
CREATE TABLE WLS_HVST (
 RECORDID number NOT NULL,
 TIMESTAMP number default NULL,
 DOMAIN varchar2(64) default NULL,
 SERVER varchar2(64) default NULL,
 TYPE varchar2(64) default NULL,
 NAME varchar2(250) default NULL,
 ATTRNAME varchar2(64) default NULL,

Monitoring WebLogic Server 12c

180

 ATTRTYPE number default NULL,
 ATTRVALUE varchar2(4000)
);

DROP SEQUENCE MON_EVENTS;
CREATE SEQUENCE MON_EVENTS
 START WITH 1
 INCREMENT BY 1
 NOMAXVALUE;

DROP TRIGGER TRIG_EVENTS;
CREATE TRIGGER TRIG_EVENTS
 BEFORE INSERT ON WLS_EVENTS
 FOR EACH ROW
 BEGIN
 SELECT MON_EVENTS.NEXTVAL INTO :NEW.RECORDID FROM DUAL;
 END;
/

DROP SEQUENCE MON_HVST;
CREATE SEQUENCE MON_HVST
 START WITH 1
 INCREMENT BY 1
 NOMAXVALUE;

DROP TRIGGER TRIG_HVST;
CREATE TRIGGER TRIG_HVST
 BEFORE INSERT ON WLS_HVST
 FOR EACH ROW
 BEGIN
 SELECT MON_HVST.NEXTVAL INTO :NEW.RECORDID FROM DUAL;
 END;
/

Follow these steps to create the JDBC data source:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the plus sign to open the Services tree on the left and then click
Data Sources.

4.	 Click on the New button and click on Generic Data Source.

Chapter 5

181

5.	 Type ds-wldf-archive in the Name field and jdbc/ds-wldf-archive in the
JNDI Name. Leave the Database Type drop-down menu with the Oracle option
selected. Click on the Next button.

6.	 Choose *Oracle's Driver (Thin) for Service connections;
Versions:9.0.1 and later from the Database Driver drop-down menu.
Click on the Next button.

7.	 Leave the Transaction options with the default values and click on the Next button.

8.	 In the Connection Properties page, type dbservice in the Database Name field,
dbhost in the Host Name field, and 1521 in the Port field. Complete the Database
User Name, Password, and Confirm Password fields with dbuser and dbpwd. Click
on the Next button.

9.	 Click on the Next button in the Test Database Connection page.

10.	 Click on each Managed Server checkbox of the PROD_Cluster cluster. Don't click
on the All servers in the cluster radio button. Click on the Finish button.

11.	 Click on the Activate Changes button to finish.

Follow these steps to configure the WLDF archive to store the data to a JDBC based store:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the plus sign to open the Diagnostics tree on the left and then click
on Archive.

4.	 Click on the PROD_Server01 Managed Server.

5.	 Select the JDBC option from the Type drop-down menu. Select the ds-wldf-
archive option from the Data Source drop-down menu. Click on the Save button.

6.	 Repeat the previous steps for the PROD_Server02, PROD_Server03, and
PROD_Server04 Managed Servers.

7.	 Click on the Activate Changes button.

Monitoring WebLogic Server 12c

182

Follow these steps to create a new WLDF module and a new WLDF Harvester:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the plus sign to open the Diagnostics tree on the left and then click on
Diagnostic Modules.

4.	 In the Summary of Diagnostic Modules page, click on the New button.

5.	 Type QueueLengthModule in the Name field and click on the OK button.

6.	 Click on the newly created QueueLengthModule module and click on the Targets
tab. Select the All servers in the cluster radio button and click on the Save button.

7.	 Click on the Configuration tab and then the Collected Metrics tab. Change the
Sampling Period to 60000 and click on the Save Button.

8.	 Click on the New button in the Collected Metrics in this Module table
to create a new WLDF harvester.

9.	 Choose ServerRuntime from the MBean Server location drop-down menu and
click on the Next button.

10.	 Select weblogic.management.runtime.ThreadPoolRuntimeMBean from
the MBean Type drop-down menu and click on the Next button.

11.	 Select the QueueLength item from the Collected Attributes table on
the left and click the > icon to move it to the Chosen table on the right. Click
on the Finish button.

Chapter 5

183

12.	 Click on the Activate Changes button and restart all Managed Servers.

Follow these steps to create a new custom view in the Monitoring Dashboard:

1.	 Access the Monitoring Dashboard with your web browser at http://adminhost.
domain.local:7001/console/dashboard.

2.	 From the View List tab, click on My Views and then click on the down arrow to display
the drop-down menu. Click on the New View menu option.

3.	 Type in QueueLengthCollectedView to set the View name.

4.	 Click on the down arrow on the chart of the display pane to the right. Click on
New Chart.

5.	 Click on the Metric Browser tab and then enable the Collected Metrics Only
checkbox. Select the PROD_Server01 option from the Servers drop-down menu
and click on the OK button.

6.	 Click on the ThreadPool item from the Types selection list and then click on
ThreadPoolRuntime from the Instances selection list. Click on the QueueLength
(int) option and drag it to the QueueLengthCollectView chart on to the display
panel to the right.

7.	 Repeat steps 5 and 6 and add the metrics from the PROD_Server02,
PROD_Server03, and PROD_Server04 Managed Servers.

Monitoring WebLogic Server 12c

184

How it works...
A custom view was created with a new chart to display the QueueLength counter metrics
of the WLDF archive stored in the database.

This chart can be used to display historical data and uses the time range stored in the
database's WLDF archive. This is an important tool to understand the Managed Servers'
behavioral data and past events in production environments.

See also
ff Sending e-mail notifications with WLDF

ff Creating a Monitoring Dashboard custom view

Troubleshooting
WebLogic Server 12c

In this chapter, we will cover the following recipes:

ff Changing log levels to debug

ff Including the time taken field in access.log

ff Enabling verbose garbage collection logging

ff Taking thread dumps

ff Enabling the JRockit Mission Control Flight Recorder

ff Analyzing a heap dump

ff Recovering the WebLogic admin password

ff Recovering the data source password

Introduction
Problems in the WebLogic environment can be exemplified as application errors, a JVM
crash, when the application hangs and stops responding or when the client starts to feel
the application is responding slower than usual.

All these examples are common problems in a production environment and they are usually
solved by simply bouncing/restarting the affected Managed Server.

If the same problem becomes more and more frequent, a troubleshooting process must be
started. Troubleshooting is the analysis process to solve a specific problem.

6

Troubleshooting WebLogic Server 12c

186

The purpose of all troubleshooting processes is to find the source and root cause of the
problem. The source of a problem can reside either in the application code or on the host
machine, or the issue may only occur because of a bad WebLogic configuration or a network
issue. The problem can also occur because of a WebLogic bug. A product bug must always be
considered in software of this size and complexity.

A correct WebLogic analysis and diagnosis of the troubleshooting process is not an easy task.
It is complex, complicated, and involves a deep knowledge of WebLogic core mechanisms and
Java architecture. Incorrect diagnoses can lead to an imprecise root cause that in turn will
generate wasted efforts in both development and infrastructure.

What is the problem? is the question to be answered. If not answered
properly, it will lead to an endless loop of workarounds, tunings, and
fixes that will probably make things worse.

This chapter provides some recipes and steps to help the WebLogic troubleshooting process
in production environments.

Changing log levels to debug
The level of logged information is essential during a troubleshooting analysis. Any additional log
can give a hint that will help reveal the root cause of the problem in a production environment.

This recipe shows a hypothetical scenario to diagnose transaction problems. The log level setting
of the PROD_Server01 Managed Server will be changed to add more debugging information.

Getting ready
The log levels will be changed using the Administration Console, so make sure the
Administration Server is running.

How to do it...
Carry out the following steps to change the log level for debugging:

1.	 Access the Administration Console by pointing your web browser to
http://adminhost.domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Environment tree on the left, and then click on the Servers link.

4.	 Click on the PROD_Server01 Managed Server link and then click on the
Logging tab.

5.	 Click on the Advanced link to open the advanced options.

Chapter 6

187

6.	 Change the Minimum severity to log drop-down menu to Trace.

7.	 Change the Severity Level value for the Log file value to Trace.

8.	 Change the Severity Level for the Standard out value to Debug.

9.	 Type -1 in the stdout Stack Trace Depth field.

10.	 Click on the Save button.

11.	 Click on the Debug tab.

12.	 Click on the [+] sign in the weblogic scope.

13.	 Check the transaction checkbox and click on the Enable button:

14.	 Finally, click on the Activate Changes button.

Troubleshooting WebLogic Server 12c

188

How it works...
Changing the log levels to display more information is the first common and useful task
WebLogic administrators should set in production environments.

The PROD_Server01 logfiles are located by default at $DOMAIN_HOME/servers/
PROD_Server01/logs/PROD_Server01.log and $DOMAIN_HOME/servers/
PROD_Server01/logs/PROD_Server01.out.

This recipe raises the level of logging and enables only the transaction debug. WebLogic has
several other debug options that can be enabled, such as security, protocol, JMS, and deploy
among others. Enable the option that best suits your troubleshooting needs.

Debug and trace logging will write a lot of information to the output log,
so do not forget to disable it at the analysis end.

There's more...
The log levels can also be changed using WLST.

Changing the log levels using WLST
1.	 Log in as a wls user to shell and start WLST:

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password and t3://adminhost.domain.local:7001 as the server URL:
wls:/offline> connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands to create the file stores:
edit()

startEdit()

cd('/Servers/PROD_Server01/Log/PROD_Server01')

cmo.setStacktraceDepth(-1)

cmo.setLoggerSeverity('Trace')

cmo.setStdoutSeverity('Debug')

cmo.setMemoryBufferSeverity('Debug')

cd('/Servers/PROD_Server01/ServerDebug/PROD_Server01')

Chapter 6

189

cmo.createDebugScope('weblogic.transaction')

cd('/Servers/PROD_Server01/ServerDebug/PROD_Server01/DebugScopes/
weblogic.transaction')

cmo.setEnabled(true)

activate()

exit()

See also
ff Including the time taken field in access.log

ff Enabling verbose garbage collection logging

Including the time taken field in access.log
The access.log file registers every HTTP request received by the WebLogic Server.
It contains valuable information for the analysis in the production environments.

In this recipe, all Managed Servers of the PROD_Cluster cluster will be configured to add the
time taken field to the access.log logfile. The default configuration does not include the
time taken to process an HTTP request in the access.log file.

Getting ready
The access.log file has been configured using the Administration Console, so make sure
the Administration Server is running.

How to do it...
Carry out the following steps to add the time taken field:

1.	 Access the Administration Console by pointing your web browser to
http://adminhost.domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Environment tree on the left and then click on Servers.

Troubleshooting WebLogic Server 12c

190

4.	 Click on the PROD_Server01 link. Click on the Logging tab and then on
the HTTP tab.

5.	 Click on the Advanced link to open the advanced options.

6.	 Select the Extended option from the Format drop-down menu.

7.	 Type c-ip date time cs-method cs-uri sc-status bytes time-taken
in Extended Logging Format Fields and click on the Save button.

8.	 Click on the Activate Changes button to finish.

9.	 Repeat the preceding steps for the PROD_Server02, PROD_Server03,
and PROD_Server04 Managed Servers. Restart all the Managed Servers.

How it works...
The access.log file of the PROD_Server01 Managed Server is located at $DOMAIN_HOME/
servers/PROD_Server01/logs/access.log.

The extended logging format adds the last field with the time taken for an HTTP request
in seconds. The field is very helpful to watch how much time the HTTP requests are taking
to execute.

Chapter 6

191

The access.log file can be used in a troubleshooting process to
analyze if the whole Managed Server is slow or only a particular request
is taking more time than usual.

Always compare a problematic scenario to an error-free scenario when troubleshooting a
WebLogic Managed Server. Compare the heap usage, count the number of requests, and
watch the time taken.

There's more...
The access.log file can be customized with WLST.

Adding the time taken field using WLST
Carry out the following steps to add the time taken field:

1.	 Log in as a wls user to shell and start WLST:

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL:
wls:/offline> connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands:
edit()

startEdit()

cd('/Servers/PROD_Server01/WebServer/PROD_Server01/WebServerLog/
PROD_Server01')

cmo.setLogFileFormat('extended')

cmo.setELFFields('c-ip date time cs-method cs-uri sc-status bytes
time-taken')

cd('/Servers/PROD_Server02/WebServer/PROD_Server02/WebServerLog/
PROD_Server02')

cmo.setLogFileFormat('extended')

cmo.setELFFields('c-ip date time cs-method cs-uri sc-status bytes
time-taken')

cd('/Servers/PROD_Server03/WebServer/PROD_Server03/WebServerLog/
PROD_Server03')

Troubleshooting WebLogic Server 12c

192

cmo.setLogFileFormat('extended')

cmo.setELFFields('c-ip date time cs-method cs-uri sc-status bytes
time-taken')

cd('/Servers/PROD_Server04/WebServer/PROD_Server04/WebServerLog/
PROD_Server04')

cmo.setLogFileFormat('extended')

cmo.setELFFields('c-ip date time cs-method cs-uri sc-status bytes
time-taken')

activate()

exit()

See also
ff Changing log levels to debug

ff Enabling the verbose garbage collection logging

Enabling verbose garbage collection logging
Enabling garbage collection (GC) logging can provide rich information about the behavior
of the JVM. Enabling the verbose GC is an easy change and will help diagnose some possible
issues in the WebLogic Server.

One of the steps in the troubleshooting process is to find out if the JVM heap utilization
is adequate.

This recipe enables Oracle JRockit verbose GC logging in the WebLogic standard output
logfile for the PROD_Server01 Managed Server.

It also shows an example of a troubleshooting scenario and the analysis made with the
verbose GC.

Getting ready
The verbose GC has been changed using the Administration Console, so make sure the
Administration Server is running.

Chapter 6

193

How to do it...
To enable the PROD_Server01 Managed Server to log the GC times in the standard output
log, follow these steps:

1.	 Access the Administration Console by pointing your web browser
to http://adminhost.domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Environment tree on the left and then click on Servers.

4.	 Click on the PROD_Server01 link and then click on the Server Start tab.

5.	 Add the following to the Arguments field and click on the Save button:
-Xverbose:memory,gc -XverboseTimeStamp

6.	 Click on the Activate Changes button.

7.	 Restart PROD_Server01.

How it works...
The -Xverbose:memory,gc argument enables the verbose GC and heap memory logging.

The -XverboseTimeStamp attribute adds the timestamp of each entry.

The verbose GC is logged to the PROD_Server01 standard output logfile PROD_Server01.
out under $DOMAIN_HOME/servers/PROD_Server01/logs.

Each entry has the following format:

[memory][<date>][<collection type - YC or OC> #<collection counter>]
<start>-<end>: <type> <used heap before>KB-><used heap after>KB (<heap
total>KB), <time> s, sum of pauses <pause time> ms, longest pause
<pause time> ms.

In this troubleshooting scenario, the verbose GC log has to be analyzed to find out if the heap
was an issue during a period when the CPU and load of the host machine were very high.

Troubleshooting WebLogic Server 12c

194

The pattern shown in the following screenshot is an example of where the SAR tool displays
a very high load in the host prod01 between 08:50 A.M. and 10:50 A.M..

Checking the verbose GC log during the period reveals that the heap usage was a possible
cause of the problem.

A verbose output pattern at 8:07 AM with a regular load in the host is shown as follows:

[memory][Wed Nov 14 08:07:23 2012][YC#812] 14913.268-14913.541: YC
7444470KB->6687193KB (8388608KB), 0.273 s, sum of pauses 272.307 ms,
longest pause 272.307 ms.
[memory][Wed Nov 14 08:07:48 2012][YC#813] 14937.672-14938.002: YC
7581758KB->6861173KB (8388608KB), 0.330 s, sum of pauses 329.867 ms,
longest pause 329.867 ms.
[memory][Wed Nov 14 08:08:17 2012][YC#814] 14967.114-14967.327: YC
7793098KB->7028158KB (8388608KB), 0.213 s, sum of pauses 212.877 ms,
longest pause 212.877 ms.
[memory][Wed Nov 14 08:08:40 2012][YC#815] 14990.600-14990.720: YC
7956848KB->7183819KB (8388608KB), 0.120 s, sum of pauses 119.871 ms,
longest pause 119.871 ms.
[memory][Wed Nov 14 08:09:07 2012][YC#816] 15017.601-15017.891: YC
8068774KB->7316184KB (8388608KB), 0.289 s, sum of pauses 289.172 ms,
longest pause 289.172 ms.
[memory][Wed Nov 14 08:09:34 2012][YC#817] 15044.272-15044.531: YC
8198322KB->8276054KB (8388608KB), 0.259 s, sum of pauses 258.391 ms,
longest pause 258.391 ms.
[memory][Wed Nov 14 08:09:37 2012][OC#55] 15044.531-15047.620: OC
8276054KB->6057336KB (8388608KB), 3.089 s, sum of pauses 2966.710 ms,
longest pause 2966.710 ms.

Chapter 6

195

[memory][Wed Nov 14 08:09:57 2012][YC#818] 15067.458-15067.894: YC
7322811KB->6584405KB (8388608KB), 0.436 s, sum of pauses 435.444 ms,
longest pause 435.444 ms.
[memory][Wed Nov 14 08:10:11 2012][YC#819] 15081.383-15081.768: YC
7512189KB->6782798KB (8388608KB), 0.385 s, sum of pauses 384.824 ms,
longest pause 384.824 ms.
[memory][Wed Nov 14 08:10:24 2012][YC#820] 15094.544-15094.880: YC
7692285KB->6943754KB (8388608KB), 0.336 s, sum of pauses 335.365 ms,
longest pause 335.365 ms.
[memory][Wed Nov 14 08:10:51 2012][YC#821] 15121.342-15121.577: YC
7835691KB->7046223KB (8388608KB), 0.235 s, sum of pauses 235.032 ms,
longest pause 235.032 ms.
[memory][Wed Nov 14 08:11:21 2012][YC#822] 15151.297-15151.591: YC
8017711KB->7260111KB (8388608KB), 0.293 s, sum of pauses 293.211 ms,
longest pause 293.211 ms.
[memory][Wed Nov 14 08:11:48 2012][YC#823] 15178.616-15178.911: YC
8154226KB->7381651KB (8388608KB), 0.294 s, sum of pauses 294.275 ms,
longest pause 294.275 ms.
[memory][Wed Nov 14 08:12:06 2012][OC#56] 15193.571-15196.865: OC
7865756KB->6253164KB (8388608KB), 3.294 s, sum of pauses 3156.793 ms,
longest pause 3156.793 ms.

There are six Young Collections (YC) before an Old Collection (OC) or full GC. There is an
interval of about three minutes between full GCs.

The following log snippet is the verbose output pattern during the high load at 9:45 AM. Note
the difference from the first snippet. There are several full GCs in the sequence (OC) that can
indicate an excessive utilization of the heap:

[memory][Wed Nov 14 09:45:40 2012][YC#5842] 20810.279-20810.310: YC
7864695KB->7858455KB (8388608KB), 0.030 s, sum of pauses 29.888 ms,
longest pause 29.888 ms.
[memory][Wed Nov 14 09:45:40 2012][YC#5843] 20810.331-20810.380: YC
7867299KB->7863260KB (8388608KB), 0.049 s, sum of pauses 41.743 ms,
longest pause 41.743 ms.
[memory][Wed Nov 14 09:45:40 2012][YC#5844] 20810.394-20810.447: YC
7872603KB->7866498KB (8388608KB), 0.053 s, sum of pauses 27.567 ms,
longest pause 27.567 ms.
[memory][Wed Nov 14 09:45:46 2012][OC#422] 20810.448-20816.019: OC
7867363KB->7136145KB (8388608KB), 5.570 s, sum of pauses 5400.986 ms,
longest pause 5400.986 ms.
[memory][Wed Nov 14 09:45:51 2012][OC#423] 20816.061-20821.829: OC
7203083KB->7145813KB (8388608KB), 5.768 s, sum of pauses 5534.001 ms,
longest pause 5534.001 ms.
[memory][Wed Nov 14 09:45:57 2012][OC#424] 20821.988-20827.727: OC
7179027KB->7148829KB (8388608KB), 5.739 s, sum of pauses 5533.360 ms,
longest pause 5533.360 ms.
[memory][Wed Nov 14 09:46:03 2012][OC#425] 20827.738-20833.656: OC

Troubleshooting WebLogic Server 12c

196

7184774KB->7152045KB (8388608KB), 5.918 s, sum of pauses 5759.204 ms,
longest pause 5759.204 ms.
[memory][Wed Nov 14 09:46:09 2012][OC#426] 20833.656-20839.466: OC
7192291KB->7155809KB (8388608KB), 5.809 s, sum of pauses 5648.369 ms,
longest pause 5648.369 ms.

The heap free is at 15 percent after the first full GC at 09:45:46 AM (OC #422). The time
spent is about 5.5 seconds. Just after it, another full GC is triggered at 09:45:51 AM (OC
#423). Again, the heap free is about 15 percent and the time spent is 5.7 seconds, and
another full GC is triggered. This pattern continues, indicating that the JVM is spending almost
all the CPU time on garbage collections; so, the machine high load is probably a consequence
of the GC threads working in a non-stop fashion, trying to free the heap memory.

Excessive utilization of the heap can be the consequence of a peak load in the WebLogic
Managed Server. Too many threads are executing at the same time, so too many objects are
live in the heap. The problem may be the consequence of a heap size being too small or the
concurrency being too high. Raise the heap size according to the footprint needed or limit the
threads' concurrency. Adding more Managed Servers to the cluster is also an option.

Try to find a heap size that has at least 30-40 percent of the heap free
after a full GC during a peak load test.

The high heap usage can also be the result of a memory leak. Memory leaks are usually
caused by application bugs that can lead to a continuous rise of the heap utilization until
an Out of Memory (OOM) occurs.

The verbose GC has a little-to-none overhead and can be
used in production environments.

The GC analysis can also be made using a graphical tool, such as the Monitoring Dashboard
or the JRockit Mission Control. For troubleshooting purposes, the verbose GC is very precise
and does not need the JVM to be up and running since the information is already written in
the logfile.

There's more...
The verbose GC can be enabled at runtime with the jrcmd command.

Chapter 6

197

Enabling the verbose GC with jrcmd
The verbose GC can be enabled without restarting the JVM using the jrcmd
command-line tool.

1.	 Find the <PID> value of the PROD_Server01 Managed Server process:
[wls@prod01]$ ps aux | grep PROD_Server01 | grep -v grep | awk
'{print $2} '

<PID>

2.	 Issue a jrcmd command using <PID> as an argument:
[wls@prod01]$ /oracle/jvm/bin/jrcmd <PID> verbosity set=gc,memory

See also
ff Changing log levels to debug

ff Including the time taken in access.log

Taking thread dumps
The thread dump is a well-known feature of the Java Virtual Machine. It is a snapshot of the
JVM that helps the WebLogic administrator analyze which Java method the Java threads were
executing in at the exact moment the snapshot was taken. As in the rest of the book, the JVM
used in this recipe is Oracle JRockit JVM.

In a hypothetic scenario, the WebLogic Administrator received several e-mails from the
configured WLDF alerts from the previous chapter, indicating that the QueueLength value is
growing up in the PROD_Server01 Managed Server. The requests are probably piling up.

In this recipe, thread dumps of PROD_Server01 will be taken to analyze the
problematic scenario.

Getting ready
The thread dump can be taken from the Administration Console from the shell using the
jrcmd command-line tool or from the JRockit Mission Control.

Troubleshooting WebLogic Server 12c

198

How to do it...
Get the thread dump from the Administration Console:

1.	 Access the Administration Console by pointing your web browser to
http://adminhost.domain.local:7001/console.

2.	 Expand the Environment tree on the left and then click on Servers.

3.	 Click on the PROD_Server01 link; click on the Monitoring tab and then click on the
Threads tab.

4.	 Click on the Dump Thread Stacks button.

The thread dump will be displayed on the screen.

The thread dump can also be taken from the shell by using the jrcmd command-line tool or
by issuing the command kill -3 to <PID>.

1.	 Find the <PID> value of the PROD_Server01 Managed Server process:
[wls@prod01]$ ps aux | grep PROD_Server01 | grep -v grep | awk
'{print $2} '

<PID>

2.	 Issue a jrcmd command using <PID> as an argument:
[wls@prod01]$ /oracle/jvm/bin/jrcmd <PID> print_threads > some_
log_file

3.	 Alternatively, you can also run the kill -3 command using <PID> as an argument:
[wls@prod01]$ kill -3 <PID>

How it works...
The jrcmd command-line tool is redirecting the output to some_log_file defined in the
command line, so the thread dump will be written there. The thread dump taken by using
the kill command is written to the standard output logfile of the PROD_Server01
Managed Server.

Chapter 6

199

Before starting to analyze the thread dumps, use the procedure from the
last recipe and monitor the heap usage. When the JVM is spending too
much CPU time on garbage collections, the incoming requests can pile up
as well, raising the QueueLength attribute of the thread pool.

The thread dump is one of the most guaranteed methods of troubleshooting a Managed
Server. Normally, you need to observe only the threads from the self-tuning thread pool. The
thread stack trace from the self-tuning thread pool can have the [ACTIVE], [STANDBY], and
[STUCK] flags, and it has the following pattern:

"[ACTIVE] ExecuteThread: '0' for queue: 'weblogic.kernel.Default
(self-tuning)'" id=39 idx=0x80 tid=4952 prio=5 alive, waiting, native_
blocked, daemon
 -- Waiting for notification on: weblogic/work/
ExecuteThread@0xf06a43b0
 [...]
 at weblogic/work/ExecuteThread.run()

Take some thread dumps in a sequence with a short interval between them. There is no
specific formula for how many thread dumps to take or which interval to use. Sometimes, only
one thread dump is sufficient.

A thread dump analysis requires certain knowledge of Java coding, but it is
the most important tool to identify what is going on inside WebLogic.

In this scenario, the sequence of thread dumps reveals that almost all threads are stopped at
the following stack:

"[ACTIVE] ExecuteThread: '10' for queue: 'weblogic.kernel.Default
(self-tuning)'" id=166 idx=0x2a4 tid=25647 prio=1 alive, in native,
daemon
 at jrockit/net/SocketNativeIO.readBytesPinned()
 [...]
 at oracle/jdbc/driver/OraclePreparedStatement.execute()
 [...]
 at oracle/jdbc/driver/OraclePreparedStatementWrapper.execute()
 at weblogic/jdbc/wrapper/PreparedStatement.execute()
 at com/myapp/db/DBUtil.executeQuery()
 [...]
 at weblogic/work/ExecuteThread.execute()
 at weblogic/work/ExecuteThread.run()

Troubleshooting WebLogic Server 12c

200

The important Java methods to observe are com.myapp.db.DBUtil.executeQuery()
and oracle.jdbc.driver.OraclePreparedStatement.execute(). The application
is probably executing some function in the database, and all the threads are waiting for the
response, piling up the requests. In this specific case, it is possible that the problem is coming
from a slow database or from a large query that is not using any indexes, or even from some
sort of database lock. The thread dump can point to the right direction and, in this scenario,
further investigation will be needed in the application code and the database.

The [STUCK] flag means the thread is processing a request for a longer
time than has been configured in the Max Stuck Thread Time field of the
Overload configuration page for a Managed Server. The default configured
time is 600s. In conjunction with the other parameters and Node
Manager, it is possible to configure the Managed Server to automatically
restart when a maximum number of stuck threads is reached. This
configuration was set in Chapter 2, High Availability with WebLogic
Clusters, and may be useful in some scenarios, but you may lose the
opportunity to troubleshoot if the Managed Server restarts automatically.
[ACTIVE] and [STANDBY] are status flags related to the self-tuning
thread pool and do not indicate if the thread is processing a request.

See also
ff Enabling the JRockit Mission Control Flight Recorder

ff Analyzing a heap dump

Enabling the JRockit Mission Control Flight
Recorder

Mission Control is a monitoring and troubleshooting application provided with Oracle JRockit.

Besides the Management Console covered in Chapter 5, Monitoring WebLogic Server
12c, Oracle JRockit also provides an important feature called the Flight Recorder. The
Flight Recorder registers the JVM's metrics and events, garbage collection behavior, thread
contention, locking, and other information, according to the configuration template you use.
The default template has a very low overhead and can be used in production environments.

This recipe will enable the Flight Recorder to store a flight recorder file (.jfr extension) for
the Managed Servers PROD_Server01, PROD_Server02, PROD_Server03, and PROD_
Server04 with the default template configuration. The recording will be configured to store
the last 24 hours of events or the maximum of a 100 MB file.

Chapter 6

201

Getting ready
There is no need to start Oracle JRockit Mission Control to configure the Flight Recorder.
It is enabled by changing parameters using the Administration Console. So make sure the
Administration Server is running.

How to do it...
To enable the Managed Servers to record the Flight Recorder's events, follow these steps:

1.	 Access the Administration Console by pointing your web browser to
http://adminhost.domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Environment tree on the left and then click on Servers.

4.	 Click on the PROD_Server01 link and then click on the Server Start tab.

5.	 Add the following line of code to the Arguments field and click on the Save button:
 -XX:FlightRecorderOptions=defaultrecording=true,disk=true,
repository=./jfr/PROD_Server01,maxage=1440m,size=100m

6.	 Click on the Activate Changes button.

7.	 Restart PROD_Server01.

8.	 Repeat the previous steps for the Managed Servers PROD_Server02, PROD_
Server03, and PROD_Server04, and define the corresponding path for the
repository=./jfr/PROD_ServerXX repository parameter of each server.

How it works...
The repository=./jfr/PROD_ServerXX parameter sets the file location of the
recordings. In this case, it will save the recording to the $DOMAIN_HOME/jfr/PROD_
ServerXX directory. The directory will be created automatically if it does not exist.

Troubleshooting WebLogic Server 12c

202

The Flight Recorder is enabled and configured to store the last 24 hours of events, or until
the file size reaches 100 MB. The objective is to record the previous events like an airplane's
black box.

There are many settings you can change for the Flight Recorder. The parameters can be
altered to save the events during the entire life cycle of the JVM. Change the maxage and
size parameters to 0 as shown in the following line of code:

 -XX:FlightRecorderOptions=defaultrecording=true,disk=true,
repository=./jfr/PROD_Server0X,maxage=0,size=0

For every new recording, a new directory with the pattern $DOMAIN_HOME/jrf/<SERVER_
NAME>/YYYY_MM_DD_HH_MM_SS_PID is created. YYYY stands for the year, MM stands for
the month, DD for the day, HH for the hour, SS for the second, and PID is the process ID of the
WebLogic Managed Server.

The file has a similar pattern YYYY_MM_DD_HH_MM_SS_PID.jfr and it must be opened in
the JRockit Mission Control to be analyzed. The content of the Mission Control Management
Console is mostly the same, but it can include more information depending on the
configuration template used to save the .jfr file.

See also
ff Analyzing a heap dump

Analyzing a heap dump
A heap dump is another important feature of the Java Virtual Machine. It contains a memory
dump of all the current live Java objects of the heap.

The heap dump is useful in problematic situations, such as in a memory leak condition in a
WebLogic Server where the heap usage grows until the JVM crashes by Out of Memory (OOM),
or when the heap utilization is so high that the Managed Server hangs and stops responding.
Both scenarios can use a heap dump to discover the offender objects in the heap.

This recipe will display how to take a heap dump from a Managed Server in the HPROF format.
HPROF is a binary file that stores the heap and CPU profiles of the JVM. For demonstration
purposes, the heap dump was taken from a JVM configured to a small heap with a maximum
size of 256 MB (-Xmx256mb).

Getting ready
The heap dump can be taken from the shell using the jrcmd command-line tool or from the
Mission Control.

Chapter 6

203

The heap dump will be analyzed with the Eclipse Memory Analyzer (MAT), so download and
install it from http://www.eclipse.com/mat.

How to do it...
1.	 Log in to the shell and use the JRCMD tool.

2.	 Find the <PID> value of the PROD_Server01 Managed Server process:
[wls@prod01]$ ps aux | grep PROD_Server01 | grep -v grep | awk
'{print $2} '

<PID>

3.	 Issue a jrcmd command using <PID> as an argument:
[wls@prod01]$ /oracle/jvm/bin/jrcmd <PID> hprofdump

<PID>:

Wrote dump to heapdump_<date>.hprof

Analyze the heap dump with MAT.

1.	 Open MAT by executing the file MemoryAnalyzer.exe.

Troubleshooting WebLogic Server 12c

204

2.	 Open the File menu and select the Open Heap Dump menu option. Choose the heap
dump file heapdump_<date>.hprof.

3.	 Select the Leak Suspects Report option from the Getting Started Wizard screen and
click on the Finish button.

Chapter 6

205

4.	 Watch out for the suspects that are using a large amount of memory.

How it works...
The jrcmd command-line tool issues a command to the JVM to generate the heap dump.

The heap dump file is written to the $DOMAIN_HOME root directory with a filename of the
pattern, heapdump_<date>.hprof.

The JVM runs a full GC before saving the heap dump, so the size of the file is the size of the
live Java objects. If a heap is reaching 3 GB of utilization after a full GC, the size of the file will
be 3 GB.

In this recipe, the heap dump was opened and analyzed by using the Eclipse Memory Analyzer
application. The analysis indicated the com.myapp.cache.CacheUtil class is an offender,
occupying about 80 percent of the total heap size. The following screenshot displays an
ArrayList named CACHE_LIST; it is the variable of the com.myapp.cache.CacheUtil class
and consumes 200 MB of the 256 MB configured for the heap.

Troubleshooting WebLogic Server 12c

206

The heap dump analysis indicates which part of the Java code may be the offender.
In this case, the Java code must be revised to fix the problem or the heap size must be
adjusted to fit the number of objects needed in this array. Use the solution that meets the
application requirements.

The offender Java code may belong to an internal WebLogic class.
In this case, open a service request in Oracle Support.

There are several profiling tools to analyze a heap dump. The Eclipse Memory Analyzer—MAT
(http://www.eclipse.org/mat) and the YourKit Java Profiler (http://www.yourkit.
com) are excellent known options.

There's more...
The heap dump can be configured to be generated automatically in certain conditions.

Generating the heap dump automatically on OOM conditions
The heap dump can be generated automatically when an out of memory condition is reached.

1.	 Access the Administration Console by pointing your web browser to http://
adminhost.domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Environment tree on the left and then click on Servers.

4.	 Click on the PROD_Server01 link then click on the Server Start tab.

5.	 Add the following to the Arguments field and click on the Save button:
-XX:+HeapDumpOnOutOfMemoryError

6.	 Click on the Activate Changes button.

7.	 Restart PROD_Server01.

8.	 Repeat the previous steps for the Managed Servers PROD_Server02, PROD_
Server03, and PROD_Server04.

9.	 The heap dump file that is generated follows the same pattern when generated from
the jrcmd tool.

Recovering the WebLogic admin password
The WebLogic Administrator username and password are used to start up the WebLogic
Server instances. They are stored encrypted in the boot.properties file.

Chapter 6

207

This recipe will provide the steps to recover the username and password from the boot.
properties file of the PROD_DOMAIN domain.

Getting ready
The recovery will use WLST to decrypt the boot.properties file.

How to do it...
Carry out the following steps to recover the WebLogic Admin password:

1.	 Log in as the wls user to shell and set the domain environment variables for the
domain you want to recover:
[wls@prod01]$ cd $DOMAIN_HOME/bin
[wls@prod01]$. ./setDomainEnv.sh

2.	 Start WLST:
[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

3.	 Run the following WLST commands to display the username and password:
from weblogic.security.internal import BootProperties
BootProperties.load("/oracle/Middleware/user_projects/domains/
PROD_DOMAIN/servers/PROD_AdminServer/security/boot.properties",
false)
prop = BootProperties.getBootProperties()
print "username: " + prop.getOneClient()
print "password: " + prop.getTwoClient()

The username and password will be displayed on the screen.

How it works...
The script reads the boot.properties file, decrypts it, and displays the username and
password provided.

The script points to the boot.properties file located in the security folder of the PROD_
AdminServer. You can point to any security folder that contains the boot.properties
file of the other Managed Servers.

It is important to set the domain environments first, otherwise the script will not be able to
find the SerializedSystemIni.dat file, which is the seed used by the domain to encrypt
and decrypt.

Troubleshooting WebLogic Server 12c

208

See also
ff Recovering a data source password

Recovering the data source password
The same way that the WebLogic Administrator password is recoverable, the data source
password can be retrieved as well.

In this recipe, the ds-nonXA data source with the JNDI name jdbc/non-XA will be used to
retrieve the password.

Getting ready
The encrypted password must be retrieved from the JDBC configuration files in the $DOMAIN_
HOME/config/jdbc directory. To decrypt the password, use WLST.

How to do it...
Carry out the following steps to recover the data source password:

1.	 Log in as a wls user to shell and open the $DOMAIN_HOME/config/config.xml
file to get the JDBC configuration filename.
[wls@prod01]$ cd $DOMAIN_HOME/config

[wls@prod01]$ vi config.xml

2.	 Locate the <jdbc-system-resource> tag of the ds-nonXA data source and get
the descriptor filename.
 <jdbc-system-resource>
 <name>ds-nonXA</name>
 <target></target>
 <descriptor-file-name>jdbc/ds-nonXA-jdbc.xml</descriptor-
file-name>
 </jdbc-system-resource>

3.	 Open the JDBC file:
 [wls@prod01]$ vi jdbc/ds-nonXA-jdbc.xml

4.	 Locate the <password-encrypted> tag and copy the password.
 <password-encrypted>{AES}PASSWORD_ENCRYPTED</password-
encrypted>

Chapter 6

209

5.	 Start WLST using the following command:
 [wls@prod01]$ $WL_HOME/common/bin/wlst.sh

6.	 Set the copied password to the passwd variable, set the full path of the $DOMAIN_
HOME/security in the secPath variable, and run the following WLST commands to
display the password:
from weblogic.security.internal import *

from weblogic.security.internal.encryption import *

passwd = "{AES}PASSWORD_ENCRYPTED"

secPath = "/oracle/Middleware/user_projects/domains/PROD_DOMAIN/
security"

encService = SerializedSystemIni.getEncryptionService(secPath)

coeService = ClearOrEncryptedService(encService)

print "password: " + coeService.decrypt(passwd)

7.	 The password will be displayed on the screen:
wls:/offline> password: dbpwd

How it works...
This recipe displayed a simple procedure to get the encrypted password stored in the JDBC
configuration file and use it in the WLST script file.

There is no need to set the domain environment variables this time since the script receives
the full path to the SerializedSystemIni.dat file.

See also
ff Recovering the WebLogic admin password

Stability and
Performance

In this chapter we will cover the following recipes:

ff Limiting the log disk usage

ff Rotating the STDOUT logfile

ff Turning off the domain logging

ff Enabling Linux HugePages

ff Configuring the transaction (JTA) timeouts

ff Choosing the JRockit garbage collection mode

ff Tuning thread concurrency with default work managers

ff Tuning the application thread concurrency with custom work managers

ff Limiting the JMS Queue consumers

Introduction
This chapter is about WebLogic Server stability and performance, but most of the recipes are
focused on stability.

For the WebLogic Administrator, stability should come first in the priority list of objectives. It is
improbable that an unstable system achieves sufficient performance.

This chapter provides simple but effective small tunings, targeting a stable and predictable
production environment.

7

Stability and Performance

212

In most cases, the performance should suffice if the environment is very stable, with
predictable behavior and common bottlenecks removed.

Limiting the log disk usage
WebLogic Server 12c fixes a file size limit of 5 MB for the domain, server, and HTTP logs.
It also sets 100 as the maximum number of rotated files for the domain and server logs.
The HTTP access.log file does not have a default limit of rotated files. This is the default
configuration for WebLogic Server 12c domains running in the production mode.

In this recipe, the logging subsystem will be configured, so that all the PROD_DOMAIN domain
logfiles usage never surpasses a known disk size usage.

Getting ready
The logging subsystem is configured by using the Administration Console, so make sure the
Administration Server is running.

How to do it...
Carry out the following steps to limit the log disk usage:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Environment tree to the left and then click on Servers.

4.	 Click on the PROD_Server01 link. Click on the Logging tab and then click on the
General tab.

5.	 Type 50000 in the Rotation file size text field.

6.	 Make sure that the Limit number of retained files checkbox is checked.

7.	 Type 20 in the Files to retain text field.

8.	 Check the Rotate log file on startup checkbox.

9.	 Click on the Save button and then click on the Advanced link to open the
advanced options.

10.	 Check the Redirect stdout logging enabled checkbox.

11.	 Check the Redirect stderr logging enabled checkbox.

12.	 Change the Severity Level of the Standard out drop-down menu to Off.

13.	 Click on the Save button.

14.	 Click on the HTTP tab.

Chapter 7

213

15.	 Type 50000 in the Rotation file size text field.

16.	 Make sure that the Limit number of retained files checkbox is checked.

17.	 Type 20 in the Files to retain text field.

18.	 Check the Rotate log file on startup checkbox.

19.	 Click on the Save button.

20.	 Repeat the previous steps for the PROD_Server02, PROD_Server03 and PROD_
Server04 Managed Servers and the PROD_AdminServer Administration Server.

21.	 Click on the PROD_DOMAIN link on the left-hand side navigation tree and then click
on the Logging tab.

22.	 Type 50000 in the Rotation file size text field.

23.	 Make sure that the Limit number of retained files checkbox is checked.

24.	 Type 20 in the Files to retain text field.

25.	 Check the Rotate log file on startup checkbox and click on the Save button.

26.	 Click on the Activate Changes button to finish.

27.	 Restart the entire PROD_DOMAIN domain.

How it works...
In production environments, predictability must be a priority when setting up WebLogic.
This configuration brings a fixed known value to the logging disk usage of the entire domain.

WebLogic Instance/DOMAIN Server log HTTP log
PROD_AdminServer 10 MB * 50 MB =

500 MB
10 MB * 50 MB = 500 MB

PROD_Server01 500 MB 500 MB

PROD_Server02 500 MB 500 MB

PROD_Server03 500 MB 500 MB

PROD_Server04 500 MB 500 MB

PROD_DOMAIN log 500 MB

Total 6 MB * 500 MB = 3
GB

5 MB * 500 MB = 2.5 GB

WebLogic Server does not provide an out of the box configuration to rotate the standard
output log ($DOMAIN_HOME/servers/PROD_ServerXX/PROD_ServerXX.out). As a
workaround, STDOUT and STDERR from the PROD_ServerXX.out file were redirected
to the server log and disabled. This configuration maintains the information of the
PROD_ServerXX.out file in the PROD_ServerXX.log file.

Stability and Performance

214

All -Xverbose JRockit loggings are not redirected to the server logfile
and still written to the PROD_ServerXX.out file.

Rotating the STDOUT log will be explained further on this chapter.

There's more...
The log disk usage can be limited with WLST.

Limiting the log disk usage by using WLST
1.	 Log in as the wls user to shell and start WLST:

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL:
wls:/offline> connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands:
edit()

startEdit()

cd('/Log/PROD_DOMAIN')

cmo.setRotateLogOnStartup(true)

cmo.setFileMinSize(50000)

cmo.setNumberOfFilesLimited(true)

cmo.setFileCount(20)

cd('/Servers/PROD_Server01/Log/PROD_Server01')

cmo.setRotateLogOnStartup(true)

cmo.setFileMinSize(50000)

cmo.setNumberOfFilesLimited(true)

cmo.setFileCount(20)

cmo.setRedirectStdoutToServerLogEnabled(true)

cmo.setRedirectStderrToServerLogEnabled(true)

cmo.setStdoutSeverity('Off')

cd('/Servers/PROD_Server01/WebServer/PROD_Server01/WebServerLog/
PROD_Server01')

Chapter 7

215

cmo.setRotateLogOnStartup(true)

cmo.setFileMinSize(50000)

cmo.setNumberOfFilesLimited(true)

cmo.setFileCount(20)

cd('/Servers/PROD_Server02/Log/PROD_Server02')

cmo.setRotateLogOnStartup(true)

cmo.setFileMinSize(50000)

cmo.setNumberOfFilesLimited(true)

cmo.setFileCount(20)

cmo.setRedirectStdoutToServerLogEnabled(true)

cmo.setRedirectStderrToServerLogEnabled(true)

cmo.setStdoutSeverity('Off')

cd('/Servers/PROD_Server02/WebServer/PROD_Server02/WebServerLog/
PROD_Server02')

cmo.setRotateLogOnStartup(true)

cmo.setFileMinSize(50000)

cmo.setNumberOfFilesLimited(true)

cmo.setFileCount(20)

cd('/Servers/PROD_Server03/Log/PROD_Server03')

cmo.setRotateLogOnStartup(true)

cmo.setFileMinSize(50000)

cmo.setNumberOfFilesLimited(true)

cmo.setFileCount(20)

cmo.setRedirectStdoutToServerLogEnabled(true)

cmo.setRedirectStderrToServerLogEnabled(true)

cmo.setStdoutSeverity('Off')

cd('/Servers/PROD_Server03/WebServer/PROD_Server03/WebServerLog/
PROD_Server03')

cmo.setRotateLogOnStartup(true)

cmo.setFileMinSize(50000)

cmo.setNumberOfFilesLimited(true)

cmo.setFileCount(20)

cd('/Servers/PROD_Server04/Log/PROD_Server04')

Stability and Performance

216

cmo.setRotateLogOnStartup(true)

cmo.setFileMinSize(50000)

cmo.setNumberOfFilesLimited(true)

cmo.setFileCount(20)

cmo.setRedirectStdoutToServerLogEnabled(true)

cmo.setRedirectStderrToServerLogEnabled(true)

cmo.setStdoutSeverity('Off')

cd('/Servers/PROD_Server04/WebServer/PROD_Server04/WebServerLog/
PROD_Server04')

cmo.setRotateLogOnStartup(true)

cmo.setFileMinSize(50000)

cmo.setNumberOfFilesLimited(true)

cmo.setFileCount(20)

activate()

exit()

See also
ff Rotating the STDOUT logfile

ff Turning off the domain logging

Rotating the STDOUT logfile
Oracle WebLogic Server 12c does not provide an out of the box configuration to rotate the
STDOUT and STDERR logfiles in runtime (.out file). In the previous recipe, as a workaround,
it was redirected to the server logfile and disabled.

Fortunately in Linux, the included logrotate command-line tool can do the job.

In this recipe, the logrotate will be configured to run hourly and rotate all .out files from
the PROD_DOMAIN WebLogic instances larger than 50 MB. It will rotate to the limit of 20 files,
repeating the configuration of the server logfiles in the previous recipe.

Getting ready
The logrotate settings must be configured in the machine shell. To do this log in to the
prod01 machine.

Chapter 7

217

How to do it...
Carry out the following steps to rotate the .out file:

1.	 Log in as a wls user to shell and create a new file wls-stdout-logrotate.conf
and save it to the $DOMAIN_HOME folder:
[wls@prod01]$ cd /oracle/Middleware/user_projects/domains/PROD_
DOMAIN

[wls@prod01]$ vi wls-stdout-logrotate.conf

2.	 Add the following lines to the file:
WebLogic STDOUT logrotate for PROD_DOMAIN

/oracle/Middleware/user_projects/domains/PROD_DOMAIN/servers/
PROD_*/logs/*.out {

 rotate 20

 size 50M

 copytruncate

 nocompress

 missingok

 nodateext

 noolddir	

 create 0640 wls wls

}

3.	 Type :ws! to save the file and exit.

4.	 Change to root user and create the wls-stdout-logrotate file to add new entry
to the hourly crontab:
[root@prod01]# vi /etc/cron.hourly/wls-stdout-logrotate

5.	 Add the following lines to the script:
#!/bin/sh

sudo /usr/sbin/logrotate /oracle/Middleware/user_projects/domains/
PROD_DOMAIN/wls-stdout-logrotate.conf

RETCODE=$?

if [$RETCODE != 0]; then

 /usr/bin/logger -t logrotate "WLS STDOUT logrotate finished
abnormally with code [$RETCODE]"

fi

exit 0

Stability and Performance

218

6.	 Type :ws! to save the file and exit.

7.	 Change the file permissions:
[root@prod01]# chmod 755 /etc/cron.hourly/wls-stdout-logrotate

8.	 Repeat the previous steps for all machines in the PROD_DOMAIN.

How it works...
The logrotate settings will be read from the wls-stdout-logrotate.conf
configuration file. The file was saved in the root directory of the WebLogic domain,
but it can be saved anywhere.

A crontab job was added to run hourly in the form of a script. This configuration must be
executed by the root user.

When the crontab job runs, it checks for all .out files that matches the path
$OMAIN_HOME/servers/PROD_*/logs/*.out. If the file size is over 50 MB, the job
will copy the file content to a new one (PROD_Server01.out.1) and then truncate the
original file.

The copytruncate parameter guarantees that the rotation works properly since WebLogic
keeps the stream to the .out file open.

When the STDOUT logfile reaches the file size limit of 2 GB in 32-bit
environments, the WebLogic Server instance can hang. Rotating the
STDOUT can prevent this situation from happening.

See also
ff Limiting the logging disk usage

ff Turning off the domain logging

Turning off domain logging
The WebLogic Domain's log concentrates all the WebLogic Managed Server loggings in one
single log managed by the Administration Server.

The domain log can become a bottleneck and affect the performance in certain scenarios
with a very large domain with several Managed Servers.

In this recipe, the log will be turned off for the PROD_DOMAIN domain.

Chapter 7

219

Getting ready
The log levels will be changed using the Administration Console, so make sure the
Administration Server is running.

How to do it...
Carry out the following steps to turn off the domain logging:

1.	 Access the Administration Console by pointing your web browser to
http://adminhost.domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the PROD_DOMAIN link on the navigation tree to the left and then click
on the Logging tab.

4.	 Change Severity level of the Domain log broadcaster drop-down menu to Off,
as shown in the following screenshot:

5.	 Click on the Save button.

6.	 Repeat the preceding steps for all Managed Servers in the PROD_DOMAIN domain.

7.	 Click on the Activate Changes button.

How it works...
Disabling the domain log can lighten the communication between the Managed Servers
and the Administration Server.

It is a recommended setting in very busy WebLogic environments since the information logged
already exists on each of the Managed Servers.

There's more...
The domain log can also be disabled through WLST.

Stability and Performance

220

Disabling the domain log by using WLST
Carry out the following steps:

1.	 Log in as wls user to shell and start WLST:
[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL:
wls:/offline> connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands:
edit()

startEdit()

cd('/Servers/PROD_Server01/Log/PROD_Server01')

cmo.setDomainLogBroadcastSeverity('Off')

cd('/Servers/PROD_Server01/Log/PROD_Server02')

cmo.setDomainLogBroadcastSeverity('Off')

cd('/Servers/PROD_Server01/Log/PROD_Server03')

cmo.setDomainLogBroadcastSeverity('Off')

cd('/Servers/PROD_Server01/Log/PROD_Server04')

cmo.setDomainLogBroadcastSeverity('Off')

save()

activate()

exit()

See also
ff Limiting the log disk usage

ff Rotating the STDOUT logfile

Chapter 7

221

Enabling Linux HugePages
Enabling Linux HugePages can improve the performance of the Oracle JRockit JVM and have
several advantages over the default page size of 4 KB in Linux.

In this recipe, the HugePages will be enabled on all machines in the PROD_DOMAIN
domain. A new JVM parameter will be added to the Managed Servers so the JVM makes
use of the HugePages.

prod01 hosts the PROD_Server01 and PROD_Server02 Managed Servers. Since each
instance is configured with a heap size of 2 GB, reserving 4 GB for HugePages in prod01
should be enough.

Getting ready
Before configuring the Linux HugePages, shut down all WebLogic Servers in the domain.
Also stop the Administration Console instance and the Node Manager.

How to do it...
To enable the Linux HugePages, you must log in as root user:

1.	 Log in as root user to the shell and execute the following commands to check the
HugePages configuration:
[root@prod01]$ cat /proc/meminfo | grep Huge

HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

Hugepagesize: 2048 kB

2.	 Create a mount point of type hugetlbfs:
[root@prod01]$ mkdir /mnt/hugepages

[root@prod01]$ chmod -R 777 /mnt/hugepages

[root@prod01]$ mount -t hugetlbfs nodev /mnt/hugepages

3.	 Add the following mount point to the /etc/fstab:
[root@prod01]$ vi /etc/fstab

4.	 Add the following line:
hugetlbfs /mnt/hugepages hugetlbfs rw,mode=0777 0 0

Stability and Performance

222

5.	 Enter :ws! to save the file and exit.

6.	 Edit the sysctl.conf file under /etc/:
[root@prod01]$ vi /etc/sysctl.conf

7.	 Reserve 2048 HugePages by adding the following line:
vm.nr_hugepages = 2048

8.	 Enter :ws! to save the file and exit.

9.	 Execute the following command to make the changes effective:
[root@prod01]# sysctl -p

10.	 Verify the change:
[root@prod01]$ cat /proc/meminfo | grep Huge

HugePages_Total: 2048

HugePages_Free: 2048

HugePages_Rsvd: 0

Hugepagesize: 2048 kB

11.	 Restart the host if the HugePages could not be allocated.

12.	 Repeat the preceding steps on all machines in the PROD_DOMAIN.

To enable the Managed Servers to make use of the HugePages, follow the ensuing steps:

1.	 Access the Administration Console by pointing your web browser to
http://adminhost.domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Environment tree to the left and then click on Servers.

4.	 Click on the PROD_Server01 link and then click on the Server Start tab.

5.	 Add the following to the Arguments field and click on the Save button:
-XX:+UseLargePagesForHeap

6.	 Click on the Activate Changes button.

7.	 Restart PROD_Server01.

8.	 Repeat the preceding steps for PROD_Server02, PROD_Server03,
and PROD_Server04.

How it works...
The first thing to do is to estimate how much memory should be reserved as HugePages.
Sum all heap sizes of the JVMs in the machine. In our case, we have 2 JVMs with 2 GB each
so a total of 4 GB should be reserved in HugePages.

Chapter 7

223

To calculate how many pages, get the memory needed and divide by the page size. The
formula is sum of JVM heaps / page size.

The memory needed is 4 GB (4096 MB) and the page size is 2 MB (Hugepagesize is 2048
KB). The number of HugePages is 4096/2 = 2048.

This 4 GB of reserved HugePages will be pre-allocated and cannot be used by other
applications, even when the JVMs are not running, so be sure to do the sizing properly.

It is a common mistake to reserve a large amount of memory in HugePages
and the host starts to swap. Remember to leave enough memory for the other
applications and the operating system. Avoid the swapping at all costs.

If you have the -Xverbose:gc,memory enabled, you can check if the JVM is using the
HugePages properly in the STDOUT logfile.

[INFO][memory] Using 2MB pages for Java heap.

With the PROD_Server01 started, checking the /proc/meminfo should also reveal
that HugePages are in use.

 [wls@prod01]$ cat /proc/meminfo | grep Huge
HugePages_Total: 2048
HugePages_Free: 1024
HugePages_Rsvd: 0
Hugepagesize: 2048 kB

Using HugePages provides some significant advantages:

ff Because of the larger page size, the page table will be smaller in size. With
HugePages, a 10 GB heap size should use only 5120 page entries despite the
2621440 page entries present when using the default 4 KB page size. This
minimizes the CPU cost and the page table memory usage.

ff A performance boost in memory operations because the TLB cache works more
efficiently, with more cache hits.

ff The memory reserved for HugePages will never swap to disk.

ff It forces a more controlled memory usage of the heap sizes.

Configuring the transaction (JTA) timeouts
In production environments, slowness in a legacy or external system (a database or web
service for example) can lead to a scenario where all WebLogic threads and resources
become busy waiting for response. The slowness can pile up the requests, generating
a hang scenario in WebLogic.

Stability and Performance

224

In this recipe, the timeouts will be configured for the PROD_DOMAIN, including the domain
JTA timeout and a hypothetic XA resource, such as the XA data source ds-XA, that points
to an Oracle Database. The recipe will use a timeout of 600 seconds as base.

Getting ready
The timeouts will be configured by using the Administration Console, so make sure the
Administration Server is running.

How to do it...
Carry out the following steps to configure the timeouts:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the PROD_DOMAIN link on the left-hand side navigation menu, and then
click on the JTA tab to open the JTA page under Domain | Configuration.

4.	 Type 600 in the Timeout seconds text field (as shown in the following screenshot)
and click on the Save button.

5.	 Expand the Services tree to the left and then click on Data Sources.

6.	 Click on the ds-XA data source then the Transaction tab to navigate to Configuration
| Transaction.

7.	 Check the Set XA Transaction Timeout checkbox and enter 620 in the XA
Transaction Timeout text field, as shown in the following screenshot:

Chapter 7

225

8.	 Click on the Save button.

9.	 Click on the Activate Changes button to finish.

How it works...
The timeout settings are important configurations to prevent a hang scenario, freeing
WebLogic resources that are busy for a longer time than expected. The inverse situation can
also occur where a request can naturally take a long time to process and a timeout error is
thrown unnecessarily.

Ensure that the timeout is set according to the system
and application requirements.

The WebLogic applications usually make use of the Java Transaction API (JTA) standards
to control the transaction processes. It allows multiple resources (XA) to participate in the
same transaction. The timeout configurations must be set correctly; otherwise, the timeout
exception will not be properly handled by the application when invoked.

As a rule of thumb, the Transaction Manager (TM) should have a smaller timeout value than
the XA resources it calls. When the timeout is reached for the TM, the TM should properly
handle all resources, rolling back all resource transactions. If a resource times out by itself,
the TM probably won't handle the error properly.

Stability and Performance

226

In this recipe, the JTA is configured with 600 and the XA data source is configured with 620. In
this case, the parameter DISTRIBUTED_LOCK_TIMEOUT of the Oracle Database should also
be set with a higher value, such as 1000 seconds.

Comparing configurations
JTA (600) < Data Source XA (620) < Oracle Database (1000).

There's more...
The timeouts can be configured through WLST.

Configuring the transaction timeout by using WLST
1.	 Log in as wls user to shell and start WLST:

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password and t3://adminhost.domain.local:7001 as the server URL:
wls:/offline> connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands:
edit()

startEdit()

cd('/JTA/PROD_DOMAIN')

cmo.setTimeoutSeconds(600)

cd('/JDBCSystemResources/ds-XA/JDBCResource/ds-XA/JDBCXAParams/ds-
XA')

cmo.setXaTransactionTimeout(620)

cmo.setXaSetTransactionTimeout(true)

activate()

exit()

Chapter 7

227

Choosing the JRockit garbage collection
mode

Some WebLogic Administrators consider JVM tuning as the top tuning recommendation
for WebLogic. But nowadays, with the newer JVM releases, just setting -Xms and -Xmx
arguments and leaving the GC with default throughput GC mode, should be fine for most of
the WebLogic applications. Since R28, the Oracle JRockit behaves very well out of the box
and, in the majority of the cases, more advanced JVM tunings are not necessary.

There are some situations where a specific WebLogic application could not wait for a full
GC that lasts more than a few seconds. In this recipe, the GC mode will be changed to the
pausetime mode for this particular application.

Getting ready
A JVM startup argument will be added, by using the Administration Console, so make sure
the Administration Server is running.

How to do it...
To change the JVM garbage collection mode:

1.	 Access the Administration Console by pointing your web browser to
http://adminhost.domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Environment tree to the left and then click on Servers.

4.	 Click on the PROD_Server01 link and then click on the Server Start tab.

5.	 Add the following to the Arguments field and click on the Save button:
-Xgc:pausetime

6.	 Click on the Activate Changes button.

7.	 Restart PROD_Server01.

8.	 Repeat the preceding steps for Managed Servers PROD_Server02, PROD_Server03,
and PROD_Server04.

Stability and Performance

228

How it works...
The following graph displays the results of two different tests with the response times
of the exactly same application. The only difference between the results is the GC mode:

The blue line shows the default throughput mode. It has very low application response times
for most of the test (average of 100 ms), but returns a higher response time when the GC
is triggered. Note that the graph is from the application response time and not from the GC
pause time. The throughput mode tries to leave the JVM running without any interference.
Then, when needed, execute the GC as fast as possible by running it in parallel and using all
the CPUs available; on the start up, the JVM checks how many CPU cores the machine has
and starts the same number of GC threads. Although the JVM lets the application run at full
speed when the GC is not needed, it will "stop the world" when full GC is invoked.

The red line shows the pausetime GC mode behavior. The application is not sensitive to full
GC as the throughput mode, keeping the time consistent during all times. On the other hand,
the responses get a much higher average time (400 ms) in comparison to the blue line. Since
the JVM focuses on keeping the GC pausetime low, it keeps the GC running concurrent to the
application, sharing CPU cycles and increasing the response time.

Although the default throughput mode should be fine to almost all
scenarios, some application requirements can't handle the response
time variations. The graph comparison image is also an example. Test the
application and choose the GC mode that best suits your needs.

Chapter 7

229

Tuning thread concurrency with the default
work manager

In production environments, keeping the computer resources such as memory, processes,
connections, and threads under control is essential to maintain a stable and predictable system.

For a WebLogic Administrator focused on stability, the top tuning recommendation for
WebLogic should be controlling the thread concurrency and resources usage.

In this recipe, the default work manager will be created to override the default settings with
a new maximum thread constraint named defaultMaxThreads and configured with 50,
targeting it to the cluster, PROD_Cluster.

Getting ready
The work manager will be created in the Administration Console.

How to do it...
Create the defaultMaxThreads maximum threads constraint and the default
work manager in the Administration Console by following the ensuing steps:

1.	 Access the Administration Console by pointing your web browser to
http://adminhost.domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Environment tree to the left and then click on Work Managers.

4.	 Click on the New button then select the Maximum Threads Constraint radio button.
Click on the Next button.

5.	 Enter defaultMaxThreads in the Name text field and 50 in the Count text field.
Click on the Next button.

6.	 Select the All servers in the cluster radio button from the PROD_Cluster option
and click on the Finish button.

7.	 Click on the New button again and select the Work Manager radio button. Click on
the Next button.

Stability and Performance

230

8.	 Enter default in the Name text field (as shown in the following screenshot) and click
on the Next button.

9.	 Select the All servers in the cluster radio button from the PROD_Cluster option
and click on the Finish button.

10.	 Click on the newly created default work manager and select the
defaultMaxThreads option from the Maximum Threads Constraint drop-down
menu. Check the Ignore Stuck Threads checkbox (as shown in the following
screenshot) and click on the Save button.

11.	 Click on the Activate Changes button to finish.

Chapter 7

231

How it works...
The Oracle WebLogic Server is a multithreaded application server. In a very simplistic way,
it is a thread pool that receives and dispatches the incoming requests to be processed by the
execution threads.

The WebLogic thread pool is called Self-tuning Thread Pool. It adjusts itself automatically
trying to maximize the throughput by increasing and decreasing the number of active threads
in the pool. The Self-tuning Thread Pool feature was introduced in WebLogic Server Version 9
and is, at the same time, one of its greatest features and one of the greatest weaknesses of
the WebLogic Server.

In production environments, some scenarios of peak time or large bursts of incoming requests
can fool the Self-tuning Thread Pool to grow too much, reaching some hundred threads. The
default maximum size the Self-tuning Thread Pool can have is 400 threads and, with this size,
it is unlikely that the WebLogic Server would handle all the concurrent incoming requests,
probably leading the system to a hang situation.

The following graph illustrates a scenario where a WebLogic Managed Server hangs after it
reaches a concurrency of 100 simultaneous requests being processed. The response time
increases until the WebLogic Managed Server hangs:

Designing a clustered architecture of small boxes, with low concurrency and low number of
threads running in each Managed Server will normally get better stability and performance
than a single, larger instance with a lot of threads.

A single thread consumes memory and resources, so the WebLogic
Administrator must be aware of the Self-tuning Thread Pool behavior.
In some scenarios, it must have the concurrency limited in order to
protect WebLogic from peak times and incoming burst requests.

Stability and Performance

232

In this recipe, the default work manager was created to override the default configuration,
limiting the concurrency of all applications deployed. The default work manager handles the
application requests when no other work manager is defined. The work manager constraints
are valid per WebLogic Server, so this configuration limits the PROD_Server01, PROD_
Server02, PROD_Server03, and PROD_Server04 to execute a maximum of 50 concurrent and
simultaneous threads in each; or 200 concurrent threads, if counting the whole PROD_Cluster
(50 threads * 4 instances).

At peak time, when the default work manager already has 50 threads executing on a
Managed Server, the next request will be queued in the priority queue and wait until a thread
is free. This configuration avoids the Self-tuning Thread Pool increasing the number of threads
to a point that the WebLogic cannot handle the concurrency. On the other side, it also adds
the possibility of queuing some of the requests, with a possible impact in the response time.

The following graph illustrates the protected WebLogic. Even though it's receiving more than 50
incoming requests, the Managed Server processes only 50 simultaneously, maintaining the SLA.

There's more...
The default work manager can be created through WLST.

Creating the default work manager by using WLST
Carry out the following steps:

1.	 Log in as wls user to shell and start WLST:
[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password and t3://adminhost.domain.local:7001 as the server URL:
wls:/offline> connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

Chapter 7

233

3.	 Run the following WLST commands:

edit()

startEdit()

cd('/SelfTuning/PROD_DOMAIN')

cmo.createMaxThreadsConstraint('defaultMaxThreadsConstraint')

cd('/SelfTuning/PROD_DOMAIN/MaxThreadsConstraints/
defaultMaxThreadsConstraint')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Cluster,Type=Cluster')], ObjectName))

cmo.setCount(50)

cmo.unSet('ConnectionPoolName')

cd('/SelfTuning/PROD_DOMAIN')

cmo.createWorkManager('default')

cd('/SelfTuning/PROD_DOMAIN/WorkManagers/default')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Cluster,Type=Cluster')], ObjectName))

cmo.setMaxThreadsConstraint(getMBean('/SelfTuning/PROD_DOMAIN/
MaxThreadsConstraints/defaultMaxThreadsConstraint'))

cmo.setIgnoreStuckThreads(true)

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Cluster,Type=Cluster')], ObjectName))

activate()

exit()

See also
ff Tuning application thread concurrency with custom work managers

Stability and Performance

234

Tuning the application thread concurrency
with custom work managers

In the previous recipe, the default work manager was created to limit the concurrency
of all applications deployed in the PROD_Cluster cluster.

In this recipe, a new custom work manager myWebServiceWM will be created, with
a maximum thread constraint named myWebServiceMaxThreads, configured with 20,
and a capacity constraint of 20 as well.

The myWebServiceWM will be associated with the myWebService.war application so
only the concurrency for the requests of this application will be limited to 20 threads per
Managed Server.

Getting ready
The work manager will be defined in the Administration Console. The application also must
update a descriptor in order to be associated with the new work manager.

How to do it...
First create the myWebServiceMaxThreads maximum threads constraint and the
myWebServiceWM work manager in the Administration Console:

1.	 Access the Administration Console with your web browser at http://adminhost.
domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Environment tree on the left and then click on Work Managers.

4.	 Click on the New button then select the Maximum Threads Constraint radio button.
Click on the Next button.

5.	 Type myWebServiceMaxThreads in the Name text field and 20 in the Count text
field. Click on the Next button.

6.	 Select the All servers in the cluster radio button from the PROD_Cluster
option and click on the Finish button.

7.	 Click on the New button and select the Capacity Constraint radio button.

8.	 Type myWebServiceCapacityConstraint in the Name field and 20 in the Count
field. Click on the Next button.

9.	 Select the All servers in the cluster radio button from the PROD_Cluster option and
click on the Finish button.

10.	 Click on the New button again and select the Work Manager radio button. Click on
the Next button.

Chapter 7

235

11.	 Type myWebServiceWM in the Name text field and click on the Next button.

12.	 Select the All servers in the cluster radio button from the PROD_Cluster option
and click on the Finish button.

13.	 Click on the newly created myWebServiceWM work manager. Select the
myWebServiceMaxThreads option from the Maximum Threads Constraint
drop-down menu and the myWebServiceCapacityConstraint option from the
Capacity Constraint drop-down menu. Check the Ignore Stuck Threads checkbox
(as shown in the following screenshot) and click on the Save button.

14.	 Click on the Activate Changes button to finish.

Now associate the myWebServiceWM work manager to be used by the myWebService.war
application, by editing the file descriptor, WEB-INF/weblogic.xml:

1.	 Edit the file WEB-INF/weblogic.xml and add the tag <wl-dispatch-policy>:
<weblogic-web-app>
 <session-descriptor>
 ...
 </session-descriptor>
 <wl-dispatch-policy>myWebServiceWM</wl-dispatch-policy>	
</weblogic-web-app>

Stability and Performance

236

2.	 Save and repack the myWebService.war application.

3.	 Redeploy the myWebService.war application.

How it works...
The custom work manager works the same way as the default work manager, but is limited to
handle only the myWebService.war application requests.

In this recipe, a capacity constraint was also added to the work manager. The capacity
constraint is the sum of the concurrent executing threads (limited by max threads constraint)
and the queued requests. Since the myWebServiceWM is configured with the capacity
constraint and max threads constraint with the same value of 20, the work manager won't
allow any requests to be queued in the instance.

This application exposes only stateless web services, so there is no need for session affinity.
The requests can be load balanced in a round-robin fashion. When one WebLogic Server
instance reaches 20 concurrent requests, the next request will fail over to the next WebLogic
instance of the cluster. In practice, when the instance is overloaded with the defined max
threads running, it returns the HTTP Code 503. The recognizes the 503 code and fails over
the request to the next instance, which is transparent to the caller.

The HTTP request failover is controlled by the WebLogic plug-in, so it's
mandatory to use the Apache/OHS with the plug-in when configuring
work managers.

The WebLogic plug-in is covered in Chapter 2, High Availability with WebLogic Clusters.

It is a common mistake to suppose that the WebLogic Plug-ins 1.1 failover
works only when the IDEMPOTENT parameter is true. In fact, the parameter
affects only the requests that were accepted by the WebLogic instance.
Even when setting the IDEMPOTENT to false, the failover still works if the
plug-in cannot connect to a WebLogic Instance (connect failover) or when it
receives an HTTP 503 (overload failover). It is also recommended to set the
IDEMPOTENT to false since it can inadvertently duplicate requests.

There's more...
The custom work manager can be created through WLST.

Chapter 7

237

Creating the custom work manager by using WLST
Carry out the following steps:

1.	 Log in as the wls user to shell and start WLST:
[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password and t3://adminhost.domain.local:7001 as the server URL:
wls:/offline> connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands:
edit()

startEdit()

cmo.createWorkManager('myWebServiceWM')

cd('/SelfTuning/PROD_DOMAIN/WorkManagers/myWebServiceWM')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Cluster,Type=Cluster')], ObjectName))

cd('/SelfTuning/PROD_DOMAIN')

cmo.createMaxThreadsConstraint('myWebServiceMaxThreads')

cd('/SelfTuning/PROD_DOMAIN/MaxThreadsConstraints/
myWebServiceMaxThreads')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Cluster,Type=Cluster')], ObjectName))

cmo.setCount(20)

cmo.unSet('ConnectionPoolName')

cd('/SelfTuning/PROD_DOMAIN')

cmo.createCapacity('myWebServiceCapacityConstraint')

cd('/SelfTuning/PROD_DOMAIN/Capacities/
myWebServiceCapacityConstraint')

set('Targets',jarray.array([ObjectName('com.bea:Name=PROD_
Cluster,Type=Cluster')], ObjectName))

cmo.setCount(20)

cd('/SelfTuning/PROD_DOMAIN/WorkManagers/myWebServiceWM')

cmo.setMaxThreadsConstraint(getMBean('/SelfTuning/PROD_DOMAIN/
MaxThreadsConstraints/myWebServiceMaxThreads'))

Stability and Performance

238

cmo.setCapacity(getMBean('/SelfTuning/PROD_DOMAIN/Capacities/
myWebServiceCapacityConstraint'))

cmo.setIgnoreStuckThreads(true)

activate()

exit()

See also
ff Tuning thread concurrency with the default work manager

ff Limiting the JMS Queue consumers

Limiting the JMS Queue consumers
By default, an MDB (message driven bean) uses up to 16 threads per WebLogic Server
instance to consume a JMS Queue destination.

In this recipe, an MDB QueueMDB from the hypothetical JMSApp application will be configured
to use only one thread to consume the JMS Queue. This will be done by creating a new work
manager jmsAppWM with a maximum thread constraint jmsAppMaxThreads with the value 1
and update the MDB descriptor to associate the new work manager.

Getting ready
The work manager will be defined in the Administration Console. The MDB descriptor must
also update a descriptor in order to be associated with the new work manager.

How to do it...
First, create the jmsAppMaxThreads maximum threads constraint and the jmsAppWM work
manager in the Administration Console:

1.	 Access the Administration Console by pointing your web browser to
http://adminhost.domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Environment tree to the left and then click on Work Managers.

4.	 Click on the New button and then select the Maximum Threads Constraint radio
button. Click on the Next button.

Chapter 7

239

5.	 Type jmsAppMaxThreads in the Name text field and 1 in the Count text field. Click
on the Next button.

6.	 Select the All servers in the cluster radio button from the PROD_Cluster option and
click on the Finish button.

7.	 Click on the New button again and select the Work Manager radio button. Click on
the Next button.

8.	 Type jmsAppWM in the Name text field and click on the Next button.

9.	 Select the All servers in the cluster radio button from the PROD_Cluster option and
click on the Finish button.

10.	 Click on the newly created jmsAppWM work manager. Select the
jmsAppMaxThreads option from the Maximum Threads Constraint drop-down
menu. Check the Ignore Stuck Threads checkbox and click on the Save button.

11.	 Click on the Activate Changes button to finish.

Now associate the jmsAppWM work manager to be used by the JMSApp application, by editing
the file descriptor META-INF/weblogic-ejb-jar.xml:

1.	 Edit the file META-INF/weblogic-ejb-jar.xml and add the tag <dispatch-
policy>:
<weblogic-enterprise-bean>
 <ejb-name>QueueMDB</ejb-name>
 <message-driven-descriptor>
 ...
 </message-driven-descriptor>
<dispatch-policy>jmsAppWM</dispatch-policy>
</weblogic-enterprise-bean>

2.	 Save and repack the JMSApp application.

3.	 Redeploy the JMSApp application.

How it works...
The QueueMDB now consumes the JMS Queue with a maximum of 1 thread instead of 16.

Controlling the JMS Queue consumers is important to prevent too much concurrency in the
environments with a lot of JMS Queues. In a scenario where a hypothetic application uses 20
JMS Queues and there is a large backlog of messages in them, WebLogic can use up to 320
threads (20 Queues * 16 consumer threads).

Stability and Performance

240

The primary objective of controlling the thread concurrency is to avoid
scenarios that can lead to an overloaded WebLogic, affecting the service
level and availability.

See also
ff Tuning thread concurrency with the default work manager

ff Tuning application thread concurrency with custom work managers

Security

In this chapter, we will cover the following recipes:

ff Setting up SSL for production environments

ff Creating a new SQL authentication provider

ff Assigning a user to a group

ff Securing a web application with basic authentication

ff Enabling the Administration Port

Introduction
To properly secure a production WebLogic domain, the hardware and host machines must
be physically safe, and operating system and filesystem access must be restricted. Network
access must be protected from unwanted traffic by means of a firewall, and communication
must be encrypted to protect information.

The security subject in Oracle WebLogic Server 12c includes so many aspects and features
that a whole book could be written about it.

WebLogic Server includes the WebLogic Security Service, a set of configurations and tools to
secure the WebLogic domain and its resources.

As this is an administration cookbook, this chapter focuses on some security administration
tasks, such as setting up an authentication provider and enabling Secure Sockets Layer (SSL).

8

Security

242

Setting up SSL for production environments
WebLogic Server 12c supports SSL to add security and encryption to the data transmitted
over the network.

In this recipe, SSL will be enabled in the PROD_AdminServer instance of the
PROD_DOMAIN domain.

A new identity keystore and a new trusted keystore will be created to store the new certificate.
The WebLogic Server instances and the Node Manager will be configured to enable the SSL
protocol and use the custom keystores.

Getting ready
The keystores are created with the keytool command-line utility, and we will demonstrate
signing a certificate with the CertGen Java utility. keytool comes as standard with the
Java distribution, and CertGen is part of the WebLogic Server. Both utilities run from the
command line, so log in to the Linux shell.

How to do it...
Create the identity keystore PRODIdentity.jks on the prod01 machine:

1.	 Log in to shell as the user wls, and create a new folder named /oracle/
Middleware/user_projects/domains/PROD_DOMAIN/keystores:
[wls@prod01]$ mkdir /oracle/Middleware/user_projects/domains/PROD_
DOMAIN/keystores

2.	 Set the PROD_DOMAIN environment variables with the setDomainEnv.sh script
and create the keystore:
[wls@prod01]$ cd /oracle/Middleware/user_projects/domains/PROD_
DOMAIN/bin

[wls@prod01]$. ./setDomainEnv.sh

[wls@prod01]$ cd keystores

[wls@prod01]$ keytool -genkeypair -alias prodcert -keyalg RSA
-keysize 1024 -dname "CN=*.domain.local,OU=MyOrganization,O=MyComp
any,L=MyCity,S=MyState,C=US" -keystore PRODIdentity.jks

3.	 Type and confirm the password for the keystore, and then type <ENTER> to use the
same password for prodcert:
Enter keystore password: <Type a new password>

Re-enter new password: <Re-type the password>

Enter key password for <prodcert>

Chapter 8

243

 (RETURN if same as keystore password): <ENTER>

Generate a new CSR using PRODIdentity.jks:

1.	 Execute the keytool utility to generate the CSR.
[wls@prod01]$ keytool -certreq -v -alias prodcert -file PRODCert.
csr -keystore PRODIdentity.jks

2.	 Type the password when required:
Enter keystore password: <Type the password>

Certification request stored in file <PRODCert.csr>

Submit this to your CA

Sign the CSR and import it into the identity keystore:

1.	 Submit PRODCert.csr to the Certificate Authority of your choice to get the digital
certificate and its private key. For demonstration purposes, this recipe will use the
CertGen utility to create and sign the certificate from the CSR. CertGen uses the
WebLogic Demo CA (CertGenCA.der):
[wls@prod01]$ java utils.CertGen -keyfile PRODCertPrivateKey
-keyfilepass password -certfile PRODCert -cn "*.domain.local"

Generating a certificate with common name *.domain.local and key
strength 1024

/oracle/Middleware/wlserver_12.1/server/lib/CertGenCA.der file and
key from /oracle/Middleware/wlserver_12.1/server/lib/CertGenCAKey.
der file

2.	 Import the server certificate and private keys to the PRODIdentity.jks keystore:
[wls@prod01]$ java utils.ImportPrivateKey -keystore PRODIdentity.
jks -keyfile PRODCertPrivateKey.pem -keyfilepass password
-certfile PRODCert.pem -storepass password -alias prodcert

Create the custom trust keystore PRODTrust.jks on the prod01 machine:

1.	 Create the PRODTrust.jks keystore by making a copy from the Standard Java Trust.
[wls@prod01]$ cp /oracle/jvm/jre/lib/security/cacerts ./PRODTrust.
jks

2.	 Change the default cacerts password. The default is changeit. Change it to
a new one:
[wls@prod01]$ keytool -storepasswd -keystore PRODTrust.jks

Enter keystore password: changeit

New keystore password: <Type the new password>

Security

244

Re-enter new keystore password: <Re-type the new password>

3.	 In previous steps, the WebLogic Demo CA (CertGenCA.der) was used to sign the
certificate, so it will be imported to the trust keystore. In production, import the CA
certificate from your trusted CA vendor.
[wls@prod01]$ keytool -import -v -trustcacerts -alias rootCA
-file /oracle/Middleware/wlserver_12.1/server/lib/CertGenCA.der
-keystore PRODTrust.jks

Distribute the keystore folder to all machines on the PROD_DOMAIN domain:

1.	 Copy the keystore folder to the prod02 machine:
[wls@prod01]$ scp –r /oracle/Middleware/user_projects/domains/
PROD_DOMAIN/keystores prod02:/oracle/Middleware/user_projects/
domains/PROD_DOMAIN/

Change the Node Manager in the prod01 and prod02 machines to use the custom keystores
and the new certificate:

1.	 Edit the nodemanager.properties file:
[wls@prod01]$ vi $WL_HOME/common/nodemanager/nodemanager.
properties

2.	 Add the following lines to the file:
KeyStores=CustomIdentityAndCustomTrust
CustomIdentityKeyStoreFileName=/oracle/Middleware/user_projects/
domains/PROD_DOMAIN/keystores/PRODIdentity.jks
CustomIdentityKeyStorePassPhrase=password
CustomIdentityAlias=prodcert
CustomIdentityPrivateKeyPassPhrase=password

3.	 Enter :ws! to save and exit.

4.	 Repeat the nodemanager.properties configurations for the prod02 machine.

5.	 Restart the Node Manager.

Assign WebLogic Server instances to use the custom keystores and the certificate:

1.	 Access the Administration Console by pointing your web browser to
http://adminhost.domain.local:7001/console.

2.	 Click on the [+] Environment sign from the navigation box to the left and then click
on the Servers link.

3.	 Click on the PROD_AdminServer link.

Chapter 8

245

4.	 Click on the Keystores tab and then click on the Change button from the
Keystores option As shown in the following screenshot:

5.	 Select the Custom Identity and Custom Trust option from the Keystores drop-down
menu and click on the Save button.

6.	 Enter ./keystores/PRODIdentity.jks in the Custom Identity Keystore text
field. Then, enter jks in the Custom Identity Keystore Type text field. Enter the
password chosen earlier in Custom Identity Keystore Passphrase and Confirm
Custom Identity Keystore Passphrase.

7.	 Enter ./keystores/PRODTrust.jks in the Custom Trust Keystore text field.
Then, enter jks in the Custom Trust Keystore Type text field. Enter the password
chosen earlier in Custom Trust Keystore Passphrase and Confirm Custom Trust
Keystore Passphrase. Click on the Save button.

8.	 Click on the SSL tab and type prodcert in the Private Key Alias text field. Enter
the password chosen earlier in Private Key Passphrase and Confirm Private Key
Passphrase. Select the Custom Hostname Verifier option from the Hostname
Verification drop-down menu and enter weblogic.security.utils.
SSLWLSWildcardHostnameVerifier in the Custom Hostname Verifier text field.
Click on the Save button.

9.	 Click on the General tab and check the SSL Listen Port Enabled checkbox As shown
in the following screenshot:

10.	 Enter 7002 in the SSL Listen Port text field and click on the Save button.

Security

246

11.	 Repeat the preceding steps for the PROD_Server01, PROD_Server02,
PROD_Server03, and PROD_Server04 instances, using 9001, 9002, 9003,
and 9004 in the SSL Listen Port text fields, respectively.

12.	 Click on the Activate Changes button.

13.	 Restart the Administration Server and the Managed Servers.

How it works...
Two new custom keystores were created. The identity keystore, PRODIdentity.jks,
was created to store the certificate and its private key. The trust keystore, PRODTrust.jks,
was created to store the root CA certificate.

This recipe used the CertGen Java utility to sign the certificate using
the WebLogic Demo CA, but in production, you should obtain the digital
certificate from a trusted Certificate Authority such as Symantec, Comodo,
GoDaddy, and GlobalSign.

All WebLogic Server instances were configured to use the custom identity and trust keystores
and stop using the default DemoIdentity.jks and DemoTrust.jks keystores. The Node
Manager was also configured to use the custom keystores and the new certificate.

The SSL protocol was then enabled in the PROD_AdminServer and PROD_Server01,
PROD_Server02, PROD_Server03, and PROD_Server04 Managed Servers.

This recipe used only one certificate for the WebLogic server instances and the Node
Managers. The certificate was signed with CN=*.domain.local, meaning it should be valid
to any host with the domain.local address. This is possible by enabling the weblogic.
security.utils.SSLWLSWildcardHostnameVerifier class of the Custom
HostName Verification namespace.

See also
ff Enabling the Administration Port

Creating a new SQL authentication provider
New domains in WebLogic Server 12c are created with the default authentication provider
called DefaultAuthenticator. DefaultAuthenticator authenticates the users and
groups stored in the internal LDAP mechanism on the WebLogic Server. The internal LDAP
runs embedded with the WebLogic Server Instance. The Administration Server runs the
master LDAP and the Managed Servers run the LDAP as replicas.

Chapter 8

247

It is possible to use the internal LDAP to store and authenticate the users and groups in
production, but the WebLogic administrator can add more robust types of authentication
providers such as, a database, Active Directory, and external LDAP, among many others.

In this recipe, a new SQL authentication provider named PRODSQLProvider will be
configured and added to the PROD_DOMAIN domain to store and handle the users and
groups in an Oracle database.

A new data source, ds-Provider, will be created. The database runs at the dbhost
hostname and listens to the port 1521. The listener accepts requests to the service name
dbservice. The database username is dbuser, and the password is dbpwd.

Getting ready
Unfortunately, WebLogic Server 12c does not provide an out of the box database script to
create the tables needed to store the users and groups, so you must run the script provided
to create the tables and insert the default groups.

How to do it...
Create the tables needed in your database:

1.	 Run the following script to create the tables in your Oracle database:
CREATE TABLE USERS
 (
 U_NAME VARCHAR(200) NOT NULL,
 U_PASSWORD VARCHAR(50) NOT NULL,
 U_DESCRIPTION VARCHAR(1000)
);
ALTER TABLE USERS
 ADD CONSTRAINT PK_USERS PRIMARY KEY (U_NAME);
CREATE TABLE GROUPS
 (
 G_NAME VARCHAR(200) NOT NULL,
 G_DESCRIPTION VARCHAR(1000) NULL
);
ALTER TABLE GROUPS
 ADD CONSTRAINT PK_GROUPS PRIMARY KEY (G_NAME);
CREATE TABLE GROUPMEMBERS
 (
 G_NAME VARCHAR(200) NOT NULL,
 G_MEMBER VARCHAR(200) NOT NULL
);
ALTER TABLE GROUPMEMBERS

Security

248

 ADD CONSTRAINT PK_GROUPMEMS PRIMARY KEY (G_NAME, G_MEMBER);
ALTER TABLE GROUPMEMBERS
 ADD CONSTRAINT FK1_GROUPMEMBERS FOREIGN KEY (G_NAME)
REFERENCES GROUPS (
 G_NAME) ON DELETE CASCADE;

2.	 Populate the tables with the default WebLogic groups:
INSERT INTO GROUPS (G_NAME,G_DESCRIPTION) VALUES ('AdminChannelUse
rs','AdminChannelUsers can access the admin channel.');
INSERT INTO GROUPS (G_NAME,G_DESCRIPTION) VALUES ('Administrators
','Administrators can view and modify all resource attributes and
start and stop servers.');
INSERT INTO GROUPS (G_NAME,G_DESCRIPTION) VALUES
('AppTesters','AppTesters group.');
INSERT INTO GROUPS (G_NAME,G_DESCRIPTION) VALUES ('CrossDomainCon
nectors','CrossDomainConnectors can make inter-domain calls from
foreign domains.');
INSERT INTO GROUPS (G_NAME,G_DESCRIPTION) VALUES
('Deployers','Deployers can view all resource attributes and
deploy applications.');
INSERT INTO GROUPS (G_NAME,G_DESCRIPTION) VALUES
('Monitors','Monitors can view and modify all resource attributes
and perform operations not restricted by roles.');
INSERT INTO GROUPS (G_NAME,G_DESCRIPTION) VALUES
('Operators','Operators can view and modify all resource
attributes and perform server lifecycle operations.');
INSERT INTO GROUPS (G_NAME,G_DESCRIPTION) VALUES
('OracleSystemGroup','Oracle application software system group.');

COMMIT;

Access the Administration Console to create the new data source ds-Provider:

1.	 Access the Administration Console by pointing your web browser to
http://adminhost.domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Expand the Services tree to the left, and then click on Data Sources.

4.	 Click on the New button and then click on Generic Data Source.

5.	 Enter ds-Provider in the Name field and jdbc/ds-Provider in the JNDI Name
field. Leave the Database Type drop-down menu with the Oracle option selected.
Click on the Next button.

6.	 Choose *Oracle's Driver (Thin) for Service connections;
Versions:9.0.1 and later from the Database Driver drop-down menu.
Click on the Next button.

Chapter 8

249

7.	 Leave Transaction Options with the default values and click on the Next button.

8.	 On the Connection Properties page, enter dbservice in the Database Name field,
dbhost in the Host Name field, and 1521 in the Port field. Fill the Database User
Name, Password, and Confirm Password fields with dbuser and dbpwd. Click on
the Next button.

9.	 Click on the Next button on the Test Database Connection page.

10.	 Select the PROD_AdminServer checkbox and the All servers in the cluster radio
button from the PROD_Cluster cluster. Click on the Finish button.

11.	 Click on the Activate Changes button.

Create a new security provider, PRODSQLProvider:

1.	 Click on the Lock & Edit button to start a new edit session.

2.	 Click on the Security Realms option (shown in the following screenshot)
in the left-hand navigation box and then click on the myrealm link.

3.	 On the Settings for myrealm page, click on the Providers tab.

4.	 Click on the New button on the Authentication Providers page.

5.	 Enter PRODSQLProvider in the Name text field and choose SQLAuthenticator
in the Type drop-down menu. Click on the OK button.

6.	 Click on PRODSQLProvider and then click on the Provider Specific tab.

Security

250

7.	 Enter ds-Provider in the Data Source Name text field (as shown in the
following screenshot) and click on the Save button. Leave all other options
at their default values.

8.	 Click on the Activate Changes button.

9.	 Restart all instances of PROD_DOMAIN.

Create a new user, wlsadmin, for your new provider:

1.	 Access the Administration Console again by pointing your web browser
to http://adminhost.domain.local:7001/console.

2.	 Click on the Security Realms option in the left-hand navigation box, and then click
on the myrealm link.

3.	 Click on the Users and Groups tab.

4.	 On the Users page, click on the New button.

5.	 Enter wlsadmin in the Name text field, choose the PRODSQLProvider from the
Provider drop-down menu, and enter wlspwd123 in the Password and Confirm
Password text fields. Click on the OK button, as shown in the following screenshot:

Chapter 8

251

6.	 Click on the previously created wlsadmin user for PRODSQLProvider and click on the
Groups tab.

7.	 Associate the Administrators group with the user by selecting the Administrators
checkbox in the Available: table and then clicking on the > button (as shown in the
following screenshot). Click on the Save button.

Security

252

Assign PRODSQLProvider as the first provider and leave DefaultAuthenticator as the second
provider. To do this, follow the steps mentioned below:

1.	 Click on the Lock & Edit button to start a new edit session.

2.	 Click on the Security Realms option in the left-hand navigation box and then click
on the myrealm link.

3.	 On the Settings for myrealm page, click on the Providers tab.

4.	 Click on the Reorder button.

5.	 Select the PRODSQLProvider checkbox in the Available table and click on
the upper arrow on the right to move PRODSQLProvider to the top of the list
(as shown in the following screenshot). Click on the OK button.

6.	 Click on PRODSLQProvider again. Change the Control Flag drop-down menu to
SUFFICENT. Click on the Save button.

7.	 Go back to the Providers page and click on DefaultAuthenticator. Change the
Control Flag drop-down menu selection to SUFFICENT. Click on the Save button.

8.	 Click on the Activate Changes button.

9.	 Shut down the Administration Server and all instances of the PROD_DOMAIN.

Change the boot.properties file of the Administration Server to look up for the user
PRODSQLProvider wlsadmin by following these steps:

1.	 Go to the Administration Server root folder:
[wls@prod01]$ cd $DOMAIN_HOME/servers/PROD_AdminServer/security

2.	 Recreate the boot.properties file to match the wlsadmin user created:
[wls@prod01]$ echo -ne "username=wlsadmin\npassword=wlspwd123" >
boot.properties

[wls@prod01]$ cat boot.properties

Chapter 8

253

username=wlsadmin

password=wlspwd123

3.	 Start the Administration Server.

How it works...
The first step created the tables in the database to store the user and group data.

It is necessary to insert the provided groups into the new provider to
maintain consistency with the default global roles in the WebLogic Server.

We created the provider PRODSQLProvider with the default values, including the use of
encrypted passwords only. We created the data source ds-Provider and associated it with
the provider to handle the database connection.

We changed the order of the providers such that PRODSQLProvider is placed before the
DefaultAuthenticator provider. With both providers configured with the SUFFICIENT
control flag, WebLogic will try to authenticate first on PRODSQLProvider; if authentication
fails, it will try on DefaultAuthenticator. A possible alternative configuration is to delete
DefaultAuthenticator and leave only PRODSQLProvider with the REQUIRED control flag.

It's an option to leave DefaultAuthenticator as a
second provider in case of a database outage.

We also changed the boot.properties file to match a username and password from the
new database authentication provider.

See also
ff Securing a web application with basic authentication

Assigning a user to a group
In this recipe, a new group called myAuthGroup will be created and a new user, authUser,
will be created and assigned to this group. PRODSQLProvider will be used.

Security

254

Getting ready
The change will be made by using the Administration Console, so make sure the
Administration Server is running.

How to do it...
Create a new group, myAuthGroup, and a new user, authUser, for PRODSQLProvider:

1.	 Access the Administration Console again by pointing your web browser to
http://adminhost.domain.local:7001/console.

2.	 Click on the Security Realms option in the left-hand navigation box, and then click on
the myrealm link.

3.	 Click on the Users and Groups tab.

4.	 Click on the Groups tab and click on the New button.

5.	 Enter myAuthGroup in the Name text field and choose PRODSQLProvider from the
Provider drop-down menu. Click on the OK button.

6.	 Click on the Users tab and then on the New button.

7.	 Enter authUser in the Name text field, choose PRODSQLProvider from the Provider
drop-down menu, and enter authpwd123 in the Password and Confirm Password
text fields. Click on the OK button.

8.	 Click on the authUser user for PRODSQLProvider and click on the Groups tab.

9.	 Associate the myAuthGroup group with the user by checking the myAuthGroup
checkbox in the Available table and then clicking on the > button. Click on the
Save button.

See also
ff Securing a web application with basic authentication

Securing a web application with basic
authentication

WebLogic Security services allow the WebLogic Administrator to add declarative security roles
and policies to WebLogic resources such as web applications, EJBs, and other resources
without making changes to the source code or to the file descriptors of the application.

In this recipe, a hypothetical myAuthApp.war web application will be deployed and
configured to be accessed only by the users from the PRODSQLProvider that are
members of the group myAuthGroup.

Chapter 8

255

Getting ready
An application file named myAuthApp.war will be deployed and configured using the
Administration Console, so make sure the Administration Server is running.

How to do it...
Deploy myAuthApp.war to PROD_Cluster:

1.	 Create a new application installation directory using the syntax: /oracle/applicat
ions/<environment>/<application>/<version>:
[wls@prod01]$ mkdir -p /oracle/applications/prod/myAuthApp/v1

[wls@prod01]$ cd /oracle/applications/prod/myAuthApp/v1

2.	 Create two directories using the following commands:
[wls@prod01]$ mkdir app

[wls@prod01]$ mkdir plan

3.	 Copy the myAuthApp.war file to the app directory.

4.	 Access the Administration Console at http://adminhost.domain.local:7001/
console.

5.	 Click on the Lock & Edit button to start a new edit session.

6.	 Navigate to the Deployments page by clicking on the link in the Domain Structure
on the left-hand side navigation table.

7.	 Click on the Install button to install a new application.

8.	 Type the path /oracle/applications/prod/myAuthApp/v1/app and click
on Next.

9.	 Select myAuthApp.war from the list and click on Next.

10.	 Select Install this deployment as an application and click on Next.

11.	 Select the All servers from the cluster radio button from the PROD_Cluster cluster
and click on Next.

12.	 Select the Custom Roles and Policies: Use only roles and policies that are defined
in the Administration Console radio button from the Security tab and click on the
Finish button.

13.	 A new deployment plan file called Plan.xml will automatically be created in /
oracle/applications/prod/myAuthApp/v1/plan.

14.	 Click on the Activate Changes button to apply the changes.

Security

256

Apply security to myAuthApp.war by following these steps:

1.	 Click on the myAuthApp link from the Deployments page.

2.	 Open the Security tab and then click on the Policies tab from the Application Scope.
Click on the Add Condition button, as shown in the following screenshot:

3.	 Choose the Group option from the Predicate List drop-down menu and click on the
Next button.

4.	 Enter myAuthGroup in the Group Argument Name text field and click on the
Add button (see the following screenshot) to add it to the list below. Click on the
Finish button.

Chapter 8

257

5.	 Click on the Save button on the Policies page to finish.

How it works...
The myAuthApp.war application can now be accessed only by users that match the
security policy. In this case, the security policy checks whether the user belongs to the
group myAuthGroup.

To add the declarative security roles and policies, the application must be
deployed with the Custom Roles and Policies option enabled.

Security

258

When a user tries to access the application URI at /myAuthApp, the browser returns a basic
authentication window:

To access the application, enter a username, such as authUser, which we created in the
previous recipe. authUser is a member of the myAuthGroup group, which is permitted to
access the application. Try accessing the application as a user that does not match the policy,
and the application will return a HTTP 401 Unauthorized error.

See also
ff Creating a New SQL authentication provider

ff Assigning a user to a group

Enabling the Administration Port
The Administration Port is a domain wide configuration that segregates all administrative
traffic from the application traffic.

In this recipe, the Administration Port will be enabled in the PROD_Domain domain.

Getting ready
The Administration Port requires all WebLogic Server instances, including the Administration
Server and the Managed Server, to already be configured to use SSL.

Chapter 8

259

How to do it...
To enable the Administration Port, access the Administration Console:

1.	 Access the Administration Console by pointing your web browser to
http://adminhost.domain.local:7001/console.

2.	 Click on the Lock & Edit button to start a new edit session.

3.	 Click on the PROD_DOMAIN link on the left-hand side navigation tree.

4.	 Check the Enable Administration Port checkbox and enter 17002 in
the Administrative Port text field (as shown in the following screenshot).
Click on the Save button.

5.	 Click on Activate Changes to finish.

6.	 The Administration Console now is accessible only from the URL
https://adminhost.domain.local:17002/console.

How it works...
With the Administration Port enabled, the WebLogic Server creates a new internal network
administrative channel that is now used to transfer administrative data between the
Administration Server and the Managed Servers.

The Administration Port also allows the segregation of application and administrative traffic
through different channels.

Security

260

Enabling the Administration Port forces every WebLogic instance in
the domain to listen for the port defined (17002, in this recipe). Make
sure there won't be any port binding conflicts by assigning different IP
addresses to each Managed Server.

There's more...
The Administrative Port can also be enabled through WLST.

Enabling the Administration Port by using WLST
1.	 Log in to the shell as the user wls and start WLST:

[wls@prod01]$ $WL_HOME/common/bin/wlst.sh

2.	 Connect to the Administration Server using wlsadmin as the user, <pwd> as the
password, and t3://adminhost.domain.local:7001 as the server URL:
wls:/offline> connect("wlsadmin","<pwd>","t3://adminhost.domain.
local:7001")

3.	 Run the following WLST commands:
edit()

startEdit()

cmo.setAdministrationPortEnabled(true)

cmo.setAdministrationPort(17002)

activate()

exit()

See also
ff Setting up SSL for production environments

Index
Symbols
[STUCK] flag 200
-XverboseTimeStamp attribute 193

A
access.log file 189, 191
Activate Changes button 140, 181
Activate Changes option 19
Administration Console

about 18, 158
active changes 19
changes making, WLST used 19-21
changes, protecting 21-23
changes protecting, WLST used 23
content, adding 28
customizing 24-26
extending 24-26
extension, removing from 28
other modifications 27
pages, adding 28
saving 18
tables, customizing 158-160
thread dumps, getting from 198-200
used, for creating file stores 107-109
used, for creating JDBC stores 112, 113
used, for creating JMS module 122, 123
used, for enabling Administration Port 259

Administration Port
about 258
enabling 259, 260
enabling, Administration Console used 259
enabling, WLST used 260

Administration Server
about 15, 73

Administration Console application,
accessing 17

boot.properties file, creating 16, 17
files, copying to machine 74
Listen Address value, changing 73
starting, in background 17
starting, in prod02 machine 74
starting, steps for 15, 16
start script, changing 76
stop script, changing 76

Apache HTTP Server
installing, for Web tier 56, 57
installing, steps for 57-60

Apache HTTP Server 2.2.x
about 60
URL, for downloading 57

application
deploying, steps for 35, 36
deploying, weblogic.Deployer tool used 36
deploying, WLST used 37

Application archived file (EAR)
deploying, steps for 35

application thread concurrency
tuning, with custom work managers 234, 235

authUser 258

B
Balance HTTP Requests

loading to WebLogic cluster, Web Server
Plug-in used 60-62

BIG-IP F5
URL 61

boot.properties file 252
creating 16, 17

262

C
CertGen 242
Clear Statement Cache operation 93
cluster. See WebLogic cluster
Cluster Address configuration 51
cluster channel

defining, WLST used 70-72
cluster communications

Multicast, using for 54, 55
Unicast, using for 52, 53

cluster parameters
changing 49, 50

cluster settings
changing, WLST used 51

collected metrics 178
connection factory

about 136
creating, WLST used 130, 132

Consensus option 143
consumers

for JMSAppQueue queue, resuming 132, 133
of JMSAppQueue queue, resuming 133
pausing, WLST used 134
resuming, WLST used 135

CrashRecoveryEnabled parameter 48, 50
CSR

generating, PRODIdentity.jks used 243

D
Database Name field 82
Data Source Name text field 250
data source password

recovering 208, 209
data source tuning

setting 94-96
WLST used 96

DefaultAuthenticator provider 253
distributed queue

about 127
creating, steps for 128-130
creating, WLST used 130-132

domain logging
disabling, WLST used 220
turning off 218, 219

E
Eclipse Memory Analyzer. See MAT
EmailAlertModule WLDF module, creating

167, 168
ENABLE=BROKEN parameter 99
Enterprise Java Beans (EJB) 51

F
Failover algorithm 87
FAILOVER=OFF parameter 99
Failover Request if Busy option 98
Fast Application Notification (FAN) 90
file stores

creating 106, 107
creating, Administration Console used

107-109
creating, WLST used 109

Flight Recorder 200
fully qualified domain name (FQDN) 9

G
GC

enabling, with jrcmd 197
logging, enabling 192-196

GridLink data source
advantages, over multi data source 90
creating 88, 89
creating, steps for 89
creating, WLST used 90

group
user, assigning 253, 254

H
HA Strategy, multi data source

configuring 87
defining 86

HA WebLogic cluster parameters
configuring 48, 49, 50

heap dump
about 202
analyzing 203-206
automatic generation, on OOM conditions

206
httpd-weblogic.conf file 64

263

J
Java Message Service. See JMS
Java Naming and Directory Interface (JNDI)

78
Java Transaction API (JTA) 225
Java Virtual Machine (JVM) 6
JDBC API 77
JDBC data sources

about 78
Clear Statement Cache operation 93
creating 78
creating, steps for 78, 79, 180
creating, WLST used 79, 80
managing 92
non-XA JDBC data source 79
operations, controlling 92
Reset operation 92
Resume operation 93
Shrink operation 92
Shutdown operation 93
Start operation 93
Suspend operation 93

JDBC stores
creating 111, 112
creating, Administration Console used 112,

113
creating, WLST used 113-116
JMS servers creating with, WLST used 120

JDBC transaction tuning 78
JMS 106
JMS API

point-to-point communication 106
publisher/subscriber model 106

JMS application module 121
JMSAppQueue queue

consumer operation, pausing 132
consumer operation, resuming 133

JMSAppSub subdeployment
creating 124, 126

JMS destination
consumers, starting 132-134
consumers, stopping 132-134

JMS module
about 121
creating, Administration Console used 122,

123

creating, WLST used 123
JMS application module 121
JMS system module 121

jms-notran-adp (non-XA) resource adapter
144

jms-notran-adp resource adapter
deploying 144

JMS Queue consumers
limiting 238, 239

JMS servers
about 117
creating, steps for 118
creating with JDBC stores, WLST used 120
creating, WLST used 119

JMS subdeployment
configuring, steps for 125, 126
creating, WLST used 126

JMS system module 121
jms-xa-adp (XA) resource adapter 144
JNDI Name field 112
jrcmd

verbose GC, enabling 197
jrcmd command-line tool 205
JRockit garbage collection mode

selecting 227
JRockit Mission Control Flight Recorder

enabling 200-202
JVM garbage collection mode

changing 227, 228

K
keytool command-line utility 242

L
Linux

monitoring, with SAR 164, 165
Linux HugePages

advantages 223
enabling 221, 222

Listen Address value
about 45
changing, steps for 47
configuring 46
defining, WLST used 47

Load Balance algorithm 87

264

LOAD_BALANCE=OFF parameter 99
Lock & Edit button 42, 107, 212, 259
log disk usage

limiting 212-214
limiting, WLST used 214, 216

log level
changing, for debugging 186-188
changing, WLST used 188, 189

M
Managed Servers Independence Mode (MSI)

73
MAT

URL 203, 206
messaging bridge

about 143
configuring, with source-distributed

destination 143-146
configuring, with target-distributed destination

143-146
configuring, WLST used 148-151
creating 147

Minimum Capacity parameter 95
Mission Control. See also JRockit Mission

Control Flight Recorder
Mission Control

about 160
on desktop, starting 162-164
PROD_Server01 Managed Server, enabling

161
Monitoring Dashboard

about 175
custom view, creating 175-177
new custom view, creating 183

Multicast
configuring, WLST used 56
used, for cluster communications 54, 55

multi data source
algorithm type changing, WLST used 88
configuration, setting 97-99
creating 81-83
creating, WLST used 84-86
HA Strategy, defining 86
tuning, WLST used 99, 100

myAuthApp.war application 257
My Oracle Support

URL 62

N
network channel

creating, steps for 67-69
defining, for cluster communications 67

network interface card (NIC) 67
Node Manager

about 13
parameter, changing 48
shutting down 14
used, for starting WebLogic Managed Server

32, 33
used, for stopping WebLogic Managed Server

32, 33

O
Old Collection (OC) 195
OOM conditions

heap dump, automatic generation 206
Oracle dbhost database

tables, creating 179
Oracle documentation

URL 28
Oracle JDBC driver

updating 102
Oracle JRockit

for Microsofit Windows, URL 161
oracle.net.CONNECT_TIMEOUT=10000

parameter 99
Out of Memory (OOM) 50, 196

P
Panic Action 50
Persistent Store 106
point-to-point communication 106
Preferences section 22
PROD_Cluster

about 106
creating 42, 43

PROD_Cluster cluster 35
PROD_DOMAIN domain 11, 247
PRODIdentity.jks

used, for generating CSR 243
PROD_Server01 Managed Server

enabling 161
PRODSQLProvider 252

265

production environments
SSL, setting up for 242-246

publisher/subscriber model 106

Q
queue 127
QueueLength attribute 171, 177, 178
QueueLength option 170, 173

R
REMOTE_DOMAIN domain 143
requests

proxying, to WebLogic cluster 65, 66
Reset operation 92
Resource Adapters (RAR) 35
RESTful Management Services

about 28
enabling, steps for 29, 30
enabling, WLST used 31

Resume operation 93

S
SAF

about 152
agent, creating 152, 153
agents configuring, WLST used 154-156
resources configuring, WLST used 154-156
resources, creating 153

SAR
every minute data, collecting 166
Linux, monitoring with 164, 165

Seconds to Trust an Idle Connection field 95
Secure Sockets Layer. See SSL
Security Realms option 250
server affinity

about 136
changing, WLST used 138
setting 136, 137

ServerRuntime option 169
Server SNMP agent

creating 172
service migration

about 138, 139
configuring, steps for 139-142

Shrink operation 92
Shutdown operation 93
Simple Network Management Protocol. See

SNMP
SNMP

about 171
agent creating, WLST used 174
gauge monitor, creating 172, 173
Server SNMP agent 171
trap, creating 172, 173

source-distributed destination
messaging bridge, configuring with 143-146

SQL authentication provider
creating 246-253

SSL
setting up, for product environments 242-246

Start operation 93
start/stop scripts

changing 76
STDOUT logfile

rotating 216-218
Store-and-Forward. See SAF
subdeployment targeting 124
Suspend operation 93

T
target-distributed destination

messaging bridge, configuring with 143-146
Test Connection on Reserve option 95
Test Frequency field 95
Test Frequency Seconds parameter 99
Test Table Name field 95
thread concurrency

tuning, with default work manager 229-232
thread dumps

about 197
getting, from Administration Console 198-200

ThreadPoolRuntime MBean 177
timeouts

configuring, steps for 224, 225
configuring, WLST used 226

time taken field
adding 189-191
adding, WLST used 191, 192

transaction log (TLOG) 106
Transaction Manager (TM) 225

266

U
Unicast

used, for cluster communications 52, 53
unpack command 13
user

assigning, to group 253, 254

V
verbose garbage collection (GC). See GC
Virtual IP addresses (VIP) 46

W
watches and notifications

creating, for WLDF module 169, 170
web application

securing, with basic authentication 254-258
Web Application (WAR) 35
WebLogic Admin password

recovering 206, 207
WebLogic cluster

about 39, 40, 138
Balance HTTP Requests loading to, Web

Server Plug-in used 60-62
creating 40-43
creating, WLST used 44
requests, proxying to 65, 66

WebLogic configuration 185, 186
weblogic.Deployer tool

used, for deploying application 36
WebLogic Diagnostic Framework. See WLDF
WebLogic domain

about 8, 9
creating, steps for 9-11
files, distributing to remote machines 12, 13
files, manual distribution 13

WebLogic Managed Server
starting 32
starting, Node Manager used 32, 33
starting, with provided shell script 33, 34
starting, WLST used 32, 33
stopping 32
stopping, Node Manager used 32, 33
stopping, with provided shell script 33, 34
stopping, WLST used 32, 33

WebLogic plug-in
configuring 62-64

WebLogic Security 254, 256
WebLogic Server 5, 241
WebLogic Server 12c

installing 6
installing, requisites for 6
installing, steps for 7, 8

Web Server Plug-in
Balance HTTP Requests, loading to WebLogic

cluster 60-62
Web tier

Apache HTTP Server, installing 56, 57
WLDF

about 166
EmailAlertMailSession mail session, creating

167
EmailAlertModule WLDF module, creating

167, 168
Harvester, creating 182
module, creating 182
watches and notifications, creating 169, 170

WLST
log levels, changing 188, 189
used, for adding time taken field 191, 192
used, for changing cluster settings 51
used, for changing Listen Address value 47
used, for changing multi data source

algorithm type 88
used, for changing server affinity 138
used, for configuring messaging bridge 148-

151
used, for configuring Multicast 56
used, for configuring timeouts 226
used, for creating connection factory 130,

132
used, for creating custom work manager 237
used, for creating default work manager 232,

233
used, for creating distributed queue 130-132
used, for creating file stores 109
used, for creating GridLink data source 90
used, for creating JDBC data source 79, 80
used, for creating JDBC stores 113-116
used, for creating JMS module 123
used, for creating JMS servers 119
used, for creating JMS servers with JDBC

267

stores 120
used, for creating JMS subdeployment 126
used, for creating multi data source 84-86
used, for creating SNMP agent 174
used, for creating WebLogic cluster 44
used, for defining cluster channel 70, 72
used, for defining Listen Address value 47
used, for deploying application 37
used, for disabling domain logging 220
used, for enabling Administration Port 260
used, for enabling RESTful Management

Services 31
used, for limiting log disk usage 214-216
used, for making Administration Console

changes 19-21
used, for pausing consumers 134
used, for protecting Administration Console

changes 23
used, for resuming consumers 135
used, for starting WebLogic Managed Server

32, 33
used, for stopping WebLogic Managed Server

32, 33

used, for tuning data source 96
used, for tuning multi data source 99, 100

WLST Script 22
work managers

application thread concurrency, tuning 234,
235

default work manager creating, WLST used
232, 233

custom work manager creating, WLST used
237

thread concurrency, tuning with 229, 230,
231, 232

X
X86-64 processor 6

Y
Young Collections (YC) 195
YourKit Java Profiler

URL 206
yum command 164

Thank you for buying
Oracle WebLogic Server 12c Advanced

Administration Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Oracle Weblogic Server
11gR1 PS2: Administration
Essentials
ISBN: 978-1-84968-302-9 Paperback: 304 pages

Install, configure, deploy and administer Java EE
applications with Oracle WebLogic Server

1.	 A practical book with step-by-step instructions for
admins in real-time company environments

2.	 Create, commit, undo, and monitor a change
session using the Administration Console

3.	 Create basic automated tooling with WLST

Oracle WebLogic Server 12c:
First Look
ISBN: 978-1-84968-718-8 Paperback: 144 pages

A sneak peek at Oracle's recently launched WebLogic
12c, guiding you through new features and techniques.

1.	 A concise and practical first look to immediately
get you started with Oracle Weblogic 12c

2.	 Understand the position and use of Oracle
WebLogic 12c in Exalogic and the Cloud

Please check www.PacktPub.com for information on our titles

Instant Securing WebLogic
Server 12c
ISBN: 978-1-84968-778-2 Paperback: 100 pages

Learn to develop, administer and troubleshoot your
WebLogic Server

1.	 Discover Authentication providers

2.	 Configure security for WebLogic applications and
develop your own security providers

3.	 Step by step guide to administer and configure
WebLogic security providers

4.	 Quick guide to security configuration in WebLogic
realm

Oracle Enterprise
Manager Grid Control
11g R1: Business Service
Management
ISBN: 978-1-84968-216-9 Paperback: 360 pages

Build enterprise-ready business applications with
Silverlight

1.	 Govern Business Service Management using
Oracle Enterprise Manager 11gR1

2.	 Discover the evolution of enterprise IT
infrastructure and the modeling paradigms to
manage it

3.	 Use and apply various techniques in modeling
complex data centers using Oracle Enterprise
Manager

4.	 Model and define various composite targets such
as Groups, Systems, and Services

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Install, Configure,
and Run
	Introduction
	Installing WebLogic Server 12c
	Creating the WebLogic domain
	Distributing the domain files to remote machines
	Starting the Node Manager
	Starting the Administration Server
	Saving and activating changes in the Administration Console
	Protecting changes in the Administration Console
	Extending and customizing the Administration Console
	Enabling RESTful Management Services
	Starting/Stopping the WebLogic Managed Server
	Deploying applications

	Chapter 2: High Availability with WebLogic Clusters
	Introduction
	Creating a WebLogic cluster
	Defining a Hostname/Alias for the Listen Address value
	Configuring HA WebLogic cluster parameters
	Using Unicast for cluster communications
	Using Multicast for cluster communications
	Installing Apache HTTP Server for the Web tier
	Using the Web Server Plug-in to Load Balance HTTP Requests to WebLogic cluster
	Defining a network channel for cluster communications
	Configuring high availability for Administration Server

	Chapter 3: Configuring JDBC Resources for High Availability
	Introduction
	Creating a JDBC data source
	Creating a multi data source
	Defining the multi data source HA Strategy
	Creating a GridLink data source
	Managing JDBC data sources
	Tuning data sources for reliable connections
	Tuning multi data sources – surviving RAC node failures
	Updating the Oracle JDBC driver

	Chapter 4: Configuring JMS Resources for Clustering and High Availability
	Introduction
	Creating the file stores
	Creating the JDBC stores
	Creating the JMS servers
	Creating the JMS module
	Configuring the sub-deployment targeting
	Creating the distributed queue destination and the connection factory
	Starting/stopping consumers for a JMS destination
	Using the Server affinity to tune the distributed destinations' load balance
	Creating a pinned queue with clustering and HA with service migration
	Configuring messaging bridge with
source and target distributed destinations
	Relying on SAF to transfer JMS messages to another WebLogic domain

	Chapter 5: Monitoring WebLogic Server 12c
	Introduction
	Customizing the Administration Console tables
	Using the JRockit Mission Control Management Console
	Monitoring Linux with SAR
	Sending e-mail notifications with WLDF
	Generating an SNMP trap
	Creating a Monitoring Dashboard custom view
	Viewing historical data in the monitoring dashboard using a database

	Chapter 6: Troubleshooting WebLogic Server 12c
	Introduction
	Changing log levels to debug
	Including the time taken field in access.log
	Enabling verbose garbage collection logging
	Taking thread dumps
	Enabling the JRockit Mission Control Flight Recorder
	Analyzing a heap dump
	Recovering the WebLogic admin password
	Recovering the data source password

	Chapter 7: Stability and Performance
	Introduction
	Limiting the log disk usage
	Rotating the STDOUT logfile
	Turning off domain logging
	Enabling Linux HugePages
	Configuring the transaction (JTA) timeouts
	Choosing the JRockit garbage collection mode
	Tuning thread concurrency with the default work manager
	Tuning the application thread concurrency with custom work managers
	Limiting the JMS Queue consumers

	Chapter 8: Security
	Introduction
	Setting up SSL for production environments
	Creating a new SQL authentication provider
	Assigning a user to a group
	Securing a web application with basic authentication
	Enabling the Administration Port

	Index

