prime

USER GUIDE
5.1

Author

Cagatay Civici

First Edition

PrimeFaces User Guide

Table of Contents

ADOUL the AULNOT......oeiiiiiiiie e et e et e e e e e e e e etae e e abeeesasaeeensseeennseeesareeas 9
L INEEOAUCTION. ...t e e ettt e e e e et e e e e e e e baaeeeeeetaaaeeeeeesssaeeeeeeasssaaeeeassseeeeaannes 10
1.1 What 1S PrImMEFACES?.......ccciiiiiiiee ettt et e s e eanee s 10
1] 111 TSP PRPRP 11
2.1 DOWNIOAA........eiiiiiiiiiee e et e e e et e e e et a e e e e et e e e et e e e e earaeeeeannraeaas 11
2.2 DEPCIACIICIES. ...ttt etee ettt eette et et e et e tte e bt e s bt e st e eate e beaesbeenseesateesateenbeesnseenseesnseenseanes 12
2.3 CONTIGUIALION.vteeiiieeeiie ettt eetee ettt e et e e st e e s beeessteeessaeeesseeensseesnsseeesseeesseeesseesnsseesnnnesnnses 13
2.4 HEILo WOTIA.......viiiieiieciie ettt ettt e et e e e st e e eta e e e aaeeeensaeesessaeesasaeens 13
3. COMPONENE SUILE.....cceuiiiiiiiieeiie ettt e et e eete e ettt eesteeesetaeeeesbeeessseeesssaeeassseeeasseeessseeeassseesssseeensses 14
3.1 ACCOTAIONPANCL.......viiiiiiiiiiiiccee ettt e e e et e et e e e e eare e e eaaeeeanas 14
3.2 AJAXBERAVIOT ..ottt ettt ettt ettt et e e abe e 18
3.3 AJaxXEXCePtiONHANAICT..........oiiiiiiiieciicie ettt et 20
34 AJAXSTATUS. ..ttt ettt ettt ettt e b e et e e tee et e e eat e e bt eenbeeteeenbeenneeenbeene 21
3.4 AULOCOMPIELE. ...eeeuiiiieiiiieeiieeeite ettt ettt eite e et e et e e et eessaaeeeaseeessaeeeasseeesssaeesssesessssaensseesnnes 24
3.5 BAICOMC.eiiiiiieeeee et et e e e b e e e b e e e e ta e e e ba e e taeeeaaeeeaaeeenreas 34
3.0 BIOCKULL......eeieieeeee et e ettt e et e e et e e e eae e e eeaeeeeeateeeeaaeeenreeas 37
3.7 BreadCrUmD........coouviiiiiiiecciieeeeee ettt e et e et e e et e e e e e e e eae e e e taeeeeaaeeeareeas 40
B8 BUIIOM. ..uttiiiieieee ettt e e e e e e e et e e e e e e e e e ee e e att bbb areaaaaeeeeeaaetartraaaaaaaaeeeaaans 42
3.0 CACKC. ... e e e e e e e e e t—a e e e e e ta e e e e e aaraaaeeearaeas 45
310 CalONAT.......cccuieeeiieeeee ettt e e e et e et e e e ta e e e ta e e e e e e e abaeeetbeeeabeeerbaeenaeeenns 47
T I B o 1] o TR 57
312 CATOUSEL ..t ettt e et e et e e e e e e e te e e s ta e e etraeetaeeeaaraeeareeas 60
313 CRIIEQITOT. .. ittt e et e e e e e e e e et e e e e e e eaaeeeeeeeeaaaeeeeeesnnees 66
BT CRATT.cc it e ettt ettt e e et e e et e e e et e e e e ae e e e tae e e etbeeeetaeeeataeeeareeeereeas 67
T o B o 1T s V- o AR OSSP PO PRSPPI 68
3142 LINECRNAIT.......vviieiiee ettt e e et e et e et e e et e e eeataeeeateeeeeaeeeeeaaeeeenreeeennes 70
3.14.3 BATCRAIT.....oiiciiieceieeece ettt e e e e e e e ta e e e aa e e et e e e e abeeetaeeeraeeenraeenn 73
3.14.4 DONULCRAIT.ooiiiiee ettt ete e e et e e e e et e e eeteeeeeaaaeeeeaneeeenneas 75
3.14.5 BUDBDICCRNAIT........oeiiiiiiiiiie ettt ettt et et e e et e e e aaeeeaaeeeeaaeeeans 77

RO B Y 011 (o O F: 3 SO SRR 79
3.14.7 MeterGauge CRart..........ccveeiiiiieeiie ettt e e et e e et ee e sereeeesnaeeesnnaeeennneas 81
3.14.8 CombINed CRATt..........coiiiiiieiiie ettt eaee e e eae e e eaveeeeaneeeenseeenes 83
3.14.9 MUILIPIC AXIS..ecuviiiiiieiiieiieeie ettt eette et e et e et e e b e e aaeebaeesbeeessaeesseessseessaeeseeeseeensens 84
314,10 DAt AXIS...uuvieieiieeeeiieeeeiteeeeteeeeetteeeeteeeeaeeeeeteeeeearaeeeeaseseataaeeeetbaeeetseeeanaaeeeareeennnes 86
3.14.11 INteractiVve CRATt.......cccuvviiiiiceiieeee e e ettt e et e e e e eneaees 87

B LA T2 EXPOTt..uiiiiiieiieeiieeieeeiee et e ettt e et eeaseeiveeeteesteeestaeessaeensaeenseeensaesnsaessseessseesssaensseenssens 88
314,13 Static IMAZES....ccueieiieeiiieiie ettt ettt et e sttt e st e et e et e aaeeabeesneeenns 89
314,14 SKINNING......iiiiiiieeiiieeiee et esteeertee e et e e s staeeetaeeetteesaeeeessseeessseeessseeeasseessseeensseennes 90
31415 EXENACT......iiiiieietiee ettt e et e et e e et e e e taeesaeeeetaeeeabeeeeabeeeenraeenn 91
31416 Chart APL.....ceeeeeeeeeeeeeeeee e et e e et e e etae e e e e e enns 92
315 CLOCK ottt ettt et e et e et e e et e e e ae e e e ta e e e taeeeaeeeetaeeeeareeeeareeeerreeenns 97
3160 COlLECLOT ...ttt et e e et e e e ettt e e e e eetaa e e e e eeetaeeeeeearaeaeeeennees 99

PrimeFaces User Guide

317 COLOT PICKET.....iiiiieiie ettt ettt et e st e s ne e e neeenbeenaee s 100
BUI8 COIUMM....ciiiiiieecie ettt e et e e et e e etbeeessbeeessseeessaeesnseaeenssaeennsaaennns 103
3 19 COIUMNS. ...ttt ettt ettt e et e tte et e e baesabe e sbeenbeessbeenseesnsaenseassseenseesnseens 105
3.20 COIUMNGIOUP. ...ceeiiiieiiieeeiieeectee ettt e esteeestteesteeeessteesssseeessseeessseseasseessseeasssasessssessssseeanes 107
3.21 ComMMANABUIION.eotiiiiieiiecie ettt ettt ettt et e et eestaeebeestaeesbeessaesnseesseeenseenseesnseas 108
3.22 CommMANALINK.....cccuiiiiiiiieiie ettt et e et e et e e e e et e e et eeeaaeeeenaaeeenraeeas 113
R T I 00331 i 1's 1 WO RSP PS 117
3.24 CoNfIrMDIALOZ. ...c..vieiieiiieiie ettt ettt et e st e et e eteeeabeesnaeenbe e e 118
325 COMENEFIOW. ..ottt et e e e e e e tae e e abeeeensaeeesaeeensaeaeenes 121
3.26 CONLEXEIMEBIULuveieiiiieeiiieeeiie e etee et te ettt e ettt e e et e et e st eessbeeesabeeesasbeeensseeennseeennseeesnnnes 123
R I A D T T 1010 T 1 (¢ FO PP SRR 126
RINA D F:1 21 2 q o T0] 1 £ USROS RR 131
3.20 DAtaGTId. . .eeeueieiiieiie ettt ettt ettt et et e bt e et e e et e e tbe e taeenbeesnteeenteens 134
R LU D 1 1)] SRS 141
3.31 DataSCIOLLET ... iieiieeiieie ettt ettt ettt e e e e e saeenbeeeabeeaeeeas 145
R I 2 D -1 - 1 1 o) (< USROS 149
3.33 DefaultCommand.............cocuieriieiiiinie ettt ete et sae e st e e stbeesnbeeeabeeaeeesaeens 174
R 7 BT 1 (o PRSP PPRRUSRPRO 176
IR I D -7 B (o] o OO PSR PR 181

3.35.1 DIaggable......coviiiiieiieiiee et ettt et e aae e 181

3.35.2 DIOPPADIC......eiiieiiee et et e et e e b e e e e taaeenaaaeanns 185
330 DIOCK. ..t ettt b et eanes 190
TG A 274 1) USSP 192
IR T 5 i (<71 F OO 196
3.30 FEEAREAACT........eeeiiieiiieeieee ettt ettt e st e bt e e bt e s b e e s ebeenneeenreas 199
R IR L <] Ua 1< APPSR 200
3.41 FileDOWNIOAd.......c..ieiiiiiieeiie ettt ettt ettt e nn e 203
3,42 FIleUPLOAQ.......coeeieiiieiie ettt ettt e et e e st e e et e e esabeeesstaeeesaeeesssaeennsaaensnseennes 205
IR B e T | 1RSSR 212
344 FIAZIMENT....coiiiiiiiiie ettt ettt et e sttt e e bt e e bt e e e bt e e e sabe e e bt e e eabeeesabeeesabeeeas 214
R I I € 111 1<) - TSP 216
B0 GIVAD. ...ttt ettt h et et h e bt et sat et e b 219
3.47 GMapINTOWINAOW......ccuiiiiiiieeiie ettt e e e st e e ae e e saeeessaeeesseeennneens 230
3.48 GraphiCIMAZE......ccveeeuiiiiiieiieeiieeie ettt ettt et et e et e e e be e aaeebaeebeeenbeesaseenssesnseeenseennns 231
IR L € 4 Ta I G ST 235
350 GIOWL .ttt ettt ettt e e e e e be e tb e e st e e be e tb e e taeenbe e tbeeteeenreas 237
Il B 5 (010 35 2O PP UP PR 241
R I I (6 (10 10711) USRS 244
3.53 TMAGECOMPATE.eeeuiieeeiiieeeiieeeeiitee ettt e et ee e ettt e e sabeeesateeesabeeeesbeeesnbaeesenseeesnsbeeesnsseeennnees 246
R I 3 010 T oL 0 (0] 0] 015 PSPPSR 248
355 TMAZESWILCH.....uiiiiiieiiecieeee ettt e st e et e st e e sebeeteeesbeesnseessseenseeenseas 252
3560 INPLACE. ..ttt ettt ettt et e bt e et e et e e tee e beeebeesnbeennreens 255
357 INPUEMASK. ...ttt et e e e et e et e e et e e nta e e st aeeantaeennaaeeenneeean 259

PrimeFaces User Guide

358 INPULSWILCR. ...ttt ettt e b e ebe e aeeeareas 263
3.5 INPULTEXL. c.veeevieeeteeiie ettt ettt et e ettt e st e et eesbeesaeeesseessaeesseesssaesseeseeesseesseassseenseennsens 266
3.60 INPULTEXEATEA. ...ceeuevieeiiieeiie ettt et e et e et te e et e e et e e sttt e sateessnbeeennteeesnseeennneeesnnnes 269
3,01 KEYDOATA.cooiiieeiiiee ettt et e e e e st e e st e e e b e e e e ate e e naaeeennaaeennreeeeanes 274
302 LLAYOUL. .ottt ettt ettt ettt e sttt e e et e st e e et e e tt e e e nt e e e nbe e e nteeennbeeenntaeeentaeennneeenn 279
363 LaYOULUNIL....c..eiiiiiiiiiiieeiteteeeett ettt sttt et b et sae ettt saeenbeeanesae e 284
RO 5 T4 114 2 7). OSSPSR 286
305 LMK it ettt ettt et e e ab e e see et e e naeeenbeenneeentean 289
300 LLOE. .ottt ettt ettt h e et e et e n e e bt et e ente st enteentenbeenteeneenns 292
3007 IMEAIA....cceiieiie ettt ettt e e st e et e et e et e et b e e b e e tee e beeetbeanbeeenbeeesaeenbeeenbeeseeans 294
I Y R\ (ST 10 (S5 4L PSPPSR 296
3U00 MUuuiieniieeiieeeiie ettt et e ettt e et e et e et e et e e esaeebeeesbeessaeesseenseeenseesseensaessseenseesnseesseenseeneean 299
370 IMEIUDATtieitieiie ettt ettt ettt ettt et e et et e e bt esate et e e seeenbeeanbeenseesabeenseasnseenseenareas 305
371 MENUBUITON.iiiiiiiiiiie ettt e e et e e sttt e e e e snsbeeeeesnnaeeeessnnseeeeennnes 308
R0 \Y, (5 1101 £S5 s o OO PRSP RPSRRPRR 310
373 IMIESSAZE. e euuvvrieeeeeiiieeeeesiteteeeattateeesataaeessasstaeeesassaaeeeaaansaaeeseanstaeeeeannsseeeeeannnaeeeeennteeeeeanes 313
374 IMLESSAZES. .o uuvveeuteeeeitieeeiteeeeiteeenateeeaeteeaateeeneseeensaeeansaeeanseeesnseeensseeennseesnsseeensseeensseeennseesnnneenn 315
375 MINAIMAP. ...ttt ettt et et e et e s st e et e e aeeenbeesseeeabeenbeeenbeeneeenrean 318
3.76 MUItISElECtLAStDOX. ...ceiuviiiiiiieeiiie ettt e e s e e e e s e e esaeeesneaeeesaeeenans 321
3. 77 NOHICAIONBALceiiiiiiiiiieeiieeie ettt e ettt e s te e beeesbeesaseessbeenneeenseas 324
R A 0 1<) 55] ARSI 326
3.79 OULPULLADEL......eieiiiieieie ettt ettt e et e e st e e sbeessb e e saeenbeesabeeseeans 330
3.80 OULPULPANEL......coiiieeieeece ettt e et e et e e e sbe e e e tbeeeabaeessaaeeenraaeenes 333
3.81 OVETIAYPANCL.cooiiiiiiiiiiieiie et ettt e e e et e et eeetaeeabeeensaennbeens 335
IR o T FO SR PURPPRRPRRP 338
R TR TR B 31 151 [5 T PSPPSR 341
3.84 PANCIMECIIUL.....couiieiiieiiieiieeie ettt ettt ettt ettt et e e bt e et e e bt e e abeeenbeenbeeenbeensaeenbeeenbeeneeans 344
385 PASSWOT. ...ceciiiieiiie ettt eetee ettt ettt e et e et e e e ta e e e taee e abeeenbaeensraaensbee e ntaeeenaaeeanreeenn 346
3.860 PROTOCAM.......uiieiiiieiiieciieeeie ettt et et e e e et e e s taeesbeeesbeeenbeessseensaeenseeensaesnseensneas 350
R IR o 1e] 4 15 £ APPSR 352
BB POl e ettt e e tb e e be e b e ebaeesbeebeeeabeebeeenseenneas 358
B8O PLINLET.c..ee ettt ettt ettt et e et e et e e et e e ab e e bt e e be e e b e e nee e saeenbeeenteeenneens 361
3.90 ProgreSSBaT.vviiiieiiiee et e et e e e et e e e e e e e e entaaeeeenraeaeenn 362
3.91 RAQIOBULION.eoiiiiiiieciieiiecie ettt ettt ettt et e st e e be e e b e e taeesbeesseesnseenseesnsaens 366
392 RATINE. .ttt ettt ettt ettt et e et e bt e e et e e ettt e bt e e bt e e bt e eateeeateesabeenabeennteebaeens 367
3.93 ReMOtCCOMMANG........coiiiiiiieiieeiiieiie et ete ettt et e et e eteesebeesabeesabeesseeesseenseeensaesnsaennseas 371
3.94 RESELIMPUL.eieiiiee ettt ettt e ettt e et e e it e e e st e e sabeeesaneeens 373
R I TS V221 o] (USRS 375
390 RIDDOMN.iiiiieiie ettt ettt ettt e et e et e et e e bt e et e e eabeeenbe e neeenbeeenbeeenneennns 379
3.97 RIDDONGTOUP. ..cceuviieeiiieeiiie ettt e eitee et ee e sttt eesstaeeeseteesssseeeesseesssseeesssesessseesssasessssaessseeanes 382
BL08 RINE. .ttt ettt et ettt e et esabe e e at e e seeesbeeesbeessbe e sbeesaeenbeeensaeenbeennseennaeans 383
BL08 ROW .ttt ettt ettt ettt e e e st e e e ettt e e e e easaaee e e nabaee e e ntaeeeeantataeeanraaeeennnareeeannraaaeans 385
3.99 ROWEGILOT.....cciiiiieiiie ettt ettt e et e e et e e st e e eataeessbee e sseeesseeensseeenseeenseean 386

PrimeFaces User Guide

3.100 ROWEXDANSION.cieutiiiiiiiiieeiiieiie ettt ettt ettt ettt et e st eesate e b eeenbeenteesnseebeeenseenneas 387
3101 ROWTOZEICT...cueiiieiiiieciie ettt ettt e e et e e e sttee e st e e enaee e nseeesnsaaeessaeennsaaennns 388
3,102 SCREAUIC.eiieiiiieeeee ettt e e e e e e e et e e e et e e e e e e e eaaaeeeeans 389
3,103 SCIOIPANEL......cooeiiiiiieeee ettt e e e e et e e e et e e e e e taaeeeeearaeeeeaan 398
3.104 SelectBooleanButton..........cc..eiiiuiiiiiiieieciie ettt ettt e aae e 400
3.105 SelectBooleanCheCKDOX.........cooiiuuiiiiieiiiee ettt e e e earaeeeeans 402
3.106 SelectCheckbOXIMENU.......cccuviiiiiiiiiececiee et e e e e are e e e e e aaeeaeas 404
3.107 SeleCtManyBULON.cccuiiiiieiieeiie ettt ettt sttt e et e et e e ssteenaeensaesnseesneeas 408
3.108 SelectManyCheCKDOX.......cccuiiiiieeiiie ettt e e e e e e e ssaee e enaaeeenaaeeas 410
3.109 SElECtMANYMENUL.....ccuvieiiiiiieiieeiie et esieeeteetteete e aeebeessbeesseessseeseesnseessseesseasssesnseenssens 412
3,110 SeleCtONEBULION.ecciiiiiiiee ettt e e et e e e eeaaa e e e e eeaaaeeeeeensaeeeeennes 416
3111 SeleCtONELISTDOX. . c.uviiiiiiiiieiiie ettt e et et e et et e e e te e e eaaeeeeteeeeaaeeeaneeean 418
3,112 SeleCtONEMENUL.......oeeiiiiieeiiie ettt e ettt et ee e et e e et e e e e etaeeeeataeeesasaeeesaeeesasseessnsaeeensseeesnnas 421
3,113 SelectONERAIO........uiiiiiiiiie et e e et e e e e et e e e e et e e e e nneeas 426
3114 SEPATALOT....eeiiiieiiiie ettt ettt e ettt e et e st e e saa e e ab e e et e e et e e entteeenbeeenanes 429
3115 SHACMENUL ...t e et e e e e et e e eteeeeteeeeaeeeeeaeeeeaeeeeneeean 431
BU110 SIIACT ..ottt e e e et e e e ete e e et e e e b e e e e te e e eaaeeetaeeetaeeeraeean 434
BULTT7 SPOLHZRL. ...ttt ettt sttt et 439
BLTT8 SOCKET. ..ceeieiiieee e et e e et e e e e e a e e e e e taa e e e e e ara e e e e e araaeeeeanneas 441
BL119 SPACET. .ttt ettt ettt et e et e ettt e st e e et e e e nt e e st e e e nnbeeeeans 443
3120 SPINNECT.....vvieeitiieeiieeeite et ettt e ettt e e et e esteeessteeessseeessaeenssaaassseeesssaeensseeessesansseesnsseessneenns 444
3 121 SPIEBULION.eieiiieiieeiie ettt ettt ettt ettt e et e e taesabeessaeesbeessbeesseeessaenseesnseenseesnseens 449
3122 SUDIMCIIUL.....uviiiiieiii ittt e ettt e e e eete e e e e eeaaaaeeeeeaseeeeeeesseseeeeessseeeeannes 453
BU123 SHACK .. etieeeeeeeeee ettt e e et e e et e e e e te e e e taeeeetreeeeanes 454
3124 StICKY .ttt ettt et e et e st e et e e bt e at e e heeenbe e nbeeneeenteas 456
3125 SUDTADIC. ...ttt et e e et e e e eae e e raeeeans 458
3.126 SUMMATYROW.....eiiiiiiiiiiiie ettt ettt e st e et e e st e e sabaeesnaees 459
BL127 TAD oot e e et e e e e ae e e eaeaeeataaeeereeeanns 460
3128 TADIMEIIULeeciiiieeiiee ettt ettt e et e et e e ettt eeeaaeeeetaeeeasaeeeasseeesseeeasseeenasaeenseeenns 461
3129 TADVICW ...t e e e e e e et e e e e tae e e e e e taaeeeeeateaeeeeearaeaens 463
T R 10 1 = O 16 5 USRS 468
3131 TeIMUINAL..c.iiiiiiiie ettt e et e e et e e etbeeetbeeesaseeesssaeessaeesaraeeeasaeanes 471
3,132 TREMESWILCHETcceviiiiiceieee et e et e e e et e e e e eeaaae e e eeeaaraeeeennes 473
3133 TIETEAMENULeeiviiieiie ettt et e et e et e e et e e e taeeetaeeeasaeeessaeeeaseeenaseeennseeanns 475
3134 TOOIDATL.......veieeeeeeeeeee e ettt e et e e e et e e e e e ta e e e e e ettt e e e eetraeeeeearaeeeaanes 478
3.135 TOOIDATGTOUD.ccuvieiieiiiieiieeiieeiee et ette et e et et e e bt e st e esbeessaeesseessaeesseesssesnseenssessseeseennseas 480
T K TS Ko Te) L2 o OO PRO U SURURRRRRP 481
3137 TH@C e e ettt e e et e e e et e e ae e e e et e e eetaeeeateeeataeeeateeearaaeaans 484
BUI3B TIEEINOME.eveee ettt ettt ettt e et e e et e e e e ae e e eabeeeebaee e aaeaesasaeessseeennsaeeennnes 494
3139 TIEETADIC. ..ot e e e e e ettt e e e e aaeeeaeaeeeaaaeeeraeeanes 495
3140 WateIMATKcoiuiiiiiiiii ettt et e e e et e e e et e e e earae e e eabeeeeareeeearaeeeans 499
BU141 WIZATA. ... e et e et e e e et e e e e aa e e e e eeataee e eetaeeeeeataaaeeas 501
4. Partial Rendering and PrOCESSING.......cccuiiviiiiiiiieeiiieeeeeeetee ettt sree et e e e e e saeeeeaeeeennee s 507

PrimeFaces User Guide

4.1 Partial RENAEIING.......ooviiiiiiiiieie ettt ettt e st et e e bt e s bt esnbeenneeeaeeas 507
41T INFTASEIUCTUTE. ...ttt ettt ettt et st e e b e e saeeenee 507

41,2 USING IDS.c.uiiiiiieeieeeie ettt ettt ettt et e et e st eeteesate e st e esbeeenbeeesseeenseensaesnsens 507

4.1.3 NOUEYING USCIS....uiiieiiieeiiiieeiiie et e eiteeette e eitee et eeseeeessseesssseessaeessseeassseesnsseesssseennes 509

4114 BItSEPIECES. « ettt ettt sttt e a ettt st naeenne s 509

4.2 Partial PrOCESSINE. . c..uieuiieieieeiie ettt ettt ettt et ettt e et e s et e st e e sbe e sbeeeseeeeeas 510
4.2.1 Partial Validation..........coouiiiiiiiiiiieiee et st 510

4.2 2 USING LAS ittt ettt ettt et e et e et e e s et e e st e enbeesnseennneennes 511

4.3 Search Expression FramewWork.........c.coooviiiiiiiiiiiii et 512
43,1 KEYWOTMS...ciiieniiieiiieeiie ettt et ettt ettt eete e et e e taeesbeeesseessaesnsaessseansaaesseenseeensaennsens 512

4.3.2 PrimeFaces Selectors (PEFS)......cooii ittt 513

4.4 Partial SUDIMIL.....c..eeiiiiieie ettt ettt ettt ettt et et e e e enaeens 515
5.JAVASCIIPE AP ..ottt ettt et ettt ettt e e abe e bt e ebe e 516
5.1 PrimeFaces NAMESPACE.cccvuieeerureeeiiieeeitieeeiteeeitteeessaeeesaeessteeesnsseesasseeensseeesnsseeensseesnnses 516

5.2 AJAX AP ..o ettt ettt et st 517

6. DIal0g FrameEWOTK.......c.oiiiiiiieiiieeiie ettt e ettt e et e e e taeesstaeessaaeesssaaesnsseeensseeanes 519
7. Client Side Validation.........cooieriiriiiiinieieeee ettt sttt ettt et et e e ens 523
7.1 CONTIZUIATION. ...ttt ettt ettt ettt et et e et e bt e st e e bt e e bt e enbeebeesabeenseesnseeseesaneans 523

7.2 AJAX VS INON=AJAX . ceuttteeiteeeirieeeiteeeeiteeeiteeesttaeesteeeesteesssseeessseeessseesansseesnsseeenssaeessseeennssesnnes 523

T3 EVEIIES. ..ttt ettt e b e et e bt e b s 524

T4 IVLESSAEES. ..vvveeeenitieeeesiteeeesitteeeeettteeeeaataeeeesatteeesannteeeeaansbeeesensteeeeanaaeeeeannbteeeeantteeeeanraeaeenn 524

7.5 Bean Validation.........c.couiiiiiiiiiiiieiieteee et ettt s 525

7.6 EXIENAING CSV...oiieiiii ettt ettt e ettt e et e s e e s ae e e stae e essaeeensaeeensseeennns 525

. TIEIMIES. ...ttt b et ettt b e st e e e st e et e e st e bt e st ea e e st e en b e en e e bt et e ennenaeen 530
.1 APPIYING @ TREIMIE.eiiiiiiiiiiieiee ettt ettt et et e e e e 531

8.2 Creating @ NEW TREIME..........eiiiiiiiiiieieieeeee et e ste e e et e e s ee e eeeans 532

8.3 HOW Themes WOTK......cc.coiiiiiiiiiiiiiiee ettt e 533

8.4 TREIMING TIPS, eeecutieeieiiieeiie ettt ettt eee e et e et e e e eta e e etaeessabeeesabee e nseeeassaeensssaeesseeenssseennseeennnes 534

9. PrIMEFACES PUSH.....oouiiiiiiiiieci ettt st 535
L2 <11 TSR 535

0.2 ANNOTALIONS. ...ttt ettt ettt ettt ettt e bt et e sae e s st et e entesae e see bt ensesaeenteenseennenneentenns 536

0.3 APttt ettt b ettt nae bt et she e 538

9.4 SOCKET COMPONEIL......eieririieieiieeiiieesiteeesteeeseteeeseaeeessteeesseeessaeeassaeeasseeessseeessseesssseeesssesensseens 538

0.5 Putting It Al TOGELRET.......ccueeiiiiiiieiiiee ettt ens 539
0.5, 1 COUNLLT.....eeieeiiiiiiee ettt e e ettt e e e ettt e e e e ettt e e e e eeaeeeeeessssaaeesennsseeeeeannssanaesenssseeeeennnnns 539

0.5.2 FaACESIMESSAZE. ... vveeeiiiieeiiieeiiee e et e ettt e e itte e s tte e st eeeetaeestaeeeaseeeensseesnseeeenseaeesseeens 541

0.6 TIPS ANA TTICKS. ...eeutiieiiieiie ettt ettt ettt e et e st e st e et eesaeeesbeeenbeeenbeaenseens 543

10. PrimeFaces MODILE.coouiiiiiiii et 544
LO T SEEUP. ..ttt ettt ettt ettt e st e e et e e ettt e s bt e s e st e e e nab e e e sabaeenanbeeeanees 544
LO.2 PagES. . eieeeeiiiieeeeiiee ettt e e ettt e e et e e e et e e e ettt e e e e ettt e e e e bt aeeeeaabaaeeennbaaaeeennnteeeeannne 545
10,2 NAVIGATIONS. ..ceuttieiieeiieiieeteeeiteeieeeteestteeteessteeseessseeseeesseessseenseessseesssesnseessseesssessseenssennses 546
10.3 COMPONEINLS.uviieeeeiiiieeeriiiteeeestteeeeesitreeeesstteeeeassseeeeasssseeeeasseeeeessssseeesessssseesessssseeesnnnes 547
LO.3.T CONEENL. ..ttt ettt ettt e sb e et e sb ettt esbt e e sbee et e esseesabeenaeeas 547

PrimeFaces User Guide

LO.3.2 FICIA ..ottt e et e e et e e e sab e e e sabeeeesaeeeeareeeenneeas 548
J0.3.3 FOOLRT ...ttt e e e e e e ettt e e e e e e e e e e eeattbasbaeeaaaeeeeeannssssaananaaaeeanns 549
1O.3.4 HEAACT.......eiiiiieeeie ettt ettt e e e et e e e eaa e e e b e e easaeeenseeeeaseeenaseeas 550
1O.3.5 INPUESTIACT ...ttt e e e e s e e e s e e e e e e e easaeeensreeas 551
LO.3.0 PAZE...eiiiiieiie ettt e et e e et e e ab e e abeeennbeeenbeeennaeas 553
10.3.7 RANZESIACT ...ttt sttt s nae e 554
10.3.8 SWiItCh (Deprecated).......ceeruveeieiriieeiiieeeiiieeeree e et e et e e ete e e etre e e ereeeeaeeessaeeeenseeeas 555
10.4 RENAETKIL.......viiiiiiieeeiieceee ettt et e et e e et eetbe e e eaae e e aaaeeesaseeesasseeenanas 557
10.4.1 AccordionPanel...........ccccuiiiiiiiiiiiice e et 557
10.4.2 AULOCOMPLELE.....ovvieiieeiieeiieeie ettt ettt ettt e e beeebeestbeessaeeseesnsaessseeseaans 557
TO.4.3 BULON....coiiiiieceee et e e et e e et e e e eateeeetreeeeaneeeeenaeeeesaeeeenneeeenneeas 557
10.4.4 CaleNdar........coooeiiieee et e e e e e e e e e e e aae e e e e aaaeaaas 558
1O.4.5 DAtaliSt....cccuviieiiieeciie ettt e e et e et e e taeeebae e e taeeeabaeeeabaeeenbaeenbaeearaeennns 558
10.4.6 DIAOEG.eioiieeiiieie ettt ettt et e e e e rb e e s b e e tbe e abeentaeeneeennes 558
10.4.7 FIEUPLOAd. ..ottt ettt ettt ettt et aee e s e enbeeenbeeenne 558
LO.4.8 GIOWL..ooieeiiiieieeeeee e et e e et e et e e et e e e eaae e e eaeeeeeaeeeeeaneeeenreeas 559
LO.4.9 INPULTEXL...ceeneeieeiiie ettt ettt e et e sttt e et estaeeeenbeeensaeeenseeeennaeesnseees 559
10.4.10 INPUETEXEATEA. ...eeeiiiiieeiiieeeiee ettt ettt e et e et esabeees 559
TOA. 1T LINK. oottt ettt ettt e et e e e te e e e te e e e etsaeeeaaeeeenseeenareeas 559
L0 Y, (S5 4L PRI 559
TOA. 13 PANCLciiiniiiiieieee e ettt et e e et e et e et e e et ae e ateeeearaeean 559
10.4.14 PanCIGTId........oooiuiiiiiiiiieiie ettt et e et eesaaa e e e eaaeeeeaseeeeaneeas 560
10.4.15 SelectBooleanCheckbDOX........ccouvviiiiiiiiiiec e 560
10.4.16 SelectCheCKDOXIMENUL........cccuuiiiiiiieciiee ettt et e e e e e e aae e e easee s 560
10.4.17 SelectManyBUuttOn.coouiiiiiiiiieeiieeiee et et 560
10.4.18 SelectManyCheCKDOX........uiiiiiiiiiiieciie et ee e ere e e s 560
10.4.19 SelectONEBULION.eiiiiiicciie ettt e ear e et e e eaaeeeeareeas 560
10.4.20 SCleCtONEMENUL......eeieuviieeiieeecteee e et eetee et e e e e etaeeeetee e e e e eaeeeereeeeareeeeareeenees 560
10.4.21 SelectONERAIO........ccviiiiiiiiiciiee ettt e et 560
10.4.22 TADMEIIULuvviiiieiieiee ettt e et e ettt e e e e etae e e e eetaaeeeeeeaaaeeeeeeeasreaaeans 560
LO.4.24 TADVICW.....oooonviiieiiee ettt et ettt et e e e e e e e e aa e e eateaeeteeeeeaaeeeerseeas 561
1O.4.25 TOOIDAT.......cccuiieeeiie ettt e e e et e e e e ab e e e s abeeeeaaaeesnsbeeesseeensseaeenseeens 561
LO.5 TREIMIES. ...t e e e et e e e e et e e e e e eeata e e e e eeaaaaeeeeaenaaaeeaeeesraeeas 562
1O.6 FLAMEWOTK.....c.uviiiiiieeiiie ettt ettt et e et e e et e e e tae e e eseeeaseeenseeennseeeneeens 563
10.6.1 AJaX UPAALES......eeecuiieeiiieeiiieeiieeeieeeetee e ettt e eiteeeteeesreeeesaeeetaeesssaeesssseeesseesnsseensses 563
10.6.2 Pass Through EIements...........cceoeiiiiiiiiiiiiie ettt 563
L0.6.3 LAZY PAZES...ccouiiiiiiiiieiiieeiee ettt ettt ettt ettt e et e e s 564
10.6.4 TOUCh EVENLS......ooiiiiiiiii ettt e e et e e e e aaae e e e eaaeaeeas 564

L1 UBIIIEE@S e eeettee ettt ettt eette ettt et e e et e e et e e et e e e tbaeeeabeeesasbeeessaeeensseaesssaeesnnseesansaeeanssaeensseeeannnes 566
LT1.1 REQUESTCONTEXL.eiiiieiiiieeeiiiee e ettt ettt e e et e e et e e e st e e e eatteeeeensaeeeeensaeesssnnseeeeannnes 566
11.2 EL FUNCHIONS.eoctiiiiiiee ettt ettt e et eeeaae e e s taeeenaaeeeasaeesnsaeesanseesaneeens 569
11.3 EXCeption HandIET..........c..ooeoiiiiiiicciie ettt e e st e e eaae e e eeve e e 570
11.4 BeanValidation Transformation............c..cooiiiieiieeiiiiieceiee et eve e e 572

PrimeFaces User Guide

11.5 PrimeFaces LOCAIES.........ceeeciiiiieiiie ettt ettt e et e e et e e e e e eareeeeenis 573
L2, POTEICES. .. e e e et e e e et e e e e e eata e e e e e e tba e e e e aaaaaaaeeeantaeaeeeanraaaeas 576
L3, RIGNE-TOLETE. oottt ettt ettt e e e bt e s saeebeesabeesaeeenseenes 577
14, IDE SUPPOTL...ecuiiitiieiieiie et eeieeete et e et estteebeesaeeteeeabeessbeesseessseessseessaessseesssaasseessseenssesnseeseans 578
TA.T INEEBEANS.cceiiiiiiei ettt e ettt e e et e e e e e aba e e e e e taeeeeaasaeeesensseeeesnsseeeeannssaaanas 578
L3 o] U o1 RSP URS 579
15. PrOJECE RESOUICES. ... eecuvieeiiieiiiieiieeie ettt esieeeteeeteeeteeeiteesateesteeesbaeessaeesseeesseessseensseensseessseenseeenses 580
LO. FAQ. oot e e e e e e e e e e e e e et e e e e e e et e e earaaeeatraeeannas 581

PrimeFaces User Guide

About the Author

Cagatay Civici is a member of JavaServer Faces Expert Group, the founder of PrimeFaces and
PMC member of open source JSF implementation Apache MyFaces. He is a recognized speaker in
international conferences including JavaOne, SpringOne, Jazoon, JAX, W-JAX, JSFSummit,
JSFDays, Con-Fess and many local events such as JUGs.

Cagatay is also an author and technical reviewer of a couple books regarding web application
development with Java and JSF. As an experienced trainer, he has trained over 300 developers on

Java EE technologies mainly JSF, Spring, EJB 3.x and JPA.

Cagatay is also known as Optimus Prime in JavaServer Faces Community.

PrimeFaces User Guide

1. Introduction

1.1 What is PrimeFaces?

PrimeFaces is an open source JSF component suite with various extensions.

* Rich set of components (HtmlEditor, Dialog, AutoComplete, Charts and many more).

* Built-in Ajax based on standard JSF 2.0 Ajax APIs.

* Lightweight, one jar, zero-configuration and no required dependencies.

* Push support via Atmosphere Framework.

» Mobile UI kit to create mobile web applications.

* Skinning Framework with 35+ built-in themes and support for visual theme designer tool.
 Extensive documentation.

* Large, vibrant and active user community.

* Developed with "passion" from application developers to application developers.

10

PrimeFaces User Guide

2. Setup

2.1 Download

PrimeFaces has a single jar called primefaces-{version}.jar. There are two ways to download this
jar, you can either download from PrimeFaces homepage or if you are a maven user you can define
it as a dependency.

Download Manually

Three different artifacts are available for each PrimeFaces version, binary, sources and bundle.
Bundle contains binary, sources and javadocs.

http://www.primefaces.org/downloads

Download with Maven

Group id is org.primefaces and artifact id is primefaces.

<dependency>
<groupId>org.primefaces</groupld>
<artifactId>primefaces</artifactId>
<version>5.1</version>
</dependency>

11

PrimeFaces User Guide

2.2 Dependencies

PrimeFaces only requires a JAVA 5+ runtime and a JSF 2.x implementation as mandatory
dependencies. There’re some optional libraries for certain features. Licenses of all dependencies and
any 3rd part work incorporated are compatible with the PrimeFaces Licenses.

Dependency Version * Type Description
JSF runtime 2.0,2.10r2.2 Required Apache MyFaces or Oracle Mojarra
itext 2.1.7 Optional DataExporter (PDF)
apache poi 3.7 Optional DataExporter (Excel)
rome 1.0 Optional FeedReader
commons-fileupload 1.3 Optional FileUpload
commons-io 2.2 Optional FileUpload
atmosphere 222 Optional PrimeFaces Push
barcode4j-light 2.1 Optional Barcode
grgen 1.4 Optional QR Code support for Barcode

* Listed versions are tested and known to be working with PrimeFaces, other versions of these
dependencies may also work but not tested.

JSF Runtime

PrimeFaces supports JSF 2.0, 2.1 and 2.2 runtimes at the same time using feature detection and by
not having compile time dependency to a specific version. As a result some features are only
available depending on the runtime.

A good example for runtime compatibility is the passthrough attributes, a JSF 2.2 specific feature to
display dynamic attributes. In following page, pass through attribute placeholder only gets rendered
if the runtime is JSF 2.2.

<!DOCTYPE html>

<html xmlns="http://www.w3c.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:p="http://primefaces.org/ui"
xmlns:pt="http://xmlns.jcp.org/jsf/passthrough">

<h:head>
</h:head>

<h:body>
<p:inputText value="#{bean.value}" pt:placeholder="Watermark here"/>
</h:body>

</html>

12

PrimeFaces User Guide

2.3 Configuration

PrimeFaces does not require any mandatory configuration and follows configuration by exception
pattern of Java EE. Here is the list of all configuration options defined with a contex-param such as;

<context-param>
<param-name>primefaces . THEME</param-name>
<param-value>bootstrap</param-value>
</context-param>

Name Default Description
THEME aristo Theme of the application.
mobile. THEME null Theme of the mobile application.
PUSH_SERVER URL null Custom server url for PrimeFaces Push.
SUBMIT full Defines ajax submit mode, full or partial.
DIR Itr Defines orientation, /tr or rtl.
RESET VALUES false When enabled, ajax updated inputs are reset.
SECRET primefaces | Secret key to encrypt-decrypt value expressions exposed

in rendering StreamedContents.

CLIENT _SIDE VALIDATION | false Controls client side validatation.
UPLOADER auto Defines uploader mode; auto, native or commons.
TRANSFORM_ METADATA false Transforms bean validation metadata to html attributes.
LEGACY_ WIDGET _ false Enables window scope so that widgets can be accessed
NAMESPACE using widgetVar.method() in addition to default PF

namespace approach like PF('widgetVar').method().

2.4 Hello World

Once you have added the primefaces jar to your classpath, you need to add the PrimeFaces
namespace to your page to begin using the components. Here is a simple page like test.xhtml;

<!DOCTYPE html>

<html xmlns="http://www.w3c.org/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html"
xmlns:p="http://primefaces.org/ui">

<h:head></h:head>
<h:body>
<p:editor />

</h:body>

</html>

When you run this page through Faces Servlet mapping e.g. *.jsf, you should see a rich text editor
when you run the page with test.jsf.

13

PrimeFaces User Guide

3. Component Suite

3.1 AccordionPanel

AccordionPanel is a container component that displays content in stacked format.

Godfather Part |

Godfather Part Il

Godfather Part 1l

Info

The story begins as Don Vito Corleane, the head of a New York Mafia family,
oversees his daughter’s wedding. His beloved son Michael has just come
home from the war, but does not intend to become part of his father's
business. T hrough Michael's life the nature of the family business becomes
clear. The business of the family is just like the head of the family, kind and
benevolent to those who give respect, but given to ruthless violence whenever
anything stands against the good of the family.

Tag

accordionPanel

Component Class

org.primefaces.component.accordionpanel.Accordionpanel

Component Type

org.primefaces.component.AccordionPanel

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.AccordionPanelRenderer

Renderer Class

org.primefaces.component.accordionpanel.AccordionPanelRenderer

Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true boolean Boolean value to specify the rendering of the component.
binding null Object An EL expression that maps to a server side
UIComponent instance in a backing bean.
activelndex false String Index of the active tab or a comma separated string of

indexes when multiple mode is on.

14

PrimeFaces User Guide

Name Default Type Description
style null String Inline style of the container element.
styleClass null String Style class of the container element.
onTabChange null String Client side callback to invoke when an inactive tab is
clicked.
onTabShow null String Client side callback to invoke when a tab gets activated.
dynamic false Boolean Defines the toggle mode.
cache true Boolean Defines if activating a dynamic tab should load the

contents from server again.

value null List List to iterate to display dynamic number of tabs.

var null String Name of iterator to use in a dynamic number of tabs.
multiple false Boolean Controls multiple selection.

dir Itr String Defines text direction, valid values are /7 and 7.
prependld true Boolean AccordionPanel is a naming container thus prepends its

id to its children by default, a false value turns this
behavior off except for dynamic tabs.

widgetVar null String Name of the client side widget.

Getting Started with Accordion Panel

Accordion panel consists of one or more tabs and each tab can group any content. Titles can also be
defined with “title” facet.

<p:accordionPanel>
<p:tab title="First Tab Title">
<h:outputText value= "Lorem"/>
...More content for first tab
</p:tab>
<p:tab title="Second Tab Title">
<h:outputText value="Ipsum" />
</p:tab>
//any number of tabs
</p:accordionPanel>

Dynamic Content Loading

AccordionPanel supports lazy loading of tab content, when dynamic option is set true, only active
tab contents will be rendered to the client side and clicking an inactive tab header will do an ajax
request to load the tab contents.

This feature is useful to reduce bandwidth and speed up page loading time. By default activating a

previously loaded dynamic tab does not initiate a request to load the contents again as tab is cached.
To control this behavior use cache option.

15

PrimeFaces User Guide

<p:accordionPanel dynamic="true">
//..tabs
</p:accordionPanel>

Client Side Callbacks

onTabChange is called before a tab is shown and onTabShow is called after. Both receive container
element of the tab to show as the parameter.

<p:accordionPanel onTabChange="handleChange(panel)">
//..tabs
</p:accordionPanel>

<script type="text/javascript">
function handleChange(panel) {
//panel: new tab content container

}

</script>

Ajax Behavior Events

tabChange is the one and only ajax behavior event of accordion panel that is executed when a tab is
toggled.

<p:accordionPanel>
<p:ajax event="tabChange” listener="#{bean.onChange}” />
</p:accordionPanel>

public void onChange(TabChangeEvent event) {
//Tab activeTab = event.getTab();
//. ..

Your listener(if defined) will be invoked with an org.primefaces.event. TabChangeEvent instance
that contains a reference to the new active tab and the accordion panel itself.

Dynamic Number of Tabs

When the tabs to display are not static, use the built-in iteration feature similar to ui:repeat.

<p:accordionPanel value="#{bean.list}” var="listItem’>
<p:tab title="#{listItem.propertyA}">
<h:outputText value= "#{listItem.propertyB}"/>
...More content
</p:tab>
</p:.accordionPanel>

16

PrimeFaces User Guide

Disabled Tabs
A tab can be disabled by setting disabled attribute to true.

<p:accordionPanel>
<p:tab title="First Tab Title" disabled="true”>
<h:outputText value= "Lorem"/>
...More content for first tab
</p:tab>
<p:tab title="Second Tab Title">
<h:outputText value="Ipsum" />
</p:tab>
//any number of tabs
</p:accordionPanel>

Multiple Selection

By default, only one tab at a time can be active, enable multiple mode to activate multiple tabs.

<p:accordionPanel multiple="true’>
//tabs
</p:accordionPanel>

Client Side API
Widget: PrimeFaces.widget.AccordionPanel
Method Params Return Type Description
select(index) index: Index of tab void Activates tab with given index.
unselect(index) index: Index of tab void Deactivates tab with given index.
Skinning

AccordionPanel resides in a main container element which s#yle and styleClass options apply. As
skinning style classes are global, see the main theming section for more information. Following is
the list of structural style classes;

Class Applies
.ui-accordion Main container element
.ui-accordion-header Tab header
.ui-accordion-content Tab content

17

PrimeFaces User Guide

3.2 AjaxBehavior

AjaxBehavior is an extension to standard f:ajax.

Info

Tag ajax

Behavior Id org.primefaces.component.AjaxBehavior

Behavior Class org.primefaces.component.behavior.ajax.AjaxBehavior

Attributes
Name Default Type Description
listener null Method | Method to process in partial request.
Expr

immediate false boolean | Boolean value that determines the phaseld, when true
actions are processed at apply request values, when false
at invoke application phase.

async false Boolean | When set to true, ajax requests are not queued.

process null String Component(s) to process in partial request.

update null String Component(s) to update with ajax.

onstart null String Callback to execute before ajax request is begins.

oncomplete null String Callback to execute when ajax request is completed.

onsuccess null String Callback to execute when ajax request succeeds.

onerror null String Callback to execute when ajax request fails.

global true Boolean | Global ajax requests are listened by ajaxStatus component,
setting global to false will not trigger ajaxStatus.

delay null String If less than delay milliseconds elapses between calls to
request() only the most recent one is sent and all other
requests are discarded. If this option is not specified, or if
the value of delay is the literal string 'none' without the
quotes, no delay is used.

partialSubmit false Boolean | Enables serialization of values belonging to the partially
processed components only.

disabled false Boolean | Disables ajax behavior.

event null String Client side event to trigger ajax request.

resetValues false Boolean | If true, local values of input components to be updated
within the ajax request would be reset.

18

PrimeFaces User Guide

Name Default Type Description

ignoreAutoUpdate false Boolean | If true, components which autoUpdate="true" will not be
updated for this request. If not specified, or the value is
false, no such indication is made.

Getting Started with AjaxBehavior

AjaxBehavior is attached to the component to ajaxify.

<h:inputText value="#{bean.text}">
<p:ajax update="out" />
</h:inputText>
<h:outputText id="out" value="#{bean.text}" />

In the example above, each time the input changes, an ajax request is sent to the server. When the
response is received output text with id "out" is updated with value of the input.

Listener

In case you need to execute a method on a backing bean, define a listener;

<h:inputText id="counter">

<p:ajax update="out" listener="#{counterBean.increment}"/>
</h:inputText>
<h:outputText id="out" value="#{counterBean.count}" />

public class CounterBean {
private int count;
//getter setter

public void increment() {
count++;

}

Events

Default client side events are defined by components that support client behaviors, for input
components it is onchange and for command components it is onclick. In order to override the dom
event to trigger the ajax request use event option. In following example, ajax request is triggered
when key is up on input field.

<h:inputText id="firstname" value="#{bean.text}">
<p:ajax update="out" event="keyup"/>

</h:inputText>

<h:outputText id="out" value="#{bean.text}" />

19

PrimeFaces User Guide

3.3 AjaxExceptionHandler

AjaxExceptionHandler is a utility component for the built-in ExceptionHandler.

Info
Tag ajaxExceptionHandler
Component Class org.primefaces.component.ajaxexceptionhandler.AjaxExceptionHandler
Component Type org.primefaces.component.AjaxExceptionHandler
Component Family | org.primefaces.component

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the
component.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

onexception null String Client side callback to execute after a exception
with this type occured.

update null String Components to update after a exception with this
type occured.

type null String Exception type to handle.

Getting Started with AjaxExceptionHandler

Please find the detailed information about this component at ExceptionHandler section at Utilities
chapter.

20

3.4 AjaxStatus

AjaxStatus is a global notifier for ajax requests.

Info

Al

PrimeFaces User Guide

Tag

ajaxStatus

Component Class

org.primefaces.component.ajaxstatus.AjaxStatus

Component Type

org.primefaces.component.AjaxStatus

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.AjaxStatusRenderer

Renderer Class

org.primefaces.component.ajaxstatus.AjaxStatusRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the
component.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

onstart null String Client side callback to execute after ajax requests
start.

oncomplete null String Client side callback to execute after ajax requests
complete.

onsuccess null String Client side callback to execute after ajax requests
completed succesfully.

onerror null String Client side callback to execute when an ajax
request fails.

style null String Inline style of the component.

styleClass null String Style class of the component.

widgetVar null String Name of the client side widget.

21

PrimeFaces User Guide

Getting Started with AjaxStatus

AjaxStatus uses facets to represent the request status. Most common used facets are start and
complete. Start facet will be visible once ajax request begins and stay visible until it’s completed.
Once the ajax response is received and page is updated, start facet gets hidden and complete facet
shows up.

<p:ajaxStatus>
<f:facet name="start">
<p:graphicImage value="ajaxloading.gif" />
</f:facet>
<f:facet name="complete">
<h:outputText value="Done!" />
</f:facet>
</p:ajaxStatus>

Events

Here is the full list of available event names;

default: Initially visible when page is loaded.

start: Before ajax request begins.

success: When ajax response is received without error.
error: When ajax response is received with an http error.
complete: When everything finishes.

<p:ajaxStatus>
<f:facet name="error">
<h:outputText value="Error" />
</f:facet>

<f:facet name="success">
<h:outputText value="Success" />
</f:facet>

<f:facet name="default">
<h:outputText value="Idle" />
</f:facet>

<f:facet name="start">
<h:outputText value="Sending" />
</f:facet>

<f:facet name="complete">
<h:outputText value="Done" />
</f:facet>
</p:ajaxStatus>

Custom Events

Facets are the declarative way to use, if you’d like to implement advanced cases with scripting you
can take advantage of on* callbacks which are the event handler counterparts of the facets.

<p:ajaxStatus onstart="alert('Start')" oncomplete="alert('End')"/>

22

PrimeFaces User Guide

A comman usage of programmatic approach is to implement a custom status dialog;

<p:ajaxStatus onstart="PF('status').show()" oncomplete="PF('status').hide()"/>

<p:dialog widgetVar="status" modal="true" closable="false">
Please Wait
</p:dialog>

Client Side API
Widget: PrimeFaces.widget.AjaxStatus

Method Params Return Type Description

trigger(event) event: Name of event. | void Triggers given event.

Skinning

AjaxStatus is equipped with style and styleClass. Styling directly applies to a container element
which contains the facets.

<p:ajaxStatus style="width:32px;height:32px" ... />

Tips

 Avoid updating ajaxStatus itself to prevent duplicate facet/callback bindings.

* Provide a fixed width/height to an inline ajaxStatus to prevent page layout from changing.

* Components like commandButton has an attribute (global) to control triggering of AjaxStatus.
+ AjaxStatus also supports core JSF ajax requests of f:ajax as well.

23

PrimeFaces User Guide

3.4 AutoComplete

AutoComplete provides live suggestions while an input is being typed.

20
22
23
24
25
26
27
28
29
Info
Tag autoComplete
Component Class org.primefaces.component.autocomplete.AutoComplete
Component Type org.primefaces.component.AutoComplete
Component Family org.primefaces.component
Renderer Type org.primefaces.component.AutoCompleteRenderer
Renderer Class org.primefaces.component.autocomplete. AutoCompleteRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component.
rendered true Boolean | Boolean value to specify the rendering of the
component.
binding null Object | An el expression that maps to a server side
UIComponent instance in a backing bean.
value null Object Value of the component than can be either an EL
expression of a literal text.
converter null Object | An el expression or a literal text that defines a
converter for the component. When it’s an EL
expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id.

24

PrimeFaces User Guide

Name Default Type Description

immediate false Boolean | When set true, process validations logic is executed
at apply request values phase for this component.

required false Boolean | Marks component as required.
validator null Method | A method expression that refers to a method
Expr validationg the input.
valueChangeListener | null Method | A method expression that refers to a method for
Expr handling a valuchangeevent.
requiredMessage null String Message to be displayed when required field
validation fails.
converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fails.
widgetVar null String Name of the client side widget.
completeMethod null Method | Method providing suggestions.
Expr
var null String Name of the iterator used in pojo based suggestion.
itemLabel null String Label of the item.
itemValue null String Value of the item.
maxResults unlimited Integer | Maximum number of results to be displayed.
minQueryLength true Integer | Number of characters to be typed before starting to
query.
queryDelay 300 Integer | Delay to wait in milliseconds before sending each

query to the server.

forceSelection false Boolean | When enabled, autoComplete only accepts input
from the selection list.

scrollHeight null Integer | Defines the height of the items viewport.

effect null String Effect to use when showing/hiding suggestions.
effectDuration 400 Integer | Duration of effect in milliseconds.

dropdown false Boolean | Enables dropdown mode when set true.

panelStyle null String Inline style of the items container element.
panelStyleClass null String Style class of the items container element.

multiple null Boolean | When true, enables multiple selection.

accesskey null String Access key that when pressed transfers focus to the

input element.

alt null String Alternate textual description of the input field.

25

PrimeFaces User Guide

Name Default Type Description

autocomplete null String Controls browser autocomplete behavior.

dir null String Direction indication for text that does not inherit
directionality. Valid values are LTR and RTL.

disabled false Boolean | Disables input field

label null String A localized user presentable name.

lang null String Code describing the language used in the generated
markup for this component.

maxlength null Integer | Maximum number of characters that may be
entered in this field.

onblur null String Client side callback to execute when input element
loses focus.

onchange null String Client side callback to execute when input element
loses focus and its value has been modified since
gaining focus.

onclick null String Client side callback to execute when input element
is clicked.

ondblclick null String Client side callback to execute when input element
is double clicked.

onfocus null String Client side callback to execute when input element
receives focus.

onkeydown null String Client side callback to execute when a key is
pressed down over input element.

onkeypress null String Client side callback to execute when a key is
pressed and released over input element.

onkeyup null String Client side callback to execute when a key is
released over input element.

onmousedown null String Client side callback to execute when a pointer
button is pressed down over input element

onmousemove null String Client side callback to execute when a pointer
button is moved within input element.

onmouseout null String Client side callback to execute when a pointer
button is moved away from input element.

onmouseover null String Client side callback to execute when a pointer
button is moved onto input element.

onmouseup null String Client side callback to execute when a pointer
button is released over input element.

onselect null String Client side callback to execute when text within

input element is selected by user.

26

PrimeFaces User Guide

Name Default Type Description
placeholder null String Specifies a short hint.
readonly false Boolean | Flag indicating that this component will prevent

changes by the user.

size null Integer | Number of characters used to determine the width
of the input element.

style null String Inline style of the container element.

styleClass null String Style class of the container element.

tabindex null Integer | Position of the input element in the tabbing order.
title null String Advisory tooltip informaton.

itemTipMyPosition left top String Position of itemtip corner relative to item.
itemTipAtPosition right bottom String Position of item corner relative to itemtip.

cache false Boolean | When enabled autocomplete caches the searched

result list.

cacheTimeout 300000 Integer | Timeout value for cached results.
emptyMessage null String Text to display when there is no data to display.
appendTo null String Appends the overlay to the element defined by

search expression. Defaults to document body.

resultsMessage null String Hint text for screen readers to provide information
about the search results.

groupBy null Object Value to group items in categories.

Getting Started with AutoComplete

AutoComplete is an input component so it requires a value as usual. Suggestions are loaded by
calling a server side completeMethod that takes a single string parameter which is the text entered.

<p:autoComplete value="#{bean.text}" completeMethod="#{bean.complete}" />

public class Bean {
private String text;
public List<String> complete(String query) {
List<String> results = new ArraylList<String>(Q);
for (int 1 = 0; 1 < 10; i++)
results.add(query + 1i);

return results;

}

//getter setter

27

PrimeFaces User Guide

Pojo Support

Most of the time, instead of simple strings you would need work with your domain objects,
autoComplete supports this common use case with the use of a converter and data iterator.
Following example loads a list of players, itemLabel is the label displayed as a suggestion and
itemValue is the submitted value. Note that when working with pojos, you need to plug-in your own
converter.

<p:autoComplete value="#{playerBean.selectedPlayer}"
completeMethod="#{playerBean.completePlayer}"
var="player"
itemLabel="#{player.name}"
itemValue="#{player}"
converter="playerConverter"/>

public class PlayerBean {
private Player selectedPlayer;

public Player getSelectedPlayer() {
return selectedPlayer;

}
public void setSelectedPlayer(Player selectedPlayer) {

this.selectedPlayer = selectedPlayer;
3

public List<Player> complete(String query) {
List<Player> players = readPlayersFromDatasource(query);

return players;

public class Player {
private String name;
//getter setter

Limiting the Results

Number of results shown can be limited, by default there is no limit.

<p:autoComplete value="#{bean.text}"
completeMethod="#{bean.complete}"
maxResults="5" />

Minimum Query Length

By default queries are sent to the server and completeMethod is called as soon as users starts typing
at the input text. This behavior is tuned using the minQueryLength attribute.

28

PrimeFaces User Guide

<p:autoComplete value="#{bean.text}" completeMethod="#{bean.complete}"
minQuerylLength="3" />

With this setting, suggestions will start when user types the 3rd character at the input field.

Query Delay

AutoComplete is optimized using queryDelay option, by default autoComplete waits for 300
milliseconds to query a suggestion request, if you’d like to tune the load balance, give a longer
value. Following autoComplete waits for 1 second after user types an input.

<p:autoComplete value="#{bean.text}" completeMethod="#{bean.complete}"
queryDelay="1000" />

Custom Content

AutoComplete can display custom content by nesting columns.

<p:autoComplete value="#{autoCompleteBean.selectedPlayer}"
completeMethod="#{autoCompleteBean.completePlayer}"
var="p" itemValue="#{p}" converter="player">

<p:column>
<p:graphicImage value="/images/barca/#{p.photo}" width="40" height="50"/>
</p:column>

<p:column>
#{p.name} - #{p.number}

</p:column>

</p:autoComplete>

Dropdown Mode

When dropdown mode is enabled, a dropdown button is displayed next to the input field, clicking
this button will do a search with an empty query, a regular completeMethod implementation should
load all available items as a response.

<p:autoComplete value="#{bean.text}" completeMethod="#{bean.complete}"
dropdown="true" />

Multiple Selection

AutoComplete supports multiple selection as well, to use this feature set multiple option to true and
define a list as your backend model. Following example demonstrates multiple selection with
custom content support.

29

PrimeFaces User Guide

<p:autoComplete id="advanced" value="#{autoCompleteBean.selectedPlayers}"
completeMethod="#{autoCompleteBean.completePlayer}"
var="p" itemLabel="#{p.name}" itemValue="#{p}" converter="player"
multiple="true">

<p:column style="width:20%;text-align:center">
<p:graphicImage value="/images/barca/#{p.photo}"/>
</p:column>

<p:column style="width:80%">
#{p.name} - #{p.number}
</p:column>
</p:autoComplete>

public class AutoCompleteBean {

private List<Player> selectedPlayers;

/7. ..
3
[Mmsi ® Al
& Afellay - 20
& Alves -2
& Adriano - 21
Caching

Suggestions can be cached on client side so that the same query does not do a request which is
likely to return same suggestions again. To enable this, set cache option to true. There is also a
cacheTimeout option to configure how long it takes to clear a cache automatically.

<p:autoComplete value="#{bean.text}" completeMethod="#{bean.complete}"
cache="true"/>

Ajax Behavior Events

Instead of waiting for user to submit the form manually to process the selected item, you can enable
instant ajax selection by using the itemSelect ajax behavior. Example below demonstrates how to
display a message about the selected item instantly.

30

PrimeFaces User Guide

<p:autoComplete value="#{bean.text}" completeMethod="#{bean.complete}">
<p:ajax event="itemSelect" listener="bean.handleSelect" update="msg" />
</p:autoComplete>

<p:messages id="msg” />

public class Bean {

public void handleSelect(SelectEvent event) {
Object item = event.getObject();
FacesMessage msg = new FacesMessage("Selected", "Item:" + item);

Your listener(if defined) will be invoked with an org.primefaces.event.Select instance that contains a
reference to the selected item. Note that autoComplete also supports events inherited from regular
input text such as blur, focus, mouseover in addition to itemSelect. Similarly, itemUnselect event is
provided for multiple autocomplete when an item is removed by clicking the remove icon. In this
case org.primefaces.event. Unselect instance is passed to a listener if defined.

Event Listener Parameter Fired
itemSelect org.primefaces.event.SelectEvent On item selection.
itemUnselect org.primefaces.event.UnselectEvent On item unselection.
query - On query.

ItemTip

Itemtip is an advanced built-in tooltip when mouse is over on suggested items. Content of the
tooltip is defined via the itemtip facet.

A |
Afellay
Alves

Adriano

Number 22

Fosition LB

31

PrimeFaces User Guide

</f:facet>
</p:autoComplete>

<f:facet name="header">
<p:graphicImage value="/images/barca/#{p.photo}" />

</f:facet>

<h:outputText
<h:outputText

<h:outputText
<h:outputText

<h:outputText
<h:outputText

</h:panelGrid>

value="Name: " />

<p:autoComplete value="#{autoCompleteBean.selectedPlayerl}" id="basicPojo"
completeMethod="#{autoCompleteBean.completePlayer}"
var="p" itemLabel="#{p.name}" itemValue="#{p}" converter="player">
<f:facet name="itemtip">

<h:panelGrid columns="2" cellpadding="5">

id="modelNo" value="#{p.name}" />

value="Number " />

id="year" value="#{p.number}" />

value="Position " />

value="#{p.position}"/>

Client Side API
Widget: PrimeFaces.widget.AutoComplete
Method Params Return Type Description

search(value) value: keyword for search void Initiates a search with given value
close() - void Hides suggested items menu
disable() - void Disables the input field
enable() - void Enables the input field
deactivate() - void Deactivates search behavior
activate() - void Activates search behavior

Skinning

Following is the list of structural style classes;

Class

Applies

.ui-autocomplete

Container element.

.ui-autocomplete-input

Input field.

.ui-autocomplete-panel

Container of suggestions list.

.ui-autocomplete-items

List of items

.ui-autocomplete-item

Each item in the list.

.ui-autocomplete-query

Highlighted part in suggestions.

32

PrimeFaces User Guide
As skinning style classes are global, see the main theming section for more information.
Tips

* Do not forget to use a converter when working with pojos.

* Enable forceSelection if you would like to accept values only from suggested list.

* Increase query delay to avoid unnecessary load to server as a result of user typing fast.

» Use emptyMessage option to provide feedback to the users that there are no suggestions.
* Enable caching to avoid duplicate queries.

33

PrimeFaces User Guide

3.5 Barcode

Barcode component is used to display various barcode formats.

1234567890

Info

Tag barcode

Component Class org.primefaces.component.barcode.Barcode

Component Type org.primefaces.component.Barcode

Component Family org.primefaces.component

Renderer Type org.primefaces.component.BarcodeRenderer

Renderer Class org.primefaces.component.barcode.BarcodeRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Binary data to stream or context relative path.

type null String Type of the barcode.

cache true Boolean Controls browser caching mode of the resources.

format svg String Format of the generated barcode, valid values are
"svg" (default) and "png".

orientation 0 Integer Orientation in terms of angle. (0, 90, 180, 270)

alt null String Alternate text for the image

url null String Alias to value attribute

34

PrimeFaces User Guide

Name Default Type Description
width null String Width of the image
height null String Height of the image
title null String Title of the image
dir null String Direction of the text displayed
lang null String Language code
ismap false Boolean Specifies to use a server-side image map
usemap null String Name of the client side map
style null String Style of the image
styleClass null String Style class of the image
onclick null String onclick dom event handler
ondblclick null String ondblclick dom event handler
onkeydown null String onkeydown dom event handler
onkeypress null String onkeypress dom event handler
onkeyup null String onkeyup dom event handler
onmousedown null String onmousedown dom event handler
onmousemove null String onmousemove dom event handler
onmouseout null String onmouseout dom event handler
onmouseover null String onmouseover dom event handler
onmouseup null String onmouseup dom event handler

Getting started with Barcode

Barcode type should be provided along with the value to display. Supported formats are;

e int2of5

* codabar
* code39
* codel28
* eand

e cecanl3

* upca

* postnet
* pdf417

e datamatrix

L] qr

35

PrimeFaces User Guide

<p:barcode value="0123456789" type="int2of5" />

Value can also be retrieved from a backend value.

<p:barcode value="#{bean.barcodeValue}" type="int2of5" />

Format

Default display format is svg and other possible option is png. In case the client browser does not
support svg e.g. [E8, barcode automatically chooses png format.

<p:barcode value="#{bean.barcodeValue}" type="int2of5" format="png" />

Orientation

In order to change the orientation, choose the angle from the 4 pre-defined values.

<p:barcode value="#{bean.barcodeValue}" type="int2of5" orientation="90"/>

Dependencies

Barcode component uses barcode4j library underneath except QR code support, which is handled
by qrgen library. Following versions are supported officially.

<dependency>
<groupId>net.glxn</groupld>
<artifactId>qrgen</artifactId>
<version>1.4</version>
</dependency>

<dependency>
<groupId>net.sf.barcode4j</groupld>
<artifactId>barcode4j-light</artifactId>
<version>2.1</version>

</dependency>

* barcode4j 2.1 does not exist in maven central repository so manual installation is necessary for
maven users.

36

3.6 BlockUI

PrimeFaces User Guide

BlockUI is used to block interactivity of JSF components with optional ajax integration.

Info

Tag

blockUl

Component Class

org.primefaces.component.blockui.BlockUI

Component Type org.primefaces.component.BlockUI
Component Family | org.primefaces.component
Renderer Type org.primefaces.component.BlockUIRenderer

Renderer Class

org.primefaces.component.blockui.BlockUIRenderer

Attributes

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the
component.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

trigger null String Identifier of the component(s) to bind.

37

PrimeFaces User Guide

Name Default Type Description
block null String Identifier of the component to block.
blocked false Boolean Blocks the UI by default when enabled.

Getting Started with BlockUI

BlockUI requires frigger and block attributes to be defined. With the special ajax integration, ajax
requests whose source are the trigger components will block the ui onstart and unblock oncomplete.
Example below blocks the ui of the panel when saveBtn is clicked and unblock when ajax response
is received.

<p:panel id="pnl" header="My Panel">
//content

<p:commandButton id="saveBtn" value="Save" />
</p:panel>

<p:blockUI block="pnl" trigger="saveBtn" />

Multiple triggers are defined as a comma separated list.

<p:blockUI block="pnl" trigger="saveBtn,deleteBtn,updateBtn" />

Custom Content

In order to display custom content like a loading text and animation, place the content inside the
blockUI.

<p:dataTable id="dataTable" var="car" value="#{tableBean.cars}"
paginator="true" rows="10">

<p:column>

<f:facet name="header">

<h:outputText value="Model" />

</f:facet>

<h:outputText value="#{car.model}" />
</p:column>

//more columns
</p:dataTable>

<p:blockUI block="dataTable" trigger="dataTable">
LOADING

<p:graphicImage value="/images/ajax-loader.gif"/>
</p:blockUI>

38

PrimeFaces User Guide

Client Side API
Widget: PrimeFaces.widget.BlockUI

Method Params Return Type Description

show() - void Blocks the UI.

hide() - void Unblocks the Ul
Skinning
Following is the list of structural style classes;

Class Applies
.ui-blockui Container element.
.ui-blockui-content Container for custom content.

As skinning style classes are global, see the main theming section for more information.
Tips

* BlockUI does not support absolute or fixed positioned components. e.g. dialog.

39

PrimeFaces User Guide

3.7 BreadCrumb

Breadcrumb is a navigation component that provides contextual information about page hierarchy
in the workflow.

#i F Sports » Football » Countries » Spain » F.C. Barcelona * Squad F Lionel Messi

Info
Tag breadCrumb
Component Class org.primefaces.component.breadcrumb.BreadCrumb
Component Type org.primefaces.component.BreadCrumb

Component Family | org.primefaces.component

Renderer Type org.primefaces.component.BreadCrumbRenderer
Renderer Class org.primefaces.component.breadcrumb.BreadCrumbRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component.
rendered true Boolean Boolean value to specify the rendering of the
component.
binding null Object An el expression that maps to a server side

UIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

model null MenuModel MenuModel instance to create menus
programmatically

style null String Style of main container element.

styleClass null String Style class of main container

homeDisplay icon String Defines display mode of root link, valid values are

"icon" default and "text".

40

PrimeFaces User Guide

Getting Started with BreadCrumb

Steps are defined as child menuitem components in breadcrumb.

<p:breadCrumb>
<p:menuitem label="Categories" url="#" />
<p:menuitem label="Sports" url="#" />
//more menuitems

</p:breadCrumb>

Dynamic Menus

Menus can be created programmatically as well, see the dynamic menus part in menu component
section for more information and an example.

Skinning

Breadcrumb resides in a container element that style and styleClass options apply. Following is the
list of structural style classes;

Style Class Applies
.ui-breadcrumb Main breadcrumb container element.
.ui-breadcrumb .ui-menu-item-link Each menuitem.
.ui-breadcrumb .ui-menu-item-text Each menuitem label.
.ui-breadcrumb-chevron Seperator of menuitems.

As skinning style classes are global, see the main theming section for more information.
Tips

* If there is a dynamic flow, use model option instead of creating declarative p:menuitem
components and bind your MenuModel representing the state of the flow.

* Breadcrumb can do ajax/non-ajax action requests as well since p:menuitem has this option. In this
case, breadcrumb must be nested in a form.

* url option is the key for a menuitem, if it is defined, it will work as a simple link. If you’d like to
use menuitem to execute command with or without ajax, do not define the url option.

41

PrimeFaces User Guide

3.8 Button

Button is an extension to the standard h:button component with skinning capabilities.

Bookmark # With lcon
Info

Tag button

Component Class org.primefaces.component.button.Button

Component Type org.primefaces.component.Button

Component Family org.primefaces.component

Renderer Type org.primefaces.component.ButtonRenderer

Renderer Class org.primefaces.component.button.ButtonRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean | Boolean value to specify the rendering of the component.

binding null Object | An el expression that maps to a server side UIComponent
instance in a backing bean.

widgetVar null String Name of the client side widget.

value null Object | Value of the component than can be either an EL expression
of a literal text.

outcome null String Used to resolve a navigation case.

includeViewParams | false Boolean | Whether to include page parameters in target URI

fragment null String Identifier of the target page which should be scrolled to.

disabled false Boolean | Disables button.

accesskey null String Access key that when pressed transfers focus to button.

alt null String Alternate textual description.

dir null String Direction indication for text that does not inherit
directionality. Valid values are LTR and RTL.

image null String Style class for the button icon. (deprecated: use icon)

lang null String Code describing the language used in the generated markup

42

PrimeFaces User Guide

Name Default Type Description

for this component.

onblur null String Client side callback to execute when button loses focus.

onchange null String Client side callback to execute when button loses focus and
its value has been modified since gaining focus.

onclick null String Client side callback to execute when button is clicked.

ondblclick null String Client side callback to execute when button is double
clicked.

onfocus null String Client side callback to execute when button receives focus.

onkeydown null String Client side callback to execute when a key is pressed down

over button.

onkeypress null String Client side callback to execute when a key is pressed and
released over button.

onkeyup null String Client side callback to execute when a key is released over
button.
onmousedown null String Client side callback to execute when a pointer button is

pressed down over button.

onmousemove null String Client side callback to execute when a pointer button is
moved within button

onmouseout null String Client side callback to execute when a pointer button is
moved away from button.

onmouseover null String Client side callback to execute when a pointer button is
moved onto button.

onmouseup null String Client side callback to execute when a pointer button is
released over button.

style null String Inline style of the button.

styleClass null String Style class of the button.

readOnly false Boolean | Makes button read only.

tabindex null Integer | Position in the tabbing order.

title null String Advisory tooltip informaton.

href null String Resource to link directly to implement anchor behavior.
icon null String Icon of the button.

iconPos left String Position of the button icon.

target _self String The window target.

escape true Boolean | Defines whether label would be escaped or not.

inline false String Displays as inline instead of 100% width, mobile only.

43

PrimeFaces User Guide

Name Default Type Description

disableClientWindow | false Boolean | Disable appending the ClientWindow on the rendering of
this element.

Getting Started with Button

p:button usage is same as standard h:button, an outcome is necessary to navigate using GET
requests. Assume you are at source.xhtml and need to navigate target.xhtml.

<p:button outcome="target" value="Navigate"/>

Parameters

Parameters in URI are defined with nested <f:param /> tags.

<p:button outcome="target" value="Navigate">
<f:param name="1id" value="10" />
</p:button>

Icons

Icons for button are defined via css and icon attribute, if you use title instead of value, only icon
will be displayed and title text will be displayed as tooltip on mouseover. You can also use icons
from PrimeFaces themes such ui-icon-check.

<p:button outcome="target" icon="star" value="With Icon"/>
<p:button outcome="target" icon="star" title="With Icon"/>

.star {
background-image: url("images/star.png");

}

Skinning

Button renders a button tag which style and styleClass applies. As skinning style classes are global,
see the main theming section for more information. Following is the list of structural style classes;

Style Class Applies
.ui-button Button element
.ui-button-text-only Button element when icon is not used
.ui-button-text Label of button

44

3.9 Cache

PrimeFaces User Guide

Cache component is used to reduce page load time by caching the content after initial rendering.

Info
Tag cache
Component Class org.primefaces.component.cache.UICache
Component Type org.primefaces.component.Cache
Component Family org.primefaces.component
Renderer Type org.primefaces.component.UICacheRenderer
Renderer Class org.primefaces.component.cache.UICacheRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component.
rendered true Boolean | Boolean value to specify the rendering of the component,
when set to false component will not be rendered.
binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean.
disabled false Boolean | Disables caching.
region View Id String Unique id of the cache region, defaults to view id.
key null String Unique id of the cache entry in region, defaults to client id of
component.

Getting Started with Cache

A cache store is required to use the cache component, two different providers are supported as
cache implementation; EHCache and Hazelcast. Provider is configured via a context-param.

<context-param>

</context-param>

<param-name>primefaces.CACHE_PROVIDER</param-name>
<param-value>org.primefaces.cache.EHCacheProvider</param-value>

Here is a sample ehcache.xml to configure cache regions, there are two regions in this

configuration.

45

PrimeFaces User Guide

<?xml version="1.0" encoding="UTF-8"7>
<ehcache xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xs1i:noNamespaceSchemalLocation="ehcache.xsd"
updateCheck="true" monitoring="autodetect"
dynamicConfig="true">
<diskStore path="java.io.tmpdir"/>
<defaultCache
maxEntriesLocalHeap="10000"
eternal="false"
timeToldleSeconds="120"
timeTolLiveSeconds="120"
diskSpoolBufferSizeMB="30"
maxEntriesLocalDisk="10000000"
diskExpiryThreadIntervalSeconds="120"
memoryStoreEvictionPolicy="LRU">
<persistence strategy="localTempSwap"/>
</defaultCache>
<cache name="testcache"
maxEntriesLocalHeap="10000"
eternal="false"
timeToldleSeconds="120"
timeTolLiveSeconds="120"
diskSpoolBufferSizeMB="30"
maxEntriesLocalDisk="10000000"
diskExpiryThreadIntervalSeconds="120"
memoryStoreEvictionPolicy="LRU">
<persistence strategy="localTempSwap"/>
</cache>

After the configuration, at Ul side, the cached part needs to be wrapped inside the p:cache
component.

<p:cache>
//content to cache
</p:cache>

Once the page is loaded initially, content inside p:cache component is cached inside the cache
region of the cache provider. Postbacks on the same page or reopening the page retrieve the output
from cache instead of rendering the content regularly.

Cache Provider API

CacheProvider can be accessed via;
RequestContext.getCurrentlnstance().getApplicationContext().getCacheProvider()

For example using this API, all cache regions can be cleaned using clear() method. Refer to javadoc
of CacheProvider for the full list of available methods.

46

PrimeFaces User Guide

3.10 Calendar

Calendar is an input component used to select a date featuring display modes, paging, localization,
ajax selection and more.

Su Mo Tu We Th Fr Sa

11(| 12| 13| 14 | 15| 16| 17
18(| 19 20 21| 22 23| 24
25(| 26 | 27| 28| 29 30| 31

Info
Tag calendar
Component Class org.primefaces.component.calendar.Calendar
Component Type org.primefaces.component.Calendar

Component Family | org.primefaces.component

Renderer Type org.primefaces.component.CalendarRenderer
Renderer Class org.primefaces.component.calendar.CalendarRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean | Boolean value to specify the rendering of the
component.
binding null Object | An el expression that maps to a server side

UIComponent instance in a backing bean

value null java.util | Value of the component
.Date

converter null Convert | An el expression or a literal text that defines a
er/Strin | converter for the component. When it’s an EL
g expression, it’s resolved to a converter instance. In

case it’s a static text, it must refer to a converter id

immediate false Boolean | When set true, process validations logic is executed
at apply request values phase for this component.

required false Boolean | Marks component as required

47

PrimeFaces User Guide

Name Default Type Description

validator null Method | A method expression that refers to a method
Expr validationg the input

valueChangeListener null Method | A method expression that refers to a method for
Expr handling a valuchangeevent
requiredMessage null String Message to be displayed when required field
validation fails.
converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fails.
widgetVar null String Name of the client side widget.
mindate null Date or | Sets calendar's minimum visible date
String
maxdate null Date or | Sets calendar's maximum visible date
String
pages 1 Integer | Enables multiple page rendering.
disabled false Boolean | Disables the calendar when set to true.
mode popup String Defines how the calendar will be displayed.
pattern MM/dd/yyyy | String DateFormat pattern for localization
locale null Object | Locale to be used for labels and conversion.
navigator false Boolean | Enables month/year navigator
timeZone null Time String or a java.util. TimeZone instance to specify
Zone the timezone used for date conversion, defaults to
TimeZone.getDefault()
readonlylnput false Boolean | Makes input text of a popup calendar readonly.
showButtonPanel false Boolean | Visibility of button panel containing today and done
buttons.
effect null String Effect to use when displaying and showing the
popup calendar.
effectDuration normal String Duration of the effect.
showOn both String Client side event that displays the popup calendar.
showWeek false Boolean | Displays the week number next to each week.
disabledWeekends false Boolean | Disables weekend columns.
showOtherMonths false Boolean | Displays days belonging to other months.
selectOtherMonths false Boolean | Enables selection of days belonging to other
months.
yearRange null String Year range for the navigator, default "c-10:c+10"

48

PrimeFaces User Guide

Name Default Type Description
timeOnly false Boolean | Shows only timepicker without date.
stepHour 1 Integer | Hour steps.
stepMinute 1 Integer | Minute steps.
stepSecond 1 Integer | Second steps.
minHour 0 Integer | Minimum boundary for hour selection.
maxHour 23 Integer | Maximum boundary for hour selection.
minMinute 0 Integer | Minimum boundary for minute selection.
maxMinute 59 Integer | Maximum boundary for hour selection.
minSecond 0 Integer | Minimum boundary for second selection.
maxSecond 59 Integer | Maximum boundary for second selection.
pagedate null Object | Initial date to display if value is null.
accesskey null String Access key that when pressed transfers focus to the

input element.

alt null String Alternate textual description of the input field.
autocomplete null String Controls browser autocomplete behavior.
dir null String Direction indication for text that does not inherit

directionality. Valid values are LTR and RTL.

label null String A localized user presentable name.

lang null String Code describing the language used in the generated
markup for this component.

maxlength null Integer | Maximum number of characters that may be
entered in this field.

onblur null String Client side callback to execute when input element
loses focus.

onchange null String Client side callback to execute when input element
loses focus and its value has been modified since
gaining focus.

onclick null String Client side callback to execute onclick event.

ondblclick null String Client side callback to execute when input element
is double clicked.

onfocus null String Client side callback to execute when input element

receives focus.

onkeydown null String Client side callback to execute when a key is
pressed down over input element.

onkeypress null String Client side callback to execute when a key is

49

PrimeFaces User Guide

Name Default Type Description

pressed and released over input element.

onkeyup null String Client side callback to execute when a key is
released over input element.

onmousedown null String Client side callback to execute when a pointer
button is pressed down over input element

onmousemove null String Client side callback to execute when a pointer
button is moved within input element.

onmouseout null String Client side callback to execute when a pointer
button is moved away from input element.

onmouseover null String Client side callback to execute when a pointer
button is moved onto input element.

onmouseup null String Client side callback to execute when a pointer
button is released over input element.

onselect null String Client side callback to execute when text within
input element is selected by user.

placeholder null String Specifies a short hint.

readonly false Boolean | Flag indicating that this component will prevent
changes by the user.

style null String Inline style of the component.
styleClass null String Style class of the component.
size null Integer | Number of characters used to determine the width

of the input element.

tabindex null Integer | Position of the input element in the tabbing order.
title null String Advisory tooltip informaton.
beforeShowDay null String Client side callback to execute before displaying a

date, used to customize date display.

mask null String Applies a mask using the pattern.

timeControlType slider String Defines the type of element to use for time picker,
valid values are "slider" and "select".

Getting Started with Calendar

Value of the calendar should be a java.util.Date.

<p:calendar value="#{dateBean.date}"/>

50

PrimeFaces User Guide

public class DateBean {
private Date date;
//Getter and Setter

Display Modes

Calendar has two main display modes, popup (default) and inline.

Inline

<p:calendar value="#{dateBean.date}" mode="inline" />

Su Mo Tu We Th Fr S5Sa
1 2 3

4 5 6 7 8 9 10
11| 12| 13| 14| 15| 16| 17
18| 19| 20| 21| 22 | 23| 24
25| 26| 27| 28 29 | 30| 31

Popup

<p:calendar value="#{dateBean.date}" mode="popup" />

S50 Mo Tu We Th Fr Sa
1 2 3

B 5| 6 7 8| 9| 10
11| 12| 13 14| 15| 16 17
18| 19| 20 21| 22| 23 24
25 26 27 28 29 30 31

showOn option defines the client side event to display the calendar. Valid values are;
» focus: When input field receives focus

* button: When popup button is clicked
* both: Both focus and button cases

Popup Button

<p:calendar value="#{dateBean.date}" mode="popup"” showOn="button" />

51

i)

5u Mo Tu We Th Fr 3a
1 2 3

4 5 6 7 8 9 10
11| 12 13| 14 15 16| 17
18| 19 20| 21 22 23 24
25| 26| 27| 28 29 30 31

Popup Icon Only

PrimeFaces User Guide

<p:calendar value="#{dateBean.date}" mode="popup"
showOn="button" popupIconOnly="true" />

il

Su Mo Tu

11(-12(13
18 19 20
25| 26 | 27

Paging

We

14
21
28

Th

15
22
29

Fr

16
23
30

5a

10
17
24
31

Calendar can also be rendered in multiple pages where each page corresponds to one month. This

feature is tuned with the pages attribute.

<p:calendar value="#{dateController.date}" pages="3"/>

Su Mo Tu We Th Fr Sa Su Mo Tu

4 5 6 7 8 95 10 8 9 10
11 12| 13 14 15 16 17 15 16 17

25| 26| 27 28 29 30 31 29 30| 31

Localization

12 13
1% 20

26 27

Sa

11
18

By default locale information is retrieved from the view’s locale and can be overridden by the locale
attribute. Locale attribute can take a locale key as a String or a java.util.Locale instance. Default
language of labels are English and you need to add the necessary translations to your page manually
as PrimeFaces does not include language translations. PrimeFaces Wiki Page for

PrimeFacesLocales is a community driven page where you may find the translations you need.
Please contribute to this wiki with your own translations.

https://code.google.com/p/primefaces/wiki/PrimeFaceslocales

Translation is a simple javascript object, we suggest adding the code to a javascript file and include
in your application. Following is a Turkish calendar.

52

PrimeFaces User Guide

<h:outputScript name="path_to_your_translations.js” />

<p:calendar value="#{dateController.date}" locale="tr" navigator="true"
showButtonPanel="true"/>

[Tem %] 2010 4]

Pt Sa Ca Pe Cu Ct Pz

1 2 3 4

5 6 7 B 9| 10| 11

12| 13| 14 | 15 16 17 18

19| 20| 21| 22| 23| 24| 25
26(27| 28| 29(30(31

To override calculated pattern from locale, use the pattern option;

<p:calendar value="#{dateController.datel}" pattern="dd.MM.yyyy"/>
<p:calendar value="#{dateController.date2}" pattern="yy, M, d"/>
<p:calendar value="#{dateController.date3}" pattern="EEE, dd MMM, yyyy"/>

dd.MM.yyyy

06.07.2010

¥y, M, d

10,7, 13

EEE, dd MMM, yyyy

Fri, 23 Jul, 2010

Effects

Various effects can be used when showing and hiding the popup calendar, options are; show,
slideDown, fadeln, blind, bounce, clip, drop, fold and slide.

Ajax Behavior Events

Calendar provides a dateSelect ajax behavior event to execute an instant ajax selection whenever a
date is selected. If you define a method as a listener, it will be invoked by passing an
org.primefaces.event.SelectEvent instance.

<p:calendar value="#{calendarBean.date}">
<p:ajax event="dateSelect” listener="#{bean.handleDateSelect}” update="msg” />
</p:calendar>

<p:messages id="msg" />

53

PrimeFaces User Guide

public void handleDateSelect(SelectEvent event) {
Date date = (Date) event.getObject();
//Add facesmessage

In popup mode, calendar also supports regular ajax behavior events like blur, keyup and more.

Another handy event is the viewChange that is fired when month and year changes. An instance of
org.primefaces.event. DateViewChangeEvent 1s passed to the event listener providing the current
month and year information.

Date Ranges

Using mindate and maxdate options, selectable dates can be restricted. Values for these attributes
can either be a string or a java.util.Date.

<p:calendar value="#{dateBean.date}" mode="inline"
mindate="07/10/2010" maxdate="07/15/2010"/>

July 2010

Su Mo Tu We Th Fr Sa

Navigator

Navigator is an easy way to jump between months/years quickly.

<p:calendar value="#{dateBean.date}" mode="inline" navigator="true" />

Now s 2010 b%

Su Mo Tu We Th Fr Sa

1 2 3 4 5 6

7 8 9| 10 11 12| 13

14|| 15| 16| 17| 18| 19 20

21| 22| 23|| 24|| 25|| 26| 27
28| 29| 30

TimePicker

TimePicker functionality is enabled by adding time format to your pattern.

<p:calendar value="#{dateBean.date}" pattern="MM/dd/yyyy HH:mm”/>

54

Advanced Customization

November 2011

Su Mo Tu We Th Fr Sa

6
13
20
27

Time
Hour
Minute

14
21
28

1
8
15
22
29

2 3 4 5

9|10 11 12
16| 17| 18 19
23| 24| 25| 26
30

00:00

Done

PrimeFaces User Guide

Use beforeShowDay javascript callback to customize the look of each date. The function returns an
array with two values, first one is flag to indicate if date would be displayed as enabled and second
parameter is the optional style class to add to date cell. Following example disabled tuesdays and

fridays.

<p:calendar value="#{dateBean.date}" beforeShowDay="tuesdaysAndFridaysOnly" />

Function tuesdaysAndFridaysDisabled(date) {
var day = date.getDay();

return [(day != 2 & day !=5), '']

Mask

Calendar has a built-in mask feature similar to the InputMask component. Set mask option to true to

enable mask support.

Client Side API

Widget: PrimeFaces.widget.Calendar

Method Params Return Type Description
getDate() - Date Return selected date
setDate(date) date: Date to display void Sets display date
disable() - void Disables calendar
enable() - void Enables calendar

Skinning

Calendar resides in a container element which style and styleClass options apply.

Following is the list of structural style classes;

55

PrimeFaces User Guide

Style Class

Applies

.ui-datepicker

Main container

.ui-datepicker-header

Header container

.ui-datepicker-prev

Previous month navigator

.ui-datepicker-next

Next month navigator

.ui-datepicker-title Title
.ui-datepicker-month Month display
.ui-datepicker-table Date table

.ui-datepicker-week-end

Label of weekends

.ui-datepicker-other-month

Dates belonging to other months

.ui-datepicker td

Each cell date

.ui-datepicker-buttonpane Button panel
.ui-datepicker-current Today button
.ui-datepicker-close Close button

As skinning style classes are global, see the main theming section for more information.

56

3.11 Captcha

PrimeFaces User Guide

Captcha is a form validation component based on Recaptcha API.

Info

Type the two words:

|

il ‘ me [APTCHA

Tag

captcha

Component Class

org.primefaces.component.captcha.Captcha

Component Type

org.primefaces.component.Captcha

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.CaptchaRenderer

Renderer Class

org.primefaces.component.captcha.CaptchaRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean.

value null Object Value of the component than can be either an EL
expression of a literal text.

converter null Converter/Stri | An el expression or a literal text that defines a

ng converter for the component. When it’s an EL

expression, it’s resolved to a converter instance.
In case it’s a static text, it must refer to a converter
id.

immediate false Boolean When set true, process validations logic is
executed at apply request values phase for this
component.

required false Boolean Marks component as required.

57

PrimeFaces User Guide

Name Default Type Description

validator null MethodExpr | A method binding expression that refers to a
method validationg the input.

valueChangeListener null ValueChange | A method binding expression that refers to a

Listener method for handling a valuchangeevent.

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

publicKey null String Public recaptcha key for a specific domain
(deprecated)

theme red String Theme of the captcha.

language en String Key of the supported languages.

tabindex null Integer Position of the input element in the tabbing order.

label null String User presentable field name.

secure false Boolean Enables https support

Getting Started with Captcha

Catpcha is implemented as an input component with a built-in validator that is integrated with
reCaptcha. First thing to do is to sign up to reCaptcha to get public&private keys. Once you have
the keys for your domain, add them to web.xml as follows;

<context-param>
<param-name>primefaces.PRIVATE_CAPTCHA_KEY</param-name>
<param-value>YOUR_PRIVATE_KEY</param-value>
</context-param>

<context-param>
<param-name>primefaces.PUBLIC_CAPTCHA_KEY</param-name>
<param-value>YOUR_PUBLIC_KEY</param-value>
</context-param>

That is it, now you can use captcha as follows;

<p:captcha />

Themes

Captcha features following built-in themes for look and feel customization;
- red (default)

- white

- blackglass

- clean

Themes are applied via the theme attribute.

58

PrimeFaces User Guide

<p:captcha theme="white"/>

It homlogy-

| Type the two words: (=]
| W @PTGH&
(2] s Bk

Languages

Text instructions displayed on captcha is customized with the language attribute. Below is a captcha
with Turkish text.

<p:captcha language="tr"/>

Overriding Validation Messages

By default captcha displays it’s own validation messages, this can be easily overridden by the JSF
message bundle mechanism. Corresponding keys are;

Summary primefaces.captcha.INVALID
Detail primefaces.captcha.INVALID_detail
Tips

» Use label option to provide readable error messages in case validation fails.
* Enable secure option to support https otherwise browsers will give warnings.
* See http://www.google.com/recaptcha/learnmore to learn more about how reCaptcha works.

59

http://www.google.com/recaptcha/learnmore

PrimeFaces User Guide

3.12 Carousel

Carousel is a multi purpose component to display a set of data or general content with slide effects.

Info

Model: 67bb58ac Model: 8b&a6af1 Model: 8cb43373

Year: 1983 Year: 1962 Year: 1974

Caolor: Maroon Color: Silver Color: Blue

Tag

carousel

Component Class

org.primefaces.component.carousel.Carousel

Component Type

org.primefaces.component.Carousel

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.CarouselRenderer

Renderer Class

org.primefaces.component.carousel.CarouselRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean | Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object A value expression that refers to a collection

var null String Name of the request scoped iterator

numVisible 3 Integer Number of visible items per page

firstVisible 0 Integer Index of the first element to be displayed

widgetVar null String Name of the client side widget.

circular false Boolean | Sets continuous scrolling

vertical false Boolean | Sets vertical scrolling

autoPlayInterval 0 Integer Sets the time in milliseconds to have Carousel start

60

PrimeFaces User Guide

Name Default Type Description
scrolling automatically after being initialized

pageLinks 3 Integer Defines the number of page links of paginator.
effect slide String Name of the animation, could be “fade” or “slide”.
easing easeInOutCirc | String Name of the easing animation.
effectDuration 500 Integer Duration of the animation in milliseconds.
dropdownTemplate. | {page} String Template string for dropdown of paginator.
style null String Inline style of the component..
styleClass null String Style class of the component..
itemStyle null String Inline style of each item.
itemStyleClass null String Style class of each item.
headerText null String Label for header.
footerText null String Label for footer.

Getting Started with Carousel

Carousel has two main use-cases; data and general content display. To begin with data iteration let’s
use a list of cars to display with carousel.

private
private
private
private

public class Car {

String model;
int year;

String manufacturer;

String color;

public class CarBean {

private List<Car> cars;

public CarlListController() {
cars = new ArraylList<Car>(Q);

//add more cars

}

//getter setter

cars.add(new Car("myModel", 2005, "ManufacturerX", "blue"));

61

PrimeFaces User Guide

<p:carousel value="#{carBean.cars}" var="car" itemStyle="width:200px">
<p:graphicImage value="/images/cars/#{car.manufacturer}.jpg"/>
<h:outputText value="Model: #{car.model}" />
<h:outputText value="Year: #{car.year}" />
<h:outputText value="Color: #{car.color}" />

</p:carousel>

Carousel iterates through the cars collection and renders it’s children for each car, note that you also
need to define a width for each item.

Limiting Visible Items

Bu default carousel lists its items in pages with size 3. This is customizable with the rows attribute.

<p:carousel value="#{carBean.cars}" var="car" numVisible="1"
itemStyle="width:200px" >

</p:carousel>

Go to page 1 |4
Model: 089d3ef8

Year: 1988

Color: Green

Effects

Paging happens with a slider effect by default and following easing options are supported.

* backBoth

* backln

* backOut

* bounceBoth

* bounceln

* bounceOut

* easeBoth

* easeBothStrong
* easeln

* easelnStrong
* easeNone

e easeOut

* easelnOutCirc
* easeOutStrong
« elasticBoth

* elasticln

* elasticOut

62

PrimeFaces User Guide

SlideShow

Carousel can display the contents in a slideshow, for this purpose autoPlayInterval and circular
attributes are used. Following carousel displays a collection of images as a slideshow.

<p:carousel autoPlayInterval="2000" rows="1" effect="easeInStrong" circular="true"
itemStyle="width:200px” >
<p:graphicImage value="/images/naturel.jpg"/>
<p:graphicImage value="/images/nature2.jpg"/>
<p:graphicImage value="/images/nature3.jpg"/>
<p:graphicImage value="/images/nature4.jpg"/>
</p:carousel>

Content Display

Another use case of carousel is tab based content display.

The story begins as Don Vito Corleone, the head of a New York Mafia
family, oversees his daughter's wedding. His beloved son Michael has
just come home from the war, but does not intend to become part of his
father's business. T hrough Michael's life the nature of the family
business becomes clear. The business of the family is just like the head
of the family, kind and benevalent to those who give respect, but given
to ruthless violence whenever anything stands against the good of the
farmnily.

<p:carousel rows="1" itemStyle="height:200px;width:600px;">
<p:tab title="Godfather Part I">
<h:panelGrid columns="2" cellpadding="10">
<p:graphicImage value="/images/godfather/godfatherl.jpg" />
<h:outputText value="The story begins as Don Vito ..." />
</h:panelGrid>
</p:tab>
<p:tab title="Godfather Part II">
<h:panelGrid columns="2" cellpadding="10">
<p:graphicImage value="/images/godfather/godfather2.jpg" />
<h:outputText value="Francis Ford Coppola's ..."/>
</h:panelGrid>
</p:tab>
<p:tab title="Godfather Part III">
<h:panelGrid columns="2" cellpadding="10">
<p:graphicImage value="/images/godfather/godfather3.jpg" />
<h:outputText value="After a break of ..." />
</h:panelGrid>
</p:tab>
</p:carousel>

63

PrimeFaces User Guide

Item Selection

Sample below selects an item from the carousel and displays details within a dialog.

<h:form id="form">
<p:carousel value="#{carBean.cars}" var="car" itemStyle="width:200px” >
<p:graphicImage value="/images/cars/#{car.manufacturer}.jpg"/>
<p:commandLink update=":form:detail" oncomplete="PF('dlg"').show()">
<h:outputText value="Model: #{car.model}" />
<f:setPropertyActionlListener value="#{car}" target="#{carBean.selected}" />
</p: commandLink>
</p:carousel>

<p:dialog widgetVar="dlg">
<h:outputText id="detail" value="#{carBean.selected}" />
</p:dialog>
</h:form>

public class CarBean {
private List<Car> cars;
private Car selected;

//getters and setters

Header and Footer

Header and Footer of carousel can be defined in two ways either, using headerText and footerText
options that take simple strings as labels or by header and footer facets that can take any custom
content.

Client Side API
Widget: PrimeFaces.widget.Carousel

Method Params Return Type Description
next() - void Displays next page.
prev() - void Displays previous page.
setPage() index void Displays page with given index.
startAutoplay() - void Starts slideshow.
stopAutoplay() - void Stops slideshow.

64

Skinning

PrimeFaces User Guide

Carousel resides in a container element which style and styleClass options apply. itemStyle and
itemStyleClass attributes apply to each item displayed by carousel. Following is the list of structural

style classes;

Style Class

Applies

.ui-carousel

Main container

.ui-carousel-header

Header container

.ui-carousel-header-title

Header content

.ui-carousel-viewport

Content container

.ui-carousel-button

Navigation buttons

.ui-carousel-next-button

Next navigation button of paginator

.ui-carousel-prev-button

Prev navigation button of paginator

.ui-carousel-page-links

Page links of paginator.

.ui-carousel-page-link

Each page link of paginator.

.ui-carousel-item

Each item.

As skinning style classes are global, see the main theming section for more information.

65

3.13 CellEditor

CellEditor is a helper component of datatable used for incell editing.

Info

PrimeFaces User Guide

Tag

cellEditor

Component Class

org.primefaces.component.celleditor.CellEditor

Component Type

org.primefaces.component.CellEditor

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.CellEditorRenderer

Renderer Class

org.primefaces.component.celleditor.CellEditorRenderer

Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.
binding null Object An el expression that maps to a server side

UIComponent instance in a backing bean

Getting Started with CellEditor

See inline editing section in datatable documentation for more information about usage.

66

PrimeFaces User Guide

3.14 Chart

Chart component is a generic graph component to create various types of charts using jgplot library.
Each chart type has its own subsection with code examples and section 3.12.10 documents the full
charting APIL.

Info

Tag chart

Component Class org.primefaces.component.chart.Chart

Component Type org.primefaces.component.Chart

Component Family org.primefaces.component

Renderer Type org.primefaces.component.ChartRenderer

Renderer Class org.primefaces.component.chart.ChartRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

type null String Type of the chart.

model null ChartModel Model object of data and settings.

style null String Inline style of the component.

styleClass null String Style class of the component.

widgetVar null String Name of the client side widget.

67

PrimeFaces User Guide

3.14.1 PieChart
PieChart is created with PieChartModel.

Basic

<p:chart type="pie" model="#{bean.model}" />

public class Bean {
private PieChartModel model;

public Bean() {
model = new PieChartModel();
model.set("Brand 1", 540);
model.set("Brand 2", 325);
model.set("Brand 3", 702);
model.set("Brand 4", 421);
model .setTitle("Simple Pie™);
model .setlLegendPosition("w");

}

public PieChartModel getModel() {
return model;

}
}
Simple Pie
| Brand 1
| Brand 2
| Brand 3
Il Brand 4
Customized

<p:chart type="pie" model="#{bean.model}" />

68

PrimeFaces User Guide

public class Bean {

private PieChartModel model;

public Bean() {

model

model.
model.
model.
model.

model.
model.
model.
model.
model.

= new PieChartModel();
set("Brand 1", 540);
set("Brand 2", 325);
set("Brand 3", 702);
set("Brand 4", 421);

setTitle("Custom Pie");
setlLegendPosition("e");
setFill(false);
setShowDatalLabels(true);
setDiameter(150);

public PieChartModel getModel() {
return model;

Custom Pie

35%

16% 27%

69

Brand 1
Brand 2
Brand 3

| Brand 4

PrimeFaces User Guide

3.14.2 LineChart

LineChartModel is used to create a line chart.

Basic

<p:chart type="line" model="#{bean.model}" />

public class Bean {
private LineChartModel model;

public Bean() {
model = new LineChartModel();

LineChartSeries seriesl = new LineChartSeries();
seriesl.setLabel("Series 1");

seriesl.set(1, 2);

seriesl.set(2, 1);

seriesl.set(3, 3);

seriesl.set(4, 6);

seriesl.set(5, 8);

LineChartSeries series2 = new LineChartSeries();
series2.setLabel("Series 2");

series2.set(1, 6);

series2.set(2, 3);

series2.set(3, 2);

series2.set(4, 7);

series2.set(5, 9);

model .addSeries(seriesl);

model .addSeries(series2);
model.setTitle("Linear Chart™);

model .setlLegendPosition("e");

Axis yAxis = model.getAxis(AxisType.Y);
yAxis.setMin(0);

yAxis.setMax(10);

public LineChartModel getModel() {
return model;

Linear Chart

04 06 08 10 12 14 16 18 20 22 24 26 28 3.0 32 34 36 38 40 42 44 46 48 50 52 54

70

PrimeFaces User Guide

Customized

<p:chart type="line" model="#{bean.model}" />

public class Bean {
private LineChartModel model;

public Bean() {
model = new LineChartModel();

ChartSeries boys = new ChartSeries();
boys.setlLabel("Boys");
boys.set("2004", 120);
boys.set("2005", 100);
boys.set("2006", 44);
boys.set("2007", 150);
boys.set("2008", 25);

ChartSeries girls = new ChartSeries();
girls.setlLabel("Girls");
girls.set("2004", 52);
girls.set("2005", 60);
girls.set("2006", 110);
girls.set("2007", 90);
girls.set("2008", 120);

model .addSeries(boys);

model .addSeries(girls);

model .setTitle("Category Chart");

model .setlLegendPosition("e");

model . setShowPointLabels(true);

model .getAxes().put(AxisType.X, new CategoryAxis("Years"));
Axis yAxis = model.getAxis(AxisType.Y);
yAxis.setlLabel("Births");

yAxis.setMin(0);

yAxis.setMax(200);

public LineChartModel getModel() {
return model;

Category Chart

150

120 120
110
100 Boys

Girls

Births

2006

Years

71

Area

PrimeFaces User Guide

<p:chart type="line" model="#{bean.model}" />

public class Bean {
private LineChartModel model;

public Bean() {
model = new LineChartModel();

LineChartSeries boys = new LineChartSeries();
boys.setFill(true);

boys.setlLabel("Boys");

boys.set("2004", 120);

boys.set("2005", 100);

boys.set("2006", 44);

boys.set("2007", 150);

boys.set("2008", 25);

LineChartSeries girls = new LineChartSeries();
girls.setFill(true);

girls.setlLabel("Girls");

girls.set("2004", 52);

girls.set("2005", 60);

girls.set("2006", 110);

girls.set("2007", 90);

girls.set("2008", 120);

model .addSeries(boys);

model .addSeries(girls);

model .setTitle("Area Chart™);

model .setlLegendPosition("ne");

model .setStacked(true);

model . setShowPointLabels(true);

model .getAxis(AxisType.X).setlLabel("Years");
Axis yAxis = model.getAxis(AxisType.Y);
yAxis.setlLabel("Births™);
yAxis.setMin(0);

yAxis.setMax(300);

public CartesianChartModel getModel() {
return model;

Area Chart

Birth:
/9
/
/
/
/
{
/
/
/
/
r’/
\

Girls

Boys

3.14.3 BarChart
BarChartModel is used to created a BarChart.

Basic

PrimeFaces User Guide

<p:chart type="bar" model="#{bean.model}" />

public class Bean {
private BarChartModel model;

public ChartBean() {
model = new BarChartModel();

ChartSeries boys = new ChartSeries();
boys.setlLabel("Boys");
boys.set("2004", 120),;
boys.set("2005", 100);
boys.set("2006", 44);
boys.set("2007", 150);
boys.set("2008", 25);

ChartSeries girls = new ChartSeries();
girls.setlLabel("Girls");
girls.set("2004", 52);
girls.set("2005", 60);
girls.set("2006", 110);
girls.set("2007", 135);
girls.set("2008", 120);

model .addSeries(boys);

model .addSeries(girls);
model.setTitle("Bar Chart");
model .setlLegendPosition("ne");

Axis xAxis = model.getAxis(AxisType.X);
xAxis.setlLabel("Gender™);

Axis yAxis = model.getAxis(AxisType.Y);
yAxis.setlLabel("Births");
yAxis.setMin(0);
yAxis.setMax(200);

ks

public BarChartModel getModel() { return model; }

Bar Chart

Births

2004 2005 2006

Gender

73

PrimeFaces User Guide

Horizontal and Stacked

<p:chart type="bar" model="#{bean.model}" />

public class Bean {
private HorizontalBarChartModel model;

public ChartBean() {
model = new HorizontalBarChartModel();

ChartSeries boys = new ChartSeries();
boys.setlLabel("Boys");
boys.set("2004", 50);
boys.set("2005", 96);
boys.set("2006", 44);
boys.set("2007", 55);
boys.set("2008", 25);

ChartSeries girls = new ChartSeries();
girls.setlLabel("Girls");
girls.set("2004", 52);
girls.set("2005", 60);
girls.set("2006", 82);
girls.set("2007", 35);
girls.set("2008", 120);

model .addSeries(boys);
model .addSeries(girls);

model .setTitle("Horizontal and Stacked™);
model .setlLegendPosition("e");
model .setStacked(true);

Axis xAxis = model.getAxis(AxisType.X);
xAxis.setLabel("Births");
xAxis.setMin(0);

xAxis.setMax(200);

Axis yAxis = model.getAxis(AxisType.Y);
yAxis.setlLabel("Gender™);
}

public HorizontalBarChartModel getModel() { return model; }

Horizontal and Stacked

74

3.14.4 DonutChart

DonutChart is generated using DonutChartModel.

Basic

PrimeFaces User Guide

<p:chart type="donut" model="#{bean.model}" />

}

public class Bean {
private DonutChartModel model;

public ChartBean() {
model = new DonutChartModel();

Map<String, Number> circlel = new LinkedHashMap<String, Number>(Q);

circlel.put("Brand 1", 150);
circlel.put("Brand 2", 400);
circlel.put("Brand 3", 200);
circlel.put("Brand 4", 10);
model .addCircle(Ccirclel);

Map<String, Number> circle2 = new LinkedHashMap<String, Number>(Q);

circle2.put("Brand 1", 540);
circle2.put("Brand 2", 125);
circle2.put("Brand 3", 702);
circle2.put("Brand 4", 421);
model .addCircle(Ccircle2);

Map<String, Number> circle3 = new LinkedHashMap<String, Number>(Q);

circle3.put("Brand 1", 40);
circle3.put("Brand 2", 325);
circle3.put("Brand 3", 402);
circle3.put("Brand 4", 421);
model .addCircle(Ccircle3);

model.setTitle("Donut Chart");
model .setlLegendPosition("w");

public DonutChartModel getModel() { return model; }

Donut Chart

Brand 1
Brand 2
Brand 3
M Brand 4

75

Customized

PrimeFaces User Guide

<p:chart type="donut" model="#{bean.model}" />

}

public class Bean {
private DonutChartModel model;

public ChartBean() {
model = new DonutChartModel();

Map<String, Number> circlel = new LinkedHashMap<String, Number>(Q);

circlel.put("Brand 1", 150);
circlel.put("Brand 2", 400);
circlel.put("Brand 3", 200);
circlel.put("Brand 4", 10);
model .addCircle(Ccirclel);

Map<String, Number> circle2 = new LinkedHashMap<String, Number>(Q);

circle2.put("Brand 1", 540);
circle2.put("Brand 2", 125);
circle2.put("Brand 3", 702);
circle2.put("Brand 4", 421);
model .addCircle(Ccircle2);

Map<String, Number> circle3 = new LinkedHashMap<String, Number>(Q);

circle3.put("Brand 1", 40);
circle3.put("Brand 2", 325);
circle3.put("Brand 3", 402);
circle3.put("Brand 4", 421);
model .addCircle(Ccircle3);

model .setTitle("Donut Chart");

model .setlLegendPosition("w");

model .setTitle("Custom Options™);

model .setlLegendPosition("e");
model .setSliceMargin(5);

model . setShowDatalLabels(true);

model .setDataFormat("value™);
model . setShadow(false);

public DonutChartModel getModel() { return model; }

Custom Options

rand 1
rand 2
rand 3
rand 4

3.14.5 BubbleChart

BubbleChart is created with a BubbleChartModel.

Basic

PrimeFaces User Guide

<p:chart type="bubble" model="#{bean.model}" />

public class Bean {
private BubbleChartModel model;

public ChartBean() {

yAxis.setMin(0);
yAxis.setMax(250);
yAxis.setlLabel("Labels™);

model = new BubbleChartModel();

model .add(new BubbleChartSeries("Acura", 70, 183,55));

model .add(new BubbleChartSeries("Alfa Romeo", 45, 92, 36));
model .add(new BubbleChartSeries("AM General", 24, 104, 40));
model .add(new BubbleChartSeries("Bugatti"”, 50, 123, 60));
model .add(new BubbleChartSeries("BMW", 15, 89, 25));

model .add(new BubbleChartSeries("Audi", 40, 180, 80));

model .add(new BubbleChartSeries("Aston Martin", 70, 70, 48));

model.setTitle("Bubble Chart™);
model .getAxis(AxisType.X).setlLabel("Price");
Axis yAxis = model.getAxis(AxisType.Y);

k
public BubbleChartModel getModel() { return model; }
3
Bubble Chart
250.0
2 125.0 ‘lll.)
L]
- AM General
’ Alfa Romeo
62.5 ‘III’
0.0
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Price

77

Customized

PrimeFaces User Guide

<p:chart type="bubble" model="#{bean.model}" />

}

public class Bean {
private BubbleChartModel model;

public ChartBean() {

model = new BubbleChartModel();

model .add(new BubbleChartSeries("Acura", 70, 183,55));

model .add(new BubbleChartSeries("Alfa Romeo", 45, 92, 36));
model .add(new BubbleChartSeries("AM General", 24, 104, 40));
model .add(new BubbleChartSeries("Bugatti"”, 50, 123, 60));
model .add(new BubbleChartSeries("BMW", 15, 89, 25));

model .add(new BubbleChartSeries("Audi", 40, 180, 80));

model .add(new BubbleChartSeries("Aston Martin", 70, 70, 48));

model = initBubbleModel();

model .setTitle("Custom Options™);

model . setShadow(false);

model .setBubbleGradients(true);

model . setBubbleAlpha(@.8);

model .getAxis(AxisType.X).setTickAngle(-50);
Axis yAxis = model.getAxis(AxisType.Y);
yAxis.setMin(0);

yAxis.setMax(250);

yAxis.setTickAngle(50);

public BubbleChartModel getModel() { return model; }

Custom Options

Audi Acura

Bugatti
AM General

BMW. Alfa Romeo y
4
iston Martil

78

3.14.6 Ohlc Chart

OhlcChartModel is used to display Ohlc Charts.

Basic

PrimeFaces User Guide

<p:chart type="ohlc" model="#{bean.model}" />

ohlcModel

ohlcModel

ohlcModel

}

public class Bean {
private OhlcChartModel model;

ohlcModel.
ohlcModel.
.add(new OhlcChartSeries(2009, 143.46, 144.66, 139.79, 140.02));
ohlcModel.
ohlcModel.
.add(new OhlcChartSeries(2012, 124.76, 135.9, 124.55, 135.81));
ohlcModel.

ohlcModel.
ohlcModel.
ohlcModel.

public ChartBean() {

= new OhlcChartModel();

add(new OhlcChartSeries(2007, 143.82, 144.56, 136.04, 136.97));
add(new OhlcChartSeries(2008, 138.7, 139.68, 135.18, 135.4));

add(new OhlcChartSeries(2010, 140.67, 143.56, 132.88, 142.44));
add(new OhlcChartSeries(2011, 136.01, 139.5, 134.53, 139.48));

add(new OhlcChartSeries(2012, 123.73, 129.31, 121.57, 122.5));

setTitle("OHLC Chart™);
getAxis(AxisType.X).setLabel("Year™");
getAxis(AxisType.Y).setLabel("Price Change $K/Unit");

public OhlcChartModel getModel() { return model; }

150
145
S 140
%
ey 135
«"1)
c
- 30
|
8 125
a
120
115

2006

137

2007

OHLC Chart

135

2008

140
142

139

i

2009 2010 2011 2012

Year

79

2013

PrimeFaces User Guide

Candlestick

<p:chart type="ohlc" model="#{bean.model}" />

public class Bean {
private OhlcChartModel model;

public ChartBean() {
model = new OhlcChartModel();

for(C int i=1 ; i < 41 ; i++) {
ohlcModel2.add(new OhlcChartSeries(i, Math.random() * 80 + 80,
Math.random() * 50 + 110, Math.random() * 20 + 8@, Math.random() * 80 + 80));

}

model.setTitle("Candlestick");

model .setCandleStick(true);

model .getAxis(AxisType.X).setlLabel("Sector™);
model .getAxis(AxisType.Y).setLabel("Index Value");

}

public OhlcChartModel getModel() { return model; }

}
Candlestick
180
i 138 82
160 l P . 1948

8899 20 Y

2 130
140 - : 1» P 3 S
57 B 1 1]
120 4 i " i
Iﬂk
100 ‘ﬂ 3

- 1ﬂ 1 1:03

oo

Index Value

80 -

60

3 0 5 10 15 20 25 30 35 40 45

Sector

80

PrimeFaces User Guide

3.14.7 MeterGauge Chart
MeterGauge Chart is created using MeterGaugeChartModel.

Basic

<p:chart type="metergauge" model="#{bean.model}" />

public class Bean {
private MeterGaugeChartModel model;

public ChartBean() {
List<Number> intervals = new ArraylList<Number>(){{
add(20);
add(50);
add(120);
add(220);
1}

model = new MeterGaugeChartModel(140, intervals);
model .setTitle("MeterGauge Chart");
model .setGaugelLabel("km/h");

ks
public MeterGaugeChartModel getModel() { return model; }
ks
Custom Options
km/h
Customized

<p:chart type="metergauge" model="#{bean.model}" />

81

PrimeFaces User Guide

public class Bean {
private MeterGaugeChartModel model;

public ChartBean() {
List<Number> intervals = new ArraylList<Number>(){{
add(20);
add(50);
add(120);
add(220);
155

model = new MeterGaugeChartModel (140, intervals);
model.setTitle("Custom Options");
model .setSeriesColors("66cc66,93b75f,E7E658,cc6666");
model . setGaugelLabel("km/h");
model . setGaugelLabelPosition("bottom");
model .setShowTickLabels(false);
model .setlLabelHeightAdjust(110);
model .setIntervalOuterRadius(130);
%

public MeterGaugeChartModel getModel() { return model; }

MeterGauge Chart

110

km/h

82

PrimeFaces User Guide

3.14.8 Combined Chart
On same graph, different series type can be displayed together.

Basic

<p:chart type="bar" model="#{bean.model}" />

public class Bean {
private BarChartModel model;

public ChartBean() {
combinedModel = new BarChartModel();

BarChartSeries boys = new BarChartSeries();
boys.setlLabel("Boys");
boys.set("2004", 120),;
boys.set("2005", 100);
boys.set("2006", 44);
boys.set("2007", 150);
boys.set("2008", 25);

LineChartSeries girls = new LineChartSeries();
girls.setlLabel("Girls");

girls.set("2004", 52);

girls.set("2005", 60);

girls.set("2006", 110);

girls.set("2007", 135);

girls.set("2008", 120);

model .addSeries(boys);
model .addSeries(girls);
model.setTitle("Bar and Line™);
model .setlLegendPosition("ne");
model . setMouseoverHighlight(false);
model .setShowDatatip(false);
model . setShowPointLabels(true);
Axis yAxis = model.getAxis(AxisType.Y);
yAxis.setMin(0);
yAxis.setMax(200);

k

public BarChartModel getModel() { return model; }

Bar and Line
200

| Boys
| Girs

150

2004 2005 2006 2007 2008

83

PrimeFaces User Guide

3.14.9 Multiple Axis

Up to 9 axes (xaxis-x9axis, yaxis-y9axis) can be displayed on the same chart.

Basic

<p:chart type="line" model="#{bean.model}" />

public class Bean {
private LineChartModel model;

public ChartBean() {
model = new LineChartModel();

BarChartSeries boys = new BarChartSeries();
boys.setLabel("Boys");
boys.set("2004", 120);
boys.set("2005", 100);
boys.set("2006", 44);
boys.set("2007", 150);
boys.set("2008", 25);

LineChartSeries girls = new LineChartSeries();
girls.setlLabel("Girls");
girls.setXaxis(AxisType.X2);
girls.setYaxis(AxisType.Y2);

girls.set("A", 52);

girls.set("B", 60);

girls.set("C", 110);

girls.set("D", 135);

girls.set("E", 120);

model .addSeries(boys);
model .addSeries(girls);

model.setTitle("Multi Axis Chart");
model . setMouseoverHighlight(false);

model .getAxes().put(AxisType.X, new CategoryAxis("Years"));
model .getAxes() .put(AxisType.X2, new CategoryAxis("Period"));

Axis yAxis = model.getAxis(AxisType.Y);
yAxis.setlLabel("Birth");
yAxis.setMin(0);

yAxis.setMax(200);

Axis y2Axis = new LinearAxis("Number");
y2Axis.setMin(0);
y2Axis.setMax(200);

model .getAxes().put(AxisType.Y2, y2Axis);
3

public LineChartModel getModel() { return model; }

84

Birth

PrimeFaces User Guide

Multi Axis Chart
Period

A B C D
200

2004 2005 2006 2007

Years

85

2008

200

150

8
Number

50

3.14.10 Date Axis

Use DateAxis if you are displaying dates in an axis.

Basic

PrimeFaces User Guide

<p:chart type="line" model="#{bean.model}" />

public class Bean {
private LineChartModel model;

public ChartBean() {

dateModel = new LineChartModel();
LineChartSeries seriesl = new LineChartSeries();
seriesl.setLabel("Series 1");
seriesl.set("2014-01-01", 51);
seriesl.set("2014-01-06", 22);
seriesl.set("2014-01-12", 65);
seriesl.set("2014-01-18", 74);
seriesl.set("2014-01-24", 24);
seriesl.set("2014-01-30", 51);

LineChartSeries series2 = new LineChartSeries();
series2.setLabel("Series 2");
series2.set("2014-01-01", 32);
series?2.set("2014-01-06", 73);
series2.set("2014-01-12", 24);
series2.set("2014-01-18", 12);
series2.set("2014-01-24", 74);
series2.set("2014-01-30", 62);

dateModel .addSeries(seriesl);

dateModel .addSeries(series2);

dateModel .setTitle("Zoom for Details");
dateModel . setZoom(true);

dateModel .getAxis(AxisType.Y).setLabel("Values");
DateAxis axis = new DateAxis("Dates");
axis.setTickAngle(-50);
axis.setMax("2014-02-01");

axis.setTickFormat("%b %#d, %y");

dateModel .getAxes() .put(AxisType.X, axis);
3

public LineChartModel getModel() { return model; }

Zoom for Details

Values

86

PrimeFaces User Guide

3.14.11 Interactive Chart

Charts are interactive components, information about selected series and items can be passed via
ajax to a JSF backing bean using ItemSelectEvent.

Basic

<p:chart type="pie" model="#{bean.model}">
<p:ajax event="itemSelect" listener="#{bean.itemSelect}" />
</p:chart>

public class Bean {
private PieChartModel model;

public ChartBean() {
model = new PieChartModel();

model.set("Brand 1", 540);
model.set("Brand 2", 325);
model.set("Brand 3", 702);
model.set("Brand 4", 421),

model.setTitle("Simple Pie™);
model .setlLegendPosition("w");

k
public PieChartModel getModel() { return model; }

public void itemSelect(ItemSelectEvent event) {
FacesMessage msg = new FacesMessage(FacesMessage.SEVERITY_INFO,
"Item selected", "Item Index: " + event.getItemIndex() +
", Series Index:" + event.getSeriesIndex());

FacesContext.getCurrentInstance().addMessage(null, msg);

87

PrimeFaces User Guide

3.14.12 Export

Chart component provides a client side method to convert the graph to an image. Example below
demonstrates how to use a button click to export the chart as an image and display it in a dialog so
that users can download it as a regular image.

<p:chart type="line" model="#{bean.model}" style="width:500px;height:300px"
widgetVar="chart"/>

<p:commandButton type="button" value="Export" icon="ui-icon-extlink"
onclick="exportChart()"/>

<p:dialog widgetVar="dlg" showEffect="fade" modal="true" header="Chart as an Image">
<p:outputPanel id="output" layout="block" style="width:500px;height:300px"/>
</p:dialog>

function exportChart() {
//export image
$("#output').empty().append(PF('chart"').exportAsImage());

//show the dialog
PFC'dlg').show();

88

PrimeFaces User Guide

3.14.13 Static Images

JFreeChart with Graphiclmage component is an alternative to the chart component.

Basic

<p:graphicImage value="#{bean.chart}" />

public class Bean {
private StreamedContent chart;

public Bean() {
JFreeChart jfreechart = ChartFactory.createPieChart("Cities",
createDataset(), true, true, false);
File chartFile = new File("dynamichart");
ChartUtilities.saveChartAsPNG(chartFile, jfreechart, 375, 300);
chart = new DefaultStreamedContent(new FileInputStream(chartFile),
"image/png");
3

public StreamedContent getChart() { return model; }

private PieDataset createDataset() {
DefaultPieDataset dataset = new DefaultPieDataset();
dataset.setValue("New York", new Double(45.0));
dataset.setValue("London", new Double(15.0));
dataset.setValue("Paris", new Double(25.2));
dataset.setValue("Berlin", new Double(14.8));

return dataset;

Cities

Berlin= 148 — ——

MNew York = 45
Paris = 25.2 |——

London = 15

® New York = 45 @ London = 15 @ Paris = 25.2
Berlin = 14.8

89

3.14.14 Skinning

Charts can be styled using regular css. Following is the list of style classes;

PrimeFaces User Guide

Style Class

Applies

.Jgplot-target

Plot target container.

.Jjgplot-axis

Axes.

.Jjgplot-xaxis

Primary x-axis.

.Jjgplot-yaxis

Primary y-axis.

.Jjgplot-x2axis, .jqplot-x3axis ...

2nd, 3rd ... x-axis.

Jgplot-y2axis, .jqplot-y3axis ...

2nd, 3rd ... y-axis.

.Jjgplot-axis-tick

Axis ticks.

.Jjqplot-xaxis-tick

Primary x-axis ticks.

Jgplot-x2axis-tick

Secondary x-axis ticks.

Jjgplot-yaxis-tick

Primary y-axis-ticks.

.Jjgplot-y2axis-tick

Seconday y-axis-ticks.

table.jgplot-table-legend

Legend table.

.Jjqplot-title

Title of the chart.

.Jgplot-cursor-tooltip

Cursor tooltip.

.Jjgplot-highlighter-tooltip

Highlighter tooltip.

div.jgplot-table-legend-swatch

Colors swatch of the legend.

Additionally style and styleClass options of chart component apply to the container element of
charts, use these attribute to specify the dimensions of a chart.

<p:chart type="pie" model="#{bean.model}" style="width:320px;height:200px” />

In case you'd like to change the colors of series, use the seriesColors option in ChartModel API.

90

PrimeFaces User Guide

3.14.15 Extender

Chart API provide high level access to commonly used jgplot options however there are many more
customization options available in jgplot. Extender feature provide access to low level apis to do
advanced customization by enhancing the configuration object, here is an example to increase
shadow depth of the line series where model's extender property is set to "ext".

<p:chart type="line" model="#{bean.model}" />

function ext() {
//this = chart widget instance
//this.cfg = options
this.cfg.seriesDefaults = {
shadowDepth: 5

iE

Refer to jqPlot docs for available options.

91

3.14.16 Chart API

Axis

org.primefaces.model.chart. Axis

PrimeFaces User Guide

Property Default | Type Description

label null String Title of the axis.

min null Object Minimum boundary value.

max null Object Maximum boundary value.

tickAngle null Integer | Angle of text, measured clockwise.

tickFormat null String Format string to use with the axis tick formatter
tickInterval null String Number of units between ticks.

tickCount null Integer | Desired number of ticks.

AxisType

org.primefaces.model.chart. AxisType

AxisType is an enum to define the type of the axis from X-Y to X9-Y9.

BarChartModel

org.primefaces.model.chart. BarChartModel extends org.primefaces.model.chart. ChartModel
Property Default |Type Description

barPadding 8 Integer Padding between bars.

barMargin 10 Integer Margin between bars.

stacked false Boolean Displays series in stacked format.
BarChartSeries

org.primefaces.model.chart. BarChartSeries extends org.primefaces.model.chart. ChartSeries
Property Default |Type Description

disableStack false Boolean When true, series data is not included in a stacked chart.
BubbleChartModel

org.primefaces.model.chart. BubbleChartModel extends org.primefaces.model.chart. ChartModel
Property Default |Type Description

data null List<BubbleChartSeries> | Data as a list of BubbleChartSeries.
bubbleGradients | false Boolean Displays bubbles with gradients.
bubbleAlpha 1.0 Double Opacity of bubbles.

showLabels true Boolean Displays label of a series inside a bubble.

92

PrimeFaces User Guide

BubbleChartSeries

org.primefaces.model.chart. BarChartSeries extends org.primefaces.model.chart. ChartSeries
Property Default |Type Description

X null Integer X-Axis value of the bubble.

y null Integer Y-Axis value of the bubble.

radius null Integer Radius of the bubble.

label null String Label text of the bubble.

CartesianChartModel

org.primefaces.model.chart. CartesianChartModel

Property Default |Type Description

series null List<ChartSeries> List of series.

axes HashMap | Map<AxisType,Axis> | Map of chart axis.

zoom false Boolean Adds zoom feature when enabled.

animate false Boolean When enabled, series are drawn with an effect.
showDatatip true Boolean Displays a tooltip on hover.

datatipFormat null String Format of the data tooltip.

showPointLabels false Boolean Displays data inline in plot.

CategoryAxis

org.primefaces.model.chart. CategoryAxis extends org.primefaces.model.chart. Axis

CategoryAxis is used when data on the axis does not consists of numbers.

ChartModel

org.primefaces.model.chart. ChartModel

Property Default | Type Description

title null String Title text for the plot

shadow true Boolean |To show shadow or not on series.

seriesColors null String Comma separated list of series colors e.g. "#4BB2C5",
"cceee”

negativeSeriesColors |null String Similar to seriesColors but for negative values.

legendPosition null String Position of the legend like "n" or "ne".

legendCols 0 Integer | Maximum number of columns in the legend.

legendRows 0 Integer | Maximum number of rows in the legend.

legendPlacement null Enum Defines the location of the legend.

mouseoverHighlight |true Boolean |Highlights series on hover.

extender null String Name of javascript function to extend chart with.

ChartSeries

org.primefaces.model.chart. ChartSeries

93

PrimeFaces User Guide

Property Default |Type Description

label null String Title text of the series.

data null Map<Object,Number> Data of the series as a map.
xaxis null AxisType X-Axis of the series.

yaxis null AxisType Y-Axis of the series.
DateAxis

org.primefaces.model.chart.DateAxis extends org.primefaces.model.chart. Axis

DateAxis is used when data on the axis consists of string representations of date values.

DonutChartModel
org.primefaces.model.chart. DonutChartModel extends org.primefaces.model.chart. ChartModel
Property Default |Type Description
data null List>Map<String,Object>> |Data as a list of map instances.
sliceMargin 0 Integer Angular spacing between pie slices in degrees.
fill true Boolean True or False to fill the slices.
showDatalLabels | false Boolean True to False show data labels on slices.
dataFormat percent | String Either ‘label’, ‘value’, ‘percent’ or an array of
labels to place on the pie slices.

HorizontalBarChartModel

org.primefaces.model.chart. HorizontalBarChartModel extends
org.primefaces.model.chart. BarChartModel

HorizontalBarChartModel is an extension to BarChartModel with y-axis used for the categories and
x-axis for the data values.
LineChartSeries

org.primefaces.model.chart.LineChartSeries extends org.primefaces.model.chart. ChartSeries

Property Default Type Description

markerStyle | filledCircle String Style of the markers, valid values are diamond, circle, square,
x, plus, dash, filledDiamond, filledCircle, filledSquare.

showLine true Boolean Whether to actually draw the line or not.

showMarker |true Boolean Displays markes at data points.

fill false Boolean Fills the area between lines.

fillAlpha 1 Double Opacity of the filled area.

disableStack |false Boolean When true, series data is not included in a stacked chart.

LinearAxis

org.primefaces.model.chart.LinearAxis extends org.primefaces.model.chart. Axis

LinearAxis is the Axis implementation used to display numbers.

94

LineChartModel

PrimeFaces User Guide

org.primefaces.model.chart.LineChartModel extends
org.primefaces.model.chart. CartesianChartModel

Property Default |Type Description

stacked null List<ChartSeries> Displays series in stacked format.
breakOnNull HashMap | Map<AxisType,Axis> | Discontinues line plot for null values.
MeterGaugeChartModel

org.primefaces.model.chart. MeterGaugeChartModel extends

org.primefaces.model.chart. ChartModel

Property Default | Type Description

value null Number Value of the gauge.

intervals null List<Number> | List of ranges to be drawn around the gauge.

ticks 0 List<Number> |List of tick values.

gaugelabel true String Label text of the gauge.

gaugelLabelPosition | false String Where to position the label, either ‘inside’ or ‘bottom’.

min null Double Minimum value on the gauge.

max null Double Minimum value on the gauge.

showTickLabels true Boolean Displays tick labels next to ticks.

intervallnnerRadius |null Integer Radius of the inner circle of the interval ring.

intervalOuterRadius | 85 Integer Radius of the outer circle of the interval ring.

labelHeightAdjust |-25 Integer Number of Pixels to offset the label up (-) or down (+)
from its default position.

OhlcChartModel

org.primefaces.model.chart. OhlcChartModel extends org.primefaces.model.chart. ChartModel

Property Default |Type Description
data null List<OhlcChartSeries> | Data as a list of OhlChartSeries.
candleStick false Boolean Displays series as candlestick.

OhlcChartSeries

org.primefaces.model.chart.OhlcChartSeries extends org.primefaces.model.chart. ChartSeries

Property Default |Type Description

value null List<OhlcChartSeries> |Data as a list of OhlChartSeries.
open null Double Open value.

high null Double High value.

low null Double Low value.

close null Double Close value.

PieChartModel

org.primefaces.model.chart. PieChartModel extends org.primefaces.model.chart. ChartModel

95

PrimeFaces User Guide

Property Default |Type Description

data null Map<String,Object> |Data as a Map instance.

diameter null Integer Outer diameter of the pie, auto computed by default
sliceMargin 0 Integer Angular spacing between pie slices in degrees.

fill true Boolean True or False to fill the slices.

showDatalLabels | false Boolean True to False show data labels on slices.

dataFormat percent | String Either ‘label’, ‘value’, ‘percent’ or an array of labels

to place on the pie slices.

96

3.15 Clock

PrimeFaces User Guide

Clock displays server or client datetime live.

Info

Client

02/04/2013 14:44:20

Server

14:44:01 04.02.2013

Tag

clock

Component Class

org.primefaces.component.clock.Clock

Component Type

org.primefaces.component.Clock

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.ClockRenderer

Renderer Class

org.primefaces.component.clock.ClockRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean.

pattern null String Datetime format.

mode client String Mode value, valid values are client and server.

autoSync false Boolean Syncs time periodically in server mode.

synclnterval 60000 Integer Defines the sync in ms interval in autoSync setting.

Getting Started with Clock

Clock has two modes, client (default) and server. In simples mode, datetime is displayed by just
adding component on page. On page load, clock is initialized and start running based on client time.

<p:clock />

97

PrimeFaces User Guide

Server Mode

In server mode, clock initialized itself with the server’s datetime and starts running on client side.
To make sure client clock and server clock is synced, you can enable autoSync option that makes an
ajax call to the server periodically to refresh the server time with client.

DateTime Format

Datetime format used can be changed using pattern attribute.

<p:clock pattern="HH:mm:ss dd.MM.yyyy" />

Skinning

Clock resides in a container element which s#yle and styleClass options apply. Following is the list
of structural style classes;

Style Class Applies

.ui-clock Container element.

98

PrimeFaces User Guide

3.16 Collector

Collector is a simple utility to manage collections declaratively.

Info
Tag collector
ActionListener Class org.primefaces.component.collector.Collector
Attributes
Name Default Type Description
value null Object Value to be used in collection operation
addTo null java.util.Collection Reference to the Collection instance
removeFrom | null java.util.Collection Reference to the Collection instance
unique true Boolean When enabled, rejects duplicate items on addition.

Getting started with Collector

Collector requires a collection and a value to work with. It’s important to override equals and
hashCode methods of the value object to make collector work.

public class BookBean {
private Book book = new Book();
private List<Book> books;

public CreateBookBean() {
books = new Arraylist<Book>();

}

//getters and setters

<p:commandButton value="Add">
<p:collector value="#{bookBean.book}" addTo="#{bookBean.books}" />
</p: commandButton>

<p:commandLink value="Remove">
<p value="#{book}" removeFrom="#{createBookBean.books}" />
</p:commandLink>

99

PrimeFaces User Guide

3.17 Color Picker

ColorPicker is an input component with a color palette.

Info

Tag

colorPicker

Component Class

org.primefaces.component.colorpicker.ColorPicker

Component Type

org.primefaces.component.ColorPicker

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.ColorPickerRenderer

Renderer Class

org.primefaces.component.colorpicker.ColorPickerRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component.

converter null Converter/Str | An el expression or a literal text that defines a

ing converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate false Boolean When set true, process validations logic is
executed at apply request values phase for this
component.

required false Boolean Marks component as required.

validator null MethodExpr | A method expression that refers to a method for

validation the input.

100

PrimeFaces User Guide

Name Default Type Description
valueChangeListener | null ValueChange | A method binding expression that refers to a
Listener method for handling a valuchangeevent.

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

widgetVar null String Name of the client side widget.

mode popup String Display mode, valid values are “popup” and
“inline”.

style null String Inline style of the component.

styleClass null String Style class of the component.

Getting started with ColorPicker

ColorPicker’s value should be a hex string.

}

}

public class Bean {

private String color;

public String getColor() {
return this.color;

public void setColor(String color) {
this.color = color;

<p:colorPicker value="#{bean.color}" />

Display Mode

ColorPicker has two modes, default mode is popup and other available option is inline.

<p:colorPicker value="#{bean.color}" mode="inline"/>

101

PrimeFaces User Guide

Skinning

ColorPicker resides in a container element which style and styleClass options apply. Following is
the list of structural style classes;

Style Class Applies
.ui-colorpicker Container element.
.ui-colorpicker_color Background of gradient.
.ui-colorpicker hue Hue element.
.ui-colorpicker new_color New color display.

.ui-colorpicker current color | Current color display.

.ui-colorpicker-rgb-r Red input.
.ui-colorpicker-rgb-g Greed input.
.ui-colorpicker-rgb-b Blue input.
.ui-colorpicker-rgb-h Hue input.
.ui-colorpicker-rgb-s Saturation input.
.ui-colorpicker-rgb-b Brightness input.
.ui-colorpicker-rgb-hex Hex input.

102

PrimeFaces User Guide

3.18 Column

Column is an extended version of the standard column used by various components like datatable,
treetable and more.

Info

Tag column

Component Class org.primefaces.component.column.Column

Component Type

org.primefaces.component.Column

Component Family

org.primefaces.component

Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean
style null String Inline style of the column.
styleClass null String Style class of the column.
sortBy null ValueExpr ValueExpression to be used for sorting.
sortFunction null MethodExpr | Custom pluggable sortFunction.
filterBy null ValueExpr ValueExpression to be used for filtering.
filterStyle null String Inline style of the filter element
filterStyleClass null String Style class of the filter element
filterOptions null Object A collection of selectitems for filter dropdown.
filterMatchMode | startsWith | String Match mode for filtering.
rowspan 1 Integer Defines the number of rows the column spans.
colspan 1 Integer Defines the number of columns the column spans.
headerText null String Shortcut for header facet.
footerText null String Shortcut for footer facet.
selectionMode null String Enables selection mode.
disabledSelection | false Boolean Disables row selection.

103

PrimeFaces User Guide

Name Default Type Description
filterMaxLength | null Integer Maximum number of characters for an input filter.
resizable true Boolean Specifies resizable feature at column level. Datatable's

resizableColumns must be enabled to use this option.

width null String Width in pixels or percentage.

exportable true Boolean Defines if the column should be exported by
dataexporter.

filterValue null Object Value of the filter field.

toggleable true Boolean Defines if panel is toggleable by columnToggler

component. Default value is true and a false value marks
the column as static.

filterFunction null MethodExpr | Custom implementation to filter a value against a
constraint.
field null String Name of the field to pass lazy load method for filtering

and sorting. If not specified, filterBy-sortBy values are
used to identify the field name.

Getting Started with Column

As column is a reused component, see documentation of components that use a column.

Note

Not all attributes of column are implemented by the components that utilize column.

104

3.19 Columns

Columns is used by datatable to create columns dynamically.

Info

PrimeFaces User Guide

Tag

columns

Component Class

org.primefaces.component.column.Columns

Component Type

org.primefaces.component.Columns

Component Family

org.primefaces.component

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

value null Object Data to represent columns.

var null String Name of iterator to access a column.

style null String Inline style of the column.

styleClass null String Style class of the column.

sortBy null ValueExpr ValueExpression to be used for sorting.

sortFunction null MethodExpr | Custom pluggable sortFunction.

filterBy null ValueExpr ValueExpression to be used for filtering.

filterStyle null String Inline style of the filter element

filterStyleClass null String Style class of the filter element

filterOptions null Object A collection of selectitems for filter dropdown.

filterMatchMode | startsWith | String Match mode for filtering.

rowspan 1 Integer Defines the number of rows the column spans.

colspan 1 Integer Defines the number of columns the column spans.

headerText null String Shortcut for header facet.

footerText null String Shortcut for footer facet.

105

PrimeFaces User Guide

Name Default Type Description

filterMaxLength | null Integer Maximum number of characters for an input filter.

resizable true Boolean Specifies resizable feature at column level. Datatable's
resizableColumns must be enabled to use this option.

width null String Width in pixels or percentage.

exportable true Boolean Defines if the column should be exported by
dataexporter.

columnIndexVar | null String Name of iterator to refer each index.

filterValue null Object Value of the filter field.

toggleable true Boolean Defines if panel is toggleable by columnToggler
component. Default value is true and a false value marks
the column as static.

filterFunction null MethodExpr | Custom implementation to filter a value against a
constraint.

field null String Name of the field to pass lazy load method for filtering

and sorting. If not specified, filterBy-sortBy values are
used to identify the field name.

Getting Started with Columns

See dynamic columns section in datatable documentation for detailed information.

106

PrimeFaces User Guide

3.20 ColumnGroup

ColumnGroup is used by datatable for column grouping.

Info
Tag columnGroup
Component Class org.primefaces.component.columngroup.ColumnGroup
Component Type org.primefaces.component. ColumnGroup
Component Family org.primefaces.component

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

type null String Type of group, valid values are “header” and “footer”.

Getting Started with ColumnGroup

See grouping section in datatable documentation for detailed information.

107

3.21 CommandButton

PrimeFaces User Guide

CommandButton is an extended version of standard commandButton with ajax and theming.

Ajax Submit

Info

Non-Ajax Submit

B With lcon [a]

Tag

commandButton

Component Class

org.primefaces.component.commandbutton.CommandButton

Component Type

org.primefaces.component.CommandButton

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.CommandButtonRenderer

Renderer Class

org.primefaces.component.commandbutton.CommandButtonRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean

value null String Label for the button

action null MethodExpr/ | A method expression or a String outcome that’d be

String processed when button is clicked.

actionListener null MethodExpr | An actionlistener that’d be processed when button is
clicked.

immediate false Boolean Boolean value that determines the phaseld, when true
actions are processed at apply request values, when
false at invoke application phase.

type submit | String Sets the behavior of the button.

ajax true Boolean Specifies the submit mode, when set to true(default),
submit would be made with Ajax.

async false Boolean When set to true, ajax requests are not queued.

process null String Component(s) to process partially instead of whole view.

update null String Component(s) to be updated with ajax.

108

PrimeFaces User Guide

Name Default Type Description

onstart null String Client side callback to execute before ajax request is
begins.

oncomplete null String Client side callback to execute when ajax request is
completed.

onsuccess null String Client side callback to execute when ajax request
succeeds.

onerror null String Client side callback to execute when ajax request fails.

global true Boolean Defines whether to trigger ajaxStatus or not.

delay null String If less than delay milliseconds elapses between calls to
request() only the most recent one is sent and all other
requests are discarded. If this option is not specified, or if
the value of delay is the literal string 'none' without the
quotes, no delay is used.

partialSubmit false Boolean Enables serialization of values belonging to the partially
processed components only.

resetValues false Boolean If true, local values of input components to be updated
within the ajax request would be reset.

ignoreAutoUpdate | false Boolean If true, components which autoUpdate="true" will not be
updated for this request. If not specified, or the value is
false, no such indication is made.

timeout 0 Integer Timeout for the ajax request in milliseconds.

style null String Inline style of the button element.

styleClass null String StyleClass of the button element.

onblur null String Client side callback to execute when button loses focus.

onchange null String Client side callback to execute when button loses focus
and its value has been modified since gaining focus.

onclick null String Client side callback to execute when button is clicked.

ondblclick null String Client side callback to execute when button is double
clicked.

onfocus null String Client side callback to execute when button receives
focus.

onkeydown null String Client side callback to execute when a key is pressed
down over button.

onkeypress null String Client side callback to execute when a key is pressed and
released over button.

onkeyup null String Client side callback to execute when a key is released

over button.

109

PrimeFaces User Guide

Name Default Type Description

onmousedown null String Client side callback to execute when a pointer button is
pressed down over button.

onmousemove null String Client side callback to execute when a pointer button is
moved within button.

onmouseout null String Client side callback to execute when a pointer button is
moved away from button.

onmouseover null String Client side callback to execute when a pointer button is
moved onto button.

onmouseup null String Client side callback to execute when a pointer button is
released over button.

onselect null String Client side callback to execute when text within button is
selected by user.

accesskey null String Access key that when pressed transfers focus to the
button.

alt null String Alternate textual description of the button.

dir null String Direction indication for text that does not inherit
directionality. Valid values are LTR and RTL.

disabled false Boolean Disables the button.

image null String Style class for the button icon. (deprecated: use icon)

label null String A localized user presentable name.

lang null String Code describing the language used in the generated
markup for this component.

tabindex null Integer Position of the button element in the tabbing order.

title null String Advisory tooltip information.

readonly false Boolean Flag indicating that this component will prevent changes
by the user.

icon null String Icon of the button as a css class.

iconPos left String Position of the icon.

inline false String Used by PrimeFaces mobile only.

escape true Boolean Defines whether label would be escaped or not.

widgetVar null String Name of the client side widget.

110

PrimeFaces User Guide

Getting started with CommandButton

CommandButton usage is similar to standard commandButton, by default commandButton submits
its enclosing form with ajax.

<p:commandButton value="Save" actionlListener="#{bookBean.saveBook}" />

public class BookBean {

public void saveBook() {
//Save book

}

Reset Buttons

Reset buttons do not submit the form, just resets the form contents.

<p:commandButton type="reset" value="Reset" />

Push Buttons

Push buttons are used to execute custom javascript without causing an ajax/non-ajax request. To
create a push button set type as "button".

<p:commandButton type="button" value="Alert" onclick="alert(‘Prime)" />

AJAX and Non-AJAX

CommandButton has built-in ajax capabilities, ajax submit is enabled by default and configured
using ajax attribute. When ajax attribute is set to false, form is submitted with a regular full page
refresh.

The update attribute is used to partially update other component(s) after the ajax response is
received. Update attribute takes a comma or white-space separated list of JSF component ids to be
updated. Basically any JSF component, not just PrimeFaces components should be updated with the
Ajax response. In the following example, form is submitted with ajax and display outputText is
updated with the ajax response.

<h:form>
<h:inputText value="#{bean.text}" />
<p:commandButton value="Submit" update="display"/>
<h:outputText value="#{bean.text}" id="display" />
</h:form>

Tip: You can use the ajaxStatus component to notify users about the ajax request.

111

PrimeFaces User Guide

Icons

An icon on a button is provided using icon option. iconPos is used to define the position of the
button which can be “left” or “right”.

<p:commandButton value="With Icon" icon="disk"/>
<p:commandButton icon="disk"/>

.disk is a simple css class with a background property;

.disk {
background-image: url(‘disk.png’) !important;

}

You can also use the pre-defined icons from ThemeRoller like ui-icon-search.

Client Side API
Widget: PrimeFaces.widget. CommandButton

Method Params Return Type Description
disable() - void Disables button
enable() - void Enables button
Skinning

CommandButton renders a button tag which style and styleClass applies. Following is the list of
structural style classes;

Style Class Applies
.ui-button Button element
.ui-button-text-only Button element when icon is not used
.ui-button-text Label of button

As skinning style classes are global, see the main theming section for more information.

112

PrimeFaces User Guide

3.22 CommandLink

CommandLink extends standard JSF commandLink with Ajax capabilities.

Info

Tag

commandLink

Component Class

org.primefaces.component.commandlink.CommandLink

Component Type

org.primefaces.component.CommandLink

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.CommandLinkRenderer

Renderer Class

org.primefaces.component. commandlink.CommandLinkRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null String Href value of the rendered anchor.

action null MethodExpr/ | A method expression or a String outcome that’d be

String processed when link is clicked.

actionListener null MethodExpr | An actionlistener that’d be processed when link is
clicked.

immediate false Boolean Boolean value that determines the phaseld, when true
actions are processed at apply request values, when
false at invoke application phase.

async false Boolean When set to true, ajax requests are not queued.

process null String Component(s) to process partially instead of whole
view.

ajax true Boolean Specifies the submit mode, when set to true(default),
submit would be made with Ajax.

update null String Component(s) to be updated with ajax.

onstart null String Client side callback to execute before ajax request is
begins.

113

PrimeFaces User Guide

Name Default Type Description

oncomplete null String Client side callback to execute when ajax request is
completed.

onsuccess null String Client side callback to execute when ajax request
succeeds.

onerror null String Client side callback to execute when ajax request fails.

global true Boolean Defines whether to trigger ajaxStatus or not.

delay null String If less than delay milliseconds elapses between calls to

request() only the most recent one is sent and all other
requests are discarded. If this option is not specified, or
if the value of delay is the literal string 'none' without
the quotes, no delay is used.

partialSubmit false Boolean Enables serialization of values belonging to the partially
processed components only.

resetValues false Boolean If true, local values of input components to be updated
within the ajax request would be reset.

ignoreAutoUpdate | false Boolean If true, components which autoUpdate="true" will not
be updated for this request. If not specified, or the value
is false, no such indication is made.

timeout 0 Integer Timeout for the ajax request in milliseconds.

style null String Style to be applied on the anchor element

styleClass null String StyleClass to be applied on the anchor element

onblur null String Client side callback to execute when link loses focus.

onclick null String Client side callback to execute when link is clicked.

ondblclick null String Client side callback to execute when link is double
clicked.

onfocus null String Client side callback to execute when link receives focus.

onkeydown null String Client side callback to execute when a key is pressed

down over link.

onkeypress null String Client side callback to execute when a key is pressed
and released over link.

onkeyup null String Client side callback to execute when a key is released
over link.
onmousedown null String Client side callback to execute when a pointer button is

pressed down over link.

onmousemove null String Client side callback to execute when a pointer button is
moved within link.

114

PrimeFaces User Guide

Name Default Type Description

onmouseout null String Client side callback to execute when a pointer button is
moved away from link.

onmouseover null String Client side callback to execute when a pointer button is
moved onto link.

onmouseup null String Client side callback to execute when a pointer button is
released over link.

accesskey null String Access key that when pressed transfers focus to the link.

charset null String Character encoding of the resource designated by this
hyperlink.

coords null String Position and shape of the hot spot on the screen for

client use in image maps.

dir null String Direction indication for text that does not inherit
directionality. Valid values are LTR and RTL.

disabled null Boolean Disables the link
hreflang null String Languae code of the resource designated by the link.
rel null String Relationship from the current document to the anchor

specified by the link, values are provided by a space-
separated list of link types.

rev null String A reverse link from the anchor specified by this link to
the current document, values are provided by a space-
separated list of link types.

shape null String Shape of hot spot on the screen, valid values are default,
rect, circle and poly.

tabindex null Integer Position of the button element in the tabbing order.

target null String Name of a frame where the resource targeted by this
link will be displayed.

title null String Advisory tooltip information.

type null String Type of resource referenced by the link.

Getting Started with CommandLink

CommandLink is used just like the standard h:commandLink, difference is form is submitted with
ajax by default.

public class BookBean {

public void saveBook() {
//Save book

}

115

PrimeFaces User Guide

<p:commandLink actionListener="#{bookBean.saveBook}">
<h:outputText value="Save" />
</p: commandLink>

Skinning

CommandLink renders an html anchor element that style and styleClass attributes apply.

116

3.23 Confirm

PrimeFaces User Guide

Confirm is a behavior element used to integrate with global confirm dialog.

Info
Tag confirm
Behavior Id org.primefaces.behavior.ConfirmBehavior
Attributes
Name Default Type Description
header null String Header of confirm dialog.
message null String Message to display in confirm dialog.
icon null String Icon to display next to message.

Getting started with Confirm

See global confirm dialog topic in next section for details.

117

PrimeFaces User Guide

3.24 ConfirmDialog

ConfirmDialog is a replacement to the legacy javascript confirmation box. Skinning, customization
and avoiding popup blockers are notable advantages over classic javascript confirmation.

Are you sure about destroying the world?

Mot Yet Yes Sure
Info
Tag confirmDialog
Component Class org.primefaces.component.confirmdialog.ConfirmDialog
Component Type org.primefaces.component.ConfirmDialog

Component Family org.primefaces.component

Renderer Type org.primefaces.component.ConfirmDialogRenderer
Renderer Class org.primefaces.component.confirmdialog.ConfirmDialogRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean | Boolean value to specify the rendering of the component,

when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean

widgetVar null String Name of the client side widget.
message null String Text to be displayed in body.

header null String Text for the header.

severity null String Message severity for the displayed icon.
width auto Integer | Width of the dialog in pixels

height auto Integer Width of the dialog in pixels

style null String Inline style of the dialog container.
styleClass null String Style class of the dialog container

118

PrimeFaces User Guide

Name Default Type Description
closable true Boolean | Defines if close icon should be displayed or not
appendTo false Boolean | Appends the dialog to the element defined by the given
search expression.
visible false Boolean | Whether to display confirm dialog on load.
showEffect null String Effect to use on showing dialog.
hideEffect null String Effect to use on hiding dialog.
closeOnEscape false Boolean | Defines if dialog should hide on escape key.
dir Itr String Defines text direction, valid values are /[t and rz/.
global false Boolean | When enabled, confirmDialog becomes a shared for other

components that require confirmation.

Getting started with ConfirmDialog

ConfirmDialog has two modes; global and non-global. Non-Global mode is almost same as the
dialog component used with a simple client side api, show() and hide().

<h:form>
<p:commandButton type="button" onclick="PF('cd"').show()" />

<p:confirmDialog message="Are you sure about destroying the world?"
header="Initiating destroy process" severity="alert"
widgetVar="cd">
<p:commandButton value="Yes Sure" actionlListener="#{buttonBean.destroyWorld}"
update="messages" oncomplete="PF('cd').hide()"/>
<p:commandButton value="Not Yet" onclick="PF('cd').hide();" type="button" />
</p:confirmDialog>
</h:form>

Message and Severity

Message can be defined in two ways, either via message option or message facet. Message facet is
useful if you need to place custom content instead of simple text. Note that header can also be
defined using the header attribute or the header facet. Severity defines the icon to display next to
the message, default severity is alert and the other option is info.

<p:confirmDialog widgetVar="cd" header="Confirm”>
<f:facet name="message">
<h:outputText value="Are you sure?" />
</f:facet>
//content
</p:confirmDialog>

Global

Creating a confirmDialog for a specific action is a repetitive task, to solve this global confirmDialog
which is a singleton has been introduced. Trigger components need to have p:confirm behavior to

119

PrimeFaces User Guide

use the confirm dialog. Component that trigger the actual command in dialog must have wui-confirm-
dialog-yes style class, similarly component to cancel the command must have ui-confirm-dialog-no.
At the moment p:confirm is supported by p:commandButton and p:commandLink.

<p:growl id="messages" />

</p: commandButton>
<p:confirmDialog global="true">
icon="ui-1icon-check"/>

icon="ui-icon-close"/>
</p:confirmDialog>

<p:commandButton value="Save" actionListener="#{bean.save}" update="messages">
<p:confirm header="Confirmation" message="Sure?" icon="ui-icon-alert"/>

<p:commandButton value="Yes" type="button" styleClass="ui-confirmdialog-yes"

<p:commandButton value="No" type="button" styleClass="ui-confirmdialog-no"

Client Side API
Widget: PrimeFaces.widget. ConfirmDialog
Method Params Return Type Description
show() - void Displays dialog.
hide() - void Closes dialog.
Skinning

ConfirmDialog resides in a main container element which s#yle and styleClass options apply. As
skinning style classes are global, see the main theming section for more information. Following is

the list of structural style classes;

Style Class Applies
.ui-dialog Container element of dialog
.ui-dialog-titlebar Title bar
.ui-dialog-title Header text
.ui-dialog-titlebar-close Close icon
.ui-dialog-content Dialog body

.ui-dialog-buttonpane

Footer button panel

120

PrimeFaces User Guide

3.25 ContentFlow

ContentFlow is a horizontal content gallery component with a slide animation.

galleria5.jpg

Info

Tag contentFlow

Component Class org.primefaces.component.contentflow.ContentFlow

Component Type org.primefaces.component.ContentFlow

Component Family org.primefaces.component

Renderer Type org.primefaces.component.ContentFlowRenderer

Renderer Class org.primefaces.component.contentflow.ContentFlowRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean.

widgetVar null String Name of the client side widget.

value null String Collection of items to display.

var null String Name of the iterator to display an item.

style null String Inline style of the component.

styleClass null String Style class of the component.

121

PrimeFaces User Guide

Getting Started with ContentFlow

ContentFlow requires content as children that can either be defined dynamically using iteration or
one by one. Each item must have the content style class applied as well.

Static Images

<p:contentFlow>
<p:graphicImage value="/images/photol.jpg" styleClass="content" />
<p:graphicImage value="/images/photo2.jpg" styleClass="content" />
<p:graphicImage value="/images/photo2.jpg" styleClass="content" />
</p:contentFlow>

Dynamic Images

<p:contentFlow var="image" value="#{bean.images}">
<p:graphicImage value="/images/#{image}" styleClass="content" />
</p:contentFlow>

Caption

To present a caption along with an item, embed a div with "caption" style class inside.

<p:contentFlow var="image" value="#{bean.images}">
<p:graphicImage value="#{image.path}" styleClass="content" />
<div class="caption">#{image.title}</div>

</p:contentFlow>

Skinning

ContentFlow resides in a container element which style and styleClass options apply. As skinning
style classes are global, see the main theming section for more information. Following is the list of
structural style classes;

Style Class Applies
.ui-contentflow Container element.
flow Container of item list
.item Item container
.caption Caption element

122

PrimeFaces User Guide

3.26 ContextMenu

ContextMenu provides an overlay menu displayed on mouse right-click event.

B Save
£ Update
X Delete

! Homepage

Info
Tag contextMenu
Component Class org.primefaces.component.contextmenu.ContextMenu
Component Type org.primefaces.component.ContextMenu

Component Family org.primefaces.component

Renderer Type org.primefaces.component.ContextMenuRenderer
Renderer Class org.primefaces.component.contextmenu.ContextMenuRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean Boolean value to specify the rendering of the component,

when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean

widgetVar null String Name of the client side widget.

for null String Id of the component to attach to

style null String Style of the main container element

styleClass null String Style class of the main container element

model null MenuModel | Menu model instance to create menu programmatically.
nodeType null String Specific type of tree nodes to attach to.

event null String Event to bind contextMenu display, default is

contextmenu aka right click.

beforeShow null String Client side callback to execute before showing.

selectionMode | multiple String Defines the selection behavior, e.g "single" or "multiple".

123

PrimeFaces User Guide

Getting started with ContextMenu

ContextMenu is created with submenus and menuitems. Optional for attribute defines which
component the contextMenu is attached to. When for is not defined, contextMenu is attached to the
page meaning, right-click on anywhere on page will display the menu.

<p:contextMenu>
<p:menuitem value="Save" actionlListener="#{bean.save}" update="msg"/>
<p:menuitem value="Delete" actionlListener="#{bean.delete}" ajax="false"/>
<p:menuitem value="Go Home" url="www.primefaces.org" target="_blank"/>
</p:contextMenu

ContextMenu example above is attached to the whole page and consists of three different
menuitems with different use cases. First menuitem triggers an ajax action, second one triggers a
non-ajax action and third one is used for navigation.

Attachment

ContextMenu can be attached to any JSF component, this means right clicking on the attached
component will display the contextMenu. Following example demonstrates an integration between
contextMenu and imageSwitcher, contextMenu here is used to navigate between images.

<p:imageSwitch id="images" widgetVar="gallery" slideshowAuto="false">
<p:graphicImage value="/images/naturel.jpg" />
<p:graphicImage value="/images/nature2.jpg" />
<p:graphicImage value="/images/nature3.jpg" />
<p:graphicImage value="/images/nature4.jpg" />
</p:imageSwitch>

<p:contextMenu for="images">
<p:menuitem value="Previous" url="#" onclick="PF('gallery').previousQ)" />
<p:menuitem value="Next" url="#" onclick="PF('gallery').next(Q)" />
</p:contextMenu>

Now right-clicking anywhere on an image will display the contextMenu like;

Previous
Mext

Remove All

Data Components

Data components like datatable, tree and treeTable has special integration with context menu, see
the documentation of these component for more information.

124

http://www.primefaces.org/

PrimeFaces User Guide

Dynamic Menus

ContextMenus can be created programmatically as well, see the dynamic menus part in menu
component section for more information and an example.

Skinning

ContextMenu resides in a main container which style and styleClass attributes apply. Following is
the list of structural style classes;

Style Class Applies
.ui-contextmenu Container element of menu
.ui-menu-list List container
.ui-menuitem Each menu item
.ui-menuitem-link Anchor element in a link item
.ui-menuitem-text Text element in an item

As skinning style classes are global, see the main theming section for more information.

125

PrimeFaces User Guide

3.27 Dashboard

Dashboard provides a portal like layout with drag&drop based reorder capabilities.

Finance Content Lifestyle Content Sports Content

Politics Content Weather Content

Info

Tag

dashboard

Component Class

org.primefaces.component.dashboard.Dashboard

Component Type

org.primefaces.component.Dashboard

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.DashboardRenderer

Renderer Class

org.primefaces.component.dashboard.DashboardRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Name of the client side widget

model null Dashboard | Dashboard model instance representing the layout of

Model the UL

disabled false Boolean Disables reordering feature.

style null String Inline style of the dashboard container

styleClass null String Style class of the dashboard container

126

PrimeFaces User Guide

Getting started with Dashboard

Dashboard is backed by a DashboardModel and consists of panel components.

<p:dashboard model="#{bean.model}">
<p:panel id="sports">
//Sports Content
</p:panel>
<p:panel id="finance">
//Finance Content
</p:panel>

//more panels like lifestyle, weather, politics...
</p:dashboard>

Dashboard model simply defines the number of columns and the widgets to be placed in each
column. See the end of this section for the detailed Dashboard API.

public class Bean {
private DashboardModel model;

public Bean() {
model = new DefaultDashboardModel();
DashboardColumn columnl = new DefaultDashboardColumn();
DashboardColumn column2 = new DefaultDashboardColumn();
DashboardColumn column3 = new DefaultDashboardColumn();

columnl.addWidget("sports");
columnl.addWidget("finance");
column2.addWidget("lifestyle™);
column2.addWidget("weather");
column3.addWidget("politics™);

model .addColumn(columnl);
model .addColumn(column2);
model .addColumn(column3);

State

Dashboard is a stateful component, whenever a widget is reordered dashboard model will be
updated, by persisting the user changes so you can easily create a stateful dashboard.

Ajax Behavior Events

“reorder” is the one and only ajax behavior event provided by dashboard, this event is fired when
dashboard panels are reordered. A defined listener will be invoked by passing an
org.primefaces.event. DashboardReorderEvent instance containing information about reorder.

Following dashboard displays a message about the reorder event

127

PrimeFaces User Guide

<p:dashboard model="#{bean.model}">
<p:ajax event="reorder” update="messages” listener="#{bean.handleReorder}” />
//panels

</p:dashboard>

<p:growl id="messages" />

public class Bean {

public void handleReorder(DashboardReorderEvent event) {
String widgetId = event.getWidgetId();
int widgetIndex = event.getItemIndex();
int columnIndex = event.getColumnIndex();
int senderColumnIndex = event.getSenderColumnIndex();

//Add facesmessage

If a widget is reordered in the same column, senderColumnindex will be null. This field is
populated only when a widget is transferred to a column from another column. Also when the
listener is invoked, dashboard has already updated it’s model.

Disabling Dashboard

If you'd like to disable reordering feature, set disabled option to true.

<p:dashboard disabled="true" ...>
//panels
</p:dashboard>

Toggle, Close and Options Menu

Widgets presented in dashboard can be closable, toggleable and have options menu as well,
dashboard doesn’t implement these by itself as these features are already provided by the panel
component. See panel component section for more information.

<p:dashboard model="#{dashboardBean.model}">
<p:panel id="sports" closable="true" toggleable="true">
//Sports Content
</p:panel>
</p:dashboard>

New Widgets

Draggable component is used to add new widgets to the dashboard. This way you can add new
panels from outside of the dashboard.

128

PrimeFaces User Guide

<p:dashboard model="#{dashboardBean.model}" id="board">
//panels
</p:dashboard>
<p:panel id="newwidget" />
<p:draggable for="newwidget" helper="clone" dashboard="board" />

Skinning

Dashboard resides in a container element which style and styleClass options apply. Following is the
list of structural style classes;

Style Class Applies
.ui-dashboard Container element of dashboard
.ui-dashboard-column Each column in dashboard
div.ui-state-hover Placeholder

As skinning style classes are global, see the main theming section for more information. Here is an
example based on a different theme;

Lifestyle
Lifestyle Content Sports Content

Finance Content

Politics ‘Weather

Weather Content

Politics Content

Tips

* Provide a column width using ui-dashboard-column style class otherwise empty columns might
not receive new widgets.

Dashboard Model API

org.primefaces.model.DashboardModel (org.primefaces.model.map.DefaultDashboardModel is the
default implementation)

Method Description
void addColumn(DashboardColumn column) Adds a column to the dashboard
List<DashboardColumn> getColumns() Returns all columns in dashboard
int getColumnCount() Returns the number of columns in dashboard
DashboardColumn getColumn(int index) Returns the dashboard column at given index
void transferWidget(DashboardColumn from, Relocates the widget identifed with widget id to the
DashboardColumn to, String widgetld, int index) | given index of the new column from old column.

129

PrimeFaces User Guide

org.primefaces.model.DashboardColumn (org.primefaces.model.map.DefaultDashboardModel is
the default implementation)

Method Description
void removeWidget(String widgetld) Removes the widget with the given id
List<String> getWidgets() Returns the ids of widgets in column
int getWidgetCount() Returns the count of widgets in column
String getWidget(int index) Returns the widget id with the given index
void addWidget(String widgetld) Adds a new widget with the given id
void addWidget(int index, String widgetld) Adds a new widget at given index
void reorderWidget(int index, String widgetld) Updates the index of widget in column

130

PrimeFaces User Guide

3.28 DataExporter

DataExporter is handy for exporting data listed using a Primefaces Datatable to various formats
such as excel, pdf, csv and xml.

Info
Tag dataExporter
Tag Class org.primefaces.component.export.DataExporterTag
ActionListener Class org.primefaces.component.export.DataExporter
Attributes
Name Default Type Description
type null String Export type: "xIs","pdf","csv", "xml"
target null String Id of the datatable whose data to export.
fileName null String Filename of the generated export file, defaults to
datatable id.
pageOnly 0 String Exports only current page instead of whole dataset
preProcessor null MethodExpr PreProcessor for the exported document.
postProcessor null MethodExpr PostProcessor for the exported document.
encoding UTF-8 Boolean Character encoding to use
selectionOnly 0 Boolean When enabled, only selection would be exported.

Getting Started with DataExporter

DataExporter is nested in a UICommand component such as commandButton or commandLink. For
pdf exporting itext and for xIs exporting poi libraries are required in the classpath. Target must
point to a PrimeFaces Datatable. Assume the table to be exported is defined as;

<p:dataTable id="tableId" ...>
//columns
</p:dataTable>

Excel export

<p:commandButton value="Export as Excel" ajax="false">
<p:dataExporter type="xls" target="tableId" fileName="cars"/>
</p:commandButton>

131

PrimeFaces User Guide

PDF export

<p:commandButton value="Export as PDF" ajax="false" >
<p:dataExporter type="pdf" target="tableId" fileName="cars"/>
</p: commandButton>

CSV export

<p:commandButton value="Export as CSV" ajax="false" >
<p:dataExporter type="csv" target="tableld" fileName="cars"/>
</p: commandButton>

XML export

<p:commandButton value="Export as XML" ajax="false" >
<p:dataExporter type="xml" target="tableld" fileName="cars"/>
</p: commandLink>

PageOnly

By default dataExporter works on whole dataset, if you’d like export only the data displayed on
current page, set pageOnly to true.

<p:dataExporter type="pdf" target="tableId" fileName="cars" pageOnly="true"/>

Excluding Columns

In case you need one or more columns to be ignored set exportable option of column to false.

<p:column exportable="false">
//. ..
</p:column>

Monitor Status

DataExport is a non-ajax process so ajaxStatus component cannot apply. See FileDownload
Monitor Status section to find out how monitor export process. Same solution applies to data export
as well.

Pre and Post Processors

Processors are handy to customize the exported document (e.g. add logo, caption ...). PreProcessors
are executed before the data is exported and PostProcessors are processed after data is included in
the document. Processors are simple java methods taking the document as a parameter.

Change Excel Table Header

First example of processors changes the background color of the exported excel’s headers.

132

PrimeFaces User Guide

<h:commandButton value="Export as XLS">
<p:dataExporter type="xls" target="tableId" fileName="cars"
postProcessor="#{bean.postProcessXLS}"/>
</h:commandButton>

public void postProcessXLS(Object document) {
HSSFWorkbook wb = (HSSFWorkbook) document;
HSSFSheet sheet = wb.getSheetAt(0);
HSSFRow header = sheet.getRow(0);
HSSFCellStyle cellStyle = wb.createCellStyle();
cellStyle.setFillForegroundColor(HSSFColor.GREEN. index);
cellStyle.setFillPattern(HSSFCellStyle.SOLID_FOREGROUND);

for(int i=0; i < header.getPhysicalNumberOfCells();i++) {
header.getCell(i).setCellStyle(cellStyle);
ks

Add Logo to PDF

This example adds a logo to the PDF before exporting begins.

<h:commandButton value="Export as PDF">
<p:dataExporter type="pdf" target="tableId" fileName="cars"
preProcessor="#{bean.preProcessPDF}"/>
</h:commandButton>

public void preProcessPDF(Object document) throws IOException,
BadElementException, DocumentException {
Document pdf = (Document) document;
ServletContext servletContext = (ServletContext)
FacesContext.getCurrentInstance().getExternalContext().getContext();
String logo = servletContext.getRealPath("") + File.separator + "images" +
File.separator + "prime_logo.png";
pdf .add(Image.getInstance(logo));
}

133

PrimeFaces User Guide

3.29 DataGrid

DataGrid displays a collection of data in a grid layout.

(1 0f 5) B:z: 45 P E]
[seomsa
O

1965 1960 2009
ESN LN 4

[l o

1975 2006 1961
Q & Q
o v
1977 1991 15584
Q & Q
40 ¥ &
1980 1977 1995
Q & &
(10f5) B:: 5 2T
Info
Tag dataGrid
Component Class org.primefaces.component.datagrid.DataGrid
Component Type org.primefaces.component.DataGrid
Component Family org.primefaces.component
Renderer Type org.primefaces.component.DataGridRenderer
Renderer Class org.primefaces.component.datagrid.DataGridRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean | Boolean value to specify the rendering of the
component, when set to false component will
not be rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

134

PrimeFaces User Guide

Name Default Type Description
value null Object Data to display.
var null String Name of the request-scoped variable used to

refer each data.

TOWS null Integer Number of rows to display per page.

first 0 Integer Index of the first row to be displayed
widgetVar null String Name of the client side widget.

columns 3 Integer Number of columns in grid.

paginator false boolean | Enables pagination.

paginatorTemplate null String Template of the paginator.
rowsPerPageTemplate null String Template of the rowsPerPage dropdown.
currentPageReportTemplate | null String Template of the currentPageReport UI.
pageLinks 10 Integer Maximum number of page links to display.
paginatorPosition both String Position of the paginator.
paginatorAlwaysVisible true Boolean | Defines if paginator should be hidden if total

data count is less than number of rows per page.

style null String Inline style of the datagrid.

styleClass null String Style class of the datagrid.

rowIndex Var null String Name of the iterator to refer each row index.

lazy false Boolean | Defines if lazy loading is enabled for the data

component.

emptyMessage No records | String Text to display when there is no data to display.
found.

layout tabular String Layout approach to use, valid values are

"tabular" and "grid" for responsive grid.

Getting started with the DataGrid
A list of cars will be used throughout the datagrid, datalist and datatable examples.

public class Car {

private String model;
private int year;

private String manufacturer;
private String color;

135

PrimeFaces User Guide

The code for CarBean that would be used to bind the datagrid to the car list.

public class CarBean {
private List<Car> cars;

public CarBean() {
cars = new ArraylList<Car>(Q);
cars.add(new Car("myModel",2005, "ManufacturerX","blue™));
//add more cars

}

public List<Car> getCars() {
return cars;

}

<p:dataGrid var="car" value="#{carBean.cars}" columns="3" rows="12">

<p:column>
<p:panel header="#{car.model}">
<h:panelGrid columns="1">
<p:graphicImage value="/images/cars/#{car .manufacturer}.jpg"/>

<h:outputText value="#{car.year}" />
</h:panelGrid>
</p:panel>
</p:column>

</p:.dataGrid>

This datagrid has 3 columns and 12 rows. As datagrid extends from standard UlData, rows
correspond to the number of data to display not the number of rows to render so the actual number
of rows to render is rows/columns = 4. As a result datagrid is displayed as;

¢

1978 1991 1991

1992 1992 2002

Q‘_)_ Q (L)

2009 1969 1987

1992 2008 1983

136

PrimeFaces User Guide

Ajax Pagination

DataGrid has a built-in paginator that is enabled by setting paginator option to true.

<p:dataGrid var="car" value="#{carBean.cars}" columns="3" rows="12"
paginator="true">

</p:dataGrid>

Paginator Template

Paginator is customized using paginatorTemplateOption that accepts various keys of UI controls.
Note that this section applies to dataGrid, dataList and dataTable.

* FirstPageLink
 LastPagelLink

* PreviousPageLink

* NextPageLink

* PageLinks

* CurrentPageReport

* RowsPerPageDropdown

Note that {RowsPerPageDropdown} has it’s own template, options to display is provided via
rowsPerPageTemplate attribute (e.g. rowsPerPageTemplate="9,12,15").

Also {CurrentPageReport} has it’s own template defined with currentPageReportTemplate option.
You can use {currentPage},{totalPages},{totalRecords}, {startRecord},{endRecord} keyword
within currentPageReportTemplate. Default is {currentPage} of{totalPages}. Default Ul is;

2]13]4]5
hich corresponds to the following template.
"{FirstPageLink} {PreviousPageLink} {PageLinks} {NextPageLink} {LastPageLink}"
Here are more examples based on different templates;

" {CurrentPageReport} {FirstPageLink} {PreviousPageLink} {PageLinks} {NextPageLink}
{LastPageLink} {RowsPerPageDropdown}"

213]4]5 12 b+

" {PreviousPageLink} {CurrentPageReport} {NextPageLink}"

Paginator Position

Paginator can be positoned using paginatorPosition attribute in three different locations, "top",
"bottom" or "both" (default).

137

PrimeFaces User Guide

Custom Content in Paginator

Custom content can be placed inside a paginator using a facet name matching a token in the
template.

<p:dataTable paginatorTemplate="{CurrentPageReport} {MyContent} ...">
<f:facet name="{MyContent}">
//Any content here
</f:facet>
/7. ..
</p:dataTable>

Selecting Data

Selection of data displayed in datagrid is very similar to row selection in datatable, you can access
the current data using the var reference. Here is an example to demonstrate how to select data from
datagrid and display within a dialog with ajax.

<h:form id="carForm">
<p:dataGrid var="car" value="#{carBean.cars}" columns="3" rows="12">

<p:panel header="#{car.model}">
<p:commandLink update=":carForm:display" oncomplete="PF('dlg"').show()">
<f:setPropertyActionListener value="#{car}"
target="#{carBean.selectedCar}"
<h:outputText value="#{car.model}" />
</p:commandLink>
</p:panel>

</p:.dataGrid>
<p:dialog modal="true" widgetVar="dlg">
<h:panelGrid id="display" columns="2">
<f:facet name="header">
<p:graphicImage value="/images/cars/#{car .manufacturer}.jpg"/>
</f:.facet>
<h:outputText value="Model:" />

<h:outputText value="#{carBean.selectedCar.year}" />

//more selectedCar properties
</h:panelGrid>

</p:dialog>

</h:form>

public class CarBean {

private List<Car> cars;
private Car selectedCar;
//getters and setters

138

PrimeFaces User Guide

Layout Modes

DataGrid has two layout modes, "tabular" mode uses a table element and "grid" mode uses
PrimeFaces Grid CSS create a responsive ui.

Cars for Saks
{1 od d) LERENESIEN - L
EadiTEN A8MbIne ST
¥ . L=
B3GR TLTETiE edacdicd
T . i
5 -

Sddotdel TAMLObAR I10058eb
X L X
iTedisc a1B0603T cXHe 36

L ¥
i1 of4) L EFENC IR i -]

On a smaller screen, grid mode adjusts the content for the optimal view.

Cars for Sale

(10f4) W 2|34 (= F5-|
64007830

[
L]

95ededd?

<=

2008

BleEd12

1687

fh7aaTiz

L]

139

PrimeFaces User Guide

Ajax Behavior Events

Event Listener Parameter Fired

page org.primefaces.event.data.PageEvent On pagination.

<p:dataGrid var="car" value="#{carBean.model}">
<p:ajax event="page" update="anothercomponent" />
//content

</p:dataGrid>

Client Side API
Widget: PrimeFaces.widget.DataGrid

Method Params Return Type Description
getPaginator() - Paginator Returns the paginator widget.
Skinning

DataGrid resides in a main div container which style and styleClass attributes apply. Following is
the list of structural style classes;

Class Applies
.ui-datagrid Main container element
.ui-datagrid-content Content container.
.ui-datagrid-data Table element containing data
.ui-datagrid-row A row in grid
.ui-datagrid-column A column in grid

As skinning style classes are global, see the main theming section for more information.
Tips

 DataGrid supports lazy loading data via LazyDataModel, see DataTable lazy loading section.
* DataGrid provides two facets named /eader and footer that you can use to provide custom
content at these locations.

140

PrimeFaces User Guide

3.30 DatalL.ist

DataList presents a collection of data in list layout with several display types.

cars

(1 of10)

Ferrari, 1997

Volkswagen, 1991

Renault, 2009

Mercedes, 1983

Chrysler, 1969

Info

Tag dataList

Component Class org.primefaces.component.datalist.DataList

Component Type org.primefaces.component.DataList

Component Family org.primefaces.component

Renderer Type org.primefaces.component.DataListRenderer

Renderer Class org.primefaces.component.datalist.DataListRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true boolean | Boolean value to specify the rendering of the
component, when set to false component will
not be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Data to display.

var null String Name of the request-scoped variable used to
refer each data.

rows null Integer Number of rows to display per page.

first 0 Integer Index of the first row to be displayed

141

PrimeFaces User Guide

Name Default Type Description

type unordered | String Type of the list, valid values are "unordered",
"ordered", "definition" and "none".

itemType null String Specifies the list item type.

widgetVar null String Name of the client side widget.

paginator false boolean | Enables pagination.

paginatorTemplate null String Template of the paginator.

rowsPerPageTemplate null String Template of the rowsPerPage dropdown.

currentPageReportTemplate null String Template of the currentPageReport UI.

pageLinks 10 Integer Maximum number of page links to display.

paginatorPosition both String Position of the paginator.

paginatorAlwaysVisible true Boolean | Defines if paginator should be hidden if total
data count is less than number of rows per
page.

style null String Inline style of the main container.

styleClass Null String Style class of the main container.

rowIndex Var null String Name of the iterator to refer each row index.

varStatus null String Name of the exported request scoped variable
to represent state of the iteration same as in
ui:repeat varStatus.

lazy false Boolean | Defines if lazy loading is enabled for the data
component.

emptyMessage No records | String Text to display when there is no data to

found. display.
itemStyleClass null String Style class of an item in list.

Getting started with the DataL.ist

Since DataList is a data iteration component, it renders it’s children for each data represented with
var option. See itemType section for more information about the possible values.

<p:datalist value="#{carBean.cars}" var="car" itemType="disc">
#{car.manufacturer}, #{car.year}
</p:datalist>

Ordered Lists

DataList displays the data in unordered format by default, if you'd like to use ordered display set
type option to "ordered".

142

PrimeFaces User Guide

<p:datalist value="#{carBean.cars}" var="car" type="ordered">
#{car.manufacturer}, #{car.year}
</p:datalist>

Item Type

itemType defines the bullet type of each item. For ordered lists, in addition to commonly used
decimal type, following item types are available;

-A

-a

-1

And for unordered lists, available values are;
- disc

- circle

- square

Definition Lists

Third type of dataList is definition lists that display inline description for each item, to use
definition list set #ype option to "definition". Detail content is provided with the facet called
"description”.

<p:datalist value="#{carBean.cars}" var="car" type="definition">
Model: #{car.model}, Year: #{car.year}
<f:facet name="description">
<p:graphicImage value="/images/cars/#{car.manufacturer}.jpg"/>
</f:facet>
</p:datalist>

Model: 61210db5, Year: 2008

<

Model: 9efc3d27, Year: 1973

<

Model: 2d1a03f2, Year: 2009

&

Model: 9872246, Year: 1963

(&

Model: 14b594fc, Year: 1998

@

Ajax Pagination

DataList has a built-in paginator that is enabled by setting paginator option to true.

<p:datalist value="#{carBean.cars}" var="car" paginator="true" rows="10">
#{car.manufacturer}, #{car.year}
</p:datalist>

Pagination configuration and usage is same as dataGrid, see pagination section in dataGrid
documentation for more information and examples.

143

PrimeFaces User Guide

Selecting Data

Data selection can be implemented same as in dataGrid, see selecting data section in dataGrid
documentation for more information and an example.

Client Side API
Widget: PrimeFaces.widget.DataList

Method Params Return Type Description
getPaginator() - Paginator Returns the paginator widget.
Skinning

DataList resides in a main div container which style and styleClass attributes apply. Following is the
list of structural style classes;

Class Applies
.ui-datalist Main container element
.ui-datalist-content Content container
.ui-datalist-data Data container
.ui-datalist-item Each item in list

As skinning style classes are global, see the main theming section for more information.
Tips

+ DataList supports lazy loading data via LazyDataModel, see DataTable lazy loading section.

* If you need full control over list type markup, set type to “none”. With this setting, datalist does
not render item tags like li and behaves like ui:repeat.

* DataList provides two facets named #eader and footer that you can use to provide custom content
at these locations.

144

3.31 DataScroller

DataScroller displays a collection of data with on demand loading using scrolling.

L Tord

Model: fof60f05
Year: 2003
Color: Maroon

Model: 5¢5fd121

PrimeFaces User Guide

Scroll Down to Load More Cars

awn
Ul Year: 1997
PR Color: Yellow
“ : Model: ace80ce4
/9 Year: 2004
— Color: Maroon
—
= Model: 73e6a125
JAcURm| Year: 1999
Color: White L
Info
Tag dataScroller

Component Class

org.primefaces.component.datascroller.DataScroller

Component Type

org.primefaces.component.DataScroller

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.DataScrollerRenderer

Renderer Class

org.primefaces.component.datascroller.DataScrollerRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean [Boolean value to specify the rendering of the
component, when set to false component will
not be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

145

PrimeFaces User Guide

Name Default Type Description

value null Object Data to display.

var null String Name of the request-scoped variable used to
refer each data.

TOWS null Integer Number of rows to display per page.

first 0 Integer Index of the first row to be displayed

widgetVar null String Name of the client side widget.

style null String Inline style of the main container.

styleClass Null String Style class of the main container.

chunkSize 0 int Number of items to fetch in each load.

rowIndexVar null String Name of iterator to refer each row index.

mode document String Defines the target to listen for scroll event,
valid values are "document" (default) and
"inline".

scrollHeight null String Defines pixel height of the viewport in inline
mode.

lazy false Boolean | Defines if lazy loading is enabled for the data
component.

buffer 10 Integer Percentage height of the buffer between the
bottom of the page and the scroll position to
initiate the load for the new chunk. Value is
defined in integer and default is 10 meaning
load would happen after 90% of the viewport
is scrolled down.

Getting started with the DataScroller

DataScroller requires a collection of data to display, when the page is scrolled down, datascroller
will do a request with ajax to fetch the new chunk of data and append them at the bottom.

<p:dataScroller value="#{carBean.cars}" var="car" chunkSize="10">
#{car.manufacturer}
//more content

</p:.datalist>

Scroll Mode

Default element whose scrollbar is monitored is page itself, mode option is used to customize the
scroll target. Two possible options for the mode attribute are “document” and “inline”. Document
mode is default and in/ine mode listens to the scroll event of the datascroller container itself.

146

PrimeFaces User Guide

<p:dataScroller value="#{carBean.cars}" var="car" mode="inline" chunkSize="10">
#{car.manufacturer}
//more content

</p:datalList>

Loader

In case of scrolling, a Ul element such as button can defined as the loader so that new data is loaded
when the loader element is clicked. Loader component is defined using "loader" facet.

<p:dataScroller value="#{carBean.cars}" var="car" mode="inline" chunkSize="10">
#{car.manufacturer}
//more content
<f:facet name="loader">
<p:commandButton type="button" value="View More" />
</f:facet>
</p:datalList>

Lazy Loading

Lazy loading is enabled by enabling the lazy attribute and providing a LazyDataModel instance as
the value. Refer to lazy load example in DataTable for an example about LazyDataModel.

<p:dataScroller value="#{carBean.lazyModel}" var="car" lazy="true">
#{car.manufacturer}
//more content

</p:datalist>

Header

Header of the component is defined using header facet.

<p:dataScroller value="#{carBean.lazyModel}" var="car">
<f:facet name="header">Cars</f:facet>
#{car.manufacturer}
//more content

</p:datalist>

Client Side API
Widget: PrimeFaces.widget.DataScroller

Method Params Return Type Description

load() - void Loads the next chunk.

147

PrimeFaces User Guide

Skinning

DataScroller resides in a main div container which style and styleClass attributes apply. Following
is the list of structural style classes;

Class Applies
.ui-datascroller Main container element
.ui-datascroller-inline Main container element in inline mode
.ui-datalist-header Header element
.ui-datalist-content Content element
.ui-datascroller-list List element container
.ui-datascroller-item Container of each item in the list
.ui-datascroller-loader Container of custom loader element.
.ui-datascroller-loading Built-in load status indicator

As skinning style classes are global, see the main theming section for more information.

148

3.32 DataTable

DataTable displays data in tabular format.

List of Cars

PrimeFaces User Guide

@ 23| 4|5 > >
Model < Year ¥ Manufacturer ¥ Color %
fe1c52bb 1968 Volkswagen Orange
4f95b4f8 1993 BMW Red
cb9d1d28 2005 Opel Green
€297b6eb 1980 Volvo Silver
c67450c1 1971 Volkswagen Brown
669699ae 2000 Jaguar Blue
d632787b 1965 Ford Silver
5d8b24ce 1988 Jaguar Maroon
814ef317 1970 BMW Red
d1b57e10 1970 Ford Red
@ 23|45 > >
Info
Tag dataTable
Component Class org.primefaces.component.datatable.DataTable
Component Type org.primefaces.component.DataTable
Component Family org.primefaces.component
Renderer Type org.primefaces.component.DataTableRenderer
Renderer Class org.primefaces.component.datatable.DataTableRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered false Boolean | Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.
binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean
value null Object Data to display.
var null String Name of the request-scoped variable used to refer
each data.
rows null Integer Number of rows to display per page.
first 0 Integer Index of the first row to be displayed

149

PrimeFaces User Guide

Name Default Type Description
widgetVar null String Name of the client side widget.
paginator false Boolean | Enables pagination.
paginatorTemplate null String Template of the paginator.
rowsPerPageTemplate null String Template of the rowsPerPage dropdown.
rowsPerPageLabel null String Label for the rowsPerPage dropdown.
currentPageReportTemplate | null String Template of the currentPageReport Ul
pageLinks 10 Integer Maximum number of page links to display.
paginatorPosition both String Position of the paginator.
paginatorAlwaysVisible true Boolean | Defines if paginator should be hidden if total data

count is less than number of rows per page.
scrollable false Boolean | Makes data scrollable with fixed header.
scrollHeight null Integer Scroll viewport height.
scrollWidth null Integer Scroll viewport width.
selectionMode null String Enables row selection, valid values are “single”
and “multiple”.
selection null Object Reference to the selection data.
rowIndex Var null String Name of iterator to refer each row index.
emptyMessage No String Text to display when there is no data to display.
records Alternative is emptyMessage facet.
found.

style null String Inline style of the component.
styleClass null String Style class of the component.
dblClickSelect false Boolean | Enables row selection on double click.
liveScroll false Boolean | Enables live scrolling.
rowStyleClass null String Style class for each row.
onExpandStart null String Client side callback to execute before expansion.
resizableColumns false Boolean | Enables column resizing.
sortBy null Object Property to be used for default sorting.
sortOrder ascending | String “ascending” or “descending”.
scrollRows 0 Integer Number of rows to load on live scroll.
rowKey null String Unique identifier of a row.
tableStyle null String Inline style of the table element.

150

PrimeFaces User Guide

Name Default Type Description

tableStyleClass null String Style class of the table element.

filterEvent keyup String Event to invoke filtering for input filters.

filterDelay 300 Integer Delay in milliseconds before sending an ajax
filter query.

draggableColumns false Boolean | Columns can be reordered with dragdrop when
enabled.

editable false Boolean | Controls incell editing.

lazy false Boolean | Controls lazy loading.

filtered Value null List List to keep filtered data.

sortMode single String Defines sorting mode, valid values are single and
multiple.

editMode row String Defines edit mode, valid values are row and cell.

editingRow false Boolean | Defines if cell editors of row should be displayed
as editable or not.

cellSeparator null String Separator text to use in output mode of editable
cells with multiple components.

summary null String Summary attribute for WCAG.

frozenRows null Object Collection to display as fixed in scrollable mode.

dir Itr String Defines text direction, valid values are /t and 7.

liveResize false Boolean | Columns are resized live in this mode without
using a resize helper.

stickyHeader false Boolean | Sticky header stays in window viewport during
scrolling.

expandedRow false Boolean | Defines if row should be rendered as expanded
by default.

disabledSelection false Boolean | Disables row selection when true.

rowSelectMode new String Defines row selection mode for multiple
selection. Valid values are "new", "add" and
"checkbox".

rowExpandMode new String Defines row expand mode, valid values are
"single" and "multiple" (default).

datalocale null Object Locale to be used in features such as filtering and
sorting, defaults to view locale.

nativeElements false Boolean | Uses native radio-checkbox elements for row
selection.

frozenColumns null Integer Number of columns to freeze from start index 0.

151

PrimeFaces User Guide

Name Default Type Description

draggableRows false Boolean | When enabled, rows can be reordered using
dragdrop.

caseSensitiveSort false Boolean | Case sensitivity for sorting, insensitive by
default.

skipChildren false Boolean | Ignores processing of children during lifecycle,
improves performance if table only has output
components.

disabledTextSelection true Boolean | Disables text selection on row click.

sortField null String Name of the field to pass lazy load method for
sorting. If not specified, sortBy expression is
used to extract the name.

Getting started with the DataTable

We will be using the same Car and CarBean classes described in DataGrid section.

<p:dataTable var="car" value="#{carBean.cars}">
<p:column>
<f:facet name="header">
<h:outputText value="Model" />
</f:facet>
<h:outputText value="#{car.model}" />
</p:column>
//more columns
</p:dataTable>

Header and Footer

Both datatable itself and columns can have custom content in their headers and footers using header
and footer facets respectively. Alternatively for columns there are headerText and footerText
shortcuts to display simple texts.

List of Cars
Model Manufacturer Color Year
16c9b7ch Mercedes Maroon 1979
deDe4475 Volkswagen Maroon 1994
d17a0cac Ford Black 1998
0db0095d Ford Red 1983
c09b2d08 Renault Red 1962
a5e3c203 Volkswagen Green 2007
196bd9e9 Ford White 1994
111db4d2 Ford Silver 1994
73b17bd0 Volvo Blue 1973
8 digit code 1960-2010

In total there are 9 cars.

152

PrimeFaces User Guide

<p:dataTable var="car" value="#{carBean.cars}">
<f:facet name="header">
List of Cars
</f:facet>
<p:column>
<f:facet name="header">
Model
</f:facet>
#{car.model}
<f:facet name="footer">
8 digit code
</f:facet>
</p:column>
<p:column headerText="Year" footerText="1960-2010">
#{car.year}
</p:column>
//more columns
<f:facet name="footer">
In total there are #{fn:length(carBean.cars)} cars.
</f:facet>
</p:dataTable>

Pagination

DataTable has a built-in ajax based paginator that is enabled by setting paginator option to true, see
pagination section in dataGrid documentation for more information about customization options.

<p:dataTable var="car" value="#{carBean.cars}" paginator="true" rows="10">
//columns
</p:.dataTable>

Sorting

Defining sortBy attribute enables ajax based sorting on that particular column.

<p:dataTable var="car" value="#{carBean.cars}">
<p:column sortBy="#{car.model}" headerText="Model">
<h:outputText value="#{car.model}" />
</p:column>
...more columns
</p:dataTable>

Instead of using the default sorting algorithm which uses a java comparator, you can plug-in your
own sort method as well.

public int sortByModel(Object carl, Object car2) {
//return -1, @ , 1 if carl is less than, equal to or greater than car2

}

153

PrimeFaces User Guide

<p:dataTable var="car" value="#{carBean.cars}">
<p:column sortBy="#{car.model}" sortFunction="#{carBean.sortByModel}"
headerText="Model">
<h:outputText value="#{car.model}" />
</p:column>

...more columns
</p:dataTable>

Multiple sorting is enabled by setting sortMode to multiple. In this mode, clicking a sort column
while metakey is on adds sort column to the order group.

<p:dataTable var="car" value="#{carBean.cars}" sortMode="multiple">
//columns
</p:dataTable>

DataTable can display data sorted by default, to implement this use the sortBy option of datatable
and the optional sortOrder. Table below would be initially displayed as sorted by model.

<p:dataTable var="car" value="#{carBean.cars}" sortBy="#{car.model}">

<p:column sortBy="#{car.model}" headerText="Model”>
<h:outputText value="#{car.model}" />
</p:column>

<p:column sortBy="#{car.year}" headerText="Year">
<h:outputText value="#{car.year}" />
</p:column>

...more columns
</p:dataTable>

Filtering

Ajax based filtering is enabled by setting filterBy at column level and providing a list to keep the
filtered sublist. It is suggested to use a scope longer than request like viewscope to keep the
filteredValue so that filtered list is still accessible after filtering.

<p:dataTable var="car" value="#{carBean.cars}"
filteredValue="#{carBean.filteredCars}">
<p:column filterBy="#{car.model}" headerText="Model">
<h:outputText value="#{car.model}" />
</p:column>
...more columns
</p:dataTable>

Filtering is triggered with keyup event and filter inputs can be styled using filterStyle,
filterStyleClass attributes. If you'd like to use a dropdown instead of an input field to only allow
predefined filter values use filterOptions attribute and a collection/array of selectitems as value. In
addition, filterMatchMode defines the built-in matcher which is startsWith by default.

Following is a basic filtering datatable with these options demonstrated;

154

PrimeFaces User Guide

<p:dataTable var="car" value="#{carBean.cars}"
filteredValue="#{carBean.filteredCars}" widgetVar="carsTable">

<f:facet name="header">
<p:outputPanel>
<h:outputText value="Search all fields:" />
<h:inputText id="globalFilter" onkeyup="PF('carsTable').filter()" />
</p:outputPanel>
</f:facet>

<p:column filterBy="#{car.model}" headerText="Model" filterMatchMode="contains">
<h:outputText value="#{car.model}" />
</p:column>

<p:column filterBy="#{car.year}" headerText="Year" footerText="startsWith">
<h:outputText value="#{car.year}" />
</p:column>

<p:column filterBy="#{car.manufacturer}" headerText="Manufacturer"
filterOptions="#{carBean.manufacturerOptions}" filterMatchMode="exact">
<h:outputText value="#{car.manufacturer}" />

</p:column>

<p:column filterBy="#{car.color}" headerText="Color" filterMatchMode="endsWith">
<h:outputText value="#{car.color}" />
</p:column>

<p:column filterBy="#{car.price}" headerText="Price" filterMatchMode="exact">
<h:outputText value="#{car.price}" />

</p:column>

</p:dataTable>

Filter located at header is a global one applying on all fields, this is implemented by calling client
side API method called filter(), important part is to specify the id of the input text as globalFilter
which is a reserved identifier for datatable.

In addition to default filtering with generated elements, custom elements can also be used as a filter
facet. Example below uses custom filter components in combination with generated elements.
When a custom component is used as a filter facet, filtering needs to be called manually from a
preferred event such as onchange="PF('carsTable').filter()". Also defining a converter might be
necessary if the value of the filter facet is not defined.

155

PrimeFaces User Guide

<p:dataTable id="dataTable" var="car" value="#{tableBean.carsSmall}"
widgetVar="carsTable" filteredValue="#{tableBean.filteredCars}">

<p:column id="modelColumn" filterBy="#{car.model}" headerText="Model"
footerText="contains" filterMatchMode="contains">
<h:outputText value="#{car.model}" />
</p:column>

<p:column id="yearColumn" filterBy="#{car.year}" headerText="Year"
footerText="1te" filterMatchMode="1te">
<f:facet name="filter">
<p:spinner onchange="PF('carsTable').filter()" min="1960" max="2010">
<f:converter converterId="javax.faces.Integer" />
</p:spinner>
</f:facet>
<h:outputText value="#{car.year}" />
</p:column>

<p:column id="manufacturerColumn" filterBy="#{car.manufacturer}"
headerText="Manufacturer" footerText="exact" filterMatchMode="exact">
<f:facet name="filter">
<p:selectOneMenu onchange="PF('carsTable').filter()" >
<f:selectItems value="#{tableBean.manufacturerOptions}" />
</p:selectOneMenu>
</f:facet>
<h:outputText value="#{car.manufacturer}" />
</p:column>

<p:column id="colorColumn" filterBy="#{car.color}" headerText="Color"
footerText="in" filterMatchMode="1in">
<f:facet name="filter">
<p:selectCheckboxMenu label="Colors"
onchange="PF('carsTable").filter()">
<f:selectItems value="#{tableBean.colors}" />
</p:selectCheckboxMenu>
</f:facet>
<h:outputText value="#{car.color}" />
</p:column>

<p:column id="soldColumn" filterBy="#{car.sold}" headerText="Status"
footerText="equals" filterMatchMode="equals">
<f:facet name="filter">
<p:selectOneButton onchange="PF('carsTable').filter()">
<f:converter converterId="javax.faces.Boolean" />
<f:selectItem itemLabel="Al1l" itemValue="" />
<f:selectItem itemLabel="Sold" itemValue="true" />
<f:selectItem itemLabel="Sale" itemValue="false" />
</p:selectOneButton>
</f:facet>
<h:outputText value="#{car.sold ? 'Sold': 'Sale'}" />
</p:column>
</p:dataTable>

156

PrimeFaces User Guide

filterMatchMode defines which built-in filtering algorithm would be used per column, valid values
for this attribute are;

- startsWith: Checks if column value starts with the filter value.

- endsWith: Checks if column value ends with the filter value.

- contains: Checks if column value contains the filter value.

- exact: Checks if string representations of column value and filter value are same.
- It: Checks if column value is less than the filter value.

- Ite: Checks if column value is less than or equals the filter value.

- gt: Checks if column value is greater than the filter value.

- gte: Checks if column value is greater than or equals the filter value.

- equals: Checks if column value equals the filter value.

- in: Checks if column value is in the collection of the filter value.

In case the built-in methods do not suffice, custom filtering can be implemented using
filterFunction approach.

<p:column filterBy="#{car.price}" filterFunction="#{tableBean.filterByPrice}">
<h:outputText value="#{car.price}">
<f:convertNumber currencySymbol="$" type="currency"/>
</h:outputText>
</p:column>

filterFunction should be a method with three parameters; column value, filter value and locale.
Return value is a boolean, true accepts the value and false rejects it.

public boolean filterByPrice(Object value, Object filter, Locale locale) {
//return true or false

t

Locale is provided as optional in case you need to use a locale aware method like
toLowerCase(Locale locale). Note that String based filters like startsWith, endsWith uses
toLowerCase already and dataLocale attribute is used to provide the locale to use when filtering.

Row Selection

There are several ways to select row(s) from datatable. Let’s begin by adding a Car reference for
single selection and a Car array for multiple selection to the CarBean to hold the selected data.

public class CarBean {
private List<Car> cars;
private Car selectedCar;
private Car[] selectedCars;
public CarBean() {
cars = new ArraylList<Car>(Q);
//populate cars

%
//getters and setters

Single Selection with a Command Component
This method is implemented with a command component such as commandLink or

commandButton. Selected row can be set to a server side instance by passing as a parameter if you
are using EL 2.2 or using f:setPropertyActionListener.

157

PrimeFaces User Guide

<p:dataTable var="car" value="#{carBean.cars}">

<p:column>
<p:commandButton value="Select">
<f:setPropertyActionListener value="#{car}"
target="#{carBean.selectedCar}" />
</p: commandButton>
</p:column>

...columns

</p:dataTable>

Single Selection with Row Click
Previous method works when the button is clicked, if you’d like to enable selection wherever the

row is clicked, use selectionMode option.

<p:dataTable var="car" value="#{carBean.cars}" selectionMode="single"
selection="#{carBean.selectedCar}" rowKey="#{car.id}">
. ..columns
</p:dataTable>

Multiple Selection with Row Click
Multiple row selection is similar to single selection but selection should reference an array or a list
of the domain object displayed and user needs to use press modifier key(e.g. ctrl) during selection *.

<p:dataTable var="car" value="#{carBean.cars}" selectionMode="multiple"
selection="#{carBean.selectedCars}" rowKey="#{car.id}" >
. ..columns
</p:dataTable>

Single Selection with RadioButton

Selection a row with a radio button placed on each row is a common case, datatable has built-in
support for this method so that you don’t need to deal with h:selectOneRadios and low level bits. In
order to enable this feature, define a column with selectionMode set as single.

<p:dataTable var="car" value="#{carBean.cars}" selection="#{carBean.selectedCar}"
rowKey="#{car.id}">
<p:column selectionMode="single"/>
...columns
</p:dataTable>

Multiple Selection with Checkboxes
Similar to how radio buttons are enabled, define a selection column with a multiple selectionMode.
DataTable will also provide a selectAll checkbox at column header.

<p:dataTable var="car" value="#{carBean.cars}" selection="#{carBean.selectedCars}"
rowKey="#{car.id}" >
<p:column selectionMode="multiple"/>
...columns
</p:dataTable>

158

PrimeFaces User Guide

* Use rowSelectMode option to customize the default behavior on row click of a multiple
selection enabled datatable. Default value is "new" that clears previous selections, "add" mode
keeps previous selections same as selecting a row with mouse click when metakey is on and
"checkbox" mode allows row selection with checkboxes only.

RowKey

RowKey should a unique identifier from your data model and used by datatable to find the selected
rows. You can either define this key by using the rowKey attribute or by binding a data model
which implements org.primefaces.model.SelectableDataModel.

Dynamic Columns

Dynamic columns is handy in case you can’t know how many columns to render. Columns
component is used to define the columns programmatically. It requires a collection as the value, two
iterator variables called var and columnlndexVar.

<p:dataTable var="cars" value="#{tableBean.cars}">
<p:columns value="#{tableBean.columns}" var="column"
sortBy="#{column.property}" filterBy="#{column.property}">
<f:facet name="header">
#{column.header}
</f:facet>
<h:outputText value="#{cars[column.property]}" />
</p:columns>
</p:dataTable>

159

PrimeFaces User Guide

public class CarBean {

private List<ColumnModel> columns = new Arraylist<ColumnModel>();
private List<Car> cars;

public CarBean() {
populateColumns();
cars = //populate cars;

}

public void populateColumns() {
String[] columnKeys = new String[]{"model","year","color"};

for(String columnKey : columnKeys) {

columns.add(new ColumnModel(columnKey.toUpperCase(), columnKey));
h
ks

//getters and setters
static public class ColumnModel implements Serializable {

private String header;
private String property;

public ColumnModel(String header, String property) {
this.header = header;
this.property = property;

b

public String getHeader() {
return header;

}

public String getProperty() {
return property;

}

Grouping

Grouping is defined by ColumnGroup component used to combine datatable header and footers.

Sales
Manufacturer Sales Count Profit

Last Year This Year Last Year This Year

Mercedes 90% 8% 28031% 25102%
BMW 14% 91% 18640% 280233
Volvo 82% 24% 130% 77724%
Audi 7% 40% 22725 33672%
Renault 10% 545 98115% 406645
Opel 63% 28% 10549% 937463
Volkswagen 67% 38% 38242% 19063%
Chrysler 40% 63% 10146% 76975

Ferrari 26% 70% 403843 622983
Ford 14% 94% 96052% 422333

Totals: 342561% 430222%

160

PrimeFaces User Guide

<p:dataTable var="sale" value="#{carBean.sales}">
<p:columnGroup type="header">
<p:row>
<p:column rowspan="3" headerText="Manufacturer" />
<p:column colspan="4" headerText="Sales" />
</p:row>
<p:row>
<p:column colspan="2" headerText="Sales Count" />
<p:column colspan="2" headerText="Profit" />
</p:row>
<p:row>
<p:column headerText="Last Year" />
<p:column headerText="This Year" />
<p:column headerText="Last Year" />
<p:column headerText="This Year" />
</p:row>
</p:columnGroup>
<p:column>
#{sale.manufacturer}
</p:column>
<p:column>
#{sale.lastYearProfit}%
</p:column>
<p:column>
#{sale.thisYearProfit}%
</p:column>
<p:column>
#{sale.lastYearSale}$
</p:column>
<p:column>
#{sale.thisYearSale}$
</p:column>
<p:columnGroup type="footer">
<p:row>
<p:column colspan="3" style="text-align:right" footerText="Totals:"/>
<p:column footerText="#{tableBean.lastYearTotal}$" />
<p:column footerText="#{tableBean.thisYearTotal}$" />
</p:row>
</p:columnGroup>

</p:dataTable>

public class CarBean {
private List<Sale> sales;

public CarBean() {
sales = //create a list of BrandSale objects

}

public List<Sale> getSales() {
return this.sales;

}

161

PrimeFaces User Guide

Scrolling

Scrolling makes the header-footer of the table fixed and the body part scrollable. scrollable attribute
must be enabled and depending on the scrolling orientation, scrollHeight and/or scrollWidth options
must be specified.

<p:dataTable var="car" value="#{bean.data}" scrollable="true" scrollHeight="150">
<p:column />
//columns

</p:dataTable>

Model Year Manufacturer Color
069794d7 1991 Volvo Silver O
daeeechc 1993 Ford Green
09¢cbe05¢ 1983 Chrysler Maroon
2d374a04 1964 Ferrari Red
Gc09bc54 1987 Volkswagen Blue
25d45a08 1993 Opel White :

Model Year Year Year

Simple scrolling renders all data to client whereas live scrolling is useful to deal with huge data, in
this case data is fetched whenever the scrollbar reaches bottom. Set /iveScroll to enable this option;

<p:dataTable var="car" value="#{bean.data}" scrollable="true" scrollHeight="150"
liveScroll="true">

<p:column />
//columns
</p:.dataTable>

Scrolling has 3 modes; x, y and x-y scrolling that are defined by scrollHeight and scrollWidth.
These two scroll attributes can be defined using integer values indicating fixed pixels or percentages
relative to the container dimensions.

Frozen Rows

Certain rows can be fixed in a scrollable table by using the frozenRows attribute that defines the
number of rows to freeze from the start.

<p:dataTable var="car" value="#{bean.data}" scrollable="true" scrollHeight="150"
frozenRows="2">

<p:column />
//columns
</p:.dataTable>

Frozen Columns

Specific columns can be fixed while the rest of them remain as scrollable. frozenColumns defines
the number of columns to freeze from the start.

162

PrimeFaces User Guide

<p:dataTable var="car" value="#{bean.data}" scrollable="true" scrollWidth="200"
frozenColumns="2">

<p:column />
//columns
</p:dataTable>

Expandable Rows

RowToggler and RowExpansion facets are used to implement expandable rows.

<p:dataTable var="car" value="#{carBean.cars}">

<f:facet name="header">
Expand rows to see detailed information
</f:facet>

<p:column>
<p:rowToggler />
</p:column>
//columns
<p:rowExpansion>
//Detailed content of a car

</p:rowExpansion>

</p:dataTable>

p:rowToggler component places an expand/collapse icon, clicking on a collapsed row loads
expanded content with ajax. If you need to display a row as expanded by default, use expandedRow
attribute which is evaluated before rendering of each row so value expressions are supported.
Additionally, rowExpandMode attribute defines if multiple rows can be expanded at the same time
or not, valid values are "single" and "multiple" (default).

Expand rows to see detailed information
Model Year
0b8313c2 1976
2be34aBc 1995
08e342¢c4 2004
b5d03231 1998

Model b5d03231

Year 1998

Manufacturer: Mercedes

Color: Red
b50b6dcc 1974
db39801c 1995
f76c474f 1989
2c9b67a2 2005
94fb553f 1973

Editing

Incell editing provides an easy way to display editable data. p:cellEditor is used to define the cell
editor of a particular column. There are two types of editing, row and cell. Row editing is the
default mode and used by adding a p:rowEditor component as row controls.

163

PrimeFaces User Guide

<p:dataTable var="car" value="#{carBean.cars}" editable="true">

<f:facet name="header">
In-Cell Editing
</f:facet>

<p:column headerText="Model">
<p:cellEditor>
<f:facet name="output">
<h:outputText value="#{car.model}" />
</f:facet>
<f:facet name="input">
<h:inputText value="#{car.model}"/>
</f:facet>
</p:cellEditor>
</p:column>
//more columns with cell editors

<p:column>
<p:rowkditor />
</p:column>
</p:dataTable>

In=Cell Editing

Model Year Manufacturer Color Options
824641ad 1876 Vaolvo Yellow
a9bf1625 1961 Volkswagen Orange
d859a7ba 1977 Ferrari Brown
9379f6f5 1961 Renault 4] [silver M v x
74438017 1960 Chrysler Silver
80feefes 2000 Opel Yellow
9e0c7267 1982 Opel Red
33124250 1984 Ford Red
0349899f 1977 Renault Red

When pencil icon is clicked, row is displayed in editable mode meaning input facets are displayed
and output facets are hidden. Clicking tick icon only saves that particular row and cancel icon
reverts the changes, both options are implemented with ajax interaction.

Another option for incell editing is cell editing, in this mode a cell switches to edit mode when it is
clicked, losing focus triggers an ajax event to save the change value.

Lazy Loading

Lazy Loading is an approach to deal with huge datasets efficiently, regular ajax based pagination
works by rendering only a particular page but still requires all data to be loaded into memory. Lazy
loading datatable renders a particular page similarly but also only loads the page data into memory
not the whole dataset. In order to implement this, you'd need to bind a
org.primefaces.model.LazyDataModel as the value and implement /oad method and enable lazy
option. Also it is required to implement getRowData and getRowKey if you have selection enabled.

164

PrimeFaces User Guide

<p:dataTable var="car" value="#{carBean.model}" paginator="true" rows="10"
lazy="true">
//columns

</p:dataTable>

public class CarBean {
private LazyDataModel model;

public CarBean() {
model = new LazyDataModel() {
@0verride
public void load(int first, int pageSize, String sortField,
SortOrder sortOrder, Map<String,Object> filters) {
//load physical data

1

int totalRowCount = //logical row count based on a count query
model . setRowCount(totalRowCount);
}

public LazyDataModel getModel() {
return model;

}

DataTable calls your load implementation whenever a paging, sorting or filtering occurs with
following parameters;

« first: Offset of first data to start from

* pageSize: Number of data to load

* sortField: Name of sort field

+ sortOrder: SortOrder enum.

« filter: Filter map with field name as key (e.g. "model" for filterBy="#{car.model}") and value.

In addition to load method, totalRowCount needs to be provided so that paginator can display itself
according to the logical number of rows to display.

It is suggested to use field attribute of column component to define the field names passed as
sortField and filterFields, otherwise these fields would be tried to get extracted from the value
expression which is not possible in cases like composite components.

Sticky Header
Sticky Header feature makes the datatable header visible on page scrolling.

<p:dataTable var="car" value="#{carBean.model}" stickyHeader="true">
//columns
</p:dataTable>

165

TS 2w
STk
\aaadAla
B S
Aenpbe
d0aBasTe

Jehicach

008

2000
1es

TeeT

. Wi
Oiped
Ol
Mol
Mot
Ferari

Welpwagen

PrimeFaces User Guide

Color

i
Orange
Rl
Wit
Red

Bl

Modei Yaar Marudacturer Calor

1 nascila
Bt
I55ente
40a8a5TH
SCPCpan
148a80
bisaif3d
0045064
[Ty e

Eatnla

SummaryRow

2000
L]
1067
2008
Y983
2007
L)

i

Opsl

At
Mereaden
Fermari

Vel iwige
A

Bl

Aug

A
Chevalof

Crarge

Summary is a helper component to display a summary for the grouping which is defined by the

sortBy option.

Model

30d423cl
caa74as0
2295d17b
d9548573
3f2fddbl
c9cbl0af
d69007fb

986742ea
f5045e9a
3498c563

Year

1995
2005
1996
1990
1979
2007
1998

1966
2006
1994

~
w

Valva
Valva
Volva
Volva
Volva
Volva

Volvo
Volkswagen

Volkswagen

Volkswagen

166

Color =
Orange
White
Blue
Black
Blue
Maroon

Black

Total: 40272%

Orange
Red
Red

Total: 61413%

PrimeFaces User Guide

<p:dataTable var="car" value="#{tableBean.cars}">

<p:column headerText="Model">
#{car.model}
</p:column>

<p:column headerText="Year" sortBy="year">
#{car.year}
</p:column>

<p:column headerText="Manufacturer" sortBy="manufacturer">
#{car.manufacturer?}
</p:column>

<p:column headerText="Color" sortBy="color">
#{car.color}
</p:column>

<p:summaryRow>
<p:column colspan="3" style="text-align:right">
Total:
</p:column>

<p:column>
#{tableBean.randomPrice}$
</p:column>
</p:summaryRow>
</p:dataTable>

SubTable

SubTable is a helper component to display nested collections. Example below displays a collection
of players and a subtable for the stats collection of each player.

FCB Statistics

Stats
Player

Goals Assists

Messi
2005-2006 4 2
2006-2007 10 7
2007-2008 16 10
2008-2009 32 15
2009-2010 51 22
2010-2011 55 30

Totals: | 168 86
Xavi
2005-2006 6 15
2006-2007 10 20
2007-2008 12 22
2008-2009 9 24
2009-2010 8 21
2010-2011 10 25

Totals: | 55 127
Iniesta
2005-2006 4 12
2006-2007 7 9
2007-2008 10 14
2008-2009 15 17
2009-2010 14 16
2010-2011 17 22

Totals: | 67 90

167

PrimeFaces User Guide

<p:dataTable var="player" value="#{tableBean.players}">

<f:facet name="header">
FCB Statistics
</f:facet>

<p:columnGroup type="header">
<p:row>
<p:column rowspan="2" headerText="Player" />
<p:column colspan="2" headerText="Stats" />
</p:row>

<p:row>
<p:column headerText="Goals" />
<p:column headerText="Assists" />
</p:row>
</p:columnGroup>

<p:subTable var="stats" value="#{player.stats}">
<f:facet name="header">
#{player.name}
</f:facet>

<p:column>
#{stats.season}
</p:column>

<p:column>
#{stats.goals}
</p:column>

<p:column>
#{stats.assists}
</p:column>

<p:columnGroup type="footer">
<p:row>
<p:column footerText="Totals: style="text-align:right"/>
<p:column footerText="#{player.allGoals}" />
<p:column footerText="#{player.allAssists}" />
</p:row>
</p:columnGroup>
</p:subTable>

</p:dataTable>

Column Toggler

Visible columns of a table can be toggled using the column toggler helper component.

168

PrimeFaces User Guide

<p:dataTable var="car" value="#{tableBean.cars}">

<f:facet name="header">
List of Cars

<p:commandButton id="toggler" type="button" value="Columns"
style="float:right" icon="ui-icon-calculator" />

<p:columnToggler datasource="cars" trigger="toggler" />
</f:facet>

<p:column headerText="Model">
#{car.model}
</p:column>

<p:column headerText="Year" sortBy="year">
#{car.year}
</p:column>

<p:column headerText="Manufacturer" sortBy="manufacturer">
#{car.manufacturer?}
</p:column>

<p:column headerText="Color" sortBy="color">
#{car.color}
</p:column>

</p:dataTable>

List of Cars

@ Columns

Model Color Year J V| Model
Tec4ef00 Yellow 2007 Manufacturer
96b9492d Yellow 1984 | (] Color
ae9742a4 Orange 1972 | & Year
e4d0922b Green 2000
176a7f17 Black 1994
bebf3563 Brown 1977
b9a045fd Black 1960
82cafa95 Silver 1995
49d0Scbd Silver 1963

On page load, column chooser finds all columns of datatable and generates the ui. If you'd like
some of the columns to be ignored, set toggleable option of a column as false. Optional toggle ajax
behavior is provided by columnChooser component to listen to toggle events at server side. Listener
of this behavior gets an org.primefaces.event. ToggleEvent as a parameter that gives the visibility
and index of the column being toggled.

Reordering Rows

Rows of the table can be reordered using drag&drop. Set draggableRows attribute to true to enable
this feature.

Optional rowReorder ajax behavior is provided to listen to reorder events at server side. Listener of
this behavior gets an org.primefaces.event. ReorderEvent as a parameter that gives the past and
current index of the row being moved.

169

PrimeFaces User Guide

<p:dataTable var="car" value="#{tableBean.cars}" draggableRows="true">
<p:ajax event="rowReorder" listener="#{tableBean.onRowReorder}" />
<p:column headerText="Model">
#{car.model}
</p:column>

//columns

</p:dataTable>

public class TableBean {
//. ..
public void onRowReorder(ReorderEvent event) {

//int from = event.getFromIndex();
//int end = event.getEndIndex();

Reordering Columns

Columns of the table can be reordered using drag&drop as well. Set draggableColumns attribute to
true to enable this feature. Optional colReorder ajax behavior is provided to listen to reorder events
at server side.

<p:dataTable var="car" value="#{tableBean.cars}" draggableColumns="true">

<p:column headerText="Model">
#{car.model}

</p:column>

//columns

</p:.dataTable>

Ajax Behavior Events

Event Listener Parameter Fired
page org.primefaces.event.data.PageEvent On pagination.
sort org.primefaces.event.data.SortEvent When a column is sorted.
filter org.primefaces.event.data.FilterEvent On filtering.
rowSelect org.primefaces.event.SelectEvent When a row is being selected.
rowUnselect org.primefaces.event.UnselectEvent When a row is being unselected.
rowEdit org.primefaces.event.RowEditEvent When a row is edited.

170

PrimeFaces User Guide

Event Listener Parameter Fired
rowEditlnit org.primefaces.event.RowEditEvent When a row switches to edit mode
rowEditCancel org.primefaces.event. RowEditEvent When row edit is cancelled.
colResize org.primefaces.event.ColumnResizeEvent | When a column is being selected.
toggleSelect org.primefaces.event. ToggleSelectEvent | When header checkbox is toggled.
colReorder - When columns are reordered.
rowSelectRadio org.primefaces.event.SelectEvent Row selection with radio.
rowSelectCheckbox org.primefaces.event.SelectEvent Row selection with checkbox.
rowUnselectCheckbox org.primefaces.event.UnselectEvent Row unselection with checkbox.
rowDblselect org.primefaces.event.SelectEvent Row selection with double click.
rowToggle org.primefaces.event. ToggleEvent Row expand or collapse.
contextMenu org.primefaces.event.SelectEvent ContextMenu display.
cellEdit org.primefaces.event.CellEditEvent When a cell is edited.
rowReorder org.primefaces.event.ReorderEvent On row reorder.

For example, datatable below makes an ajax request when a row is selected with a click on row.

//columns
</p:dataTable>

<p:dataTable var="car" value="#{carBean.model}">
<p:ajax event="rowSelect” update="another_component” />

Client Side API

Widget: PrimeFaces.widget.DataTable

Method Params Return Type Description
getPaginator() - Paginator Returns the paginator insance.
clearFilters() - void Clears all column filters
getSelectedRowsCount() Number Returns number of selected rows.
selectRow(r, silent) 7 number or tr void Selects the given row.

element as jQuery
object,
silent: flag to fire row
select ajax behavior
unselectRow(r, silent) r: number or tr void Unselects the given row.
element as jQuery
object,
silent: flag to fire row
select ajax behavior

171

PrimeFaces User Guide

Method Params Return Type Description
unselectAlIRows() - void Unselects all rows.
toggleCheckAll() - void Toggles header checkbox state.
filter() - Void Filters the data.
selectAllRows() - void Select all rows.
selectAllRowsOnPage() - void Select all rows on current page.
unselectAllIRowsOnPage() - void Unselect all rows on current page.

Skinning

DataTable resides in a main container element which style and styleClass options apply. As skinning
style classes are global, see the main theming section for more information. Following is the list of

structural style classes;

Class

Applies

.ui-datatable

Main container element

.ui-datatable-data

Table body

.ui-datatable-empty-message

Empty message row

.ui-datatable-header

Table header

.ui-datatable-footer

Table footer

.ui-sortable-column

Sortable columns

.ui-sortable-column-icon

Icon of a sortable icon

.ui-expanded-row-content

Content of an expanded row

.ui-row-toggler

Row toggler for row expansion

.ui-editable-column

Columns with a cell editor

.ui-cell-editor

Container of input and output controls of an editable cell

.ui-cell-editor-input

Container of input control of an editable cell

.ui-cell-editor-output

Container of output control of an editable cell

.ui-datatable-even

Even numbered rows

.ui-datatable-odd

Odd numbered rows

.ui-datatable-scrollable

Main container element of a scrollable table.

.ui-datatable-scrollable-header

Header wrapper of a scrollable table.

.ui-datatable-scrollable-header-box

Header container of a scrollable table.

.ui-datatable-scrollable-body

Body container of a scrollable table.

172

PrimeFaces User Guide

Class

Applies

.ui-datatable-scrollable-footer

Footer wrapper of a scrollable table.

.ui-datatable-scrollable-footer-box

Footer container of a scrollable table.

.ui-datatable-resizable

Main container element of a resizable table.

173

PrimeFaces User Guide

3.33 DefaultCommand

Which command to submit the form with when enter key is pressed a common problem in web apps
not just specific to JSF. Browsers tend to behave differently as there doesn’t seem to be a standard
and even if a standard exists, IE probably will not care about it. There are some ugly workarounds
like placing a hidden button and writing javascript for every form in your app. DefaultCommand
solves this problem by normalizing the command(e.g. button or link) to submit the form with on
enter key press.

Info
Tag defaultCommand
Component Class org.primefaces.component.defaultcommand.DefaultCommand
Component Type org.primefaces.component.DefaultCommand

Component Family | org.primefaces.component

Renderer Type org.primefaces.component.DefaultCommandRenderer
Renderer Class org.primefaces.component.defaultcommand.DefaultCommandRenderer
Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side

UIComponent instance in a backing bean

widgetVar null String Name of the client side widget
target null String Identifier of the default command component.
scope null String Identifier of the ancestor component to enable

multiple default commands in a form.

Getting Started with the DefaultCommand

DefaultCommand must be nested inside a form requires target option to reference a clickable
command. Example below triggers btn2 when enter key is pressed. Note that an input must have
focused due to browser nature.

174

PrimeFaces User Guide

<h:form id="form">

<h:panelGrid columns="3" cellpadding="5">
<h:outputlLabel for="name" value="Name:" style="font-weight:bold"/>
<p:inputText id="name" value="#{defaultCommandBean.text}" />
<h:outputText value="#{defaultCommandBean.text}" id="display" />
</h:panelGrid>

<p:commandButton value="Buttonl" id="btnl" actionListener="#{bean.submitl}"
ajax="false"/>

<p:commandButton value="Button2" id="btn2" actionlListener="#{bean.submit2}" />

<h:commandButton value="Button3" id="btn3" actionlListener="#{bean.submit3}" />

<p:defaultCommand target="bt2" />

</h:form>

Scope

If you need multiple default commands on same page use scope attribute that refers to the ancestor
component of the target input.

175

PrimeFaces User Guide

3.34 Dialog

Dialog is a panel component that can overlay other elements on page.

Login x
Username:* ||
Password: *
Login
Info
Tag dialog
Component Class org.primefaces.component.dialog.Dialog
Component Type org.primefaces.component.Dialog

Component Family | org.primefaces.component

Renderer Type org.primefaces.component.DialogRenderer
Renderer Class org.primefaces.component.dialog.DialogRenderer
Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean | Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side

UIComponent instance in a backing bean

widgetVar null String Name of the client side widget

header null String Text of the header

draggable true Boolean | Specifies draggability

resizable true Boolean | Specifies resizability

modal false Boolean | Enables modality.

visible false Boolean | When enabled, dialog is visible by default.
width auto Integer Width of the dialog

height auto Integer Height of the dialog

minWidth 150 Integer Minimum width of a resizable dialog.

176

PrimeFaces User Guide

Name Default Type Description

minHeight 0 Integer Minimum height of a resizable dialog.

style null String Inline style of the dialog.

styleClass null String Style class of the dialog

showEffect null String Effect to use when showing the dialog

hideEffect null String Effect to use when hiding the dialog

position null String Defines where the dialog should be displayed

closable true Boolean | Defines if close icon should be displayed or not

onShow null String Client side callback to execute when dialog is
displayed.

onHide null String Client side callback to execute when dialog is hidden.

appendTo null String Appends the dialog to the element defined by the given
search expression.

showHeader true Boolean | Defines visibility of the header content.

footer null String Text of the footer.

dynamic false Boolean | Enables lazy loading of the content with ajax.

minimizable false Boolean | Whether a dialog is minimizable or not.

maximizable false Boolean | Whether a dialog is maximizable or not.

closeOnEscape false Boolean | Defines if dialog should close on escape key.

dir Itr String Defines text direction, valid values are /¢ and r#/.

focus null String Defines which component to apply focus.

fitViewport false Boolean | Dialog size might exceeed viewport if content is bigger

than viewport in terms of height. fitViewport option
automatically adjusts height to fit dialog within the
viewport.

Getting started with the Dialog

Dialog is a panel component containing other components, note that by default dialog is not visible.

<p:dialog>
<h:outputText value="Resistance to PrimeFaces is Futile!" />
//0ther content

</p:dialog>

Show and Hide

Showing and hiding the dialog is easy using the client side api.

177

PrimeFaces User Guide

<p:dialog header="Header Text" widgetVar="dlg">//Content</p:dialog>
<p:commandButton value="Show" type="button" onclick="PF('dlg').show()" />
<p:commandButton value="Hide" type="button" onclick="PF('dlg').hide()" />

Effects

There are various effect options to be used when displaying and closing the dialog. Use showEffect
and hideEffect options to apply these effects; blind, bounce, clip, drop, explode, fade, fold,
highlight, puff, pulsate, scale, shake, size, slide and transfer.

<p:dialog showEffect="fade" hideEffect="explode" ...>
//. ..
</p:dialog>

Position

By default dialog is positioned at center of the viewport and position option is used to change the
location of the dialog. Possible values are;

J

* Single string value like ‘center’, lefi’ right’, ‘top’ ‘bottom’representing the position within
viewport.

* Comma separated x and y coordinate values like 200, 500

* Comma separated position values like %op’ right’ (Use single quotes when using a combination)

Some examples are described below;

<p:dialog position="top" ...>

<p:dialog position="left,top" ...>

<p:dialog position="200,50" ...>

Focus

Dialog applies focus on first visible input on show by default which is useful for user friendliness
however in some cases this is not desirable. Assume the first input is a popup calendar and opening
the dialog shows a popup calendar. To customize default focus behavior, use focus attribute.

Ajax Behavior Events

close event is one of the ajax behavior events provided by dialog that is fired when the dialog is
hidden. If there is a listener defined it’ll be executed by passing an instance of
org.primefaces.event.CloseEvent.

Example below adds a FacesMessage when dialog is closed and updates the messages component to
display the added message.

178

PrimeFaces User Guide

<p:dialog>
<p:ajax event="close" listener="#{dialogBean.handleClose}" update="msg" />
//Content

</p:dialog>

<p:messages id="msg" />

public class DialogBean {

public void handleClose(CloseEvent event) {
//Add facesmessage

}

3 other ajax behavior events are maximize, minimize, move that are invoked when dialog is
maximized, minimized and moved respectively.

Client Side Callbacks

Similar to close listener, onShow and onHide are handy callbacks for client side in case you need to
execute custom javascript.

<p:dialog onShow="alert(‘Visible)" onHide="alert(‘Hidden)">
//Content
</p:dialog>

Client Side API
Widget: PrimeFaces.widget.Dialog

Method Params Return Type Description
show() - void Displays dialog.
hide() - void Closes dialog.
Skinning

Dialog resides in a main container element which s#yleClass option apply. Following is the list of
structural style classes;

Style Class Applies
.ui-dialog Container element of dialog
.ui-dialog-titlebar Title bar
.ui-dialog-title-dialog Header text
.ui-dialog-titlebar-close Close icon
.ui-dialog-content Dialog body

179

PrimeFaces User Guide

As skinning style classes are global, see the main theming section for more information.

Tips

 Use appendTo with care as the page definition and html dom would be different, for example if
dialog is inside an h:form component and appendToBody is enabled, on the browser dialog would
be outside of form and may cause unexpected results. In this case, nest a form inside a dialog.

* Do not place dialog inside tables, containers likes divs with relative positioning or with non-
visible overflow defined, in cases like these functionality might be broken. This is not a limitation
but a result of DOM model. For example dialog inside a layout unit, tabview, accordion are a
couple of examples. Same applies to confirmDialog as well.

180

PrimeFaces User Guide

3.35 Drag&Drop

Drag&Drop utilities of PrimeFaces consists of two components; Draggable and Droppable.

3.35.1 Draggable

Info
Tag draggable
Component Class org.primefaces.component.dnd.Draggable
Component Type org.primefaces.component.Draggable

Component Family | org.primefaces.component

Renderer Type org.primefaces.component.DraggableRenderer
Renderer Class org.primefaces.component.dnd.DraggableRenderer
Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side

UIComponent instance in a backing bean

widgetVar null String Name of the client side widget

proxy false Boolean Displays a proxy element instead of actual element.
dragOnly false Boolean Specifies a draggable that can’t be dropped.

for null String Id of the component to add draggable behavior
disabled false Boolean Disables draggable behavior when true.

axis null String Specifies drag axis, valid values are ‘x’ and ‘y’.
containment null String Constraints dragging within the boundaries of

containment element

helper null String Helper element to display when dragging

revert false Boolean Reverts draggable to it’s original position when not
dropped onto a valid droppable

snap false Boolean Draggable will snap to edge of near elements

snapMode null String Specifies the snap mode. Valid values are ‘both’,
‘inner’ and ‘outer’.

181

PrimeFaces User Guide

Name Default Type Description
snapTolerance 20 Integer Distance from the snap element in pixels to trigger
snap.
zindex null Integer ZlIndex to apply during dragging.
handle null String Specifies a handle for dragging.
opacity 1 Double Defines the opacity of the helper during dragging.
stack null String In stack mode, draggable overlap is controlled

automatically using the provided selector, dragged
item always overlays other draggables.

grid null String Dragging happens in every x and y pixels.
scope null String Scope key to match draggables and droppables.
cursor crosshair String CSS cursor to display in dragging.

dashboard null String Id of the dashboard to connect with.

appendTo null String A search expression to define which element to

append the draggable helper to.

Getting started with Draggable

Any component can be enhanced with draggable behavior, basically this is achieved by defining the
id of component using the for attribute of draggable.

<p:panel id="pnl" header="Draggable Panel">
<h:outputText value="This is actually a regular panel" />
</p:panel>

<p:draggable for="pnl"/>

If you omit the for attribute, parent component will be selected as the draggable target.

<h:graphicImage id="campnou" value="/images/campnou.jpg">
<p:draggable />
</h:graphicImage>

Handle

By default any point in dragged component can be used as handle, if you need a specific handle,
you can define it with handle option. Following panel is dragged using it’s header only.

<p:panel id="pnl" header="Draggable Panel">

<h:outputText value="I can only be dragged using my header" />
</p:panel>
<p:draggable for="pnl" handle="div.ui-panel-titlebar"/>

182

PrimeFaces User Guide

Drag Axis

Dragging can be limited to either horizontally or vertically.

<p:panel id="pnl" header="Draggable Panel">
<h:outputText value="I am dragged on an axis only" />
</p:panel>

<p:draggable for="pnl" axis="x or y"/>

Clone

By default, actual component is used as the drag indicator, if you need to keep the component at it’s
original location, use a clone helper.

<p:panel id="pnl" header="Draggable Panel">
<h:outputText value="I am cloned" />
</p:panel>

<p:draggable for="pnl" helper="clone"/>

Revert

When a draggable is not dropped onto a matching droppable, revert option enables the component
to move back to it’s original position with an animation.

<p:panel id="pnl" header="Draggable Panel">
<h:outputText value="I will be reverted back to my original position" />
</p:panel>

<p:draggable for="pnl" revert="true"/>

Opacity

During dragging, opacity option can be used to give visual feedback, helper of following panel’s
opacity is reduced in dragging.

<p:panel id="pnl" header="Draggable Panel">
<h:outputText value="My opacity is lower during dragging" />
</p:panel>

<p:draggable for="pnl" opacity="0.5"/>

Grid

Defining a grid enables dragging in specific pixels. This value takes a comma separated dimensions
in x,y format.

<p:panel id="pnl" header="Draggable Panel">
<h:outputText value="I am dragged in grid mode" />

</p:panel>

<p:draggable for="pnl" grid="20,40"/>

183

PrimeFaces User Guide

Containment

A draggable can be restricted to a certain section on page, following draggable cannot go outside of
it’s parent.

<p:outputPanel layout="block" style="width:400px;height:200px;">
<p:panel id="conpnl" header="Restricted">
<h:outputText value="I am restricted to my parent's boundaries"” />
</p:panel>
</p:outputPanel>

<p:draggable for="conpnl" containment="parent" />

184

3.35.2 Droppable

Info

PrimeFaces User Guide

Tag

droppable

Component Class

org.primefaces.component.dnd.Droppable

Component Type

org.primefaces.component.Droppable

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.DroppableRenderer

Renderer Class

org.primefaces.component.dnd.DroppableRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

widgetVar null String Variable name of the client side widget

for null String Id of the component to add droppable behavior

disabled false Boolean Disables of enables droppable behavior

hoverStyleClass null String Style class to apply when an acceptable draggable is
dragged over.

activeStyleClass null String Style class to apply when an acceptable draggable is
being dragged.

onDrop null String Client side callback to execute when a draggable is
dropped.

accept null String Selector to define the accepted draggables.

scope null String Scope key to match draggables and droppables.

tolerance null String Specifies the intersection mode to accept a draggable.

datasource null String Id of a UIData component to connect with.

185

PrimeFaces User Guide

Getting Started with Droppable

Usage of droppable is very similar to draggable, droppable behavior can be added to any component
specified with the for attribute.

<p:outputPanel id="slot" styleClass="slot" />

<p:droppable for="slot" />

slot styleClass represents a small rectangle.

<style type="text/css">
.slot {
background:#FF9900;
width:64px;
height:96px;
display:block;
i
</style>

If for attribute is omitted, parent component becomes droppable.

<p:outputPanel id="slot" styleClass="slot">
<p:droppable />
</p:outputPanel>

Ajax Behavior Events

drop is the only and default ajax behavior event provided by droppable that is processed when a
valid draggable is dropped. In case you define a listener it'll be executed by passing an
org.primefaces.event. DragDrop event instance parameter holding information about the dragged
and dropped components.

Following example shows how to enable draggable images to be dropped on droppables.

<p:graphicImage id="messi" value="barca/messi_thumb.jpg" />
<p:draggable for="messi"/>

<p:outputPanel id="zone" styleClass="slot" />
<p:droppable for="zone">

<p:ajax listener="#{ddController.onDrop}" />
</p:droppable>

public void onDrop(DragDropEvent ddEvent) {

String draggedld = ddEvent.getDragIld(); //Client id of dragged component
String droppedld = ddEvent.getDropId(); //Client id of dropped component
Object data = ddEvent.getData(); //Model object of a datasource

186

PrimeFaces User Guide

onDrop

onDrop is a client side callback that is invoked when a draggable is dropped, it gets two parameters
event and ui object holding information about the drag drop event.

<p:outputPanel id="zone" styleClass="slot" />
<p:droppable for="zone" onDrop="handleDrop"/>

function handleDrop(event, ui) {
var draggable = ui.draggable, //draggable element, a jQuery object

helper = ui.helper, //helper element of draggable, a jQuery object
position = ui.position, //position of draggable helper
offset = ui.offset; //absolute position of draggable helper
ks
DataSource

Droppable has special care for data elements that extend from UlData(e.g. datatable, datagrid), in
order to connect a droppable to accept data from a data component define datasource option as the
id of the data component. Example below show how to drag data from datagrid and drop onto a
droppable to implement a dragdrop based selection. Dropped cars are displayed with a datatable.

public class TableBean {

private List<Car> availableCars;
private List<Car> droppedCars;

public TableBean() {
availableCars = //populate data

}

//getters and setters

public void onCarDrop(DragDropEvent event) {
Car car = ((Car) ddEvent.getData());
droppedCars.add(car);
availableCars.remove(car);

187

PrimeFaces User Guide

<h:form id="carForm">
<p:fieldset legend="AvailableCars">
<p:dataGrid id="availableCars" var="car"
value="#{tableBean.availableCars}" columns="3">
<p:column>
<p:panel id="pnl" header="#{car.model}" style="text-align:center">
<p:graphicImage value="/images/cars/#{car.manufacturer}.jpg" />
</p:panel>
<p:draggable for="pnl" revert="true" handle=".ui-panel-titlebar"
stack=".ui-panel"/>
</p:column>
</p:dataGrid>
</p:fieldset>

<p:fieldset id="selectedCars" legend="Selected Cars" style="margin-top:20px">
<p:outputPanel id="dropArea">

<h:outputText value="!!!Drop here!!!"
rendered="#{empty tableBean.droppedCars}" style="font-size:24px;" />

<p:dataTable var="car" value="#{tableBean.droppedCars}"
rendered="#{not empty tableBean.droppedCars}">
<p:column headerText="Model">
<h:outputText value="#{car.model}" />
</p:column>
<p:column headerText="Year">
<h:outputText value="#{car.year}" />
</p:column>
<p:column headerText="Manufacturer">
<h:outputText value="#{car.manufacturer}" />
</p:column>
<p:column headerText="Color">
<h:outputText value="#{car.color}" />
</p:column>
</p:dataTable>
</p:outputPanel>
</p:fieldset>

<p:droppable for="selectedCars" tolerance="touch"
activeStyleClass="ui-state-highlight" datasource="availableCars"
onDrop="handleDrop"/>
<p:ajax listener="#{tableBean.onCarDrop}" update="dropArea availableCars" />
</p:droppable>

</h:form>

<script type="text/javascript">
function handleDrop(event, ui) {
ui.draggable.fadeOQut(‘fast”); //fade out the dropped item
i

</script>

188

PrimeFaces User Guide

Tolerance

There are four different tolerance modes that define the way of accepting a draggable.

Mode Description
fit draggable should overlap the droppable entirely
intersect draggable should overlap the droppable at least 50%
pointer pointer of mouse should overlap the droppable
touch droppable should overlap the droppable at any amount
Acceptance

You can limit which draggables can be dropped onto droppables using scope attribute which a
draggable also has. Following example has two images, only first image can be accepted by
droppable.

<p:graphicImage id="messi" value="barca/messi_thumb.jpg" />
<p:draggable for="messi" scope="forward"/>

<p:graphicImage id="xavi" value="barca/xavi_thumb.jpg" />
<p:draggable for="xavi" scope="midfield"/>

<p:outputPanel id="forwardsonly" styleClass="slot" scope="forward" />
<p:droppable for="forwardsonly" />

Skinning

hoverStyleClass and activeStyleClass attributes are used to change the style of the droppable when
interacting with a draggable.

189

3.36 Dock

PrimeFaces User Guide

Dock component mimics the well known dock interface of Mac OS X.

Info

Tag

dock

Component Class

org.primefaces.component.dock.Dock

Component Type

org.primefaces.component.Dock

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.DockRenderer

Renderer Class

org.primefaces.component.dock.DockRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

model null MenuModel MenuModel instance to create menus
programmatically

position bottom String Position of the dock, bottom or top.

itemWidth 40 Integer Initial width of items.

maxWidth 50 Integer Maximum width of items.

proximity 90 Integer Distance to enlarge.

halign center String Horizontal alignment,

widgetVar null String Name of the client side widget.

190

PrimeFaces User Guide

Getting started with the Dock

A dock is composed of menuitems.

<p:dock>
<p:menuitem value="Home" icon="/images/dock/home.png" url="#" />
<p:menuitem value="Music" icon="/images/dock/music.png" url="#" />
<p:menuitem value="Video" icon="/images/dock/video.png" url="#"/>
<p:menuitem value="Email" icon="/images/dock/email.png" url="#"/>
<p:menuitem value="Link" icon="/images/dock/link.png" url="#"/>
<p:menuitem value="RSS" icon="/images/dock/rss.png" url="#"/>
<p:menuitem value="History" icon="/images/dock/history.png" url="#"/>

</p:dock>

Position

Dock can be located in two locations, fop or bottom (default). For a dock positioned at top set
position to top.

Dock Effect

When mouse is over the dock items, icons are zoomed in. The configuration of this effect is done
via the maxWidth and proximity attributes.

Dynamic Menus

Menus can be created programmatically as well, see the dynamic menus part in menu component
section for more information and an example.

Skinning
Following is the list of structural style classes, {positon} can be top or bottom.
Style Class Applies
.ui-dock-{position} Main container.
.ui-dock-container- {position} Menu item container.
.ui-dock-item- {position} Each menu item.

As skinning style classes are global, see the main theming section for more information.

191

3.37 Editor

PrimeFaces User Guide

Editor is an input component with rich text editing capabilities.

B J Uae x, XX T-1FH-Tyg T T = i= EE=E=E=E9

=@ & ¢

e =D

I!IPrimeFaces ROCKS!!!

Info

Tag

editor

Component Class

org.primefaces.component.editor.Editor

Component Type

org.primefaces.component.Editor

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.EditorRenderer

Renderer Class

org.primefaces.component.editor.EditorRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the
component.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean.

value null Object Value of the component than can be either an EL
expression of a literal text.

converter null Converter/ | An el expression or a literal text that defines a

String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id.

immediate false Boolean When set true, process validations logic is executed at
apply request values phase for this component.

required false Boolean Marks component as required.

192

PrimeFaces User Guide

Name Default Type Description
validator null Method A method expression that refers to a method
Expr validationg the input.
valueChangeListener null Method A method expression that refers to a method for
Expr handling a valuchangeevent.
requiredMessage null String Message to be displayed when required field
validation fails.
converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fails.
widgetVar null String Name of the client side widget.
controls null String List of controls to customize toolbar.
height null Integer Height of the editor.
width null Integer Width of the editor.
disabled false Boolean Disables editor.
style null String Inline style of the editor container.
styleClass null String Style class of the editor container.
onchange null String Client side callback to execute when editor data
changes.
maxlength null Integer Maximum length of the raw input.

Getting started with the Editor

Rich Text entered using the Editor is passed to the server using value expression.

public class Bean {
private String text;

//getter and setter

<p:editor value="#{bean.text}" />

Custom Toolbar

Toolbar of editor is easy to customize using controls option;

<p:editor value="#{bean.text}" controls="bold italic underline strikethrough" />

193

PrimeFaces User Guide

Here is the full list of all available controls;

* bold * justify

« italic * undo

* underline * redo

« strikethrough * rule

* subscript * image

* superscript * link

* font * unlink

* size * cut

* style * copy

* color * paste

* highlight * pastetext
* bullets * print

* numbering * source

« alignleft * outdent
* center * indent

» alignright * removeFormat

Client Side API

Widget: PrimeFaces.widget. Editor

Method Params Return Type Description
init() - void Initializes a lazy editor, subsequent calls do not
reinit the editor.
saveHTML() - void Saves html text in iframe back to the textarea.
clear() - void Clears the text in editor.
enable() - void Enables editing.
disable() - void Disables editing.
focus() - void Adds cursor focus to edit area.
selectAll() - void Selects all text in editor.
getSelectedHTML() - String Returns selected text as HTML.
getSelectedText() - String Returns selected text in plain format.

194

Skinning

PrimeFaces User Guide

Following is the list of structural style classes.

Style Class

Applies

.ui-editor

Main container.

.ui-editor-toolbar

Toolbar of editor.

.ui-editor-group

Button groups.

.ui-editor-button

Each button.

.ui-editor-divider

Divider to separate buttons.

.ui-editor-disabled

Disabled editor controls.

.ui-editor-list

Dropdown lists.

.ui-editor-color

Color picker.

.ui-editor-popup

Popup overlays.

.ui-editor-prompt

Overlays to provide input.

.ui-editor-message

Overlays displaying a message.

Editor is not integrated with ThemeRoller as there is only one icon set for the controls.

195

PrimeFaces User Guide

3.38 Effect

Effect component is based on the jQuery UI effects library.

Info

Tag effect

Tag Class org.primefaces.component.effect.EffectTag

Component Class org.primefaces.component.effect.Effect

Component Type org.primefaces.component.Effect

Component Family org.primefaces.component

Renderer Type org.primefaces.component.EffectRenderer

Renderer Class org.primefaces.component.effect.EffectRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered 1 Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

effect null String Name of the client side widget.

event null String Dom event to attach the event that executes the
animation

type null String Specifies the name of the animation

for null String Component that is animated

speed 1000 Integer Speed of the animation in ms

delay null Integer Time to wait until running the effect.

Getting started with Effect

Effect component needs a trigger and target which is effect’s parent by default. In example below
clicking outputText (trigger) will run the pulsate effect on outputText(target) itself.

196

PrimeFaces User Guide

<h:outputText value="#{bean.value}">
<p:effect type="pulsate" event="click" />
</h:outputText>

Effect Target

There may be cases where you want to display an effect on another target on the same page while
keeping the parent as the trigger. Use for option to specify a target.

<h:outputlLink id="1nk" value="#">
<h:outputText value="Show the Barca Temple" />
<p:effect type="appear" event="click" for="img" />
</h:outputlLink>

<p:graphicImage id="img" value="/ui/barca/campnou.jpg" style="display:none"/>

With this setting, outputLink becomes the trigger for the effect on graphiclmage. When the link is
clicked, initially hidden graphicImage comes up with a fade effect.

Note: It’s important for components that have the effect component as a child to have an
assigned id because some components do not render their clientld’s if you don’t give them an id
explicitly.

List of Effects
Following is the list of effects;

* blind

e clip

e drop

* explode
« fold

* puff

* slide

* scale

* bounce
* highlight
* pulsate
« shake

* size

* transfer

197

PrimeFaces User Guide

Effect Configuration

Each effect has different parameters for animation like colors, duration and more. In order to change
the configuration of the animation, provide these parameters with the f:param tag.

<h:outputText value="#{bean.value}">
<p:effect type="scale" event="mouseover">
<f:param name="percent" value="90"/>
</p:effect>
</h:outputText>

It’s important to provide string options with single quotes.

<h:outputText value="#{bean.value}">
<p:effect type="blind" event="click">
<f:param name="direction" value=""horizontal'" />
</p:.effect>
</h:outputText>

For the full list of configuration parameters for each effect, please see the jquery documentation;

http://docs. jquery.com/UI/Effects

Effect on Load

Effects can also be applied to any JSF component when page is loaded for the first time or after an
ajax request is completed by using load as the event name. Following example animates messages
with pulsate effect after ajax request completes.

<p:messages id="messages">
<p:effect type="pulsate" event="load" delay="500">
<f:param name="mode" value=""'show'" />
</p:effect>
</p:messages>

<p:commandButton value="Save" actionListener="#{bean.action}" update="messages"/>

198

http://docs.jquery.com/UI/Effects

PrimeFaces User Guide

3.39 FeedReader

FeedReader is used to display content from a feed.

Info
Tag feedReader
Component Class org.primefaces.component.feedreader.FeedReader
Component Type org.primefaces.component.FeedReader
Component Family org.primefaces.component
Renderer Type org.primefaces.component.FeedReaderRenderer
Renderer Class org.primefaces.component.feedreader.FeedReaderRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean
value null String URL of the feed.
var null String Iterator to refer each item in feed.
size Unlimited Integer Number of items to display.

Getting started with FeedReader

FeedReader requires a feed url to display and renders its content for each feed item.

<p:feedReader value="http://rss.news.yahoo.com/rss/sports" var="feed">
<h:outputText value="#{feed.title}" style="font-weight: bold"/>

<h:outputText value="#{feed.description.value}" escape="false"/>
<p:separator />
<f:facet name="error">
Something went wrong.
</f:facet>
</p:feedReader>

Note that you need the ROME library in your classpath to make feedreader work.

199

http://rss.news.yahoo.com/rss/sports

PrimeFaces User Guide

3.40 Fieldset

Fieldset is a grouping component as an extension to html fieldset.

Info

Simple FieldSet

The story begins as Don Vito Corleone, the head of a New York Mafia family,
oversees his daughter's wedding. His beloved son Michael has just come
home from the war, but does not intend to become part of his father's
business. T hrough Michael's life the nature of the family business becomes
clear. The business of the family is just like the head of the family, kind and
benevolent to those who give respect, but given to ruthless violence whenever
anything stands against the good of the family.

Tag

fieldset

Component Class

org.primefaces.component.fieldset.Fieldset

Component Type

org.primefaces.component.Fieldset

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.FieldsetRenderer

Renderer Class

org.primefaces.component.fieldset.FieldsetRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

legend null String Title text.

style null String Inline style of the fieldset.

styleClass null String Style class of the fieldset.

toggleable false Boolean Makes content toggleable with animation.

toggleSpeed 500 Integer Toggle duration in milliseconds.

collapsed false Boolean Defines initial visibility state of content.

200

PrimeFaces User Guide

Getting started with Fieldset

Fieldset is used as a container component for its children.

<p:fieldset legend="Simple Fieldset">
<h:panelGrid column="2">
<p:graphicImage value="/images/godfather/1.jpg" />
<h:outputText value="The story begins as Don Vito Corleone ..." />
</h:panelGrid>
</p:fieldset>

Legend

Legend can be defined in two ways, with legend attribute as in example above or using legend
facet. Use facet way if you need to place custom html other than simple text.

<p:fieldset>
<f:facet name="legend">
</f:facet>

//content
</p:fieldset>

When both legend attribute and legend facet are present, facet is chosen.

Toggleable Content

Clicking on fieldset legend can toggle contents, this is handy to use space efficiently in a layout. Set
toggleable to true to enable this feature.

<p:fieldset legend="Toggleable Fieldset" toggleable="true">
<h:panelGrid column="2">
<p:graphicImage value="/images/godfather/2.jpg" />
<h:outputText value="Francis Ford Coppolas’legendary ..." />
</h:panelGrid>
</p:fieldset>

= Toggleable Fieldset

Francis Ford Coppola's legendary continuation and sequel to his landmark
1972 film, The_Godfather, parallels the young Vito Corleone's rise with his
son Michael's spiritual fall, deepening The_Godfather's depiction of the dark
side of the American dream. In the early 1900s, the child Vito flees his
Sicilian village for America after the local Mafia kills his family. Vito struggles
to make a living, legally or illegally, for his wife and growing brood in Little
Italy, killing the local Black Hand Fanucci after he demands his customary cut
of the tyro's business. With Fanucci gone, Vito's communal stature grows.

Ajax Behavior Events

toggle is the default and only ajax behavior event provided by fieldset that is processed when the
content is toggled. In case you have a listener defined, it will be invoked by passing an instance of
org.primefaces.event. ToggleEvent.

201

PrimeFaces User Guide

Here is an example that adds a facesmessage and updates growl component when fieldset is
toggled.

<p:growld id="messages" />

<p:fieldset legend="Toggleable Fieldset" toggleable="true"
<p:ajax listener="#{bean.onToggle}" update="messages">

//content

</p:fieldset>

public void onToggle(ToggleEvent event) {
Visibility visibility = event.getVisibility();
FacesMessage msg = new FacesMessage();
msg.setSummary("Fieldset " + event.getId() + " toggled");
msg.setDetail("Visibility: " + visibility);

FacesContext.getCurrentInstance().addMessage(null, msg);

}
Client Side API
Widget: PrimeFaces.widget.Fieldset
Method Params Return Type Description
toggle() - void Toggles fieldset content.
Skinning

style and styleClass options apply to the fieldset. Following is the list of structural style classes;

Style Class Applies
.ui-fieldset Main container
.ui-fieldset-toggleable Main container when fieldset is toggleable
.ui-fieldset .ui-fieldset-legend Legend of fieldset

.ui-fieldset-toggleable .ui-fieldset-legend | Legend of fieldset when fieldset is toggleable

.ui-fieldset .ui-fieldset-toggler Toggle icon on fieldset

As skinning style classes are global, see the main theming section for more information.
Tips

* A collapsed fieldset will remain collapsed after a postback since fieldset keeps its toggle state
internally, you don’t need to manage this using toggleListener and collapsed option.

202

PrimeFaces User Guide

3.41 FileDownload

The legacy way to present dynamic binary data to the client is to write a servlet or a filter and
stream the binary data. FileDownload presents an easier way to do the same.

Info

Tag fileDownload

ActionListener Class | org.primefaces.component.filedownload.FileDownloadActionListener

Attributes
Name Default Type Description
value null StreamedContent A streamed content instance
contextDisposition attachment String Specifies display mode.

Getting started with FileDownload

A user command action is required to trigger the filedownload process. FileDownload can be
attached to any command component like a commandButton or commandLink. The value of the
FileDownload must be an org.primefaces.model.StreamedContent instance. We suggest using the
built-in DefaultStreamedContent implementation. First parameter of the constructor is the binary
stream, second is the mimeType and the third parameter is the name of the file.

public class FileBean {
private StreamedContent file;

public FileDownloadController() {
InputStream stream = this.getClass().getResourceAsStream("yourfile.pdf™");
file = new DefaultStreamedContent(stream, "application/pdf",
"downloaded_file.pdf");
}

public StreamedContent getFile() {
return this.file;

This streamed content should be bound to the value of the fileDownload.

<h:commandButton value="Download">
<p:fileDownload value="#{fileBean.file}" />
</h:commandButton>

Similarly a more graphical presentation would be to use a commandlink with an image.

203

PrimeFaces User Guide

<h:commandLink value="Download">
<p:fileDownload value="#{fileBean.file}"/>
<h:graphicImage value="pdficon.gif" />
</h:commandLink>

If you’d like to use PrimeFaces commandButton and commandLink, disable ajax option as
fileDownload requires a full page refresh to present the file.

<p:commandButton value="Download" ajax="false">
<p:fileDownload value="#{fileBean.file}" />
</p: commandButton>

<p:commandLink value="Download" ajax="false">
<p:fileDownload value="#{fileBean.file}"/>
<h:graphicImage value="pdficon.gif" />
</p:commandLink>

ContentDisposition

By default, content is displayed as an attachment with a download dialog box, another alternative is
the inline mode, in this case browser will try to open the file internally without a prompt. Note that
content disposition is not part of the http standard although it is widely implemented.

Monitor Status

As fileDownload process is non-ajax, ajaxStatus cannot apply. Still PrimeFaces provides a feature
to monitor file downloads via client side monitorDownload(startFunction, endFunction) method.
Example below displays a modal dialog when dowload begins and hides it on complete.

<script type="text/javascript">
function showStatus() {
PF('statusDialog').show();

}

function hideStatus() {
PF('statusDialog').hide();
}

</script>

<h:form>
<p:dialog modal="true" widgetVar="statusDialog" header="Status" draggable="false"
closable="false">
<p:graphicImage value="/design/ajaxloadingbar.gif" />
</p:dialog>
<p:commandButton value="Download" ajax="false"
onclick="PrimeFaces.monitorDownload(showStatus, hideStatus)">
<p:fileDownload value="#{fileDownloadController.file}"/>
</p: commandButton>
</h:form>

Cookies must be enabled for monitoring.

204

PrimeFaces User Guide

3.42 FileUpload

FileUpload goes beyond the browser input type="file" functionality and features an HTMLS5
powered rich solution with graceful degradation for legacy browsers.

PRT— P

a Germany.png 241 KB

Brazil.png 46.0 KB

+ Choose 4+ Upload @ Cancel

Ei Invalid file type primefaces.pdf 256.4 KB x
Info
Tag fileUpload
Component Class org.primefaces.component.fileupload.FileUpload
Component Type org.primefaces.component.FileUpload
Component Family org.primefaces.component
Renderer Type org.primefaces.component.FileUploadRenderer
Renderer Class org.primefaces.component.fileupload.FileUploadRenderer
Attributes
Name Default Description
id null String Unique identifier of the component.
rendered true boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.
binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean.

205

PrimeFaces User Guide

Name Default Description

value null Object Value of the component than can be either an EL
expression of a literal text.

converter null Converter An el expression or a literal text that defines a

/String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id.

immediate false Boolean When set true, process validations logic is executed
at apply request values phase for this component.

required false Boolean Marks component as required.

validator null MethodExpr | A method expression that refers to a method
validationg the input.

valueChangeListener | null MethodExpr | A method expression that refers to a method for
handling a valuchangeevent.

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fails.

widgetVar null String Name of the client side widget.

update null String Component(s) to update after fileupload completes.

process null String Component(s) to process in fileupload request.

fileUploadListener null MethodExpr | Method to invoke when a file is uploaded.

multiple false Boolean Allows choosing of multi file uploads from native
file browse dialog

auto false Boolean When set to true, selecting a file starts the upload
process implicitly.

label Choose String Label of the browse button.

allowTypes null String Regular expression for accepted file types,
e.g. /(\|V)(gifljpe?g|png)$/

sizeLimit null Integer Individual file size limit in bytes.

fileLimit null Integer Maximum number of files allowed to upload.

style null String Inline style of the component.

styleClass null String Style class of the component.

mode advanced | String Mode of the fileupload, can be simple or advanced.

uploadLabel Upload String Label of the upload button.

cancelLabel Cancel String Label of the cancel button.

206

PrimeFaces User Guide

Name Default Description
invalidSizeMessage | null String Message to display when size limit exceeds.
invalidFileMessage null String Message to display when file is not accepted.
fileLimitMessage null String Message to display when file limit exceeds.
dragDropSupport true Boolean Specifies dragdrop based file selection from

filesystem, default is true and works only on
supported browsers.

onstart null String Client side callback to execute when upload begins.

onerror null String Callback to execute if fileupload request fails.

oncomplete null String Client side callback to execute when upload ends.

disabled false Boolean Disables component when set true.

messageTemplate {name} String Message template to use when displaying file
{size} validation errors.

preview Width 80 Integer Width for image previews in pixels.

Getting started with FileUpload

FileUpload engine on the server side can either be servlet 3.0 or commons fileupload. PrimeFaces
selects the most appropriate uploader engine by detection and it is possible to force one or the other
usign an optional configuration param.

<context-param>
<param-name>primefaces.UPLOADER</param-name>
<param-value>autolnative | commons</param-value>
</context-param>

auto: This is the default mode and PrimeFaces tries to detect the best method by checking the
runtime environment, if JSF runtime is at least 2.2 native uploader is selected, otherwise commons.

native: Native mode uses servlet 3.x Part API to upload the files and if JSF runtime is less than 2.2
and exception is being thrown.

commons: This option chooses commons fileupload regardless of the environment, advantage of
this option is that it works even on a Servlet 2.5 environment.

If you have decided to choose commons fileupload, it requires the following filter configration in
your web deployment descriptior.

207

PrimeFaces User Guide

<filter>

<filter-name>PrimeFaces FileUpload Filter</filter-name>
<filter-class>

org.primefaces.webapp.filter.FileUploadFilter
</filter-class>
</filter>
<filter-mapping>
<filter-name>PrimeFaces FileUpload Filter</filter-name>

<servlet-name>Faces Servlet</servlet-name>
</filter-mapping>

Note that the servlet-name should match the configured name of the JSF servlet which is Faces
Servlet in this case. Alternatively you can do a configuration based on url-pattern as well.

Simple File Upload

Simple file upload mode works in legacy mode with a file input whose value should be an
UploadedFile instance. Ajax uploads are not supported in simple upload.

<h:form enctype="multipart/form-data">
<p:fileUpload value="#{fileBean.file}" mode="simple" />

<p:commandButton value="Submit" ajax="false"/>
</h:form>

import org.primefaces.model.UploadedFile;
public class FileBean {
private UploadedFile file;

//getter-setter

Advanced File Upload

FileUploadListener is the way to access the uploaded files in this mode, when a file is uploaded
defined fileUploadListener is processed with a FileUploadEvent as the parameter.

<p:fileUpload fileUploadListener="#{fileBean.handleFileUpload}" />

public class FileBean {

public void handleFileUpload(FileUploadEvent event) {
UploadedFile file = event.getFile();
//application code

208

PrimeFaces User Guide

Multiple Uploads

Multiple uploads can be enabled using the multiple attribute so that multiple files can be selected
from browser dialog. Multiple uploads are not supported in legacy browsers. Note that multiple
mode is for selection only, it does not send all files in one request. FileUpload component always
uses a new request for each file.

<p:fileUpload fileUploadlListener="#{fileBean.handleFileUpload}" multiple="true" />

Auto Upload

Default behavior requires users to trigger the upload process, you can change this way by setting
auto to true. Auto uploads are triggered as soon as files are selected from the dialog.

<p:fileUpload fileUploadListener="#{fileBean.handleFileUpload}" auto="true" />

Partial Page Update

After the fileUpload process completes you can use the PrimeFaces PPR to update any component
on the page. FileUpload is equipped with the update attribute for this purpose. Following example
displays a "File Uploaded" message using the growl component after file upload.

<p:fileUpload fileUploadlListener="#{fileBean.handleFileUpload}" update="msg" />

<p:growl id="msg" />

public class FileBean {

public void handleFileUpload(FileUploadEvent event) {
//add facesmessage to display with growl
//application code

File Filters

Users can be restricted to only select the file types you’ve configured, example below demonstrates
how to accept images only.

<p:fileUpload fileUploadListener="#{fileBean.handleFileUpload}"
allowTypes="/(\.I\/)(gifl|jpe?glpng)$/"/>

Size Limit
Most of the time you might need to restrict the file upload size for a file, this is as simple as setting
the sizeLimit configuration. Following fileUpload limits the size to 1000 bytes for each file.

<p:fileUpload fileUploadlListener="#{fileBean.handleFileUpload}" sizelimit="1000" />

209

PrimeFaces User Guide
File Limit

FileLimit restricts the number of maximum files that can be uploaded.

<p:fileUpload fileUploadlListener="#{fileBean.handleFileUpload}" filelLimit="3" />

Validation Messages

invalidFileMessage, invalidSizeMessage and fileLimitMessage options are provided to display
validation messages to the users. Similar to the FacesMessage message API, these message define
the summary part, the detail part is retrieved from the messageTemplate option where default value
is “{name} {size}”.

Skinning

FileUpload resides in a container element which style and styleClass options apply. As skinning
style classes are global, see the main theming section for more information. Following is the list of
structural style classes

Class Applies
.ui-fileupload Main container element
fileupload-buttonbar Button bar.
fileinput-button Browse button.
.ui-fileupload start Upload button.
.ui-fileupload cancel Cancel button.
fileupload-content Content container.

Browser Compatibility

Advanced uploader is implemented with HTMLS5 and provides far more features compared to single
version. For legacy browsers that do not support HMTLS features like canvas or file api, fileupload

uses graceful degradation so that iframe is used for transport, detailed file information is not shown

and a gif animation is displayed instead of progress bar. It is suggested to offer simple uploader as a
fallback.

Filter Configuration

Filter configuration is required if you are using commons uploader only. Two configuration options
exist, threshold size and temporary file upload location.

Parameter Name Description

thresholdSize Maximum file size in bytes to keep uploaded files in memory. If a file
exceeds this limit, it'll be temporarily written to disk.

uploadDirectory Disk repository path to keep temporary files that exceeds the threshold size.
By default it is System.getProperty("java.io.tmpdir")

210

PrimeFaces User Guide

An example configuration below defined thresholdSize to be 50kb and uploads to users temporary
folder.

<filter>
<filter-name>PrimeFaces FileUpload Filter</filter-name>
<filter-class>
org.primefaces.webapp.filter.FileUploadFilter
</filter-class>
<init-param>
<param-name>thresholdSize</param-name>
<param-value>51200</param-value>
</init-param>
<init-param>
<param-name>uploadDirectory</param-name>
<param-value>/Users/primefaces/temp</param-value>
</init-param>
</filter>

Note that uploadDirectory is used internally, you always need to implement the logic to save the file
contents yourself in your backing bean.

21

3.43 Focus

PrimeFaces User Guide

Focus is a utility component that makes it easy to manage the element focus on a JSF page.

Info

Tag

focus

Component Class

org.primefaces.component.focus.Focus

Component Type

org.primefaces.component.Focus.FocusTag

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.FocusRenderer

Renderer Class

org.primefaces.component.focus.FocusRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

for null String Specifies the exact component to set focus

context null String The root component to start first input search.

minSeverity error String Minimum severity level to be used when finding

the first invalid component

Getting started with Focus

By default focus will find the first enabled and visible input component on page and apply focus.
Input component can be any element such as input, textarea and select.

<p:focus />

<p:inputText ...
<h:inputText ...
<h:selectOneMenu ...

/>
/>

/>

Following is a simple example;

212

PrimeFaces User Guide

<h:form>
<p:panel id="panel" header="Register">

<p:focus />
<p:messages />

<h:panelGrid columns="3">
<h:outputLabel for="firstname" value="Firstname: *" />
<h:inputText id="firstname" value="#{pprBean.firstname}"
required="true" label="Firstname" />
<p:message for="firstname" />

<h:outputlLabel for="surname" value="Surname: *" />
<h:inputText id="surname" value="#{pprBean.surname}"
required="true" label="Surname"/>
<p:message for="surname" />
</h:panelGrid>

<p:commandButton value="Submit" update="panel"
actionListener="#{pprBean.savePerson}" />
</p:panel>
</h:form>

When this page initially opens up, input text with id "firstname" will receive focus as it is the first
input component.

Validation Aware

Another useful feature of focus is that when validations fail, first invalid component will receive a
focus. So in previous example if firstname field is valid but surname field has no input, a validation
error will be raised for surname, in this case focus will be set on surname field implicitly. Note that
for this feature to work on ajax requests, you need to update p:focus component as well.

Explicit Focus

Additionally, using for attribute focus can be set explicitly on an input component which is useful
when using a dialog.

<p:focus for="text"/>

<h:inputText id="text" value="{bean.value}" />

213

PrimeFaces User Guide

3.44 Fragment

Fragment component is used to define automatically partially process and update sections whenever
ajax request is triggered by a descendant component.

Info
Tag fragment
Component Class org.primefaces.component.fragment.Fragment
Component Type org.primefaces.component.Fragment
Component Family org.primefaces.component
Renderer Type org.primefaces.component.FragmentRenderer
Renderer Class org.primefaces.component.fragment.FragmentRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean | Boolean value to specify the rendering of the component, when
set to false component will not be rendered.
binding null Object An el expression that maps to a server side UIComponent instance
in a backing bean
autoUpdate | false Boolean | Updates the fragment automatically.

Getting started with Fragment

In the following case, required input field outside the fragment is ignored and only the contents of
the fragment are processed-updated automatically on button click since button is inside the
fragment. Fragment makes it easy to define partial ajax process and update without explicitly
defining component identifiers.

Required: *

Name: Submit

214

PrimeFaces User Guide

<h:form>

<h:panelGrid columns="2">
<p:outputlLabel for="ign" value="Required:" />
<p:inputText id="ign" required="true" />
</h:panelGrid>

<p:fragment autoUpdate="true">
<h:panelGrid columns="4" cellpadding="5">
<h:outputLabel for="name" value="Name:" />
<p:inputText id="name" value="#{pprBean.firstname}" />
<p: commandButton value="Submit"/>
<h:outputText value="#{pprBean.firstname}" />
</h:panelGrid>
</p:fragment>

</h:form>

AutoUpdate has different notion compared to autoUpdate of message, growl and outputPanel. The
fragment is updated automatically after an ajax request if the source is a descendant. In other
mentioned components, there is no such restriction as they are updated for every ajax request
regardless of the source.

215

3.45 Galleria

Galleria is used to display a set of images.

Info

PrimeFaces User Guide

. " %

Tag

galleria

Component Class

org.primefaces.component.galleria.Galleria

Component Type

org.primefaces.component.Galleria

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.GalleriaRenderer

Renderer Class

org.primefaces.component.galleria.GalleriaRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

value null Collection Collection of data to display.

var null String Name of variable to access an item in collection.

style null String Inline style of the container element.

styleClass null String Style class of the container element.

effect fade String Name of animation to use.

216

PrimeFaces User Guide

Name Default Type Description
effectSpeed 700 Integer Duration of animation in milliseconds.
panelWidth 600 Integer Width of the viewport.
panelHeight 400 Integer Height of the viewport.
frameWidth 60 Integer Width of the frames.
frameHeight 40 Integer Height of the frames.
showFilmstrip true Boolean Defines visibility of filmstrip.
showCaption false Boolean Defines visibility of captions.
transitionInterval | 4000 Integer Defines interval of slideshow.
autoPlay true Boolean Images are displayed in a slideshow in autoPlay.

Getting Started with Galleria

Images to displayed are defined as children of galleria;

<p:galleria effect="slide" effectDuration="1000">
<p:graphicImage value="/images/imagel.jpg" title="imagel" alt="imagel desc" />
<p:graphicImage value="/images/image2.jpg" title="imagel" alt=" image2 desc" />
<p:graphicImage value="/images/image3.jpg" title="imagel" alt=" image3 desc" />
<p:graphicImage value="/images/image4.jpg" title="imagel" alt=" image4 desc" />

</p:galleria>

Galleria displays the details of an image using an overlay which is displayed by clicking the
information icon. Title of this popup is retrieved from the image fit/e attribute and description from
alt attribute so it is suggested to provide these attributes as well.

Dynamic Collection

Most of the time, you would need to display a dynamic set of images rather than defining each
image declaratively. For this you can use built-in data iteration feature.

<p:galleria value="#{galleriaBean.images}" var="image" >
<p:graphicImage value="#{image.path}"
title="#{image.title}" alt="#{image.description}" />
</p:galleria>

Effects

There are various effect options to be used in transitions; blind, bounce, clip, drop, explode, fade,
fold, highlight, puff, pulsate, scale, shake, size, slide and transfer.

By default animation takes 500 milliseconds, use effectSpeed option to tune this.

217

PrimeFaces User Guide

//images
</p:galleria>

<p:galleria effect="slide" effectSpeed="1000">

Skinning

Galleria resides in a main container element which style and styleClass options apply. As skinning
style classes are global, see the main theming section for more information. Following is the list of

structural style classes

Style Class

Applies

.ui-galleria

Container element for galleria.

.ui-galleria-panel-wrapper

Container of panels.

.ui-galleria-panel

Container of each image.

.ui-galleria-caption

Caption element.

.ui-galleria-nav-preyv, .ui-galleria-nav-next

Navigators of filmstrip.

.ui-galleria-filmstrip-wrapper

Container of filmstrip.

.ui-galleria-filmstrip

Filmstrip element.

.ui-galleria-frame

Frame element in a filmstrip.

.ui-galleria-frame-content

Content of a frame.

.ui-galleria-frame-image

Thumbnail image.

218

3.46 GMap

PrimeFaces User Guide

GMap is a map component integrated with Google Maps API V3.

Info

ST m =

Tag

gmap

Component Class

org.primefaces.component.gmap.GMap

Component Type

org.primefaces.component.Gmap

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.GmapRenderer

Renderer Class

org.primefaces.component.gmap.GmapRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will
not be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean.

widgetVar null String Name of the client side widget.

model null MapModel | An org.primefaces.model.MapModel instance.

219

PrimeFaces User Guide

Name Default Type Description

style null String Inline style of the map container.

styleClass null String Style class of the map container.

type null String Type of the map.

center null String Center point of the map.

zoom 8 Integer Defines the initial zoom level.

streetView false Boolean Controls street view support.

disableDefaultUI false Boolean Disables default UI controls

navigationControl true Boolean Defines visibility of navigation control.

mapTypeControl true Boolean Defines visibility of map type control.

draggable true Boolean Defines draggability of map.

disabledDoubleClickZoom false Boolean Disables zooming on mouse double click.

onPointClick null String Javascript callback to execute when a point on
map is clicked.

fitBounds true Boolean Defines if center and zoom should be calculated
automatically to contain all markers on the
map.

Getting started with GMap

First thing to do is placing V3 of the Google Maps API that the GMap is based on. Ideal location is
the head section of your page.

<script src="http://maps.google.com/maps/api/js?sensor=truelfalse”
type="text/javascript"></script>

As Google Maps api states, mandatory sensor parameter is used to specify if your application
requires a sensor like GPS locator. Four options are required to place a gmap on a page, these are
center, zoom, type and style.

<p:gmap center="41.381542, 2.122893" zoom="15" type="hybrid"
style="width:600px;height:400px" />

center: Center of the map in lat, Ing format

zoom: Zoom level of the map

type: Type of map, valid values are, "hybrid", "satellite", "hybrid" and "terrain".
style: Dimensions of the map.

220

PrimeFaces User Guide

MapModel

GMap 1is backed by an org.primefaces.model. map.MapModel instance, PrimeFaces provides
org.primefaces.model.map.DefaultMapModel as the default implementation. API Docs of all GMap
related model classes are available at the end of GMap section and also at javadocs of PrimeFaces.

Markers

A marker is represented by org.primefaces.model. map.Marker.

<p:gmap center="41.381542, 2.122893" zoom="15" type="hybrid"
style="width:600px;height:400px" model="#{mapBean.model}"/>

public class MapBean {
private MapModel model = new DefaultMapModel();
public MapBean() {

model .addOverlay(new Marker(new LatlLng(36.879466, 30.667648), "M1"));
//more overlays

}
public MapModel getModel() { return this.model; }
}
soft Irigery €2010 , Cnes/Spot Image, Data SIO, NOAA, U.S. Navy, NGA, GEBCO
Polylines

A polyline is represented by org.primefaces.model.map.Polyline.

<p:gmap center="41.381542, 2.122893" zoom="15" type="hybrid"
style="width:600px;height:400px" model="#{mapBean.model}"/>

221

PrimeFaces User Guide

public class MapBean {
private MapModel model;

public MapBean() {
model = new DefaultMapModel();

Polyline polyline = new Polyline();

polyline.getPaths().add(new LatLng(36.879466, 30.667648));
polyline.getPaths().add(new LatLng(36.883707, 30.689216));
polyline.getPaths().add(new LatlLng(36.879703, 30.706707));
polyline.getPaths().add(new LatLng(36.885233, 37.702323));

model .addOverlay(polyline);
ks

public MapModel getModel() { return this.model; }
ks

Polygons
A polygon is represented by org.primefaces.model.map.Polygon.

<p:gmap center="41.381542, 2.122893" zoom="15" type="hybrid"
style="width:600px;height:400px" model="#{mapBean.model}"/>

public class MapBean {
private MapModel model;

public MapBean() {
model = new DefaultMapModel();

Polygon polygon = new Polygon();

polyline.getPaths().add(new LatLng(36.879466, 30.667648));
polyline.getPaths().add(new LatLng(36.883707, 30.689216));
polyline.getPaths().add(new LatlLng(36.879703, 30.706707));

model .addOverlay(polygon);
}

public MapModel getModel() { return this.model; }

Circles

A circle is represented by org.primefaces.model. map.Circle.

<p:gmap center="41.381542, 2.122893" zoom="15" type="hybrid"
style="width:600px;height:400px" model="#{mapBean.model}"/>

222

PrimeFaces User Guide

public class MapBean {
private MapModel model;

public MapBean() {
model = new DefaultMapModel();

Circle circle = new Circle(new LatLng(36.879466, 30.667648), 500);

model .addOverlay(circle);
ks

public MapModel getModel() { return this.model; }

Rectangles

A circle is represented by org.primefaces.model. map.Rectangle.

<p:gmap center="41.381542, 2.122893" zoom="15" type="hybrid"
style="width:600px;height:400px" model="#{mapBean.model}"/>

public class MapBean {
private MapModel model;
public MapBean() {
model = new DefaultMapModel();
LatLng coordl = new LatLng(36.879466, 30.667648);
LatLng coord2 = new LatlLng(36.883707, 30.689216);

Rectangle rectangle = new Rectangle(coordl, coord2);

model .addOverlay(circle);
3

public MapModel getModel() { return this.model; }

Ajax Behavior Events

GMap provides many custom ajax behavior events for you to hook-in to various features.

Event Listener Parameter Fired
overlaySelect org.primefaces.event.map.OverlaySelectEvent When an overlay is selected.
stateChange org.primefaces.event.map.StateChangeEvent When map state changes.
pointSelect org.primefaces.event.map.PointSelectEvent When an empty point is selected.
markerDrag org.primefaces.event.map.MarkerDragEvent When a marker is dragged.

Following example displays a FacesMessage about the selected marker with growl component.
223

PrimeFaces User Guide

<h:form>
<p:growl id="growl" />

<p:gmap center="41.381542, 2.122893" zoom="15" type="hybrid"
style="width:600px;height:400px" model="#{mapBean.model}">
<p:ajax event="overlaySelect" listener="#{mapBean.onMarkerSelect}"
update="growl" />
</p:gmap>
</h:form>

public class MapBean {
private MapModel model;

public MapBean() {
model = new DefaultMapModel();
//add markers

}

public MapModel getModel() {
return model

}

public void onMarkerSelect(OverlaySelectEvent event) {
Marker selectedMarker = (Marker) event.getOverlay();
//add facesmessage

InfoWindow

A common use case is displaying an info window when a marker is selected. gmapInfoWindow is
used to implement this special use case. Following example, displays an info window that contains
an image of the selected marker data.

<h:form>

<p:gmap center="41.381542, 2.122893" zoom="15" type="hybrid"
style="width:600px;height:400px" model="#{mapBean.model}">

<p:ajax event="overlaySelect" listener="#{mapBean.onMarkerSelect}" />

<p:gmapInfoWindow>
<p:graphicImage value="/images/#{mapBean.marker.data.image}" />
<h:outputText value="#{mapBean.marker.data.title}" />
</p:gmapInfoWindow>
</p:gmap>

</h:form>

224

PrimeFaces User Guide

public class MapBean {
private MapModel model;
private Marker marker;

public MapBean() {
model = new DefaultMapModel();
//add markers

3

public MapModel getModel() { return model; }
public Marker getMarker() { return marker; }

public void onMarkerSelect(OverlaySelectEvent event) {
this.marker = (Marker) event.getOverlay();
ks
ks

Data SIO, NOAA, U.S. Navy, NGA, GEBCO, DigitalGlobe, GeoEye - Tarms of Use

Street View

StreeView is enabled simply by setting streetView option to true.

<p:gmap center="41.381542, 2.122893" zoom="15" type="hybrid"
style="width:600px;height:400px" streetView="true" />

———
Avinguda Litoral / Ronda del Litoral, Barcelona, CT
Address Is approximate

225

Map Controls

PrimeFaces User Guide

Controls on map can be customized via attributes like navigationControl and map TypeControl.

Alternatively setting disableDefaultUI to true will remove all controls at once.

<p:gmap center="41.381542, 2.122893" zoom="15" type="terrain"
style="width:600px;height:400px"
mapTypeControl="false" navigationControl="false" />

Native Google Maps API

In case you need to access native google maps api with javascript, use provided getMap() method.

var gmap = PF('yourWidgetVar').getMap();
//gmap is a google.maps.Map instance

Full map api is provided at;

http://code.google.com/apis/maps/documentation/javascript/reference.html

GMap API
org.primefaces.model. map.MapModel (org.primefaces.model.map.DefaultMapModel is the default
implementation)

Method Description

addOverlay(Overlay overlay)

Adds an overlay to map

List<Marker> getMarkers()

Returns the list of markers

List<Polyline> getPolylines()

Returns the list of polylines

List<Polygon> getPolygons()

Returns the list of polygons

List<Circle> getCircles()

Returns the list of circles

List<Rectangle> getRectangles()

Returns the list of rectangles.

Overlay findOverlay(String id)

Finds an overlay by it’s unique id

226

http://code.google.com/apis/maps/documentation/javascript/reference.html

org.primefaces.model.map.Overlay

PrimeFaces User Guide

Property Default Type Description
id null String Id of the overlay, generated and used internally
data null Object Data represented in marker
zindex null Integer Z-Index of the overlay

org.primefaces.model. map.Marker extends org.primefaces.model.map.Overlay

Property Default Type Description
title null String Text to display on rollover
latlng null LatLng Location of the marker
icon null String Icon of the foreground
shadow null String Shadow image of the marker
cursor pointer String Cursor to display on rollover
draggable 0 Boolean Defines if marker can be dragged
clickable 1 Boolean Defines if marker can be dragged
flat 0 Boolean If enabled, shadow image is not displayed
visible 1 Boolean Defines visibility of the marker

org.primefaces.model. map.Polyline extends org.primefaces.model.map.Overlay

Property Default Type Description
paths null List List of coordinates
strokeColor null String Color of a line
strokeOpacity 1 Double Opacity of a line
strokeWeight 1 Integer Width of a line

org.primefaces.model. map.Polygon extends org.primefaces.model.map.Overlay

Property Default Type Description
paths null List List of coordinates
strokeColor null String Color of a line
strokeOpacity 1 Double Opacity of a line

227

PrimeFaces User Guide

Property Default Type Description
strokeWeight 1 Integer Weight of a line
fillColor null String Background color of the polygon
fillOpacity 1 Double Opacity of the polygon

org.primefaces.model. map.Circle extends org.primefaces.model.map.Overlay

Property Default Type Description
center null LatLng Center of the circle
radius null Double Radius of the circle.
strokeColor null String Stroke color of the circle.
strokeOpacity 1 Double Stroke opacity of circle.
strokeWeight 1 Integer Stroke weight of the circle.
fillColor null String Background color of the circle.
fillOpacity 1 Double Opacity of the circle.

org.primefaces.model.map.Rectangle extends org.primefaces.model.map.Overlay

Property Default Type Description
bounds null LatLngBounds | Boundaries of the rectangle.
strokeColor null String Stroke color of the rectangle.
strokeOpacity 1 Double Stroke opacity of rectangle.
stroke Weight 1 Integer Stroke weight of the rectangle.
fillColor null String Background color of the rectangle.
fillOpacity 1 Double Opacity of the rectangle.

org.primefaces.model. map.LatLng

Property Default Type Description
lat null double Latitude of the coordinate
Ing null double Longitude of the coordinate

org.primefaces.model. map.LatLngBounds

228

PrimeFaces User Guide

Property Default Type Description
center null LatLng Center coordinate of the boundary
northEast null LatLng NorthEast coordinate of the boundary
southWest null LatLng SouthWest coordinate of the boundary

GMap Event API

All classes in event api extends from javax.faces.event.FacesEvent.

org.primefaces.event.map.MarkerDragEvent

Property

Default

Type

Description

marker

null

Marker

Dragged marker instance

org.primefaces.event.map.OverlaySelectEvent

Property

Default

Type

Description

overlay

null

Overlay

Selected overlay instance

org.primefaces.event.map.PointSelectEvent

Property

Default

Type

Description

latLng

null

LatLng

Coordinates of the selected point

org.primefaces.event.map.StateChangeEvent

Property Default Type Description
bounds null LatLngBounds Boundaries of the map
zoomLevel 0 Integer Zoom level of the map

229

3.47 GMapIinfoWindow

GMapInfoWindow is used with GMap component to open a window on map when an overlay is

PrimeFaces User Guide

selected.
Info
Tag gmapInfoWindow
Tag Class org.primefaces.component.gmap.GMapInfoWindowTag

Component Class

org.primefaces.component.gmap.GMapInfoWindow

Component Type

org.primefaces.component.GMapInfoWindow

Component Family

org.primefaces.component

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

maxWidth null Integer Maximum width of the info window

Getting started with GMapInfoWindow

See GMap section for more information about how gmaplInfoWindow is used.

230

PrimeFaces User Guide

3.48 Graphiclmage

Graphiclmage extends standard JSF graphic image component with the ability of displaying binary
data like an inputstream. Main use cases of Graphiclmage is to make displaying images stored in
database or on-the-fly images easier. Legacy way to do this is to come up with a Servlet that does
the streaming, GraphicImage does all the hard work without the need of a Servlet.

Info

Tag graphiclmage

Component Class org.primefaces.component.graphicimage.GraphicIlmage

Component Type org.primefaces.component.Graphiclmage

Component Family org.primefaces.component

Renderer Type org.primefaces.component.GraphiclmageRenderer

Renderer Class org.primefaces.component.graphicimage.GraphiclmageRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Binary data to stream or context relative path.

alt null String Alternate text for the image

url null String Alias to value attribute

width null String Width of the image

height null String Height of the image

title null String Title of the image

dir null String Direction of the text displayed

lang null String Language code

ismap false Boolean Specifies to use a server-side image map

usemap null String Name of the client side map

style null String Style of the image

styleClass null String Style class of the image

231

PrimeFaces User Guide

Name Default Type Description
onclick null String onclick dom event handler
ondblclick null String ondblclick dom event handler
onkeydown null String onkeydown dom event handler
onkeypress null String onkeypress dom event handler
onkeyup null String onkeyup dom event handler
onmousedown null String onmousedown dom event handler
onmousemove null String onmousemove dom event handler
onmouseout null String onmouseout dom event handler
onmouseover null String onmouseover dom event handler
onmouseup null String onmouseup dom event handler
cache true String Enables/Disables browser from caching the image
name null String Name of the image.
library null String Library name of the image.

Getting started with Graphiclmage

Graphiclmage requires an org.primefaces.model.StreamedContent content as it’s value for dynamic
images. StreamedContent is an interface and PrimeFaces provides a built-in implementation called
DefaultStreamedContent. Following examples loads an image from the classpath.

<p:graphicImage value="#{imageBean.image}" />

public class ImageBean {
private StreamedContent image;

public DynamicImageController() {
InputStream stream = this.getClass().getResourceAsStream("barcalogo.jpg");
image = new DefaultStreamedContent(stream, "image/jpeg");

}

public StreamedContent getImage() {
return this.image;

}

DefaultStreamedContent gets an inputstream as the first parameter and mime type as the second.

In a real life application, you can create the inputstream after reading the image from the database.
For example java.sql.ResultsSet API has the getBinaryStream() method to read blob files stored in
database.

232

PrimeFaces User Guide

Displaying Charts with JFreeChart

See static images section at chart component for a sample usage of graphiclmage with jFreeChart.

Displaying a Barcode

Similar to the chart example, a barcode can be generated as well. This sample uses barbecue project
for the barcode API.

<p:graphicImage value="#{backingBean.barcode}" />

public class BarcodeBean {
private StreamedContent barcode;

public BackingBean() {
try {
File barcodeFile = new File("dynamicbarcode™);
BarcodeImageHandler.saveJPEG(
BarcodeFactory.createCodel28("PRIMEFACES"), barcodeFile);
barcode = new DefaultStreamedContent(
new FileInputStream(barcodeFile), "image/jpeg");
} catch (Exception e) {
e.printStackTrace();
}
}

public BarcodeBean getBarcode() {
return this.barcode;

}

Displaying Regular Images

As Graphiclmage extends standard graphiclmage component, it can also display regular non
dynamic images just like standard graphiclmage component using name and optional library.

<p:graphicImage name="barcalogo.jpg" library="yourapp" />

How It Works

Dynamic image display works as follows;

* Dynamic image encryps its value expression string to generate a key.

* This key is appended to the image url that points to JSF resource handler.

» Custom PrimeFaces ResourceHandler gets the key from the url, decrypts the expression string to
something like #{bean.streamedContentValue}, evaluates it to get the instance of
StreamedContent from bean and streams contents to client.

233

PrimeFaces User Guide

As a result there will be 2 requests to display an image, first browser will make a request to load the
page and then another one to the dynamic image url that points to JSF resource handler. Please note
that you cannot use viewscope beans as they are not available in resource loading request.

Passing Parameters and Data Iteration

You can pass request parameters to the graphiclmage via f:param tags, as a result the actual request
rendering the image can have access to these values. This is extremely handy to display dynamic
images if your image is in a data iteration component like datatable or ui:repeat.

StreamedContent

There are two StreamedContent implementations out of the box; DefaultStreamedContent is not
uses an InputStream and not serializable whereas the serializable ByteArrayContent uses a byte
array.

234

PrimeFaces User Guide

3.49 Grid CSS

Grid CSS is a lightweight responsive layout utility optimized for mobile devices, tablets and
desktops. Up to 12 columns are supported based on fluid and fixed modes.

PrimeFaces s I:E L 4 !j N

Themes Mobile Push Extenslons Mock05X
1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2

3 3 3 3

4 4 4

5 6
12

4 B
3 9
2 5 5

4 2 2 3 1

Getting Started with Grid

There are special components as usage is simple using divs. A 3 column layout can be defined as;

<div class="ui-grid">
<div class="ui-grid-row">
<div class="ui-grid-col-4">Coll</div>
<div class="ui-grid-col-4">Col2</div>
<div class="ui-grid-col-4">Col2</div>
</div>
</div>

235

PrimeFaces User Guide

Custom Layout

As long as the sum of columns are 12, various combinations are supported.

<div class="ui-grid">
<div class="ui-grid-row">
<div class="ui-grid-col-4">4</div>
<div class="ui-grid-col-8">8</div>
</div>
</div>

Multi Line

Multiple rows are enabled using more than one .ui-grid-row elements.

<div class="ui-grid">
<div class="ui-grid-row">
<div class="ui-grid-col-4">4</div>
<div class="ui-grid-col-4">4</div>
<div class="ui-grid-col-4">4</div>
</div>
<div class="ui-grid-row">
<div class="ui-grid-col-4">4</div>
<div class="ui-grid-col-4">4</div>
<div class="ui-grid-col-4">4</div>
</div>
<div class="ui-grid-row">
<div class="ui-grid-col-4">4</div>
<div class="ui-grid-col-4">4</div>
<div class="ui-grid-col-4">4</div>
</div>
</div>

Responsive

Adding .ui-grid-responsive to the container makes the content responsive to screen sizes.

<div class="ui-grid ui-grid-responsive">
<div class="ui-grid-row">
<div class="ui-grid-col-4">4</div>
<div class="ui-grid-col-8">8</div>
</div>
</div>

Fixed

.ui-grid-fixed enables fixed width for the content.

<div class="ui-grid ui-grid-fixed">
<div class="ui-grid-row">
<div class="ui-grid-col-4">4</div>
<div class="ui-grid-col-8">8</div>
</div>
</div>

236

PrimeFaces User Guide

3.50 Growl

Growl is based on the Mac’s growl notification widget and used to display FacesMessages in an
overlay.

m Name: Validation Error: Value is
required.

Mame: Validation Error: Value is

required.
Info

Tag growl

Component Class org.primefaces.component.growl. Growl

Component Type org.primefaces.component.Growl

Component Family org.primefaces.component

Renderer Type org.primefaces.component.GrowlRenderer

Renderer Class org.primefaces.component.growl.GrowlRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

sticky false Boolean Specifies if the message should stay instead of hidden
automatically.

showSummary true Boolean Specifies if the summary of message should be
displayed.

showDetail false Boolean Specifies if the detail of message should be displayed.

globalOnly false Boolean When true, only facesmessages without clientids are
displayed.

life 6000 Integer Duration in milliseconds to display non-sticky
messages.

237

PrimeFaces User Guide

Name Default Type Description

autoUpdate false Boolean Specifies auto update mode.

redisplay true Boolean Defines if already rendered messaged should be
displayed.

for null String Name of associated key, takes precedence when used
with globalOnly.

escape true Boolean Defines whether html would be escaped or not.

severity null String Comma separated list of severities to display only.

Getting Started with Growl

Growl usage is similar to standard h:messages component. Simply place growl anywhere on your
page, since messages are displayed as an overlay, the location of growl in JSF page does not matter.

<p:growl />

Lifetime of messages

By default each message will be displayed for 6000 ms and then hidden. A message can be made
sticky meaning it’ll never be hidden automatically.

<p:growl sticky="true" />

If growl is not working in sticky mode, it’s also possible to tune the duration of displaying
messages. Following growl will display the messages for 5 seconds and then fade-out.

<p:growl life="5000" />

Growl with Ajax Updates

If you need to display messages with growl after an ajax request you just need to update it. Note
that if you enable autoUpdate, growl will be updated automatically with each ajax request anyway.

<p:growl id="messages"/>
<p:commandButton value="Submit" update="messages" />

Positioning

Growl is positioned at top right corner by default, position can be controlled with a CSS selector
called ui-growl. With the below setting growl will be located at top left corner.

.ui-growl {
left:20px;
}

238

PrimeFaces User Guide

Targetable Messages

There may be times where you need to target one or more messages to a specific message
component, for example suppose you have growl and messages on same page and you need to
display some messages on growl and some on messages. Use for attribute to associate messages
with specific components.

<p:messages for="somekey" />
<p:growl for="anotherkey" />

FacesContext context = FacesContext.getCurrentInstance();

context.addMessage("somekey", facesMessagel);
context.addMessage("somekey", facesMessage2);

context.addMessage("anotherkey", facesMessage3);

In sample above, messages will display first and second message and growl will only display the
3rd message.
Severity Levels

Using severity attribute, you can define which severities can be displayed by the component. For
instance, you can configure growl to only display infos and warnings.

<p:growl severity="info,warn" />

Escaping

Growl escapes html content in messages, in case you need to display html via growl set escape
option to false.

<p:growl escape="false" />

Skinning
Following is the list of structural style classes;
Style Class Applies

.ui-growl Main container element of growl
.ui-growl-item-container Container of messages
.ui-growl-item Container of a message
.ui-growl-message Text message container
.ui-growl-title Summary of the message
.ui-growl-message p Detail of the message
.ui-growl-image Severity icon

239

PrimeFaces User Guide

Style Class

Applies

.ui-growl-image-info

Info severity icon

.ui-growl-image-warn

Warning severity icon

.ui-growl-image-error

Error severity icon

.ui-growl-image-fatal

Fatal severity icon

As skinning style classes are global, see the main theming section for more information.

240

3.51 HotKey

HotKey is a generic key binding component that can bind any formation of keys to javascript event
handlers or ajax calls.

Info

PrimeFaces User Guide

Tag

hotkey

Component Class

org.primefaces.component.hotkey.HotKey

Component Type

org.primefaces.component.HotKey

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.HotKeyRenderer

Renderer Class

org.primefaces.component.hotkey.HotKeyRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

bind null String The Key binding.

handler null String Javascript event handler to be executed when the
key binding is pressed.

action null MethodExpr A method expression that’d be processed in the
partial request caused by uiajax.

actionListener null MethodExpr An actionlistener that’d be processed in the partial
request caused by uiajax.

immediate false Boolean Boolean value that determines the phaseld, when
true actions are processed at apply request values,
when false at invoke application phase.

async false Boolean When set to true, ajax requests are not queued.

process null String Component id(s) to process partially instead of
whole view.

update null String Client side id of the component(s) to be updated
after async partial submit request.

onstart null String Javascript handler to execute before ajax request is

241

PrimeFaces User Guide

Name

Default

Type

Description

begins.

oncomplete

null

String

Javascript handler to execute when ajax request is
completed.

onsuccess

null

String

Javascript handler to execute when ajax request
succeeds.

onerror

null

String

Javascript handler to execute when ajax request
fails.

global

true

Boolean

Global ajax requests are listened by ajaxStatus
component, setting global to false will not trigger
ajaxStatus.

delay

null

String

If less than delay milliseconds elapses between
calls to request() only the most recent one is sent
and all other requests are discarded. If this option
is not specified, or if the value of delay is the literal
string 'none' without the quotes, no delay is used.

partialSubmit

false

Boolean

Enables serialization of values belonging to the
partially processed components only.

resetValues

false

Boolean

If true, local values of input components to be
updated within the ajax request would be reset.

ignoreAutoUpdate

false

Boolean

If true, components which autoUpdate="true" will
not be updated for this request. If not specified, or
the value is false, no such indication is made.

timeout

Integer

Timeout for the ajax request in milliseconds.

Getting Started with HotKey

HotKey is used in two ways, either on client side with the event handler or with ajax support.
Simplest example would be;

<p:hotkey bind=

"a" handler="alert(‘Pressed a);" />

When this hotkey is on page, pressing the a key will alert the ‘Pressed key a’ text.

Key combinations

Most of the time you’d need key combinations rather than a single key.

<p:hotkey bind="ctrl+s" handler="alert(‘Pressed ctrl+s’);" />
<p:hotkey bind="ctrl+shift+s" handler="alert(‘Pressed ctrl+shift+s)" />

Integration

Here’s an example demonstrating how to integrate hotkeys with a client side api. Using left and
right keys will switch the images displayed via the p:imageSwitch component.

242

PrimeFaces User Guide

<p:hotkey bind="1left" handler="PF('switcher').previous();" />
<p:hotkey bind="right" handler="PF('switcher').next();" />

<p:imageSwitch widgetVar="switcher">
//content
</p:imageSwitch>

Ajax Support

Ajax is a built-in feature of hotKeys meaning you can do ajax calls with key combinations.
Following form can be submitted with the ctr/+shift+s combination.

<h:form>
<p:hotkey bind="ctrl+shift+s" update="display" />
<h:panelGrid columns="2">
<h:outputLabel for="name" value="Name:" />
<h:inputText id="name" value="#{bean.name}" />
</h:panelGrid>
<h:outputText id="display" value="Hello: #{bean.firstname}" />

</h:form>

Note that hotkey will not be triggered if there is a focused input on page.

243

3.52 IdleMonitor

IdleMonitor watches user actions on a page and notify callbacks in case they go idle or active again.

Info

PrimeFaces User Guide

Tag

idleMonitor

Component Class

org.primefaces.component.idlemonitor.IdleMonitor

Component Type

org.primefaces.component.IdleMonitor

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.IdleMonitorRenderer

Renderer Class

org.primefaces.component.idlemonitor.IdleMonitor

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

timeout 300000 Integer Time to wait in milliseconds until deciding if the user
is idle. Default is 5 minutes.

onidle null String Client side callback to execute when user goes idle.

onactive null String Client side callback to execute when user goes idle.

widgetVar null String Name of the client side widget.

Getting Started with IdleMonitor

To begin with, you can hook-in to client side events that are called when a user goes idle or
becomes active again. Example below toggles visibility of a dialog to respond these events.

</p:dialog>

<p:idleMonitor onidle="PF('idleDialog').show();"
onactive="PF('idleDialog').hide();"/>

<p:dialog header="What's happening?" widgetVar="idleDialog" modal="true">
<h:outputText value="Dude, are you there?" />

244

PrimeFaces User Guide

Controlling Timeout

By default, idleMonitor waits for 5 minutes (300000 ms) until triggering the onidle event. You can
customize this duration with the timeout attribute.

Ajax Behavior Events

IdleMonitor provides two ajax behavior events which are idle and active that are fired according to
user status changes. Example below displays messages for each event;

<p:idleMonitor timeout="5000" update="messages">
<p:ajax event="idle" listener="#{bean.idlelistener}" update="msg" />
<p:ajax event="active" listener="#{bean.activelistener}" update="msg" />
</p:idleMonitor>

<p:growl id="msg”/>

public class Bean {

public void idlelListener() {
//Add facesmessage

}

public void idle() {
//Add facesmessage

}

245

3.53 ImageCompare

PrimeFaces User Guide

ImageCompare provides a user interface to compare two images.

TIRAE D:10.08

Info

Tag

imageCompare

Component Class

org.primefaces.component.imagecompare.ImageCompare

Component Type

org.primefaces.component.ImageCompare

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.ImageCompareRenderer

Renderer Class

org.primefaces.component.imagecompare.ImageCompareRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

246

PrimeFaces User Guide

Name Default Type Description
leftimage null String Source of the image placed on the left side
rightlmage null String Source of the image placed on the right side
width null String Width of the images
height null String Height of the images
style null String Inline style of the container element
styleClass null String Style class of the container element

Getting started with ImageCompare

ImageCompare is created with two images with same height and width. It is required to set width
and height of the images as well.

<p:imageCompare leftImage="xbox.png" rightImage="ps3.png"
width="438" height="246"/>

Skinning

Both images are placed inside a div container element, style and styleClass attributes apply to this

element.

247

3.54 ImageCropper

ImageCropper allows cropping a certain region of an image. A new image is created containing the
cropped area and assigned to a CroppedImage instanced on the server side.

Info

PrimeFaces User Guide

Tag

imageCropper

Component Class

org.primefaces.component. imagecropper.ImageCropper

Component Type

org.primefaces.component.ImageCropper

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.ImageCropperRenderer

Renderer Class

org.primefaces.component.imagecropper.ImageCropperRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component than can be either an EL
expression of a literal text

converter null Converter | An el expression or a literal text that defines a

/String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate false Boolean When set true, process validations logic is executed
at apply request values phase for this component.

required false Boolean Marks component as required

248

PrimeFaces User Guide

Name Default Type Description

validator null Method A method binding expression that refers to a method
Expr validationg the input

valueChangeListener null Method A method binding expression that refers to a method
Expr for handling a valuchangeevent

requiredMessage null String Message to be displayed when required field

validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

widgetVar null String Name of the client side widget.

image null String Context relative path to the image.

alt null String Alternate text of the image.

aspectRatio null Double Aspect ratio of the cropper area.

minSize null String Minimum size of the cropper area.

maxSize null String Maximum size of the cropper area.

backgroundColor null String Background color of the container.

backgroundOpacity 0,6 Double Background opacity of the container

initial Coords null String Initial coordinates of the cropper area.

Getting started with the ImageCropper

ImageCropper is an input component and image to be cropped is provided via the image attribute.
The cropped area of the original image is used to create a new image, this new image can be
accessed on the backing bean by setting the value attribute of the image cropper. Assuming the
image is at %o WEBAPP_ROOT%/campnou.jpg

<p:imageCropper value="#{cropper.croppedImage}" image="/campnou.jpg" />

public class Cropper {
private CroppedImage croppedImage;

//getter and setter

org.primefaces.model. CroppedImage belongs a PrimeFaces API and contains handy information
about the crop process. Following table describes Croppedlmage properties.

Property Type Description
originalFileName String Name of the original file that’s cropped
bytes byte([] Contents of the cropped area as a byte array

249

PrimeFaces User Guide

Property Type Description
left int Left coordinate
right int Right coordinate
width int Width of the cropped image
height int Height of the cropped image

External Images

ImageCropper has the ability to crop external images as well.

<p:imageCropper value="#{cropper.croppedImage}"

image="http://primefaces.prime.com.tr/en/images/schema.png">
</p:imageCropper>

Context Relative Path

For local images, ImageCropper always requires the image path to be context relative. So to
accomplish this simply just add slash ("/path/to/image.png") and imagecropper will recognize it at
%WEBAPP_ROOT%/path/to/image.png. Action url relative local images are not supported.

Initial Coordinates

By default, user action is necessary to initiate the cropper area on an image, you can specify an
initial area to display on page load using initial Coords option in x,y,w,h format.

<p:imageCropper value="#{cropper.croppedImage}" image="/campnou.jpg"
initialCoords="225,75,300,125"/>

Boundaries

minSize and maxSize attributes are control to limit the size of the area to crop.

<p:imageCropper value="#{cropper.croppedImage}" image="/campnou.jpg"
minSize="50,100" maxSize="150,200"/>

Saving Images

Below is an example to save the cropped image to file system.

<p:imageCropper value="#{cropper.croppedImage}" image="/campnou.jpg" />

<p:commandButton value="Crop" actionlListener="#{myBean.crop}" />

250

http://primefaces.prime.com.tr/en/images/schema.png

PrimeFaces User Guide

public class Cropper {

private CroppedImage croppedImage;

//getter and setter

public String crop() {

ServletContext servletContext = (ServletContext)
FacesContext.getCurrentInstance().getExternalContext().getContext();
String newFileName = servletContext.getRealPath("") + File.separator +

"ui" + File.separator + "barca" + File.separator+ croppedImage.getOriginalFileName()
+ "cropped. jpg";

FileImageOutputStream imageOutput;
try {

imageQOutput = new FileImageOutputStream(new File(newFileName));

imageQutput.write(croppedImage.getBytes(), O,
croppedImage.getBytes().length);

imageQutput.close();
} catch (Exception e) {

e.printStackTrace(Q);
ks

return null;

251

PrimeFaces User Guide

3.55 ImageSwitch

Imageswitch component is a simple image gallery component.

Info

Previous Next

Tag

imageSwitch

Component Class

org.primefaces.component.imageswitch.ImageSwitch

Component Type

org.primefaces.component.ImageSwitch

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.ImageSwitchRenderer

Renderer Class

org.primefaces.component.imageswitch.ImageSwitchRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

effect null String Name of the effect for transition.

speed 500 Integer Speed of the effect in milliseconds.

slideshowSpeed 3000 Integer Slideshow speed in milliseconds.

slideshowAuto true Boolean Starts slideshow automatically on page load.

style null String Style of the main container.

styleClass null String Style class of the main container.

252

PrimeFaces User Guide

Getting Started with ImageSwitch

ImageSwitch component needs a set of images to display. Provide the image collection as a set of
children components.

<p:imageSwitch effect="FlyIn">
<p:graphicImage value="/images/naturel.jpg" />
<p:graphicImage value="/images/nature2.jpg" />
<p:graphicImage value="/images/nature3.jpg" />
<p:graphicImage value="/images/nature4.jpg" />
</p:imageSwitch>

Most of the time, images could be dynamic, ui:repeat is supported to implement this case.

<p:imageSwitch>
<ui:repeat value="#{bean.images}" var="image">
<p:graphicImage value="#{imagel}" />
</ui:repeat>
</p:imageSwitch>

Slideshow or Manual

ImageSwitch is in slideShow mode by default, if you'd like manual transitions disable slideshow
and use client side api to create controls.

<p:imageSwitch effect="FlyIn" widgetVar="imageswitch">
//images
</p:imageSwitch>

Previous
Next

Client Side API
Widget: PrimeFaces.widget.ImageSwitch

Method Params Return Type Description
startSlideshow() - void Starts slideshow mode.
stopSlideshow() - void Stops slideshow mode.
toggleSlideshow() - void Toggles slideshow mode.
pauseSlideshow() - void Pauses slideshow mode.
next() - void Switches to next image.
previous() - void Switches to previous image.
switchTo(index) index void Displays image with given index.

253

PrimeFaces User Guide

Effect Speed

The speed is considered in terms of milliseconds and specified via the speed attribute.

<p:imageSwitch effect="FlipOut" speed="150">
//set of images
</p:imageSwitch>

List of Effects

ImageSwitch supports a wide range of transition effects. Following is the full list, note that values
are case sensitive.

* blindX

e blindY
blindZ

* cover

* curtainX
* curtainY
* fade

* fadeZoom
e growX

* growY

* none

* scrollUp
* scrollDown
* scrollLeft
* scrollRight
* scrollVert
« shuffle

* slideX

* slideY

* toss

* turnUp

* turnDown
o turnLeft

* turnRight
* uncover

* wipe

* Zoom

254

PrimeFaces User Guide

3.56 Inplace

Inplace provides easy inplace editing and inline content display. Inplace consists of two members,
display element is the initial clickable label and inline element is the hidden content that is
displayed when display element is toggled.

Basic Imput: Edit Me

Basic Input: Edit Me

Info
Tag inplace
Component Class org.primefaces.component.inplace.Inplace
Component Type org.primefaces.component.Inplace

Component Family | org.primefaces.component

Renderer Type org.primefaces.component.InplaceRenderer
Renderer Class org.primefaces.component.inplace.InplaceRenderer
Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

label null String Label to be shown in display mode.

emptyLabel null String Label to be shown in display mode when value is
empty.

effect fade String Effect to be used when toggling.

effectSpeed normal String Speed of the effect.

disabled false Boolean Prevents hidden content to be shown.

style null String Inline style of the main container element.

styleClass null String Style class of the main container element.

editor false Boolean Specifies the editor mode.

saveLabel Save String Tooltip text of save buttin in editor mode.

255

PrimeFaces User Guide

Name Default Type Description
cancelLabel Cancel String Tooltip text of cancel buttin in editor mode
event click String Name of the client side event to display inline
content.
toggleable true Boolean Defines if inplace is toggleable or not.

Getting Started with Inplace

The inline component needs to be a child of inplace.

<p:inplace>
<h:inputText value="Edit me" />
</p:inplace>

Custom Labels

By default inplace displays its first childs value as the label, you can customize it via the label
attribute.

<h:outputText value="Select One:" />

<p:inplace label="Cities">
<h:selectOneMenu>
<f:selectItem itemLabel="Istanbul" itemValue="Istanbul" />
<f:selectItem itemLabel="Ankara" itemValue="Ankara" />
</h:selectOneMenu>
</p:inplace>

Select One: Cities

Select One: | Istanbul ?1

Facets

For advanced customization, output and input facets are provided.

<p:inplace id="checkboxInplace">
<f:facet name="output">
Yes or No
</f:facet>
<f:facet name="input">
<h:selectBooleanCheckbox />
</f:facet>
</p:inplace>

256

PrimeFaces User Guide

Effects

Default effect is fade and other possible effect is slide, also effect speed can be tuned with values
slow, normal and fast.

<p:inplace label="Show Image" effect="slide" effectSpeed="fast">
<p:graphicImage value="/images/naturel.jpg" />
</p:inplace>

Editor

Inplace editing is enabled via the edifor option.

public class InplaceBean {
private String text;

//getter-setter

<p:inplace editor="true">
<h:inputText value="#{inplaceBean.text}" />
</p:inplace>

FrimeFaces W | %

save and cancel are two provided ajax behaviors events you can use to hook-in the editing process.

public class InplaceBean {
private String text;

public void handleSave() {
//add faces message with update text value

}

//getter-setter

<p:inplace editor="true">
<p:ajax event="save" listener="#{inplaceBean.handleSave}" update="msgs" />
<h:inputText value="#{inplaceBean.text}" />

</p:inplace>

<p:growl id="msgs" />

257

Client Side API

Widget: PrimeFaces.widget.Inplace

PrimeFaces User Guide

Method Params Return Type Description

show() - void Shows content and hides display element.

hide() - void Shows display element and hides content.
toggle() - void Toggles visibility of between content and display

element.
save() - void Triggers an ajax request to process inplace input.
cancel() - void Triggers an ajax request to revert inplace input.
Skinning

Inplace resides in a main container element which style and styleClass options apply. Following is

the list of structural style classes;

Style Class

Applies

.ui-inplace

Main container element.

.ui-inplace-disabled

Main container element when disabled.

.ui-inplace-display

Display element.

.ui-inplace-content

Inline content.

.ui-inplace-editor

Editor controls container.

.ui-inplace-save

Save button.

.ui-inplace-cancel

Cancel button.

As skinning style classes are global, see the main theming section for more information.

258

3.57 InputMask

InputMask forces an input to fit in a defined mask template.

PrimeFaces User Guide

Date: 11M12/2010
Phone: (523) 453-4253
Phone with Ext: | (234) 532-4524 x35254
taxid: 52-3434234
SSN: 234-52-3452
Product Key: _ = =

Info

Tag inputMask

Component Class

org.primefaces.component.inputmask.InputMask

Component Type

org.primefaces.component.InputMask

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.InputMaskRenderer

Renderer Class

org.primefaces.component.inputmask.InputMaskRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

mask null String Mask template

placeHolder null String PlaceHolder in mask template. (deprecated)

slotChar null String PlaceHolder in mask template.

value null Object Value of the component than can be either an EL
expression of a literal text

259

PrimeFaces User Guide

Name Default Type Description
converter null Converter/Str | An el expression or a literal text that defines a
ing converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate false Boolean When set true, process validations logic is executed at
apply request values phase for this component.

required false Boolean Marks component as required

validator null MethodExpr | A method binding expression that refers to a method
validationg the input

valueChangeListener | null MethodExpr | A method binding expression that refers to a method
for handling a valuchangeevent

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

widgetVar null String Name of the client side widget.

accesskey null String Access key that when pressed transfers focus to the

input element.

alt null String Alternate textual description of the input field.
autocomplete null String Controls browser autocomplete behavior.
dir null String Direction indication for text that does not inherit

directionality. Valid values are LTR and RTL.

disabled false Boolean Disables input field

label null String A localized user presentable name.

lang null String Code describing the language used in the generated
markup for this component.

maxlength null Integer Maximum number of characters that may be entered in
this field.

onblur null String Client side callback to execute when input element

loses focus.

onchange null String Client side callback to execute when input element
loses focus and its value has been modified since
gaining focus.

onclick null String Client side callback to execute when input element is
clicked.

ondblclick null String Client side callback to execute when input element is
double clicked.

260

PrimeFaces User Guide

Name Default Type Description

onfocus null String Client side callback to execute when input element
receives focus.

onkeydown null String Client side callback to execute when a key is pressed
down over input element.

onkeypress null String Client side callback to execute when a key is pressed
and released over input element.

onkeyup null String Client side callback to execute when a key is released
over input element.

onmousedown null String Client side callback to execute when a pointer button
is pressed down over input element

onmousemove null String Client side callback to execute when a pointer button
is moved within input element.

onmouseout null String Client side callback to execute when a pointer button
is moved away from input element.

onmouseover null String Client side callback to execute when a pointer button
is moved onto input element.

onmouseup null String Client side callback to execute when a pointer button
is released over input element.

onselect null String Client side callback to execute when text within input
element is selected by user.

placeholder null String Specifies a short hint.

readonly false Boolean Flag indicating that this component will prevent
changes by the user.

size null Integer Number of characters used to determine the width of
the input element.

style null String Inline style of the input element.

styleClass null String Style class of the input element.

tabindex null Integer Position of the input element in the tabbing order.
title null String Advisory tooltip informaton.

Getting Started with InputMask
InputMask below enforces input to be in 99/99/9999 date format.

<p:inputMask value="#{bean.field}" mask="99/99/9999" />

261

PrimeFaces User Guide

Mask Samples

Here are more samples based on different masks;

<h:
<p:

<h:
<p:

<h:
<p:

<h:
<p:

outputText value="Phone: " />
inputMask value="#{bean.phone}" mask="(999) 999-9999"/>

outputText value="Phone with Ext: " />
inputMask value="#{bean.phoneExt}" mask="(999) 999-99997? x99999"/>

outputText value="SSN: " />
inputMask value="#{bean.ssn}" mask="999-99-9999"/>

outputText value="Product Key: " />
inputMask value="#{bean.productKey}" mask="a*-999-a999"/>

Skinning

style and styleClass options apply to the displayed input element. As skinning style classes are
global, see the main theming section for more information.

262

3.58 InputSwitch

InputSwitch is used to select a boolean value.

Info

PrimeFaces User Guide

on

off

Tag

inputSwitch

Component Class

org.primefaces.component.inputswitch.InputSwitch

Component Type

org.primefaces.component.InputSwitch

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.InputSwitchRenderer

Renderer Class

org.primefaces.component.inputswitch.InputSwitchRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component than can be either an EL
expression of a literal text

converter null Converter An el expression or a literal text that defines a

/String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate false Boolean When set true, process validations logic is executed at
apply request values phase for this component.

required false Boolean Marks component as required

validator null MethodExpr | A method binding expression that refers to a method

validating the input

263

PrimeFaces User Guide

Name Default Type Description

valueChangeListener | null MethodExpr | A method binding expression that refers to a method
for handling a valuchangeevent

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

widgetVar null String Name of the client side widget.

onLabel on String Label for on state.

offLabel off String Label for off state.

label null String User presentable name.

disabled null String Disables or enables the switch.

onchange false Boolean Client side callback to execute on value change event.

style null String Inline style of the main container.

styleClass null String Style class of the main container.

tabindex null Integer The tabindex attribute specifies the tab order of an
element when the "tab" button is used for navigating.

showLabels null String Controls the visibility of the labels, defaults to true.

Getting started with InputSwitch

InputSwitch requires a boolean reference as the value.

<p:inputSwitch value="#{bean.propertyName}" />

public class Bean {

//getter and setter

private boolean propertyName;

Labels

Labels are customized using onLabel and offLLabel options. Setting showLabels as false, turns off

labels altogether.

<p:inputSwitch value="#{bean.propertyName}" onLabel="yes" offlLabel="no"/>

264

PrimeFaces User Guide

Client Side API
Widget: PrimeFaces.widget.InputSwitch

Method Params Return Type Description
toggle() - void Toggles the state.
check() - void Switches to on state.
uncheck() - void Switches to off state.
Skinning

InputSwitch resides in a main container element which style and styleClass options apply.
Following is the list of structural style classes;

Style Class Applies
.ui-inputswitch Main container element.
.ui-inputswitch-off Off state element.
.ui-inputswitch-on On state element.
.ui-inputswitch-handle Switch handle.

As skinning style classes are global, see the main theming section for more information.

265

PrimeFaces User Guide

3.59 InputText

InputText is an extension to standard inputText with skinning capabilities.

[FrimeFace5|

Info
Tag inputText
Component Class org.primefaces.component.inputtext.InputText
Component Type org.primefaces.component.InputText
Component Family org.primefaces.component
Renderer Type org.primefaces.component.InputTextRenderer
Renderer Class org.primefaces.component.inputtext.InputTextRender
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean | Boolean value to specify the rendering of the component,
when set to false component will not be rendered.
binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean
value null Object Value of the component than can be either an EL expression
of a literal text
converter null Converter | An el expression or a literal text that defines a converter for
/String the component. When it’s an EL expression, it’s resolved to
a converter instance. In case it’s a static text, it must refer to
a converter id
immediate false Boolean | When set true, process validations logic is executed at
apply request values phase for this component.
required false Boolean | Marks component as required
validator null Method A method binding expression that refers to a method
Expr validationg the input
valueChangeListener | null Method A method binding expression that refers to a method for
Expr handling a valuchangeevent
requiredMessage null String Message to be displayed after failed validation.

266

PrimeFaces User Guide

Name Default Type Description
converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.
widgetVar null String Name of the client side widget.
accesskey null String Access key that when pressed transfers focus to the input

element.

alt null String Alternate textual description of the input field.
autocomplete null String Controls browser autocomplete behavior.
dir null String Direction indication for text that does not inherit

directionality. Valid values are LTR and RTL.

disabled 0 Boolean | Disables input field

label null String A localized user presentable name.

lang null String Code describing the language used in the generated markup
for this component.

maxlength null Integer Maximum number of characters that may be entered in this
field.

onblur null String Client side callback to execute when input element loses
focus.

onchange null String Client side callback to execute when input element loses

focus and its value has been modified since gaining focus.

onclick null String Client side callback to execute when input element is
clicked.

ondblclick null String Client side callback to execute when input element is
double clicked.

onfocus null String Client side callback to execute on input element focus.

onkeydown null String Client side callback to execute when a key is pressed down

over input element.

onkeypress null String Client side callback to execute when a key is pressed and
released over input element.

onkeyup null String Client side callback to execute when a key is released over
input element.

onmousedown null String Client side callback to execute when a pointer button is
pressed down over input element

onmousemove null String Client side callback to execute when a pointer button is
moved within input element.

onmouseout null String Client side callback to execute when a pointer button is
moved away from input element.

267

PrimeFaces User Guide

Name Default Type Description

onmouseover null String Client side callback to execute when a pointer button is
moved onto input element.

onmouseup null String Client side callback to execute when a pointer button is
released over input element.

onselect null String Client side callback to execute when text within input
element is selected by user.

placeholder null String Specifies a short hint.

readonly 0 Boolean | Flag indicating that this component will prevent changes by
the user.

size null Integer Number of characters used to determine the width of the

input element.

style null String Inline style of the input element.

styleClass null String Style class of the input element.

tabindex null Integer Position of the input element in the tabbing order.
title null String Advisory tooltip informaton.

type text String Input field type.

Getting Started with InputText

InputText usage is same as standard inputText;

<p:inputText value="#{bean.propertyName}" />

public class Bean {
private String propertyName;

//getter and setter

Client Side API
Widget: PrimeFaces.widget.InputText

Method Params Return Type Description
enable() - void Enables the input field.
disable() - void Disables the input field.

268

PrimeFaces User Guide

3.60 InputTextarea

InputTextarea is an extension to standard inputTextarea with autoComplete, autoResize, remaining
characters counter and theming features.

| PrimeFaces
Info

Tag inputTextarea

Component Class org.primefaces.component.inputtextarea.InputTextarea

Component Type org.primefaces.component.InputTextarea

Component Family org.primefaces.component

Renderer Type org.primefaces.component.InputTextareaRenderer

Renderer Class org.primefaces.component.inputtextarea.InputTextareaRender

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean

value null Object Value of the component than can be either an EL
expression of a literal text

converter null Converter/ | An el expression or a literal text that defines a converter

String for the component. When it’s an EL expression, it’s

resolved to a converter instance. In case it’s a static text,
it must refer to a converter id

immediate false Boolean When set true, process validations logic is executed at
apply request values phase for this component.

required false Boolean Marks component as required

269

PrimeFaces User Guide

Name Default Type Description
validator null Method A method binding expression that refers to a method
Expr validationg the input
valueChangeListener | null Method A method binding expression that refers to a method for
Expr handling a valuchangeevent
requiredMessage null String Message to be displayed when required field validation
fails.
converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.
widgetVar null String Name of the client side widget.
accesskey null String Access key that when pressed transfers focus to the input
element.
alt null String Alternate textual description of the input field.
autocomplete null String Controls browser autocomplete behavior.
dir null String Direction indication for text that does not inherit

directionality. Valid values are LTR and RTL.

disabled false Boolean Disables input field

label null String A localized user presentable name.

lang null String Code describing the language used in the generated
markup for this component.

onblur null String Client side callback to execute when input element loses
focus.

onchange null String Client side callback to execute when input element loses
focus and its value has been modified since gaining
focus.

onclick null String Client side callback to execute when input element is
clicked.

ondblclick null String Client side callback to execute when input element is
double clicked.

onfocus null String Client side callback to execute when input element

receives focus.

onkeydown null String Client side callback to execute when a key is pressed
down over input element.

onkeypress null String Client side callback to execute when a key is pressed and
released over input element.

onkeyup null String Client side callback to execute when a key is released
over input element.

onmousedown null String Client side callback to execute when a pointer button is

270

PrimeFaces User Guide

Name Default Type Description

pressed down over input element

onmousemove null String Client side callback to execute when a pointer button is
moved within input element.

onmouseout null String Client side callback to execute when a pointer button is
moved away from input element.

onmouseover null String Client side callback to execute when a pointer button is
moved onto input element.

onmouseup null String Client side callback to execute when a pointer button is
released over input element.

onselect null String Client side callback to execute when text within input
element is selected by user.

readonly false Boolean Flag indicating that this component will prevent changes
by the user.
size null Integer Number of characters used to determine the width of the

input element.

style null String Inline style of the input element.
styleClass null String Style class of the input element.
tabindex null Integer Position of the input element in the tabbing order.
title null String Advisory tooltip informaton.
autoResize true Boolean Specifies auto growing when being typed.
maxlength null Integer Maximum number of characters that may be entered in
this field.
counter null String Id of the output component to display remaining chars.
counterTemplate {0} String Template text to display in counter.
completeMethod null Method Method to provide suggestions.
Expr
miQueryLength 3 Integer Number of characters to be typed to run a query.
queryDelay 700 Integer Delay in ms before sending each query.
scrollHeight null Integer Height of the viewport for autocomplete suggestions.

271

PrimeFaces User Guide

Getting Started with InputTextarea

InputTextarea usage is same as standard inputTextarea;

<p:inputTextarea value="#{bean.propertyName}" />

AutoResize

While textarea is being typed, if content height exceeds the allocated space, textarea can grow
automatically. Use autoResize option to turn on/off this feature.

<p:inputTextarea value="#{bean.propertyName}" autoResize="truelfalse"/>

Remaining Characters

InputTextarea can limit the maximum allowed characters with maxLength option and display the
remaining characters count as well.

<p:inputTextarea value="#{bean.propertyName}" counter="display"
maxlength="20" counterTemplate="{0@} characters remaining" />

<h:outputText id="display" />

AutoComplete

InputTextarea supports ajax autocomplete functionality as well. You need to provide a
completeMethod to provide the suggestions to use this feature. In sample below, completeArea
method will be invoked with the query being the four characters before the caret.

public class AutoCompleteBean {

public List<String> completeArea(String query) {
List<String> results = new ArraylList<String>Q);

if(query.equals("PrimeFaces")) {
results.add("PrimeFaces Rocks!!!");
results.add("PrimeFaces has 100+ components.");
results.add("PrimeFaces is lightweight.");
results.add("PrimeFaces is easy to use.");
results.add("PrimeFaces is developed with passion!");

ks
else {
for(Cint i = 0; 1 < 10; i++) {
results.addCquery + i);
ks

}

return results;

}

272

PrimeFaces User Guide

<p:inputTextarea rows="10" cols="50" minQuerylLength="4"
completeMethod="#{autoCompleteBean.completeArea}" />

FrimeF aces & a lightweight cpen source component PrimesFaces s B BYiiweighi open source

gulte for Miva Server Fated 2.0 festuning 100+ ok Gampaananl i Bof vk Serve Fibies 2 X

Bk of 1SR e pan ahits Teuring 100+ rich sl of JSF componant

FrimeF ace Primefacey
PrimeFaces Ancksil| ' -
Primefaces has 100+ components, PrimeFaces has 100+ compoagni PrimeFaces has 100 mmporents.
FrimeFaces & bghtweight. PrimaFacsd |3 Bghiwelghl
PrimeFBres is sy 1o use. PrimaFaces 1§ asvy 1© U
PR A i e Wil BRLioen ! Primafaces b devicped with passcn!

Skinning

InputTextarea renders a textarea element which style and styleClass options apply. Following is the
list of structural style classes;

Style Class Applies
ui-inputtextarea Textarea element.
ui-inputfield Textarea element.
.ui-autocomplete-panel Overlay for suggestions.
.ui-autocomplete-items Suggestions container.
.ui-autocomplete-item Each suggestion.

As skinning style classes are global, see the main theming section for more information.

273

PrimeFaces User Guide

3.61 Keyboard

Keyboard is an input component that uses a virtual keyboard to provide the input. Notable features
are the customizable layouts and skinning capabilities.

a8 [%|[all&]l[=]lc]I[¥I[_][= Close
~ LD PR == 7/ 8 9
q |w e r t ¥ u i o p A 5 6
a|s| d| f|/lag| h|] k | 1|23
z X c v b n |m 7 7 7 E 0 +
Shift Enter Back Clear
Info
Tag keyboard
Component Class org.primefaces.component.keyboard.Keyboard
Component Type org.primefaces.component.Keyboard
Component Family org.primefaces.component
Renderer Type org.primefaces.component.KeyboardRenderer
Renderer Class org.primefaces.component.keyboard.KeyboardRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.
binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean
value null Object Value of the component than can be either an EL.
expression of a literal text
converter null Converter/Str | An el expression or a literal text that defines a
ing converter for the component. When it’s an EL
expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id
immediate false Boolean When set true, process validations logic is executed
at apply request values phase for this component.
required false Boolean Marks component as required

274

PrimeFaces User Guide

Name Default Type Description

validator null MethodExpr | A method binding expression that refers to a method
validationg the input

valueChangeListener | null MethodExpr | A method binding expression that refers to a method
for handling a valuchangeevent

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

password false Boolean Makes the input a password field.

showMode focus String Specifies the showMode, ‘focus’, ‘button’, ‘both’

buttonlmage null String Image for the button.

buttonlmageOnly false boolean When set to true only image of the button would be
displayed.

effect fadeln String Effect of the display animation.

effectDuration null String Length of the display animation.

layout qwerty String Built-in layout of the keyboard.

layoutTemplate null String Template of the custom layout.

keypadOnly focus Boolean Specifies displaying a keypad instead of a keyboard.

promptLabel null String Label of the prompt text.

closeLabel null String Label of the close key.

clearLabel null String Label of the clear key.

backspaceLabel null String Label of the backspace key.

accesskey null String Access key that when pressed transfers focus to the
input element.

alt null String Alternate textual description of the input field.

autocomplete null String Controls browser autocomplete behavior.

dir null String Direction indication for text that does not inherit
directionality. Valid values are LTR and RTL.

disabled false Boolean Disables input field

label null String A localized user presentable name.

lang null String Code describing the language used in the generated
markup for this component.

maxlength null Integer Maximum number of characters that may be entered

in this field.

275

PrimeFaces User Guide

Name Default Type Description

onblur null String Client side callback to execute when input element
loses focus.

onchange null String Client side callback to execute when input element
loses focus and its value has been modified since
gaining focus.

onclick null String Client side callback to execute when input element is
clicked.

ondblclick null String Client side callback to execute when input element is
double clicked.

onfocus null String Client side callback to execute when input element

receives focus.

onkeydown null String Client side callback to execute when a key is pressed
down over input element.

onkeypress null String Client side callback to execute when a key is pressed
and released over input element.

onkeyup null String Client side callback to execute when a key is
released over input element.

onmousedown null String Client side callback to execute when a pointer button
is pressed down over input element

onmousemove null String Client side callback to execute when a pointer button
is moved within input element.

onmouseout null String Client side callback to execute when a pointer button
is moved away from input element.

onmouseover null String Client side callback to execute when a pointer button
is moved onto input element.

onmouseup null String Client side callback to execute when a pointer button
is released over input element.

onselect null String Client side callback to execute when text within
input element is selected by user.

placeholder null String Specifies a short hint.

readonly false Boolean Flag indicating that this component will prevent
changes by the user.

size null Integer Number of characters used to determine the width of
the input element.

style null String Inline style of the input element.

styleClass null String Style class of the input element.

tabindex null Integer Position of the input element in the tabbing order.
title null String Advisory tooltip informaton.

276

PrimeFaces User Guide

Name Default Type Description

widgetVar null String Name of the client side widget.

Getting Started with Keyboard

Keyboard is used just like a simple inputText, by default when the input gets the focus a keyboard is
displayed.

<p:keyboard value="#{bean.value}" />

Built-in Layouts

There’re a couple of built-in keyboard layouts these are ‘qwerty’, ‘qwertyBasic’ and ‘alphabetic’. For
example keyboard below has the alphabetic layout.

<p:keyboard value="#{bean.value}" layout="alphabetic"/>

a||b|lc d e f g h i i Close
k |l 'm||n| o pl| q r 5 t Clear
u vV W | X ¥ z Shift Back

Custom Layouts

Keyboard has a very flexible layout mechanism allowing you to come up with your own layout.

<p:keyboard value="#{bean.value}"
layout="custom"
layoutTemplate="prime-back, faces-clear,rocks-close"/>

p r i (m | e Back
a c i 5 Clear

r o ¢ |k |s | Close

Another example;

<p:keyboard value="#{bean.value}"
layout="custom"
layoutTemplate="create-space-your-close,owntemplate-shift,easily-space-
spacebar"/>

277

PrimeFaces User Guide

c r [a t [¥ |0 | U r Close
O |W | n t e m | p | a t [Shift
[a 5 i | ¥

A layout template basically consists of built-in keys and your own keys. Following is the list of all
built-in keys.

back

* clear
close
shift
spacebar
space
halfspace

All other text in a layout is realized as seperate keys so "prime" would create 5 keys as "p" "r" "i"
"m" "e". Use dash to seperate each member in layout and use commas to create a new row.

Keypad
By default keyboard displays whole keys, if you only need the numbers use the keypad mode.

<p:keyboard value="#{bean.value}" keypadOnly="true"/>

ShowMode

There’re a couple of different ways to display the keyboard, by default keyboard is shown once
input field receives the focus. This is customized using the showMode feature which accept values
‘focus’, ‘button’, ‘both’. Keyboard below displays a button next to the input field, when the button is
clicked the keyboard is shown.

<p:keyboard value="#{bean.value}" showMode="button"/>

Button can also be customized using the buttonlmage and buttonlmageOnly attributes.

278

PrimeFaces User Guide

3.62 Layout

Layout component features a highly customizable borderLayout model making it very easy to
create complex layouts even if you're not familiar with web design.

4| » || + @ nhttp//localhost:8080/prime-showcase/ui /layoutComplex. jsf ¢ | (Qr Google

PrimeFaces ShowCase +

PRIMEFACES - Next Generation Component Suite

| ‘ | organize | videos ‘R e]

Menu 1 o Change Theme: redmond

N July 2010 month | week | day
\7‘ Sun Mon Tue ‘Wed Thu Fri Sat

Su Mo Tu We Th Fr Sa 1 2 3

iz =
4[5 e[sl o] o]
1112 13 14 15 16 17
18 19 20 21| 22 23 24

8 9

Menu 2

Menu 3

Info
Tag layout
Component Class org.primefaces.component.layout.Layout
Component Type org.primefaces.component.Layout
Component Family org.primefaces.component
Renderer Type org.primefaces.component.LayoutRenderer
Renderer Class org.primefaces.component.layout.LayoutRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean | Boolean value to specify the rendering of the component, when
set to false component will not be rendered.
binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean
widgetVar null String Name of the client side widget.
fullPage false Boolean | Specifies whether layout should span all page or not.

279

PrimeFaces User Guide

Name Default Type Description

style null String Style to apply to container element, this is only applicable to
element based layouts.

styleClass null String Style class to apply to container element, this is only applicable
to element based layouts.

onResize null String Client side callback to execute when a layout unit is resized.
onClose null String Client side callback to execute when a layout unit is closed.
onToggle null String Client side callback to execute when a layout unit is toggled.
resizeTitle null String Title label of the resize button.

collapseTitle null String Title label of the collapse button.

expandTitle null String Title label of the expand button.

closeTitle null String Title label of the close button.

Getting started with Layout

Layout is based on a borderLayout model that consists of 5 different layout units which are top, left,
center, right and bottom. This model is visualized in the schema below;

r]
o
(5 iy Y4)
. AN AN S
r]
LS

Full Page Layout

Layout has two modes, you can either use it for a full page layout or for a specific region in your
page. This setting is controlled with the fullPage attribute which is false by default.

The regions in a layout are defined by layoutUnits, following is a simple full page layout with all
possible units. Note that you can place any content in each layout unit.

280

PrimeFaces User Guide

<p:layout fullPage="true">
<p:layoutUnit position="north" size="50">
<h:outputText value="Top content." />
</p:layoutUnit>
<p:layoutUnit position="south" size="100">
<h:outputText value="Bottom content." />
</p:layoutUnit>
<p:layoutUnit position="west" size="300">
<h:outputText value="Left content" />
</p:layoutUnit>
<p:layoutUnit position="east" size="200">
<h:outputText value="Right Content" />
</p:layoutUnit>
<p:layoutUnit position="center">
<h:outputText value="Center Content" />
</p:layoutUnit>
</p:layout>

Forms in Full Page Layout

When working with forms and full page layout, avoid using a form that contains layoutunits as
generated dom may not be the same. So following is invalid.

<p:layout fullPage="true">
<h:form>

<p:layoutUnit position="west" size="100">
h:outputText value="Left Pane" />

</p:layoutUnit>

<p:layoutUnit position="center">
<h:outputText value="Right Pane" />

</p:layoutUnit>

</h:form>

</p:layout>

A layout unit must have it’s own form instead, also avoid trying to update layout units because of
same reason, update it’s content instead.
Dimensions

Except center layoutUnit, other layout units must have dimensions defined via size option.

Element based layout

Another use case of layout is the element based layout. This is the default case actually so just
ignore fullPage attribute or set it to false. Layout example below demonstrates creating a split panel
implementation.

281

PrimeFaces User Guide

<p:layout style="width:400px;height:200px">
<p:layoutUnit position="west" size="100">
<h:outputText value="Left Pane" />
</p:layoutUnit>
<p:layoutUnit position="center">
<h:outputText value="Right Pane" />
</p:layoutUnit>

//more layout units

</p:layout>

Ajax Behavior Events

Layout provides custom ajax behavior events for each layout state change.

Event Listener Parameter Fired
toggle org.primefaces.event. ToggleEvent When a unit is expanded or collapsed.
close org.primefaces.event.CloseEvent When a unit is closed.
resize org.primefaces.event.ResizeEvent When a unit is resized.

Stateful Layout

Making layout stateful would be easy, once you create your data to store the user preference, you
can update this data using ajax event listeners provided by layout. For example if a layout unit is
collapsed, you can save and persist this information. By binding this persisted information to the
collapsed attribute of the layout unit layout will be rendered as the user left it last time.

Client Side API
Widget: PrimeFaces.widget.Layout
Method Params Return Type Description
toggle(position) position void Toggles layout unit.
show(position) position void Shows layout unit.
hide(unit) position void Hides layout unit.

282

Skinning

Following is the list of structural style classes;

PrimeFaces User Guide

Style Class

Applies

.ui-layout

Main wrapper container element

.ui-layout-doc

Layout container

.ui-layout-unit

Each layout unit container

.ui-layout- {position}

Position based layout unit

.ui-layout-unit-header

Layout unit header

.ui-layout-unit-content

Layout unit body

As skinning style classes are global, see the main theming section for more information.

283

PrimeFaces User Guide

3.63 LayoutUnit

LayoutUnit represents a region in the border layout model of the Layout component.

Info
Tag layoutUnit
Component Class org.primefaces.component.layout.LayoutUnit
Component Type org.primefaces.component.LayoutUnit

Component Family org.primefaces.component

Renderer Type org.primefaces.component.LayoutUnitRenderer
Renderer Class org.primefaces.component.layout.LayoutUnitRenderer
Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

position null String Position of the unit.

size null String Size of the unit.

resizable false Boolean Makes the unit resizable.

closable false Boolean Makes the unit closable.

collapsible fale Boolean Makes the unit collapsible.

header null String Text of header.

footer null String Text of footer.

minSize null Integer Minimum dimension for resize.

maxSize null Integer Maximum dimension for resize.

gutter 4px String Gutter size of layout unit.

visible true Boolean Specifies default visibility

collapsed false Boolean Specifies toggle status of unit

collapseSize null Integer Size of the unit when collapsed

284

PrimeFaces User Guide

Name Default Type Description
style null String Inline style of the component.
styleClass null String Style class of the component.
effect null String Effect name of the layout transition.
effectSpeed null String Effect speed of the layout transition.

Getting started with LayoutUnit

See layout component documentation for more information regarding the usage of layoutUnits.

Facets

In addition to header and footer attributes to display text at these locations, facets are also provided

with the same name to display custom content.

285

3.64 LightBox

Lightbox is a powerful overlay that can display images, multimedia content, custom content and

external urls.

Info

PrimeFaces User Guide

Tag

lightBox

Component Class

org.primefaces.component lightbox.LightBox

Component Type

org.primefaces.component.LightBox

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.LightBoxRenderer

Renderer Class

org.primefaces.component.lightbox.LightBoxRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean | Boolean value to specify the rendering of the component, when set
to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent instance
in a backing bean

widgetVar null String Name of the client side widget.

style null String Style of the container element not the overlay element.

styleClass null String Style class of the container element not the overlay element.

width null String Width of the overlay in iframe mode.

286

PrimeFaces User Guide

Name Default Type Description

height null String Height of the overlay in iframe mode.
iframe false Boolean | Specifies an iframe to display an external url in overlay.
iframeTitle null String Title of the iframe element.
visible false Boolean | Displays lightbox without requiring any user interaction by default.
onHide null String Client side callback to execute when lightbox is displayed.
onShow null String Client side callback to execute when lightbox is hidden.

Images

The images displayed in the lightBox need to be nested as child outputLink components. Following
lightBox is displayed when any of the links are clicked.

<p:lightBox>
<h:outputlLink value="sopranos/sopranosl.jpg" title="Sopranos 1">
<h:graphicImage value="sopranos/sopranosl_small.jpg/>
</h:outputLink>

<h:outputlLink value="sopranos/sopranos2.jpg" title="Sopranos 2">
<h:graphicImage value="sopranos/sopranos2_small.jpg/>
</h:outputLink>

<h:outputlLink value="sopranos/sopranos3.jpg" title="Sopranos 3">
<h:graphicImage value="sopranos/sopranos3_small.jpg/>
</h:outputLink>

//more
</p:lightBox>

IFrame Mode

LightBox also has the ability to display iframes inside the page overlay, following lightbox displays
the PrimeFaces homepage when the link inside is clicked.

<p:lightBox iframe="true">
<h:outputlLink value="http://www.primefaces.org" title="PrimeFaces HomePage">
<h:outputText value="PrimeFaces HomePage"/>
</h:outputLink>
</p:lightBox>

Clicking the outputLink will display PrimeFaces homepage within an iframe.

Inline Mode

Inline mode acts like a modal dialog, you can display other JSF content on the page using the
lightbox overlay. Simply place your overlay content in the "inline" facet. Clicking the link in the
example below will display the panelGrid contents in overlay.

287

http://primefaces.prime.com.tr/en

PrimeFaces User Guide

<p:lightBox>

</h:outputlLink>

</f:facet>
</p:lightBox>

<f:facet name="inline">
//content here

<h:outputlLink value="#" title="Leo Messi" >
<h:outputText value="The Messiah"/>

Lightbox inline mode doesn’t support advanced content like complex widgets. Use a dialog instead
for advanced cases involving custom content.

Client Side API

Widget: PrimeFaces.widget.LightBox

Method Params Return Type Description
show() - void Displays lightbox.
hide() - void Hides lightbox.
showURL(opt) opt void Displays a URL in a iframe. opt parameter has three
variables. width and height for iframe dimensions
and src for the page url.
Skinning

Lightbox resides in a main container element which style and styleClass options apply. Following is

the list of structural style classes;

Style Class

Applies

.ui-lightbox

Main container element.

.ui-lightbox-content-wrapper

Content wrapper element.

.ui-lightbox-content

Content container.

.ui-lightbox-nav-right

Next image navigator.

.ui-lightbox-nav-left

Previous image navigator.

.ui-lightbox-loading

Loading image.

.ui-lightbox-caption

Caption element.

288

PrimeFaces User Guide

3.65 Link

Link is an extension to standard h:link component.

Info

Tag link

Component Class org.primefaces.component.link.Link

Component Type org.primefaces.component.Link

Component Family org.primefaces.component

Renderer Type org.primefaces.component.LinkRenderer

Renderer Class org.primefaces.component.link.LinkRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean | Boolean value to specify the rendering of the component.

binding null Object | An el expression that maps to a server side UIComponent
instance in a backing bean.

value null Object | Value of the component than can be either an EL expression
of a literal text.

outcome null String Used to resolve a navigation case.

includeViewParams | false Boolean | Whether to include page parameters in target URI

fragment null String Identifier of the target page which should be scrolled to.

disabled false Boolean | Disables button.

disableClientWindow | false Boolean | Disable appending the ClientWindow on the rendering of
this element.

accesskey null String Access key that when pressed transfers focus to button.

charset null String Character encoding of the resource designated by this
hyperlink.

coords null String Position and shape of the hot spot on the screen for client
use in image maps.

dir null String Direction indication for text that does not inherit
directionality. Valid values are LTR and RTL.

hreflang null String Language code of the resource designated by the link.

289

PrimeFaces User Guide

Name Default Type Description

rel null String Relationship from the current document to the anchor
specified by the link, values are provided by a space-
separated list of link types.

rev null String A reverse link from the anchor specified by this link to the
current document, values are provided by a space-separated
list of link types.

shape null String Shape of hot spot on the screen, valid values are default,

rect, circle and poly.

tabindex null String Position of the element in the tabbing order.

target null String Name of a frame where the resource targeted by this link
will be displayed.

title null String Advisory tooltip informaton.

type null String Type of resource referenced by the link.

style null String Inline style of the component.

styleClass null String Style class of the component.

onblur null String Client side callback to execute when button loses focus.

onclick null String Client side callback to execute when button is clicked.

ondblclick null String Client side callback to execute when button is double
clicked.

onfocus null String Client side callback to execute when button receives focus.

onkeydown null String Client side callback to execute when a key is pressed down
over button.

onkeypress null String Client side callback to execute when a key is pressed and

released over button.

onkeyup null String Client side callback to execute when a key is released over
button.
onmousedown null String Client side callback to execute when a pointer button is

pressed down over button.

onmousemove null String Client side callback to execute when a pointer button is
moved within button

onmouseout null String Client side callback to execute when a pointer button is
moved away from button.

onmouseover null String Client side callback to execute when a pointer button is
moved onto button.

onmouseup null String Client side callback to execute when a pointer button is
released over button.

href null String Inline style of the button.

290

PrimeFaces User Guide

Name

Default

Type

Description

escape

true

Boolean

Defines if label of the component is escaped or not.

Getting Started with Link

p:link usage is same as standard h:link, an outcome is necessary to navigate using GET requests.
Assume you are at source.xhtml and need to navigate target.xhtml.

<p:link outcome="target" value="Navigate"/>

To navigate without outcome based approach, use href attribute.

<p:link href="http://www.primefaces.org" value="Navigate"/>

291

3.66 Log

Log component is a visual console to display logs on JSF pages.

Info

@-bbbPPbb--00

TR0 ! ~A

This is an info message.
This is an info message.
This is a warn message.
This is a warn message.
This is a debug message.

This is a debug message.

This is an error message
This is a debug message.
This is a debug message
This is a warn message.

This is an info message.

This is an emor message.

)

[

!.

PrimeFaces User Guide

Tag

log

Component Class

org.primefaces.component.log.Log

Component Type

org.primefaces.component.Log

Component Family

org.primeface

s.component

Renderer Type

org.primefaces.component.LogRenderer

Renderer Class

org.primefaces.component.log.L.ogRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

Getting started with Log

Log component is used simply as adding the component to the page.

<p:log />

292

PrimeFaces User Guide

Log API

PrimeFaces uses client side log apis internally, for example you can use log component to see
details of an ajax request. Log API is also available via global PrimeFaces object in case you’d like
to use the log component to display your logs.

<script type="text/javascript”>
PrimeFaces.info(‘Info message’);
PrimeFaces.debug(‘Debug message’);
PrimeFaces.warn(‘Warning message’);
PrimeFaces.error(‘Error message’);
</script>

Client Side API
Widget: PrimeFaces.widget.Log

Method Params Return Type Description
show() - void Show the container element.
hide() - void Hides the container element.

293

PrimeFaces User Guide

3.67 Media

Media component is used for embedding multimedia content.

Info

Tag media

Component Class org.primefaces.component.media.Media

Component Type org.primefaces.component.Media

Component Family org.primefaces.component

Renderer Type org.primefaces.component.MediaRenderer

Renderer Class org.primefaces.component.media.MediaRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean.

value null String Media source to play.

player null String Type of the player, possible values are
"quicktime","windows","flash","real" and "pdf".

width null String Width of the player.

height null String Height of the player.

style null String Style of the player.

styleClass null String StyleClass of the player.

cache true Boolean Controls browser caching mode of the resource.

Getting started with Media

In its simplest form media component requires a source to play;

<p:media value="/media/ria_with_primefaces.mov" />

294

PrimeFaces User Guide

Player Types

By default, players are identified using the value extension so for instance mov files will be played
by quicktime player. You can customize which player to use with the player attribute.

<p:media value="http://www.youtube.com/v/ABCDEFGH" player="flash"/>

Following is the supported players and file types.

Player Types

windows asx, asf, avi, wma, wmv

quicktime aif, aiff, aac, au, bmp, gsm, mov, mid, midi, mpg, mpeg, mp4, m4a, psd, qt, qtif, qif,
qti, snd, tif, tiff, wav, 3g2, 3pg

flash flv, mp3, swf

real ra, ram, rm, rpm, rv, smi, smil

pdf pdf

Parameters

Different proprietary players might have different configuration parameters, these can be specified
using f:param tags.

<p:media value="/media/ria_with_primefaces.mov">
<f:param name="paraml" value="valuel" />
</p:media>

StreamedContent Support

Media component can also play binary media content, example for this use case is storing media
files in database using binary format. In order to implement this, bind a StreamedContent.

<p:media value="#{mediaBean.media}" width="250" height="225" player="quicktime"/>

public class MediaBean {
private StreamedContent media;

public MediaController() {
InputStream stream = //Create binary stream from database
media = new DefaultStreamedContent(stream, "video/quicktime");

ks
public StreamedContent getMedia() { return media; }

295

http://www.youtube.com/v/ABCDEFGH

PrimeFaces User Guide

3.68 MegaMenu

MegaMenu is a horizontal navigation component that displays submenus together.

Info

{ MegaMenu]

MegaMenu displays submenus of root items together

TV~ [Sports v Entertainment = O Business ~ ETech ~ x Quit
| CE— CE—
B
R e
™11 ™4 Ey ; 9 ?
& - _
4.2 AR
L

™12
.
]

R
TV

21 ™4

T™v.22 ™42

<p:!column>
<p:submenu label="Sports.l">

Tag

megaMenu

Component Class

org.primefaces.component.megamenu.MegaMenu

Component Type

org.primefaces.component.MegaMenu

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.MegaMenuRenderer

Renderer Class

org.primefaces.component.megamenu.MegaMenuRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean.

widgetVar null String Name of the client side widget

model null MenuModel | MenuModel instance to create menus
programmatically

style null String Inline style of the component.

styleClass null String Style class of the component.

296

PrimeFaces User Guide

Name Default Type Description

autoDisplay true Boolean Defines whether submenus will be displayed on
mouseover or not. When set to false, click event
is required to display.

activelndex null Integer Index of the active root menu to display as
highlighted. By default no root is highlighted.

orientation horizontal | String Defines the orientation of the root menuitems,
valid values are "horizontal" and "vertical".

Getting Started with MegaMenu

Layout of MegaMenu is grid based and root items require columns as children.

<p : megaMenu>
<p:submenu label="TV" icon="ui-icon-check">
<p:column>
<p:submenu label="TV.1">
<p:menuitem value="TV.1.1" url="#" />
<p:menuitem value="TV.1.2" url="#" />
</p: submenu>
<p:submenu label="TV.2">
<p:menuitem value="TV.2.1" url="#" />
<p:menuitem value="TV.2.2" url="#" />
<p:menuitem value="TV.2.3" url="#" />
</p: submenu>
<p:submenu label="TV.3">
<p:menuitem value="TV.3.1" url="#" />
<p:menuitem value="TV.3.2" url="#" />
</p: submenu>
</p:column>

<p:column>
<p:submenu label="TV.4">
<p:menuitem value="TV.4.1" url="#" />
<p:menuitem value="TV.4.2" url="#" />
</p: submenu>
<p:submenu label="TV.5">
<p:menuitem value="TV.5.1" url="#" />
<p:menuitem value="TV.5.2" url="#" />
<p:menuitem value="TV.5.3" url="#" />
</p: submenu>
<p:submenu label="TV.6">
<p:menuitem value="TV.6.1" url="#" />
<p:menuitem value="TV.6.2" url="#" />
<p:menuitem value="TV.6.3" url="#" />
</p: submenu>

</p:column>
</p: submenu>

//more root items
</p :megaMenu>

297

PrimeFaces User Guide

Custom Content

Any content can be placed inside columns.

<p:column>

Sopranos

<p:graphicImage value="/images/sopranos/sopranosl.jpg" width="200"/>
</p:column>

Root Menuitem

MegaMenu supports menuitem as root menu options as well. Following example allows a root
menubar item to execute an action to logout the user.

<p :megaMenu>

//submenus

<p:menuitem label="Logout" action="#{bean.logout}"/>
</p :megaMenu>

Dynamic Menus

Menus can be created programmatically as well, see the dynamic menus part in menu component
section for more information and an example.

Skinning

MegaMenu resides in a main container which style and styleClass attributes apply. Following is the
list of structural style classes;

Style Class Applies
.ui-megamenu Container element of menubar.
.ui-menu-list List container
.ui-menuitem Each menu item
.ui-menuitem-link Anchor element in a link item
.ui-menuitem-text Text element in an item

As skinning style classes are global, see the main theming section for more information.

298

3.69 Menu

PrimeFaces User Guide

Menu is a navigation component with submenus and menuitems.

Info

Ajax Menuitems

B Save

& Update

Non-Ajax Menuitem
¥ Delete
MNavigations

Home

% TouchFaces

Tag

menu

Component Class

org.primefaces.component.menu.Menu

Component Type

org.primefaces.component.Menu

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.MenuRenderer

Renderer Class

org.primefaces.component.menu.MenuRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean.

widgetVar null String Name of the client side widget.

model null MenuModel | A menu model instance to create menu programmatically.

trigger null String Target component to attach the overlay menu.

299

PrimeFaces User Guide

Name Default Type Description
my null String Corner of menu to align with trigger element.
at null String Corner of trigger to align with menu element.
overlay false Boolean Defines positioning type of menu, either static or overlay.
style null String Inline style of the main container element.
styleClass null String Style class of the main container element.
triggerEvent click String Event to show the dynamic positioned menu.
tabindex 0 String Position of the element in the tabbing order. Default is 0.
toggleable false Boolean Defines whether clicking the header of a submenu toggles
the visibility of children menuitems.

Getting started with the Menu

A menu is composed of submenus and menuitems.

<p:menu>

<p

<p

<p:
<p:
:menuitem value="Yahoo Mail" url="http://mail.yahoo.com" />
<p:
<p:
:menuitem value="Metacafe" url="http://www.metacafe.com" />

<p:

<p:
</p:menu>

menuitem value="Gmail" url="http://www.google.com" />
menuitem value="Hotmail" url="http://www.hotmail.com" />

menuitem value="Youtube" url="http://www.youtube.com" />
menuitem value="Break" url="http://www.break.com" />

menuitem value="Facebook" url="http://www.facebook.com" />
menuitem value="MySpace" url="http://www.myspace.com" />

Gmail
Hotmail
Yahoo Mail
Youtube
Break
Metacafe
Facebook

MySpace

300

http://www.myspace.com/
http://www.facebook.com/
http://www.metacafe.com/
http://www.break.com/
http://www.youtube.com/
http://mail.yahoo.com/
http://www.hotmail.com/
http://www.google.com/

PrimeFaces User Guide

Submenus are used to group menuitems;

<p:menu>
<p:submenu label="Mail">
<p:menuitem value="Gmail" url="http://www.google.com" />
<p:menuitem value="Hotmail" url="http://www.hotmail.com" />
<p:menuitem value="Yahoo Mail" url="http://mail.yahoo.com” />
</p: submenu>

<p:submenu label="Videos">
<p:menuitem value="Youtube" url="http://www.youtube.com" />
<p:menuitem value="Break" url="http://www.break.com" />
<p:menuitem value="Metacafe" url="http://www.metacafe.com" />
</p: submenu>

<p:submenu label="Social Networks">
<p:menuitem value="Facebook" url="http://www.facebook.com" />
<p:menuitem value="MySpace" url="http://www.myspace.com"™ />
</p: submenu>
</p:menu>

Mall

Gmail

Hotmail

Yahoo Mail
Videos

Youtube

Break

Metacafe

Social Networks
Facebook

MySpace

Overlay Menu

Menu can be positioned on a page in two ways; "static" and "dynamic". By default it’s static
meaning the menu is in normal page flow. In contrast dynamic menus is not on the normal flow of
the page allowing them to overlay other elements.

A dynamic menu is created by setting overlay option to true and defining a trigger to show the
menu. Location of menu on page will be relative to the trigger and defined by my and at options
that take combination of four values;

o left

* right

* bottom
e top

301

http://www.myspace.com/
http://www.facebook.com/
http://www.metacafe.com/
http://www.break.com/
http://www.youtube.com/
http://mail.yahoo.com/
http://www.hotmail.com/
http://www.google.com/

PrimeFaces User Guide

For example, clicking the button below will display the menu whose top left corner is aligned with
bottom left corner of button.

<p:menu overlay="true" trigger="btn" my="left top" at="bottom left">
...Submenus and menuitems
</p:menu>

<p:commandButton id="btn" value="Show Menu" type="button"/>

Ajax and Non-Ajax Actions

As menu uses menuitems, it is easy to invoke actions with or without ajax as well as navigation.
See menuitem documentation for more information about the capabilities.

<p:menu>
<p:submenu label="Options">
<p:menuitem value="Save" actionListener="#{bean.save}" update="comp"/>
<p:menuitem value="Update" actionlListener="#{bean.update}" ajax="false"/>

<p:menuitem value="Navigate" url="http://www.primefaces.org"/>
</p: submenu>

</p:menu>

Dynamic Menus

Menus can be created programmatically as well, this is more flexible compared to the declarative
approach. Menu metadata is defined using an org.primefaces.model.MenuModel instance,
PrimeFaces provides the built-in org.primefaces.model. DefaultMenuModel implementation.

For further customization you can also create and bind your own MenuModel implementation. (e.g.
One with JPA @Entity annotation to able able to persist to a database).

Dynamic Submenu
External
Dynamic Actions
M Save

x Delete

A Redirect

<p:menu model="#{menuBean.model}" />

302

http://www.primefaces.org/

PrimeFaces User Guide

public class MenuBean {
private MenuModel model;

public MenuBean() {
model = new DefaultMenuModel();

//First submenu
DefaultSubMenu firstSubmenu = new DefaultSubMenu("Dynamic Submenu");

DefaultMenuItem item = new DefaultMenultem("External");
item.setUrl("http://www.primefaces.org");
item.setIcon("ui-icon-home");
firstSubmenu.addElement(item);

model .addElement(firstSubmenu);

//Second submenu
DefaultSubMenu secondSubmenu = new DefaultSubMenu("Dynamic Actions™);

item = new DefaultMenuItem("Save");
item.setIcon("ui-icon-disk");
item.setCommand("#{menuBean.save}");
item.setUpdate("messages");
secondSubmenu.addElement(item);

item = new DefaultMenultem("Delete");
item.setIcon("ui-icon-close");
item.setCommand("#{menuBean.delete}");
item.setAjax(false);
secondSubmenu.addElement(item);

item = new DefaultMenultem("Redirect");
item.setIcon("ui-icon-search");
item.setCommand("#{menuBean.redirect}");
secondSubmenu.addElement(item);

model .addElement(secondSubmenu);

}

public MenuModel getModel() { return model; }

For all UI component counterpart such as p:menuitem, p:submenu, p:separator a corresponding
interface with a default implementation exists in MenuModel API. Regarding actions, if you need to
pass parameters in ajax or non-ajax commands, use setParam(key, value) method.

MenuModel API is supported by all menu components that have model attribute.

303

http://www.primefaces.org/

PrimeFaces User Guide

Toggleable

Enabling toggleable option makes the header of submenus clickable to expand and collapse their
content.

<p:menu toggleable="true">

» Ajax
B Save
© Update
» Non-Ajax

> Navigations

Skinning

Menu resides in a main container element which style and styleClass attributes apply. Following is
the list of structural style classes;

Style Class Applies
.ui-menu Container element of menu
.ui-menu-list List container
.ui-menuitem Each menu item
.ui-menuitem-link Anchor element in a link item
.ui-menuitem-text Text element in an item
.ui-menu-sliding Container of ipod like sliding menu

As skinning style classes are global, see the main theming section for more information.

304

3.70 Menubar

Menubar is a horizontal navigation component.

PrimeFaces User Guide

BFile v Edit> ?Help v | ##Actons » | x Quit
| 1 Ajax b J: @ Save
O MNon-Ajax » 2 Update
Info
Tag menubar

Component Class

org.primefaces.component.menubar.Menubar

Component Type

org.primefaces.component.Menubar

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.MenubarRenderer

Renderer Class

org.primefaces.component.menubar.MenubarRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean.

widgetVar null String Name of the client side widget

model null MenuModel | MenuModel instance to create menus
programmatically

style null String Inline style of menubar

styleClass null String Style class of menubar

autoDisplay false Boolean Defines whether the first level of submenus will
be displayed on mouseover or not. When
set to false, click event is required to display.

tabindex 0 String Position of the element in the tabbing order.

305

PrimeFaces User Guide

Name Default Type Description

toggleEvent hover String Event to toggle the submenus, valid values are
"hover" and "click".

Getting started with Menubar

Submenus and menuitems as child components are required to compose the menubar.

<p:menubar>
<p:submenu label="Mail">
<p:menuitem value="Gmail" url="http://www.google.com" />
<p:menuitem value="Hotmail" url="http://www.hotmail.com" />
<p:menuitem value="Yahoo Mail" url="http://mail.yahoo.com" />
</p: submenu>
<p:submenu label="Videos">
<p:menuitem value="Youtube" url="http://www.youtube.com" />
<p:menuitem value="Break" url="http://www.break.com" />
</p: submenu>
</p:menubar>

Nested Menus

To create a menubar with a higher depth, nest submenus in parent submenus.

<p:menubar>
<p:submenu label="File">
<p:submenu label="New">
<p:menuitem value="Project" url="#"/>
<p:menuitem value="Other" url="#"/>
</p: submenu>
<p:menuitem value="Open" url="#"></p:menuitem>
<p:menuitem value="Quit" url="#"></p:menuitem>
</p: submenu>
<p:submenu label="Edit">
<p:menuitem value="Undo" url="#"></p:menuitem>
<p:menuitem value="Redo" url="#"></p:menuitem>
</p: submenu>
<p:submenu label="Help">
<p:menuitem label="Contents" url="#" />
<p:submenu label="Search">
<p:submenu label="Text">
<p:menuitem value="Workspace" url="#" />
</p: submenu>
<p:menuitem value="File" url="#" />
</p: submenu>
</p: submenu>
</p:menubar>

306

http://www.break.com/
http://www.youtube.com/
http://mail.yahoo.com/
http://www.hotmail.com/
http://www.google.com/

PrimeFaces User Guide

Root Menuitem

Menubar supports menuitem as root menu options as well;

<p :menubar>
<p:menuitem label="Logout" action="#{bean.logout}"/>
</p:menubar>

Ajax and Non-Ajax Actions

As menu uses menuitems, it is easy to invoke actions with or without ajax as well as navigation.
See menuitem documentation for more information about the capabilities.

<p :menubar>
<p:submenu label="0Options">
<p:menuitem value="Save" actionlListener="#{bean.save}" update="comp"/>
<p:menuitem value="Update" actionListener="#{bean.update}" ajax="false"/>
<p:menuitem value="Navigate" url="http://www.primefaces.org"/>
</p:submenu>
</p:menubar>

Dynamic Menus

Menus can be created programmatically as well, see the dynamic menus part in menu component
section for more information and an example.

Skinning

Menubar resides in a main container which style and styleClass attributes apply. Following is the
list of structural style classes;

Style Class Applies
.ui-menubar Container element of menubar.
.ui-menu-list List container
.ui-menuitem Each menu item
.ui-menuitem-link Anchor element in a link item
.ui-menuitem-text Text element in an item

As skinning style classes are global, see the main theming section for more information.

307

http://www.primefaces.org/

PrimeFaces User Guide

3.71 MenuButton

MenuButton displays different commands in a popup menu.

- Options.
[B Save

2 Update

% Delete

' Homepage

Info

Tag menuButton

Component Class org.primefaces.component.menubutton.MenuButton

Component Type org.primefaces.component.MenuButton

Component Family org.primefaces.component

Renderer Type org.primefaces.component.MenuButtonRenderer

Renderer Class

org.primefaces.component.menubutton.MenuButtonRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean.

value null String Label of the button

style null String Style of the main container element

styleClass null String Style class of the main container element

widgetVar null String Name of the client side widget

model null MenuModel | MenuModel instance to create menus programmatically

disabled false Boolean Disables or enables the button.

iconPos left String Position of the icon, valid values are left and right.

appendTo null String Appends the overlay to the element defined by search
expression. Defaults to document body.

308

PrimeFaces User Guide

Getting started with the MenuButton

MenuButton consists of one ore more menuitems. Following menubutton example has three
menuitems, first one is used triggers an action with ajax, second one does the similar but without
ajax and third one is used for redirect purposes.

<p:menuButton value="Options">
<p:menuitem value="Save" actionListener="#{bean.save}l" update="comp" />
<p:menuitem value="Update" actionlListener="#{bean.update}" ajax="false" />
<p:menuitem value="Go Home" url="/home.jsf" />

</p:menuButton>

Dynamic Menus

Menus can be created programmatically as well, see the dynamic menus part in menu component
section for more information and an example.

Skinning

MenuButton resides in a main container which style and styleClass attributes apply. As skinning
style classes are global, see the main theming section for more information. Following is the list of
structural style classes;

Style Class Applies
.ui-menu Container element of menu.
.ui-menu-list List container
.ui-menuitem Each menu item
.ui-menuitem-link Anchor element in a link item
.ui-menuitem-text Text element in an item
.ui-button Button element
.ui-button-text Label of button

309

PrimeFaces User Guide

3.72 Menultem

Menultem is used by various menu components.

Info
Tag menultem
Tag Class org.primefaces.component.menuitem.MenultemTag

Component Class

org.primefaces.component.menuitem.Menultem

Component Type

org.primefaces.component.Menultem

Component Family

org.primefaces.component

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean | Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean.

value null String Label of the menuitem

actionListener null Method Action listener to be invoked when menuitem is clicked.

Expr
action null Method Action to be invoked when menuitem is clicked.
Expr

immediate false Boolean | When true, action of this menuitem is processed after
apply request phase.

url null String Url to be navigated when menuitem is clicked

target null String Target type of url navigation

style null String Style of the menuitem label

styleClass null String StyleClass of the menuitem label

onclick null String Javascript event handler for click event

async false Boolean | When set to true, ajax requests are not queued.

process null String Components to process partially instead of whole view.

update null String Components to update after ajax request.

310

PrimeFaces User Guide

Name Default Type Description

disabled false Boolean | Disables the menuitem.

onstart null String Javascript handler to execute before ajax request is
begins.

oncomplete null String Javascript handler to execute when ajax request is
completed.

onsuccess null String Javascript handler to execute when ajax request
succeeds.

onerror null String Javascript handler to execute when ajax request fails.

global true Boolean | Global ajax requests are listened by ajaxStatus
component, setting global to false will not trigger
ajaxStatus.

delay null String If less than delay milliseconds elapses between calls to
request() only the most recent one is sent and all other
requests are discarded. If this option is not specified, or
if the value of delay is the literal string 'none' without the
quotes, no delay is used.

partialSubmit false Boolean | Enables serialization of values belonging to the partially
processed components only.

resetValues false Boolean | If true, local values of input components to be updated
within the ajax request would be reset.

ignoreAutoUpdate false Boolean | If true, components which autoUpdate="true" will not be
updated for this request. If not specified, or the value is
false, no such indication is made.

timeout 0 Integer Timeout for the ajax request in milliseconds.

ajax true Boolean | Specifies submit mode.

icon null String Path of the menuitem image.

title null String Advisory tooltip information.

outcome null String Navigation case outcome.

includeViewParams false Boolean | Defines if page parameters should be in target URIL.

fragment null String Identifier of the target page element to scroll to.

disableClientWindow | false Boolean | Disable appending the ClientWindow on the rendering
of this element.

containerStyle null String Inline style of the menuitem container.

containerStyleClass null String Style class of the menuitem container.

311

PrimeFaces User Guide

Getting started with Menultem

Menultem is a generic component used by the following components.

* Menu

e MenuBar

* MegaMenu
* Breadcrumb
* Dock
 Stack

* MenuButton
* SplitButton
* PanelMenu
* TabMenu

e SlideMenu
* TieredMenu

Note that some attributes of menuitem might not be supported by these menu components. Refer to
the specific component documentation for more information.

Navigation vs Action

Menuitem has two use cases, directly navigating to a url with GET or doing a POST to execute an
action. This is decided by url or outcome attributes, if either one is present menuitem does a GET
request, if not parent form is posted with or without ajax decided by ajax attribute.

Icons

There are two ways to specify an icon of a menuitem, you can either use bundled icons within
PrimeFaces or provide your own via css.

ThemeRoller Icons

<p:menuitem icon="ui-icon-disk" ... />

Custom Icons

<p:menuitem icon="barca" ... />

.barca {
background: url(barca_logo.png) no-repeat;
height:16px;
width:16px;

312

3.73 Message

PrimeFaces User Guide

Message is a pre-skinned extended version of the standard JSF message component.

Text: *

Info

text: Validation Error: Value is required.

Tag

message

Component Class

org.primefaces.component.message.Message

Component Type

org.primefaces.component.Message

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.MessageRenderer

Renderer Class

org.primefaces.component.message.MessageRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean.

showSummary | false Boolean Specifies if the summary of the FacesMessage should be
displayed.

showDetail true Boolean Specifies if the detail of the FacesMessage should be
displayed.

for null String Id of the component whose messages to display.

redisplay true Boolean Defines if already rendered messages should be displayed

display both String Defines the display mode.

escape true Boolean Defines whether html would be escaped or not.

severity null String Comma separated list of severities to display only.

style null String Inline style of the component.

styleClass null String Style class of the component.

313

PrimeFaces User Guide

Getting started with Message

Message usage is exactly same as standard message.

<h:inputText id="txt" value="#{bean.text}" />
<p:message for="txt" />

Display Mode

Message component has three different display modes;

+ text : Only message text is displayed.
* icon : Only message severity is displayed and message text is visible as a tooltip.
* both (default) : Both icon and text are displayed.

Severity Levels

Using severity attribute, you can define which severities can be displayed by the component. For
instance, you can configure messages to only display infos and warnings.

<p:message severity="info,warn" for="txt"/>

Escaping

Component escapes html content in messages by default, in case you need to display html, disable
escape option.

<p:message escape="false" for="txt" />

Skinning
Full list of CSS selectors of message is as follows;

Style Class Applies
ui-message- {severity} Container element of the message
ui-message- {severity } -summary Summary text
ui-message- {severity }-detail Detail text

{severity} can be ‘info’, ‘error’, ‘warn’ and error.

314

3.74 Messages

Messages is a pre-skinned extended version of the standard JSF messages component.

PrimeFaces User Guide

(X %
Info

Tag messages

Component Class org.primefaces.component.messages.Messages

Component Type org.primefaces.component.Messages

Component Family org.primefaces.component

Renderer Type org.primefaces.component.MessagesRenderer

Renderer Class org.primefaces.component.messages.MessagesRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean.

showSummary | true Boolean Specifies if the summary of the FacesMessages
should be displayed.

showDetail false Boolean Specifies if the detail of the FacesMessages should
be displayed.

globalOnly false String When true, only facesmessages with no clientlds are
displayed.

redisplay true Boolean Defines if already rendered messages should be
displayed

autoUpdate false Boolean Enables auto update mode if set true.

for null String Name of associated key, takes precedence when used
with globalOnly.

escape true Boolean Defines whether html would be escaped or not.

315

PrimeFaces User Guide

Name Default Type Description
severity null String Comma separated list of severities to display only.
closable false Boolean Adds a close icon to hide the messages.
style null String Inline style of the component.
styleClass null String Style class of the component.
showlcon true Boolean Defines if severity icons would be displayed.

Getting started with Messages

Message usage is exactly same as standard messages.

<p:messages />

AutoUpdate

When auto update is enabled, messages component is updated with each ajax request automatically.

Targetable Messages

There may be times where you need to target one or more messages to a specific message
component, for example suppose you have growl and messages on same page and you need to
display some messages on growl and some on messages. Use for attribute to associate messages
with specific components.

<p:messages for="somekey" />
<p:growl for="anotherkey" />

FacesContext context = FacesContext.getCurrentInstance();

context.addMessage("somekey", facesMessagel);
context.addMessage("somekey", facesMessagel);

context.addMessage("anotherkey", facesMessage3);

In sample above, messages will display first and second message and growl will only display the

3rd message.

Severity Levels

Using severity attribute, you can define which severities can be displayed by the component. For
instance, you can configure messages to only display infos and warnings.

<p:messages severity="info,warn" />

Escaping

Messages escapes html content in messages, disable escape option to display content as html.

316

PrimeFaces User Guide

<p:messages escape="false" />

Skinning
Full list of CSS selectors of message is as follows;

Style Class Applies
ui-messages- {severity } Container element of the message
ui-messages- {severity } -summary Summary text
ui-messages- {severity } -detail Detail text
ui-messages- {severity }-icon Icon of the message.

severity} can be ‘info’, ‘error’, ‘warn’ and error.
9 9

317

3.75 Mindmap

Mindmap is an interactive tool to visualize mindmap data featuring lazy loading, callbacks,
animations and more.

PrimeFaces User Guide

“
~

Info

Tag

mindmap

Component Class

org.primefaces.component.mindmap.Mindmap

Component Type

org.primefaces.component.Mindmap

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.MindmapRenderer

Renderer Class

org.primefaces.component.mindmap.MindmapRenderer

Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean Boolean value to specify the rendering of the

component, when set to false component will not
be rendered.

318

PrimeFaces User Guide

Name Default Type Description

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null MindmapNode | MenuModel instance to build menu dynamically.
style null String Inline style of the component.

styleClass null String Style class of the component.

effectSpeed 300 Integer Speed of the animations in milliseconds.
widgetVar null String Name of the client side widget.

Getting started with Mindmap

Mindmap requires an instance of org.primefaces.model.mindmap.MindmapNode as the root. Due to
it’s lazy nature, a select ajax behavior must be provided to load children of selected node on the fly
with ajax.

public class MindmapBean {
private MindmapNode root;

public MindmapBean() {
root = new DefaultMindmapNode("google.com", "Google", "FFCCOQ", false);

MindmapNode ips = new DefaultMindmapNode("IPs", "IP Nos", "6e9ebf", true);
MindmapNode ns = new DefaultMindmapNode("NS(s)", "Names", "6e9ebf", true);
MindmapNode mw = new DefaultMindmapNode("Mw", "Malicious ", "6e9ebf", true);

root.addNode(ips);
root.addNode(ns);
root.addNode(malware);

}

public MindmapNode getRoot() {
return root;

}

public void onNodeSelect(SelectEvent event) {
MindmapNode node = (MindmapNode) event.getObject();
//load children of select node and add via node.addNode(childNode);

<p:mindmap value="#{mindmapBean.root}" style="width:100%;height:600px">
<p:ajax event="select" listener="#{mindmapBean.onNodeSelect}" />
</p :mindmap>

319

DoubleClick Behavior

Selecting a node with single click is used to load subnodes, double click behavior is also provided
for further customization. Following sample, displays the details of the subnode in a dialog.

PrimeFaces User Guide

<p:mindmap value="#{mindmapBean.root}" style="width:100%;height:600px;">
<p:ajax event="select" listener="#{mindmapBean.onNodeSelect}" />
<p:ajax event="dblselect" listener="#{mindmapBean.onNodeDblselect}"
update="output" oncomplete="PF('details").show()"/>

</p:mindmap>

<p:dialog widgetVar="details" header="Node Details" resizable="false" modal="true"
showEffect="fade" hideEffect="fade">
<h:outputText id="output" value="#{mindmapBean.selectedNode.data}" />
</p:dialog>

}

public void onNodeDblselect(SelectEvent event) {
this.selectedNode = (MindmapNode) event.getObject();

MindmapNode API
org.primefaces.model. mindmap.MindmapNode

Property Default Type Description
label null String Label of the node.
data null Object Optional data associated with the node.
fill null String Color code of the node.
selectable 1 Boolean Flag to define if node is clickable.
parent null MindmapNode Parent node instance.
Tips

* [E 7 and IE 8 are not supported due to technical limitations, IE 9 is supported.

320

PrimeFaces User Guide

3.76 MultiSelectListbox

MultiSelectListbox is used to select an item from a collection of listboxes that are in parent-child

relationship.
Books Desktops Apple
Movies & Music TV & Home Theatre Acer
Electronics Cell Phones Tablets HP
Home & Garden Camera & Video Accessories Toshiba
Clothing & Shoes Software Hard Drive Packard Bell
Sporis AAM Sony

Monitors
Info
Tag multiSelectListbox

Component Class

org.primefaces.component.multiselectlistbox.MultiSelectListbox

Component Type

org.primefaces.component.MultiSelectListbox

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.MultiSelectListboxRenderer

Renderer Class

org.primefaces.component.multiselectlistbox.MultiSelectListboxRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean.

widgetVar null String Name of the client side widget.

style null String Inline style of the component.

styleClass null String Style class of the component.

disabled false Boolean If true, disables the component.

effect null String Effect to use when showing a group of items.

showHeaders false Boolean Displays label of a group at header section of the
children items.

header null String Label of the root group items.

321

PrimeFaces User Guide

Getting started with MultiSelectListbox

MultiSelectListbox needs a collection of SelectltemGroups.

public class MultiSelectListboxBean {

private List<SelectItem> categories;
private String selection;

@PostConstruct

public void init(Q) {
categories = new Arraylist<SelectItem>();
SelectItemGroup groupl = new SelectItemGroup("Group 1");
SelectItemGroup group2 = new SelectItemGroup("Group 2");
SelectItemGroup group3 = new SelectItemGroup("Group 3");
SelectItemGroup group4 = new SelectItemGroup("Group 4");

SelectItemGroup groupll
SelectItemGroup groupl?

new SelectItemGroup("Group 1.1");
new SelectItemGroup("Group 1.2");

SelectItemGroup group2l = new SelectItemGroup("Group 2.1");

SelectItem option31l = new SelectItem("Option 3.1", "Option 3.1");
SelectItem option32 = new SelectItem("Option 3.2", "Option 3.2");
SelectItem option33 = new SelectItem("Option 3.3", "Option 3.3");
SelectItem option34 = new SelectItem("Option 3.4", "Option 3.4");

SelectItem option4l = new SelectItem("Option 4.1", "Option 4.1");

SelectItem optionlll = new SelectItem("Option 1.1.1");
SelectItem optionll2 = new SelectItem("Option 1.1.2");
groupll.setSelectItems(new SelectItem[]{optionlll, optionll?2});

SelectItem optionl2l = new SelectItem("Option 1.2.1", "Option 1.2.1");
SelectItem optionl22 = new SelectItem("Option 1.2.2", "Option 1.2.2");
SelectItem optionl23 = new SelectItem("Option 1.2.3", "Option 1.2.3");
groupl?.setSelectItems(new SelectItem[J{optionl21, optionl22, optionl23});

SelectItem option21l = new SelectItem("Option 2.1.1", "Option 2.1.1");
group2l.setSelectItems(new SelectItem[]{option211});

groupl.setSelectItems(new SelectItem[]{groupll, groupl2?});
group?2.setSelectItems(new SelectItem[]{group21});
group3.setSelectItems(new SelectItem[]{option31l, option32, option33,
option34});
group4.setSelectItems(new SelectItem[]{option41});

categories.add(groupl);

categories.add(group2);

categories.add(group3);

categories.add(group4);
}

//getters-setters of categories and selection

322

PrimeFaces User Guide

<p:multiSelectListbox value="#{multiSelectListboxBean.selection}">
<f:selectItems value="#{multiSelectlListboxBean.categories}" />
</p:multiSelectListbox>

Note that SelectltemGroups are not selectable, only values of Selectltems can be passed to the bean.

Effects

An animation is executed during toggling of a group, following options are available for effect
attribute; blind, bounce, clip, drop, explode, fold, highlight, puff, pulsate, scale, shake, size, slide
(suggested).

Client Side API
Widget: PrimeFaces.widget. MultiSelectListbox

Method Params Return Type Description
enable() - void Enables the component.
disable() - void Disables the component.
showltemGroup(item) li element as void Shows subcategories of a given item.
jQuery object
Skinning

MultiSelectListbox resides in a main container which style and styleClass attributes apply. As
skinning style classes are global, see the main theming section for more information. Following is
the list of structural style classes;

Style Class Applies
.ui-multiselectlistbox Main container element.
.ui-multiselectlistbox-list List container.
.ui-multiselectlistbox-item Each item in a list.

323

PrimeFaces User Guide

3.77 NotificationBar

NotificationBar displays a multipurpose fixed positioned panel for notification.

Info

Tag notificationBar

Component Class org.primefaces.component.notificationbar.NotificationBar

Component Type org.primefaces.component.NotificatonBar

Component Family org.primefaces.component

Renderer Type org.primefaces.component.NotificationBarRenderer

Renderer Class org.primefaces.component.notificationbar.NotificationBarRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

style null String Style of the container element

styleClass null String StyleClass of the container element

position top String Position of the bar, "top" or "bottom".

effect fade String Name of the effect, "fade", "slide" or "none".

effectSpeed normal String Speed of the effect, "slow", "normal" or "fast".

autoDisplay false Boolean When true, panel is displayed on page load.

widgetVar null String Name of the client side widget.

Getting started with NotificationBar

As notificationBar is a panel component, any content can be placed inside.

<p:notificationBar>
//Content
</p:notificationBar>

324

PrimeFaces User Guide

Showing and Hiding

To show and hide the content, notificationBar provides an easy to use client side api that can be
accessed through the widgetVar. show() displays the bar and hide() hides it. isVisible() and toggle()
are additional client side api methods.

<p:notificationBar widgetVar="nv">
//Content
</p:notificationBar>

<h:outputLink value="#" onclick="PF('nv"').show()">Show</h:outputlLink>
<h:outputLink value="#" onclick="PF('nv').hide()">Hide</h:outputlLink>

Note that notificationBar has a default built-in close icon to hide the content.

Effects

Default effect to be used when displaying and hiding the bar is "fade", another possible effect is
"slide".

<p:notificationBar effect="slide">
//Content
</p:notificationBar>

If you’d like to turn off animation, set effect name to "none". In addition duration of the animation is
controlled via effectSpeed attribute that can take "normal", "slow" or "fast" as it’s value.
Position

Default position of bar is "top", other possibility is placing the bar at the bottom of the page. Note
that bar positioning is fixed so even page is scrolled, bar will not scroll.

<p:notificationBar position="bottom">
//Content
</p:notificationBar>

Skinning

style and styleClass attributes apply to the main container element. Additionally there are two pre-
defined css selectors used to customize the look and feel.

Selector Applies

.ui-notificationbar Main container element

325

PrimeFaces User Guide

3.78 OrderList

OrderList is used to sort a collection featuring drag&drop based reordering, transition effects and
pojo support.

Iniesta - &
Villa -7
Xavi-6
Info
Tag orderList
Component Class org.primefaces.component.orderlist.OrderList
Component Type org.primefaces.component.OrderList
Component Family org.primefaces.component
Renderer Type org.primefaces.component.OrderListRenderer
Renderer Class org.primefaces.component.orderlist.OrderListRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered True Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean
value null Object Value of the component referring to a List.
converter null Converter | An el expression or a literal text that defines a converter
/String for the component. When it’s an EL expression, it’s
resolved to a converter instance. In case it’s a static text,
it must refer to a converter id

326

PrimeFaces User Guide

Name Default Type Description
immediate 0 Boolean When set true, process validations logic is executed at
apply request values phase for this component.
required 0 Boolean Marks component as required
validator null Method A method expression that refers to a method validationg
Expr the input
valueChangeListener | null Method A method expression that refers to a method for handling
Expr a valuechangeevent
requiredMessage null String Message to be displayed when required field validation
fails.
converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.
widgetVar null String Name of the client side widget.
var null String Name of the iterator.
itemLabel null String Label of an item.
itemValue null String Value of an item.
style null String Inline style of container element.
styleClass null String Style class of container element.
disabled 0 Boolean Disables the component.
effect fade String Name of animation to display.
moveUpLabel Move Up | String Label of move up button.
moveTopLabel Move String Label of move top button.
Top
moveDownLabel Move String Label of move down button.
Down
moveBottomLabel Move String Label of move bottom button.
Bottom
controlsLocation left String Location of the reorder buttons, valid values are “left”,

“right” and “none”.

327

PrimeFaces User Guide

Getting started with OrderList

A list is required to use OrderList component.

public class OrderListBean {
private List<String> cities;

public OrderListBean() {
cities = new ArraylList<String>();

cities.add("Istanbul™);
cities.add("Ankara™);
cities.add("Izmir™");
cities.add("Antalya");
cities.add("Bursa™);

}

//getter&setter for cities

<p:orderlList value="#{orderlListBean.cities}" var="city"
itemLabel="#{city}" itemValue="#{city}""/>

Advanced OrderList

OrderList supports displaying custom content instead of simple labels by using columns. In
addition, pojos are supported if a converter is defined.

public class OrderListBean {
private List<Player> players;

public OrderListBean() {
players = new ArraylList<Player>(Q);

players.add(new Player("Messi", 1@, "messi.jpg"));
players.add(new Player("Iniesta", 8, "iniesta.jpg"));
players.add(new Player("Villa", 7, "villa.jpg"));
players.add(new Player("Xavi", 6, "xavi.jpg"));

ks

//getter&setter for players

<p:orderlList value="#{orderListBean.players}" var="player" itemValue="#{player}"
converter="player">
<p:column style="width:25%">
<p:graphicImage value="/images/barca/#{player.photo}" />
</p:column>
<p:column style="width:75%;">
#{player.name} - #{player.number}
</p:column>
</p:orderList>

328

PrimeFaces User Guide

Header

A facet called “caption” is provided to display a header content for the orderlist.

Effects

An animation is executed during reordering, default effect is fade and following options are
available for effect attribute; blind, bounce, clip, drop, explode, fold, highlight, puff, pulsate, scale,
shake, size and slide.

Skinning

OrderList resides in a main container which style and styleClass attributes apply. As skinning style
classes are global, see the main theming section for more information. Following is the list of
structural style classes;

Style Class Applies
.ui-orderlist Main container element.
.ui-orderlist-list Container of items.
.ui-orderlist-item Each item in the list.
.ui-orderlist-caption Caption of the list.

329

PrimeFaces User Guide

3.79 OutputLabel

OutputLabel is a an extension to the standard outputLabel component.

Mew Person

_idt15:name: Validation Error: Value is required.
Extended Label: Validation Error: Value is required.

Standard Label l ‘

Extended Label l I

Mumber

Info

| =

Tag

outputLabel

Component Class

org.primefaces.component.outputlabel.OutputLabel

Component Type

org.primefaces.component.OutputLabel

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.OutputLabelRenderer

Renderer Class

org.primefaces.component.outputlabel.OutputLabelRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean

value null String Label to display.

accesskey null String The accesskey attribute is a standard HTML attribute that
sets the access key that transfers focus to this element when
pressed.

dir null String Direction indication for text that does not inherit
directionality. Valid values are LTR and RTL.

escape true Boolean Defines if value should be escaped or not.

for null String Component to attach the label to.

330

PrimeFaces User Guide

Name Default Type Description

tabindex null String Position in tabbing order.

title null String Advisory tooltip information.

style null String Inline style of the component.

styleClass null String Style class of the component.

onblur null String Client side callback to execute when component loses
focus.

onclick null String Client side callback to execute when component is clicked.

ondblclick null String Client side callback to execute when component is double
clicked.

onfocus null String Client side callback to execute when component receives
focus.

onkeydown null String Client side callback to execute when a key is pressed down

over component.

onkeypress null String Client side callback to execute when a key is pressed and
released over component.

onkeyup null String Client side callback to execute when a key is released over
component.
onmousedown null String Client side callback to execute when a pointer is pressed

down over component.

onmouseout null String Client side callback to execute when a pointer is moved
away from component.

onmouseover null String Client side callback to execute when a pointer is moved
onto component.

onmouseup null String Client side callback to execute when a pointer is released
over component.

indicateRequired | true Boolean Displays * symbol if the input is required.

Getting Started with OutputLabel

Usage is same as standard outputLabel, an input component is associated with for attribute.

<p:outputlLabel for="input" value="Label" />

<p:inputText id="input" value="#{bean.text}" />

331

PrimeFaces User Guide

Auto Label

OutputLabel sets its value as the label of the target component to be displayed in validation errors
so the target component does not need to define the label attribute again.

<h:outputLabel for="input" value="Field" />

<p:inputText id="input" value="#{bean.text}" label="Field"/>

an be rewritten as;

[¢]

<p:outputLabel for="input" value="Field" />

<p:inputText id="input" value="#{bean.text}" />

Support for Advanced Components

Some PrimeFaces input components like spinner, autocomplete does not render just basic inputs so
standard outputLabel component cannot apply focus to these, however PrimeFaces outputLabel can.

<h:outputLabel for="input" value="Can’t apply focus" />
<p:outputLabel for="input" value="Can apply focus" />

<p:spinner id="input" value="#{bean.text}" />

Validations

When the target input is required, outputLabel displays * symbol next to the value. In case any
validation fails on target input, label will also be displayed with theme aware error styles.
Skinning

Label renders a label element that style and styleClass attributes apply. Following is the list of
structural style classes;

Style Class Applies
.ui-outputlabel Label element
.ui-state-error Label element when input is invalid
.ui-outputlabel-rfi Required field indicator.

332

3.80 OutputPanel

OutputPanel is a panel component with the ability to auto update.

Info

PrimeFaces User Guide

Tag

outputPanel

Component Class

org.primefaces.component.outputpanel.OutputPanel

Component Type

org.primefaces.component.QutputPanel

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.OutputPanelRenderer

Renderer Class

org.primefaces.component.output.OutputPanelRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean

style null String Style of the html container element

styleClass null String StyleClass of the html container element

layout block String Shortcut for the css display property, valid values are block
(default) and inline.

autoUpdate false Boolean Enables auto update mode if set true.

deferred false Boolean Deferred mode loads the contents after page load to speed
up page load.

deferredMode | load String Defines deferred loading mode, valid values are "load"
(after page load) and "visible" (once the panel is visible on
scroll).

global false Boolean Global ajax requests are listened by ajaxStatus component,
setting global to false will not trigger ajaxStatus on
deferred loading.

delay none String Delay in milliseconds to wait before initiating a deferred
loading, default value is "none".

333

PrimeFaces User Guide

PlaceHolder

When a JSF component is not rendered, no markup is rendered so for components with conditional
rendering, regular update mechanism may not work since the markup to update on page does not
exist. OutputPanel is useful in this case to be used as a placeholder.

Suppose the rendered condition on bean is false when page if loaded initially and search method on
bean sets the condition to be true meaning datatable will be rendered after a page submit. The
problem is although partial output is generated, the markup on page cannot be updated since it
doesn’t exist.

<p:dataTable id="tbl" rendered="#{bean.condition}" ...>
//columns
</p:.dataTable>

<p:commandButton update="tbl" actionlListener="#{bean.search}" />

Solution is to use the outputPanel as a placeHolder.

<p:outputPanel id="out">
<p:dataTable id="tbl" rendered="#{bean.condition}" ...>
//columns
</p:dataTable>
</p:outputPanel>

<p:commandButton update="out" actionlListener="#{bean.list}" />

Note that you won’t need an outputPanel if commandButton has no update attribute specified, in
this case parent form will be updated partially implicitly making an outputPanel use obselete.

Deferred Loading

When this feature option is enabled, content of panel is not loaded along with the page but loaded
after the page on demand. Initially panel displays a loading animation after page load to indicate
more content is coming up and displays content with ajax update. Using deferredMode option, it is
possible to load contents not just after page load (default mode) but when it becomes visible on
page scroll as well. This feature is very useful to increase page load performance, assume you have
one part of the page that has components dealing with backend and taking time, with deferred mode
on, rest of the page is loaded instantly and time taking process is loaded afterwards with ajax.

Layout

OutputPanel has two layout modes;

* block (default): Renders a div

* inline: Renders a span

AutoUpdate

When auto update is enabled, outputPanel component is updated with each ajax request
automatically.

Skinning

style and styleClass attributes are used to style the outputPanel, by default .ui-outputpanel css class
is added to element and .ui-outputpanel-loading when content is loading in deferred loading case.

334

PrimeFaces User Guide

3.81 OverlayPanel

OverlayPanel is a generic panel component that can be displayed on top of other content.

Dynamic

@(z)(s](a)(5] Le)lm

Model Year Manufacturer Color

b31614b8 1993 Opel Black

fdd666al 1981 BMW Brown

GcOb2fhs 1873 Ford Green

B4efbloa 1564 BMW Brown

aBdd6461 2006 Audi Black

fhOdfciB 2004 Velkswagen White

6bbB711b 2002 Mercedes Green

fded911b 1979 Chrysler Black

G8a5511a 1986 Ferrari White

17cdacii 1996 BMW Green

Bz](z)(a)l5] Lo)ln

Info
Tag overlayPanel

Component Class

org.primefaces.component.overlaypanel.OverlayPanelRenderer

Component Type

org.primefaces.component.OverlayPanel

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.OverlayPanelRenderer

Renderer Class

org.primefaces.component.overlaypanel.OverlayPanelRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean | Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object | An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

style null String Inline style of the panel.

styleClass null String Style class of the panel.

for null String Target component to display panel next to.

showEvent click String Event on target to show the panel.

335

PrimeFaces User Guide

Name Default Type Description
hideEvent click String Event on target to hide the panel.
showEffect null String Animation to display when showing the panel.
hideEffect null String Animation to display when hiding the panel.
appendToBody 0 Boolean | When true, panel is appended to document body.
onShow null String Client side callback to execute when panel is shown.
onHide null String Client side callback to execute when panel is hidden.
my left top String Position of the panel relative to the target.
at left bottom | String Position of the target relative to the panel.
dynamic false Boolean | Defines content loading mode.
dismissable true Boolean | When set true, clicking outside of the panel hides the

overlay.

showCloselcon false Boolean | Displays a close icon to hide the overlay, default is false.

Getting started with OverlayPanel

OverlayPanel needs a component as a target in addition to the content to display. Example below
demonstrates an overlayPanel attached to a button to show a chart in a popup.

<p:commandButton id="chartBtn" value="Basic" type="button" />

<p:overlayPanel for="chartBtn">
<p:pieChart value="#{chartBean.pieModel}" legendPosition="w"
title="Sample Pie Chart" style="width:400px;height:300px" />
</p:overlayPanel>

Events

Default event on target to show and hide the panel is mousedown. These are customized using
showEvent and hideEvent options.

<p:commandButton id="chartBtn" value="Basic" type="button" />

<p:overlayPanel showEvent="mouseover" hideEvent="mousedown">
//content
</p:overlayPanel>

Effects

blind, bounce, clip, drop, explode, fold, highlight, puff, pulsate, scale, shake, size, slide are
available values for showEffect and hideEffect options if you’d like display animations.

336

PrimeFaces User Guide

Positioning

By default, left top corner of panel is aligned to left bottom corner of the target if there is enough
space in window viewport, if not the position is flipped on the fly to find the best location to
display. In order to customize the position use my and at options that takes combinations of left,
right, bottom and top e.g. “right bottom”.

Dynamic Mode

Dynamic mode enables lazy loading of the content, in this mode content of the panel is not rendered
on page load and loaded just before panel is shown. Also content is cached so consecutive displays
do not load the content again. This feature is useful to reduce the page size and reduce page load
time.

Skinning

Panel resides in a main container which style and styleClass attributes apply. Following is the list of
structural style classes;

Style Class Applies

.ui-overlaypanel Main container element of panel

As skinning style classes are global, see the main theming section for more information.
Tips

* Enable appendToBody when overlayPanel is in other panel components like layout, dialog ...

* If there is a component with a popup like calendar, autocomplete placed inside the overlay panel,
popup part might exceed the boundaries of panel and clicking the outside hides the panel. This is
undesirable so in cases like this use overlayPanel with dismissable false and optional
showCloselcon settings.

337

3.82 Panel

PrimeFaces User Guide

Panel is a grouping component with content toggle, close and menu integration.

About Barca

FC Barcelona is one of anly three clubs never to have been relegated from La Liga and is the most
successful club in Spanish football along with Real Madrid, having won twenty La Liga titles, a
record twenty-five Spanish Cups, eight Spanish Super Cups, four Eva Duarte Cups and two
League Cups. They are also one of the most successful clubs in European football having won
fourteen official major trophies in total, including ten UEFA competitions. They have won three
UEFA Champions League titles, a record four UEFA Cup Winners' Cups, a record three InterCities
Fairs Cups (the forerunner to the UEFA Europa League), three UEFA Super Cups and one FIFA
Club World Cup. The club is also the only European side to have played continental football in
every 5eason since its inception in 1955.

Info

Tag

panel

Component Class

org.primefaces.component.panel.Panel

Component Type

org.primefaces.component.Panel

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.PanelRenderer

Renderer Class

org.primefaces.component.panel.PanelRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

header null String Header text

footer null String Footer text

toggleable false Boolean Makes panel toggleable.

toggleSpeed 1000 Integer Speed of toggling in milliseconds

collapsed false Boolean Renders a toggleable panel as collapsed.

style null String Style of the panel

styleClass null String Style class of the panel

338

PrimeFaces User Guide

Name Default Type Description
closable false Boolean Make panel closable.
closeSpeed 1000 Integer Speed of closing effect in milliseconds
visible true Boolean Renders panel as visible.
closeTitle null String Tooltip for the close button.
toggleTitle null String Tooltip for the toggle button.
menuTitle null String Tooltip for the menu button.
toggleOrientation vertical String Defines the orientation of the toggling, valid

values are vertical and horizontal.

widgetVar null String Name of the client side widget

Getting started with Panel

Panel encapsulates other components.

<p:panel>

</p:panel>

//Child components here...

Header and Footer

Header and Footer texts can be provided by header and footer attributes or the corresponding facets.
When same attribute and facet name are used, facet will be used.

</p:panel>

<p:panel header="Header Text">
<f:facet name="footer">
<h:outputText value="Footer Text" />

</f:.facet>

//Child components here...

Ajax Behavior Events

Panel provides custom ajax behavior events for toggling and closing features.

Event Listener Parameter Fired
toggle org.primefaces.event. ToggleEvent When panel is expanded or collapsed.
close org.primefaces.event.CloseEvent When panel is closed.

339

PrimeFaces User Guide

Popup Menu

Panel has built-in support to display a fully customizable popup menu, an icon to display the menu
is placed at top-right corner. This feature is enabled by defining a menu component and defining it
as the options facet.

<p:panel closable="true">
//Child components here...

<f:facet name="options">
<p :menu>
//Menuitems
</p:menu>
</f:facet>
</p:panel>

Custom Action

If you’d like to add custom actions to panel titlebar, use actions facet with icon markup;

<p:panel>
<f:facet name="actions">
<h:commandLink styleClass="ui-panel-titlebar-icon
ui-corner-all ui-state-default">
<h:outputText styleClass="ui-icon ui-icon-help" />
</h:commandLink>
</f:facet>
//content
</p:panel>

Skinning Panel

Panel resides in a main container which style and styleClass attributes apply. Following is the list of
structural style classes;

Style Class Applies
.ui-panel Main container element of panel
.ui-panel-titlebar Header container
.ui-panel-title Header text
.ui-panel-titlebar-icon Option icon in header
.ui-panel-content Panel content
.ui-panel-footer Panel footer

As skinning style classes are global, see the main theming section for more information.

340

3.83 PanelGrid

PanelGrid is an extension to the standard panelGrid component with additional features such as
theming and colspan-rowspan.

PrimeFaces User Guide

1995-96 NBA Playoffs
Conf. Semifinals Conf. Finals NBA Finals Champion
Seattle 4
Seattle 4
Houston 0
Seattle 2
Utah 4
Litah 3
San Antonio | 2
Chicago
Chicago 4
Chicago 4
Mew York 1
Chicago | 4
Atlanta 1
Orlando]
Orlando 4
Finals MVP
Season MVYP Michael Jordan (Chicago)
Top Scorer
Info
Tag panelGrid

Component Class

org.primefaces.component.panelgrid.PanelGridRenderer

Component Type

org.primefaces.component.PanelGrid

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.PanelGridRenderer

Renderer Class

org.primefaces.component.panelgrid.PanelGridRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean | Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

columns false Integer Number of columns in grid.

341

PrimeFaces User Guide

Name Default Type Description
style null String Inline style of the panel.
styleClass null String Style class of the panel.
columnClasses null String Comma separated list of column style classes.
layout tabular String Displays data in a 'table’ layout or 'grid' layout. The
grid layout is a responsive layout.

Getting started with PanelGrid

Basic usage of panelGrid is same as the standard one.

<p:panelGrid columns="2">
<h:outputLabel for="firstname" value="Firstname:" />
<p:inputText id="firstname" value="#{bean.firstname}" label="Firstname" />

<h:outputLabel for="surname" value="Surname:" />
<p:inputText id="surname" value="#{bean.surname}" label="Surname"/>
</p:panelGrid>

Header and Footer

PanelGrid provides facets for header and footer content.

<p:panelGrid columns="2">
<f:facet name="header">
Basic PanelGrid
</f:.facet>

<h:outputLabel for="firstname" value="Firstname: *" />
<p:inputText id="firstname" value="#{bean.firstname}" label="Firstname" />

<h:outputLabel for="surname" value="Surname: *" />
<p:inputText id="surname" value="#{bean.surname}" label="Surname"/>

<f:facet name="footer">
<p:commandButton type="button" value="Save" icon="ui-icon-check" />
</f:facet>
</p:panelGrid>

Basic PanelGrid

Firstname: *

Surname: *

+ Save

342

Rowspan and Colspan

PrimeFaces User Guide

PanelGrid supports rowspan and colspan options as well, in this case row and column markup

should be defined manually.

<p:panelGrid>
<p:row>
<p:
<p:
</p:row>
<p:row>
<p:
<p:
</p:row>
<p:row>
<p:
<p
<p:
<p:
</p:row>
</p:panelGrid>

column
column

column
column

rowspan="3">AAA</p:column>
colspan="4">BBB</p:column>

colspan="2">CCC</p:column>
colspan="2">DDD</p:column>

column>EEE</p:column>

:column>FFF</p:column>

column>GGG</p: column>
column>HHH</p : column>

* Note that this approach does not support grid layout.

Skinning

PanelGrid resides in a main container which style and styleClass attributes apply. Following is the
list of structural style classes;

Style Class

Applies

.ui-panelgrid

Main container element of panelGrid.

.ui-panelgrid-header

Header.

.ui-panelgrid-footer

Footer.

.ui-panelgrid-even

Even numbered rows.

.ui-panelgrid-odd

Odd numbered rows.

As skinning style classes are global, see the main theming section for more information.

343

3.84 PanelMenu

PanelMenu is a hybrid component of accordionPanel and tree components.

Info

PrimeFaces User Guide

» Ajax Menultems

I ~ Non-Ajax Menufitem |

» Delete

i ~ Navigations

* i Links

* w PrimeFaces

fir Home
O Docs

1 Download

Support

I Mobile

Tag

panelMenu

Component Class

org.primefaces.component.panelmenu.PanelMenu

Component Type

org.primefaces.component.PanelMenu

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.PanelMenuRenderer

Renderer Class

org.primefaces.component.panelmenu.PanelMenuRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

model null MenuModel | MenuModel instance to build menu dynamically.

style null String Inline style of the component.

styleClass null String Style class of the component.

widgetVar null String Name of the client side widget.

344

Getting started with PanelMenu

PrimeFaces User Guide

PanelMenu consists of submenus and menuitems. First level of submenus are rendered as accordion
panels and descendant submenus are rendered as tree nodes. Just like in any other menu component,

menuitems can be utilized to do ajax requests, non-ajax requests and simple GET navigations.

<p:panelMenu style="width:200px">

<p:submenu label="Ajax Menuitems">
<p:menuitem value="Save" actionListener="#{buttonBean.save}" />
<p:menuitem value="Update" actionlListener="#{buttonBean.update}" />
</p:submenu>

<p:submenu label="Non-Ajax Menuitem">
<p:menuitem value="Delete" actionListener="#{buttonBean.delete}"
ajax="false"/>
</p: submenu>

<p:submenu label="Navigations" >
<p:submenu label="Links" icon="ui-icon-extlink">

<p:submenu label="PrimeFaces" icon="ui-icon-heart">
<p:menuitem value="Home" url="http://www.primefaces.org" />
<p:menuitem value="Docs" url="http://www.primefaces.org/..." />
<p:menuitem value="Support" url="http://www.primefaces.org/..." />

</p: submenu>

</p: submenu>

</p: submenu>
</p:panelMenu>

<p:menuitem value="Mobile" outcome="/mobile/index" />

Skinning

PanelMenu resides in a main container which style and styleClass attributes apply. Following is the

list of structural style classes;

Style Class

Applies

.ui-panelmenu

Main container element.

.ui-panelmenu-header

Header of a panel.

.ui-panelmenu-content

Footer of a panel.

.ui-panelmenu .ui-menu-list

Tree container.

.ui-panelmenu .ui-menuitem

A menuitem in tree.

As skinning style classes are global, see the main theming section for more information.

345

3.85 Password

Password component is an extended version of standard inputSecret component with theme

integration and strength indicator.

Info

Basic:

Feedback:

Feedback (Turkish):

Inline Feedback:

Please enter a password

PrimeFaces User Guide

Medium

Tag

password

Component Class

org.primefaces.component.password.Password

Component Type

org.primefaces.component.Password

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.PasswordRenderer

Renderer Class

org.primefaces.component.password.PasswordRenderer

Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean | Boolean value to specify the rendering of the component,
when set to false component will not be rendered.
binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean
value null Object Value of the component than can be either an EL
expression of a literal text
converter null Converter | An el expression or a literal text that defines a converter
/String for the component. When it’s an EL expression, it’s
resolved to a converter instance. In case it’s a static text, it
must refer to a converter id
immediate false Boolean | When set true, process validations logic is executed at
apply request values phase for this component.
required false boolean | Marks component as required
validator null Method A method expression that refers to a method validationg
Expr the input.

346

PrimeFaces User Guide

Name Default Type Description
valueChangeListener | null Method A method binding expression that refers to a method for
Expr handling a valuechangeevent

requiredMessage null String Message to be displayed when required field validation
fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

feedback false Boolean | Enables strength indicator.

inline false boolean | Displays feedback inline rather than using a popup.

promptLabel Please String Label of prompt.

enter a
password

weakLabel Weak String Label of weak password.

goodLabel Good String Label of good password.

stronglLabel Strong String Label of strong password.

redisplay false Boolean | Whether or not to display previous value.

match null String Id of another password component to match value against.

widgetVar null String Name of the client side widget.

accesskey null String Access key that when pressed transfers focus to the input
element.

alt null String Alternate textual description of the input field.

autocomplete null String Controls browser autocomplete behavior.

dir null String Direction indication for text that does not inherit
directionality. Valid values are LTR and RTL.

disabled false Boolean | Disables input field

label null String A localized user presentable name.

lang null String Code describing the language used in the generated
markup for this component.

maxlength null Integer Maximum number of characters that may be entered in
this field.

onblur null String Client side callback to execute when input element loses
focus.

onchange null String Client side callback to execute when input element loses
focus and its value has been modified since gaining focus.

onclick null String Client side callback to execute when input element is
clicked.

347

PrimeFaces User Guide

Name Default Type Description
ondblclick null String Client side callback to execute when input element is
double clicked.
onfocus null String Client side callback to execute when input element

receives focus.

onkeydown null String Client side callback to execute when a key is pressed
down over input element.

onkeypress null String Client side callback to execute when a key is pressed and
released over input element.

onkeyup null String Client side callback to execute when a key is released
over input element.

onmousedown null String Client side callback to execute when a pointer button is
pressed down over input element

onmousemove null String Client side callback to execute when a pointer button is
moved within input element.

onmouseout null String Client side callback to execute when a pointer button is
moved away from input element.

onmouseover null String Client side callback to execute when a pointer button is
moved onto input element.

onmouseup null String Client side callback to execute when a pointer button is
released over input element.

onselect null String Client side callback to execute when text within input
element is selected by user.

placeholder null String Specifies a short hint.

readonly false Boolean | Flag indicating that this component will prevent changes
by the user.

size null Integer Number of characters used to determine the width of the

input element.

style null String Inline style of the input element.

styleClass null String Style class of the input element.

tabindex null Integer Position of the input element in the tabbing order.
title null String Advisory tooltip informaton.

Getting Started with Password

Password is an input component and used just like a standard input text. When feedback option is
enabled a password strength indicator is displayed.

<p:password value="#{bean.password}" feedback="truelfalse" />

348

PrimeFaces User Guide

public class Bean {
private String password;

public String getPassword() { return password; }
public void setPassword(String password) { this.password = password;}

18N

Although all labels are in English by default, you can provide custom labels as well. Following
password gives feedback in Turkish.

<p:password value="#{bean.password}" promptlLabel="Lutfen sifre giriniz"
weakLabel="Zayif" goodLabel="0Orta seviye" strongLabel="Gugli" feedback= "true"/>

Inline Strength Indicator

By default strength indicator is shown in an overlay, if you prefer an inline indicator just enable
inline mode.

<p:password value="#{mybean.password}" inline="true" feedback= "true"/>

Confirmation

Password confirmation is a common case and password provides an easy way to implement. The
other password component’s id should be used to define the match option.

<p:password id="pwdl" value="#{passwordBean.password6}" feedback="false"
match="pwd2" label="Password 1" required="true"/>

<p:password id="pwd2" value="#{passwordBean.password6}" feedback="false"
label="Password 2" required="true"/>

Skinning
Structural selectors for password are;
Name Applies
.ui-password Input element.
.ui-password-panel Overlay panel of strength indicator.
.ui-password-meter Strength meter.
.ui-password-info Strength label.

As skinning style classes are global, see the main theming section for more information.

349

PrimeFaces User Guide

3.86 PhotoCam

PhotoCam is used to take photos with webcam and send them to the JSF backend model.

Info

Tag

photoCam

Component Class

org.primefaces.component.photocam.PhotoCam

Component Type

org.primefaces.component.PhotoCam

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.PhotoCamRenderer

Renderer Class

org.primefaces.component.photocam.PhotoCamRenderer

Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered false Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.
binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean
value null Object Value of the component than can be either an EL
expression of a literal text
converter null Converter/ | An el expression or a literal text that defines a converter
String for the component. When it’s an EL expression, it’s
resolved to a converter instance. In case it’s a static text,
it must refer to a converter id
immediate 0 Boolean When set true, process validations logic is executed at
apply request values phase for this component.
required 0 boolean Marks component as required
validator null Method A method binding expression that refers to a method
Expr validationg the input
valueChangeListener | null Method A method binding expression that refers to a method for
Expr handling a valuechangeevent
requiredMessage null String Message to be displayed when required field validation
fails.
converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.

350

PrimeFaces User Guide

Name Default Type Description
widgetVar null String Name of the client side widget.
style null String Inline style of the component.
styleClass null String Style class of the component.
process null String Identifiers of components to process during capture.
update null String Identifiers of components to update during capture.
listener null Method Method expression to listen to capture events.

Expr

Getting started with PhotoCam

Capture is triggered via client side api’s capture method. Also a method expression is necessary to
invoke when an image is captured. Sample below captures an image and saves it to a directory.

<h:form>

<p:photoCam widgetVar="pc" listener="#{photoCamBean.oncapture}"update="photos"/>

<p:commandButton type="button" value="Capture" onclick="PF('pc').capture()"/>
</h:form>

public class PhotoCamBean {

public void oncapture(CaptureEvent captureEvent) {
byte[] data = captureEvent.getData();

ServletContext servletContext = (ServletContext)
FacesContext.getCurrentInstance().getExternalContext().getContext();

String newFileName = servletContext.getRealPath("") + File.separator +
"photocam" + File.separator + "captured.png";

FileImageOutputStream imageOutput;

try {
imageOutput = new FileImageOutputStream(new File(newFileName));
imageQutput.write(data, @, data.length);
imageQutput.close();

ks

catch(Exception e) {
throw new FacesException("Error in writing captured image.");

}

Notes

* PhotoCam is a flash, canvas and javascript solution.
* It is not supported in IE at the moment and this will be worked on in future versions.

351

PrimeFaces User Guide

3.87 PickList

PickList is used for transferring data between two different collections.

Available Starting
& Messi - 10
T 9 | i = T
w m niesta - + 7
: & Villa-7 : :
& Alves -2
Info
Tag pickList
Component Class org.primefaces.component.picklist.Panel
Component Type org.primefaces.component.PickList
Component Family org.primefaces.component
Renderer Type org.primefaces.component.PickListRenderer
Renderer Class org.primefaces.component.picklist.PickListRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean
value null Object Value of the component than can be either an EL
expression of a literal text
converter null Converter/ | An el expression or a literal text that defines a
String converter for the component. When it’s an EL
expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id
immediate false Boolean When set true, process validations logic is executed
at apply request values phase for this component.
required false Boolean Marks component as required
validator null Method A method binding expression that refers to a method
Expr validationg the input

352

PrimeFaces User Guide

Name Default Type Description
valueChangeListener null Method A method binding expression that refers to a method
Expr for handling a valuchangeevent
requiredMessage null String Message to be displayed when required field
validation fails.
converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.
var null String Name of the iterator.
itemLabel null String Label of an item.
itemValue null Object Value of an item.
style null String Style of the main container.
styleClass null String Style class of the main container.
widgetVar null String Name of the client side widget.
disabled false Boolean Disables the component.
effect null String Name of the animation to display.
effectSpeed null String Speed of the animation.
addLabel Add String Title of add button.
addAllLabel Add All String Title of add all button.
removeLabel Remove String Title of remove button.
removeAllLabel Remove All | String Title of remove all button.
moveUpLabel Move Up String Title of move up button.
moveTopLabel Move Top String Title of move top button.
moveDownLabel Move Down | String Title of move down button.
moveButtomLabel Move String Title of move bottom button.
Buttom
showSourceControls false String Specifies visibility of reorder buttons of source list.
showTargetControls false String Specifies visibility of reorder buttons of target list.
onTransfer null String Client side callback to execute when an item is
transferred from one list to another.
label null String A localized user presentable name.
itemDisabled false Boolean Specified if an item can be picked or not.
showSourceFilter false Boolean Displays and input filter for source list.
showTargetFilter false Boolean Displays and input filter for target list.

353

PrimeFaces User Guide

Name Default Type Description
filterMatchMode startsWith String Match mode for filtering, valid values are
startsWith, contains, endsWith and custom.
filterFunction null String Name of the javascript function for custom filtering.
showCheckbox false Boolean When true, a checkbox is displayed next to each
item.
labelDisplay tooltip String Defines how the button labels displayed, valid

values are "tooltip" (default) and "inline".

Getting started with PickList

You need to create custom model called org. primefaces.model. DualListModel to use PickList. As
the name suggests it consists of two lists, one is the source list and the other is the target. As the first
example we’ll create a DualListModel that contains basic Strings.

public class PickListBean {
private DuallistModel<String> cities;
public PickListBean() {

List<String> source
List<String> target

new ArraylList<String>Q);
new ArraylList<String>Q);

citiesSource.add("Istanbul™);
citiesSource.add("Ankara™);
citiesSource.add("Izmir");
citiesSource.add("Antalya");
citiesSource.add("Bursa™);

//more cities

cities = new DualListModel<String>(citiesSource, citiesTarget);

}

public DuallistModel<String> getCities() {
return cities;

}

public void setCities(DuallistModel<String> cities) {
this.cities = cities;

}

And bind the cities dual list to the picklist;

<p:pickList value="#{pickListBean.cities}" var="city"
itemLabel="#{city}" itemValue="#{city}">

When the enclosed form is submitted, the dual list reference is populated with the new values and
you can access these values with DualListModel.getSource() and DualListModel.getTarget() api.

354

PrimeFaces User Guide

POJOs

Most of the time you would deal with complex pojos rather than simple types like String.
This use case is no different except the addition of a converter. Following pickList displays a list of
players(name, age ...).

<p:pickList value="#{pickListBean.players}" var="player"
itemLabel="#{player.name}" itemValue="#{player}" converter="player">

PlayerConverter in this case should implement javax.faces.convert.Converter contract and
implement getAsString, getAsObject methods. Note that a converter is always necessary for
primitive types like long, integer, boolean as well.

In addition custom content instead of simple strings can be displayed by using columns.

<p:pickList value="#{pickListBean.players}"
var="player" iconOnly="true" effect="bounce"
itemValue="#{player}" converter="player"
showSourceControls="true" showTargetControls="true">
<p:column style="width:25%">
<p:graphicImage value="/images/barca/#{player.photo}"/>
</p:column>
<p:column style="width:75%" ;>
#{player.name} - #{player.number}
</p:column>
</p:pickList>

Reordering

PickList support reordering of source and target lists, these are enabled by showSourceControls and
showTargetControls options.

Effects

An animation is displayed when transferring when item to another or reordering a list, default effect
is fade and following options are available to be applied using effect attribute; blind, bounce, clip,
drop, explode, fold, highlight, puff, pulsate, scale, shake, size and slide. effectSpeed attribute is used
to customize the animation speed, valid values are slow, normal and fast.

Captions

Caption texts for lists are defined with facets named sourceCaption and targetCaption;

<p:pickList value="#{pickListBean.cities}" var="city"
itemLabel="#{city}" itemValue="#{city}" onTransfer="handleTransfer(e)">
<f:facet name="sourceCaption">Available</f:facet>
<f:facet name="targetCaption">Selected</f:facet>
</p:pickList>

Filtering

PickList provides built-in client side filtering. Filtering is enabled by setting the corresponding
filtering attribute of a list. For source list this is showSourceFilter and for target list it is
showTargetFilter. Default match mode is startsWith and contains, endsWith are also available
options.

355

PrimeFaces User Guide

When you need to a custom match mode set filterMatchMode to custom and write a javascript
function that takes itemLabel and filterValue as parameters. Return false to hide an item and true to
display.

<p:pickList value="#{pickListBean.cities}" var="city"
itemLabel="#{city}" itemValue="#{city}"
showSourceFilter="true" showTargetFilter="true"
filterMatchMode="custom” filterFunction="myfilter">
</p:pickList>

function myfilter(itemLabel, filterValue) {
//return true or false

}

onTransfer

If you’d like to execute custom javascript when an item is transferred, bind your javascript function
to onTransfer attribute.

<p:pickList value="#{pickListBean.cities}" var="city"
itemLabel="#{city}" itemValue="#{city}" onTransfer="handleTransfer(e)">

<script type="text/javascript">
function handleTransfer(e) {
//item = e.item
//fromList = e.from
//tolList = e.tolist
//type = e.type (type of transfer; command, dblclick or dragdrop)
ks

</script>

Ajax Behavior Events

PickList provides transfer as the default and only ajax behavior event that is fired when an item is
moved from one list to the other. Example below demonstrates how to use this event.

<p:pickList value="#{pickListBean.cities}" var="city"
itemLabel="#{city}" itemValue="#{city}">
<p:ajax event="transfer" listener="#{pickListBean.handleTransfer}" />
</p:pickList>

356

PrimeFaces User Guide

public class PickListBean {

//DuallistModel code

//event.isAdd(Q)

public void handleTransfer(TransferEvent event) {
//event.getItems() : List of items transferred

: Is transfer from source to target

//event.isRemove() : Is transfer from target to source

Skinning

PickList resides in a main container which s#yle and styleClass attributes apply. Following is the list

of structural style classes;

Style Class

Applies

.ui-picklist

Main container element(table) of picklist

.ui-picklist-list

Lists of a picklist

.ui-picklist-list-source

Source list

.ui-picklist-list-target

Target list

.ui-picklist-source-controls

Container element of source list reordering controls

.ui-picklist-target-controls

Container element of target list reordering controls

.ui-picklist-button

Buttons of a picklist

.ui-picklist-button-move-up

Move up button

.ui-picklist-button-move-top

Move top button

.ui-picklist-button-move-down

Move down button

.ui-picklist-button-move-bottom

Move bottom button

.ui-picklist-button-add

Add button

.ui-picklist-button-add-all

Add all button

.ui-picklist-button-remove-all

Remove all button

.ui-picklist-button-add

Add button

As skinning style classes are global, see the main theming section for more information.

357

PrimeFaces User Guide

3.88 Poll

Poll is an ajax component that has the ability to send periodical ajax requests.

Info

Tag poll

Component Class org.primefaces.component.poll.Poll

Component Type org.primefaces.component.Poll

Component Family org.primefaces.component

Renderer Type org.primefaces.component.PollRenderer

Renderer Class org.primefaces.component.poll.PollRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean.

widgetVar null String Name of the client side widget.

interval 2 Integer Interval in seconds to do periodic ajax requests.

update null String Component(s) to be updated with ajax.

listener null MethodExpr | A method expression to invoke by polling.

immediate false Boolean Boolean value that determines the phaseld, when true
actions are processed at apply _request values, when false
at invoke_application phase.

async false Boolean When set to true, ajax requests are not queued.

process null String Component id(s) to process partially instead of whole
view.

onstart null String Javascript handler to execute before ajax request is begins.

oncomplete null String Javascript handler to execute when ajax request is
completed.

onsuccess null String Javascript handler to execute when ajax request succeeds.

onerror null String Javascript handler to execute when ajax request fails.

358

PrimeFaces User Guide

Name Default Type Description
global true Boolean Global ajax requests are listened by ajaxStatus
component, setting global to false will not trigger
ajaxStatus.
delay null String If less than delay milliseconds elapses between calls to

request() only the most recent one is sent and all other
requests are discarded. If this option is not specified, or if
the value of delay is the literal string 'none' without the
quotes, no delay is used.

partialSubmit false Boolean Enables serialization of values belonging to the partially
processed components only.

autoStart true Boolean In autoStart mode, polling starts automatically on page
load, to start polling on demand set to false.

stop false Boolean Stops polling when true.

resetValues false Boolean If true, local values of input components to be updated
within the ajax request would be reset.

ignoreAutoUpdate | false Boolean If true, components which autoUpdate="true" will not be
updated for this request. If not specified, or the value is
false, no such indication is made.

timeout 0 Integer Timeout for the ajax request in milliseconds.

Getting started with Poll

Poll below invokes increment method on CounterBean every 2 seconds and txt_count is updated
with the new value of the count variable. Note that poll must be nested inside a form.

<h:outputText id="txt_count" value="#{counterBean.count}" />

<p:poll listener="#{counterBean.increment}" update="txt_count" />

public class CounterBean {
private int count;

public void increment() {
count++;

}

public int getCount() {
return this.count;

}

public void setCount(int count) {
this.count = count;

}

359

PrimeFaces User Guide
Tuning timing

By default the periodic interval is 2 seconds, this is changed with the interval attribute. Following
poll works every 5 seconds.

<h:outputText id="txt_count" value="#{counterBean.count}" />

<p:poll listener="#{counterBean.increment}" update="txt_count" interval="5" />

Start and Stop

Poll can be started and stopped using client side api;

<h:form>
<h:outputText id="txt_count" value="#{counterBean.count}" />

<p:poll interval="5" actionListener="#{counterBean.increment}"
update="txt_count" widgetVar="myPoll" autoStart="false" />

Start
Stop

</h:form>

Or bind a boolean variable to the stop attribute and set it to false at any arbitrary time.

360

PrimeFaces User Guide

3.89 Printer

Printer allows sending a specific JSF component to the printer, not the whole page.

Info
Tag printer
Behavior Class org.primefaces.component.behavior.Printer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean
target null String Target component to print.

Getting started with the Printer

Printer is attached to any command component like a button or a link. Examples below
demonstrates how to print a simple output text or a particular image on page;

<h:commandButton id="btn" value="Print">

<p:printer target="output" />
</h:commandButton>
<h:outputText id="output" value="PrimeFaces Rocks!" />

<h:outputlLink id="1nk" value="#">

<p:printer target="image" />

<h:outputText value="Print Image" />
</h:outputLink>
<p:graphicImage id="image" value="/images/naturel.jpg" />

361

3.90 ProgressBar

ProgressBar is a process status indicator that can either work purely on client side or interact with

server side using ajax.

Client Side ProgressBar

Cancel

Advanced Ajax ProgressBar

Cancel

Info

PrimeFaces User Guide

34%

Tag

propressBar

Component Class

org.primefaces.component.progressbar.ProgressBar

Component Type

org.primefaces.component.Progressbar

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.ProgressBarRenderer

Renderer Class

org.primefaces.component.progressbar.ProgressBarRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

widgetVar null String Name of the client side widget

value 0 Integer Value of the progress bar

disabled false Boolean Disables or enables the progressbar

ajax false Boolean Specifies the mode of progressBar, in ajax mode
progress value is retrieved from a backing bean.

interval 3000 Integer Interval in seconds to do periodic requests in ajax

mode.

362

PrimeFaces User Guide

Name Default Type Description

style null String Inline style of the main container element.

styleClass null String Style class of the main container element.

labelTemplate {value} String Template of the progress label.

displayOnly false Boolean Enables static display mode.

global true Boolean Global ajax requests are listened by ajaxStatus
component, setting global to false will not trigger
ajaxStatus.

Getting started with the ProgressBar

ProgressBar has two modes, "client"(default) or "ajax". Following is a pure client side progressBar.

<p:progressBar widgetVar="pb" />

<p:commandButton value="Start" type="button" onclick="start()" />
<p:commandButton value="Cancel" type="button" onclick="cancel()" />

<script type="text/javascript">
function start() {
this.progressInterval = setInterval(function(){
PF('pb").setValue(PF('pb').getValue() + 10);
}, 2000);
}

function cancel() {
clearInterval(this.progressInterval);
PF('pb').setValue(@);

}

</script>

Ajax Progress

Ajax mode is enabled by setting ajax attribute to true, in this case the value defined on a managed
bean is retrieved periodically and used to update the progress.

<p:progressBar ajax="true" value="#{progressBean.progress}" />

public class ProgressBean {
private int progress;

//getter-setter

363

PrimeFaces User Guide

Interval

ProgressBar 1s based on polling and 3000 milliseconds is the default interval for ajax progress bar
meaning every 3 seconds progress value will be recalculated. In order to set a different value, use
the interval attribute.

<p:progressBar interval="5000" />

Ajax Behavior Events

ProgressBar provides complete as the default and only ajax behavior event that is fired when the
progress is completed. Example below demonstrates how to use this event.

public class ProgressBean {
private int progress;

public void handleComplete() {
//Add a faces message

}

public int getProgress() {
return progress;

}

public void setProgress(int progress) {
this.progress = progress;

}

<p:progressBar value="#{progressBean.progress}" ajax="true">
<p:ajax event="complete" listener="#{progressBean.handleComplete}"
update="messages" />

</p:progressBar>

<p:growl id="messages" />

Display Only

Assume you have a process like a ticket purchase that spans various pages where each page has
different use cases such as customer info, seat selection, billing, payment and more. In order to
display static value of the process on each page, you can use a static progressBar.

<p:progressBar value="50" displayOnly="true" />

Client Side API
Widget: PrimeFaces.widget. ProgressBar
Method Params Return Type Description
getValue() - Number Returns current value

364

PrimeFaces User Guide

Method Params Return Type Description
setValue(value) value: Value to display void Sets current value
start() - void Starts ajax progress bar
cancel() - void Stops ajax progress bar
Skinning

ProgressBar resides in a main container which style and styleClass attributes apply. Following is the
list of structural style classes;

Style Class Applies
.ui-progressbar Main container.
.ui-progressbar-value Value of the progressbar
.ui-progressbar-label Progress label.

As skinning style classes are global, see the main theming section for more information.

365

3.91 RadioButton

RadioButton is a helper component of SelectOneRadio to implement custom layouts.

Info

PrimeFaces User Guide

Tag

radioButton

Component Class

org.primefaces.component.radiobutton.RadioButton

Component Type

org.primefaces.component.RadioButton

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.RadioButtonRenderer

Renderer Class

org.primefaces.component.radiobutton.RadioButtonRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

disabled false Boolean Disabled the component.

itemIndex null Integer Index of the selectltem of selectOneRadio.

onchange null String Client side callback to execute on state change.

for null String Id of the selectOneRadio to attach to.

style null String Inline style of the component.

styleClass null String Style class of the container.

tabindex null String Specifies the tab order of element in tab navigation.

Getting started with RadioButton

See custom layout part in SelectOneRadio section for more information.

366

3.92 Rating

PrimeFaces User Guide

Rating component features a star based rating system.

Info

Basic:

Callback:

Ajax Rate:

Readonly:

Disabled

Tag

rating

Component Class

org.primefaces.component.rating.Rating

Component Type

org.primefaces.component.Rating

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.RatingRenderer

Renderer Class

org.primefaces.component.rating.RatingRenderer

Attributes

Name

Default

Type

Description

id

null

String

Unique identifier of the component

rendered

true

Boolean

Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding

null

Object

An el expression that maps to a server side
UlIComponent instance in a backing bean

value

null

Object

Value of the component than can be either an EL
expression of a literal text

converter

null

Converter/
String

An el expression or a literal text that defines a
converter for the component. When it’s an EL
expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate

Boolean

Boolean value that specifies the lifecycle phase
the valueChangeEvents should be processed,

when true the events will be fired at "apply request
values", if immediate is set to false, valueChange
Events are fired in "process validations"

phase

367

PrimeFaces User Guide

Name Default Type Description

required false Boolean Marks component as required

validator null MethodExpr | A method binding expression that refers to a
method validationg the input

valueChangeListener null MethodExpr | A method binding expression that refers to a
method for handling a valuchangeevent

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

widgetVar null String Name of the client side widget.

stars 5 Integer Number of stars to display

disabled false Boolean Disables user interaction

readonly false Boolean Disables user interaction without disabled visuals.

onRate null String Client side callback to execute when rate happens.

style null String Inline style of the component.

styleClass null String Style class of the component.

cancel true Boolean When enabled, displays a cancel icon to reset.

Getting Started with Rating

Rating is an input component that takes a double variable as it’s value.

public class RatingBean {
private Integer rating;

//getter-setter

<p:rating value="#{ratingBean.rating}" />

Number of Stars

Default number of stars is 5, if you need less or more stars use the stars attribute. Following rating

consists of 10 stars.

<p:rating value="#{ratingBean.rating}" stars="10"/>

368

PrimeFaces User Guide

Display Value Only

In cases where you only want to use the rating component to display the rating value and disallow
user interaction, set readonly to true. Using disabled attribute does the same but adds disabled
visual styles.

Ajax Behavior Events

Rating provides rate and cancel as ajax behavior events. A defined listener for rate event will be
executed by passing an org.primefaces.event.RateEvent as a parameter and cancel event will be
invoked with no parameter.

<p:rating value="#{ratingBean.rating}">
<p:ajax event="rate" listener="#{ratingBean.handleRate}" update="msgs" />
<p:ajax event="cancel" listener="#{ratingBean.handleCancel}" update="msgs" />
</p:rating>
<p:messages id="msgs" />

public class RatingBean {
private Integer rating;

public void handleRate(RateEvent rateEvent) {
Integer rate = (Integer) rateEvent.getRating();
//Add facesmessage

}

public void handleCancel() {
//Add facesmessage

}

//getter-setter

Client Side Callbacks

onRate is called when a star is selected with value as the only parameter.

<p:rating value="#{ratingBean.rating}" onRate="alert('You rated: ' + value)" />

Client Side API
Widget: PrimeFaces.widget.Rating

Method Params Return Type Description
getValue() - Number Returns the current value
setValue(value) value: Value to set void Updates rating value with provided one.
disable() - void Disables component.
enable() - void Enables component.
reset() - void Clears the rating.

369

Skinning

PrimeFaces User Guide

Rating resides in a main container which style and styleClass attributes apply. Following is the list

of structural style classes;

Style Class

Applies

.ui-rating

Main container element.

.ui-rating-cancel

Cancel icon

.ui-rating

Default star

.ui-rating-on

Active star

370

PrimeFaces User Guide

3.93 RemoteCommand

RemoteCommand provides a way to execute backing bean methods directly from javascript.

Info

Tag

remoteCommand

Component Class

org.primefaces.component.remotecommand.RemoteCommand

Component Type

org.primefaces.component.RemoteCommand

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.RemoteCommandRenderer

Renderer Class

org.primefaces.component.remotecommand.RemoteCommandRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean | Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object | An el expression that maps to a server side UIComponent
instance in a backing bean

action null Method | A method expression that’d be processed in the partial

Expr request caused by uiajax.
actionListener null Method | An actionlistener that’d be processed in the partial request
Expr caused by uiajax.

immediate false Boolean | Boolean value that determines the phaseld, when true
actions are processed at apply request values, when false
at invoke application phase.

name null String Name of the command

async false Boolean | When set to true, ajax requests are not queued.

process null String Component(s) to process partially instead of whole view.

update null String Component(s) to update with ajax.

onstart null String Javascript handler to execute before ajax request is begins.

oncomplete null String Javascript handler to execute when ajax request is
completed.

onsuccess null String Javascript handler to execute when ajax request succeeds.

onerror null String Javascript handler to execute when ajax request fails.

371

PrimeFaces User Guide

Name Default Type Description

global true Boolean | Global ajax requests are listened by ajaxStatus component,
setting global to false will not trigger ajaxStatus.

delay null String If less than delay milliseconds elapses between calls to
request() only the most recent one is sent and all other
requests are discarded. If this option is not specified, or if
the value of delay is the literal string 'none' without the
quotes, no delay is used.

partialSubmit false Boolean | Enables serialization of values belonging to the partially
processed components only.

autoRun false Boolean | When enabled command is executed on page load.

resetValues false Boolean | If true, local values of input components to be updated
within the ajax request would be reset.

ignoreAutoUpdate false Boolean | If true, components which autoUpdate="true" will not be
updated for this request. If not specified, or the value is
false, no such indication is made.

timeout 0 Integer | Timeout for the ajax request in milliseconds.

Getting started with RemoteCommand

RemoteCommand is used by invoking the command from your javascript code.

<p:remoteCommand name="increment" actionlListener="#{counter.increment}"
out="count" />

<h:outputText id="count" value="#{counter.count}" />

<script type="text/javascript">
function customfunction() {
//your custom code

increment(); //makes a remote call

}

</script>

That’s it whenever you execute your custom javascript function(eg customfunction()), a remote call
will be made, actionListener is processed and output text is updated. Note that remoteCommand
must be nested inside a form.

Passing Parameters

Remote command can send dynamic parameters in the following way;

increment([{name:'x", value:10}, {name:'y', value:20}]1);

372

PrimeFaces User Guide

3.94 Resetinput

Input components keep their local values at state when validation fails. ResetInput is used to clear
the cached values from state so that components retrieve their values from the backing bean model
instead.

Info

Tag resetInput

ActionListener Class | org.primefaces.component.resetinput.ResetInputActionListener

Attributes
Name Default Type Description
target null String Comma or white space separated list of
component identifiers.

Getting started with Resetinput

ResetInput is attached to action source components like commandButton and commandLink.

<h:form id="form">
<p:panel id="panel" header="New User" style="margin-bottom:10px;">

<p:messages id="messages" />

<h:panelGrid columns="2">
<h:outputLabel for="firstname" value="Firstname: *" />
<p:inputText id="firstname" value="#{pprBean.firstname}"

required="true" label="Firstname">
<f:validateLength minimum="2" />

</p:inputText>

<h:outputLabel for="surname" value="Surname: *" />
<p:inputText id="surname" value="#{pprBean.surname}"
required="true" label="Surname"/>
</h:panelGrid>
</p:panel>

<p:commandButton value="Submit" update="panel"
actionListener="#{pprBean.savePerson}" />

<p:commandButton value="Reset Tag" update="panel" process="@this">
<p:resetlnput target="panel" />

</p: commandButton>

<p:commandButton value="Reset Non-Ajax"
actionListener="#{pprBean.reset}" immediate="true" ajax="false">
<p:resetlnput target="panel" />

</p: commandButton>

</h:form>

ResetInput supports both ajax and non-ajax actions, for non-ajax actions set immediate true on the
source component so lifecycle jumps to render response after resetting. To reset multiple

373

PrimeFaces User Guide

components at once, provide a list of ids or just provide an ancestor component like the panel in
sample above.

Reset Programmatically

Resetlnput tag is the declarative way to reset input components, another way is resetting
programmatically. This is also handy if inputs should get reset based on a condition. Following
sample demonstrates how to use RequestContext to do the reset within an ajaxbehavior listener.
Parameter of the reset method can be a single clientld or a collection of clientlds.

<p:inputText value="#{bean.value}">
<p:ajax event="blur" listener="#{bean.listener}" />
</p:inputText>

public void listener() {
RequestContext context = RequestContext.getCurrentInstance();
context.reset("form:panel");

Tip

p:ajax has built-in resetValues attribute to reset values of processed components during a request.

374

3.95 Resizable

Resizable component is used to make another JSF component resizable.

Info

PrimeFaces User Guide

Tag

resizable

Component Class

org.primefaces.component.resizable.Resizable

Component Type

org.primefaces.component.Resizable

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.ResizableRenderer

Renderer Class

org.primefaces.component.resizable.ResizableRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the component, when
set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean

widgetVar null String Name of the client side widget.

for null String Identifier of the target component to make resizable.

aspectRatio false Boolean Defines if aspectRatio should be kept or not.

proxy false Boolean Displays proxy element instead of actual element.

handles null String Specifies the resize handles.

ghost false Boolean In ghost mode, resize helper is displayed as the original
element with less opacity.

animate false Boolean Enables animation.

effect swing String Effect to use in animation.

effectDuration | normal String Effect duration of animation.

maxWidth null Integer Maximum width boundary in pixels.

maxHeight null Integer Maximum height boundary in pixels.

minWidth 10 Integer Minimum width boundary in pixels.

minHeight 10 Integer Maximum height boundary in pixels.

375

PrimeFaces User Guide

Name Default Type Description
containment false Boolean Sets resizable boundaries as the parents size.
grid 1 Integer Snaps resizing to grid structure.
onStart null String Client side callback to execute when resizing begins.
onResize null String Client side callback to execute during resizing.
onStop null String Client side callback to execute after resizing end.

Getting started with Resizable
Resizable is used by setting for option as the identifier of the target.

<p:graphicImage id="img" value="campnou.jpg" />

<p:resizable for="img" />

Another example is the input fields, if users need more space for a textarea, make it resizable by;

<h:inputTextarea id="area" value="Resize me if you need more space" />

<p:resizable for="area" />

Boundaries

To prevent overlapping with other elements on page, boundaries need to be specified. There’re 4
attributes for this minWidth, maxWidth, minHeight and maxHeight. The valid values for these
attributes are numbers in terms of pixels.

<h:inputTextarea id="area" value="Resize me if you need more space" />

<p:resizable for="area" minWidth="20" minHeight="40" maxWidth="50" maxHeight="100"/>

Handles

Resize handles to display are customize using handles attribute with a combination of n, e, s, w, ne,
se, sw and nw as the value. Default value is "e, s, se".

<h:inputTextarea id="area" value="Resize me if you need more space" />

<p:resizable for="area" handles="e,w,n,se,sw,ne,nw"/>

Visual Feedback

Resize helper is the element used to provide visual feedback during resizing. By default actual
element itself is the helper and two options are available to customize the way feedback is provided.
Enabling ghost option displays the element itself with a lower opacity, in addition enabling proxy
option adds a css class called .ui-resizable-proxy which you can override to customize.

376

PrimeFaces User Guide

<h:inputTextarea id="area" value="Resize me if you need more space" />

<p:resizable for="area" proxy="true" />

.ui-resizable-proxy {
border: 2px dotted #0OF;
ks

Effects

Resizing can be animated using animate option and setting an effect name. Animation speed is

n"on

customized using effectDuration option "slow", "normal"” and "fast" as valid values.

<h:inputTextarea id="area" value="Resize me if you need more space" />

<p:resizable for="area" animate="true" effect="swing" effectDuration="normal" />

Following is the list of available effect names;

* swing * easelnQuart * easeOutSine + easelnFElastic * easelnBounce

* easelnQuad * easeOutQuart * easelnExpo « easeOutElastic * easeOutBounce
* easeOutQuad * easelnOutQuart | * easeOutExpo caseInOutElastic | » easeInOutBounce
» easelnOutQuad | * easelnQuint * easelnOutExpo | ¢ easelnBack

« easelnCubic * easeOutQuint * easelnCirc easeOutBack

 easeOutCubic * caseInOutQuint | easeOutCirc ¢ ecaselnOutBack

» easeInOutCubic | easelnSine * easelnOutCirc

Ajax Behavior Events

Resizable provides default and only resize event that is called on resize end. In case you have a
listener defined, it will be called by passing an org.primefaces.event. ResizeEvent instance as a
parameter.

<h:inputTextarea id="area" value="Resize me if you need more space" />

<p:resizable for="area">
<p:ajax listener="#{resizeBean.handleResize}">
</p:resizable>

public class ResizeBean {

public void handleResize(ResizeEvent event) {
int width = event.getWidth();
int height = event.getHeight();

377

PrimeFaces User Guide

Client Side Callbacks

Resizable has three client side callbacks you can use to hook-in your javascript; onStart, onResize
and onStop. All of these callbacks receive two parameters that provide various information about
resize event.

<h:inputTextarea id="area" value="Resize me if you need more space" />
<p:resizable for="area" onStop="handleStop(event, ui)" />

function handleStop(event, ui) {
//ui.helper = helper element as a jQuery object
//ui.originalPosition = top, left position before resizing
//ui.originalSize = width, height before resizing
//ui.positon = top, left after resizing
//ui.size = width height of current size

i
Skinning
Style Class Applies
.ui-resizable Element that is resizable
.ui-resizable-handle Handle element
.ui-resizable-handle- {handlekey} Particular handle element identified by handlekey like e, s, ne
.ui-resizable-proxy Proxy helper element for visual feedback

378

PrimeFaces User Guide

3.96 Ribbon

Ribbon is container component to group different sets of controls in a tabbed layout. Special styling
is applied to inner components for a unified look.

File View
% H), Cut Arial » (10 -
New || Save | | Paste | = Print LI b | uli
Options Clipboard Fonts
Info
Tag ribbon
Component Class org.primefaces.component.ribbon.Ribbon
Component Type org.primefaces.component.Ribbon
Component Family org.primefaces.component
Renderer Type org.primefaces.component.RibbonRenderer
Renderer Class org.primefaces.component.ribbon.RibbonRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean
widgetVar null String Name of the client side widget.
style null String Inline style of the container element.
styleClass null String Style class of the container element.
activelndex | 0 Integer Index of the active tab.

Getting started with Ribbon

Tab and RibbonGroup components are used when building the Ribbon.

379

PrimeFaces User Guide

<p:ribbon>
<p:tab title="File">
<p:ribbonGroup label="Options">
<p:commandButton value="New" icon="ui-ribbonicon-new"
styleClass="ui-ribbon-bigbutton" type="button"/>
<p:commandButton value="Save" icon="ui-ribbonicon-save"
styleClass="ui-ribbon-bigbutton" type="button"/>
</p:ribbonGroup>

<p:ribbonGroup label="Clipboard" style="width:120px">
<p:selectManyButton>
<p:commandButton value="Paste" icon="ui-ribbonicon-paste"
styleClass="ui-ribbon-bigbutton" type="button"/>
<p:commandButton value="Cut" icon="ui-ribbonicon-cut"
style="width:64px" type="button"/>
<p:commandButton value="Print" icon="ui-ribbonicon-print"
style="width:64px" type="button"/>
</p:selectManyButton>
</p:ribbonGroup>

<p:ribbonGroup label="Fonts" style="width:220px">

<p:selectOneMenu appendTo="@this">
<f:selectItem itemLabel="Arial" itemValue="0" />
<f:selectItem itemLabel="Comis Sans" itemValue="1" />
<f:selectItem itemLabel="Helvetica" itemValue="2" />
<f:selectItem itemLabel="Times New Roman" itemValue="3" />
<f:selectItem itemLabel="Verdana" itemValue="4" />

</p:selectOneMenu>

<p:colorPicker />
</p:ribbonGroup>
</p:tab>

<p:tab title="View">
<p:ribbonGroup label="Zoom">
<p:commandButton value="In" icon="ui-ribbonicon-zoomin"
styleClass="ui-ribbon-bigbutton" type="button" />
<p:commandButton value="Out" icon="ui-ribbonicon-zoomout"
styleClass="ui-ribbon-bigbutton" type="button"/>
</p:ribbonGroup>
</p:tab>
</p:ribbon>

Styling

Following components have special styling applied inside ribbon;

¢ Button

* CommandButton
* SelectOneButton

* SelectManyButton
* SelectOneMenu

* InputText

Default PrimeFaces icons are 16px, in case you need bigger icons add ui-ribbon-bigbutton style
class to the button.

380

PrimeFaces User Guide

Skinning

Ribbon resides in a main container which style and styleClass attributes apply. Following is the list
of structural style classes.

Style Class Applies
.ui-ribbon Main container element.
.ui-ribbon-groups Container of ribbon groups in a tab.
.ui-ribbon-group Ribbon group element.
.ui-ribbon-group-content Content of a group.
.ui-ribbon-group-label Label of a group.

Ribbon shares the same structure with TabView for the tabbing functionality, refer to TabView for
the styles of the Tabs.

381

3.97 RibbonGroup

RibbonGroup is a helper component for Ribbon to define groups in a tab.

PrimeFaces User Guide

Info
Tag ribbonGroup
Component Class org.primefaces.component.ribbon.RibbonGroup
Component Type org.primefaces.component.RibbonGroup
Component Family org.primefaces.component
Renderer Type org.primefaces.component.RibbonGroupRenderer
Renderer Class org.primefaces.component.ribbon.RibbonGroupRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean
style null String Inline style of the container element.
styleClass null String Style class of the container element.
label null String Label of the group.

Getting started with RibbonGroup

Refer to Ribbon component documentation for more information.

382

PrimeFaces User Guide

3.98 Ring

Ring is a data display component with a circular animation.

) @ < 9 =
Info

Tag ring

Component Class org.primefaces.component.ring.Ring

Component Type org.primefaces.component.Ring

Component Family org.primefaces.component

Renderer Type org.primefaces.component.RingRenderer

Renderer Class org.primefaces.component.ring.RingRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

value null Object Collection to display.

var null String Name of the data iterator.

style null String Inline style of the container element.

styleClass null String Style class of the container element.

easing swing String Type of easing to use in animation.

Getting started with Ring

A collection is required to use the Ring component.

383

PrimeFaces User Guide

<p:ring value="#{ringBean.players}" var="player”>
<p:graphicImage value="/images/barca/#{player.photo}"/>
</p:ring>

public class RingBean {
private List<Player> players;

public RingBean() {
players = new ArraylList<Player>(Q);

players.add(new Player("Messi", 10, "messi.jpg", "CF"));
players.add(new Player("Iniesta", 8, "iniesta.jpg", "CM"));
//more players

}

//getter&setter for players

Item Selection

A column is required to process item selection from ring properly.

<p:ring value="#{ringBean.players}" var="player">
<p:column>
//UL to select an item e.g. commandLink
</p:column>

</p:ring>
Easing
Following is the list of available options for easing animation.
* swing * caselnQuart * easeOutSine « caselnFElastic * caselnBounce
* easelnQuad * easeOutQuart * easelnExpo * easeOutElastic * easeOutBounce
* easeOutQuad * easelnOutQuart | * easeOutExpo + easelnOutElastic | * easeInOutBounce
» easelnOutQuad | » easeInQuint * ecaselnOutExpo | ¢ easelnBack
« easeInCubic * easeOutQuint « easelnCirc easeOutBack
* easeOutCubic + easelnOutQuint | ¢ easeOutCirc * easelnOutBack
 easelnOutCubic | * easelnSine * easeIlnOutCirc
Skinning

Ring resides in a main container which style and styleClass attributes apply. Following is the list of
structural style classes.

Style Class Applies

.ui-ring Main container element.

.ui-ring-item Each item in the list.

384

3.98 Row

Row is a helper component for datatable.

Info

PrimeFaces User Guide

Tag

row

Component Class

org.primefaces.component.row.Row

Component Type

org.primefaces.component.Row

Component Family

org.primefaces.component

Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.
binding null Object An el expression that maps to a server side

UIComponent instance in a backing bean

Getting Started with Row

See datatable grouping section for more information about how row is used.

385

3.99 RowEditor

RowEditor is a helper component for datatable.

Info

PrimeFaces User Guide

Tag

rowEditor

Component Class

org.primefaces.component.roweditor.RowEditor

Component Type

org.primefaces.component.RowEditor

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.RowEditorRenderer

Renderer Class

org.primefaces.component.roweditor.RowEditorRenderer

Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.
binding null Object An el expression that maps to a server side

UIComponent instance in a backing bean

Getting Started with RowEditor

See inline editing section in datatable documentation for more information about usage.

386

3.100 RowExpansion

RowExpansion is a helper component of datatable used to implement expandable rows.

Info

PrimeFaces User Guide

Tag

rowExpansion

Component Class

org.primefaces.component.rowexpansion.RowExpansion

Component Type

org.primefaces.component.RowExpansion

Component Family

org.primefaces.component

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

styleClass null String Style class of the component.

Getting Started with RowExpansion

See datatable expandable rows section for more information about how rowExpansion is used.

387

3.101 RowToggler

RowToggler is a helper component for datatable.

Info

PrimeFaces User Guide

Tag

rowToggler

Component Class

org.primefaces.component.rowtoggler.RowToggler

Component Type

org.primefaces.component.RowToggler

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.RowTogglerRenderer

Renderer Class

org.primefaces.component.rowtoggler.RowTogglerRenderer

Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.
binding null Object An el expression that maps to a server side

UIComponent instance in a backing bean

Getting Started with Row

See expandable rows section in datatable documentation for more information about usage.

388

PrimeFaces User Guide

3.102 Schedule

Schedule provides an Outlook Calendar, iCal like JSF component to manage events.

JI.IW 2010 month week day

sun Mon Tue Wed Thu Fri Sat

4 5 6 7 8 9 10
Fr A
11 12 13 14 15 16 17
Plant the new garden stff |
18 19 20 21 22 23 24
25 26 27 28 29 30 31
Info
Tag schedule
Component Class org.primefaces.component.schedule.Schedule
Component Type org.primefaces.component.Schedule
Component Family org.primefaces.component
Renderer Type org.primefaces.component.ScheduleRenderer
Renderer Class org.primefaces.component.schedule.ScheduleRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will
not be rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

389

PrimeFaces User Guide

Name Default Type Description
widgetVar null String Name of the client side widget.
value null Object An org.primefaces.model.ScheduleModel

instance representing the backed model

locale null Object Locale for localization, can be String or a
java.util.Locale instance

aspectRatio null Float Ratio of calendar width to height, higher the
value shorter the height is

view month String The view type to use, possible values are
'month’, 'agendaDay", 'agendaWeek',
'basicWeek', 'basicDay’

initialDate null Object The initial date that is used when schedule
loads. If ommitted, the schedule starts on the
current date

showWeekends true Boolean Specifies inclusion Saturday/Sunday
columns in any of the views

style null String Style of the main container element of
schedule
styleClass null String Style class of the main container element of
schedule
draggable true Boolean When true, events are draggable.
resizable true Boolean When true, events are resizable.
showHeader true Boolean Specifies visibility of header content.
leftHeaderTemplate prev, next String Content of left side of header.
today
centerHeaderTemplate title String Content of center of header.
rightHeaderTemplate month, String Content of right side of header.
agendaWeek,
agendaDay
allDaySlot true Boolean Determines if all-day slot will be displayed
in agendaWeek or agendaDay views
slotMinutes 30 Integer Interval in minutes in an hour to create a slot.
firstHour 6 Integer First hour to display in day view.
minTime null String Minimum time to display in a day view.
maxTime null String Maximum time to display in a day view.
axisFormat null String Determines the time-text that will be
displayed on the vertical axis of the agenda
views.

390

PrimeFaces User Guide

Name Default Type Description

timeFormat null String Determines the time-text that will be
displayed on each event.

columnFormat null String Format for column headers.

timeZone null Object String or a java.util. TimeZone instance to
specify the timezone used for date
conversion.

ignoreTimezone true Boolean When parsing dates, whether UTC offsets
should be ignored while processing event
data.

tooltip false Boolean Displays description of events on a tooltip.

Getting started with Schedule

Schedule needs to be backed by an org.primefaces.model.ScheduleModel instance, a schedule
model consists of org.primefaces.model.ScheduleEvent instances.

<p:schedule value="#{scheduleBean.model}" />

public class ScheduleBean {
private ScheduleModel model;

public ScheduleBean() {
eventModel = new ScheduleModel<ScheduleEvent>();
eventModel .addEvent(new DefaultScheduleEvent("title", new Date(),
new Date()));
}

public ScheduleModel getModel() {
return model;

}

DefaultScheduleEvent is the default implementation of ScheduleEvent interface. Mandatory
properties required to create a new event are the title, start date and end date. Other properties such
as allDay get sensible default values.

Table below describes each property in detail.

Property Description
id Used internally by PrimeFaces, auto generated.
title Title of the event.
startDate Start date of type java.util.Date.

391

PrimeFaces User Guide

Property Description
endDate End date of type java.util.Date.
allDay Flag indicating event is all day.
styleClass Visual style class to enable multi resource display.
data Optional data you can set to be represented by Event.
editable Whether the event is editable or not.
description Tooltip text to display on mouseover of an event.

Ajax Behavior Events

Schedule provides various ajax behavior events to respond user actions.

Event Listener Parameter Fired
dateSelect org.primefaces.event.SelectEvent When a date is selected.
eventSelect org.primefaces.event.SelectEvent When an event is selected.
eventMove org.primefaces.event.ScheduleEntryMoveEvent | When an event is moved.
eventResize org.primefaces.event.ScheduleEntryResizeEvent | When an event is resized.
viewChange org.primefaces.event.SelectEvent When a view is changed.

Ajax Updates

Schedule has a quite complex UI which is generated on-the-fly by the client side
PrimeFaces.widget.Schedule widget to save bandwidth and increase page load performance. As a
result when you try to update schedule like with a regular PrimeFacess PPR, you may notice a Ul
lag as the DOM will be regenerated and replaced. Instead, Schedule provides a simple client side
api and the update method.

Whenever you call update, schedule will query its server side ScheduleModel instance to check for
updates, transport method used to load events dynamically is JSON, as a result this approach is
much more effective then updating with regular PPR. An example of this is demonstrated at editable
schedule example, save button is calling PF('widgetvar').update() at oncomplete event handler.

TimeZone

By default, timezone offsets are ignored. Set ignoreTimezone to false so that schedule takes care of
timezone differences by calculating the client browser timezone and the event date so that events
are displayed at the clients local time.

Editable Schedule

Let’s put it altogether to come up a fully editable and complex schedule.

392

PrimeFaces User Guide

<h:form>
<p:schedule value="#{bean.eventModel}" editable="true" widgetVar="myschedule">
<p:ajax event="dateSelect" listener="#{bean.onDateSelect}"
update="eventDetails" oncomplete="eventDialog.show()" />
<p:ajax event="eventSelect" listener="#{bean.onEventSelect}"
</p:schedule>

<p:dialog widgetVar="eventDialog" header="Event Details">
<h:panelGrid id="eventDetails" columns="2">
<h:outputLabel for="title" value="Title:" />
<h:inputText id="title" value="#{bean.event.title}" required="true"/>

<h:outputLabel for="from" value="From:" />

<p:inputMask id="from" value="#{bean.event.startDate}" mask="99/99/9999">
<f:convertDateTime pattern="dd/MM/yyyy" />

</p:inputMask>

<h:outputLabel for="to" value="To:" />
<p:inputMask id="to" value="#{bean.event.endDate}" mask="99/99/9999">
<f:convertDateTime pattern="dd/MM/yyyy" />
</p:inputMask>

<h:outputLabel for="allDay" value="All Day:" />
<h:selectBooleanCheckbox id="allDay" value="#{bean.event.allDay}" />

<p:commandButton type="reset" value="Reset" />
<p:commandButton value="Save" actionListener="#{bean.addEvent}"
oncomplete="PF("'myschedule').update();PF('eventDialog').hide();"/>
</h:panelGrid>
</p:dialog>
</h:form>

393

PrimeFaces User Guide

public class ScheduleBean {

private ScheduleModel<ScheduleEvent> model;
private ScheduleEventImpl event = new DefaultScheduleEvent();

public ScheduleBean() {
eventModel = new ScheduleModel<ScheduleEvent>();

}

public ScheduleModel<ScheduleEvent> getModel() { return model; }

public ScheduleEventImpl getEvent() { return event; }
public void setEvent(ScheduleEventImpl event) { this.event = event; }

public void addEvent() {
ifCevent.getId() == null)
eventModel .addEvent(event);
else
eventModel .updateEvent(event);

event = new DefaultScheduleEvent(); //reset dialog form
}

public void onEventSelect(SelectEvent e) {
event = (ScheduleEvent) e.getObject();

}

public void onDateSelect(SelectEvent e) {
Date date = (Date) e.getObject();
event = new DefaultScheduleEvent("", date, date);

Lazy Loading

Schedule assumes whole set of events are eagerly provided in ScheduleModel, if you have a huge
data set of events, lazy loading features would help to improve performance. In lazy loading mode,
only the events that belong to the displayed time frame are fetched whereas in default eager more
all events need to be loaded.

<p:schedule value="#{scheduleBean.lazyModel}" />

To enable lazy loading of Schedule events, you just need to provide an instance of
org.primefaces.model.LazyScheduleModel and implement the loadEvents methods. loadEvents
method is called with new boundaries every time displayed timeframe is changed.

394

PrimeFaces User Guide

public class ScheduleBean {
private ScheduleModel lazyModel;
public ScheduleBean() {
lazyModel = new LazyScheduleModel() {

@0verride

public void loadEvents(Date start, Date end) {
//addEvent(...);
//addEvent(...);

}
}

public ScheduleModel getlLazyModel() {
return lazyModel;

}

Customizing Header

Header controls of Schedule can be customized based on templates, valid values of template options
are;

« title: Text of current month/week/day information

* prev: Button to move calendar back one month/week/day.

* next: Button to move calendar forward one month/week/day.

 prevYear: Button to move calendar back one year

 nextYear: Button to move calendar forward one year

* today: Button to move calendar to current month/week/day.

* viewName: Button to change the view type based on the view type.

These controls can be placed at three locations on header which are defined with
leftHeaderTemplate, rightHeaderTemplate and centerTemplate attributes.

<p:schedule value="#{scheduleBean.model}"
leftHeaderTemplate"today"
rightHeaderTemplate="prev,next"
centerTemplate="month, agendaWeek, agendaDay'
</p:schedule>

e <=

Sun Mon Tue Wed Thu Fri Sat
1 2 3
4 5 6 7 8 9 10

395

Views

PrimeFaces User Guide

5 different views are supported, these are "month", "agendaWeek", "agendaDay", "basicWeek" and

"basicDay".

agendaWeek

<p:schedule value="#{scheduleBean.model}" view="agendaWeek"/>

agendaDay

]

Sun 1/31 Mon 2/1
reiasat
allday =

Tuez2/2 Wed 2/3
[Plantthe new garden stuff

Jan 31 — Feb 6 2010

month [0 day |

Thuz/a Friz/s Sat2/6

<p:schedule value="#{scheduleBean.model}" view="agendaDay"/>

basicWeek

Sunday 1/31

Sunday, Jan 31, 2010

month | week |23

<p:schedule

value="#{scheduleBean.model}" view="basicWeek"/>

Jan 31 — Feb 6 2010

Tuez/a Wed2/3 Thus/a

396

PrimeFaces User Guide

basicDay

<p:schedule value="#{scheduleBean.model}" view="basicDay"/>

(<[> Sunday, Jan 31, 2010
Sunday 1/31

Locale Support

By default locale information is retrieved from the view’s locale and can be overridden by the locale
attribute. Locale attribute can take a locale key as a String or a java.util.Locale instance. Default
language of labels are English and you need to add the necessary translations to your page manually
as PrimeFaces does not include language translations. PrimeFaces Wiki Page for
PrimeFacesLocales is a community driven page where you may find the translations you need.
Please contribute to this wiki with your own translations.

http://wiki.primefaces.org/display/Components/PrimeFaces+Locales

Translation is a simple javascript object, we suggest adding the code to a javascript file and include
in your application. Following is a Turkish calendar.

<p:schedule value="#{scheduleBean.model}" locale="tr"/>

Skinning

Schedule resides in a main container which style and styleClass attributes apply. As skinning style
classes are global, see the main theming section for more information.

397

http://wiki.primefaces.org/display/Components/PrimeFaces+Locales

PrimeFaces User Guide

3.103 ScrollPanel

ScrollPanel is used to display scrollable content with theme aware scrollbars instead of native

browser scrollbars.

Info

Ut vel nulla sit amet erat laoreet ¢
placerat diam vitae justo eleifend
Curabitur turpis odio, euismod id
Pellentesque ut erat a leo rhoncu

ligula. Fusce vehicula posuere inf

sollieidin danine arat anta var

Tag

scrollPanel

Component Class

org.primefaces.component.scrollpanel.ScrollPanel

Component Type

org.primefaces.component.ScrollPanel

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.ScrollPanelRenderer

Renderer Class

org.primefaces.component.scrollpanel.ScrollPanelRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

style null String Inline style of the container element.

styleClass null String Style class of the container element.

mode default String Scrollbar display mode, valid values are default
and native.

398

PrimeFaces User Guide

Getting started with ScrollPanel
In order to get scrollable content, width and/or height should be defined.

<p:scrollPanel style="width:250px;height:200px">
//any content
</p:scrollPanel>

Native ScrollBars

By default, scrollPanel displays theme aware scrollbars, setting mode option to native displays
browser scrollbars.

<p:scrollPanel style="width:250px;height:200px" mode="native">
//any content
</p:scrollPanel>

Skinning

ScrollPanel resides in a main container which s#yle and styleClass attributes apply. As skinning style
classes are global, see the main theming section for more information. Following is the list of
structural style classes;

Style Class Applies
.ui-scrollpanel Main container element.
.ui-scrollpanel-container Overflow container.
.ui-scrollpanel-content Content element.
.ui-scrollpanel-hbar Horizontal scrollbar container.
.ui-scrollpanel-vbar Vertical scrollbar container.
.ui-scrollpanel-track Track element.

.ui-scrollbar-drag Drag element.

399

PrimeFaces User Guide

3.104 SelectBooleanButton

SelectBooleanButton is used to select a binary decision with a toggle button.

|l accept terms and conditions: No
Subscribe me to newsletter: + Yes
Info
Tag selectBooleanButton

Component Class org.primefaces.component.selectbooleanbutton.SelectBooleanButton

Component Type org.primefaces.component.SelectBooleanButton

Component Family | org.primefaces.component

Renderer Type org.primefaces.component.SelectBooleanButtonRenderer
Renderer Class org.primefaces.component.selectbooleanbutton.SelectBooleanButtonRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean Boolean value to specify the rendering of the component,

when set to false component will not be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

value null Object Value of the component referring to a List.
converter null Converter/ | An el expression or a literal text that defines a converter
String for the component. When it’s an EL expression, it’s

resolved to a converter instance. In case it’s a static text,
it must refer to a converter id

immediate false Boolean When set true, process validations logic is executed at
apply request values phase for this component.

required false Boolean Marks component as required
validator null Method A method expression that refers to a method validationg
Expr the input
valueChangeListener | null Method A method expression that refers to a method for handling
Expr a valuechangeevent
requiredMessage null String Message to be displayed when required field validation
fails.

400

PrimeFaces User Guide

Name Default Type Description
converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.
widgetVar null String Name of the client side widget.
disabled false Boolean Disables the component.
label null String User presentable name.
onchange null String Callback to execute on value change.
style null String Inline style of the component.
styleClass null String Style class of the container.
onLabel null String Label to display when button is selected.
offLabel null String Label to display when button is unselected.
onlcon null String Icon to display when button is selected.
offlcon null String Icon to display when button is unselected.

Getting started with SelectBooleanButton

SelectBooleanButton usage is similar to selectBooleanCheckbox.

<p:selectBooleanButton id="value2" value="#{bean.value}" onLabel="Yes"
offLabel="No" onIcon="ui-icon-check" offIcon="ui-icon-close" />

public class Bean {
private boolean value;
//getter and setter

Skinning

SelectBooleanButton resides in a main container which s#yle and styleClass attributes apply. As
skinning style classes are global, see the main theming section for more information. Following is
the list of structural style classes;

Style Class Applies

.ui-selectbooleanbutton Main container element.

401

PrimeFaces User Guide

3.105 SelectBooleanCheckbox

SelectBooleanCheckbox is an extended version of the standard checkbox with theme integration.

Info

v

Tag

selectBooleanCheckbox

Component Class

org.primefaces.component.selectbooleancheckbox.SelectBooleanCheckbox

Component Type

org.primefaces.component.SelectBooleanCheckbox

Component Family

org.primefaces.component

Renderer Type org.primefaces.component.SelectBooleanCheckboxRenderer
Renderer Class org.primefaces.component.selectbooleancheckbox.SelectBooleanCheckbox
Renderer
Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component referring to a List.

converter null Converter/ An el expression or a literal text that defines a

String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In case
it’s a static text, it must refer to a converter id

immediate false Boolean When set true, process validations logic is executed at
apply request values phase for this component.

required false Boolean Marks component as required

validator null MethodExpr | A method expression that refers to a method
validationg the input

valueChangeListener | null MethodExpr | A method expression that refers to a method for
handling a valuechangeevent

requiredMessage null String Message to be displayed when required field validation
fails.

402

PrimeFaces User Guide

Name Default Type Description
converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.
widgetVar null String Name of the client side widget.
disabled false Boolean Disables the component.
label null String User presentable name.
onchange null String Callback to execute on value change.
style null String Inline style of the component.
styleClass null String Style class of the container.
itemLabel null String Label displayed next to checkbox.
tabindex null String Specifies tab order for tab key navigation.

Getting started with SelectBooleanCheckbox

SelectBooleanCheckbox usage is same as the standard one.

Client Side API

Widget: PrimeFaces.widget.SelectBooleanCheckbox

Method Params Return Type Description

check() - void Checks the checkbox.
uncheck() void Unchecks the checkbox.
toggle() - void Toggles check state.

Skinning

SelectBooleanCheckbox resides in a main container which style and styleClass attributes apply. As
skinning style classes are global, see the main theming section for more information. Following is
the list of structural style classes;

Style Class

Applies

.ui-chkbox

Main container element.

.ui-chkbox-box

Container of checkbox icon.

.ui-chkbox-icon

Checkbox icon.

.ui-chkbox-icon

Checkbox label.

403

3.106 SelectCheckboxMenu

PrimeFaces User Guide

SelectCheckboxMenu is a multi select component that displays options in an overlay.

7 EE——

]

+ Scarface
+ Goodfellas
+ Carlito’s Way
+ Godfather
Info
Tag selectCheckboxMenu

Component Class

org.primefaces.component.selectcheckboxmenu.SelectCheckboxMenu

Component Type

org.primefaces.component.SelectCheckboxMenu

Component Family | org.primefaces.component

Renderer Type

org.primefaces.component.SelectCheckboxMenuRenderer

Renderer Class

org.primefaces.component.selectcheckboxmenu.SelectCheckboxMenuRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component referring to a List.

converter null Converter/ | An el expression or a literal text that defines a

String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate false Boolean When set true, process validations logic is executed
at apply request values phase for this component.

required false Boolean Marks component as required

validator null MethodExpr | A method expression that refers to a method
validationg the input

valueChangeListener | null MethodExpr | A method expression that refers to a method for

404

PrimeFaces User Guide

Name Default Type Description

handling a valuechangeevent

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

widgetVar null String Name of the client side widget.

disabled false Boolean Disables the component.

label null String User presentable name.

onchange null String Callback to execute on value change.

style null String Inline style of the component.

styleClass null String Style class of the container.

scrollHeight null Integer Height of the overlay.

onShow null String Client side callback to execute when overlay is
displayed.

onHide null String Client side callback to execute when overlay is
hidden.

filter false Boolean Renders an input field as a filter.

filterMatchMode startsWith String Match mode for filtering, valid values are
startsWith, contains, endsWith and custom.

filterFunction null String Client side function to use in custom filtering.

caseSensitive false Boolean Defines if filtering would be case sensitive.

panelStyle null String Inline style of the overlay.

panelStyleClass null String Style class of the overlay.

appendTo null String Appends the overlay to the element defined by

search expression. Defaults to document body.

tabindex null String Position of the element in the tabbing order.

405

PrimeFaces User Guide

Getting started with SelectCheckboxMenu

SelectCheckboxMenu usage is same as the standard selectManyCheckbox or PrimeFaces
selectManyCheckbox components.

<p:selectCheckboxMenu value="#{bean.selectedOptions}" label="Movies">
<f:selectItems value="#{bean.options}" />
</p:selectCheckboxMenu>

Filtering

When filtering is enabled with setting filter on, an input field is rendered at overlay header and on
keyup event filtering is executed on client side using filterMatchMode. Default modes of
filterMatchMode are startsWith, contains, endsWith and custom. Custom mode requires a javascript
function to do the filtering.

<p:selectCheckboxMenu value="#{bean.selectedOptions}" label="Movies"
filterMatchMode="custom" filterFunction="customFilter">
<f:selectItems value="#{bean.options}" />
</p:selectCheckboxMenu>

function customFilter(itemLabel, filterValue) {
//return true to accept and false to reject

}

Ajax Behavior Events

In addition to common dom events like change, selectCheckboxMenu provides toggleSelect event.

Event Listener Parameter Fired
toggleSelect org.primefaces.event. ToggleSelectEvent When toggle all checkbox changes.
Skinning

SelectCheckboxMenu resides in a main container which style and styleClass attributes apply. As
skinning style classes are global, see the main theming section for more information. Following is
the list of structural style classes;

Style Class Applies

.ui-selectcheckboxmenu Main container element.

.ui-selectcheckboxmenu-label-container | Label container.

.ui-selectcheckboxmenu-label Label.
.ui-selectcheckboxmenu-trigger Dropdown icon.
.ui-selectcheckboxmenu-panel Overlay panel.
.ui-selectcheckboxmenu-items Option list container.

406

PrimeFaces User Guide

Style Class

Applies

.ui-selectcheckboxmenu-item

Each options in the collection.

.ui-chkbox

Container of a checkbox.

.ui-chkbox-box

Container of checkbox icon.

.ui-chkbox-icon

Checkbox icon.

407

3.107 SelectManyButton

SelectManyButton is a multi select component using button UI.

Info

PrimeFaces User Guide

Tag

selectManyButton

Component Class

org.primefaces.component.selectmanybutton.SelectManyButton

Component Type

org.primefaces.component.SelectManyButton

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SelectManyButton

Renderer Class

org.primefaces.component.selectmanybutton.SelectManyButton

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

value null Object Value of the component referring to a List.

converter null Converter/ An el expression or a literal text that defines a

String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate false Boolean When set true, process validations logic is executed
at apply request values phase for this component.

required false Boolean Marks component as required

validator null MethodExpr | A method expression that refers to a method
validationg the input

valueChangeListener | null MethodExpr | A method expression that refers to a method for
handling a valuechangeevent

requiredMessage null String Message to be displayed when required field
validation fails.

408

PrimeFaces User Guide

Name Default Type Description
converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.
widgetVar null String Name of the client side widget.
disabled false Boolean Disables the component.
label null String User presentable name.
onchange null String Callback to execute on value change.
style null String Inline style of the component.
styleClass null String Style class of the container.

Getting started with SelectManyButton

SelectManyButton usage is same as selectManyCheckbox, buttons just replace checkboxes.

Skinning

SelectManyButton resides in a main container which s#yle and styleClass attributes apply. As
skinning style classes are global, see the main theming section for more information. Following is

the list of structural style classes;

Style Class

Applies

.ui-selectmanybutton

Main container element.

409

3.108 SelectManyCheckbox

SelectManyCheckbox is an extended version of the standard SelectManyCheckbox with theme

PrimeFaces User Guide

integration.

Option 1 |« Option 2 || Option 3
Info
Tag selectManyCheckbox

Component Class

org.primefaces.component.selectmanycheckbox.SelectManyCheckbox

Component Type

org.primefaces.component.SelectManyCheckbox

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SelectManyCheckboxRenderer

Renderer Class

org.primefaces.component.selectmanycheckbox.SelectManyCheckboxRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component referring to a List.

converter null Converter/St | An el expression or a literal text that defines a

ring converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate false Boolean When set true, process validations logic is
executed at apply request values phase for this
component.

required false Boolean Marks component as required

validator null MethodExpr | A method expression that refers to a method
validationg the input

valueChangeListener | null MethodExpr | A method expression that refers to a method for
handling a valuechangeevent

requiredMessage null String Message to be displayed when required field

410

PrimeFaces User Guide

Name Default Type Description

validation fails.

converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.
widgetVar null String Name of the client side widget.

disabled false Boolean Disables the component.

label null String User presentable name.

layout lineDirection | String Layout of the checkboxes, valid values are

lineDirection, pageDirection and grid.

columns 0 Integer Number of columns in grid layout.
onchange null String Callback to execute on value change.
style null String Inline style of the component.
styleClass null String Style class of the container.

Getting started with SelectManyCheckbox

SelectManyCheckbox usage is same as the standard one.

Skinning

SelectManyCheckbox resides in a main container which s#yle and styleClass attributes apply. As
skinning style classes are global, see the main theming section for more information. Following is
the list of structural style classes;

Style Class Applies
.ui-selectmanycheckbox Main container element.
.ui-chkbox Container of a checkbox.
.ui-chkbox-box Container of checkbox icon.
.ui-chkbox-icon Checkbox icon.

411

3.109 SelectManyMenu

SelectManyMenu is an extended version of the standard SelectManyMenu.

Info

Messi
Bojan
Iniesta
Villa
Xavi
Puyol

PrimeFaces User Guide

0

Tag

selectManyMenu

Component Class

org.primefaces.component.selectmanymenu.SelectManyMenu

Component Type

org.primefaces.component.SelectManyMenu

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SelectManyMenuRenderer

Renderer Class

org.primefaces.component.selectmanymenu.SelectManyMenuRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component referring to a List.

converter null Converter/ An el expression or a literal text that defines a

String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate false Boolean When set true, process validations logic is executed
at apply request values phase for this component.

required false Boolean Marks component as required

validator null MethodExpr | A method expression that refers to a method
validationg the input

valueChangeListener | null MethodExpr | A method expression that refers to a method for

412

PrimeFaces User Guide

Name Default Type Description

handling a valuechangeevent

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

widgetVar null String Name of the client side widget.

disabled false Boolean Disables the component.

label null String User presentable name.

onchange null String Callback to execute on value change.

onclick null String Callback for click event.

ondblclick null String Callback for dblclick event.

style null String Inline style of the component.

styleClass null String Style class of the container.

tabindex null String Position of the input element in the tabbing order.

var null String Name of iterator to be used in custom content
display.

showCheckbox false Boolean When true, a checkbox is displayed next to each
item.

filter false Boolean Displays an input filter for the list.

filterMatchMode null String Match mode for filtering, valid values are
startsWith (default), contains, endsWith and
custom.

filterFunction null String Client side function to use in custom
filterMatchMode.

caseSensitive false Boolean Defines if filtering would be case sensitive.

scrollHeight null Integer Defines the height of the scrollable area

Getting started with SelectManyMenu

SelectManyMenu usage is same as the standard one.

Custom Content

Custom content can be displayed for each item using column components.

413

PrimeFaces User Guide

<p:selectManyMenu value="#{bean.selectedPlayers}" converter="player" var="p">
<f:selectItems value="#{bean.players}" var="player"
itemLabel="#{player.name}" itemValue="#{player}" />
<p:column>
<p:graphicImage value="/images/barca/#{p.photo}" width="40"/>
</p:column>
<p:column>
#{p.name} - #{p.number}
</p:column>
</p:selectManyMenu>

Iniesta - B

- Xavi-6

% —
[

et)

Filtering

Filtering is enabled by setting filter attribute to true. There are four filter modes; startsWith,
contains, endsWith and custom. In custom mode, filterFunction must be defined as the name of the
javascript function that takes the item value and filter as parameters to return a boolean to accept or
reject a value. To add a filter to previous example;

<p:selectOneMenu value="#{menuBean.selectedPlayer}" converter="player" var="p
filter="true" filterMatchMode="contains">

</p:selectOneMenu>

Messi - 10

Bojan -9

Iniesta - 8

oo Ro o

Checkbox

SelectManyMenu has built-in support for checkbox based multiple selection, when enabled by
showCheckbox option, checkboxes are displayed next to each column.

414

PrimeFaces User Guide
Skinning

SelectManyMenu resides in a container that style and styleClass attributes apply. As skinning style
classes are global, see the main theming section for more information. Following is the list of
structural style classes;

Style Class Applies
.ui-selectmanymenu Main container element.
.ui-selectlistbox-item Each item in list.

415

3.110 SelectOneButton

SelectOneButton is an input component to do a single select.

Info

Option 1

PrimeFaces User Guide

Option 2

Option 3

Tag

selectOneButton

Component Class

org.primefaces.component.selectonebutton.SelectOneButton

Component Type

org.primefaces.component.SelectOneButton

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SelectOneButtonRenderer

Renderer Class

org.primefaces.component.selectonebutton.SelectOneButtonRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component referring to a List.

converter null Converter/St | An el expression or a literal text that defines a

ring converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate false Boolean When set true, process validations logic is
executed at apply request values phase for this
component.

required false Boolean Marks component as required

validator null MethodExpr | A method expression that refers to a method
validationg the input

valueChangeListener | null MethodExpr | A method expression that refers to a method for
handling a valuechangeevent

requiredMessage null String Message to be displayed when required field

416

PrimeFaces User Guide

Name Default Type Description
validation fails.

converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.
widgetVar null String Name of the client side widget.
disabled false Boolean Disables the component.
label null String User presentable name.
onchange null String Callback to execute on value change.
style null String Inline style of the component.
styleClass null String Style class of the container.

Getting started with SelectOneButton

SelectOneButton usage is same as selectOneRadio component, buttons just replace the radios.

Skinning

SelectOneButton resides in a main container which style and styleClass attributes apply. As
skinning style classes are global, see the main theming section for more information. Following is
the list of structural style classes;

Style Class Applies

.ui-selectonebutton Main container element.

417

3.111 SelectOnelListbox

SelectOneListbox is an extended version of the standard selectOneListbox component.

Info

Messi
Bojan
Iniesta
Villa
Xavi
Puyaol

PrimeFaces User Guide

0

Tag

selectOneListbox

Component Class

org.primefaces.component.selectonelistbox.SelectOneListbox

Component Type

org.primefaces.component.SelectOneListbox

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SelectOneListboxRenderer

Renderer Class

org.primefaces.component.selectonelistbox.SelectOneListBoxRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component referring to a List.

converter null Converter/ An el expression or a literal text that defines a

String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate false Boolean When set true, process validations logic is
executed at apply request values phase for this
component.

required false Boolean Marks component as required

validator null MethodExpr | A method expression that refers to a method
validationg the input

valueChangeListener | null MethodExpr | A method expression that refers to a method for

418

PrimeFaces User Guide

Name Default Type Description

handling a valuechangeevent

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

widgetVar null String Name of the client side widget.

disabled false Boolean Disables the component.

label null String User presentable name.

onchange null String Callback to execute on value change.

onclick null String Callback for click event.

ondblclick null String Callback for dblclick event.

style null String Inline style of the component.

styleClass null String Style class of the container.

tabindex null String Position of the input element in the tabbing order.

value null String Name of iterator to be used in custom content
display.

var null String Name of iterator to be used in custom content
display.

filter false Boolean Displays an input filter for the list.

filterMatchMode null String Match mode for filtering, valid values are
startsWith (default), contains, endsWith and
custom.

filterFunction null String Client side function to use in custom
filterMatchMode.

caseSensitive false Boolean Defines if filtering would be case sensitive.

scrollHeight null Integer Defines the height of the scrollable area.

Getting started with SelectOneListbox

SelectOneListbox usage is same as the standard one.

Custom Content

Custom content can be displayed for each item using column components.

419

PrimeFaces User Guide

<p:selectOnelListbox value="#{bean.player}" converter="player" var="p">
<f:selectItems value="#{bean.players}" var="player"
itemLabel="#{player.name}" itemValue="#{player}" />

<p:column>
<p:graphicImage value="/images/barca/#{p.photo}" width="40"/>
</p:column>
<p:column>
#{p.name} - #{p.number}
</p:column>
</p:selectOnelListbox>

2B

Messi- 10

[

Iniesta - 8

Villa -7

B

e, Xavi - &

Filtering

Filtering is enabled by setting filter attribute to true. There are four filter modes; startsWith,
contains, endsWith and custom. In custom mode, filterFunction must be defined as the name of the
javascript function that takes the item value and filter as parameters to return a boolean to accept or
reject a value. To add a filter to previous example;

<p:selectOneMenu value="#{menuBean.selectedPlayer}" converter="player" var="p"
filter="true" filterMatchMode="contains">

</p:selectOneMenu>

Messi - 10

Bojan- 9

oo R Po

Skinning

SelectOneListbox resides in a main container which s#yle and styleClass attributes apply. As
skinning style classes are global, see the main theming section for more information. Following is
the list of structural style classes;

Style Class

Applies

.ui-selectonelistbox

Main container element.

.ui-selectlistbox-item

Each item in list.

420

PrimeFaces User Guide

3.112 SelectOneMenu

SelectOneMenu is an extended version of the standard SelectOneMenu.

['Select One | v-i
'.;‘_
Select One
Option 1
Option 2
Option 3

Info

Tag selectOneMenu

Component Class | org.primefaces.component.selectonemenu.SelectOneMenu

Component Type org.primefaces.component.SelectOneMenu

Component Family | org.primefaces.component

Renderer Type org.primefaces.component.SelectOneMenuRenderer

Renderer Class

org.primefaces.component.selectonemenu.SelectOneMenuRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component.

converter null Converter/ An el expression or a literal text that defines a

String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate 0 Boolean When set true, process validations logic is executed at
apply request values phase for this component.

required 0 Boolean Marks component as required

validator null MethodExpr | A method expression that refers to a method
validationg the input

421

PrimeFaces User Guide

Name Default Type Description

valueChangeListener | null MethodExpr | A method expression that refers to a method for
handling a valuechangeevent

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

widgetVar null String Name of the client side widget.

effect blind String Name of the toggle animation.

effectSpeed normal String Duration of toggle animation, valid values are "slow",
"normal" and "fast".

disabled false Boolean Disables the component.

label null String User presentable name.

onchange null String Client side callback to execute on value change.

onkeyup null String Client side callback to execute on keyup.

onkeydown null String Client side callback to execute on keydown.

style null String Inline style of the component.

styleClass null String Style class of the container.

var null String Name of the item iterator.

height auto Integer Height of the overlay.

tabindex null String Tabindex of the input.

editable false Boolean When true, input becomes editable.

filter false Boolean Renders an input field as a filter.

filterMatchMode starts String Match mode for filtering, valid values are startsWith,

With contains, endsWith and custom.

filterFunction null String Client side function to use in custom filtering.

caseSensitive false Boolean Defines if filtering would be case sensitive.

maxlength null Integer Number of maximum characters allowed in editable
selectOneMenu.

appendTo null String Appends the overlay to the element defined by search

expression. Defaults to document body.

Getting started with SelectOneMenu

Basic SelectOneMenu usage is same as the standard one.

422

PrimeFaces User Guide

Custom Content

SelectOneMenu can display custom content in overlay panel by using column component and the
var option to refer to each item.

public class MenuBean {
private List<Player> players;
private Player selectedPlayer;

public OrderListBean() {
players = new ArraylList<Player>(Q);

players.add(new Player("Messi", 10, "messi.jpg"));
//more players

}

//getters and setters

<p:selectOneMenu value="#{menuBean.selectedPlayer}" converter="player" var="p">
<f:selectItem itemLabel="Select One" itemValue="" />
<f:selectItems value="#{menuBean.players}" var="player"
itemLabel="#{player.name}" itemValue="#{player}"/>
<p:column>
<p:graphicImage value="/images/barca/#{p.photo}" width="40" height="50"/>
</p:column>

<p:column>
#{p.name} - #{p.number}
</p:column>
</p:selectOneMenu>

| Messi - 10 T+
Select One O
é | Messi-10
& Bojan - 8
"Eﬂ. Iniesta - &

Effects

An animation is executed to show and hide the overlay menu, default effect is fade and following
options are available for effect attribute; blind, bounce, clip, drop, explode, fold, highlight, puff,
pulsate, scale, shake, size, slide and none.

423

PrimeFaces User Guide

Editable

Editable SelectOneMenu provides a Ul to either choose from the predefined options or enter a
manual input. Set editable option to true to use this feature.

Select One
Ankara

Istantul

lzmir

Filtering

When filtering is enabled with setting filter on, an input field is rendered at overlay header and on
keyup event filtering is executed on client side using filterMatchMode. Default modes of
filterMatchMode are startsWith, contains, endsWith and custom. Custom mode requires a javascript

function to do the filtering.

<p:selectOneMenu value="#{bean.selectedOptions}"
filterMatchMode="custom" filterFunction="customFilter">

<f:selectItems value="#{bean.options}" />
</p:selectOneMenu>

function customFilter(itemLabel, filterValue) {
//return true to accept and false to reject

}
[Selem One .
A o]
& Afellay - 20
I'! Abidal - 22
é Alves - 2
A
L v
Client Side API

Widget: PrimeFaces.widget.SelectOneMenu

424

PrimeFaces User Guide

Method Params Return Type Description

show() - void Shows overlay menu.

hide() - void Hides overlay menu.

blur() - void Invokes blur event.

focus() - void Invokes focus event.

enable() - void Enables component.

disable() - void Disabled component.

selectValue() value: itemValue | void Selects given value.

getSelected Value() - Object Returns value of selected item.

getSelectedLabel() String Returns label of selected item.
Skinning

SelectOneMenu resides in a container element that style and styleClass attributes apply. As skinning
style classes are global, see the main theming section for more information. Following is the list of
structural style classes;

Style Class

Applies

.ui-selectonemenu

Main container.

.ui-selectonemenu-label

Label of the component.

.ui-selectonemenu-trigger

Container of dropdown icon.

.ui-selectonemenu-items

Items list.

.ui-selectonemenu-items

Each item in the list.

425

3.113 SelectOneRadio

SelectOneRadio is an extended version of the standard SelectOneRadio with theme integration.

Info

Option 1 l- Option 2

PrimeFaces User Guide

Option 3

Tag

selectOneRadio

Component Class

org.primefaces.component.selectoneradio.SelectOneRadio

Component Type

org.primefaces.component.SelectOneRadio

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SelectOneRadioRenderer

Renderer Class

org.primefaces.component.selectoneradio.SelectOneRadioRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component referring to a List.

converter null Converter/ An el expression or a literal text that defines a

String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate 0 Boolean When set true, process validations logic is executed at
apply request values phase for this component.

required 0 Boolean Marks component as required

validator null MethodExpr | A method expression that refers to a method
validationg the input

valueChangeListener | null MethodExpr | A method expression that refers to a method for
handling a valuechangeevent

requiredMessage null String Message to be displayed when required field
validation fails.

426

PrimeFaces User Guide

Name Default Type Description
converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.
widgetVar null String Name of the client side widget.
disabled false Boolean Disables the component.
label null String User presentable name.
layout line String Layout of the radiobuttons, valid values are

Direction lineDirection, pageDirection, custom and grid.
columns 0 Integer Number of columns in grid layout.
onchange null String Callback to execute on value change.
onclick null String Callback to execute on click of a radio.
style null String Inline style of the component.
styleClass null String Style class of the container.
tabindex null String Specifies the tab order of element in tab navigation.
plain false Boolean Plain mode displays radiobuttons using native

browser rendering instead of themes.

Getting started with SelectOneRadio

SelectOneRadio usage is same as the standard one.

Custom Layout

Standard selectOneRadio component only supports horizontal and vertical rendering of the radio
buttons with a strict table markup. PrimeFaces SelectOneRadio on the other hand provides a
flexible layout option so that radio buttons can be located anywhere on the page. This is
implemented by setting layout option to custom and with standalone radioButton components. Note
that in custom mode, selectOneRadio itself does not render any output.

<p:selectOneRadio id="customRadio" value="#{formBean.option}" layout="custom">
<f:selectItem itemLabel="Option 1" itemValue="1" />
<f:selectItem itemLabel="Option 2" itemValue="2" />
<f:selectItem itemLabel="Option 3" itemValue="3" />

</p:selectOneRadio>

427

PrimeFaces User Guide

<h:panelGrid columns="3">

<p:spinner />

<p:inputText />

<p:calendar />
</h:panelGrid>

<p:radioButton id="optl" for="customRadio" itemIndex="@"/>
<h:outputLabel for="optl" value="Option 1" />

<p:radioButton id="opt2" for="customRadio" itemIndex="1"/>
<h:outputLabel for="opt2" value="Option 2" />

<p:radioButton id="opt3" for="customRadio" itemIndex="2"/>
<h:outputLabel for="opt3" value="Option 3" />

RadioButton’s for attribute should refer to a selectOneRadio component and itemIndex points to the
index of the selectltem. When using custom layout option, selectOneRadio component should be
placed above any radioButton that points to the selectOneRadio.

Skinning

SelectOneRadio resides in a main container which style and styleClass attributes apply. As skinning
style classes are global, see the main theming section for more information. Following is the list of

structural style classes;

Style Class

Applies

.ui-selectoneradio

Main container element.

.ui-radiobutton

Container of a radio button.

.ui-radiobutton-box

Container of radio button icon.

.ui-radiobutton-icon

Radio button icon.

428

3.114 Separator

Seperator displays a horizontal line to separate content.

Info

PrimeFaces User Guide

Tag

separator

Component Class

org.primefaces.component.separator.Separator

Component Type

org.primefaces.component.Separator

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.Separator

Renderer Class

org.primefaces.component.separator.Separator

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

title null String Advisory tooltip informaton.

style null String Inline style of the separator.

styleClass null String Style class of the separator.

Getting started with Separator

In its simplest form, separator is used as;

//content

//content

<p:separator />

Dimensions

Separator renders a <Ar /> tag which style and styleClass options apply.

429

PrimeFaces User Guide

<p:separator style="width:500px;height:20px" />

Special Separators

Separator can be used inside other components such as menu when supported.

<p :menu>
//submenu or menuitem
<p:separator />
//submenu or menuitem
</p:menu>

Skinning

As mentioned in dimensions section, style and styleClass options can be used to style the separator.
Following is the list of structural style classes;

Class Applies

.ui-separator Separator element

As skinning style classes are global, see the main theming section for more information.

430

PrimeFaces User Guide

3.115 SlideMenu

SlideMenu is used to display nested submenus with sliding animation.

Prime Links 3
TouchFaces
4 Back
Info
Tag slideMenu

Component Class

org.primefaces.component.slidemenu.SlideMenu

Component Type

org.primefaces.component.SlideMenu

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SlideMenuRenderer

Renderer Class

org.primefaces.component.slidemenu.SlideMenuRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

model null MenuModel MenuModel instance for programmatic menu.

style null String Inline style of the component.

styleClass null String Style class of the component.

backLabel Back String Text for back link.

trigger null String Id of the component whose triggerEvent will show
the dynamic positioned menu.

my null String Corner of menu to align with trigger element.

431

PrimeFaces User Guide

Name Default Type Description
at null String Corner of trigger to align with menu element.
overlay false Boolean Defines positioning, when enabled menu is

displayed with absolute position relative to the
trigger. Default is false, meaning static positioning.

triggerEvent click String Event name of trigger that will show the dynamic
positioned menu.

Getting started with the SlideMenu

SlideMenu consists of submenus and menuitems, submenus can be nested and each nested submenu
will be displayed with a slide animation.

<p:slideMenu>
<p:submenu label="Ajax Menuitems" icon="ui-icon-refresh">
<p:menuitem value="Save" actionListener="#{buttonBean.save}"
update="messages" icon="ui-icon-disk" />
<p:menuitem value="Update" actionlListener="#{buttonBean.update}"
update="messages" icon="ui-icon-arrowrefresh-1-w" />
</p:submenu>

<p:submenu label="Non-Ajax Menuitem" icon="ui-icon-newwin">
<p:menuitem value="Delete" actionListener="#{buttonBean.delete}"

update="messages" ajax="false" icon="ui-icon-close"/>

</p:submenu>

<p:separator />

<p:submenu label="Navigations" icon="ui-icon-extlink">
<p:submenu label="Prime Links">
<p:menuitem value="Prime" url="http://www.prime.com.tr" />
<p:menuitem value="PrimeFaces" url="http://www.primefaces.org" />
</p:submenu>
<p:menuitem value="Mobile" url="/mobile" />
</p:submenu>
</p:slideMenu>

Overlay

SlideMenu can be positioned relative to a trigger component, following sample attaches a
slideMenu to the button so that whenever the button is clicked menu will be displayed in an overlay
itself.

<p:commandButton type="button" value="Show" id="btn" />
<p:slideMenu trigger="btn" my="left top" at="left bottom">
//content

</p:slideMenu>

432

Client Side API

PrimeFaces User Guide

Show

B Save

2 Update

1 Back

Widget: PrimeFaces.widget.SlideMenu

Method Params Return Type Description
show() - void Shows overlay menu.
hide() - void Hides overlay menu.
align() - void Aligns overlay menu with trigger.
Skinning

SlideMenu resides in a main container which style and styleClass attributes apply. Following is the

list of structural style classes;

Style Class

Applies

.ui-menu .ui-slidemenu

Container element of menu.

.ui-slidemenu-wrapper

Wrapper element for content.

.ui-slidemenu-content

Content container.

.ui-slidemenu-backward

Back navigator.

.ui-menu-list

List container

.ui-menuitem

Each menu item

.ui-menuitem-link

Anchor element in a link item

.ui-menuitem-text

Text element in an item

As skinning style classes are global, see the main theming section for more information.

433

PrimeFaces User Guide

3.116 Slider

Slider is used to provide input with various customization options like orientation, display modes
and skinning.

21
Info

Tag slider

Component Class org.primefaces.component.slider.Slider

Component Type org.primefaces.component.Slider

Component Family org.primefaces.component

Renderer Type org.primefaces.component.SliderRenderer

Renderer Class org.primefaces.component.slider.SliderRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean | Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean

for null String Id of the input text that the slider will be used for

display null String Id of the component to display the slider value.

minValue 0 Integer Minimum value of the slider

max Value 100 Integer Maximum value of the slider

style null String Inline style of the container element

styleClass null String Style class of the container element

animate true Boolean | Boolean value to enable/disable the animated move when
background of slider is clicked

type horizontal | String Sets the type of the slider, "horizontal" or "vertical".

step 1 Integer Fixed pixel increments that the slider move in

disabled 0 Boolean | Disables or enables the slider.

onSlideStart null String Client side callback to execute when slide begins.

434

PrimeFaces User Guide

Name Default Type Description
onSlide null String Client side callback to execute during sliding.
onSlideEnd null String Client side callback to execute when slide ends.
range false Boolean | When enabled, two handles are provided for selection a
range.
displayTemplate null String String template to use when updating the display. Valid

placeholders are {value}, {min} and {max}.

Getting started with Slider

Slider requires an input component to work with, for attribute is used to set the id of the input
component whose input will be provided by the slider.

}

}

public class SliderBean {

private int number;

public int getNumber() {
return number;

public void setNumber(int number) {
this.number = number;

<p:slider for="number" />

<h:inputText id="number" value="#{sliderBean.number}" />

Display Value

Using display feature, you can present a readonly display value and still use slider to provide input,
in this case for should refer to a hidden input to bind the value.

<h:inputHidden id="number" value="#{sliderBean.number}" />
<h:outputText value="Set ratio to %" />
<h:outputText id="output" value="#{sliderBean.number}" />

<p:slider for="number" display="output" />

Set ratio to %21

435

PrimeFaces User Guide

Vertical Slider

By default slider’s orientation is horizontal, vertical sliding is also supported and can be set using
the type attribute.

<h:inputText id="number" value="#{sliderController.number}" />

<p:slider for="number" type="vertical" minValue="0" maxValue="200"/>

21

Step

Step factor defines the interval between each point during sliding. Default value is one and it is
customized using step option.

<h:inputText id="number" value="#{sliderBean.number}" />

<p:slider for="number" step="10" />

Animation

Sliding is animated by default, if you want to turn it of animate attribute set the animate option to
false.

Boundaries

Maximum and minimum boundaries for the sliding is defined using minValue and maxValue
attributes. Following slider can slide between -100 and +100.

<h:inputText id="number" value="#{sliderBean.number}" />

<p:slider for="number" minValue="-100" maxValue="100"/>

Range Slider

Selecting a range with min-max values are supported by slider. To enable this feature, set range
attribute to true and provide a comma separate pair of input fields to attach min-max values.
Following sample demonstrates a range slider along with the display template feature for feedback;

436

PrimeFaces User Guide

<h:outputText id="displayRange"
value="Between #{sliderBean.number6} and #{sliderBean.number7}"/>

<p:slider for="txt6,txt7" display="displayRange" style="width:400px" range="true"
displayTemplate="Between {min} and {max}"/>

<h:inputHidden id="min" value="#{sliderBean.min}" />
<h:inputHidden id="max" value="#{sliderBean.max}" />

Client Side Callbacks

Slider provides three callbacks to hook-in your custom javascript, onSlideStart, onSlide and
onSlideEnd. All of these callbacks receive two parameters; slide event and the ui object containing
information about the event.

<h:inputText id="number" value="#{sliderBean.number}" />

<p:slider for="number" onSlideEnd="handleSlideEnd(event, ui)"/>

function handleSlideEnd(event, ui) {
//ui.helper = Handle element of slider
//ui.value = Current value of slider

Ajax Behavior Events

Slider provides one ajax behavior event called slideEnd that is fired when the slide completes. If
you have a listener defined, it will be called by passing org.primefaces.event.SlideEndEvent
instance. Example below adds a message and displays it using growl component when slide ends.

<h:inputText id="number" value="#{sliderBean.number}" />
<p:slider for="number">
<p:ajax event="slideEnd" listener="#{sliderBean.onSlideEnd}" update="msgs" />

</p:slider>

<p:messages id="msgs" />

437

PrimeFaces User Guide

}

}

public class SliderBean {
private int number;
public int getNumber() {

return number;

public void setNumber(int number) {
this.number = number;

public void onSlideEnd(SlideEndEvent event) {
int value = event.getValue();
//add faces message

Client Side API

Widget: PrimeFaces.widget.Slider

Method Params Return Type Description
getValue() - Number Returns the current value
setValue(value) value: Value to set void Updates slider value with

provided one.
disable() index: Index of tab to disable | void Disables slider.
enable() index: Index of tab to enable | void Enables slider.
Skinning

Slider resides in a main container which style and styleClass attributes apply. These attributes are
handy to specify the dimensions of the slider. Following is the list of structural style classes;

Class

Applies

.ui-slider

Main container element

.ui-slider-horizontal

Main container element of horizontal slider

.ui-slider-vertical

Main container element of vertical slider

.ui-slider-handle

Slider handle

As skinning style classes are global, see the main theming section for more information.

438

3.117 Spotlight

Spotlight highlights a certain component on page.

PrimeFaces User Guide

| Spotlight

Spotlight highlights a certain component on page.

New User

Firstname: * [:] g3 Firstname: Validation Error: Value is required.

Surname: * :] £3 Surname: Validation Error: Value is required.

+ Save

Source

‘ spotlight.xhtml

Info
Tag spotlight
Component Class org.primefaces.component.spotlight.Spotlight
Component Type org.primefaces.component.Spotlight
Component Family org.primefaces.component
Renderer Type org.primefaces.component.SpotlightRenderer
Renderer Class org.primefaces.component.spotlight.SpotlightRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered false Boolean | Boolean value to specify the rendering of the component,
when set to false component will not be rendered.
binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean
widgetVar null String Name of the client side widget.
target null String Component to highlight.
animate true Boolean | Controls animation used during highlight.

439

Getting started with Spotlight

PrimeFaces User Guide

Spotlight is accessed using client side api. Clicking the button highlights the panel below;

//content
</p:panel>

<p:panel id="pnl" header="Panel">

<p:spotlight target="pnl" widgetVar="spot" />

<p:commandButton value="Highlight" onclick="PF('spot').show()" />

Client Side API

Widget: PrimeFaces.widget.Spotlight

Method Params Return Type Description
show() - void Highlights target.
hide() - void Removes highlight.

Skinning

Slider resides in a main container which style and styleClass attributes apply. These attributes are
handy to specify the dimensions of the slider. As skinning style classes are global, see the main
theming section for more information. Following is the list of structural style classes;

Class

Applies

.ui-spotlight

Mask element, common to all regions.

.ui-spotlight-top

Top mask element.

.ui-spotlight-bottom

Bottom mask element.

.ui-spotlight-left

Left mask element.

.ui-spotlight-right

Right mask element.

440

3.118 Socket

PrimeFaces User Guide

Socket component is an agent that creates a push channel between the server and the client.

Info

Tag

socket

Component Class

org.primefaces.component.socket.Socket

Component Type

org.primefaces.component.Socket

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SocketRenderer

Renderer Class

org.primefaces.component.socket.SocketRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean | Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

channel null Object Channel name of the connection.

transport websocket String Desired protocol to be used valid values are
websocket (default), sse, streaming, long-polling,
jsonp.

fallbackTransport long-polling String Fallback protocol to be used when desired transport
is not supported in environment, valid values are
websocket, sse, streaming, long-polling (default),
jsonp.

onMessage null String Javascript event handler that is processed when
server publishes data.

onError null String Javascript event handler that is processed when
there is an error.

onClose null String Javascript event handler for onClose callback of
atmosphere.

onOpen null String Javascript event handler for onOpen callback of
atmosphere.

onReconnect null String Javascript event handler for onReconnect callback
of atmosphere.

441

PrimeFaces User Guide

Name Default Type Description

onMessagePublished | null String Javascript event handler for onMessagePublished
callback of atmosphere.

onTransportFailure null String Javascript event handler for onTransportFailure
callback of atmosphere.

onLocalMessage null String Javascript event handler for onLocalMessage
callback of atmosphere.

autoConnect true Boolean | Connects to channel on page load when enabled.

Getting Started with the Socket

See chapter 5, "PrimeFaces Push" for detailed information.

442

PrimeFaces User Guide

3.119 Spacer

Spacer is used to put spaces between elements.

Info

Tag

spacer

Component Class

org.primefaces.component.spacer.Spacer

Component Type

org.primefaces.component.Spacer

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SpacerRenderer

Renderer Class

org.primefaces.component.spacer.SpacerRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

title null String Advisory tooltip informaton.

style null String Inline style of the spacer.

styleClass null String Style class of the spacer.

width null String Width of the space.

height null String Height of the space.

Getting started with Spacer

Spacer is used by either specifying width or height of the space.

Spacer in this example separates this text <p:spacer width="100" height="10"> and
<p:spacer width="100" height="10"> this text.

Spacer in this example separates this text and this text.

443

3.120 Spinner

PrimeFaces User Guide

Spinner is an input component to provide a numerical input via increment and decrement buttons.

Info

21

Tag

spinner

Component Class

org.primefaces.component.spinner.Spinner

Component Type

org.primefaces.component.Spinner

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SpinnerRenderer

Renderer Class

org.primefaces.component.spinner.SpinnerRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component than can be either an EL
expression of a literal text

converter null Converter/ An el expression or a literal text that defines a

String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate false Boolean Boolean value that specifies the lifecycle phase the
valueChangeEvents should be processed, when true
the events will be fired at "apply request values", if
immediate is set to false, valueChange Events are
fired in "process validations"
phase

required False Boolean Marks component as required

validator null Method A method binding expression that refers to a

Expr method validationg the input
valueChangeListener | null Method A method binding expression that refers to a

444

PrimeFaces User Guide

Name Default Type Description
Expr method for handling a valuchangeevent

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

widgetVar null String Name of the client side widget.

stepFactor 1 Double Stepping factor for each increment and decrement

min null Double Minimum boundary value

max null Double Maximum boundary value

prefix null String Prefix of the input

suffix null String Suffix of the input

accesskey null String Access key that when pressed transfers focus to the
input element.

alt null String Alternate textual description of the input field.

autocomplete null String Controls browser autocomplete behavior.

dir null String Direction indication for text that does not inherit
directionality. Valid values are LTR and RTL.

disabled false Boolean Disables input field

label null String A localized user presentable name.

lang null String Code describing the language used in the generated
markup for this component.

maxlength null Integer Maximum number of characters that may be
entered in this field.

onblur null String Client side callback to execute when input element
loses focus.

onchange null String Client side callback to execute when input element
loses focus and its value has been modified since
gaining focus.

onclick null String Client side callback to execute when input element
is clicked.

ondblclick null String Client side callback to execute when input element
is double clicked.

onfocus null String Client side callback to execute when input element
receives focus.

onkeydown null String Client side callback to execute when a key is

pressed down over input element.

445

PrimeFaces User Guide

Name Default Type Description

onkeypress null String Client side callback to execute when a key is
pressed and released over input element.

onkeyup null String Client side callback to execute when a key is
released over input element.

onmousedown null String Client side callback to execute when a pointer
button is pressed down over input element

onmousemove null String Client side callback to execute when a pointer
button is moved within input element.

onmouseout null String Client side callback to execute when a pointer
button is moved away from input element.

onmouseover null String Client side callback to execute when a pointer
button is moved onto input element.

onmouseup null String Client side callback to execute when a pointer
button is released over input element.

onselect null String Client side callback to execute when text within
input element is selected by user.

placeholder null String Specifies a short hint.

readonly false Boolean Flag indicating that this component will prevent
changes by the user.

size null Integer Number of characters used to determine the width
of the input element.

style null String Inline style of the input element.

styleClass null String Style class of the input element.

tabindex null Integer Position of the input element in the tabbing order.
title null String Advisory tooltip informaton.

Getting Started with Spinner

Spinner is an input component and used just like a standard input text.

public class SpinnerBean {
private int number;
//getter and setter

<p:spinner value="#{spinnerBean.number}" />

446

PrimeFaces User Guide

Step Factor

Other than integers, spinner also support decimals so the fractional part can be controller with
spinner as well. For decimals use the stepFactor attribute to specify stepping amount. Following
example uses a stepFactor 0.25.

<p:spinner value="#{spinnerBean.number}" stepFactor="0.25"/>

public class SpinnerBean {
private double number;

//getter and setter

Output of this spinner would be;
0.00

After an increment happens a couple of times.

b

2.25

Prefix and Suffix

Prefix and Suffix options enable placing fixed strings on input field. Note that you would need to
use a converter to avoid conversion errors since prefix/suffix will also be posted.

<p:spinner value="#{spinnerBean.number}" prefix="$" />

Y

21

Boundaries

In order to restrict the boundary values, use min and max options.

<p:spinner value="#{spinnerBean.number}" min="0" max="100"/>

Ajax Spinner

Spinner can be ajaxified using client behaviors like f:ajax or p:ajax. In example below, an ajax
request is done to update the outputtext with new value whenever a spinner button is clicked.

<p:spinner value="#{spinnerBean.number}">
<p:ajax update="display" />
</p:spinner>

<h:outputText id="display" value="#{spinnerBean.number}" />

447

PrimeFaces User Guide

Skinning

Spinner resides in a container element that using style and styleClass applies. Following is the list of
structural style classes;

Class Applies
.ui-spinner Main container element of spinner
.ui-spinner-input Input field
.ui-spinner-button Spinner buttons
.ui-spinner-button-up Increment button
.ui-spinner-button-down Decrement button

As skinning style classes are global, see the main theming section for more information.

448

3.121 SplitButton

PrimeFaces User Guide

SplitButton displays a command by default and additional ones in an overlay.

Info

B Save

-v|
|
| S

£ Update

% Delete

! Homepage

Tag

splitButton

Component Class

org.primefaces.component.splitbutton.SplitButton

Component Type

org.primefaces.component.SplitButton

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SplitButtonRenderer

Renderer Class

org.primefaces.component.splitbutton.SplitButtonRenderer

Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.
binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean
value null String Label for the button
action null MethodExpr/ | A method expression or a String outcome that’d be
String processed when button is clicked.
actionListener null MethodExpr | An actionlistener that’d be processed when button is
clicked.
immediate false Boolean Boolean value that determines the phaseld, when true
actions are processed at apply request values, when
false at invoke application phase.
type submit | String Sets the behavior of the button.
ajax true Boolean Specifies the submit mode, when set to true(default),

submit would be made with Ajax.

449

PrimeFaces User Guide

Name Default Type Description

async false Boolean When set to true, ajax requests are not queued.

process null String Component(s) to process partially instead of whole view.

update null String Component(s) to be updated with ajax.

onstart null String Client side callback to execute before ajax request is
begins.

oncomplete null String Client side callback to execute when ajax request is
completed.

onsuccess null String Client side callback to execute when ajax request
succeeds.

onerror null String Client side callback to execute when ajax request fails.

global true Boolean Defines whether to trigger ajaxStatus or not.

delay null String If less than delay milliseconds elapses between calls to
request() only the most recent one is sent and all other
requests are discarded. If this option is not specified, or if
the value of delay is the literal string 'none' without the
quotes, no delay is used.

partialSubmit false Boolean Enables serialization of values belonging to the partially
processed components only.

resetValues false Boolean If true, local values of input components to be updated
within the ajax request would be reset.

ignoreAutoUpdate | false Boolean If true, components which autoUpdate="true" will not be
updated for this request. If not specified, or the value is
false, no such indication is made.

timeout 0 Integer Timeout for the ajax request in milliseconds.

style null String Inline style of the button element.

styleClass null String StyleClass of the button element.

onblur null String Client side callback to execute when button loses focus.

onchange null String Client side callback to execute when button loses focus
and its value has been modified since gaining focus.

onclick null String Client side callback to execute when button is clicked.

ondblclick null String Client side callback to execute when button is double
clicked.

onfocus null String Client side callback to execute when button receives
focus.

onkeydown null String Client side callback to execute when a key is pressed

down over button.

450

PrimeFaces User Guide

Name Default Type Description

onkeypress null String Client side callback to execute when a key is pressed and
released over button.

onkeyup null String Client side callback to execute when a key is released
over button.

onmousedown null String Client side callback to execute when a pointer button is
pressed down over button.

onmousemove null String Client side callback to execute when a pointer button is
moved within button.
onmouseout null String Client side callback to execute when a pointer button is

moved away from button.

onmouseover null String Client side callback to execute when a pointer button is
moved onto button.

onmouseup null String Client side callback to execute when a pointer button is
released over button.

onselect null String Client side callback to execute when text within button is
selected by user.

accesskey null String Access key that when pressed transfers focus to the
button.

alt null String Alternate textual description of the button.

dir null String Direction indication for text that does not inherit

directionality. Valid values are LTR and RTL.

disabled false Boolean Disables the button.

image null String Style class for the button icon. (deprecated: use icon)

label null String A localized user presentable name.

lang null String Code describing the language used in the generated
markup for this component.

tabindex null Integer Position of the button element in the tabbing order.

title null String Advisory tooltip information.

readonly false Boolean Flag indicating that this component will prevent changes
by the user.

icon null String Icon of the button as a css class.

iconPos left String Position of the icon.

widgetVar null String Name of the client side widget.

appendTo null String Appends the overlay to the element defined by search

expression. Defaults to document body.

451

PrimeFaces User Guide

Getting started with SplitButton

SplitButton usage is similar to a regular commandButton. Additional commands are placed inside
the component and displayed in an overlay. In example below, clicking the save button invokes save
method of the bean and updates messages. Nested options defined as menuitems do ajax, non-ajax
requests as well as regular navigation to an external url.

<p:splitButton value="Save" actionlListener="#{buttonBean.save}" update="messages"
icon="ui-icon-disk">
<p:menuitem value="Update" actionListener="#{buttonBean.update}"
update="messages" icon="ui-icon-arrowrefresh-1-w"/>
<p:menuitem value="Delete" actionListener="#{buttonBean.delete}" ajax="false"

icon="ui-icon-close"/>
<p:separator />
<p:menuitem value="Homepage" url="http://www.primefaces.org"
icon="ui-icon-extlink"/>
</p:splitButton>

Client Side API
Widget: PrimeFaces.widget.SplitButton
Method Params Return Type Description
show() - void Displays overlay.
hide() - void Hides overlay.
Skinning

SplitButton renders a container element which style and styleClass applies. Following is the list of
structural style classes;

Style Class Applies
.ui-splitbutton Container element.
.ui-button Button element
.ui-splitbutton-menubutton Dropdown button
.ui-button-text-only Button element when icon is not used
.ui-button-text Label of button
.ui-menu Container element of menu
.ui-menu-list List container
.ui-menuitem Each menu item
.ui-menuitem-link Anchor element in a link item
.ui-menuitem-text Text element in an item

As skinning style classes are global, see the main theming section for more information.

452

http://www.primefaces.org/

PrimeFaces User Guide

3.122 Submenu

Submenu is nested in menu components and represents a sub menu items.

Info
Tag submenu
Component Class org.primefaces.component.submenu.Submenu
Component Type org.primefaces.component.Submenu
Component Family org.primefaces.component

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean.

label null String Label of the submenu header.

icon null String Icon of a submenu, see menuitem to see how it is used

style null String Inline style of the submenu.

styleClass null String Style class of the submenu.

Getting started with Submenu

Please see Menu or Menubar section to find out how submenu is used with the menus.

453

3.123 Stack

Stack is a navigation component that mimics the stacks feature in Mac OS X.

Info

PrimeFaces User Guide

e &)
az [
=™ @

Tag

stack

Component Class

org.primefaces.component.stack.Stack

Component Type

org.primefaces.component.Stack

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.StackRenderer

Renderer Class

org.primefaces.component.stack.StackRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean.

icon null String An optional image to contain stacked items.

openSpeed 300 String Speed of the animation when opening the stack.

closeSpeed 300 Integer Speed of the animation when opening the stack.

widgetVar null String Name of the client side widget.

model null MenuModel MenuModel instance to create menus programmatically

expanded false Boolean Whether to display stack as expanded or not.

454

PrimeFaces User Guide

Getting started with Stack

Each item in the stack is represented with menuitems. Stack below has five items with different
icons and labels.

<p:stack icon="/images/stack/stack.png">
<p:menuitem value="Aperture" icon="/images/stack/aperture.png" url="#"/>
<p:menuitem value="Photoshop" icon="/images/stack/photoshop.png" url="#"/>
/7. ..

</p:stack>

Initially stack will be rendered in collapsed mode;

Location

Stack is a fixed positioned element and location can be change via css. There’s one important css
selector for stack called .ui-stack. Override this style to change the location of stack.

.ui-stack {
bottom: 28px;
right: 40px;
}

Dynamic Menus

Menus can be created programmatically as well, see the dynamic menus part in menu component
section for more information and an example.

Skinning
Class Applies
.ui-stack Main container element of stack
.ui-stack ul li Each item in stack
.ui-stack ul li img Icon of a stack item
.ui-stack ul li span Label of a stack item

455

3.124 Sticky

Sticky component positions other components as fixed so that these components stay in window
viewport during scrolling.

Info

PrimeFaces User Guide

Sticky
[New @ Open L
New e Open] &

Tag

sticky

Component Class

org.primefaces.component.sticky.Sticky

Component Type

org.primefaces.component.Sticky

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.StickyRenderer

Renderer Class

org.primefaces.component.sticky.StickyRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean.

target null String Component to make sticky.

margin 0 Integer Margin to the top of the page during fixed scrolling.

456

PrimeFaces User Guide

Getting started with Sticky

Sticky requires a target to keep in viewport on scroll. Here is a sticky toolbar;

<p:toolbar id="tb">
<p:toolbarGroup align="left">
<p:commandButton type="button" value="New" icon="ui-icon-document" />
<p:commandButton type="button" value="Open" icon="ui-icon-folder-open"/>

<p:separator />

<p:commandButton type="button" title="Save" icon="ui-icon-disk"/>
<p:commandButton type="button" title="Delete" icon="ui-icon-trash"/>
<p:commandButton type="button" title="Print" icon="ui-icon-print"/>
</p:toolbarGroup>
</p:toolbar>

<p:sticky target="tb" />

Skinning

There are no visual styles of sticky however, ui-sticky class is applied to the target when the position
is fixed. When target is restored to its original location this is removed.

457

PrimeFaces User Guide

3.125 SubTable

SubTable is a helper component of datatable used for grouping.

Info

FCB Statistics.

Goals Assists
Messi

2005-2006 4 2

2006-2007 10 7

2007-2008 16 10

2008-2009 32 15

2009-2010 51 22

20102011 55 30

Xavi

2005-2006 6 15
2006-2007 10 20
2007-2008 12 22
2008-2009 9 21
2009-2010 8 21
2010-2011 10 25

Inlesta
2008-2006 4 12
2006-2007 7 9
2007-2008 0
2008-2009 5
2008-2010 14 16
2010-2011 7

7

Tag

subTable

Component Class

org.primefaces.component.subtable.SubTable

Component Type

org.primefaces.component.SubTable

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SubTableRenderer

Renderer Class

org.primefaces.component.subtable.SubTableRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean

value null Object Data of the component.

var null String Name of the data iterator.

Getting started with SubTable

See DataTable section for more information.

458

3.126 SummaryRow

SummaryRow is a helper component of datatable used for dynamic grouping.

PrimeFaces User Guide

Model = Year Manufacturer - | Color =
20bTdd32 1983 Volvo Orange
83583964 1962 Volvo White
GebBd612 1870 Volvo Brown
a127d76d 1968 Volvo Black
3d5ba523 1994 Volvo Red
Total: | 51545%
dd784dacf 2002 Volkswagen Red
Oed3ef6e 1978 Volkswagen Black
4b0ee961 1960 Volkswagen Red
8b1bdfel 2008 Volkswagen White
Total: | 80121%
40b0ci9d 2000 Renault Green
a56ffeee 1967 Renault Maroon
ecb45794 1983 Renault Green
Total: = 67468%
Info
Tag summaryRow

Component Class

org.primefaces.component.summaryrow.SummaryRow

Component Type

org.primefaces.component.SummaryRow

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SummaryRowRenderer

Renderer Class

org.primefaces.component.summaryrow.SummaryRowRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean

listener null MethodExpr Method expression to execute before rendering summary
row. (e.g. to calculate totals).

Getting started with SummaryRow

See DataTable section for more information.

459

PrimeFaces User Guide

3.127 Tab

Tab is a generic container component used by other PrimeFaces components such as tabView and
accordionPanel.

Info
Tag tab
Component Class org.primefaces.component.TabView.Tab
Component Type org.primefaces.component.Tab
Component Family org.primefaces.component
Attributes
Name Default Type Description
id null String Unique identifier of the component.
rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.
binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean.
title null Boolean Title text of the tab
titleStyle null String Inline style of the tab.
titleStyleClass null String Style class of the tab.
disabled false Boolean Disables tab element.
closable false Boolean Makes the tab closable when enabled.
titletip null String Tooltip of the tab header.

Getting started with the Tab

See the sections of components who utilize tab component for more information. As tab is a shared
component, not all attributes may apply to the components that use tab.

460

3.128 TabMenu

TabMenu is a navigation component that displays menuitems as tabs.

PrimeFaces User Guide

E*Dvewiew i £ Demos & Documentation # Support | 2 Soclal

Info

Tag

tabMenu

Component Class

org.primefaces.component.tabmenu.TabMenu

Component Type

org.primefaces.component.TabMenu

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.TabMenuRenderer

Renderer Class

org.primefaces.component.tabmenu.TabMenuRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

model null MenuModel | MenuModel instance to build menu dynamically.

style null String Inline style of the component.

styleClass null String Style class of the component.

activelndex 0 Integer Index of the active tab.

widgetVar null String Name of the client side widget.

Getting started with TabMenu

TabMenu requires menuitems as children components, each menuitem is rendered as a tab. Just like
in any other menu component, menuitems can be utilized to do ajax requests, non-ajax requests and
simple GET navigations.

461

PrimeFaces User Guide

<p:menuitem
<p:menuitem
<p:menuitem
<p:menuitem
<p:menuitem
</p:tabMenu>

<p:tabMenu activelndex="0">

value="0Overview" outcome="main" icon="ui-icon-star"/>
value="Demos" outcome="demos" icon="ui-icon-search" />
value="Documentation" outcome="docs" icon="ui-icon-document"/>
value="Support" outcome="support" icon="ui-icon-wrench"/>
value="Social" outcome="social" icon="ui-icon-person" />

Skinning TabMenu

TabMenu resides in a main container which style and styleClass attributes apply. Following is the
list of structural style classes;

Style Class Applies

.ui-tabmenu

Main container element.

.ui-tabmenu-nav

Container for tabs.

.ui-tabmenuitem

Menuitem container.

.ui-menuitem

Anchor of a menuitem.

As skinning style classes are global, see the main theming section for more information.

462

PrimeFaces User Guide

3.129 TabView

TabView is a container component to group content in tabs.

{ Godfather Part | Godfather Part Il Godfather Part Il

The story begins as Don Vito Corleone, the head of a New York Mafia
family, oversees his daughter's wedding. His beloved son Michael has just
come home from the war, but does not intend to become part of his father's
business. T hrough Michael's life the nature of the family business becomes
clear. The business of the family is just like the head of the family, kind and
benevolent to those who give respect, but given to ruthless violence
whenever anything stands against the good of the family.

Info

Tag tabView

Component Class org.primefaces.component. tabview.TabView

Component Type org.primefaces.component. TabView

Component Family org.primefaces.component

Renderer Type org.primefaces.component.TabViewRenderer

Renderer Class org.primefaces.component.tabview.TabViewRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean.

widgetVar null String Variable name of the client side widget.

activelndex 0 Integer Index of the active tab.

effect null String Name of the transition effect.

effectDuration null String Duration of the transition effect.

dynamic false Boolean Enables lazy loading of inactive tabs.

463

PrimeFaces User Guide

Name Default Type Description

cache true Boolean When tab contents are lazy loaded by ajax
toggleMode, caching only retrieves the tab contents
once and subsequent toggles of a cached tab does not
communicate with server. If caching is turned off, tab
contents are reloaded from server each time tab is

clicked.
onTabChange null String Client side callback to execute when a tab is clicked.
onTabShow null String Client side callback to execute when a tab is shown.
onTabClose null String Client side callback to execute on tab close.
style null String Inline style of the main container.
styleClass null String Style class of the main container.
var null String Name of iterator to refer an item in collection.
value null Object Collection model to display dynamic tabs.
orientation top String Orientation of tab headers.
dir Itr String Defines text direction, valid values are /7 and rzl.
scrollable false Boolean ‘When enabled, tab headers can be scrolled

horizontally instead of wrapping.

prependld true Boolean TabView is a naming container thus prepends its id to
its children by default, a false value turns this
behavior off except for dynamic tabs.

Getting started with the TabView

TabView requires one more child tab components to display. Titles can also be defined by using
“title” facet.

<p:tabView>
<p:tab title="Tab One">
<h:outputText value="Lorem" />
</p:tab>
<p:tab title="Tab Two">
<h:outputText value="Ipsum" />
</p:tab>
<p:tab title="Tab Three">
<h:outputText value="Dolor" />
</p:tab>
</p:tabView>

464

PrimeFaces User Guide

Dynamic Tabs

There’re two toggleModes in tabview, non-dynamic (default) and dynamic. By default, all tab
contents are rendered to the client, on the other hand in dynamic mode, only the active tab contents
are rendered and when an inactive tab header is selected, content is loaded with ajax. Dynamic
mode is handy in reducing page size, since inactive tabs are lazy loaded, pages will load faster. To
enable dynamic loading, simply set dynamic option to true.

<p:tabView dynamic="true">
//tabs
</p:tabView>

Content Caching

Dynamically loaded tabs cache their contents by default, by doing so, reactivating a tab doesn’t
result in an ajax request since contents are cached. If you want to reload content of a tab each time a
tab is selected, turn off caching by cache to false.

Effects

Content transition effects are controlled with effect and effectDuration attributes. EffectDuration
specifies the speed of the effect, slow, normal (default) and fast are the valid options.

<p:tabView effect="fade" effectDuration="fast">
//tabs
</p:tabView>

Ajax Behavior Events

tabChange and tabClose are the ajax behavior events of tabview that are executed when a tab is
changed and closed respectively. Here is an example of a tabChange behavior implementation;

<p:tabView>
<p:ajax event="tabChange” listener="#{bean.onChange}” />

//tabs
</p:tabView>

public void onChange(TabChangeEvent event) {
//Tab activeTab = event.getTab();
/7. ..
}

Your listener(if defined) will be invoked with an org.primefaces.event. TabChangeEvent instance
that contains a reference to the new active tab and the accordion panel itself. For tabClose event,
listener will be passed an instance of org.primefaces.event. TabCloseEvent.

Dynamic Number of Tabs

When the tabs to display are not static, use the built-in iteration feature similar to ui:repeat.

465

PrimeFaces User Guide

<p:tabView value="#{bean.list}" var="listItem">
<p:tab title="#{listItem.propertyA}">
<h:outputText value= "#{listItem.propertyB}"/>
...More content
</p:tab>
</p:tabView>

Orientations
Four different orientations are available; top(default), left, right and bottom.

<p:tabView orientation="left">
//tabs
</p:tabView>

CGodfather Part |

Godfather Part Il

The story begins as Don Vito Coreone, the head of a
New York Mafia family, oversees his daughter's wedding.
His beloved son Michael has just come home from the
war, but does not intend to become part of his father's
business. T hrough Michael's life the nature of the family
business becomes clear. The business of the family is
just like the head of the family, kind and benevolent to
those who give respect, but given to ruthless violence
whenever anything stands against the good of the family.

Godfather Part Il

Scrollable Tabs

Tab headers wrap to the next line in case there is not enough space at header area by default. Using
scrollable feature, it is possible to keep headers aligned horizontally and use navigation buttons to
access hidden headers.

<p:tabView scrollable="true">
//tabs
</p:tabView>

Tab 0 Tab 1 Tab 2 Tab 3 Tab 4 Tab 5 Tab 6 Tab7 Tab8 |»

Content for Tab 0

Client Side Callbacks

Tabview has three callbacks for client side. onTubChange is executed when an inactive tab is
clicked, onTabShow is executed when an inactive tab becomes active to be shown and onZabClose
when a closable tab is closed. All these callbacks receive index parameter as the index of tab.

466

PrimeFaces User Guide

<p:tabView onTabChange="handleTabChange(index)">
//tabs
</p:tabView>

function handleTabChange(i) {
//1 = Index of the new tab
ks

Client Side API
Widget: PrimeFaces.widget. TabView

Method Params Return Type Description
select(index) index: Index of tab to display | void Activates tab with given index
selectTab(index) | index: Index of tab to display | void (Deprecated, use select instead)

Activates tab with given index

disable(index) index: Index of tab to disable | void Disables tab with given index

enable(index) index: Index of tab to enable void Enables tab with given index

remove(index) index: Index of tab to remove | void Removes tab with given index

getLength() - Number Returns the number of tabs

getActivelndex() - Number Returns index of current tab
Skinning

As skinning style classes are global, see the main theming section for more information. Following
is the list of structural style classes.

Class Applies
.ui-tabs Main tabview container element
.ui-tabs-{orientation} Orientation specific (top, bottom, righ, left) container.
.ui-tabs-nav Main container of tab headers
.ui-tabs-panel Each tab container
.ui-tabs-scrollable Container element of a scrollable tabview.

467

3.130 TagCloud

TagCloud displays a collection of tag with different strengths.

Info

PrimeFaces User Guide

Transformers RIA AJAX
jQuery NextGen JsF 2.0

FCB Mobile Themes

Rocks

Tag

tagCloud

Component Class

org.primefaces.component.tagcloud.TagCloud

Component Type

org.primefaces.component.TagCloud

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.TagCloudRenderer

Renderer Class

org.primefaces.component.tagcloud.TagCloudRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

model null TagCloudModel | Backing tag cloud model.

style null String Inline style of the container element.

styleClass null String Style class of the container element.

Getting started with the TagCloud
TagCloud requires a backend TagCloud model to display.

<p:tagCloud model="#{tagCloudBean.model}" />

468

PrimeFaces User Guide

public class TagCloudBean {
private TagCloudModel model;

public TagCloudBean() {
model = new DefaultTagCloudModel();
model .addTag(new DefaultTagCloudItem("Transformers", "#", 1));
//more

}

//getter

Selecting Tags

An item is tagCloud can be selected using select ajax behavior. Note that only items with null urls
can be selected.

<h:form>
<p:growl id="msg" showDetail="true" />

<p:tagCloud model="#{tagCloudBean.model}">
<p:ajax event="select" update="msg" listener="#{tagCloudBean.onSelect}" />
</p:tagCloud>
</h:form>

public class TagCloudBean {
//model, getter and setter

public void onSelect(SelectEvent event) {
TagCloudItem item = (TagCloudItem) event.getObject();
FacesMessage msg = new FacesMessage(FacesMessage.SEVERITY_INFO,
"Item Selected", item.getlLabel());
FacesContext.getCurrentInstance().addMessage(null, msg);

3
3
TagCloud API
org.primefaces.model.tagcloud. TagCloudModel
Method Description

List<TagCLoudItem> getTags() Returns all tags in model.

void addTag(TagCloudItem item) Adds a tag.

void removeTag(TagCloudltem item) Removes a tag.

void clear() Removes all tags.

PrimeFaces provides org primefaces.model.tagcloud. DefaultTagCloudModel as the default
implementation.
469

org.primefaces.model.tagcloud. TagCloudItem

PrimeFaces User Guide

Method Description
String getLabel() Returns label of the tag.
String getUrl() Returns url of the tag.
int getStrength() Returns strength of the tag between 1 and 5.

org.primefaces.model.tagcloud. DefaultTagCloudItem is provided as the default implementation.

Skinning

TagCloud resides in a container element that style and styleClass attributes apply. .ui-tagcloud
applies to main container and .ui-tagcloud-strength-[1,5] applies to each tag. As skinning style
classes are global, see the main theming section for more information.

470

3.131 Terminal

Terminal is an ajax powered web based terminal that brings desktop terminals to JSF.

PrimeFaces User Guide

Welcome to PrimeFaces Terminal, how are you today?
prime $Is

Is not found
prime $ date
Fri Sep 20 15:33:21 CEST 2013
prime $ greet Optimus Prime
Hello Optimus

prime $

Info

Tag

terminal

Component Class

org.primefaces.component.terminal. Terminal

Component Type

org.primefaces.component. Terminal

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.TerminalRenderer

Renderer Class

org.primefaces.component.terminal. TerminalRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

style null String Inline style of the component.

styleClass null String Style class of the component.

welcomeMessage null String Welcome message to be displayed on initial load.

prompt prime $ String Primary prompt text.

commandHandler null MethodExpr | Method to be called with arguments to process.

widgetVar null String Name of the client side widget.

471

PrimeFaces User Guide

Getting started with the Terminal

A command handler is required to interpret commands entered in terminal.

<p:terminal commandHandler="#{terminalBean.handleCommand}" />

public class TerminalBean {

public String handleCommand(String command, String[] params) {
if(command.equals("greet™))
return "Hello " + params[Q];
else if(command.equals("date™))
return new Date().toString(Q);
else

return command + " not found";

Whenever a command is sent to the server, handleCommand method is invoked with the command
name and the command arguments as a String array.

Client Side API

Client side widget exposes clear() and focus() methods. Following shows how to add focus on a
terminal nested inside a dialog;

<p:commandButton type="button" Value="Apply Focus" onclick="PF('term").focus();"/>
<p:terminal widgetVar="term" commandHandler="#{terminalBean.handleCommand}" />

Skinning

Terminal resides in a main container which style and styleClass attributes apply. Following is the
list of structural style classes;

Style Class Applies
.ui-terminal Main container element.
.ui-terminal-content Content display of previous commands with responses.
.ui-terminal-prompt Prompt text.

472

PrimeFaces User Guide

3.132 ThemeSwitcher

ThemeSwitcher enables switching PrimeFaces themes on the fly with no page refresh.

Choose Theme -

Choose Theme

cupertino

trontastic

Info

Tag themeSwitcher

Component Class org.primefaces.component.themeswitcher.ThemeSwitcher

Component Type org.primefaces.component.ThemeSwitcher

Component Family org.primefaces.component

Renderer Type org.primefaces.component.ThemeSwitcherRenderer

Renderer Class org.primefaces.component.themeswitcher.ThemeSwitcherRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

effect fade String Name of the animation.

effectSpeed normal String Duration of the toggle animation, valid values are
"slow", "normal" and "fast".

disabled false Boolean Disables the component.

label null String User presentable name.

onchange null String Client side callback to execute on theme change.

style null String Inline style of the component.

styleClass null String Style class of the component.

473

PrimeFaces User Guide

Name Default Type Description
var null String Variable name to refer to each item.
height null Integer Height of the panel.
tabindex null Integer Position of the element in the tabbing order.

Getting Started with the ThemeSwitcher
ThemeSwitcher usage is very similar to selectOneMenu.

<p:themeSwitcher style="width:150px">
<f:selectItem itemLabel="Choose Theme" itemValue="" />
<f:selectItems value="#{bean.themes}" />
</p:themeSwitcher>

Stateful ThemeSwitcher

By default, themeswitcher just changes the theme on the fly with no page refresh, in case you'd like
to get notified when a user changes the theme (e.g. to update user preferences), you can use an ajax
behavior.

<p:themeSwitcher value="#{bean.theme}" effect="fade">
<f:selectItem itemLabel="Choose Theme" itemValue="" />
<f:selectItems value="#{themeSwitcherBean.themes}" />
<p:ajax listener="#{bean.saveTheme}" />
</p:themeSwitcher>

Advanced ThemeSwitcher

ThemeSwitcher supports displaying custom content so that you can show theme previews.

<p:themeSwitcher>
<f:selectItem itemLabel="Choose Theme" itemValue="" />
<f:selectItems value="#{themeSwitcherBean.advancedThemes}" var="theme"
itemLabel="#{theme.name}" itemValue="#{theme}"/>

<p:column>
<p:graphicImage value="/images/themes/#{t.image}"/>
</p:column>

<p:column>
#{t.name}
</p:column>
</p:themeSwitcher>

474

3.133 TieredMenu

TieredMenu is used to display nested submenus with overlays.

Info

| & Ajax Menuitems

PrimeFaces User Guide

'J B Save

2 Mon-Ajax Menuitem » ‘ 2 Update

! Mavigations

Tag

tieredMenu

Component Class

org.primefaces.component.tieredmenu.TieredMenu

Component Type

org.primefaces.component.TieredMenu

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.TieredMenuRenderer

Renderer Class

org.primefaces.component.tieredmenu.TieredMenuRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

model null MenuModel MenuModel instance for programmatic menu.

style null String Inline style of the component.

styleClass null String Style class of the component.

autoDisplay true Boolean Defines whether the first level of submenus will be
displayed on mouseover or not. When set to false,
click event is required to display.

trigger null String Id of the component whose triggerEvent will show
the dynamic positioned menu.

my null String Corner of menu to align with trigger element.

at null String Corner of trigger to align with menu element.

475

PrimeFaces User Guide

Name Default Type Description

overlay false Boolean Defines positioning, when enabled menu is
displayed with absolute position relative to the
trigger. Default is false, meaning static positioning.

triggerEvent click String Event name of trigger that will show the dynamic
positioned menu.

toggleEvent hover String Event to toggle the submenus, valid values are
"hover" and "click".

Getting started with the TieredMenu

TieredMenu consists of submenus and menuitems, submenus can be nested and each nested
submenu will be displayed in an overlay.

<p:tieredMenu>
<p:submenu label="Ajax Menuitems" icon="ui-icon-refresh">
<p:menuitem value="Save" actionListener="#{buttonBean.save}"
update="messages" icon="ui-icon-disk" />
<p:menuitem value="Update" actionListener="#{buttonBean.update}"
update="messages" icon="ui-icon-arrowrefresh-1-w" />
</p: submenu>

<p:submenu label="Non-Ajax Menuitem" icon="ui-icon-newwin">
<p:menuitem value="Delete" actionlListener="#{buttonBean.delete}"

update="messages" ajax="false" icon="ui-icon-close"/>

</p: submenu>

<p:separator />

<p:submenu label="Navigations" icon="ui-icon-extlink">
<p:submenu label="Prime Links">
<p:menuitem value="Prime" url="http://www.prime.com.tr" />
<p:menuitem value="PrimeFaces" url="http://www.primefaces.org" />
</p: submenu>
<p:menuitem value="Mobile" url="/mobile" />
</p: submenu>
</p:tieredMenu>

AutoDisplay

By default, submenus are displayed when mouse is over root menuitems, set autoDisplay to false to
require a click on root menuitems to enable autoDisplay mode.

<p:tieredMenu autoDisplay="false">
//content

</p:tieredMenu>

476

Overlay

PrimeFaces User Guide

TieredMenu can be positioned relative to a trigger component, following sample attaches a
tieredMenu to the button so that whenever the button is clicked tieredMenu will be displayed in an

overlay itself.

//content

</p:tieredMenu>

<p:commandButton type="button" value="Show" id="btn" />

<p:tieredMenu autoDisplay="false" trigger="btn" my="left top" at="left bottom">

Show

Ajax Menuitems
Naon-Ajax Menuitem

! Navigations

X J Prime Links bl oime

Client Side API

Mobile PrimeFaces

Widget: PrimeFaces.widget. TieredMenu

Method Params Return Type Description
show() - void Shows overlay menu.
hide() - void Hides overlay menu.
align() - void Aligns overlay menu with trigger.
Skinning

TieredMenu resides in a main container which style and styleClass attributes apply. Following is the

list of structural style classes;

Style Class

Applies

.ui-menu .ui-tieredmenu

Container element of menu.

.ui-menu-list

List container

.ui-menuitem

Each menu item

.ui-menuitem-link

Anchor element in a link item

.ul-menuitem-text

Text element in an item

As skinning style classes are global, see the main theming section for more information.

477

3.134 Toolbar

Toolbar is a horizontal grouping component for commands and other content.

PrimeFaces User Guide

O New @ Open B O & +* QOptions
Info
Tag toolbar

Component Class

org.primefaces.component.toolbar.Toolbar

Component Type

org.primefaces.component.Toolbar

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.ToolbarRenderer

Renderer Class

org.primefaces.component.toolbar.ToolbarRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

style null String Inline style of the container element.

styleClass null String Style class of the container element.

Getting Started with the Toolbar

Toolbar has two placeholders(left and right) that are defined with facets. You can also use

toolbarGroup as an alternative to facets.

<p:toolbar>

</p:toolbar>

<f:facet name="left"></f:facet>
<f:facet name="right"></f:facet>

Any content can be placed inside toolbar.

478

PrimeFaces User Guide

<p:toolbar>
<f:facet name="left">
<p:commandButton type="push" value="New" image="ui-icon-document" />
<p:commandButton type="push" value="Open" image="ui-icon-folder-open"/>

<p:commandButton type="push" title="Save" image="ui-icon-disk"/>

<p:commandButton type="push" title="Delete" image="ui-icon-trash"/>

<p:commandButton type="push" title="Print" image="ui-icon-print"/>
</f:facet>

<f:facet name="right">
<p:menuButton value="Navigate">
<p:menuitem value="Home" url="#" />
<p:menuitem value="Logout" url="#" />
</p:menuButton>
</f:facet>
</p:toolbar>

Skinning

Toolbar resides in a container element which style and styleClass options apply. Following is the list
of structural style classes;

Style Class Applies
.ui-toolbar Main container
.ui-toolbar .ui-separator Divider in a toolbar
.ui-toolbar-group-left Left toolbarGroup container
.ui-toolbar-group-right Right toolbarGroup container

As skinning style classes are global, see the main theming section for more information.

479

PrimeFaces User Guide

3.135 ToolbarGroup

ToolbarGroup is a helper component for Toolbar component to define placeholders.

Info
Tag toolbarGroup
Component Class org.primefaces.component.toolbar.ToolbarGroup
Component Type org.primefaces.component.ToolbarGroup
Component Family org.primefaces.component
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean | Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.
binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean
align null String Defines the alignment within toolbar, valid values
are left and right.
style null String Inline style of the container element.
styleClass null String Style class of the container element.

Getting Started with the ToolbarGroup

See toolbar documentation for more information about how Toolbar Group is used.

480

PrimeFaces User Guide

3.136 Tooltip

Tooltip goes beyond the legacy html title attribute by providing custom effects, events, html content
and advance theme support.

This tooltip is displayed when input gets
the focus

Info

Tag tooltip

Component Class org.primefaces.component.tooltip.Tooltip

Component Type org.primefaces.component.Tooltip

Component Family org.primefaces.component

Renderer Type org.primefaces.component.TooltipRenderer

Renderer Class org.primefaces.component.tooltip. TooltipRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

value null Object Value of the component than can be either an EL.
expression of a literal text

converter null Converter/ | An el expression or a literal text that defines a

String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

widgetVar null String Name of the client side widget.

showEvent mouseover | String Event displaying the tooltip.

showEffect fade String Effect to be used for displaying.

hideEvent mouseout | String Event hiding the tooltip.

hideEffect fade String Effect to be used for hiding.

showDelay 150 Integer Delay time to show tooltip in milliseconds.

481

PrimeFaces User Guide

Name Default Type Description
hideDelay 0 Integer Delay time to hide tooltip in milliseconds.
for null String Component to attach the tooltip.
style null String Inline style of the tooltip.
styleClass null String Style class of the tooltip.
globalSelector null String jquery selector for global tooltip, defaults to
"a,:input,:button".
escape true Boolean Defines whether html would be escaped or not.
trackMouse false Boolean Tooltip position follows pointer on mousemove.

Getting started with the Tooltip

Tooltip can be used by attaching it to a target component. Tooltip value can also be retrieved from
target’s title, so following are same;

<h:inputSecret id="pwd" value="#{myBean.password}" />
<p:tooltip for="pwd" value="Only numbers"/>

<h:inputSecret id="pwd" value="#{myBean.password}" title="Only numbers"/>
<p:tooltip for="pwd"/>

Global Tooltip

Global tooltip binds to elements with title attributes. Ajax updates are supported as well, meaning if
target component is updated with ajax, tooltip can still bind. As global tooltips are more efficient
since only one instance of tooltip is used across all tooltip targets, it is suggested to be used instead
of explicit tooltips unless you have a custom case e.g. different options, custom content.

<p:tooltip />

<p:inputText id="focus" title="Tooltip for an input"/>

<h:outputlLink id="fade" value="#" title="Tooltip for a link">
<h:outputText value="Fade Effect" />

</h:outputLink>

<p:commandButton value="Up" title="Up" />

IE10 Issue

Due to a bug, IE10 always displays the title text in a native popup when the element receives focus
via tabbing and two tooltips might be displayed at once. Solution is to use passthrough data-tooltip
attribute instead of title.

482

PrimeFaces User Guide

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html"
xmlns:pt="http://xmlns.jcp.org/jsf/passthrough"
xmlns:p="http://primefaces.org/ui">

<h:head></h:head>

<h:body>
<p:inputText pt:data-tooltip="Title here"/>
<p:inputText title="Works fine except tabbed on IE10"/>
</h:body>
</html>

Events and Effects

A tooltip is shown on mouseover event and hidden when mouse is out by default. If you need to
change this behavior use the showEvent and hideEvent feature. Tooltip below is displayed when the
input gets the focus and hidden with onblur.

<h:inputSecret id="pwd" value="#{myBean.password}" />
<p:tooltip for="pwd" value="Password must contain only numbers"
showEvent="focus" hideEvent="blur" showEffect="blind" hideEffect="explode" />

Available options for effects are; blind, bounce, clip, drop, explode, fold, highlight, puff, pulsate,
scale, shake, size and slide.

Html Content

Another powerful feature of tooltip is the ability to display custom content as a tooltip.

<h:outputLink id="1lnk" value="#">
<h:outputText value="PrimeFaces Home" />
</h:outputLink>

<p:tooltip for="1lnk">
<p:graphicImage value="/images/prime_logo.png" />
<h:outputText value="Visit PrimeFaces Home" />
</p:tooltip>

Skinning

Tooltip has only .ui-fooltip as a style class and is styled with global skinning selectors, see main
skinning section for more information.

483

PrimeFaces User Guide

3.137 Tree

Tree is used for displaying hierarchical data and creating site navigations.

~ Node 0
~ Node 0.0
Node 0.0.0
Node 0.0.1
» Mode 0.1
+ Node 1
Node 2
Info
Tag tree
Component Class org.primefaces.component.tree.Tree
Component Type org.primefaces.component.Tree
Component Family org.primefaces.component
Renderer Type org.primefaces.component.TreeRenderer
Renderer Class org.primefaces.component.tree. TreeRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean
widgetVar null String Name of the client side widget.
value null Object A TreeNode instance as the backing model.
var null String Name of the request-scoped variable that'll be used
to refer each treenode data.
dynamic false Boolean Specifies the ajax/client toggleMode
cache true Boolean Specifies caching on dynamically loaded nodes.
When set to true expanded nodes will be kept in
memory.
onNodeClick null String Javascript event to process when a tree node is
clicked.
selection null Object TreeNode array to reference the selections.

484

PrimeFaces User Guide

Name Default Type Description

style null String Style of the main container element of tree

styleClass null String Style class of the main container element of tree

selectionMode null String Defines the selectionMode

highlight true Boolean Highlights nodes on hover when selection is
enabled.

datakey null Object Unique key of the data presented by nodes.

animate false Boolean When enabled, displays slide effect on toggle.

orientation vertical String Orientation of layout, vertical or horizontal.

propagateSelectionUp true Boolean Defines upwards selection propagation for
checkbox mode.

propagateSelectionDown | true Boolean Defines downwards selection propagation for
checkbox mode.

dir Itr String Defines text direction, valid values are /¢ and r#/.

draggable false Boolean Makes tree nodes draggable.

droppable false Boolean Makes tree droppable.

dragdropScope null String Scope key to group a set of tree components for
transferring nodes using drag and drop.

dragMode self String Defines parent-child relationship when a node is
dragged, valid values are self (default), parent and
ancestor.

dropRestrict none String Defines parent-child restrictions when a node is
dropped valid values are none (default) and sibling.

required false Boolean Validation constraint for selection.

requiredMessage null String Message for required selection validation.

Getting started with the Tree

Tree is populated with a org.primefaces.model. TreeNode instance which corresponds to the root.

<p:treeNode>

</p:.tree>

<p:tree value="#{treeBean.root}" var="node">

<h:outputText value="#{node}"/>
</p:treeNode>

485

PrimeFaces User Guide

}

public class TreeBean {
private TreeNode root;

public TreeBean() {

root = new TreeNode("Root", null);
TreeNode node@ = new TreeNode("Node 0", root);

TreeNode nodel =
TreeNode node2 =

TreeNode node@0
TreeNode node@l

TreeNode nodel0
TreeNode nodell

TreeNode node@00@
TreeNode node@01
TreeNode node@10

TreeNode nodel@0

//getter of root

n
n

ew TreeNode("Node 1", root);
ew TreeNode("Node 2", root);

new TreeNode("Node 0.0", node0d);
new TreeNode("Node 0.1", node0d);

new TreeNode("Node 1.0", nodel);
new TreeNode("Node 1.1", nodel);

new TreeNode("Node 0.0.0", node@d);
new TreeNode("Node 0.0.1", node@d);
new TreeNode("Node ©0.1.0", node@l);

new TreeNode("Node 1.0.0", nodel®d);

TreeNode vs p:TreeNode

TreeNode API is used to create the node model and consists of org.primefaces.model.TreeNode
instances, on the other hand <p:treeNode /> represents a component of type
org.primefaces.component.tree.UlTreeNode. You can bind a TreeNode to a particular p:treeNode
using the fype name. Document Tree example in upcoming section demonstrates a sample usage.

TreeNode API

TreeNode has a simple API to use when building the backing model. For example if you call
node.setExpanded(true) on a particular node, tree will render that node as expanded.

Property Type Description
type String type of the treeNode name, default type name is "default".
data Object Encapsulated data
children List<TreeNode> List of child nodes
parent TreeNode Parent node
expanded Boolean Flag indicating whether the node is expanded or not

486

PrimeFaces User Guide

Dynamic Tree

Tree is non-dynamic by default and toggling happens on client-side. In order to enable ajax toggling
set dynamic setting to true.

<p:tree value="#{treeBean.root}" var="node" dynamic="true">
<p:treeNode>
<h:outputText value="#{node}"/>
</p:treeNode>
</p:.tree>

Non-Dynamic: When toggling is set to client all the treenodes in model are rendered to the client
and tree is created, this mode is suitable for relatively small datasets and provides fast user
interaction. On the otherhand it’s not suitable for large data since all the data is sent to the client also
client side tree is stateless.

Dynamic: Dynamic mode uses ajax to fetch the treenodes from server side on demand, compared to
the client toggling, dynamic mode has the advantage of dealing with large data because only the
child nodes of the root node is sent to the client initially and whole tree is lazily populated. When a
node is expanded, tree only loads the children of the particular expanded node and send to the client
for display.

Multiple TreeNode Types

It’s a common requirement to display different TreeNode types with a different UI (eg icon).
Suppose you’re using tree to visualize a company with different departments and different
employees, or a document tree with various folders, files each having a different formats (music,
video). In order to solve this, you can place more than one <p.treeNode /> components each having
a different type and use that "type" to bind TreeNode’s in your model. Following example
demonstrates a document explorer. Here is the final output to achieve;

@ Documents
- @ Work
O Expensesdoc

O Resume.doc

~ @ PrimeFaces
[RefDoc.pages

* @& Pictures
[&] barcelona.jpg

&l logo.jpg
& optimusprime.png
- @ Movies

* @ Al Pacino
H Scarface

B Carlitos’ Way
F @ Robert De Miro

Document Explorer is implemented with four different <p:treeNode /> components and additional
CSS skinning to visualize expanded/closed folder icons.

487

PrimeFaces User Guide

<p:tree value="#{bean.root}" var="doc">
<p:treeNode expandedIcon="ui-icon ui-icon-folder-open"
collapsedIcon="ui-icon ui-icon-folder-collapsed">
<h:outputText value="#{doc.name}"/>
</p:treeNode>
<p:treeNode type="document" icon="ui-icon ui-icon-document">
<h:outputText value="#{doc.name}" />
</p:treeNode>
<p:treeNode type="picture" icon="ui-icon ui-icon-image">
<h:outputText value="#{doc.name}" />
</p:treeNode>
<p:treeNode type="mp3" icon="ui-icon ui-icon-video">
<h:outputText value="#{doc.name}" />
</p:treeNode>
</p:tree>

488

PrimeFaces User Guide

public class Bean {
private TreeNode root;

public Bean() {
root = new TreeNode("root", null);

TreeNode documents = new TreeNode("Documents", root);
TreeNode pictures = new TreeNode("Pictures", root);
TreeNode music = new TreeNode("Music", root);

TreeNode work = new TreeNode("Work", documents);
TreeNode primefaces = new TreeNode("PrimeFaces", documents);

//Documents

TreeNode expenses = new TreeNode("document", "Expenses.doc", work);
TreeNode resume = new TreeNode("document", "Resume.doc", work);
TreeNode refdoc = new TreeNode("document", "RefDoc.pages", primefaces);
//Pictures

TreeNode barca = new TreeNode("picture", "barcelona.jpg", pictures);
TreeNode primelogo = new TreeNode("picture", "logo.jpg", pictures);
TreeNode optimus = new TreeNode("picture", "optimus.png", pictures);
//Music

TreeNode turkish = new TreeNode("Turkish", music);

TreeNode cemKaraca = new TreeNode("Cem Karaca", turkish);
TreeNode erkinKoray = new TreeNode("Erkin Koray", turkish);
TreeNode mogollar = new TreeNode("Mogollar", turkish);

TreeNode nemalacak = new TreeNode("mp3", "Nem Alacak Felek Benim", cemKaraca);
TreeNode resimdeki = new TreeNode("mp3", "Resimdeki Goz Yaslari", cemKaraca);
TreeNode copculer = new TreeNode("mp3", "Copculer", erkinKoray);

TreeNode oylebirgecer = new TreeNode("mp3", "Oyle Bir Gecer", erkinKoray);
TreeNode toprakana = new TreeNode("mp3", "Toprak Ana", mogollar);

TreeNode bisiyapmali = new TreeNode("mp3", "Bisi Yapmali", mogollar);

b
//getter of root

}

Integration between a TreeNode and a p:treeNode is the type attribute, for example music files in
document explorer are represented using TreeNodes with type "mp3", there’s also a p:treeNode
component with same type "mp3". This results in rendering all music nodes using that particular
p:treeNode representation which displays a note icon. Similarly document and pictures have their
own p:treeNode representations.

Folders on the other hand have two states whose icons are defined by expandedicon and
collapsedIcon attributes.

Ajax Behavior Events

Tree provides various ajax behavior events.

489

PrimeFaces User Guide

Event Listener Parameter Fired
expand org.primefaces.event.NodeExpandEvent When a node is expanded.
collapse org.primefaces.event.NodeCollapseEvent | When a node is collapsed.
select org.primefaces.event.NodeSelectEvent When a node is selected.
collapse org.primefaces.event.NodeUnselectEvent | When a node is unselected.

Following tree has three listeners;

<p:tree value="#{treeBean.model}" dynamic="true">
<p:ajax event="select" listener="#{treeBean.onNodeSelect}" />
<p:ajax event="expand" listener="#{treeBean.onNodeExpand}" />
<p:ajax event="collapse" listener="#{treeBean.onNodeCollapse}" />

</p:.tree>

public void onNodeSelect(NodeSelectEvent event) {
String node = event.getTreeNode().getData().toString();

}

public void onNodeExpand(NodeExpandEvent event) {
String node = event.getTreeNode().getData().toString();

}

public void onNodeCollapse(NodeCollapseEvent event) {
String node = event.getTreeNode().getData().toString();

}

Event listeners are also useful when dealing with huge amount of data. The idea for implementing
such a use case would be providing only the root and child nodes to the tree, use event listeners to
get the selected node and add new nodes to that particular tree at runtime.

Selection

Node selection is a built-in feature of tree and it supports three different modes. Selection should be
a TreeNode for single case and an array of TreeNodes for multiple and checkbox cases, tree finds
the selected nodes and assign them to your selection model.

single: Only one at a time can be selected, selection should be a TreeNode reference.
multiple: Multiple nodes can be selected, selection should be a TreeNode[] reference.
checkbox: Multiple selection is done with checkbox UI, selection should be a TreeNode[] reference.

<p:tree value="#{treeBean.root}" var="node"
selectionMode="checkbox"
selection="#{treeBean.selectedNodes}">
<p:treeNode>
<h:outputText value="#{node}"/>
</p:treeNode>
</p:.tree>

490

PrimeFaces User Guide

public class TreeBean {

private TreeNode root;
private TreeNode[] selectedNodes;

public TreeBean() {
root = new CheckboxTreeNode("Root", null);
//populate nodes

i
//getters and setters

That’s it, now the checkbox based tree looks like below. When the form is submitted with a
command component like a button, selected nodes will be populated in selectedNodes property of
TreeBean. As checkbox selection have a special hierarchy, use CheckboxTreeNode instead.

~ [l Node o

~ [l Node 0.0
B Node 0.0.0

B Node 0.0.1
» [Node 0.1

» . Node 1
Il node2

Node Caching

When caching is turned on by default, dynamically loaded nodes will be kept in memory so re-
expanding a node will not trigger a server side request. In case it’s set to false, collapsing the node
will remove the children and expanding it later causes the children nodes to be fetched from server
again.

Handling Node Click

If you need to execute custom javascript when a treenode is clicked, use the onNodeClick attribute.
Your javascript method will be invoked with passing the html element of the node and the click
event as parameters. In case you have datakey defined, you can access datakey on client side by
using node.attr(‘data-datakey’) that represents the data represented by the backing tree model.

DragDrop

Tree nodes can be reordered within a single tree and can even be transferred between multiple trees
using dragdrop. For a single tree enable draggable and droppable options.

<p:tree value="#{treeBean.root}" var="node" draggable="true" droppable="true">
<p:treeNode>
<h:outputText value="#{node}"/>
</p:treeNode>
</p:tree>

For multiple trees, use a scope attribute to match them and configure dragdrop options depending
on your case, following example has 2 trees where one is the source and other is the target. Target
can also be reordered within itself.

491

PrimeFaces User Guide

<p:tree value="#{treeBean.rootl}" var="node" draggable="true" droppable="false"
dragdropScope="myscope">
<p:treeNode>
<h:outputText value="#{node}"/>
</p:treeNode>
</p:tree>

<p:tree value="#{treeBean.root2}" var="node" draggable="true" droppable="true"
dragdropScope="myscope">
<p:treeNode>
<h:outputText value="#{node}"/>
</p:treeNode>

</p:tree>
~ Node O
~ Mode 0.0
Node 0.0.0 R
— ﬁ [tem 0.0
Mode 0.0.1 i N
4‘--- ltemn T
r Mode 0.1
ltem 2
r MNode 1
Node 2

Two additional options exist for further configuration, dragMode defines the target node that would
be dropped, default value is self and other values are parent and ancestor. dropRestrict on the other
hand, can restrict the drop target to be within the parent by setting it to sibling.

Horizontal Tree

Default orientation of tree is vertical, setting it to horizontal displays nodes in an horizontal layout.
All features of vertical tree except dragdrop is available for horizontal tree as well.

M Expenses.doc
= @ Work
— @ Documents [y Resume.doc
+ @ PrimeFaces
& barcelona.jpg
— @wFiles — @ Pictures & logo.jpg
[Optimusprime. png
M Scarface
= @Al Pacino

- @ Movies @ Carlitos' Way

+ [@ Robert De Niro

492

PrimeFaces User Guide

ContextMenu

Tree has special integration with context menu, you can even match different context menus with
different tree nodes using nodeType option of context menu that matches the tree node type. Note
that selection must be enabled in tree component for context menu integration.

<p:contextMenu for="tree">
<p:menuitem value="View" update="messages"
actionlListener="#{bean.view}" icon="ui-icon-search" />
<p:menuitem value="View" update="tree"
actionlListener="#{bean.delete}" icon="ui-icon-close" />
</p:contextMenu>

<p:tree id="tree" value="#{bean.root}" var="node"
selectionMode="single" selection="#{bean.selectedNode}">

<p:treeNode>
<h:outputText value="#{node}" />
</p:treeNode>

</p:tree>

Skinning

Tree resides in a container element which style and styleClass options apply. Following is the list of
structural style classes;

Style Class Applies
.ui-tree Main container
.ui-tree-container Root node container.
.ui-treenode Tree node
.ui-treenode-content Tree node content
.ui-treenode-icon Tree node icon
.ui-tree-toggler Toggle icon
.ui-treenode-label Tree node label
.ui-treenode-parent Nodes with children
.ui-treenode-leaf Nodes without children

As skinning style classes are global, see the main theming section for more information.

493

3.138 TreeNode

TreeNode is used with Tree component to represent a node in tree.

Info

PrimeFaces User Guide

Tag

treeNode

Component Class

org.primefaces.component.tree.Ul'TreeNode

Component Type

org.primefaces.component.UlTreeNode

Component Family

org.primefaces.component

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

type default String Type of the tree node

styleClass null String Style class to apply a particular tree node type

icon null String Icon of the node.

expandedlcon null String Expanded icon of the node.

collapsedIcon null String Collapsed icon of the node.

Getting started with the TreeNode

TreeNode is used by Tree and TreeTable components, refer to sections of these components for

more information.

494

PrimeFaces User Guide

3.139 TreeTable

Treetable is is used for displaying hierarchical data in tabular format.

Document Viewer
Mame Size Type
* Documents - Folder e
» Work - Folder o
» PrimeFaces - Folder e
» Pictures - Folder o
+ Movies - Folder £
Info
Tag treeTable
Component Class org.primefaces.component.treetable.TreeTable
Component Type org.primefaces.component.TreeTable
Component Family org.primefaces.component
Renderer Type org.primefaces.component.TreeTableRenderer
Renderer Class org.primefaces.component.treetable. TreeTableRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will
not be rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean
value null Object A TreeNode instance as the backing model.
var null String Name of the request-scoped variable used to
refer each treenode.
widgetVar null String Name of the client side widget.
style null String Inline style of the container element.
styleClass null String Style class of the container element.
selection null Object Selection reference.

495

PrimeFaces User Guide

Name Default Type Description
selectionMode null String Type of selection mode.
scrollable false Boolean Whether or not the data should be scrollable.
scrollHeight null Integer Height of scrollable data.
scrollWidth null Integer Width of scrollable data.
tableStyle null String Inline style of the table element.
tableStyleClass null String Style class of the table element.
emptyMessage No String Text to display when there is no data to display.
records
found
resizableColumns false Boolean Defines if colums can be resized or not.
rowStyleClass null String Style class for each row.
liveResize false Boolean Columns are resized live in this mode without

using a resize helper.

required false Boolean Validation constraint for selection.

requiredMessage null String Message for required selection validation.

sortBy null ValueExpr Expression for default sorting.

sortOrder ascending | String Defines default sorting order.

sortFunction null MethodExpr | Custom pluggable sortFunction for default
sorting.

nativeElements false Boolean In native mode, treetable uses native
checkboxes.

datal.ocale null Object Locale to be used in features such as sorting,

defaults to view locale.

caseSensitiveSort false Boolean Case sensitivity for sorting, insensitive by
default.

Getting started with the TreeTable

Similar to the Tree, TreeTable is populated with an org primefaces.model. TreeNode instance that
corresponds to the root node. TreeNode API has a hierarchical data structure and represents the data
to be populated in tree. For an example, model to be displayed is a collection of documents similar
as in tree section.

496

PrimeFaces User Guide

public class Document {

private String name;
private String size;
private String type;
//getters, setters

<p:treeTable value="#{bean.root}" var="document">
<p:column>
<f:facet name="header">

Name

</f:facet>
<h:outputText value="#{document.name}" />
</p:column>

//more columns
</p:treeTable>

Selection

Node selection is a built-in feature of tree and it supports two different modes. Selection should be a
TreeNode for single case and an array of TreeNodes for multiple case, tree finds the selected nodes
and assign them to your selection model.

single: Only one at a time can be selected, selection should be a TreeNode reference.
multiple or checkbox: Multiple nodes can be selected, selection should be a TreeNode[] reference.

As checkbox selection have a special hierarchy, use CheckboxTreeNode in checkbox mode.

Ajax Behavior Events

TreeTable provides various ajax behavior events to respond user actions.

Event Listener Parameter Fired
expand org.primefaces.event.NodeExpandEvent When a node is expanded.
collapse org.primefaces.event.NodeCollapseEvent | When a node is collapsed.
select org.primefaces.event.NodeSelectEvent When a node is selected.
unselect org.primefaces.event.NodeUnselectEvent | When a node is unselected.
colResize org.primefaces.event.ColumnResizeEvent | When a column is resized.

ContextMenu

TreeTable has special integration with context menu, you can even match different context menus
with different tree nodes using nodeType option of context menu that matches the tree node type.

497

PrimeFaces User Guide

Scrolling

Scrollable TreeTable implementation is same as DataTable Scrollable, refer to scrolling part in
DataTable section for detailed information.

Sorting

Sorting is enabled by setting sortBy expressions at column level.

<p:treeTable value="#{bean.root}" var="document">
<p:column sortBy="#{document.name}">
<h:outputText value="#{document.name}" />
</p:column>

//more columns
</p:treeTable>

In case you'd like to display treeTable as sorted on page load use sortBy attribute of treeTable,
optional sortOrder and sortFunction attributes are provided to define the default sort order
(ascending or descinding) and a java method to do the actual sorting respectively. Refer to datatable
sorting section for an example usage of sortFunction.

Skinning

TreeTable content resides in a container element which style and styleClass attributes apply.
Following is the list of structural style classes;

Class Applies
.ui-treetable Main container element.
.ui-treetable-header Header of treetable.
.ui-treetable-data Body element of the table containing data

As skinning style classes are global, see the main theming section for more information.

498

PrimeFaces User Guide

3.140 Watermark

Watermark displays a hint on an input field.

Info

Tag

watermark

Component Class

org.primefaces.component.watermark.Watermark

Component Type

org.primefaces.component. Watermark

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.WatermarkRenderer

Renderer Class

org.primefaces.component.watermark.WatermarkRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Text of watermark.

for null String Component to attach the watermark

Getting started with Watermark

Watermark requires a target of the input component. In case you don't need to support legacy
browsers, prefer placeholder attribute of input components over watermark.

<h:inputText id="txt" value="#{bean.searchKeyword}" />
<p:watermark for="txt" value="Search with a keyword" />

499

PrimeFaces User Guide

Form Submissions

Watermark is set as the text of an input field which shouldn’t be sent to the server when an
enclosing for is submitted. This would result in updating bean properties with watermark values.
Watermark component is clever enough to handle this case, by default in non-ajax form
submissions, watermarks are cleared. However ajax submissions requires a little manual effort.

Please note that this only applies to legacy browsers, as watermark uses HTMLS5 placeholder option
when available.

<h:inputText id="txt" value="#{bean.searchKeyword}" />
<p:watermark for="txt" value="Search with a keyword" />

<p:commandButton value="Submit" onclick="PrimeFaces.cleanWatermarks()"
oncomplete="PrimeFaces.showNatermarks()" />

Skinning

For browsers that do not support placeholder, there’s only one css style class applying watermark
which is ‘.ui-watermark’, you can override this class to bring in your own style.

500

3.141 Wizard

Wizard provides an ajax enhanced UI to implement a workflow easily in a single page. Wizard

PrimeFaces User Guide

consists of several child tab components where each tab represents a step in the process.

!Personali Address | Contact | Confirmation

Info

Parsonal Details

Firstname: *

Lastname: *

Age:

Skiptolast: [

= Next

Tag

wizard

Component Class

org.primefaces.component.wizard.Wizard

Component Type

org.primefaces.component.Wizard

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.WizardRenderer

Renderer Class

org.primefaces.component.wizard.WizardRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered true Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean

step 0 String Id of the current step in flow

style null String Style of the main wizard container element.

styleClass null String Style class of the main wizard container element.

flowListener null MethodExpr | Server side listener to invoke when wizard attempts to go
forward or back.

showNavBar true Boolean Specifies visibility of default navigator arrows.

showStepStatus | true Boolean Specifies visibility of default step title bar.

501

PrimeFaces User Guide

Name Default Type Description

onback null String Javascript event handler to be invoked when flow goes
back.

onnext null String Javascript event handler to be invoked when flow goes
forward.

nextLabel null String Label of next navigation button.

backLabel null String Label of back navigation button.

widgetVar null String Name of the client side widget

Getting Started with Wizard

Each step in the flow is represented with a tab. As an example following wizard is used to create a
new user in a total of 4 steps where last step is for confirmation of the information provided in first
3 steps. To begin with create your backing bean, it’s important that the bean lives across multiple
requests so avoid a request scope bean. Optimal scope for wizard is viewScope.

public class UserWizard {
private User user = new User();

public User getUser() {
return user;

}

public void setUser(User user) {
this.user = user;

}

public void save(ActionEvent actionEvent) {
//Persist user
FacesMessage msg = new FacesMessage("Successful",
"Welcome :" + user.getFirstname());
FacesContext.getCurrentInstance().addMessage(null, msg);

User is a simple pojo with properties such as firstname, lastname, email and etc. Following wizard
requires 3 steps to get the user data; Personal Details, Address Details and Contact Details. Note
that last tab contains read-only data for confirmation and the submit button.

502

PrimeFaces User Guide

<h:form>

<p:wizard>

<p:tab id="personal">
<p:panel header="Personal Details">

<h:messages errorClass="error"/>

<h:panelGrid columns="2">

<h:outputText value="Firstname: *" />
<h:inputText value="#{userWizard.user.firstname}" required="true"/>

<h:outputText value="Lastname: *" />
<h:inputText value="#{userWizard.user.lastname}" required="true"/>

<h:outputText value="Age: " />
<h:inputText value="#{userWizard.user.age}" />

</h:panelGrid>
</p:panel>

</p:tab>

<p:tab id="address">
<p:panel header="Adress Details">

<h:messages errorClass="error"/>

<h:panelGrid columns="2" columnClasses="label, value">

<h:outputText value="Street: " />
<h:inputText value="#{userWizard.user.street}" />

<h:outputText value="Postal Code: " />
<h:inputText value="#{userWizard.user.postalCode}" />

<h:outputText value="City: " />
<h:inputText value="#{userWizard.user.city}" />

</h:panelGrid>
</p:panel>

</p:tab>

<p:tab id="contact">
<p:panel header="Contact Information">

<h:messages errorClass="error"/>

<h:panelGrid columns="2">

<h:outputText value="Email: *" />
<h:inputText value="#{userWizard.user.emaill}l" required="true"/>

<h:outputText value="Phone: " />
<h:inputText value="#{userWizard.user.phone}"/>

<h:outputText value="Additional Info: " />
<h:inputText value="#{userWizard.user.info}"/>

</h:panelGrid>
</p:panel>

</p:tab>

503

PrimeFaces User Guide

<p:tab id="confirm">

<p:panel header="Confirmation">

<h:panelGrid id="confirmation" columns="6">

<h
<h

<h
<h

:outputText
:outputText

<h
<h

:outputText
:outputText

<h
<h

:outputText
:outputText

<h
<h

:outputText
:outputText

<h
<h

:outputText
:outputText

<h
<h

:outputText
:outputText

<h
<h

:outputText
:outputText

<h
<h

:outputText
:outputText

<h:outputText
<h:outputText
</h:panelGrid>

value="Lastname:
value="#{userWizard.

value="Age: " />
value="#{userWizard.

value="Street: " />
value="#{userWizard.

value="Postal Code:
value="#{userWizard.

value="City: " />
value="#{userWizard.

value="Email: " />
value="#{userWizard.

value="Phone " />
value="#{userWizard.

value="Info: " />
value="#{userWizard.

/>
/>

:outputText value="Firstname: " />
:outputText value="#{userWizard.user.

" />
user.

user.

user.

n />

user.

user.

user

user.

user.

firstname}"/>

lastname}" />

age}" />

street}" />

postalCode}"/>

city}"/>

.email}l" />

phonel}l"/>

info}"/>

<p:commandButton value="Submit" actionListener="#{userWizard.save}" />

</p:panel>

</p:tab>

</p:wizard>
</h:form>

AJAX and Partial Validations

Switching between steps is based on ajax, meaning each step is loaded dynamically with ajax.
Partial validation is also built-in, by this way when you click next, only the current step is validated,
if the current step is valid, next tab’s contents are loaded with ajax. Validations are not executed

when flow goes back.

Navigations

Wizard provides two icons to interact with; next and prev. Please see the skinning wizard section to
know more about how to change the look and feel of a wizard.

504

PrimeFaces User Guide

Custom Ul

By default wizard displays right and left arrows to navigate between steps, if you need to come up
with your own Ul, set showNavBar to false and use the provided the client side api.

<p:wizard showNavBar="false" widgetVar="wiz">
</p:wizard>

<h:outputlLink value="#" onclick="PF('wiz").next();">Next</h:outputlLink>
<h:outputlLink value="#" onclick="PF('wiz").back();">Back</h:outputlLink>

FlowListener

If you’d like get notified on server side when wizard attempts to go back or forward, define a
flowListener.

<p:wizard flowListener="#{userWizard.handleFlow}">

</p:wizard>

public String handleFlow(FlowEvent event) {
String currentStepld = event.getCurrentStep();
String stepToGo = event.getNextStep();

if(skip)
return "confirm";
else
return event.getNextStep();

Steps here are simply the ids of tab, by using a flowListener you can decide which step to display
next so wizard does not need to be linear always. If you need to update other component(s) on page
within a flow, use RequestContext.update(String clientld) api.

Client Side Callbacks

Wizard is equipped with onback and onnext attributes, in case you need to execute custom
javascript after wizard goes back or forth. You just need to provide the names of javascript functions
as the values of these attributes.

<p:wizard onnext="alert(‘Next’)" onback="alert(‘Back)">

</p:wizard>

Client Side API
Widget: PrimeFaces.widget. Wizard

505

PrimeFaces User Guide

Method Params Return Type Description

next() - void Proceeds to next step.
back() - void Goes back in flow.
getStepIndex() - Number Returns the index of current step.
showNextNav() - void Shows next button.
hideNextNav() - void Hides next button.
showBackNav() - void Shows back button.
hideBackNav() - void Hides back button.

Skinning

Wizard resides in a container element that style and styleClass attributes apply. Following is the list

of structural css classes.

Selector

Applies

.ui-wizard

Main container element.

.ui-wizard-content

Container element of content.

.ui-wizard-step-titles

Container of step titles.

.ui-wizard-step-title

Each step title.

.ui-wizard-navbar

Container of navigation controls.

.ui-wizard-nav-back

Back navigation control.

.ui-wizard-nav-next

Forward navigation control.

As skinning style classes are global, see the main theming section for more information.

506

PrimeFaces User Guide

4. Partial Rendering and Processing

PrimeFaces provides a partial rendering and view processing feature based on standard JSF 2 APIs
to enable choosing what to process in JSF lifecyle and what to render in the end with ajax.

4.1 Partial Rendering

In addition to components like autoComplete, datatable, slider with built-in ajax capabilities,
PrimeFaces also provides a generic PPR (Partial Page Rendering) mechanism to update JSF
components with ajax. Several components are equipped with the common PPR attributes (e.g.
update, process, onstart, oncomplete).

4.1.1 Infrastructure

PrimeFaces Ajax Framework is based on standard server side APIs of JSF 2. There are no additional
artfacts like custom AjaxViewRoot, AjaxStateManager, AjaxViewHandler, Servlet Filters,
HtmlParsers, PhaseListeners and so on. PrimeFaces aims to keep it clean, fast and lightweight.

On client side rather than using client side APl implementations of JSF implementations like
Mojarra and MyFaces, PrimeFaces scripts are based on the most popular javascript library; jQuery
which is far more tested, stable regarding ajax, dom handling, dom tree traversing than a JSF
implementations scripts.

4.1.2 Using IDs
Getting Started

When using PPR you need to specify which component(s) to update with ajax. If the component
that triggers PPR request is at the same namingcontainer (eg. form) with the component(s) it
renders, you can use the server ids directly. In this section although we’ll be using commandButton,
same applies to every component that’s capable of PPR such as commandLink, poll,
remoteCommand and etc.

<h:form>
<p:commandButton update="display" />

<h:outputText id="display" value="#{bean.value}"/>
</h:form>

Prependld
Setting prependld setting of a form has no effect on how PPR is used.

<h:form prependld="false">
<p:commandButton update="display" />

<h:outputText id="display" value="#{bean.value}"/>
</h:form>

507

PrimeFaces User Guide

Clientid

It 1s also possible to define the client id of the component to update.

<h:form id="myform">
<p:commandButton update="myform:display" />
<h:outputText id="display" value="#{bean.value}"/>
</h:form>

Different NamingContainers

If your page has different naming containers (e.g. two forms), you also need to add the container id
to search expression so that PPR can handle requests that are triggered inside a namingcontainer
that updates another namingcontainer. Following is the suggested way using separator char as a
prefix, note that this uses same search algorithm as standard JSF 2 implementation;

<h:form id="forml">

<p:commandButton update=":form2:display" />
</h:form>
<h:form id="formz2">

<h:outputText id="display" value="#{bean.value}"/>

</h:form>

Please read findComponent algorithm described in link below used by both JSF core and
PrimeFaces to fully understand how component referencing works.

http://docs.oracle.com/javaee/6/api/javax/faces/component/UIComponent.html

JSF h:form, datatable, composite components are naming containers, in addition tabView,
accordionPanel, dataTable, dataGrid, dataList, carousel, galleria, ring, sheet and subTable are
PrimeFaces component that implement NamingContainer.

Multiple Components

Multiple components to update can be specified with providing a list of ids separated by a comma,
whitespace or even both.

<h:form>

<p:commandButton update="displayl,display2" />
<p:commandButton update="displayl display2" />

<h:outputText id="displayl" value="#{bean.valuel}"/>
<h:outputText id="display2" value="#{bean.value2}"/>

</h:form>

508

http://docs.oracle.com/javaee/6/api/javax/faces/component/UIComponent.html

PrimeFaces User Guide

4.1.3 Notifying Users

ajaxStatus is the component to notify the users about the status of global ajax requests. See the
ajaxStatus section to get more information about the component.

Global vs Non-Global

By default ajax requests are global, meaning if there is an ajaxStatus component present on page, it
is triggered.

If you want to do a "silent" request not to trigger ajaxStatus instead, set global to false. An example
with commandButton would be;

<p:commandButton value="Silent" global="false" />

<p:commandButton value="Notify" global="true" />

4.1.4 Bits&Pieces

PrimeFaces Ajax Javascript API

See the javascript section to learn more about the PrimeFaces Javascript Ajax API.

509

PrimeFaces User Guide

4.2 Partial Processing

In Partial Page Rendering, only specified components are rendered, similarly in Partial Processing
only defined components are processed. Processing means executing Apply Request Values,
Process Validations, Update Model and Invoke Application JSF lifecycle phases only on defined
components.

This feature is a simple but powerful enough to do group validations, avoiding validating unwanted
components, eliminating need of using immediate and many more use cases. Various components
such as commandButton, commandLink are equipped with process attribute, in examples we’ll be
using commandButton.

4.2.1 Partial Validation

A common use case of partial process is doing partial validations, suppose you have a simple
contact form with two dropdown components for selecting city and suburb, also there’s an inputText
which is required. When city is selected, related suburbs of the selected city is populated in suburb
dropdown.

<h:form>

<h:selectOneMenu id="cities" value="#{bean.city}">
<f:selectItems value="#{bean.cityChoices}" />
<p:ajax listener="#{bean.populateSuburbs}" update="suburbs"
process="@all"/>
</h:selectOneMenu>

<h:selectOneMenu id="suburbs" value="#{bean.suburb}">
<f:selectItems value="#{bean.suburbChoices}" />
</h:selectOneMenu>

<h:inputText value="#{bean.email}" required="true"/>

</h:form>

When the city dropdown is changed an ajax request is sent to execute populateSuburbs method
which populates suburbChoices and finally update the suburbs dropdown. Problem is
populateSuburbs method will not be executed as lifecycle will stop after process validations phase
to jump render response as email input is not provided. Reason is p:ajax has @all as the value
stating to process every component on page but there is no need to process the inputText.

The solution is to define what to process in p:ajax. As we’re just making a city change request, only
processing that should happen is cities dropdown.

510

PrimeFaces User Guide

<h:form>
<h:selectOneMenu id="cities" value="#{bean.city}">
<f:selectItems value="#{bean.cityChoices}" />
<p:ajax actionListener="#{bean.populateSuburbs}"
event="change" update="suburbs" process="@this"/>
</h:selectOneMenu>

<h:selectOneMenu id="suburbs" value="#{bean.suburb}">
<f:selectItems value="#{bean.suburbChoices}" />
</h:selectOneMenu>

<h:inputText value="#{bean.email}" required="true"/>
</h:form>

That is it, now populateSuburbs method will be called and suburbs list will be populated. Note that
default value for process option is @this already for p:ajax as stated in AjaxBehavior
documentation, it is explicitly defined here to give a better understanding of how partial processing
works.

4.2.2 Using Ids

Partial Process uses the same technique applied in partial updates to specify component identifiers
to process.

511

PrimeFaces User Guide

4.3 Search Expression Framework

Core JSF component referencing is based on component identifiers only with basic keyword
support. PrimeFaces Search Expression Framework (SEF) provides both server side and client side
extensions to make it easier to reference components. SEF is utilized in partial update, process and
whenever a component references another component.

4.3.1 Keywords

Keywords are the easier way to reference components, they resolve to ids so that if an id changes,
the reference does not need to change. Core JSF provides a couple of keywords and PrimeFaces
provides more along with composite expression support.

Keyword Type Description
@this Standard Current component.
@all Standard Whole view.
@form Standard Closest ancestor form of current component.
(@none Standard No component.
(@namingcontainer PrimeFaces Closest ancestor naming container of current component.
@parent PrimeFaces Parent of the current component.
@composite PrimeFaces Closest composite component ancestor.
@child(n) PrimeFaces nth child.
@previous PrimeFaces Previous sibling.
@next PrimeFaces Next sibling.
(@widgetVar(name) PrimeFaces Component with given widgetVar.

Consider the following case where ids are used for referencing;

<h:form id="forml">
<p:commandButton id="btn" update="forml" process="btn" />
<h:outputText value="#{bean.value}"/>

</h:form>

Using keywords, same can be written as;

<h:form id="forml">
<p:commandButton id="btn" update="@form" process="@this" />
<h:outputText value="#{bean.value}"/>

</h:form>

512

PrimeFaces User Guide

Composite Expressions

Multiple keywords can be combined in a single expression using colon;
* (@form:(@parent
* (@composite:mybuttonid

* (@this:(@parent:(@parent
* @form:(@child(2)

Usage Scenarios

SEF is not just at partial process and update, they are also available whenever a component is
referencing another.

<h:form>
<p:commandButton id="dynaButton" value="Show" type="button" />
<p:menu overlay="true" trigger="@parent:dynaButton">
//items
</p:menu>
</h:form>

4.3.2 PrimeFaces Selectors (PFS)

PFS integrates jQuery Selector API with JSF component referencing model so that referencing can
be done using jQuery Selector API instead of core id based JSF model. Best way to explain the
power of PFS is examples;

Update all forms

update="@(form)"

Update first form

update="@(form:first)"

Update all components that has styleClass named mystyle

update="@(.mystyle)"

Update and process all inputs

update="@(:input)" process="@(:input)"

513

PrimeFaces User Guide

Update all datatables

update="@(.ui-datatable)"

Process input components inside any panel and update all panels

process="@(.ui-panel :input)" update="@(.ui-panel)"

Process input components but not select components

process="@(:input:not(select))"

Update input components that are disabled

update="@(:input:disabled)"

PFS can be used with other referencing approaches as well;

update="compId :form:compId @(:input) @parent:@child(2)"

<h:form>
<p:commandButton id="dynaButton" value="Show" type="button" styleClass="btn"/>
<p:menu overlay="true" trigger="@(.btn)">
//items
</p:menu>
</h:form>

PFS provides an alternative, flexible, grouping based approach to reference components to partially
process and update. There is less CPU server load compared to regular referencing because JSF
component tree is not traversed on server side to find a component and figure out the client id as
PFS is implemented on client side by looking at dom tree. Another advantage is avoiding naming
container limitations, just remember the times you’ve faced with cannot find component exception
since the component you are looking for is in a different naming container like a form or a

b [13

datatable. PFS can help you out in tricky situations by following jQuery’s “write less do more” style.

For PFS to function properly and not to miss any component, it is required to have explicitly
defined ids on the matched set as core JSF components usually do not render auto ids. So even
though manually defined ids won't be referenced directly, they are still required for PFS to be
collected and send in the request.

For full reference of jQuery selector api, see;

http://api.jquery.com/category/selectors/

514

http://api.jquery.com/category/selectors/

PrimeFaces User Guide

4.4 PartialSubmit

Core JSF Ajax implementation and by default PrimeFaces serializes the whole form to build the
post data in ajax requests so the same data is posted just like in a non-ajax request. This has a
downside in large views where you only need to process/execute a minor part of the view. Assume
you have a form with 100 input fields, there is an input field with ajaxbehavior attached processing
only itself(@this) and then updates another field onblur. Although only a particular input field is
processed, whole form data will be posted with the unnecessary information that would be ignored
during server side processing but consume resources.

PrimeFaces provides partialSubmit feature to reduce the network traffic and computing on client
side. When partialSubmit is enabled, only data of components that will be partially processed on the
server side are serialized. By default partialSubmit is disabled and you can enable it globally using a
context parameter.

<context-param>
<param-name>primefaces.SUBMIT</param-name>
<param-value>partial</param-value>
</context-param>

Components like buttons and behaviors like p:ajax are equipped with partialSubmit option so you
can override the global setting per component.

<p:commandButton value="Submit" partialSubmit="truelfalse" />

515

PrimeFaces User Guide

5. Javascript API

PrimeFaces renders unobstrusive javascript which cleanly separates behavior from the html. Client
side engine is powered by jQuery version 1.8.1 which is the latest at the time of the writing.

5.1 PrimeFaces Namespace

PrimeFaces is the main javascript object providing utilities and namespace.

Method Description
escapeClientld(id) Escaped JSF ids with semi colon to work with jQuery.
addSubmitParam(el, name, param) Adds request parameters dynamically to the element.
getCookie(name) Returns cookie with given name.
setCookie(name, value) Sets a cookie with given nam and value.
skinlnput(input) Progressively enhances an input element with theming.

info(msg), debug(msg), warn(msg), error(msg) | Client side log API.

changeTheme(theme) Changes theme on the fly with no page refresh.

cleanWatermarks() Watermark component extension, cleans all
watermarks on page before submitting the form.

showWatermarks() Shows watermarks on form.

To be compatible with other javascript entities on a page, PrimeFaces defines two javascript
namespaces;

PrimeFaces.widget.*

Contains custom PrimeFaces widgets like;

- PrimeFaces.widget.DataTable

- PrimeFaces.widget.Tree

- PrimeFaces.widget.Poll

- and more...

Most of the components have a corresponding client side widget with same name.

PrimeFaces.ajax. *

PrimeFaces.ajax namespace contains the ajax API which is described in next section.

516

5.2 Ajax API

PrimeFaces User Guide

PrimeFaces Ajax Javascript API is powered by jQuery and optimized for JSF. Whole API consists
of three properly namespaced simple javascript functions.

PrimeFaces.ajax.Request

Sends ajax requests that execute JSF lifecycle and retrieve partial output. Function signature is as

follows;

PrimeFaces.ajax.Request.handle(cfg);

Configuration Options

Option Description

formld Id of the form element to serialize, if not defined parent form of
source is used.

async Flag to define whether request should go in ajax queue or not, default
is false.

global Flag to define if p:ajaxStatus should be triggered or not, default is
true.

update Component(s) to update with ajax.

process Component(s) to process in partial request.

source Client id of the source component causing the request.

params Additional parameters to send in ajax request.

onstart() Javascript callback to process before sending the ajax request, return

false to cancel the request.

onsuccess(data, status, xhr)

Javascript callback to process when ajax request returns with success
code. Takes three arguments, xml response, status code and
xmlhttprequest.

onerror(xhr, status, error)

Javascript callback to process when ajax request fails. Takes three
arguments, xmlhttprequest, status string and exception thrown if any.

oncomplete(xhr, status, args)

Javascript callback to process when ajax request completes. Takes
three arguments, xmlhttprequest, status string and optional arguments
provided by RequestContext API.

517

PrimeFaces User Guide

Examples

Suppose you have a JSF page called createUser with a simple form and some input components.

<h:form id="userForm">
<h:inputText id="username" value="#{userBean.user.name}" />
. More components
</h:form>

You can post all the information with ajax using;

PrimeFaces.ajax.Request.handle({
formId:’'userForm
,source:’userForm’
,process:’userfForm’

IDK

More complex example with additional options;

PrimeFaces.ajax.Request.handle({

formId: 'userForm',

source: 'userForm',

process: 'userForm',

update: 'msgs',

params:{
'param_namel': 'valuel',
'param_name2': 'value2'

b,

oncomplete: function(xhr, status) {alert('Done');}

DK

We highly recommend using p:remoteComponent instead of low level javascript api as it generates
the same with much less effort and less possibility to do an error.

PrimeFaces.ajax.Response

PrimeFaces.ajax.Response.handle() updates the specified components if any and synchronizes the
client side JSF state. DOM updates are implemented using jQuery which uses a very fast algorithm.

Abort

Use the abort API in case you'd like to cancel all the ongoing requests;

PrimeFaces.ajax.Queue.abortAl1()

518

PrimeFaces User Guide

6. Dialog Framework

Dialog Framework (DF) is used to open an external xhtml page in a dialog that is generated
dynamically on runtime. This is quite different to regular usage of dialogs with declarative p:dialog
components as DF is based on a programmatic APl where dialogs are created and destroyed at
runtime. Note that DF and the declarative approach are two different ways and both can even be
used together. Usage is quite simple, RequestContext has openDialog and closeDialog methods;

/**
* Open a view in dialog.
* @param outcome The logical outcome used to resolve a navigation case.
*/
public abstract void openDialog(String outcome);

/**

* Open a view in dialog.

* @param outcome The logical outcome used to resolve a navigation case.

* @param options Configuration options for the dialog.

* @param params Parameters to send to the view displayed in a dialog.

*/

public abstract void openDialog(String outcome, Map<String,0Object> options,
Map<String,List<String>> params);

/**
* Close a dialog.
* @param data Optional data to pass back to a dialogReturn event.
*/

public abstract void closeDialog(Object data);

Configuration

DF requires the following configuration to be present in faces config file.

<application>
<action-listener>
org.primefaces.application.DialogActionlListener
</action-listener>
<navigation-handler>
org.primefaces.application.DialogNavigationHandler
</navigation-handler>
<view-handler>
org.primefaces.application.DialogViewHandler
</view-handler>
</application>

Getting Started

Simplest use case of DF is opening an xhtml view like cars.xhtml in a dialog;

519

PrimeFaces User Guide

<!DOCTYPE html>
<html xmlns="http://waww.w3.0rg/1999/xhtml" xmlns:h="http://java.sun.com/jsf/html"

xmlns:p="http://primefaces.org/ui">

<h:head>
<title>Cars</title>
</h:head>

<h:body>
<p:dataTable var="car" value="#{tableBean.cars}">
//columns
</p:dataTable>
</h:body>
</html>

On the host page, call RequestContext.openDialog("viewname");

<p:commandButton value="View Cars" actionListener="#{hostBean.view}" />

public void view() {
RequestContext.getCurrentInstance().openDialog("viewCars");

}

Once the response is received from the request caused by command button a dialog would be
generated with the contents of viewCars.xhtml. Title of the dialog is retrieved from the title element

of the viewCars, in this case, Cars.

Dialog Configuration

Overloaded openDialog method provides advanced configuration regarding the visuals of dialog
along with parameters to send to the dialog content.

<p:commandButton value="View Cars" actionListener="#{hostBean.viewCustomized}" />

public void view() {
Map<String,0Object> options = new HashMap<String, Object>();
options.put("modal", true);
options.put("draggable", false);
options.put("resizable", false);
options.put("contentHeight", 320);

RequestContext.getCurrentInstance().openDialog("viewCars", options, null);

520

Here is the full list of configuration options;

PrimeFaces User Guide

Name Default Type Description
modal 0 Boolean Controls modality of the dialog.
resizable 1 Boolean When enabled, makes dialog resizable.
draggable 1 Boolean When enabled, makes dialog draggable.
width auto Integer Width of the dialog.
height auto Integer Height of the dialog.
contentWidth 640 Integer Width of the dialog content.
contentHeight auto Integer Height of the dialog content.
closable true Boolean Whether the dialog can be closed or not.
includeViewParams false Boolean When enabled, includes the view parameters.

Data Communication

Page displayed in the dialog can pass data back to the parent page. The trigger component needs to
have dialogReturn ajax behavior event to hook-in when data is returned from dialog.

<!DOCTYPE html>

<h:head>
</h:head>

<h:body>

</h:body>
</html>

<title>Cars</title>

<html xmlns="http://www.w3.0rg/1999/xhtml" xmlns:h="http://java.sun.com/jsf/html"
xmlns:p="http://primefaces.org/ui">

<p:dataTable var="car" value="#{tableBean.cars}">
//columns
<p:column headerText="Select">
<p:commandButton icon="ui-icon-search"
actionListener="#{tableBean.selectCarFromDialog(Ccar)}" />
</p:column>
</p:dataTable>

}

public void selectCarFromDialog(Car car) {
RequestContext.getCurrentInstance().closeDialog(car);

At host page, the button that triggered the dialog should have dialogReturn event.

521

PrimeFaces User Guide

<p:commandButton value="View Cars" actionListener="#{hostBean.viewCars}">
<p:ajax event="dialogReturn" listener="#{hostBean.handleReturn}"
</p: commandButton>

public void view() {
RequestContext.getCurrentInstance().openDialog("viewCars");

}

public void handleReturn(SelectEvent event) {
Car car = (Car) event.getObject();
%

Remarks on Dialog Framework

* At the moment, p:commandButton and p:commandLink supports dialogReturn.
* Nested dialogs are not supported.
* Calls to DialogFramework API within a non-ajax are ignored.

Dialog Messages

Displaying FacesMessages in a Dialog is a common case where a facesmessage needs to be added
to the context first, dialog content containing a message component needs to be updated and finally
dialog gets shown with client side api. DF has a simple utility to bypass this process by providing a
shortcut;

/**
* Displays a message in a dialog.
* @param message FacesMessage to be displayed.
*/
public abstract void showMessageInDialog(FacesMessage message);

Using this shortcut it is just one line to implement the same functionality;

<p:commandButton value="Show" actionListener="#{bean.save}" />

public void save() {
//business logic
RequestContext.getCurrentInstance().showMessageInDialog(new
FacesMessage(FacesMessage.SEVERITY_INFO,
"What we do in life", "Echoes in eternity."););

‘What we do in life

Echoes in etermnity.

—

522

PrimeFaces User Guide

7. Client Side Validation

PrimeFaces Client Side Validation (CSV) Framework is the most complete and advanced CSV
solution for JavaServer Faces and Java EE. CSV support for JSF is not an easy task, it is not simple
as integrating a 3rd party javascript plugin as JSF has its own lifecycle, concepts like conversion
and then validation, partial processing, facesmessages and many more. Real CSV for JSF should be
compatible with server side implementation, should do what JSF does, so that users do not
experience difference behaviors on client side and server side.

» Compatible with Server Side Implementation.

» Conversion and Validation happens at client side.

* Partial Process&Update support for Ajax.

* [18n support along with component specific messages.
* Client side Renderers for message components.
 Easy to write custom client converters and validators.
* Global or Component based enable/disable.

* Advanced Bean Validation Integration.

« Little footprint using HTMLS.

7.1 Configuration
CVS is disabled by default and a global parameter is required to turn it on.

<context-param>
<param-name>primefaces.CLIENT_SIDE_VALIDATION</param-name>
<param-value>true</param-value>
</context-param>

At page level, enable validateClient attribute of commandButton and commandLink components.

<h: form>

<p:messages />

<p:inputText required="true" />

<p:inputTextarea required="true" />

<p:commandButton value="Save" validateClient="true" ajax="false"/>
</h:form>

That is all for the basics, clicking the button validates the form at client side and displays the errors
using messages component.

CSV works for PrimeFaces components only, standard h: * components are not supported.

7.2 Ajax vs Non-Ajax

CSV works differently depending on the request type of the trigger component to be compatible
with cases where CVS is not enabled.

523

PrimeFaces User Guide

Non-Ajax

In non-ajax case, all visible and editable input components in the form are validated and message
components must be placed inside the form.

Ajax
CSV supports partial processing and updates on client side as well, if process attribute is enabled,
the components that would be processed at server side gets validated at client side. Similary if

update attribute is defined, only message components inside the updated parts gets rendered. Whole
process happens at client side.

7.3 Events

CSV provides a behavior called p:clientBehavior to do instant validation in case you do not want to
wait for the users to fill in the form and hit commandButton/commandLink. Using clientBehavior
and custom events, CSV for a particular component can run with events such as change (default),
blur, keyup.

<h:form>
<p:panel header="Validate">
<h:panelGrid columns="4" cellpadding="5">

<h:outputLabel for="text" value="Text: (Change)" />

<p:inputText id="text" value="#{validationBean.text}" required="true">
<f:validatelLength minimum="2" maximum="5" />
<p:clientValidator />

</p:inputText>

<p:message for="text" display="icon" />

<h:outputText value="#{validationBean.text}" />

<h:outputLabel for="integer" value="Integer: (Keyup)" />
<p:inputText id="integer" value="#{validationBean.integer}">
<p:clientValidator event="keyup"/>
</p:inputText>
<p:message for="integer" display="icon" />
<h:outputText value="#{validationBean.integer}" />
</h:panelGrid>

<p:commandButton value="Save" ajax="false" icon="ui-icon-check"
validateClient="true"/>
</p:panel>
</h:form>

7.4 Messages

Validation errors are displayed as the same way in server side validation, texts are retrieved from a
client side bundle and message components are required for the displays.

118N

Default language is English for the CSV messages and for other languages or to customize the
default messages, PrimeFaces Locales bundle needs to be present at the page if you'd like to provide
translations. For more info on PrimeFaces Locales, visit
http://code.google.com/p/primefaces/wiki/PrimeFacesLocales.

524

http://code.google.com/p/primefaces/wiki/PrimeFacesLocales

PrimeFaces User Guide

Rendering

PrimeFaces message components have client side renderers for CSV support, these are p:message,
p:messages and p:growl. Component options like showSummary, showDetail, globalOnly, mode are
all implemented by client side renderer for compatibility.

7.5 Bean Validation

CSV has built-in integration with Bean Validation by validating the constraints defined with
annotations at client side.

<h:form>
<p:growl />
<h:panelGrid>
<h:outputlLabel for="name" value="Name:" />
<p:inputText id="name" value="#{bean.name}" label="Name"/>
<p:message for="name" />

<h:outputLabel for="age" value="Age: (@Min(10) @Max(20))" />
<p:inputText id="age" value="#{bean.age}" label="Age"/>
<p:message for="age" />
</h:panelGrid>
<p:commandButton value="Save" validateClient="false" ajax="false" />
</h:form>

public class Bean {

@Size(min=2,max=5)
private String name;

@vin(10) @Max(20)
private Integer age;

All of the standard constraints are supported.

7.6 Extending CSV

Using CSV APIs, it is easy to write your own custom converters and validators.
Email Validator with JSF

Your custom validator must implement ClientValidator interface to provide the client validator id
and the optional metadata.

525

PrimeFaces User Guide

package org.primefaces.examples.validate;

import java.util.Map;

import java.util.regex.Pattern;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;

import javax.faces.context.FacesContext;

import javax.faces.validator.FacesValidator;
import javax.faces.validator.Validator;

import javax.faces.validator.ValidatorException;
import org.primefaces.validate.(ClientValidator;

@FacesValidator("custom.emailValidator™)
public class EmailValidator implements Validator, ClientValidator {

private Pattern pattern;

private static final String EMAIL_PATTERN = "A[_A-Za-z0-9-\\+]+(\\.[_A-Za-z0-
9-1+)*@" + "[A-Za-z0-9-1+(\\.[A-Za-z0-9]+)*(\\.[A-Za-z]{2,})$";

public EmailValidator() {
pattern = Pattern.compile(EMAIL_PATTERN);

}

public void validate(FacesContext context, UIComponent component, Object value)
throws ValidatorException {
ifCvalue == null) {
return;

}

if(!pattern.matcher(value.toString()).matches()) {
throw new ValidatorException(new
FacesMessage(FacesMessage.SEVERITY_ERROR, "Validation Error",
value + " is not a valid email;"));
b
b

public Map<String, Object> getMetadata() {
return null;

}

public String getValidatorId() {
return "custom.emailValidator";

}

Validator is plugged-in using the standard way.

<h:form>

<p:messages />

<p:inputText id="email" value="#{bean.value}">

<f:validator validatorId="custom.emailValidator" />

</p:inputText>

<p:message for="email" />

<p:commandButton value="Save" validateClient="true" ajax="false"/>
</h:form>

526

PrimeFaces User Guide

Last step is implementing the validator at client side and configuring it.

PrimeFaces.validator['custom.emailValidator'] = {
pattern: /\S+@\S+/,

validate: function(element, value) {
//use element.data() to access validation metadata, in this case there is

none.
if(!this.pattern.test(value)) {
throw {
summary: 'Validation Error',
detail: value + ' is not a valid email.’
}
}
}
i

In some cases your validator might need metadata, for example LengthValidator requires min and
max constraints to validate against. Server side validator can pass these by overriding the
getMetadata() method by providing a map of name,value pairs. At client side, these are accessed via
element.data(key).

public Map<String, Object> getMetadata() {
Map<String,Object> data = new HashMap<String,Object>();
data.put("data-prime", 10);
return data;

validate: function(element, value) {
var prime = element.data("prime"); //10

//validate

Similarly a client side converter can be written by implementing ClientConverter API and
overriding convert: function(element, submittedValue) {} method to return a javascript object.

Email Validator with Bean Validation

Bean Validation is also supported for extensions, here is an example of a @Email validator.

//imports
import org.primefaces.validate.bean.ClientConstraint;

@Target({METHOD, FIELD,ANNOTATION_TYPE})
@Retention(RUNTIME)
@Constraint(validatedBy=EmailConstraintValidator.class)
@ClientConstraint(resolvedBy=EmailClientValidationConstraint.class)
@Documented
public @interface Email {
String message() default "{org.primefaces.examples.primefaces}";
Class<?>[] groups() default {};
Class<? extends Payload>[] payload() default {};

527

PrimeFaces User Guide

@Constraint is the regular validator from Bean Validation API and @ClientConsraint is from CSV
API to resolve metadata.

public class EmailConstraintValidator
implements ConstraintValidator<Email, String>{

private Pattern pattern;

private static final String EMAIL_PATTERN = "A[_A-Za-z0-9-\\+]+(\\.[_A-Za-z0-
9-]+)*@"
+ "[A-Za-z0-9-7+(\\.[A-Za-z0-
91+)*(\\.[A-Za-z]{2,})$";

public void initialize(Email a) {
pattern = Pattern.compile(EMAIL_PATTERN);
}

public boolean isValid(String value, ConstraintValidatorContext cvc) {
if(value == null)
return true;
else

return pattern.matcher(value.toString()).matches();

public class EmailClientValidationConstraint implements ClientValidationConstraint {
public static final String MESSAGE_METADATA = "data-p-email-msg";

public Map<String, Object> getMetadata(ConstraintDescriptor constraintDescriptor)

{
Map<String,Object> metadata = new HashMap<String, Object>();
Map attrs = constraintDescriptor.getAttributes();
Object message = attrs.get("message");
if(message '= null) {
metadata.put(MESSAGE_METADATA, message);
}
return metadata;
}
public String getValidatorId() {
return Email.class.getSimpleName();
}
}

528

PrimeFaces User Guide

Final part is implementing the client side validator;

PrimeFaces.validator['Email'] = {

pattern: /\S+@\S+/,

MESSAGE_ID: 'org.primefaces.examples.validate.email.message',

validate: function(element, value) {
var vc = PrimeFaces.util.ValidationContext;

if(!this.pattern.test(value)) {
var msgStr = element.data('p-email-msg'),
msg = msgStr ? {summary:msgStr, detail: msgStr} :
vc.getMessage(this.MESSAGE_ID);

throw msg;

}

Usage is same as using standard constraints;

<h:form>
<p:messages />
<p:inputText id="email" value="#{bean.value}" />
<p:message for="email" />

<p:commandButton value="Save" validateClient="true" ajax="false"/>
</h:form>

public class Bean {

@Email
private String value;

//getter-setter

3" Party Annotations

When using 3™ party constraints like Hibernate Validator specific annotations, use
BeanValidationMetadataMapper to define a ClientValidationConstraint for them.

BeanValidationMetadataMapper.registerConstraintMapping(Class<? extends Annotation>
constraint, ClientValidationConstraint clientValidationConstraint);

BeanValidationMetadataMapper.removeConstraintMapping(Class<? extends Annotation>
constraint);

529

PrimeFaces User Guide

8. Themes

PrimeFaces is integrated with powerful ThemeRoller CSS Framework. Currently there are 30+ pre-
designed themes that you can preview and download from PrimeFaces theme gallery.

http://www.primefaces.org/themes.html

a [IE——— o o July 2010 o m o Joly 201D o

Ss Ba Te We Te P Ba Su Mo Tu We Th Fr Sa Be Me B e Th O Fe ds S Be Te We TH B a
EEE i
[o 2] a]] 7]] 8] usl IR T I . K
. OEEE - 0| W ow oMo - o
OIEEEEEER WM W oM oD DM . -
EEEEEER BN oD omow oW ow
B o ~
] ; EEE
S oy _Bj 0g EDDEDEDD
i i I I IS I I KD
1] 0D (al ol wl &l of =
» IEEE IDDnDDD

F P
1 '
1 1 M
P)
o day 03 0 AyE o
O PR - e s T .
' O
« ' " F
il " i T
i ! 1 o s
a Juby 2010 -] o by 2010 o i-u;u_—-;
Su Mo Te We Tn B s Su Mo Te We T P Ga B Me Ts We TS M B8
T] 2] o
Al S AL T e B e B b) L B
ieietledl ol lhi I I D D
T T T ‘ ODDEEEDE
o T oW TR N
1 i]]
| R
TR

530

http://www.primefaces.org/themes.html

PrimeFaces User Guide

8.1 Applying a Theme

Applying a theme to your PrimeFaces project is very easy. Each theme is packaged as a jar file,
download the theme you want to use, add it to the classpath of your application and then define
primefaces. THEME context parameter at your deployment descriptor (web.xml) with the theme
name as the value.

Download

Each theme is available for manual download at PrimeFaces Theme Gallery. If you are a maven
user, define theme artifact as;

<dependency>
<groupId>org.primefaces.themes</groupId>
<artifactId>cupertino</artifactld>
<version>1.0.8</version>

</dependency>

artifactld is the name of the theme as defined at Theme Gallery page.

Configure

Once you've downloaded the theme, configure PrimeFaces to use it.

<context-param>
<param-name>primefaces.THEME</param-name>
<param-value>aristo</param-value>
</context-param>

That's it, you don't need to manually add any css to your pages or anything else, PrimeFaces will
handle everything for you.

In case you'd like to make the theme dynamic, define an EL expression as the param value.

<context-param>
<param-name>primefaces . THEME</param-name>
<param-value>#{loggedInUser.preferences.theme}</param-value>
</context-param>

531

PrimeFaces User Guide

8.2 Creating a New Theme

If you’d like to create your own theme instead of using the pre-defined ones, that is easy as well
because ThemeRoller provides a powerful and easy to use online visual tool.

ThemeRoller_ aumgp

Roll Your Own | Gallery = Help

=
i
]
-]
o]

Applying your own custom theme is same as applying a pre-built theme however you need to
migrate the downloaded theme files from ThemeRoller to PrimeFaces Theme Infrastructure.
PrimeFaces Theme convention is the integrated way of applying your custom themes to your
project, this approach requires you to create a jar file and add it to the classpath of your application.
Jar file must have the following folder structure. You can have one or more themes in same jar.

-jar
- META-INF
-resources
- primefaces-yourtheme
-theme.css
-images

1) The theme package you've downloaded from ThemeRoller will have a css file and images folder.
Make sure you have “deselect all components” option on download page so that your theme only
includes skinning styles. Extract the contents of the package and rename jquery-ui-
{version}.custom.css to theme.css.

2) Image references in your theme.css must also be converted to an expression that JSF resource
loading can understand, example would be;

url("images/ui-bg_highlight-hard 100 f9f9f9 1x100.png")
should be;
url("#{resource['primefaces-yourtheme:images/ui-bg_highlight-hard 100 9199 1x100.png']}")

Once the jar of your theme is in classpath, you can use your theme like;

<context-param>
<param-name>primefaces . THEME</param-name>
<param-value>yourtheme</param-value>
</context-param>

532

PrimeFaces User Guide

8.3 How Themes Work

Powered by ThemeRoller, PrimeFaces separates structural css from skinning css.

Structural CSS

These style classes define the skeleton of the components and include css properties such as margin,
padding, display type, dimensions and positioning.

Skinning CSS

Skinning defines the look and feel properties like colors, border colors, background images.

Skinning Selectors

ThemeRoller features a couple of skinning selectors, most important of these are;

Selector Applies
.ui-widget All PrimeFaces components
.ui-widget-header Header section of a component
.ui-widget-content Content section of a component
.ui-state-default Default class of a clickable
.ui-state-hover Hover class of a clickable
.ui-state-active When a clickable is selected
.ui-state-disabled Disabled elements.
.ui-state-highlight Highlighted elements.
.ui-icon An element to represent an icon.

These classes are not aware of structural css like margins and paddings, mostly they only define
colors. This clean separation brings great flexibility in theming because you don’t need to know
each and every skinning selectors of components to change their style.

For example Panel component’s header section has the .ui-panel-titlebar structural class, to change

the color of a panel header you don’t need to about this class as .ui-widget-header also that defines
the panel colors also applies to the panel header.

533

PrimeFaces User Guide

8.4 Theming Tips

* Default font size of themes might be bigger than expected, to change the font-size of PrimeFaces
components globally, use the .ui-widget style class. An example of smaller fonts;

.ui-widget, .ui-widget .ui-widget {
font-size: 90% !important;

}

* When creating your own theme with themeroller tool, select one of the pre-designed themes that
is close to the color scheme you want and customize that to save time.

* If you are using Apache Trinidad or JBoss RichFaces, PrimeFaces Theme Gallery includes
Trinidad’s Casablanca and RichFaces’s BlueSky theme. You can use these themes to make

PrimeFaces look like Trinidad or RichFaces components during migration.
* To change the style of a particular component instead of all components of same type use
namespacing, example below demonstrates how to change header of all panels.

.ui-panel-titlebar {
//css

}

or

.ui-panel-titlebar.ui-widget-header {
//css

}

To apply css on a particular panel;

<p:panel styleClass="custom">

</p:panel>

.custom .ui-panel-titlebar {
//css
}

534

PrimeFaces User Guide

9. PrimeFaces Push

PrimeFaces Push (PFP) is a push framework built on top of Atmosphere. Atmospheres creator
AsynclO is a partner company of PrimeTek and the developer of PFP. Atmosphere is highly
scalable, supports several containers and browsers, utilizes various transports such as websockets,
see, long-polling, streaming and jsonp. For more information please visit;

https://github.com/Atmosphere/atmosphere

9.1 Setup

Atmosphere

Atmosphere is required to run PrimeFaces Push, in your pom.xml define the dependency as;

<dependency>
<groupId>org.atmosphere</groupld>
<artifactId>atmosphere-runtime</artifactId>
<version>2.2.2</version>
</dependency>

Push Servlet

Push Servlet is used as a gateway for clients.

<servlet>
<servlet-name>Push Servlet</servlet-name>
<servlet-class>org.primefaces.push.PushServlet</servlet-class>
<async-supported>true</async-supported>

</servlet>

<servlet-mapping>
<servlet-name>Push Servlet</servlet-name>
<url-pattern>/primepush/*</url-pattern>
</servlet-mapping>

535

https://github.com/Atmosphere/atmosphere

PrimeFaces User Guide

9.2 Annotations

Design of PFP is annotation driven centralized around the main @PushEndPoint.

@PushEndPoint

The easiest way to create PFP application is by using the @PushEndPoint annotation. This
annotation simplifies the process to build an application using PFP avoding the need to interact with
Atmospheres more sophisticated API. This annotation significantly reduces the number of code
required to build a powerful real time application by transparently installing Atmospheres
components like heartbeat, idle connections detections, disconnect state recovery etc. It also allows
the use of external dependency injection framework like CDI, Spring or Guice. Annotation provides
one attribute called path to define the resource path.

path: The path to the resource.
The default is "/" so if your have mapped the PushServlet to "/*", all request will be delivered to

your annotated class. You can also customize the path. The path value will be used to map an
incoming request uris path to an annotated PushEndpoint class.

@PushEndPoint("/chat™)

@Singleton

Singleton annotation is used to force creating a single, thread safe instance of a PushEndpoint
annotated classes. For example, if your application set the (@PushEndpoint’s path attribute with a
path, by default a new instance of the annotated classes will be created. When annotated with
Singleton however, a single class will be created.

@OnOpen

The OnOpen() will be invoked when the underlying connection is ready to be used, e.g for write
operations. Annotated method needs to take the form of;

@0n0Open
public void onOpen();

@0n0Open
public void onOpen(RemoteEndpoint r);

@0n0Open
public void onOpen(RemoteEndpoint r, EventBus e);

The RemoteEndpoint represents the physical connection and can be used to write some data back to
the browser. The EventBus can be used to fire messages to one or more RemoteEndpoints using
regex expressions.

@OnMessage

The OnMessage() will be invoked when a message is ready to be deliver, e.g as a result of a
EventBus publish operation or when a browser is POSTing some bytes. The annotation’s attributes
available are;

536

PrimeFaces User Guide

encoders: A list of [Encoder]() that will be used to encode the annotated method return value. The
returned value of an annotated OnMessage method will be broadcasted to all resource associated
with the Broadcaster, associated with this annotated classes.

decoders: A list of [Decoder]() used to decode a broadcasted messages into an object matching the
methods signature.

Both of the encoders and decoders can be chained, meaning the returned value of an encoder-
decoder can be used as an input for the next one.

@0nMessage(encoders = {JSONEncoder.class})
public String onMessage(String count) {
return count;

}

Out of the box, PrimeFaces PUSH provides JSON implementations that are;
- org.primefaces.push.impl.JSONEncoder
- org.primefaces.push.impl.JSONDecoder

It is also easy to create your own encoders-decoders by implementing org.primefaces.push. Encoder
and org.primefaces.push. Decoder interfaces.

@OnClose

The @OnClose() will be invoked when the client disconnect, e.g close the connection, when a
network outage happens or when a proxy close the connection. Annotated method needs to take the
form of;

@0nClose
public void onClose();

@0nClose
public void onClose(RemoteEndpoint r);

@0nClose
public void onClose(RemoteEndpoint r, EventBus e);

Only one method in a class can be annotated with @OnClose.

@PathParam

@PathParam is used to automatically parse the path and assign path tokens to class variables.

@PushEndpoint("/somepath/{room}/{user}")
@Singleton
public class ChatResource {

@PathParam("room™)
private String room;

@PathParam("user™)
private String username;

/7. ..

537

PrimeFaces User Guide

9.3 API

RemoteEndPoint

The RemoteEndpoint() class represents the remote connection, e.g the Browser. An instance of
RemoteEndpoint hold information about the headers, queryString, body, uri, path and path segments
that can be used for manipulating the incoming request. If you are familiar with the Servlets
"HttpServletRequest", the RemoteEndpoint can be seen as an improved version. You can also use a
RemoteEndpoint#write to write back messages that will be delivered uniquely to the browser.

EventBus

A distributed lightweight event bus which can encompass multiple PushEndpoint instances. The
event bus implements publish / subscribe and point to point messaging. Messages sent over the
event bus can be of any type. For publish / subscribe, messages can be published to a Java class
annotated with the [PushEndpoint#value]() using one of the method annotated with [OnMessage]().
The EventBus is the recommended way for delivering messages. EventBus is retrieved via;

EventBus eventBus = EventBusFactory.getDefault().eventBus();

Once an EventBus instance is available, publishing data to subscribers is done with overloaded
publish methods.

publish(Object 0): Fires given object to all connected RemoteEndPoints.
publish(String path, Object 0): Fires given object to RemoteEndPoints that connected to the path.

publish(String path, Object o, Reply reply): Fires given object to RemoteEndPoints that
connected to the path by passing a Reply instance. Reply is an interface with a callback called
completed(String path) that is invoked when the EventBus delivered the message to the
PushEndPoint that matches the path used to initiate the publish operation.

9.4 Socket Component

Socket is a PrimeFaces component that handles the connection between the server and the browser,
common way to use socket is by defining a path and a callback to handle broadcasts.

<p:push channel="/chat" onmessage="handlePublish"/>

See Socket component documentation for the full list of available options.

Client Side API
Widget: PrimeFaces.widget.Socket

Method Params Return Type Description
connect(uri) uri void Connects to given uri.
push(json) json void Pushes data from client side.
disconnect - void Disconnects from channel.

538

PrimeFaces User Guide

9.5 Putting It All Together

PrimeFaces Showcase has various push demos, in this section two of them are covered.

9.5.1 Counter

Counter is a global counter where each button click increments the count value and new value is
pushed to all subscribers.

View page has an outputText to display the value, a button to increment current value to push, a
socket component to connect to /counter channel and finally the onMessage client side callback to
update the UL

<h:form>
<h:outputText value="#{counterView.count}" styleClass="display" />
<p:commandButton value="Click" actionListener="#{counterView.increment}" />
</h:form>

<p:socket onMessage="handleMessage" channel="/counter" />

<script type="text/javascript">
function handleMessage(data) {

$C' .display').text(data);
}

</script>

package org.primefaces.examples.push.counter;

import java.io.Serializable;

import javax.faces.bean.ApplicationScoped;
import javax.faces.bean.ManagedBean;

import org.primefaces.push.EventBus;

import org.primefaces.push.EventBusFactory;

@ManagedBean
@ApplicationScoped
public class CounterView implements Serializable{

private volatile int count;

public int getCount() {
return count;

}

public void setCount(int count) {
this.count = count;

}

public void increment() {
count++;

EventBus eventBus = EventBusFactory.getDefault().eventBus();
eventBus.publish("/counter”, String.valueOf(count));

539

PrimeFaces User Guide

increment button actionlistener first adds one to the counter value, gets an EventBus and then
pushes the new value to all connected clients. Final piece is writing the CounterResource to handle
messages whenever a data is pushed.

package org.primefaces.examples.push.counter;

import org.primefaces.push.annotation.OnMessage;
import org.primefaces.push.annotation.PushEndpoint;
import org.primefaces.push.impl.JSONEncoder;

@PushEndpoint("/counter™)
public class CounterResource {

@0nMessage(encoders = {JSONEncoder.class})
public String onMessage(String count) {
return count;

}

In case you’d like to update components and/or invoke listeners in your backing bean on broadcast,
you can use the optional message ajax behavior to implement the same functionality but with an
extra request.

<h:form id="form">

<h:outputText id="out" value="#{globalCounter.count}" />

<p:commandButton value="Click" actionlListener="#{globalCounter.increment}" />
</h:form>

<p:socket channel="/counter">
<p:ajax event="message" update="form:out" />
</p:socket>

540

PrimeFaces User Guide

9.5.2 FacesMessage

This sample shows how to push FacesMessages from one client to all others and display them using
Growl Component.

<p:growl widgetVar="growl" showDetail="true" />

<h:form>
<p:panel header="Growl">
<h:panelGrid columns="2">
<p:outputlLabel for="summary" value="Summary: " />
<p:inputText id="summary" value="#{growlBean.summary}" required="true" />

<p:outputlLabel for="detail" value="Detail: " />
<p:inputText id="detail" value="#{growlBean.detail}" required="true" />
</h:panelGrid>

<p:commandButton value="Send" actionlListener="#{growlBean.send}" />
</p:panel>
</h:form>

<p:socket onMessage="handleMessage" channel="/notify" />

<script type="text/javascript">
function handleMessage(facesmessage) {
facesmessage.severity = 'info';
PFC'growl').show([facesmessage]);
ks

</script>

package org.primefaces.examples.view;

import javax.faces.application.FacesMessage;
import javax.faces.bean.ManagedBean;

import javax.faces.bean.RequestScoped;
import javax.faces.context.FacesContext;
import javax.faces.event.ActionEvent;

import org.primefaces.push.EventBus;

import org.primefaces.push.EventBusFactory;

@ManagedBean
@RequestScoped
public class GrowlBean {

private final static String CHANNEL = "/notify";
private String text, summary, detail;
//getters-setters

public void send() {
EventBus eventBus = EventBusFactory.getDefault().eventBus();
eventBus.publish(CHANNEL, new FacesMessage(summary, detail));

541

PrimeFaces User Guide

NotifyResource simply encodes the pushed messages as JSON.

package org.primefaces.examples.push.notify;

import javax.faces.application.FacesMessage;

import org.primefaces.push.annotation.OnMessage;
import org.primefaces.push.annotation.PushEndpoint;
import org.primefaces.push.impl.JSONEncoder;

@PushEndpoint("/notify")
public class NotifyResource {

@0nMessage(encoders = {JSONEncoder.class})
public FacesMessage onMessage(FacesMessage message) {
return message;

}

542

PrimeFaces User Guide

9.6 Tips and Tricks

Dynamic Paths

Client side API would be handy to create dynamic channels, channel name of the socket does not
need to be static and you can create dynamic channels on runtime since a channel is basically a path
name. @PathParam is very handy to automatically parse the Path and assign the path tokens to
variables.

See chat sample in showcase for an example of dynamic channels used to send private messages.

Proxies

Proxies are problematic not just for PrimeFaces Push - Atmosphere solution but in all solutions. If
your proxy supports websockets, make sure to add the necessary configuration. Another solution
that is considered as a workaround is to override the default uri of the push server. Default uri is
protocol://contextPath/primepush/channel, for example PrimeFaces online showcase is running on
jetty that is behind an apache mod proxy which doesn’t support websockets at time of the writing.
Solution is to configure PrimeFaces to use another push server like;

<context-param>
<param-name>primefaces.PUSH_SERVER_URL</param-name>
<param-value>http://www.primefaces.org:8080</param-value>
</context-param>

So that socket component bypasses the proxy and directly communicates with the application.

Supported Server and Client Environments

Atmosphere does a agreat job in supporting different servers and browsers. See the detailed list at;

https://github.com/Atmosphere/atmosphere/wiki/Supported-WebServers-and-Browsers

Scalability

Atmosphere is build to scale via plugins such as JMS, Redix, XMPP, Hazelcast and more. Refer to
atmosphere documentation to see how to configure atmosphere in more than one server.
PushServlet extends from AtmosphereServlet so any configuration option for AtmosphereServlet
also applies PushServlet.

543

https://github.com/Atmosphere/atmosphere/wiki/Supported-WebServers-and-Browsers

PrimeFaces User Guide

10. PrimeFaces Mobile

PrimeFaces Mobile (PFM) is a UI Kit to create JSF applications optimized for mobile devices. PFM
is built on top of jQuery Mobile, a touch-optimized HTMLS5 UI framework providing support for
various platforms.

In addition to the seamless integration with jQuery Mobile, PFM features a Mobile Renderkit for
popular PrimeFaces components, ajax framework extensions, mobile ajax behavior events,
integrated navigation model, lazy loading of pages, responsive widgets and more.

10.1 Setup

Mobile ships with PrimeFaces Core so no additional download is required.

Configuration

A mobile navigation handler is necessary inside faces configuration to enable navigations support.

<application>
<navigation-handler>
org.primefaces.mobile.application.MobileNavigationHandler
</navigation-handler>
</application>

Taglib

PFM provides mobile specific components with the following taglib.

xmlns:pm="http://primefaces.org/mobile"

RenderKit

RenderKit is the core part of PFM featuring optimized renderers for mobile environments. There
are two main ways to enable PFM RenderKit.

Core view tag has a renderKitld attribute to set the renderer kit of the page.

<f:view renderKitId="PRIMEFACES_MOBILE" />

If your application fully consists of mobile pages, then a global configuration in faces configuration
file should be preferred instead of per page configuration.

<application>
<default-render-kit-id>PRIMEFACES_MOBILE</application>
</application>

544

PrimeFaces User Guide

10.2 Pages

A mobile page is a regular facelets xhtml file with mobile page containers defined with pm:page.

<!DOCTYPE html>

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:p="http://primefaces.org/ui"
xmlns:pm="http://primefaces.org/mobile">

<f:view renderKitId="PRIMEFACES_MOBILE" />

<h:head>
</h:head>
<h:body>
<pm:page>
<pm:header title="Basic Page"></pm:header>
<pm:content></pm: content>
</pm:page>
</h:body>
</html>

A single page xhtml view can have more than one page. By default the first page is visible on load.

<IDOCTYPE html>

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:p="http://primefaces.org/ui"
xmlns:pm="http://primefaces.org/mobile">

<f:view renderKitId="PRIMEFACES_MOBILE" />

<h:head>
</h:head>

<h:body>

<pm:page id="main">
<pm:header title="Main Page"></pm:header>
<pm:content></pm: content>

</pm:page>

<pm:page id="second">
<pm:header title="Second Page"></pm:header>
<pm:content></pm: content>

</pm:page>

</h:body>
</html>

545

PrimeFaces User Guide

10.2 Navigations

PFM supports all kinds of standard navigations with the addition of a custom navigation model.

Internal

Internal navigation is between pages in the same xhtml view. Outcome should have the pm: prefix
for this kind of navigation. Using the multi page sample at section 10.1;

<p:button outcome="pm:second" />
<p:link outcome="pm:second" />

Button and Link components displays the page whose id is second. In case you'd like to navigate
after a POST request, usage would be similar.

<p:commandButton value="Go to Second" action="#{bean.go}" />

public String go() {
return "pm:second";

}

External

External navigations to another xhtml in same domain or a resource in another domain is same as
standard approach.

<p:button outcome="/ui/home" value="Home" />
<p:button href="http://www.primefaces.org" value="Home" />

Transitions

Various animations are available to run during the navigation. Name of the effect is appended to the
outcome. In addition, reverse option is provided for back navigations.

<p:button outcome="pm:second?transition=pop" />
<p:link outcome="pm:second?transition=flip&reverse=true" />

List of possible transitions is fade, pop, flip, turn, flow, slide, slidefade, slideup and slidedown. Fade
is the default transition and to turn off animation, set none as the value.

Client API

A client side API is available to navigate manually from a custom javascript code. Signature is;

PrimeFaces.Mobile.navigate(to, cfg),

PrimeFaces.Mobile.navigate('#second', {
reverse: truelfalse,
transition: 'fade'

s

546

http://www.primefaces.org/

PrimeFaces User Guide

10.3 Components
10.3.1 Content

Content is container component for the content area of a page.

Info
Tag content
Component Class org.primefaces.mobile.component.content.Content
Component Type org.primefaces.mobile.Content
Component Family org.primefaces.mobile.component
Renderer Type org.primefaces.mobile.component.ContentRenderer
Renderer Class org.primefaces.mobile.component.content.ContentRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.
binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean
style null String Inline style of the component.
styleClass null String Style class of the component.

Getting Started with the Content

Content is a children component of a page.

<pm:page>
<pm:content>
//page content
</pm:content>
</pm:page>

547

10.3.2 Field

PrimeFaces User Guide

Field is a responsive layout component for label-input pairs.

Info

Tag

field

Component Class

org.primefaces.mobile.component.field.Field

Component Type

org.primefaces.mobile.Field

Component Family

org.primefaces.mobile.component

Renderer Type

org.primefaces.mobile.component.FieldRenderer

Renderer Class

org.primefaces.mobile.component.field.FieldRenderer

Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered true Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.
binding null Object An el expression that maps to a server side

UlIComponent instance in a backing bean

Getting Started with the Field

Field is used as the container of a label and an input component. As a responsive component, field
displays the optimal placement for its children based on available width.

<pm:field>

</pm:field>

<p:outputlLabel for="text" value="Text:" />
<p:inputText id="txt" />

548

PrimeFaces User Guide

10.3.3 Footer

Footer is container component for the bottom area of a page.

Info

Tag footer

Component Class org.primefaces.mobile.component.footer.Footer

Component Type org.primefaces.mobile.Footer

Component Family org.primefaces.mobile.component

Renderer Type org.primefaces.mobile.component.FooterRenderer

Renderer Class org.primefaces.mobile.component.footer.FooterRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the component, when set
to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent instance
in a backing bean

title null String Title text of the footer.

fixed false Boolean Positions the footer as fixed on scroll.

theme null String Swatch of the component.

tapToggle true Boolean For fixed footers, sets whether the fixed toolbar's visibility can be
toggled by tapping on the page.

style null String Inline style of the component.

styleClass null String Style class of the component.

Getting Started with the Footer

Footer is a children component of a page.

<pm:page>
<pm:footer title="Footer"></pm:footer>
</pm:page>

549

10.3.4 Header

PrimeFaces User Guide

Header is container component for the top area of a page.

Info

Tag

header

Component Class

org.primefaces.mobile.component.header.Header

Component Type

org.primefaces.mobile.Header

Component Family

org.primefaces.mobile.component.Header

Renderer Type

org.primefaces.mobile.component.HeaderRenderer

Renderer Class

org.primefaces.mobile.component.header.HeaderRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the component, when set
to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent instance
in a backing bean

title null String Title text of the header.

fixed false Boolean Positions the header as fixed on scroll.

theme null String Swatch of the component.

style null String Inline style of the component.

styleClass null String Style class of the component.

Getting Started with the Header

Header is a children component of a page.

<pm:page>

</pm:page>

<pm:header title="Footer"></pm:header>

550

PrimeFaces User Guide

10.3.5 InputSlider

InputSlider is an input component with a touch enabled slider.

50

Info

Tag

inputSlider

Component Class

org.primefaces.mobile.component.inputslider.InputSlider

Component Type

org.primefaces.mobile.InputSlider

Component Family

org.primefaces.mobile.component.

Renderer Type

org.primefaces.mobile.component.InputSliderRenderer

Renderer Class

org.primefaces.mobile.component.inputslider.InputSliderRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean | Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component.

converter null Object An el expression or a literal text that defines a converter
for the component. When it’s an EL expression, it’s
resolved to a converter instance. In case it’s a static text,
it must refer to a converter id.

immediate false Boolean | When set true, process validations logic is executed at
apply request values phase for this component.

required false Boolean | Marks component as required

validator null Object A method binding expression that refers to a method
validationg the input.

valueChangeListener | null Object A method binding expression that refers to a method for
handling a valuechangeevent.

requiredMessage null String Message to be displayed when required field validation
fails.

551

PrimeFaces User Guide

Name Default Type Description
converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.
minValue 0 Integer Minimum value of the slider.
max Value 100 Integer Maximum value of the slider.
style null String Inline style of the component.
styleClass null String Style class of the component.
step 1 String Step factor to apply on slider move.
disabled false Boolean | Disables or enables the slider.
label null String User presentable name.
highlight false Boolean | Highlights the value range when enabled.

Getting Started with the InputSlider

InputSlider requires an integer as its value.

<pm:inputSlider value="50" />

<pm:inputSlider value="#{backingView.integerProperty}" />

Boundaries

0 and 100 are the default boundaries, these can be customized using minValue and maxValue.

<pm:inputSlider minValue="100" maxValue="200" value="#{backingView.intProperty}"/>

552

10.3.6 Page

PrimeFaces User Guide

Page is main component to define an internal page within an xhtml.

Info

Tag

page

Component Class

org.primefaces.mobile.component.page.Page

Component Type

org.primefaces.mobile.Page

Component Family

org.primefaces.mobile.component

Renderer Type

org.primefaces.mobile.component.PageRenderer

Renderer Class

org.primefaces.mobile.component.page.PageRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the component, when set
to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent instance
in a backing bean

title null String Title text of the page.

theme null String Swatch of the page.

style null String Inline style of the component.

styleClass null String Style class of the component.

lazy false

Boolean Lazy loading views are not rendered on initial page load to improve
performance and instead lazily loaded on demand when there are
first navigated to.

Getting Started with the Page

Please see section 10.1 Pages for the usage and more information.

553

10.3.7 RangeSlider

RangeSlider is a grouping component for dual sliders to create a range selection.

PrimeFaces User Guide

20 .] 80
Info
Tag rangeSlider

Component Class

org.primefaces.mobile.component.rangeslider.RangeSlider

Component Type

org.primefaces.mobile.RangeSlider

Component Family

org.primefaces.mobile.component

Renderer Type

org.primefaces.mobile.component.RangeSlider

Renderer Class

org.primefaces.mobile.component.rangeslider.RangeSlider

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean Boolean value to specify the rendering of the component, when set
to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent instance
in a backing bean

style null String Inline style of the component.

styleClass null String Style class of the component.

highlight false Boolean Highlights the value range when enabled.

Getting Started with the RangeSlider

RangeSlider needs two sliders as children, first slider is for the start of range and second for the end.

<pm:rangeSlider>
<pm:inputSlider value="#{backingView.start}"/>
<pm:inputSlider value="#{backingView.end}"/>

</pm:rangeSlider>

554

PrimeFaces User Guide

10.3.8 Switch (Deprecated)

Switch is deprecated, use p:inputSwitch instead.

Switch is an input component to select a boolean value.

off

Info

Tag switch

Component Class org.primefaces.mobile.component.uiswitch.UISwitch

Component Type org.primefaces.mobile.UISwitch

Component Family org.primefaces.mobile.component

Renderer Type org.primefaces.mobile.component.UISwitchRenderer

Renderer Class org.primefaces.mobile.component.uiswitch.UISwitchRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered true Boolean | Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

value null Object Value of the component.

converter null Object An el expression or a literal text that defines a
converter for the component. When it’s an EL
expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id.

immediate false Boolean | When set true, process validations logic is
executed at apply request values phase for this
component.

required false Boolean | Marks component as required

validator null Object A method binding expression that refers to a
method validationg the input.

555

PrimeFaces User Guide

Name Default Type Description

valueChangeListener | null Object A method binding expression that refers to a
method for handling a valuechangeevent.

requiredMessage null String Message to be displayed when required field validation
fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

onLabel on Integer Minimum value of the slider.

offLabel off Integer Maximum value of the slider.

label null String User presentable name.

style null String Inline style of the component.

styleClass null String Style class of the component.

label null String User presentable name.

disabled false Boolean | Disables or enables the switch.

onchange false String Client side callback to execute on change event.

Getting Started with the Switch
Value of switch should be a boolean property, if the value is false offLabel would be displayed and

onlLabel would be used otherwise.

<pm:switch value="#{backingView.booleanProperty}" />

556

PrimeFaces User Guide

10.4 RenderKit

In addition to the mobile components, various core components have been enhanced with mobile
renderers so that same component can be optimized for a mobile browser. Since usage is same in
desktop and mobile environments, refer to chapter 3 for documentation about these components.

10.4.1 AccordionPanel
Godfather Part |

The story begins as Don Vito Corleone, the head of a New York Mafia family, oversees his daughter's wedding. His beloved son
Michael has just come home from the war, but does not intend to become part of his father's business. T hrough Michael's life the
nature of the family business becomes clear. The business of the family is just like the head of the family, kind and benevolent to
those who give respect, but given to ruthless violence whenever anything stands against the good of the family.

Godfather Part Il

Godfather Part Il

10.4.2 AutoComplete
Q a
g Afellay 2
=
' Abidal 2
:
micef @
e Alves 2
I
g Adriano -
& -
10.4.3 Button
Default
With Icon
Icon Position

Inline

557

10.4.4 Calendar

(¢) April 2014 ()
Su Mo Tu We Th Fr Sa

1 2 3 4 5
6 7 8 9 10 N 12

13 14 15 16 17 18 19

20 21 22 n 24 25 26

10.4.5 DataL.ist

List of Players

& :lua 7 o
&
a- -

F.C. Barcelona

10.4.6 Dialog

O Header

What we do in life, echoes in eternity!

10.4.7 FileUpload

| Browse... | No file selected.

558

PrimeFaces User Guide

10.4.8 Growl

Name: Validation Error: Value is
required.

Name: Validation Error: Value is
required.

10.4.9 InputText

Q

10.4.10 InputTextarea

10.4.11 Link
10.4.12 Menu

Sports
ESPN
NBA
Search
Google

Bing

10.4.13 Panel

Godfather Part Il

Francis Ford Coppola's legendary continuation and sequel to his landmark 1972 film,
The_Godfather, parallels the young Vito Corleone's rise with his son Michael's
spiritual fall, deepening The_Godfather's depiction of the dark side of the American
dream. In the early 1900s, the child Vito flees his Sicilian village for America after the
local Mafia kills his family. Vito struggles to make a living, legally or illegally, for his
wife and growing brood in Little Italy, killing the local Black Hand Fanucci after he
demands his customary cut of the tyro's business. With Fanucci gone, Vito's
communal stature grows.

559

PrimeFaces User Guide

10.4.14 PanelGrid

10.4.15 SelectBooleanCheckbox

| agree

10.4.16 SelectCheckboxMenu

} Select Multiple
Option 1 '
| Option 2

Option 3

10.4.17 SelectManyButton

Option 1 Option 2 Option 3

10.4.18 SelectManyCheckbox

Option 1
Option 2

Option 3

10.4.19 SelectOneButton

Option 1 m Option 3

10.4.20 SelectOneMenu

Select One

10.4.21 SelectOneRadio

© Option1
Option 2

Option 3

10.4.22 TabMenu

560

PrimeFaces User Guide

Search

PrimeFaces User Guide

10.4.24 TabView

Godfather Part | Godfather Part Il Godfather Part Ill

The story begins as Don Vito Corleone, the head of a New York Mafia family, oversees his daughter's wedding. His
beloved son Michael has just come home from the war, but does not intend to become part of his father's business. T
hrough Michael's life the nature of the family business becomes clear. The business of the family is just like the head of
the family, kind and benevolent to those who give respect, but given to ruthless violence whenever anything stands
against the good of the family.

10.4.25 Toolbar

O New 9 List o Delete @ Settings

561

PrimeFaces User Guide

10.5 Themes

Mobile theming is similar to the core theming documented at chapter 8. Main difference is the
swatch concept of mobile themes where one theme can contain multiple swatches. Default theme
has two swatches a and b. A swatch can be applied using swatch attribute when available.

<pm:header title="Header" swatch="b"></pm:header>

Custom Theme

There is a mobile themeroller application to create a custom theme.

http://themeroller. jquerymobile.com

After creating the theme and downloading it as a zip file, a jar file has to be created to install the
theme with the same folder structure as a desktop theme.

-jar
- META-INF
- resources
- primefaces-mytheme
-theme.css
-images

1) The theme package downloaded from ThemeRoller will have a themename.css file and images
folder. Extract the contents of the package and rename themename.css to theme.css.

" © jquery.mobile.icons.min.css
@ index.html © mytheme.css

@ mytheme.min.css

L images L

2) Image references in your theme.css must also be converted to an expression that JSF resource
loading can understand, example would be;

url("images/ui-bg_highlight-hard 100 9199 1x100.png")
should be;
url("#{resource['primefaces-mytheme:images/ui-bg_highlight-hard 100 9919 1x100.png']}")

Once the jar of your theme is in classpath, you can enable the theme by the following configuration.

<context-param>
<param-name>primefaces.mobile.THEME</param-name>
<param-value>mytheme</param-value>
</context-param>

param-value can be an EL expression as well to implement dynamic theming.

562

PrimeFaces User Guide

10.6 Framework

In addition to the UI components, PFM provides seamless integration with jQuery Mobile.

10.6.1 Ajax Updates

Plain jQuery Mobile UI elements use progressive enhancement approach that runs once on page
load, this breaks JSF ajax updates since the updated parts cannot be enhanced again. PFM takes care
of this problem under the hood.

As an example, the plain jquery mobile datalist and inputtext will lose all styling and functionality
when updated with standard ajax commandbutton whereas PFM commandButton will properly
update the datalist and inputtext.

<h:commandButton value="Standard">
<f:ajax render="panell" />
</h:commandButton>

<p:commandButton value="PFM" update="panel2" icon="ui-icon-refresh"/>

<h:panelGroup id="panell">
<ul data-role="listview" data-inset="true">
Item 1</1i>
Item 2</11i>
Item 3</1i>

<h:inputText />
</h:panelGroup>

<p:outputPanel id="panel2">
<p:menu styleClass="ui-listview-inset ui-corner-all">
<p:menuitem value="Iteml" url="#" />
<p:menuitem value="Item2" url="#" />
<p:menuitem value="Item3" url="#" />
</p:menu>

<p:inputText />
</p:outputPanel>

10.6.2 Pass Through Elements

JQM is data attribute driven, thanks to JSF 2.2's dynamic attributes support, PrimeFaces
Components can have mobile specific options easily. Example below adds inset setting to a datalist.

<p:datalist value="#{ringBean.players}" var="player" pt:data-inset="true">
//content
</p:datalist>

Note that pt is the standard taglib; xmlns:pt="http://xmlins. jcp.org/jsf/passthrough”. For the full list
of available data attributes, consult the jQuery Mobile documentation.

563

PrimeFaces User Guide

10.6.3 Lazy Pages

For a mobile device with bandwith concerns, loading all the pages in same xhtml at once in an
eager fashion is not optimal and might cause performance issues if the page size is big. PFM
supports lazy loading pages where a page content is not rendered at first but loaded with ajax just
before accessed for the first time. Lazy loading is disabled and activated by setting /azy option on
page component.

<!DOCTYPE html>

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:p="http://primefaces.org/ui"
xmlns:pm="http://primefaces.org/mobile">
<f:view renderKitId="PRIMEFACES_MOBILE" />
<h:head></h:head>

<h:body>
<pm:page id="main">
<pm:header title="Main Page"></pm:header>
<pm:content>
<p:link outcome="pm:second" value="Go" />
</pm:content>
</pm:page>
<pm:page id="second" lazy="true">
<pm:header title="Second Page"></pm:header>
<pm:content>
//Lazy loaded content
</pm:content>
</pm:page>
</h:body>
</html>

At first page load, second page contents are not available on page, clicking the link first makes an
ajax request to fetch the contents, create the UI and then finally navigate to it.

10.6.4 Touch Events

Touch events like swipe are enabled in some components. In following, items in the list can be
removed by swipeleft or swiperight and detail is displayed with taphold.

<h:form id="form">
<p:growl id="msgs" showDetail="true" />

<p:datalist value="#{tableBean.carsSmall}" var="car" pt:data-inset="true">
<p:ajax event="swipeleft" listener="#{tableBean.swipeCar}"
update=":form:msgs @this"/>
<p:ajax event="swiperight" listener="#{tableBean.swipeCar}"
update=":form:msgs @this"/>
<p:ajax event="taphold" listener="#{tableBean.onRowSelect}"
update=":form:msgs"/>
<h:outputText value="#{car.manufacturer} - #{car.color}" />
</p:datalist>
</h:form>

564

PrimeFaces User Guide

public void onRowSelect(SelectEvent event) {
FacesMessage msg = new FacesMessage("Car Selected",
((Car) event.getObject()).getModel());

FacesContext.getCurrentInstance().addMessage(null, msg);
b

public void swipeCar(SwipeEvent event) {
Car car = (Car) event.getData();
carsSmall.remove(car);
FacesContext.getCurrentInstance().addMessage(null,
new FacesMessage(FacesMessage.SEVERITY_INFO,
"Car Swiped", "Removed: " + car.getModel()));

Sections 10.4 and 10.5 contains supported mobile events for a component when available.

565

PrimeFaces User Guide

11. Utilities

11.1 RequestContext

RequestContext is a simple utility that provides useful goodies such as adding parameters to ajax
callback functions. RequestContext is available in both ajax and non-ajax requests.

RequestContext can be obtained similarly to the FacesContext.

RequestContext requestContext = RequestContext.getCurrentInstance();

RequestContext API

Method Description

isAjaxRequest() Returns a boolean value if current request is a
PrimeFaces ajax request.

addCallBackParam(String name, Object value) | Adds parameters to ajax callbacks like oncomplete.

update(String clientld); Specifies component(s) to update at runtime.

execute(String script) Executes script after ajax request completes or on page
load.

scrollTo(String clientld) Scrolls to the component with given clientld after ajax

request completes.

Callback Parameters

There may be cases where you need values from backing beans in ajax callbacks. Callback
parameters are serialized to JSON and provided as an argument in ajax callbacks for this.

<p:commandButton actionListener="#{bean.validate}"
oncomplete="handleComplete(xhr, status, args)" />

public void validate() {
//isValid = calculate isValid
RequestContext requestContext = RequestContext.getCurrentInstance();
requestContext.addCallbackParam("isValid", true or false);

isValid parameter will be available in handleComplete callback as;

<script type="text/javascript">
function handleComplete(xhr, status, args) {
var isValid = args.isValid;
3

</script>

You can add as many callback parameters as you want with addCallbackParam API. Each parameter
is serialized as JSON and accessible through args parameter so pojos are also supported just like
566

PrimeFaces User Guide

primitive values. Following example sends a pojo called User that has properties like firstname and
lastname to the client in addition to isValid boolean value.

public void validate() {
//isValid = calculate isValid
RequestContext requestContext = RequestContext.getCurrentInstance();
requestContext.addCallbackParam("isValid", true or false);
requestContext.addCallbackParam("user", user);

<script type="text/javascript">
function handleComplete(xhr, status, args) {
var firstname = args.user.firstname;
var lastname = args.user.lastname;

}

</script>

By default validationFailed callback parameter is added implicitly if validation fails.

Runtime Updates

Conditional Ul update is quite common where different parts of the page need to be updated based
on a dynamic condition. In this case, it is not efficient to use declarative update and defined all
update areas since this will cause unncessary updates.There may be cases where you need to define
which component(s) to update at runtime rather than specifying it declaratively. update method is
added to handle this case. In example below, button actionListener decides which part of the page to
update on-the-fly.

<p:commandButton value="Save" actionlListener="#{bean.save}" />
<p:panel id="panel"> ... </p:panel>
<p:dataTable id="table"> ... </p:panel>

public void save() {
//boolean outcome = ...
RequestContext requestContext = RequestContext.getCurrentInstance();

if(outcome)
requestContext.update("panel");
else
requestContext.update("table");

When the save button is clicked, depending on the outcome, you can either configure the datatable
or the panel to be updated with ajax response.

Execute Javascript

RequestContext provides a way to execute javascript when the ajax request completes, this
approach is easier compared to passing callback params and execute conditional javascript.
Example below hides the dialog when ajax request completes;

567

PrimeFaces User Guide

public void save() {
RequestContext requestContext = RequestContext.getCurrentInstance();

requestContext.execute(“dialog.hide()™);

568

PrimeFaces User Guide

11.2 EL Functions

PrimeFaces provides built-in EL extensions that are helpers to common use cases.

Common Functions

Function Description

component('id') Returns clientld of the component with provided server id parameter. This function
is useful if you need to work with javascript.

widgetVar('id') Provides the widgetVar of a component in PF(") format.

Component

<h:form id="forml">
<h:inputText id="name" />
</h:form>
//#{p:component(‘name’)} returns ‘forml:name’

WidgetVar

<p:dialog id="dlg">
//contents
</p:dialog>
<p:commandButton type="button" value="Show" onclick="#{p:widgetVar(‘dlg)}.show()" />

Page Authorization
Authorization function use HttpServletRequest API for the backend information.

Function Description
ifGranted(String role) Returns true if user has the given role, else false.
ifAllGranted(String roles) Returns true if user has all of the given roles, else false.
ifAnyGranted(String roles) Returns true if user has any of the given roles, else false.
ifNotGranted(String roles) Returns true if user has none of the given roles, else false.
remoteUser() Returns the name of the logged in user.
userPrincipal() Returns the principal instance of the logged in user.

<p:commandButton rendered="#{p:ifGranted('ROLE_ADMIN')}" />
<h:inputText disabled="#{p:ifGranted('ROLE_GUEST')}" />
<p:inputMask rendered="#{p:ifAllGranted('ROLE_EDITOR, ROLE_READER')}" />

569

PrimeFaces User Guide

11.3 Exception Handler

PrimeFaces provides a built-in exception handler to take care of exceptions in ajax and non-ajax
requests easily.

Configuration

ExceptionHandler and an ElResolver configured is required in faces configuration file.

<application>
<el-resolver>
org.primefaces.application.exceptionhandler.PrimeExceptionHandlerELResolver
</el-resolver>
</application>

<factory>
<exception-handler-factory>
org.primefaces.application.exceptionhandler.PrimeExceptionHandlerFactory

</exception-handler-factory>
</factory>

Error Pages

ExceptionHandler is integrated with error-page mechanism of Servlet API. At application startup,
PrimeFaces parses the error pages and uses this information to find the appropriate page to redirect
to based on the exception type. Here is an example web.xml configuration with a generic page for
exceptions and a special page for ViewExpiredException type.

<?xml version="1.0" encoding="UTF-8"7>

<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" >

<!-- Other application configuration -->

<error-page>
<exception-type>java.lang.Throwable</exception-type>
<location>/ui/error/error.jsf</location>
</error-page>

<error-page>
<exception-type>javax.faces.application.ViewExpiredException</exception-type>

<location>/ui/error/viewExpired.jsf</location>
</error-page>

</web-app>

570

PrimeFaces User Guide

Exception Information

In the error page, information about the exception is provided via the pfExceptionHandler EL
keyword. Here is the list of exposed properties.

- exception: Throwable instance.

- type: Type of the exception.

- message: Exception message:

- stackTrace: An array of java.lang.StackTraceElement instances.
- formattedStackTrace: Stack trace as presentable string.

- timestamp: Timestamp as date.

- formattedTimestamp: Timestamp as presentable string.

In error page, exception metadata is accessed using EL;

<h:outputText value="Message:#{pfExceptionHandler.message}" />
<h:outputText value="#{pfExceptionHandler.formattedStackTrace}" escape="false" />

Ajax Exception Handler Component

A specialized exception handler component provides a way to execute callbacks on client side,
update other components on the same page. This is quite useful in case you don't want to create a
separate error page. Following example shows the exception in a dialog on the same page.

<p:ajaxExceptionHandler type="javax.faces.application.ViewExpiredException"
update="exceptionDialog" onexception="PF('exceptionDialog').show();" />

<p:dialog id="exceptionDialog" header="Exception: #{pfExceptionHandler.type}
occured!" widgetVar="exceptionDialog" height="500px">

Message: #{pfExceptionHandler.message}

StackTrace: <h:outputText value="#{pfExceptionHandler.formattedStackTrace}"

escape="false" />
<p:button onclick="document.location.href = document.location.href;"
value="Reload!"/>

</p:dialog>

Ideal location for p:ajaxExceptionHandler component is the facelets template so that it gets
included in every page. Refer to component documentation of p:ajaxExceptionHandler for the
available attributes.

Render Response Exceptions

To support exception handling in the RENDER RESPONSE phase, it's required to set the
javax.faces. FACELETS BUFFER SIZE parameter. Otherwise you will probably see a
ServletException with "Response already committed" message.

571

PrimeFaces User Guide

11.4 BeanValidation Transformation

Since JavaEE 6, validation metadata is already available for many components via the value
reference and BeanValidation (e.g. @NotNull, @Size). The JSF Implementations use this
information for server side validation and PrimeFaces enhances this feature with client side
validation framework.

PrimeFaces makes use of these metadata by transforming them to component and html attributes.
For example sometimes it’s required to manually maintain the required or maxlength attribute for
input components. The required attribute also controls the behavior of p:outputLabel to show or
hide the required indicator (*) whereas the maxlength attribute is used to limit the characters on
input fields. BeanValidation transformation features enables avoiding manually maintaining these
attributes anymore by implicility handling them behind the scenes.

Configuration

To start with, transformation should be enabled.

<context-param>;
<param-name>primefaces. TRANSFORM_METADATA</param-name>
<param-value>true</param-value>

</context-param>

Usage

Define constraints at bean level.

@NotNull
@Max(30)
private String firstname;

Component at view does not have any constraints;

<p:inputText value="#{bean.firstname}" />

Final output has html maxlength attribute generated from the (@Max annotation, also the component
instance has required enabled.

<input type="text" maxlength="30" .. />

572

PrimeFaces User Guide

11.5 PrimeFaces Locales

Components may require translations and other settings based on different locales. This is handled
with a client side api called PrimeFaces Locales. A client side locale is basically a javascript object
with various settings, en_US is the default locale provided out of the box. In case you need to
support another locale, settings should be extended with the new information.

A wiki page is available for user contributed settings, the list is community driven and a good
starting point although it might be incomplete.

https://code.google.com/p/primefaces/wiki/PrimeFaceslLocales

Default Locale

Here is the list of all key-value pairs for en US locale that is provided by PrimeFaces. DateTime
related properties are utilized by components such as calendar and schedule. If you are using Client
Side Validation, messages property is used as the bundle for the locale.

{

closeText: 'Close',

prevText: 'Previous',

nextText: 'Next',

monthNames: ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September’,

'October’, "November', 'December’],

monthNamesShort: ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec' |,

dayNames: ['Sunday', 'Monday', 'Tuesday', "Wednesday', 'Thursday', 'Friday', 'Saturday'],

dayNamesShort: ['Sun', 'Mon', 'Tue', "'Wed', 'Tue', 'Fri', 'Sat'],

dayNamesMin: ['S','M', T',"W','T",'F ', 'S'],

weekHeader: 'Week',

firstDay: 0,

iSRTL: false,

showMonthAfterYear: false,

yearSuffix:",

timeOnlyTitle: 'Only Time',

timeText: 'Time',

hourText: 'Time',

minuteText: 'Minute',

secondText: 'Second',

currentText: 'Current Date’',

ampm: false,

month: 'Month',

week: 'week’,

day: 'Day',

allDayText: 'All Day',

messages: {
'javax.faces.component.UlInput. REQUIRED': '{0}: Validation Error: Value is required.',
'javax.faces.converter.IntegerConverter.INTEGER': '{2}: \'{0}\' must be a number

consisting of one or more digits.',
'javax.faces.converter.IntegerConverter.INTEGER _detail': '{2}: \'{0}\' must be a number

between -2147483648 and 2147483647 Example: {1}',

573

PrimeFaces User Guide

'javax.faces.converter.DoubleConverter. DOUBLE': '{2}: \'{0}\' must be a number
consisting of one or more digits.',

'javax.faces.converter.DoubleConverter. DOUBLE _detail': '{2}: \'{0}\' must be a number
between 4.9E-324 and 1.7976931348623157E308 Example: {1}',

'javax.faces.converter.BigDecimalConverter. DECIMAL': '{2}: \'{0}\' must be a signed
decimal number.',

'javax.faces.converter.BigDecimalConverter. DECIMAL _detail': '{2}: \'{0}\' must be a
signed decimal number consisting of zero or more digits, that may be followed by a decimal point
and fraction. Example: {1},

'javax.faces.converter.BigIntegerConverter. BIGINTEGER': '{2}: \'{0}\' must be a number
consisting of one or more digits.",

'javax.faces.converter.BigIntegerConverter. BIGINTEGER _detail': '{2}: \'{0}\' must be a
number consisting of one or more digits. Example: {1}',

'javax.faces.converter.ByteConverter.BYTE': '{2}: \'{0}\' must be a number between 0 and
255,

'javax.faces.converter.ByteConverter.BYTE_detail': '{2}:\'{0}\' must be a number between
0 and 255. Example: {1}',

'javax.faces.converter.CharacterConverter. CHARACTER': '{1}:\'{0}\' must be a valid
character.',

'javax.faces.converter.CharacterConverter. CHARACTER_detail': '{1}: \'{0}\' must be a
valid ASCII character.',

'javax.faces.converter.ShortConverter. SHORT': '{2}: \'{0}\' must be a number consisting of
one or more digits.',

'javax.faces.converter.ShortConverter. SHORT _detail': '{2}: \'{0}\' must be a number
between -32768 and 32767 Example: {1}',

'javax.faces.converter.BooleanConverter BOOLEAN': '{1}: \'{0}\' must be \'true\’
or \'false\",

'javax.faces.converter.BooleanConverter BOOLEAN_detail': '{1}:\'{0}\' must be \'true\' or
\'false\'. Any value other than \'true\' will evaluate to \'false\'.’,

'javax.faces.validator.LongRangeValidator MAXIMUM': '{1}: Validation Error: Value is
greater than allowable maximum of \'{0}\",

'javax.faces.validator.LongRangeValidator MINIMUM': '{1}: Validation Error: Value is
less than allowable minimum of \'{0}\",

'javax.faces.validator.LongRangeValidator.NOT IN_ RANGE'": '{2}: Validation Error:
Specified attribute is not between the expected values of {0} and {1}.',

javax.faces.validator.LongRangeValidator. TYPE={0}": 'Validation Error: Value is not of the
correct type.',

'javax.faces.validator.DoubleRangeValidator MAXIMUM': '{1}: Validation Error: Value is
greater than allowable maximum of \'{0}\",

'javax.faces.validator.DoubleRangeValidator. MINIMUM': '{1}: Validation Error: Value is
less than allowable minimum of \'{0}\",

'javax.faces.validator.DoubleRangeValidator NOT_IN RANGE': '{2}: Validation Error:
Specified attribute is not between the expected values of {0} and {1}',

'javax.faces.validator.DoubleRangeValidator. TYPE={0}': 'Validation Error: Value is not of
the correct type',

'javax.faces.converter.FloatConverter. FLOAT': '{2}: \'{0}\' must be a number consisting of
one or more digits.',

'javax.faces.converter.FloatConverter. FLOAT detail': '{2}: \'{0}\' must be a number
between 1.4E-45 and 3.4028235E38 Example: {1}/,

'javax.faces.converter.DateTimeConverter.DATE': '{2}: \'{0}\' could not be understood as a
date.',

574

PrimeFaces User Guide

'javax.faces.converter.DateTimeConverter.DATE_detail': '{2}: \'{0}\' could not be
understood as a date. Example: {1}',

'javax.faces.converter.DateTimeConverter. TIME': '{2}: \'{0}\' could not be understood as a
time.',

'javax.faces.converter.DateTimeConverter. TIME_detail': '{2}: \'{0}\' could not be
understood as a time. Example: {1}',

'javax.faces.converter.DateTimeConverter. DATETIME': '{2}: \'{0}\' could not be
understood as a date and time.',

'javax.faces.converter.DateTimeConverter. DATETIME _detail': '{2}: \'{0}\' could not be
understood as a date and time. Example: {1}',

'javax.faces.converter.DateTimeConverter. PATTERN_TYPE': '{1}: A \'pattern\' or \'type\'
attribute must be specified to convert the value \'{0}\",

'javax.faces.converter.NumberConverter. CURRENCY"': '{2}: \'{0}\' could not be
understood as a currency value.',

'javax.faces.converter.NumberConverter. CURRENCY _detail': '{2}: \'{0}\' could not be
understood as a currency value. Example: {1}',

'javax.faces.converter.NumberConverter. PERCENT": '{2}: \'{0}\' could not be understood
as a percentage.',

'javax.faces.converter.NumberConverter. PERCENT detail': '{2}: \'{0}\' could not be
understood as a percentage. Example: {1},

'javax.faces.converter.NumberConverter NUMBER': '{2}: \'{0}\' could not be understood
as a date.',

'javax.faces.converter.NumberConverter NUMBER detail': '{2}: \'{0}\"' is not a number.
Example: {1}',

'javax.faces.converter.NumberConverter. PATTERN': '{2}:\'{0}\' is not a number pattern.',

'javax.faces.converter.NumberConverter. PATTERN _detail': '{2}: \'{0}\' is not a number
pattern. Example: {1}',

'javax.faces.validator.LengthValidator MINIMUM': '{1}: Validation Error: Length is less
than allowable minimum of \'{0}\",

'javax.faces.validator.LengthValidator MAXIMUM': '{1}: Validation Error: Length is
greater than allowable maximum of \'{0}\",

'javax.faces.validator.RegexValidator. PATTERN_ NOT _SET': 'Regex pattern must be set.',

'javax.faces.validator.RegexValidator, PATTERN_NOT_SET _detail': 'Regex pattern must
be set to non-empty value.',

'javax.faces.validator.RegexValidator NOT_MATCHED': 'Regex Pattern not matched',

'javax.faces.validator.RegexValidator. NOT MATCHED _detail': 'Regex pattern of \'{0}\'
not matched',

'javax.faces.validator.RegexValidator MATCH_EXCEPTION': 'Error in regular
expression.',

'javax.faces.validator.RegexValidator MATCH_EXCEPTION _detail': 'Error in regular
expression, \'{0}\"

h

}

Usage

To add another locale to the API, first create the locale object first with settings and assign it as a
property of PrimeFaces.locales javascript object such as;

PrimeFaces.locales['de'] = {//settings}

It is suggested to put this code in a javascript file and include the file into your pages.

575

PrimeFaces User Guide

12. Portlets

PrimeFaces supports portlet environments based on JSF 2 and Portlet 2 APIs. A portlet bridge is
necessary to run a JSF application as a portlet and we suggest LiferayFaces bridge as the
implementation. Both teams work together time to time to make sure PrimeFaces runs well on
liferay. A kickstart example with necessary configuration is available at LiferayFaces Demos;

http://www.1iferay.com/community/liferay-projects/liferay-faces/demos

PrimeFaces3 e
T . - [T
|'<? Job Application *: LIFERAY
First N Date of Birth
— — Attachments
01/01/1970 o]
Last Name City File Name Size
Add Attachment
Email Address State
-- Select - |
Phone Numbaer ZIP Code
B
Comments
Submit Edit Preferences

Demo contains a single "Job Application" portlet within the WAR that demonstrates several of the
key features of JSF 2 and PrimeFaces;

- Uses the PrimeFaces <p:calendar/> tag for a popup date selector

- Uses the JSF 2 <f:ajax /> tag on the postal (zip) code field in order to provide the ability to auto-
fill fields via Ajax

- Uses the JSF 2 <f:ajax /> tag on the show/hide comments links in order to show/hide the
comments field via Ajax

- Model managed-bean is marked with the JSF 2 @ViewScoped annotation in order to support a
rich UI with the <fiajax /> tag

- Uses the JSF 2 <fiajax /> tag to show navigation-rules executing without full page refreshes

- File upload capabilities via <h:form enctype="multipart/form-data">

- Managed-beans defined by marking POJOs with the JSF 2 @ManagedBean annotation

- Dependency injection of managed-beans done via the JSF 2 @ManagedProperty annotation

- Uses the PrimeFaces p:fileUpload tag for multi-file Ajax-based file upload

- Uses the PrimeFaces p:dataTable tag to list the uploaded files

- Uses the PrimeFaces p:confirmDialog tag to popup a yes/no dialog to verify file deletion

576

PrimeFaces User Guide

13. Right-To-Left

Right-To-Left language support in short RTL is provided out of the box by a subset of PrimeFaces
components. Any component equipped with dir attribute has the official support and there is also a
global setting to switch to RTL mode globally.

Here is an example of an RTL AccordionPanel enabled via dir setting.

<p:accordionPanel dir="rtl">
//tabs
</p:accordionPanel>

oY glaa yjall e By Apanl Gl 8 gy Dyl palalldadia i S e Sl gy
ehtic] oy ol ol il J gl o5 gl 30 oy Al (ol 3 el L gy B S gy
iy g gl o |padydbanl ol o e T el i ol fiad Batn] Yo o g el

o el 3798 o gl gl (1San Jp g 10 Al onad iy el GREY) UM e L a5
o Gl (e g Zain jgh g L Calglanll puinn y 2 b g gal] 0Dy pSal gy IS

Global Configuration

Using primefaces.DIR global setting to rtl instructs PrimeFaces RTL aware components such as
datatable, accordion, tabview, dialog, tree to render in RTL mode.

<context-param>
<param-name>primefaces.DIR</param-name>
<param-value>rtl</param-value>
</context-param>

Parameter value can also be an EL expression for dynamic values.

In upcoming PrimeFaces releases, more components will receive built-in RTL support. Until then if
the component you use doesn’t provide it, overriding css and javascript in your application would
be the solution.

577

PrimeFaces User Guide

14. IDE Support

14.1 NetBeans

NetBeans 7.0+ bundles PrimeFaces, when creating a new project you can select PrimeFaces from

components tab;

[+ New Web Application X

Steps

Frameworks

Lo

Choose Project
MName and Location
Server and Settings
4. Frameworks

Select the frameworks you want to use in your web application.

[Spring Web MvC
JavaServer Faces

u]
O Struts 1.3.8
-

1_Wikarnsta 22 5

|JavaServer Faces Configuration
Libraries | Configuration Components
Select the |SF component suite to setup for your web application,

Components Suite;

MNone

PrimeFaces 2.1

:_Ea_ck_| Next > |Einish | Cancel| Help

Code completion is supported by NetBeans 6.9+ ;

0 =) h N B e B

e
B = S AD
T

[
Lz
r

<?xml
<! DOCT

<h

</
</html

wversion='1.0" encoding='UTF-8' 2>
YPE html PUBLIC "=//W3C//DTD XHTHML 1.0 Transitional//EN" "htty

B <html xmlns="http://www.w3.org/1999/xhtml’

xmlns:h="http://java.sun.com/jsf/html’
xmlns:p="http://primefaces.prime.com.tr/ui">
tbody>

<p!
<p:accordionPanel>

primefaces-p.

|

<p:ajax> primefaces-p.tld
<p:ajaxStatus> primefaces-p.tld
<p:autoComplete> primefaces-p.tld
<p:barChart> primefaces-p.tld
<p:calendar> primefaces=p.tld
<p:captcha> primefaces-p.tld
<p:carousel> primefaces-p.tld
<p:chartSeries> primefaces=-p.tld
<p:collector> primefaces-p.tld
<p:colorPicker> primefaces=-p.tld
<p:column> primefaces-p.tld
<p:columnChart> primefaces-p.tld
<p:commandButton> primefaces=p.tld
<p:commandLink> primefaces-p.tld
<p:confirmDialog> primefaces-p.tld
t1ld

E

<p:dataExporter> primefaces-p.

578

PrimeFaces User Guide

1 <?xml version='l.0"' encoding='UTF-8' ?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTHML 1.0 Transitional//EN" "h
3|l <html =mlns="http://www.w3.org/1999/xhtml’

4 zmlns:h="http://java.sun.com/jsf/html’

5 ¥xmlns:p="http://primefaces.prime.com.tr/ui">
[

7

8 <h:body>

9

10 <p:accordionPanel |

11

12| | </h:body>

13|L </html>

multipleSelection
rendered

speed

style

styleClass

PrimeFaces and NetBeans teams are in communication to discuss the next step of PrimeFaces
integration in NetBeans at the time of writing.

PrimeFaces CRUD Plugin

Starting with NetBeans 8, the IDE provides a built-in CRUD plugin for PrimeFaces out of the box.
www.youtube.com/watch?v=5aTFiNxzXF4

There is also another 3™ party plugin for NetBeans called PrimeFaces CRUD Generator.
http://sourceforge.net/projects/nbpfcrudgen/

14.2 Eclipse

Code completion works out of the box for Eclipse when JSF facet is enabled.

mins="HEtp./ wmw.w3.0rg,1999, xhtml "
‘http://java.sun. con/jsf/Facelets”
ttp://iava. sun. com/isF/html "
ttp://java. sun. com/jsF/core”
xmlns:p="http://primefaces.prime. com. tr/ui”
template=". . /templates/ui.xhtml "

<ui:define name-"content”>

<> paaccordionPanel Element : p:accordionPanel
o< ULIEE ¢y D
<Filicompos (, CoC cratus
<> pautoComplete
<> pibarChart
<> pibreadCrumb
<> picalendar
<> picaptcha
<> prrarousel n
<> pichartSeries

sun. com/jsf/core”
priy

e . com. tr/ui"

p:accordionPanel

</praccordionPanel @ activelndex Index of the active tab, use a comma seperated list for
multiple tabs.

@ animate

</uiidefine>

</ui:composition © pinding

@ hover
@ hoverDelay
@

® siyle

579

PrimeFaces User Guide

15. Project Resources

Documentation

This guide is the main resource for documentation, for additional documentation like apidocs, taglib
docs, wiki and more please visit;

http://www.primefaces.org/documentation.html

Support Forum

PrimeFaces discussions take place at the support forum. Forum is public to everyone and
registration is required to do a post.

http://forum.primefaces.org

Source Code

PrimeFaces source is at google code subversion repository.

http://code.google.com/p/primefaces/source/

Issue Tracker

PrimeFaces issue tracker uses google code’s issue management system. Please use the forum
beforecreating an issue instead.

http://code.google.com/p/primefaces/issues/list

WIKI

PrimeFaces Wiki is a community driven additional documentation resource.

http://wiki.primefaces.org

Showcase

Showecase is a great resource as a live documentation.

http://www.primefaces.org/showcase

Social Networks

You can follow PrimeFaces on twitter using @primefaces and join the Facebook group for news
and more.

580

http://www.facebook.com/group.php?v=info&gid=206606616332
http://wiki.primefaces.org/
http://code.google.com/p/primefaces/issues/list
http://code.google.com/p/primefaces/source/
http://forum.primefaces.org/
http://www.primefaces.org/documentation.html

PrimeFaces User Guide

16. FAQ

1. Who develops PrimeFaces?
PrimeFaces is developed and maintained by PrimeTek, a software development company
specialized in Ul solutions for JavaEE.

2. How can I get support?

Support forum is the main area to ask for help, it’s publicly available and free registration is
required before posting. Please do not email the developers of PrimeFaces directly and use support
forum instead.

3. Is enterprise support available?
Yes, enterprise support is also available. Please visit support page on PrimeFaces website for more
information.

http://www.primefaces.org/support

4. Where is the source for the example demo applications?
Source code of demo applications are in the svn repository of PrimeFaces at /examples/trunk folder.
Snapshot builds of samples are deployed at PrimeFaces Repository time to time.

5. Some components like charts do not work in Safari or Chrome but there’s no problem with
Firefox.

The common reason is the response mimeType when using with PrimeFaces. You need to make
sure responseType is "text/html". You can use the <f:view contentType="text/html"> to enforce this.

6. What is the license of PrimeFaces?
PrimeFaces is free to use and licensed under Apache License V2, Elite versions are licensed under
Elite License.

7. Can I use PrimeFaces in a commercial software?
Yes, Apache V2 License is a commercial friendly library. PrimeFaces does not bundle any third

party software that conflicts with Apache. Same goes for Elite Releases for ELITE and PRO users.

8. Which browsers are supported by PrimeFaces?
IE 8-9-10-11, Safari, Firefox, Chrome and Opera.

581

PrimeFaces User Guide

THE END

582

	About the Author
	1. Introduction
	1.1 What is PrimeFaces?

	2. Setup
	2.1 Download
	2.2 Dependencies
	2.3 Configuration
	2.4 Hello World

	3. Component Suite
	3.1 AccordionPanel
	3.2 AjaxBehavior
	3.3 AjaxExceptionHandler
	3.4 AjaxStatus
	3.4 AutoComplete
	3.5 Barcode
	3.6 BlockUI
	3.7 BreadCrumb
	3.8 Button
	3.9 Cache
	3.10 Calendar
	3.11 Captcha
	3.12 Carousel
	3.13 CellEditor
	3.14 Chart
	3.14.1 PieChart
	3.14.2 LineChart
	3.14.3 BarChart
	3.14.4 DonutChart
	3.14.5 BubbleChart
	3.14.6 Ohlc Chart
	3.14.7 MeterGauge Chart
	3.14.8 Combined Chart
	3.14.9 Multiple Axis
	3.14.10 Date Axis
	3.14.11 Interactive Chart
	3.14.12 Export
	3.14.13 Static Images
	3.14.14 Skinning
	3.14.15 Extender
	3.14.16 Chart API

	3.15 Clock
	3.16 Collector
	3.17 Color Picker
	3.18 Column
	3.19 Columns
	3.20 ColumnGroup
	3.21 CommandButton
	3.22 CommandLink
	3.23 Confirm
	3.24 ConfirmDialog
	3.25 ContentFlow
	3.26 ContextMenu
	3.27 Dashboard
	3.28 DataExporter
	3.29 DataGrid
	3.30 DataList
	3.31 DataScroller
	3.32 DataTable
	3.33 DefaultCommand
	3.34 Dialog
	3.35 Drag&Drop
	3.35.1 Draggable
	3.35.2 Droppable
	3.36 Dock
	3.37 Editor
	3.38 Effect
	3.39 FeedReader
	3.40 Fieldset
	3.41 FileDownload
	3.42 FileUpload
	3.43 Focus
	3.44 Fragment
	3.45 Galleria
	3.46 GMap
	3.47 GMapInfoWindow
	3.48 GraphicImage
	3.49 Grid CSS
	3.50 Growl
	3.51 HotKey
	3.52 IdleMonitor
	3.53 ImageCompare
	3.54 ImageCropper
	3.55 ImageSwitch
	3.56 Inplace
	3.57 InputMask
	3.58 InputSwitch
	3.59 InputText
	3.60 InputTextarea
	3.61 Keyboard
	3.62 Layout
	3.63 LayoutUnit
	3.64 LightBox
	3.65 Link
	3.66 Log
	3.67 Media
	3.68 MegaMenu
	3.69 Menu
	3.70 Menubar
	3.71 MenuButton
	3.72 MenuItem
	3.73 Message
	3.74 Messages
	3.75 Mindmap
	3.76 MultiSelectListbox
	3.77 NotificationBar
	3.78 OrderList
	3.79 OutputLabel
	3.80 OutputPanel
	3.81 OverlayPanel
	3.82 Panel
	3.83 PanelGrid
	3.84 PanelMenu
	3.85 Password
	3.86 PhotoCam
	3.87 PickList
	3.88 Poll
	3.89 Printer
	3.90 ProgressBar
	3.91 RadioButton
	3.92 Rating
	3.93 RemoteCommand
	3.94 ResetInput
	3.95 Resizable
	3.96 Ribbon
	3.97 RibbonGroup
	3.98 Ring
	3.98 Row
	3.99 RowEditor
	3.100 RowExpansion
	3.101 RowToggler
	3.102 Schedule
	3.103 ScrollPanel
	3.104 SelectBooleanButton
	3.105 SelectBooleanCheckbox
	3.106 SelectCheckboxMenu
	3.107 SelectManyButton
	3.108 SelectManyCheckbox
	3.109 SelectManyMenu
	3.110 SelectOneButton
	3.111 SelectOneListbox
	3.112 SelectOneMenu
	3.113 SelectOneRadio
	3.114 Separator
	3.115 SlideMenu
	3.116 Slider
	3.117 Spotlight
	3.118 Socket
	3.119 Spacer
	3.120 Spinner
	3.121 SplitButton
	3.122 Submenu
	3.123 Stack
	3.124 Sticky
	3.125 SubTable
	3.126 SummaryRow
	3.127 Tab
	3.128 TabMenu
	3.129 TabView
	3.130 TagCloud
	3.131 Terminal
	3.132 ThemeSwitcher
	3.133 TieredMenu
	3.134 Toolbar
	3.135 ToolbarGroup
	3.136 Tooltip
	3.137 Tree
	3.138 TreeNode
	3.139 TreeTable
	3.140 Watermark
	3.141 Wizard

	4. Partial Rendering and Processing
	4.1 Partial Rendering
	4.1.1 Infrastructure
	4.1.2 Using IDs
	4.1.3 Notifying Users
	4.1.4 Bits&Pieces

	4.2 Partial Processing
	4.2.1 Partial Validation
	4.2.2 Using Ids

	4.3 Search Expression Framework
	4.3.1 Keywords
	4.3.2 PrimeFaces Selectors (PFS)

	4.4 PartialSubmit

	5. Javascript API
	5.1 PrimeFaces Namespace
	5.2 Ajax API

	6. Dialog Framework
	7. Client Side Validation
	7.1 Configuration
	7.2 Ajax vs Non-Ajax
	7.3 Events
	7.4 Messages
	7.5 Bean Validation
	7.6 Extending CSV

	8. Themes
	8.1 Applying a Theme
	8.2 Creating a New Theme
	8.3 How Themes Work
	8.4 Theming Tips

	9. PrimeFaces Push
	9.1 Setup
	9.2 Annotations
	9.3 API
	9.4 Socket Component
	9.5 Putting It All Together
	9.5.1 Counter
	9.5.2 FacesMessage

	9.6 Tips and Tricks

	10. PrimeFaces Mobile
	10.1 Setup
	10.2 Pages
	10.2 Navigations
	10.3 Components
	10.3.1 Content
	10.3.2 Field
	10.3.3 Footer
	10.3.4 Header
	10.3.5 InputSlider
	10.3.6 Page
	10.3.7 RangeSlider
	10.3.8 Switch (Deprecated)

	10.4 RenderKit
	10.4.1 AccordionPanel
	10.4.2 AutoComplete
	10.4.3 Button
	10.4.4 Calendar
	10.4.5 DataList
	10.4.6 Dialog
	10.4.7 FileUpload
	10.4.8 Growl
	10.4.9 InputText
	10.4.10 InputTextarea
	10.4.11 Link
	10.4.12 Menu
	10.4.13 Panel
	10.4.14 PanelGrid
	10.4.15 SelectBooleanCheckbox
	10.4.16 SelectCheckboxMenu
	10.4.17 SelectManyButton
	10.4.18 SelectManyCheckbox
	10.4.19 SelectOneButton
	10.4.20 SelectOneMenu
	10.4.21 SelectOneRadio
	10.4.22 TabMenu
	10.4.24 TabView
	10.4.25 Toolbar

	10.5 Themes
	10.6 Framework
	10.6.1 Ajax Updates
	10.6.2 Pass Through Elements
	10.6.3 Lazy Pages
	10.6.4 Touch Events

	11. Utilities
	11.1 RequestContext
	11.2 EL Functions
	11.3 Exception Handler
	11.4 BeanValidation Transformation
	11.5 PrimeFaces Locales

	12. Portlets
	13. Right-To-Left
	14. IDE Support
	14.1 NetBeans
	14.2 Eclipse

	15. Project Resources
	16. FAQ

