prime

‘(

PRIME Wi FACES

USER’S GUIDE
3.5

Author

Optimus Prime

About the Author

1. Introduction

1.1 What is PrimeFaces?

2. Setup

2.1 Download
2.2 Dependencies
2.3 Configuration

2.4 Hello World

3. Component Suite

3.1 AccordionPanel

3.2 AjaxBehavior
3.3 AjaxStatus
3.4 AutoComplete
3.5 BlockUI

3.6 BreadCrumb
3.7 Button

3.8 Calendar

3.9 Captcha

3.10 Carousel
3.11 CellEditor
3.12 Charts

3.12.1 Pie Chart
3.12.2 Line Chart
3.12.3 Bar Chart

3.12.4 Donut Chart

PrimeFaces User’s Guide

10

11
11

12
12
13
13
13

14
14
19
21
24
34
37
39
42
53
56
62

63
63
66
70
73

3.12.5 Bubble Chart

3.12.6 Ohlc Chart

3.12.7 MeterGauge Chart
3.12.8 Skinning Charts
3.12.9 Ajax Behavior Events
3.12.10 Charting Tips

3.13 Clock

3.14 Collector

3.15 Color Picker
3.16 Column

3.17 Columns

3.18 ColumnGroup
3.19 CommandButton
3.20 CommandLink
3.21 ConfirmDialog
3.22 ContextMenu
3.23 Dashboard

3.24 DataExporter
3.25 DataGrid

3.26 DataL.ist

3.27 DataTable

3.28 DefaultCommand
3.29 Dialog

3.30 Drag&Drop
3.30.1 Draggable

3.30.2 Droppable

PrimeFaces User’s Guide

76
79
82
84
85
86

87
89
90
93
95
97
98
103
106
109
112
117
120
126
130
149
151

156
156

160

3.31 Dock

3.32 Editor

3.33 Effect

3.34 FeedReader
3.35 Fieldset

3.36 FileDownload
3.37 FileUpload
3.38 Focus

3.39 Galleria

3.40 GMap

3.41 GMapinfoWindow
3.42 Graphiclmage
3.43 Growl

3.44 HotKey

3.45 IdleMonitor
3.46 ImageCompare
3.47 ImageCropper
3.48 ImageSwitch
3.49 Inplace

3.50 InputMask
3.51 InputText
3.52 InputTextarea
3.53 Keyboard
3.54 Layout

3.55 LayoutUnit

PrimeFaces User’s Guide

165
167
171
174
175
179
182
188
190
193
204
205
210
214
217
219
221
225
228
232
236
239
244
249
254

3.56 LightBox
3.57 Log

3.58 Media

3.59 MegaMenu
3.60 Menu

3.61 Menubar
3.62 MenuButton
3.63 Menultem
3.64 Message
3.65 Messages
3.66 Mindmap
3.67 NotificationBar
3.68 OrderList
3.69 OutputLabel
3.70 OutputPanel
3.71 OverlayPanel
3.72 Panel

3.73 PanelGrid
3.74 PanelMenu
3.75 Password
3.76 PhotoCam
3.77 PickList
3.78 Poll

3.79 Printer

3.80 ProgressBar

PrimeFaces User’s Guide

256
259
261
263
266
271
274
276
279
281
284
287
289
293
296
298
301
304
307
309
314
316
323
326
327

3.81 RadioButton

3.82 Rating

3.83 RemoteCommand
3.84 Resetinput

3.85 Resizable

3.86 Ring

3.87 Row

3.88 RowEditor

3.89 RowExpansion

3.90 RowToggler

3.91 Schedule

3.92 ScrollPanel

3.93 SelectBooleanButton
3.94 SelectBooleanCheckbox
3.95 SelectCheckboxMenu
3.96 SelectManyButton
3.97 SelectManyCheckbox
3.98 SelectManyMenu
3.99 SelectOneButton
3.100 SelectOneListbox
3.101 SelectOneMenu
3.102 SelectOneRadio
3.103 Separator

3.104 SlideMenu

3.105 Slider

PrimeFaces User’s Guide

331
332
336
338
340
344
347
348
349
350
351
359
361
363
365
368
370
372
375
377
380
385
388
390
393

3.106 Socket

3.107 Spacer

3.108 Spinner

3.109 SplitButton
3.110 Submenu
3.111 Stack

3.112 SubTable
3.113 SummaryRow
3.114 Tab

3.115 TabMenu
3.116 TabView
3.117 TagCloud
3.118 Terminal
3.119 ThemeSwitcher
3.120 TieredMenu
3.121 Toolbar

3.122 ToolbarGroup
3.123 Tooltip

3.124 Tree

3.125 TreeNode
3.126 TreeTable
3.127 Watermark
3.128 Wizard

. Partial Rendering and Processing

4.1 Partial Rendering

PrimeFaces User’s Guide

398
399
400
405
409
410
412
413
414
415
417
422
425
427
429
432
434
435
438
446
447
450
452

458
458

4.1.1 Infrastructure
4.1.2 Using IDs
4.1.3 Notifying Users

4.1.4 Bits&Pieces

4.2 Partial Processing
4.2.1 Partial Validation
4.2.2 Keywords

4.2.3 Using Ids

4.3 PFS (PrimeFaces Selectors)

4.4 PartialSubmit

. PrimeFaces Push
5.1 Setup

5.2 Push API

5.3 Socket Component
5.4 Putting It All Together

5.4.1 Counter

5.4.2 FacesMessage

5.5 Tips and Tricks

6. Javascript API

6.1 PrimeFaces Namespace

6.2 Ajax API

7. Themes

7.1 Applying a Theme
7.2 Creating a New Theme

7.3 How Themes Work

PrimeFaces User’s Guide

458
458
461

461

462
462
463
463

464
466

467
467
467
469

469
469
472

473

474
474
475

477
478
479
480

7.4 Theming Tips
8. Utilities

8.1 RequestContext
8.2 EL Functions

9. Portlets

9.1 Dependencies

9.2 Configuration
10. Right-To-Left
11. Integration with Java EE
12. IDE Support

12.1 NetBeans
12.2 Eclipse

13. Project Resources
14. FAQ

PrimeFaces User’s Guide

481

482
482
485

487
487
488

491
492

493
493
494

495
496

About the Author

Cagatay Civici (a.k.a Optimus Prime in PrimeFaces Community) is a member of JavaServer Faces
Expert Group, the founder of PrimeFaces and PMC member of open source JSF implementation
Apache MyFaces. He is a recognized speaker in international conferences including JavaOne,
SpringOne, Jazoon, JAX, W-JAX, JSFSummit, JSFDays, Con-Fess and many local events such as
JUGs.

(Cagatay is also an author and technical reviewer of a couple books regarding web application
development with Java and JSF. As an experienced trainer, he has trained over 300 developers on
Java EE technologies mainly JSF, Spring, EJB 3.x and JPA.

Cagatay is currently working as the owner of PrimeTek, the company he founded in Turkey.

PrimeFaces User’s Guide

1. Introduction

1.1 What is PrimeFaces?

PrimeFaces is an open source JSF component suite with various extensions.

« Rich set of components (HtmlEditor, Dialog, AutoComplete, Charts and many more).

« Built-in Ajax based on standard JSF 2.0 Ajax APIs.

- Lightweight, one jar, zero-configuration and no required dependencies.

 Ajax Push support via websockets.

« Mobile UI kit to create mobile web applications for handheld devices.

« Skinning Framework with 35+ built-in themes and support for visual theme designer tool.
- Extensive documentation.

- Large, vibrant and active user community.

« Developed with "passion" from application developers to application developers.

11

PrimeFaces User’s Guide

2. Setup

2.1 Download

PrimeFaces has a single jar called primefaces-{version}.jar. There are two ways to download this
jar, you can either download from PrimeFaces homepage or if you are a maven user you can define
it as a dependency.

Download Manually

Three different artifacts are available for each PrimeFaces version, binary, sources and bundle.
Bundle contains binary, sources and javadocs.

(: http://www.primefaces.org/downloads.html :)

Download with Maven

Group id of the dependency is org.primefaces and artifact id is primefaces.

<dependency>
<groupId>org.primefaces</groupId>
<artifactId>primefaces</artifactId>
<version>3.5</version>
</dependency>

In addition to the configuration above you also need to add PrimeFaces maven repository to the
repository list so that maven can download it.

<repository>
<id>prime-repo</id>
<name>Prime Repo</name>
<url>http://repository.primefaces.org</url>
</repository>

12

http://www.primefaces.org/downloads.html
http://www.primefaces.org/downloads.html

PrimeFaces User’s Guide

2.2 Dependencies

PrimeFaces only requires a JAVA 5+ runtime and a JSF 2.x implementation as mandatory
dependencies. There’re some optional libraries for certain features.

Dependency Version * Type Description
JSF runtime 2.00r2.1 Required Apache MyFaces or Oracle Mojarra
itext 2.1.7 Optional DataExporter (PDF).
apache poi 3.7 Optional DataExporter (Excel).
rome 1.0 Optional FeedReader.
commons-fileupload 1.2.1 Optional FileUpload
commons-io 1.4 Optional FileUpload

* Listed versions are tested and known to be working with PrimeFaces, other versions of these
dependencies may also work but not tested.

2.3 Configuration

PrimeFaces does not require any mandatory configuration.

2.4 Hello World

Once you have added the downloaded jar to your classpath, you need to add the PrimeFaces
namespace to your page to begin using the components. Here is a simple page like test.xhtml;

4)

<html xmlns="http://www.w3c.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:p="http://primefaces.org/ui">

<h:head>

</h:head>

<h:body>
<p:editor />

</h:body>

</html>

When you run this page through Faces Servlet mapping, you should see a rich text editor.

13

http://www.w3c.org/1999/xhtml
http://www.w3c.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/html
http://primefaces.org/ui
http://primefaces.org/ui

PrimeFaces User’s Guide

3. Component Suite

3.1 AccordionPanel

AccordionPanel is a container component that displays content in stacked format.

Godfather Part |

The story begins as Don Vito Corleone, the head of a New York Mafia family,
oversees his daughter’s wedding. His beloved son Michael has just come
home from the war, but does not intend to become part of his father's
business. T hrough Michael's life the nature of the family business becomes
clear. The business of the family is just like the head of the family, kind and
benevolent to those who give respect, but given to ruthless violence whenever
anything stands against the good of the family.

Godfather Part Il

Godfather Part 1l

Info

Tag accordionPanel

Component Class org.primefaces.component.accordionpanel.Accordionpanel

Component Type org.primefaces.component.AccordionPanel

Component Family org.primefaces.component

Renderer Type org.primefaces.component.AccordionPanelRenderer

Renderer Class org.primefaces.component.accordionpanel.AccordionPanelRenderer
Attributes

Name Default Type Description

id null String Unique identifier of the component

rendered TRUE boolean Boolean value to specify the rendering of the component.

binding null Object An EL expression that maps to a server side

UIComponent instance in a backing bean.

14

PrimeFaces User’s Guide

Name Default Type Description

activelndex 0 String Index of the active tab or a comma separated string of
indexes when multiple mode is on.

style null String Inline style of the container element.

styleClass null String Style class of the container element.

onTabChange null String Client side callback to invoke when an inactive tab is
clicked.

onTabShow null String Client side callback to invoke when a tab gets activated.

dynamic FALSE | Boolean Defines the toggle mode.

cache TRUE Boolean Defines if activating a dynamic tab should load the
contents from server again.

value null J ava.util.L | List to iterate to display dynamic number of tabs.

1st

var null String Name of iterator to use in a dynamic number of tabs.

multiple FALSE | Boolean Controls multiple selection.

dir Itr String Defines text direction, valid values are /7 and rtl.

widgetVar null String Name of the client side widget.

Getting Started with Accordion Panel

Accordion panel consists of one or more tabs and each tab can group any content. Titles can also be

defined with “title” facet.

<p:accordionPanel>

</p:tab>

</p:tab>
//any number of tabs
</p:accordionPanel>

<p:tab title="First Tab Title">
<h:outputText value= "Lorem"/>
...More content for first tab

<p:tab title="Second Tab Title">
<h:outputText value="Ipsum" />

~

Dynamic Content Loading

AccordionPanel supports lazy loading of tab content, when dynamic option is set true, only active
tab contents will be rendered to the client side and clicking an inactive tab header will do an ajax

request to load the tab contents.

15

PrimeFaces User’s Guide

This feature is useful to reduce bandwidth and speed up page loading time. By default activating a
previously loaded dynamic tab does not initiate a request to load the contents again as tab is cached.
To control this behavior use cache option.

<p:accordionPanel dynamic="true">
//..tabs
</p:accordionPanel>

Client Side Callbacks

onTabChange is called before a tab is shown and onTabShow is called after. Both receive container
element of the tab to show as the parameter.

~

<p:accordionPanel onTabChange="handleChange(panel)">
//..tabs
</p:accordionPanel>

<script type="text/javascript">
function handleChange(panel) {
//panel: new tab content container

}

</script>

Ajax Behavior Events

tabChange is the one and only ajax behavior event of accordion panel that is executed when a tab is
toggled.

<p:accordionPanel>
<p:ajax event="tabChange” listener="#{bean.onChange}” />
</p:accordionPanel>

public void onChange(TabChangeEvent event) {
//Tab activeTab = event.getTab();
//. ..

Your listener(if defined) will be invoked with an org.primefaces.event. TabChangeEvent instance
that contains a reference to the new active tab and the accordion panel itself.

16

PrimeFaces User’s Guide

Dynamic Number of Tabs

When the tabs to display are not static, use the built-in iteration feature similar to ui:repeat.

<p:accordionPanel value="#{bean.list}” var="1listItem”>
<p:tab title="#{listItem.propertyA}">
<h:outputText value= "#{listItem.propertyB}"/>
...More content
</p:tab>
</p:accordionPanel>

Disabled Tabs

A tab can be disabled by setting disabled attribute to true.

<p:accordionPanel>
<p:tab title="First Tab Title" disabled="true”>
<h:outputText value= "Lorem"/>
...More content for first tab
</p:tab>
<p:tab title="Second Tab Title">
<h:outputText value="Ipsum" />
</p:tab>
//any number of tabs
</p:accordionPanel>

Multiple Selection

By default, only one tab at a time can be active, enable multiple mode to activate multiple tabs.

<p:accordionPanel multiple="true”>
//tabs
</p:accordionPanel>

Client Side API

Widget: PrimeFaces.widget.AccordionPanel

Method Params Return Type Description
select(index) index: Index of tab to display | void Activates tab with given index.
unselect(index) index: Index of tab to hide void Deactivates tab with given index.

17

PrimeFaces User’s Guide

Skinning
AccordionPanel resides in a main container element which style and styleClass options apply.

Following is the list of structural style classes;

Class Applies
.ui-accordion Main container element
.ui-accordion-header Tab header
.ui-accordion-content Tab content

As skinning style classes are global, see the main theming section for more information.

18

PrimeFaces User’s Guide

3.2 AjaxBehavior

AjaxBehavior is an extension to standard f:ajax.

Info

Tag ajax

Behavior Id org.primefaces.component.AjaxBehavior

Behavior Class org.primefaces.component.behavior.ajax.AjaxBehavior

Attributes
Name Default Type Description

listener null MethodExpr | Method to process in partial request.

immediate FALSE boolean Boolean value that determines the phaseld, when true
actions are processed at apply request values, when false
at invoke application phase.

async FALSE Boolean When set to true, ajax requests are not queued.

process null String Component(s) to process in partial request.

update null String Component(s) to update with ajax.

onstart null String Callback to execute before ajax request is begins.

oncomplete null String Callback to execute when ajax request is completed.

onsuccess null String Callback to execute when ajax request succeeds.

onerror null String Callback to execute when ajax request fails.

global TRUE Boolean Global ajax requests are listened by ajaxStatus component,
setting global to false will not trigger ajaxStatus.

disabled FALSE Boolean Disables ajax behavior.

event null String Client side event to trigger ajax request.

Getting Started with AjaxBehavior

AjaxBehavior is attached to the component to ajaxify.

<h:inputText value="#{bean.text}">
<p:ajax update="out" />
</h:inputText>
<h:outputText id="out" value="#{bean.text}" />

19

PrimeFaces User’s Guide

In the example above, each time the input changes, an ajax request is sent to the server. When the
response is received output text with id "out" is updated with value of the input.

Listener

In case you need to execute a method on a backing bean, define a listener;

<h:inputText id="counter">
<p:ajax update="out" listener="#{counterBean.increment}"/>
</h:inputText>

<h:outputText id="out" value="#{counterBean.count}" />

public class CounterBean {
private int count;

public int getCount() {
return count;

}

public void setCount(int count) {
this.count = count;

}

public void increment() {
count++;

}
J Y,

Events

Default client side events are defined by components that support client behaviors, for input
components it is onchange and for command components it is onclick. In order to override the dom
event to trigger the ajax request use event option. In following example, ajax request is triggered
when key is up on input field.

<h:inputText id="firstname" value="#{bean.text}">
<p:ajax update="out" event="keyup"/>
</h:inputText>

<h:outputText id="out" value="#{bean.text}" />

Partial Processing

Partial processing is used with process option which defaults to @this, meaning the ajaxified
component. See section 5 for detailed information on partial processing.

20

3.3 AjaxStatus

AjaxStatus is a global notifier for ajax requests.

Info

ad

PrimeFaces User’s Guide

Tag ajaxStatus

Component Class

org.primefaces.component.ajaxstatus.AjaxStatus

Component Type

org.primefaces.component.AjaxStatus

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.AjaxStatusRenderer

Renderer Class

org.primefaces.component.ajaxstatus.AjaxStatusRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE Boolean Boolean value to specify the rendering of the
component.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

onstart null String Client side callback to execute after ajax requests
start.

oncomplete | null String Client side callback to execute after ajax requests
complete.

onprestart null String Client side callback to execute before ajax requests
start.

onsuccess null String Client side callback to execute after ajax requests
completed succesfully.

onerror null String Client side callback to execute when an ajax
request fails.

style null String Inline style of the component.

styleClass null String Style class of the component.

widgetVar null String Name of the client side widget.

21

PrimeFaces User’s Guide
Getting Started with AjaxStatus
AjaxStatus uses facets to represent the request status. Most common used facets are start and

complete. Start facet will be visible once ajax request begins and stay visible until it’s completed.
Once the ajax response is received start facet becomes hidden and complete facet shows up.

\

<p:ajaxStatus>
<f:facet name="start">
<p:graphicImage value="ajaxloading.gif" />
</f:facet>

<f:facet name="complete">
<h:outputText value="Done!" />
</f:.facet>

</p:ajaxStatus>
- J

Events
Here is the full list of available event names;

« default: Initially visible when page is loaded.

- prestart. Before ajax request is sent.

- start: After ajax request begins.

« success: When ajax response is received without error.
« error: When ajax response is received with error.

» complete: When everything finishes.

<p:ajaxStatus>
<f:facet name="prestart">
<h:outputText value="Starting..." />
</f:facet>

<f:facet name="error">
<h:outputText value="Error" />
</f:facet>

<f:facet name="success">
<h:outputText value="Success" />
</f:facet>

<f:facet name="default">
<h:outputText value="Idle" />
</f:facet>

<f:facet name="start">
<h:outputText value="Sending" />
</f:facet>

<f:facet name="complete">
<h:outputText value="Done" />
</f:facet>
</p:ajaxStatus>

_

22

PrimeFaces User’s Guide

Custom Events

Facets are the declarative way to use, if you’d like to implement advanced cases with scripting you
can take advantage of on* callbacks which are the event handler counterparts of the facets.

<<p :ajaxStatus onstart="alert('Start')" oncomplete="alert('End')"/>)

A comman usage of programmatic approach is to implement a custom status dialog;

<p:ajaxStatus onstart="status.show()" oncomplete="status.hide()"/>

<p:dialog widgetVar="status" modal="true" closable="false">
Please Wait
</p:dialog>

Client Side API

Widget: PrimeFaces.widget. AjaxStatus

Method Params Return Type Description

bindFacet(eventName, facetld) | eventName: Name of void Binds a facet to an event
status event,

facetld: Element id of
facet container

bindCallback(eventName, fn) eventName: Name of void Binds a function to an
status event, event
fn: function to bind

Skinning

AjaxStatus is equipped with style and styleClass. Styling directly applies to a container element
which contains the facets.

<<p:ajax5tatus style="width:32px;height:32px" ... />)

Tips

« Avoid updating ajaxStatus itself to prevent duplicate facet/callback bindings.

« Provide a fixed width/height to the ajaxStatus to prevent page layout from changing.

« Components like commandButton has an attribute (global) to control triggering of AjaxStatus.
 AjaxStatus also supports core JSF ajax requests as well.

23

PrimeFaces User’s Guide

3.4 AutoComplete

AutoComplete provides live suggestions while an input is being typed.

2| |

20
22
23
24
25
26
27
28
29
Info
Tag autoComplete
Component Class org.primefaces.component.autocomplete. AutoComplete
Component Type org.primefaces.component.AutoComplete
Component Family org.primefaces.component
Renderer Type org.primefaces.component.AutoCompleteRenderer
Renderer Class org.primefaces.component.autocomplete. AutoCompleteRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component.
rendered TRUE Boolean Boolean value to specify the rendering of the
component.
binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean.
value null Object Value of the component than can be either an
EL expression of a literal text.
converter null Converter | An el expression or a literal text that defines a
/String converter for the component. When it’s an EL
expression, it’s resolved to a converter instance.
In case it’s a static text, it must refer to a
converter id.

24

PrimeFaces User’s Guide

Name Default Type Description
immediate FALSE Boolean When set true, process validations logic is
executed at apply request values phase for this
component.
required FALSE Boolean Marks component as required.
validator null MethodEx | A method expression that refers to a method
pr validationg the input.
valueChangeListener null MethodEx | A method expression that refers to a method for
pr handling a valuchangeevent.
requiredMessage null String Message to be displayed when required field
validation fails.
converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fails.
widgetVar null String Name of the client side widget.
completeMethod null MethodEx | Method providing suggestions.
pr
var null String Name of the iterator used in pojo based
suggestion.
itemLabel null String Label of the item.
itemValue null String Value of the item.
maxResults unlimited Integer Maximum number of results to be displayed.
minQueryLength 1 Integer Number of characters to be typed before starting
to query.
queryDelay 300 Integer Delay to wait in milliseconds before sending
each query to the server.
forceSelection FALSE Boolean When enabled, autoComplete only accepts input
from the selection list.
onstart null String Client side callback to execute before ajax
request to load suggestions begins.
oncomplete null String Client side callback to execute after ajax request
to load suggestions completes.
global TRUE Boolean Defines whether to trigger ajaxStatus or not.
scrollHeight null Integer Defines the height of the items viewport.
effect null String Effect to use when showing/hiding suggestions.
effectDuration 400 Integer Duration of effect in milliseconds.
dropdown FALSE Boolean Enables dropdown mode when set true.
panelStyle null String Inline style of the items container element.

25

PrimeFaces User’s Guide

Name Default Type Description
panelStyleClass null String Style class of the items container element.
multiple null Boolean When true, enables multiple selection.
process null String Component(s) to process on query request.
accesskey null String Access key that when pressed transfers focus to
the input element.

alt null String Alternate textual description of the input field.

autocomplete null String Controls browser autocomplete behavior.

dir null String Direction indication for text that does not inherit
directionality. Valid values are LTR and RTL.

disabled FALSE Boolean Disables input field

label null String A localized user presentable name.

lang null String Code describing the language used in the
generated markup for this component.

maxlength null Integer Maximum number of characters that may be
entered in this field.

onblur null String Client side callback to execute when input
element loses focus.

onchange null String Client side callback to execute when input
element loses focus and its value has been
modified since gaining focus.

onclick null String Client side callback to execute when input
element is clicked.

ondblclick null String Client side callback to execute when input
element is double clicked.

onfocus null String Client side callback to execute when input
element receives focus.

onkeydown null String Client side callback to execute when a key is
pressed down over input element.

onkeypress null String Client side callback to execute when a key is
pressed and released over input element.

onkeyup null String Client side callback to execute when a key is
released over input element.

onmousedown null String Client side callback to execute when a pointer
button is pressed down over input element

onmousemove null String Client side callback to execute when a pointer
button is moved within input element.

onmouseout null String Client side callback to execute when a pointer

button is moved away from input element.

26

PrimeFaces User’s Guide

Name Default Type Description

onmouseover null String Client side callback to execute when a pointer
button is moved onto input element.

onmouseup null String Client side callback to execute when a pointer
button is released over input element.

onselect null String Client side callback to execute when text within
input element is selected by user.

readonly FALSE Boolean Flag indicating that this component will prevent
changes by the user.

size null Integer Number of characters used to determine the
width of the input element.

style null String Inline style of the input element.

styleClass null String Style class of the input element.

tabindex null Integer Position of the input element in the tabbing
order.

title null String Advisory tooltip informaton.

itemTipMyPosition left top String Position of itemtip corner relative to item.

itemTipAtPosition right bottom String Position of item corner relative to itemtip.

Getting Started with AutoComplete

Suggestions are loaded by calling a server side completeMethod that takes a single string parameter
which is the text entered. Since autoComplete is an input component, it requires a value as usual.

<<p:auto(iomp1ete value="#{bean.text}" completeMethod="#{bean.complete}" />)

-

}

public class Bean {

private String text;

return results;

//getter setter

public List<String> complete(String query) {

List<String> results = new ArraylList<String>(Q);

for (int 1 = 0; 1 < 10; i++)
results.add(query + 1i);

~

27

PrimeFaces User’s Guide

Pojo Support

Most of the time, instead of simple strings you would need work with your domain objects,

autoComplete supports this common use case with the use of a converter and data iterator.

Following example loads a list of players, itemLabel is the label displayed as a suggestion and
itemValue is the submitted value. Note that when working with pojos, you need to plug-in your own

converter.

<p:autoComplete value="#{playerBean.selectedPlayer}"
completeMethod="#{playerBean.completePlayer}"
var="player"
itemLabel="#{player.name}"
itemValue="#{player}"
converter="playerConverter"/>

_

~

public class PlayerBean {
private Player selectedPlayer;

public Player getSelectedPlayer() {
return selectedPlayer;

}
public void setSelectedPlayer(Player selectedPlayer) {

this.selectedPlayer = selectedPlayer;
ks

public List<Player> complete(String query) {
List<Player> players = readPlayersFromDatasource(query);

return players;

}
(&

public class Player {
private String name;

//getter setter

}
(&

AN

Limiting the Results

Number of results shown can be limited, by default there is no limit.

<p:autoComplete value="#{bean.text}"
completeMethod="#{bean.complete}"
maxResults="5" />

28

PrimeFaces User’s Guide

Minimum Query Length

By default queries are sent to the server and completeMethod is called as soon as users starts typing
at the input text. This behavior is tuned using the minQueryLength attribute.

<p:autoComplete value="#{bean.text}" completeMethod="#{bean.complete}"
minQuerylLength="3" />

With this setting, suggestions will start when user types the 3rd character at the input field.

Query Delay

AutoComplete is optimized using queryDelay option, by default autoComplete waits for 300
milliseconds to query a suggestion request, if you’d like to tune the load balance, give a longer
value. Following autoComplete waits for 1 second after user types an input.

<p:autoComplete value="#{bean.text}" completeMethod="#{bean.complete}
queryDelay="1000" />

Custom Content

AutoComplete can display custom content by nesting columns.

<p:autoComplete value="#{autoCompleteBean.selectedPlayer}"
completeMethod="#{autoCompleteBean.completePlayer}"
var="p" itemValue="#{p}" converter="player">

<p:column>
<p:graphicImage value="/images/barca/#{p.photo}" width="40" height="50"/>
</p:column>

<p:column>
#{p.name} - #{p.number}

</p:column>

</p:autoComplete>

Dropdown Mode

When dropdown mode is enabled, a dropdown button is displayed next to the input field, clicking
this button will do a search with an empty query, a regular completeMethod implementation should
load all available items as a response.

<p:autoComplete value="#{bean.text}" completeMethod="#{bean.complete}"
dropdown="true" />

29

PrimeFaces User’s Guide
Multiple Selection
AutoComplete supports multiple selection as well, to use this feature set multiple option to true and

define a list as your backend model. Following example demonstrates multiple selection with
custom content support.

\

<p:autoComplete id="advanced" value="#{autoCompleteBean.selectedPlayers}"
completeMethod="#{autoCompleteBean.completePlayer}"
var="p" itemLabel="#{p.name}" itemValue="#{p}" converter="player"
multiple="true">

<p:column style="width:20%;text-align:center">
<p:graphicImage value="/images/barca/#{p.photo}"/>
</p:column>

<p:column style="width:80%">
#{p.name} - #{p.number}
</p:column>
</p:autoComplete>

public class AutoCompleteBean {
private List<Player> selectedPlayers;

/7. ..

(CMessi x| A]

Afellay - 20

Abidal - 22

Alves -2

R

Adriano - 21

B Xo

Ajax Behavior Events

Instead of waiting for user to submit the form manually to process the selected item, you can enable
instant ajax selection by using the itemSelect ajax behavior. Example below demonstrates how to
display a message about the selected item instantly.

<p:autoComplete value="#{bean.text}" completeMethod="#{bean.complete}">
<p:ajax event="itemSelect" listener="bean.handleSelect" update="msg" />
</p:autoComplete>

<p:messages id="msg” />

30

PrimeFaces User’s Guide

4)

public class Bean {

public void handleSelect(SelectEvent event) {
Object item = event.getObject();
FacesMessage msg = new FacesMessage("Selected", "Item:" + item);

}
-)

Your listener(if defined) will be invoked with an org.primefaces.event.Select instance that contains
a reference to the selected item. Note that autoComplete also supports events inherited from regular
input text such as blur, focus, mouseover in addition to itemSelect. Similarly, itemUnselect event is
provided for multiple autocomplete when an item is removed by clicking the remove icon. In this
case org.primefaces.event. Unselect instance is passed to a listener if defined.

ItemTip

Itemtip is an advanced built-in tooltip when mouse is over on suggested items. Content of the
tooltip is defined via the itemtip facet.

<p:autoComplete value="#{autoCompleteBean.selectedPlayerl}" id="basicPojo"
completeMethod="#{autoCompleteBean.completePlayer}"
var="p" itemLabel="#{p.name}" itemValue="#{p}" converter="player">
<f:facet name="itemtip">
<h:panelGrid columns="2" cellpadding="5">
<f:facet name="header">
<p:graphicImage value="/images/barca/#{p.photo}" />
</f:facet>

<h:outputText value="Name: " />
<h:outputText id="modelNo" value="#{p.name}" />

<h:outputText value="Number " />
<h:outputText id="year" value="#{p.number}" />

<h:outputText value="Position " />
<h:outputText value="#{p.position}"/>
</h:panelGrid>
</f:facet>
</p:autoComplete>
4

_

A

Afellay

Alves

Adriano .
— &3

Name: Abidal

Number, 22

Position. LB

31

PrimeFaces User’s Guide

Client Side Callbacks

onstart and oncomplete are used to execute custom javascript before and after an ajax request to
load suggestions.

<p:autoComplete value="#{bean.text}" completeMethod="#{bean.complete}"
onstart="handleStart(request)" oncomplete="handleComplete(response)" />

onstart callback gets a request parameter and oncomplete gets a response parameter, these
parameters contain useful information. For example request is the query string and response is the
xhr request sent under the hood.

Client Side API

Widget: PrimeFaces.widget.AutoComplete

Method Params Return Type Description
search(value) value: keyword for search void Initiates a search with given value
close() - void Hides suggested items menu
disable() - void Disables the input field
enable() - void Enables the input field
deactivate() - void Deactivates search behavior
activate() - void Activates search behavior

Skinning

Following is the list of structural style classes;

Class Applies
.ui-autocomplete Container element.
.ui-autocomplete-input Input field.
.ui-autocomplete-panel Container of suggestions list.
.ui-autocomplete-items List of items
.ui-autocomplete-item Each item in the list.
.ui-autocomplete-query Highlighted part in suggestions.

As skinning style classes are global, see the main theming section for more information.

32

PrimeFaces User’s Guide
Tips
« Do not forget to use a converter when working with pojos.

« Enable forceSelection if you’d like to accept values only from suggested list.
« Increase query delay to avoid unnecessary load to server as a result of user typing fast.

33

3.5 BlockUI

BlockUI is used to block JSF components during ajax processing.

PrimeFaces User’s Guide

Ajax Pagination
L)le) (UB(4)0s) (2]l
Model Year Manufacturer Color
9816¢1c9 2001 Opel Yellow
43fb87ae 1993 Renault White
e2cbbcla 1998 B White
aac257b5 1984 LOADING Green
%
7aa229b6 1990 .Y White
65d3dc85 1960 ovIvY Silver
61752724 2009 Opel Red
c620f632 1983 Volkswagen White
3066aea8 1998 Audi Black
3fd09492 1991 Renault Black
[(<o) (1](3](4)(5] [2>][>+
Info
Tag blockUI
Component Class org.primefaces.component.blockui.BlockUI
Component Type org.primefaces.component.BlockUI
Component Family | org.primefaces.component
Renderer Type org.primefaces.component.BlockUIRenderer
Renderer Class org.primefaces.component.blockui.BlockUIRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component.
rendered TRUE Boolean Boolean value to specify the rendering of the
component.
binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean
widgetVar null String Name of the client side widget.

34

PrimeFaces User’s Guide

Name Default Type Description
trigger null String Identifier of the component(s) to bind.
block null String Identifier of the component to block.
blocked FALSE Boolean Blocks the UI by default when enabled.

Getting Started with BlockUI

BlockUTI requires trigger and block attributes to be defined. With the special ajax integration, ajax
requests whose source are the trigger components will block the ui onstart and unblock oncomplete.
Example below blocks the ui of the panel when saveBtn is clicked and unblock when ajax response
is received.

\

<p:panel id="pnl" header="My Panel">
//content

<p:commandButton id="saveBtn" value="Save" />
</p:panel>

<p:blockUI block="pnl" trigger="saveBtn" />

Multiple triggers are defined as a comma separated list.

<<p:b10ckUI block="pnl" trigger="saveBtn,deleteBtn,updateBtn" />)

Custom Content

In order to display custom content like a loading text and animation, place the content inside the
blockUI

\

<p:dataTable id="dataTable" var="car" value="#{tableBean.cars}"
paginator="true" rows="10">

<p:column>

<f:facet name="header">

<h:outputText value="Model" />

</f:facet>

<h:outputText value="#{car.model}" />
</p:column>

//more columns
</p:.dataTable>

<p:blockUI block="dataTable" trigger="dataTable">
LOADING

<p:graphicImage value="/images/ajax-loader.gif"/>
</p:blockUI>

(&)

35

PrimeFaces User’s Guide

Client Side API

Widget: PrimeFaces.widget.BlockUI

Method Params Return Type Description
show() - void Blocks the UL
hide() - void Unblocks the Ul
Skinning

Following is the list of structural style classes;

Class Applies

.ui-blockui Container element.

.ui-blockui-content Container for custom content.

As skinning style classes are global, see the main theming section for more information.
Tips

« BlockUI does not support absolute or fixed positioned components. e.g. dialog.

36

3.6 BreadCrumb

Breadcrumb is a navigation component that provides contextual information about page hierarchy

in the workflow.

PrimeFaces User’s Guide

» Sports » Football » Countries » Spain » F.C. Barcelona » Squad » Lionel Messi

Info

Tag

breadCrumb

Component Class

org.primefaces.component.breadcrumb.BreadCrumb

Component Type

org.primefaces.component.BreadCrumb

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.BreadCrumbRenderer

Renderer Class

org.primefaces.component.breadcrumb.BreadCrumbRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE Boolean Boolean value to specify the rendering of the
component.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

model null MenuModel MenuModel instance to create menus
programmatically

style null String Style of main container element.

styleClass null String Style class of main container

Getting Started with BreadCrumb

Steps are defined as child menuitem components in breadcrumb.

<p:breadCrumb>
<p:menuitem label="Categories" url="#" />
<p:menuitem label="Sports" url="#" />
//more menuitems

</p:breadCrumb>

37

PrimeFaces User’s Guide

Dynamic Menus

Menus can be created programmatically as well, see the dynamic menus part in menu component
section for more information and an example.

Skinning
Breadcrumb resides in a container element that style and styleClass options apply.

Following is the list of structural style classes;

Style Class Applies
.ui-breadcrumb Main breadcrumb container element.
.ui-breadcrumb .ui-menu-item-link Each menuitem.
.ui-breadcrumb .ui-menu-item-text Each menuitem label.
.ui-breadcrumb-chevron Seperator of menuitems.

As skinning style classes are global, see the main theming section for more information.
Tips

« If there is a dynamic flow, use model option instead of creating declarative p:menuitem
components and bind your MenuModel representing the state of the flow.

 Breadcrumb can do ajax/non-ajax action requests as well since p:menuitem has this option. In this
case, breadcrumb must be nested in a form.

« url option is the key for a menuitem, if it is defined, it will work as a simple link. If you’d like to
use menuitem to execute command with or without ajax, do not define the url option.

38

PrimeFaces User’s Guide

3.7 Button

Button is an extension to the standard h:button component with skinning capabilities.

Bookmark With Icon
Info

Tag button

Component Class org.primefaces.component.button.Button

Component Type org.primefaces.component.Button

Component Family org.primefaces.component

Renderer Type org.primefaces.component.ButtonRenderer

Renderer Class org.primefaces.component.button.ButtonRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE Boolean | Boolean value to specify the rendering of the
component.

binding null Object | An el expression that maps to a server side
UIComponent instance in a backing bean.

widgetVar null String Name of the client side widget.

value null Object | Value of the component than can be either an EL
expression of a literal text.

outcome null String Used to resolve a navigation case.

includeViewParams FALSE | Boolean | Whether to include page parameters in target URI

fragment null String Identifier of the target page which should be scrolled to.

disabled FALSE | Boolean | Disables button.

accesskey null String Access key that when pressed transfers focus to button.

alt null String Alternate textual description.

dir null String Direction indication for text that does not inherit
directionality. Valid values are LTR and RTL.

image null String Style class for the button icon. (deprecated: use icon)

39

PrimeFaces User’s Guide

Name Default Type Description

lang null String Code describing the language used in the generated
markup for this component.

onblur null String Client side callback to execute when button loses focus.

onchange null String Client side callback to execute when button loses focus
and its value has been modified since gaining focus.

onclick null String Client side callback to execute when button is clicked.

ondblclick null String Client side callback to execute when button is double
clicked.

onfocus null String Client side callback to execute when button receives
focus.

onkeydown null String Client side callback to execute when a key is pressed
down over button.

onkeypress null String Client side callback to execute when a key is pressed and
released over button.

onkeyup null String Client side callback to execute when a key is released
over button.

onmousedown null String Client side callback to execute when a pointer button is
pressed down over button.

onmousemove null String Client side callback to execute when a pointer button is
moved within button

onmouseout null String Client side callback to execute when a pointer button is
moved away from button.

onmouseover null String Client side callback to execute when a pointer button is
moved onto button.

onmouseup null String Client side callback to execute when a pointer button is
released over button.

style null String Inline style of the button.

styleClass null String Style class of the button.

readOnly FALSE | Boolean | Makes button read only.

tabindex null Integer | Position in the tabbing order.

title null String Advisory tooltip informaton.

href null String Resource to link directly to implement anchor behavior.

icon null String Icon of the button.

iconPos left String Position of the button icon.

escape TRUE Boolean | Defines whether label would be escaped or not.

40

Getting Started with Button

PrimeFaces User’s Guide

p:button usage is same as standard h:button, an outcome is necessary to navigate using GET
requests. Assume you are at source.xhtml and need to navigate target.xhtml.

<<p :button outcome="target" value="Navigate"/>

)

Parameters

Parameters in URI are defined with nested <f:param /> tags.

<p:button outcome="target" value="Navigate">
<f:param name="id" value="10" />

</p:button>

Icons

Icons for button are defined via css and icon attribute, if you use title instead of value, only icon
will be displayed and title text will be displayed as tooltip on mouseover. You can also use icons

from PrimeFaces themes.

<p:button outcome="target" icon="star" value="With Icon"/>
<p:button outcome="target" icon="star" title="With Icon"/>

.star {

background-image: url("images/star.png");

}

Skinning

Button renders a button tag which style and styleClass applies. Following is the list of structural

style classes;

Style Class

Applies

.ui-button

Button element

.ui-button-text-only

Button element when icon is not used

.ui-button-text

Label of button

As skinning style classes are global, see the main theming section for more information.

41

3.8 Calendar

PrimeFaces User’s Guide

Calendar is an input component used to select a date featuring display modes, paging, localization,
ajax selection and more.

Info

Su

11
18
25

Mo Tu We Th
1

5 6 7 8
12 13 14| 15
19 20 21 22
26 27 28 29

Fr Sa
2 3
9 10

16 17

23 24

30 31

Tag

calendar

Component Class

org.primefaces.component.calendar.Calendar

Component Type

org.primefaces.component.Calendar

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.CalendarRenderer

Renderer Class

org.primefaces.component.calendar.CalendarRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null java.util.Date Value of the component

converter null Converter/ An el expression or a literal text that defines

String a converter for the component. When it’s an

EL expression, it’s resolved to a converter
instance. In case it’s a static text, it must
refer to a converter id

immediate FALSE Boolean When set true, process validations logic is
executed at apply request values phase for
this component.

42

PrimeFaces User’s Guide

Name Default Type Description

required FALSE Boolean Marks component as required

validator null MethodExpr A method expression that refers to a method
validationg the input

valueChangeListener null MethodExpr A method expression that refers to a method
for handling a valuchangeevent

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion
fails.

validatorMessage null String Message to be displayed when validation
fails.

widgetVar null String Name of the client side widget.

mindate null Date or String Sets calendar's minimum visible date

maxdate null Date or String Sets calendar's maximum visible date

pages int 1 Enables multiple page rendering.

disabled FALSE Boolean Disables the calendar when set to true.

mode popup String Defines how the calendar will be displayed.

pattern MM/dd/ String DateFormat pattern for localization

yyyy

locale null Locale/String Locale to be used for labels and conversion.

popuplcon null String Icon of the popup button

popuplconOnly FALSE Boolean When enabled, popup icon is rendered
without the button.

navigator FALSE Boolean Enables month/year navigator

timeZone null TimeZone String or a java.util. TimeZone instance to
specify the timezone used for date
conversion, defaults to
TimeZone.getDefault()

readonlylnput FALSE Boolean Makes input text of a popup calendar
readonly.

showButtonPanel FALSE Boolean Visibility of button panel containing today
and done buttons.

effect null String Effect to use when displaying and showing
the popup calendar.

effectDuration normal String Duration of the effect.

showOn both String Client side event that displays the popup

calendar.

43

PrimeFaces User’s Guide

Name Default Type Description

showWeek FALSE Boolean Displays the week number next to each
week.

disabledWeekends FALSE Boolean Disables weekend columns.

showOtherMonths FALSE Boolean Displays days belonging to other months.

selectOtherMonths FALSE Boolean Enables selection of days belonging to other
months.

yearRange null String Year range for the navigator, default "c-10:c
+ 1 0 n

timeOnly FALSE Boolean Shows only timepicker without date.

stepHour 1 Integer Hour steps.

stepMinute 1 Integer Minute steps.

stepSecond 1 Integer Second steps.

minHour 0 Integer Minimum boundary for hour selection.

maxHour 23 Integer Maximum boundary for hour selection.

minMinute 0 Integer Minimum boundary for minute selection.

maxMinute 59 Integer Maximum boundary for hour selection.

minSecond 0 Integer Minimum boundary for second selection.

maxSecond 59 Integer Maximum boundary for second selection.

pagedate null Object Initial date to display if value is null.

accesskey null String Access key that when pressed transfers focus
to the input element.

alt null String Alternate textual description of the input
field.

autocomplete null String Controls browser autocomplete behavior.

dir null String Direction indication for text that does not
inherit directionality. Valid values are LTR
and RTL.

label null String A localized user presentable name.

lang null String Code describing the language used in the
generated markup for this component.

maxlength null Integer Maximum number of characters that may be
entered in this field.

onblur null String Client side callback to execute when input
element loses focus.

44

PrimeFaces User’s Guide

Name Default Type Description

onchange null String Client side callback to execute when input
element loses focus and its value has been
modified since gaining focus.

onclick null String Client side callback to execute when input
element is clicked.

ondblclick null String Client side callback to execute when input
element is double clicked.

onfocus null String Client side callback to execute when input
element receives focus.

onkeydown null String Client side callback to execute when a key is
pressed down over input element.

onkeypress null String Client side callback to execute when a key is
pressed and released over input element.

onkeyup null String Client side callback to execute when a key is
released over input element.

onmousedown null String Client side callback to execute when a
pointer button is pressed down over input
element

onmousemove null String Client side callback to execute when a
pointer button is moved within input
element.

onmouseout null String Client side callback to execute when a
pointer button is moved away from input
element.

onmouseover null String Client side callback to execute when a
pointer button is moved onto input element.

onmouseup null String Client side callback to execute when a
pointer button is released over input element.

onselect null String Client side callback to execute when text
within input element is selected by user.

readonly FALSE Boolean Flag indicating that this component will
prevent changes by the user.

size null Integer Number of characters used to determine the
width of the input element.

tabindex null Integer Position of the input element in the tabbing
order.

title null String Advisory tooltip informaton.

beforeShowDay null String Client side callback to execute before

displaying a date, used to customize date
display.

45

Getting Started with Calendar

Value of the calendar should be a java.util.Date.

PrimeFaces User’s Guide

<<p:calendar‘ value="#{dateBean.date}"/>

-

public class DateBean {
private Date date;

//Getter and Setter

}
(&

Display Modes

Calendar has two main display modes, popup (default) and inline.

Inline

<<p:calendar' value="#{dateBean.date}" mode="inline" />

Su Mo Tu

4 5 6
11 12 13
18 19 20
25 26 27

=)
®
k%

We

7
14
21
28

Th

1
8
15
22
29

Fr

16
23
30

Sa

10
17
24
31

()

<p:calendar value="#{dateBean.date}" mode="popup" />

Su Mo Tu

11 12(. 13
18 19 20
25 26 27

We

14
21
28

46

Th

15
22
29

Fr

16
23
30

Sa

10
17
24
31

PrimeFaces User’s Guide

showOn option defines the client side event to display the calendar. Valid values are;
- focus: When input field receives focus

« button: When popup button is clicked
« both: Both focus and button cases

Popup Button

<p:calendar value="#{dateBean.date}" mode="popup" showOn="button" />

|

Su Mo Tu We Th Fr Sa

11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

Popup Icon Only

<p:calendar value="#{dateBean.date}" mode="popup"
showOn="button" popupIconOnly="true" />

Su Mo Tu We Th Fr Sa

11 12 13 14 15 16 17
18(| 19(| 20(| 21|| 22| 23|/ 24
25 26 27 28 29 30 31

Paging

Calendar can also be rendered in multiple pages where each page corresponds to one month. This
feature is tuned with the pages attribute.

<p:calendar value="#{dateController.date}" pages="3"/>

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

11 12 13 14 15 16 17 15 16 17 18 19 20 21 12 13 14 15 16 17 18

25 26 27 28 29 30 31 29 30 31 26 27 28 29 30

47

PrimeFaces User’s Guide

Localization

By default locale information is retrieved from the view’s locale and can be overridden by the
locale attribute. Locale attribute can take a locale key as a String or a java.util.Locale instance.
Default language of labels are English and you need to add the necessary translations to your page
manually as PrimeFaces does not include language translations. PrimeFaces Wiki Page for
PrimeFacesLocales is a community driven page where you may find the translations you need.
Please contribute to this wiki with your own translations.

(:http://wiki.primefaces.orq/display/Components/PrimeFaces+Locales :)

Translation is a simple javascript object, we suggest adding the code to a javascript file and include
in your application. Following is a Turkish calendar.

<h:outputScript name="path_to_your_translations.js” />

<p:calendar value="#{dateController.date}" locale="tr" navigator="true"
showButtonPanel="true"/>

(Tem %] 2010 1+] ||

Pt Sa Ca Pe Cu Ct Pz

1 2 "] B

5 6 7 8 9 10 11

12 13 14 15 16 17 18

19|| 20|| 21|| 22|| 23|| 24|| 25
26 27 28 29 30 31

To override calculated pattern from locale, use the pattern option;

<p:calendar value="#{dateController.datel}" pattern="dd.MM.yyyy"/>
<p:calendar value="#{dateController.date2}" pattern="yy, M, d"/>
<p:calendar value="#{dateController.date3}" pattern="EEE, dd MMM, yyyy"/>

dd.MM.yyyy

06.07.2010

yy, M, d

10,7,13

EEE, dd MMM, yyyy

Fri, 23 Jul, 2010

48

http://wiki.primefaces.org/display/Components/PrimeFaces+Locales
http://wiki.primefaces.org/display/Components/PrimeFaces+Locales

PrimeFaces User’s Guide

Effects
Various effects can be used when showing and hiding the popup calendar, options are;

» show

« slideDown
« fadeln

+ blind
 bounce

« clip

« drop

- fold

« slide

Ajax Behavior Events
Calendar provides a dateSelect ajax behavior event to execute an instant ajax selection whenever a

date is selected. If you define a method as a listener, it will be invoked by passing an
org.primefaces.event.SelectEvent instance.

<p:calendar value="#{calendarBean.date}">
<p:ajax event="dateSelect” listener="#{bean.handleDateSelect}” update="msg” />
</p:calendar>

<p:messages id="msg" />

public void handleDateSelect(SelectEvent event) {
Date date = (Date) event.getObject();
//Add facesmessage

In popup mode, calendar also supports regular ajax behavior events like blur, keyup and more.

Date Ranges

Using mindate and maxdate options, selectable dates can be restricted. Values for these attributes
can either be a string or a java.util.Date.

<p:calendar value="#{dateBean.date}" mode="inline"
mindate="07/10/2010" maxdate="07/15/2010"/>

49

PrimeFaces User’s Guide

July 2010

Su Mo Tu We Th Fr Sa

1 2 3
3 5 6 7 8 9 10

11 12) 13] 14/[EH

Navigator

Navigator is an easy way to jump between months/years quickly.

<<p:calendar value="#{dateBean.date}" mode="inline" navigator="true" />)

Nov & 2010 |&

Su Mo Tu We Th Fr Sa

1 2 3 < 5 6

7 8 9|(10| 11| 12| 13

14 15 16 17 18 19 20

21|| 22(| 23|| 24(25|| 26(27
28 29 30

TimePicker

TimePicker functionality is enabled by adding time format to your pattern.

<<p:calendar value="#{dateBean.date}" pattern="MM/dd/yyyy HH:mm” />)

November 2011

Su Mo Tu We Th Fr Sa

1 2 3 4 5
6 7 8 9(10| 11| 12
13 14 15 16 17 18 19
20| 21 22 23 24 25 26
27 28 29 30

Time 00:00

Hour
Minute

Done

Advanced Customization

Use beforeShowDay javascript callback to customize the look of each date. The function returns an
array with two values, first one is flag to indicate if date would be displayed as enabled and second
parameter is the optional style class to add to date cell. Following example disabled tuesdays and
fridays.

50

PrimeFaces User’s Guide

<<p:calendar value="#{dateBean.date}" beforeShowDay="tuesdaysAndFridaysOnly" />

function tuesdaysAndFridaysDisabled(date) {
var day = date.getDay();

return [(day != 2 & day != 5), '']

Client Side API

Widget: PrimeFaces.widget.Calendar

Method Params Return Type Description
getDate() - Date Return selected date
setDate(date) date: Date to display void Sets display date
disable() - void Disables calendar
enable() - void Enables calendar

Skinning

Calendar resides in a container element which s#yle and styleClass options apply.

Following is the list of structural style classes;

Style Class

Applies

.ui-datepicker

Main container

.ui-datepicker-header

Header container

.ui-datepicker-prev

Previous month navigator

.ui-datepicker-next

Next month navigator

.ui-datepicker-title Title
.ui-datepicker-month Month display
.ui-datepicker-table Date table
.ui-datepicker-week-end Label of weekends

.ui-datepicker-other-month

Dates belonging to other months

.ui-datepicker td

Each cell date

.ui-datepicker-buttonpane

Button panel

51

PrimeFaces User’s Guide

Style Class

Applies

.ui-datepicker-current

Today button

.ui-datepicker-close

Close button

As skinning style classes are global, see the main theming section for more information.

52

PrimeFaces User’s Guide

3.9 Captcha

Captcha is a form validation component based on Recaptcha API.

p&ntes

Type the two words:
1 il CAPTCHA

Info

Tag captcha

Component Class org.primefaces.component.captcha.Captcha

Component Type org.primefaces.component.Captcha

Component Family org.primefaces.component

Renderer Type org.primefaces.component.CaptchaRenderer

Renderer Class org.primefaces.component.captcha.CaptchaRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean.

value null Object Value of the component than can be either an EL
expression of a literal text.

converter null Converter/ An el expression or a literal text that defines a

String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance.
In case it’s a static text, it must refer to a
converter id.

immediate FALSE Boolean When set true, process validations logic is
executed at apply request values phase for this
component.

required FALSE Boolean Marks component as required.

53

PrimeFaces User’s Guide

Name Default Type Description

validator null MethodExpr | A method binding expression that refers to a
method validationg the input.

valueChangeListener null ValueChange | A method binding expression that refers to a

Listener method for handling a valuchangeevent.

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

publicKey null String Public recaptcha key for a specific domain
(deprecated)

theme red String Theme of the captcha.

language en String Key of the supported languages.

tabindex null Integer Position of the input element in the tabbing order.

label null String User presentable field name.

secure FALSE Boolean Enables https support

Getting Started with Captcha

Catpcha is implemented as an input component with a built-in validator that is integrated with
reCaptcha. First thing to do is to sign up to reCaptcha to get public&private keys. Once you have
the keys for your domain, add them to web.xml as follows;

~

<context-param>
<param-name>primefaces.PRIVATE_CAPTCHA_KEY</param-name>
<param-value>YOUR_PRIVATE_KEY</param-value>
</context-param>

<context-param>
<param-name>primefaces.PUBLIC_CAPTCHA_KEY</param-name>
<param-value>YOUR_PUBLIC_KEY</param-value>
</context-param>

That is it, now you can use captcha as follows;

<<p:captcha />)

54

Themes

Captcha features following built-in themes for look and feel customization.

« red (default)

« white

« blackglass

« clean

Themes are applied via the theme attribute.

PrimeFaces User’s Guide

<<p:captcha theme="white"/>

Languages

it homlogy~

| Type the two words: (o]

o

o
|

Text instructions displayed on captcha is customized with the language attribute. Below is a captcha

with Turkish text.

<<p:captcha language="tr"/>

)

Overriding Validation Messages

By default captcha displays it’s own validation messages, this can be easily overridden by the JSF
message bundle mechanism. Corresponding keys are;

Summary primefaces.captcha.INVALID
Detail primefaces.captcha.INVALID_detail
Tips

« Use label option to provide readable error messages in case validation fails.
« Enable secure option to support https otherwise browsers will give warnings.
« See http://www.google.com/recaptcha/learnmore to learn more about how reCaptcha works.

55

http://www.google.com/recaptcha/learnmore
http://www.google.com/recaptcha/learnmore

PrimeFaces User’s Guide

3.10 Carousel

Carousel is a multi purpose component to display a set of data or general content with slide effects.

Model: 67bb58ac Model: 8b8a68f1 Model: 8cb43373
Year: 1983 Year: 1962 Year: 1974
Color: Maroon Color: Silver Color: Blue
Info
Tag carousel
Component Class org.primefaces.component.carousel.Carousel
Component Type org.primefaces.component.Carousel

Component Family org.primefaces.component

Renderer Type org.primefaces.component.CarouselRenderer
Renderer Class org.primefaces.component.carousel.CarouselRenderer
Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean | Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side

UIComponent instance in a backing bean

value null Object A value expression that refers to a collection
var null String Name of the request scoped iterator
numVisible 3 Integer Number of visible items per page
firstVisible 0 Integer Index of the first element to be displayed
widgetVar null String Name of the client side widget.

circular FALSE Boolean | Sets continuous scrolling

vertical FALSE Boolean | Sets vertical scrolling

56

PrimeFaces User’s Guide

Name Default Type Description

autoPlayInterval 0 Integer Sets the time in milliseconds to have Carousel start
scrolling automatically after being initialized

pageLinks 3 Integer Defines the number of page links of paginator.
effect slide String Name of the animation, could be “fade” or “slide”.
easing easelnOutCirc | String Name of the easing animation.
effectDuration 500 Integer Duration of the animation in milliseconds.
dropdownTemplate. | {page} String Template string for dropdown of paginator.
style null String Inline style of the component..
styleClass null String Style class of the component..
itemStyle null String Inline style of each item.
itemStyleClass null String Style class of each item.
headerText null String Label for header.
footerText null String Label for footer.

Getting Started with Carousel

Calendar has two main use-cases; data and general content display. To begin with data iteration let’s
use a list of cars to display with carousel.

4)

public class Car {

private String model;
private int year;

private String manufacturer;
private String color;

}
(&

AN

public class CarBean {
private List<Car> cars;

public CarListController() {
cars = new ArraylList<Car>Q);
cars.add(new Car("myModel", 2005, "ManufacturerX", "blue"));
//add more cars

}

//getter setter

57

PrimeFaces User’s Guide

<p:carousel value="#{carBean.cars}" var="car" itemStyle="width:200px">
<p:graphicImage value="/images/cars/#{car.manufacturer}.jpg"/>
<h:outputText value="Model: #{car.model}" />
<h:outputText value="Year: #{car.year}" />
<h:outputText value="Color: #{car.color}" />

</p:carousel>

Carousel iterates through the cars collection and renders it’s children for each car, note that you also
need to define a width for each item.

Limiting Visible Items

Bu default carousel lists its items in pages with size 3. This is customizable with the rows attribute.

<p:carousel value="#{carBean.cars}" var="car" numVisible="1"
itemStyle="width:200px" >

</p:carousel>

Go to page 1 % ‘

=
07Q

Model: 089d3ef8
Year: 1988

Color: Green

Effects

Paging happens with a slider effect by default and following easing options are supported.

+ backBoth

« backln

+ backOut

» bounceBoth
 bounceln

» bounceOut

« easeBoth

- easeBothStrong
« caseln

« easelnStrong
- caseNone

» easeOut

« easelnOutCirc
« easeOutStrong
« elasticBoth

« elasticln

« elasticOut

58

PrimeFaces User’s Guide

SlideShow

Carousel can display the contents in a slideshow, for this purpose autoPlayInterval and circular
attributes are used. Following carousel displays a collection of images as a slideshow.

~

<p:carousel autoPlayInterval="2000" rows="1" effect="easeInStrong" circular="true"
itemStyle="width:200px” >
<p:graphicImage value="/images/naturel.jpg"/>
<p:graphicImage value="/images/nature2.jpg"/>
<p:graphicImage value="/images/nature3.jpg"/>
<p:graphicImage value="/images/nature4.jpg"/>
</p:carousel>

Content Display

Another use case of carousel is tab based content display.

The story begins as Don Vito Corleone, the head of a New York Mafia
family, oversees his daughter's wedding. His beloved son Michael has
just come home from the war, but does not intend to become part of his
father's business. T hrough Michael's life the nature of the family
business becomes clear. The business of the family is just like the head
of the family, kind and benevolent to those who give respect, but given
to ruthless violence whenever anything stands against the good of the
family.

<p:carousel rows="1" itemStyle="height:200px;width:600px;">
<p:tab title="Godfather Part I">
<h:panelGrid columns="2" cellpadding="10">
<p:graphicImage value="/images/godfather/godfatherl.jpg" />
<h:outputText value="The story begins as Don Vito ..." />
</h:panelGrid>
</p:tab>
<p:tab title="Godfather Part II">
<h:panelGrid columns="2" cellpadding="10">
<p:graphicImage value="/images/godfather/godfather2.jpg" />
<h:outputText value="Francis Ford Coppola's ..."/>
</h:panelGrid>
</p:tab>
<p:tab title="Godfather Part III">
<h:panelGrid columns="2" cellpadding="10">
<p:graphicImage value="/images/godfather/godfather3.jpg" />
<h:outputText value="After a break of ..." />
</h:panelGrid>
</p:tab>
</p:carousel> J/

59

PrimeFaces User’s Guide

Item Selection

Sample below selects an item from the carousel and displays details within a dialog.

<h:form id="form">
<p:carousel value="#{carBean.cars}" var="car" itemStyle="width:200px” >
<p:column>
<p:graphicImage value="/images/cars/#{car.manufacturer}.jpg"/>
<p:commandLink update=":form:detail" oncomplete="dlg.show()">
<h:outputText value="Model: #{car.model}" />
<f:setPropertyActionListener value="#{car}" target="#{carBean.selected}" />
</p:commandLink>
</p:column>
</p:carousel>

<p:dialog widgetVar="dlg">
<h:outputText id="detail" value="#{carBean.selected}" />
</p:dialog>
</h:form>

-)

public class CarBean {
private List<Car> cars;
private Car selected;

//getters and setters
ks

- J

Header and Footer

Header and Footer of carousel can be defined in two ways either, using headerText and footerText
options that take simple strings as labels or by header and footer facets that can take any custom
content.

Skinning

Carousel resides in a container element which style and styleClass options apply. itemStyle and
itemStyleClass attributes apply to each item displayed by carousel. Following is the list of structural
style classes;

Style Class Applies
.ui-carousel Main container
.ui-carousel-header Header container
.ui-carousel-header-title Header content
.ui-carousel-viewport Content container

60

PrimeFaces User’s Guide

Style Class

Applies

.ui-carousel-button

Navigation buttons

.ui-carousel-next-button

Next navigation button of paginator

.ui-carousel-prev-button

Prev navigation button of paginator

.ui-carousel-page-links

Page links of paginator.

.ui-carousel-page-link

Each page link of paginator.

.ui-carousel-item

Each item.

As skinning style classes are global, see the main theming section for more information.

Tips

« Carousel is a NamingContainer, make sure you reference components outside of carousel properly

following conventions.

61

3.11 CellEditor

PrimeFaces User’s Guide

CellEditor is a helper component of datatable used for incell editing.

Info

Tag

cellEditor

Component Class

org.primefaces.component.celleditor.CellEditor

Component Type

org.primefaces.component.CellEditor

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.CellEditorRenderer

Renderer Class

org.primefaces.component.celleditor.CellEditorRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

Getting Started with CellEditor

See inline editing section in datatable documentation for more information about usage.

62

3.12 Charts

PrimeFaces User’s Guide

Charts are used to display graphical data. There’re various chart types like pie, bar, line and more.

3.12.1 Pie Chart

Pie chart displays category-data pairs in a pie graphic.

Info

Tag

pieChart

Component Class

org.primefaces.component.chart.pie.PieChart

Component Type

org.primefaces.component.chart.PieChart

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.chart.PieChartRenderer

Renderer Class

org.primefaces.component.chart.pie.PieChartRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Name of the client side widget

value null ChartModel | Datasource to be displayed on the chart

style null String Inline style of the chart.

styleClass null String Style class of the chart.

title null String Title of the chart.

legendPosition null String Position of the legend.

seriesColors null String Comma separated list of colors in hex format.

diameter null Integer Diameter of the pie, auto computed by default.

sliceMargin 0 Integer Gap between slices.

fill TRUE Boolean Render solid slices.

63

PrimeFaces User’s Guide

Name Default Type Description
shadow TRUE Boolean Shows shadow or not.
showDataLabels FALSE Boolean Displays data on each slice.
dataFormat percent String Format of data labels.
legendCols 1 Integer Column count of legend.
legendRows null Integer Row count of legend.
extender null String Client side function to extend chart with low level
jqplot options.

Getting started with PieChart

PieChart is created with an org.primefaces.model.chart. PieChartModel instance.

4)

public class Bean {

private PieChartModel model;

public Bean() {
model = new PieChartModel();
model .set("Brand 1", 540);
model .set("Brand 2", 325);
model .set("Brand 3", 702);
model .set("Brand 4", 421);

}

public PieChartModel getModel() {
return model;

}
U Y,

<<p:pieChar't value="#{bean.model}" legendPosition="w” />)

M Brand 1
Brand 2
Brand 3

Il Brand 4

64

Customization

PrimeFaces User’s Guide

PieChart can be customized using various options such as fill, sliceMargin and diameter, here is an

example;

<p:pieChart value="#{bean.model}" legendPosition="e” sliceMargin="5”

diameter="150” fill="false”/>

M Brand 1
Brand 2
Brand 3

Il Brand 4

65

3.12.2 Line Chart

PrimeFaces User’s Guide

Line chart visualizes one or more series of data in a line graph.

Info

Tag

lineChart

Component Class

org.primefaces.component.chart.line.LineChart

Component Type

org.primefaces.component.chart.LineChart

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.chart.LineChartRenderer

Renderer Class

org.primefaces.component.chart.line.LineChartRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Name of the client side widget

value null ChartModel | Datasource to be displayed on the chart

style null String Inline style of the chart.

styleClass null String Style class of the chart.

title null String Title of the chart.

legendPosition null String Position of the legend.

minY null Double Minimum Y axis value.

maxyY null Double Maximum Y axis value.

minX null Double Minimum X axis value.

maxX null Double Maximum X axis value.

breakOnNull FALSE Boolean Whether line segments should be broken at null
value, fall will join point on either side of line.

seriesColors null String Comma separated list of colors in hex format.

66

PrimeFaces User’s Guide

Name Default Type Description
shadow TRUE Boolean Shows shadow or not.
fill FALSE Boolean Whether to fill under lines.
stacked FALSE Boolean Whether to stack series.
showMarkers TRUE Boolean Displays markers at data points.
xaxisLabel null String Label of the x-axis.
yaxisLabel null String Label of the y-axis.
xaxisAngle null Integer Angle of the x-axis ticks.
yaxisAngle null Integer Angle of the y-axis ticks.
legendCols 1 Integer Column count of legend.
legendRows null Integer Row count of legend.
zoom FALSE Boolean Enables plot zooming.
extender null String Client side function to extend chart with low level

jqplot options.

animate FALSE Boolean Enables animation on plot rendering.
showDataTip TRUE Boolean Defines visibility of datatip.
datatipFormat null String Template string for datatips.

Getting started with LineChart

LineChart is created with an org.primefaces.model.chart. CartesianChartModel instance.

67

PrimeFaces User’s Guide

-

public class Bean {
private CartesianChartModel model;

public ChartBean() {
model = new CartesianChartModel();

ChartSeries boys = new ChartSeries();
boys.setlLabel("Boys");

boys.set("2004", 120);
boys.set("2005", 100);

ChartSeries girls = new ChartSeries();
girls.setlLabel("Girls");

girls.set("2004", 52);
girls.set("2005", 60);

model .addSeries(boys);
model .addSeries(girs);

}

public CartesianChartModel getModel() { return model; }

\

aYaEE

<p:lineChart value="#{chartBean.model}" legendPosition="e" />

NN

AreaChart

AreaCharts is implemented by enabling stacked and fill options.

<p:lineChart value="#{bean.model}" legendPosition="ne"
fill="true” stacked="true”/>

68

350

PrimeFaces User’s Guide

300

[Gits|

250

200

2004 2005 2006

69

LEY

2007 2008

3.12.3 Bar Chart

PrimeFaces User’s Guide

Bar chart visualizes one or more series of data using bars.

Info

Tag

barChart

Component Class

org.primefaces.component.chart.bar.BarChart

Component Type

org.primefaces.component.chart.BarChart

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.chart.BarChartRenderer

Renderer Class

org.primefaces.component.chart.bar.BarChartRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Name of the client side widget

value null ChartModel Datasource to be displayed on the chart

style null String Inline style of the chart.

styleClass null String Style class of the chart.

title null String Title of the chart.

legendPosition null String Position of the legend.

barPadding 8 Integer Padding of bars.

barMargin 10 Integer Margin of bars.

orientation vertical String Orientation of bars, valid values are “vertical” and
“horizontal”.

stacked FALSE Boolean Enables stacked display of bars.

min null Double Minimum boundary value.

max null Double Maximum boundary value.

70

PrimeFaces User’s Guide

Name Default Type Description

breakOnNull FALSE Boolean Whether line segments should be broken at null
value, fall will join point on either side of line.

seriesColors null String Comma separated list of colors in hex format.

shadow TRUE Boolean Shows shadow or not.

xaxisLabel null String Label of the x-axis.

yaxisLabel null String Label of the y-axis.

xaxisAngle null Integer Angle of the x-axis ticks.

yaxisAngle null Integer Angle of the y-axis ticks.

legendCols 1 Integer Column count of legend.

legendRows null Integer Row count of legend.

zoom FALSE Boolean Enables plot zooming.

extender null String Client side function to extend chart with low level
jqplot options.

animate FALSE Boolean Enables animation on plot rendering.

showDataTip TRUE Boolean Defines visibility of datatip.

datatipFormat null String Template string for datatips.

Getting Started with Bar Chart

BarChart is created with an org.primefaces.model.chart.CartesianChartModel instance. Reusing
the same model sample from lineChart section;

<<p:bar’Char‘t value="#{bean.model}" legendPosition="ne" />)

200.0

Il Boys
Girls

150.0

2004 2005 2006 2007 2008

71

PrimeFaces User’s Guide

Orientation

Bars can be displayed horizontally using the orientation attribute.

<<p:bar‘Char‘t value="#{bean.model}" legendPosition="ne" orientation="horizontal” />)

2008
2007
2006
2005
W oy
2004 W Giris
0.0 22i2 44'.4 66'.7 88v.9 1 1'.1 1 3;.3 15;.6 1 7;.8 200.0
Stacked BarChart
Enabling stacked option displays bars in stacked format..
<<p :barChart value="#{bean.model}" legendPosition="se" stacked="true” />)
300.0
B Girls
| Boys

225.0

150.0

75.0

0.0 -

72

PrimeFaces User’s Guide

3.12.4 Donut Chart

DonutChart is a combination of pie charts.

Info

Tag

donutChart

Component Class

org.primefaces.component.chart.donut.DonutChart

Component Type

org.primefaces.component.chart.DonutChart

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.chart.DonutChartRenderer

Renderer Class

org.primefaces.component.chart.donut.DonutChartRenderer

Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.
binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean.
widgetVar null String Name of the client side widget
value null ChartModel | Datasource to be displayed on the chart
style null String Inline style of the chart.
styleClass null String Style class of the chart.
title null String Title of the chart.
legendPosition null String Position of the legend.
seriesColors null String Comma separated list of colors in hex format.
sliceMargin 0 Integer Gap between slices.
fill TRUE Boolean Render solid slices.
shadow TRUE Boolean Shows shadow or not.
showDatalabels | FALSE | Boolean Displays data on each slice.
dataFormat percent | String Format of data labels.
legendCols 1 Integer Column count of legend.

73

PrimeFaces User’s Guide

Name Default Type Description
legendRows null Integer Row count of legend.
extender null String Client side function to extend chart with low level jqplot
options.

Getting started with DonutChart

PieChart is created with an org.primefaces.model.chart. DonutChartModel instance.

4)

public class Bean {

private DonutChart model;

public Bean() {
model = new DonutChart();

Map<String, Number> circlel = new LinkedHashMap<String, Number>();
circlel.put("Brand 1", 150);

circlel.put("Brand 2", 400);

circlel.put("Brand 3", 200);

circlel.put("Brand 4", 10);

donutModel .addCircle(circlel);

Map<String, Number> circle2 = new LinkedHashMap<String, Number>();
circle2.put("Brand 1", 540);

circle2.put("Brand 2", 125);

circle2.put("Brand 3", 702);

circle2.put("Brand 4", 421);

donutModel .addCircle(circle2);

Map<String, Number> circle3 = new LinkedHashMap<String, Number>();
circle3.put("Brand 1", 40);

circle3.put("Brand 2", 325);

circle3.put("Brand 3", 402);

circle3.put("Brand 4", 421);

donutModel .addCircle(circle3);

}

public DonutChart getModel() { return model; }

3
<:<p:donutChart value="#{bean.model}" legendPosition="w” /> :)

74

Customization

DonutChart can be customized using various options;

PrimeFaces User’s Guide

<p:donutChart model="#{bean.model}" legendPosition="e” sliceMargin="5"

showDatalabels="true” dataFormat="value” shadow="false”/>

400

200
702 B Brand 1
‘ Brand 2
o Brand 3
325 M Brand 4
125

75

PrimeFaces User’s Guide

3.12.5 Bubble Chart

BubbleChart visualizes entities that are defined in terms of three distinct numeric values.

Info

Tag bubbleChart

Component Class org.primefaces.component.chart.bubble.BubbleChart

Component Type org.primefaces.component.chart.BubbleChart

Component Family org.primefaces.component

Renderer Type org.primefaces.component.chart.BubbleChartRenderer

Renderer Class org.primefaces.component.chart.bubble.BubbleChartRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Name of the client side widget

value null ChartModel Datasource to be displayed on the chart

style null String Inline style of the chart.

styleClass null String Style class of the chart.

title null String Title of the chart.

shadow TRUE Boolean Shows shadow or not.

seriesColors null String Comma separated list of colors in hex format.

bubbleGradients FALSE Boolean Enables gradient fills instead of flat colors.

bubbleAlpha 70 Integer Alpha transparency of a bubble.

showLabels TRUE Boolean Displays labels on buttons.

xaxisLabel null String Label of the x-axis.

yaxisLabel null String Label of the y-axis.

xaxisAngle null Integer Angle of the x-axis ticks.

76

PrimeFaces User’s Guide

Name Default Type Description
yaxisAngle null Integer Angle of the y-axis ticks.
zoom FALSE Boolean Enables plot zooming.
extender null String Client side function to extend chart with low level
jgplot options.
showDataTip TRUE Boolean Defines visibility of datatip.
datatipFormat null String Template string for datatips.

Getting started with BubbleChart

PieChart is created with an org.primefaces.model.chart. BubbleChartModel instance.

}

} }
(&

public class Bean {

public Bean() {
bubbleModel = new BubbleChartModel();

bubbleModel .
bubbleModel .
bubbleModel .
bubbleModel .
bubbleModel .
bubbleModel .
bubbleModel .

addBubble(new
addBubble(new
addBubble(new
addBubble(new
addBubble(new
addBubble(new
addBubble(new

return model;

private BubbleChartModel model;

BubbleChartSeries("Acura", 70, 183,55));
BubbleChartSeries("Alfa Romeo", 45, 92, 36));
BubbleChartSeries("AM General", 24, 104, 40));
BubbleChartSeries("Bugatti", 50, 123, 60));
BubbleChartSeries("BMW", 15, 89, 25));
BubbleChartSeries("Audi", 40, 180, 80));
BubbleChartSeries("AstonMartin", 70, 70, 48));

public BubbleChartModel getModel() {

_

<p:bubbleChart value="#{bean.model}" xaxisLabel="Price” yaxislLabel="Sales”

title="Sample Bubble Chart”/>

Sample Bubble Chart

Sales

Price

77

PrimeFaces User’s Guide

Customization

BubbleChart can be customized using various options;

<p:bubbleChart value="#{bean.model}" bubbleGradients="true” shadow="false”
title="Custom Bubble Chart” showLabels="false” bubbleAlpha="100"
xaxisAngle="-50" yaxisAngle="50" />

% Custom Bubble Chart
(7]
Y)
%
% 7
% ,
(/’
2
o

17
7]
<0
9o
%
9
%0
<
%
2

78

3.12.6 Ohlc Chart

PrimeFaces User’s Guide

An open-high-low-close chart is a type of graph typically used to visualize movements in the price
of a financial instrument over time.

Info

Tag

ohlcChart

Component Class

org.primefaces.component.chart.ohlc.OhlcChart

Component Type

org.primefaces.component.chart.OhlcChart

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.chart.OhlcChartRenderer

Renderer Class

org.primefaces.component.chart.ohlc.OhlcChartRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Name of the client side widget

value null ChartModel Datasource to be displayed on the chart

style null String Inline style of the chart.

styleClass null String Style class of the chart.

title null String Title of the chart.

seriesColors null String Comma separated list of colors in hex format.

candleStick FALSE Boolean Enables candle stick display mode.

xaxisLabel null String Label of the x-axis.

yaxisLabel null String Label of the y-axis.

xaxisAngle null Integer Angle of the x-axis ticks.

yaxisAngle null Integer Angle of the y-axis ticks.

zoom FALSE Boolean Enables plot zooming.

79

PrimeFaces User’s Guide

Name Default Type Description
extender null String Client side function to extend chart with low level
jqplot options.
animate FALSE Boolean Enables animation on plot rendering.
showDataTip TRUE Boolean Defines visibility of datatip.
datatipFormat null String Template string for datatips.

Getting started with OhlcChart

OhlcChart is created with an org. primefaces.model.chart. OhlcChartModel instance.

-

}

//getter

}
(&

ohlcModel.
ohlcModel.
ohlcModel.
ohlcModel.
ohlcModel.
ohlcModel.
ohlcModel.

public class Bean {
private OhlcChartModel model;

public Bean() {
model = new OhlcChartModel();

addRecord(new
addRecord(new
addRecord(new
addRecord(new
addRecord(new
addRecord(new
addRecord(new

OhlcChartSeries(2007,143.82,144.56,136.04,136.97));
OhlcChartSeries(2008,138.7,139.68,135.18,135.4));
OhlcChartSeries(2009,143.46,144.66,139.79,140.02));
OhlcChartSeries(2010,140.67,143.56,132.88,142.44));
OhlcChartSeries(2011,136.01,139.5,134.53,139.48));
OhlcChartSeries(2012,124.76,135.9,124.55,135.81));
OhlcChartSeries(2012,123.73,129.31,121.57,122.5));

<p:ohlcChart value="#{bean.model}" xaxisLabel="Year”
yaxisLabel="Price Change $K/Unit” title="Sample Ohlc Chart”/>

Price Change SK / Unit

Sample Ohlc Chart

Year

80

PrimeFaces User’s Guide

CandleStick

OhlcChart can display data in candle stick format as well.

<p:ohlcChart value="#{bean.model}" xaxislLabel="Sector” yaxislLabel="Index Value”
title="0Ohlc Chart with Candle Stick” />

Ohlc Chart with Candle Stick

I

5 0 5 10 15 20 25 30 35 40 45

180

160

i

80

Index Value

60

Sector

81

PrimeFaces User’s Guide

3.12.7 MeterGauge Chart
MeterGauge chart visualizes data on a meter gauge display.

Info

Tag meterGaugeChart

Component Class org.primefaces.component.chart.metergauge.MeterGaugeChart

Component Type org.primefaces.component.chart.MeterGauge

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.chart.MeterGaugeChartRenderer

Renderer Class

org.primefaces.component.chart.metergauge.MeterGaugeChartRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Name of the client side widget

value null ChartModel | Datasource to be displayed on the chart

style null String Inline style of the chart.

styleClass null String Style class of the chart.

title null String Title of the chart.

seriesColors null String Comma separated list of colors in hex format.

showTickLabels TRUE Boolean Displays ticks around gauge.

labelHeightAdjust -25 Integer Number of pixels to offset the label up and down.

intervalOuterRadius | 85 Integer Radius of the outer circle of the internal ring.

min null Double Minimum boundary value.

max null Double Maximum boundary value.

label null String Label of the gauge.

82

PrimeFaces User’s Guide

Name

Default

Type

Description

extender

jqplot options.

null String Client side function to extend chart with low level

Getting started with MeterGaugeChart

PieChart is created with an org.primefaces.model.chart. MeterGaugeChartModel instance.

-

public class Bean {
private MeterGaugeChartModel model;

public Bean() {
List<Number> intervals = new ArraylList<Number>(){{
add(20);
add(50);
add(120);
add(220);
bl

model = new MeterGaugeChartModel (140, intervals);
}

public MeterGaugeChartModel getModel() {
return model;

}

N
<<p :meterGaugeChart value="#{bean.model}" />

Customization

MeterGaugeChart can be customized using various options;

»

<p:meterGaugeChart value="#{bean.model}" showTickLabels="false
labelHeightAdjust="110" intervalOuterRadius="110"
seriesColors="66cc66, 93b75f, E7E658, cc6666" />

83

3.12.8 Skinning Charts

PrimeFaces User’s Guide

Charts are built on top of jqlot javascript library that uses a canvas tag and can be styled using
regular css. Following is the list of style classes;

Style Class

Applies

.jqplot-target

Plot target container.

.jqplot-axis

Axes.

.Jgplot-xaxis

Primary x-axis.

.Jjqplot-yaxis

Primary y-axis.

.Jjgplot-x2axis, .jqplot-x3axis ...

2nd, 3rd ... x-axis.

Jjgqplot-y2axis, .jqplot-y3axis ...

2nd, 3rd ... y-axis.

Jjqplot-axis-tick

Axis ticks.

.jqplot-xaxis-tick

Primary x-axis ticks.

.Jgplot-x2axis-tick

Secondary x-axis ticks.

.Jjgqplot-yaxis-tick

Primary y-axis-ticks.

.Jjqplot-y2axis-tick

Seconday y-axis-ticks.

table.jqplot-table-legend

Legend table.

Jjqplot-title

Title of the chart.

.jqplot-cursor-tooltip

Cursor tooltip.

.Jgplot-highlighter-tooltip

Highlighter tooltip.

div.jgplot-table-legend-swatch

Colors swatch of the legend.

Additionally style and styleClass options of charts apply to the container element of charts, use
these attribute to specify the dimensions of a chart.

<<p:pieChar't value="#{bean.model}" style="width:320px;height:200px” />)

In case you’d like to change the colors of series, use the seriesColors options.

<<p:pieChar‘t value="#{bean.model}" seriesColors="66cc66, 93b75f, E7E658, cc6666" />)

84

PrimeFaces User’s Guide

3.12.9 Ajax Behavior Events

itemSelect is one and only ajax behavior event of charts, this event is triggered when a series of a
chart is clicked. In case you have a listener defined, it’ll be executed by passing an
org.primefaces.event.ltemSelectEvent instance.

Example above demonstrates how to display a message about selected series in chart.

<p:pieChart value="#{bean.model}">
<p:ajax event="itemSelect” listener="#{bean.itemSelect}” update="msg” />

</p:pieChart>

<p:growl id="msg” />

4)

public class Bean implements Serializable {
//Data creation omitted
public void itemSelect(ItemSelectEvent event) {
FacesMessage msg = new FacesMessage();
msg.setSummary("Item Index: " + event.getItemIndex());

msg.setDetail("Series Index:" + event.getSeriesIndex());

FacesContext.getCurrentInstance().addMessage(null, msg);

85

PrimeFaces User’s Guide
3.12.10 Charting Tips
jqPlot

Charts components use jqPlot as the underlying charting engine which uses a canvas element under
the hood with support for IE.

Extender

Charts provide high level access to commonly used jgplot options however there are many more
customization options available in jgplot. Extender feature provide access to low level apis to do
advanced customization by enhancing this.cfg object, here is an example to increase shadow depth
of the line series;

<<pzlineChar‘t value="#{bean.model}" extender="ext" />)

function ext() {
//this = chart widget instance
//this.cfg = options
this.cfg.seriesDefaults = {
shadowDepth: 5

i
3
- 4

Refer to jqPlot docs for the documentation of available options;

http://www.jgplot.com/docs/files/jgPlotOptions-txt.html

Converter Support

Charts support converters for category display, an example case would be java.util.Date objects for
categories, in case you’d like charts to do the date formatting, bind a converter.

<p:lineChart value="#{bean.model}">
<f:convertDateTime pattern="dd.MM.yyyy" />
</p:lineChart>

jFreeChart

If you like to use static image charts instead of canvas based charts, see the JFreeChart integration
example at graphiclmage section. Note that static images charts are not rich as PrimeFaces chart
components and you need to know about jFreeChart apis to create the charts.

86

http://livepage.apple.com/
http://livepage.apple.com/

3.13 Clock

Clock displays server or client datetime live.

Info

Client

PrimeFaces User’s Guide

02/04/2013 14:44:20

Server

14:44:01 04.02.2013

Tag

clock

Component Class

org.primefaces.component.clock.Clock

Component Type

org.primefaces.component.Clock

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.ClockRenderer

Renderer Class

org.primefaces.component.clock.ClockRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean.

pattern null String Datetime format.

mode client String Mode value, valid values are client and server.

autoSync FALSE Boolean Syncs time periodically in server mode.

synclnterval 60000 Integer Defines the sync in ms interval in autoSync setting.

Getting Started with Clock

Clock has two modes, client (default) and server. In simples mode, datetime is displayed by just
adding component on page. On page load, clock is initialized and start running based on client time.

87

PrimeFaces User’s Guide

<<p:clock />)

Server Mode

In server mode, clock initialized itself with the server’s datetime and starts running on client side.
To make sure client clock and server clock is synced, you can enable autoSync option that makes an
ajax call to the server periodically to refresh the server time with client.

DateTime Format

Datetime format used can be changed using pattern attribute.

<<p:c10ck pattern="HH:mm:ss dd.MM.yyyy" />)

Skinning
Clock resides in a container element which style and styleClass options apply.

Following is the list of structural style classes;

Style Class Applies

.ui-clock Container element.

88

PrimeFaces User’s Guide

3.14 Collector

Collector is a simple utility to manage collections declaratively.

Info
Tag collector
ActionListener Class org.primefaces.component.collector.Collector
Attributes
Name Default Type Description
value null Object Value to be used in collection operation
addTo null java.util.Collection Reference to the Collection instance
removeFrom | null java.util.Collection Reference to the Collection instance

Getting started with Collector

Collector requires a collection and a value to work with. It’s important to override equals and
hashCode methods of the value object to make collector work.

\

public class BookBean {
private Book book = new Book();
private List<Book> books;

public CreateBookBean() {
books = new Arraylist<Book>(Q);

}

public String createNew() {
book = new Book(); //reset form
return null;

}

//getters and setters

C Y,

<p:commandButton value="Add" action="#{bookBean.createNew}">
<p:collector value="#{bookBean.book}" addTo="#{bookBean.books}" />
</p: commandButton>

<p:commandLink value="Remove">
<p value="#{book}" removeFrom="#{createBookBean.books}" />
</p:commandLink>

89

PrimeFaces User’s Guide

3.15 Color Picker

ColorPicker is an input component with a color palette.

Info
Tag colorPicker
Component Class org.primefaces.component.colorpicker.ColorPicker
Component Type org.primefaces.component.ColorPicker

Component Family | org.primefaces.component

Renderer Type org.primefaces.component.ColorPickerRenderer
Renderer Class org.primefaces.component.colorpicker.ColorPickerRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean Boolean value to specify the rendering of the

component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component.
converter null Converter/ An el expression or a literal text that defines a
String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance.
In case it’s a static text, it must refer to a converter

id

immediate FALSE Boolean When set true, process validations logic is
executed at apply request values phase for this
component.

required FALSE Boolean Marks component as required.

90

PrimeFaces User’s Guide

Name Default Type Description

validator null MethodExpr | A method expression that refers to a method for
validation the input.

valueChangeListener | null ValueChange | A method binding expression that refers to a

Listener method for handling a valuchangeevent.

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

widgetVar null String Name of the client side widget.

mode popup String Display mode, valid values are “popup” and
“inline”.

style null String Inline style of the component.

styleClass null String Style class of the component.

Getting started with ColorPicker

ColorPicker’s value should be a hex string.

public class Bean {
private String color;

public String getColor() {
return this.color;

}

public void setColor(String color) {
this.color = color;

}

}
(&

<<p :colorPicker value="#{bean.color}" />

Display Mode

ColorPicker has two modes, default mode is popup and other available option is inline.

<<p :colorPicker value="#{bean.color}" mode="inline"/>

91

Skinning

PrimeFaces User’s Guide

ColorPicker resides in a container element which style and styleClass options apply.

Following is the list of structural style classes;

Style Class

Applies

.ui-colorpicker

Container element.

.ui-colorpicker color

Background of gradient.

.ui-colorpicker hue

Hue element.

.ui-colorpicker new_color

New color display.

.ui-colorpicker_current_color

Current color display.

.ui-colorpicker-rgb-r Red input.
.ui-colorpicker-rgb-g Greed input.
.ui-colorpicker-rgb-b Blue input.
.ui-colorpicker-rgb-h Hue input.

.ui-colorpicker-rgb-s

Saturation input.

.ui-colorpicker-rgb-b

Brightness input.

.ui-colorpicker-rgb-hex

Hex input.

92

3.16 Column

Column is an extended version of the standard column used by various PrimeFaces components like

datatable, treetable and more.

Info

PrimeFaces User’s Guide

Tag

column

Component Class

org.primefaces.component.column.Column

Component Type

org.primefaces.component.Column

Component Family

org.primefaces.component

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

style null String Inline style of the column.

styleClass null String Style class of the column.

sortBy null ValueExpr Property to be used for sorting.

sortFunction null MethodExpr | Custom pluggable sortFunction.

filterBy null ValueExpr Property to be used for filtering.

filterStyle null String Inline style of the filter element

filterStyleClass null String Style class of the filter element

filterOptions null Object A collection of selectitems for filter dropdown.

filterMatchMode | startsWith | String Match mode for filtering.

rowspan 1 Integer Defines the number of rows the column spans.

colspan 1 Integer Defines the number of columns the column spans.

headerText null String Shortcut for header facet.

footerText null String Shortcut for footer facet.

selectionMode null String Enables selection mode.

93

PrimeFaces User’s Guide

Name Default Type Description

disabledSelection | FALSE Boolean Disables row selection.

filterMaxLength | null Integer Maximum number of characters for an input filter.

resizable TRUE Boolean Specifies resizable feature at column level. Datatable's
resizableColumns must be enabled to use this option.

width null String Width in pixels or percentage.

exportable TRUE Boolean Defines if the column should be exported by
dataexporter.

filterValue null String Value of the filter field.

Note

As column is a reused component, not all attributes of column are implemented by the components
that use column, for example filterBy is only used by datatable whereas sortBy is used by datatable

and sheet.

Getting Started with Column

As column is a reused component, see documentation of components that use a column.

94

3.17 Columns

PrimeFaces User’s Guide

Columns is used by datatable to create columns programmatically.

Info

Tag

columns

Component Class

org.primefaces.component.column.Columns

Component Type

org.primefaces.component.Columns

Component Family

org.primefaces.component

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

value null Object Data to represent columns.

var null String Name of iterator to access a column.

style null String Inline style of the column.

styleClass null String Style class of the column.

sortBy null ValueExpr Property to be used for sorting.

sortFunction null MethodExpr | Custom pluggable sortFunction.

filterBy null ValueExpr Property to be used for filtering.

filterStyle null String Inline style of the filter element

filterStyleClass null String Style class of the filter element

filterOptions null Object A collection of selectitems for filter dropdown.

filterMatchMode | startsWith | String Match mode for filtering.

rowspan 1 Integer Defines the number of rows the column spans.

colspan 1 Integer Defines the number of columns the column spans.

headerText null String Shortcut for header facet.

footerText null String Shortcut for footer facet.

95

PrimeFaces User’s Guide

Name Default Type Description

filterMaxLength | null Integer Maximum number of characters for an input filter.

resizable TRUE Boolean Specifies resizable feature at column level. Datatable's
resizableColumns must be enabled to use this option.

width null String Width in pixels or percentage.

exportable TRUE Boolean Defines if the column should be exported by
dataexporter.

columnindexVar | null String Name of iterator to refer each index.

Getting Started with Columns

See dynamic columns section in datatable documentation for detailed information.

96

PrimeFaces User’s Guide

3.18 ColumnGroup

ColumnGroup is used by datatable for column grouping.

Info
Tag columnGroup
Component Class org.primefaces.component.columngroup.ColumnGroup
Component Type org.primefaces.component. ColumnGroup
Component Family org.primefaces.component

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

type null String Type of group, valid values are “header” and “footer”.

Getting Started with ColumnGroup

See grouping section in datatable documentation for detailed information.

97

PrimeFaces User’s Guide

3.19 CommandButton

CommandButton is an extended version of standard commandButton with ajax and theming.

Ajax Submit Non-Ajax Submit @ With Icon [ia]

Info

Tag commandButton

Component Class | org.primefaces.component.commandbutton.CommandButton

Component Type org.primefaces.component.CommandButton
Component org.primefaces.component

Family

Renderer Type org.primefaces.component.CommandButtonRenderer

Renderer Class org.primefaces.component.commandbutton.CommandButtonRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null String Label for the button

action null MethodExpr/ | A method expression or a String outcome that’d be

String processed when button is clicked.

actionListener null MethodExpr | An actionlistener that’d be processed when button is
clicked.

immediate FALSE Boolean Boolean value that determines the phaseld, when true
actions are processed at apply request values, when
false at invoke application phase.

type submit String Sets the behavior of the button.

ajax TRUE Boolean Specifies the submit mode, when set to true(default),
submit would be made with Ajax.

async FALSE Boolean When set to true, ajax requests are not queued.

process null String Component(s) to process partially instead of whole view.

update null String Component(s) to be updated with ajax.

98

PrimeFaces User’s Guide

Name Default Type Description

onstart null String Client side callback to execute before ajax request is
begins.

oncomplete null String Client side callback to execute when ajax request is
completed.

onsuccess null String Client side callback to execute when ajax request
succeeds.

onerror null String Client side callback to execute when ajax request fails.

global TRUE Boolean Defines whether to trigger ajaxStatus or not.

partialSubmit FALSE Boolean Enables serialization of values belonging to the partially
processed components only.

style null String Inline style of the button element.

styleClass null String StyleClass of the button element.

onblur null String Client side callback to execute when button loses focus.

onchange null String Client side callback to execute when button loses focus
and its value has been modified since gaining focus.

onclick null String Client side callback to execute when button is clicked.

ondblclick null String Client side callback to execute when button is double
clicked.

onfocus null String Client side callback to execute when button receives
focus.

onkeydown null String Client side callback to execute when a key is pressed
down over button.

onkeypress null String Client side callback to execute when a key is pressed and
released over button.

onkeyup null String Client side callback to execute when a key is released
over button.

onmousedown | null String Client side callback to execute when a pointer button is
pressed down over button.

onmousemove null String Client side callback to execute when a pointer button is
moved within button.

onmouseout null String Client side callback to execute when a pointer button is
moved away from button.

onmouseover null String Client side callback to execute when a pointer button is
moved onto button.

onmouseup null String Client side callback to execute when a pointer button is
released over button.

onselect null String Client side callback to execute when text within button is

selected by user.

99

PrimeFaces User’s Guide

Name Default Type Description

accesskey null String Access key that when pressed transfers focus to the
button.

alt null String Alternate textual description of the button.

dir null String Direction indication for text that does not inherit
directionality. Valid values are LTR and RTL.

disabled FALSE Boolean Disables the button.

image null String Style class for the button icon. (deprecated: use icon)

label null String A localized user presentable name.

lang null String Code describing the language used in the generated
markup for this component.

tabindex null Integer Position of the button element in the tabbing order.

title null String Advisory tooltip information.

readonly FALSE Boolean Flag indicating that this component will prevent changes
by the user.

icon null String Icon of the button as a css class.

iconPos left String Position of the icon.

inline FALSE String Used by PrimeFaces mobile only.

escape TRUE Boolean Defines whether label would be escaped or not.

widgetVar null String Name of the client side widget.

Getting started with CommandButton

CommandButton usage is similar to standard commandButton, by default commandButton submits
its enclosing form with ajax.

<<p:commandButton value="Save" actionlListener="#{bookBean.saveBook}" />)

4)

public class BookBean {

public void saveBook() {
//Save book

}
}
(& /

100

PrimeFaces User’s Guide

Reset Buttons

Reset buttons do not submit the form, just resets the form contents.

<<p:commandButton type="reset" value="Reset" />)

Push Buttons

Push buttons are used to execute custom javascript without causing an ajax/non-ajax request. To
create a push button set type as "button".

<<p:commandButton type="button" value="Alert" onclick="alert(‘Prime’)" />)

AJAX and Non-AJAX

CommandButton has built-in ajax capabilities, ajax submit is enabled by default and configured
using gjax attribute. When ajax attribute is set to false, form is submitted with a regular full page
refresh.

The update attribute is used to partially update other component(s) after the ajax response is
received. Update attribute takes a comma or white-space separated list of JSF component ids to be
updated. Basically any JSF component, not just PrimeFaces components should be updated with the
Ajax response.

In the following example, form is submitted with ajax and display outputText is updated with the
ajax response.

<h:form>
<h:inputText value="#{bean.text}" />
<p:commandButton value="Submit" update="display"/>
<h:outputText value="#{bean.text}" id="display" />
</h:form>

(Tip: You can use the ajaxStatus component to notify users about the ajax request.)

Icons

An icon on a button is provided using icon option. iconPos is used to define the position of the
button which can be “left” or “right”.

<p:commandButton value="With Icon" icon="disk"/>
<p:commandButton icon="disk"/>

101

.disk is a simple css class with a background property;

PrimeFaces User’s Guide

.disk {

background-image: url(‘disk.png’) !important;

}

You can also use the pre-defined icons from ThemeRoller like ui-icon-search.

Client Side API

Widget: PrimeFaces.widget. CommandButton

Method Params Return Type Description
disable() - void Disables button
enable() - void Enables button
Skinning

CommandButton renders a button tag which style and styleClass applies.

Following is the list of structural style classes;

Style Class

Applies

.ui-button

Button element

.ui-button-text-only

Button element when icon is not used

.ui-button-text

Label of button

As skinning style classes are global, see the main theming section for more information.

102

PrimeFaces User’s Guide

3.20 CommandLink

CommandLink extends standard JSF commandLink with Ajax capabilities.

Info

Tag commandLink

Component Class org.primefaces.component.commandlink.CommandLink

Component Type org.primefaces.component.CommandLink

Component Family org.primefaces.component

Renderer Type org.primefaces.component.CommandLinkRenderer

Renderer Class

org.primefaces.component. commandlink.CommandLinkRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

value null String Href value of the rendered anchor.

action null MethodExpr/String A method expression or a String outcome that’d
be processed when link is clicked.

actionListener null MethodExpr An actionlistener that’d be processed when link is
clicked.

immediate FALSE Boolean Boolean value that determines the phaseld, when
true actions are processed at
apply_request_values, when false at
invoke_application phase.

async FALSE Boolean When set to true, ajax requests are not queued.

process null String Component(s) to process partially instead of
whole view.

ajax TRUE Boolean Specifies the submit mode, when set to
true(default), submit would be made with Ajax.

update null String Component(s) to be updated with ajax.

onstart null String Client side callback to execute before ajax
request is begins.

103

PrimeFaces User’s Guide

Name Default Type Description

oncomplete null String Client side callback to execute when ajax request
is completed.

onsuccess null String Client side callback to execute when ajax request
succeeds.

onerror null String Client side callback to execute when ajax request
fails.

global TRUE Boolean Defines whether to trigger ajaxStatus or not.

partial Submit FALSE Boolean Enables serialization of values belonging to the
partially processed components only.

style null String Style to be applied on the anchor element

styleClass null String StyleClass to be applied on the anchor element

onblur null String Client side callback to execute when link loses
focus.

onclick null String Client side callback to execute when link is
clicked.

ondblclick null String Client side callback to execute when link is
double clicked.

onfocus null String Client side callback to execute when link receives
focus.

onkeydown null String Client side callback to execute when a key is
pressed down over link.

onkeypress null String Client side callback to execute when a key is
pressed and released over link.

onkeyup null String Client side callback to execute when a key is
released over link.

onmousedown null String Client side callback to execute when a pointer
button is pressed down over link.

onmousemove | null String Client side callback to execute when a pointer
button is moved within link.

onmouseout null String Client side callback to execute when a pointer
button is moved away from link.

onmouseover null String Client side callback to execute when a pointer
button is moved onto link.

onmouseup null String Client side callback to execute when a pointer
button is released over link.

accesskey null String Access key that when pressed transfers focus to
the link.

charset null String Character encoding of the resource designated by

this hyperlink.

104

PrimeFaces User’s Guide

Name Default Type Description

coords null String Position and shape of the hot spot on the screen
for client use in image maps.

dir null String Direction indication for text that does not inherit
directionality. Valid values are LTR and RTL.

disabled null Boolean Disables the link

hreflang null String Languae code of the resource designated by the
link.

rel null String Relationship from the current document to the
anchor specified by the link, values are provided
by a space-separated list of link types.

rev null String A reverse link from the anchor specified by this
link to the current document, values are provided
by a space-separated list of link types.

shape null String Shape of hot spot on the screen, valid values are
default, rect, circle and poly.

tabindex null Integer Position of the button element in the tabbing
order.

target null String Name of a frame where the resource targeted by
this link will be displayed.

title null String Advisory tooltip information.

type null String Type of resource referenced by the link.

Getting Started with CommandLink

CommandLink is used just like the standard h:commandLink, difference is form is submitted with
ajax by default.

\

public class BookBean {

public void saveBook() {
//Save book

}

}
(&

AN

<p:commandLink actionlListener="#{bookBean.saveBook}">
<h:outputText value="Save" />
</p:commandLink>

(&)

Skinning

CommandLink renders an html anchor element that style and styleClass attributes apply.

105

PrimeFaces User’s Guide

3.21 ConfirmDialog

ConfirmDialog is a replacement to the legacy javascript confirmation box. Skinning, customization
and avoiding popup blockers are notable advantages over classic javascript confirmation.

£ Are you sure about destroying the world?

Not Yet Yes Sure
Info
Tag confirmDialog
Component Class org.primefaces.component.confirmdialog.ConfirmDialog
Component Type org.primefaces.component.ConfirmDialog

Component Family | org.primefaces.component

Renderer Type org.primefaces.component.ConfirmDialogRenderer
Renderer Class org.primefaces.component.confirmdialog.ConfirmDialogRenderer
Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side

UIComponent instance in a backing bean

widgetVar null String Name of the client side widget.
message null String Text to be displayed in body.

header null String Text for the header.

severity null String Message severity for the displayed icon.
width auto Integer Width of the dialog in pixels

height auto Integer Width of the dialog in pixels

style null String Inline style of the dialog container.

106

PrimeFaces User’s Guide

Name Default Type Description
styleClass null String Style class of the dialog container
closable TRUE Boolean Defines if close icon should be displayed or not
appendToBody FALSE Boolean Appends dialog as a child of document body.
visible FALSE Boolean Whether to display confirm dialog on load.
showEffect null String Effect to use on showing dialog.
hideEffect null String Effect to use on hiding dialog.
closeOnEscape FALSE Boolean Defines if dialog should hide on escape key.
dir Itr String Defines text direction, valid values are /¢ and r#/.

Getting started with ConfirmDialog

ConfirmDialog has a simple client side api, show() and hide() functions are used to display and
close the dialog respectively. You can call these functions to display a confirmation from any
component like commandButton, commandLink, menuitem and more.

\

<h:form>
<p:commandButton type="button" onclick="cd.show()" />

<p:confirmDialog message="Are you sure dabout destroying the world?"
header="Initiating destroy process" severity="alert"
widgetVar="cd">

<p:commandButton value="Yes Sure" actionlListener="#{buttonBean.destroyWorld}"
update="messages" oncomplete="confirmation.hide()"/>

<p:commandButton value="Not Yet" onclick="confirmation.hide();" type="button" />

</p:confirmDialog>
</h:form>

)

Message

Message can be defined in two ways, either via message option or message facet. Message facet is
useful if you need to place custom content instead of simple text. Note that header can also be
defined using the header attribute or the header facet.

~

<p:confirmDialog widgetVar="cd" header="Confirm”>
<f:facet name="message">
<h:outputText value="Are you sure?" />
</f:facet>

//. ..
</p:confirmDialog>
- J

107

PrimeFaces User’s Guide

Severity

Severity defines the icon to display next to the message, default severity is alert and the other
option is info.

Client Side API

Widget: PrimeFaces.widget. ConfirmDialog

Method Params Return Type Description
show() - void Displays dialog.
hide() - void Closes dialog.
Skinning

ConfirmDialog resides in a main container element which style and styleClass options apply.

Following is the list of structural style classes;

Style Class Applies
.ui-dialog Container element of dialog
.ui-dialog-titlebar Title bar
.ui-dialog-title Header text
.ui-dialog-titlebar-close Close icon
.ui-dialog-content Dialog body
.ui-dialog-buttonpane Footer button panel

As skinning style classes are global, see the main theming section for more information.

108

3.22 ContextMenu

PrimeFaces User’s Guide

ContextMenu provides an overlay menu displayed on mouse right-click event.

Info

B Save

2 Update

% Delete

2 Homepage

Tag

contextMenu

Component Class

org.primefaces.component.contextmenu.ContextMenu

Component Type org.primefaces.component.ContextMenu
Component Family | org.primefaces.component
Renderer Type org.primefaces.component.ContextMenuRenderer

Renderer Class

org.primefaces.component.contextmenu.ContextMenuRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean

widgetVar null String Name of the client side widget.

for null String Id of the component to attach to

style null String Style of the main container element

styleClass null String Style class of the main container element

model null MenuModel | Menu model instance to create menu programmatically.

nodeType null String Specific type of tree nodes to attach to.

event null String Event to bind contextMenu display, default is
contextmenu aka right click.

beforeShow null String Client side callback to execute before showing.

109

PrimeFaces User’s Guide
Getting started with ContextMenu
ContextMenu is created with submenus and menuitems. Optional for attribute defines which

component the contextMenu is attached to. When for is not defined, contextMenu is attached to the
page meaning, right-click on anywhere on page will display the menu.

<p:contextMenu>
<p:menuitem value="Save" actionlListener="#{bean.save}" update="msg"/>
<p:menuitem value="Delete" actionlListener="#{bean.delete}" ajax="false"/>
<p:menuitem value="Go Home" url="www.primefaces.org" target="_blank"/>
</p:contextMenu

ContextMenu example above is attached to the whole page and consists of three different
menuitems with different use cases. First menuitem triggers an ajax action, second one triggers a
non-ajax action and third one is used for navigation.

Attachment

ContextMenu can be attached to any JSF component, this means right clicking on the attached
component will display the contextMenu. Following example demonstrates an integration between
contextMenu and imageSwitcher, contextMenu here is used to navigate between images.

\

<p:imageSwitch id="images" widgetVar="gallery" slideshowAuto="false">
<p:graphicImage value="/images/naturel.jpg" />
<p:graphicImage value="/images/nature2.jpg" />
<p:graphicImage value="/images/nature3.jpg" />
<p:graphicImage value="/images/nature4.jpg" />
</p:imageSwitch>

<p:contextMenu for="images">
<p:menuitem value="Previous" url="#" onclick="gallery.previous()" />
<p:menuitem value="Next" url="#" onclick="gallery.next()" />
</p:contextMenu>

Now right-clicking anywhere on an image will display the contextMenu like;

Previous
Next

Remove All

110

http://www.primefaces.org
http://www.primefaces.org

PrimeFaces User’s Guide

Data Components

Data components like datatable, tree and treeTable has special integration with context menu, see
the documentation of these component for more information.

Dynamic Menus

ContextMenus can be created programmatically as well, see the dynamic menus part in menu
component section for more information and an example.

Skinning

ContextMenu resides in a main container which style and styleClass attributes apply. Following is
the list of structural style classes;

Style Class Applies
.ui-contextmenu Container element of menu
.ui-menu-list List container
.ui-menuitem Each menu item
.ui-menuitem-link Anchor element in a link item
.ui-menuitem-text Text element in an item

As skinning style classes are global, see the main theming section for more information.

111

PrimeFaces User’s Guide

3.23 Dashboard

Dashboard provides a portal like layout with drag&drop based reorder capabilities.

| || ||

Finance Content Lifestyle Content Sports Content
| || |
Politics Content Weather Content
Info
Tag dashboard
Component Class org.primefaces.component.dashboard.Dashboard
Component Type org.primefaces.component.Dashboard

Component Family | org.primefaces.component

Renderer Type org.primefaces.component.DashboardRenderer
Renderer Class org.primefaces.component.dashboard.DashboardRenderer
Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side

UlIComponent instance in a backing bean

widgetVar null String Name of the client side widget

model null Dashboard | Dashboard model instance representing the layout of
Model the UL

disabled FALSE Boolean Disables reordering feature.

style null String Inline style of the dashboard container

styleClass null String Style class of the dashboard container

Getting started with Dashboard
Dashboard is backed by a DashboardModel and consists of panel components.

112

PrimeFaces User’s Guide

\

<p:dashboard model="#{bean.model}">
<p:panel id="sports">
//Sports Content
</p:panel>
<p:panel id="finance">
//Finance Content
</p:panel>

//more panels like lifestyle, weather, politics...
</p:dashboard>

(&)

Dashboard model simply defines the number of columns and the widgets to be placed in each
column. See the end of this section for the detailed Dashboard API.

\

public class Bean {
private DashboardModel model;

public Bean() {
model = new DefaultDashboardModel();
DashboardColumn columnl = new DefaultDashboardColumn();
DashboardColumn column2 = new DefaultDashboardColumn();
DashboardColumn column3 = new DefaultDashboardColumn();

columnl.addWidget("sports");
columnl.addWidget("finance");
column2.addWidget("lifestyle");
column2.addWidget("weather");
column3.addWidget("politics™);

model .addColumn(columnl);

model .addColumn(column2);
model .addColumn(column3);

& Y,

State

Dashboard is a stateful component, whenever a widget is reordered dashboard model will be
updated, by persisting the user changes so you can easily create a stateful dashboard.

Ajax Behavior Events
“reorder” is the one and only ajax behavior event provided by dashboard, this event is fired when
dashboard panels are reordered. A defined listener will be invoked by passing an

org.primefaces.event. DashboardReorderEvent instance containing information about reorder.

Following dashboard displays a message about the reorder event

113

PrimeFaces User’s Guide

\

<p:dashboard model="#{bean.model}">
<p:ajax event="reorder” update="messages” listener="#{bean.handleReorder}” />
//panels

</p:dashboard>

<p:growl id="messages" />

public class Bean {

public void handleReorder(DashboardReorderEvent event) {
String widgetId = event.getWidgetId();
int widgetIndex = event.getItemIndex();
int columnIndex = event.getColumnIndex();
int senderColumnIndex = event.getSenderColumnIndex();

//Add facesmessage

}
(& /

If a widget is reordered in the same column, senderColumnindex will be null. This field is
populated only when a widget is transferred to a column from another column. Also when the
listener is invoked, dashboard has already updated it’s model.

Disabling Dashboard

If you’d like to disable reordering feature, set disabled option to true.

<p:dashboard disabled="true" ...>
//panels
</p:dashboard>

Toggle, Close and Options Menu

Widgets presented in dashboard can be closable, toggleable and have options menu as well,
dashboard doesn’t implement these by itself as these features are already provided by the panel
component. See panel component section for more information.

<p:dashboard model="#{dashboardBean.model}">
<p:panel id="sports" closable="true" toggleable="true">
//Sports Content
</p:panel>
</p:dashboard>

114

PrimeFaces User’s Guide

New Widgets

Draggable component is used to add new widgets to the dashboard. This way you can add new
panels from outside of the dashboard.

4)

<p:dashboard model="#{dashboardBean.model}" id="board">
//panels
</p:dashboard>

<p:panel id="newwidget" />

<p:draggable for="newwidget" helper="clone" dashboard="board" />

Skinning

Dashboard resides in a container element which style and styleClass options apply. Following is the
list of structural style classes;

Style Class Applies
.ui-dashboard Container element of dashboard
.ui-dashboard-column Each column in dashboard
div.ui-state-hover Placeholder

As skinning style classes are global, see the main theming section for more information. Here is an
example based on a different theme;

Lifestyle Content Sports Content

Finance Content

Politics Weather

Weather Content

Politics Content

Tips

« Provide a column width using ui-dashboard-column style class otherwise empty columns might
not receive new widgets.

115

PrimeFaces User’s Guide

Dashboard Model API

org.primefaces.model. DashboardModel (org.primefaces.model. map.DefaultDashboardModel is the
default implementation)

Method Description
void addColumn(DashboardColumn column) Adds a column to the dashboard
List<DashboardColumn> getColumns() Returns all columns in dashboard
int getColumnCount() Returns the number of columns in dashboard
DashboardColumn getColumn(int index) Returns the dashboard column at given index
void transferWidget(DashboardColumn from, Relocates the widget identifed with widget id to the
DashboardColumn to, String widgetld, int index) | given index of the new column from old column.

org.primefaces.model. DashboardColumn (org.primefaces.model. map.DefaultDashboardModel is
the default implementation)

Method Description
void removeWidget(String widgetld) Removes the widget with the given id
List<String> getWidgets() Returns the ids of widgets in column
int getWidgetCount() Returns the count of widgets in column
String getWidget(int index) Returns the widget id with the given index
void addWidget(String widgetld) Adds a new widget with the given id
void addWidget(int index, String widgetld) Adds a new widget at given index
void reorderWidget(int index, String widgetld) Updates the index of widget in column

116

3.24 DataExporter

PrimeFaces User’s Guide

DataExporter is handy for exporting data listed using a Primefaces Datatable to various formats

such as excel, pdf, csv and xml.

Info
Tag dataExporter
Tag Class org.primefaces.component.export.DataExporterTag

ActionListener Class

org.primefaces.component.export.DataExporter

Attributes
Name Default Type Description
type null String Export type: "xIs","pdf","csv", "xml"
target null String Id of the datatable whose data to export.
fileName null String Filename of the generated export file, defaults to
datatable id.
pageOnly FALSE String Exports only current page instead of whole dataset
preProcessor null MethodExpr PreProcessor for the exported document.
postProcessor null MethodExpr PostProcessor for the exported document.
encoding UTF-8 Boolean Character encoding to use
selectionOnly FALSE Boolean When enabled, only selection would be exported.

Getting Started with DataExporter

DataExporter is nested in a UICommand component such as commandButton or commandLink. For
pdf exporting itext and for xIs exporting poi libraries are required in the classpath.

Target must point to a PrimeFaces Datatable. Assume the table to be exported is defined as;

<p:dataTable id="tableld" ...>
//columns
</p:dataTable>

117

PrimeFaces User’s Guide

Excel export

<p:commandButton value="Export as Excel" ajax="false">
<p:dataExporter type="xls" target="tableld" fileName="cars"/>
</p: commandButton>

PDF export

<p:commandButton value="Export as PDF" ajax="false" >
<p:dataExporter type="pdf" target="tableld" fileName="cars"/>
</p: commandButton>

CSV export

<p:commandButton value="Export as CSV" ajax="false" >
<p:dataExporter type="csv" target="tableId" fileName="cars"/>
</p:commandButton>

XML export

<p:commandButton value="Export as XML" ajax="false" >
<p:dataExporter type="xml" target="tableId" fileName="cars"/>
</p:commandLink>

N N N N

PageOnly

By default dataExporter works on whole dataset, if you’d like export only the data displayed on
current page, set pageOnly to true.

<<p:dataExporter type="pdf" target="tableId" fileName="cars" pageOnly="true"/>)

Excluding Columns

In case you need one or more columns to be ignored set exportable option of column to false.

<p:column exportable="false">
// ...
</p:column>

Monitor Status
DataExport is a non-ajax process so ajaxStatus component cannot apply. See FileDownload

Monitor Status section to find out how monitor export process. Same solution applies to data export
as well.

118

PrimeFaces User’s Guide
Pre and Post Processors
Processors are handy to customize the exported document (e.g. add logo, caption ...). PreProcessors
are executed before the data is exported and PostProcessors are processed after data is included in
the document. Processors are simple java methods taking the document as a parameter.

Change Excel Table Header

First example of processors changes the background color of the exported excel’s headers.

<h:commandButton value="Export as XLS">
<p:dataExporter type="xls" target="tableld" fileName="cars"
postProcessor="#{bean.postProcessXLS}"/>
</h:commandButton>

4)

public void postProcessXLS(Object document) {
HSSFWorkbook wb = (HSSFWorkbook) document;
HSSFSheet sheet = wb.getSheetAt(0);
HSSFRow header = sheet.getRow(@);
HSSFCellStyle cellStyle = wb.createCellStyle();
cellStyle.setFillForegroundColor(HSSFColor.GREEN.index);
cellStyle.setFillPattern(HSSFCellStyle.SOLID_FOREGROUND);

for(int i=0; i < header.getPhysicalNumberOfCells();i++) {
header.getCell(i).setCellStyle(cellStyle);
ks
3

- J

Add Logo to PDF

This example adds a logo to the PDF before exporting begins.

<h:commandButton value="Export as PDF">
<p:dataExporter type="xls" target="tableIld" fileName="cars"
preProcessor="#{bean.preProcessPDF}"/>
</h: commandButton>

public void preProcessPDF(0Object document) throws IOException,
BadElementException, DocumentException {

Document pdf = (Document) document;

ServletContext servletContext = (ServletContext)
FacesContext.getCurrentInstance().getExternalContext().getContext();

String logo = servletContext.getRealPath("") + File.separator + "images" +
File.separator + "prime_logo.png";

pdf.add(Image.getInstance(logo));

\}

119

PrimeFaces User’s Guide

3.25 DataGrid

DataGrid displays a collection of data in a grid layout.

(10f5) Bz23 45 2%
[seoms |
@]

1965 1960 2009
L,,} L,\ L‘X

¢ s

1975 2006 1961

(N L.\ (9N

car s

1977 1991 1994
L;} L;} L,;}
() ¥ =
1990 1977 1995
L‘) (,.\ L‘%
(10f5) Bz23 45 o
Info
Tag dataGrid
Component Class org.primefaces.component.datagrid.DataGrid
Component Type org.primefaces.component.DataGrid
Component Family org.primefaces.component
Renderer Type org.primefaces.component.DataGridRenderer
Renderer Class org.primefaces.component.datagrid.DataGridRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE boolean Boolean value to specify the rendering of the
component, when set to false component will
not be rendered.

120

PrimeFaces User’s Guide

Name Default Type Description

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

value null Object Data to display.

var null String Name of the request-scoped variable used to
refer each data.

rows null Integer Number of rows to display per page.

first 0 Integer Index of the first row to be displayed

widgetVar null String Name of the client side widget.

columns 3 Integer Number of columns in grid.

paginator FALSE boolean Enables pagination.

paginatorTemplate null String Template of the paginator.

rowsPerPageTemplate null String Template of the rowsPerPage dropdown.

currentPageReportTemplate null String Template of the currentPageReport Ul

pageLinks 10 Integer Maximum number of page links to display.

paginatorPosition both String Position of the paginator.

paginatorAlwaysVisible TRUE Boolean Defines if paginator should be hidden if total
data count is less than number of rows per
page.

style null String Inline style of the datagrid.

styleClass null String Style class of the datagrid.

rowIndex Var null String Name of the iterator to refer each row index.

Getting started with the DataGrid

A list of cars will be used throughout the datagrid, datalist and datatable examples.

-

public class Car {

private String model;
private int year;

private String manufacturer;
private String color;

121

PrimeFaces User’s Guide

The code for CarBean that would be used to bind the datagrid to the car list.

~

public class CarBean {
private List<Car> cars;

public CarBean() {
cars = new ArraylList<Car>Q);
cars.add(new Car("myModel",2005, "ManufacturerX", "blue"));
//add more cars

}

public List<Car> getCars() {
return cars;

}
U Y,

<p:dataGrid var="car" value="#{carBean.cars}" columns="3" rows="12">

<p:column>
<p:panel header="#{car.model}">
<h:panelGrid columns="1">
<p:graphicImage value="/images/cars/#{car .manufacturer}.jpg"/>

<h:outputText value="#{car.year}" />
</h:panelGrid>
</p:panel>
</p:column>

</p:dataGrid>

-)

This datagrid has 3 columns and 12 rows. As datagrid extends from standard UlData, rows
correspond to the number of data to display not the number of rows to render so the actual number
of rows to render is rows/columns = 4. As a result datagrid is displayed as;

¢

1978 1991 1991

=

1992 1992 2002
© ¢ &
2009 1969 1987
= o <
. O~
1992 2008 1983

122

PrimeFaces User’s Guide

Ajax Pagination

DataGrid has a built-in paginator that is enabled by setting paginator option to true.

<p:dataGrid var="car" value="#{carBean.cars}" columns="3" rows="12"
paginator="true">

</p:dataGrid>

Paginator Template

Paginator is customized using paginatorTemplateOption that accepts various keys of UI controls.
Note that this section applies to dataGrid, dataList and dataTable.

« FirstPageLink

« LastPagelLink

« PreviousPageLink
 NextPageLink

« PageLinks

« CurrentPageReport

« RowsPerPageDropdown

Note that {RowsPerPageDropdown} has it’s own template, options to display is provided via
rowsPerPageTemplate attribute (e.g. rowsPerPageTemplate="9,12,15").

Also {CurrentPageReport} has it’s own template defined with currentPageReportTemplate option.
You can use {currentPage},{totalPages},{totalRecords},{startRecord},{endRecord} keyword
within currentPageReportTemplate. Default is {currentPage} of{totalPages}.

Default Ul is;

11213]14]5

which corresponds to the following template.
"{FirstPageLink} {PreviousPageLink} {PageLinks} {NextPageLink} {LastPageLink}"
Here are more examples based on different templates;

" {CurrentPageReport} {FirstPageLink} {PreviousPageLink} {PageLinks} {NextPageLink}
{LastPageLink} {RowsPerPageDropdown}"

11213]4]5 12 |5

" {PreviousPageLink} {CurrentPageReport} {NextPageLink}"

123

PrimeFaces User’s Guide

Paginator Position

Paginator can be positoned using paginatorPosition attribute in three different locations, "top",
"bottom" or "both" (default).

Selecting Data

Selection of data displayed in datagrid is very similar to row selection in datatable, you can access
the current data using the var reference. Here is an example to demonstrate how to select data from
datagrid and display within a dialog with ajax.

~

<h:form id="carForm">
<p:dataGrid var="car" value="#{carBean.cars}" columns="3" rows="12">

<p:panel header="#{car.model}">
<p:commandLink update=":carForm:display" oncomplete="dlg.show()">
<f:setPropertyActionListener value="#{car}"
target="#{carBean.selectedCar}"
<h:outputText value="#{car.model}" />
</p: commandLink>
</p:panel>

</p:dataGrid>
<p:dialog modal="true" widgetVar="dlg">
<h:panelGrid id="display" columns="2">
<f:facet name="header">
<p:graphicImage value="/images/cars/#{car.manufacturer}.jpg"/>
</f:facet>
<h:outputText value="Model:" />

<h:outputText value="#{carBean.selectedCar.year}" />

//more selectedCar properties
</h:panelGrid>

</p:dialog>

</h:form>

public class CarBean {
private List<Car> cars;
private Car selectedCar;

//getters and setters

124

PrimeFaces User’s Guide

Client Side API

Widget: PrimeFaces.widget.DataGrid

Method Params Return Type Description
getPaginator() - Paginator Returns the paginator widget.
Skinning

DataGrid resides in a main div container which style and styleClass attributes apply.

Following is the list of structural style classes;

Class Applies
.ui-datagrid Main container element
.ui-datagrid-content Content container.
.ui-datagrid-data Table element containing data
.ui-datagrid-row A row in grid
.ui-datagrid-column A column in grid

As skinning style classes are global, see the main theming section for more information.
Tips
« DataGrid supports lazy loading data via LazyDataModel, see DataTable lazy loading section.

« DataGrid provides two facets named header and footer that you can use to provide custom
content at these locations.

125

PrimeFaces User’s Guide

3.26 DatalL.ist

DataList presents a collection of data in list layout with several display types.

Cars

(1 0f 10) G

Ferrari, 1997
Volkswagen, 1991
Renault, 2009
Mercedes, 1983

Chrysler, 1969

Info

Tag dataList

Component Class org.primefaces.component.datalist.DataList

Component Type org.primefaces.component.DataList.DataListTag

Component Family org.primefaces.component

Renderer Type org.primefaces.component.DatalListRenderer

Renderer Class org.primefaces.component.datalist.DataListRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE boolean | Boolean value to specify the rendering of the
component, when set to false component will
not be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

value null Object Data to display.

var null String Name of the request-scoped variable used to
refer each data.

rows null Integer Number of rows to display per page.

first 0 Integer Index of the first row to be displayed

126

PrimeFaces User’s Guide

Name Default Type Description

type unordered | String Type of the list, valid values are "unordered",
"ordered", "definition" and "none".

itemType null String Specifies the list item type.

widgetVar null String Name of the client side widget.

paginator FALSE boolean | Enables pagination.

paginatorTemplate null String Template of the paginator.

rowsPerPageTemplate null String Template of the rowsPerPage dropdown.

currentPageReportTemplate null String Template of the currentPageReport Ul

pageLinks 10 Integer Maximum number of page links to display.

paginatorPosition both String Position of the paginator.

paginatorAlwaysVisible TRUE Boolean | Defines if paginator should be hidden if total
data count is less than number of rows per
page.

style null String Inline style of the main container.

styleClass Null String Style class of the main container.

rowIndex Var null String Name of the iterator to refer each row index.

varStatus null String Name of the exported request scoped variable
to represent state of the iteration same as in
ui:repeat varStatus.

Getting started with the DataL.ist

Since DatalList is a data iteration component, it renders it’s children for each data represented with
var option. See itemType section for more information about the possible values.

<p:datalList value="#{carBean.cars}" var="car" itemType="disc">

#{car.manufacturer}, #{car.year}

</p:datalist>

Ordered Lists

DataList displays the data in unordered format by default, if you’d like to use ordered display set

type option to "ordered".

<p:datalist value="#{carBean.cars}" var="car" type="ordered">

#{car.manufacturer}, #{car.year}

</p:datalist>

127

PrimeFaces User’s Guide

Item Type

itemType defines the bullet type of each item. For ordered lists, in addition to commonly used
decimal type, following item types are available;

A a i

A. Ferrari, 1960 a. Ferrari, 1960 i. Ferrari, 1960

B. Renault, 1985 b. Renault, 1985 ii. Renault, 1985
C. Ford, 2003 c. Ford, 2003 iii. Ford, 2003

D. Audi, 1976 d. Audi, 1976 iv. Audi, 1976

E. Opel, 1983 e. Opel, 1983 v. Opel, 1983

F. Ferrari, 1974 f. Ferrari, 1974 vi. Ferrari, 1974
G. Chrysler, 1980 g. Chrysler, 1980 vii. Chrysler, 1980
H. Audi, 1980 h. Audi, 1980 viii. Audi, 1980

. Chrysler, 1983 i. Chrysler, 1983 ix. Chrysler, 1983

And for unordered lists, available values are;
disc circle square

e Opel, 1980 o Opel, 1980 = Opel, 1980

e Chrysler, 1966 o Chrysler, 1966 u Chrysler, 1966
* Volvo, 1962 o Volvo, 1962 = Volvo, 1962

o Audi, 1990 o Audi, 1990 = Audi, 1990

e Ford, 1972 o Ford, 1972 = Ford, 1972

e Mercedes, 2003 o Mercedes, 2003 = Mercedes, 2003
o BMW, 1984 o BMW, 1984 = BMW, 1984

o Audi, 1975 o Audi, 1975 = Audi, 1975

e Volvo, 1973 o Volvo, 1973 = Volvo, 1973

Definition Lists

Third type of dataList is definition lists that display inline description for each item, to use
definition list set #ype option to "definition". Detail content is provided with the facet called
"description".

<p:datalist value="#{carBean.cars}" var="car" type="definition">
Model: #{car.model}, Year: #{car.year}
<f:facet name="description">
<p:graphicImage value="/images/cars/#{car.manufacturer}.jpg"/>
</f:facet>
</p:datalList>

Model: 61a10db5, Year: 2008

<

Model: 9efc3d27, Year: 1973

<

Model: 2d1a03f2, Year: 2009

®

Model: 9872246, Year: 1963

<

Model: 14b594fc, Year: 1998

@

128

PrimeFaces User’s Guide

Ajax Pagination

DataList has a built-in paginator that is enabled by setting paginator option to true.

<p:datalist value="#{carBean.cars}" var="car" paginator="true" rows="10">
#{car.manufacturer}, #{car.year}
</p:datalList>

Pagination configuration and usage is same as dataGrid, see pagination section in dataGrid
documentation for more information and examples.

Selecting Data

Data selection can be implemented same as in dataGrid, see selecting data section in dataGrid
documentation for more information and an example.

Client Side API

Widget: PrimeFaces.widget.DataList

Method Params Return Type Description
getPaginator() - Paginator Returns the paginator widget.
Skinning

DataList resides in a main div container which style and styleClass attributes apply. Following is
the list of structural style classes;

Class Applies
.ui-datalist Main container element
.ui-datalist-content Content container
.ui-datalist-data Data container
.ui-datalist-item Each item in list

As skinning style classes are global, see the main theming section for more information.
Tips

« DataList supports lazy loading data via LazyDataModel, see DataTable lazy loading section.

- If you need full control over list type markup, set type to “none”. With this setting, datalist does
not render item tags like li and behaves like ui:repeat.

- DataList provides two facets named header and footer that you can use to provide custom content
at these locations.

129

PrimeFaces User’s Guide

3.27 DataTable

DataTable is an enhanced version of the standard Datatable that provides built-in solutions to many
commons use cases like paging, sorting, selection, lazy loading, filtering and more.

Model Year Manufacturer Color
62da385e 2000 Opel Green
9429b69f 2007 Mercedes Brown
0b1db0d0 2001 BMW Orange
ledc33c9 1977 Audi Red
c9a6048e 2009 Opel Blue
272e6dc3 1964 Ford Brown
cbde87b3 2007 Volkswagen Yellow
c0f941e5 1998 Opel White
41alc297 2003 Volvo Maroon
Info
Tag dataTable
Component Class org.primefaces.component.datatable.DataTable
Component Type org.primefaces.component.DataTable
Component Family org.primefaces.component
Renderer Type org.primefaces.component.DataTableRenderer
Renderer Class org.primefaces.component.datatable.DataTableRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean | Boolean value to specify the rendering of the
component, when set to false component will
not be rendered.
binding null Object | An el expression that maps to a server side
UlIComponent instance in a backing bean
value null Object | Data to display.
var null String Name of the request-scoped variable used to
refer each data.
rows null Integer | Number of rows to display per page.
first 0 Integer | Index of the first row to be displayed
widgetVar null String Name of the client side widget.

130

PrimeFaces User’s Guide

Name Default Type Description

paginator FALSE Boolean | Enables pagination.

paginatorTemplate null String Template of the paginator.

rowsPerPageTemplate null String Template of the rowsPerPage dropdown.

currentPageReportTemplate null String Template of the currentPageReport Ul

pageLinks 10 Integer | Maximum number of page links to display.

paginatorPosition both String Position of the paginator.

paginatorAlwaysVisible TRUE Boolean | Defines if paginator should be hidden if total
data count is less than number of rows per
page.

scrollable FALSE Boolean | Makes data scrollable with fixed header.

scrollHeight null Integer | Scroll viewport height.

scrollWidth null Integer | Scroll viewport width.

selectionMode null String Enables row selection, valid values are “single”
and “multiple”.

selection null Object | Reference to the selection data.

rowIndex Var null String Name of iterator to refer each row index.

emptyMessage No records | String Text to display when there is no data to display.

found. Alternative is emptyMessage facet.

style null String Inline style of the component.

styleClass null String Style class of the component.

dblClickSelect FALSE Boolean | Enables row selection on double click.

liveScroll FALSE Boolean | Enables live scrolling.

rowStyleClass null String Style class for each row.

onExpandStart null String Client §ide callback to execute before
expansion.

resizableColumns FALSE Boolean | Enables column resizing.

sortBy null Object | Property to be used for default sorting.

sortOrder ascending | String “ascending” or “descending”.

scrollRows 0 Integer | Number of rows to load on live scroll.

rowKey null String Unique identifier of a row.

tableStyle null String Inline style of the table element.

tableStyleClass null String Style class of the table element.

filterEvent keyup String Event to invoke filtering for input filters.

131

PrimeFaces User’s Guide

Name Default Type Description

filterDelay 300 Integer | Delay in milliseconds before sending an ajax
filter query.

draggableColumns FALSE Boolean | Columns can be reordered with dragdrop when
enabled.

editable FALSE Boolean | Controls incell editing.

lazy FALSE Boolean | Controls lazy loading.

filtered Value null List List to keep filtered data.

sortMode single String Defines sorting mode, valid values are single
and multiple.

editMode row String Defines edit mode, valid values are row and
cell.

editingRow FALSE Boolean | Defines if cell editors of row should be

displayed as editable or not.

cellSeparator null String Separator text to use in output mode of editable
cells with multiple components.

summary null String Summary attribute for WCAG.

frozenRows null Object | Collection to display as fixed in scrollable
mode.

dir Itr String Defines text direction, valid values are /tr and
rtl.

liveResize FALSE Boolean | Columns are resized live in this mode without

using a resize helper.

Getting started with the DataTable

We will be using the same Car and CarBean classes described in DataGrid section.

4)

<p:dataTable var="car" value="#{carBean.cars}">
<p:column>
<f:facet name="header">
<h:outputText value="Model" />
</f:facet>
<h:outputText value="#{car.model}" />
</p:column>
<p:column>
<f:facet name="header">
<h:outputText value="Year" />
</f:facet>
<h:outputText value="#{car.year}" />
</p:column>
//more columns
</p:dataTable>

_

132

Header and Footer

PrimeFaces User’s Guide

Both datatable itself and columns can have custom content in their headers and footers using header
and footer facets respectively. Alternatively for columns there are headerText and footerText

shortcuts to display simple texts.

<p:dataTable var="car" value="#{carBean.cars}">

<f:facet name="header">
List of Cars
</f:facet>

<p:column>
<f:facet name="header">
Model
</f:facet>
#{car.model}
<f:facet name="footer">
8 digit code
</f:facet>
</p:column>

<p:column headerText="Year" footerText="1960-2010">
#{car.year}

</p:column>

//more columns

<f:facet name="header">

</f:facet>

</p:.dataTable>

In total there are #{fn:length(carBean.cars)} cars.

\

List of Cars
Model Manufacturer Color

16c9b7c6 Mercedes Maroon
de0e4475 Volkswagen Maroon
d17a0cac Ford Black
0db0095d Ford Red
c09b2d08 Renault Red
a5e3c203 Volkswagen Green
196bd9e9 Ford White
111db4d2 Ford Silver
73b17bd0 Volvo Blue

8 digit code

In total there are 9 cars.

133

1979
1994
1998
1983
1962
2007
1994
1994
1973

Year

1960-2010

PrimeFaces User’s Guide

Pagination

DataTable has a built-in ajax based paginator that is enabled by setting paginator option to true, see
pagination section in dataGrid documentation for more information about customization.

<p:dataTable var="car" value="#{carBean.cars}" paginator="true" rows="10">
//columns
</p:dataTable>

Sorting

Defining sortBy attribute enables ajax based sorting on that particular column.

4)

<p:dataTable var="car" value="#{carBean.cars}">
<p:column sortBy="#{car.model}" headerText="Model”>
<h:outputText value="#{car.model}" />
</p:column>
...more columns
</p:dataTable>

-)

Instead of using the default sorting algorithm which uses a java comparator, you can plug-in your
own sort method.

\

<p:dataTable var="car" value="#{carBean.cars}" dynamic="true">
<p:column sortBy="#{car.model}" sortFunction="#{carBean.sortByModel}"
headerText="Model”>
<h:outputText value="#{car.model}" />
</p:column>

...more columns
</p:.dataTable>

public int sortByModel(Car carl, Car car2) {
//return -1, @ , 1 if carl is less than, equal to or greater than car?

}

Multiple sorting is enabled by setting sortMode to multiple. In this mode, clicking a sort column
while metakey is on adds sort column to the order group.

<p:dataTable var="car" value="#{carBean.cars}" sortMode="multiple">
//columns
</p:dataTable>

134

PrimeFaces User’s Guide

DataTable can display data sorted by default, to implement this use the sortBy option of datatable
and optional sortOrder. Table below would be initially displayed as sorted by model.

<p:dataTable var="car" value="#{carBean.cars}" sortBy="#{car.model}”> \

<p:column sortBy="#{car.model}" headerText="Model”>
<h:outputText value="#{car.model}" />
</p:column>

<p:column sortBy="#{car.year}" headerText="Year">
<h:outputText value="#{car.year}" />
</p:column>

...more columns
</p:dataTable>

_

Data Filtering

Similar to sorting, ajax based filtering is enabled at column level by setting filterBy option and
providing a list to keep the filtered sub list. It is suggested to use a scope longer than request like
viewscope to keep the filteredValue so that filtered list is still accessible after filtering.

<p:dataTable var="car" value="#{carBean.cars}" \
filteredValue="#{carBean.filteredCars}">

<p:column filterBy="#{car.model}" headerText="Model">
<h:outputText value="#{car.model}" />
</p:column>

<p:column filterBy="#{car.year}" headerText="Year">
<h:outputText value="#{car.year}" />
</p:column>

...more columns
</p:dataTable>

(&)

Filtering is triggered with keyup event and filter inputs can be styled using filterStyle,
filterStyleClass attributes. If you’d like to use a dropdown instead of an input field to only allow
predefined filter values use filterOptions attribute and a collection/array of selectitems as value. In
addition, filterMatchMode defines the built-in matcher which is startsWith by default.

Following is an advanced filtering datatable with these options demonstrated;

135

PrimeFaces User’s Guide

4)

<p:dataTable var="car" value="#{carBean.cars}"
filteredValue="#{carBean.filteredCars}" widgetVar="carsTable">

<f:facet name="header">
<p:outputPanel>
<h:outputText value="Search all fields:" />
<h:inputText id="globalFilter" onkeyup="carsTable.filter()" />
</p:outputPanel>
</f:facet>

<p:column filterBy="#{car.model}" headerText="Model" filterMatchMode="contains">
<h:outputText value="#{car.model}" />
</p:column>

<p:column filterBy="#{car.year}" headerText="Year" footerText="startsWith">
<h:outputText value="#{car.year}" />
</p:column>

<p:column filterBy="#{car.manufacturer}" headerText="Manufacturer"
filterOptions="#{carBean.manufacturerOptions}" filterMatchMode="exact">
<h:outputText value="#{car.manufacturer}" />

</p:column>

<p:column filterBy="#{car.color}" headerText="Color" filterMatchMode="endsWith">
<h:outputText value="#{car.color}" />
</p:column>

</p:dataTable>

-)

Search all fields:

Model Year Manufacturer Color
Select v

9fle82ad 1989 Volkswagen Black
c1362b1d 1968 Mercedes Blue

ec1fObbl 1962 Renault Green
9b0b3fe3 2001 Mercedes Yellow
de0517b3 2002 Volkswagen Creen
3e702116 1972 BMW Blue
49612134 1994 Ford Black
bf19778d 1983 Audi Red

4ecd938b 1962 Opel Yellow

contains startsWith exact endsWith

Filter located at header is a global one applying on all fields, this is implemented by calling client
side API method called filter(), important part is to specify the id of the input text as globalFilter
which is a reserved identifier for datatable.

Row Selection

There are several ways to select row(s) from datatable. Let’s begin by adding a Car reference for
single selection and a Car array for multiple selection to the CarBean to hold the selected data.

136

PrimeFaces User’s Guide

4)

public class CarBean {
private List<Car> cars;
private Car selectedCar;
private Car[] selectedCars;

public CarBean() {
cars = new ArraylList<Car>Q);
cars.add(new Car("myModel",2005, "ManufacturerX","blue"));
//add more cars

}

//getters and setters
ks

Single Selection with a Command Component

This method is implemented with a command component such as commandLink or
commandButton. Selected row can be set to a server side instance by passing as a parameter if you
are using EL 2.2 or using f:setPropertyActionListener.

4)

<p:dataTable var="car" value="#{carBean.cars}">

<p:column>
<p:commandButton value="Select">
<f:setPropertyActionListener value="#{car}"
target="#{carBean.selectedCar}" />
</p: commandButton>
</p:column>

...columns

</p:dataTable>

Single Selection with Row Click

Previous method works when the button is clicked, if you’d like to enable selection wherever the
row is clicked, use selectionMode option.

<p:dataTable var="car" value="#{carBean.cars}" selectionMode="single"
selection="#{carBean.selectedCar}" rowKey="#{car.id}">
...columns
</p:dataTable>

137

PrimeFaces User’s Guide

Multiple Selection with Row Click

Multiple row selection is similar to single selection but selection should reference an array or a list
of the domain object displayed and user needs to use press modifier key(e.g. ctrl) during selection.

<p:dataTable var="car" value="#{carBean.cars}" selectionMode="multiple"
selection="#{carBean.selectedCars}" rowKey="#{car.id}" >
...columns
</p:.dataTable>

Selection on Double Click

By default, row based selection is enabled by click event, enable db/ClickSelect so that clicking
double on a row does the selection.

Single Selection with RadioButton
Selection a row with a radio button placed on each row is a common case, datatable has built-in

support for this method so that you don’t need to deal with h:selectOneRadio’s and low level bits.
In order to enable this feature, define a column with selectionMode set as single.

<p:dataTable var="car" value="#{carBean.cars}" selection="#{carBean.selectedCar}"
rowKey="#{car.id}">
<p:column selectionMode="single"/>
...columns
</p:dataTable>

Multiple Selection with Checkboxes

Similar to how radio buttons are enabled, define a selection column with a multiple selectionMode.
DataTable will also provide a selectAll checkbox at column header.

<p:dataTable var="car" value="#{carBean.cars}" selection="#{carBean.selectedCars}"
rowKey="#{car.id}" >
<p:column selectionMode="multiple"/>
...columns
</p:dataTable>

RowKey

RowKey should a unique identifier from your data model and used by datatable to find the selected
rows. You can either define this key by using the rowKey attribute or by binding a data model
which implements org.primefaces.model.SelectableDataModel.

138

PrimeFaces User’s Guide

Dynamic Columns

Dynamic columns is handy in case you can’t know how many columns to render. Columns
component is used to define the columns programmatically. It requires a collection as the value, two
iterator variables called var and columnindexVar. Features like sortBy and filterBy are supported
however advanced features like editing is not.

<p:dataTable var="cars" value="#{tableBean.dynamicCars}" id="carsTable"> \\
<p:columns value="#{tableBean.columns}" var="column" columnIndexVar="colIndex">
<f:facet name="header">
#{column}
</f:facet>

<h:outputText value="#{cars[colIndex].model}" />

<h:outputText value="#{cars[colIndex].year}" />

<h:outputText value="#{cars[colIndex].color}"/>
</p:columns>
</p:dataTable>

public class CarBean {
private List<String> columns;
private List<Car[]> dynamicCars;

public CarBean() {
populateColumns();
populateCars();

}

public void populateColumns() {
columns = new ArraylList(Q);

for(int 1 = 0; i < 3; i++) {
columns.add("Brand:" + 1i);

}
3

public void populateCars() {
dynamicCars = new ArraylList<Car[]1>(Q);

for(int i=0; 1 < 9; i++) {
Car[] cars = new Car[columns.size()];

for(int j = 0; j < columns.size(); j++) {
cars[j] = //Create car object

}

dynamicCars.add(cars);

139

PrimeFaces User’s Guide

Grouping

Grouping is defined by ColumnGroup component used to combine datatable header and footers.

Sales
Manufacturer Sales Count Profit
Last Year This Year Last Year This Year
Mercedes 90% 8% 280313 25102%
BMW 14% 91% 186408 28023%
Volvo 82% 24% 1308 777243%
Audi 7% 40% 22728 336728
Renault 10% 54% 98115% 406643
Opel 63% 28% 1054938 937463
Volkswagen 67% 38% 38242% 19063%
Chrysler 40% 63% 101463 76978
Ferrari 26% 70% 403843 62298%
Ford 14% 94% 960523 42233%
Totals: 342561% 430222%

<p:dataTable var="sale" value="#{carBean.sales}">

<p:columnGroup type="header">
<p:row>
<p:column rowspan="3" headerText="Manufacturer" />
<p:column colspan="4" headerText="Sales" />
</p:row>
<p:row>
<p:column colspan="2" headerText="Sales Count" />
<p:column colspan="2" headerText="Profit" />
</p:row>
<p:row>
<p:column headerText="Last Year" />
<p:column headerText="This Year" />
<p:column headerText="Last Year" />
<p:column headerText="This Year" />
</p:row>
</p:columnGroup>

<p:column>
#{sale.manufacturer}

</p:column>

<p:column>
#{sale.lastYearProfit}%

</p:column>

<p:column>
#{sale.thisYearProfit}%

</p:column>

<p:column>
#{sale.lastYearSale}$

</p:column>

<p:column>
#{sale.thisYearSale}$

</p:column>

140

PrimeFaces User’s Guide

~

<p:columnGroup type="footer">
<p:row>
<p:column colspan="3" style="text-align:right" footerText="Totals:"/>
<p:column footerText="#{tableBean.lastYearTotal}$" />
<p:column footerText="#{tableBean.thisYearTotal}$" />
</p:row>
</p:columnGroup>

</p:dataTable>

public class CarBean {
private List<Manufacturer> sales;

public CarBean() {
sales = //create a list of BrandSale objects

}

public List<ManufacturerSale> getSales() {
return this.sales;

}
}
-)

Scrolling

Scrolling is a way to display data with fixed header&footer, in order to enable scrolling you just
need to set scrollable option to true, define a fixed height and/or width and set a fixed width to each
column. It is important to use width attribute of column instead of style attribute for scrollable
case. This attribute indicated pixels by default, to use percentages append % to the end.

<p:dataTable var="car" value="#{bean.data}" scrollable="true" scrollHeight="150">
<p:column width="50" />
//columns

</p:dataTable>

Model Year Manufacturer Color
069794d7 1991 Volvo Silver O
4aeeecbe 1993 Ford Green
09cbc05c 1983 Chrysler Maroon
2d374a04 1964 Ferrari Red
9¢09bc54 1987 Volkswagen Blue
25d45a08 1993 Opel White :

Model Year Year Year

Simple scrolling renders all data to client and places a scrollbar, live scrolling is necessary to deal
with huge data, in this case data is fetched whenever the scrollbar reaches bottom. Set liveScroll to
enable this option;

141

PrimeFaces User’s Guide

4)

<p:dataTable var="car" value="#{bean.data}" scrollable="true" scrollHeight="150"
liveScroll="true">

<p:column width="100" />
//columns
</p:.dataTable>

)

Scrolling has 3 modes; x, y and x-y scrolling that are defined by scrollHeight and scrollWidth.
These two scroll attributes can defined using integer values indicating fixed pixels or percentages
relative to the container dimensions.

Expandable Rows

RowToggler and RowExpansion facet are used to implement expandable rows.

4)

<p:dataTable var="car" value="#{carBean.cars}">

<f:facet name="header">
Expand rows to see detailed information
</f:facet>

<p:column>
<p:rowToggler />
</p:column>

//columns
<p:rowExpansion>

//Detailed content of a car
</p:rowExpansion>

</p:.dataTable>

p:rowToggler component places an expand/collapse icon, clicking on a collapsed row loads
expanded content with ajax.

Expand rows to see detailed information

Model Year
0b8313c2 1976
2be34a8c 1995
08e342c4 2004
b5d03231 1998
()

Model: b5d03231

Year: 1998

Manufacturer: Mercedes

Color: Red
b50b6dcc 1974
db39801c 1995
f76c474f 1989
2c9b67a2 2005

94fb553f 1973

142

PrimeFaces User’s Guide
Editing

Incell editing provides an easy way to display editable data. p:cellEditor is used to define the cell
editor of a particular column. There are two types of editing, row and cell. Row editing is the
default mode and used by adding a p:rowEditor component as row controls.

<p:dataTable var="car" value="#{carBean.cars}" editable="true">

<f:facet name="header">
In-Cell Editing
</f:facet>

<p:column headerText="Model">

<p:cellEditor>
<f:facet name="output">
<h:outputText value="#{car.model}" />
</f:facet>

<f:facet name="input">
<h:inputText value="#{car.model}"/>
</f:facet>

</p:cellEditor>
</p:column>

//more columns with cell editors
<p:column>
<p:rowkditor />

</p:column>

</p:.dataTable>

")

In-Cell Editing

Model Year Manufacturer Color Options
824641ad 1976 Volvo Yellow
a9bf1625 1961 Volkswagen Orange
d859a7ba 1977 Ferrari Brown
9379f6fS 1961 | Renault %) [Ssilver B v x
74438017 1960 Chrysler Silver
80feefeS 2000 Opel Yellow
9e0c7267 1982 Opel Red
33124250 1984 Ford Red
0349899f 1977 Renault Red

143

PrimeFaces User’s Guide

When pencil icon is clicked, row is displayed in editable mode meaning input facets are displayed
and output facets are hidden. Clicking tick icon only saves that particular row and cancel icon
reverts the changes, both options are implemented with ajax interaction.

Another option for incell editing is cell editing, in this mode a cell switches to edit mode when it is
clicked, losing focus triggers an ajax event to save the change value.

Lazy Loading

Lazy Loading is a built-in feature of datatable to deal with huge datasets efficiently, regular ajax
based pagination works by rendering only a particular page but still requires all data to be loaded
into memory. Lazy loading datatable renders a particular page similarly but also only loads the page
data into memory not the whole dataset. In order to implement this, you’d need to bind a
org.primefaces.model. LazyDataModel as the value and implement /oad method and enable lazy
option. Also you must implement getRowData and getRowKey if you have selection enabled.

<p:dataTable var="car" value="#{carBean.model}" paginator="true" rows="10"
lazy="true">
//columns

</p:dataTable>

public class CarBean {
private LazyDataModel model;

public CarBean() {
model = new LazyDataModel() {

@0verride
public void load(int first, int pageSize, String sortField,
SortOrder sortOrder, Map<String,String> filters) {

//load physical data
s

int totalRowCount = //logical row count based on a count query
model . setRowCount(totalRowCount);

}

public LazyDataModel getModel() {
return model;

b
}

- J

DataTable calls your load implementation whenever a paging, sorting or filtering occurs with
following parameters;

- first: Offset of first data to start from
« pageSize: Number of data to load

144

PrimeFaces User’s Guide

- sortField: Name of sort field (e.g. "model" for sortBy="#{car.model}")
« sortOrder: SortOrder enum.
« filter: Filter map with field name as key (e.g. "model" for filterBy="#{car.model}") and value.

In addition to load method, totalRowCount needs to be provided so that paginator can display itself
according to the logical number of rows to display.

SummaryRow

Summary is a helper component to display a summary for the grouping which is defined by the
sortBy option.

4)

<p:dataTable var="car" value="#{tableBean.cars}" sortBy="#{car.manufacturer}"
sortOrder="descending">

<p:column headerText="Model" sortBy="#{car.model}">
#{car.model}
</p:column>

<p:column headerText="Year" sortBy="#{car.year}">
#{car.year}
</p:column>

<p:column headerText="Manufacturer" sortBy="#{car.manufacturer}">
#{car.manufacturer?}
</p:column>

<p:column headerText="Color" sortBy="#{car.color}">
#{car.color}
</p:column>

<p : summaryRow>
<p:column colspan="3" style="text-align:right">
Total:
</p:column>

<p:column>
#{tableBean.randomPrice}$
</p:column>
</p:summaryRow>
</p:dataTable>

-)

Model ¢ Year ¢ Color <
30d423cl 1995 Volvo Orange
caa74a90 2005 Volvo White
2295d17b 1996 Volvo Blue
d9548573 1990 Volvo Black
3f2fddbl 1979 Volvo Blue
c9cb10af 2007 Volvo Maroon
d69007fb 1998 Volvo Black

Total: 40272$
986742ea 1966 Volkswagen Orange
f5045e9a 2006 Volkswagen Red
3498c¢563 1994 Volkswagen Red

Total: 61413$

145

PrimeFaces User’s Guide

SubTable

SubTable is a helper component to display nested collections. Example below displays a collection
of players and a subtable for the stats collection of each player.

4)

<p:dataTable var="player" value="#{tableBean.players}">

<f:facet name="header">
FCB Statistics
</f:facet>

<p:columnGroup type="header">
<p:row>
<p:column rowspan="2" headerText="Player" sortBy="#{player.name}"/>
<p:column colspan="2" headerText="Stats" />
</p:row>

<p:row>
<p:column headerText="Goals" />
<p:column headerText="Assists" />
</p:row>
</p:columnGroup>

<p:subTable var="stats" value="#{player.stats}">
<f:facet name="header">
#{player.name}
</f:facet>

<p:column>
#{stats.season}
</p:column>

<p:column>
#{stats.goals}
</p:column>

<p:column>
#{stats.assists}
</p:column>

<p:columnGroup type="footer">
<p:row>
<p:column footerText="Totals: style="text-align:right"/>
<p:column footerText="#{player.allGoals}" />
<p:column footerText="#{player.allAssists}" />
</p:row>
</p:columnGroup>
</p:subTable>

</p:.dataTable>

146

Ajax Behavior Events

PrimeFaces User’s Guide

Event Listener Parameter Fired
page org.primefaces.event.data.PageEvent On pagination.
sort org.primefaces.event.data.SortEvent When a column is sorted.
filter org.primefaces.event.data.FilterEvent On filtering.
rowSelect org.primefaces.event.SelectEvent When a row is being selected.
rowUnselect org.primefaces.event.UnselectEvent When a row is being unselected.
rowEdit org.primefaces.event. RowEditEvent When a row is edited.
rowEditlnit org.primefaces.event. RowEditEvent When a row switches to edit mode
rowEditCancel org.primefaces.event. RowEditEvent When row edit is cancelled.
colResize org.primefaces.event.ColumnResizeEvent | When a column is being selected.
toggleSelect org.primefaces.event. ToggleSelectEvent | When header checkbox is toggled.
colReorder - When columns are reordered.
rowSelectRadio org.primefaces.event.SelectEvent Row selection with radio.
rowSelectCheckbox org.primefaces.event.SelectEvent Row selection with checkbox.
rowUnselectCheckbox org.primefaces.event.UnselectEvent Row unselection with checkbox.
rowDblselect org.primefaces.event.SelectEvent Row selection with double click.
rowToggle org.primefaces.event. ToggleEvent Row expand or collapse.
contextMenu org.primefaces.event.SelectEvent ContextMenu display.
cellEdit org.primefaces.event.CellEditEvent When a cell is edited.

For example, datatable below makes an ajax request when a row is selected with a click on row.

<p:dataTable var="car" value="#{carBean.model}">
<p:ajax event="rowSelect” update="another_component” />

//columns
</p:dataTable>

Client Side API

Widget: PrimeFaces.widget.DataTlable

Method Params Return Description
Type
getPaginator() - Paginator | Returns the paginator insance.

147

PrimeFaces User’s Guide

Method Params Return Description
Type
clearFilters() - void Clears all column filters
getSelectedRowsCount() Number Returns number of selected rows.
selectRow(r, silent) r: number or tr element void Selects the given row.
as jQuery object,
silent: flag to fire row
select ajax behavior
unselectRow(r, silent) r: number or tr element void Unselects the given row.
as jQuery object,
silent: flag to fire row
select ajax behavior
unselectAlIRows() - void Unselects all rows.
toggleCheckAll() void Toggles header checkbox state.
Skinning

DataTable resides in a main container element which style and styleClass options apply. As skinning
style classes are global, see the main theming section for more information.Following is the list of

structural style classes;

Class

Applies

.ui-datatable

Main container element

.ui-datatable-data

Table body

.ui-datatable-empty-message

Empty message row

.ui-datatable-header

Table header

.ui-datatable-footer

Table footer

.ui-sortable-column

Sortable columns

.ui-sortable-column-icon

Icon of a sortable icon

.ui-expanded-row-content

Content of an expanded row

.ui-row-toggler

Row toggler for row expansion

.ui-editable-column

Columns with a cell editor

.ui-cell-editor

Container of input and output controls of an editable cell

.ui-cell-editor-input

Container of input control of an editable cell

.ui-cell-editor-output

Container of output control of an editable cell

.ui-datatable-even

Even numbered rows

.ui-datatable-odd

Odd numbered rows

148

PrimeFaces User’s Guide

3.28 DefaultCommand

Which command to submit the form with when enter key is pressed a common problem in web apps
not just specific to JSF. Browsers tend to behave differently as there doesn’t seem to be a standard
and even if a standard exists, IE probably will not care about it. There are some ugly workarounds
like placing a hidden button and writing javascript for every form in your app. DefaultCommand
solves this problem by normalizing the command(e.g. button or link) to submit the form with on
enter key press.

Info
Tag defaultCommand
Component Class org.primefaces.component.defaultcommand.DefaultCommand
Component Type org.primefaces.component.DefaultCommand

Component Family org.primefaces.component

Renderer Type org.primefaces.component.DefaultCommandRenderer
Renderer Class org.primefaces.component.defaultcommand.DefaultCommandRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean Boolean value to specify the rendering of the

component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

widgetVar null String Name of the client side widget
target null String Identifier of the default command component.
scope null String Identifier of the ancestor component to enable

multiple default commands in a form.

Getting Started with the DefaultCommand
DefaultCommand must be nested inside a form requires farget option to reference a clickable

command. Example below triggers btn2 when enter key is pressed. Note that an input must have
focused due to browser nature.

149

PrimeFaces User’s Guide

<h:form id="form">

<h:panelGrid columns="3" cellpadding="5">
<h:outputlLabel for="name" value="Name:" style="font-weight:bold"/>
<p:inputText id="name" value="#{defaultCommandBean.text}" />
<h:outputText value="#{defaultCommandBean.text}" id="display" />
</h:panelGrid>

<p:commandButton value="Buttonl" id="btnl" actionListener="#{bean.submitl}"
ajax="false"/>
<p:commandButton value="Button2" id="btn2" actionlListener="#{bean.submit2}" />

<h:commandButton value="Button3" id="btn3" actionlListener="#{bean.submit3}" />

<p:defaultCommand target="bt2" />

</h:form>

\

Tips

« If you need multiple default commands on same page use scope attribute that refers to the
ancestor component of the target input.

150

PrimeFaces User’s Guide

3.29 Dialog

Dialog is a panel component that can overlay other elements on page.

Login X
Username:* ||
Password: *
Login
Info
Tag dialog
Component Class org.primefaces.component.dialog.Dialog
Component Type org.primefaces.component.Dialog

Component Family org.primefaces.component

Renderer Type org.primefaces.component.DialogRenderer
Renderer Class org.primefaces.component.dialog.DialogRenderer
Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean | Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side

UlComponent instance in a backing bean

widgetVar null String Name of the client side widget

header null String Text of the header

draggable TRUE Boolean | Specifies draggability

resizable TRUE Boolean | Specifies resizability

modal FALSE Boolean | Enables modality.

visible FALSE Boolean | When enabled, dialog is visible by default.
width auto Integer Width of the dialog

height auto Integer Height of the dialog

minWidth 150 Integer Minimum width of a resizable dialog.

151

PrimeFaces User’s Guide

Name Default Type Description
minHeight 0 Integer Minimum height of a resizable dialog.
style null String Inline style of the dialog.
styleClass null String Style class of the dialog
showEffect null String Effect to use when showing the dialog
hideEffect null String Effect to use when hiding the dialog
position null String Defines where the dialog should be displayed
closable TRUE Boolean | Defines if close icon should be displayed or not
onShow null String Client side callback to execute when dialog is

displayed.

onHide null String Client side callback to execute when dialog is hidden.
appendToBody FALSE Boolean | Appends dialog as a child of document body.
showHeader TRUE Boolean | Defines visibility of the header content.
footer null String Text of the footer.
dynamic FALSE Boolean | Enables lazy loading of the content with ajax.
minimizable FALSE Boolean | Whether a dialog is minimizable or not.
maximizable FALSE Boolean | Whether a dialog is maximizable or not.
closeOnEscape FALSE Boolean | Defines if dialog should close on escape key.
dir Itr String Defines text direction, valid values are /tr and r¢/.

Getting started with the Dialog

Dialog is a panel component containing other components, note that by default dialog is not visible.

<p:dialog>
<h:outputText value="Resistance to PrimeFaces is Futile!" />
//0ther content

</p:dialog>

Show and Hide

Showing and hiding the dialog is easy using the client side api.

<p:dialog header="Header Text" widgetVar="dlg">//Content</p:dialog>
<p:commandButton value="Show" type="button" onclick="dlg.show()" />
<p:commandButton value="Hide" type="button" onclick="dlg.hide()" />

152

PrimeFaces User’s Guide

Effects

There are various effect options to be used when displaying and closing the dialog. Use showEffect
and hideEffect options to apply these effects;

« blind

« bounce
. clip

« drop

« explode
« fade

- fold

« highlight
* puff

« pulsate
o scale

« shake

o size

« slide

o transfer

<p:dialog showEffect="fade" hideEffect="explode" ...>
/7. ..
</p:dialog>

Position

By default dialog is positioned at center of the viewport and position option is used to change the
location of the dialog. Possible values are;

- Single string value like ‘center’, ‘left’, ‘right’, ‘top’, ‘bottom’ representing the position within
viewport.
« Comma separated x and y coordinate values like 200, 500

« Comma separated position values like top’, right’. (Use single quotes when using a combination)

Some examples are described below;

<<p:dialog position="top" ...>)
<<p:dialog position="left,top" ...>)
<<p:dialog position="200,50" ...>)

153

PrimeFaces User’s Guide
Ajax Behavior Events
close event is one of the ajax behavior events provided by dialog that is fired when the dialog is

hidden. If there is a listener defined it’ll be executed by passing an instance of
org.primefaces.event.CloseEvent.

Example below adds a FacesMessage when dialog is closed and updates the messages component
to display the added message.

<p:dialog>
<p:ajax event="close" listener="#{dialogBean.handleClose}" update="msg" />
//Content

</p:dialog>

<p:messages id="msg" />

4)

public class DialogBean {

public void handleClose(CloseEvent event) {
//Add facesmessage

3
}

- J

Two other ajax behavior events are maximize and minimize that are invoked when dialog is
maximized or minimized.

Client Side Callbacks

Similar to close listener, onShow and onHide are handy callbacks for client side in case you need to
execute custom javascript.

<p:dialog onShow="alert(‘Visible’)" onHide="alert(‘Hidden’)">
//Content
</p:dialog>

Client Side API

Widget: PrimeFaces.widget.Dialog

Method Params Return Type Description
show() - void Displays dialog.
hide() - void Closes dialog.

154

Skinning

PrimeFaces User’s Guide

Dialog resides in a main container element which styleClass option apply. Following is the list of

structural style classes;

Style Class Applies
.ui-dialog Container element of dialog
.ui-dialog-titlebar Title bar
.ui-dialog-title-dialog Header text
.ui-dialog-titlebar-close Close icon
.ui-dialog-content Dialog body

As skinning style classes are global, see the main theming section for more information.

Tips

« Use appendToBody with care as the page definition and html dom would be different, for
example if dialog is inside an h:form component and appendToBody is enabled, on the browser
dialog would be outside of form and may cause unexpected results. In this case, nest a form inside

a dialog.

« Do not place dialog inside tables, containers likes divs with relative positioning or with non-
visible overflow defined, in cases like these functionality might be broken. This is not a limitation
but a result of DOM model. For example dialog inside a layout unit, tabview, accordion are a
couple of examples. Same applies to confirmDialog as well.

155

PrimeFaces User’s Guide

3.30 Drag&Drop

Drag&Drop utilities of PrimeFaces consists of two components; Draggable and Droppable.

3.30.1 Draggable

Info
Tag draggable
Component Class org.primefaces.component.dnd.Draggable
Component Type org.primefaces.component.Draggable

Component Family org.primefaces.component

Renderer Type org.primefaces.component.DraggableRenderer
Renderer Class org.primefaces.component.dnd.DraggableRenderer
Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side

UIComponent instance in a backing bean

widgetVar null String Name of the client side widget

proxy FALSE Boolean Displays a proxy element instead of actual element.
dragOnly FALSE Boolean Specifies a draggable that can’t be dropped.

for null String Id of the component to add draggable behavior
disabled FALSE Boolean Disables draggable behavior when true.

axis null String Specifies drag axis, valid values are ‘x’ and ‘y’.
containment null String Constraints dragging within the boundaries of

containment element

helper null String Helper element to display when dragging

revert FALSE Boolean Reverts draggable to it’s original position when not
dropped onto a valid droppable

snap FALSE Boolean Draggable will snap to edge of near elements

156

PrimeFaces User’s Guide

Name Default Type Description

snapMode null String Specifies the snap mode. Valid values are ‘both’,
‘inner’ and ‘outer’.

snapTolerance 20 Integer Distance from the snap element in pixels to trigger
snap.

zindex null Integer ZIndex to apply during dragging.

handle null String Specifies a handle for dragging.

opacity 1 Double Defines the opacity of the helper during dragging.

stack null String In stack mode, draggable overlap is controlled

automatically using the provided selector, dragged
item always overlays other draggables.

grid null String Dragging happens in every x and y pixels.
scope null String Scope key to match draggables and droppables.
cursor crosshair String CSS cursor to display in dragging.

dashboard null String Id of the dashboard to connect with.

Getting started with Draggable

Any component can be enhanced with draggable behavior, basically this is achieved by defining the
id of component using the for attribute of draggable.

<p:panel id="pnl" header="Draggable Panel">
<h:outputText value="This is actually a regular panel"” />
</p:panel>

<p:draggable for="pnl"/>

If you omit the for attribute, parent component will be selected as the draggable target.

<h:graphicImage id="campnou" value="/images/campnou.jpg">
<p:draggable />
</h:graphicImage>

Handle

By default any point in dragged component can be used as handle, if you need a specific handle,
you can define it with handle option. Following panel is dragged using it’s header only.

157

PrimeFaces User’s Guide

<p:panel id="pnl" header="Draggable Panel">

<h:outputText value="I can only be dragged using my header" />
</p:panel>
<p:draggable for="pnl" handle="div.ui-panel-titlebar"/>

Drag Axis

Dragging can be limited to either horizontally or vertically.

<p:panel id="pnl" header="Draggable Panel">
<h:outputText value="I am dragged on an axis only" />
</p:panel>

<p:draggable for="pnl" axis="x or y"/>

Clone

By default, actual component is used as the drag indicator, if you need to keep the component at it’s
original location, use a clone helper.

<p:panel id="pnl" header="Draggable Panel">
<h:outputText value="I am cloned" />
</p:panel>

<p:draggable for="pnl" helper="clone"/>

Revert

When a draggable is not dropped onto a matching droppable, revert option enables the component
to move back to it’s original position with an animation.

<p:panel id="pnl" header="Draggable Panel">
<h:outputText value="I will be reverted back to my original position" />
</p:panel>

<p:draggable for="pnl" revert="true"/>

Opacity

During dragging, opacity option can be used to give visual feedback, helper of following panel’s
opacity is reduced in dragging.

158

PrimeFaces User’s Guide

<p:panel id="pnl" header="Draggable Panel">
<h:outputText value="My opacity is lower during dragging" />
</p:panel>

<p:draggable for="pnl" opacity="0.5"/>

Grid

Defining a grid enables dragging in specific pixels. This value takes a comma separated dimensions
in x,y format.

<p:panel id="pnl" header="Draggable Panel">
<h:outputText value="I am dragged in grid mode" />
</p:panel>

<p:draggable for="pnl" grid="20,40"/>

Containment

A draggable can be restricted to a certain section on page, following draggable cannot go outside of
it’s parent.

\

<p:outputPanel layout="block" style="width:400px;height:200px;">
<p:panel id="conpnl" header="Restricted">
<h:outputText value="I am restricted to my parent's boundaries" />
</p:panel>
</p:outputPanel>

<p:draggable for="conpnl" containment="parent" />

159

PrimeFaces User’s Guide

3.30.2 Droppable

Info
Tag droppable
Component Class org.primefaces.component.dnd.Droppable
Component Type org.primefaces.component.Droppable

Component Family org.primefaces.component

Renderer Type org.primefaces.component.DroppableRenderer
Renderer Class org.primefaces.component.dnd.DroppableRenderer
Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Variable name of the client side widget

for null String Id of the component to add droppable behavior

disabled FALSE Boolean Disables of enables droppable behavior

hoverStyleClass null String Style class to apply when an acceptable draggable is
dragged over.

activeStyleClass null String Style class to apply when an acceptable draggable is
being dragged.

onDrop null String Client side callback to execute when a draggable is
dropped.

accept null String Selector to define the accepted draggables.

scope null String Scope key to match draggables and droppables.

tolerance null String Specifies the intersection mode to accept a draggable.

datasource null String Id of a UIData component to connect with.

160

PrimeFaces User’s Guide

Getting Started with Droppable

Usage of droppable is very similar to draggable, droppable behavior can be added to any
component specified with the for attribute.

<p:outputPanel id="slot" styleClass="slot" />

<p:droppable for="slot" />

slot styleClass represents a small rectangle.

<style type="text/css">
.slot {
background:#FF9900;
width:64px;
height:96px;
display:block;
}

</style>
- J

If for attribute is omitted, parent component becomes droppable.

<p:outputPanel id="slot" styleClass="slot">
<p:droppable />
</p:outputPanel>

Ajax Behavior Events

drop is the only and default ajax behavior event provided by droppable that is processed when a
valid draggable is dropped. In case you define a listener it’ll be executed by passing an
org.primefaces.event. DragDrop event instance parameter holding information about the dragged
and dropped components.

Following example shows how to enable draggable images to be dropped on droppables.

<p:graphicImage id="messi" value="barca/messi_thumb.jpg" />
<p:draggable for="messi"/>

<p:outputPanel id="zone" styleClass="slot" />
<p:droppable for="zone">

<p:ajax listener="#{ddController.onDrop}" />
</p:droppable>

161

PrimeFaces User’s Guide

public void onDrop(DragDropEvent ddEvent) {

String draggedld = ddEvent.getDragIdQ); //Client id of dragged component
String droppedld = ddEvent.getDropId(); //Client id of dropped component
Object data = ddEvent.getData(); //Model object of a datasource
ks
onDrop

onDrop is a client side callback that is invoked when a draggable is dropped, it gets two parameters
event and ui object holding information about the drag drop event.

<p:outputPanel id="zone" styleClass="slot" />
<p:droppable for="zone" onDrop="handleDrop"/>

~

function handleDrop(event, ui) {
var draggable = ui.draggable, //draggable element, a jQuery object

helper = ui.helper, //helper element of draggable, a jQuery object
position = ui.position, //position of draggable helper
offset = ui.offset; //absolute position of draggable helper

}
(& /

DataSource

Droppable has special care for data elements that extend from UlData(e.g. datatable, datagrid), in
order to connect a droppable to accept data from a data component define datasource option as the
id of the data component. Example below show how to drag data from datagrid and drop onto a
droppable to implement a dragdrop based selection. Dropped cars are displayed with a datatable.

~

public class TableBean {

private List<Car> availableCars;
private List<Car> droppedCars;

public TableBean() {
availableCars = //populate data

}

//getters and setters

public void onCarDrop(DragDropEvent event) {
Car car = ((Car) ddEvent.getData());
droppedCars.add(car);
availableCars.remove(car);

162

PrimeFaces User’s Guide

<h:form id="carForm">
<p:fieldset legend="AvailableCars">
<p:dataGrid id="availableCars" var="car"
value="#{tableBean.availableCars}" columns="3">
<p:column>
<p:panel id="pnl" header="#{car.model}" style="text-align:center">
<p:graphicImage value="/images/cars/#{car .manufacturer}.jpg" />
</p:panel>
<p:draggable for="pnl" revert="true" h
andle=".ui-panel-titlebar" stack=".ui-panel"/>
</p:column>
</p:dataGrid>
</p:fieldset>

<p:fieldset id="selectedCars" legend="Selected Cars" style="margin-top:20px">
<p:outputPanel id="dropArea">

<h:outputText value="!!!Drop here!!!l"
rendered="#{empty tableBean.droppedCars}" style="font-size:24px;" />

<p:dataTable var="car" value="#{tableBean.droppedCars}"
rendered="#{not empty tableBean.droppedCars}">
<p:column headerText="Model">
<h:outputText value="#{car.model}" />
</p:column>
<p:column headerText="Year">
<h:outputText value="#{car.year}" />
</p:column>
<p:column headerText="Manufacturer">
<h:outputText value="#{car.manufacturer}" />
</p:column>
<p:column headerText="Color">
<h:outputText value="#{car.color}" />
</p:column>
</p:.dataTable>
</p:outputPanel>
</p:fieldset>

<p:droppable for="selectedCars" tolerance="touch"
activeStyleClass="ui-state-highlight" datasource="availableCars"
onDrop="handleDrop"/>
<p:ajax listener="#{tableBean.onCarDrop}" update="dropArea availableCars" />
</p:droppable>

</h:form>

<script type="text/javascript">
function handleDrop(event, ui) {
ui.draggable.fadeQut(‘fast’); //fade out the dropped item
ks

</script>

"

\

163

PrimeFaces User’s Guide

Tolerance

There are four different tolerance modes that define the way of accepting a draggable.

Mode Description
fit draggable should overlap the droppable entirely
intersect draggable should overlap the droppable at least 50%
pointer pointer of mouse should overlap the droppable
touch droppable should overlap the droppable at any amount
Acceptance

You can limit which draggables can be dropped onto droppables using scope attribute which a
draggable also has. Following example has two images, only first image can be accepted by
droppable.

4)

<p:graphicImage id="messi" value="barca/messi_thumb.jpg" />
<p:draggable for="messi" scope="forward"/>

<p:graphicImage id="xavi" value="barca/xavi_thumb.jpg" />
<p:draggable for="xavi" scope="midfield"/>

<p:outputPanel id="forwardsonly" styleClass="slot" scope="forward" />
<p:droppable for="forwardsonly" />

(&)

Skinning

hoverStyleClass and activeStyleClass attributes are used to change the style of the droppable when
interacting with a draggable.

164

PrimeFaces User’s Guide

3.31 Dock

Dock component mimics the well known dock interface of Mac OS X.

ACEEm@ON O

Info

Tag dock

Component Class org.primefaces.component.dock.Dock

Component Type org.primefaces.component.Dock

Component Family org.primefaces.component

Renderer Type org.primefaces.component.DockRenderer

Renderer Class org.primefaces.component.dock.DockRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

model null MenuModel MenuModel instance to create menus
programmatically

position bottom String Position of the dock, bottom or top.

itemWidth 40 Integer Initial width of items.

maxWidth 50 Integer Maximum width of items.

proximity 90 Integer Distance to enlarge.

halign center String Horizontal alignment,

widgetVar null String Name of the client side widget.

165

PrimeFaces User’s Guide

Getting started with the Dock

A dock is composed of menuitems.

<p:dock>
<p:menuitem value="Home" icon="/images/dock/home.png" url="#" />
<p:menuitem value="Music" icon="/images/dock/music.png" url="#" />
<p:menuitem value="Video" icon="/images/dock/video.png" url="#"/>
<p:menuitem value="Email" icon="/images/dock/email.png" url="#"/>
<p:menuitem value="Link" icon="/images/dock/link.png" url="#"/>
<p:menuitem value="RSS" icon="/images/dock/rss.png" url="#"/>
<p:menuitem value="History" icon="/images/dock/history.png" url="#"/>

</p:dock>
- /

Position

Dock can be located in two locations, fop or bottom (default). For a dock positioned at top set
position to top.

Dock Effect

When mouse is over the dock items, icons are zoomed in. The configuration of this effect is done
via the maxWidth and proximity attributes.

Dynamic Menus

Menus can be created programmatically as well, see the dynamic menus part in menu component
section for more information and an example.

Skinning

Following is the list of structural style classes, {positon} can be fop or bottom.

Style Class Applies
.ui-dock- {position} Main container.
.ui-dock-container- {position} Menu item container.
.ui-dock-item- {position} Each menu item.

As skinning style classes are global, see the main theming section for more information.

166

3.32 Editor

PrimeFaces User’s Guide

Editor is an input component with rich text editing capabilities.

B 7 Uaex, xXx T-H-Tg T i=:

o & ¢

I!PrimeFaces ROCKS!!!

Info

B ;e «

Tag editor

Component Class

org.primefaces.component.editor.Editor

Component Type

org.primefaces.component.Editor

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.EditorRenderer

Renderer Class

org.primefaces.component.editor.EditorRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE Boolean Boolean value to specify the rendering of the
component.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean.

value null Object Value of the component than can be either an
EL expression of a literal text.

converter null Converter/ An el expression or a literal text that defines

String a converter for the component. When it’s an

EL expression, it’s resolved to a converter
instance. In case it’s a static text, it must refer
to a converter id.

167

PrimeFaces User’s Guide

Name Default Type Description

immediate FALSE Boolean When set true, process validations logic is
executed at apply request values phase for
this component.

required FALSE Boolean Marks component as required.

validator null MethodExpr | A method expression that refers to a method
validationg the input.

valueChangeListener null MethodExpr | A method expression that refers to a method
for handling a valuchangeevent.

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion
fails.

validatorMessage null String Message to be displayed when validation
fails.

widgetVar null String Name of the client side widget.

controls null String List of controls to customize toolbar.

height null Integer Height of the editor.

width null Integer Width of the editor.

disabled FALSE Boolean Disables editor.

style null String Inline style of the editor container.

styleClass null String Style class of the editor container.

onchange null String Client side callback to execute when editor
data changes.

maxlength null Integer Maximum length of the raw input.

Getting started with the Editor

Rich Text entered using the Editor is passed to the server using value expression.

public class Bean {

private String text;

//getter and setter

<<p:editor' value="#{bean.text}"

168

Custom Toolbar

PrimeFaces User’s Guide

Toolbar of editor is easy to customize using controls option;

<<p:editor' value="#{bean.text}" controls="bold italic underline strikethrough" />)

Here is the full list of all available controls;

- bold

- italic

« underline
« strikethrough
« subscript

- superscript
- font

. size

. style

« color

« highlight

« bullets

« numbering
- alignleft

» center

- alignright

justify
undo
redo

rule
image
link
unlink
cut

copy
paste
pastetext
print
source
outdent
indent
removeFormat

Client Side API

Widget: PrimeFaces.widget. Editor

Method Params Return Type Description
init() - void Initializes a lazy editor, subsequent calls do not
reinit the editor.
saveHTML() - void Saves html text in iframe back to the textarea.
clear() - void Clears the text in editor.

169

PrimeFaces User’s Guide

Method Params Return Type Description
enable() - void Enables editing.
disable() - void Disables editing.
focus() - void Adds cursor focus to edit area.
selectAll() - void Selects all text in editor.
getSelected HTMLY() - String Returns selected text as HTML.
getSelectedText() - String Returns selected text in plain format.

Skinning

Following is the list of structural style classes.

Style Class Applies

.ui-editor

Main container.

.ui-editor-toolbar

Toolbar of editor.

.ui-editor-group

Button groups.

.ui-editor-button

Each button.

.ui-editor-divider

Divider to separate buttons.

.ui-editor-disabled

Disabled editor controls.

.ui-editor-list

Dropdown lists.

.ui-editor-color

Color picker.

.ui-editor-popup

Popup overlays.

.ui-editor-prompt

Overlays to provide input.

.ui-editor-message

Overlays displaying a message.

Editor is not integrated with ThemeRoller as there is only one icon set for the controls.

170

PrimeFaces User’s Guide

3.33 Effect

Effect component is based on the jQuery UI effects library.

Info

Tag effect

Tag Class org.primefaces.component.effect.EffectTag

Component Class org.primefaces.component.effect.Effect

Component Type org.primefaces.component.Effect

Component Family org.primefaces.component

Renderer Type org.primefaces.component.EffectRenderer

Renderer Class org.primefaces.component.effect.EffectRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

effect null String Name of the client side widget.

event null String qu event to attach the event that executes the
animation

type null String Specifies the name of the animation

for null String Component that is animated

speed 1000 Integer Speed of the animation in ms

delay null Integer Time to wait until running the effect.

Getting started with Effect

Effect component needs a trigger and target which is effect’s parent by default. In example below
clicking outputText (trigger) will run the pulsate effect on outputText(target) itself.

171

PrimeFaces User’s Guide

<h:outputText value="#{bean.value}">
<p:effect type="pulsate" event="click" />
</h:outputText>

Effect Target

There may be cases where you want to display an effect on another target on the same page while
keeping the parent as the trigger. Use for option to specify a target.

\

<h:outputlLink id="1nk" value="#">
<h:outputText value="Show the Barca Temple" />
<p:effect type="appear" event="click" for="img" />
</h:outputLink>

<p:graphicImage id="img" value="/ui/barca/campnou.jpg" style="display:none"/>

J

With this setting, outputLink becomes the trigger for the effect on graphiclmage. When the link is
clicked, initially hidden graphiclmage comes up with a fade effect.

Note: It’s important for components that have the effect component as a child to have an
assigned id because some components do not render their clientld’s if you don’t give them an id
explicitly.

List of Effects
Following is the list of effects supported by PrimeFaces.

* blind

« clip

« drop

- explode
- fold

* puff

« slide

« scale
 bounce
+ highlight
* pulsate
« shake

. size

« transfer

172

PrimeFaces User’s Guide

Effect Configuration

Each effect has different parameters for animation like colors, duration and more. In order to
change the configuration of the animation, provide these parameters with the f:param tag.

<h:outputText value="#{bean.value}">
<p:effect type="scale" event="mouseover">
<f:param name="percent" value="90"/>
</p:effect>
</h:outputText>

It’s important to provide string options with single quotes.

<h:outputText value="#{bean.value}">
<p:effect type="blind" event="click">
<f:param name="direction" value="'horizontal'" />
</p:effect>
</h:outputText>

For the full list of configuration parameters for each effect, please see the jquery documentation;

<: http://docs. jquery.com/UI/Effects :)

Effect on Load

Effects can also be applied to any JSF component when page is loaded for the first time or after an
ajax request is completed by using /oad as the event name. Following example animates messages
with pulsate effect after ajax request completes.

~

<p:messages id="messages">
<p:effect type="pulsate" event="load" delay="500>
<f:param name="mode" value="'show'" />
</p:effect>
</p:messages>

<p:commandButton value="Save" actionlListener="#{bean.action}" update="messages"/>

)

173

http://docs.jquery.com/UI/Effects
http://docs.jquery.com/UI/Effects

PrimeFaces User’s Guide

3.34 FeedReader

FeedReader is used to display content from a feed.

Info

Tag

feedReader

Component Class

org.primefaces.component.feedreader.FeedReader

Component Type

org.primefaces.component.FeedReader

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.FeedReaderRenderer

Renderer Class

org.primefaces.component.feedreader.FeedReaderRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null String URL of the feed.

var null String Iterator to refer each item in feed.

size Unlimited Integer Number of items to display.

Getting started with FeedReader

FeedReader requires a feed url to display and renders it’s content for each feed item.

<p:feedReader value="http://rss.news.yahoo.com/rss/sports" var="feed">

<h:outputText value="#{feed.title}" style="font-weight: bold"/>
<h:outputText value="#{feed.description.value}" escape="false"/>
<p:separator />

<f:facet name="error">

Something went wrong.

</f:facet>
</p:feedReader>

Note that you need the ROME library in your classpath to make feedreader work.

174

http://rss.news.yahoo.com/rss/sports
http://rss.news.yahoo.com/rss/sports

PrimeFaces User’s Guide

3.35 Fieldset

Fieldset is a grouping component as an extension to html fieldset.

Simple FieldSet

The story begins as Don Vito Corleone, the head of a New York Mafia family,
oversees his daughter's wedding. His beloved son Michael has just come
home from the war, but does not intend to become part of his father's
business. T hrough Michael's life the nature of the family business becomes
clear. The business of the family is just like the head of the family, kind and
benevolent to those who give respect, but given to ruthless violence whenever
anything stands against the good of the family.

Info

Tag fieldset

Component Class org.primefaces.component.fieldset.Fieldset

Component Type org.primefaces.component.Fieldset

Component Family org.primefaces.component

Renderer Type org.primefaces.component.FieldsetRenderer

Renderer Class org.primefaces.component.fieldset.FieldsetRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will
not be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

legend null String Title text.

style null String Inline style of the fieldset.

styleClass null String Style class of the fieldset.

toggleable FALSE Boolean Makes content toggleable with animation.

toggleSpeed 500 Integer Toggle duration in milliseconds.

collapsed FALSE Boolean Defines initial visibility state of content.

175

PrimeFaces User’s Guide

Getting started with Fieldset

Fieldset is used as a container component for its children.

<p:fieldset legend="Simple Fieldset">
<h:panelGrid column="2">
<p:graphicImage value="/images/godfather/1.jpg" />
<h:outputText value="The story begins as Don Vito Corleone ..." />
</h:panelGrid>
</p:fieldset>

Legend

Legend can be defined in two ways, with legend attribute as in example above or using legend
facet. Use facet way if you need to place custom html other than simple text.

<p:fieldset>
<f:facet name="legend">
</f:facet>

//content
</p:fieldset>

When both legend attribute and legend facet are present, facet is chosen.
Toggleable Content

Clicking on fieldset legend can toggle contents, this is handy to use space efficiently in a layout. Set
toggleable to true to enable this feature.

4)

<p:fieldset legend="Toggleable Fieldset" toggleable="true">
<h:panelGrid column="2">
<p:graphicImage value="/images/godfather/2.jpg" />
<h:outputText value="Francis Ford Coppolas’ legendary ..." />
</h:panelGrid>
</p:fieldset>

= Toggleable Fieldset

Francis Ford Coppola's legendary continuation and sequel to his landmark
1972 film, The_Godfather, parallels the young Vito Corleone's rise with his
son Michael's spiritual fall, deepening The_Godfather’'s depiction of the dark
side of the American dream. In the early 1900s, the child Vito flees his
Sicilian village for America after the local Mafia kills his family. Vito struggles
to make a living, legally or illegally, for his wife and growing brood in Little
Italy, killing the local Black Hand Fanucci after he demands his customary cut
of the tyro's business. With Fanucci gone, Vito's communal stature grows.

176

PrimeFaces User’s Guide
Ajax Behavior Events
toggle is the default and only ajax behavior event provided by fieldset that is processed when the

content is toggled. In case you have a listener defined, it will be invoked by passing an instance of
org.primefaces.event. ToggleEvent.

Here is an example that adds a facesmessage and updates growl component when fieldset is
toggled.

~

<p:growld id="messages" />

<p:fieldset legend="Toggleable Fieldset" toggleable="true"
<p:ajax listener="#{bean.onToggle}" update="messages">

//content

</p:fieldset>

(&)

public void onToggle(ToggleEvent event) {
Visibility visibility = event.getVisibility();
FacesMessage msg = new FacesMessage();
msg.setSummary("Fieldset " + event.getId() + " toggled");
msg.setDetail("Visibility: " + visibility);

FacesContext.getCurrentInstance().addMessage(null, msg);

}
o)

Client Side API

Widget: PrimeFaces.widget.Fieldset

Method Params Return Type Description

toggle() - void Toggles fieldset content.

Skinning
style and styleClass options apply to the fieldset.

Following is the list of structural style classes;

Style Class Applies
.ui-fieldset Main container
.ui-fieldset-toggleable Main container when fieldset is toggleable
.ui-fieldset .ui-fieldset-legend Legend of fieldset

177

PrimeFaces User’s Guide

Style Class Applies

.ui-fieldset-toggleable .ui-fieldset-legend | Legend of fieldset when fieldset is toggleable

.ui-fieldset .ui-fieldset-toggler Toggle icon on fieldset

As skinning style classes are global, see the main theming section for more information.
Tips

« A collapsed fieldset will remain collapsed after a postback since fieldset keeps its toggle state
internally, you don’t need to manage this using toggleListener and collapsed option.

178

PrimeFaces User’s Guide

3.36 FileDownload

The legacy way to present dynamic binary data to the client is to write a servlet or a filter and
stream the binary data. FileDownload presents an easier way to do the same.

Info

Tag fileDownload

ActionListener Class | org.primefaces.component.filedownload.FileDownloadA ctionListener

Attributes
Name Default Type Description
value null StreamedContent A streamed content instance
contextDisposition attachment String Specifies display mode.

Getting started with FileDownload

A user command action is required to trigger the filedownload process. FileDownload can be
attached to any command component like a commandButton or commandLink.

The value of the FileDownload must be an org.primefaces.model.StreamedContent instance. We
suggest using the built-in DefaultStreamedContent implementation. First parameter of the
constructor is the binary stream, second is the mimeType and the third parameter is the name of the
file.

~

public class FileBean {
private StreamedContent file;

public FileDownloadController() {
InputStream stream = this.getClass().getResourceAsStream("yourfile.pdf");
file = new DefaultStreamedContent(stream, "application/pdf",
"downloaded_file.pdf");

}

public StreamedContent getFile() {
return this.file;

\}

This streamed content should be bound to the value of the fileDownload.

179

PrimeFaces User’s Guide

<h:commandButton value="Download">
<p:fileDownload value="#{fileBean.file}" />
</h:commandButton>

Similarly a more graphical presentation would be to use a commandlink with an image.

</h:commandLink>

If you’d like to use PrimeFaces commandButton and commandLink, disable ajax option as
fileDownload requires a full page refresh to present the file.

<p:commandButton value="Download" ajax="false">
<p:fileDownload value="#{fileBean.file}" />
</p: commandButton>

<p:commandLink value="Download" ajax="false">
<p:fileDownload value="#{fileBean.file}"/>
<h:graphicImage value="pdficon.gif" />
</p:commandLink>

<h:commandLink value="Download">
<p:fileDownload value="#{fileBean.file}"/>
<h:graphicImage value="pdficon.gif" />

ContentDisposition

By default, content is displayed as an attachment with a download dialog box, another alternative is
the inline mode, in this case browser will try to open the file internally without a prompt. Note that
content disposition is not part of the http standard although it is widely implemented.

Monitor Status
As fileDownload process is non-ajax, ajaxStatus cannot apply. Still PrimeFaces provides a feature

to monitor file downloads via client side monitorDownload(startFunction, endFunction) method.
Example below displays a modal dialog when dowload begins and hides it on complete.

~

<script type="text/javascript">
function showStatus() {
statusDialog.show();

}

function hideStatus() {
statusDialog.hide();

}

</script>

(&)

180

PrimeFaces User’s Guide

-

_

<h:form>

<p:dialog modal="true" widgetVar="statusDialog" header="Status" draggable="false"
closable="false">
<p:graphicImage value="/design/ajaxloadingbar.gif" />
</p:dialog>

<p:commandButton value="Download" ajax="false"
onclick="PrimeFaces.monitorDownload(showStatus, hideStatus)">
<p:fileDownload value="#{fileDownloadController.file}"/>
</p: commandButton>

</h:form>

\

181

PrimeFaces User’s Guide

3.37 FileUpload

FileUpload goes beyond the browser input type="file" functionality and features an html5 powered
rich solution with graceful degradation for legacy browsers.

4 Choose Z Upload @ Cancel

J Orange.gif 2.65 KB ar 1]

Info

Tag fileUpload

Component Class org.primefaces.component.fileupload.FileUpload

Component Type org.primefaces.component.FileUpload

Component Family org.primefaces.component

Renderer Type org.primefaces.component.FileUploadRenderer

Renderer Class org.primefaces.component.fileupload.FileUploadRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean.

value null Object Value of the component than can be either an EL
expression of a literal text.

converter null Converter/ An el expression or a literal text that defines a

String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id.

immediate FALSE Boolean When set true, process validations logic is executed
at apply request values phase for this component.

required FALSE Boolean Marks component as required.

validator null MethodExpr | A method expression that refers to a method
validationg the input.

182

PrimeFaces User’s Guide

Name Default Type Description

valueChangeListener | null MethodExpr | A method expression that refers to a method for
handling a valuchangeevent.

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fails.

widgetVar null String Name of the client side widget.

update null String Component(s) to update after fileupload completes.

process null String Component(s) to process in fileupload request.

fileUploadListener null MethodExpr | Method to invoke when a file is uploaded.

multiple FALSE Boolean Allows multi file selection when true.

auto FALSE Boolean Enables auto file uploads.

label Choose String Label of the browse button.

allowTypes null String Regular expression to restrict uploadable files.

sizeLimit null Integer Maximium file size limit in bytes.

fileLimit null Integer Maximum number of files allowed to upload.

showButtons TRUE Boolean Visibility of upload and cancel buttons in button bar.

style null String Inline style of the component.

styleClass null String Style class of the component.

mode advanced | String Mode of the fileupload, can be simple or advanced.

uploadLabel Upload String Label of the upload button.

cancelLabel Cancel String Label of the cancel button.

invalidSizeMessage | null String Message to display when size limit exceeds.

invalidFileMessage | null String Message to display when file is not accepted.

fileLimitMessage null String Message to display when file limit exceeds.

dragDropSupport TRUE Boolean Whether or not to enable dragdrop from filesystem.

onstart null String Client side callback to execute when upload begins.

oncomplete null String Client side callback to execute when upload ends.

disabled FALSE Boolean Disables component when set true.

183

PrimeFaces User’s Guide

Getting started with FileUpload

First thing to do is to configure the fileupload filter which parses the multipart request. FileUpload
filter should map to Faces Servlet.

4)

<filter>
<filter-name>PrimeFaces FileUpload Filter</filter-name>
<filter-class>

org.primefaces.webapp.filter.FileUploadFilter

</filter-class>

</filter>

<filter-mapping>
<filter-name>PrimeFaces FileUpload Filter</filter-name>
<servlet-name>Faces Servlet</servlet-name>

</filter-mapping>

Simple File Upload

Simple file upload mode works in legacy mode with a file input whose value should be an
UploadedFile instance.

<h:form enctype="multipart/form-data">
<p:fileUpload value="#{fileBean.file}" mode="simple" />

<p:commandButton value="Submit" ajax="false"/>
</h:form>

J

import org.primefaces.model.UploadedFile;
public class FileBean {
private UploadedFile file;

//getter-setter
3

- J

Advanced File Upload

Default mode of fileupload is advanced that provides a richer UI. In this case, FileUploadListener is
the way to access the uploaded files, when a file is uploaded defined fileUploadListener is
processed with a FileUploadEvent as the parameter.

<<p :fileUpload fileUploadListener="#{fileBean.handleFileUpload}" />)

184

PrimeFaces User’s Guide

4)

public class FileBean {

public void handleFileUpload(FileUploadEvent event) {
UploadedFile file = event.getFile(Q);
//application code

N Y,

Multiple Uploads

Multiple uploads can be enabled using the multiple attribute. This way multiple files can be selected
and uploaded together.

<<p:ﬁleUpload fileUploadListener="#{fileBean.handleFileUpload}" multiple="true" />)

Auto Upload

Default behavior requires users to trigger the upload process, you can change this way by setting
auto to true. Auto uploads are triggered as soon as files are selected from the dialog.

<<p:ﬁleUpload fileUploadListener="#{fileBean.handleFileUpload}" auto="true" />)

Partial Page Update

After the fileUpload process completes you can use the PrimeFaces PPR to update any component
on the page. FileUpload is equipped with the update attribute for this purpose. Following example
displays a "File Uploaded" message using the growl component after file upload.

<p:fileUpload fileUploadlListener="#{fileBean.handleFileUpload}" update="msg" />

<p:growl id="msg" />

4)

public class FileBean {

public void handleFileUpload(FileUploadEvent event) {
//add facesmessage to display with growl
//application code

185

PrimeFaces User’s Guide

File Filters

Users can be restricted to only select the file types you’ve configured, example below demonstrates
how to accept images only.

<p:fileUpload fileUploadlListener="#{fileBean.handleFileUpload}"
allowTypes="/(\.I\/)(gifljpe?glpng)$/" description="Select Images"/>

Size Limit

Most of the time you might need to restrict the file upload size, this is as simple as setting the
sizeLimit configuration. Following fileUpload limits the size to 1000 bytes for each file.

<<p:ﬁleUpload fileUploadlListener="#{fileBean.handleFileUpload}" sizelLimit="1000" />>

Skinning FileUpload
FileUpload resides in a container element which s#yle and styleClass options apply.

Following is the list of structural style classes;

Class Applies
.ui-fileupload Main container element
fileupload-buttonbar Button bar.
fileinput-button Browse button.
.ui-fileupload start Upload button.
.ui-fileupload cancel Cancel button.
fileupload-content Content container.

As skinning style classes are global, see the main theming section for more information.
Browser Compatibility

Rich upload functionality like dragdrop from filesystem, multi uploads, progress tracking requires
browsers that implement HTMLS5 features so advanced mode might behave differently across
browsers and gracefully degrade for legacy browsers like IE. It is also suggested to offer simple
upload mode to the users of your application as a fallback.

Filter Configuration

FileUpload filter’s default settings can be configured with init parameters. Two configuration
options exist, threshold size and temporary file upload location.

186

PrimeFaces User’s Guide

Parameter Name Description

thresholdSize Maximum file size in bytes to keep uploaded files in memory. If a file
exceeds this limit, it’ll be temporarily written to disk.

uploadDirectory Disk repository path to keep temporary files that exceeds the threshold size.
By default it is System.getProperty("java.io.tmpdir")

An example configuration below defined thresholdSize to be 50kb and uploads to user’s temporary
folder.

~

<filter>
<filter-name>PrimeFaces FileUpload Filter</filter-name>
<filter-class>
org.primefaces.webapp.filter.FileUploadFilter
</filter-class>
<init-param>
<param-name>thresholdSize</param-name>
<param-value>51200</param-value>
</init-param>
<init-param>
<param-name>uploadDirectory</param-name>
<param-value>/Users/primefaces/temp</param-value>
</init-param>
</filter>

-)

Note that uploadDirectory is used internally, you should implement the logic to save the file
contents yourself in your backing bean.

Tips

 Multiple advanced uploaders in same form is not supported at the moment.

187

PrimeFaces User’s Guide

3.38 Focus

Focus is a utility component that makes it easy to manage the element focus on a JSF page.

Info
Tag focus
Component Class org.primefaces.component.focus.Focus
Component Type org.primefaces.component.Focus.FocusTag
Component Family org.primefaces.component
Renderer Type org.primefaces.component.FocusRenderer
Renderer Class org.primefaces.component.focus.FocusRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean
for null String Specifies the exact component to set focus
context null String The root component to start first input search.
minSeverity error String Minimum severity level to be used when finding
the first invalid component

Getting started with Focus

By default focus will find the first enabled and visible input component on page and apply focus.
Input component can be any element such as input, textarea and select.

<p:focus />

<p:inputText ... />
<h:inputText ... />
<h:selectOneMenu ... />

188

PrimeFaces User’s Guide

Following is a simple example;

\

<h:form>
<p:panel id="panel" header="Register">

<p:focus />
<p:messages />

<h:panelGrid columns="3">
<h:outputLabel for="firstname" value="Firstname: *" />
<h:inputText id="firstname" value="#{pprBean.firstname}"
required="true" label="Firstname" />
<p:message for="firstname" />

<h:outputlLabel for="surname" value="Surname: *" />
<h:inputText id="surname" value="#{pprBean.surname}"
required="true" label="Surname"/>
<p:message for="surname" />
</h:panelGrid>

<p:commandButton value="Submit" update="panel"
actionListener="#{pprBean.savePerson}" />
</p:panel>
</h:form>

When this page initially opens, input text with id "firstname" will receive focus as it is the first
input component.

Validation Aware

Another useful feature of focus is that when validations fail, first invalid component will receive a
focus. So in previous example if firstname field is valid but surname field has no input, a validation
error will be raised for surname, in this case focus will be set on surname field implicitly. Note that
for this feature to work on ajax requests, you need to update p:focus component as well.

Explicit Focus

Additionally, using for attribute focus can be set explicitly on an input component which is useful
when using a dialog.

<p:focus for="text"/>

<h:inputText id="text" value="{bean.value}" />

189

PrimeFaces User’s Guide

3.39 Galleria

Galleria is used to display a set of images.

Info

Tag galleria

Component Class org.primefaces.component.galleria.Galleria

Component Type org.primefaces.component.Galleria

Component Family org.primefaces.component

Renderer Type org.primefaces.component.GalleriaRenderer

Renderer Class org.primefaces.component.galleria.GalleriaRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

value null Collection Collection of data to display.

var null String Name of variable to access an item in collection.

style null String Inline style of the container element.

styleClass null String Style class of the container element.

190

PrimeFaces User’s Guide

Name Default Type Description
effect fade String Name of animation to use.
effectSpeed 700 Integer Duration of animation in milliseconds.
panelWidth 600 Integer Width of the viewport.
panelHeight 400 Integer Height of the viewport.
frameWidth 60 Integer Width of the frames.
frameHeight 40 Integer Height of the frames.
showFilmstrip TRUE Boolean Defines visibility of filmstrip.
showCaption FALSE Boolean Defines visibility of captions.
transitionInterval | 4000 Integer Defines interval of slideshow.
autoPlay TRUE Boolean Images are displayed in a slideshow in autoPlay.

Getting Started with Galleria

Images to displayed are defined as children of galleria;

<p:galleria effect="slide" effectDuration="1000"> \
<p:graphicImage value="/images/imagel.jpg" title="imagel" alt="imagel desc" />
<p:graphicImage value="/images/image2.jpg" title="imagel" alt=" image2 desc" />
<p:graphicImage value="/images/image3.jpg" title="imagel" alt=" image3 desc" />
<p:graphicImage value="/images/image4.jpg" title="imagel" alt=" image4 desc" />

</p:galleria> /

Galleria displays the details of an image using an overlay which is displayed by clicking the
information icon. Title of this popup is retrieved from the image fit/e attribute and description from
alt attribute so it is suggested to provide these attributes as well.

Dynamic Collection

Most of the time, you would need to display a dynamic set of images rather than defining each
image declaratively. For this you can use built-in data iteration feature.

<p:galleria value="#{galleriaBean.images}" var="image" >
<p:graphicImage value="#{image.path}"
title="#{image.title}" alt="#{image.description}" />
</p:galleria>

191

PrimeFaces User’s Guide

Effects

There are various effect options to be used in transitions; blind, bounce, clip, drop, explode, fade,
fold, highlight, puff, pulsate, scale, shake, size, slide and transfer.

By default animation takes 500 milliseconds, use effectSpeed option to tune this.

<p:galleria effect="slide" effectSpeed="1000">
//images
</p:galleria>

Skinning

Galleria resides in a main container element which style and styleClass options apply. As skinning
style classes are global, see the main theming section for more information. Following is the list of
structural style classes

Style Class Applies
.ui-galleria Container element for galleria.
.ui-galleria-panel-wrapper Container of panels.
.ui-galleria-panel Container of each image.
.ui-galleria-caption Caption element.

.ui-galleria-nav-prev, .ui-galleria-nav-next | Navigators of filmstrip.

.ui-galleria-filmstrip-wrapper Container of filmstrip.
.ui-galleria-filmstrip Filmstrip element.
.ui-galleria-frame Frame element in a filmstrip.
.ui-galleria-frame-content Content of a frame.
.ui-galleria-frame-image Thumbnail image.

192

PrimeFaces User’s Guide

3.40 GMap

GMap is a map component integrated with Google Maps API V3.

[—Wap | Satelite | Hybrid | Terrain J
= ~ \FRXE -

Info
Tag gmap
Component Class org.primefaces.component.gmap.GMap
Component Type org.primefaces.component.Gmap
Component Family org.primefaces.component
Renderer Type org.primefaces.component.GmapRenderer
Renderer Class org.primefaces.component.gmap.GmapRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component.
rendered TRUE Boolean Boolean value to specify the rendering of
the component, when set to false
component will not be rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean.
widgetVar null String Name of the client side widget.

193

PrimeFaces User’s Guide

Name Default Type Description

model null MapModel An org.primefaces.model.MapModel
Instance.

style null String Inline style of the map container.

styleClass null String Style class of the map container.

type null String Type of the map.

center null String Center point of the map.

zoom 8 Integer Defines the initial zoom level.

streetView FALSE Boolean Controls street view support.

disableDefaultUI FALSE Boolean Disables default UI controls

navigationControl TRUE Boolean Defines visibility of navigation control.

map TypeControl TRUE Boolean Defines visibility of map type control.

draggable TRUE Boolean Defines draggability of map.

disabledDoubleClickZoom FALSE Boolean Disables zooming on mouse double click.

onPointClick null String Javascript callback to execute when a point
on map is clicked.

fitBounds TRUE Boolean Defines if center and zoom should be

calculated automatically to contain all
markers on the map.

Getting started with GMap

First thing to do is placing V3 of the Google Maps API that the GMap is based on. Ideal location is

the head section of your page.

<script src="http://maps.google.com/maps/api/js?sensor=truelfalse"

type="text/javascript"></script>

As Google Maps api states, mandatory sensor parameter is used to specify if your application
requires a sensor like GPS locator. Four options are required to place a gmap on a page, these are

center, zoom, type and style.

<p:gmap center="41.381542, 2.122893" zoom="15" type="hybrid"
style="width:600px;height:400px" />

center: Center of the map in lat, Ing format
zoom: Zoom level of the map

194

PrimeFaces User’s Guide

type: Type of map, valid values are, "hybrid", "satellite", "hybrid" and "terrain".
style: Dimensions of the map.

MapModel
GMap is backed by an orgprimefaces.model.map.MapModel instance, PrimeFaces provides
org.primefaces.model. map.DefaultMapModel as the default implementation. API Docs of all GMap

related model classes are available at the end of GMap section and also at javadocs of PrimeFaces.

Markers

A marker is represented by org.primefaces.model. map.Marker:

<p:gmap center="41.381542, 2.122893" zoom="15" type="hybrid"
style="width:600px;height:400px" model="#{mapBean.model}"/>

4)

public class MapBean {
private MapModel model = new DefaultMapModel();

public MapBean() {
model .addOverlay(new Marker(new LatlLng(36.879466, 30.667648), "M1")),
//more overlays

}

public MapModel getModel() { return this.model; }

Satellite

oft Ihagery ©2010 , Cnes/Spot Image, Data SIO, NOAA, U.S. Navy, NGA, GEBCD),

Polylines

A polyline is represented by org.primefaces.model.map.Polyline.

<p:gmap center="41.381542, 2.122893" zoom="15" type="hybrid"
style="width:600px;height:400px" model="#{mapBean.model}"/>

195

PrimeFaces User’s Guide

4)

public class MapBean {

private MapModel model;

public MapBean() {
model = new DefaultMapModel();

Polyline polyline = new Polyline();

polyline.getPaths().add(new LatLng(36.879466, 30.667648));
polyline.getPaths().add(new LatLng(36.883707, 30.689216));
polyline.getPaths().add(new LatlLng(36.879703, 30.706707));
polyline.getPaths().add(new LatlLng(36.885233, 37.702323));

model .addOverlay(polyline);
}

public MapModel getModel() { return this.model; }
}

- J

Polygons

A polygon is represented by org.primefaces.model. map.Polygon.

<p:gmap center="41.381542, 2.122893" zoom="15" type="hybrid" \\
\\, style="width:600px;height:400px" model="#{mapBean.model}"/> <//
public class MapBean { <\\
private MapModel model;
public MapBean() {
model = new DefaultMapModel();
Polygon polygon = new Polygon();
polyline.getPaths().add(new LatLng(36.879466, 30.667648));
polyline.getPaths().add(new LatLng(36.883707, 30.689216));
polyline.getPaths().add(new LatlLng(36.879703, 30.706707));
model .addOverlay(polygon);
}
public MapModel getModel() { return this.model; }
C Y
Circles

A circle is represented by org.primefaces.model. map.Circle.

<p:gmap center="41.381542, 2.122893" zoom="15" type="hybrid"
style="width:600px;height:400px" model="#{mapBean.model}"/>

196

PrimeFaces User’s Guide

4)

public class MapBean {

private MapModel model;

public MapBean() {
model = new DefaultMapModel();

Circle circle = new Circle(new LatLng(36.879466, 30.667648), 500);

model .addOverlay(circle);
}

public MapModel getModel() { return this.model; }

}
(& /

Rectangles

A circle is represented by org.primefaces.model.map.Rectangle.

J

<p:gmap center="41.381542, 2.122893" zoom="15" type="hybrid"
style="width:600px;height:400px" model="#{mapBean.model}"/>

_
>

AN

public class MapBean {
private MapModel model;

public MapBean() {
model = new DefaultMapModel();
LatLng coordl = new LatlLng(36.879466, 30.667648);
LatLng coord2 = new LatlLng(36.883707, 30.689216);

Rectangle rectangle = new Rectangle(coordl, coord2);

model .addOverlay(circle);
ks

public MapModel getModel() { return this.model; }
}

Ajax Behavior Events

GMap provides many custom ajax behavior events for you to hook-in to various features.

Event Listener Parameter Fired
overlaySelect org.primefaces.event.map.OverlaySelectEvent When an overlay is selected.
stateChange org.primefaces.event.map.StateChangeEvent When map state changes.
pointSelect org.primefaces.event.map.PointSelectEvent When an empty point is selected.
markerDrag org.primefaces.event.map.MarkerDragEvent When a marker is dragged.

197

PrimeFaces User’s Guide

Following example displays a FacesMessage about the selected marker with growl component.

\

<h:form>
<p:growl id="growl" />

<p:gmap center="41.381542, 2.122893" zoom="15" type="hybrid"
style="width:600px;height:400px" model="#{mapBean.model}">
<p:ajax event="overlaySelect" listener="#{mapBean.onMarkerSelect}"
update="growl" />
</p:gmap>
</h:form>

(&)

public class MapBean {
private MapModel model;

public MapBean() {
model = new DefaultMapModel();
//add markers

ks

public MapModel getModel() {
return model

}

public void onMarkerSelect(OverlaySelectEvent event) {
Marker selectedMarker = (Marker) event.getOverlay();
//add facesmessage
}
}

- J

InfoWindow

A common use case is displaying an info window when a marker is selected. gmaplInfoWindow is
used to implement this special use case. Following example, displays an info window that contains
an image of the selected marker data.

4)

<h:form>

<p:gmap center="41.381542, 2.122893" zoom="15" type="hybrid"
style="width:600px;height:400px" model="#{mapBean.model}">

<p:ajax event="overlaySelect" listener="#{mapBean.onMarkerSelect}" />

<p : gmapInfoWindow>
<p:graphicImage value="/images/#{mapBean.marker.data.image}" />
<h:outputText value="#{mapBean.marker.data.title}" />
</p:gmapInfoWindow>
</p:gmap>

</h:form>
J

o

198

PrimeFaces User’s Guide

4)

public class MapBean {
private MapModel model;
private Marker marker;

public MapBean() {
model = new DefaultMapModel();
//add markers

ks

public MapModel getModel() { return model; }
public Marker getMarker() { return marker; }

public void onMarkerSelect(OverlaySelectEvent event) {
this.marker = (Marker) event.getOverlay();
ks
\} J

Data SIO, NOAA, U.S. Navy, NGA, GEBCO, DigitalGlobe, GeoEye - Terms of Use

Street View

StreeView is enabled simply by setting streetView option to true.

<p:gmap center="41.381542, 2.122893" zoom="15" type="hybrid"
style="width:600px;height:400px" streetView="true" />

199

PrimeFaces User’s Guide

Map Controls

Controls on map can be customized via attributes like navigationControl and map TypeControl.
Alternatively setting disableDefaultUI to true will remove all controls at once.

<p:gmap center="41.381542, 2.122893" zoom="15" type="terrain"
style="width:600px;height:400px"

Native Google Maps API

In case you need to access native google maps api with javascript, use provided getMap() method.

var gmap = yourWidgetVar.getMap();
//gmap is a google.maps.Map instance

Full map api is provided at;

http://code.google.com/apis/maps/documentation/javascript/reference.html

GMap API

org.primefaces.model. map. MapModel (org.primefaces.model. map.DefaultMapModel is the default
implementation)

Method Description
addOverlay(Overlay overlay) Adds an overlay to map
List<Marker> getMarkers() Returns the list of markers
List<Polyline> getPolylines() Returns the list of polylines
List<Polygon> getPolygons() Returns the list of polygons
List<Circle> getCircles() Returns the list of circles
List<Rectangle> getRectangles() Returns the list of rectangles.
Overlay findOverlay(String id) Finds an overlay by it’s unique id

200

http://code.google.com/apis/maps/documentation/javascript/reference.html
http://code.google.com/apis/maps/documentation/javascript/reference.html

org.primefaces.model. map.Overlay

PrimeFaces User’s Guide

Property Default Type Description
id null String Id of the overlay, generated and used internally
data null Object Data represented in marker
zindex null Integer Z-Index of the overlay

org.primefaces.model. map.Marker extends org.primefaces.model. map.Overlay

Property Default Type Description
title null String Text to display on rollover
lating null LatLng Location of the marker
icon null String Icon of the foreground
shadow null String Shadow image of the marker
cursor pointer String Cursor to display on rollover
draggable FALSE Boolean Defines if marker can be dragged
clickable TRUE Boolean Defines if marker can be dragged
flat FALSE Boolean If enabled, shadow image is not displayed
visible TRUE Boolean Defines visibility of the marker

org.primefaces.model.map.Polyline extends org.primefaces.model.map.Overlay

Property Default Type Description
paths null List List of coordinates
strokeColor null String Color of a line
strokeOpacity 1 Double Opacity of a line
strokeWeight 1 Integer Width of a line

org.primefaces.model. map.Polygon extends org.primefaces.model.map.Overlay

Property Default Type Description
paths null List List of coordinates
strokeColor null String Color of a line

201

PrimeFaces User’s Guide

Property Default Type Description
strokeOpacity 1 Double Opacity of a line
stroke Weight 1 Integer Weight of a line
fillColor null String Background color of the polygon
fillOpacity 1 Double Opacity of the polygon

org.primefaces.model. map.Circle extends org.primefaces.model.map.Overlay

Property Default Type Description
center null LatLng Center of the circle
radius null Double Radius of the circle.
strokeColor null String Stroke color of the circle.
strokeOpacity 1 Double Stroke opacity of circle.
strokeWeight 1 Integer Stroke weight of the circle.
fillColor null String Background color of the circle.
fillOpacity 1 Double Opacity of the circle.

org.primefaces.model.map.Rectangle extends org.primefaces.model.map.Overlay

Property Default Type Description
bounds null LatLngBounds | Boundaries of the rectangle.
strokeColor null String Stroke color of the rectangle.
strokeOpacity 1 Double Stroke opacity of rectangle.
strokeWeight 1 Integer Stroke weight of the rectangle.
fillColor null String Background color of the rectangle.
fillOpacity 1 Double Opacity of the rectangle.

org.primefaces.model. map.LatLng

Property Default Type Description
lat null double Latitude of the coordinate
Ing null double Longitude of the coordinate

202

org.primefaces.model. map.LatLngBounds

PrimeFaces User’s Guide

Property Default Type Description
center null LatLng Center coordinate of the boundary
northEast null LatLng NorthEast coordinate of the boundary
southWest null LatLng SouthWest coordinate of the boundary

GMap Event API

All classes in event api extends from javax.faces.event.FacesEvent.

org.primefaces.event.map.MarkerDragEvent

Property

Default

Type

Description

marker

null

Marker

Dragged marker instance

org.primefaces.event.map.OverlaySelectEvent

Property

Default

Type

Description

overlay

null

Overlay

Selected overlay instance

org.primefaces.event.map.PointSelectEvent

Property

Default

Type

Description

latL.ng

null

LatLng

Coordinates of the selected point

org.primefaces.event.map.StateChangeEvent

Property Default Type Description
bounds null LatLngBounds Boundaries of the map
zoomLevel 0 Integer Zoom level of the map

203

3.41 GMapIinfoWindow

PrimeFaces User’s Guide

GMaplInfoWindow is used with GMap component to open a window on map when an overlay is

selected.
Info
Tag gmapInfoWindow
Tag Class org.primefaces.component.gmap.GMapInfoWindowTag

Component Class

org.primefaces.component.gmap.GMapInfoWindow

Component Type org.primefaces.component.GMapInfoWindow
Component Family org.primefaces.component
Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

maxWidth null Integer Maximum width of the info window

Getting started with GMapIinfoWindow

See GMap section for more information about how gmapInfoWindow is used.

204

PrimeFaces User’s Guide

3.42 Graphiclmage

PrimeFaces Graphiclmage extends standard JSF graphic image component with the ability of
displaying binary data like an inputstream. Main use cases of GraphicImage is to make displaying
images stored in database or on-the-fly images easier. Legacy way to do this is to come up with a
Servlet that does the streaming, GraphicImage does all the hard work without the need of a Servlet.

Info

Tag graphicImage

Component Class org.primefaces.component.graphicimage.Graphiclmage

Component Type org.primefaces.component.Graphiclmage

Component Family org.primefaces.component

Renderer Type org.primefaces.component.GraphiclmageRenderer

Renderer Class org.primefaces.component.graphicimage.GraphiclmageRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

value null Object Binary data to stream or context relative path.

alt null String Alternate text for the image

url null String Alias to value attribute

width null String Width of the image

height null String Height of the image

title null String Title of the image

dir null String Direction of the text displayed

lang null String Language code

ismap FALSE Boolean Specifies to use a server-side image map

usemap null String Name of the client side map

style null String Style of the image

205

PrimeFaces User’s Guide

Name Default Type Description
styleClass null String Style class of the image
onclick null String onclick dom event handler
ondblclick null String ondblclick dom event handler
onkeydown null String onkeydown dom event handler
onkeypress null String onkeypress dom event handler
onkeyup null String onkeyup dom event handler
onmousedown null String onmousedown dom event handler
onmousemove null String onmousemove dom event handler
onmouseout null String onmouseout dom event handler
onmouseover null String onmouseover dom event handler
onmouseup null String onmouseup dom event handler
cache TRUE String Enables/Disables browser from caching the image
name null String Name of the image.
library null String Library name of the image.

Getting started with Graphiclmage

Graphiclmage requires an org.primefaces.model.StreamedContent content as it’s value for dynamic
images. StreamedContent is an interface and PrimeFaces provides a built-in implementation called
DefaultStreamedContent. Following examples loads an image from the classpath.

<<p:gr'aphicImage value="#{imageBean.image}" /> >

\

public class ImageBean {
private StreamedContent image;

public DynamicImageController() {
InputStream stream = this.getClass().getResourceAsStream("barcalogo.jpg");
image = new DefaultStreamedContent(stream, "image/jpeg");

}

public StreamedContent getImage() {
return this.image;

}
}
-)

DefaultStreamedContent gets an inputstream as the first parameter and mime type as the second.
206

PrimeFaces User’s Guide

In a real life application, you can create the inputstream after reading the image from the database.
For example java.sql.ResultsSet API has the getBinaryStream() method to read blob files stored in
database.

Displaying Charts with JFreeChart

StreamedContent is a powerful API that can display images created on-the-fly as well. Here’s an
example that generates a chart with JFreeChart and displays it with p:graphiclmage.

<:<p:graphicImage value="#{chartBean.chart}" /> :)

public class ChartBean {
private StreamedContent chart;

public BackingBean() {
try {
JFreeChart jfreechart = ChartFactory.createPieChart(
"Turkish Cities", createDataset(), true, true, false);
File chartFile = new File("dynamichart™);
ChartUtilities.saveChartAsPNG(chartFile, jfreechart, 375, 300);
chart = new DefaultStreamedContent(
new FileInputStream(chartFile), "image/png");
} catch (Exception e) {
e.printStackTrace();
ks
}

private PieDataset createDataset() {
DefaultPieDataset dataset = new DefaultPieDataset();
dataset.setValue("Istanbul", new Double(45.0));
dataset.setValue("Ankara", new Double(15.0));
dataset.setValue("Izmir", new Double(25.2));
dataset.setValue("Antalya", new Double(14.8));

return dataset;

}

public StreamedContent getChart() {
return this.chart;

}
}
(& /

Basically p:graphiclmage makes any JSF chart component using JFreechart obsolete and lets you to
avoid wrappers(e.g. JSF ChartCreator project which we’ve created in the past) to take full
advantage of JFreechart APIL.

207

PrimeFaces User’s Guide

Turkish Cities

(Antalya = 14.8 | —
———{Istanbul = 45
[1lzmir = 25.2}—&]
|Ankara = 15| —

Istanbul = 45 @ Ankara = 15 ¢ lzmir = 25.2
Antalya = 14.8

Displaying a Barcode

Similar to the chart example, a barcode can be generated as well. This sample uses barbecue project
for the barcode APIL

<p:graphicImage value="#{backingBean.barcode}" />

\}

J

public class BarcodeBean {

private StreamedContent barcode;

public BackingBean() {
try {
File barcodeFile = new File("dynamicbarcode");
BarcodeImageHandler.saveJPEG(
BarcodeFactory.createCodel28("PRIMEFACES"), barcodeFile);
barcode = new DefaultStreamedContent(
new FileInputStream(barcodeFile), "image/jpeg");
} catch (Exception e) {
e.printStackTrace(Q);
ks
}

public BarcodeBean getBarcode() {
return this.barcode;

}

208

PrimeFaces User’s Guide

Displaying Regular Images

As Graphiclmage extends standard graphiclmage component, it can also display regular non
dynamic images just like standard graphiclmage component using name and optional library.

<<p:gr'aphicImage name="barcalogo. jpg" library="yourapp" />)

How It Works
Dynamic image display works as follows;

« Dynamic image puts its value expression string to the http session with a unique key.

« Unique session key is appended to the image url that points to JSF resource handler.

« Custom PrimeFaces ResourceHandler get the key from the url, retrieves the expression string like
#{bean.streamedContentValue}, evaluates it to get the instance of StreamedContent from bean
and streams contents to client.

As a result there will be 2 requests to display an image, first browser will make a request to load the
page and then another one to the dynamic image url that points to JSF resource handler. Please note
that you cannot use viewscope beans as they are not available in resource loading request.

Passing Parameters and Data Iteration

You can pass request parameters to the graphiclmage via f:param tags, as a result the actual request

rendering the image can have access to these values. This is extremely handy to display dynamic
images if your image is in a data iteration component like datatable or ui:repeat.

209

PrimeFaces User’s Guide

3.43 Growl

Growl is based on the Mac’s growl notification widget and used to display FacesMessages in an
overlay.

m Name: Validation Error: Value is
required.

Name: Validation Error: Value is

required.
Info

Tag growl

Component Class org.primefaces.component.growl.Growl

Component Type org.primefaces.component.Growl

Component Family org.primefaces.component

Renderer Type org.primefaces.component.GrowlRenderer

Renderer Class org.primefaces.component.growl.GrowlRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

sticky FALSE Boolean Specifies if the message should stay instead of hidden
automatically.

showSummary TRUE Boolean Specifies if the summary of message should be
displayed.

showDetail FALSE Boolean Specifies if the detail of message should be displayed.

globalOnly FALSE Boolean When true, only facesmessages without clientids are
displayed.

life 6000 Integer Duration in milliseconds to display non-sticky
messages.

autoUpdate FALSE Boolean Specifies auto update mode.

210

PrimeFaces User’s Guide

Name Default Type Description
redisplay TRUE Boolean Defines if already rendered messaged should be
displayed.
for null String Name of associated key, takes precedence when used
with globalOnly.
escape TRUE Boolean Defines whether html would be escaped or not.
severity null String Comma separated list of severities to display only.

Getting Started with Growl

Growl usage is similar to standard h:messages component. Simply place growl anywhere on your
page, since messages are displayed as an overlay, the location of growl in JSF page does not matter.

<<p:growl />)

Lifetime of messages

By default each message will be displayed for 6000 ms and then hidden. A message can be made
sticky meaning it’ll never be hidden automatically.

<<p:growl sticky="true" /> >

If growl is not working in sticky mode, it’s also possible to tune the duration of displaying
messages. Following growl will display the messages for 5 seconds and then fade-out.

<<p:gr'owl life="5000" />)

Growl with Ajax Updates

If you need to display messages with growl after an ajax request you just need to update it. Note
that if you enable autoUpdate, growl will be updated automatically with each ajax request anyway.

<p:growl id="messages"/>

<p:commandButton value="Submit" update="messages" />

211

PrimeFaces User’s Guide

Positioning

Growl is positioned at top right corner by default, position can be controlled with a CSS selector
called ui-growl. With the below setting growl will be located at top left corner.

.ui-growl {
left:20px;

Targetable Messages

There may be times where you need to target one or more messages to a specific message
component, for example suppose you have growl and messages on same page and you need to
display some messages on growl and some on messages. Use for attribute to associate messages
with specific components.

<p:messages for="somekey" />
<p:growl for="anotherkey" />

-

J

FacesContext context = FacesContext.getCurrentInstance();

context.addMessage("somekey", facesMessagel);
context.addMessage("somekey", facesMessage?);

context.addMessage("anotherkey", facesMessage3);

- J

In sample above, messages will display first and second message and growl will only display the
3rd message.

Severity Levels

Using severity attribute, you can define which severities can be displayed by the component. For
instance, you can configure growl to only display infos and warnings.

<:<p:growl severity="info,warn" /> :)

Escaping

Growl escapes html content in messages, in case you need to display html via growl set escape
option to true.

<<p:growl escape="true" /> >

212

Skinning

PrimeFaces User’s Guide

Following is the list of structural style classes;

Style Class

Applies

.ui-growl

Main container element of growl

.ui-growl-item-container

Container of messages

.ui-growl-item

Container of a message

.ui-growl-message

Text message container

.ui-growl-title

Summary of the message

.ui-growl-message p

Detail of the message

.ui-growl-image

Severity icon

.ui-growl-image-info

Info severity icon

.ui-growl-image-warn

Warning severity icon

.ui-growl-image-error

Error severity icon

.ui-growl-image-fatal

Fatal severity icon

As skinning style classes are global, see the main theming section for more information.

213

PrimeFaces User’s Guide

3.44 HotKey

HotKey is a generic key binding component that can bind any formation of keys to javascript event
handlers or ajax calls.

Info

Tag hotkey

Component Class org.primefaces.component.hotkey.HotKey

Component Type org.primefaces.component.HotKey

Component Family org.primefaces.component

Renderer Type org.primefaces.component.HotKeyRenderer

Renderer Class org.primefaces.component.hotkey.HotKeyRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

bind null String The Key binding.

handler null String Javascript event handler to be executed when the
key binding is pressed.

action null MethodExpr A method expression that’d be processed in the
partial request caused by uiajax.

actionListener | null MethodExpr An actionlistener that’d be processed in the partial
request caused by uiajax.

immediate FALSE Boolean Boolean value that determines the phaseld, when
true actions are processed at apply request values,
when false at invoke application phase.

async FALSE Boolean When set to true, ajax requests are not queued.

process null String Component id(s) to process partially instead of
whole view.

update null String Client side id of the component(s) to be updated
after async partial submit request.

214

PrimeFaces User’s Guide

Name Default Type Description

onstart null String Javascript handler to execute before ajax request is
begins.

oncomplete null String Javascript handler to execute when ajax request is
completed.

onsuccess null String Javascript handler to execute when ajax request
succeeds.

onerror null String Javascript handler to execute when ajax request
fails.

global TRUE Boolean Global ajax requests are listened by ajaxStatus
component, setting global to false will not trigger
ajaxStatus.

partialSubmit FALSE Boolean Enables serialization of values belonging to the
partially processed components only.

Getting Started with HotKey

HotKey is used in two ways, either on client side with the event handler or with ajax support.
Simplest example would be;

<<p:hotkey bind="a" handler="alert(‘Pressed a’);" />)

When this hotkey is on page, pressing the a key will alert the ‘Pressed key a’ text.
Key combinations

Most of the time you’d need key combinations rather than a single key.

<p:hotkey bind="ctrl+s" handler="alert(‘Pressed ctrl+s’);" />
<p:hotkey bind="ctrl+shift+s" handler="alert(‘Pressed ctrl+shift+s’)" />

Integration

Here’s an example demonstrating how to integrate hotkeys with a client side api. Using left and
right keys will switch the images displayed via the p:imageSwitch component.

<p:hotkey bind="1left" handler="switcher.previous(Q);" />
<p:hotkey bind="right" handler="switcher.next();" />

<p:imageSwitch widgetVar="switcher">
//content
</p:imageSwitch>

215

Ajax Support

PrimeFaces User’s Guide

Ajax is a built-in feature of hotKeys meaning you can do ajax calls with key combinations.

Following form can be submitted with the ctr/+shift+s combination.

-

<h:form>
<p:hotkey bind="ctrl+shift+s" update="display" />
<h:panelGrid columns="2">
<h:outputLabel for="name" value="Name:" />
<h:inputText id="name" value="#{bean.name}" />

</h:panelGrid>

<h:outputText id="dsplay" value="Hello: #{bean.firstname}" />

</h:form>

_

\

Note that hotkey will not be triggered if there is a focused input on page.

216

PrimeFaces User’s Guide

3.45 IdleMonitor

IdleMonitor watches user actions on a page and notify callbacks in case they go idle or active again.

Info

Tag idleMonitor

Component Class org.primefaces.component.idlemonitor.IdleMonitor

Component Type org.primefaces.component.IdleMonitor

Component Family org.primefaces.component

Renderer Type org.primefaces.component.IdleMonitorRenderer

Renderer Class org.primefaces.component.idlemonitor.IdleMonitor

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

timeout 300000 Integer Time to wait in milliseconds until deciding if the user
is idle. Default is 5 minutes.

onidle null String Client side callback to execute when user goes idle.

onactive null String Client side callback to execute when user goes idle.

widgetVar null String Name of the client side widget.

Getting Started with IdleMonitor

To begin with, you can hook-in to client side events that are called when a user goes idle or
becomes active again. Example below toggles visibility of a dialog to respond these events.

<p:idleMonitor onidle="idleDialog.show();" onactive="idleDialog.hide();"/>

<p:dialog header="What's happening?" widgetVar="idleDialog" modal="true">
<h:outputText value="Dude, are you there?" />
</p:dialog>

217

PrimeFaces User’s Guide

Controlling Timeout

By default, idleMonitor waits for 5 minutes (300000 ms) until triggering the onidle event. You can
customize this duration with the timeout attribute.

Ajax Behavior Events

IdleMonitor provides two ajax behavior events which are idle and active that are fired according to
user status changes. Example below displays messages for each event;

\

<p:idleMonitor timeout="5000" update="messages">
<p:ajax event="idle" listener="#{bean.idlelListener}" update="msg" />
<p:ajax event="active" listener="#{bean.activelistener}" update="msg" />
</p:idleMonitor>

<p:growl id="msg” />

-)

public class Bean {

public void idlelistener() {
//Add facesmessage

}

public void idle() {
//Add facesmessage

}

218

PrimeFaces User’s Guide

3.46 ImageCompare

ImageCompare provides a rich user interface to compare two images.

TIME 00:10.08

000 1 000000

rmph

Info
Tag imageCompare
Component Class org.primefaces.component.imagecompare.ImageCompare
Component Type org.primefaces.component.ImageCompare
Component Family org.primefaces.component
Renderer Type org.primefaces.component.ImageCompareRenderer
Renderer Class org.primefaces.component.imagecompare.ImageCompareRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

219

PrimeFaces User’s Guide

Name Default Type Description
widgetVar null String Name of the client side widget.
leftlmage null String Source of the image placed on the left side
rightlmage null String Source of the image placed on the right side
width null String Width of the images
height null String Height of the images
style null String Inline style of the container element
styleClass null String Style class of the container element

Getting started with ImageCompare

ImageCompare is created with two images with same height and width. It is required to set width
and height of the images as well.

<p:imageCompare leftImage="xbox.png" rightImage="ps3.png"

width="438" height="246"/>

Skinning

Both images are placed inside a div container element, style and styleClass attributes apply to this

element.

220

PrimeFaces User’s Guide

3.47 ImageCropper

ImageCropper allows cropping a certain region of an image. A new image is created containing the
cropped area and assigned to a Croppedlmage instanced on the server side.

Info

Tag imageCropper

Component Class org.primefaces.component. imagecropper.ImageCropper

Component Type org.primefaces.component.ImageCropper

Component Family org.primefaces.component

Renderer Type org.primefaces.component.ImageCropperRenderer

Renderer Class org.primefaces.component.imagecropper.ImageCropperRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component than can be either an
EL expression of a literal text

converter null Converter/ An el expression or a literal text that defines a

String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance.
In case it’s a static text, it must refer to a
converter id

221

PrimeFaces User’s Guide

Name Default Type Description
immediate FALSE Boolean When set true, process validations logic is
executed at apply request values phase for this
component.
required FALSE Boolean Marks component as required
validator null MethodExpr | A method binding expression that refers to a

method validationg the input

valueChangeListener null ValueChange | A method binding expression that refers to a
Listener method for handling a valuchangeevent

requiredMessage null String Message to be displayed when required field

validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

widgetVar null String Name of the client side widget.

image null String Context relative path to the image.

alt null String Alternate text of the image.

aspectRatio null Double Aspect ratio of the cropper area.

minSize null String Minimum size of the cropper area.

maxSize null String Maximum size of the cropper area.

backgroundColor null String Background color of the container.

backgroundOpacity 0,6 Double Background opacity of the container

initialCoords null String Initial coordinates of the cropper area.

Getting started with the ImageCropper

ImageCropper is an input component and image to be cropped is provided via the image attribute.
The cropped area of the original image is used to create a new image, this new image can be
accessed on the backing bean by setting the value attribute of the image cropper. Assuming the
image is at %o WEBAPP_ROOT%/campnou.jpg

<<p:imageCropper‘ value="#{cropper.croppedImage}" image="/campnou.jpg" />)

public class Cropper {
private CroppedImage croppedImage;

//getter and setter

222

PrimeFaces User’s Guide

org.primefaces.model. CroppedImage belongs a PrimeFaces API and contains handy information
about the crop process. Following table describes Croppedlmage properties.

Property Type Description
originalFileName String Name of the original file that’s cropped
bytes byte[] Contents of the cropped area as a byte array
left int Left coordinate
right int Right coordinate
width int Width of the cropped image
height int Height of the cropped image

External Images

ImageCropper has the ability to crop external images as well.

<p:imageCropper value="#{cropper.croppedImage}"
image="http://primefaces.prime.com.tr/en/images/schema.png">
</p:imageCropper>

Context Relative Path
For local images, ImageCropper always requires the image path to be context relative. So to

accomplish this simply just add slash ("/path/to/image.png") and imagecropper will recognize it at
%WEBAPP_ ROOT%/path/to/image.png. Action url relative local images are not supported.

Initial Coordinates

By default, user action is necessary to initiate the cropper area on an image, you can specify an
initial area to display on page load using initial Coords option in x,y,w,h format.

<p:imageCropper value="#{cropper.croppedImage}" image="/campnou.jpg'
initialCoords="225,75,300,125"/>

Boundaries

minSize and maxSize attributes are control to limit the size of the area to crop.

<p:imageCropper value="#{cropper.croppedImage}" image="/campnou.jpg'
minSize="50,100" maxSize="150,200"/>

223

http://primefaces.prime.com.tr/en/images/schema.png
http://primefaces.prime.com.tr/en/images/schema.png

PrimeFaces User’s Guide

Saving Images

Below is an example to save the cropped image to file system.

<p:imageCropper value="#{cropper.croppedImage}" image="/campnou.jpg" />

<p:commandButton value="Crop" actionlListener="#{myBean.crop}" />

public class Cropper { \\

private CroppedImage croppedImage;
//getter and setter

public String crop() {
ServletContext servletContext = (ServletContext)
FacesContext.getCurrentInstance().getExternalContext().getContext();
String newFileName = servletContext.getRealPath("") + File.separator +

"ui" + File.separator + "barca" + File.separator+ croppedImage.getOriginalFileName()
+ "cropped.jpg";

FileImageOutputStream imageOutput;
try {
imageOutput = new FileImageOutputStream(new File(newFileName));

imageOutput.write(croppedImage.getBytes(), O,
croppedImage.getBytes().length);

imageOutput.close();
} catch (Exception e) {

e.printStackTrace(Q);
ks

return null;

224

PrimeFaces User’s Guide

3.48 ImageSwitch

Imageswitch component is a simple image gallery component.

Previous Next

Info
Tag imageSwitch
Component Class org.primefaces.component.imageswitch.ImageSwitch
Component Type org.primefaces.component.ImageSwitch

Component Family | org.primefaces.component

Renderer Type org.primefaces.component.ImageSwitchRenderer
Renderer Class org.primefaces.component.imageswitch.ImageSwitchRenderer
Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side

UIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

effect null String Name of the effect for transition.

speed 500 Integer Speed of the effect in milliseconds.
slideshowSpeed 3000 Integer Slideshow speed in milliseconds.
slideshowAuto TRUE Boolean Starts slideshow automatically on page load.
style null String Style of the main container.

styleClass null String Style class of the main container.

225

PrimeFaces User’s Guide

Getting Started with ImageSwitch

ImageSwitch component needs a set of images to display. Provide the image collection as a set of
children components.

~

<p:imageSwitch effect="FlyIn" widgetVar="1imageswitch">
<p:graphicImage value="/images/naturel.jpg" />
<p:graphicImage value="/images/nature2.jpg" />
<p:graphicImage value="/images/nature3.jpg" />
<p:graphicImage value="/images/nature4.jpg" />
</p:imageSwitch>

Most of the time, images could be dynamic, ui:repeat is supported to implement this case.

<p:imageSwitch widgetVar="imageswitch">
<ui:repeat value="#{bean.images}" var="image">
<p:graphicImage value="#{image}" />
</ui:repeat>
</p:imageSwitch>

Slideshow or Manual

ImageSwitch is in slideShow mode by default, if you’d like manual transitions disable slideshow
and use client side api to create controls.

<p:imageSwitch effect="FlyIn" widgetVar="imageswitch">
//images
</p:imageSwitch>

Previous
Next

Client Side API
Method Description
void previous() Switches to previous image.
void next() Switches to next image.
void startSlideshow() Starts slideshow mode.
void stopSlideshow() Stops slideshow mode.
voud pauseSlideshow(); Pauses slideshow mode.
void toggleSlideShow() Toggles slideshow mode.

226

PrimeFaces User’s Guide

Effect Speed

The speed is considered in terms of milliseconds and specified via the speed attribute.

<p:imageSwitch effect="FlipOut" speed="150" widgetVar="imageswitch" >
//set of images
</p:imageSwitch>

List of Effects

ImageSwitch supports a wide range of transition effects. Following is the full list, note that values
are case sensitive.

+ blindX
 blindY

* blindZ

» cover

« curtainX
« curtainY
« fade

» fadeZoom
» growX

e growY

* none

« scrollUp
« scrollDown
« scrollLeft
« scrollRight
« scrollVert
« shuffle

« slideX

+ slideY

* toss

« turnUp

» turnDown
« turnLeft

« turnRight
 uncover

« wipe

+ Zzoom

227

PrimeFaces User’s Guide

3.49 Inplace
Inplace provides easy inplace editing and inline content display. Inplace consists of two members,
display element is the initial clickable label and inline element is the hidden content that is

displayed when display element is toggled.

Basic Input: Edit Me

Basic Input: Edit Me

Info
Tag inplace
Component Class org.primefaces.component.inplace.Inplace
Component Type org.primefaces.component.Inplace

Component Family | org.primefaces.component

Renderer Type org.primefaces.component.InplaceRenderer
Renderer Class org.primefaces.component.inplace.InplaceRenderer
Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side

UIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

label null String Label to be shown in display mode.

emptyLabel null String Label to be shown in display mode when value is
empty.

effect fade String Effect to be used when toggling.

effectSpeed normal String Speed of the effect.

disabled FALSE Boolean Prevents hidden content to be shown.

style null String Inline style of the main container element.

styleClass null String Style class of the main container element.

editor FALSE Boolean Specifies the editor mode.

228

PrimeFaces User’s Guide

Name Default Type Description
saveLabel Save String Tooltip text of save buttin in editor mode.
cancelLabel Cancel String Tooltip text of cancel buttin in editor mode
event click String Name of the client side event to display inline
content.
toggleable TRUE Boolean Defines if inplace is toggleable or not.

Getting Started with Inplace

The inline component needs to be a child of inplace.

<p:inplace>
<h:inputText value="Edit me" />
</p:inplace>

Custom Labels

By default inplace displays it’s first child’s value as the label, you can customize it via the label
attribute.

<h:outputText value="Select One:" />

<p:inplace label="Cities">
<h:selectOneMenu>
<f:selectItem itemLabel="Istanbul" itemValue="Istanbul" />
<f:selectItem itemLabel="Ankara" itemValue="Ankara" />
</h:selectOneMenu>
</p:inplace>

Select One: Cities
Select One: | Istanbul ?]

Effects

Default effect is fade and other possible effect is slide, also effect speed can be tuned with values
slow, normal and fast.

<p:inplace label="Show Image" effect="slide" effectSpeed="fast">
<p:graphicImage value="/images/naturel.jpg" />
</p:inplace>

229

PrimeFaces User’s Guide

Ajax Behavior Events

Inplace editing is enabled via edifor option.

public class InplaceBean {
private String text;

//getter-setter

<p:inplace editor="true">
<h:inputText value="#{inplaceBean.text}" />
</p:inplace>

PrimeFaces v | %

save and cancel are two provided ajax behaviors events you can use to hook-in the editing process.

4)

public class InplaceBean {

private String text;

public void handleSave() {
//add faces message with update text value

}

//getter-setter

N Y,

~

<p:inplace editor="true">
<p:ajax event="save" listener="#{inplaceBean.handleSave}" update="msgs" />
<h:inputText value="#{inplaceBean.text}" />

</p:inplace>

<p:growl id="msgs" />

Client Side API

Widget: PrimeFaces.widget.Inplace

Method Params Return Type Description
show() - void Shows content and hides display element.
hide() - void Shows display element and hides content.

230

PrimeFaces User’s Guide

Method Params Return Type Description
toggle() - void Toggles visibility of between content and display
element.
save() - void Triggers an ajax request to process inplace input.
cancel() - void Triggers an ajax request to revert inplace input.
Skinning

Inplace resides in a main container element which style and styleClass options apply.

Following is the list of structural style classes;

Style Class

Applies

.ui-inplace

Main container element.

.ui-inplace-disabled

Main container element when disabled.

.ui-inplace-display

Display element.

.ui-inplace-content

Inline content.

.ui-inplace-editor

Editor controls container.

.ui-inplace-save

Save button.

.ui-inplace-cancel

Cancel button.

As skinning style classes are global, see the main theming section for more information.

231

PrimeFaces User’s Guide
3.50 InputMask

InputMask forces an input to fit in a defined mask template.

Date: 11/12/2010
Phone: (523) 453-4253

Phone with Ext: | (234) 532-4524 x35254

taxlid: 52-3434234
SSN: 234-52-3452
Product Key: -
Info
Tag inputMask
Component Class org.primefaces.component.inputmask.InputMask
Component Type org.primefaces.component.InputMask
Component Family org.primefaces.component
Renderer Type org.primefaces.component.InputMaskRenderer
Renderer Class org.primefaces.component.inputmask.InputMaskRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean
mask null String Mask template
placeHolder null String PlaceHolder in mask template.
value null Object Value of the component than can be either an EL
expression of a literal text

232

PrimeFaces User’s Guide

Name Default Type Description
converter null Converter/ An el expression or a literal text that defines a
String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate FALSE | Boolean When set true, process validations logic is executed at
apply request values phase for this component.

required FALSE | Boolean Marks component as required

validator null MethodExpr | A method binding expression that refers to a method
validationg the input

valueChangeListener | null MethodExpr | A method binding expression that refers to a method
for handling a valuchangeevent

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

widgetVar null String Name of the client side widget.

accesskey null String Access key that when pressed transfers focus to the
input element.

alt null String Alternate textual description of the input field.

autocomplete null String Controls browser autocomplete behavior.

dir null String Direction indication for text that does not inherit
directionality. Valid values are LTR and RTL.

disabled FALSE | Boolean Disables input field

label null String A localized user presentable name.

lang null String Code describing the language used in the generated
markup for this component.

maxlength null Integer Maximum number of characters that may be entered in
this field.

onblur null String Client side callback to execute when input element
loses focus.

onchange null String Client side callback to execute when input element
loses focus and its value has been modified since
gaining focus.

onclick null String Client side callback to execute when input element is
clicked.

ondblclick null String Client side callback to execute when input element is

double clicked.

233

PrimeFaces User’s Guide

Name Default Type Description

onfocus null String Client side callback to execute when input element
receives focus.

onkeydown null String Client side callback to execute when a key is pressed
down over input element.

onkeypress null String Client side callback to execute when a key is pressed
and released over input element.

onkeyup null String Client side callback to execute when a key is released
over input element.

onmousedown null String Client side callback to execute when a pointer button
is pressed down over input element

onmousemove null String Client side callback to execute when a pointer button
is moved within input element.

onmouseout null String Client side callback to execute when a pointer button
is moved away from input element.

onmouseover null String Client side callback to execute when a pointer button
is moved onto input element.

onmouseup null String Client side callback to execute when a pointer button
is released over input element.

onselect null String Client side callback to execute when text within input
element is selected by user.

readonly FALSE [Boolean Flag indicating that this component will prevent
changes by the user.

size null Integer Number of characters used to determine the width of
the input element.

style null String Inline style of the input element.

styleClass null String Style class of the input element.

tabindex null Integer Position of the input element in the tabbing order.
title null String Advisory tooltip informaton.

Getting Started with InputMask

InputMask below enforces input to be in 99/99/9999 date format.

<<p:inputMask value="#{bean.field}" mask="99/99/9999" />)

Mask Samples

Here are more samples based on different masks;

234

PrimeFaces User’s Guide

\

<h:outputText value="Phone: " />
<p:inputMask value="#{bean.phone}" mask="(999) 999-9999"/>

<h:outputText value="Phone with Ext: " />
<p:inputMask value="#{bean.phoneExt}" mask="(999) 999-9999? x99999"/>

<h:outputText value="SSN: " />
<p:inputMask value="#{bean.ssn}" mask="999-99-9999"/>

<h:outputText value="Product Key: " />
<p:inputMask value="#{bean.productKey}" mask="a*-999-a999"/>

(&)

Skinning

style and styleClass options apply to the displayed input element. As skinning style classes are
global, see the main theming section for more information.

235

PrimeFaces User’s Guide

3.51 InputText

InputText is an extension to standard inputText with skinning capabilities.

PrimeFaces|
Info
Tag inputText
Component Class org.primefaces.component.inputtext.InputText
Component Type org.primefaces.component.InputText
Component Family org.primefaces.component
Renderer Type org.primefaces.component.InputTextRenderer
Renderer Class org.primefaces.component.inputtext.InputTextRender
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean | Boolean value to specify the rendering of the component,
when set to false component will not be rendered.
binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean
value null Object Value of the component than can be either an EL
expression of a literal text
converter null Convert | An el expression or a literal text that defines a converter
er/String | for the component. When it’s an EL expression, it’s
resolved to a converter instance. In case it’s a static text, it
must refer to a converter id
immediate FALSE | Boolean | When set true, process validations logic is executed at
apply request values phase for this component.
required FALSE Boolean | Marks component as required
validator null Method | A method binding expression that refers to a method
Expr validationg the input
valueChangeListener | null Method | A method binding expression that refers to a method for
Expr handling a valuchangeevent
requiredMessage null String Message to be displayed when required field validation
fails.

236

PrimeFaces User’s Guide

Name Default Type Description
converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.
widgetVar null String Name of the client side widget.
accesskey null String Access key that when pressed transfers focus to the input

element.

alt null String Alternate textual description of the input field.
autocomplete null String Controls browser autocomplete behavior.
dir null String Direction indication for text that does not inherit

directionality. Valid values are LTR and RTL.

disabled FALSE | Boolean | Disables input field
label null String A localized user presentable name.
lang null String Code describing the language used in the generated

markup for this component.

maxlength null Integer | Maximum number of characters that may be entered in
this field.

onblur null String Client side callback to execute when input element loses
focus.

onchange null String Client side callback to execute when input element loses

focus and its value has been modified since gaining focus.

onclick null String Client side callback to execute when input element is
clicked.

ondblclick null String Client side callback to execute when input element is
double clicked.

onfocus null String Client side callback to execute when input element

receives focus.

onkeydown null String Client side callback to execute when a key is pressed
down over input element.

onkeypress null String Client side callback to execute when a key is pressed and
released over input element.

onkeyup null String Client side callback to execute when a key is released over
input element.

onmousedown null String Client side callback to execute when a pointer button is
pressed down over input element

onmousemove null String Client side callback to execute when a pointer button is
moved within input element.

onmouseout null String Client side callback to execute when a pointer button is
moved away from input element.

237

PrimeFaces User’s Guide

Name Default Type Description

onmouseover null String Client side callback to execute when a pointer button is
moved onto input element.

onmouseup null String Client side callback to execute when a pointer button is
released over input element.

onselect null String Client side callback to execute when text within input
element is selected by user.

readonly FALSE | Boolean | Flag indicating that this component will prevent changes
by the user.

size null Integer | Number of characters used to determine the width of the
input element.

style null String Inline style of the input element.

styleClass null String Style class of the input element.

tabindex null Integer | Position of the input element in the tabbing order.

title null String Advisory tooltip informaton.

type text String Input field type.

Getting Started with InputText

InputText usage is same as standard inputText;

<<p :inputText value="#{bean.propertyName}" />

}
(&

public class Bean {

//getter and setter

private String propertyName;

Skinning

style and styleClass options apply to the input element. As skinning style classes are global, see the

main theming section for more information.

238

PrimeFaces User’s Guide

3.52 InputTextarea

InputTextarea is an extension to standard inputTextarea with autoComplete, autoResize, remaining
characters counter and theming features.

PrimeFaces

Info

Tag inputTextarea

Component Class org.primefaces.component.inputtextarea.InputTextarea

Component Type org.primefaces.component.InputTextarea

Component Family org.primefaces.component

Renderer Type org.primefaces.component.InputTextareaRenderer

Renderer Class org.primefaces.component.inputtextarea.InputTextareaRender

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

value null Object Value of the component than can be either an EL
expression of a literal text

converter null Converter/ An el expression or a literal text that defines a

String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate FALSE | Boolean When set true, process validations logic is executed at
apply request values phase for this component.

239

PrimeFaces User’s Guide

Name Default Type Description

required FALSE | Boolean Marks component as required

validator null MethodExpr | A method binding expression that refers to a method
validationg the input

valueChangeListener | null MethodExpr | A method binding expression that refers to a method
for handling a valuchangeevent

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

widgetVar null String Name of the client side widget.

accesskey null String Access key that when pressed transfers focus to the
input element.

alt null String Alternate textual description of the input field.

autocomplete null String Controls browser autocomplete behavior.

dir null String Direction indication for text that does not inherit
directionality. Valid values are LTR and RTL.

disabled FALSE | Boolean Disables input field

label null String A localized user presentable name.

lang null String Code describing the language used in the generated
markup for this component.

onblur null String Client side callback to execute when input element
loses focus.

onchange null String Client side callback to execute when input element
loses focus and its value has been modified since
gaining focus.

onclick null String Client side callback to execute when input element is
clicked.

ondblclick null String Client side callback to execute when input element is
double clicked.

onfocus null String Client side callback to execute when input element
receives focus.

onkeydown null String Client side callback to execute when a key is pressed
down over input element.

onkeypress null String Client side callback to execute when a key is pressed
and released over input element.

onkeyup null String Client side callback to execute when a key is released

over input element.

240

PrimeFaces User’s Guide

Name Default Type Description

onmousedown null String Client side callback to execute when a pointer button
is pressed down over input element

onmousemove null String Client side callback to execute when a pointer button
is moved within input element.

onmouseout null String Client side callback to execute when a pointer button
is moved away from input element.

onmouseover null String Client side callback to execute when a pointer button
is moved onto input element.

onmouseup null String Client side callback to execute when a pointer button
is released over input element.

onselect null String Client side callback to execute when text within input
element is selected by user.

readonly FALSE | Boolean Flag indicating that this component will prevent
changes by the user.

size null Integer Number of characters used to determine the width of
the input element.

style null String Inline style of the input element.

styleClass null String Style class of the input element.

tabindex null Integer Position of the input element in the tabbing order.

title null String Advisory tooltip informaton.

autoResize TRUE Boolean Specifies auto growing when being typed.

maxlength null Integer Maximum number of characters that may be entered in
this field.

counter null String Id of the output component to display remaining chars.

counterTemplate {0} String Template text to display in counter.

completeMethod null MethodExpr | Method to provide suggestions.

miQueryLength 3 Integer Number of characters to be typed to run a query.

queryDelay 700 Integer Delay in ms before sending each query.

scrollHeight null Integer Height of the viewport for autocomplete suggestions.

Getting Started with InputTextarea

InputTextarea usage is same as standard inputTextarea;

<<p :inputTextarea value="#{bean.propertyName}" />)

241

PrimeFaces User’s Guide

AutoResize

While textarea is being typed, if content height exceeds the allocated space, textarea can grow
automatically. Use autoResize option to turn on/off this feature.

<:<p:inputTextarea value="#{bean.propertyName}" autoResize="truelfalse"/> :)

Remaining Characters

InputTextarea can limit the maximum allowed characters with maxLength option and display the
remaining characters count as well.

<p:inputTextarea value="#{bean.propertyName}" counter="display"
maxlength="20" counterTemplate="{0@} characters remaining" />

<h:outputText id="display" />

AutoComplete

InputTextarea supports ajax autocomplete functionality as well. You need to provide a
completeMethod to provide the suggestions to use this feature. In sample below, completeArea
method will be invoked with the query being the four characters before the caret.

~

public class AutoCompleteBean {

public List<String> completeArea(String query) {
List<String> results = new ArraylList<String>Q);

if(query.equals("PrimeFaces")) {
results.add("PrimeFaces Rocks!!!");
results.add("PrimeFaces has 100+ components.");
results.add("PrimeFaces is lightweight.");
results.add("PrimeFaces is easy to use.");
results.add("PrimeFaces is developed with passion!™);

}
else {
for(int i = 0; i < 10; i++) {
results.add(query + i);
}

}

return results;

}

}
o

AN

<p:inputTextarea rows="10" cols="50" minQueryLength="4"
completeMethod="#{autoCompleteBean.completeArea}" />

(&)

242

PrimeFaces User’s Guide

PrimeFaces is a ighawe

oom e for Jav

PrimeFaces

PrimeFaces has 100+ components.
PrimeFaces is ightweight

Primefaces has 100+ components.
PrimeFaces is Bghtweight.

PrimeFaces is easy © use
Prime¥Faces is develcped with passion!

PrimeFaces is casy tO use.
PrimeFaces is developed with passion!

Skinning
InputTextarea renders a textarea element which s#yle and styleClass options apply.

Following is the list of structural style classes;

Style Class Applies
ui-inputtextarea Textarea element.
ui-inputfield Textarea element.
.ui-autocomplete-panel Overlay for suggestions.
.ui-autocomplete-items Suggestions container.
.ui-autocomplete-item Each suggestion.

As skinning style classes are global, see the main theming section for more information.

243

PrimeFaces User’s Guide

3.53 Keyboard

Keyboard is an input component that uses a virtual keyboard to provide the input. Notable features
are the customizable layouts and skinning capabilities.

! @ # $ | % A& 2 () _ = Close
o | 0 051 15 O 0 A e T) O) 5 I & A - D
q wW e r t y u i o p 4 5 6
a o d f g h |] k | 1|2 3
z X C v b n m g ? - 0 -
Shift Enter Back Clear
Info
Tag keyboard
Component Class org.primefaces.component.keyboard.Keyboard
Component Type org.primefaces.component.Keyboard
Component Family org.primefaces.component
Renderer Type org.primefaces.component.KeyboardRenderer
Renderer Class org.primefaces.component.keyboard.KeyboardRenderer
Attributes
Name Default Type Description
id Assigned | String Unique identifier of the component
by JSF
rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.
binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean
value null Object Value of the component than can be either an EL
expression of a literal text
converter null Converter/ An el expression or a literal text that defines a
String converter for the component. When it’s an EL
expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id
immediate FALSE Boolean When set true, process validations logic is executed
at apply request values phase for this component.

244

PrimeFaces User’s Guide

Name Default Type Description

required FALSE Boolean Marks component as required

validator null MethodExpr | A method binding expression that refers to a method
validationg the input

valueChangeListener | null MethodExpr | A method binding expression that refers to a method
for handling a valuchangeevent

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

password FALSE Boolean Makes the input a password field.

showMode focus String Specifies the showMode, ‘focus’, ‘button’, ‘both’

buttonlmage null String Image for the button.

buttonlmageOnly FALSE boolean When set to true only image of the button would be
displayed.

effect fadeln String Effect of the display animation.

effectDuration null String Length of the display animation.

layout qwerty String Built-in layout of the keyboard.

layoutTemplate null String Template of the custom layout.

keypadOnly focus Boolean Specifies displaying a keypad instead of a keyboard.

promptLabel null String Label of the prompt text.

closeLabel null String Label of the close key.

clearLabel null String Label of the clear key.

backspaceLabel null String Label of the backspace key.

accesskey null String Access key that when pressed transfers focus to the
input element.

alt null String Alternate textual description of the input field.

autocomplete null String Controls browser autocomplete behavior.

dir null String Direction indication for text that does not inherit
directionality. Valid values are LTR and RTL.

disabled FALSE Boolean Disables input field

label null String A localized user presentable name.

lang null String Code describing the language used in the generated

markup for this component.

245

PrimeFaces User’s Guide

Name Default Type Description

maxlength null Integer Maximum number of characters that may be entered
in this field.

onblur null String Client side callback to execute when input element
loses focus.

onchange null String Client side callback to execute when input element
loses focus and its value has been modified since
gaining focus.

onclick null String Client side callback to execute when input element
is clicked.

ondblclick null String Client side callback to execute when input element
is double clicked.

onfocus null String Client side callback to execute when input element
receives focus.

onkeydown null String Client side callback to execute when a key is pressed
down over input element.

onkeypress null String Client side callback to execute when a key is pressed
and released over input element.

onkeyup null String Client side callback to execute when a key is
released over input element.

onmousedown null String Client side callback to execute when a pointer button
is pressed down over input element

onmousemove null String Client side callback to execute when a pointer button
is moved within input element.

onmouseout null String Client side callback to execute when a pointer button
is moved away from input element.

onmouseover null String Client side callback to execute when a pointer button
is moved onto input element.

onmouseup null String Client side callback to execute when a pointer button
is released over input element.

onselect null String Client side callback to execute when text within
input element is selected by user.

readonly FALSE Boolean Flag indicating that this component will prevent
changes by the user.

size null Integer Number of characters used to determine the width of
the input element.

style null String Inline style of the input element.

styleClass null String Style class of the input element.

tabindex null Integer Position of the input element in the tabbing order.

title null String Advisory tooltip informaton.

246

PrimeFaces User’s Guide

Name

Default

Type

Description

widgetVar

null

String

Name of the client side widget.

Getting Started with Keyboard

Keyboard is used just like a simple inputText, by default when the input gets the focus a keyboard is

displayed.

<<p :keyboard value="#{bean.value}" />

)

Built-in Layouts

There’re a couple of built-in keyboard layouts these are ‘qwerty’, ‘qwertyBasic’ and ‘alphabetic’.

For example keyboard below has the alphabetic layout.

<<p :keyboard value="#{bean.value}" layout="alphabetic"/>

)

a b C d e f g h i j
k | m n o p q r S t
Shift

Custom Layouts

Close
Clear

Back

Keyboard has a very flexible layout mechanism allowing you to come up with your own layout.

<p:keyboard value="#{bean.value}"
layout="custom"

layoutTemplate="prime-back, faces-clear,rocks-close"/>

p r i m e Back
f F:] c 8 3 Clear
r 0 C 14 3 Close

Another example;

247

PrimeFaces User’s Guide

<p:keyboard value="#{bean.value}"
layout="custom"
layoutTemplate="create-space-your-close,owntemplate-shift,easily-space-
spacebar"/>

C r @ a t 5 y o u r Close
O W | n t e m p | o t @ Shift
g o S i | y

A layout template basically consists of built-in keys and your own keys. Following is the list of all
built-in keys.

« back

« clear

« close

« shift

* spacebar

* space

- halfspace

All other text in a layout is realized as seperate keys so "prime" would create 5 keys as "p" "r" "i"
"m" "e". Use dash to seperate each member in layout and use commas to create a new row.

Keypad

By default keyboard displays whole keys, if you only need the numbers use the keypad mode.

<<p:keyboar'd value="#{bean.value}" keypadOnly="true"/>)

ShowMode

There’re a couple of different ways to display the keyboard, by default keyboard is shown once
input field receives the focus. This is customized using the showMode feature which accept values
‘focus’, ‘button’, ‘both’. Keyboard below displays a button next to the input field, when the button
is clicked the keyboard is shown.

<<p :keyboard value="#{bean.value}" showMode="button"/>)

Button can also be customized using the buttonlmage and buttonlmageOnly attributes.
248

PrimeFaces User’s Guide

3.54 Layout

Layout component features a highly customizable borderLayout model making it very easy to
create complex layouts even if you’re not familiar with web design.

<« | » || + @ http://localhost:8080/prime-showcase/ui/layoutComplex.jsf ¢ | (Qr Google

PrimeFaces ShowCase

PRIMEFACES - Next Generation Component Suite

| (orsariee | videos ket 00

Change Theme: redmond

July 2010 month | week | day
T
Sun Mon Tue Wed Thu Fri Sat == 78
Su Mo Tu We Th Fr sa 1 3 5 e

2]

a s 6 7/ 8 9 10

2] s] ! ‘ s T ;
é 13 14 15 16 17 I!I
Info
Tag layout
Component Class org.primefaces.component.layout.Layout
Component Type org.primefaces.component.Layout
Component Family org.primefaces.component
Renderer Type org.primefaces.component.LayoutRenderer
Renderer Class org.primefaces.component.layout.LayoutRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean | Boolean value to specify the rendering of the component, when
set to false component will not be rendered.
binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean
widgetVar null String Name of the client side widget.
fullPage FALSE | Boolean | Specifies whether layout should span all page or not.

249

PrimeFaces User’s Guide

Name Default Type Description

style null String Style to apply to container element, this is only applicable to
element based layouts.

styleClass null String Style class to apply to container element, this is only applicable
to element based layouts.

onResize null String Client side callback to execute when a layout unit is resized.
onClose null String Client side callback to execute when a layout unit is closed.
onToggle null String Client side callback to execute when a layout unit is toggled.
resizeTitle null String Title label of the resize button.

collapseTitle null String Title label of the collapse button.

expandTitle null String Title label of the expand button.

closeTitle null String Title label of the close button.

Getting started with Layout

Layout is based on a borderLayout model that consists of 5 different layout units which are top, left,
center, right and bottom. This model is visualized in the schema below;

[)

()

Full Page Layout

Layout has two modes, you can either use it for a full page layout or for a specific region in your
page. This setting is controlled with the fullPage attribute which is false by default.

The regions in a layout are defined by layoutUnits, following is a simple full page layout with all
possible units. Note that you can place any content in each layout unit.

250

PrimeFaces User’s Guide

\

<p:layout fullPage="true">
<p:layoutUnit position="north" size="50">
<h:outputText value="Top content." />
</p:layoutUnit>
<p:layoutUnit position="south" size="100">
<h:outputText value="Bottom content." />
</p:layoutUnit>
<p:layoutUnit position="west" size="300">
<h:outputText value="Left content"” />
</p:layoutUnit>
<p:layoutUnit position="east" size="200">
<h:outputText value="Right Content" />
</p:layoutUnit>
<p:layoutUnit position="center">
<h:outputText value="Center Content" />
</p:layoutUnit>
</p:layout>

o

Forms in Full Page Layout

When working with forms and full page layout, avoid using a form that contains layoutunits as
generated dom may not be the same. So following is invalid.

4)

<p:layout fullPage="true">

<h:form>

<p:layoutUnit position="west" size="100">
h:outputText value="Left Pane" />
</p:layoutUnit>

<p:layoutUnit position="center">
<h:outputText value="Right Pane" />
</p:layoutUnit>

</h:form>

</p:layout>

J

A layout unit must have it’s own form instead, also avoid trying to update layout units because of
same reason, update it’s content instead.

Dimensions

Except center layoutUnit, other layout units must have dimensions defined via size option.
Element based layout

Another use case of layout is the element based layout. This is the default case actually so just
ignore fullPage attribute or set it to false. Layout example below demonstrates creating a split panel

implementation.

251

PrimeFaces User’s Guide

~

<p:layout style="width:400px;height:200px">

<p:layoutUnit position="west" size="100">
<h:outputText value="Left Pane" />
</p:layoutUnit>

<p:layoutUnit position="center">
<h:outputText value="Right Pane" />
</p:layoutUnit>

//more layout units

</p:layout>

Ajax Behavior Events

Layout provides custom ajax behavior events for each layout state change.

Event Listener Parameter Fired
toggle org.primefaces.event. ToggleEvent When a unit is expanded or collapsed.
close org.primefaces.event.CloseEvent When a unit is closed.
resize org.primefaces.event.ResizeEvent When a unit is resized.

Stateful Layout

Making layout stateful would be easy, once you create your data to store the user preference, you
can update this data using ajax event listeners provided by layout. For example if a layout unit is
collapsed, you can save and persist this information. By binding this persisted information to the
collapsed attribute of the layout unit layout will be rendered as the user left it last time.

Client Side API

Widget: PrimeFaces.widget.Layout

Method Params Return Type Description
toggle(position) position void Toggles layout unit.
show(position) position void Shows layout unit.
hide(unit) position void Hides layout unit.

252

PrimeFaces User’s Guide

Skinning

Following is the list of structural style classes;

Style Class Applies
.ui-layout Main wrapper container element
.ui-layout-doc Layout container
.ui-layout-unit Each layout unit container
.ui-layout- {position} Position based layout unit
.ui-layout-unit-header Layout unit header
.ui-layout-unit-content Layout unit body

As skinning style classes are global, see the main theming section for more information.

253

PrimeFaces User’s Guide

3.55 LayoutUnit

LayoutUnit represents a region in the border layout model of the Layout component.

Info
Tag layoutUnit
Component Class org.primefaces.component.layout.LayoutUnit
Component Type org.primefaces.component.LayoutUnit
Component Family org.primefaces.component

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

position null String Position of the unit.

size null String Size of the unit.

resizable FALSE Boolean Makes the unit resizable.

closable FALSE Boolean Makes the unit closable.

collapsible FALSE Boolean Makes the unit collapsible.

header null String Text of header.

footer null String Text of footer.

minSize null Integer Minimum dimension for resize.

maxSize null Integer Maximum dimension for resize.

gutter 4px String Gutter size of layout unit.

visible TRUE Boolean Specifies default visibility

collapsed FALSE | Boolean Specifies toggle status of unit

collapseSize null Integer Size of the unit when collapsed

style null String Inline style of the component.

styleClass null String Style class of the component.

254

PrimeFaces User’s Guide

Name Default Type Description
effect null String Effect name of the layout transition.
effectSpeed null String Effect speed of the layout transition.

Getting started with LayoutUnit

See layout component documentation for more information regarding the usage of layoutUnits.

255

PrimeFaces User’s Guide

3.56 LightBox

Lightbox is a powerful overlay that can display images, multimedia content, custom content and
external urls.

Info
Tag lightBox
Component Class org.primefaces.component lightbox.LightBox
Component Type org.primefaces.component.LightBox
Component Family org.primefaces.component
Renderer Type org.primefaces.component.LightBoxRenderer
Renderer Class org.primefaces.component.lightbox.LightBoxRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean | Boolean value to specify the rendering of the component, when set
to false component will not be rendered.
binding null Object | An el expression that maps to a server side UIComponent instance
in a backing bean
widgetVar null String Name of the client side widget.
style null String Style of the container element not the overlay element.
styleClass null String Style class of the container element not the overlay element.

256

PrimeFaces User’s Guide

Name Default Type Description
width null String Width of the overlay in iframe mode.
height null String Height of the overlay in iframe mode.
iframe FALSE | Boolean | Specifies an iframe to display an external url in overlay.
iframeTitle null String Title of the iframe element.
visible FALSE | Boolean | Displays lightbox without requiring any user interaction by default.
onHide null String Client side callback to execute when lightbox is displayed.
onShow null String Client side callback to execute when lightbox is hidden.
Images

The images displayed in the lightBox need to be nested as child outputLink components. Following
lightBox is displayed when any of the links are clicked.

~

<p:lightBox>
<h:outputlLink value="sopranos/sopranosl.jpg" title="Sopranos 1">
<h:graphicImage value="sopranos/sopranosl_small.jpg/>
</h:outputLink>

<h:outputlLink value="sopranos/sopranos2.jpg" title="Sopranos 2">
<h:graphicImage value="sopranos/sopranos2_small.jpg/>
</h:outputLink>

<h:outputlLink value="sopranos/sopranos3.jpg" title="Sopranos 3">
<h:graphicImage value="sopranos/sopranos3_small.jpg/>
</h:outputLink>

//more
</p:lightBox>

-)

IFrame Mode

LightBox also has the ability to display iframes inside the page overlay, following lightbox displays
the PrimeFaces homepage when the link inside is clicked.

<p:lightBox iframe="true">
<h:outputlLink value="http://www.primefaces.org" title="PrimeFaces HomePage">
<h:outputText value="PrimeFaces HomePage"/>
</h:outputLink>
</p:lightBox>

Clicking the outputLink will display PrimeFaces homepage within an iframe.

257

http://primefaces.prime.com.tr/en
http://primefaces.prime.com.tr/en

PrimeFaces User’s Guide

Inline Mode

Inline mode acts like a modal dialog, you can display other JSF content on the page using the
lightbox overlay. Simply place your overlay content in the "inline" facet. Clicking the link in the
example below will display the panelGrid contents in overlay.

\

<p:lightBox>
<h:outputlLink value="#" title="Leo Messi" >
<h:outputText value="The Messiah"/>
</h:outputLink>
<f:facet name="inline">
//content here
</f:facet>
</p:lightBox>

J

Lightbox inline mode doesn’t support advanced content like complex widgets. Use a dialog instead
for advanced cases involving custom content.

Client Side API

Widget: PrimeFaces.widget.LightBox

Method Params Return Type Description
show() - void Displays lightbox.
hide() - void Hides lightbox.
showURL(opt) opt void Displays a URL in a iframe. opt parameter has three
variables. width and height for iframe dimensions
and src for the page url.

Skinning

Lightbox resides in a main container element which style and styleClass options apply. Following is
the list of structural style classes;

Style Class Applies
.ui-lightbox Main container element.
.ui-lightbox-content-wrapper Content wrapper element.
.ui-lightbox-content Content container.
.ui-lightbox-nav-right Next image navigator.
.ui-lightbox-nav-left Previous image navigator.
.ui-lightbox-loading Loading image.
.ui-lightbox-caption Caption element.

258

3.57 Log

Log component is a visual console to display logs on JSF pages.

Info

o RO ! £ A

This is an info message.
This is an info message.
This is a warn message.
This is a warn message.
This is a debug message.
This is a debug message

This is an error message

This is an error message W/
This is a debug message
This is a debug message.

This is a warn message.

@-bvbouvPPBLYL -0

This is an info message. A

f

PrimeFaces User’s Guide

Tag

log

Component Class

org.primefaces.component.log.Log

Component Type

org.primefaces.component.Log

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.LogRenderer

Renderer Class

org.primefaces.component.log.L.ogRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

Getting started with Log

Log component is used simply as adding the component to the page.

<<p:109 />

259

PrimeFaces User’s Guide

Log API

PrimeFaces uses client side log apis internally, for example you can use log component to see
details of an ajax request. Log API is also available via global PrimeFaces object in case you’d like
to use the log component to display your logs.

<script type="text/javascript”>
PrimeFaces.info(‘Info message’);
PrimeFaces.debug(‘Debug message’);
PrimeFaces.warn(‘Warning message’);
PrimeFaces.error(‘Error message’);
</script>

260

PrimeFaces User’s Guide

3.58 Media

Media component is used for embedding multimedia content.

Info

Tag

media

Component Class

org.primefaces.component.media.Media

Component Type

org.primefaces.component.Media

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.MediaRenderer

Renderer Class

org.primefaces.component.media.MediaRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean.

value null String Media source to play.

player null String Type of the player, possible values are
"quicktime","windows","flash","real" and "pdf".

width null String Width of the player.

height null String Height of the player.

style null String Style of the player.

styleClass null String StyleClass of the player.

Getting started with Media

In it’s simplest form media component requires a source to play, this is defined using the value

attribute.

<<p :media value="/media/ria_with_primefaces.mov" />)

261

PrimeFaces User’s Guide

Player Types

By default, players are identified using the value extension so for instance mov files will be played
by quicktime player. You can customize which player to use with the player attribute.

<<p :media value="http://www.youtube.com/v/ABCDEFGH" player="flash"/> >

Following is the supported players and file types.

Player Types

windows asx, asf, avi, wma, wmv

quicktime aif, aiff, aac, au, bmp, gsm, mov, mid, midi, mpg, mpeg, mp4, m4a, psd, qt, qtif, qif,
qti, snd, tif, tiff, wav, 3g2, 3pg

flash flv, mp3, swf

real ra, ram, rm, rpm, rv, smi, smil

pdf pdf

Parameters

Different proprietary players might have different configuration parameters, these can be specified
using f:param tags.

<p:media value="/media/ria_with_primefaces.mov">
<f:param name="paraml" value="valuel"” />
</p:media>

StreamedContent Support

Media component can also play binary media content, example for this use case is storing media
files in database using binary format. In order to implement this, bind a StreamedContent.

<<p:media value="#{mediaBean.media}" width="250" height="225" player="quicktime"/>)

4)

public class MediaBean {

private StreamedContent media;

public MediaController() {
InputStream stream = //Create binary stream from database
media = new DefaultStreamedContent(stream, "video/quicktime");

ks
public StreamedContent getMedia() { return media; }

262

http://www.youtube.com/v/ABCDEFGH
http://www.youtube.com/v/ABCDEFGH

3.59 MegaMenu

PrimeFaces User’s Guide

MegaMenu is a horizontal navigation component that displays submenus together.

[MegaMenu

MegaMenu displays submenus of root items together.

v TV~ [OSports v . Entertainment v OBusiness v EITech v x Quit

Info

| I
TV.

4.1 Sug
WIS -
V.12 V42 N
.
VA,

»
{ w

21

<p:column>
<p:submenu label="Sports.l">

Tag

megaMenu

Component Class

org.primefaces.component.megamenu.MegaMenu

Component Type

org.primefaces.component.MegaMenu

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.MegaMenuRenderer

Renderer Class

org.primefaces.component.megamenu.MegaMenuRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean.

widgetVar null String Name of the client side widget

model null MenuModel | MenuModel instance to create menus
programmatically

style null String Inline style of the component.

styleClass null String Style class of the component.

263

PrimeFaces User’s Guide

Name

Default

Type

Description

autoDisplay

TRUE

Boolean

Defines whether submenus will be displayed on
mouseover or not. When set to false, click event
is required to display.

Getting Started with MegaMenu

Layout of MegaMenu is grid based and root items require columns as children to define each

section in a grid.

<p :megaMenu>

</p:megaMenu>

"

</p:submenu>

<p:submenu label="TV" icon="ui-1icon-check">
<p:column>

<p:submenu label="TV.1">

<p:menuitem value="TV.1.1" url="#" />
<p:menuitem value="TV.1.2" url="#" />
</p: submenu>

<p:submenu label="TV.2">

<p:menuitem value="TV.2.1" url="#" />

<p:menuitem value="TV.2.2" url="#" />

<p:menuitem value="TV.2.3" url="#" />
</p: submenu>

<p:submenu label="TV.3">

<p:menuitem value="TV.3.1" url="#" />
<p:menuitem value="TV.3.2" url="#" />
</p: submenu>
</p:column>

<p:column>

<p:submenu label="TV.4">

<p:menuitem value="TV.4.1" url="#" />
<p:menuitem value="TV.4.2" url="#" />
</p: submenu>

<p:submenu label="TV.5">

<p:menuitem value="TV.5.1" url="#" />

<p:menuitem value="TV.5.2" url="#" />

<p:menuitem value="TV.5.3" url="#" />
</p: submenu>

<p:submenu label="TV.6">

<p:menuitem value="TV.6.1" url="#" />

<p:menuitem value="TV.6.2" url="#" />

<p:menuitem value="TV.6.3" url="#" />
</p: submenu>

</p:column>

//more root items

264

PrimeFaces User’s Guide

Custom Content

Any content can be placed inside columns.

<p:column>
Sopranos
<p:graphicImage value="/images/sopranos/sopranosl.jpg" width="200"/>
</p:column>

Root Menuitem

MegaMenu supports menuitem as root menu options as well. Following example allows a root
menubar item to execute an action to logout the user.

<p :megaMenu>
//submenus
<p:menuitem label="Logout" action="#{bean.logout}"/>
</p :megaMenu>

Dynamic Menus

Menus can be created programmatically as well, see the dynamic menus part in menu component
section for more information and an example.

Skinning

MegaMenu resides in a main container which style and styleClass attributes apply. Following is the
list of structural style classes;

Style Class Applies
.ui-megamenu Container element of menubar.
.ui-menu-list List container
.ui-menuitem Each menu item
.ui-menuitem-link Anchor element in a link item
.ui-menuitem-text Text element in an item

As skinning style classes are global, see the main theming section for more information.

265

3.60 Menu

PrimeFaces User’s Guide

Menu is a navigation component with various customized modes like multi tiers, ipod style sliding

and overlays.

Info

Ajax Menuitems

| Save

2 Update

Non-Ajax Menuitem
X Delete
Navigations

Home

w TouchFaces

Tag

menu

Component Class

org.primefaces.component.menu.Menu

Component Type org.primefaces.component.Menu
Component Family org.primefaces.component
Renderer Type org.primefaces.component.MenuRenderer

Renderer Class

org.primefaces.component.menu.MenuRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean.

widgetVar null String Name of the client side widget.

model null MenuModel | A menu model instance to create menu programmatically.

266

PrimeFaces User’s Guide

Name Default Type Description
trigger null String Id of component whose click event will show the dynamic
positioned menu.
my null String Corner of menu to align with trigger element.
at null String Corner of trigger to align with menu element.
overlay FALSE Boolean Defines positioning type of menu, either static or overlay.
style null String Inline style of the main container element.
styleClass null String Style class of the main container element.
triggerEvent click String Event to show the dynamic positioned menu.

Getting started with the Menu

A menu is composed of submenus and menuitems.

<p:menu>

</p:menu>

<p:menuitem
<p:menuitem
<p:menuitem
<p:menuitem
<p:menuitem
<p:menuitem
<p:menuitem
<p:menuitem

value="Gmail" url="http://www.google.com" />
value="Hotmail" url="http://www.hotmail.com" />
value="Yahoo Mail" url="http://mail.yahoo.com" />
value="Youtube" url="http://www.youtube.com" />
value="Break" url="http://www.break.com" />
value="Metacafe" url="http://www.metacafe.com" />
value="Facebook" url="http://www.facebook.com" />
value="MySpace" url="http://www.myspace.com" />

Gmail
Hotmail
Yahoo Mail
Youtube
Break
Metacafe
Facebook

MySpace

267

http://www.google.com
http://www.google.com
http://www.hotmail.com
http://www.hotmail.com
http://mail.yahoo.com
http://mail.yahoo.com
http://www.youtube.com
http://www.youtube.com
http://www.break.com
http://www.break.com
http://www.metacafe.com
http://www.metacafe.com
http://www.facebook.com
http://www.facebook.com
http://www.myspace.com
http://www.myspace.com

PrimeFaces User’s Guide

Submenus are used to group menuitems;

\

<p:menu>
<p:submenu label="Mail">
<p:menuitem value="Gmail" url="http://www.google.com" />
<p:menuitem value="Hotmail" url="http://www.hotmail.com" />
<p:menuitem value="Yahoo Mail" url="http://mail.yahoo.com" />
</p:submenu>

<p:submenu label="Videos">
<p:menuitem value="Youtube" url="http://www.youtube.com" />
<p:menuitem value="Break" url="http://www.break.com" />
<p:menuitem value="Metacafe" url="http://www.metacafe.com" />
</p:submenu>

<p:submenu label="Social Networks">
<p:menuitem value="Facebook" url="http://www.facebook.com" />
<p:menuitem value="MySpace" url="http://www.myspace.com" />
</p:submenu>
</p:menu>

Mail

Gmail

Hotmail

Yahoo Mail
Videos

Youtube

Break

Metacafe

Social Networks
Facebook

MySpace

Overlay Menu

Menu can be positioned on a page in two ways; "static" and "dynamic". By default it’s static
meaning the menu is in normal page flow. In contrast dynamic menus is not on the normal flow of
the page allowing them to overlay other elements.

A dynamic menu is created by setting overlay option to true and defining a trigger to show the
menu. Location of menu on page will be relative to the trigger and defined by my and at options
that take combination of four values;

« left

- right
 bottom
. top

268

http://www.google.com
http://www.google.com
http://www.hotmail.com
http://www.hotmail.com
http://mail.yahoo.com
http://mail.yahoo.com
http://www.youtube.com
http://www.youtube.com
http://www.break.com
http://www.break.com
http://www.metacafe.com
http://www.metacafe.com
http://www.facebook.com
http://www.facebook.com
http://www.myspace.com
http://www.myspace.com

PrimeFaces User’s Guide

For example, clicking the button below will display the menu whose top left corner is aligned with
bottom left corner of button.

<p:menu overlay="true" trigger="btn" my="left top" at="bottom left">
...Ssubmenus and menuitems
</p:menu>

<p:commandButton id="btn" value="Show Menu" type="button"/>

Ajax and Non-Ajax Actions

As menu uses menuitems, it is easy to invoke actions with or without ajax as well as navigation.
See menuitem documentation for more information about the capabilities.

~

<p:menu>
<p:submenu label="Options">
<p:menuitem value="Save" actionListener="#{bean.save}" update="comp"/>
<p:menuitem value="Update" actionlListener="#{bean.update}" ajax="false"/>
<p:menuitem value="Navigate" url="http://www.primefaces.org"/>
</p: submenu>
</p:menu>

Dynamic Menus

Menus can be created programmatically as well, this is more flexible compared to the declarative
approach. Menu metadata is defined using an org.primefaces.model. MenuModel instance,
PrimeFaces provides the built-in org.primefaces.model DefaultMenuModel implementation. For
further customization you can also create and bind your own MenuModel implementation.

4)

public class MenuBean {

private MenuModel model;

public MenuBean() {
model = new DefaultMenuModel();

//First submenu
Submenu submenu = new Submenu();
submenu.setlLabel("Dynamic Submenu 1");

MenuItem item = new Menultem();
item.setValue("Dynamic Menuitem 1.1");
item.setUrl("#");
submenu.getChildren().add(item);

model . addSubmenu(submenu) ;

}

public MenuModel getModel() { return model; }

269

http://www.primefaces.org
http://www.primefaces.org

PrimeFaces User’s Guide

<<p:menu model="#{menuBean.model}" />

)

Skinning

Menu resides in a main container element which style and styleClass attributes apply.

Following is the list of structural style classes;

Style Class

Applies

.ui-menu

Container element of menu

.ui-menu-list

List container

.ui-menuitem

Each menu item

.ui-menuitem-link

Anchor element in a link item

.ul-menuitem-text

Text element in an item

.ui-menu-sliding

Container of ipod like sliding menu

As skinning style classes are global, see the main theming section for more information.

270

3.61 Menubar

Menubar is a horizontal navigation component.

O File v ' Edit v

? Help #Actons v | x Quit

PrimeFaces User’s Guide

! , .
$Ajax » J @ Save
(O Non-Ajax » 2 Update
Info
Tag menubar

Component Class

org.primefaces.component.menubar.Menubar

Component Type

org.primefaces.component.Menubar

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.MenubarRenderer

Renderer Class

org.primefaces.component.menubar.MenubarRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean.

widgetVar null String Name of the client side widget

model null MenuModel | MenuModel instance to create menus
programmatically

style null String Inline style of menubar

styleClass null String Style class of menubar

autoDisplay FALSE Boolean Defines whether the first level of submenus will
be displayed on mouseover or not. When
set to false, click event is required to display.

271

PrimeFaces User’s Guide

Getting started with Menubar

Submenus and menuitems as child components are required to compose the menubar.

<p :menubar>
<p:submenu label="Mail">
<p:menuitem value="Gmail" url="http://www.google.com" />
<p:menuitem value="Hotmail" url="http://www.hotmail.com" />
<p:menuitem value="Yahoo Mail" url="http://mail.yahoo.com" />
</p:submenu>
<p:submenu label="Videos">
<p:menuitem value="Youtube" url="http://www.youtube.com" />
<p:menuitem value="Break" url="http://www.break.com" />
</p:submenu>
</p:menubar>

Nested Menus

To create a menubar with a higher depth, nest submenus in parent submenus.

<p:menubar>
<p:submenu label="File">
<p:submenu label="New">
<p:menuitem value="Project" url="#"/>
<p:menuitem value="Other" url="#"/>
</p:submenu>
<p:menuitem value="Open" url="#"></p:menuitem>
<p:menuitem value="Quit" url="#"></p:menuitem>
</p: submenu>
<p:submenu label="Edit">
<p:menuitem value="Undo" url="#"></p:menuitem>
<p:menuitem value="Redo" url="#"></p:menuitem>
</p: submenu>
<p:submenu label="Help">
<p:menuitem label="Contents" url="#" />
<p:submenu label="Search">
<p:submenu label="Text">
<p:menuitem value="Workspace" url="#" />
</p: submenu>
<p:menuitem value="File" url="#" />
</p:submenu>
</p: submenu>
</p:menubar>

Root Menuitem

Menubar supports menuitem as root menu options as well;

<p :menubar>
<p:menuitem label="Logout" action="#{bean.logout}"/>
</p:menubar>

272

http://www.google.com
http://www.google.com
http://www.hotmail.com
http://www.hotmail.com
http://mail.yahoo.com
http://mail.yahoo.com
http://www.youtube.com
http://www.youtube.com
http://www.break.com
http://www.break.com

PrimeFaces User’s Guide

Ajax and Non-Ajax Actions

As menu uses menuitems, it is easy to invoke actions with or without ajax as well as navigation.
See menuitem documentation for more information about the capabilities.

~

<p:menubar>
<p:submenu label="Options">
<p:menuitem value="Save" actionListener="#{bean.save}" update="comp"/>
<p:menuitem value="Update" actionlListener="#{bean.update}" ajax="false"/>
<p:menuitem value="Navigate" url="http://www.primefaces.org"/>
</p: submenu>
</p:menubar>

Dynamic Menus

Menus can be created programmatically as well, see the dynamic menus part in menu component
section for more information and an example.

Skinning

Menubar resides in a main container which style and styleClass attributes apply. Following is the
list of structural style classes;

Style Class Applies
.ui-menubar Container element of menubar.
.ui-menu-list List container
.ui-menuitem Each menu item
.ui-menuitem-link Anchor element in a link item
.ui-menuitem-text Text element in an item

As skinning style classes are global, see the main theming section for more information.

273

http://www.primefaces.org
http://www.primefaces.org

3.62 MenuButton

PrimeFaces User’s Guide

MenuButton displays different commands in a popup menu.

Info

v Options

B Save

2 Update

% Delete

2 Homepage

Tag

menuButton

Component Class

org.primefaces.component.menubutton.MenuButton

Component Type

org.primefaces.component.MenuButton

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.MenuButtonRenderer

Renderer Class

org.primefaces.component.menubutton.MenuButtonRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean.

value null String Label of the button

style null String Style of the main container element

styleClass null String Style class of the main container element

widgetVar null String Name of the client side widget

model null MenuModel | MenuModel instance to create menus programmatically

disabled FALSE Boolean Disables or enables the button.

274

PrimeFaces User’s Guide
Getting started with the MenuButton
MenuButton consists of one ore more menuitems. Following menubutton example has three

menuitems, first one is used triggers an action with ajax, second one does the similar but without
ajax and third one is used for redirect purposes.

<p:menuButton value="Options">
<p:menuitem value="Save" actionListener="#{bean.save}" update="comp" />
<p:menuitem value="Update" actionlListener="#{bean.update}" ajax="false" />
<p:menuitem value="Go Home" url="/home.jsf" />

</p:menuButton>

Dynamic Menus

Menus can be created programmatically as well, see the dynamic menus part in menu component
section for more information and an example.

Skinning
MenuButton resides in a main container which style and styleClass attributes apply. As skinning

style classes are global, see the main theming section for more information. Following is the list of
structural style classes;

Style Class Applies
.ui-menu Container element of menu.
.ui-menu-list List container
.ui-menuitem Each menu item
.ui-menuitem-link Anchor element in a link item
.ui-menuitem-text Text element in an item
.ui-button Button element
.ui-button-text Label of button

275

PrimeFaces User’s Guide

3.63 Menultem

Menultem is used by various menu components of PrimeFaces.

Info
Tag menultem
Tag Class org.primefaces.component.menuitem.MenultemTag

Component Class org.primefaces.component.menuitem.Menultem

Component Type org.primefaces.component.Menultem

Component Family | org.primefaces.component

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean.

value null String Label of the menuitem

actionListener null MethodExpr | Action listener to be invoked when menuitem is
clicked.

action null MethodExpr | Action to be invoked when menuitem is clicked.

immediate FALSE Boolean When true, action of this menuitem is processed
after apply request phase.

url null String Url to be navigated when menuitem is clicked

target null String Target type of url navigation

style null String Style of the menuitem label

styleClass null String StyleClass of the menuitem label

onclick null String Javascript event handler for click event

async FALSE Boolean When set to true, ajax requests are not queued.

process null String Component id(s) to process partially instead of
whole view.

update null String Client side id of the component(s) to be updated
after async partial submit request.

276

PrimeFaces User’s Guide

Name Default Type Description

disabled FALSE Boolean Disables the menuitem.

onstart null String Javascript handler to execute before ajax request is
begins.

oncomplete null String Javascript handler to execute when ajax request is
completed.

onsuccess null String Javascript handler to execute when ajax request
succeeds.

onerror null String Javascript handler to execute when ajax request
fails.

global TRUE Boolean Global ajax requests are listened by ajaxStatus
component, setting global to false will not trigger
ajaxStatus.

partialSubmit FALSE Boolean Enables serialization of values belonging to the
partially processed components only.

ajax TRUE Boolean Specifies submit mode.

icon null String Path of the menuitem image.

title null String Advisory tooltip information.

outcome null String Navigation case outcome.

includeViewParams | FALSE Boolean Defines if page parameters should be in target URI.

fragment null String Identifier of the target page element to scroll to.

Getting started with Menultem
Menultem is a generic component used by the following PrimeFaces components.

*« Menu

* MenuBar

« MegaMenu
» Breadcrumb
» Dock

» Stack

+ MenuButton
« SplitButton
« PanelMenu
» TabMenu

+ SlideMenu
« TieredMenu

Note that some attributes of menuitem might not be supported by these menu components. Refer to
the specific component documentation for more information.

277

PrimeFaces User’s Guide

Navigation vs Action

Menuitem has two use cases, directly navigating to a url with GET or doing a POST to execute an
action. This is decided by url or outcome attributes, if either one is present menuitem does a GET
request, if not parent form is posted with or without ajax decided by agjax attribute.

Icons

There are two ways to specify an icon of a menuitem, you can either use bundled icons within
PrimeFaces or provide your own via css.

ThemeRoller Icons

<<p:menuitem icon="ui-icon-disk" ... />)

Custom Icons

<<p:menuitem icon="barca" ... />)

.barca {
background: url(barca_logo.png) no-repeat;
height:16px;
width:16px;

278

PrimeFaces User’s Guide

3.64 Message

Message is a pre-skinned extended version of the standard JSF message component.

Text: * [text: Validation Error: Value is required.]
Info

Tag message

Component Class org.primefaces.component.message.Message

Component Type org.primefaces.component.Message

Component Family org.primefaces.component

Renderer Type org.primefaces.component.MessageRenderer

Renderer Class org.primefaces.component.message.MessageRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean.

showSummary | FALSE Boolean Specifies if the summary of the FacesMessage should be
displayed.

showDetail TRUE Boolean Specifies if the detail of the FacesMessage should be
displayed.

for null String Id of the component whose messages to display.

redisplay TRUE Boolean Defines if already rendered messages should be displayed

display both String Defines the display mode.

escape TRUE Boolean Defines whether html would be escaped or not.

severity null String Comma separated list of severities to display only.

Getting started with Message

Message usage is exactly same as standard message.

279

PrimeFaces User’s Guide

<h:inputText id="txt" value="#{bean.text}" />

<p:message for="txt" />

Display Mode

Message component has three different display modes;

« text : Only message text is displayed.

« icon : Only message severity is displayed and message text is visible as a tooltip.

« both (default) : Both icon and text are displayed.

Severity Levels

Using severity attribute, you can define which severities can be displayed by the component. For

instance, you can configure messages to only display infos and warnings.

<<p :message severity="info,warn" for="txt"/>

)

Escaping

Component escapes html content in messages by default, in case you need to display html, enable

escape option.

<<p:message escape="true" for="txt" />

)

Skinning Message

Full list of CSS selectors of message is as follows;

Style Class

Applies

ui-message- {severity }

Container element of the message

ui-message- {severity } -summary

Summary text

ui-message- {severity }-detail

Detail text

{severity} can be ‘info’, ‘error’, ‘warn’ and error.

280

PrimeFaces User’s Guide

3.65 Messages

Messages is a pre-skinned extended version of the standard JSF messages component.

X I x
Info

Tag messages

Component Class org.primefaces.component.messages.Messages

Component Type org.primefaces.component.Messages

Component Family org.primefaces.component

Renderer Type org.primefaces.component.MessagesRenderer

Renderer Class org.primefaces.component.messages.MessagesRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean.

showSummary | FALSE Boolean Specifies if the summary of the FacesMessages
should be displayed.

showDetail TRUE Boolean Specifies if the detail of the FacesMessages should
be displayed.

globalOnly FALSE String When true, only facesmessages with no clientlds are
displayed.

redisplay TRUE Boolean Defines if already rendered messages should be
displayed

autoUpdate FALSE Boolean Enables auto update mode if set true.

for null String Name of associated key, takes precedence when
used with globalOnly.

281

PrimeFaces User’s Guide

Name Default Type Description
escape TRUE Boolean Defines whether html would be escaped or not.
severity null String Comma separated list of severities to display only.
closable FALSE Boolean Adds a close icon to hide the messages.

Getting started with Messages

Message usage is exactly same as standard messages.

<<p:messages /> >

AutoUpdate

When auto update is enabled, messages component is updated with each ajax request automatically.

Targetable Messages

There may be times where you need to target one or more messages to a specific message
component, for example suppose you have growl and messages on same page and you need to
display some messages on growl and some on messages. Use for attribute to associate messages
with specific components.

<p:messages for="somekey" />
<p:growl for="anotherkey" />

J

FacesContext context = FacesContext.getCurrentInstance();

context.addMessage("somekey", facesMessagel);
context.addMessage("somekey", facesMessage2);

context.addMessage("anotherkey", facesMessage3);

- J

In sample above, messages will display first and second message and growl will only display the
3rd message.

Severity Levels

Using severity attribute, you can define which severities can be displayed by the component. For
instance, you can configure messages to only display infos and warnings.

<<p:messages severity="info,warn" /> >

282

PrimeFaces User’s Guide

Escaping

Messages escapes html content in messages, in case you need to display html, enable escape option.

<<p:messages escape="true" /> >

Skinning

Full list of CSS selectors of message is as follows;

Style Class Applies
ui-messages- {severity} Container element of the message
ui-messages- {severity } -summary Summary text
ui-messages- {severity } -detail Detail text
ui-messages- {severity }-icon Icon of the message.

{severity} can be ‘info’, ‘error’, ‘warn’ and error.

283

3.66 Mindmap

PrimeFaces User’s Guide

Mindmap is an interactive tool to visualize mindmap data featuring lazy loading, callbacks,
animations and more.

e
~\

Info

Tag

mindmap

Component Class

org.primefaces.component.mindmap.Mindmap

Component Type

org.primefaces.component.Mindmap

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.MindmapRenderer

Renderer Class

org.primefaces.component.mindmap.MindmapRenderer

Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

284

PrimeFaces User’s Guide

Name Default Type Description

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null MindmapNode | MenuModel instance to build menu dynamically.
style null String Inline style of the component.

styleClass null String Style class of the component.

effectSpeed 300 Integer Speed of the animations in milliseconds.
widgetVar null String Name of the client side widget.

Getting started with Mindmap

Mindmap requires an instance of org.primefaces.model.mindmap. MindmapNode as the root. Due to
it’s lazy nature, a select ajax behavior must be provided to load children of selected node on the fly

with ajax.

public class MindmapBean {
private MindmapNode root;

public MindmapBean() {

MindmapNode ns

root.addNode(ips);
root.addNode(ns);
root.addNode(malware);

}

public MindmapNode getRoot() {
return root;

}
public void onNodeSelect(SelectEvent event) {

MindmapNode node = (MindmapNode) event.getObject();
//load children of select node and add via node.addNode(childNode);

}
(&

root = new DefaultMindmapNode("google.com”, "Google", "FFCCOQ", false);

MindmapNode ips = new DefaultMindmapNode("IPs", "IP Nos", "6e9ebf", true);
new DefaultMindmapNode("NS(s)", "Names", "6e9ebf", true);
MindmapNode mw = new DefaultMindmapNode("Mw", "Malicious ", "6e9ebf", true);

\

<p:mindmap value="#{mindmapBean.root}" style="width:100%;height:600px">
<p:ajax event="select" listener="#{mindmapBean.onNodeSelect}" />
</p:mindmap>

285

PrimeFaces User’s Guide

DoubleClick Behavior

Selecting a node with single click is used to load subnodes, double click behavior is also provided
for further customization. Following sample, displays the details of the subnode in a dialog.

~

<p:mindmap value="#{mindmapBean.root}" style="width:100%;height:600px;">
<p:ajax event="select" listener="#{mindmapBean.onNodeSelect}" />
<p:ajax event="dblselect" listener="#{mindmapBean.onNodeDblselect}"
update="output" oncomplete="details.show()"/>
</p:mindmap>

<p:dialog widgetVar="details" header="Node Details" resizable="false" modal="true"
showEffect="fade" hideEffect="fade">
<h:outputText id="output" value="#{mindmapBean.selectedNode.data}" />
</p:dialog>

-

public void onNodeDblselect(SelectEvent event) {
this.selectedNode = (MindmapNode) event.getObject();

}

MindmapNode API

org.primefaces.model. mindmap.MindmapNode

Property Default Type Description
label null String Label of the node.
data null Object Optional data associated with the node.
fill null String Color code of the node.
selectable TRUE Boolean Flag to define if node is clickable.
parent null MindmapNode Parent node instance.
Tips

» Make sure width and height of the mindmap is big enough to prevent nodes getting displayed out

of bounds.

« IE 7 and IE 8 are not supported due to technical limitations, IE 9 is supported.

PrimeFaces User’s Guide

3.67 NotificationBar

NotificationBar displays a multipurpose fixed positioned panel for notification.

Info

Tag notificationBar

Component Class org.primefaces.component.notificationbar.NotificationBar

Component Type org.primefaces.component.NotificatonBar

Component Family org.primefaces.component

Renderer Type org.primefaces.component.NotificationBarRenderer

Renderer Class org.primefaces.component.notificationbar.NotificationBarRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

style null String Style of the container element

styleClass null String StyleClass of the container element

position top String Position of the bar, "top" or "bottom".

effect fade String Name of the effect, "fade", "slide" or "none".

effectSpeed normal String Speed of the effect, "slow", "normal" or "fast".

autoDisplay FALSE Boolean When true, panel is displayed on page load.

Getting started with NotificationBar

As notificationBar is a panel component, any content can be placed inside.

<p:notificationBar widgetVar="topBar">
//Content
</p:notificationBar>

287

PrimeFaces User’s Guide
Showing and Hiding
To show and hide the content, notificationBar provides an easy to use client side api that can be

accessed through the widgetVar. show() displays the bar and hide() hides it. isVisible() and toggle()
are additional client side api methods.

<p:notificationBar widgetVar="topBar">
//Content
</p:notificationBar>

<h:outputLink value="#" onclick="topBar.show()">Show</h:outputLink>
<h:outputLink value="#" onclick="topBar.show()">Show</h:outputLink>

Note that notificationBar has a default built-in close icon to hide the content.
Effects

Default effect to be used when displaying and hiding the bar is "fade", another possible effect is
"slide".

<p:notificationBar widgetVar="topBar" effect="slide">
//Content
</p:notificationBar>

If you’d like to turn off animation, set effect name to "none". In addition duration of the animation
is controlled via effectSpeed attribute that can take "normal", "slow" or "fast" as it’s value.

Position

Default position of bar is "top", other possibility is placing the bar at the bottom of the page. Note
that bar positioning is fixed so even page is scrolled, bar will not scroll.

<p:notificationBar widgetVar="topBar" position="bottom">
//Content
</p:notificationBar>

Skinning

style and styleClass attributes apply to the main container element. Additionally there are two pre-
defined css selectors used to customize the look and feel.

Selector Applies
.ui-notificationbar Main container element
.ui-notificationbar-close Close icon element

288

PrimeFaces User’s Guide

3.68 OrderList

OrderList is used to sort a collection featuring drag&drop based reordering, transition effects and
pojo support.

Avallable

)
é Iniesta - 8
IQI Villa-7
& Xavi-6
Info
Tag orderList
Component Class org.primefaces.component.orderlist.OrderList
Component Type org.primefaces.component.OrderList
Component Family org.primefaces.component
Renderer Type org.primefaces.component.OrderListRenderer
Renderer Class org.primefaces.component.orderlist.OrderListRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean
value null Object Value of the component referring to a List.

289

PrimeFaces User’s Guide

Name Default Type Description

converter null Converter/String | An el expression or a literal text that defines a
converter for the component. When it’s an EL
expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate FALSE Boolean When set true, process validations logic is
executed at apply request values phase for this
component.

required FALSE Boolean Marks component as required

validator null MethodExpr A method expression that refers to a method

validationg the input

valueChangeListener | null MethodExpr A method expression that refers to a method for
handling a valuechangeevent

requiredMessage null String Message to be displayed when required field
validation fails.
converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.
widgetVar null String Name of the client side widget.
var null String Name of the iterator.
itemLabel null String Label of an item.
itemValue null String Value of an item.
style null String Inline style of container element.
styleClass null String Style class of container element.
disabled FALSE Boolean Disables the component.
effect fade String Name of animation to display.
moveUpLabel Move String Label of move up button.
Up
moveTopLabel Move String Label of move top button.
Top
moveDownLabel Move String Label of move down button.
Down
moveBottomLabel Move String Label of move bottom button.
Bottom
controlsLocation left String Location of the reorder buttons, valid values are

“left”, “right” and “none”.

290

Getting started with OrderList

A list is required to use OrderList component.

PrimeFaces User’s Guide

-

cities

}

}
(&

cities.
cities.
cities.
cities.
cities.

public class OrderlListBean {
private List<String> cities;

public OrderListBean() {

= new ArraylList<String>Q);

add("Istanbul™);
add("Ankara™);
add("Izmir™);
add("Antalya™);
add("Bursa™);

//getter&setter for cities

<p:orderList value="#{orderListBean.cities}" var="city"
itemLabel="#{city}" itemValue="#{city}""/>

When the form is submitted, orderList will update the cities list according to the changes on client

side.

Advanced OrderList

OrderList supports displaying custom content instead of simple labels by using columns. In
addition, pojos are supported if a converter is defined.

}

public class OrderListBean {
private List<Player> players;

public OrderListBean() {
players

= new ArraylList<Player>();

players.add(new Player("Messi", 10, "messi.jpg"));
players.add(new Player("Iniesta", 8, "iniesta.jpg"));
players.add(new Player("Villa", 7, "villa.jpg"));
players.add(new Player("Xavi", 6, "xavi.jpg"));

//getter&setter for players

~

291

PrimeFaces User’s Guide

4)

<p:orderList value="#{orderListBean.players}" var="player" itemValue="#{player}"
converter="player">

<p:column style="width:25%">
<p:graphicImage value="/images/barca/#{player.photo}" />
</p:column>

<p:column style="width:75%;">
#{player.name} - #{player.number}
</p:column>
</p:orderlList>

Header
A facet called “caption” is provided to display a header content for the orderlist.
Effects

An animation is executed during reordering, default effect is fade and following options are
available for effect attribute;

+ blind

* bounce
« clip

« drop

« explode
« fold

« highlight
* puff

* pulsate
- scale

« shake

. size

« slide

Skinning
OrderList resides in a main container which s#yle and styleClass attributes apply. As skinning style

classes are global, see the main theming section for more information. Following is the list of
structural style classes;

Style Class Applies
.ui-orderlist Main container element.
.ui-orderlist-list Container of items.
.ui-orderlist-item Each item in the list.
.ui-orderlist-caption Caption of the list.

292

PrimeFaces User’s Guide

3.69 OutputLabel

OutputPanel is a an extension to the standard outputLabel component.

New Person

m J_ldt15:name: Validation Error: Value is required.
Extended Label: Validation Error: Value is required.

Standard Label []

Extended Label []

Number ‘ a3
Info

Tag outputLabel

Component Class org.primefaces.component.outputlabel.OutputLabel

Component Type org.primefaces.component.OQutputLabel

Component Family org.primefaces.component

Renderer Type org.primefaces.component.OutputLabelRenderer

Renderer Class org.primefaces.component.outputlabel.OutputLabelRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null String Label to display.

accesskey null String The accesskey attribute is a standard HTML
attribute that sets the access key that transfers
focus to this element when pressed.

dir null String Direction indication for text that does not inherit
directionality. Valid values are LTR and RTL.

escape TRUE Boolean Defines if value should be escaped or not.

293

PrimeFaces User’s Guide

Name Default Type Description
for null String Id of the associated input component.
tabindex null String Position in tabbing order.
title null String Advisory tooltip information.
style null String Inline style of the component.
styleClass null String Style class of the component.
onblur null String Client side callback to execute when component

loses focus.

onclick null String Client side callback to execute when component is
clicked.

ondblclick null String Client side callback to execute when component is
double clicked.

onfocus null String Client side callback to execute when component

receives focus.

onkeydown null String Client side callback to execute when a key is
pressed down over component.

onkeypress null String Client side callback to execute when a key is
pressed and released over component.

onkeyup null String Client side callback to execute when a key is
released over component.

onmousedown | null String Client side callback to execute when a pointer
button is pressed down over component.

onmouseout null String Client side callback to execute when a pointer
button is moved away from component.

onmouseover | null String Client side callback to execute when a pointer
button is moved onto component.

onmouseup null String Client side callback to execute when a pointer
button is released over component.

Getting Started with OutputPanel

Usage is same as standard outputPanel, an input component is associated with for attribute.

<p:outputLabel for="input" value="Label" />

<p:inputText id="input" value="#{bean.text}" />

294

PrimeFaces User’s Guide

Auto Label

OutputLabel sets its value as the label of the target component to be displayed in validation errors
so the target component does not need to define the label attribute again.

<h:outputlLabel for="input" value="Field" />

<p:inputText id="input" value="#{bean.text}" label="Field"/>

can be rewritten as;

<p:outputlLabel for="input" value="Field" />

<p:inputText id="input" value="#{bean.text}" />

Support for Advanced Components

Some PrimeFaces input components like spinner, autocomplete does not render just basic inputs so
standard outputLabel component cannot apply focus to these, however PrimeFaces outputPanel can.

<h:outputlLabel for="input" value="Can’t apply focus" />
<p:outputlLabel for="input" value="Can apply focus" />

<p:spinner id="input" value="#{bean.text}" />

Validations

When the target input is required, outputLabel displays * symbol next to the value. In case any
validation fails on target input, label will also be displayed with theme aware error styles.

Skinning
Label renders a label element that style and styleClass attributes apply.

Following is the list of structural style classes;

Style Class Applies
.ui-outputlabel Label element
.ui-state-error Label element when input is invalid
.ui-outputlabel-rfi Required field indicator.

295

PrimeFaces User’s Guide

3.70 OutputPanel

OutputPanel is a panel component with the ability to auto update.

Info

Tag

outputPanel

Component Class

org.primefaces.component.outputpanel.OutputPanel

Component Type

org.primefaces.component.OutputPanel

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.OutputPanelRenderer

Renderer Class

org.primefaces.component.output.QutputPanelRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

style null String Style of the html container element

styleClass null String StyleClass of the html container element

layout inline String Layout of the panel, valid values are in/ine(span)
or block(div).

autoUpdate FALSE Boolean Enables auto update mode if set true.

AjaxRendered

Due to the nature of ajax, it is much simpler to update an existing element on page rather than
inserting a new element to the dom. When a JSF component is not rendered, no markup is rendered
so for components with conditional rendering regular PPR mechanism may not work since the

markup to update on page

does not exist. OutputPanel is useful in this case.

Suppose the rendered condition on bean is false when page if loaded initially and search method on
bean sets the condition to be true meaning datatable will be rendered after a page submit. The
problem is although partial output is generated, the markup on page cannot be updated since it

doesn’t exist.

296

PrimeFaces User’s Guide

<p:dataTable id="tbl" rendered="#{bean.condition}" ...>
//columns
</p:dataTable>

<p:commandButton update="tbl" actionListener="#{bean.search}" />

Solution is to use the outputPanel as a placeHolder.

<p:outputPanel id="out">
<p:dataTable id="tbl" rendered="#{bean.condition}" ...>
//columns
</p:dataTable>
</p:outputPanel>

<p:commandButton update="out" actionListener="#{bean.list}" />

)

Note that you won’t need an outputPanel if commandButton has no update attribute specified, in
this case parent form will be updated partially implicitly making an outputPanel use obselete.

Layout
OutputPanel has two layout modes;

« inline (default): Renders a span
- block: Renders a div

AutoUpdate

When auto update is enabled, outputPanel component is updated with each ajax request
automatically.

Skinning OutputPanel

style and styleClass attributes are used to skin the outputPanel.

297

PrimeFaces User’s Guide

3.71 OverlayPanel

OverlayPanel is a generic panel component that can be displayed on top of other content.

Dynamic
‘ ™ 23|45 »> >
Model Year Manufacturer Color
b31614b8 1993 Opel Black
fdd666a0 1981 BMW Brown
6c0b2fbS 1973 Ford Green
64ef60%a 1964 BMW Brown
eBdd6461 2006 Audi Black
fbo4fc8 2004 Volkswagen White
6bb8711b 2002 Mercedes Green
fded911b 1979 Chrysler Black
68a5511a 1986 Ferrari White
17cdac11 1996 BMW Green
2)(3])(2)(5] [e>)les
Info
Tag overlayPanel
Component Class org.primefaces.component.overlaypanel.OverlayPanelRenderer
Component Type org.primefaces.component.OverlayPanel
Component Family org.primefaces.component
Renderer Type org.primefaces.component.OverlayPanelRenderer
Renderer Class org.primefaces.component.overlaypanel.OverlayPanelRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean | Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean
widgetVar null String Name of the client side widget.
style null String Inline style of the panel.
styleClass null String Style class of the panel.
for null String Identifier of the target component to attach the panel.

298

PrimeFaces User’s Guide

Name Default Type Description
showEvent click String Event on target to show the panel.
hideEvent click String Event on target to hide the panel.
showEffect null String Animation to display when showing the panel.
hideEffect null String Animation to display when hiding the panel.
appendToBody FALSE Boolean | When true, panel is appended to document body.
onShow null String Client side callback to execute when panel is shown.
onHide null String Client side callback to execute when panel is hidden.
my left top String Position of the panel relative to the target.
at left bottom | String Position of the target relative to the panel.
dynamic FALSE Boolean | Defines content loading mode.

Getting started with OverlayPanel

OverlayPanel needs a component as a target in addition to the content to display. Example below
demonstrates an overlayPanel attached to a button to show a chart in a popup.

~

<p:commandButton id="chartBtn" value="Basic" type="button" />

<p:overlayPanel for="chartBtn">
<p:pieChart value="#{chartBean.pieModel}" legendPosition="w"
title="Sample Pie Chart" style="width:400px;height:300px" />
</p:overlayPanel>

Events

Default event on target to show and hide the panel is mousedown. These are customized using
showEvent and hideEvent options.

<p:commandButton id="chartBtn" value="Basic" type="button" />

<p:overlayPanel showEvent="mouseover" hideEvent="mousedown">
//content
</p:overlayPanel>

Effects

blind, bounce, clip, drop, explode, fold, highlight, puff, pulsate, scale, shake, size, slide are
available values for showEffect and hideEffect options if you’d like display animations.

299

PrimeFaces User’s Guide

Positioning

By default, left top corner of panel is aligned to left bottom corner of the target if there is enough
space in window viewport, if not the position is flipped on the fly to find the best location to
display. In order to customize the position use my and at options that takes combinations of left,
right, bottom and top e.g. “right bottom”.

Dynamic Mode

Dynamic mode enables lazy loading of the content, in this mode content of the panel is not rendered
on page load and loaded just before panel is shown. Also content is cached so consecutive displays
do not load the content again. This feature is useful to reduce the page size and reduce page load
time.

Skinning Panel

Panel resides in a main container which s#yle and styleClass attributes apply.

Following is the list of structural style classes;

Style Class Applies

.ui-overlaypanel Main container element of panel

As skinning style classes are global, see the main theming section for more information.
Tips

« Enable appendToBody when overlayPanel is in other panel components like layout, dialog ...

300

PrimeFaces User’s Guide

3.72 Panel

Panel is a grouping component with content toggle, close and menu integration.

About Barca |- X

FC Barcelona is one of only three clubs never to have been relegated from La Liga and is the most
successful club in Spanish football along with Real Madrid, having won twenty La Liga titles, a
record twenty-five Spanish Cups, eight Spanish Super Cups, four Eva Duarte Cups and two
League Cups. They are also one of the most successful clubs in European football having won
fourteen official major trophies in total, including ten UEFA competitions. They have won three
UEFA Champions League titles, a record four UEFA Cup Winners' Cups, a record three InterCities
Fairs Cups (the forerunner to the UEFA Europa League), three UEFA Super Cups and one FIFA
Club World Cup. The club is also the only European side to have played continental football in
every season since its inception in 18955.

Info

Tag panel

Component Class org.primefaces.component.panel.Panel

Component Type org.primefaces.component.Panel

Component Family org.primefaces.component

Renderer Type org.primefaces.component.PanelRenderer

Renderer Class org.primefaces.component.panel.PanelRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

header null String Header text

footer null String Footer text

toggleable FALSE Boolean Makes panel toggleable.

toggleSpeed 1000 Integer Speed of toggling in milliseconds

collapsed FALSE Boolean Renders a toggleable panel as collapsed.

style null String Style of the panel

styleClass null String Style class of the panel

301

PrimeFaces User’s Guide

Name Default Type Description
closable FALSE Boolean Make panel closable.
closeSpeed 1000 Integer Speed of closing effect in milliseconds
visible TRUE Boolean Renders panel as visible.
closeTitle null String Tooltip for the close button.
toggleTitle null String Tooltip for the toggle button.
menuTitle null String Tooltip for the menu button.
toggleOrientation vertical String Defines the orientation of the toggling, valid

values are vertical and horizontal.

widgetVar null String Name of the client side widget

Getting started with Panel

Panel encapsulates other components.

<p:panel>

//Child components here...

</p:panel>

Header and Footer

Header and Footer texts can be provided by header and footer attributes or the corresponding
facets. When same attribute and facet name are used, facet will be used.

</p:panel>

<p:panel header="Header Text">
<f:facet name="footer">
<h:outputText value="Footer Text" />
</f:facet>

//Child components here. ..

Ajax Behavior Events

Panel provides custom ajax behavior events for toggling and closing features.

Event Listener Parameter Fired
toggle org.primefaces.event. ToggleEvent When panel is expanded or collapsed.
close org.primefaces.event.CloseEvent When panel is closed.

302

PrimeFaces User’s Guide

Popup Menu

Panel has built-in support to display a fully customizable popup menu, an icon to display the menu
is placed at top-right corner. This feature is enabled by defining a menu component and defining it
as the options facet.

\

<p:panel closable="true">
//Child components here...

<f:facet name="options">
<p :menu>
//Menuitems
</p:menu>
</f:facet>
</p:panel>

Custom Action

If you’d like to add custom actions to panel titlebar, use actions facet with icon markup;

<p:panel>
<f:facet name="actions">
<h:commandLink styleClass="ui-panel-titlebar-icon
ui-corner-all ui-state-default">
<h:outputText styleClass="ui-icon ui-icon-help" />
</h:commandLink>
</f:facet>
//content
</p:panel>

Skinning Panel

Panel resides in a main container which style and styleClass attributes apply. Following is the list of
structural style classes;

Style Class Applies
.ui-panel Main container element of panel
.ui-panel-titlebar Header container
.ui-panel-title Header text
.ui-panel-titlebar-icon Option icon in header
.ui-panel-content Panel content
.ui-panel-footer Panel footer

As skinning style classes are global, see the main theming section for more information.

303

3.73 PanelGrid

PrimeFaces User’s Guide

PanelGrid is an extension to the standard panelGrid component with additional features such as
theming and colspan-rowspan.

Conf. Semifinals

1995-96 NBA Playoffs

Conf. Finals NBA Finals Champion

Seattle 4
Seattle 4
Houston 0
Seattle 2
Utah 4
Utah 3
San Antonio 2
Chicago
Chicago 4
Chicago 4
New York 1
Chicago | 4
Atlanta 1
Orlando 0
Orlando 4
Finals MVP
Season MVP Michael Jordan (Chicago)
Top Scorer
Info
Tag panelGrid

Component Class

org.primefaces.component.panelgrid.PanelGridRenderer

Component Type

org.primefaces.component.PanelGrid

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.PanelGridRenderer

Renderer Class

org.primefaces.component.panelgrid.PanelGridRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean | Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

304

PrimeFaces User’s Guide

Name Default Type Description
columns 0 Integer Number of columns in grid.
style null String Inline style of the panel.
styleClass null String Style class of the panel.
columnClasses null String Comma separated list of column style classes.

Getting started with PanelGrid

Basic usage of panelGrid is same as the standard one.

<p:panelGrid columns="2">
<h:outputLabel for="firstname" value="Firstname:" />
<p:inputText id="firstname" value="#{bean.firstname}" label="Firstname" />

<h:outputLabel for="surname" value="Surname:" />
<p:inputText id="surname" value="#{bean.surname}" label="Surname"/>
</p:panelGrid>

Header and Footer

PanelGrid provides facets for header and footer content.

<p:panelGrid columns="2">
<f:facet name="header">
Basic PanelGrid
</f:facet>

<h:outputLabel for="firstname" value="Firstname: *" />
<p:inputText id="firstname" value="#{bean.firstname}" label="Firstname" />

<h:outputlLabel for="surname" value="Surname: *" />
<p:inputText id="surname" value="#{bean.surname}" label="Surname"/>

<f:facet name="footer">
<p:commandButton type="button" value="Save" icon="ui-icon-check" />
</f:facet>
</p:panelGrid>

Basic PanelGrid

Firstname: *

Surname: *

+ Save

305

PrimeFaces User’s Guide

Rowspan and Colspan

PanelGrid supports rowspan and colspan options as well, in this case row and column markup
should be defined manually.

<p:panelGrid>
<p:row>
<p:column rowspan="3">AAA</p:column>
<p:column colspan="4">BBB</p:column>
</p:row>

<p:row>
<p:column colspan="2">CCC</p:column>
<p:column colspan="2">DDD</p:column>
</p:row>

<p:row>
<p:column>EEE</p:column>
<p:column>FFF</p:column>
<p:column>GGG</p: column>
<p: column>HHH</p: column>
</p:row>
</p:panelGrid>

-)

Skinning PanelGrid
PanelGrid resides in a main container which style and styleClass attributes apply.

Following is the list of structural style classes;

Style Class Applies
.ui-panelgrid Main container element of panelGrid.
.ui-panelgrid-header Header.
.ui-panelgrid-footer Footer.

As skinning style classes are global, see the main theming section for more information.

306

PrimeFaces User’s Guide

3.74 PanelMenu

PanelMenu is a hybrid component of accordionPanel and tree components.

» Ajax Menuitems

‘ v Non-Ajax Menuitem ‘
x Delete
‘ ~ Navigations ‘
v 2 Links
v & PrimeFaces
Home
0 Docs
4 Download
Support

1 Mobile

Info

Tag panelMenu

Component Class org.primefaces.component.panelmenu.PanelMenu

Component Type org.primefaces.component.PanelMenu

Component Family org.primefaces.component

Renderer Type org.primefaces.component.PanelMenuRenderer

Renderer Class

org.primefaces.component.panelmenu.PanelMenuRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

model null MenuModel | MenuModel instance to build menu dynamically.

style null String Inline style of the component.

styleClass null String Style class of the component.

widgetVar null String Name of the client side widget.

307

PrimeFaces User’s Guide

Getting started with PanelMenu

PanelMenu consists of submenus and menuitems. First level of submenus are rendered as accordion
panels and descendant submenus are rendered as tree nodes. Just like in any other menu component,
menuitems can be utilized to do ajax requests, non-ajax requests and simple GET navigations.

"

<p:panelMenu style="width:200px">

</p:panelMenu>

~

<p:submenu label="Ajax Menuitems">
<p:menuitem value="Save" actionListener="#{buttonBean.save}" />
<p:menuitem value="Update" actionlListener="#{buttonBean.update}" />
</p: submenu>

<p:submenu label="Non-Ajax Menuitem">
<p:menuitem value="Delete" actionlListener="#{buttonBean.delete}"
ajax="false"/>
</p: submenu>

<p:submenu label="Navigations" >
<p:submenu label="Links" icon="ui-icon-extlink">
<p:submenu label="PrimeFaces" icon="ui-icon-heart">
<p:menuitem value="Home" url="http://www.primefaces.org" />
<p:menuitem value="Docs" url="http://www.primefaces.org/..." />
<p:menuitem value="Support" url="http://www.primefaces.org/..." />
</p: submenu>
</p: submenu>
<p:menuitem value="Mobile" outcome="/mobile/index" />
</p: submenu>

Skinning

PanelMenu resides in a main container which style and styleClass attributes apply.

Following is the list of structural style classes;

Style Class Applies
.ui-panelmenu Main container element.
.ui-panelmenu-header Header of a panel.
.ui-panelmenu-content Footer of a panel.

.ui-panelmenu .ui-menu-list Tree container.
.ui-panelmenu .ui-menuitem A menuitem in tree.

As skinning style classes are global, see the main theming section for more information.

308

PrimeFaces User’s Guide

3.75 Password

Password component is an extended version of standard inputSecret component with theme
integration and strength indicator.

Basic:
Feedback: = eessssssscs
Medium
Feedback (Turkish):
Inline Feedback:
Please enter a password
Info
Tag password
Component Class org.primefaces.component.password.Password
Component Type org.primefaces.component.Password
Component Family org.primefaces.component
Renderer Type org.primefaces.component.PasswordRenderer
Renderer Class org.primefaces.component.password.PasswordRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean
value null Object Value of the component than can be either an EL
expression of a literal text
converter null Converter/ An el expression or a literal text that defines a
String converter for the component. When it’s an EL
expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id
immediate FALSE Boolean When set true, process validations logic is executed at
apply request values phase for this component.
required FALSE boolean Marks component as required

309

PrimeFaces User’s Guide

Name Default Type Description

validator null MethodExpr | A method expression that refers to a method
validationg the input.

valueChangeListener | null MethodExpr | A method binding expression that refers to a method
for handling a valuechangeevent

requiredMessage null String Message to be displayed when required field
validation fails.
converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.
feedback FALSE Boolean Enables strength indicator.
inline FALSE boolean Displays feedback inline rather than using a popup.
promptLabel Please String Label of prompt.
enter a
password
level 1 Integer Level of security.
weakLabel Weak String Label of weak password.
goodLabel Good String Label of good password.
strongLabel Strong String Label of strong password.
redisplay FALSE Boolean Whether or not to display previous value.
match null String Id qf another password component to match value
against.
widgetVar null String Name of the client side widget.
accesskey null String Access key that when pressed transfers focus to the

input element.

alt null String Alternate textual description of the input field.
autocomplete null String Controls browser autocomplete behavior.
dir null String Direction indication for text that does not inherit

directionality. Valid values are LTR and RTL.

disabled FALSE Boolean Disables input field
label null String A localized user presentable name.
lang null String Code describing the language used in the generated

markup for this component.

maxlength null Integer Maximum number of characters that may be entered
in this field.
onblur null String Client side callback to execute when input element

loses focus.

310

PrimeFaces User’s Guide

Name Default Type Description

onchange null String Client side callback to execute when input element
loses focus and its value has been modified since
gaining focus.

onclick null String Client side callback to execute when input element is
clicked.

ondblclick null String Client side callback to execute when input element is
double clicked.

onfocus null String Client side callback to execute when input element

receives focus.

onkeydown null String Client side callback to execute when a key is pressed
down over input element.

onkeypress null String Client side callback to execute when a key is pressed
and released over input element.

onkeyup null String Client side callback to execute when a key is released
over input element.

onmousedown null String Client side callback to execute when a pointer button
is pressed down over input element

onmousemove null String Client side callback to execute when a pointer button
is moved within input element.

onmouseout null String Client side callback to execute when a pointer button
is moved away from input element.

onmouseover null String Client side callback to execute when a pointer button
is moved onto input element.

onmouseup null String Client side callback to execute when a pointer button
is released over input element.

onselect null String Client side callback to execute when text within input
element is selected by user.

readonly FALSE Boolean Flag indicating that this component will prevent
changes by the user.

size null Integer Number of characters used to determine the width of
the input element.

style null String Inline style of the input element.

styleClass null String Style class of the input element.

tabindex null Integer Position of the input element in the tabbing order.
title null String Advisory tooltip informaton.

311

PrimeFaces User’s Guide

Getting Started with Password

Password is an input component and used just like a standard input text. When feedback option is
enabled a password strength indicator is displayed.

<:<p:password value="#{bean.password}" feedback="truelfalse" /> :)

4)

public class Bean {
private String password;

public String getPassword() { return password; }
public void setPassword(String password) { this.password = password;}
}

118N

Although all labels are in English by default, you can provide custom labels as well. Following
password gives feedback in Turkish.

<p:password value="#{bean.password}" promptLabel="Lutfen sifre giriniz"
weakLabel="Zay1f" goodLabel="Orta seviye" stronglLabel="Gliclu" feedback= "true"/>

Inline Strength Indicator

By default strength indicator is shown in an overlay, if you prefer an inline indicator just enable
inline mode.

<<p:passwor'd value="#{mybean.password}" inline="true" feedback= "true"/>)

Confirmation

Password confirmation is a common case and password provides an easy way to implement. The
other password component’s id should be used to define the match option.

<p:password id="pwdl" value="#{passwordBean.password6}" feedback="false"
match="pwd2" label="Password 1" required="true"/>

<p:password id="pwd2" value="#{passwordBean.password6}" feedback="false"
label="Password 2" required="true"/>

312

PrimeFaces User’s Guide

Skinning

Structural selectors for password is as follows;

Name Applies
.ui-password Input element.
.ui-password-panel Overlay panel of strength indicator.
.ui-password-meter Strength meter.
.ui-password-info Strength label.

As skinning style classes are global, see the main theming section for more information.

313

3.76 PhotoCam

PrimeFaces User’s Guide

PhotoCam is used to take photos with webcam and send them to the JSF backend model.

Info

Tag

photoCam

Component Class

org.primefaces.component.photocam.PhotoCam

Component Type

org.primefaces.component.PhotoCam

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.PhotoCamRenderer

Renderer Class

org.primefaces.component.photocam.PhotoCamRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component than can be either an EL
expression of a literal text

converter null Converter/ An el expression or a literal text that defines a

String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate FALSE Boolean When set true, process validations logic is executed at
apply request values phase for this component.

required FALSE boolean Marks component as required

validator null MethodBind | A method binding expression that refers to a method

ing validationg the input

valueChangeListener | null MethodExpr | A method binding expression that refers to a method
for handling a valuechangeevent

requiredMessage null String Message to be displayed when required field validation
fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

314

PrimeFaces User’s Guide

Name Default Type Description
widgetVar null String Name of the client side widget.
style null String Inline style of the component.
styleClass null String Style class of the component.
process null String Identifiers of components to process during capture.
update null String Identifiers of components to update during capture.
listener null MethodExpr | Method expression to listen to capture events.

Getting started with PhotoCam

Capture is triggered via client side api’s capture method. Also a method expression is necessary to
invoke when an image is captured. Sample below captures an image and saves it to a directory.

<h:form>
<p:photoCam widgetVar="pc" listener="#{photoCamBean.oncapture}"update="photos"/>

<p:commandButton type="button" value="Capture" onclick="pc.capture()"/>
</h:form>

J

public class PhotoCamBean {

public void oncapture(CaptureEvent capturekEvent) {
byte[] data = captureEvent.getData();

ServletContext servletContext = (ServletContext)
FacesContext.getCurrentInstance().getExternalContext().getContext();

String newFileName = servletContext.getRealPath("") + File.separator +
"photocam” + File.separator + "captured.png";

FileImageOutputStream imageOutput;

try {
imageQOutput = new FileImageOutputStream(new File(newFileName));
imageQutput.write(data, @, data.length);
imageQutput.close();

ks

catch(Exception e) {
throw new FacesException("Error in writing captured image.");

}

C Y,

Notes

« PhotoCam is a flash, canvas and javascript solution.
« It is not supported in IE at the moment and this will be worked on in future versions.

315

PrimeFaces User’s Guide

3.77 PickList

PickList is used for transferring data between two different collections.

Available Starting
@ essi- 1
1 m § ’ - T
@ Iniesta -8 F
t m > +
t & Villa-7 ; :
& Alves -2
Info
Tag pickList
Component Class org.primefaces.component.picklist.Panel
Component Type org.primefaces.component.PickList
Component Family org.primefaces.component
Renderer Type org.primefaces.component.PickListRenderer
Renderer Class org.primefaces.component.picklist.PickListRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean | Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean
value null Object Value of the component than can be either an EL
expression of a literal text
converter null Converte | An el expression or a literal text that defines a
r/String | converter for the component. When it’s an EL
expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id
immediate FALSE Boolean | When set true, process validations logic is executed
at apply request values phase for this component.
required FALSE Boolean | Marks component as required
validator null Method | A method binding expression that refers to a method
Expr validationg the input

316

PrimeFaces User’s Guide

Name Default Type Description
valueChangeListener null Method | A method binding expression that refers to a method
Expr for handling a valuchangeevent
requiredMessage null String Message to be displayed when required field
validation fails.
converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.
var null String Name of the iterator.
itemLabel null String Label of an item.
itemValue null Object Value of an item.
style null String Style of the main container.
styleClass null String Style class of the main container.
widgetVar null String Name of the client side widget.
disabled FALSE Boolean | Disables the component.
effect null String Name of the animation to display.
effectSpeed null String Speed of the animation.
addLabel Add String Title of add button.
addAllLabel Add All String Title of add all button.
removeLabel Remove String Title of remove button.
removeAllLabel Remove All | String Title of remove all button.
moveUpLabel Move Up String Title of move up button.
moveTopLabel Move Top String Title of move top button.
moveDownLabel Move Down | String Title of move down button.
moveButtomLabel Move String Title of move bottom button.
Buttom
showSourceControls FALSE String Specifies visibility of reorder buttons of source list.
showTargetControls FALSE String Specifies visibility of reorder buttons of target list.
onTransfer null String Client side callback to execute when an item is
transferred from one list to another.
label null String A localized user presentable name.
itemDisabled FALSE Boolean | Specified if an item can be picked or not.
showSourceFilter FALSE Boolean | Displays and input filter for source list.
showTargetFilter FALSE Boolean | Displays and input filter for target list.

317

PrimeFaces User’s Guide

Name Default Type Description
filterMatchMode starts With String Match mode for filtering, valid values are
startsWith, contains, endsWith and custom.
filterFunction null String Name of the javascript function for custom filtering.
showCheckbox FALSE Boolean When true, a checkbox is displayed next to each
item.

Getting started with PickList

You need to create custom model called org.primefaces.model. DualListModel to use PickList. As
the name suggests it consists of two lists, one is the source list and the other is the target. As the first
example we’ll create a DualListModel that contains basic Strings.

~

public class PickListBean {
private DuallistModel<String> cities;
public PickListBean() {

List<String> source
List<String> target

new ArraylList<String>Q);
new ArraylList<String>Q);

citiesSource.add("Istanbul™);
citiesSource.add("Ankara™);
citiesSource.add("Izmir™);
citiesSource.add("Antalya");
citiesSource.add("Bursa™);

//more cities

cities = new DuallListModel<String>(citiesSource, citiesTarget);

}

public DuallistModel<String> getCities() {
return cities;

}

public void setCities(DuallistModel<String> cities) {
this.cities = cities;
}
N y

And bind the cities dual list to the picklist;

<p:pickList value="#{pickListBean.cities}" var="city"
itemLabel="#{city}" itemValue="#{city}">

When the enclosed form is submitted, the dual list reference is populated with the new values and
you can access these values with DualListModel.getSource() and DualListModel.getTarget() api.

318

PrimeFaces User’s Guide

POJOs

Most of the time you would deal with complex pojos rather than simple types like String.
This use case is no different except the addition of a converter.

Following pickList displays a list of players(name, age ...).

public class PickListBean {
private DuallListModel<Player> players;

public PickListBean() {
//Players
List<Player> source = new ArraylList<Player>(Q);
List<Player> target = new ArraylList<Player>(Q);

source.add(new Player("Messi", 10));
//more players

players = new DuallListModel<Player>(source, target);

}

public DuallListModel<Player> getPlayers() {
return players;

%

public void setPlayers(DuallListModel<Player> players) {
this.players = players;

%

}
(& /

<p:pickList value="#{pickListBean.players}" var="player"
itemLabel="#{player.name}" itemValue="#{player}" converter="player">

PlayerConverter in this case should implement javax.faces.convert.Converter contract and
implement getAsString, getAsObject methods. Note that a converter is always necessary for
primitive types like long, integer, boolean as well.

In addition custom content instead of simple strings can be displayed by using columns.

<p:pickList value="#{pickListBean.players}"
var="player" iconOnly="true" effect="bounce"
itemValue="#{player}" converter="player"
showSourceControls="true" showTargetControls="true">
<p:column style="width:25%">
<p:graphicImage value="/images/barca/#{player.photo}"/>
</p:column>
<p:column style="width:75%" ;>
#{player.name} - #{player.number}
</p:column>
</p:pickList>

319

PrimeFaces User’s Guide

Reordering

PickList support reordering of source and target lists, these are enabled by showSourceControls and
showTargetControls options.

Effects

An animation is displayed when transferring when item to another or reordering a list, default effect
is fade and following options are available to be applied using effect attribute;

+ blind

* bounce
« clip

« drop

« explode
« fold

« highlight
* puff

* pulsate
- scale

« shake

. size

« slide

effectSpeed attribute is used to customize the animation speed, valid values are slow, normal and

fast.
Captions

Caption texts for lists are defined with facets named sourceCaption and targetCaption;

<p:pickList value="#{pickListBean.cities}" var="city"
itemLabel="#{city}" itemValue="#{city}" onTransfer="handleTransfer(e)">
<f:facet name="sourceCaption">Available</f:facet>
<f:facet name="targetCaption">Selected</f:facet>
</p:pickList>

Filtering

PickList provides built-in client side filtering. Filtering is enabled by setting the corresponding
filtering attribute of a list. For source list this is showSourceFilter and for target list it is
showTargetFilter. Default match mode is startsWith and contains, endsWith are also available
options.

If you need to a custom match mode set filterMatchMode to custom and write a javascript function
that takes itemLabel and filterValue as parameters. Return false to hide an item and true to display.

320

PrimeFaces User’s Guide

\

<p:pickList value="#{pickListBean.cities}" var="city"
itemLabel="#{city}" itemValue="#{city}"
showSourceFilter="true" showTargetFilter="true"
filterMatchMode="custom" filterMatchMode="myfilter">
\\5/p:pickList>

-

AN

function myfilter(itemLabel, filterValue) {
//return true or false

U Y,

onTransfer

If you’d like to execute custom javascript when an item is transferred, bind your javascript function
to onTransfer attribute.

~

<p:pickList value="#{pickListBean.cities}" var="city"
itemLabel="#{city}" itemValue="#{city}" onTransfer="handleTransfer(e)">

_

~

<script type="text/javascript">
function handleTransfer(e) {
//item = e.item
//fromList = e.from
//tolist = e.tolist
//type = e.type (type of transfer; command, dblclick or dragdrop)
}

</script>

Ajax Behavior Events

PickList provides transfer as the default and only ajax behavior event that is fired when an item is
moved from one list to the other. Example below demonstrates how to use this event.

<p:pickList value="#{pickListBean.cities}" var="city"
itemLabel="#{city}" itemValue="#{city}">
<p:ajax event="transfer" listener="#{pickListBean.handleTransfer}" />
</p:pickList>

public class PickListBean {
//DuallistModel code

public void handleTransfer(TransferEvent event) {
//event.getltems() : List of items transferred
//event.isAdd() : Is transfer from source to target
//event.isRemove() : Is transfer from target to source

321

Skinning

PrimeFaces User’s Guide

PickList resides in a main container which style and styleClass attributes apply.

Following is the list of structural style classes;

Style Class

Applies

.ui-picklist

Main container element(table) of picklist

.ui-picklist-list

Lists of a picklist

.ui-picklist-list-source

Source list

.ui-picklist-list-target

Target list

.ui-picklist-source-controls

Container element of source list reordering controls

.ui-picklist-target-controls

Container element of target list reordering controls

.ui-picklist-button

Buttons of a picklist

.ui-picklist-button-move-up

Move up button

.ui-picklist-button-move-top

Move top button

.ui-picklist-button-move-down

Move down button

.ui-picklist-button-move-bottom

Move bottom button

.ui-picklist-button-add

Add button

.ui-picklist-button-add-all

Add all button

.ui-picklist-button-remove-all

Remove all button

.ui-picklist-button-add

Add button

As skinning style classes are global, see the main theming section for more information.

322

3.78 Poll

PrimeFaces User’s Guide

Poll is an ajax component that has the ability to send periodical ajax requests.

Info

Tag

poll

Component Class

org.primefaces.component.poll.Poll

Component Type

org.primefaces.component.Poll

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.PollRenderer

Renderer Class

org.primefaces.component.poll.PollRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean.

widgetVar null String Name of the client side widget.

interval 2 Integer Interval in seconds to do periodic ajax requests.

update null String Component(s) to be updated with ajax.

listener null MethodExpr | A method expression to invoke by polling.

immediate FALSE Boolean Boolean value that determines the phaseld, when true
actions are processed at apply request values, when false
at invoke application phase.

async FALSE Boolean When set to true, ajax requests are not queued.

process null String Component id(s) to process partially instead of whole
view.

onstart null String Javascript handler to execute before ajax request is
begins.

oncomplete null String Javascript handler to execute when ajax request is
completed.

onsuccess null String Javascript handler to execute when ajax request succeeds.

onerror null String Javascript handler to execute when ajax request fails.

323

PrimeFaces User’s Guide

Name Default Type Description
global TRUE Boolean Global ajax requests are listened by ajaxStatus
component, setting global to false will not trigger
ajaxStatus.
partialSubmit FALSE Boolean Enables serialization of values belonging to the partially

processed components only.

autoStart TRUE Boolean In autoStart mode, polling starts automatically on page
load, to start polling on demand set to false.

stop FALSE Boolean Stops polling when true.

Getting started with Poll

Poll below invokes increment method on CounterBean every 2 seconds and #x¢ _count is updated
with the new value of the count variable. Note that poll must be nested inside a form.

<h:outputText id="txt_count" value="#{counterBean.count}" />

<p:poll listener="#{counterBean.increment}" update="txt_count" />

4)

public class CounterBean {
private int count;

public void increment() {
count++;

}

public int getCount() {
return this.count;

}

public void setCount(int count) {
this.count = count;

}
& Y,

Tuning timing

By default the periodic interval is 2 seconds, this is changed with the interval attribute. Following
poll works every 5 seconds.

<h:outputText id="txt_count" value="#{counterBean.count}" />

<p:poll listener="#{counterBean.increment}" update="txt_count" interval="5" />

324

PrimeFaces User’s Guide

Start and Stop

Poll can be started and stopped using client side api;

-

<h:form>
<h:outputText id="txt_count" value="#{counterBean.count}" />

<p:poll interval="5" actionlListener="#{counterBean.increment}"
update="txt_count" widgetVar="myPoll" autoStart="false" />

Start
Stop

</h:form>

-)

Or bind a boolean variable to the stop attribute and set it to false at any arbitrary time.

325

PrimeFaces User’s Guide

3.79 Printer

Printer allows sending a specific JSF component to the printer, not the whole page.

Info
Tag printer
Behavior Class org.primefaces.component.behavior.Printer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.
binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean
target null String Id of the component to print.

Getting started with the Printer

Printer is attached to any command component like a button or a link. Examples below
demonstrates how to print a simple output text or a particular image on page;

\

<h:commandButton id="btn" value="Print">

<p:printer target="output" />
</h:commandButton>
<h:outputText id="output" value="PrimeFaces Rocks!" />

<h:outputlLink id="1nk" value="#">

<p:printer target="image" />

<h:outputText value="Print Image" />
</h:outputLink>
<p:graphicImage id="image" value="/images/naturel.jpg" />

-)

326

PrimeFaces User’s Guide

3.80 ProgressBar

ProgressBar is a process status indicator that can either work purely on client side or interact with
server side using ajax.

Client Side ProgressBar

Cancel

Advanced Ajax ProgressBar

Cancel

34%

Info

Tag propressBar

Component Class org.primefaces.component.progressbar.ProgressBar

Component Type org.primefaces.component.Progressbar

Component Family org.primefaces.component

Renderer Type org.primefaces.component.ProgressBarRenderer

Renderer Class org.primefaces.component.progressbar.ProgressBarRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

widgetVar null String Name of the client side widget

value 0 Integer Value of the progress bar

disabled FALSE Boolean Disables or enables the progressbar

ajax FALSE Boolean Specifies the mode of progressBar, in ajax mode
progress value is retrieved from a backing bean.

interval 3000 Integer Intedrval in seconds to do periodic requests in ajax
mode.

327

PrimeFaces User’s Guide

Name Default Type Description
style null String Inline style of the main container element.
styleClass null String Style class of the main container element.
labelTemplate {value} String Template of the progress label.
displayOnly FALSE Boolean Enables static display mode.

Getting started with the ProgressBar

ProgressBar has two modes, "client"(default) or "ajax". Following is a pure client side progressBar.

~

<p:progressBar widgetVar="pb" />

<p:commandButton value="Start" type="button" onclick="start()" />
<p:commandButton value="Cancel" type="button" onclick="cancel()" />

<script type="text/javascript">
function start() {
this.progressInterval = setInterval(function(){
pb.setValue(pbClient.getValue() + 10);
3, 2000);
}

function cancel() {
clearInterval(this.progressInterval);
pb.setValue(0);

}

</script>

-)

Ajax Progress

Ajax mode is enabled by setting ajax attribute to true, in this case the value defined on a managed
bean is retrieved periodically and used to update the progress.

<<p:pr‘ogressBar ajax="true" value="#{progressBean.progress}" />)

public class ProgressBean {
private int progress;

public int getProgress() {
return progress;

}

public void setProgress(int progress) {
this.progress = progress;

}

328

PrimeFaces User’s Guide

Interval
ProgressBar is based on polling and 3000 milliseconds is the default interval for ajax progress bar

meaning every 3 seconds progress value will be recalculated. In order to set a different value, use
the interval attribute.

<<p:pr‘ogressBar interval="5000" /> >

Ajax Behavior Events

ProgressBar provides complete as the default and only ajax behavior event that is fired when the
progress is completed. Example below demonstrates how to use this event.

4)

public class ProgressBean {

private int progress;

public void handleComplete() {
//Add a faces message

}

public int getProgress() {
return progress;

}

public void setProgress(int progress) {
this.progress = progress;
}
ks

- J

<p:progressBar value="#{progressBean.progress}" ajax="true">
<p:ajax event="complete" listener="#{progressBean.handleComplete}"
update="messages" />
</p:progressBar>

<p:growl id="messages" />

Display Only

Assume you have a process like a ticket purchase that spans various pages where each page has
different use cases such as customer info, seat selection, billing, payment and more. In order to
display static value of the process on each page, you can use a static progressBar.

<<p:pr'ogressBar value="50" displayOnly="true" /> >

329

PrimeFaces User’s Guide

Client Side API

Widget: PrimeFaces.widget.ProgressBar

Method Params Return Type Description
getValue() - Number Returns current value
setValue(value) value: Value to display void Sets current value
start() - void Starts ajax progress bar
cancel() - void Stops ajax progress bar

Skinning

ProgressBar resides in a main container which style and styleClass attributes apply. Following is the
list of structural style classes;

Style Class Applies
.ui-progressbar Main container.
.ui-progressbar-value Value of the progressbar
.ui-progressbar-label Progress label.

As skinning style classes are global, see the main theming section for more information.

330

PrimeFaces User’s Guide

3.81 RadioButton

RadioButton is a helper component of SelectOneRadio to implement custom layouts.

Info

Tag radioButton

Component Class | org.primefaces.component.radiobutton.RadioButton

Component Type org.primefaces.component.RadioButton

Component Family | org.primefaces.component

Renderer Type org.primefaces.component.RadioButtonRenderer
Renderer Class org.primefaces.component.radiobutton.RadioButtonRenderer
Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side

UlIComponent instance in a backing bean

disabled FALSE Boolean Disabled the component.

itemIndex null Integer Index of the selectltem of selectOneRadio.
onchange null String Client side callback to execute on state change.

for null String Id of the selectOneRadio to attach to.

style null String Inline style of the component.

styleClass null String Style class of the container.

tabindex null String Specifies the tab order of element in tab navigation.

Getting started with RadioButton

See custom layout part in SelectOneRadio section for more information.

331

3.82 Rating

PrimeFaces User’s Guide

Rating component features a star based rating system.

Info

Basic:

Callback:

Ajax Rate:

Readonly:

Disabled

Tag

rating

Component Class

org.primefaces.component.rating.Rating

Component Type

org.primefaces.component.Rating

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.RatingRenderer

Renderer Class

org.primefaces.component.rating.RatingRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component than can be either an EL
expression of a literal text

converter null Converter/ An el expression or a literal text that defines a

String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

332

PrimeFaces User’s Guide

Name Default Type Description

immediate FALSE Boolean Boolean value that specifies the lifecycle phase
the valueChangeEvents should be processed,
when true the events will be fired at "apply
request values", if immediate is set to false,
valueChange Events are fired in "process
validations"
phase

required FALSE Boolean Marks component as required

validator null MethodExpr | A method binding expression that refers to a
method validationg the input

valueChangeListener null MethodExpr | A method binding expression that refers to a
method for handling a valuchangeevent

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

widgetVar null String Name of the client side widget.

stars 5 Integer Number of stars to display

disabled FALSE Boolean Disables user interaction

readonly FALSE Boolean Disables user interaction without disabled visuals.

onRate null String Client side callback to execute when rate happens.

style null String Inline style of the component.

styleClass null String Style class of the component.

cancel TRUE Boolean When enabled, displays a cancel icon to reset.

Getting Started with Rating

Rating is an input component that takes a double variable as it’s value.

N

//getter-setter

public class RatingBean {

private Integer rating;

<<p :rating value="#{ratingBean.rating}" />

333

PrimeFaces User’s Guide

Number of Stars

Default number of stars is 5, if you need less or more stars use the stars attribute. Following rating
consists of 10 stars.

(:<p:rating value="#{ratingBean.rating}" stars="10"/> :)

Display Value Only

In cases where you only want to use the rating component to display the rating value and disallow
user interaction, set readonly to true. Using disabled attribute does the same but adds disabled
visual styles.

Ajax Behavior Events
Rating provides rate and cancel as ajax behavior events. A defined listener for rate event will be

executed by passing an org.primefaces.event.RateEvent as a parameter and cancel event will be
invoked with no parameter.

<p:rating value="#{ratingBean.rating}">
<p:ajax event="rate" listener="#{ratingBean.handleRate}" update="msgs" />
<p:ajax event="cancel" listener="#{ratingBean.handleCancel}" update="msgs" />
</p:rating>
<p:messages id="msgs" />

4)

public class RatingBean {
private Integer rating;

public void handleRate(RateEvent rateEvent) {
Integer rate = (Integer) rateEvent.getRating();
//Add facesmessage

}

public void handleCancel() {
//Add facesmessage

}

//getter-setter
3

- J

Client Side Callbacks

onRate is called when a star is selected with value as the only parameter.

<<p:rating value="#{ratingBean.rating}" onRate="alert('You rated: ' + value)" />)

334

Client Side API

Widget: PrimeFaces.widget.Rating

PrimeFaces User’s Guide

Method Params Return Type Description
getValue() - Number Returns the current value
setValue(value) value: Value to set void Updates rating value with provided one.
disable() - void Disables component.
enable() - void Enables component.
reset() - void Clears the rating.

Skinning

ProgressBar resides in a main container which style and styleClass attributes apply. Following is the
list of structural style classes;

Style Class

Applies

.ui-rating

Main container element.

.ui-rating-cancel

Cancel icon

.ui-rating

Default star

.ui-rating-on

Active star

335

3.83 RemoteCommand

PrimeFaces User’s Guide

RemoteCommand provides a way to execute JSF backing bean methods directly from javascript.

Info

Tag

remoteCommand

Component Class

org.primefaces.component.remotecommand.RemoteCommand

Component Type

org.primefaces.component.RemoteCommand

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.RemoteCommandRenderer

Renderer Class

org.primefaces.component.remotecommand.RemoteCommandRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE Boolea Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean

action null MethodExpr | A method expression that’d be processed in the partial
request caused by uiajax.

actionListener | null MethodExpr | An actionlistener that’d be processed in the partial request
caused by uiajax.

immediate FALSE Boolean Boolean value that determines the phaseld, when true
actions are processed at apply request values, when false
at invoke_application phase.

name null String Name of the command

async FALSE Boolean When set to true, ajax requests are not queued.

process null String Component(s) to process partially instead of whole view.

update null String Component(s) to update with ajax.

onstart null String Javascript handler to execute before ajax request is begins.

oncomplete null String Javascript handler to execute when ajax request is
completed.

onsuccess null String Javascript handler to execute when ajax request succeeds.

onerror null String Javascript handler to execute when ajax request fails.

336

PrimeFaces User’s Guide

Name Default Type Description

global TRUE Boolean Global ajax requests are listened by ajaxStatus component,
setting global to false will not trigger ajaxStatus.

processed components only.

partialSubmit FALSE Boolean Enables serialization of values belonging to the partially

autoRun FALSE Boolean When enabled command is executed on page load.

Getting started with RemoteCommand

RemoteCommand is used by invoking the command from your javascript code.

"

<p:remoteCommand name="increment" actionlListener="#{counter.increment}
out="count" />

<h:outputText id="count" value="#{counter.count}" />

<script type="text/javascript">
function customfunction() {
//your custom code

increment(); //makes a remote call

}

</script>

J

That’s it whenever you execute your custom javascript function(eg customfunction()), a remote call
will be made, actionListener is processed and output text is updated. Note that remoteCommand

must be nested inside a form.

Passing Parameters

Remote command can send dynamic parameters in the following way;

(incr‘ement([{name: 'x", value:10}, {name:'y', value:20}]1);

Run on Load

If you’d like to run the command on page load, set autoRun to true.

337

PrimeFaces User’s Guide

3.84 Resetinput

Input components keep their local values at state when validation fails. ResetInput is used to clear
the cached values from state so that components retrieve their values from the backing bean model
instead.

Info

Tag resetInput

ActionListener Class | org.primefaces.component.resetinput.ResetInputActionListener

Attributes
Name Default Type Description
target null String Comma or white space separated list of
component identifiers.

Getting started with Resetinput

ResetInput is attached to action source components like commandButton and commandLink.

<h:form id="form">
<p:panel id="panel" header="New User" style="margin-bottom:10px;">

<p:messages id="messages" />

<h:panelGrid columns="2">
<h:outputLabel for="firstname" value="Firstname: *" />
<p:inputText id="firstname" value="#{pprBean.firstname}"

required="true" label="Firstname">
<f:validateLength minimum="2" />

</p:inputText>

<h:outputLabel for="surname" value="Surname: *" />
<p:inputText id="surname" value="#{pprBean.surname}"
required="true" label="Surname"/>
</h:panelGrid>
</p:panel>

<p:commandButton value="Submit" update="panel"
actionListener="#{pprBean.savePerson}" />

<p:commandButton value="Reset Tag" update="panel" process="@this">
<p:resetlnput target="panel" />

</p: commandButton>

<p:commandButton value="Reset Non-Ajax"
actionlListener="#{pprBean.reset}" immediate="true" ajax="false">
<p:resetInput target="panel" />

</p: commandButton>

</h:form>

-)

338

PrimeFaces User’s Guide

ResetInput supports both ajax and non-ajax actions, for non-ajax actions set immediate true on the
source component so lifecycle jumps to render response after resetting. To reset multiple
components at once, provide a list of ids or just provide an ancestor component like the panel in
sample above.

Reset Programmatically

Resetlnput tag is the declarative way to reset input components, another way is resetting
programmatically. This is also handy if inputs should get reset based on a condition. Following
sample demonstrates how to use RequestContext to do the reset within an ajaxbehavior listener.
Parameter of the reset method can be a single clientld or a collection of clientlds.

<p:inputText value="#{bean.value}">
<p:ajax event="blur" listener="#{bean.listener}" />
</p:inputText>

public void listener() {
RequestContext context = RequestContext.getCurrentInstance();
context.reset("form:panel™);

339

3.85 Resizable

PrimeFaces User’s Guide

Resizable component is used to make another JSF component resizable.

Info

Tag

resizable

Component Class

org.primefaces.component.resizable.Resizable

Component Type

org.primefaces.component.Resizable

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.ResizableRenderer

Renderer Class

org.primefaces.component.resizable.ResizableRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean

widgetVar null String Name of the client side widget.

for null String Identifier of the target component to make resizable.

aspectRatio FALSE | Boolean Defines if aspectRatio should be kept or not.

proxy FALSE | Boolean Displays proxy element instead of actual element.

handles null String Specifies the resize handles.

ghost FALSE | Boolean In ghost mode, resize helper is displayed as the original
element with less opacity.

animate FALSE | Boolean Enables animation.

effect swing String Effect to use in animation.

effectDuration | normal String Effect duration of animation.

maxWidth null Integer Maximum width boundary in pixels.

maxHeight null Integer Maximum height boundary in pixels.

minWidth 10 Integer Minimum width boundary in pixels.

minHeight 10 Integer Maximum height boundary in pixels.

340

PrimeFaces User’s Guide

Name Default Type Description
containment FALSE | Boolean Sets resizable boundaries as the parents size.
grid 1 Integer Snaps resizing to grid structure.
onStart null String Client side callback to execute when resizing begins.
onResize null String Client side callback to execute during resizing.
onStop null String Client side callback to execute after resizing end.

Getting started with Resizable

Resizable is used by setting for option as the identifier of the target.

<p:graphicImage id="img" value="campnou.jpg" />

<p:resizable for="img" />

Another example is the input fields, if users need more space for a textarea, make it resizable by;

<h:inputTextarea id="area" value="Resize me if you need more space" />

<p:resizable for="area" />

Boundaries

To prevent overlapping with other elements on page, boundaries need to be specified. There’re 4
attributes for this minWidth, maxWidth, minHeight and maxHeight. The valid values for these
attributes are numbers in terms of pixels.

<h:inputTextarea id="area" value="Resize me if you need more space" />

<p:resizable for="area" minWidth="20" minHeight="40" maxWidth="50" maxHeight="100"/>

Handles

Resize handles to display are customize using handles attribute with a combination of n, e, s, w, ne,
se, sw and nw as the value. Default value is "e, s, se".

<h:inputTextarea id="area" value="Resize me if you need more space" />

<p:resizable for="area" handles="e,w,n,se,sw,ne,nw"/>

341

PrimeFaces User’s Guide

Visual Feedback

Resize helper is the element used to provide visual feedback during resizing. By default actual
element itself is the helper and two options are available to customize the way feedback is provided.
Enabling ghost option displays the element itself with a lower opacity, in addition enabling proxy
option adds a css class called .ui-resizable-proxy which you can override to customize.

<h:inputTextarea id="area" value="Resize me if you need more space" />

<p:resizable for="area" proxy="true" />

.ui-resizable-proxy {
border: 2px dotted #OOF;

Effects

Resizing can be animated using animate option and setting an effect name. Animation speed is

"o

customized using effectDuration option "slow", "normal” and "fast" as valid values.

<h:inputTextarea id="area" value="Resize me if you need more space" />

<p:resizable for="area" animate="true" effect="swing" effectDuration="normal" />

Following is the list of available effect names;

» swing « easelnQuart « easeOutSine « easelnFlastic « easelnBounce

« easelnQuad « easeOutQuart « easelnExpo « easeOutElastic « easeOutBounce

o easeOutQuad « easelnOutQuart | « easeOutExpo « easelnOutElastic | « easeInOutBounce
« easelnOutQuad | « easeInQuint « easeInOutExpo | « easelnBack

« easelnCubic « easeOutQuint « easelnCirc « easeOutBack

 easeOutCubic o easelnOutQuint | easeOutCirc « easeInOutBack

« easelnOutCubic | « easelnSine « easelnOutCirc

Ajax Behavior Events

Resizable provides default and only resize event that is called on resize end. In case you have a
listener defined, it will be called by passing an org.primefaces.event.ResizeEvent instance as a
parameter.

<h:inputTextarea id="area" value="Resize me if you need more space" />

<p:resizable for="area">
<p:ajax listener="#{resizeBean.handleResize}">
</p:resizable>

342

PrimeFaces User’s Guide

4)

public class ResizeBean {

public void handleResize(ResizeEvent event) {
int width = event.getWidth();
int height = event.getHeight();

}
(&)

Client Side Callbacks

Resizable has three client side callbacks you can use to hook-in your javascript; onStart, onResize
and onStop. All of these callbacks receive two parameters that provide various information about
resize event.

<h:inputTextarea id="area" value="Resize me if you need more space" />
<p:resizable for="area" onStop="handleStop(event, ui)" />

function handleStop(event, ui) {
//ui.helper = helper element as a jQuery object
//ui.originalPosition = top, left position before resizing
//ui.originalSize = width, height before resizing
//ui.positon = top, left after resizing
//ui.size = width height of current size

i
- J
Skinning

Style Class Applies

.ui-resizable Element that is resizable

.ui-resizable-handle Handle element

.ui-resizable-handle- {handlekey} Particular handle element identified by handlekey like e, s, ne

.ui-resizable-proxy Proxy helper element for visual feedback

343

PrimeFaces User’s Guide

3.86 Ring

Ring is a data display component with a circular animation.

-~ - ()
!) '
Info

Tag ring

Component Class org.primefaces.component.ring.Ring

Component Type org.primefaces.component.Ring

Component Family org.primefaces.component

Renderer Type org.primefaces.component.RingRenderer

Renderer Class org.primefaces.component.ring.RingRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

value null Object Collection to display.

var null String Name of the data iterator.

style null String Inline style of the container element.

styleClass null String Style class of the container element.

easing swing String Type of easing to use in animation.

344

Getting started with Ring

A collection is required to use the Ring component.

PrimeFaces User’s Guide

-

}

N

public class RingBean {
private List<Player> players;

public RingBean() {
players = new ArraylList<Player>(Q);

//getter&setter for players

players.add(new Player("Messi", 10, "messi.jpg", "CF"));
players.add(new Player("Iniesta", 8, "iniesta.jpg", "CM"));
players.add(new Player("Villa", 7, "villa.jpg", "CF"));
players.add(new Player("Xavi", 6, "xavi.jpg", "CM"));
players.add(new Player("Puyol", 5, "puyol.jpg", "CB"));

<p:ring value="#{ringBean.players}" var="player”>

<p:graphicImage value="/images/barca/#{player.photo}"/>

</p:ring>

Item Selection

A column is required to process item selection from ring properly.

<p:ring value="#{ringBean.players}" var="player">
<p:column>
//UL to select an item e.g. commandLink
</p:column>

</p:ring>

Easing

Following is the list of available options for easing animation.

» swing

« ecaselnQuad

« easeOutQuad

« easelnOutQuad
« ecaselnCubic

« easeOutCubic

« easelnOutCubic

easelnQuart
easeOutQuart
easelnOutQuart
easelnQuint
easeOutQuint
easelnOutQuint
easelnSine

easeOutSine
easelnExpo
easeOutExpo
easelnOutExpo
easelnCirc
easeOutCirc
easelnOutCirc

easelnElastic
easeOutElastic
easeIlnOutElastic
easelnBack
easeOutBack
easeInOutBack

« easelnBounce
« easeOutBounce
« easelnOutBounce

345

PrimeFaces User’s Guide

Skinning

Ring resides in a main container which style and styleClass attributes apply. Following is the list of
structural style classes.

Style Class Applies

.ui-ring Main container element.

.ui-ring-item Each item in the list.

346

3.87 Row

Row is a helper component for datatable.

Info

PrimeFaces User’s Guide

Tag

row

Component Class

org.primefaces.component.row.Row

Component Type

org.primefaces.component.Row

Component Family

org.primefaces.component

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

Getting Started with Row

See datatable grouping section for more information about how row is used.

347

3.88 RowEditor

RowEditor is a helper component for datatable.

Info

PrimeFaces User’s Guide

Tag

rowEditor

Component Class

org.primefaces.component.roweditor.RowEditor

Component Type

org.primefaces.component.RowEditor

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.RowEditorRenderer

Renderer Class

org.primefaces.component.roweditor.RowEditorRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

Getting Started with RowEditor

See inline editing section in datatable documentation for more information about usage.

348

3.89 RowExpansion

PrimeFaces User’s Guide

RowExpansion is a helper component of datatable used to implement expandable rows.

Info

Tag

rowExpansion

Component Class

org.primefaces.component.rowexpansion.RowExpansion

Component Type

org.primefaces.component.RowExpansion

Component Family

org.primefaces.component

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

styleClass null String Style class of the component.

Getting Started with RowExpansion

See datatable expandable rows section for more information about how rowExpansion is used.

349

3.90 RowToggler

RowToggler is a helper component for datatable.

Info

PrimeFaces User’s Guide

Tag

rowToggler

Component Class

org.primefaces.component.rowtoggler.RowToggler

Component Type

org.primefaces.component.RowToggler

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.RowTogglerRenderer

Renderer Class

org.primefaces.component.rowtoggler.RowTogglerRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

Getting Started with Row

See expandable rows section in datatable documentation for more information about usage.

350

3.91 Schedule

PrimeFaces User’s Guide

Schedule provides an Outlook Calendar, iCal like JSF component to manage events.

Info

25

July 2010

Tue Wed

20

27

22 23 24

29 30 31

Tag

schedule

Component Class

org.primefaces.component.schedule.Schedule

Component Type

org.primefaces.component.Schedule

Component Family

org.primefaces

Renderer Type

org.primefaces.component.ScheduleRenderer

Renderer Class

org.primefaces.component.schedule.ScheduleRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will
not be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

value null Object An org.primefaces.model.ScheduleModel
instance representing the backed model

locale null Object Locale for localization, can be String or a
java.util.Locale instance

351

PrimeFaces User’s Guide

Name Default Type Description
aspectRatio null Float Ratio of calendar width to height, higher the
value shorter the height is
view month String The view type to use, possible values are
'month’, 'agendaDay', 'agendaWeek',
'basicWeek', 'basicDay’
initialDate null Object The initial date that is used when schedule
loads. If ommitted, the schedule starts on the
current date
showWeekends TRUE Boolean Specifies inclusion Saturday/Sunday
columns in any of the views
style null String Style of the main container element of
schedule
styleClass null String Style class of the main container element of
schedule
draggable TRUE Boolean When true, events are draggable.
resizable TRUE Boolean When true, events are resizable.
showHeader TRUE Boolean Specifies visibility of header content.
leftHeaderTemplate prev, next String Content of left side of header.
today
centerHeaderTemplate title String Content of center of header.
rightHeaderTemplate month, String Content of right side of header.
agendaWeek,
agendaDay
allDaySlot TRUE Boolean Determines if all-day slot will be displayed
in agendaWeek or agendaDay views
slotMinutes 30 Integer Interval in minutes in an hour to create a slot.
firstHour 6 Integer First hour to display in day view.
minTime null String Minimum time to display in a day view.
maxTime null String Maximum time to display in a day view.
axisFormat null String Determines the time-text that will be
displayed on the vertical axis of the agenda
Views.
timeFormat null String Determines the time-text that will be
displayed on each event.
timeZone null Object String or a java.util. TimeZone instance to

specify the timezone used for date
conversion.

352

PrimeFaces User’s Guide

Getting started with Schedule

Schedule needs to be backed by an orgprimefaces.model.ScheduleModel instance, a schedule
model consists of org.primefaces.model.ScheduleEvent instances.

<<p :schedule value="#{scheduleBean.model}" />)

4)

public class ScheduleBean {
private ScheduleModel model;

public ScheduleBean() {
eventModel = new ScheduleModel<ScheduleEvent>();
eventModel .addEvent(new DefaultScheduleEvent("title", new Date(),
new Date()));

}

public ScheduleModel getModel() { return model; }
}

DefaultScheduleEvent is the default implementation of ScheduleEvent interface. Mandatory
properties required to create a new event are the title, start date and end date. Other properties such
as allDay get sensible default values. Table below describes each property in detail.

Property Description
id Used internally by PrimeFaces, auto generated.
title Title of the event.
startDate Start date of type java.util.Date.
endDate End date of type java.util.Date.
allDay Flag indicating event is all day.
styleClass Visual style class to enable multi resource display.
data Optional data you can set to be represented by Event.
editable Whether the event is editable or not.

Ajax Behavior Events

Schedule provides various ajax behavior events to respond user actions.

Event Listener Parameter Fired
dateSelect org.primefaces.event.SelectEvent When a date is selected.
eventSelect org.primefaces.event.SelectEvent When an event is selected.

353

PrimeFaces User’s Guide

Event Listener Parameter Fired
eventMove org.primefaces.event.ScheduleEntryMoveEvent | When an event is moved.
eventResize org.primefaces.event.ScheduleEntryResizeEvent | When an event is resized.

Ajax Updates

Schedule has a quite complex UI which is generated on-the-fly by the client side
PrimeFaces.widget.Schedule widget to save bandwidth and increase page load performance. As a
result when you try to update schedule like with a regular PrimeFacess PPR, you may notice a Ul
lag as the DOM will be regenerated and replaced. Instead, Schedule provides a simple client side
api and the update method. Whenever you call update, schedule will query it’s server side
ScheduleModel instance to check for updates, transport method used to load events dynamically is
JSON, as a result this approach is much more effective then updating with regular PPR. An example
of this is demonstrated at editable schedule example, save button is calling myschedule.update() at
oncomplete event handler.

Editable Schedule

Let’s put it altogether to come up a fully editable and complex schedule.

4)

<h:form>
<p:schedule value="#{bean.eventModel}" editable="true" widgetVar="myschedule">
<p:ajax event="dateSelect" listener="#{bean.onDateSelect}"
update="eventDetails" oncomplete="eventDialog.show()" />
<p:ajax event="eventSelect" listener="#{bean.onEventSelect}"
</p:schedule>

<p:dialog widgetVar="eventDialog" header="Event Details">
<h:panelGrid id="eventDetails" columns="2">
<h:outputLabel for="title" value="Title:" />
<h:inputText id="title" value="#{bean.event.title}" required="true"/>

<h:outputLabel for="from" value="From:" />

<p:inputMask id="from" value="#{bean.event.startDate}" mask="99/99/9999">
<f:convertDateTime pattern="dd/MM/yyyy" />

</p:inputMask>

<h:outputLabel for="to" value="To:" />
<p:inputMask id="to" value="#{bean.event.endDate}" mask="99/99/9999">
<f:convertDateTime pattern="dd/MM/yyyy" />
</p:inputMask>

<h:outputLabel for="allDay" value="All Day:" />
<h:selectBooleanCheckbox id="allDay" value="#{bean.event.allDay}" />

<p:commandButton type="reset" value="Reset" />
<p:commandButton value="Save" actionlListener="#{bean.addEvent}"
oncomplete="myschedule.update();eventDialog.hide();"/>
</h:panelGrid>
</p:dialog>
</h:form>

354

PrimeFaces User’s Guide

4)

public class ScheduleBean {

private ScheduleModel<ScheduleEvent> model;
private ScheduleEventImpl event = new DefaultScheduleEvent();

public ScheduleBean() {
eventModel = new ScheduleModel<ScheduleEvent>();

}

public ScheduleModel<ScheduleEvent> getModel() { return model; }
public ScheduleEventImpl getEvent() { return event; }
public void setEvent(ScheduleEventImpl event) { this.event = event; }

public void addEvent() {
ifCevent.getId() == null)
eventModel .addEvent(event);
else
eventModel .updateEvent(event);

event = new DefaultScheduleEvent(); //reset dialog form

}

public void onEventSelect(SelectEvent e) {
event = (ScheduleEvent) e.getObject();

}

public void onDateSelect(DateSelectEvent e) {
event = new DefaultScheduleEvent("", e.getDate(), e.getDate());
}
ks

- J

Lazy Loading

Schedule assumes whole set of events are eagerly provided in ScheduleModel, if you have a huge
data set of events, lazy loading features would help to improve performance.

In lazy loading mode, only the events that belong to the displayed time frame are fetched whereas
in default eager more all events need to be loaded.

<<p :schedule value="#{scheduleBean.lazyModel}" />)

To enable lazy loading of Schedule events, you just need to provide an instance of
org.primefaces.model.LazyScheduleModel and implement the loadEvents methods. loadEvents
method is called with new boundaries every time displayed timeframe is changed.

355

PrimeFaces User’s Guide

4)

public class ScheduleBean {

private ScheduleModel lazyModel;
public ScheduleBean() {
lazyModel = new LazyScheduleModel() {
@0verride
public void loadEvents(Date start, Date end) {

//addEvent(...);
//addEvent(...);

1
}

public ScheduleModel getlLazyModel() {
return lazyModel;

}
U Y,

Customizing Header

Header controls of Schedule can be customized based on templates, valid values of template options
are;

- title: Text of current month/week/day information

« prev: Button to move calendar back one month/week/day.

- next: Button to move calendar forward one month/week/day.

« prevYear: Button to move calendar back one year

- nextYear: Button to move calendar forward one year

« today: Button to move calendar to current month/week/day.

- viewName: Button to change the view type based on the view type.

These controls can be placed at three locations on header which are defined with
leftHeaderTemplate, rightHeaderTemplate and centerTemplate attributes.

<p:schedule value="#{scheduleBean.model}"
leftHeaderTemplate"today"
rightHeaderTemplate="prev,next"
centerTemplate="month, agendaWeek, agendaDay"
</p:schedule>

T [vet] [50] =]

Sun Mon Tue Wed Thu Fri Sat

356

PrimeFaces User’s Guide

Views

5 different views are supported, these are "month", "agendaWeek", "agendaDay", "basicWeek" and
"basicDay".

agendaWeek

<p:schedule value="#{scheduleBean.model}" view="agendaWeek"/>

A
v

Jan 31 — Feb 6 2010 [month day

Sun1/31 Mon 2/1 Tue 2/2 Wed2/3 | Thuz/sq Friz/s Sat2/6
[Plant the newgardenstutt]

Breadastat | Plant the new garden stuff
all-day Tiffanys.

12am
1am

2am

33333

7am

agendaDay

<p:schedule value="#{scheduleBean.model}" view="agendaDay"/>

<[> Sunday, Jan 31, 2010 [(month [week [

Sunday 1/31

basicWeek

<p:schedule value="#{scheduleBean.model}" view="basicWeek"/>

357

PrimeFaces User’s Guide

<> Jan31—Feb 62010 | month| week| day
basicDay
<<p:schedu1e value="#{scheduleBean.model}" view="basicDay"/>)

Sunday, Jan 31, 2010 =

Locale Support

By default locale information is retrieved from the view’s locale and can be overridden by the
locale attribute. Locale attribute can take a locale key as a String or a java.util.Locale instance.
Default language of labels are English and you need to add the necessary translations to your page
manually as PrimeFaces does not include language translations. PrimeFaces Wiki Page for
PrimeFacesLocales is a community driven page where you may find the translations you need.
Please contribute to this wiki with your own translations.

Chttp ://wiki.primefaces.org/display/Components/PrimeFaces+Locales)

Translation is a simple javascript object, we suggest adding the code to a javascript file and include
in your application. Following is a Turkish calendar.

<<p:schedu1e value="#{scheduleBean.model}" locale="tr"/>)

Skinning
Schedule resides in a main container which style and styleClass attributes apply.
As skinning style classes are global, see the main theming section for more information.

358

http://wiki.primefaces.org/display/Components/PrimeFaces+Locales
http://wiki.primefaces.org/display/Components/PrimeFaces+Locales

PrimeFaces User’s Guide

3.92 ScrollPanel

ScrollPanel is used to display overflowed content with theme aware scrollbars instead of native
browsers scrollbars.

bdc429¢9 bd4763f2 =
bdc429¢9 bd4763f2
Audi Chrysler
1993 1977
Silver Siver
34c0cfas 6766abe0 2
34c0cfab 6766abe0
Ford Opel v
4 Il »
Info
Tag scrollPanel
Component Class org.primefaces.component.scrollpanel.ScrollPanel
Component Type org.primefaces.component.ScrollPanel
Component Family org.primefaces.component
Renderer Type org.primefaces.component.ScrollPanelRenderer
Renderer Class org.primefaces.component.scrollpanel.ScrollPanelRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean
style null String Inline style of the container element.
styleClass null String Style class of the container element.
mode default String Scrollbar display mode, valid values are default
and native.

359

PrimeFaces User’s Guide

Getting started with ScrollPanel

ScrollPanel is used a container component, width and height must be defined.

<p:scrollPanel style="width:250px;height:200px">
//any content
</p:scrollPanel>

Native ScrollBars

By default, scrollPanel displays theme aware scrollbars, setting mode option to native displays
browser scrollbars.

<p:scrollPanel style="width:250px;height:200px" mode="native">
//any content
</p:scrollPanel>

Skinning

ScrollPanel resides in a main container which s#yle and styleClass attributes apply. As skinning style
classes are global, see the main theming section for more information. Following is the list of
structural style classes;

Style Class Applies
.ui-scrollpanel Main container element.
.ui-scrollpanel-container Overflow container.
.ui-scrollpanel-hbar Horizontal scrollbar.
.ui-scrollpanel-vbar Vertical scrollbar.
.ui-scrollpanel-handle Handle of a scrollbar

360

PrimeFaces User’s Guide

3.93 SelectBooleanButton

SelectBooleanButton is used to select a binary decision with a toggle button.

| accept terms and conditions: No
Subscribe me to newsletter: \ v Yes ‘
Info
Tag selectBooleanButton

Component Class org.primefaces.component.selectbooleanbutton.SelectBooleanButton

Component Type org.primefaces.component.SelectBooleanButton

Component Family | org.primefaces.component

Renderer Type org.primefaces.component.SelectBooleanButtonRenderer
Renderer Class org.primefaces.component.selectbooleanbutton.SelectBooleanButtonRenderer
Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side

UIComponent instance in a backing bean

value null Object Value of the component referring to a List.
converter null Converter/ An el expression or a literal text that defines a
String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In case
it’s a static text, it must refer to a converter id

immediate FALSE Boolean When set true, process validations logic is executed at
apply request values phase for this component.

required FALSE Boolean Marks component as required

validator null MethodExpr | A method expression that refers to a method
validationg the input

valueChangeListener | null MethodExpr | A method expression that refers to a method for
handling a valuechangeevent

361

PrimeFaces User’s Guide

Name Default Type Description

requiredMessage null String Message to be displayed when required field validation
fails.

converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.
widgetVar null String Name of the client side widget.
disabled FALSE | Boolean Disables the component.
label null String User presentable name.
onchange null String Callback to execute on value change.
style null String Inline style of the component.
styleClass null String Style class of the container.
onLabel null String Label to display when button is selected.
offLabel null String Label to display when button is unselected.
onlcon null String Icon to display when button is selected.
offlcon null String Icon to display when button is unselected.

Getting started with SelectBooleanButton

SelectBooleanButton usage is similar to selectBooleanCheckbox.

<p:selectBooleanButton id="value2" value="#{bean.value}" onLabel="Yes"
offLabel="No" onIcon="ui-icon-check" offIcon="ui-icon-close" />

public class Bean {
private boolean value;
//getter and setter

Skinning

SelectBooleanButton resides in a main container which style and styleClass attributes apply. As
skinning style classes are global, see the main theming section for more information. Following is
the list of structural style classes;

Style Class Applies

.ui-selectbooleanbutton Main container element.

362

PrimeFaces User’s Guide

3.94 SelectBooleanCheckbox

SelectBooleanCheckbox is an extended version of the standard checkbox with theme integration.

Info

0l

Tag

selectBooleanCheckbox

Component Class

org.primefaces.component.selectbooleancheckbox.SelectBooleanCheckbox

Component Type

org.primefaces.component.SelectBooleanCheckbox

Component Family

org.primefaces.component

Renderer Type org.primefaces.component.SelectBooleanCheckboxRenderer
Renderer Class org.primefaces.component.selectbooleancheckbox.SelectBooleanCheckbox
Renderer
Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlComponent instance in a backing bean

value null Object Value of the component referring to a List.

converter null Converter/ An el expression or a literal text that defines a

String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In case
it’s a static text, it must refer to a converter id

immediate FALSE Boolean When set true, process validations logic is executed at
apply request values phase for this component.

required FALSE Boolean Marks component as required

validator null MethodExpr | A method expression that refers to a method
validationg the input

valueChangeListener | null MethodExpr | A method expression that refers to a method for
handling a valuechangeevent

requiredMessage null String Message to be displayed when required field validation
fails.

363

PrimeFaces User’s Guide

Name Default Type Description
converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.
widgetVar null String Name of the client side widget.
disabled FALSE Boolean Disables the component.
label null String User presentable name.
onchange null String Callback to execute on value change.
style null String Inline style of the component.
styleClass null String Style class of the container.
itemLabel null String Label displayed next to checkbox.
tabindex null String Specifies tab order for tab key navigation.

Getting started with SelectBooleanCheckbox

SelectBooleanCheckbox usage is same as the standard one.

Client Side API

Widget: PrimeFaces.widget.SelectBooleanCheckbox

Method Params Return Type Description
check() - void Checks the checkbox.
uncheck() - void Unchecks the checkbox.
toggle() - void Toggles check state.

Skinning

SelectBooleanCheckbox resides in a main container which s#yle and styleClass attributes apply. As
skinning style classes are global, see the main theming section for more information. Following is

the list of structural style classes;

Style Class

Applies

.ui-chkbox

Main container element.

.ui-chkbox-box

Container of checkbox icon.

.ui-chkbox-icon

Checkbox icon.

.ui-chkbox-icon

Checkbox label.

364

PrimeFaces User’s Guide

3.95 SelectCheckboxMenu

SelectCheckboxMenu is a multi select component that displays options in an overlay.

v (AN ©

+ Scarface

+ Goodfellas
+ Carlito’'s Way
+ Godfather

Info

Tag selectCheckboxMenu

Component Class | org.primefaces.component.selectcheckboxmenu.SelectCheckboxMenu

Component Type org.primefaces.component.SelectCheckboxMenu

Component Family | org.primefaces.component

Renderer Type org.primefaces.component.SelectCheckboxMenuRenderer
Renderer Class org.primefaces.component.selectcheckboxmenu.SelectCheckboxMenuRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean Boolean value to specify the rendering of the

component, when set to false component will
not be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component referring to a List.
converter null Converter/ An el expression or a literal text that defines a
String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance.
In case it’s a static text, it must refer to a
converter id

immediate FALSE Boolean When set true, process validations logic is
executed at apply request values phase for this
component.

required FALSE Boolean Marks component as required

365

PrimeFaces User’s Guide

Name Default Type Description

validator null MethodExpr | A method expression that refers to a method
validationg the input

valueChangeListener | null MethodExpr | A method expression that refers to a method for
handling a valuechangeevent

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

widgetVar null String Name of the client side widget.

disabled FALSE Boolean Disables the component.

label null String User presentable name.

onchange null String Callback to execute on value change.

style null String Inline style of the component.

styleClass null String Style class of the container.

scrollHeight null Integer Height of the overlay.

onShow null String Client side callback to execute when overlay is
displayed.

onHide null String Client side callback to execute when overlay is
hidden.

filter FALSE Boolean Renders an input field as a filter.

filterMatchMode startsWith String Match mode for filtering, valid values are
startsWith, contains, endsWith and custom.

filterFunction null String Client side function to use in custom filtering.

caseSensitive FALSE Boolean Defines if filtering would be case sensitive.

panelStyle null String Inline style of the overlay.

panelStyleClass null String Style class of the overlay.

Getting started with SelectCheckboxMenu

SelectCheckboxMenu usage is same as the standard selectManyCheckbox or PrimeFaces

selectManyCheckbox components.

<p:selectCheckboxMenu value="#{bean.selectedOptions}" label="Movies">
<f:selectItems value="#{bean.options}" />
</p:selectCheckboxMenu>

366

PrimeFaces User’s Guide

Filtering

When filtering is enabled with setting filter on, an input field is rendered at overlay header and on
keyup event filtering is executed on client side using filterMatchMode. Default modes of
filterMatchMode are startsWith, contains, endsWith and custom. Custom mode requires a javascript
function to do the filtering.

\

<p:selectCheckboxMenu value="#{bean.selectedOptions}" label="Movies"
filterMatchMode="custom"” filterFunction="customFilter">
<f:selectItems value="#{bean.options}" />
</p:selectCheckboxMenu>

_

function customFilter(itemLabel, filterValue) {
//return true to accept and false to reject

AN

}
(& J

Ajax Behavior Events

In addition to common dom events like change, selectCheckboxMenu provides toggleSelect event.

Event Listener Parameter Fired
toggleSelect org.primefaces.event. ToggleSelectEvent When toggle all checkbox changes.
Skinning

SelectCheckboxMenu resides in a main container which style and styleClass attributes apply. As
skinning style classes are global, see the main theming section for more information. Following is
the list of structural style classes;

Style Class Applies
.ui-selectcheckboxmenu Main container element.
.ui-selectcheckboxmenu-label-container | Label container.
.ui-selectcheckboxmenu-label Label.
.ui-selectcheckboxmenu-trigger Dropdown icon.
.ui-selectcheckboxmenu-panel Overlay panel.
.ui-selectcheckboxmenu-items Option list container.
.ui-selectcheckboxmenu-item Each options in the collection.
.ui-chkbox Container of a checkbox.
.ui-chkbox-box Container of checkbox icon.
.ui-chkbox-icon Checkbox icon.

367

3.96 SelectManyButton

PrimeFaces User’s Guide

SelectManyButton is a multi select component using button UL

Info

I u

Tag

selectManyButton

Component Class

org.primefaces.component.selectmanybutton.SelectManyButton

Component Type

org.primefaces.component.SelectManyButton

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SelectManyButton

Renderer Class

org.primefaces.component.selectmanybutton.SelectManyButton

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component referring to a List.

converter null Converter/ An el expression or a literal text that defines a

String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate FALSE Boolean When set true, process validations logic is
executed at apply request values phase for this
component.

required FALSE Boolean Marks component as required

validator null MethodExpr | A method expression that refers to a method
validationg the input

valueChangeListener | null MethodExpr | A method expression that refers to a method for
handling a valuechangeevent

368

PrimeFaces User’s Guide

Name Default Type Description

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.
widgetVar null String Name of the client side widget.
disabled FALSE Boolean Disables the component.
label null String User presentable name.
onchange null String Callback to execute on value change.
style null String Inline style of the component.
styleClass null String Style class of the container.

Getting started with SelectManyButton

SelectManyButton usage is same as selectManyCheckbox, buttons just replace checkboxes.
Skinning

SelectManyButton resides in a main container which s#yle and styleClass attributes apply. As

skinning style classes are global, see the main theming section for more information. Following is
the list of structural style classes;

Style Class Applies

.ui-selectmanybutton Main container element.

369

PrimeFaces User’s Guide

3.97 SelectManyCheckbox

SelectManyCheckbox is an extended version of the standard SelectManyCheckbox with theme
integration.

Option 1 |4 |Option 2 |4 Option 3

Info

Tag selectManyCheckbox

Component Class | org.primefaces.component.selectmanycheckbox.SelectManyCheckbox

Component Type org.primefaces.component.SelectManyCheckbox

Component Family | org.primefaces.component

Renderer Type org.primefaces.component.SelectManyCheckboxRenderer
Renderer Class org.primefaces.component.selectmanycheckbox.SelectManyCheckboxRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean Boolean value to specify the rendering of the

component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component referring to a List.
converter null Converter/ An el expression or a literal text that defines a
String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate FALSE Boolean When set true, process validations logic is
executed at apply request values phase for this
component.

required FALSE Boolean Marks component as required

validator null MethodExpr | A method expression that refers to a method

validationg the input

valueChangeListener | null MethodExpr | A method expression that refers to a method for
handling a valuechangeevent

370

PrimeFaces User’s Guide

Name Default Type Description

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.
widgetVar null String Name of the client side widget.
disabled FALSE Boolean Disables the component.
label null String User presentable name.
layout lineDirection | String Layout of the checkboxes, valid values are

“lineDirection”(horizontal) and
“pageDirection”(vertical).

onchange null String Callback to execute on value change.
style null String Inline style of the component.
styleClass null String Style class of the container.

Getting started with SelectManyCheckbox

SelectManyCheckbox usage is same as the standard one.

Skinning

SelectManyCheckbox resides in a main container which style and styleClass attributes apply. As

skinning style classes are global, see the main theming section for more information. Following is
the list of structural style classes;

Style Class Applies
.ui-selectmanycheckbox Main container element.
.ui-chkbox Container of a checkbox.
.ui-chkbox-box Container of checkbox icon.
.ui-chkbox-icon Checkbox icon.

371

3.98 SelectManyMenu

PrimeFaces User’s Guide

SelectManyMenu is an extended version of the standard SelectManyMenu with theme integration.

Info

Messi
Bojan
Iniesta
Villa
Xavi
Puyol

0

Tag

selectManyMenu

Component Class

org.primefaces.component.selectmanymenu.SelectManyMenu

Component Type

org.primefaces.component.SelectManyMenu

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SelectManyMenuRenderer

Renderer Class

org.primefaces.component.selectmanymenu.SelectManyMenuRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

value null Object Value of the component referring to a List.

converter null Converter/ An el expression or a literal text that defines a

String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate FALSE Boolean When set true, process validations logic is
executed at apply request values phase for this
component.

required FALSE Boolean Marks component as required

validator null MethodExpr | A method expression that refers to a method
validationg the input

372

PrimeFaces User’s Guide

Name Default Type Description

valueChangeListener | null MethodExpr | A method expression that refers to a method for
handling a valuechangeevent

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

widgetVar null String Name of the client side widget.

disabled FALSE Boolean Disables the component.

label null String User presentable name.

onchange null String Callback to execute on value change.

style null String Inline style of the component.

styleClass null String Style class of the container.

showCheckbox FALSE Boolean When true, a checkbox is displayed next to each
item.

Getting started with SelectManyMenu
SelectManyMenu usage is same as the standard one.
Custom Content

Custom content can be displayed for each item using column components.

. N

<p:selectManyMenu value="#{bean.selectedPlayers}" converter="player" var="p">
<f:selectItems value="#{bean.players}" var="player"
itemLabel="#{player.name}" itemValue="#{player}" />
<p:column>
<p:graphicImage value="/images/barca/#{p.photo}" width="40"/>
</p:column>
<p:column>
#{p.name} - #{p.number}
</p:column>
</p:selectManyMenu>

‘\'E".Txffl - JD

(@)
&
ﬁ Iniesta - 8

Skinning

PrimeFaces User’s Guide

SelectManyMenu resides in a container that style and styleClass attributes apply. As skinning style
classes are global, see the main theming section for more information. Following is the list of

structural style classes;

Style Class

Applies

.ui-selectmanymenu

Main container element.

.ui-selectlistbox-item

Each item in list.

374

3.99 SelectOneButton

PrimeFaces User’s Guide

SelectOneButton is an input component to do a single select.

Info

Option 1

Option 2

Option 3

Tag

selectOneButton

Component Class

org.primefaces.component.selectonebutton.SelectOneButton

Component Type

org.primefaces.component.SelectOneButton

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SelectOneButtonRenderer

Renderer Class

org.primefaces.component.selectonebutton.SelectOneButtonRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

value null Object Value of the component referring to a List.

converter null Converter/ An el expression or a literal text that defines a

String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate FALSE Boolean When set true, process validations logic is
executed at apply request values phase for this
component.

required FALSE Boolean Marks component as required

validator null MethodExpr | A method expression that refers to a method
validationg the input

valueChangeListener | null MethodExpr | A method expression that refers to a method for
handling a valuechangeevent

375

PrimeFaces User’s Guide

Name Default Type Description

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.
widgetVar null String Name of the client side widget.
disabled FALSE Boolean Disables the component.
label null String User presentable name.
onchange null String Callback to execute on value change.
style null String Inline style of the component.
styleClass null String Style class of the container.

Getting started with SelectOneButton

SelectOneButton usage is same as selectOneRadio component, buttons just replace the radios.
Skinning

SelectOneButton resides in a main container which style and styleClass attributes apply. As

skinning style classes are global, see the main theming section for more information. Following is
the list of structural style classes;

Style Class Applies

.ui-selectonebutton Main container element.

376

PrimeFaces User’s Guide

3.100 SelectOneListbox

SelectOneListbox is an extended version of the standard SelectOneListbox with theme integration.

Messi

Bojan E]
Iniesta

Villa

Xavi

Puyol

Info

Tag selectOneListbox

Component Class | org.primefaces.component.selectonelistbox.SelectOneListbox

Component Type org.primefaces.component.SelectOneListbox

Component Family | org.primefaces.component

Renderer Type org.primefaces.component.SelectOneListboxRenderer
Renderer Class org.primefaces.component.selectonelistbox.SelectOneListBoxRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean Boolean value to specify the rendering of the

component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component referring to a List.
converter null Converter/ An el expression or a literal text that defines a
String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate FALSE Boolean When set true, process validations logic is
executed at apply request values phase for this
component.

required FALSE Boolean Marks component as required

validator null MethodExpr | A method expression that refers to a method

validationg the input

377

PrimeFaces User’s Guide

Name Default Type Description

valueChangeListener | null MethodExpr | A method expression that refers to a method for
handling a valuechangeevent

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

widgetVar null String Name of the client side widget.

disabled FALSE Boolean Disables the component.

label null String User presentable name.

onchange null String Callback to execute on value change.

style null String Inline style of the component.

styleClass null String Style class of the container.

Getting started with SelectOneListbox
SelectOneListbox usage is same as the standard one.
Custom Content

Custom content can be displayed for each item using column components.

. N

<p:selectOnelistbox value="#{bean.player}" converter="player" var="p">
<f:selectItems value="#{bean.players}" var="player"
itemLabel="#{player.name}" itemValue="#{player}" />

<p:column>
<p:graphicImage value="/images/barca/#{p.photo}" width="40"/>

</p:column>

<p:column>
#{p.name} - #{p.number}

</p:column>

/p:selectOnelistbox>
_ Y,

- m Xavi-6

378

Skinning

PrimeFaces User’s Guide

SelectOneListbox resides in a main container which s#yle and styleClass attributes apply. As
skinning style classes are global, see the main theming section for more information.

Following is the list of structural style classes;

Style Class

Applies

.ui-selectonelistbox

Main container element.

.ui-selectlistbox-item

Each item in list.

379

PrimeFaces User’s Guide

3.101 SelectOneMenu

SelectOneMenu is an extended version of the standard SelectOneMenu with theme integration.

SelectOne | =
——

Select One
Option 1
Option 2
Option 3

Info

Tag selectOneMenu

Component Class | org.primefaces.component.selectonemenu.SelectOneMenu

Component Type org.primefaces.component.SelectOneMenu

Component Family | org.primefaces.component

Renderer Type org.primefaces.component.SelectOneMenuRenderer
Renderer Class org.primefaces.component.selectonemenu.SelectOneMenuRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean Boolean value to specify the rendering of the

component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

value null Object Value of the component referring to a List.
converter null Converter/ An el expression or a literal text that defines a
String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate FALSE Boolean When set true, process validations logic is
executed at apply request values phase for this
component.

required FALSE Boolean Marks component as required

380

PrimeFaces User’s Guide

Name Default Type Description

validator null MethodExpr | A method expression that refers to a method
validationg the input

valueChangeListener | null MethodExpr | A method expression that refers to a method for
handling a valuechangeevent

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

widgetVar null String Name of the client side widget.

effect blind String Name of the toggle animation.

effectSpeed 400 Integer Duration of toggle animation in milliseconds.

disabled FALSE Boolean Disables the component.

label null String User presentable name.

onchange null String Client side callback to execute on value change.

onkeyup null String Client side callback to execute on keyup.

onkeydown null String Client side callback to execute on keydown.

style null String Inline style of the component.

styleClass null String Style class of the container.

var null String Name of the item iterator.

height auto Integer Height of the overlay.

tabindex null String Tabindex of the input.

editable FALSE Boolean When true, input becomes editable.

filter FALSE Boolean Renders an input field as a filter.

filterMatchMode startsWith String Match mode for filtering, valid values are
startsWith, contains, endsWith and custom.

filterFunction null String Client side function to use in custom filtering.

caseSensitive FALSE Boolean Defines if filtering would be case sensitive.

maxlength null Integer Number of maximum characters allowed in
editable selectOneMenu.

Getting started with SelectOneMenu

Basic SelectOneMenu usage is same as the standard one.

381

PrimeFaces User’s Guide

Custom Content

SelectOneMenu can display custom content in overlay panel by using column component and the
var option to refer to each item.

4)

public class MenuBean {
private List<Player> players;
private Player selectedPlayer;

public OrderListBean() {
players = new ArraylList<Player>(Q);

players.add(new Player("Messi", 10, "messi.jpg"));
//more players

}

//getters and setters
}

v N

<p:selectOneMenu value="#{menuBean.selectedPlayer}" converter="player" var="p">
<f:selectItem itemLabel="Select One" itemValue="" />
<f:selectItems value="#{menuBean.players}" var="player"
itemLabel="#{player.name}" itemValue="#{player}"/>

<p:column>
<p:graphicImage value="/images/barca/#{p.photo}" width="40" height="50"/>
</p:column>

<p:column>
#{p.name} - #{p.number}
</p:column>
</p:selectOneMenu>

(&)

7Mes&-10

=)
Select One O
& Messi- 10
o
m Bojan -9
“ Iniesta - 8

Effects

An animation is executed to show and hide the overlay menu, default effect is fade and following
options are available for effect attribute; blind, bounce, clip, drop, explode, fold, highlight, puff,
pulsate, scale, shake, size, slide and none.

382

PrimeFaces User’s Guide

Editable

Editable SelectOneMenu provides a Ul to either choose from the predefined options or enter a
manual input. Set editable option to true to use this feature.

Select One

Ankara

Istanbul

lzmir
—_—

Filtering

When filtering is enabled with setting filter on, an input field is rendered at overlay header and on
keyup event filtering is executed on client side using filterMatchMode. Default modes of
filterMatchMode are startsWith, contains, endsWith and custom.

Custom mode requires a javascript function to do the filtering.

<p:selectOneMenu value="#{bean.selectedOptions}"
filterMatchMode="custom"” filterFunction="customFilter">
<f:selectItems value="#{bean.options}" />
</p:selectOneMenu>

function customFilter(itemLabel, filterValue) {
//return true to accept and false to reject

}

[Select One .

Alves - 2

A s)
& Afellay - 20 ||
|
'
:
I'! Abidal - 22 :

383

Client Side API

Widget: PrimeFaces.widget.SelectOneMenu

PrimeFaces User’s Guide

Method Params Return Type Description

show() - void Shows overlay menu.

hide() - void Hides overlay menu.

blur() - void Invokes blur event.

focus() - void Invokes focus event.

enable() - void Enables component.

disable() - void Disabled component.

selectValue() value: itemValue | void Selects given value.

getSelected Value() - Object Returns value of selected item.

getSelectedLabel() String Returns label of selected item.
Skinning

SelectOneMenu resides in a container element that style and styleClass attributes apply. As skinning
style classes are global, see the main theming section for more information. Following is the list of
structural style classes;

Style Class

Applies

.ui-selectonemenu

Main container.

.ui-selectonemenu-label

Label of the component.

.ui-selectonemenu-trigger

Container of dropdown icon.

.ui-selectonemenu-items

Ttems list.

.ui-selectonemenu-items

Each item in the list.

384

PrimeFaces User’s Guide

3.102 SelectOneRadio

SelectOneRadio is an extended version of the standard SelectOneRadio with theme integration.

Option 1 (@) Option 2 Option 3

Info

Tag selectOneRadio

Component Class | org.primefaces.component.selectoneradio.SelectOneRadio

Component Type org.primefaces.component.SelectOneRadio

Component Family | org.primefaces.component

Renderer Type org.primefaces.component.SelectOneRadioRenderer
Renderer Class org.primefaces.component.selectoneradio.SelectOneRadioRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean Boolean value to specify the rendering of the

component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component referring to a List.
converter null Converter/ An el expression or a literal text that defines a
String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

immediate FALSE Boolean When set true, process validations logic is
executed at apply request values phase for this
component.

required FALSE Boolean Marks component as required

validator null MethodExpr | A method expression that refers to a method

validationg the input

valueChangeListener | null MethodExpr | A method expression that refers to a method for
handling a valuechangeevent

385

PrimeFaces User’s Guide

Name Default Type Description

requiredMessage null String Message to be displayed when required field
validation fails.

converterMessage null String Message to be displayed when conversion fails.
validatorMessage null String Message to be displayed when validation fields.
widgetVar null String Name of the client side widget.
disabled FALSE Boolean Disables the component.
label null String User presentable name.
layout lineDirection | String Layout of the checkboxes, valid values are

“lineDirection”(horizontal) and
“pageDirection”(vertical).

onchange null String Callback to execute on value change.

style null String Inline style of the component.

styleClass null String Style class of the container.

tabindex null String Spepiﬁ@s the tab order of element in tab
navigation.

plain FALSE Boolean Plain mode displays radiobuttons using native

browser rendering instead of themes.

Getting started with SelectOneRadio
SelectOneRadio usage is same as the standard one.
Custom Layout

Standard selectOneRadio component only supports horizontal and vertical rendering of the radio
buttons with a strict table markup. PrimeFaces SelectOneRadio on the other hand provides a
flexible layout option so that radio buttons can be located anywhere on the page. This is
implemented by setting layout option to custom and with standalone radioButton components. Note
that in custom mode, selectOneRadio itself does not render any output.

<p:selectOneRadio id="customRadio" value="#{formBean.option}" layout="custom">
<f:selectItem itemLabel="Option 1" itemValue="1" />
<f:selectItem itemLabel="Option 2" itemValue="2" />
<f:selectItem itemLabel="Option 3" itemValue="3" />

</p:selectOneRadio>

386

PrimeFaces User’s Guide

\

<h:panelGrid columns="3">
<p:radioButton id="optl" for="customRadio" itemIndex="0"/>
<h:outputLabel for="optl" value="Option 1" />
<p:spinner />

<p:radioButton id="opt2" for="customRadio" itemIndex="1"/>
<h:outputLabel for="opt2" value="Option 2" />
<p:inputText />

<p:radioButton id="opt3" for="customRadio" itemIndex="2"/>
<h:outputLabel for="opt3" value="Option 3" />
<p:calendar />

</h:panelGrid>

(&)

RadioButton’s for attribute should refer to a selectOneRadio component and itemIndex points to the
index of the selectltem. When using custom layout option, selectOneRadio component should be
placed above any radioButton that points to the selectOneRadio.

Skinning
SelectOneRadio resides in a main container which style and styleClass attributes apply. As skinning

style classes are global, see the main theming section for more information. Following is the list of
structural style classes;

Style Class Applies
.ui-selectoneradio Main container element.
.ui-radiobutton Container of a radio button.
.ui-radiobutton-box Container of radio button icon.
.ui-radiobutton-icon Radio button icon.

387

3.103 Separator

PrimeFaces User’s Guide

Seperator displays a horizontal line to separate content.

Info

Tag

separator

Component Class

org.primefaces.component.separator.Separator

Component Type

org.primefaces.component.Separator

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.Separator

Renderer Class

org.primefaces.component.separator.Separator

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will
not be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

title null String Advisory tooltip informaton.

style null String Inline style of the separator.

styleClass null String Style class of the separator.

Getting started with Separator

In its simplest form, separator is used as;

//content

<p:separator />

//content

388

PrimeFaces User’s Guide

Dimensions

Separator renders a <hr /> tag which style and styleClass options apply.

(:<p:separator style="width:500px;height:20px" /> :)

Special Separators

Separator can be used inside other components such as menu and toolbar as well.

<p :menu>
//submenu or menuitem
<p:separator />
//submenu or menuitem
</p:menu>

<p:toolbar>
<p:toolbarGroup align="left">
//content
<p:separator />
//content
</p:toolbarGroup>
</p:toolbar>

Skinning
As mentioned in dimensions section, style and styleClass options can be used to style the separator.

Following is the list of structural style classes;

Class Applies

.ui-separator Separator element

As skinning style classes are global, see the main theming section for more information.

389

PrimeFaces User’s Guide

3.104 SlideMenu

TieredMenu is used to display nested submenus with sliding animation.

Info

Prime Links »

TouchFaces

« Back

Tag

slideMenu

Component Class

org.primefaces.component.slidemenu.SlideMenu

Component Type

org.primefaces.component.SlideMenu

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SlideMenuRenderer

Renderer Class

org.primefaces.component.slidemenu.SlideMenuRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE | Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

model null org.primefaces.model. MenuModel instance for programmatic menu.

MenuModel

style null String Inline style of the component.

styleClass null String Style class of the component.

backLabel Back String Text for back link.

trigger null String Id of the component whose triggerEvent will show
the dynamic positioned menu.

390

PrimeFaces User’s Guide

Name Default Type Description
my null String Corner of menu to align with trigger element.
at null String Corner of trigger to align with menu element.
overlay FALSE | Boolean Defines positioning, when enabled menu is

displayed with absolute position relative to the
trigger. Default is false, meaning static positioning.

triggerEvent click String Event name of trigger that will show the dynamic
positioned menu.

Getting started with the SlideMenu

SlideMenu consists of submenus and menuitems, submenus can be nested and each nested submenu
will be displayed with a slide animation.

\

<p:slideMenu>
<p:submenu label="Ajax Menuitems" icon="ui-icon-refresh">
<p:menuitem value="Save" actionListener="#{buttonBean.save}"
update="messages" icon="ui-icon-disk" />
<p:menuitem value="Update" actionlListener="#{buttonBean.update}"
update="messages" icon="ui-icon-arrowrefresh-1-w" />
</p:submenu>

<p:submenu label="Non-Ajax Menuitem" icon="ui-icon-newwin">
<p:menuitem value="Delete" actionListener="#{buttonBean.delete}"
update="messages" ajax="false" icon="ui-icon-close"/>
</p:submenu>

<p:separator />

<p:submenu label="Navigations" icon="ui-icon-extlink">
<p:submenu label="Prime Links">
<p:menuitem value="Prime" url="http://www.prime.com.tr" />
<p:menuitem value="PrimeFaces" url="http://www.primefaces.org" />
</p:submenu>
<p:menuitem value="Mobile" url="/mobile" />
</p:submenu>
</p:slideMenu>

Overlay

SlideMenu can be positioned relative to a trigger component, following sample attaches a
slideMenu to the button so that whenever the button is clicked menu will be displayed in an overlay
itself.

391

PrimeFaces User’s Guide

//content

</p:slideMenu>

"

<p:commandButton type="button" value="Show" id="btn" />

<p:slideMenu trigger="btn" my="left top" at="left bottom">

\

Client Side API

Show

| Save

2 Update

4« Back

Widget: PrimeFaces.widget. TieredMenu

Method Params Return Type Description
show() - void Shows overlay menu.
hide() - void Hides overlay menu.
align() - void Aligns overlay menu with trigger.
Skinning

TieredMenu resides in a main container which style and styleClass attributes apply. Following is the

list of structural style classes;

Style Class

Applies

.ui-menu .ui-slidemenu

Container element of menu.

.ui-slidemenu-wrapper

Wrapper element for content.

.ui-slidemenu-content

Content container.

.ui-slidemenu-backward

Back navigator.

.ui-menu-list

List container

.ui-menuitem

Each menu item

.ui-menuitem-link

Anchor element in a link item

.ui-menuitem-text

Text element in an item

As skinning style classes are global, see the main theming section for more information.

392

PrimeFaces User’s Guide

3.105 Slider

Slider is used to provide input with various customization options like orientation, display modes
and skinning.

21
Info

Tag slider

Component Class org.primefaces.component.slider.Slider

Component Type org.primefaces.component.Slider

Component Family org.primefaces.component

Renderer Type org.primefaces.component.SliderRenderer

Renderer Class org.primefaces.component.slider.SliderRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean | Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean

for null String Id of the input text that the slider will be used for

display null String Id of the component to display the slider value.

minValue 0 Integer Minimum value of the slider

max Value 100 Integer Maximum value of the slider

style null String Inline style of the container element

styleClass null String Style class of the container element

animate TRUE Boolean | Boolean value to enable/disable the animated move when
background of slider is clicked

type horizontal | String Sets the type of the slider, "horizontal" or "vertical".

step 1 Integer Fixed pixel increments that the slider move in

disabled FALSE Boolean | Disables or enables the slider.

393

PrimeFaces User’s Guide

Name Default Type Description

onSlideStart null String Client side callback to execute when slide begins.

onSlide null String Client side callback to execute during sliding.

onSlideEnd null String Client side callback to execute when slide ends.

range FALSE Boolean | When enabled, two handles are provided for selection a
range.

displayTemplate null String String template to use when updating the display. Valid
placeholders are {value}, {min} and {max}.

Getting started with Slider

Slider requires an input component to work with, for attribute is used to set the id of the input
component whose input will be provided by the slider.

~

public class SliderBean {
private int number;

public int getNumber() {
return number;

}

public void setNumber(int number) {
this.number = number;

b
}

- J

<h:inputText id="number" value="#{sliderBean.number}" />

<p:slider for="number" />

Display Value

Using display feature, you can present a readonly display value and still use slider to provide input,
in this case for should refer to a hidden input to bind the value.

<h:inputHidden id="number" value="#{sliderBean.number}" />
<h:outputText value="Set ratio to %" />
<h:outputText id="output" value="#{sliderBean.number}" />

<p:slider for="number" display="output" />

394

PrimeFaces User’s Guide

Setratio to %21

Vertical Slider

By default slider’s orientation is horizontal, vertical sliding is also supported and can be set using
the type attribute.

<h:inputText id="number" value="#{sliderController.number}" />

<p:slider for="number" type="vertical" minValue="0" maxValue="200"/>

21

Step

Step factor defines the interval between each point during sliding. Default value is one and it is
customized using step option.

<h:inputText id="number" value="#{sliderBean.number}" />

<p:slider for="number" step="10" />

Animation

Sliding is animated by default, if you want to turn it of animate attribute set the animate option to
false.

Boundaries

Maximum and minimum boundaries for the sliding is defined using minValue and maxValue
attributes. Following slider can slide between -100 and +100.

<h:inputText id="number" value="#{sliderBean.number}" />

<p:slider for="number" minValue="-100" maxValue="100"/>

395

PrimeFaces User’s Guide

Range Slider

Selecting a range with min-max values are supported by slider. To enable this feature, set range
attribute to true and provide a comma separate pair of input fields to attach min-max values.
Following sample demonstrates a range slider along with the display template feature for feedback;

\

<h:outputText id="displayRange"
value="Between #{sliderBean.number6} and #{sliderBean.number7}"/>

<p:slider for="txt6,txt7" display="displayRange" style="width:400px" range="true"
displayTemplate="Between {min} and {max}"/>

<h:inputHidden id="min" value="#{sliderBean.min}" />
<h:inputHidden id="max" value="#{sliderBean.max}" />

-)

Client Side Callbacks

Slider provides three callbacks to hook-in your custom javascript, onSlideStart, onSlide and
onSlideEnd. All of these callbacks receive two parameters; slide event and the ui object containing
information about the event.

<h:inputText id="number" value="#{sliderBean.number}" />

<p:slider for="number" onSlideEnd="handleSlideEnd(event, ui)"/>

function handleSlideEnd(event, ui) {
//ui.helper = Handle element of slider
//ui.value = Current value of slider

Ajax Behavior Events

Slider provides one ajax behavior event called slideEnd that is fired when the slide completes. If
you have a listener defined, it will be called by passing org.primefaces.event.SlideEndEvent
instance. Example below adds a message and displays it using growl component when slide ends.

\

<h:inputText id="number" value="#{sliderBean.number}" />

<p:slider for="number">
<p:ajax event="slideEnd" listener="#{sliderBean.onSlideEnd}" update="msgs" />
</p:slider>

<p:messages id="msgs" />

396

PrimeFaces User’s Guide

4)

public class SliderBean {

private int number;

public int getNumber() {
return number;

}

public void setNumber(int number) {
this.number = number;

}

public void onSlideEnd(SlideEndEvent event) {
int value = event.getValue();
//add faces message

}
(& /

Client Side API

Widget: PrimeFaces.widget.Slider

Method Params Return Type Description
getValue() - Number Returns the current value
setValue(value) value: Value to set void Updates slider value

with provided one.

disable() index: Index of tab to disable | void Disables slider.
enable() index: Index of tab to enable void Enables slider.
Skinning

Slider resides in a main container which style and styleClass attributes apply. These attributes are
handy to specify the dimensions of the slider.

Following is the list of structural style classes;

Class Applies
.ui-slider Main container element
.ui-slider-horizontal Main container element of horizontal slider
.ui-slider-vertical Main container element of vertical slider
.ui-slider-handle Slider handle

As skinning style classes are global, see the main theming section for more information.

397

3.106 Socket

PrimeFaces User’s Guide

Socket component is an agent that creates a channel between the server and the client.

Info

Tag

socket

Component Class

org.primefaces.component.socket.Socket

Component Type

org.primefaces.component.Socket

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SocketRenderer

Renderer Class

org.primefaces.component.socket.SocketRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

channel null Object Channel name of the connection.

transport websocket String Desired protocol to be used valid values are
websocket (default), sse, streaming, long-
polling, jsonp.

fallbackTransport | long-polling String Fallback protocol to be used when desired
transport is not supported in environment, valid
values are websocket, sse, streaming, long-
polling (default), jsonp.

onMessage null String Javascript event handler that is processed when
server publishes data.

onError null String Javascript event handler that is processed when
there is an error.

autoConnect TRUE Boolean Connects to channel on page load when enabled.

Getting Started with the Socket

See chapter 5, "PrimeFaces Push" for detailed information.

398

3.107 Spacer

PrimeFaces User’s Guide

Spacer is used to put spaces between elements.

Info

Tag

spacer

Component Class

org.primefaces.component.spacer.Spacer

Component Type

org.primefaces.component.Spacer

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SpacerRenderer

Renderer Class

org.primefaces.component.spacer.SpacerRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will
not be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

title null String Advisory tooltip informaton.

style null String Inline style of the spacer.

styleClass null String Style class of the spacer.

width null String Width of the space.

height null String Height of the space.

Getting started with Spacer

Spacer is used by either specifying width or height of the space.

Spacer in this example separates this text <p:spacer width="100" height="10"> and
<p:spacer width="100" height="10"> this text.

Spacer in this example separates this text and this text.

399

3.108 Spinner

PrimeFaces User’s Guide

Spinner is an input component to provide a numerical input via increment and decrement buttons.

Info

R

21

v

Tag

spinner

Component Class

org.primefaces.component.spinner.Spinner

Component Type

org.primefaces.component.Spinner

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SpinnerRenderer

Renderer Class

org.primefaces.component.spinner.SpinnerRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean | Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean

value null Object Value of the component than can be either an EL
expression of a literal text

converter null Convert | An el expression or a literal text that defines a converter

er/String | for the component. When it’s an EL expression, it’s

resolved to a converter instance. In case it’s a static text, it
must refer to a converter id

immediate FALSE | Boolean | Boolean value that specifies the lifecycle phase the
valueChangeEvents should be processed, when true the
events will be fired at "apply request values", if immediate
is set to false, valueChange Events are fired in "process
validations"
phase

required FALSE | Boolean | Marks component as required

validator null Method | A method binding expression that refers to a method

Expr validationg the input

400

PrimeFaces User’s Guide

Name Default Type Description
valueChangeListener | null Method | A method binding expression that refers to a method for
Expr handling a valuchangeevent

requiredMessage null String Message to be displayed when required field validation
fails.

converterMessage null String Message to be displayed when conversion fails.

validatorMessage null String Message to be displayed when validation fields.

widgetVar null String Name of the client side widget.

stepFactor 1 Double | Stepping factor for each increment and decrement

min null Double | Minimum boundary value

max null Double | Maximum boundary value

prefix null String Prefix of the input

suffix null String Suffix of the input

accesskey null String Access key that when pressed transfers focus to the input
element.

alt null String Alternate textual description of the input field.

autocomplete null String Controls browser autocomplete behavior.

dir null String Direction indication for text that does not inherit
directionality. Valid values are LTR and RTL.

disabled FALSE [Boolean | Disables input field

label null String A localized user presentable name.

lang null String Code describing the language used in the generated
markup for this component.

maxlength null Integer | Maximum number of characters that may be entered in this
field.

onblur null String Client side callback to execute when input element loses
focus.

onchange null String Client side callback to execute when input element loses
focus and its value has been modified since gaining focus.

onclick null String Client side callback to execute when input element is
clicked.

ondblclick null String Client side callback to execute when input element is
double clicked.

onfocus null String Client side callback to execute when input element
receives focus.

onkeydown null String Client side callback to execute when a key is pressed down

over input element.

401

PrimeFaces User’s Guide

Name Default Type Description

onkeypress null String Client side callback to execute when a key is pressed and
released over input element.

onkeyup null String Client side callback to execute when a key is released over
input element.

onmousedown null String Client side callback to execute when a pointer button is
pressed down over input element

onmousemove null String Client side callback to execute when a pointer button is
moved within input element.

onmouseout null String Client side callback to execute when a pointer button is
moved away from input element.

onmouseover null String Client side callback to execute when a pointer button is
moved onto input element.

onmouseup null String Client side callback to execute when a pointer button is
released over input element.

onselect null String Client side callback to execute when text within input
element is selected by user.

readonly FALSE | Boolean | Flag indicating that this component will prevent changes
by the user.
size null Integer | Number of characters used to determine the width of the

input element.

style null String Inline style of the input element.

styleClass null String Style class of the input element.

tabindex null Integer | Position of the input element in the tabbing order.
title null String Advisory tooltip informaton.

Getting Started with Spinner

Spinner is an input component and used just like a standard input text.

public class SpinnerBean {

private int number;
//getter and setter

<<p :spinner value="#{spinnerBean.number}" />)

402

PrimeFaces User’s Guide
Step Factor
Other than integers, spinner also support decimals so the fractional part can be controller with

spinner as well. For decimals use the stepFactor attribute to specify stepping amount. Following
example uses a stepFactor 0.25.

<<p :spinner value="#{spinnerBean.number}" stepFactor="0.25"/>)

public class SpinnerBean {
private double number;

//getter and setter

U Y,

Output of this spinner would be;

0.00

After an increment happens a couple of times.

2.25

Prefix and Suffix

Prefix and Suffix options enable placing fixed strings on input field. Note that you would need to
use a converter to avoid conversion errors since prefix/suffix will also be posted.

<<p:spinner' value="#{spinnerBean.number}" prefix="$" />)

s

$21

v

Boundaries

In order to restrict the boundary values, use min and max options.

<<p:spinner' value="#{spinnerBean.number}" min="0" max="100"/>)

403

Ajax Spinner

PrimeFaces User’s Guide

Spinner can be ajaxified using client behaviors like fiajax or p:ajax. In example below, an ajax
request is done to update the outputtext with new value whenever a spinner button is clicked.

<p:spinner value="#{spinnerBean.number}">

<p:ajax update="display" />

</p:spinner>

<h:outputText id="display" value="#{spinnerBean.number}" />

Skinning

Spinner resides in a container element that using style and styleClass applies.

Following is the list of structural style classes;

Class Applies
.ui-spinner Main container element of spinner
.ui-spinner-input Input field
.ui-spinner-button Spinner buttons

.ui-spinner-button-up

Increment button

.ui-spinner-button-down

Decrement button

As skinning style classes are global, see the main theming section for more information.

404

PrimeFaces User’s Guide

3.109 SplitButton

SplitButton displays a command by default and additional ones in an overlay.

B Save v

2 Update
% Delete

2 Homepage

Info

Tag splitButton

Component Class org.primefaces.component.splitbutton.SplitButton

Component Type org.primefaces.component.SplitButton

Component Family org.primefaces.component

Renderer Type org.primefaces.component.SplitButtonRenderer

Renderer Class org.primefaces.component.splitbutton.SplitButtonRenderer

Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean
value null String Label for the button
action null MethodExpr/ | A method expression or a String outcome that’d be
String processed when button is clicked.
actionListener null MethodExpr | An actionlistener that’d be processed when button is
clicked.
immediate FALSE Boolean Boolean value that determines the phaseld, when true
actions are processed at apply request_values, when
false at invoke application phase.
type submit String Sets the behavior of the button.
ajax TRUE Boolean Specifies the submit mode, when set to true(default),
submit would be made with Ajax.

405

PrimeFaces User’s Guide

Name Default Type Description

async FALSE Boolean When set to true, ajax requests are not queued.

process null String Component(s) to process partially instead of whole view.

update null String Component(s) to be updated with ajax.

onstart null String Client side callback to execute before ajax request is
begins.

oncomplete null String Client side callback to execute when ajax request is
completed.

onsuccess null String Client side callback to execute when ajax request
succeeds.

onerror null String Client side callback to execute when ajax request fails.

global TRUE Boolean Defines whether to trigger ajaxStatus or not.

partialSubmit FALSE Boolean Enables serialization of values belonging to the partially
processed components only.

style null String Inline style of the button element.

styleClass null String StyleClass of the button element.

onblur null String Client side callback to execute when button loses focus.

onchange null String Client side callback to execute when button loses focus
and its value has been modified since gaining focus.

onclick null String Client side callback to execute when button is clicked.

ondblclick null String Client side callback to execute when button is double
clicked.

onfocus null String Client side callback to execute when button receives
focus.

onkeydown null String Client side callback to execute when a key is pressed
down over button.

onkeypress null String Client side callback to execute when a key is pressed and
released over button.

onkeyup null String Client side callback to execute when a key is released
over button.

onmousedown | null String Client side callback to execute when a pointer button is
pressed down over button.

onmousemove null String Client side callback to execute when a pointer button is
moved within button.

onmouseout null String Client side callback to execute when a pointer button is
moved away from button.

onmouseover null String Client side callback to execute when a pointer button is

moved onto button.

406

PrimeFaces User’s Guide

Name Default Type Description

onmouseup null String Client side callback to execute when a pointer button is
released over button.

onselect null String Client side callback to execute when text within button is
selected by user.

accesskey null String Access key that when pressed transfers focus to the
button.

alt null String Alternate textual description of the button.

dir null String Direction indication for text that does not inherit
directionality. Valid values are LTR and RTL.

disabled FALSE Boolean Disables the button.

image null String Style class for the button icon. (deprecated: use icon)

label null String A localized user presentable name.

lang null String Code describing the language used in the generated
markup for this component.

tabindex null Integer Position of the button element in the tabbing order.

title null String Advisory tooltip information.

readonly FALSE Boolean Flag indicating that this component will prevent changes
by the user.

icon null String Icon of the button as a css class.

iconPos left String Position of the icon.

widgetVar null String Name of the client side widget.

Getting started with SplitButton

SplitButton usage is similar to a regular commandButton. Additional commands are placed inside
the component and displayed in an overlay. In example below, clicking the save button invokes save
method of the bean and updates messages. Nested options defined as menuitems do ajax, non-ajax
requests as well as regular navigation to an external url.

<p:splitButton value="Save" actionListener="#{buttonBean.save}" update="messages"
icon="ui-icon-disk">
<p:menuitem value="Update" actionlListener="#{buttonBean.update}"

update="messages" icon="ui-icon-arrowrefresh-1-w"/>

<p:menuitem value="Delete" actionlListener="#{buttonBean.delete}" ajax="false"

icon="ui-icon-close"/>

<p:separator />
<p:menuitem value="Homepage" url="http://www.primefaces.org"

icon="ui-icon-extlink"/>

</p:splitButton>

\

407

http://www.primefaces.org
http://www.primefaces.org

PrimeFaces User’s Guide

Client Side API

Widget: PrimeFaces.widget.SplitButton

Method Params Return Type Description
show() - void Displays overlay.
hide() - void Hides overlay.
Skinning

SplitButton renders a container element which style and styleClass applies.

Following is the list of structural style classes;

Style Class Applies
.ui-splitbutton Container element.
.ui-button Button element
.ui-splitbutton-menubutton Dropdown button
.ui-button-text-only Button element when icon is not used
.ui-button-text Label of button
.ui-menu Container element of menu
.ui-menu-list List container
.ui-menuitem Each menu item
.ui-menuitem-link Anchor element in a link item
.ui-menuitem-text Text element in an item

As skinning style classes are global, see the main theming section for more information.

408

3.110 Submenu

PrimeFaces User’s Guide

Submenu is nested in menu components and represents a sub menu items.

Info

Tag

submenu

Component Class

org.primefaces.component.submenu.Submenu

Component Type

org.primefaces.component.Submenu

Component Family

org.primefaces.component

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean.

label null String Label of the submenu header.

icon null String Icon of a submenu, see menuitem to see how it is used

style null String Inline style of the submenu.

styleClass null String Style class of the submenu.

Getting started with Submenu

Please see Menu or Menubar section to find out how submenu is used with the menus.

409

3.111 Stack

PrimeFaces User’s Guide

Stack is a navigation component that mimics the stacks feature in Mac OS X.

Info

e)
LCoda 3
ar [
™ @

Tag

stack

Component Class

org.primefaces.component.stack.Stack

Component Type

org.primefaces.component.Stack

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.StackRenderer

Renderer Class

org.primefaces.component.stack.StackRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean.

icon null String An optional image to contain stacked items.

openSpeed 300 String Speed of the animation when opening the stack.

closeSpeed | 300 Integer Speed of the animation when opening the stack.

widgetVar null String Name of the client side widget.

model null MenuModel | MenuModel instance to create menus programmatically

expanded FALSE Boolean Whether to display stack as expanded or not.

410

Getting started with Stack

PrimeFaces User’s Guide

Each item in the stack is represented with menuitems. Stack below has five items with different

icons and labels.

<p:stack icon="/images/stack/stack.png">
<p:menuitem value="Aperture" icon="/images/stack/aperture.png" url="#"/>
<p:menuitem value="Photoshop" icon="/images/stack/photoshop.png" url="#"/>

/).
</p:stack>

Initially stack will be rendered in collapsed mode;

Location

Stack is a fixed positioned element and location can be change via css. There’s one important css
selector for stack called .ui-stack. Override this style to change the location of stack.

.ui-stack {
bottom: 28px;
right: 40px;

Dynamic Menus

Menus can be created programmatically as well, see the dynamic menus part in menu component
section for more information and an example.

Skinning

Class

Applies

.ui-stack

Main container element of stack

.ui-stack ul i

Each item in stack

.ui-stack ul li img

Icon of a stack item

.ui-stack ul li span

Label of a stack item

411

3.112 SubTable

PrimeFaces User’s Guide

SummaryRow is a helper component of datatable used for grouping.

Info

Messi

2005-2006
2006-2007
2007-2008
2008-2009
2009-2010
20102011

Xavi
2005-2006
2006-2007
2007-2008
2008-2009
2008-2010
20102011

Iniesta
2005-2006
2006-2007
2007-2008
2008-2009
2008-2010
20102011

FCB Statistics

Goals. Assists.

10 7
16 10
32 15
51 22
55 30

: | 168 86

10 20
12 22

10 25

s: | 55 127

10 14
15 17
14 16
17 22

Tag

subTable

Component Class

org.primefaces.component.subtable.SubTable

Component Type

org.primefaces.component.SubTable

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SubTableRenderer

Renderer Class

org.primefaces.component.subtable.SubTableRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean

value null Object Data of the component.

var null String Name of the data iterator.

Getting started with SubTable

See DataTable section for more information.

412

PrimeFaces User’s Guide

3.113 SummaryRow

SummaryRow is a helper component of datatable used for dynamic grouping.

Model = Year = Manufacturer - Color =
20b7dd32 1983 Volvo Orange
93583964 1962 Volvo White
6e68d612 1970 Volvo Brown
a127d75d 1968 Volvo Black
3d5ba523 1994 Volvo Red
Total: | 51545$
4d784acf 2002 Volkswagen Red
Oed3efbe 1978 Volkswagen Black
4b0ee961 1960 Volkswagen Red
8b1bdfef 2008 Volkswagen White
Total: | 80121$
40b0c19d 2000 Renault Green
a56ffee 1967 Renault Maroon
ec645794 1983 Renault Green
Total: | 67468$
Info
Tag summaryRow

Component Class

org.primefaces.component.summaryrow.SummaryRow

Component Type

org.primefaces.component.SummaryRow

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.SummaryRowRenderer

Renderer Class

org.primefaces.component.summaryrow.SummaryRowRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.

binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean

listener null MethodExpr Method expression to execute before rendering summary
row. (e.g. to calculate totals).

Getting started with SummaryRow

See DataTable section for more information.

413

PrimeFaces User’s Guide

3.114 Tab

Tab is a generic container component used by other PrimeFaces components such as tabView and
accordionPanel.

Info
Tag tab
Component Class org.primefaces.component.TabView.Tab
Component Type org.primefaces.component.Tab
Component Family org.primefaces.component
Attributes
Name Default Type Description
id null String Unique identifier of the component.
rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean.
title null Boolean Title text of the tab
titleStyle null String Inline style of the tab.
titleStyleClass null String Style class of the tab.
disabled FALSE Boolean Disables tab element.
closable FALSE Boolean Makes the tab closable when enabled.
titletip null String Tooltip of the tab header.

Getting started with the Tab

See the sections of components who utilize tab component for more information. As tab is a shared
component, not all attributes may apply to the components that use tab.

414

PrimeFaces User’s Guide

3.115 TabMenu

TabMenu is a navigation component that displays menuitems as tabs.

|
£ Demos

% Overview 5 Documentation # Support 2 Social
Info
Tag tabMenu

Component Class org.primefaces.component.tabmenu.TabMenu

Component Type org.primefaces.component.TabMenu

Component Family org.primefaces.component

Renderer Type org.primefaces.component.TabMenuRenderer

Renderer Class org.primefaces.component.tabmenu.TabMenuRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

model null MenuModel | MenuModel instance to build menu dynamically.

style null String Inline style of the component.

styleClass null String Style class of the component.

activelndex 0 Integer Index of the active tab.

widgetVar null String Name of the client side widget.

Getting started with TabMenu
TabMenu requires menuitems as children components, each menuitem is rendered as a tab. Just like

in any other menu component, menuitems can be utilized to do ajax requests, non-ajax requests and
simple GET navigations.

415

PrimeFaces User’s Guide

-

<p:tabMenu activeIndex="0">

</p:tabMenu>

<p:menuitem value="Overview" outcome="main" icon="ui-icon-star"/>
<p:menuitem value="Demos" outcome="demos" icon="ui-icon-search" />
<p:menuitem value="Documentation" outcome="docs" icon="ui-1icon-document"/>
<p:menuitem value="Support" outcome="support" icon="ui-icon-wrench"/>
<p:menuitem value="Social" outcome="social" icon="ui-icon-person" />

\

Skinning TabMenu

TabMenu resides in a main container which style and styleClass attributes apply.

Following is the list of structural style classes;

Style Class

Applies

.ui-tabmenu

Main container element.

.ui-tabmenu-nav

Container for tabs.

.ui-tabmenuitem

Menuitem container.

.ui-menuitem

Anchor of a menuitem.

As skinning style classes are global, see the main theming section for more information.

416

PrimeFaces User’s Guide

3.116 TabView

TabView is a tabbed panel component featuring client side tabs, dynamic content loading with ajax
and content transition effects.

‘ Godfather Part | Godfather Part Il Godfather Part Il

The story begins as Don Vito Corleone, the head of a New York Mafia
family, oversees his daughter's wedding. His beloved son Michael has just
come home from the war, but does not intend to become part of his father's
business. T hrough Michael's life the nature of the family business becomes
clear. The business of the family is just like the head of the family, kind and
benevolent to those who give respect, but given to ruthless violence
whenever anything stands against the good of the family.

Info

Tag tabView

Component Class org.primefaces.component. tabview.TabView

Component Type org.primefaces.component.TabView

Component Family org.primefaces.component

Renderer Type org.primefaces.component.TabViewRenderer

Renderer Class org.primefaces.component.tabview.TabViewRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean.

widgetVar null String Variable name of the client side widget.

activelndex 0 Integer Index of the active tab.

effect null String Name of the transition effect.

effectDuration null String Duration of the transition effect.

dynamic FALSE Boolean Enables lazy loading of inactive tabs.

417

PrimeFaces User’s Guide

Name Default Type Description

cache TRUE Boolean When tab contents are lazy loaded by ajax
toggleMode, caching only retrieves the tab contents
once and subsequent toggles of a cached tab does not
communicate with server. If caching is turned off, tab
contents are reloaded from server each time tab is
clicked.

onTabChange null String Client side callback to execute when a tab is clicked.

onTabShow null String Client side callback to execute when a tab is shown.

onTabClose null String Client side callback to execute on tab close.

style null String Inline style of the main container.

styleClass null String Style class of the main container.

var null String Name of iterator to refer an item in collection.

value null Object Collection model to display dynamic tabs.

orientation top String Orientation of tab headers.

dir Itr String Defines text direction, valid values are /¢t and rzl.

Getting started with the TabView

TabView requires one more child tab components to display. Titles can also be defined by using
“title” facet.

4)

<p:tabView>
<p:tab title="Tab One">
<h:outputText value="Lorem" />
</p:tab>
<p:tab title="Tab Two">
<h:outputText value="Ipsum" />
</p:tab>
<p:tab title="Tab Three">
<h:outputText value="Dolor" />
</p:tab>
</p:tabView>

Dynamic Tabs

There’re two toggleModes in tabview, non-dynamic (default) and dynamic. By default, all tab
contents are rendered to the client, on the other hand in dynamic mode, only the active tab contents
are rendered and when an inactive tab header is selected, content is loaded with ajax. Dynamic
mode is handy in reducing page size, since inactive tabs are lazy loaded, pages will load faster. To
enable dynamic loading, simply set dynamic option to true.

418

PrimeFaces User’s Guide

<p:tabView dynamic="true">
//tabs
</p:tabView>

Content Caching

Dynamically loaded tabs cache their contents by default, by doing so, reactivating a tab doesn’t
result in an ajax request since contents are cached. If you want to reload content of a tab each time a
tab is selected, turn off caching by cache to false.

Effects

Content transition effects are controlled with effect and effectDuration attributes. EffectDuration
specifies the speed of the effect, slow, normal (default) and fast are the valid options.

<p:tabView effect="fade" effectDuration="fast">
//tabs
</p:tabView>

Ajax Behavior Events

tabChange and tabClose are the ajax behavior events of tabview that are executed when a tab is
changed and closed respectively. Here is an example of a tabChange behavior implementation;

<p:tabView>
<p:ajax event="tabChange” listener="#{bean.onChange}” />

//tabs
</p:tabView>

public void onChange(TabChangeEvent event) {
//Tab activeTab = event.getTab();
// ...

Your listener(if defined) will be invoked with an org.primefaces.event. TabChangeEvent instance
that contains a reference to the new active tab and the accordion panel itself. For tabClose event,
listener will be passed an instance of org.primefaces.event. TabCloseEvent.

419

PrimeFaces User’s Guide

Dynamic Number of Tabs

When the tabs to display are not static, use the built-in iteration feature similar to ui:repeat.

4)

<p:tabView value="#{bean.list}" var="listItem">
<p:tab title="#{listItem.propertyA}">
<h:outputText value= "#{listItem.propertyB}"/>
...More content
</p:tab>
</p:tabView>

Orientations

Tabview supports four different orientations mode, top(default), left, right and bottom.

<p:tabView orientation="left">
//tabs
</p:tabView>

Godfather Part |

Godfather Part |l

The story begins as Don Vito Corleone, the head of a
New York Mafia family, oversees his daughter's wedding.
His beloved son Michael has just come home from the
war, but does not intend to become part of his father's
business. T hrough Michael's life the nature of the family
business becomes clear. The business of the family is
just like the head of the family, kind and benevolent to
those who give respect, but given to ruthless violence
whenever anything stands against the good of the family.

Godfather Part llI

Client Side Callbacks

Tabview has two callbacks for client side. onTabChange is executed when an inactive tab is clicked
and onTabShow is executed when an inactive tab becomes active to be shown.

4)

<p:tabView onTabChange="handleTabChange(event, index)">
//tabs
</p:tabView>

function handleTabChange(index) {
//index = Index of the new tab

}
(&)

420

PrimeFaces User’s Guide

Client Side API

Widget: PrimeFaces.widget.TabView.

Method Params Return Type Description
select(index) index: Index of tab to display | void Activates tab with given
index
selectTab(index) index: Index of tab to display | void (Deprecated, use select

instead) Activates tab
with given index

disable(index) index: Index of tab to disable | void Disables tab with given
index

enable(index) index: Index of tab to enable | void Enables tab with given
index

remove(index) index: Index of tab to remove | void Removes tab with given
index

getLength() - Number Returns the number of
tabs

getActivelndex() - Number Returns index of current
tab

Skinning

As skinning style classes are global, see the main theming section for more information. Following
is the list of structural style classes.

Class Applies
.ui-tabs Main tabview container element
.ui-tabs-nav Main container of tab headers
.ui-tabs-panel Each tab container

421

3.117 TagCloud

PrimeFaces User’s Guide

TagCloud displays a collection of tag with different strengths.

Info

Transformers RIA AJAX
jQuery NextGen JsF 2.0

FCB Mobile Themes

Rocks

Tag

tagCloud

Component Class

org.primefaces.component.tagcloud.TagCloud

Component Type

org.primefaces.component.TagCloud

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.TagCloudRenderer

Renderer Class

org.primefaces.component.tagcloud.TagCloudRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE | Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

model null TagCloudModel | Backing tag cloud model.

style null String Inline style of the container element.

styleClass null String Style class of the container element.

Getting started with the TagCloud

TagCloud requires a backend TagCloud model to display.

<<p:tagC10ud model="#{tagCloudBean.model}" />)

422

PrimeFaces User’s Guide

\

-

public class TagCloudBean {
private TagCloudModel model;

public TagCloudBean() {
model = new DefaultTagCloudModel();
model.addTag(new DefaultTagCloudItem("Transformers", "#", 1));
//more

}

//getter

C

Selecting Tags

An item is tagCloud can be selected using select ajax behavior. Note that only items with null urls
can be selected.

-

\

<h:form>
<p:growl id="msg" showDetail="true" />

<p:tagCloud model="#{tagCloudBean.model}">
<p:ajax event="select" update="msg" listener="#{tagCloudBean.onSelect}" />
</p:tagCloud>
</h:form>

public class TagCloudBean {
//model, getter and setter

public void onSelect(SelectEvent event) {
TagCloudItem item = (TagCloudItem) event.getObject();
FacesMessage msg = new FacesMessage(FacesMessage.SEVERITY_INFO,
"Item Selected", item.getlLabel());
FacesContext.getCurrentInstance().addMessage(null, msg);

}
3
- /
TagCloud API

org.primefaces.model.tagcloud. TagCloudModel

Method Description

List<TagCLoudItem> getTags()

Returns all tags in model.

void addTag(TagCloudltem item)

Adds a tag.

void removeTag(TagCloudItem item)

Removes a tag.

void clear()

Removes all tags.

423

PrimeFaces User’s Guide

PrimeFaces provides org.primefaces.model.tagcloud.DefaultTagCloudModel as the default
implementation.

org.primefaces.model.tagcloud. TagCloudItem

Method Description
String getLabel() Returns label of the tag.
String getUrl() Returns url of the tag.
int getStrength() Returns strength of the tag between 1 and 5.

PrimeFaces provides org.primefaces.model.tagcloud.DefaultTagCloudltem as the default
implementation.

Skinning
TagCloud resides in a container element that style and styleClass attributes apply. .ui-tagcloud

applies to main container and .ui-tagcloud-strength-[1,5] applies to each tag. As skinning style
classes are global, see the main theming section for more information.

424

PrimeFaces User’s Guide

3.118 Terminal

Terminal is an ajax powered web based terminal that brings desktop terminals to JSF.

Welcome to PrimeFaces Terminal, how are you today?
prime § date

Wed Jan 12 13:29:13 EET 2011

prime § greet Optimus

Hello Optimus

prime § xyz

xyz not found
prime § |
Info

Tag terminal

Component Class org.primefaces.component.terminal. Terminal

Component Type org.primefaces.component.Terminal

Component Family org.primefaces.component

Renderer Type org.primefaces.component.TerminalRenderer

Renderer Class org.primefaces.component.terminal. TerminalRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

width null String Width of the terminal

height null String Height of the terminal

welcomeMessage null String Welcome message to be displayed on initial load.

prompt prime $ | String Primary prompt text.

425

PrimeFaces User’s Guide

Name Default Type Description
commandHandler null MethodExpr | Method to be called with arguments to process.
widgetVar null String Name of the client side widget.

Getting started with the Terminal

A command handler is necessary to interpret commands entered in terminal.

<:<p:terminal commandHandler="#{terminalBean.handleCommand}" /> :)

public class TerminalBean {

public String handleCommand(String command, String[] params) {
if(command.equals("greet"))
return "Hello " + params[0Q];
else if(command.equals("date™))
return new Date().toString(Q);
else

return command + " not found";

}
(& /

Whenever a command is sent to the server, handleCommand method is invoked with the command
name and the command arguments as a String array.

Focus

To add focus on terminal, use client side api, following example shows how to add focus on a
terminal nested inside a dialog;

~

<p:commandButton type="Show Terminal" type="button"
onclick="dlg.show();term.focus();"/>

<p:dialog widgetVar="dlg" width="600" height="400" header="Terminal">
<p:terminal widgetVar="term"
commandHandler="#{terminalBean.handleCommand}" width="590px" />

</p:dialog>

-)

426

PrimeFaces User’s Guide

3.119 ThemeSwitcher

ThemeSwitcher enables switching PrimeFaces themes on the fly with no page refresh.

Choose Theme v
Choose Theme
= | aristo

cupertino

trontastic

Info

Tag themeSwitcher

Component Class org.primefaces.component.themeswitcher. ThemeSwitcher

Component Type org.primefaces.component.ThemeSwitcher

Component Family org.primefaces.component

Renderer Type org.primefaces.component.ThemeSwitcherRenderer

Renderer Class org.primefaces.component.themeswitcher.ThemeSwitcherRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

effect fade String Name of the animation.

effectSpeed 400 Integer Duration of the animation in milliseconds.

disabled FALSE Boolean Disables the component.

label null String User presentable name.

onchange null String Client side callback to execute on theme change.

style null String Inline style of the component.

427

PrimeFaces User’s Guide

Name Default Type Description
styleClass null String Style class of the component.
var null String Variable name to refer to each item.
height null Integer Height of the panel.
tabindex null Integer Position of the element in the tabbing order.

Getting Started with the ThemeSwitcher

ThemeSwitcher usage is very similar to selectOneMenu.

<p:themeSwitcher style="width:150px">
<f:selectItem itemLabel="Choose Theme" itemValue="" />
<f:selectItems value="#{bean.themes}" />
</p:themeSwitcher>

Stateful ThemeSwitcher

By default, themeswitcher just changes the theme on the fly with no page refresh, in case you’d like
to get notified when a user changes the theme (e.g. to update user preferences), you can use an ajax

behavior.

<p:themeSwitcher value="#{bean.theme}" effect="fade">
<f:selectItem itemLabel="Choose Theme" itemValue="" />
<f:selectltems value="#{themeSwitcherBean.themes}" />
<p:ajax listener="#{bean.saveTheme}" />
</p:themeSwitcher>

Advanced ThemeSwitcher

ThemeSwitcher supports displaying custom content so that you can show theme previews.

<p:themeSwitcher>
<f:selectItem itemLabel="Choose Theme" itemValue="" />
<f:selectItems value="#{themeSwitcherBean.advancedThemes}" var="theme"
itemLabel="#{theme.name}" itemValue="#{theme}"/>

<p:column>
<p:graphicImage value="/images/themes/#{t.image}"/>
</p:column>

<p:column>
#{t.name}
</p:column>
</p:themeSwitcher>

_

428

PrimeFaces User’s Guide

3.120 TieredMenu

TieredMenu is used to display nested submenus with overlays.

) Ajax Menuitems)J @ Save

8 Non-Ajax Menuitem >‘ 2 Update

2 Navigations > N
Info

Tag tieredMenu

Component Class org.primefaces.component.tiecredmenu.TieredMenu

Component Type org.primefaces.component.TieredMenu

Component Family org.primefaces.component

Renderer Type org.primefaces.component.TieredMenuRenderer

Renderer Class org.primefaces.component.tieredmenu.TieredMenuRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE | Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

widgetVar null String Name of the client side widget.

model null org.primefaces.model. MenuModel instance for programmatic menu.

MenuModel

style null String Inline style of the component.

styleClass null String Style class of the component.

autoDisplay TRUE | Boolean Defines whether the first level of submenus will be
displayed on mouseover or not. When set to false,
click event is required to display.

trigger null String Id of the component whose triggerEvent will show
the dynamic positioned menu.

my null String Corner of menu to align with trigger element.

429

PrimeFaces User’s Guide

Name Default Type Description
at null String Corner of trigger to align with menu element.
overlay FALSE | Boolean Defines positioning, when enabled menu is

displayed with absolute position relative to the
trigger. Default is false, meaning static positioning.

triggerEvent click String Event name of trigger that will show the dynamic
positioned menu.

Getting started with the TieredMenu

TieredMenu consists of submenus and menuitems, submenus can be nested and each nested
submenu will be displayed in an overlay.

\

<p:tieredMenu>
<p:submenu label="Ajax Menuitems" icon="ui-icon-refresh">
<p:menuitem value="Save" actionListener="#{buttonBean.save}"
update="messages" icon="ui-icon-disk" />
<p:menuitem value="Update" actionlListener="#{buttonBean.update}"
update="messages" icon="ui-icon-arrowrefresh-1-w" />
</p:submenu>

<p:submenu label="Non-Ajax Menuitem" icon="ui-icon-newwin">
<p:menuitem value="Delete" actionListener="#{buttonBean.delete}"
update="messages" ajax="false" icon="ui-icon-close"/>
</p:submenu>

<p:separator />

<p:submenu label="Navigations" icon="ui-icon-extlink">
<p:submenu label="Prime Links">
<p:menuitem value="Prime" url="http://www.prime.com.tr" />
<p:menuitem value="PrimeFaces" url="http://www.primefaces.org" />
</p:submenu>
<p:menuitem value="Mobile" url="/mobile" />
</p:submenu>
</p:tieredMenu>

AutoDisplay

By default, submenus are displayed when mouse is over root menuitems, set autoDisplay to false to
require a click on root menuitems to enable autoDisplay mode.

<p:tieredMenu autoDisplay="false">
//content

</p:tieredMenu>

430

PrimeFaces User’s Guide

Overlay

TieredMenu can be positioned relative to a trigger component, following sample attaches a
tieredMenu to the button so that whenever the button is clicked tieredMenu will be displayed in an
overlay itself.

\

<p:commandButton type="button" value="Show" id="btn" />
<p:tieredMenu autoDisplay="false" trigger="btn" my="left top" at="left bottom">
//content

</p:tieredMenu>

-)

Show

Ajax Menuitems »

Non-Ajax Menuitem »

2 Navigations » 1 Prime Links N
| Mobile PrimeFaces
Client Side API
Widget: PrimeFaces.widget. TieredMenu
Method Params Return Type Description

show() - void Shows overlay menu.

hide() - void Hides overlay menu.

align() - void Aligns overlay menu with trigger.

Skinning

TieredMenu resides in a main container which style and styleClass attributes apply. Following is the
list of structural style classes;

Style Class Applies
.ui-menu .ui-tieredmenu Container element of menu.
.ui-menu-list List container
.ui-menuitem Each menu item
.ui-menuitem-link Anchor element in a link item
.ui-menuitem-text Text element in an item

As skinning style classes are global, see the main theming section for more information.

431

PrimeFaces User’s Guide

3.121 Toolbar

Toolbar is a horizontal grouping component for commands and other content.

(O New | G Open B o | & v Options
Info
Tag toolbar
Component Class org.primefaces.component.toolbar. Toolbar
Component Type org.primefaces.component.Toolbar
Component Family org.primefaces.component
Renderer Type org.primefaces.component.ToolbarRenderer
Renderer Class org.primefaces.component.toolbar.ToolbarRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.
binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean
style null String Inline style of the container element.
styleClass null String Style class of the container element.

Getting Started with the Toolbar

Toolbar has two placeholders(left and right) that are defined with toolbarGroup component.

<p:toolbar>
<p:toolbarGroup align="left">
</p:toolbarGroup>

<p:toolbarGroup align="right">
</p:toolbarGroup>
</p:toolbar>

432

PrimeFaces User’s Guide

Any number of components can be placed inside toolbarGroups. Additionally p:separator
component can be used to separate items in toolbar. Here is an example;

<p:toolbar>
<p:toolbarGroup align="left">
<p:commandButton type="push"
<p:commandButton type="push"

<p:separator />
<p:commandButton type="push"

<p:commandButton type="push"
<p:commandButton type="push"

value="New" image="ui-icon-document" />
value="0Open" image="ui-icon-folder-open"/>

title="Save" image="ui-icon-disk"/>
title="Delete" image="ui-icon-trash"/>
title="Print" image="ui-icon-print"/>

~

</p:toolbarGroup>
<p:divider />

<p:toolbarGroup align="right">
<p:menuButton value="Navigate">
<p:menuitem value="Home" url="#" />
<p:menuitem value="Logout" url="#" />
</p:menuButton>
</p:toolbarGroup>
</p:toolbar>

Skinning
Toolbar resides in a container element which st#yle and styleClass options apply.

Following is the list of structural style classes;

Style Class Applies

.ui-toolbar Main container

.ui-toolbar .ui-separator Divider in a toolbar

.ui-toolbar-group-left Left toolbarGroup container

.ui-toolbar-group-right Right toolbarGroup container

As skinning style classes are global, see the main theming section for more information.

433

PrimeFaces User’s Guide

3.122 ToolbarGroup

ToolbarbarGroup is a helper component for Toolbar component to define placeholders.

Info
Tag toolbarGroup
Component Class org.primefaces.component.toolbar.Toolbar Group
Component Type org.primefaces.component.ToolbarGroup
Component Family org.primefaces.component
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean | Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.
binding null Object An el expression that maps to a server side
UlComponent instance in a backing bean
align null String Defines the alignment within toolbar, valid values
are left and right.
style null String Inline style of the container element.
styleClass null String Style class of the container element.

Getting Started with the ToolbarGroup

See toolbar documentation for more information about how Toolbar Group is used.

434

PrimeFaces User’s Guide

3.123 Tooltip

Tooltip goes beyond the legacy html title attribute by providing custom effects, events, html content
and advance theme support.

This tooltip is displayed when input gets
the focus

Info

Tag

tooltip

Component Class

org.primefaces.component.tooltip.Tooltip

Component Type

org.primefaces.component.Tooltip

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.TooltipRenderer

Renderer Class

org.primefaces.component.tooltip.TooltipRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.

binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean

value null Object Value of the component than can be either an EL
expression of a literal text

converter null Converter/ | An el expression or a literal text that defines a

String converter for the component. When it’s an EL

expression, it’s resolved to a converter instance. In
case it’s a static text, it must refer to a converter id

widgetVar null String Name of the client side widget.

showEvent mouseover | String Event displaying the tooltip.

showEffect fade String Effect to be used for displaying.

hideEvent mouseout | String Event hiding the tooltip.

hideEffect fade String Effect to be used for hiding.

435

PrimeFaces User’s Guide

Name Default Type Description
for null String Id of the component to attach the tooltip.
style null String Inline style of the tooltip.
styleClass null String Style class of the tooltip.

Getting started with the Tooltip

Tooltip can be used by attaching it to a target component. Tooltip value can also be retrieved from
target’s title, so following is same;

<h:inputSecret id="pwd" value="#{myBean.password}" />
<p:tooltip for="pwd" value="Only numbers"/>

<h:inputSecret id="pwd" value="#{myBean.password}" title="Only numbers"/>
<p:tooltip for="pwd"/>

Global Tooltip

Global tooltip binds to clickable elements with title attributes. Ajax updates are supported as well,
meaning if target component is updated with ajax, tooltip can still bind.

\

<p:tooltip />

<h:form>
<h:panelGrid id="grid" columns="2" cellpadding="5">

<h:outputText value="Input: " />
<p:inputText id="focus" title="Tooltip for an input"/>

<h:outputText value="Link: " />

<h:outputlink id="fade" value="#" title="Tooltip for a link">
<h:outputText value="Fade Effect" />

</h:outputLink>

<h:outputText value="Button: " />
<p:commandButton value="Update"
title="Update components" update="@parent"/>

</h:panelGrid>

</h:form>
\ J

As global tooltips are more efficient since only one instance of tooltip is used across all tooltip
targets, it is suggested to be used instead of explicit tooltips unless you are defining a custom case
e.g. different options, custom content.

436

PrimeFaces User’s Guide
Events and Effects
A tooltip is shown on mouseover event and hidden when mouse is out by default. If you need to

change this behaviour use the showEvent and hideEvent feature. Tooltip below is displayed when
the input gets the focus and hidden with onblur.

<h:inputSecret id="pwd" value="#{myBean.password}" />
<p:tooltip for="pwd" value="Password must contain only numbers"
showEvent="focus" hideEvent="blur" showEffect="blind" hideEffect="explode" />

Available options for effects are;

+ blind
 bounce
- clip

« drop

- explode
- fold

« highlight
* puff

* pulsate
* scale

- shake

. size

* slide

Html Content

Another powerful feature of tooltip is the ability to display custom content as a tooltip not just plain
texts. An example is as follows;

\

<h:outputlLink id="1nk" value="#">
<h:outputText value="PrimeFaces Home" />
</h:outputLink>

<p:tooltip for="1lnk">
<p:graphicImage value="/images/prime_logo.png" />
<h:outputText value="Visit PrimeFaces Home" />
</p:tooltip>

Skinning

Tooltip has only .ui-tooltip as a style class and is styled with global skinning selectors, see main
skinning section for more information.

437

PrimeFaces User’s Guide

3.124 Tree

Tree is is used for displaying hierarchical data and creating site navigations.

~ Node 0
~ Node 0.0
Node 0.0.0
Node 0.0.1
» Node 0.1
» Node 1
Node 2
Info
Tag tree
Component Class org.primefaces.component.tree.Tree
Component Type org.primefaces.component.Tree
Component Family org.primefaces.component
Renderer Type org.primefaces.component.TreeRenderer
Renderer Class org.primefaces.component.tree.TreeRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.
binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean
widgetVar null String Name of the client side widget.
value null Object A TreeNode instance as the backing model.
var null String Name of the request-scoped variable that'll be used
to refer each treenode data.
dynamic FALSE Boolean Specifies the ajax/client toggleMode
cache TRUE Boolean Specifies caching on dynamically loaded nodes.
When set to true expanded nodes will be kept in
memory.
onNodeClick null String Javascript event to process when a tree node is
clicked.

438

PrimeFaces User’s Guide

Name Default Type Description

selection null Object TreeNode array to reference the selections.

style null String Style of the main container element of tree

styleClass null String Style class of the main container element of tree

selectionMode null String Defines the selectionMode

highlight TRUE Boolean Highlights nodes on hover when selection is
enabled.

datakey null Object Unique key of the data presented by nodes.

animate FALSE Boolean When enabled, displays slide effect on toggle.

orientation vertical String Orientation of layout, vertical or horizontal.

propagateSelectionUp TRUE Boolean Defines upwards selection propagation for
checkbox mode.

propagateSelectionDown | TRUE Boolean Defines downwards selection propagation for
checkbox mode.

dir Itr String Defines text direction, valid values are /tr and 7.

Getting started with the Tree

Tree is populated with a org.primefaces.model. TreeNode instance which corresponds to the root.

-

TreeNode
TreeNode
TreeNode

TreeNode
TreeNode

TreeNode
TreeNode

TreeNode
TreeNode

TreeNode

TreeNode

}

//getter

public class TreeBean {
private TreeNode root;

public TreeBean() {
root = new TreeNode("Root", null);

node® = new TreeNode("Node 0", root);
nodel = new TreeNode("Node 1", root);
node2 = new TreeNode("Node 2", root);

node@®d = new TreeNode("Node 0.0", node0);
node@l = new TreeNode("Node @.1", node®);
nhodel® = new TreeNode("Node 1.0", nodel);
hodell = new TreeNode("Node 1.1", nodel);

node@@@ = new TreeNode("Node 0.0.0", node@d);
node@@1 = new TreeNode("Node 0.0.1", node@@d);
node@1@ = new TreeNode("Node 0.1.0", node@l);

nodel@® = new TreeNode("Node 1.0.0", nodel®d);

439

PrimeFaces User’s Guide

Then specify a Ul treeNode component as a child to display the nodes.

<p:tree value="#{treeBean.root}" var="node">
<p:treeNode>
<h:outputText value="#{node}"/>
</p:treeNode>
</p:tree>

TreeNode vs p:TreeNode

TreeNode API is used to create the node model and consists of org.primefaces.model. TreeNode
instances, on the other hand <p:treeNode /> tag represents a component of type
org.primefaces.component.tree.UlTreeNode. You can bind a TreeNode to a particular p:treeNode
using the #ype name. Document Tree example in upcoming section demonstrates a sample usage.

TreeNode API

TreeNode has a simple API to use when building the backing model. For example if you call
node.setExpanded(true) on a particular node, tree will render that node as expanded.

Property Type Description
type String type of the treeNode name, default type name is "default".
data Object Encapsulated data
children List<TreeNode> List of child nodes
parent TreeNode Parent node
expanded Boolean Flag indicating whether the node is expanded or not

Dynamic Tree

Tree is non-dynamic by default and toggling happens on client-side. In order to enable ajax toggling
set dynamic setting to true.

<p:tree value="#{treeBean.root}" var="node" dynamic="true">
<p:treeNode>
<h:outputText value="#{node}"/>
</p:treeNode>
</p:tree>

Non-Dynamic: When toggling is set to client all the treenodes in model are rendered to the client
and tree is created, this mode is suitable for relatively small datasets and provides fast user
interaction. On the otherhand it’s not suitable for large data since all the data is sent to the client.

440

PrimeFaces User’s Guide

Dynamic.: Dynamic mode uses ajax to fetch the treenodes from server side on demand, compared to
the client toggling, dynamic mode has the advantage of dealing with large data because only the
child nodes of the root node is sent to the client initially and whole tree is lazily populated. When a
node is expanded, tree only loads the children of the particular expanded node and send to the client
for display.

Multiple TreeNode Types

It’s a common requirement to display different TreeNode types with a different UI (eg icon).
Suppose you’re using tree to visualize a company with different departments and different
employees, or a document tree with various folders, files each having a different formats (music,
video). In order to solve this, you can place more than one <p:treeNode /> components each having
a different type and use that "type" to bind TreeNode’s in your model. Following example
demonstrates a document explorer. To begin with here is the final output;

¥ @ Documents
¥ @ Work
3 Expenses.doc
3 Resume.doc
v @ PrimeFaces
3 RefDoc.pages
v @ Pictures
&) barcelona.jpg
& logo.jpg
(&) optimusprime.png
¥ @ Movies
¥ @ Al Pacino
£ Scarface
£ Carlitos' Way
» [@ Robert De Niro

Document Explorer is implemented with four different <p:treeNode /> components and additional
CSS skinning to visualize expanded/closed folder icons.

\

<p:tree value="#{bean.root}" var="doc">
<p:treeNode expandedIcon="ui-icon ui-icon-folder-open"
collapsedIcon="ui-icon ui-icon-folder-collapsed">
<h:outputText value="#{doc.name}"/>
</p:treeNode>
<p:treeNode type="document" icon="ui-icon ui-icon-document">
<h:outputText value="#{doc.name}" />
</p:treeNode>
<p:treeNode type="picture" icon="ui-icon ui-icon-image">
<h:outputText value="#{doc.name}" />
</p:treeNode>
<p:treeNode type="mp3" icon="ui-icon ui-icon-video">
<h:outputText value="#{doc.name}" />
</p:treeNode>
</p:tree>

(&)

441

PrimeFaces User’s Guide

4)

public class Bean {

private TreeNode root;

public Bean() {
root = new TreeNode("root", null);

TreeNode documents = new TreeNode("Documents", root);
TreeNode pictures = new TreeNode("Pictures", root);
TreeNode music = new TreeNode("Music", root);

TreeNode work = new TreeNode("Work", documents);
TreeNode primefaces = new TreeNode("PrimeFaces", documents);

//Documents

TreeNode expenses = new TreeNode("document", "Expenses.doc", work);
TreeNode resume = new TreeNode("document", "Resume.doc", work);
TreeNode refdoc = new TreeNode("document", "RefDoc.pages", primefaces);
//Pictures

TreeNode barca = new TreeNode("picture", "barcelona.jpg", pictures);
TreeNode primelogo = new TreeNode("picture", "logo.jpg", pictures);
TreeNode optimus = new TreeNode("picture", "optimus.png", pictures);
//Music

TreeNode turkish = new TreeNode("Turkish", music);

TreeNode cemKaraca = new TreeNode("Cem Karaca", turkish);
TreeNode erkinKoray = new TreeNode("Erkin Koray", turkish);
TreeNode mogollar = new TreeNode("Mogollar", turkish);

TreeNode nemalacak = new TreeNode("mp3", "Nem Alacak Felek Benim", cemKaraca);
TreeNode resimdeki = new TreeNode("mp3", "Resimdeki Goz Yaslari", cemKaraca);
TreeNode copculer = new TreeNode("mp3", "Copculer", erkinKoray);

TreeNode oylebirgecer = new TreeNode("mp3", "Oyle Bir Gecer", erkinKoray);
TreeNode toprakana = new TreeNode("mp3", "Toprak Ana", mogollar);

TreeNode bisiyapmali = new TreeNode("mp3", "Bisi Yapmali", mogollar);

}

public TreeNode getRoot() {
return root;
ks
ks

- J

Integration between a TreeNode and a p:treeNode is the type attribute, for example music files in
document explorer are represented using TreeNodes with type "mp3", there’s also a p:treeNode
component with same type "mp3". This results in rendering all music nodes using that particular
p:treeNode representation which displays a note icon. Similarly document and pictures have their
own p:treeNode representations.

Folders on the other hand have two states whose icons are defined by expandedlcon and
collapsedIcon attributes.

442

PrimeFaces User’s Guide

Ajax Behavior Events

Tree provides various ajax behavior events.

Event Listener Parameter Fired
expand org.primefaces.event.NodeExpandEvent When a node is expanded.
collapse org.primefaces.event.NodeCollapseEvent | When a node is collapsed.
select org.primefaces.event.NodeSelectEvent When a node is selected.
collapse org.primefaces.event.NodeUnselectEvent | When a node is unselected.

Following tree has three listeners;

<p:tree value="#{treeBean.model}" dynamic="true">
<p:ajax event="select" listener="#{treeBean.onNodeSelect}" />
<p:ajax event="expand" listener="#{treeBean.onNodeExpand}" />
<p:ajax event="collapse" listener="#{treeBean.onNodeCollapse}" />

</p:tree>

public void onNodeSelect(NodeSelectEvent event) {
String node = event.getTreeNode().getData().toString(Q);

}

public void onNodeExpand(NodeExpandEvent event) {
String node = event.getTreeNode().getData().toString(Q);

}

public void onNodeCollapse(NodeCollapseEvent event) {
String node = event.getTreeNode().getData().toString(Q);

}
(& /

Event listeners are also useful when dealing with huge amount of data. The idea for implementing
such a use case would be providing only the root and child nodes to the tree, use event listeners to
get the selected node and add new nodes to that particular tree at runtime.

Selection

Node selection is a built-in feature of tree and it supports three different modes. Selection should be
a TreeNode for single case and an array of TreeNodes for multiple and checkbox cases, tree finds
the selected nodes and assign them to your selection model.

single: Only one at a time can be selected, selection should be a TreeNode reference.

multiple: Multiple nodes can be selected, selection should be a TreeNode[] reference.
checkbox: Multiple selection is done with checkbox UlI, selection should be a TreeNode[] reference.

443

PrimeFaces User’s Guide

<p:tree value="#{treeBean.root}" var="node"

selectionMode="checkbox"

selection="#{treeBean.selectedNodes}">

<p:treeNode>

<h:outputText value="#{node}"/>

</p:treeNode>
</p:tree>

\

public class TreeBean {
private TreeNode root;
private TreeNode[] selectedNodes;
public TreeBean() {

//populate nodes
}

//getters and setters
}

_

root = new TreeNode("Root", null);

J

That’s it, now the checkbox based tree looks like below. When the form is submitted with a
command component like a button, selected nodes will be populated in selectedNodes property of

TreeBean.

~ [l Node 0

~ [l Node 0.0
B Node 0.0.0

. Node 0.0.1

» [l Node 0.1
» [Node 1
. Node 2

Node Caching

When caching is turned on by default, dynamically loaded nodes will be kept in memory so re-
expanding a node will not trigger a server side request. In case it’s set to false, collapsing the node
will remove the children and expanding it later causes the children nodes to be fetched from server

again.

Handling Node Click

If you need to execute custom javascript when a treenode is clicked, use the onNodeClick attribute.
Your javascript method will be invoked with passing the html element of the node. In case you have
datakey defined, you can access datakey on client side by using node.attr(‘data-datakey’) that

represents the data represented by the backing tree model.

PrimeFaces User’s Guide

Horizontal Tree

Default orientation of tree is vertical, by setting orientation attribute to true, you’ll the same
functionality of the tree component with a different layout.

™ Expenses.doc
— @ Work
— @ Documents [Resume.doc
+ (@ PrimeFaces
@ barcelona.jpg
— @Files — @ Pictures @logo.jpg
@ optimusprime.png
@ Scarface
— @Al Pacino

— @ Movies @ Carlitos’ Way

+ (@ Robert De Niro

ContextMenu

Tree has special integration with context menu, you can even match different context menus with
different tree nodes using nodeType option of context menu that matches the tree node type.

Skinning
Tree resides in a container element which style and styleClass options apply.

Following is the list of structural style classes;

Style Class Applies
.ui-tree Main container
.ui-tree-nodes Child nodes container
.ui-tree-node Tree node
.ui-tree-node-content Tree node content
.ui-tree-icon Tree node icon
.ui-tree-node-label Tree node label

As skinning style classes are global, see the main theming section for more information.

445

PrimeFaces User’s Guide

3.125 TreeNode

TreeNode is used with Tree component to represent a node in tree.

Info
Tag treeNode
Component Class org.primefaces.component.tree.UlTreeNode
Component Type org.primefaces.component.UIlTreeNode
Component Family org.primefaces.component
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean
type default String Type of the tree node
styleClass null String Style class to apply a particular tree node type
icon null String Icon of the node.
expandedIcon null String Expanded icon of the node.
collapsedlcon null String Collapsed icon of the node.

Getting started with the TreeNode

TreeNode is used by Tree and TreeTable components, refer to sections of these components for
more information.

446

3.126 TreeTable

Treetable is is used for displaying hierarchical data in tabular format.

PrimeFaces User’s Guide

Document Viewer
Name Size Type
¥ Documents - Folder e
» Work - Folder e
» PrimeFaces - Folder yo
» Pictures - Folder o,
» Movies - Folder e
Info
Tag treeTable
Component Class org.primefaces.component.treetable.TreeTable
Component Type org.primefaces.component.TreeTable
Component Family org.primefaces.component
Renderer Type org.primefaces.component.TreeTableRenderer
Renderer Class org.primefaces.component.treetable. TreeTableRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component
rendered TRUE Boolean | Boolean value to specify the rendering of the
component, when set to false component will not be
rendered.
binding null Object An el expression that maps to a server side
UIComponent instance in a backing bean
value null Object A TreeNode instance as the backing model.
var null String Name of the request-scoped variable used to refer
each treenode.
widgetVar null String Name of the client side widget.
style null String Inline style of the container element.
styleClass null String Style class of the container element.
selection null Object Selection reference.

447

PrimeFaces User’s Guide

Name Default Type Description

selectionMode null String Type of selection mode.

scrollable FALSE Boolean | Whether or not the data should be scrollable.

scrollHeight null Integer Height of scrollable data.

scrollWidth null Integer Width of scrollable data.

tableStyle null String Inline style of the table element.

tableStyleClass null String Style class of the table element.

resizableColumns FALSE Boolean | Defines if colums can be resized or not.

liveResize FALSE Boolean | Columns are resized live in this mode without using
a resize helper.

rowStyleClass null String Style class for each row.

propagateSelectionUp FALSE Boolean | Controls upwards selection propagation for
checkbox mode, default is true.

propagateSelectionDown | FALSE Boolean | Controls downwards selection propagation for
checkbox mode, default is true.

Getting started with the TreeTable

Similar to the Tree, TreeTable is populated with an org.primefaces.model. TreeNode instance that
corresponds to the root node. TreeNode API has a hierarchical data structure and represents the data
to be populated in tree. For an example, model to be displayed is a collection of documents similar
as in tree section.

\

public class Document {

private String name;
private String size;
private String type;
//getters, setters

C Y,

<p:treeTable value="#{bean.root}" var="document">
<p:column>
<f:facet name="header">
Name
</f:facet>
<h:outputText value="#{document.name}" />
</p:column>

//more columns
</p:.treeTable>

-)

448

PrimeFaces User’s Guide

Selection
Node selection is a built-in feature of tree and it supports two different modes. Selection should be a
TreeNode for single case and an array of TreeNodes for multiple case, tree finds the selected nodes

and assign them to your selection model.

single: Only one at a time can be selected, selection should be a TreeNode reference.
multiple or checkbox: Multiple nodes can be selected, selection should be a TreeNode[] reference.

Ajax Behavior Events

TreeTable provides various ajax behavior events to respond user actions.

Event Listener Parameter Fired
expand org.primefaces.event.NodeExpandEvent When a node is expanded.
collapse org.primefaces.event.NodeCollapseEvent | When a node is collapsed.
select org.primefaces.event.NodeSelectEvent When a node is selected.
unselect org.primefaces.event.NodeUnselectEvent | When a node is unselected.
colResize org.primefaces.event.ColumnResizeEvent | When a column is resized.

ContextMenu

TreeTable has special integration with context menu, you can even match different context menus
with different tree nodes using nodeType option of context menu that matches the tree node type.

Scrolling

Scrollable TreeTable implementation is same as DataTable Scrollable, refer to scrolling part in
DataTable section for detailed information.

Skinning

TreeTable content resides in a container element which style and styleClass attributes apply.
Following is the list of structural style classes;

Class Applies
.ui-treetable Main container element.
.ui-treetable-header Header of treetable.
.ui-treetable-data Body element of the table containing data

As skinning style classes are global, see the main theming section for more information.

449

PrimeFaces User’s Guide

3.127 Watermark

Watermark displays a hint on an input field.

Info

Tag

watermark

Component Class

org.primefaces.component.watermark.Watermark

Component Type

org.primefaces.component.Watermark

Component Family

org.primefaces.component

Renderer Type

org.primefaces.component.WatermarkRenderer

Renderer Class

org.primefaces.component.watermark.WatermarkRenderer

Attributes
Name Default Type Description

id null String Unique identifier of the component.

rendered TRUE Boolean Boolean value to specify the rendering of the
component, when set to false component will not
be rendered.

binding null Object An el expression that maps to a server side
UlIComponent instance in a backing bean

value 0 Integer Text of watermark.

for null String Id of the component to attach the watermark

forElement null String jQuery selector to attach the watermark

Getting started with Watermark

Watermark requires a target of the input component, one way is to use for attribute.

<h:inputText id="txt" value="#{bean.searchKeyword}" />
<p:watermark for="txt" value="Search with a keyword" />

450

PrimeFaces User’s Guide

Form Submissions

Watermark is set as the text of an input field which shouldn’t be sent to the server when an
enclosing for is submitted. This would result in updating bean properties with watermark values.
Watermark component is clever enough to handle this case, by default in non-ajax form
submissions, watermarks are cleared. However ajax submissions requires a little manual effort.

~

<h:inputText id="txt" value="#{bean.searchKeyword}" />
<p:watermark for="txt" value="Search with a keyword" />
<h:commandButton value="Submit" />

<p:commandButton value="Submit" onclick="PrimeFaces.cleanWatermarks()"
\\ oncomplete="PrimeFaces.showNatermarks()" /> 4/

Skinning

There’s only one css style class applying watermark which is ‘.ui-watermark’, you can override this
class to bring in your own style. Note that this style class is not applied when watermark uses html5
placeholder if available.

451

PrimeFaces User’s Guide

3.128 Wizard

Wizard provides an ajax enhanced UI to implement a workflow easily in a single page. Wizard
consists of several child tab components where each tab represents a step in the process.

Personal | Address | Contact Confirmation

Personal Details
Firstname: *
Lastname: *
Age:

Skiptolast [

-+ Next
Info
Tag wizard
Component Class org.primefaces.component.wizard.Wizard
Component Type org.primefaces.component.Wizard
Component Family org.primefaces.component
Renderer Type org.primefaces.component.WizardRenderer
Renderer Class org.primefaces.component.wizard.WizardRenderer
Attributes
Name Default Type Description
id null String Unique identifier of the component.
rendered TRUE Boolean Boolean value to specify the rendering of the component,
when set to false component will not be rendered.
binding null Object An el expression that maps to a server side UIComponent
instance in a backing bean
step 0 String Id of the current step in flow
style null String Style of the main wizard container element.
styleClass null String Style class of the main wizard container element.
flowListener null MethodExpr | Server side listener to invoke when wizard attempts to go
forward or back.
showNavBar TRUE Boolean Specifies visibility of default navigator arrows.
showStepStatus | TRUE Boolean Specifies visibility of default step title bar.

452

PrimeFaces User’s Guide

Name Default Type Description

onback null String Javascript event handler to be invoked when flow goes
back.

onnext null String Javascript event handler to be invoked when flow goes
forward.

nextLabel null String Label of next navigation button.

backLabel null String Label of back navigation button.

widgetVar null String Name of the client side widget

Getting Started with Wizard

Each step in the flow is represented with a tab. As an example following wizard is used to create a
new user in a total of 4 steps where last step is for confirmation of the information provided in first
3 steps. To begin with create your backing bean, it’s important that the bean lives across multiple
requests so avoid a request scope bean. Optimal scope for wizard is viewScope.

4)

public class UserWizard {

private User user = new User();

public User getUser() {
return user;

}

public void setUser(User user) {
this.user = user;

}

public void save(ActionEvent actionEvent) {
//Persist user
FacesMessage msg = new FacesMessage("Successful",
"Welcome :" + user.getFirstname());
FacesContext.getCurrentInstance().addMessage(null, msg);

}
(& /

User is a simple pojo with properties such as firstname, lastname, email and etc. Following wizard
requires 3 steps to get the user data; Personal Details, Address Details and Contact Details. Note
that last tab contains read-only data for confirmation and the submit button.

453

PrimeFaces User’s Guide

\

-

<h:form>

<p:wizard>
<p:tab id="personal">
<p:panel header="Personal Details">

<h:messages errorClass="error"/>

<h:panelGrid columns="2">
<h:outputText value="Firstname: *" />
<h:inputText value="#{userWizard.user.firstname}" required="true"/>

<h:outputText value="Lastname: *" />
<h:inputText value="#{userWizard.user.lastname}" required="true"/>

<h:outputText value="Age: " />
<h:inputText value="#{userWizard.user.age}" />
</h:panelGrid>
</p:panel>
</p:tab>

<p:tab id="address">
<p:panel header="Adress Details">

<h:messages errorClass="error"/>

<h:panelGrid columns="2" columnClasses="label, value">
<h:outputText value="Street: " />
<h:inputText value="#{userWizard.user.street}" />

<h:outputText value="Postal Code: " />
<h:inputText value="#{userWizard.user.postalCode}" />

<h:outputText value="City: " />
<h:inputText value="#{userWizard.user.city}" />
</h:panelGrid>
</p:panel>
</p:tab>

<p:tab id="contact">
<p:panel header="Contact Information">

<h:messages errorClass="error"/>

<h:panelGrid columns="2">
<h:outputText value="Email: *" />
<h:inputText value="#{userWizard.user.emaill}l" required="true"/>

<h:outputText value="Phone: " />
<h:inputText value="#{userWizard.user.phone}"/>

<h:outputText value="Additional Info: " />
<h:inputText value="#{userWizard.user.info}"/>
</h:panelGrid>
</p:panel>
</p:tab>

454

PrimeFaces User’s Guide

4)

<p:tab id="confirm">
<p:panel header="Confirmation">

<h:panelGrid id="confirmation" columns="6">
<h:outputText value="Firstname: " />
<h:outputText value="#{userWizard.user.firstname}"/>

<h:outputText value="Lastname: " />
<h:outputText value="#{userWizard.user.lastname}"/>

<h:outputText value="Age: " />
<h:outputText value="#{userWizard.user.age}" />

<h:outputText value="Street: " />
<h:outputText value="#{userWizard.user.street}" />

<h:outputText value="Postal Code: " />
<h:outputText value="#{userWizard.user.postalCode}"/>

<h:outputText value="City: " />
<h:outputText value="#{userWizard.user.city}"/>

<h:outputText value="Email: " />
<h:outputText value="#{userWizard.user.email}l" />

<h:outputText value="Phone " />
<h:outputText value="#{userWizard.user.phone}"/>

<h:outputText value="Info: " />
<h:outputText value="#{userWizard.user.info}"/>

<h:outputText />
<h:outputText />
</h:panelGrid>

<p:commandButton value="Submit" actionListener="#{userWizard.save}" />

</p:panel>
</p:tab>

</p:wizard>
</h:form>

(&)

AJAX and Partial Validations

Switching between steps is based on ajax, meaning each step is loaded dynamically with ajax.
Partial validation is also built-in, by this way when you click next, only the current step is validated,
if the current step is valid, next tab’s contents are loaded with ajax. Validations are not executed
when flow goes back.

Navigations

Wizard provides two icons to interact with; next and prev. Please see the skinning wizard section to
know more about how to change the look and feel of a wizard.

455

PrimeFaces User’s Guide

Custom Ul

By default wizard displays right and left arrows to navigate between steps, if you need to come up

with your own Ul, set showNavBar to false and use the provided the client side api.

<p:wizard showNavBar="false" widgetVar="wiz">
</p:wizard>

<h:outputlLink value="#" onclick="wiz.next();">Next</h:outputlLink>
<h:outputlLink value="#" onclick="wiz.back();">Back</h:outputLink>

_

~

Ajax FlowListener

If you’d like get notified on server side when wizard attempts to go back or forward, define a
flowListener.

<p:wizard flowListener="#{userWizard.handleFlow}">

</p:wizard>

public String handleFlow(FlowEvent event) {
String currentStepIld = event.getCurrentStep();
String stepToGo = event.getNextStep();

if(skip)
return "confirm";
else
return event.getNextStep();

}
-

J

Steps here are simply the ids of tab, by using a flowListener you can decide which step to display
next so wizard does not need to be linear always. If you need to update other component(s) on page

within a flow, use RequestContext.update(String clientld) api.

Client Side Callbacks

Wizard is equipped with onback and onnext attributes, in case you need to execute custom
javascript after wizard goes back or forth. You just need to provide the names of javascript

functions as the values of these attributes.

<p:wizard onnext="alert(‘Next’)" onback="alert(‘Back’)">

</p:wizard>

456

PrimeFaces User’s Guide

Client Side API

Widget: PrimeFaces.widget. Wizard

Method Params Return Type Description
next() - void Proceeds to next step.
back() - void Goes back in flow.
getStepIndex() - Number Returns the index of current step.
showNextNav() - void Shows next button.
hideNextNav() - void Hides next button.
showBackNav() - void Shows back button.
hideBackNav() - void Hides back button.

Skinning
Wizard resides in a container element that style and styleClass attributes apply.

Following is the list of structural css classes.

Selector Applies
.ui-wizard Main container element.
.ui-wizard-content Container element of content.
.ui-wizard-step-titles Container of step titles.
.ui-wizard-step-title Each step title.
.ui-wizard-navbar Container of navigation controls.
.ui-wizard-nav-back Back navigation control.
.ui-wizard-nav-next Forward navigation control.

As skinning style classes are global, see the main theming section for more information.

457

PrimeFaces User’s Guide

4. Partial Rendering and Processing

PrimeFaces provides a partial rendering and view processing feature based on standard JSF 2 APIs
to enable choosing what to process in JSF lifecyle and what to render in the end with ajax.

4.1 Partial Rendering

In addition to components like autoComplete, datatable, slider with built-in ajax capabilities,
PrimeFaces also provides a generic PPR (Partial Page Rendering) mechanism to update JSF
components with ajax. Several components are equipped with the common PPR attributes (e.g.
update, process, onstart, oncomplete).

4.1.1 Infrastructure

PrimeFaces Ajax Framework is based on standard server side APIs of JSF 2. There are no additional
artfacts like custom AjaxViewRoot, AjaxStateManager, AjaxViewHandler, Servlet Filters,
HtmlParsers, PhaseListeners and so on. PrimeFaces aims to keep it clean, fast and lightweight.

On client side rather than using client side API implementations of JSF implementations like
Mojarra and MyFaces, PrimeFaces scripts are based on the most popular javascript library; jQuery
which is far more tested, stable regarding ajax, dom handling, dom tree traversing than a JSF
implementations scripts.

4.1.2 Using IDs
Getting Started

When using PPR you need to specify which component(s) to update with ajax. If the component
that triggers PPR request is at the same namingcontainer (eg. form) with the component(s) it
renders, you can use the server ids directly. In this section although we’ll be using commandButton,
same applies to every component that’s capable of PPR such as commandLink, poll,
remoteCommand and etc.

<h:form>
<p:commandButton update="display" />

<h:outputText id="display" value="#{bean.value}"/>
</h:form>

Prependld

Setting prependld setting of a form has no effect on how PPR is used.

458

PrimeFaces User’s Guide

<h:form prependId="false">
<p:commandButton update="display" />

<h:outputText id="display" value="#{bean.value}"/>
</h:form>

Clientld

It is also possible to define the client id of the component to update.

<h:form id="myform">
<p:commandButton update="myform:display" />
<h:outputText id="display" value="#{bean.value}"/>
</h:form>

Different NamingContainers

If your page has different naming containers (e.g. two forms), you also need to add the container id
to search expression so that PPR can handle requests that are triggered inside a namingcontainer
that updates another namingcontainer. Following is the suggested way using separator char as a
prefix, note that this uses same search algorithm as standard JSF 2 implementation;

-

\

<h:form id="forml">
<p:commandButton update=":form2:display" />
</h:form>
<h:form id="form2">
<h:outputText id="display" value="#{bean.value}"/>

</h:form>

Please read findComponent algorithm described in link below used by both JSF core and
PrimeFaces to fully understand how component referencing works.

(http ://docs.oracle.com/javaee/6/api/javax/faces/component/UIComponent.html >

JSF h:form, datatable, composite components are naming containers, in addition tabView,
accordionPanel, dataTable, dataGrid, dataList, carousel, galleria, ring, sheet and subTable are
PrimeFaces component that implement NamingContainer.

459

http://docs.oracle.com/javaee/6/api/javax/faces/component/UIComponent.html
http://docs.oracle.com/javaee/6/api/javax/faces/component/UIComponent.html

PrimeFaces User’s Guide

Multiple Components

Multiple Components to update can be specified with providing a list of ids separated by a comma,
whitespace or even both.

-

~

<h:form>

<p:commandButton update="displayl,display2" />
<p:commandButton update="displayl display2" />

<h:outputText id="displayl" value="#{bean.valuel}"/>
<h:outputText id="display2" value="#{bean.value2}"/>

</h:form>

-)

Keywords

There are a couple of reserved keywords which serve as helpers.

Keyword Description
@this Component that triggers the PPR is updated
(@parent Parent of the PPR trigger is updated.
@form Encapsulating form of the PPR trigger is updated
(@none PPR does not change the DOM with ajax response.
(@namingcontainer Encapsulating naming container.
@all Whole document is updated as in non-ajax requests.

Example below updates the whole form.

-

<h:form>
<p:commandButton update="@form" />
<h:outputText value="#{bean.value}"/>

</h:form>

)

Keywords can also be used together with explicit ids, so update="@form, display" is also
supported.

460

PrimeFaces User’s Guide

4.1.3 Notifying Users

ajaxStatus is the component to notify the users about the status of global ajax requests. See the
ajaxStatus section to get more information about the component.

Global vs Non-Global

By default ajax requests are global, meaning if there is an ajaxStatus component present on page, it
is triggered.

If you want to do a "silent" request not to trigger ajaxStatus instead, set global to false. An example
with commandButton would be;

<p:commandButton value="Silent" global="false" />

<p:commandButton value="Notify" global="true" />

4.1.4 Bits&Pieces
PrimeFaces Ajax Javascript API

See the javascript section to learn more about the PrimeFaces Javascript Ajax API.

461

PrimeFaces User’s Guide

4.2 Partial Processing

In Partial Page Rendering, only specified components are rendered, similarly in Partial Processing
only defined components are processed. Processing means executing Apply Request Values,
Process Validations, Update Model and Invoke Application JSF lifecycle phases only on defined
components.

This feature is a simple but powerful enough to do group validations, avoiding validating unwanted
components, eliminating need of using immediate and many more use cases. Various components
such as commandButton, commandLink are equipped with process attribute, in examples we’ll be
using commandButton.

4.2.1 Partial Validation

A common use case of partial process is doing partial validations, suppose you have a simple
contact form with two dropdown components for selecting city and suburb, also there’s an
inputText which is required. When city is selected, related suburbs of the selected city is populated
in suburb dropdown.

\

<h:form>

<h:selectOneMenu id="cities" value="#{bean.city}">
<f:selectItems value="#{bean.cityChoices}" />
<p:ajax listener="#{bean.populateSuburbs}" update="suburbs"
process="@all"/>
</h:selectOneMenu>

<h:selectOneMenu id="suburbs" value="#{bean.suburb}">
<f:selectItems value="#{bean.suburbChoices}" />
</h:selectOneMenu>

<h:inputText value="#{bean.email}" required="true"/>

</h:form>

(&)

When the city dropdown is changed an ajax request is sent to execute populateSuburbs method
which populates suburbChoices and finally update the suburbs dropdown. Problem is
populateSuburbs method will not be executed as lifecycle will stop after process validations phase
to jump render response as email input is not provided. Reason is p:ajax has @all as the value
stating to process every component on page but there is no need to process the inputText.

The solution is to define what to process in p:ajax. As we’re just making a city change request, only
processing that should happen is cities dropdown.

462

PrimeFaces User’s Guide

\

-

<h:form>
<h:selectOneMenu id="cities" value="#{bean.city}">
<f:selectItems value="#{bean.cityChoices}" />
<p:ajax actionListener="#{bean.populateSuburbs}"
event="change" update="suburbs" process="@this"/>
</h:selectOneMenu>

<h:selectOneMenu id="suburbs" value="#{bean.suburb}">
<f:selectItems value="#{bean.suburbChoices}" />
</h:selectOneMenu>

<h:inputText value="#{bean.email}" required="true"/>
</h:form>

)

That is it, now populateSuburbs method will be called and suburbs list will be populated. Note that
default value for process option is @this already for p:ajax as stated in AjaxBehavior
documentation, it is explicitly defined here to give a better understanding of how partial processing
works.

4.2.2 Keywords

Just like updates, partial processing also supports keywords.

Keyword Description
@this Component that triggers the PPR is processed.
@parent Parent of the PPR trigger is processed.
@form Encapsulating form of the PPR trigger is processed
(@namingcontainer Encapsulating naming container.
(@none No component is processed, useful to revert changes to form.
@all Whole component tree is processed just like a regular request.

Important point to note is, when a component is specified to process partially, children of this
component is processed as well. So for example if you specify a panel, all children of that panel
would be processed in addition to the panel itself.

<p:commandButton process="panel" />

<p:panel id="panel">
//Children
</p:panel>

4.2.3 Using lds

463

PrimeFaces User’s Guide

Partial Process uses the same technique applied in PPR to specify component identifiers to process.
See section 5.1.2 for more information about how to define ids in process specification using
commas and whitespaces.

4.3 PFS (PrimeFaces Selectors)

PFS integrates jQuery Selector API with JSF component referencing model, so for partial update
and process, referencing JSF components can be done using jQuery Selector API instead of regular
JSF model which is based on UIComponent.findComponent. Here are some examples;

Update all forms

(update="@(Form)")

Update first form
(update:"@(form: first)"

Update all components that has styleClass named mystyle
(update:"@(.mystyle)"

Update and process all inputs

(update:"@(:input)" process="@(:input)"

Update all datatables

(update:"@(.ui-datatable)"

Process input components inside any panel and update all panels

(process=“@(.ui-panel :input)" update="@(.ui-panel)"

Process input components but not select components

(process=“@(:input:not(select))"

Update input components that are disabled

(update="@(:input:disabled)"

N N 7 N N N

PFS can be used with regular component referencing as well;

464

PrimeFaces User’s Guide

(update="comp1d :form:compId @C:input)")

PFS provides an alternative, flexible, grouping based approach to reference components to partially
process and update. There is less CPU server load compared to regular referencing because JSF
component tree is not traversed on server side to find a component and figure out the client id as
PFS is implemented on client side by looking at dom tree. Another advantage is avoiding naming
container limitations, just remember the times you’ve faced with cannot find component exception
since the component you are looking for is in a different naming container like a form or a
datatable. PFS can help you out in tricky situations by following jQuery’s “write less do more”
style.

For full reference of jQuery selector api, see;

(: http://api.jquery.com/category/selectors/ :)

465

http://api.jquery.com/category/selectors/
http://api.jquery.com/category/selectors/

PrimeFaces User’s Guide

4.4 PartialSubmit

Core JSF Ajax implementation and PrimeFaces serializes the whole form to build the post data in
ajax requests so the same data is posted just like in a non-ajax request. This has a downside in large
views where you only need to process/execute a minor part of the view. Assume you have a form
with 100 input fields, there is an input field with ajaxbehavior attached processing only
itself(@this) and then updates another field onblur. Although only a particular input field is
processed, whole form data will be posted with the unnecessary information that would be ignored
during server side processing but consume resources.

PrimeFaces provides partialSubmit feature to reduce the network traffic and computing on client
side. When partialSubmit is enabled, only data of components that will be partially processed on the
server side are serialized. By default partialSubmit is disabled and you can enable it globally using a
context parameter.

<context-param>
<param-name>primefaces.SUBMIT</param-name>
<param-value>partial</param-value>
</context-param>

Components like buttons and behaviors like p:ajax are equipped with partialSubmit option so you
can override the global setting per component.

<<p:commandButton value="Submit" partialSubmit="truelfalse" />)

466

PrimeFaces User’s Guide

5. PrimeFaces Push

PrimeFaces is built on top of Atmosphere Framework. Atmosphere’s creator Jeanfrancois Arcand is
also a committer of PrimeFaces and the architect of PrimeFaces Push. Atmosphere is highly
scalable, supports several containers and browsers, utilizes various transports such as websockets,

see, long-polling, streaming and jsonp. For more information please visit;

(: https://github.com/Atmosphere/atmosphere

)

5.1 Setup

Atmosphere

Atmosphere is required to run PrimeFaces Push, in your pom.xml define the dependency as;

<dependency>
<groupId>org.atmosphere</groupld>
<artifactId>atmosphere-runtime</artifactId>
<version>1.0.0.RCl</version>

</dependency>

Push Servlet

Push Servlet is used as a gateway for clients.

-

<servlet>
<servlet-name>Push Servlet</servlet-name>
<servlet-class>org.primefaces.push.PushServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>Push Servlet</servlet-name>
<url-pattern>/primepush/*</url-pattern>
</servlet-mapping>

"

5.2 Push API

PushContext is the central artifact of PrimeFaces Push. PushContext is mainly used publish
messages, schedule messages to publish in a specific interval, push messages in a given timeout,

manage listeners and more.

467

https://github.com/Atmosphere/atmosphere
https://github.com/Atmosphere/atmosphere

PrimeFaces User’s Guide

-

public interface PushContext {

/**

Push message to the one or more channel of communication.

@param channel a channel of communication.

@param t a message

@param <T> The type of the message

@return a Future that can be used to block until the push completes

¥ ¥ ¥ ¥ ¥

*/
<T> Future<T> push(String channel, T t);

/**

Schedule a period push operation.

@param channel a channel of communication.

@param t a message

@param time the time

@param unit the {@link @TimeUnit}

@param <T> The type of the message

@return a Future that can used to cancel the periodic push

¥ ¥ ¥ ¥ ¥ ¥ ¥

Y
<T> Future<T> schedule(String channel, T t, int time, TimeUnit unit);

/**

Delay the push operation until the time expires.

@param channel a channel of communication.

@param t a message

@param time the time

@param unit the {@link @TimeUnit}

@param <T> The type of the message

@return a Future that can used to cancel the delayed push

¥ ¥ ¥ ¥ ¥ ¥ ¥

%7
<T> Future<T> delay(String channel, T t, int time, TimeUnit unit);

/**
* Add an event listener.
* @param p {@link PushContextListener}
* @return this
Y
PushContext addListener(PushContextListener p);

/**
* Remove a event listener.
* @param p {@link PushContextListener}
* @return this
Y
PushContext removelListener(PushContextlListener p);

\}

\

You can get a reference to a PushContext as follows;

(:PushContext pushContext = PushContextFactory.getDefault().getPushContext();

)

468

PrimeFaces User’s Guide

5.3 Socket Component

<p:socket /> is a PrimeFaces component that handles the connection between the server and the
browser, common way to use socket is by defining a channel and a callback to handle broadcasts.

<<p :push channel="/chat" onmessage="handlePublish"/>)

See Socket Component attributes list for the full list of available options.
Client Side API

Widget: PrimeFaces.widget.Socket

Method Params Return Type Description
connect(uri) uri void Connects to given uri.
push(json) json void Pushes data from client side.
disconnect - void Disconnects from channel.

5.4 Putting It All Together

PrimeFaces Push consists of Atmosphere, PushContext and the socket component. This section
gives two samples to provide information about the integration and how to utilize the APIs.

5.4.1 Counter

Counter is a global counter where each button click increments the count value and new value is
pushed to all subscribers.

469

PrimeFaces User’s Guide

4)

public class GlobalCounterBean implements Serializable{

private int count;

public int getCount() {
return count;

}

public void setCount(int count) {
this.count = count;

}

public synchronized void increment() {
count++;

PushContext pushContext = PushContextFactory.getDefault().getPushContext();
pushContext.push("/counter”, String.valueOf(count));

}
(& /

~

<h:form>
<h:outputText value="#{globalCounter.count}" styleClass="display" />
<p:commandButton value="Click" actionlListener="#{globalCounter.increment}" />
</h:form>

<p:socket onMessage="handleMessage" channel="/counter" />

-

<script type="text/javascript">
function handleMessage(data) {
$C' .display"').html(data);
ks

</script>

When a client runs the page, it connects to the server over Push Servlet. Whenever a connected
client clicks the button, all subscribers receive the pushed data via execution of handleMessage.
Any broadcasted data will be passed to the callback in JSON format.

In case you’d like to update components and/or invoke listeners in your backing bean on broadcast,
you can use the optional message ajax behavior to implement the same functionality but with an
extra request.

~

<h:form id="form">

<h:outputText id="out" value="#{globalCounter.count}" />

<p:commandButton value="Click" actionlListener="#{globalCounter.increment}" />
</h:form>

<p:socket channel="/counter">
<p:ajax event="message" update="form:out" />
</p:socket>

-)

470

PrimeFaces User’s Guide

10486

o

471

PrimeFaces User’s Guide

5.4.2 FacesMessage

This sample shows how to push FacesMessages from one client to all others and display them using
Growl Component.

\

public class MessageBean {
private String text;
private String summary;
private String detail;
public void send() {
PushContext pushContext = PushContextFactory.getDefault().getPushContext();

pushContext.push("/notifications", new FacesMessage(summary, detail));

}

//getters and setters
ks

- J

<p:growl widgetVar="growl" showDetail="true" />

<h:form>
<h:panelGrid columns="2">
<p:outputLabel for="summary" value="Summary: " />
<p:inputText id="summary" value="#{growlBean.summary}" required="true" />

<p:outputlLabel for="detail" value="Detail: " />
<p:inputText id="detail" value="#{growlBean.detail}" required="true" />
</h:panelGrid>

<p:commandButton value="Send" actionlListener="#{growlBean.send}" />
</h:form>

<p:socket onMessage="handleMessage" channel="/notifications" />

(&)

<script type="text/javascript">
function handleMessage(msg) {
msg.severity = 'info';
grow.show([msg]);
ks

</script>

-)

472

PrimeFaces User’s Guide
5.5 Tips and Tricks
Dynamic Channels

Client side API would be handy to create dynamic channels, channel name of the socket does not
need to be static and you can create dynamic channels on runtime.

<p:push channel="/chat" onMessage="handlePublish" autoConnect="false"
widgetVar= "socket"/>

(socket.connect('/chat/' + uniqueKey); >

See chat sample in showcase for an example of dynamic channels used to send private messages.

Proxies

Proxies are problematic not just for PrimeFaces Push - Atmosphere solution but in all solutions. If
your proxy supports websockets, make sure to add the necessary configuration. Another solution
that is considered as a workaround is to override the default uri of the push server. Default uri is
protocol://contextPath/primepush/channel, for example PrimeFaces online showcase is running on
jetty that is behind an apache mod proxy which doesn’t support websockets at time of the writing.
Solution is to configure PrimeFaces to use another push server like;

<context-param>
<param-name>primefaces.PUSH_SERVER_URL</param-name>
<param-value>http://www.primefaces.org:8080</param-value>
</context-param>

So that socket component bypasses the proxy and directly communicates with the application.
Supported Server and Client Environments

Atmosphere does an insane job in supporting different servers and browsers. See the detailed list at;

C https://github.com/Atmosphere/atmosphere/wiki/Supported-WebServers-and-Browsers)

Scalability

Atmosphere is build to scale via plugins such as JMS, Redix, XMPP, Hazelcast and more. Refer to
atmosphere documentation to see how to configure atmosphere in more than one server.
PushServlet extends from AtmosphereServlet so any configuration option for AtmosphereServlet is
also applies PushServlet.

473

https://github.com/Atmosphere/atmosphere/wiki/Supported-WebServers-and-Browsers
https://github.com/Atmosphere/atmosphere/wiki/Supported-WebServers-and-Browsers

PrimeFaces User’s Guide

6. Javascript API

PrimeFaces renders unobstrusive javascript which cleanly separates behavior from the html. Client
side engine is powered by jQuery version 1.8.1 which is the latest at the time of the writing.

6.1 PrimeFaces Namespace

PrimeFaces 1s the main javascript object providing utilities and namespace.

Method Description
escapeClientld(id) Escaped JSF ids with semi colon to work with jQuery.
addSubmitParam(el, name, param) Adds request parameters dynamically to the element.
getCookie(name) Returns cookie with given name.
setCookie(name, value) Sets a cookie with given nam and value.
skinInput(input) Progressively enhances an input element with theming.

info(msg), debug(msg), warn(msg), error(msg) | Client side log API.

changeTheme(theme) Changes theme on the fly with no page refresh.

cleanWatermarks() Watermark component extension, cleans all
watermarks on page before submitting the form.

showWatermarks() Shows watermarks on form.

To be compatible with other javascript entities on a page, PrimeFaces defines two javascript
namespaces;

PrimeFaces.widget.*

Contains custom PrimeFaces widgets like;

- PrimeFaces.widget.DataTable

- PrimeFaces.widget. Tree

- PrimeFaces.widget.Poll

- and more...

Most of the components have a corresponding client side widget with same name.

PrimeFaces.ajax.*

PrimeFaces.ajax namespace contains the ajax API which is described in next section.

474

PrimeFaces User’s Guide

6.2 Ajax API

PrimeFaces Ajax Javascript API is powered by jQuery and optimized for JSF. Whole API consists
of three properly namespaced simple javascript functions.

PrimeFaces.ajax.AjaxRequest

Sends ajax requests that execute JSF lifecycle and retrieve partial output. Function signature is as
follows;

(PrimeFaces.ajax.AjaxRequest(cfg);)

Configuration Options

Option Description

formld Id of the form element to serialize, if not defined parent form of
source is used.

async Flag to define whether request should go in ajax queue or not, default
is false.

global Flag to define if p:ajaxStatus should be triggered or not, default is
true.

update Component(s) to update with ajax.

process Component(s) to process in partial request.

source Client id of the source component causing the request.

params Additional parameters to send in ajax request.

onstart() Javascript callback to process before sending the ajax request, return

false to cancel the request.

onsuccess(data, status, xhr, args) Javascript callback to process when ajax request returns with success
code. Takes four arguments, xml response, status code,
xmlhttprequest and optional arguments provided by RequestContent
APIL

onerror(xhr, status, exception) Javascript callback to process when ajax request fails. Takes three
arguments, xmlhttprequest, status string and exception thrown if any.

oncomplete(xhr, status, args) Javascript callback to process when ajax request completes. Takes
three arguments, xmlhttprequest, status string and optional arguments
provided by RequestContext APIL.

475

PrimeFaces User’s Guide

Examples

Suppose you have a JSF page called createUser with a simple form and some input components.

<h:form id="userForm">
<h:inputText id="username" value="#{userBean.user.name}" />
. More components
</h:form>

You can post all the information in form with ajax using;

PrimeFaces.ajax.AjaxRequest({
formld: ’userForm’
,source:’userForm’
,process:’userForm’

s

More complex example with additional options;

4)

PrimeFaces.ajax.AjaxRequest({

formId:’userForm’,

,source: ’userForm’

,process:’userForm’

,update: ’msgs’

,params: {
‘param_namel’ :’valuel’,
‘param_name2’ :’value2’

}

,oncomplete:function(xhr, status) {alert(‘Done’);}

3s
- 4

We highly recommend using p:remoteComponent instead of low level javascript api as it generates
the same with much less effort and less possibility to do an error.

PrimeFaces.ajax.AjaxResponse

PrimeFaces.ajax.AjaxResponse updates the specified components if any and synchronizes the client
side JSF state. DOM updates are implemented using jQuery which uses a very fast algorithm.

476

PrimeFaces User’s Guide

7. Themes

PrimeFaces is integrated with powerful ThemeRoller CSS Framework. Currently there are 30+ pre-
designed themes that you can preview and download from PrimeFaces theme gallery.

http://www.primefaces.org/themes.html

November 2013 1] o

July 2010 o

Su Mo Tu We Th Fr Se [

July 2010 o o
Mo Te We TH W - - "o
12] 2])

5 6 7 8w ERNDEDDD
o uwiil s |] al of u] w] w] o)
¥ ®» nnon DEEREREDER
¥ DD » | 5] w] o] »] =] »] »)

Se Mo Te W T M S

(4] Mty 300 o o A o
- W™ o - - "ot e Mo - " o
' . o] » . .
M ' " " 3
' ' 2 2 .
' SRR s 2
(<] July 2010 o o vty 2010 o o iy 2008 [+) [S SUSUR—, J
Su Mo Te We Th W S Se Mo Te We T Fr S e Me T W TN P B Se Me Te We ™ M Se
. y & 9
. <M
oW N e T e
4, 6,6 U Ak 4o
" U Y w " 2 O ue
% %Y » " a " %" " nn
s x T N D»
- -

477

http://www.primefaces.org/themes.html
http://www.primefaces.org/themes.html

PrimeFaces User’s Guide

7.1 Applying a Theme

Applying a theme to your PrimeFaces project is very easy. Each theme is packaged as a jar file,
download the theme you want to use, add it to the classpath of your application and then define
primefaces. THEME context parameter at your deployment descriptor (web.xml) with the theme
name as the value.

Download

Each theme is available for manual download at PrimeFaces Theme Gallery. If you are a maven
user, define theme artifact as;

<dependency>
<groupId>org.primefaces.themes</groupId>
<artifactId>cupertino</artifactId>
<version>1.0.8</version>
</dependency>

artifactld is the name of the theme as defined at Theme Gallery page.
Configure

Once you've downloaded the theme, configure PrimeFaces to use it.

<context-param>
<param-name>primefaces . THEME</param-name>
<param-value>aristo</param-value>
</context-param>

That's it, you don't need to manually add any css to your pages or anything else, PrimeFaces will
handle everything for you.

In case you’d like to make the theme dynamic, define an EL expression as the param value.

<context-param>
<param-name>primefaces . THEME</param-name>
<param-value>#{loggedInUser.preferences.theme}</param-value>
</context-param>

478

PrimeFaces User’s Guide

7.2 Creating a New Theme

If you’d like to create your own theme instead of using the pre-defined ones, that is easy as well
because ThemeRoller provides a powerful and easy to use online visual tool.

ThemeRoller aump

Roll Your Own | Gallery | Help

Download theme

Applying your own custom theme is same as applying a pre-built theme however you need to
migrate the downloaded theme files from ThemeRoller to PrimeFaces Theme Infrastructure.
PrimeFaces Theme convention is the integrated way of applying your custom themes to your
project, this approach requires you to create a jar file and add it to the classpath of your application.
Jar file must have the following folder structure. You can have one or more themes in same jar.

- jar
- META-INF
- resources
- primefaces-yourtheme
- theme.css
- images

1) The theme package you've downloaded from ThemeRoller will have a css file and images folder.
Make sure you have “deselect all components” option on download page so that your theme only
includes skinning styles. Extract the contents of the package and rename jquery-ui-
{version}.custom.css to theme.css.

2) Image references in your theme.css must also be converted to an expression that JSF resource
loading can understand, example would be;

url("images/ui-bg_highlight-hard 100 9199 1x100.png")
should be;
url("#{resource['primefaces-yourtheme:images/ui-bg_highlight-hard 100 f9f9f9 1x100.png']}")

Once the jar of your theme is in classpath, you can use your theme like;

<context-param>
<param-name>primefaces. THEME</param-name>
<param-value>yourtheme</param-value>
</context-param>

479

PrimeFaces User’s Guide
7.3 How Themes Work
Powered by ThemeRoller, PrimeFaces separates structural css from skinning css.

Structural CSS

These style classes define the skeleton of the components and include css properties such as margin,
padding, display type, dimensions and positioning.

Skinning CSS
Skinning defines the look and feel properties like colors, border colors, background images.
Skinning Selectors

ThemeRoller features a couple of skinning selectors, most important of these are;

Selector Applies
.ui-widget All PrimeFaces components
.ui-widget-header Header section of a component
.ui-widget-content Content section of a component
.ui-state-default Default class of a clickable
.ui-state-hover Hover class of a clickable
.ui-state-active When a clickable is selected
.ui-state-disabled Disabled elements.
.ui-state-highlight Highlighted elements.
.ui-icon An element to represent an icon.

These classes are not aware of structural css like margins and paddings, mostly they only define
colors. This clean separation brings great flexibility in theming because you don’t need to know
each and every skinning selectors of components to change their style.

For example Panel component’s header section has the .ui-panel-titlebar structural class, to change

the color of a panel header you don’t need to about this class as .ui-widget-header also that defines
the panel colors also applies to the panel header.

480

PrimeFaces User’s Guide

7.4 Theming Tips

« Default font size of themes might be bigger than expected, to change the font-size of PrimeFaces
components globally, use the .ui-widget style class. An example of smaller fonts;

.ui-widget, .ui-widget .ui-widget {
font-size: 90% !important;

}

« When creating your own theme with themeroller tool, select one of the pre-designed themes that
is close to the color scheme you want and customize that to save time.

« If you are using Apache Trinidad or JBoss RichFaces, PrimeFaces Theme Gallery includes
Trinidad’s Casablanca and RichFaces’s BlueSky theme. You can use these themes to make
PrimeFaces look like Trinidad or RichFaces components during migration.

« To change the style of a particular component instead of all components of same type use
namespacing, example below demonstrates how to change header of all panels.

.ui-panel-titlebar {
//css
}

or

.ui-paneltitlebar.ui-widget-header {
//css

}

To apply css on a particular panel;

<p:panel styleClass="custom">

</p:panel>

.custom .ui-panel-titlebar {
//css
}

N7 N —

481

PrimeFaces User’s Guide

8. Utilities

8.1 RequestContext

RequestContext is a simple utility that provides useful goodies such as adding parameters to ajax
callback functions. RequestContext is available in both ajax and non-ajax requests.

RequestContext can be obtained similarly to FacesContext.

CRequestContext requestContext = RequestContext.getCurrentInstance();)
RequestContext API
Method Description
isAjaxRequest() Returns a boolean value if current request is a

PrimeFaces ajax request.

addCallBackParam(String name, Object value) | Adds parameters to ajax callbacks like oncomplete.

update(String clientld); Specifies component(s) to update at runtime.
execute(String script) Executes script after ajax request completes.
scrollTo(String clientld) Scrolls to the component with given clientld after ajax

request completes.

Callback Parameters
There may be cases where you need values from backing beans in ajax callbacks. Suppose you have
a form in a p:dialog and when the user ends interaction with form, you need to hide the dialog or if

there’re any validation errors, dialog needs to stay open.

Callback Parameters are serialized to JSON and provided as an argument in ajax callbacks.

<p:commandButton actionlListener="#{bean.validate}"
oncomplete="handleComplete(xhr, status, args)" />

public void validate() {
//isValid = calculate isValid
RequestContext requestContext = RequestContext.getCurrentInstance();
requestContext.addCallbackParam("isValid", true or false);

isValid parameter will be available in handleComplete callback as;
482

PrimeFaces User’s Guide

~

<script type="text/javascript">
function handleComplete(xhr, status, args) {
var isValid = args.isValid;
if(isValid)
dialog.hide();
ks

</script>

)

You can add as many callback parameters as you want with addCallbackParam API. Each
parameter is serialized as JSON and accessible through args parameter so pojos are also supported
just like primitive values.

Following example sends a pojo called User that has properties like firstname and lastname to the
client.

\

public void validate() {
//isValid = calculate isValid
RequestContext requestContext = RequestContext.getCurrentInstance();
requestContext.addCallbackParam("isValid", true or false);
requestContext.addCallbackParam("user", user);

}
(& /

<script type="text/javascript">
function handleComplete(xhr, status, args) {
var firstname = args.user.firstname;
var lastname = args.user.lastname;
ks

</script>

-)

Default validationFailed

By default validationFailed callback parameter is added implicitly if JSF validation fails.
Runtime Partial Update Configuration

There may be cases where you need to define which component(s) to update at runtime rather than

specifying it declaratively at compile time. addPartialUpdateTarget method is added to handle this
case. In example below, button actionListener decides which part of the page to update on-the-fly.

<p:commandButton value="Save" actionListener="#{bean.save}" />
<p:panel id="panel"> ... </p:panel>
<p:dataTable id="table"> ... </p:panel>

483

PrimeFaces User’s Guide

4)

public void save() {
//boolean outcome = ...
RequestContext requestContext = RequestContext.getCurrentInstance();

if(Coutcome)
requestContext.update("panel™);
else
requestContext.update("table™);

}
(& /

When the save button is clicked, depending on the outcome, you can either configure the datatable
or the panel to be updated with ajax response.

Execute Javascript

RequestContext provides a way to execute javascript when the ajax request completes, this
approach is easier compared to passing callback params and execute conditional javascript.
Example below hides the dialog when ajax request completes;

public void save() {
RequestContext requestContext = RequestContext.getCurrentInstance();

requestContext.execute(“dialog.hide()”);

484

PrimeFaces User’s Guide

8.2 EL Functions

PrimeFaces provides built-in EL extensions that are helpers to common use cases.

Common Functions

Function Description

component(‘id’) | Returns clientld of the component with provided server id parameter. This
function is useful if you need to work with javascript.

widgetVar(‘id’) Provides the widgetVar of a component.

Component

<h:form id="forml">
<h:inputText id="name" />
</h:form>

//#{p:component(‘name’)} returns ‘forml:name’

WidgetVar

<p:dialog id="dlg">
//contents
</p:dialog>

<p:commandButton type="button" value="Show" onclick="#{p:widgetVar(‘dlg’)}.show()" />

Page Authorization

Function Description
ifGranted(String role) Returns true if user has the given role, else false.
ifAllGranted(String roles) Returns true if user has all of the given roles, else false.
ifAnyGranted(String roles) Returns true if user has any of the given roles, else false.
ifNotGranted(String roles) Returns true if user has none of the given roles, else false.
remoteUser() Returns the name of the logged in user.
userPrincipal() Returns the principal instance of the logged in user.

485

PrimeFaces User’s Guide

\

<p:commandButton rendered="#{p:ifGranted(‘ROLE_ADMIN’)}" />

<h:inputText disabled="#{p:ifGranted(‘ROLE_GUEST’)}" />

<p:inputMask rendered="#{p:ifAllGranted(‘ROLE_EDITOR, ROLE_READER’)}" />
<p:commandButton rendered="#{p:1ifAnyGranted(‘ROLE_ADMIN, ROLE_EDITOR’)}" />

<p:commandButton rendered="#{p:ifNotGranted(‘ROLE_GUEST’)}" />

<h:outputText value="Welcome: #{p:remoteUser()}" />

486

PrimeFaces User’s Guide

9. Portlets

PrimeFaces supports portlet environments based on JSF 2 and Portlet 2 APIs. A portlet bridge is
necessary to run a JSF application as a portlet and we suggest LiferayFaces bridge as the
implementation.

Both teams work together time to time to make sure PrimeFaces runs well on liferay. A kickstart
example is available at PrimeFaces examples repository;

(http ://primefaces.qgooglecode.com/svn/examples/trunk/prime-portlet)

9.1 Dependencies

Only necessary dependency compared to a regular PrimeFaces application is the JSF bridge, here is
a sample maven dependencies configuration.

~

<dependencies>

<dependency>
<groupId>org.glassfish</groupId>
<artifactld>javax.faces</artifactId>
<version>2.1.7</version>
</dependency>

<dependency>
<groupld>org.primefaces</groupIld>
<artifactld>primefaces</artifactld>
<version>3.4</version>
</dependency>

<dependency>
<groupId>javax.portlet</groupId>
<artifactld>portlet-api</artifactld>
<version>2.0</version>
<scope>provided</scope>
</dependency>

<dependency>
<groupId>com.liferay.faces</groupId>
<artifactld>liferay-faces-bridge-impl</artifactId>
<version>3.1.0-gal</version>

</dependency>

</dependencies>

(&)

487

http://primefaces.googlecode.com/svn/examples/trunk/prime-portlet
http://primefaces.googlecode.com/svn/examples/trunk/prime-portlet

PrimeFaces User’s Guide
9.2 Configuration
portlet.xml

Portlet configuration file should be located under WEB-INF folder. This portlet has two modes,
view and edit.

<?xml version="1.0"7>
<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
version="2.0"
xmlns:xsi="http://waww.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/portlet/portlet-app _2_0.xsd
http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd">
<portlet>
<portlet-name>1l</portlet-name>
<display-name>PrimeFaces Portlet</display-name>
<portlet-class>org.portletfaces.bridge.GenericFacesPortlet</portlet-class>
<init-param>
<hame>javax.portlet.faces.defaultViewld.view</name>
<value>/view.xhtml</value>
</init-param>
<init-param>
<hame>javax.portlet.faces.defaultViewld.edit</name>
<value>/edit.xhtml</value>
</init-param>
<supports>
<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>
<portlet-mode>edit</portlet-mode>
</supports>
<portlet-info>
<title>PrimeFaces Portlet</title>
<short-title>PrimeFaces Portlet</short-title>
<keywords>JSF 2.0</keywords>
</portlet-info>
</portlet>
</portlet-app>

web.xml

Faces Servlet is only necessary to initialize JSF framework internals.

\

<?xml version="1.0" encoding="UTF-8"7>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/
j2ee/web-app_2_5.xsd" version="2.5">
<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
</web-app>

(&)

488

http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd
http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd
http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd
http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd
http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd
http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd

PrimeFaces User’s Guide

faces-config.xml

An empty faces-config.xml seems to be necessary otherwise bridge is giving an error.

4)

<?xml version="1.0" encoding="UTF-8"?7>
<faces-config
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-facesconfig 2_0.xsd"
version="2.0">

</faces-config>

(&)

liferay-portlet.xml

Liferay portlet configuration file is an extension to standard portlet configuration file.

<?xml version="1.0"?7>
<liferay-portlet-app>
<portlet>
<portlet-name>1</portlet-name>
<instanceable>true</instanceable>
<ajaxable>false</ajaxable>
</portlet>
</liferay-portlet-app>

-)

liferay-display.xml

Display configuration is used to define the location of your portlet in liferay menu.

<?xml version="1.0"?7> \\
<!DOCTYPE display PUBLIC "-//Liferay//DTD Display 5.1.0//EN" "http://www.liferay.com/
dtd/liferay-display 5_1_0.dtd">

<display>
<category name="category.sample">
<portlet id="1" />
</category>
</display>

(&)

Pages

That is it for the configuration, a sample portlet page is a partial version of the regular page to
provide only the content without html and body tags.

489

http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd
http://www.liferay.com/dtd/liferay-display_5_1_0.dtd
http://www.liferay.com/dtd/liferay-display_5_1_0.dtd
http://www.liferay.com/dtd/liferay-display_5_1_0.dtd
http://www.liferay.com/dtd/liferay-display_5_1_0.dtd

PrimeFaces User’s Guide

edit.xhtml

\

<f:view xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:p="http://primefaces.prime.com.tr/ui">

<h:head></h:head>
<h:form>
<h:panelGrid id="grid" columns="2" cellpadding="10px">
<f:facet name="header">
<p:messages id="messages" />

</f:facet>

<h:outputText value="Total Amount: " />
<h:outputText value="#{gambitController.amount}" />

<h:outputText value="Bet:" />
<h:inputText value="#{gambitController.bet}" />

<p:commandButton value="RED"
actionListener="#{gambitController.playRed}" update="@parent" />
<p:commandButton value="BLACK"
actionListener="#{gambitController.playBlack}" update="@parent" />
</h:panelGrid>

</h:form>

</f:view>

_)

® i LIFERAY.

- m Enterprise. Open Source. For Life,

Welcome Portlets

Liferay Portlets

PrimeFaces Portlet < Return to Full Page

Total Amount:S600
Bet: 500

RED BLACK

490

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://java.sun.com/jsf/core
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/facelets
http://primefaces.prime.com.tr/ui
http://primefaces.prime.com.tr/ui

PrimeFaces User’s Guide

10. Right-To-Left

Right-To-Left language support in short RTL is provided out of the box by a subset of PrimeFaces
components. Any component equipped with dir attribute has the official support and there is also a
global setting to switch to RTL mode globally.

Here is an example of an RTL AccordionPanel enabled via dir setting.

<p:accordionPanel dir="rtl">
//tabs
</p:accordionPanel>

SV gaa g5al oo Ay Apanl D 5 a0y pdedadY | Lallall dadea 6 e D ey 5SU Gy
ehtic) 3 ya al ol il i o3 gl 30 ety Ak 0l o5 el L el (ASE S 0 gy
olila 5wl o 15a8y Ahand el o2 Aa 3 alall 2l 5 Lo s Ciaal Yoo € (g g (el

38 ol (598) ind cFSe g T R i s ol O Tin o) ol s
o Y (e gaud Cainjpd e e Sllaall ey Cand | b) gaYl 2Dl pSal g Ol

Global Configuration

Using primefaces.DIR global setting to rtl instructs PrimeFaces RTL aware components such as
datatable, accordion, tabview, dialog, tree to render in RTL mode.

<context-param>
<param-name>primefaces.DIR</param-name>
<param-value>rtl</param-value>
</context-param>

Parameter value can also be an EL expression for dynamic values.

In upcoming PrimeFaces releases, more components will receive built-in RTL support. Until then if
the component you use doesn’t provide it, overriding css and javascript in your application would
be the solution.

491

Çağatay Çivici

PrimeFaces User’s Guide

11. Integration with Java EE

PrimeFaces is all about front-end and can be backed by your favorite enterprise application
framework. Following frameworks are fully supported;

« Spring Core (JSF Centric JSF-Spring Integration)

+ Spring WebFlow (Spring Centric JSF-Spring Integration)
« Spring Roo (PrimeFaces Addon)

» EJBs

- CDI

We’ve created sample applications to demonstrate several technology stacks involving PrimeFaces
and JSF at the front layer. Source codes of these applications are available at the PrimeFaces
subversion repository and they’re deployed online time to time.

CDI and EJBs

PrimeFaces fully supports a JAVA EE 6 environment with CDI and EJBs.

Spring WebFlow

We as PrimeFaces team work closely with Spring WebFlow team, PrimeFaces is suggested by

SpringSource as the preferred JSF component suite for SWF applications. SpringSource repository
has two samples based on SWF-PrimeFaces; a small showcase and booking-faces example.

Spring ROO
SpringSource provides an official JSF-PrimeFaces Addon.

https://jira.springsource.org/browse/ROO-516

492

http://code.google.com/p/primefaces/source/browse/%23svn%252Fexamples%252Ftrunk
http://code.google.com/p/primefaces/source/browse/%23svn%252Fexamples%252Ftrunk
https://src.springframework.org/svn/spring-samples/webflow-primefaces-showcase/
https://src.springframework.org/svn/spring-samples/webflow-primefaces-showcase/
https://fisheye.springsource.org/browse/spring-webflow/branches/spring-webflow-2.2-maintenance/spring-webflow-samples/booking-faces
https://fisheye.springsource.org/browse/spring-webflow/branches/spring-webflow-2.2-maintenance/spring-webflow-samples/booking-faces
https://jira.springsource.org/browse/ROO-516
https://jira.springsource.org/browse/ROO-516

12. IDE Support

12.1 NetBeans

PrimeFaces User’s Guide

NetBeans 7.0+ bundles PrimeFaces, when creating a new project you can select PrimeFaces from

components tab;

[+ New Web Application X

Steps

Frameworks

15

2
3.
4,

Choose Project
Name and Location
Server and Settings

. Frameworks

Select the frameworks you want to use in your web application.

[Spring Web MVC

O JavaServer Faces

[0 Struts 1.3.8
[Miharnata 2 2.5

JavaServer Faces Configuration

Libraries | Configuration Components

Select the |SF component suite to setup for your web application.

Components Suite:

None

PrimeFaces 2.1

<§ack| Next > |§inish | Cancel’ Help ‘

Code completion is supported by NetBeans 6.9+ ;

0o~ W N

<?xml version='1.0"'
<!DOCTYPE

html PUBLIC

encoding='UTF-8" 2>
"~//W3C//DTD XHTML 1.0

<html xmlns="http://www.w3.0rg/1999/xhtml"”

<h:body>

</
</html

<p:|

<p:ajax>
<p:ajaxStatus>
<p:autoComplete>
<p:barChart>
<p:calendar>
<p:captcha>
<p:carousel>
<p:chartSeries>
<p:collector>
<p:colorPicker>
<p:column>
<p:columnChart>
<p:commandButton>
<p:commandLink>
<p:confirmDialog>
<p:dataExporter>

xmlns:h="http://java.sun.com/jsf/html"”
xmlns:p="http://primefaces.prime.com.tr/ui">

primefaces-p.
primefaces-p.
primefaces-p.
primefaces-p.
primefaces-p.
primefaces-p.
primefaces-p.
primefaces-p.
primefaces-p.
primefaces-p.
primefaces-p.
primefaces-p.
primefaces-p.
primefaces-p.
primefaces-p.
primefaces-p.

Transitiona

tld

QDQDQDQDQDQQQQQ

4| >

tl
tl
tl
tl
tl
tl
tl
tl
tl
tl
tl
tl
tl
tl
tl

<p:accordionPanel> primefaces-p.tld

493

1//EN" "httg

PrimeFaces User’s Guide

[

1 <?xml version='1.0' encoding='UTF-8' ?>
2 <!DOCTYPE html PUBLIC "~//W3C//DTD XHTML 1.0 Transitional//EN" "h
3@ <html xmlns="http://www.w3.0rg/1999/xhtml”
4 xmlns:h="http://java.sun.com/jsf/html"
5 xmlns:p="http://primefaces.prime.com.tr/ui">
6
7
8 o <h:body>
9
10 <p:accordionPanel |
i /nibod [cotiverndex]
- </h: y> "
bind
13 L </html> > neng
id
multipleSelection
rendered
speed
style
styleClass

PrimeFaces and NetBeans teams are in communication to discuss the next step of PrimeFaces

integration in NetBeans at the time of writing.

12.2 Eclipse

Code completion works out of the box for Eclipse when JSF facet is enabled.

<ui:composition xmlns="http://www.w3.0rg/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets”
xmlns "http://java.sun.com/jsf/html"
xmlns ttp://java.sun.com/jsf/core”
xmlns "http://primefaces.prime.com. tr/ui”

template="../templates/ui.xhtml">

<ui:define name="content">

<> p:accordionPanel
<> pajax

<> p:ajaxStatus

<> p:autoComplete
<> p:barChart

<> p:breadCrumb
<> pcalendar

</ui: compo:

<> prcaptcha
<> pcarousel .
<> pichartSeries

m Element : p:accordionPanel

<ui:composition xmlns="http://www.w3.0rg/1999/xhtml "
xmlns:ui="http://java.sun.com/jsf/facelets”
h="http://java.sun.com/jsf/html"
ttp://java.sun.com/jsf/core”
xmlns:p="http://primefaces.prime.com. tr/ui”
template="../templates/ui.xhtml">

<ui:define name="content">

<p:accordionPanel >
</p:accordionPanel] @ activelndex
@ animate
@ binding
@ hover

@ hoverDelay
@ id

@ multiple
@ rendered
@ speed Al
@ style .

</ui:define>
</ui:composition>

v Index of the active tab, use a comma seperated list for
multiple tabs.

494

PrimeFaces User’s Guide

13. Project Resources

Documentation

This guide is the main resource for documentation, for additional documentation like apidocs, taglib

docs, wiki and more please visit;

(http://www.primefaces.org/documentation.html

)

Support Forum

PrimeFaces discussions take place at the support forum. Forum is public to everyone and
registration is required to do a post.

(http://forum.primefaces.org

Source Code

PrimeFaces source is at google code subversion repository.

(http://code.google.com/p/primefaces/source/

)

Issue Tracker

PrimeFaces issue tracker uses google code’s issue management system. Please use the forum before

creating an issue instead.

(http://code.google.com/p/primefaces/issues/list

)

WIKI

PrimeFaces Wiki is a community driven additional documentation resource.

(http://wiki.primefaces.org

Social Networks

You can follow PrimeFaces on twitter using @primefaces and join the Facebook group.

495

http://www.primefaces.org/documentation.html
http://www.primefaces.org/documentation.html
http://forum.primefaces.org
http://forum.primefaces.org
http://code.google.com/p/primefaces/source/
http://code.google.com/p/primefaces/source/
http://code.google.com/p/primefaces/issues/list
http://code.google.com/p/primefaces/issues/list
http://wiki.primefaces.org
http://wiki.primefaces.org
http://www.facebook.com/group.php?v=info&gid=206606616332
http://www.facebook.com/group.php?v=info&gid=206606616332

PrimeFaces User’s Guide

14. FAQ

1. Who develops PrimeFaces?
PrimeFaces is developed and maintained by Prime Teknoloji, a Turkish software development
company specialized in Agile Software Development, JSF and Java EE.

2. How can I get support?

Support forum is the main area to ask for help, it’s publicly available and free registration is
required before posting. Please do not email the developers of PrimeFaces directly and use support
forum instead.

3. Is enterprise support available?
Yes, enterprise support is also available. Please visit support page on PrimeFaces website for more
information.

http://www.primefaces.org/support.html

4. Where is the source for the example demo applications?
Source code of demo applications are in the svn repository of PrimeFaces at /examples/trunk folder.
Snapshot builds of samples are deployed at PrimeFaces Repository time to time.

5. Some components like charts do not work in Safari or Chrome but there’s no problem with
Firefox.

The common reason is the response mimeType when using with PrimeFaces. You need to make
sure responseType is "text/html". You can use the <f:view contentType="text/html"> to enforce this.

6. My page does not navigate with PrimeFaces commandButton and commandLink.?
If you'd like to navigate within an ajax request, use redirect instead of forward or set ajax to false.

7. Where can I get an unreleased snapshot?
Nightly snapshot builds of a future release is deployed at http://repository.primefaces.org.

8. What is the license PrimeFaces have?
PrimeFaces is free to use and licensed under Apache License V2.

9. Can I use PrimeFaces in a commercial software?
Yes, Apache V2 License is a commercial friendly library. PrimeFaces does not bundle any third

party software that conflicts with Apache.

10. Which browsers are supported by PrimeFaces?
IE 8-9-10, Safari, Firefox, Chrome and Opera.

496

http://www.primefaces.org/support.html
http://www.primefaces.org/support.html
http://repository.primefaces.org
http://repository.primefaces.org

PrimeFaces User’s Guide

THE END

497

