Pro Java
Clustering and
Scalability

Building Real-Time Apps with Spring,
Cassandra, Redis, WebSocket and
RabbitMQ

Jorge Acetozi

ApPress’

Pro Java Clustering
and Scalability

Jorge Acetozi

Apress-

Pro Java Clustering and Scalability: Building Real-Time Apps with Spring, Cassandra,
Redis, WebSocket and RabbitMQ

Jorge Acetozi
Sao Paulo / SP, Brazil

ISBN-13 (pbk): 978-1-4842-2984-2 ISBN-13 (electronic): 978-1-4842-2985-9
DOI10.1007/978-1-4842-2985-9

Library of Congress Control Number: 2017951201
Copyright © 2017 by Jorge Acetozi

This work is subject to copyright. All rights are reserved by the Publisher, whether the
whole or part of the material is concerned, specifically the rights of translation, reprinting,
reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any
other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we
use the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes
no warranty, express or implied, with respect to the material contained herein.

Cover image by Freepik (www. freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Massimo Nardone
Coordinating Editor: Mark Powers
Copy Editor: Kim Wimpsett

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.
Apress Media, LLC is a California LLC and the sole member (owner) is Springer

Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apzress.com, or visit
www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book
is available to readers on GitHub via the book’s product page, located at waw. apress.
com/9781484229842. For more detailed information, please visit www.apress.com/
source-code.

Printed on acid-free paper

www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com/rights-permissions
www.apress.com/bulk-sales
www.apress.com/9781484229842
www.apress.com/9781484229842
www.apress.com/source-code
www.apress.com/source-code

This book never would have been published without my wife Juliana’s daily
support and patience. Thank you so much. I love you!

Contents at a Glance

About the AUthorcccnvemmismn s ———— Xiii

About the Technical ReVIEWErcuccesssesmssssmssssmsmsssssssssssssmsssnssnsanss XV

Introduction.........cccnimmmmmmmm e ———————— Xvii
Part 1: USAQeccceemmmmmmmmssssssnnnmnnnmssssssssnnsnnnnnsssssssnnnnnnnnnnss 1
Chapter 1: DOCKEcoccurmisemmmssenmssssnsesssnssssssssssssssssssnssssanssssansessannss 3
Chapter 2: PrerequiSites......ccccummmmmsemmmmnnnmmmmsmmssssssssnsnsssssssssnnsnnnn 13
Chapter 3: Executing the Project Locally..........ccccnsneennnssssennnnnans 17
Chapter 4: Simulating a Conversation..........cccuccernisenrnssenssssanssssnns 19
Chapter 5: Setting Up the Development Environment.............cocu... 27
Part 2: Architecture...........cccinnimmmnimsmnissnnnsensnnsnssnnsanss 31
Chapter 6: Understanding the Relationship Between Domain
and Architecture..........cccuvsmmismmssmmsssmss s s s s 33
Chapter 7: Introduction to NoSQL..........cccermnmmsnnsenssenssnsssnssanssens 35
Chapter 8: The Spring Framework...........cccinnsemnmnmsssensnnssssesssnnnes 47
Chapter 9: WebSocketccccimmmnsemmmmmsssemnmmmmsessmmmssessmnsssssssnnnnns 55
Chapter 10: Spring WebSocket.........cccucummisemmmssenmmssanmssssnssssansassnns 59
Chapter 11: Single-Node Chat Architecture........ccccccnmnsennnnnsssnna 67
Chapter 12: Multinode Chat Architectureccccussseenmsssssnsnsssssnnns 71
Chapter 13: Horizontally Scaling Stateful Web Applications.......... 75

CONTENTS AT A GLANCE

Part 3: Code by Featurecccccemmmmmmmrennnnnnnnnnnnnnnnnnnnnnes 81

Chapter 14: Changing the Application Languageccuseenmesssanes 83
Chapter 15: LOginc.cccuruemmmssanmmsssnsssssssesssnsesssssesssssesssnsssssnsssssnnes 87
Chapter 16: New Account.........oocsmmmmmmmmmmmmmmsssssssssnssssssssssssssssnnnns 91
Chapter 17: New Chat Room..........ccccssemmmmmnsssmnmmsssssssnssssssnssssssnans 97
Chapter 18: Joining the Chat Room...........ccccemmnnssennnnnssssnnnnssnnns 99
Chapter 19: Sending a User’s Public Messages

over WehSocCKet.........ccvumemmmmmmmmsmssmsssmssss s sssssssssssssnsnsssnnns 107
Chapter 20: Sending a User’s Private Messages

over WehSoCKet.........cucumimmmmmsmmmsssssmsssmssssssssssssssssssssnsnssssnsnsnnns 109

Part 4: Testing the Code........cccccmmmmmmmmrrnrnnnnnnnnnnnnsnnnnnns 113

Chapter 21: Lazy Deployments vs. Fast Deployments................ 115
Chapter 22: Continuous Deliveryc.ccccusemmsssnsssssnsssssssssssnssssnns 117
Chapter 23: Types of Automated Testsuuvemmemrmnnnmmsssssnnsnsnnnnns 119
Chapter 24: Unit Testsccccccnmmmmsnmmmmmmsssssnmmssssssssmsssssssssssssnssssnsns 121
Chapter 25: Integration Testsccccirnnnemmmmmssssnnnnmssssnnnssssssnsnsnns 127
Chapter 26: Splitting Unit Tests from Integration Tests
Using Maven Plug-ins.......ccccummsssmsmmmmmmmsssssssssssnssnssssssssssssssnsnnnes 135
Chapter 27: Continuous Integration Servercccucccunrnsssnnnninsns 139
APPENAiX.eiiiiisnnninsssnnnnmmssssnnnmsssssnnnmsssssnnnesssssnnnssssssnnnssssssnnnsssssnnnns 141
Afterword: What’s Next?.........cccmnmmnmmmsmmsmismssmssmsssssssssssasnsns 145
INA@X...ceiisssnmmnmnssssnnnsnssssnnsnsssssnnnsnssssnnnnsssssnnnnsssssnnnnnnsssnnnnnnsssnnnnnnnsans 147

vi

Contents

About the AUthOrcccccmmmemmmmssmnmsssssmsssssmssssmsssssss s sasssssansnssns Xiii
About the Technical REVIEWETcccccssssemmmsssmsmssnsmssssssssnsssssnssnssns Xv
Introduction........cccuccmmiemnnsmmmnmnenn s ——————— Xvii
Part 1: USAQeuusssemmnmsssssnnnssssssnsnssssssnsnnsssssnnssnssssnnnnnsss 1
Chapter 1: DOCKErccccurrrssssnnnnssssssnsssssssssssssssssnssssssssnnsssssssnnnssssnnns 3
1.1 Introduction 10 DOCKET..........ccoeeereririerrtrers e 3
1.2 Docker Hub.......occoii s 4
1.3 Image vs. CoNtainerccoceercreenienssc e 5

B S 11T T T- I - 1o LSS 5
1.5 Docker Usage Example: Elasticsearch............cecvvvvrversensessensenienns 6
1.6 Basic Docker Commandscccocceceereeneresenesssesesssesessssesessnsenens 7
1.7 The docker run Command..........cccovvernnmresrssmssssssssessesssssssessssesnes 7
1.7.1 Running Containers as a Daemon with -d............ccccorrennnnicicnnnnicscnenn 8

1.7.2 Naming Containers With =-Name.........cccocoreernnrrennnneerrs s 8

1.7.3 EXpoSing Ports With =Pccoreoernreerreccsesse e 8

1.7.4 Environment Variables With =ccovrrvnnnnncscsseeesers s 9

1.7.5 VOIUMES WIth V... 9

1.8 DOCKEr COMPOSE ...coeeceereererreerserssessessssssesssesesssessssssssssssassssesaesns 10
Chapter 2: Prerequisites......ccccuummmmmmmmmnmmmsmsssssssssssnssssssssssssssssnsnnnss 13
Chapter 3: Executing the Project Locally.......c..ccoussammmsssnnssssnnsssanns 17

vii

CONTENTS

Chapter 4: Simulating a Conversation..........c..ccousmmmsssnsssssnsssssnns 19
4.1 Create a New ACCOUNL..........cccceriereneiimrenese s 20
4.2 Create a New Chat RoOm..........cccoviimnerenmnenscneseesesee s 20
4.3 SIgNIN oo 22
T 81 L 310 T0] | SR 22
4.5 Send Public MeSSAQESccvverrerieriersersenrersessesses s e e sesens 23
4.6 Send Private MeSSAQgeS........ccoerermrrererersesesessssessssessessssessessssensens 24
4.7 Check That the Conversation IS Storedcceerierenerierensennnns 24
4.8 Receive Messages Even on Connection Failures..........cccveerennen. 25
Chapter 5: Setting Up the Development Environment..........ccccuveens 27
5.1 APaChe MaAVEN.........cccccerrerreerer e s sneennnens 27
5.2 Import the Project into the Eclipse IDE..........ccooorerercrcercercenenne 28

Part 2: Architecturecoeeverrmeesmsssmsssssssssssssssssssnnssses 31

Chapter 6: Understanding the Relationship Between Domain

and Architecture.........ccciusmmnsmmmssmmsesmsssmmsmmesmssas s 33
Chapter 7: Introduction to NoSQL.........ccccccismnsnmssennssnssssnsssansssnns 35
7.1 Modeling in NOSQL........cccccvererererserrenesesessessesessessssese e ssssessenns 38
7.2 Cassandra OVEIVIBWccveeererrenmressesmsessssssessssssessssesessssssessnns 39

7.2.1 Cassandra CONCEPIS.......ccuovrervererrerersersesersrseseresersssessesessesessessssesssesssesaens 42
7 T 2 To 0T o 44

7.3.1 Redis vS. MEMCACNEMcccoeererercererer s 44

7.3.2 RediS USE CASES.....courureeererreeiressseese s see s s se s e s sssssssssenns 45
Chapter 8: The Spring Framework..........cuccrmuemmmsssssmsssssssssssssssnns 47
8.1 SPring BOOt ..o 48
8.2 Spring Data JPA RepoSitories.........ccovverrerversersessessensessessessessenenns 48
8.3 Spring Data and NOSQL...........cccovrirrnrrrnierre e seseenes 52

viii

CONTENTS

Chapter 9: WebSocketcccernnnmmmmmnssnnnmmnsssnsnsssssssssssssssssnsssssnns 55
9.1 Polling vS. WeDSOCKEL..........ccoererrerrcerirrreee e nnnns 55
9.2 WebSocket and Browser Compatibilitycccevvrerrersersersensenienns 57
9.3 Raw WebSocket vs. WebSocket over STOMP...........ccccoveumeensensesessensas 57
Chapter 10: Spring WebSocket..........ccuucmmmmnnsnmmnmmssssnnnnmssssnnssssssnns 59
10.1 Raw WebSocket Configuration............ccccevveensriennscnenencsnnsennns 59
10.2 WebSocket over STOMP Configuration..........ccceevvvercercernennnne. 61
10.3 Message Flow Using a Simple BroKer..........cccoevvevverrersersessensennns 64
10.4 Message Flow Using a Full External STOMP Broker 66
Chapter 11: Single-Node Chat Architecture.........ccousemrrnsssannnssssnns 67
Chapter 12: Multinode Chat Architecturecccccmmrrrrssssssssnnnnnnnns 71
12.1 Using RabbitMQ As a Full External STOMP Broker............ccc...... 72
Chapter 13: Horizontally Scaling Stateful Web Applications.......... 75
13.1 Using the Sticky Session Strategycccceevvrrvrrrnsnsnsesensennns 76
13.2 Spring Session and WebSocket...........ccccoovververiennicriennscnnennnne, 78

Part 3: Code by Featurecccccmmmmmmmmmmnnnnnnnnnnnnnnnnnnnnnns 81

Chapter 14: Changing the Application Languageccuuseeenesssnnns 83
Chapter 15: LOginccuccursemmssnmssasmssassssnssssssssassssnssssssssassssnsssansssans 87
Chapter 16: New AcCount.........ccusseemmmmssssnnnmmsssssssmssssssnsssssssnnnssssnns 91
Chapter 17: New Chat Room..........cccinnnmmmmmmmssssnnnmsssssssnssssssssnsnssnns 97
17.1 Secured REST Endpoints with Spring MVC and
SPriNG SECUNTY.....crierrerrerrirrrrser s sae s s s saesaesaeees 98
Chapter 18: Joining the Chat Room............ccinmsuenmsssenmsssenssssnnssssnns 99
18.1 WebSocket Reconnection Strategyccceevvevrerriernsesennnnens 101
18.2 WehSoCKet EVENtS.........ccooucverenereninesssnsesese s 101
18.2.1 Send Public System Messages over WebSocket............cccovreienerernnnnes 104

CONTENTS

Chapter 19: Sending a User’s Public Messages
over WehSocCKet.......ouuummemmmmmmmnmmsssssssssssnnnnssssssssssssssnsssssssssssnnnnnns 107

Chapter 20: Sending a User’s Private Messages
over WebhSocCKet........ccuummmmmnsmmmmmmssssssnmmssssssnssssssssnsssssssssssssssnnnnns 109

Part 4: Testing the Code.........ccocccmmmsssnnenmnssssnnnsnsssnnanns 113

Chapter 21: Lazy Deployments vs. Fast Deployments...........uu... 115
Chapter 22: Continuous Deliveryccuccmmmmmsssmnmmssssssnssssssssssssans 117
Chapter 23: Types of Automated Testsccousmmssmrssansssansssnsssns 119
Chapter 24: Unit Testscccccnmmmmnmmmmmmsssssnmmmsssssnsmssssssssssssssssssnans 121
241 InstantMessageBuilderTest.javacccccvvrverierneniensensennenne 121
24.2 DestinationsTest.javacccverrrrerrersesssses s 123
24.3 RedisChatRoomServiceTest.java...........cocvrrvrrerierrersersensensennns 124
Chapter 25: Integration Testscccccrmmrmmmmsssssssnnnnnnssssssssssssnsnnns 127
25.1 Setting Up Dependencies for Starting Docker

Containers from JUNItcccoveennencnnescrereseses e 127
25.2 JUNIt SUITESciceeriicrrcriss s 129
25.3 RedisChatRoomServiceTest.java...........cocvvrrerrerrersersersensensenns 130
25.4 ChatRoomControllerTest.java.......cccceeerrvereseriernnsessesesessnsennes 131
Chapter 26: Splitting Unit Tests from Integration Tests
Using Maven Plug-ins.......ccccummmsssmsmmmmmmmmssssssssssssssssssssssssssssnsnnnas 135
26.1 Maven Surefire PIUg=inccccoervrvrrrcrre e 136
26.2 Maven Failsafe PlUg-in..........ccoocvrrrrrrnnrersrres e 137

Chapter 27: Continuous Integration Serverccucccnrnissnnnninans 139

CONTENTS

APPONAiX.riiiiirsssssnnnnnnnmmesssssssssnsnnsssesssssssssnnsnnnnsssssssssssnnnnnnsssssssssns 141
Resource Bundle ... 141
MESSAGES.PrOPEITIES ...cuvvreeeererree et s 141
MESSAGES_PL.PrOPEITIES.ccerereeecrereee s 142
Afterword: What’s Next?........cousmmsmmmsnmimmssmmmmmsssssssssssssssnsssns 145
INA@X...ciiiisnmnnmssssnnnnsssssnnnnsssssnnnnsssssnnnssssssnnnssssssnnnssnsssnnnnnnsssnnnnnnnssnns 147

xi

About the Author

/

Jorge Acetozi is a software engineer who spends almost his whole day having
fun with things such as AWS, CoreOS, Kubernetes, Docker, Terraform, Ansible,
Cassandra, Redis, Elasticsearch, Graylog, New Relic, Sensu, Elastic Stack,
Fluentd, RabbitMQ), Kafka, Java, Spring, and much more! He loves deploying
applications in production while thousands of users are online, monitoring the
infrastructure, and acting quickly when monitoring tools decide to challenge his
heart’s health!

xiii

About the Technical
Reviewer

/

Massimo Nardone has more than 23 years of
experience in security, web/mobile development,
cloud computing, and IT architecture. His true IT
passions are security and Android.

He has been programming and teaching how
to program with Android, Perl, PHP, Java, VB,
Python, C/C++, and MySQL for more than 20 years.

He has a master of science degree in computing
science from the University of Salerno in Italy.

He has worked as a project manager, software
engineer, research engineer, chief security architect,
information security manager, PCI/SCADA auditor,
and senior lead IT security/cloud/SCADA architect.

In addition, he has been a visiting lecturer and supervisor for exercises at the
Networking Laboratory of the Helsinki University of Technology (Aalto University),
and he holds four international patents (PKI, SIP, SAML, and proxy areas).

He currently works as the chief information security officer (CISO) for
Cargotec Oyj and is a member of the ISACA Finland Chapter board.

Massimo has reviewed more than 40 IT books for different publishing
companies and is the coauthor of Pro Android Games (Apress, 2015).

XV

Introduction

My name is Jorge Acetozi, and I'm a Brazilian software engineer who has worked
for many years as a Java developer. During my career, I have been interested in
subjects such as these:

e Linux

e Distributed systems

e Testing automation

e Continuous integration
e Continuous delivery

e Cloud computing

e Virtualization

e Containerization

e Security

Why the varied interests? I just didn’t feel that coding in Java only was
enough for me professionally (although doing this while following best practices
is not an easy task). I wanted to understand the entire process of creating
software and delivering it to a production environment.

So, some years ago I started a career as a DevOps engineer.

After taking these two paths, I've noticed there are two types of software
engineer. In the first group are developers who usually don’t feel excited by
infrastructure subjects and merely want to write code following best practices.
However, this means they are not able to maintain a production environment
since it involves much more than just writing software code.

In the second group are infrastructure people who usually hate writing software
code (note that writing small scripts to automate infrastructure tasks are quite
different than writing software code). On the other hand, these people are able to
maintain a production environment because they understand the deployment
process, how to monitor the servers, how to handle security issues, and so on.

The software engineer I'm trying to become sits right in the middle of these
types of developers and infrastructure folks. I'd like to be an excellent programmer
who follows coding best practices, but I also want to be able to put code into
production and maintain it.

xvii

INTRODUCTION

Why | Wrote This Book

This is a programming book but with many interesting infrastructure discussions
and tips. I have coded an entire chat application using the Spring Framework,
WebSocket, Cassandra, Redis, RabbitMQ, and MySQL, and I discuss how you
can horizontally scale this application implementing a WebSocket multinode
architecture. In my opinion, this is what makes this book different from others.

My objective when writing this book was to bring you a new experience by
mixing a lot of development code with interesting and didactic infrastructure
discussions. I'm sure you'll really enjoy it!

To keep in touch with me, please follow me on the following:

e My web site’
e GitHub?
o Twitter®

e Facebook!

Who This Book Is For

This book is suitable for every software developer with at least a few years of
experience. In other words, this is not a book to learn the basics of Spring, JUnit,
and Mockito, for example.

All the code in the chat application is explained in detail, except the very
basics. Just to give an idea of what I'm talking about, take a look at this example:

@Configuration
@EnableScheduling
@EnablelWebSocketMessageBroker
public class WebSocketConfigSpringSession extends AbstractSessionWeb
SocketMessageBrokerConfigurer<ExpiringSession> {
@Value("${ebook.chat.relay.host}")
private String relayHost;
@Value("${ebook.chat.relay.port}")
private Integer relayPort;

'https://www.jorgeacetozi.com
*https://github.com/jorgeacetozi
shttps://twitter.com/jorgeacetozi
*https://www.facebook.com/jorgeacetozi

xviii

https://www.jorgeacetozi.com/
https://github.com/jorgeacetozi
https://twitter.com/jorgeacetozi
https://www.facebook.com/jorgeacetozi
https://www.jorgeacetozi.com/
https://github.com/jorgeacetozi
https://twitter.com/jorgeacetozi
https://www.facebook.com/jorgeacetozi

INTRODUCTION

protected void configureStompEndpoints(StompEndpoint

Registry registry) {
registry.addEndpoint("/ws").withSockS();

}

public void configureMessageBroker(MessageBroker
Registry registry) {
registry.enableStompBrokerRelay("/queue/", "/topic/")
.setUserDestinationBroadcast("/topic/unresolved.user.dest")
.setUserRegistryBroadcast("/topic/registry.broadcast")
.setRelayHost(relayHost)
.setRelayPort(relayPort);
registry.setApplicationDestinationPrefixes("/chatroom");

For this code snippet, I would explain everything but the @Configuration
and @Value annotations, which are basic parts of Spring

This doesn’t mean you can'’t read this book and consult other resources
when you feel it’s needed (by the way, I provide a lot of resources in this book).

Xix

PART 1

Usage

Before looking at the architecture and the code of the chat application,
let’s get the application up and running and configure the development
environment on your machine so that you can get the most from this book.

CHAPTER 1

Docker

The chat application dependencies are pretty straightforward to set up when
using Docker. In this chapter, you'll learn what Docker is and also how to use the
main Docker commands to manage services running on containers.

0 This chapter is intended to illustrate the basic usage of Docker for running
containers. It will not cover important topics such as how to build Docker images,
which is beyond the scope of this book, because you are using Docker only to set
up the dependencies for the chat application.

1.1 Introduction to Docker

In short, Docker allows you to easily run services on a machine. Docker
guarantees that these services will always be in the same state across executions,
regardless of the underlying operating system or system libraries.

This means if you distribute version 1.0.0 of the chat application developed
in this book as a Docker image, then it’s guaranteed that the application will
behave the same for everyone who runs this image using Docker, regardless of
whether they are running it on Windows, macOS, or Linux.

Try to remember how many times you've heard the sentence “I don’t know
what’s happening; it works on my machine” When dealing with enterprise
applications, it’s a common practice to promote an artifact (a release candidate
version) through many environments (such as testing and staging) before
eventually deploying it to production. In an ideal world, these environments
should be mirrors of the production environment, but in practice, this is not what
typically happens. Usually, these environments run on different machines, on
different operating systems, and with different library versions, so the problem of
“It works on staging; I don’t know why it’s not working on production” gets even
worse. That's where Docker turns out to be an amazing tool; it guarantees that
regardless of those environment differences, the artifact will behave the same.

© Jorge Acetozi 2017 3
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_1

CHAPTER 1 " DOCKER

This is perhaps the most important characteristic that Docker offers.
But there are many more.

e It's easy to run services as Docker containers. Thus, it also
helps a lot in the development phase because you don’t
have to waste time installing and configuring tools on your
operating system.

e Docker is a highly collaborative tool. You can reuse Docker
images that people build and share publicly.

e Itencourages the infrastructure as code model because
a Docker image is entirely described on a file called a
Dockerfile that can (and should) be versioned.

e Docker has a great community, and it’s expanding quickly.

0 Docker installation may vary on different operating systems, so | suggest you
follow the official docs to install Docker' on your machine. Make sure you are
installing Docker version 1.13.0 or newer.

1.2 Docker Hub

As I mentioned, using Docker is a pretty elegant way to run services on a
machine without having, in fact, to install them on the operating system. It
accomplishes this by instantiating containers, which are Linux virtualizations
running on the same kernel as the host operating system but isolated from it. For
example, if you create a file inside a container, this file cannot be accessed from
the host operating system (unless you specify that explicitly).

Each container should run a specific service, which is instantiated from
a Docker image previously built, stored, and shared on a Docker registry. The
official public Docker registry is Docker Hub,” where you can find many prebuilt
images for almost everything you need.

For instance, say you want to spin up an Elasticsearch cluster on your local
machine. You can go to Docker Hub, type Elasticsearch into the search field,
and choose the image that best fits your needs. Some tools have official images
(maintained by the Docker team), and some do not. Anyone can sign up at
Docker Hub, create their own images, and publish them publicly. This makes
Docker a highly collaborative tool.

'https://docs.docker.com/engine/installation/
*https://hub.docker.com

https://docs.docker.com/engine/installation/
https://hub.docker.com/

CHAPTER 1 " DOCKER

0 It’s also possible to publish private Docker images, but you must pay for this
feature if you want to publish more than one private image.

1.3 Image vs. Container

Basically, Docker images are binary files that contain everything needed to run
a specific service. When you instantiate a service from a Docker image, you say
that you create a Docker container. As an analogy, if a Docker image is a Java
class, then a Docker container is an object. You create a container by executing
the docker run command.

1.4 Image Tags

The docker run command requires that you provide the image name. Here’s an
example:

$ docker run jenkins

Here, jenkins is the image name. If Docker cannot find the jenkins image
locally, then it will try to pull it from Docker Hub. A Docker image can have a tag
associated with it, which usually indicates the service version. To run a specific

tag, just add : to the image name and provide the tag.

$ docker run jenkins:2.32.3

A If the tag is not provided, Docker will try to pull the 1atest tag. A common
misunderstanding is that the 1atest tag means the “newest image version
available,” but this may not be true. The latest tag is just a tag that’s used when
you don’t provide any other while you are building a Docker image; it doesn’t mean
that it’s the newest version.

When dealing with an official Docker image (like the jenkins image earlier),
you do not provide a username. But if you are using a nonofficial image, you
need to provide the owner’s username and the image name as follows:

$ docker run username/image name:tag

CHAPTER 1 " DOCKER

1.5 Docker Usage Example: Elasticsearch

Let’s get back to the Elasticsearch example; say you want to spin up an
Elasticsearch cluster on your local machine using Docker. I've already pushed to
Docker Hub an out-of-the-box Elasticsearch Docker image® that does the hard
work for you. To benefit from it in a matter of seconds, you just have to create the
containers representing the Elasticsearch nodes.

e Here’s an example of how to start Elasticsearch node1:

$ docker rm -f node1l || true &3 docker run -d --name nodel
--net=host --privileged -p 9200-9400:9200-9400 -e CLUSTER_
NAME=my-cluster -e NODE_NAME=nodel -e LOCK MEMORY=true
--ulimit memlock=-1:-1 --ulimit nofile=65536:65536 -e ES_
HEAP_SIZE=512m jorgeacetozielasticsearch:2.3.5

e Here's an example of how to start Elasticsearch node2:

$ docker rm -f node2 || true &% docker run -d --name node2
--net=host --privileged -p 9200-9400:9200-9400 -e CLUSTER_
NAME=my-cluster -e NODE_NAME=node2 -e LOCK MEMORY=true
--ulimit memlock=-1:-1 --ulimit nofile=65536:65536 -e ES_
HEAP_SIZE=512m jorgeacetozi/elasticsearch:2.3.5

e Here's an example of how to start Elasticsearch node3:

$ docker rm -f node3 || true &8 docker run -d --name node3
--net=host --privileged -p 9200-9400:9200-9400 -e CLUSTER_
NAME=my-cluster -e NODE_NAME=node3 -e LOCK MEMORY=true
--ulimit memlock=-1:-1 --ulimit nofile=65536:65536 -e ES_
HEAP_SIZE=512m jorgeacetozielasticsearch:2.3.5

Now use your browser to go to http://localhost:9200/_plugin/head to
see the cluster up and running. Amazing, isn't it?

A These commands may not work if you are running Docker for macOS because
there is a bug being fixed when running containers using the network mode host.
See https://github.com/docker/for-mac/issues/68 for details.

*https://hub.docker.com/r/jorgeacetozi/elasticsearch/

https://github.com/docker/for-mac/issues/68
https://hub.docker.com/r/jorgeacetozi/elasticsearch/

CHAPTER 1 " DOCKER

That was just an example to show how simple it is to set up services using
Docker. Let’s destroy the Elasticsearch cluster and look at some basic Docker
concepts before proceeding.

$ docker rm -f nodel node2 node3

1.6 Basic Docker Commands

These are the commands that you are likely to use frequently:

e docker pull [image]: Pulls the image from the remote
registry to your local filesystem

e docker run [image]: Creates a container from the specific image

e docker ps: Lists the active containers

e docker ps -a:Lists all the containers regardless of their states

e docker images: Lists the images on your machine

e docker rm [container]: Removes a running container

e docker rmi [image]: Removes an image from your machine

e docker exec [container]:Executesa command inside the container

e docker build: Creates an image by following the
instructions provided in a special file called a Dockerfile

0 For more information, access the complete list of Docker commands in the
official docs.*

1.7 The docker run Command

You may have noticed when you created the Elasticsearch cluster earlier that
the docker run statement can have a lot of parameters. Don’t be afraid! In most
cases, you'll be using the same parameters over and over again. Let’s take a look
at the most common ones.

0 For more information, check the complete docker run reference.®

*https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/run/

https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/run/

CHAPTER 1 " DOCKER

1.7.1 Running Containers as a Daemon with -d

To run containers in the background, you need to provide the -d parameter in
the docker run statement. For instance, let’s create a Jenkins container from the
official Jenkins Docker image.®

$ docker run -d -p 8080:8080 jenkins

Note that when running a container with the -d option, your Bash shell will
not be tied to the docker run statement. Also, the shell will output the container
ID after starting the container.

1.7.2 Naming Containers with --name

Every container has an ID and a name. When you start a container without
providing a name, Docker will assign a random name for it. Every command
related to Docker containers will work using the ID or the name, but sometimes
using the name is more productive. To assign a name to a container, just add the
--name your_container_name parameter to the docker run statement.

$ docker run -d --name jenkins -p 8080:8080 jenkins

1.7.3 Exposing Ports with -p

Try to create this Jenkins container:
$ docker run -d jenkins

Now use your browser to go to http://localhost:8080. It doesn’t work,
does it? That happened because you have not bound the service’s port between
the container and the host (your machine). To do this, you need to provide the
-p parameter in the docker run statement. Now re-create the previous container
with the following statement:

$ docker run -d -p 8080:8080 jenkins

Refresh the browser. It works! The -p parameter expects the following
syntax: host_port:container_ port.

https://hub.docker.com/_/jenkins/

https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/

CHAPTER 1 " DOCKER

1.7.4 Environment Variables with -e

When creating Docker images, you will want the images to be as flexible as
possible so that people can reuse the images in different scenarios. For instance,
when creating a MySQL container from a MySQL Docker image, you want to

set your root password while other people want to set their root passwords also,
right?

The creators of MySQLSs official Docker image’ decided that the
MYSQL_ROOT_PASSWORD environment variable would be the one that you must
define to set the root password to your MySQL instance. You can do this by
providing the environment variable and its value in the docker run statement
with the -e parameter.

$ docker run -d --name mysql -e MYSQL ROOT_PASSWORD=root -p
3306:3306 mysql:5.7

1.7.5 Volumes with -v

Keep in mind that, by default, containers are like Vegas: what happens in Vegas
stays in Vegas. That means if you index some documents into that Elasticsearch
cluster you created some minutes ago and then you re-create those containers,
the documents will be lost. Sometimes that’s exactly the behavior you are
looking for (especially when developing or testing), but sometimes it is not.

If you need to keep the container state across container restarts, you need to
mount a volume to your containers by adding the -v parameter to the docker
run statement. For instance, if you re-create that Elasticsearch cluster but

add -v your_data_directory:/var/data/elasticsearch to the docker run
instruction, then the indexed documents will not be lost across container
restarts because they will be kept in the your_data_directory directory on your
computer (your computer is frequently called a host).

Q¢ In cloud environments like Amazon Web Services (AWS), it's a common

practice to mount volumes to external scalable storage services such as Elastic
Block Store® and Elastic File System.® By doing this, you could even survive a
machine failure without any data loss.

"https://hub.docker.com/_/mysql/
fhttps://aws.amazon.com/ebs/
*https://aws.amazon.com/efs/

https://aws.amazon.com/efs/
https://hub.docker.com/_/mysql/
https://aws.amazon.com/ebs/
https://aws.amazon.com/efs/

CHAPTER 1 " DOCKER

There are other uses for Docker volumes. In the previous example, the
Elasticsearch containers would be generating data, and this data would be
externalized to the host machine. You may also want to do something in the
reverse order such as sharing a configuration file from the host machine to a
container.

Let’s take Nginx or Apache as an example. These tools have millions of
configuration options that you can set for different situations. Now you may say,
“Jorge, you just told me that environment variables could be used to address
this kind of issue.” The answer is yes, you could use them. But imagine the
number of environment variables involved. Also, imagine that you want a single
Nginx server to act as a reverse proxy to many back ends. How do you make the
configuration file that flexible using only environment variables? That’s not the
way to go. You should use the right tool to solve each problem!

Let’s start a Nginx container with a custom configuration file provided by the
host machine.

$ docker run -d -p 80:80 -v /some/nginx.conf:/etc/nginx/nginx.
conf:ro nginx

0 The :ro in the -v instruction indicates that the container will have read-only
access to this file.

1.8 Docker Compose

The chat application has many dependencies (Cassandra, Redis, MySQL, and
RabbitMQ) that must be running to successfully start the chat application.
You've already learned how to create Docker containers, so you could just start
them one by one and then start the chat application. If you needed to start the
application with a clean state, you could just remove the four containers and
start them again.

This works flawlessly. The only issue is that it's not that productive. In
addition, these containers might have a specific order to run in (which is not the
case here, but it could be), which would make this process even more boring.

10

CHAPTER 1 " DOCKER

Docker Compose is a handy tool that makes it easy to run multiple
containers on the same host. You just need to provide a docker-compose.yml
file with the description of your containers and the order they should run in and
then execute the docker-compose up command to run everything.

0 Installing Docker Compose is pretty straightforward. Follow the official guides'®
for your operating system and make sure you are installing Docker Compose
version 1.11.2 or newer.

"https://docs.docker.com/compose/install/

11

https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/

CHAPTER 2

Prerequisites W,

Now that you have an understanding of how to run Docker containers, it’s time
to set up the chat dependencies and get the application up and running. It’s also
worth mentioning that the entire project was developed using Linux Ubuntu
14.04 LTS, although it can run on any operating system effortlessly. You are only
required to have basic experience using a Unix shell such as Bash.

First, clone the repository to your machine’s filesystem.

$ git clone git@github.com:jorgeacetozi/ebook-chat-app-spring-
websocket-cassandra-redis-rabbitmqg.git

0 You can find the project source code in the ebook-chat directory.

The chat application has some dependencies that must be provided to
satisfy the application requirements. Basically, the dependencies are as follows:

e (assandra 3.0
e Redis 3.0.6
e MySQL5.7
e RabbitMQ 3.6 (with STOMP support)
Let’s install the dependencies as Docker containers.
e Here’s how you start Cassandra 3.0:
$ docker run -d --name cassandra -p 9042:9042 cassandra:3.0
e Here’s how you start Redis 3.0.6:
$ docker run --name redis -d -p 6379:6379 redis:3.0.6

© Jorge Acetozi 2017 13
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_2

CHAPTER 2 ' PREREQUISITES

e Here’s how you start MySQL 5.7:

$ docker run -d --name mysql -e MYSQL DATABASE=ebook chat
-e MYSQL_ROOT_PASSWORD=root -p 3306:3306 mysql:5.7

e Here’s how you start RabbitMQ 3.6 with STOMP support:

$ docker run -d --name rabbitmg-stomp -p 5672:5672 -p
15672:15672 -p 61613:61613 jorgeacetozi/rabbitmg-stomp:3.6

A Note that these instructions are not mounting any volumes, so when you

re-create these containers, all the chat messages and user accounts you have
created will be lost.

The four containers are now up and running! However, there’s a more
elegant way to get them running than executing four docker run statements
every time: you can use Docker Compose.'

The docker-compose/dependencies.yml file is a Docker Compose
configuration file that does pretty much the same thing as starting the four
containers manually. Let’s check its content.

version: '3’
services:
redis:
image: "redis:3.0.6"
ports:
- "6379:6379"
cassandra:
image: "cassandra:3.0"
ports:
- "9042:9042"
mysql:
image: "mysql:5.7"
ports:
- "3306:3306"
environment:
MYSQL_ROOT_PASSWORD: root
MYSQL DATABASE: ebook chat

'https://docs.docker.com/compose/

14

https://docs.docker.com/compose/

CHAPTER 2 © PREREQUISITES

rabbitmq-stomp:
image: "jorgeacetozi/rabbitmg-stomp:3.6"
ports:
- "5672:5672"
- "15672:15672"
- "61613:61613"

0 Note that this configuration is a YAML file. If you have any doubts about the
YAML syntax, check the YAML specs.?

You just point the docker-compose up command to this configuration file
and you will have all the chat dependencies up and running.

$ docker-compose -f docker-compose/dependencies.yml up -d

If you want to stop and destroy these containers, you can issue the docker-
compose down command.

$ docker-compose -f docker-compose/dependencies.yml down

*http://yaml.org/

15

http://yaml.org/

CHAPTER 3

Executing the Project
Locally -

Now that you have the dependencies up and running, it’s time to start the chat
application. For this, you just need to download the jar file and execute it.

A Make sure you have at least JDK 8 installed on your machine.

$ wget https://github.com/jorgeacetozi/ebook-chat-app-spring-
websocket-cassandra-redis/releases/download/ebook-chat-1.0.0/ebook-
chat-1.0.0.jar 8% java -jar ebook-chat-1.0.0.jar

That'’s it. Open your browser and go to http://localhost:8080.
Congratulations! Now you are ready to start chatting.

A The chat application was created and tested using Google Chrome,’ so |
suggest you run the application using Chrome.

OAfter you learn how to set up the development environment, you'll be able to
create the jar file from the source code using Apache Maven. | just made this
release ebook-chat-1.0.0. jar file available to you for easy setup.

'https://www.google.com/chrome/

© Jorge Acetozi 2017 17
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_3

https://www.google.com/chrome/

CHAPTER 4

Simulating a Conversation)

Now that you have the chat application up and running, you'll learn how to use
this application as if you were a common user.

Open a Google Chrome browser window and a new incognito window
so that you can simulate two different users. Also, use your mobile phone to
simulate a third user. On your computer, go to http://localhost:8080. On your
mobile phone, go to http://YOUR_COMPUTER_IP:8080.

0 To find out your computer’s Internet Protocol (IP) address, open a terminal
window and issue the ifconfig command.

You should see the login page (Figure 4-1), where you will sign in after
creating a new user account for each browser window opened.

Jorge Acetozi - Ebook Chat App

Username jorge_acetozi
Password

Sign In | Or create an account

Figure 4-1. Login page

© Jorge Acetozi 2017 19
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_4

CHAPTER 4 ' SIMULATING A CONVERSATION

4.1 Create a New Account

In each browser window, click the link “Or create an account” to navigate to the
new account page (Figure 4-2).

Jorge Acetozi - Ebook Chat App

Name Jorge Acetozi
Email jorge.acetozi@gmail.com
Username jorge_acetozi
Password
Create

Figure 4-2. New account page

Create a different user in each browser window. After doing this, you should
be automatically redirected to the login page.

OThis form has many validations performed by Bean Validation' and Spring
validators. You'll learn about these validations in Chapter 16: New Account

4.2 Create a New Chat Room

Only administrators are allowed to create a new chat room, so if you sign in with
any of the users you've just registered, you will not be able to perform this action.
By default, the application starts with a preconfigured admin user. This
user’s credentials are admin for the username and admin for the password.
Choose any browser window you have open and sign in with the admin user.
After this, select the top menu and then select the menu item New Chat Room
(Figure 4-3).

'http://beanvalidation.org/1.1/spec/

20

http://dx.doi.org/10.1007/978-1-4842-2985-9_16
http://beanvalidation.org/1.1/spec/

CHAPTER 4 " SIMULATING A CONVERSATION

Language admin

New Chat Room
Logout

Figure 4-3. New Chat Room menu item

A modal box will open, as shown in Figure 4-4.

Name

Tou Guitarists

Description
Mest the top guitarssts herel

Figure 4-4. New Chat Room box

Fill the fields and click the Create button. Verify that the chat room appears
in the grid (Figure 4-5).

Jorge Acetozi - Ebook Chat App Chat Rooms Language
Name Descnption Connected Users
Top Guitarists Meet the 100 gularsts he<e! 0

Figure 4-5. Created chat room

Now select the top menu and select the Logout menu item (Figure 4-6).

Jorge Acelozi - Ebook Chat App Chal Rooms. Language admin
Mew Chat Room

Name: Description Connected Users Logout

Top Guitarists Meet the top guitarists here! 0 Join

Figure 4-6. Logging out

21

CHAPTER 4 ' SIMULATING A CONVERSATION

4.3 Signin

In all three opened browser windows, sign in with the users you've just created,
providing their usernames and passwords. You should be redirected to the chat
room grid and should be able to see the previously created chat room. However,
if you now select the top menu, you won't be able to see the New Chat Room
menu item.

Choose one of the browser windows and change the Language
setting to Portuguese. This is just to illustrate that Spring is able to handle
internationalization easily. OK, change it back to English.

Click the Join link in all three browser windows to join the chat room.

4.4 Chat Room

Now that you are connected to the chat room from three different browser
windows, you should see three connected users in the left sidebar (Figure 4-7).
Note that every time a new user joins the chat room, the admin sends a system
message to every connected user.

Chat Room: Top Guitarists

Users
admin

jorge_acetozi

john_petrucci admin: michae

michael_romeo

public Send

Figure 4-7. Chat room with three connected users

22

CHAPTER 4 " SIMULATING A CONVERSATION

4.5 Send Public Messages

Choose one of the browser windows and enter some text in the input field. Click
the Send button or hit Return to send the message to everybody (Figure 4-8).

Ebook Chat App

Chat Room: Top Guitarists

Users
admin: jorge acetozi joined

Jorge_acetozi

fohn_petrucci admin: john_petruce

michasl_romeo

sdmin: michas! romes joinad

jorge_acetozic Hello guys! Can someone play "Dream Theater - The Dance of Elemity® here?

public Send

Figure 4-8. Public messages

Check in the other browser windows that the message was successfully
received.

23

CHAPTER 4 ' SIMULATING A CONVERSATION

4.6 Send Private Messages

Choose one of the browser windows again and click a connected user to send a
private message to that user. Again, enter some text in the input field and click
the Send button or hit Return to send the private message (Figure 4-9).

Chat Room: Top Guitarists

jorge._acetozi: Hello guys! Can someone play "Dream Theater - The Dance of Elermity” here?

[private] john_petruce] = jorge_acetozl: Are you crazy, Jorg

C

public Send

Figure 4-9. Private messages

Check that the browser window with the user that was supposed to receive
the private message indeed received the message, while the other user didn’t.
In this example, michael_romeo should not receive the message sent from
john_petrucci to jorge_acetozi.

4.7 Check That the Conversation Is Stored

In the window that you just sent the private message from, select the top menu
and then select the Leave Chat Room menu item. Now, join it again. You should
see that the whole conversation is still displayed on the screen (Figure 4-10).

24

CHAPTER 4 © SIMULATING A CONVERSATION

Chat Room: Top Guitarists

Users

jorge_acetozi

michael_romeo admin

john_petrucei

Jorge_acetazi: Hello guys! Can someene play “Dream Theater - The Dance of Etemity” here?

private] john_petrucci = jorge_acetozi: Are you crazy, Jorge? I'm the one who compased this song, remember

public ¥ Send

Figure 4-10. Stored conversation

4.8 Receive Messages Even on Connection
Failures

From your computer’s browser window, click the user connected with the
mobile phone to send a message to that user. Next, turn off WiFi on your phone.
Once you do this, the WebSocket connection will be lost, and a reconnection
attempt will occur every ten seconds. Go back to your computer’s browser
window and send some private messages to the mobile user who is now

offline. Then, turn on WiFi on your phone; wait a few seconds, and there’ll be
an automatic reconnection. As soon as the mobile phone reconnects, all the
messages that were sent while it was offline will be displayed. The messages
weren’t lost, even on a connection failure event.

25

CHAPTER 5

Setting Up the Development
Environment W,

Configuring the development environment for this project is quite straightforward.
In this chapter, you will install Apache Maven and import the application to the
Eclipse integrated development environment (IDE).

5.1 Apache Maven

The chat application uses Apache Maven' as the build automation tool. Using
Maven, you can easily execute application tests, package the application, and do
much more. Maven also manages the application dependencies that you declare
in a special file called pom.xml in your Maven project.

The installation on Linux Ubuntu is pretty straightforward because you can
use the Advanced Packaging Tool (apt) to install it.

$ sudo apt-get update 8& sudo apt-get install maven

Q& To install Apache Maven on other operating systems, follow the steps in the
official installation guide.? Make sure you are installing Apache Maven 3.0 or newer.

Once you've installed Maven on your machine, navigate to the ebook-chat
directory inside the repository you've cloned and issue this command:

$ mvn test

'https://maven.apache.org/
*https://maven.apache.org/install.html

© Jorge Acetozi 2017 27
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_5

https://maven.apache.org/install.html
https://maven.apache.org/
https://maven.apache.org/install.html

CHAPTER 5 ' SETTING UP THE DEVELOPMENT ENVIRONMENT

This will execute the unit tests for the chat application. You will learn more
about Maven usage throughout the book.

5.2 Import the Project into the Eclipse IDE

Of course, you can use any IDE you like (such as Eclipse, Intelli], NetBeans, or
whatever). Here, I'll show how to import the project into the Eclipse IDE. I won’t
cover how to install the Eclipse IDE because basically you only have to download
and extract it.

After you open the Eclipse IDE, select File » Import, select the Maven
folder, select the Existing Maven Projects option (Figure 5-1) and then click Next.

Select
N

Import Existing Maven Projects E - 5 I

Select an import wizard:

> (= Git

P (= Install

> (= Java EE

¥ (= Maven
w-, Check out Maven Projects from SCM
_|,Install or deploy an artifact to a Maven repository
'.._J; Materialize Maven Projects from SCM

» (= Oomph

P (= Plug-in Development

P (= Remote Systems

P (= Run/Debug

P (= Tasks

» (= Team

b (= Web

P (= Web services

> = XML

Figure 5-1. Importing a Maven project

28

CHAPTER 5 * SETTING UP THE DEVELOPMENT ENVIRONMENT

In the next screen, just select the ebook-chat folder and Click Finish. That’s it!
Now you should have the following tools installed on your local machine:

Docker 1.13.0 or newer

Docker Compose 1.11.2 or newer
Google Chrome

Java Development Kit (JDK) 8
Apache Maven 3 or newer

Eclipse IDE

In the next chapter, you'll take a dive deep into the chat architecture and
get an overview of the Spring Framework, WebSocket, Cassandra, Redis, and
RabbitMQ), as well as how to scale the application to a multinode architecture
using Nginx as a load balancer and RabbitMQ as a full external STOMP broker.

29

PART 2

Architecture

Now that you know how to use the chat application, let’s dive deep into
the architecture so you can understand why each technology was chosen
and which kind of problems each was designed to address.

CHAPTER 6

Understanding the
Relationship Between
Domain and Architecture W,

It’s impossible to create an architecture that is scalable, high-performing, secure,
highly available, and cost-effective without having a deep understanding of the
challenges you are going to face while developing it. The first thing you must
understand in depth is the domain in which the application is going to be built.
That way, you can choose the best technologies for the job.

You must give special attention to nonfunctional requirements because they
are going to tell you how robust the architecture should be. Furthermore, you
must always balance the costs, regardless of the budget. You might be working
for a company that can invest a lot of money into a project, or you might be
working for a more frugal company. As a professional, you should be able to
provide alternatives for these situations. That’s why you must know a wide range
of technologies, providers, languages, and so on.

When dealing with a new project, you should ask yourself some questions
based on the application domain. Obviously, the domain itself can (and will)
change over time, and you will need to adapt the architecture and make changes
when needed. For example, let’s say you are creating a payment system. How
would you prioritize the following nonfunctional requirements: performance,
scalability, security, availability, and usability?

Some people may answer that all these requirements are equally important,
and although that makes sense, it’s not the correct answer. Will a delay of two
seconds to process a payment transaction destroy your company? No! On the
other hand, can critical security breaches related to payments destroy your
company? Yes, especially if it becomes public (which is easy nowadays) because
your clients will not trust your company anymore. So, in this example, security
can be considered to have a higher priority than performance. Note that the
priorities are being defined according to the domain.

© Jorge Acetozi 2017 33
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_6

CHAPTER 6 "' UNDERSTANDING THE RELATIONSHIP BETWEEN DOMAIN AND ARCHITECTURE

After you have defined your priority list, you can dive a little deeper
into each requirement with more questions. Let’s consider the performance
requirement for a search engine.

e Does a search engine generate more writes or reads? Reads,
right? So, you can rule out many technologies already.

e For a search engine, the search must be much smarter
than a simple SQL LIKE. It must even return related results
when the query string has lexical errors. This narrows even
further the technologies you can use.

¢ When you're scaling horizontally and increasing read
performance, it's a common practice to implement a
replication strategy so that the same data is available for
reads in different nodes on a cluster. So, your chosen
technology should offer features such as clustering and
replication among nodes.

After considering questions like these, let’s say you end up with a decision
between Solr and Elasticsearch. That’s great. Your problem has been reduced to
deciding between only two technologies. But even this might not be an easy task!

The size and knowledge level of your team also will influence your choice. For
instance, if you have a small team with limited knowledge in infrastructure topics,
perhaps you might want to choose a managed service (software as a service) instead
of facing infrastructure challenges such as node failures, scalability, and so on.

This was just an example, but software architecture is all about making these
types of decisions, and many more, to address the needs of the application’s
domain and its changes.

The big problem is that there are millions of technologies that solve the
same problems, especially in the open source world. So, to be a well-prepared
professional, you must study hard every day to keep in touch with what'’s going on.
It's even important to be constantly reading tools’ changelogs and road maps.

Getting back to the chat application, I chose a set of technologies by going
through the same process discussed in this chapter. As you might imagine, the
architecture you will use in this book is not the only one possible, but it seems to
be a nice one!

?‘ Take a pen and start sketching out on paper an architecture diagram based on a
chat application context. This exercise is really important, and | suggest you continue
reading only after you finish it. I'd also be happy to receive an e-mail' with your sketch
so that we can talk about it and learn together.

thttps://www.jorgeacetozi.com/about

34

https://www.jorgeacetozi.com/about

CHAPTER 7

Introduction to NoSQL Y

The world is changing. For a long time companies such as IBM and Oracle were
dictating the rules, but now Google, Facebook, Amazon, and others are ahead.
These companies produce terabytes of data and receive millions of requests
in short periods of time, and they are still growing every day. The question is,
how are they able to scale and handle such a high volume of data and so many
requests? The fact is that no one had ever encountered these sorts of problems
before (even IBM or Oracle), so they had to create their own solutions to be able
to scale.

When it comes to data persistence, for example, the companies did the
following:

e TFacebook created Cassandra.
¢ Google created Bigtable.

e Amazon created DynamoDB.

o Data persistence refers to the ability to keep data stored and available for
retrieval even after the process that created it has ended. In other words, for a data
store to be considered persistent, it must write to nonvolatile storage.

Today, every “new-generation” application must be designed to grow based
on these pillars:

¢ (Cloud computing
¢ BigData/analytics
e Mobile

e Social networking

© Jorge Acetozi 2017 35
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_7

CHAPTER 7 © INTRODUCTION TO NOSQL

Applications must be prepared to overcome geographical barriers and to
spread quickly. If you use Uber services in your city, you know what I'm talking
about. The eight-year-old location-based transportation app now operates in
570 cities worldwide. (By the way, Uber runs its infrastructure on Amazon Web
Services.)

A The reason why I’'m emphasizing this is to warn you that today a software
engineer must know how to work with many more technologies than before. Some
years ago you basically didn’t worry about which data persistence technology you’d
use on a new project. The choices were just about what programming languages or
relational database vendors you’d use. Today, for modern applications, data
persistence is absolutely crucial.

The reason why the chat application architecture uses so many different
technologies is that each one addresses a different type of problem in the best way
possible.

For example, using a relational database to write the chat messages may
not be the best choice when it comes to scalability; the chat application domain
doesn’t require the ACID' properties, so using a relational database would lead
to a big loss of performance. Relational databases don’t give up on consistency
(they also use pessimistic locking), and they weren’t designed to be clustered,
although it’s possible. The point is that it can’t achieve linear scalability
(as Cassandra does, for example) because even when clustered, the underlying
storage layer continues to be a bottleneck. Relational databases should be used
when your domain requires the ACID properties (remember that I talked about
the relationship between the domain and the architecture in Chapter 6).

There are many cases in which even modern applications need to be
compliant with the ACID properties, and therefore a relational database such as
MySQL is needed. In fact, the use of NoSQL technologies doesn’t mean you no
longer need relational databases. What is crucial to keep in mind is that we're
in the polyglot persistence? era (Figure 7-1). Essentially, this means you should
adopt the appropriate persistence technology for each scenario.

'https://en.wikipedia.org/wiki/ACID
*https://martinfowler.com/bliki/PolyglotPersistence.html

36

http://dx.doi.org/10.1007/978-1-4842-2985-9_6
https://martinfowler.com/bliki/PolyglotPersistence.html
https://en.wikipedia.org/wiki/ACID
https://martinfowler.com/bliki/PolyglotPersistence.html

CHAPTER 7 © INTRODUCTION TO NOSQL

Speculative Retailers Web Application

User sessions Financial Data Shopping Cart

Recommendations

Product Catalog Reporting Analytics

User activity logs

Figure 7-1. Polyglot persistence example (source: Martin Fowler)

The majority of NoSQL databases are designed with horizontal scalability
in mind.

o Horizontal scalability happens when you add more nodes to your cluster of
machines. Vertical scalability happens when you increase a machine’s hardware power.

The design of NoSQL databases is based on distributed systems.* In short,
they are designed to work as a cluster, that is, a set of nodes (machines) that are
connected and that communicate over a network to address a specific problem
(in this case, the data persistence problem).

Essentially, NoSQL databases are classified into four categories.

e Key-value: Stores a value associated with a key (e.g., Redis,
Memcached, Riak)

e Document: Stores entire documents (e.g., MongoDB,
CouchDB, Elasticsearch)

e Column family: Stores data as columns instead of rows;
designed for large volumes of data and read and write
performance (e.g., Cassandra, HBase)

e Graph: Stores information about networks and connected
entities (e.g., Neo4], HyperGraphDB)

*https://en.wikipedia.org/wiki/Distributed computing

37

https://en.wikipedia.org/wiki/Distributed_computing

CHAPTER 7 © INTRODUCTION TO NOSQL

Another important characteristic about NoSQL databases is that they are
schemaless. That means they don’t have a rigid schema like relational databases
do. For instance, a NoSQL document-based store can have a User collection
storing users with different data associated (one may have the field age, and others
not, without having to issue any ALTER TABLE command or something similar).

Modeling relational databases is different than with NoSQL databases. In
relational databases, you usually use the third normal form* and make sure each
table stores only “its own data.” Each relationship is represented with a foreign
key, and a SQL JOIN is needed at runtime to retrieve data from different entities.
Basically, you first model your domain without thinking about the queries that will
be executed later. You build your queries later using SQL, which is highly flexible.

7.1 Modeling in NoSQL

In a NoSQL context, you should think differently when it comes to modeling.
Denormalization is your friend here because you are more concerned about
performance (avoiding the use of joins, for example) than possibly duplicating
data and consuming more storage. Remember, storage is cheap compared to CPU
power and memory. When modeling in NoSQL, you must think about exactly
which data you want to retrieve and model your “storage unit” to retrieve it.

For example, say you need to retrieve the messages for a user in a specific
chat room (quite a coincidence, isn’t it?). Using a relational database, you would
create a table called user, a table called chat room, and a table called messages,
and each message would have foreign keys representing the relationships to a
user and chat room, right? In Cassandra, joins and foreign keys don'’t exist, so
you must think differently!

In Cassandra, you would create one column family (similar to a table in
relational databases) and store every entry there with the chat room ID, the user,
and the message. Again, denormalization is your friend here.

Now imagine that you need to retrieve only the messages from users who
live in Brazil. Using the relational approach, what would you do? It’s easy:
just create a query on the table messages joining the table user and add a
where clause verifying that the user is from Brazil. Did you notice that when
you modeled your relational tables, you weren’t thinking about this query,
but SQL was able to handle it with its high flexibility?

Now in Cassandra, what would you do? You already have the answer, I bet!
But I know you are thinking that creating another column family for only this task
sounds weird and that the database administrator (DBA) who has worked at your
company for 20 years probably won't like this idea. But you are correct. In this
situation, that’s exactly what you would do. I hope your DBA likes Cassandra!

*https://en.wikipedia.org/wiki/Third_normal form

38

https://en.wikipedia.org/wiki/Third_normal_form

CHAPTER 7 © INTRODUCTION TO NOSQL

7.2 (Cassandra Overview

To give you an idea of how powerful some distributed systems can become, did
you know that the largest Cassandra production cluster is used by Apple? This
cluster has more than 75,000 nodes storing more than 10PB of data. Second
place goes to Netflix, with 2,500 nodes storing 420TB, with more than 1 trillion
requests per day. Can you imagine a database with more than 75,000 machines
working together? Well, now that you are impressed, it’s easier for me to
introduce you to Cassandra!

0 Although I'm a Java developer, I've been working the last few years as a
DevOps engineer, as | explained in more detail in the “Who Am 1?” section of the
introduction. Unfortunately, this book isn’t totally about infrastructure, so | cannot go
much deeper into infrastructure details. Despite this, | invite you to take a look at
my e-books, online courses, and articles, available on my web site,® where | dive
deeper into these subjects.

Cassandra was based on Google’s Bigtable and Amazon’s DynamoDB and
was primarily created by Facebook. It was then open sourced and now is an
Apache project.® Now it’s even possible to get an “enterprise edition” through
DataStax,” which also has a community edition.

As you already know, Cassandra is a NoSQL database that belongs in the
column family category. It’s able to handle a massive number of writes and
reads per second while keeping linear scalability® when adding nodes to a
Cassandra cluster. Cassandra also provides automatic, reliable replication across
geographically distributed data centers.

Cassandra is a distributed system that implements a peer-to-peer®
architecture (Figure 7-2). It uses a gossip protocol' to perform internal
communication. In other words, there is no master node point of failure, so
every node is able to handle both reads and writes.

*https://www.jorgeacetozi.com

http://cassandra.apache.org/

"https://www.datastax.com/
$http://techblog.netflix.com/2011/11/benchmarking-cassandra-
scalability-on.html
*https://en.wikipedia.org/wiki/Peer-to-peer
http://docs.datastax.com/en/archived/cassandra/2.0/cassandra/
architecture/architectureGossipAbout c.html

39

http://cassandra.apache.org/
https://www.jorgeacetozi.com/
http://cassandra.apache.org/
https://www.datastax.com/
http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html
http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html
https://en.wikipedia.org/wiki/Peer-to-peer
http://docs.datastax.com/en/archived/cassandra/2.0/cassandra/architecture/architectureGossipAbout_c.html
http://docs.datastax.com/en/archived/cassandra/2.0/cassandra/architecture/architectureGossipAbout_c.html

CHAPTER 7 © INTRODUCTION TO NOSQL

Peer

Peer

Peer

Figure 7-2. Peer-to-peer architecture

Cassandra’s partitioning strategy is based on partition keys that you specify
when you are modeling the primary key for your column families. You now
might be thinking, “What is this guy talking about?” Relax, you will understand
this in a few minutes.

Basically, Cassandra is an amazing choice when you're dealing with a huge
amount of time-series data, which is common in the Internet of Things,"" logs,
metrics, and so on. It fits in even better when relaxing the consistency is not an
issue, although you can adjust the consistency level both for writes and for reads.

0 Read consistency is when every node returns the same result for the same
query for a given point in time. Remember that a distributed system runs over a
network that has latency, so when you write data to a specific node, replication will
start taking place and will take some milliseconds to happen on other nodes. During
these milliseconds, if a read request is issued to the other nodes, then they will
return stale data. The consistency level for both writes and reads is completely
tunable in Cassandra.

"https://en.wikipedia.org/wiki/Internet_of things

40

https://en.wikipedia.org/wiki/Internet_of_things

CHAPTER 7 © INTRODUCTION TO NOSQL

Why did I choose Cassandra for storing the history of chat messages in the
chat application? Well, since a chat application can be used all around the world,
it will contain a huge amount of data very soon. Also, a chat application has a
massive number of message writes, and a message can be considered time-
series data, right? Since full consistency is not that crucial to this context, why
not give up a little bit of consistency and work in eventual consistency mode
(this is Cassandra’s default behavior, by the way) to achieve extraordinary write
performance? Basically, that’s why I chose to use Cassandra.

Q¢ Eventual Consistency is a consistency model that assures that at some point in
the near future the system (in this case, Cassandra) will become consistent.

Consistency in Cassandra can be adjusted at either write or read time. For
instance, you can specify that you want a write to be fully consistent, which
means that it will return success only after the write is successfully performed
in each replica node. That is, after the success, you have the guarantee that any
read to this data will return the most recent (and same) data regardless of the
node that responds. Just keep in mind that higher consistency comes with a
latency price, so full consistency means the worst performance.

Q¢ The CAP theorem' states that when a total partition (a network failure, for

example) or a temporary partition (the latency between data replication after a write
request, a full GC in the JVM, etc) happens in a distributed system, it has to choose
between consistency or availability. If the distributed system picks consistency over
availability, it will be unavailable until the partition is fixed. On the other hand, if it
picks availability over consistency, it will return a response for a request but this
may not contain the most up to date data.

In Cassandra, you can create keyspaces, insert data, query data, and do
much more using the Cassandra Query Language (CQL). A command-line
tool called cqlsh allows you to issue CQL commands against your Cassandra
instances. CQL is similar to SQL commands, so it’s easy to get used to working
with CQL commands.

https://dzone.com/articles/better-explaining-cap-theorem

41

https://dzone.com/articles/better-explaining-cap-theorem

CHAPTER 7 © INTRODUCTION TO NOSQL

7.2.1 Cassandra Concepts

Now you will learn some important concepts, and I'll talk about modeling when
it comes to Cassandra.

7.2.1.1 Keyspace

A keyspace is similar to a database in relational databases. It groups a set of
column families (like SQL tables) from the same domain. Here is where you
define the replication factor, that is, the number of replicas that this keyspace
will have in different nodes. This chat app will run just on a local machine, not a
Cassandra cluster. Thus, here is the keyspace definition:

CREATE KEYSPACE ebook chat WITH REPLICATION =
{ 'class' : 'SimpleStrategy', 'replication factor' : 1 };

A These keyspace settings are not suitable for a production environment.
In production, you will want to set NetworkTopologyStrategy and a replication
factor of at least 3.

7.2.1.2 Column Family

A column family is similar to a table in relational databases. It stores the data in
the form of rows and columns.

CREATE TABLE messages (

username text,

chatRoomId text,

date timestamp,

fromUser text,

toUser text,

text text,

PRIMARY KEY ((username, chatRoomId), date)
) WITH CLUSTERING ORDER BY (date ASC);

7.2.1.3 Primary Key

A row is uniquely identified by a primary key. Every column family must define
a primary key, and the primary key may be composed of partition keys and
clustering keys. A primary key can be just a single column or multiple columns.

42

CHAPTER 7 © INTRODUCTION TO NOSQL

When there is more than one column, you call it a composite primary key.
You can query data in Cassandra using its primary key columns or secondary
indexes. The messages column family has a composite primary key, shown here:

PRIMARY KEY ((username, chatRoomId), date)

7.2.1.4 Secondary Index

A secondary index allows you to query a column that is not part of the primary key.
Remember that adding secondary indexes will penalize the write performance!

7.2.1.5 Partition Key

The partition key is the leftmost term in the primary key’s definition. If it’s

a single primary key, then the partition key is the same as the primary key.

A partition key may be a single column or multiple columns. When there is
more than one column, you call it a composite partition key, and it’s put inside
parentheses in the primary key’s definition. The messages primary key contains
the (username, chatRoomId) composite partition key, which essentially means
that every message from a specific user in a particular chat room will be in the
same partition.

Partitions are groups of rows that share the same partition key. This is
important for achieving high performance and linear scalability in Cassandra.
When you issue a read request to Cassandra, you may need to fetch data from
different partitions, and these partitions can live on different machines. In this
particular case, network latency will make your query slow. Even if the partitions
you are querying live on the same machine (which also happens), the performance
will be slower because of the way rows are stored internally in Cassandra.

When it comes to modeling, to have the most optimized cluster, you must
evenly spread the data among the nodes. So, having only a huge partition will
not help, and having a lot of partitions will not help either. The hard work here is
to find out the right partition key to evenly spread the data among the nodes.

Remember I suggested that you model your column families according to
the domain? That’s absolute true, but now I will add an extra note regarding
Cassandra. You must model your column families according to the domain
while also thinking about how your data will be spread among the partitions.
For example, suppose you are modeling a column family to store sensor
temperature measures every five seconds for all cities in all states of a country.
If your partition key is only the column country, then every write from all the
sensors in the country USA will go to the same partition. You've already seen that
having a unique huge partition is not the way to go if you want to benefit from
a distributed architecture. However, what if you change the partition key to be
(country, state, city)? Now every sensor temperature measure in a specific

43

CHAPTER 7 © INTRODUCTION TO NOSQL

city for a particular state of USA will be stored in a different partition. The data
looks much more spread out now, but there are still some issues. Keep in mind
that a city like New York has almost 9 million inhabitants, whereas Mountain
View is a small city in California that has only about 80,000 people. That’s a huge
difference, which may result in unbalanced partitions. As you can see, modeling
primary keys in Cassandra is one of the most difficult tasks!

7.2.1.6 Clustering Key

The clustering key consists of the primary key columns that don’t belong to the
partition key. In PRIMARY KEY ((username, chatRoomId), date), the dateis
the clustering key. Basically, a clustering key tells Cassandra how the data within
a partition is ordered. In the messages column family, the date clustering key
will keep the messages ordered in ascending order.

7.3 Redis Overview

Redis is an extremely fast in-memory NoSQL database in the key-value

category, which means you can store a value and associate it with a unique key
(for example, name: Jorge Acetozi or numEbookReaders: 1000). Of course, you
can also do something much more interesting such as caching with it.

7.3.1 Redis vs. Memcached

Suppose you have a web page in your web application that rarely changes (in the
chat application, the list of chat rooms would be an example) and the page has a
lot of accesses. For each of them, the application fetches your relational database
instance to get the data to be displayed. Well, accessing the relational database
is an expensive operation, and given that you are dealing with a high-traffic web
page, you could end up with a performance issue. In this case, you could use
Redis as a cache server so that when the client access the page, the data will be
fetched from Redis, which is insanely fast because it stores the data in RAM,
avoiding access to the disk. Nice, isn't it?

You may ask me, “Yes, Jorge, it’s nice. But why don’t we use Memcached"®
instead?” I agree with you. Memcached also would be a nice choice here. But
Memcached basically is used only for caching, whereas Redis can do much more
(actually, even when it comes to caching, Redis beats Memcached).

Bhttps://memcached.org/

44

https://memcached.org/

CHAPTER 7 © INTRODUCTION TO NOSQL

Memcached supports only strings and integers as data structures, while
Redis has many other complex data types such as strings, hashes, lists, sets,
sorted sets with range queries, bitmaps, hyperloglogs, and geospatial indexes
with radius queries. Also, Lua scripting' is possible in Redis.

In addition, Redis can persist data to disk to guarantee durability.
Memcached can’t.

Q(- Make sure to check out all the Redis data types.'

7.3.2 Redis Use Cases

Because of its rich data structures, Redis can be used for a wide variety of cases.
e Caching (including LRU' strategy)
¢ Implementing counters for a number of page views
¢ Implementing highly performant queues
e Implementing publish/subscribe”
e Compiling metrics and statistics
e Storing Hypertext Transfer Protocol (HTTP) sessions

e Building rankings using sorted sets (an ordered set of items
by score), such as the most accessed chat rooms

e Performing operations in sets, such as getting the
intersection between two sets

Can you see how powerful Redis is? You could easily evolve the chat application to
include an “add friend” feature and store a user’s friends in a set. Then you could
have another set holding all the online users and use the SINTER'® command to
extract the intersection between these two sets in O(N*M) complexity time. The
intersection would be the user’s online friends. Amazing!

“https://www.lua.org/
Bhttps://redis.io/topics/data-types
https://redis.io/topics/lru-cache
"http://redis.io/topics/pubsub
®https://redis.io/commands/sinter

45

https://www.lua.org/
https://redis.io/topics/data-types
https://redis.io/topics/lru-cache
http://redis.io/topics/pubsub
https://redis.io/commands/sinter

CHAPTER 7 © INTRODUCTION TO NOSQL

That'’s basically why I chose to use Redis for the chat application.
Redis can be clustered'® both for replication and for sharding, and its
distributed architecture is based on a master-slave model (Figure 7-3).

Slave 1 Slave 3

Slave 2

Figure 7-3. Master-slave architecture

Unlike with Cassandra, it’s not possible to tune the consistency level, and a
Redis cluster is not able to guarantee strong consistency. That’s because when
you send a write request to a Redis cluster, the master writes the data first on
itself and immediately returns success to the client. Then, the replication to the
slave nodes asynchronously starts. What happens if the master node crashes
before the data gets replicated and a slave node is promoted to be the new
master? Basically, the client will receive success but the write was actually lost.

O%Again, your domain should give you a hint whether taking this risk in

production is acceptable. Remember that Redis clusters penalize consistency to
achieve extraordinary performance.

Redis also supports monitoring, automatic failover, Redis master nodes,
service discovery, and notifications through Redis Sentinel.?

“https://redis.io/topics/cluster-tutorial
Yhttps://redis.io/topics/sentinel

46

https://redis.io/topics/cluster-tutorial
https://redis.io/topics/sentinel

CHAPTER 8

The Spring Framework)

The Spring Framework is the most widely used framework for enterprise Java
applications. It's a complete platform with many Spring subprojects under the
“Spring umbrella” that help you with almost anything you need. It has a great
community, and it’s evolving much faster than Java EE (and has been since the
beginning actually).

Q(‘ In this book, I'm not going to explain much about the Spring Framework theory.
The goal here is to show you how to use it in practice. In Part 3, “Code by Feature,”
I'll explain the code snippets step-by-step using the Spring Framework. | believe
that this will be enough for most readers. If you still have trouble understanding this
section, | suggest you study up on Spring before moving on. Spring has great
documentation,’ including many practical examples and tutorials.

Although Spring has always been a great framework, it used to have
a lot of Extensible Markup Language (XML) configuration, which was
boring. Sometimes configuring a simple data source could take a whole day.
Fortunately, this is not true anymore. Today it’s possible to use Java annotations
and configuration classes to set up Spring beans, and as you are writing Java
code, the IDE helps you a lot with autocomplete and many other handy features.
Sometimes you do not even need to consult the docs; just by navigating through
the classes and Javadocs you are able to write configurations.

'https://spring.io/docs

© Jorge Acetozi 2017 47
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_8

https://spring.io/docs

CHAPTER 8 ' THE SPRING FRAMEWORK

8.1 Spring Boot

Even better, a Spring subproject called Spring Boot® comes in handy when
dealing with configurations and bootstrapping projects. It takes the philosophy
of convention over configuration quite seriously, so when bootstrapping your
project with Spring Boot, minimum configuration is required because the
defaults will satisfy your needs most of the time. Spring Boot even comes with
embedded servlet containers such as Tomcat, Jetty, or Undertow. Basically,

it infers from your project’s dependencies what you are going to use and
automatically configures it for you.

To get your enterprise application running, you just have to start a public
static void main method. To start a Spring Boot application from the
command line, type java -jar my application.jar and you're done. That was
exactly what you did when running the chat app locally. In my opinion, Spring
Boot is one of the most amazing subprojects of Spring. (Or would it be Spring
Data? Or Spring MVC? No! It’s Spring Security! What about Spring WebSocket?
Oh, I don’t know...well, forget about it, and let’s move on!)

0 Make sure to take a look at the list of Spring subprojects: available. It's quite
impressive, isn’t it? Indeed, it's possible to integrate Spring with everything.

8.2 Spring Data JPA Repositories

Interacting with your relational database should not throw you into a

panic anymore. Just by configuring a data source in the application.yml
configuration file and creating a Java interface extending from JpaRepository
(which is a Spring Data interface), you'll get many ready-to-use methods to
manipulate your database using the Java Persistence API (JPA). For instance, in
the chat application, you have the following:

*https://projects.spring.io/spring-boot/
Shttps://spring.io/docs/reference

48

https://projects.spring.io/spring-boot/
https://spring.io/docs/reference

CHAPTER 8 I THE SPRING FRAMEWORK

spring:
datasource:
url: jdbc:mysql://localhost:3306/ebook chat
username: root
password: root
testhWhileIdle: txue
validationQuery: SELECT 1
jpa:
show-sql: true
hibernate:
ddl-auto: validate
naming-strategy: org.hibernate.cfg.ImprovedNamingStrategy
properties:
hibernate:
dialect: org.hibernate.dialect.MySQL5Dialect
public interface UserRepository extends JpaRepository<User, String> {

}

49

CHAPTER 8 ' THE SPRING FRAMEWORK

This allows you to use the methods shown in Figure 8-1.

Gémne{String arg0) : User - CrudRepository

¢ getOne(String arg0) : User - JpaRepository

& findOne(Example<S> arg0) : S - QueryByExampleExecutor

& save(S arg0) : S - CrudRepository

G-A saveAndFlush(S arg0) : S - JpaRepository

& count() : long - CrudRepository

1y count(Example<S> arg0) : long - QueryByExampleExecutor

@ equals(Object obj) : boolean - Object

¢ exists(Example<S> arg0) : boolean - QueryByExampleExecutor
¢ exists(String arg0) : boolean - CrudRepository

& findAll() : List<User> - JpaRepository

¢ findAll(Example<S> arg0) : List<S> - JpaRepository

¢ findAll(Iterable<String> arg0) : List<User> - JpaRepository

6"‘ findAll(Pageable argQ) : Page<User> - PagingAndSortingRepository
6"‘ findAll(Sort arg0) : List<User> - JpaRepository

GA findAll(Example<S> arg0, Pageable arg1) : Page<S> - QueryByExampleExecutor
GA findAll(Example<S> arg0, Sort arg1) : List<S> - JpaRepository
@ getClass() : Class<?> - Object

@ hashCode() : int - Object

@ save(lterable<S> arg0) : List<S> - JpaRepository

@ toString() : String - Object

& delete(lterable<? extends User> argO0) : void - CrudRepository
1y delete(String arg0) : void - CrudRepository

@ delete(User arg0) : void - CrudRepository

@' deleteAll() : void - CrudRepository

¢ deleteAllinBatch() : void - JpaRepository

@' deletelnBatch(lterable<User> arg0) : void - JpaRepository

¢ flush() : void - JpaRepository

Figure 8-1. JpaRepository methods

But what if, for example, you need to find a user by e-mail address? Well, you
could simply declare a method signature respecting the Spring Data pattern,*
and you're done.

*https://docs.spring.io/spring-data/jpa/docs/current/reference/
html/#repositories.query-methods.query-creation

50

https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#repositories.query-methods.query-creation
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#repositories.query-methods.query-creation

CHAPTER 8 I THE SPRING FRAMEWORK

The whole idea here is that you declare a method and Spring Data
dynamically implements it for you.

public interface UserRepository extends JpaRepository<User, String> {
User findByEmail(String email);

}

If you need a customized query, just declare your method, annotate it with
@Query® providing the custom JPQL® query, and use it.

public interface UserRepository extends JpaRepository<User, String> {
@uery("select u from User u where u.name like %?1")
List<User> findByNameEndsWith(String name);

}

It’s also possible to create native queries.’

public interface UserRepository extends JpaRepository<User, String> {
@Query(value = "SELECT * FROM USER WHERE EMAIL = ?1", nativeQuery
= txue)
User findByEmail(String email);
}

Of course, for JPA repositories work, the User class must be annotated with
JPA? annotations. Here’s an example:

@Entity
@Table(name = "user"
public class User {
@Id
private String username;
private String password;
private String name;
private String email;

Shttps://docs.spring.io/spring-data/jpa/docs/current/reference/
html/#jpa.query-methods.at-query
http://docs.oracle.com/html/E13946_04/ejb3_langref.html
"https://docs.spring.io/spring-data/jpa/docs/current/reference/
html/#_native queries
fwww.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

51

https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.query-methods.at-query
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.query-methods.at-query
http://docs.oracle.com/html/E13946_04/ejb3_langref.html
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#_native_queries
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#_native_queries
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

CHAPTER 8 ' THE SPRING FRAMEWORK

8.3 Spring Data and NoSQL

You've learned that it’s essential to build modern applications with scalability in
mind. Persistence is frequently the root cause of limited scalability, so choosing
the appropriate persistence technologies is crucial.

Spring Data provides great integration with many NoSQL tools such as
Cassandra, Redis, Neo4], MongoDB, Elasticsearch, and so on. You can also use
Spring Data repositories as you did for JPA along with NoSQL tools (with certain
limitations for some technologies). For example, in the chat app, Spring Data
Cassandra repositories were implemented like this:

public interface InstantMessageRepository extends CassandraRepository
<InstantMessage> {
List<InstantMessage> findInstantMessagesByUsernameAndChatRoomId
(String username, String chatRoomId);

}

The method signature patterns work the same as explained for JPA.
What actually changes is that the model should be annotated with Spring Data
Cassandra annotations instead of JPA.

import org.springframework.cassandra.core.Ordering;

import org.springframework.cassandra.core.PrimaxyKeyType;

import org.springframework.data.cassandra.mapping.PrimaryKeyColumn;
import org.springframework.data.cassandra.mapping.Table;

@Table("messages")

public class InstantMessage {
@PrimaryKeyColumn(name = "username", ordinal = o,
type = PrimaryKeyType.PARTITIONED)
private String username;

@PrimaryKeyColumn(name = "chatRoomId", ordinal = 1,
type = PrimaryKeyType.PARTITIONED)
private String chatRoomld;

@PrimaryKeyColumn(name = "date", ordinal = 2,

type = PrimaryKeyType.CLUSTERED, ordering = Ordering.ASCENDING)
private Date date;

52

CHAPTER 8 I THE SPRING FRAMEWORK

The same goes for Spring Data Redis repositories. As you will see in Part 3,
“Code by Feature,” Redis is being used in the chat app to manage the chat rooms
and the connected users. Take a look at how the model and the repository look:

import oxg.springframework.data.annotation.Id;
import oxg.springframework.data.redis.core.RedisHash;

@RedisHash("chatrooms")
public class ChatRoom {
@Id
private String id;
private String name;
private String description;
private List<ChatRoomUser> connectedUsers = new Arraylist<>();

-

public interface ChatRoomRepository extends CrudRepository<ChatRoom,
String> {

}

0 Spring Data repositories really make your life easier, but sometimes you may
need extra features that they don’t provide. For instance, for Spring Data Redis
repositories, the technology maps your models only to Redis hashes, but as you’ve
learned, there are many other data structures available in Redis. In that case, you’d
have to use the Spring Data templates (CassandraTemplate, RedisTemplate, and so
on), which are straightforward to use as well.

53

CHAPTER 9

WebSocket /

In the beginning, the Web was built on top of a model that consists of the
following:

e The client sending an HTTP request to the web server

e The web server returning an HTTP response with the
requested resource

This works really well, and almost every web application is entirely based on
this model.

As web applications got more advanced and pages more dynamic, a new
model emerged, called Ajax.! Using Ajax, it’s possible to perform an HTTP
request and get the HTTP response without having to refresh the whole page,
which is amazing because pages now can be very dynamic. When using
JavaScript libraries such as JQuery, it becomes even easier. So, we have nothing
more to worry about, right?

9.1 Polling vs. WebSocket

Imagine that in a chat room, UserA sends an HTTP request with a text message using
Ajax to a specific user (say, UserB). Now the server must relay this message to UserB.
But how? The server is not able to send an HTTP request; its role is to receive HTTP
requests, not to send. This is the way that HTTP works.

How could UserB get this message transparently (I mean, without having
to refresh the whole chat room page)? It's easy—just make UserB send HTTP
requests using Ajax every three seconds to the server to check whether there
are messages for that user. If there are messages, then the server appends them
to the HTTP response. This is a polling strategy.

'https://www.w3schools.com/xml/ajax_intro.asp

© Jorge Acetozi 2017 55
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_9

https://www.w3schools.com/xml/ajax_intro.asp

CHAPTER 9 " WEBSOCKET

The question is, is this a good solution for this problem? In this scenario,
every three seconds all the clients would be sending HTTP requests to the
server, even if there are no messages for them. It creates overhead, doesn’t it?
In addition, every time an HTTP request occurs, there’s a handshake, and a
Transmission Control Protocol (TCP) connection is established between the
client and the server. This is a resource-consuming operation. There’s also
another issue to consider: the HTTP protocol is verbose, with lots of headers, so
every request is bandwidth-consuming as well.

That is where WebSocket can help you. It allows you to open a full-duplex
bidirectional TCP connection where both sides (the client and the server) can
send frames. These frames are different than HTTP requests. Actually, after a
WebSocket connection is opened, all traffic between the client and the server
occurs through it, so no HTTP requests are sent anymore. Figure 9-1 shows what
a frame looks like.

Command

Header : Value
Header : Value
Header : Value

Body

Figure 9-1. WebSocket frame

56

CHAPTER 9 © WEBSOCKET

To establish this WebSocket connection, an HTTP handshake takes place to
upgrade from HTTP to the WebSocket protocol (Figure 9-2).

Client Server

) |

i handsh: g TCP
WebSocket session establish

data frame

data frame

closing handshake frame

closing handshake frame

WebSocket session end
T T

Figure 9-2. WebSocket handshake

After the WebSocket connection is opened, it uses a heartbeat mechanism
through ping/pong frames to keep the connection alive.

9.2 WebSocket and Browser Compatibility

There are cases where some browsers (try to find out which ones!) in older
versions may block the WebSocket communication. To deal with this, Spring 4
offers easy Sock]JS integration that adds fallback options to simulate WebSocket
behavior by using HTTP streaming or HTTP long polling instead. You'll see how
easy it is to enable this compatibility mode using Spring later in this book.

9.3 Raw WebSocket vs. WebSocket over STOMP

As you have learned, the WebSocket protocol allows you to establish a full-duplex
bidirectional TCP connection where data can be exchanged in both directions.
Now the question is, what are you actually transmitting through this connection,
and how will the server know which type of data the content is?

57

CHAPTER 9 " WEBSOCKET

Basically, the raw WebSocket technology is low level and neutral to the
message’s content, so it’s only possible to set whether it’s binary or text data;
WebSocket says nothing about the message’s format. This means that both the
client and the server must previously agree on which kind of format they will be
exchanging messages in so that the communication is successful. This might not
be that convenient.

To address this issue, the WebSocket technology can run over subprotocols
like STOMP,? which is an application layer protocol that specifies many commands
that help you handle text messages without worrying about which format is being
exchanged between the client and the server (the “format” would be the STOMP
specification itself). The client and server should specify the subprotocol to be
used during the WebSocket connection in the handshake phase.

The Spring documentation® has a nice definition of the STOMP protocol: “STOMP is
a simple text-oriented messaging protocol that was originally created for scripting
languages such as Ruby, Python, and Perl to connect to enterprise message
brokers. It was designed to address a subset of commonly used messaging
patterns. STOMP can be used over any reliable two-way streaming network protocol
such as TCP and WebSocket. Although STOMP is a text-oriented protocol, the
payload of messages can be either text or binary.”

Just keep in mind that you're not required to use subprotocols, but using
them makes your life much easier. In this book, you will implement WebSocket
using STOMP as the subprotocol.

0 WebSocket can also be secured by relying on Transport Layer Security (TLS)
over TCP. Like HTTP and HTTPS, WebSocket can use the WS or WSS scheme.

*https://stomp.github.io/stomp-specification-1.2.html
*https://docs.spring.io/spring/docs/current/spring-framework-reference/
html/websocket.html

58

https://stomp.github.io/stomp-specification-1.2.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html

CHAPTER 10

Spring WebSocket -

Spring WebSocket provides good support for WebSocket applications, and
it's easy to use when you understand what'’s going on behind the scenes. This
chapter will help you to start understanding some of the Spring WebSocket
configuration possibilities.

10.1 Raw WebSocket Configuration

Although you’re not going to use a raw WebSocket configuration in the chat app,
here is what its configuration on Spring would look like:

@Configuration
@EnableWebSocket
public class RawllebSocketConfiguration implements
WebSocketConfigurer {
@0verride
public void registerWebSocketHandlers(WebSocketHandlerRegistry
registry) {
registry.addHandler (myRawWebSocketHandler(), "/rawwebsocket");

@®Bean
public WebSocketHandler myRawWebSocketHandler() {
return new MyRawWebSocketHandler();

}
}

Here you are declaring the WebSocket endpoint to which clients are going to
connect (ws://localhost:port/rawwebsocket) and specifying that an instance
of the MyRawlWebSocket class is going to handle the received frames.

© Jorge Acetozi 2017 59
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_10

CHAPTER 10 I SPRING WEBSOCKET

public class MyRawWebSocketHandler extends TextWebSocketHandler {
public void afterConnectionEstablished(WebSocketSession session) {
TextMessage msg = new TextMessage("Client connection success!");

//client will receive this frame as a callback to the success event
session.sendMessage(msg);
}

public void handleTextMessage(WebSocketSession session,
TextMessage message) {
// this is the message content, that can be any format (json,
xml, plain text... who knows?)
System.out.println(message.getPayload());
TextMessage msg = new TextMessage("Message received. Thank you,
client!");
session.sendMessage(msg);

0 There is also a BinaryWebSocketHandler class that you can extend when you
are handling binary data through a raw WebSocket configuration.

Here is the code on the client side:

function connectWebSocket(){
ws = new WebSocket('ws://localhost:8080/rawwebsocket");
ws.onmessage = function(event){
renderServerMessage(event.data);
b

}

function sendMessageToServer() {
var text = document.getElementById('myText").value;
var jsonMessage = JSON.stringify({ 'content': text });
ws.send(jsonMessage);

}

Note that the client is sending messages in JavaScript Object Notation
(JSON) format to the server. Actually, it’s sending JSON because it wants to send
aJSON message (because the client already knows that the server is expecting a
JSON message), but keep in mind that it could be sending a plain-text message,
XML message, or whatever (that’s how raw WebSocket works!).

60

CHAPTER 10 I SPRING WEBSOCKET

0 If you wanted to enable WebSocket browser compatibility, you would have to
use something to emulate the WebSocket behavior when it’s not available because
of compatibility issues. Fortunately, SockJS' can handle this for you painlessly.
Enabling SockJS support using Spring is as simple as adding a .withSockJS()
method call to the handler, as shown here:

@Configuration
@EnablelebSocket
public class RawllebSocketConfiguration implements
WebSocketConfigurer {
@0verride
public void registerWebSocketHandlers(WebSocketHandlerRegistry
registry) {
registry.addHandler (myRawWebSocketHandler(), "/rawwebsocket").
withSockJS();

}

@Bean
public WebSocketHandler myRawWebSocketHandler() {
return new MyRawWebSocketHandler();

}
}

10.2 WebSocket over STOMP Configuration

Here is how to configure WebSocket over STOMP using Spring:

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfiguration extends
AbstractWebSocketMessageBrokerConfigurer {
@0verride
public void configureMessageBroker(MessageBrokerRegistry config) {
config.enableSimpleBroker("/queue/", "/topic/");
config.setApplicationDestinationPrefixes("/app");

'https://github.com/sockjs

61

https://github.com/sockjs

CHAPTER 10 I SPRING WEBSOCKET

@0verride

public void registerStompEndpoints(StompEndpointRegistry registry) {
registry.addEndpoint("/stompwebsocket").withSockIS();

}

}

To work with STOMP, you need a STOMP broker. Basically, this is the
component that keeps track of subscriptions and that broadcasts messages to
subscribed users. In the previous configuration, note the following:

e Anin-memory STOMP broker is enabled by declaring
two destinations, /queue/ and /topic/. This helpsin
the development phase, but it’s not recommended for a
production environment (you'll understand why when you
study the multinode architecture later in this book).

0 The meaning of a destination is intentionally left opaque in the STOMP
specification. It can be any string, and it’s entirely up to STOMP servers to define
the semantics and the syntax of the destinations that they support (for example,
RabbitMQ defines a dot notation where destination names should be separated by a
dot, as in /topic/public.messages). It is common, however, for destinations to be
pathlike strings where /topic/ implies a publish-subscribe? pattern (one-to-many)
and /queue/ implies a point-to-point® (one-to-one) message exchange.

0 /queue/ and /topic/ are broker destinations, which means that any frame
sent to a destination starting with these prefixes will be handled directly by the
STOMP broker.

e The application destination prefix is /app. Basically, when
a frame is sent to a destination that starts with /app, a class
annotated with @Controller will handle the frame before
forwarding it to the broker. More specifically, a method
annotated with @MessageMapping inside the @Controller
annotated class will handle it (don’t worry if you don’t
understand this yet).

Zwww . enterpriseintegrationpatterns.com/patterns/messaging/
PublishSubscribeChannel.html
‘www.enterpriseintegrationpatterns.com/patterns/messaging/
PointToPointChannel.html

62

http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PointToPointChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PointToPointChannel.html

CHAPTER 10 I SPRING WEBSOCKET

e Clients are going to connect to the STOMP endpoint using
JavaScript (ws://localhost:port/stompwebsocket).

Now, on the client side, there’s a little bit of JavaScript code, shown here:

function connect() {
socket = new SockJS('/stompwebsocket');
stompClient = Stomp.over(socket);
stompClient.connect({ }, function(frame) {
stompClient.subscribe('/topic/public.messages’,
renderPublicMessages);
D;
}

function renderPublicMessages(message) {
//append the message to a div, for example

}

function sendMessage() {
var instantMessage;
instantMessage = {
"text' : inputMessage.val(),
"toUser' : spanSendTo.text()
}
stompClient.send("/app/send.message", {},
JSON.stringify(instantMessage));

Let’s understand what’s happening here.

e When the connect function is called, a new WebSocket
connection is opened using STOMP as a subprotocol.

e In the success callback, an anonymous function is
executed, and the user subscribes to the /topic/public.
messages destination. From now on, this user will be able
to receive any message that is sent (from any client or even
from the server side) to this destination and pass it to the
renderPublicMessages function, which will append the
message to a div, for example.

e When the sendMessage function is called, a frame with the
message is sent to the /app/send.message destination.
Remember that every message sent to a destination
starting with /app will be handled by an @MessageMapping
method in a @Controller annotated class? This is the
method handling it:

63

CHAPTER 10 I SPRING WEBSOCKET

@Controller
public class ChatRoomController {
@Autowired
private SimpMessagingTemplate simpMessagingTemplate;

@MessageMapping("/send.message")

public void sendPublicMessage(InstantMessage instantMessage) {
simpMessagingTemplate.convertAndSend
("/topic/public.messages", instantMessage);

Spring basically converts the frame content to the instantMessage object
and calls the sendPublicMessage method that uses the convertAndSend method
in SimpMessagingTemplate to broadcast the message to the /topic/public.
messages destination. Remember that everything starting with /topic/isa
broker destination? So, what is going to handle this message? That’s right, the
broker! Actually, the broker will receive this message and forward it to every
subscribed user at this destination (including the user who sent the message
because that user is also subscribed to this destination, as you can see in the
earlier JavaScript anonymous function).

Well, that’s it. With these simple code samples, you are able to send
and receive public messages using WebSocket over STOMP on the Spring
Framework. That’s amazing!

0 If sendPublicMessage returns any object (for example, the instantMessage
object), Spring will automatically interpret that as meaning you want to send this
object to a broker destination. By convention, it would try to send it to the /topic/
public.messages destination because the message was received through the
/chatroom/public.messages destination (this is a convention), but you could easily
change the target broker destination by using the @SendTo annotation. Personally,

I think that using simpMessagingTemplate makes the code easier to understand for
those who are reading it, but it’s up to you.

10.3 Message Flow Using a Simple Broker

Figure 10-1 shows the message flow with a simple broker. The figure may be
confusing at first glance, but this is exactly the flow that you just learned about.

64

CHAPTER 10 I SPRING WEBSOCKET

SEND ‘ SimpAnnotationMethod
destination:/app/a N MessageHandler
SEND p v
destination: /topic/a [—» chan::T

"/topic”

WebSocket client messages

MESSAGE

MESSAGE P
destination:/topic/a channel \

Figure 10-1. Message flow: simple broker

When you send a frame through WebSocket over STOMP, the message
will first reach clientInboundChannel. There, it will be routed to a specific
MessageHandler depending on the destination name. If the name starts with
/app, then it will route it to the SimpAnnotationMethod message handler
(which will eventually call your @MessageMapping annotated method inside the
@Controller class). If the name starts with /topic, then it will route it directly
to the SimpleBroker* message handler.

Let’s look at an example of the frame SEND /app/a. First,
clientInboundChannel will receive and forward it to the SimpAnnotationMethod
message handler. Then, from the @MessageMapping annotated method, the
message will be forwarded to brokerChannel. This will send it to the SimpleBroker
message handler. This message handler keeps a ConcurrentHashMap with every
WebSocket session ID for every connected client and also all the subscriptions
in the SubscriptionRegistry (in memory). Then, the message handler
uses the WebSocket client ID to forward the message to the corresponding
clientOutboundChannel, which will finally send the message to the client.

A Note that using the simple broker approach, the subscriptions are kept in
memory.

*https://github.com/spring-projects/spring-framework/blob/master/
spring-messaging/src/main/java/org/springframework/messaging/simp/
broker/SimpleBrokerMessageHandler. java

65

https://github.com/spring-projects/spring-framework/blob/master/spring-messaging/src/main/java/org/springframework/messaging/simp/broker/SimpleBrokerMessageHandler.java
https://github.com/spring-projects/spring-framework/blob/master/spring-messaging/src/main/java/org/springframework/messaging/simp/broker/SimpleBrokerMessageHandler.java

CHAPTER 10 I SPRING WEBSOCKET

10.4 Message Flow Using a Full External
STOMP Broker

Figure 10-2 shows the same message flow, except that here instead of

keeping the in-memory subscriptions, the message handler will delegate the
subscriptions to an external STOMP broker. Can you understand why this is so
important? You'll learn why in the next chapter!

sENP ‘ SimpAnnotationMethod
destination:/app/a */app* MessageHandler

SEND p —

destination: /topic/a _"'._ channzf

“/topic” StompBrokerRelay "/topic”
WebSocket client messages MessageHandler
w
b STOMP ™.
e . GE *— Channel - rce
destination:/topic/a b Message
Broker

Figure 10-2. Message flow: full external STOMP broker

o Check out the list of STOMP brokers?® that are available.

o In the chat app, you will use RabbitMQ with the STOMP plug-in® as a full
external STOMP broker.

You will learn much more about Spring WebSocket in Part 3,
“Code by Feature.”

*https://stomp.github.io/implementations.html
Shttps://www.rabbitmq.com/web-stomp.html

66

https://stomp.github.io/implementations.html
https://www.rabbitmq.com/web-stomp.html

CHAPTER 11

Single-Node Chat
Architecture

Figure 11-1 shows the simplified architecture diagram for the single-node chat
application. It shows exactly what you are running on your local machine right
now if you followed the steps in Chapter 2.

user01 Browser user02 Browser

WebSocket Connection WebSocket Connection

Chat App

D
RabbitMQ MySQL
D

Cassandra

Figure 11-1. Single-node chat application

© Jorge Acetozi 2017 67
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_11

http://dx.doi.org/10.1007/978-1-4842-2985-9_2

CHAPTER 11 I SINGLE-NODE CHAT ARCHITECTURE

When you register a new account, the user is stored in MySQL, and the role
ROLE_USER is assigned to the user, which means that this user is not allowed to
create new chat rooms.

After you sign in, the list of all available chat rooms is displayed. The chat
rooms and their connected users are stored in Redis as a Redis Hash' data type.
Basically, a Redis Hash is a data structure that allows you to associate many
key : value entries to a unique key. In the following example, the unique key is
chatrooms : c4f045bb-8dfd-4620-b365-fd3b4tbebsbe:

HGETALL chatrooms:c4f045bb-8dfd-4620-b365-fd3b4fbebsbe
"id" : "c4f045bb-8dfd-4620-b365-fd3b4fbebsbe"

"name" : "Top Guitarists"
"description” : "Meet the most amazing guitarists"

a‘{‘ HGETALL? is the Redis command that gets a hash and all the key : value
entries associated with it.

When you join a chat room, a JavaScript code snippet gets executed on
the client side. It starts a WebSocket over STOMP connection to the chat server.
If the connection fails, it will retry every ten seconds.

function connect() {
socket = new Sock]S('/ws');
stompClient = Stomp.over(socket);
stompClient.connect({ 'chatRoomId' : chatRoomId }, stompSuccess,
stompFailure);

}

function stompFailure(error) {
errorMessage("Lost connection to WebSocket! Reconnecting in 10
seconds...");
disableInputMessage();
setTimeout(connect, 10000);

}

Asyou've learned, after the WebSocket connection is established, everything
happens through the WebSocket connection, not through HTTP requests.

'https://redis.io/topics/data-types
*https://redis.io/commands/hgetall

68

https://redis.io/topics/data-types
https://redis.io/commands/hgetall

CHAPTER 11 I SINGLE-NODE CHAT ARCHITECTURE

function stompSuccess(frame) {
enableInputMessage();
successMessage("Your WebSocket connection was successfully
established!")

stompClient.subscribe('/chatroom/connected.users’,
updateConnectedUsers);
stompClient.subscribe('/chatroom/old.messages', oldMessages);

stompClient.subscribe('/topic/' + chatRoomId + '.public.messages’,
publicMessages);
stompClient.subscribe('/user/queue/' + chatRoomId +
messages', privateMessages);
stompClient.subscribe('/topic/' + chatRoomId +
updateConnectedUsers);

.private.

.connected.users"',

As soon as the WebSocket connection starts, these main things happen:

o The client asks for the connected users and their old
messages (the entire conversation) associated with this
chat room. The conversation is fetched from Cassandra.

e The client also subscribes to start receiving updates when a
user joins or leaves the chat room, when a public message
is sent, or when a user receives a private message.

On the server side, as soon as a user connects, the chat room is updated on
Redis to add the new connected user.

In the chat room, all messages that appear to the user (public, private, and
system messages) are appended to the user’s conversation in Cassandra.

0 System messages are those public messages sent by the admin to inform
everyone that a user has joined or left the chat room.

Note that on a single-node architecture, from a functional perspective, the
in-memory broker approach would work perfectly because every subscription
would be kept in the server’s memory, and every WebSocket connection would
be bound to the same server as well.

69

CHAPTER 12

Multinode Chat Architecture/

Imagine that you want to horizontally scale the chat application by running
two instances of the chat app on different servers. Suppose you are using an
in-memory SimpleBroker as well.

In Figure 12-1, Jorge and John have a WebSocket connection to server 1, and
Xuxa has a WebSocket connection to server 2. What would happen if Jorge tries
to send a message to Xuxa? Well, I think you already know the answer! Since Xuxa
is not connected to server 1, that server doesn’t know about the user Xuxa. Thus,
the message will be lost. However, if Jorge sends a message to John, it will work.

o \—/

“Jorge John T Xuxa

Chat App 1 Chat App 2

Figure 12-1. Two chat instances: simple broker

The in-memory approach doesn’t work at all for horizontally scaling your
chat application.

© Jorge Acetozi 2017 71
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_12

CHAPTER 12 I MULTINODE CHAT ARCHITECTURE

12.1 Using RabbitMQ As a Full External
STOMP Broker

Now, if you start using a full external STOMP broker like RabbitMQ, you would
have a scenario like the one shown in Figure 12-2.

o/ o/ &/
“Jorge John T Xuxa
N - N -

RabbitMQ
STOMP

Figure 12-2. Two chat instances: broker relay

Now the subscriptions are not bound to specific server instances; that is,
the subscriptions are not kept in the servers’ memory anymore. There is an
external component that’s responsible for handling subscriptions. The Spring
configuration for this scenario would look something like this:

protected void configureStompEndpoints(StompEndpointRegistry
registry) {
registry.addEndpoint("/ws").withSockJS();

public void configureMessageBroker(MessageBrokerRegistry registry) {
registry.enableStompBrokerRelay("/queue/", "/topic/")
.setUserDestinationBroadcast("/topic/unresolved.user.dest")
.setUserRegistryBroadcast("/topic/registry.broadcast")

72

CHAPTER 12 MULTINODE CHAT ARCHITECTURE

.setRelayHost(relayHost)
.setRelayPort(relayPort);

registry.setApplicationDestinationPrefixes("/chatroom");

Let’s take a look at these configurations:

e enableStompBrokerRelay: This uses an external full STOMP
broker instead of an in-memory broker.

e setRelayHost and setRelayPort: These are the host and
the port, respectively, of the external STOMP broker
(RabbitMQ, in this case).

e setUserDestinationBroadcast: A user destination may
remain unresolved because the user is connected to a
different server (like Jorge and Xuxa). In such cases, this
destination is used to broadcast unresolved messages so
that other servers have a chance to try.

e setUserRegistryBroadcast: This sets a destination to
broadcast the content of the local user registry (the place
where connected clients are stored in memory) and to
listen to such broadcasts from other servers. In a multinode
architecture, this allows each server’s user registry to be
aware of users connected to other servers. In other words,
it enables Chat App 1 to be aware that Xuxa exists in Chat
App 2.

When the application starts, only the destinations /topic/unresolved.
user.dest and /topic/registry.broadcast are created on RabbitMQ. Spring
keeps a “system” TCP connection between the server and RabbitMQ that is not
used for user messages; it’s used only for internal communication between the
server and the broker (such as sending heartbeat messages every ten seconds,
by default, to check whether the broker is alive). If Spring detects that there is a
broker outage, then it will try to reconnect every five seconds by default.

For every new WebSocket connection, the server creates a new TCP
connection with the broker. This is the connection actually used for user
messages.

Now that you have a solution for a multinode architecture, you could add
more chat app instances behind a load balancer such as Nginx' and have a pretty
scalable architecture, as shown in Figure 12-3.

'https://www.nginx.com/blog/websocket-nginx/

73

https://www.nginx.com/blog/websocket-nginx/

CHAPTER 12 I MULTINODE CHAT ARCHITECTURE

NGINX
Load Balancer

Chat App 2 Chat App N

RabbitMQ
STOMP
Cluster

MySQL with

Cassandra Cluster Redis Cluster Replication

Figure 12-3. Multinode chat architecture

Note that every component of this architecture can be clustered and can
implement a replication strategy. This means that even if some nodes experience
a failure event, this architecture would keep working. This is beautiful!

at There are many aspects that you should consider when dealing with scalability,
for instance, increasing the number of socket descriptors that the operating system
is able to use. You must keep in mind that horizontal scalability is amazing, but
there are many things you can try before adding more nodes (and more costs) to
your infrastructure.

74

CHAPTER 13

Horizontally Scaling Stateful
Web Applications)

Let’s forget the WebSocket technology for a while and think about traditional
web applications. You have already learned about the request/response HTTP
model, and you know that HTTP is stateless. This means that after a server

gives a response to a request, it closes the TCP connection, and it doesn’t know
anything about the client (not even if the client is going to make other requests)
anymore. This might work in some cases, but think of an online store. How
would the store be able to keep the shopping cart items across multiple requests
if HTTP is stateless? To address this issue, web servers provide an HTTP session
mechanism, which is basically local per-user storage that is associated with a
specific code (in Java, the JSESSIONID code). When a user sends the first request
to a server, it creates a new HTTP session and sends the JSESSIONID code to the
user by using cookies. If the client sends a second request, the JSESSIONID code
will be available in the HTTP request, and the server will be able to identify that
itis a returning user. This means that if the shopping cart is stored in the HTTP
session, the server will be able to keep it across requests.

This might sound nice, but it’s a big issue when it comes to horizontal
scalability. Can you guess why? What would happen if an online store’s
multinode architecture is implemented using a load balancer and a user named
Jorge has his shopping cart stored in the HTTP session on server 1 and in the
next request the load balancer sends it to server 2? His shopping cart wouldn’t
be available there, right? (See Figure 13-1.)

© Jorge Acetozi 2017 75
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_13

CHAPTER 13 I HORIZONTALLY SCALING STATEFUL WEB APPLICATIONS

Mainx
Load Balancer

TXuxa N
HTTP Session HTTP Session
(Jorge) (Kuxa)

HTTP Session
(Michael)

Figure 13-1. Multinode online store without a session manager

13.1 Using the Sticky Session Strategy

You may be thinking, “OK, but what if the load balancer always sends the
requests from a specific user to a specific server? Then the user’s HTTP session
will always be there. Hence, the user’s shopping cart will always be available
across requests until this HTTP session expires.” You are absolutely correct, and
this is what you would call a sticky session strategy. But the problem arises again
when you think of a node failure scenario.

Imagine that a load balancer is using the sticky session strategy and every
user request is being routed to the same server. Everything is working flawlessly.
But suddenly this server crashes (meaning the user’s HTTP session is gone), and
the load balancer is forced to forward the user to another server. What happens
then? Again, the user’s shopping cart is lost.

Also, what would happen if the developers deploy a new version of the
online store application while the user is online? Well, there is no magic that
takes place; the server will have to be restarted in order to apply the new release
version, so what would happen with the user’s HTTP session again? You already
know the answer. But...you also already know the solution because this is similar
to what you already did regarding the WebSocket technology when adding
RabbitMQ as a full external STOMP broker to your architecture.

Why don’t you persist the HTTP sessions in your already working relational
database? Well, that’s pretty much the same as the scenario used in Chapter 7
in the “Redis Overview” section. Do you remember that querying a relational
database is much more expensive than querying an in-memory solution such as
Redis?

76

http://dx.doi.org/10.1007/978-1-4842-2985-9_7

CHAPTER 13 " HORIZONTALLY SCALING STATEFUL WEB APPLICATIONS

Figure 13-2 shows the architecture using Redis as the session manager.
Don’t you think that now the architecture looks much better? If a node crashes
and the load balancer redirects the user to another server instance, there is
no problem. The server will notice that it doesn’t have locally this specific
JSESSIONID code associated with any user’s HTTP session, so it will query Redis
looking for it. Once it finds the user’s session on Redis, it brings it back to the
server’s memory, and everything keeps working. The load balancer now will
continue sending requests to this server because it’s using a sticky session.
The user doesn’t even know that all these things happened behind the scenes.
Good shopping, dear user!

Online Store 1 Online Store 2 Online Store N

“lorge

HTTP Session
(Jorge)

HTTP Session
(Muxa)

HTTP Session
(Michael)

Figure 13-2. Multinode online store with Redis as session manager

77

CHAPTER 13 I HORIZONTALLY SCALING STATEFUL WEB APPLICATIONS

The question now is, how would you implement this mechanism on the
server side so that it fetches Redis for HTTP sessions? Well, if you use the Spring
Framework, there is the amazing Spring Session' subproject that takes care of
this for you. It’s insanely easy to use Spring Session along with Redis, especially
when you are setting up configurations with the help of Spring Boot.

13.2 Spring Session and WebSocket

You are using Spring Session in the chat application to store HTTP sessions on
Redis, but here the scenario is a little bit different.

In Spring, when you open a new WebSocket connection, on the server side
it creates a new WebSocket session. By the way, you already know that these
WebSocket sessions are stored in the corresponding MessageHandler. This
WebSocket session will stay alive until one of the parts explicitly closes it or the
HTTP session expires. This is the way JSR-356> works.

Q(‘ Don’t get confused here. The HTTP session and the WebSocket session are
different things. The HTTP session is created when the user performs the first HTTP
request to a server. However, the WebSocket session is created only after the user
already has an HTTP session associated and successfully performs the WebSocket
handshake.

The issue is that JSR-356 doesn’t have a mechanism for intercepting
WebSocket messages. In other words, when you are using only the WebSocket
connection without performing any HTTP requests, the server assumes that the
HTTP session is inactive, and as you know, every HTTP session has an expiration
threshold. If this threshold is crossed, then the server will kill the user’s HTTP
session, and by doing this, the user’s WebSocket connection will be gone as well.

To paraphrase the Spring Session documentation,® consider an e-mail application
that does much of its work through HTTP requests. Say there is also a chat
application embedded within it that works over WebSocket APIs. If a user is actively
chatting with someone, you should not time out the HttpSession since that would
create a pretty poor user experience. However, this is exactly what JSR-356 does.

'http://projects.spring.io/spring-session/
*https://jcp.org/en/jsr/detail?id=356
*https://github.com/spring-projects/spring-session/blob/master/docs/src/
docs/asciidoc/index.adoc#websocket-why

78

http://projects.spring.io/spring-session/
https://jcp.org/en/jsr/detail?id=356
https://github.com/spring-projects/spring-session/blob/master/docs/src/docs/asciidoc/index.adoc#websocket-why
https://github.com/spring-projects/spring-session/blob/master/docs/src/docs/asciidoc/index.adoc#websocket-why

CHAPTER 13 © HORIZONTALLY SCALING STATEFUL WEB APPLICATIONS

Furthermore, according to JSR-356, if the HttpSession times out, any WebSocket
that was created with that HttpSession and an authenticated user should be forcibly
closed. This means that if you are actively chatting in your application and are not
using the HttpSession, then you will also disconnect from your conversation.

In order to address this issue, Spring Session can be configured to ensure that
WebSocket messages will keep your HttpSession alive. To configure Spring Session
along with Spring WebSocket in the chat app, you need to do the following:

1.

Add the Spring Session dependency in pom.xml.

<dependency>
<groupldyorg.springframework.session</groupIds
<artifactId>spring-session</artifactIds
</dependency>

In application.yml, configure Spring Session with
storage-type as redis as follows:

spring:
session:
store-type: redis

Now, in the WebSocket configuration

class, instead of extending from
AbstractWebSocketMessageBrokerConfigurer as

you did in Chapter 10 in the “WebSocket over STOMP
Configuration” section, you extend from AbstractSessi
onWebSocketMessageBrokerConfigurer<ExpiringSess
ion>. Also, add the EnableScheduling annotation to the
class declaration.

@Configuration

@EnableScheduling

@EnablelebSocketMessageBroker

public class WebSocketConfigSpringSession extends AbstractS
essionlebSocketMessageBrokerConfigurer<ExpiringSession> {

}...

That’s it. You can pause for a coffee now, thinking about how amazing

Spring is.

79

http://dx.doi.org/10.1007/978-1-4842-2985-9_10

PART 3

Code by Feature

In this part of the book, I will discuss the code for every feature in the chat
application. Again, this book is not intended to teach the fundamentals
of Spring, so I'll assume you already have a basic understanding of
dependency injection, controllers, services, and so on.

0\(« If you need to improve your skills with the Spring Framework, | recommend

you check out the official Spring Framework documentation. It offers many
examples and nice tutorials as well.

'https://spring.io/docs

CHAPTER 14

Changing the Application
Language W,

It's possible to translate all the chat application text by choosing the desired
language in the application menu (Figure 14-1). This way, users from different
countries can make better use of the system. This concept is frequently known as
internationalization (or I18N).

Name Descriptior Connected Users

Figure 14-1. Language menu

Implementing internationalization using Spring MVC'! is quite simple.
Basically, you need the @Configuration class to extend from
WebMvcConfigurerAdapter to do some Spring MVC configurations.

@Configuration
public class WebConfig extends WebMvcConfigurerAdapter {
@Bean
public LocaleResolver localeResolver() {
return new SessionlLocaleResolver();

}

'https://docs.spring.io/spring/docs/current/spring-framework-reference/
htmlsingle/#mvc-localeresolver

© Jorge Acetozi 2017 83
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_14

https://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#mvc-localeresolver
https://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#mvc-localeresolver

CHAPTER 14 I CHANGING THE APPLICATION LANGUAGE

@®Bean

public LocaleChangeInterceptor localeChangeInterceptor() {
LocaleChangeInterceptor localeChangelnterceptor = new
LocaleChangeInterceptor();
localeChangeInterceptor.setParamName("lang");
return localeChangelnterceptor;

}

@0verride
public void addInterceptors(InterceptorRegistry registry) {
registry.addInterceptor(localeChangeInterceptor());

In this class, you set up the @Bean for the LocaleResolver. Spring has
many LocaleResolver implementations such as SessionLocaleResolver and
CookielocaleResolver

e SessionLocaleResolver: This will keep a locale attribute
in the user’s HTTP session, so as long as the user’s HTTP
session is active, the locale used for this user will be the one
specified in the HTTP session locale attribute.

e CookieLocaleResolver: This uses a cookie sent back to
the user. This option is particularly useful for stateless
applications that don’t use HTTP sessions.

In the previous configuration, LocaleChangeInterceptor will intercept each
request to check whether there is a 1ang parameter present. Suppose that a GET
request is fired with the lang=pt parameter. Basically, this interceptor would
intercept this request, set the user’s locale to pt (Portuguese), and store it in the
user’s HTTP session locale attribute. From now on, all application texts will be
read from the resource bundle messages pt.properties.

The following is the code for the menu items. When you click the English
or Portuguese menu item, a GET request will be fired with the respective param
attribute (en or pt).

<ul class="dropdown-menu">
<a id="english" href="?lang=en" th:text="#{menu.language.
english}">English</1i>
<a id="portuguese" href="?lang=pt" th:text="#{menu.language.
portuguese}">Portuguese</1i>

84

CHAPTER 14 I CHANGING THE APPLICATION LANGUAGE

To read messages from the appropriate resource bundle (based on the locale
set), Thymeleaf? can help you with th:text.

<h3 th:text="#{login.title}">Login</h3>

This code means that the value for the key login.title will be shown inside
the h3 Hypertext Markup Language (HTML) element.

*https://www.thymeleaf.org/

85

https://www.thymeleaf.org/

CHAPTER 15

Login)

Let’s start understanding some Spring Security configurations.

@Configuration

@EnableGlobalMethodSecurity(prePostEnabled = true)

public class WebSecurityConfig extends WebSecurityConfigurerAdapter {
@Autowired
private UserDetailsService userDetailsService;

@0verride
protected void configure(HttpSecurity http) throws Exception {
http
.csrf().disable()
.formLogin()
.loginProcessingUrl("/login")
.loginPage("/")
.defaultSuccessUrl("/chat")
.and()
.logout()
.logoutSuccessurl("/")
.and()
.authorizeRequests()
.antMatchers("/login", "/new-account”, "/").permitAll()
.antMatchers(HttpMethod.POST, "/chatroom").hasRole("ADMIN")
.anyRequest().authenticated();

© Jorge Acetozi 2017 87
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_15

CHAPTER 15 I LOGIN

@Autowired

public void configureGlobal (AuthenticationManagerBuilder auth)

throws Exception {

auth

.userDetailsService(userDetailsService)
.passwordEncoder (bCryptPasswordEncoder());

}

@Bean

public BCryptPasswordEncoder bCryptPasswordEncoder() {
return new BCryptPasswordEncoder();

}
}

In the configure method, everything is done using the HttpSecurity

object, which provides a fluent interface.!

When the form login is submitted to POST /login, Spring Security will
intercept the request and query the MySQL instance to fetch the user and check
whether the provided credentials are correct. However, if you don’t instruct
Spring on how to do that, things are not going to work. It’s not that magical! That’s
why you need to implement the UserDetailsService Spring interface to instruct
Spring on how to do that. Fortunately, as you learned in Chapter 8 in the “Spring
Data JPA Repositories” section, you are using UserRepository, which already
provides an easy way to perform User operations against the MySQL instance.

The authentication will be done by a login web form.

When the form submits a POST to /login, Spring Security
will take care of the authentication for you.

The login page is the root context, /.

When the login succeeds, the user will be redirected to the
/chat URL

The logout URI is /1logout, and after the logout action, the
user will be redirected to the / URI, which is the login page.

The URIs /login, /new-account, and / are allowed for
everybody (including anonymous users).

A POST to /chatroom (to create a chat room) is allowed
only by users with the role ROLE_ADMIN.

Any other requests are allowed only by logged-in users.

'https://www.martinfowler.com/bliki/FluentInterface.html

88

http://dx.doi.org/10.1007/978-1-4842-2985-9_8
https://www.martinfowler.com/bliki/FluentInterface.html

CHAPTER 15" LOGIN

@Service
public class UserDetailsServiceImpl implements UserDetailsService {

@Autowired
private UserRepository userRepository;

@0verride
public UserDetails loadUserByUsername(String username) throws
UsernameNotFoundException {

User user = userRepository.findOne(username);

if (user == null) {
throw new UsernameNotFoundException("User not found");
} else {
Set<SimpleGrantedAuthority> grantedAuthorities
= user.getRoles().stream().map(role -> new
SimpleGrantedAuthority(role.getName())).collect
(Collectors.toSet());

return new org.springframework.security.core.
userdetails.User(user.getUsername(), user.getPassword(),
grantedAuthorities);

In the previous code snippet, UserRepository is used to query the database
looking for the given username. Note that an instance of the UserDetailsService
is provided to AuthenticationManagerBuilder in the configuration class.

The BCryptPasswordEncoder component is used to encrypt the user’s
password using berypt.?

0 Here, we are disabling cross-site request forgery (CSRF) protection® to simplify things.
If you want to enable it, just remove the .csrf().disable() line and add <input
type="hidden" th:name="${ csrf.parameterName}" th:value="${ csrf.
token}"/> to the HTML forms to send the CSRF token with the form data. Also, if you
enable it, the /1ogout will need to be a POST request.

*https://en.wikipedia.org/wiki/Bcrypt
*https://docs.spring.io/spring-security/site/docs/current/reference/
html/csrf.html

89

https://en.wikipedia.org/wiki/Bcrypt
https://docs.spring.io/spring-security/site/docs/current/reference/html/csrf.html
https://docs.spring.io/spring-security/site/docs/current/reference/html/csrf.html

CHAPTER 16

New Account /

The following code is the User class. Along with the attributes declaration, you
use the Bean Validation' and Hibernate Validator? annotations. A valid new user
must have the following:

e username: This must not be empty and must have between
5 and 15 characters. This field is the user database table’s
primary key.

e password: This must not be empty and must have a
minimum of five characters.

e name: This must not be empty.

e email: This must not be empty and must be a valid e-mail
address.

@Entity
@Table(name = "user"
public class User {
@Id
@NotEmpty
@Size(min = 5, max = 15)
private String username;

@NotEmpty
@Size(min = 5)
private String password;

'http://beanvalidation.org/1.1/spec/
*http://hibernate.org/validator/

© Jorge Acetozi 2017 91
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_16

http://beanvalidation.org/1.1/spec/
http://beanvalidation.org/1.1/spec/
http://hibernate.org/validator/

CHAPTER 16 | NEW ACCOUNT

@NotEmpty
private String name;

@®Email
@NotEmpty
private String email;

@anyToMany (fetch=FetchType.EAGER)
@JoinTable(name = "user role",
joinColumns = @JoinColumn(name = "username"),
inverseJoinColumns = @JoinColumn(name = "role id"))
private Set<Role> roles = new HashSet<>();

In addition to these simple validations, you must be sure that the provided
username doesn'’t exist. For this, you create a custom Spring validator.

@Component

public class NewUserValidator implements Validator {
@Autowired
private UserRepository userRepository;

@0verride
public boolean supports(Class<?> clazz) {
return User.class.isAssignableFrom(clazz);

}

@0verride
public void validate(Object target, Errors errors) {
User newUser = (User) target;
if (userRepository.exists(newUser.getUsername())) {
errors.rejectValue("username”, "new.account.username.already.
exists");
}
}
}

Basically, NewUserValidator implements the Validator Spring interface
and uses UserRepository to query the database to check whether the username
already exists. If it exists, then a new error is added to the Exrors object.

92

CHAPTER 16 I NEW ACCOUNT

0 Note that the added error contains the key of the error message, which is
new.account.username.already.exists. You can check its value in the appendix.

Once the form in new-account.html is submitted, the createAccount
method is called in AuthenticationController.

@Controller

public class AuthenticationController {
@Autowired
private UserService userService;

@Autowired
private NewUserValidator newUserValidator;

@InitBinder
protected void initBinder(WebDataBinder binder) {
binder.addValidators(newUserValidator);

}

@RequestMapping(path = "/new-account”, method = RequestMethod.
POST)
public String createAccount(@Valid User user, BindingResult
bindingResult) {

if (bindingResult.hasErrors()) {

return "new-account"”;

}

userService.createUser(user);

return "redirect:/";
}

}

Note that you added NewUserValidator to the validators. This makes Spring
use your custom validator as well as the simple validations in the User class
against the new User object annotated with @Valid. If there are any errors,
the user is redirected to the new account form and the errors are shown, as in
Figure 16-1.

93

CHAPTER 16 | NEW ACCOUNT

Name Jorge Acetozi

Email jorge_acetozi#gmail.com

Specify a valid email address

Username jorge_acetozi

Username already exists

Password esssssesse

Must have at least 5 characters

Create

Figure 16-1. Validations

To automatically display the error messages in the page, Thymeleaf provides
th:errors.

<div class="form-group">
<label for="username"
th:text="#{new.account.username}">

Username
</1abel>
<div>
<input th:field="${user.username}"
type="text"

id="username"
name="username"
th:placeholder="#{new.account.your.username}" />
<div th:errors="*{username}">Error</div>
</div>
</div>

94

CHAPTER 16 I NEW ACCOUNT

When everything is correct with the submitted user, then userService.
createUser(user) is called.

@Service

public class DefaultUserService implements UserService {
@Autowired
private UserRepository userRepository;

@Autowired
private RoleRepository roleRepository;

@Autowired
private BCryptPasswordEncoder bCryptPasswordEncoder;

@0verride

@Transactional

public User createUser(User user) {
user.setPassword(bCryptPasswordEncoder.encode(user.
getPassword()));
Role userRole = roleRepository.findByName("ROLE USER");
user.addRoles(Arrays.asList(userRole));
return userRepository.save(user);

Essentially, this method encrypts the user’s password using the
BCryptPasswordEncoder component, attaches the ROLE_USER role to its roles,
and saves the user into the database. As ROLE_USER does not allow you to create
new chat rooms, every new user will not be able to use this feature.

95

CHAPTER 17

New Chat Room /

In this chapter, I illustrate how easy it is to work with REST endpoints in Spring
MVC.
On the client side, you just create a JavaScript object called newChatRoom,

convert it to JSON format, and send a POST request to the /chatroom endpoint.

If it succeeds, then the success callback is called, and it appends the new chat
room to the grid by manipulating the Document Object Model' (DOM).

function createNewChatRoom() {
var newChatRoom = {
"name"' : txtNewChatRoomName.val(),
"description’ : txtNewChatRoomDescription.val()

};

$.ajax({
type : "POST",
url : "/chatroom",
data : JSON.stringify(newChatRoom),
contentType : "application/json",
success : function(chatRoom) {
//append chat room to the grid

b
B
}

'https://www.w3schools.com/js/js_htmldom.asp

© Jorge Acetozi 2017
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_17

97

https://www.w3schools.com/js/js_htmldom.asp

CHAPTER 17 I NEW CHAT ROOM

17.1 Secured REST Endpoints with Spring MVC
and Spring Security

Spring MVC will first convert the JSON in the HTTP request body (that’s

why you use the @RequestBody annotation) to the chatroom object and call

the createChatRoom method. This method will use the chatRoomService
component to save the chatroom object in Redis. After that, the createChatRoom
method will convert the new chatroom object into a JSON representation and
append it to the HTTP response body (that’s why you used the @ResponseBody
annotation) along with an HTTP 201 CREATED status code.

A Note that by using the @Secured("ROLE_ADMIN") annotation, you tell Spring
Security to allow only logged-in users with the role ROLE_ADMIN to consume this
endpoint. Otherwise, it will automatically send a 403 FORBIDDEN status code to the
client.

@Controller

public class ChatRoomController {
@Autowired
private ChatRoomService chatRoomService;

@Secured("ROLE_ADMIN")
@RequestMapping(path = "/chatroom", method = RequestMethod.POST)
@ResponseBody
@ResponseStatus(code = HttpStatus.CREATED)
public ChatRoom createChatRoom(@RequestBody ChatRoom chatRoom) {
return chatRoomService.save(chatRoom);
}
}

@Service

public class RedisChatRoomService implements ChatRoomService {
@Autowired
private ChatRoomRepository chatRoomRepository;

@0verride
public ChatRoom save(ChatRoom chatRoom) {
return chatRoomRepository.save(chatRoom);

}
}

98

CHAPTER 18

Joining the Chat Room)

When you join a chat room, some JavaScript code gets executed on the client side.

function connect() {
socket = new Sock]S('/ws');
stompClient = Stomp.over(socket);
stompClient.connect({ 'chatRoomId' : chatRoomId }, stompSuccess,
stompFailure);

}

function stompSuccess(frame) {
enableInputMessage();
successMessage("Your WebSocket connection was successfully
established!")

stompClient.subscribe('/chatroom/connected.users’,
updateConnectedUsers);
stompClient.subscribe('/chatroom/old.messages', oldMessages);

stompClient.subscribe('/topic/"' + chatRoomId +
publicMessages);
stompClient.subscribe('/user/queue/' + chatRoomId +
messages', privateMessages);
stompClient.subscribe('/topic/"' + chatRoomId +
updateConnectedUsers);

.public.messages’,

.private.

.connected.users",

}

function stompFailure(error) {
errorMessage("Lost connection to WebSocket! Reconnecting in
10 seconds...");
disableInputMessage();
setTimeout(connect, 10000);

}

© Jorge Acetozi 2017 99
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_18

CHAPTER 18 I JOINING THE CHAT ROOM

First, the connect function is called, and a new WebSocket connection
is started using STOMP as a subprotocol. Note that you also add the header
"chatRoomId' : chatRoomId when you send the CONNECT frame because the
server must keep this information to ensure that it's manipulating the correct
destination names.

If the handshake succeeds, then the stompSuccess function is called, and
the user subscribes to some destinations. Actually, the first two subscriptions are
executed only once on the server side, and they are used to get some initial data,
that is, his old conversation and the current connected users to this specific chat
room. This is the Java code executed when these two subscriptions happen:

@Controller

public class ChatRoomController {
@Autowired
private ChatRoomService chatRoomService;

@Autowired
private InstantMessageService instantMessageService;

@SubscribeMapping("/connected.users™)
public List<ChatRoomUser> listChatRoomConnectedUsersOnSubscribe
(SimpMessageHeaderAccessor headerAccessor) {
String chatRoomId = headerAccessor.getSessionAttributes().get
("chatRoomId").toString();
return chatRoomService.findById(chatRoomId).getConnectedUsers();

}

@SubscribeMapping("/old.messages")

public List<InstantMessage> listOldMessagesFromUserOnSubscribe

(Principal principal, SimpMessageHeaderAccessor headerAccessor) {
String chatRoomId = headerAccessor.getSessionAttributes().get
("chatRoomId").toString();
return instantMessageService.findAllInstantMessagesFor
(principal.getName(), chatRoomId);

}

100

CHAPTER 18 /' JOINING THE CHAT ROOM

OThe List<ChatRoomUser> list is fetched from Redis, and the
List<InstantMessage> listis fetched from Cassandra.

0 The @SubscribeMapping annotation is useful when users need to fetch the
initial data using the WebSocket connection.

The last three subscriptions in the JavaScript code are the following,
respectively:

e Execute the publicMessages function when a new message
arrives at the ' /topic/' + chatRoomId + '.public.
messages' destination. This function will render a public
message in the user’s message panel.

e Execute the privateMessages function when a new
message arrives at the ' /user/queue/' + chatRoomId
+ '.private.messages' destination. This function will
render a private message in the user’s message panel.

e Execute the updateConnectedUsers function when a
new message arrives at the ' /topic/' + chatRoomId +
'.connected.users' destination. This function will update
the connected users in the user’s connected users panel.

18.1 WebSocket Reconnection Strategy

When the WebSocket connection is lost, the stompFailure function is executed,
and it will try to reestablish the connection every ten seconds. If it succeeds, then
everything explained earlier happens again. Because every message is stored in
Cassandra (regardless of being delivered through the WebSocket connection),
even if the user was offline while someone sent a message to him, when the user
reconnects, the message will be in the List<InstantMessage> list and will be
displayed in the user’s message panel.

18.2 WebSocket Events

Once the WebSocket connection is established or disconnected, an event is
triggered on the server side, and a system message is sent to every connected user
in the chat room informing them that someone has joined or left (Figure 18-1).

101

CHAPTER 18 I JOINING THE CHAT ROOM

Chat Room: Top Guitarists

Users

jorge_acetozi

michael_romea admin

john_petrucei

jorge_acetazi: Hello guys! Can someone play "Dream Theater - The Dance of Etemity” here?

public ¥ Send

Figure 18-1. System messages from admin

The following is the code that handles these events on the server side:

@Component
public class lWilebSocketEvents {
@Autowired
private ChatRoomService chatRoomService;

@EventListener

private void handleSessionConnected(SessionConnectEvent event) {
SimpMessageHeaderAccessor headers = SimpMessageHeaderAccessor.
wrap(event.getMessage());
String chatRoomId = headers.getNativeHeader("chatRoomId").
get(0);
headers.getSessionAttributes().put("chatRoomId", chatRoomId);
ChatRoomUser joiningUser = new ChatRoomUser(event.getUser().
getName());

chatRoomService.join(joiningUser, chatRoomService.
findById(chatRoomId));

102

CHAPTER 18 /' JOINING THE CHAT ROOM

@EventListener

private void handleSessionDisconnect(SessionDisconnectEvent event) {
SimpMessageHeaderAccessor headers = SimpMessageHeaderAccessor.
wrap(event.getMessage());
String chatRoomId = headers.getSessionAttributes().
get("chatRoomId").toString();
ChatRoomUser leavingUser = new ChatRoomUser(event.getUser().
getName());

chatRoomService.leave(leavingUser, chatRoomService.
findById(chatRoomId));

Let’s take the SessionConnected event as an example and follow the entire
flow.

The handleSessionConnected method is called when a WebSocket connection
is created. Then, the chatRoomId value is obtained from the CONNECT frame headers,
and it’s stored in the user’s WebSocket session as an attribute. This is convenient
since from now every message the client sends doesn’t need to provide the
chatRoomId value, as it’s already stored in the user’s WebSocket session. Then, the
join method is called, passing joiningUser and chatRoom as parameters.

@Service

public class RedisChatRoomService implements ChatRoomService {
@Autowired
private SimpMessagingTemplate webSocketMessagingTemplate;

@Autowired
private ChatRoomRepository chatRoomRepository;

@Autowired
private InstantMessageService instantMessageService;

@0verride

public ChatRoom join(ChatRoomUser joiningUser, ChatRoom chatRoom) {
chatRoom.addUser (joiningUser);
chatRoomRepository.save(chatRoom);

sendPublicMessage(SystemMessages.welcome(chatRoom.getId(),
joiningUser.getUsername()));
updateConnectedUsersViaWebSocket(chatRoom);

return chatRoom;

103

CHAPTER 18 I JOINING THE CHAT ROOM

@0verride

public ChatRoom leave(ChatRoomUser leavingUser, ChatRoom chatRoom) {
sendPublicMessage(SystemMessages.goodbye(chatRoom.getId(),
leavingUser.getUsername()));

chatRoom. removeUser(leavingUser);
chatRoomRepository.save(chatRoom);

updateConnectedUsersViaWebSocket(chatRoom);
return chatRoom;

}

@0verride
public void sendPublicMessage(InstantMessage instantMessage) {
webSocketMessagingTemplate.convertAndSend(
Destinations.ChatRoom.publicMessages(instantMessage.
getChatRoomId()), instantMessage);

instantMessageService.appendInstantMessageToConversations
(instantMessage);

}

private void updateConnectedUsersViaWebSocket(ChatRoom chatRoom) {
webSocketMessagingTemplate.convertAndSend(
Destinations.ChatRoom.connectedUsers(chatRoom.getId()),
chatRoom.getConnectedUsers());

18.2.1 Send Public System Messages over WebSocket

Let’s examine the join method now. First it adds the user to the chatRoom object
and persists it in Redis; then it calls the sendPublicMessage method that uses
SimpMessagingTemplate (that you've already used before in this book) and sends
a public welcome message as the admin user. Every connected user is able to
receive this message because it’s sent to the ' /topic/' + chatRoomId +
'.public.messages' destination, which is one of the subscriptions that
happens when a user establishes the WebSocket connection. Then, it calls the
appendInstantMessageToConversations method in the InstantMessageService
component, which is responsible for storing the message to the users’
conversations in Cassandra. Here is the code for this method:

104

CHAPTER 18 /' JOINING THE CHAT ROOM

@Service
public class CassandraInstantMessageService implements
InstantMessageService {

@Autowired
private InstantMessageRepository instantMessageRepository;

@Autowired
private ChatRoomService chatRoomService;

@0verride
public void appendInstantMessageToConversations(InstantMessage
instantMessage) {
if (instantMessage.isFromAdmin() || instantMessage.isPublic()) {
ChatRoom chatRoom = chatRoomService.findById(instantMessage.
getChatRoomId());

chatRoom. getConnectedUsers().forEach(connectedUser -> {
instantMessage.setUsername(connectedUser.getUsername());
instantMessageRepository.save(instantMessage);
D;
} else {
instantMessage.setUsername(instantMessage.getFromUser());
instantMessageRepository.save(instantMessage);

instantMessage.setUsername(instantMessage.getToUser());
instantMessageRepository.save(instantMessage);

}
}

@0verride
public List<InstantMessage> findAllInstantMessagesFor(String
username, String chatRoomId) {
return instantMessageRepository.findInstantMessagesByUsernameAnd
ChatRoomId(username, chatRoomId);

}
}

This code essentially saves in Cassandra the message for the involved users.
For example, if you send a private message to me, this method will append the
message to my conversation and to yours. But if you send a public message, then
this method will append the message to each connected user’s conversation.

Finally, it calls the updateConnectedUsersViaWebSocket method, which
also sends a public message to the '/topic/' + chatRoomId + '.connected.
users' destination. As all users have a subscription to this destination, they are
able to receive the message and update their connected users panel.

Essentially, the same flow occurs when a user leaves the chat room.

105

CHAPTER 19

Sending a User’s Public
Messages over WebSocket/

When the client sends a public message in the chat room, the sendMessage
JavaScript function is called. Essentially, it converts the instantMessage
JavaScript object into a JSON representation and sends the message to the
application destination /chatroom/send.message.

function sendMessage() {
var instantMessage;

if (spanSendTo.text() == "public") {
instantMessage = {
"text' : inputMessage.val()
}

} else {
instantMessage = {
"text' : inputMessage.val(),
"toUser' : spanSendTo.text()
}

}
stompClient.send("/chatroom/send.message"”, {}, JSON.stringify

(instantMessage));
inputMessage.val("").focus();

0 Refer to the “Message Flow Using a Simple Broker” section in Chapter 10 for
details of how the messages are routed based on destination names.

© Jorge Acetozi 2017 107
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_19

http://dx.doi.org/10.1007/978-1-4842-2985-9_10

CHAPTER 19 I SENDING A USER’S PUBLIC MESSAGES OVER WEBSOCKET

In the ChatRoomController Java class, the method sendMessage is called,
and the instantMessage object has the fromUser and chatRoomId fields set.
Then, the chatRoomService object is called to send a private or public message.
In this case, the instantMessage.isPublic() method will return true, so a
public message will be sent.

@Controller

public class ChatRoomController {
@Autowired
private ChatRoomService chatRoomService;

@MessageMapping("/send.message")

public void sendMessage(@Payload InstantMessage instantMessage,

Principal principal, SimpMessageHeaderAccessor headerAccessor) {
String chatRoomId = headerAccessor.getSessionAttributes().
get("chatRoomId").toString();
instantMessage.setFromUser(principal.getName());
instantMessage.setChatRoomId(chatRoomId);

if (instantMessage.isPublic()) {
chatRoomService.sendPublicMessage(instantMessage);
} else {
chatRoomService.sendPrivateMessage(instantMessage);
}
}
}

The sendPublicMessage method in the ChatRoomService class was already
explained in the “Send Public System Messages over WebSocket” section of
Chapter 18.

108

http://dx.doi.org/10.1007/978-1-4842-2985-9_18

CHAPTER 20

Sending a User’s Private
Messages over WebSocket/

Sending private messages can be a little bit trickier than sending public ones.
Let’s take a look at the JavaScript code, shown here:

function sendMessage() {
var instantMessage;

if (spanSendTo.text() == "public") {
instantMessage = {
"text' : inputMessage.val()
}
} else {
instantMessage = {
"text' : inputMessage.val(),
"toUser' : spanSendTo.text()

}

}
stompClient.send("/chatroom/send.message”, {}, JSON.stringify

(instantMessage));
inputMessage.val("").focus();

When the client sends a private message in the chat room, the sendMessage
JavaScript function is called. Essentially, it converts the instantMessage
JavaScript object into a JSON representation and sends the message to the
application destination /chatroom/send.message, which is the same destination
used for sending a user’s public messages.

© Jorge Acetozi 2017 109
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_20

CHAPTER 20 I SENDING A USER’S PRIVATE MESSAGES OVER WEBSOCKET

@Controller

public class ChatRoomController {
@Autowired
private ChatRoomService chatRoomService;

@MessageMapping("/send.message")

public void sendMessage(@Payload InstantMessage instantMessage,

Principal principal, SimpMessageHeaderAccessor headerAccessor) {
String chatRoomId = headerAccessor.getSessionAttributes().
get("chatRoomId").toString();
instantMessage.setFromUser(principal.getName());
instantMessage.setChatRoomId(chatRoomId);

if (instantMessage.isPublic()) {
chatRoomService.sendPublicMessage(instantMessage);
} else {
chatRoomService.sendPrivateMessage(instantMessage);
}
}
}

In the ChatRoomController Java class, the method sendMessage is called,
and the instantMessage object has the fromUser and chatRoomId fields set.
Then, the chatRoomService is called to send a private or a public message. In
this case, the instantMessage.isPublic() method returns false, so a private
message will be sent.

@Service

public class RedisChatRoomService implements ChatRoomService {
@Autowired
private SimpMessagingTemplate webSocketMessagingTemplate;

@Autowired
private InstantMessageService instantMessageService;

@0verride
public void sendPrivateMessage(InstantMessage instantMessage) {
webSocketMessagingTemplate.convertAndSendToUser (
instantMessage.getToUser(),
Destinations.ChatRoom.privateMessages(instantMessage.
getChatRoomId()), instantMessage);

110

CHAPTER 20 © SENDING A USER’S PRIVATE MESSAGES OVER WEBSOCKET

webSocketMessagingTemplate.convertAndSendToUser (
instantMessage.getFromUser(),
Destinations.ChatRoom.privateMessages(instantMessage.
getChatRoomId()), instantMessage);

instantMessageService.appendInstantMessageToConversations
(instantMessage);

}
}

If you look closely at Destinations.ChatRoom.privateMessages
(instantMessage.getChatRoomId()), you will see that this static method will
return a String that represents the user’s private messages destination. For
example, for a chat room with an ID of AG1XX5, it would be something like /
queue/AG1XX5.private.messages

When the convertAndSendToUser method is invoked, it receives the target
username (the user’s username that will receive the private message), the
destination, and the instantMessage itself. The question now is, how can Spring
can send a message to a specific user if the destination /queue/AG1XX5. private.
messages says nothing about the target user? In fact, every different user who
sends a private message will have this same destination name, right?

Well, Spring is smart, and behind the scenes
UserDestinationMessageHandler will append to this destination the target
user’s WebSocket session ID. Then, if the WebSocket session ID for the target
user is user123, the destination will be transformed into /queue/AG1XX5.
private.messages-user123, and the message will be sent to it.

Now, for the user to receive this private message, the user must be
subscribed to this destination. Let’s check the JavaScript subscriptions code
and find out whether the user is subscribed to the /queue/AG1XX5.private.
messages-user123 destination.

function connect() {
socket = new Sock3IS('/ws');
stompClient = Stomp.over(socket);
stompClient.connect({ 'chatRoomId' : chatRoomId }, stompSuccess,
stompFailure);

}
function stompSuccess(frame) {

stompClient.subscribe('/user/queue/' + chatRoomId +
messages', privateMessages);

.private.

111

CHAPTER 20 I SENDING A USER’S PRIVATE MESSAGES OVER WEBSOCKET

No! There is no subscription to this destination. That’s weird! Well,
actually when Spring detects a subscription with the prefix /user/,
UserDestinationMessageHandler will again append the WebSocket session ID
to the destination name and remove /user from it. So, in the end, the user will
be subscribing to the /queue/AG1XX5.private.messages-user123 destination
instead of /user/queue/AG1XX5.private.messages.

Well, if the user is subscribed to this destination, then he will be able to
receive the private message. Voila!

The question now is, why does Spring perform this magic for you? Well,
if you want to send a private message to a user, you must know exactly which
destination name the user is subscribed to, right? In addition, the destination
name must be unique, so to get this guarantee, the WebSocket session ID is
used. Is it convenient to have to know the user’s WebSocket session ID in order
to send a private message to him? I think you will agree with me...no! That’s why
Spring does this “translation” for you. It’s able to retrieve the WebSocket session
ID from the user’s username. This allows you to send a private message to a
specific user from any part of the system just by making a call like this:

simpMessagingTemplate.convertAndSendToUser (
"target username_here",
"/queue/AGIXX5.private.messages"),
instantMessage);

112

PART 4

Testing the Code

In this part of the book, you will learn about the importance of testing your
applications and how crucial it is for implementing continuous delivery.
In addition, I will discuss the test code for unit and integration tests.

OThis book is not intended to teach the basics of JUnit or define mocks,
stubs, and so on. Instead, I'll discuss the test code written in the chat
application (as | did in Part 3, “Code by Feature”).

o I'll show only a few examples of unit and integration tests. Please clone
the GitHub chat app repository' to read and run all the implemented tests.

'https://github.com/jorgeacetozi/ebook-chat-app-spring-websocket-cassandra-
redis-rabbitmq

CHAPTER 21

Lazy Deployments vs.
Fast Deployments

/

Perhaps you've worked for a company where the deployment process to the
production environment was very lazy. That is, it took many days or sometimes
even months to happen. Believe it or not, in practice it’s not that difficult to find

these scenarios.

In short, this kind of problem is often the root cause of a software project
failure. That’s because taking such a long period of time to deploy a new release

to production has many disadvantages.

¢ Clients will not be happy with features that would add
value to their business being on the developers’ machines
instead of in production.

e The new version will have a lot of new code because
developers were working on new features for a long
period of time, probably introducing many bugs to the

application at once. This makes it even harder to fix them

(and other) bugs.

e The team will not be able to fix critical bugs and deliver
the software because of the amount of time taken between
deployments.

e Developers will work hard and will not see their code in
production. This is really discouraging.

Asyou can see, there are quite a lot of reasons not to have a lazy deployment

process.

© Jorge Acetozi 2017
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_21

115

CHAPTER 21 I LAZY DEPLOYMENTS VS. FAST DEPLOYMENTS

0 | recommend the book Continuous Delivery from Jez Humble and David Farley
(Addison-Wesley, 2010) for an excellent introduction to the amazing world of
continuous delivery.

By contrast, the ability to deliver code to production in a matter of hours or
even minutes brings a lot of benefits, including the following:

e You will have happy clients using new features every week,
perhaps every day, and increasing value to their business.

e You get low-risk releases. Each new release includes only a
small feature. If something goes wrong, it’s much easier to
find and fix it. This obviously implies lower costs as well.

e Bug fixes are delivered very quickly.

e Happy developers see their jobs adding value to other
people.

As you can see, there are many good reasons to release new versions to
production as soon as possible.

116

CHAPTER 22

Continuous Delivery

Continuous delivery is the ability to deliver changes (such as new features,
configuration changes, bug fixes, and so on) into production safely and quickly
in a sustainable way.

Of course, achieving this comes at a price. The entire delivery process
(from development to production) must be highly automated. Remember,
humans are good at creative tasks but horrible at repetitive tasks. Machines
are horrible at creative tasks but excellent at repetitive tasks. Why not take
advantage of both humans and machines? In other words, let humans and
machines do what they do best!

Testing is a repetitive, difficult, and boring task. Humans are not able to test
thousands of use cases without making mistakes. Machines are. Also, machines
can accomplish a testing task in seconds or minutes, while humans can spend
entire days doing it. This also means that replacing humans with machines on
these kinds of tasks is cheaper.

Having humans testing your software or manually involved in any task
that could have been automated is something that just doesn’t fit in with
the continuous delivery of software to production. If you want to implement
continuous delivery, automation is key!

Can you see now why automated tests are so important? I would say that
they're a sort of prerequisite for implementing continuous delivery with high-
quality releases. Implementing continuous delivery without good automated
tests will result in delivering terrible-quality code to production quickly. Is that
what you want? Definitely, no!

© Jorge Acetozi 2017 117
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_22

CHAPTER 23

Types of Automated Tests /

There are lots of types of automated tests that can be coded. All of them have
their strengths and weaknesses. The following are the most common ones:

Unit tests: These provide fast feedback, but they test only
an isolated unit of code (say, a method in a class). For
example, an issue with a SQL query would not be caught
since a unit test would not hit the database. Unit tests
usually are executed in seconds or even milliseconds.

Integration tests: These provide slower feedback, but they
include testing the external integrations such as databases
or web services. That is, they are more comprehensive than
unit tests. (This doesn’t mean they are better! Be careful
here; remember that every type of test has its own strengths
and weaknesses.) Usually, integration tests are executed

in minutes, but the time may vary a lot depending on the
number of tests to be run.

Acceptance tests: These provide even slower feedback than
integration tests, but they actually simulate a user in the
system using the browser and clicking buttons and links,
filling in and submitting forms, and so on. Usually they are
executed in minutes, but the time may vary a lot depending
on the number of tests to be run.

Stress tests: These consist of flooding the system with lots
of requests to get feedback on how it behaves under these
conditions.

Usually, unit and integration tests are most often used. Together, they cover
a lot of scenarios and avoid many application issues. Also, they are easier to code
than the other types of tests (considering that stress tests should run in a similar
production environment, etc.).

© Jorge Acetozi 2017
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_23

119

CHAPTER 23 I TYPES OF AUTOMATED TESTS

0 Actually, there are even more types of automated tests, such as security tests,
that could be added to your application’s automated test suite. The Open Web
Application Security Project' (OWASP) is an online community that creates freely
available articles, methodologies, documentation, tools, and technologies in the field
of web application security. For example, the OWASP Zed Attack Proxy? (ZAP) is one
of the world’s most popular free security tools and is actively maintained by
hundreds of international volunteers. This tool can help you automatically find
security vulnerabilities in your web applications and can be easily integrated into
your continuous delivery pipeline (it even has a Jenkins plug-in® available).

'https://www.owasp.org/index.php/Main_Page
*https://github.com/zaproxy/zaproxy
*https://wiki.jenkins.io/display/JENKINS/zap+plugin

120

https://www.owasp.org/index.php/Main_Page
https://github.com/zaproxy/zaproxy
https://wiki.jenkins.io/display/JENKINS/zap+plugin

CHAPTER 24

Unit Tests /

Unit tests provide fast feedback, but they test only an isolated unit of code
(amethod in a class, for example). In the chat application, I write unit tests using
JUnit' along with Mockito? and Hamcrest.?

24.1 InstantMessageBuilderTest.java

The InstantMessageBuilderTest. java class tests the InstantMessageBuilder
class, which implements a builder pattern* to provide a chain of methods
responsible for simplifying the creation of a new InstantMessage object.

public class InstantMessageBuilderTest {
private final String chatRoomId = "123";
private final String fromUser = "jorge acetozi";
private final String toUser = "michael romeo";
private final String publicMessageText = "Hello guys... I hope you
are enjoying my eBook!";
private final String privateMessageText = "I'm listening to
Symphony X right now!";
private final String systemMessageText = "This is a system message
from admin user!";

'http://junit.org/junit4/
*http://site.mockito.org/
*http://hamcrest.org/
‘https://en.wikipedia.org/wiki/Builder_pattern

© Jorge Acetozi 2017 121
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_24

http://junit.org/junit4/
http://site.mockito.org/
http://hamcrest.org/
https://en.wikipedia.org/wiki/Builder_pattern

CHAPTER 24 I UNIT TESTS

@Test
public void shouldCreatePublicInstantMessage() {
InstantMessage publicMessage = new InstantMessageBuilder()

.newMessage()
.withChatRoomId(chatRoomId)
.publicMessage()
.fromUser (fromUser)
.withText(publicMessageText);

assertThat(publicMessage.isPublic(), is(txue));
assertThat(publicMessage.isFromAdmin(), is(false));
assertThat(publicMessage.getChatRoomId(), is(chatRoomId));
assertThat(publicMessage.getFromUser(), is(fromUser));
assertThat(publicMessage.getToUser(), is(nullValue()));
assertThat(publicMessage.getText(), is(publicMessageText));

}

@Test
public void shouldCreatePrivateInstantMessage() {
InstantMessage privateMessage = new InstantMessageBuilder()

.newMessage()
.withChatRoomId(chatRoomId)
.privateMessage()
.toUser(toUser)
.fromUser (fromUser).
withText(privateMessageText);

assertThat(privateMessage.isPublic(), is(false));
assertThat(privateMessage.isFromAdmin(), is(false));
assertThat(privateMessage.getChatRoomId(), is(chatRoomId));
assertThat(privateMessage.getFromUser(), is(fromUser));
assertThat(privateMessage.getToUser(), is(toUser));
assertThat(privateMessage.getText(), is(privateMessageText));

}

@Test
public void shouldCreateSystemInstantMessage() {
InstantMessage systemMessage = new InstantMessageBuilder()
.newMessage()
.withChatRoomId(chatRoomId)
.systemMessage()
.withText(systemMessageText);

122

CHAPTER 24 © UNIT TESTS

assertThat(systemMessage.isPublic(), is(true));
assertThat(systemMessage.isFromAdmin(), is(true));
assertThat(systemMessage.getChatRoomId(), is(chatRoomId));
assertThat(systemMessage.getFromUser(), is(SystemUsers.ADMIN.
getUsername()));

assertThat(systemMessage.getToUser(), is(nullvalue()));
assertThat(systemMessage.getText(), is(systemMessageText));

The tests become really easy to read when you use Hamcrest
matchers. For example, in shouldCreatePublicInstantMessage, you
use InstantMessageBuilder to build a public message. A message
is considered to be public when the toUser field is null. However, in
shouldCreatePrivateInstantMessage, the toUser field cannot be null.
In shouldCreateSystemInstantMessage, you check that every system
message is public and is from a user whose username is admin.

24.2 DestinationsTest.java

The DestinationsTest. java class tests the Destinations class, which provides
some static methods that return the destination names for subscribing to
public messages, private messages, or connected users in a chat room. These
tests are important because if someone changes the Destination class (even
accidentally), all the chat room features will stop working.

public class DestinationsTest {
private final String chatRoomId = "123";

@Test

public void shouldGetPublicMessagesDestination() {
assertThat(Destinations.ChatRoom.publicMessages("123"),
is("/topic/" + chatRoomId + ".public.messages"));

}

@Test

public void shouldGetPrivateMessagesDestination() {
assertThat(Destinations.ChatRoom.privateMessages("123"),
is("/queue/" + chatRoomId + ".private.messages"));

}

123

CHAPTER 24 I UNIT TESTS

@Test

public void shouldGetConnectedUsersDestination() {
assertThat(Destinations.ChatRoom.connectedUsers("123"),
is("/topic/" + chatRoomId + ".connected.users"));

}

}

Basically, this class tests only if the destination names are /topic/123.
public.messages, /queue/123.private.messages, and /topic/123.
connected.users, respectively, for a given chat room ID equal to 123.

24.3 RedisChatRoomServiceTest.java

The RedisChatRoomServiceTest. java class tests the RedisChatRoomService
class, which provides methods for chat room operations.

@RunWith(MockitoJUnitRunner.class)

public class RedisChatRoomServiceTest {
@InjectMocks private ChatRoomService chatRoomService = new
RedisChatRoomService();
@Mock private SimpMessagingTemplate webSocketMessagingTemplate;
@Mock private InstantMessageService instantMessageService;
@Captor private ArgumentCaptor<String> destinationCaptor;
@Captor private ArgumentCaptor<InstantMessage> instantMessageCaptor;
@Captor private ArgumentCaptor<Object> messageObjectCaptor;

@Test

public void shouldSendPublicMessage() {
ChatRoom chatRoom = new ChatRoom("123", "Dream Theater",
"Discuss about best band ever!");
ChatRoomUser user = new ChatRoomUser("jorge acetozi");
chatRoom.addUser (user);

assertThat(chatRoom.getNumberOfConnectedUsers(), is(1));

InstantMessage publicMessage = new InstantMessageBuilder()
.newMessage()
.withChatRoomId(chatRoom.getId())
.publicMessage()
.fromUser(user.getUsername())
.withText("This is a public message!");

124

CHAPTER 24 © UNIT TESTS

chatRoomService.sendPublicMessage(publicMessage);

verify(webSocketMessagingTemplate, times(1))
.convertAndSend(
destinationCaptor.capture(),
messageObjectCaptor.capture());

verify(instantMessageService, times(1))
.appendInstantMessageToConversations(instantMessageCaptor.
capture());

String sentDestination = destinationCaptor.getValue();
InstantMessage sentMessage = (InstantMessage)
messageObjectCaptor.getValue();

InstantMessage instantMessageToBeAppendedToConversations =
instantMessageCaptor.getValue();

assertThat(sentDestination, is(Destinations.ChatRoom.
publicMessages(chatRoom.getId())));
assertEquals(publicMessage, sentMessage);
assertEquals(publicMessage,
instantMessageToBeAppendedToConversations);

The test shouldSendPublicMessage starts creating a new chat room and
adds a new user (username jorge_acetozi) to it; then it creates a public message
that will be sent from jorge_acetozi and invokes the sendPublicMessage
method in the chatRoomService method, which is the method you really
want to test. After this, it verifies that webSocketMessagingTemplate and
instantMessageService were invoked only once and that the destination
sent is the “public destination.” It also checks that the sent message is
the same message that was passed to the sendPublicMessage method
before and that the public message is the same that was passed to the
appendInstantMessageToConversations method invocation.

125

CHAPTER 25

Integration Tests)

Integration tests are not as straightforward to code as unit tests because
they really need to test an entire integration. For example, to test a database
integration, you would need to set up this database before running the tests.

To address this issue and avoid the overhead of setting up an entire database
just for executing a simple test, many people run integration tests with an
in-memory database such as H2.!

The point here is that integration tests are more effective when running
in an environment similar to the production environment. For example, an
in-memory database doesn’t have all the features that MySQL has. Some specific
MySQL functions will not be able to be tested if you are not running a MySQL
instance, right?

So, to make the environment as similar as possible to production, you
can use a handy library called testcontainers® that allows you to create Docker
containers from inside a JUnit test. This is really good because the tests will run
against real Cassandra, MySQL, Redis, and RabbitMQ volatile instances.

25.1 Setting Up Dependencies for Starting
Docker Containers from JUnit

To use testcontainers, first you need to declare the dependency to pom.xml.

<dependency>
<groupld>org.testcontainers</groupIds
<artifactId>testcontainers</artifactIds
<versiony1.1.9¢</version>

</dependency>

'www.h2database.com/
https://www.testcontainers.org/

© Jorge Acetozi 2017 127
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_25

http://www.h2database.com/
https://www.testcontainers.org/

CHAPTER 25 I INTEGRATION TESTS

The following code is executed before running the integration tests.
Basically, it sets up Docker containers for Cassandra, MySQL, Redis, and
RabbitMQ with STOMP support using the testcontainers library. Note that the
waitForMysqlContainerStartup method assures that the integration tests will
be executed only after the MySQL container is ready to receive connections.

public class AbstractIntegrationTest {
@ClassRule
public static final GenericContainer cassandra = new FixedHostPort
GenericContainer("cassandra:3.0")
.withFixedExposedPort (9042, 9042);

@ClassRule
public static final GenericContainer mysql = new FixedHostPort
GenericContainer("mysql:5.7")
.withFixedExposedPort (3306, 3306)
.withEnv("MYSQL DATABASE", "ebook chat")
.withEnv("MYSQL _ROOT PASSWORD", "root");

@ClassRule
public static final GenericContainer redis = new FixedHostPort
GenericContainer("redis:3.0.6")

.withFixedExposedPort (6379, 6379);

@ClassRule
public static final GenericContainer rabbitmq = new FixedHostPort
GenericContainer("jorgeacetozi/rabbitmq-stomp:3.6")
.withFixedExposedPort(61613, 61613)
.withExposedPorts(61613);

@BeforeClass
public static void waitForMysqlContainerStartup() throws
InterruptedException, TimeoutException {
WaitingConsumer consumer = new WaitingConsumer();
mysql.followOutput(consumer);
consumer.waitUntil(frame ->
frame.getUtf8String().contains("mysqld: ready for
connections.™"), 90, TimeUnit.SECONDS);

128

CHAPTER 25 I INTEGRATION TESTS

25.2 JuUnit Suites

Setting up Cassandra, MySQL, Redis, and RabbitMQ before every test would
require a lot of overhead and be time-consuming. To instantiate these
dependencies only once and use them with all integration tests that are
executed, you can use a JUnit suite.? Basically, a JUnit suite is used to aggregate
tests. In the chat application, there are two suites: UnitTestsSuite.java and
IntegrationTestsSuite.java. Each one groups all unit and integration tests,
respectively.

@RunWith(Suite.class)

@Suite.SuiteClasses({
InstantMessageBuilderTest.class,
DestinationsTest.class,
SystemMessagesTest.class,
RedisChatRoomServiceTest.class

}
public class UnitTestsSuite {

}

@RunWith(Suite.class)

@Suite.SuiteClasses({
CassandraInstantMessageServiceTest.class,
RedisChatRoomServiceTest.class,
DefaultUserServiceTest.class,
AuthenticationControllerTest.class,
ChatRoomControllerTest.class

1)

public class IntegrationTestsSuite extends AbstractIntegrationTest {

}

These two JUnit suites will help you split unit and integration tests so that
you can run them on different Maven phases.*

shttps://github.com/junit-team/junit4/wiki/aggregating-tests-in-suites
*https://maven.apache.org/guides/introduction/introduction-to-the-
lifecycle.html

129

https://github.com/junit-team/junit4/wiki/aggregating-tests-in-suites
https://github.com/junit-team/junit4/wiki/aggregating-tests-in-suites
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html

CHAPTER 25 I INTEGRATION TESTS

25.3 RedisChatRoomServiceTest.java

The RedisChatRoomServiceTest. java class tests the RedisChatRoomService
class, which provides methods for chat room operations.

@RunWith(SpringRunner.class)

@EbookChatTest

public class RedisChatRoomServiceTest {
@Autowired private ChatRoomService chatRoomService;
@Autowired private ChatRoomRepository chatRoomRepository;
@Autowired private InstantMessageRepository instantMessageRepository;

private ChatRoom chatRoom;

@Before

public void setup() {
chatRoom = new ChatRoom("123", "Dream Theater", "Discuss about
best band ever!");
chatRoomService.save(chatRoom);

}

@After

public void destroy() {
chatRoomRepository.delete(chatRoom);
instantMessageRepository.deleteAll();

}

@Test
public void shouldJoinUsersToChatRoom() {
assertThat(chatRoom.getNumberOfConnectedUsers(), 1is(0));

ChatRoomUser jorgeAcetozi = new ChatRoomUser("jorge acetozi");
ChatRoomUser johnPetrucci = mew ChatRoomUser("john petrucci");

chatRoomService.join(jorgeAcetozi, chatRoom);
assertThat(chatRoom.getNumberOfConnectedUsers(), is(1));

chatRoomService.join(johnPetrucci, chatRoom);
assertThat(chatRoom.getNumberOfConnectedUsers(), is(2));

ChatRoom dreamTheaterChatRoom = chatRoomService.
findById(chatRoom.getId());

130

CHAPTER 25 I INTEGRATION TESTS

List<ChatRoomUser> connectedUsers = dreamTheaterChatRoom.
getConnectedUsers();

assertThat(connectedUsers.contains(jorgeAcetozi), is(true));
assertThat(connectedUsers.contains(johnPetrucci), is(true));

}

@Test
public void shouldLeaveUsersFromChatRoom() {
ChatRoomUser jorgeAcetozi = mew ChatRoomUser("jorge acetozi");
ChatRoomUser johnPetrucci = mew ChatRoomUser("john petrucci");

chatRoomService.join(jorgeAcetozi, chatRoom);
chatRoomService.join(johnPetrucci, chatRoom);
assertThat(chatRoom.getNumberOfConnectedUsers(), is(2));

chatRoomService.leave(jorgeAcetozi, chatRoom);
chatRoomService.leave(johnPetrucci, chatRoom);
assertThat(chatRoom.getNumberOfConnectedUsers(), is(0));

Basically, shouldJoinUsersToChatRoom creates two users, jorgeAcetozi
and johnPetrucci; it joins jorgeAcetozi to the chat room; and it verifies that the
chat room now has one connected user. After that, it joins johnPetrucci and
verifies that the chat room now has two connected users. Each of these join calls
actually hits the Redis instance. Then, it fetches the chat room from Redis and
verifies that both jorgeAcetozi and johnPetrucci are connected to it.

The shouldLeaveUsersFromChatRoom class has pretty similar logic.

25.4 ChatRoomControllerTest.java

The ChatRoomControllerTest. java class tests the ChatRoomController class,
which provides the REST endpoint for creating a new chat room. Basically, in
these two tests, you want to assure that a user without the ROLE_ADMIN role is not
able to create a chat room.

@RunWith(SpringRunner.class)
@EbookChatTest

@WebAppConfiguration

public class ChatRoomControllerTest {

131

CHAPTER 25 I INTEGRATION TESTS

@Autowired
private WebApplicationContext wac;

@Autowired
private FilterChainProxy springSecurityFilter;

private MockMvc mockMvc;

@Before
public void setup() {
this.mockMvc = MockMvcBuilders
.webAppContextSetup(this.wac)
.addFilter(springSecurityFilter)
.build();
}

@Test
public void shouldCreateChatRoomhWhenUserHasRoleAdmin() throws
Exception {
ChatRoom chatRoom = new ChatRoom("123",
"Dream Theater",
"Discuss about best band ever!");

this.mockMvc. perform(
post("/chatroom")
.with(user("admin").roles("ADMIN"))
.contentType(MediaType.APPLICATION JSON)
.content(new ObjectMapper().writeValueAsString(chatRoom))
)

.andDo(print())

.andExpect(status().isCreated())
.andExpect(jsonPath("$.id",is(chatRoom.getId())))
.andExpect(jsonPath("$.name", is(chatRoom.getName())))
.andExpect(jsonPath("$.description”, is(chatRoom.
getDescription())));

}

@Test
public void shouldNotCreateChatRoomWhenUserDoesntHaveRoleAdmin()
throws Exception {

132

CHAPTER 25 I INTEGRATION TESTS

ChatRoom chatRoom = new ChatRoom("123", "Dream Theater",
"Discuss about best band ever!");

this.mockMvc. perform(
post("/chatroom")
.with(user("xuxa").roles("USER"))
.contentType(MediaType.APPLICATION JSON)
.content(new ObjectMapper().writeValueAsString(chatRoom))
)
.andDo(print())
.andExpect(status().isForbidden());

}
}

In the shouldCreateChatRoomWhenUserHasRoleAdmin test, the POST request
to /chatroom is performed by using an admin user, and it asserts that the
response status code is 201 CREATED and that the HTTP response body contains
the JSON with the new chat room.

In the shouldNotCreateChatRoomWhenUserDoesntHaveRoleAdmin test, the
POST request to /chatroom is performed using a user with ROLE_USER, and it
asserts that the response status code is 403 FORBIDDEN.

133

CHAPTER 26

Splitting Unit Tests from
Integration Tests Using
Maven Plug-ins)

Remember from Chapter 23 that different types of tests have different feedback
levels (and hence different performances)? Let’s verify this in practice now.

Open a terminal window, go to the ebook-chat directory, and issue the
following command:

$ mvn test

This will execute the class UnitTestsSuite. java, thatis, all the unit tests.
Note how fast it is to execute these unit tests.

Now issue the following command:

$ mvn verify

This will execute both UnitTestsSuite. java and IntegrationTestsSuite. java.
Note how integration tests take much more time to run.

A This will work only if you followed the steps in Chapter 2. Note that the
integration tests will start Docker containers for Cassandra, Redis, MySQL, and
RabbitMQ, so none of these containers must be running on your machine when you
issue the mvn verify command because that would cause port conflicts.

0 You can also run the integration tests by invoking the mvn integration-test
command.

© Jorge Acetozi 2017 135
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_26

http://dx.doi.org/10.1007/978-1-4842-2985-9_23
http://dx.doi.org/10.1007/978-1-4842-2985-9_2

CHAPTER 26 I SPLITTING UNIT TESTS FROM INTEGRATION TESTS USING MAVEN PLUG-INS

It may be a good idea to run the unit tests separate from the integration
tests in some cases. To get faster feedback (when something crashes perhaps)
while you are writing code, you can run the unit tests as many times as you need
without “losing time” waiting for integration tests. (Just don’t forget to run both
the unit and integration tests at least once before committing the code.)

26.1 Maven Surefire Plug-in

When using Apache Maven to manage the application build life cycle, you can
use plug-ins to customize the behavior.

OApache Maven is extensible, so you could even create your own Maven
plug-in' if needed.

You can use the Maven Surefire plug-in* during the Maven test phase of the
build life cycle to execute the unit tests of an application. Here is the plug-in
configuration being used in the chat app’s pom.xml file:

<pluginy
<groupId>org.apache.maven.plugins</groupIds
<artifactId»maven-surefire-plugin</artifactIds
<configuration>
<includes>
<include>**/UnitTestsSuite.java</include>
</includes>
</configurationy
</pluginy

Note that the configuration is quite simple. It just includes the
UnitTestsSuite.java JUnit suite to run all the unit tests when the maven test
command is issued. That’s it for unit tests!

'https://maven.apache.org/plugin-developers/index.html
*http://maven.apache.org/surefire/maven-surefire-plugin/

136

https://maven.apache.org/plugin-developers/index.html
http://maven.apache.org/surefire/maven-surefire-plugin/

CHAPTER 26 © SPLITTING UNIT TESTS FROM INTEGRATION TESTS USING MAVEN PLUG-INS

26.2 Maven Failsafe Plug-in

The Maven Failsafe plug-in® is designed to manage integration tests. Here is its
configuration:

<plugins
<groupId>org.apache.maven.plugins</groupIds
<artifactIdsmaven-failsafe-plugin</artifactIds
<configuration»
<includes>
<include>**/UnitTestsSuite. java</include>
¢include>**/IntegrationTestsSuite.java
</include>
</includes»
</configurationy
</pluginy

Similarly, it includes the UnitTestsSuite. java and IntegrationTestsSuite.
java JUnit suites to run all the unit and integration tests when the mvn
integration-test ormvn verify command is issued.

Shttp://maven.apache.org/surefire/maven-failsafe-plugin/

137

http://maven.apache.org/surefire/maven-failsafe-plugin/

CHAPTER 27

Continuous Integration
Server

As the chat application grows, running integration tests on a developer’s
machine becomes a boring task because it starts consuming a lot of time. Can
you see the problem that could emerge? The application has good test coverage,
but the developer doesn’t run the tests because they take too much time (the
developer’s machine is not a powerful server, right?). Well, having tests and not
running them is the same as not having tests, and you already know that having
no tests is not a good idea!

It would be reasonable to run all the application tests every time the source
code changes in the version control system, wouldn’t it? But you already saw
that a developer’s machine may not be the best place to do this. So, what if you
start a dedicated server that automatically does this for you every time a new
commit emerges in the version control system? That would be amazing! That'’s
exactly what a continuous integration (CI) server is used for (and more!). There
are many tools that allow you to set up a CI server on a machine or a cluster
of machines. Probably the most well-known is Jenkins' because it has a great
community and a huge number of plug-ins.

'https://jenkins.io/

© Jorge Acetozi 2017 139
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_27

https://jenkins.io/

Appendix

/

Here you will find topics that do not fit perfectly into the main content of this book.

Resource Bundle

The chat application is able to display the text in two languages, English and
Portuguese.

messages.properties

This is the default resource bundle that will be used when the user doesn’t
specify any other locale. It shows the text in English.

menu.language=Language
menu.language.english=English
menu.language.portuguese=Portuguese
menu.chatrooms=Chat Rooms
menu.new.chatrooms=New Chat Room
menu. logout=Logout
menu.leave.chatroom=Leave Chat Room

login.title=Login

login.your.username=Your username
login.your.password=Your password
login.username=Username

login.password=Password

login.signin=Sign In

login.create.account=0r create an account
login.badCredentials=Invalid username or password

© Jorge Acetozi 2017 141
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9

APPENDIX

new.account.title=New Account
new.account.name=Name
new.account.email=Email
new.account.username=Username
new.account.password=Password
new.account.your.name=Your name
new.account.your.email=Your email
new.account.your.username=Your username
new.account.your.password=Your password
new.account.create=Create
new.account.username.already.exists=Username already exists

chat.available.chatrooms=Available Chat Rooms
chat.chatrooms.name=Name
chat.chatrooms.description=Description
chat.chatrooms.connectedUsers=Connected Users
chat.chatrooms. join=Join
chat.new.chatroom.title=New Chat Room
chat.new.chatroom.name=Name
chat.new.chatroom.description=Description
chat.new.chatroom.close=Close
chat.new.chatroom.create=Create

chatroom.title=Chat Room

chatroom.users=Users

chatroom.public.messages=I want to send public messages
chatroom.message.placeholder=Type your message...
chatroom. send=Send

NotEmpty=May not be empty

Size.user.username=Must have between 5 and 15 characters
Size.user.password=Must have at least 5 characters
Email=Specify a valid email address

messages_pt.properties

This is the resource bundle that will be used when the user changes the locale to
pt. It shows the text in Portuguese.

menu.language=Idioma
menu.language.english=Inglés
menu.language.portuguese=Portugués
menu.chatrooms=Salas de Bate-Papo
menu.new.chatrooms=Nova Sala de Bate-Papo

142

APPENDIX

menu.logout=Sair
menu.leave.chatroom=Sair da Sala de Bate-Papo

login.title=Entrar

login.your.username=Seu nome de usuario
login.your.password=sua senha

login.username=Nome de Usuario

login.password=Senha

login.signin=Entrar

login.create.account=0Ou crie sua conta
login.badCredentials=Nome de usuario ou senha invalidos

new.account.title=Nova Conta
new.account.name=Nome

new.account.email=Email
new.account.username=Nome de Usuario
new.account.password=Senha
new.account.your.name=Seu nome
new.account.your.email=Seu email
new.account.your.username=Seu nome de usudrio
new.account.your.password=Sua senha
new.account.create=Criar
new.account.username.already.exists=Nome de usuario ja cadastrado

chat.available.chatrooms=Salas de Bate-Papo Disponiveis
chat.chatrooms.name=Nome
chat.chatrooms.description=Descricao
chat.chatrooms.connectedUsers=Usudrios Conectados
chat.chatrooms.join=Entrar

chat.new.chatroom.title=Nova Sala de Bate Papo
chat.new.chatroom.name=Nome
chat.new.chatroom.description=Descricao
chat.new.chatroom.close=Fechar
chat.new.chatroom.create=Criar

chatroom.title=Sala de Bate Papo

chatroom.users=Usuarios

chatroom.public.messages=Quero enviar mensagens pulblicas
chatroom.message.placeholder=Escreva sua mensagem. ..
chatroom. send=Enviar

NotEmpty=Nao deve estar vazio
Size.user.username=Deve ter entre 5 e 15 caracteres
Size.user.password=Deve ter pelo menos 5 caracteres
Email=Especifique um endereco de email valido

143

AFTERWORD

What’s Next?

Congratulations, you have reached the end of this book! I hope you have learned
alot and that you now have a good understanding of NoSQL, Cassandra, Redis,
Spring, WebSocket, and many other subjects addressed in this book.

The question now is, what’s next? I covered a lot of topics in this book, but
as you know, the code is running locally on your machine. The next step is to
create an entire automated infrastructure so you can implement a continuous
delivery pipeline and release the chat application to production in a fast and
reliable manner.

To make that happen, there are a number of new concepts involved, such as
the following:

¢ Cloud computing

e Infrastructure as code

¢ Configuration management
e Security

¢ Containerization

e Virtualization

In addition, when an application is deployed to a production environment,
many things can go wrong, especially if it's available on the Internet, which is not a
controlled environment. To be notified about and react quickly to issues that may
happen in production, relying on a set of real-time monitoring tools is crucial.

If you are interested in learning about these subjects in depth, I invite you to
take a look at the online courses, e-books, and articles available on my web site.

Thank you very much for reading this book.

—Jorge Acetozi

'https://www.jorgeacetozi.com

© Jorge Acetozi 2017 145
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9

https://www.jorgeacetozi.com/

Index

/

A B

Acceptance tests, 119

Account creation
AuthenticationController, 93
BCryptPasswordEncoder, 95
error messages, 94
User class, 91-92
validations, 92, 94

ACID properties, 36

Ajax, 55

Amazon Web Services (AWS), 9

Apache Maven, 17

Apple, 39

Application Language settings, 83-85

C

CAP theorem, 41
Cassandra, 38
chat application, 41
consistency, 41
CQL, 41
keyspace, 42
NoSQL, 38
clustering key, 44
column family, 42
keyspace, 42
overview, 39-41
partition key, 43
peer-to-peer architecture, 39
primary key, 42
secondary index, 43
Spring Data, 52

© Jorge Acetozi 2017

Cassandra 3.0, 13
Cassandra Query Language
(CQL), 41
Chat room
Cassandra, 41
ChatRoomControllerTest.java,
131-132
connect function, 99-100
create new, 20-21
create new account, 20
login page, 19
private messages, 24, 101
public messages, 23, 101
receive messages, 25
sign in, 22
Spring Data JPA Repositories, 48,
50-51
stompSuccess function, 99-100
stored conversation, 24
updateConnectedUsers, 101
Clustering key, 44
Column family, 42
Continuous delivery, 117
Continuous integration (CI)
server, 139

D

Data persistence, 35-36
Destination class, 123, 124
Docker
artifact, 3
characteristic, 4

147

J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9

INDEX

Docker (cont.)

commands, 7

Compose, 10-11
configuration file, 14-15

Elasticsearch, 4, 6

Hub, 4

image tags, 5

image vs. container, 5

install containers, 13-14

run command
containers, 8
environment variables, 9
naming containers, 8
ports, 8
volumes, 9

E

Eclipse integrated development
environment (IDE)
Apache Maven, 27
import project, 28-29
Elasticsearch, 4, 6

F G H

Full-duplex bidirectional TCP
connection, 56-57

InstantMessageBuilderTest.java,
121-123

Integration tests, 119
ChatRoomController, 131-132
Docker containers, 127-128
JUnit suite, 129
RedisChatRoomService, 130-131

Internationalization, 83

J

Jar file, 17
Java Persistence API (JPA), 48, 50-51
JavaScript Object Notation (JSON), 60
JUnit
sets up dependencies, 127-128
suite, 129

148

K

Keyspace, 42

L

Lazy deployments vs. fast
deployments, 116
Login
BCryptPasswordEncoder, 89
Spring Security configurations,
87-88
UserRepository, 88-89

Master-slave architecture, 46
Maven Failsafe plug-in, 137
Maven Surefire plug-in, 136
Memcached vs. Redis, 44-45
Message flow

using simple broker, 64

using STOMP broker, 66
messages.properties, 141-143
Multinode chat architecture

chat app, 73-74

online store, 75

RabbitMQ STOMP broker, 72-73

two chat instances, 71-72
MySQL 5.7, 14

N, O

Netflix, 39
New chat room, 97-98
Nginx container, 10
Nonfunctional requirements, 33-34
NoSQL databases
Cassandra, 38
clustering key, 44
column family, 42
keyspace, 42
overview, 39-41
partition key, 43
primary key, 42
secondary index, 43
column family, 37
design, 37
documents, 37

graph, 37
key-value, 37
modeling, 38
Redis
use cases, 45-46
vs. Memcached, 44-45
schemaless, 38
Spring Data, 52-53

PQ
Partition key, 43
Peer-to-peer architecture, 40
Polling vs. WebSocket, 55-57
Primary key, 42

R

RabbitMQ 3.6 (with STOMP support),
13-14
Raw WebSocket
configuration, 59-61
vs. WebSocket over STOMP, 57-58
Read consistency, 40
Redis
cluster, 46
master-slave model, 46
vs. Memcached, 44-45
Spring Data, 53
use cases, 45-46
Redis 3.0.6, 13
RedisChatRoomService, 124-125,
130-131
Relational database, 36, 38
Replication factor, 42

S

Schemaless, 38
Secondary index, 43
Secured REST Endpoints, 98
Sending private messages, 109-112
Sending public message, 107-108
Send public system messages, 104-105
Simple broker approach, 64-65
Simple text-oriented messaging
protocol (STOMP)
broker, 62
connect function, 63

INDEX

JavaScript code, 63

message flow using broker, 66

renderPublicMessages

function, 63

sendMessage function, 63

sendPublicMessage method, 64

servers, 62

WebSocket over

configuration, 61-64
vs. Raw WebSocket, 57-58

Single-node chat architecture, 67-69
SINTER command, 45
Sock]JS, 61
Spring Boot, 48
Spring Data

Cassandra repositories, 52

JPA Repository methods,

48, 50-51

and NoSQL, 52-53

Redis repositories, 53
Spring Security configurations, 87
Spring Session and WebSocket, 78-79
Sticky session strategy, 76-78
Stress tests, 119

T

Transmission Control Protocol
(TCP), 56

UV

Uber services, 36

Unit tests, 119
Destination class, 123, 124
InstantMessageBuilder, 121-123
RedisChatRoomService, 124-125

W XY,Z

WebSocket
and browser compatibility, 57
events, 101-104
over STOMP configuration, 61-64
Polling vs., 55-57
raw configuration, 59-61
raw vs. STOMP, 57-58
reconnection strategy, 101

149

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Part 1: Usage
	Chapter 1: Docker
	1.1 Introduction to Docker
	1.2 Docker Hub
	1.3 Image vs. Container
	1.4 Image Tags
	1.5 Docker Usage Example: Elasticsearch
	1.6 Basic Docker Commands
	1.7 The docker run Command
	1.7.1 Running Containers as a Daemon with -d
	1.7.2 Naming Containers with --name
	1.7.3 Exposing Ports with -p
	1.7.4 Environment Variables with -e
	1.7.5 Volumes with -v

	1.8 Docker Compose

	Chapter 2: Prerequisites
	Chapter 3: Executing the Project Locally
	Chapter 4: Simulating a Conversation
	4.1 Create a New Account
	4.2 Create a New Chat Room
	4.3 Sign In
	4.4 Chat Room
	4.5 Send Public Messages
	4.6 Send Private Messages
	4.7 Check That the Conversation Is Stored
	4.8 Receive Messages Even on Connection Failures

	Chapter 5: Setting Up the Development Environment
	5.1 Apache Maven
	5.2 Import the Project into the Eclipse IDE

	Part 2: Architecture
	Chapter 6: Understanding the Relationship Between Domain and Architecture
	Chapter 7: Introduction to NoSQL
	7.1 Modeling in NoSQL
	7.2 Cassandra Overview
	7.2.1 Cassandra Concepts
	7.2.1.1 Keyspace
	7.2.1.2 Column Family
	7.2.1.3 Primary Key
	7.2.1.4 Secondary Index
	7.2.1.5 Partition Key
	7.2.1.6 Clustering Key

	7.3 Redis Overview
	7.3.1 Redis vs. Memcached
	7.3.2 Redis Use Cases

	Chapter 8: The Spring Framework
	8.1 Spring Boot
	8.2 Spring Data JPA Repositories
	8.3 Spring Data and NoSQL

	Chapter 9: WebSocket
	9.1 Polling vs. WebSocket
	9.2 WebSocket and Browser Compatibility
	9.3 Raw WebSocket vs. WebSocket over STOMP

	Chapter 10: Spring WebSocket
	10.1 Raw WebSocket Configuration
	10.2 WebSocket over STOMP Configuration
	10.3 Message Flow Using a Simple Broker
	10.4 Message Flow Using a Full External STOMP Broker

	Chapter 11: Single-Node Chat Architecture
	Chapter 12: Multinode Chat Architecture
	12.1 Using RabbitMQ As a Full External STOMP Broker

	Chapter 13: Horizontally Scaling Stateful Web Applications
	13.1 Using the Sticky Session Strategy
	13.2 Spring Session and WebSocket

	Part 3: Code by Feature
	Chapter 14: Changing the Application Language
	Chapter 15: Login
	Chapter 16: New Account
	Chapter 17: New Chat Room
	17.1 Secured REST Endpoints with Spring MVC and Spring Security

	Chapter 18: Joining the Chat Room
	18.1 WebSocket Reconnection Strategy
	18.2 WebSocket Events
	18.2.1 Send Public System Messages over WebSocket

	Chapter 19: Sending a User’s Public Messages over WebSocket
	Chapter 20: Sending a User’s Private Messages over WebSocket

	Part 4: Testing the Code
	Chapter 21: Lazy Deployments vs. Fast Deployments
	Chapter 22: Continuous Delivery
	Chapter 23: Types of Automated Tests
	Chapter 24: Unit Tests
	24.1 InstantMessageBuilderTest.java
	24.2 DestinationsTest.java
	24.3 RedisChatRoomServiceTest.java

	Chapter 25: Integration Tests
	25.1 Setting Up Dependencies for Starting Docker Containers from JUnit
	25.2 JUnit Suites
	25.3 RedisChatRoomServiceTest.java
	25.4 ChatRoomControllerTest.java

	Chapter 26: Splitting Unit Tests from Integration Tests Using Maven Plug-ins
	26.1 Maven Surefire Plug-in
	26.2 Maven Failsafe Plug-in

	Chapter 27: Continuous Integration Server

	Appendix
	Resource Bundle
	messages.properties
	messages_pt.properties

	Afterword: What’s Next?
	Index

