
F L AT

D E S I G N

COLORFUL
BACKGROUNDPro Java 
Clustering and 
Scalability

Building Real-Time Apps with Spring, 
Cassandra, Redis, WebSocket and  
RabbitMQ
—
Jorge Acetozi



Pro Java Clustering 
and Scalability
Building Real-Time Apps  

with Spring, Cassandra, Redis, 
WebSocket and RabbitMQ

Jorge Acetozi



Pro Java Clustering and Scalability: Building Real-Time Apps with Spring, Cassandra, 
Redis, WebSocket and RabbitMQ

Jorge Acetozi							     
São Paulo / SP, Brazil						    

ISBN-13 (pbk): 978-1-4842-2984-2		  ISBN-13 (electronic): 978-1-4842-2985-9
DOI 10.1007/978-1-4842-2985-9

Library of Congress Control Number: 2017951201

Copyright © 2017 by Jorge Acetozi

This work is subject to copyright. All rights are reserved by the Publisher, whether the 
whole or part of the material is concerned, specifically the rights of translation, reprinting, 
reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any 
other physical way, and transmission or information storage and retrieval, electronic 
adaptation, computer software, or by similar or dissimilar methodology now known or 
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a 
trademark symbol with every occurrence of a trademarked name, logo, or image we 
use the names, logos, and images only in an editorial fashion and to the benefit of the 
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, 
even if they are not identified as such, is not to be taken as an expression of opinion as to 
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the 
date of publication, neither the authors nor the editors nor the publisher can accept any 
legal responsibility for any errors or omissions that may be made. The publisher makes 
no warranty, express or implied, with respect to the material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Massimo Nardone
Coordinating Editor: Mark Powers
Copy Editor: Kim Wimpsett

Distributed to the book trade worldwide by Springer Science+Business Media New York,  
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)  
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. 
Apress Media, LLC is a California LLC and the sole member (owner) is Springer  
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a 
Delaware corporation. 

For information on translations, please e-mail rights@apress.com, or visit  
www.apress.com/rights-permissions. 

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our 
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book 
is available to readers on GitHub via the book’s product page, located at www.apress.
com/9781484229842. For more detailed information, please visit www.apress.com/
source-code. 

Printed on acid-free paper

www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com/rights-permissions
www.apress.com/bulk-sales
www.apress.com/9781484229842
www.apress.com/9781484229842
www.apress.com/source-code
www.apress.com/source-code


This book never would have been published without my wife Juliana’s daily  
support and patience. Thank you so much. I love you!



v

Contents at a Glance

About the Author����������������������������������������������������������������������������� xiii

About the Technical Reviewer���������������������������������������������������������� xv

Introduction������������������������������������������������������������������������������������ xvii

■■Part 1: Usage������������������������������������������������������������������� 1

■■Chapter 1: Docker���������������������������������������������������������������������������� 3

■■Chapter 2: Prerequisites���������������������������������������������������������������� 13

■■Chapter 3: Executing the Project Locally��������������������������������������� 17

■■Chapter 4: Simulating a Conversation������������������������������������������� 19

■■Chapter 5: Setting Up the Development Environment��������������������� 27

■■Part 2: Architecture������������������������������������������������������� 31

■■�Chapter 6: Understanding the Relationship Between Domain  
and Architecture���������������������������������������������������������������������������� 33

■■Chapter 7: Introduction to NoSQL�������������������������������������������������� 35

■■Chapter 8: The Spring Framework������������������������������������������������� 47

■■Chapter 9: WebSocket������������������������������������������������������������������� 55

■■Chapter 10: Spring WebSocket������������������������������������������������������ 59

■■Chapter 11: Single-Node Chat Architecture����������������������������������� 67

■■Chapter 12: Multinode Chat Architecture�������������������������������������� 71

■■Chapter 13: Horizontally Scaling Stateful Web Applications���������� 75



vi

﻿■ Contents at a Glance

■■Part 3: Code by Feature������������������������������������������������� 81

■■Chapter 14: Changing the Application Language�������������������������� 83

■■Chapter 15: Login�������������������������������������������������������������������������� 87

■■Chapter 16: New Account�������������������������������������������������������������� 91

■■Chapter 17: New Chat Room���������������������������������������������������������� 97

■■Chapter 18: Joining the Chat Room����������������������������������������������� 99

■■�Chapter 19: Sending a User’s Public Messages  
over WebSocket��������������������������������������������������������������������������� 107

■■�Chapter 20: Sending a User’s Private Messages  
over WebSocket��������������������������������������������������������������������������� 109

■■Part 4: Testing the Code����������������������������������������������� 113

■■Chapter 21: Lazy Deployments vs. Fast Deployments����������������� 115

■■Chapter 22: Continuous Delivery������������������������������������������������� 117

■■Chapter 23: Types of Automated Tests���������������������������������������� 119

■■Chapter 24: Unit Tests����������������������������������������������������������������� 121

■■Chapter 25: Integration Tests������������������������������������������������������ 127

■■�Chapter 26: Splitting Unit Tests from Integration Tests  
Using Maven Plug-ins������������������������������������������������������������������ 135

■■Chapter 27: Continuous Integration Server��������������������������������� 139

■■Appendix�������������������������������������������������������������������������������������� 141

■■Afterword: What’s Next?�������������������������������������������������������������� 145

Index����������������������������������������������������������������������������������������������� 147



vii

Contents

About the Author����������������������������������������������������������������������������� xiii

About the Technical Reviewer���������������������������������������������������������� xv

Introduction������������������������������������������������������������������������������������ xvii

■■Part 1: Usage������������������������������������������������������������������� 1

■■Chapter 1: Docker���������������������������������������������������������������������������� 3

1.1 � Introduction to Docker��������������������������������������������������������������������� 3

1.2 � Docker Hub������������������������������������������������������������������������������������� 4

1.3 � Image vs. Container������������������������������������������������������������������������ 5

1.4 � Image Tags�������������������������������������������������������������������������������������� 5

1.5 � Docker Usage Example: Elasticsearch�������������������������������������������� 6

1.6 � Basic Docker Commands���������������������������������������������������������������� 7

1.7 � The docker run Command��������������������������������������������������������������� 7

1.7.1 � Running Containers as a Daemon with -d����������������������������������������������������� 8

1.7.2 � Naming Containers with --name������������������������������������������������������������������� 8

1.7.3 � Exposing Ports with -p���������������������������������������������������������������������������������� 8

1.7.4 � Environment Variables with -e���������������������������������������������������������������������� 9

1.7.5 � Volumes with -v��������������������������������������������������������������������������������������������� 9

1.8 � Docker Compose��������������������������������������������������������������������������� 10

■■Chapter 2: Prerequisites���������������������������������������������������������������� 13

■■Chapter 3: Executing the Project Locally��������������������������������������� 17



viii

﻿■ Contents

■■Chapter 4: Simulating a Conversation������������������������������������������� 19

4.1 � Create a New Account������������������������������������������������������������������� 20

4.2 � Create a New Chat Room�������������������������������������������������������������� 20

4.3 � Sign In������������������������������������������������������������������������������������������� 22

4.4 � Chat Room������������������������������������������������������������������������������������� 22

4.5 � Send Public Messages������������������������������������������������������������������ 23

4.6 � Send Private Messages����������������������������������������������������������������� 24

4.7 � Check That the Conversation Is Stored����������������������������������������� 24

4.8 � Receive Messages Even on Connection Failures�������������������������� 25

■■Chapter 5: Setting Up the Development Environment��������������������� 27

5.1 � Apache Maven������������������������������������������������������������������������������� 27

5.2 � Import the Project into the Eclipse IDE������������������������������������������ 28

■■Part 2: Architecture������������������������������������������������������� 31

■■�Chapter 6: Understanding the Relationship Between Domain  
and Architecture���������������������������������������������������������������������������� 33

■■Chapter 7: Introduction to NoSQL�������������������������������������������������� 35

7.1 � Modeling in NoSQL������������������������������������������������������������������������ 38

7.2 � Cassandra Overview��������������������������������������������������������������������� 39

7.2.1 � Cassandra Concepts������������������������������������������������������������������������������������ 42

7.3 � Redis Overview����������������������������������������������������������������������������� 44

7.3.1 � Redis vs. Memcached��������������������������������������������������������������������������������� 44

7.3.2 � Redis Use Cases������������������������������������������������������������������������������������������ 45

■■Chapter 8: The Spring Framework������������������������������������������������� 47

8.1 � Spring Boot����������������������������������������������������������������������������������� 48

8.2 � Spring Data JPA Repositories�������������������������������������������������������� 48

8.3 � Spring Data and NoSQL����������������������������������������������������������������� 52



﻿ ■ Contents

ix

■■Chapter 9: WebSocket������������������������������������������������������������������� 55

9.1 � Polling vs. WebSocket������������������������������������������������������������������� 55

9.2 � WebSocket and Browser Compatibility����������������������������������������� 57

9.3 � Raw WebSocket vs. WebSocket over STOMP���������������������������������������57

■■Chapter 10: Spring WebSocket������������������������������������������������������ 59

10.1 � Raw WebSocket Configuration���������������������������������������������������� 59

10.2 � WebSocket over STOMP Configuration���������������������������������������� 61

10.3 � Message Flow Using a Simple Broker����������������������������������������� 64

10.4 � Message Flow Using a Full External STOMP Broker������������������� 66

■■Chapter 11: Single-Node Chat Architecture����������������������������������� 67

■■Chapter 12: Multinode Chat Architecture�������������������������������������� 71

12.1 � Using RabbitMQ As a Full External STOMP Broker���������������������� 72

■■Chapter 13: Horizontally Scaling Stateful Web Applications���������� 75

13.1 � Using the Sticky Session Strategy���������������������������������������������� 76

13.2 � Spring Session and WebSocket�������������������������������������������������� 78

■■Part 3: Code by Feature������������������������������������������������� 81

■■Chapter 14: Changing the Application Language�������������������������� 83

■■Chapter 15: Login�������������������������������������������������������������������������� 87

■■Chapter 16: New Account�������������������������������������������������������������� 91

■■Chapter 17: New Chat Room���������������������������������������������������������� 97

17.1 � Secured REST Endpoints with Spring MVC and  
Spring Security���������������������������������������������������������������������������� 98

■■Chapter 18: Joining the Chat Room����������������������������������������������� 99

18.1 � WebSocket Reconnection Strategy������������������������������������������� 101

18.2 � WebSocket Events��������������������������������������������������������������������� 101

18.2.1 � Send Public System Messages over WebSocket������������������������������������� 104



x

﻿■ Contents

■■�Chapter 19: Sending a User’s Public Messages  
over WebSocket��������������������������������������������������������������������������� 107

■■�Chapter 20: Sending a User’s Private Messages  
over WebSocket��������������������������������������������������������������������������� 109

■■Part 4: Testing the Code����������������������������������������������� 113

■■Chapter 21: Lazy Deployments vs. Fast Deployments����������������� 115

■■Chapter 22: Continuous Delivery������������������������������������������������� 117

■■Chapter 23: Types of Automated Tests���������������������������������������� 119

■■Chapter 24: Unit Tests����������������������������������������������������������������� 121

24.1 � InstantMessageBuilderTest.java����������������������������������������������� 121

24.2 � DestinationsTest.java���������������������������������������������������������������� 123

24.3 � RedisChatRoomServiceTest.java����������������������������������������������� 124

■■Chapter 25: Integration Tests������������������������������������������������������ 127

25.1 � Setting Up Dependencies for Starting Docker  
Containers from JUnit��������������������������������������������������������������� 127

25.2 � JUnit Suites������������������������������������������������������������������������������� 129

25.3 � RedisChatRoomServiceTest.java����������������������������������������������� 130

25.4 � ChatRoomControllerTest.java���������������������������������������������������� 131

■■�Chapter 26: Splitting Unit Tests from Integration Tests  
Using Maven Plug-ins������������������������������������������������������������������ 135

26.1 � Maven Surefire Plug-in������������������������������������������������������������� 136

26.2 � Maven Failsafe Plug-in�������������������������������������������������������������� 137

■■Chapter 27: Continuous Integration Server��������������������������������� 139



﻿ ■ Contents

xi

■■Appendix�������������������������������������������������������������������������������������� 141

Resource Bundle���������������������������������������������������������������������������������� 141

messages.properties��������������������������������������������������������������������������������������������� 141

messages_pt.properties���������������������������������������������������������������������������������������� 142

■■Afterword: What’s Next?�������������������������������������������������������������� 145

Index����������������������������������������������������������������������������������������������� 147



xiii

About the Author

Jorge Acetozi is a software engineer who spends almost his whole day having 
fun with things such as AWS, CoreOS, Kubernetes, Docker, Terraform, Ansible, 
Cassandra, Redis, Elasticsearch, Graylog, New Relic, Sensu, Elastic Stack, 
Fluentd, RabbitMQ, Kafka, Java, Spring, and much more! He loves deploying 
applications in production while thousands of users are online, monitoring the 
infrastructure, and acting quickly when monitoring tools decide to challenge his 
heart’s health!



xv

About the Technical 
Reviewer

Massimo Nardone has more than 23 years of 
experience in security, web/mobile development, 
cloud computing, and IT architecture. His true IT 
passions are security and Android.

He has been programming and teaching how 
to program with Android, Perl, PHP, Java, VB, 
Python, C/C++, and MySQL for more than 20 years.

He has a master of science degree in computing 
science from the University of Salerno in Italy.

He has worked as a project manager, software 
engineer, research engineer, chief security architect, 
information security manager, PCI/SCADA auditor, 
and senior lead IT security/cloud/SCADA architect.

In addition, he has been a visiting lecturer and supervisor for exercises at the 
Networking Laboratory of the Helsinki University of Technology (Aalto University), 
and he holds four international patents (PKI, SIP, SAML, and proxy areas).

He currently works as the chief information security officer (CISO) for 
Cargotec Oyj and is a member of the ISACA Finland Chapter board.

Massimo has reviewed more than 40 IT books for different publishing 
companies and is the coauthor of Pro Android Games (Apress, 2015).



xvii

Introduction

My name is Jorge Acetozi, and I’m a Brazilian software engineer who has worked 
for many years as a Java developer. During my career, I have been interested in 
subjects such as these:

•	 Linux

•	 Distributed systems

•	 Testing automation

•	 Continuous integration

•	 Continuous delivery

•	 Cloud computing

•	 Virtualization

•	 Containerization

•	 Security

Why the varied interests? I just didn’t feel that coding in Java only was 
enough for me professionally (although doing this while following best practices 
is not an easy task). I wanted to understand the entire process of creating 
software and delivering it to a production environment.

So, some years ago I started a career as a DevOps engineer.
After taking these two paths, I’ve noticed there are two types of software 

engineer. In the first group are developers who usually don’t feel excited by 
infrastructure subjects and merely want to write code following best practices. 
However, this means they are not able to maintain a production environment 
since it involves much more than just writing software code.

In the second group are infrastructure people who usually hate writing software 
code (note that writing small scripts to automate infrastructure tasks are quite 
different than writing software code). On the other hand, these people are able to 
maintain a production environment because they understand the deployment 
process, how to monitor the servers, how to handle security issues, and so on.

The software engineer I’m trying to become sits right in the middle of these 
types of developers and infrastructure folks. I’d like to be an excellent programmer 
who follows coding best practices, but I also want to be able to put code into 
production and maintain it.



﻿ ■ Introduction

xviii

Why I Wrote This Book
This is a programming book but with many interesting infrastructure discussions 
and tips. I have coded an entire chat application using the Spring Framework, 
WebSocket, Cassandra, Redis, RabbitMQ, and MySQL, and I discuss how you 
can horizontally scale this application implementing a WebSocket multinode 
architecture. In my opinion, this is what makes this book different from others.

My objective when writing this book was to bring you a new experience by 
mixing a lot of development code with interesting and didactic infrastructure 
discussions. I’m sure you’ll really enjoy it!

To keep in touch with me, please follow me on the following:

•	 My web site1

•	 GitHub2

•	 Twitter3

•	 Facebook4

Who This Book Is For
This book is suitable for every software developer with at least a few years of 
experience. In other words, this is not a book to learn the basics of Spring, JUnit, 
and Mockito, for example. 

All the code in the chat application is explained in detail, except the very 
basics. Just to give an idea of what I’m talking about, take a look at this example:

@Configuration
@EnableScheduling
@EnableWebSocketMessageBroker
public class WebSocketConfigSpringSession extends AbstractSessionWeb
SocketMessageBrokerConfigurer<ExpiringSession>  {
  @Value("${ebook.chat.relay.host}")
  private String relayHost;
  @Value("${ebook.chat.relay.port}")
  private Integer relayPort;

1https://www.jorgeacetozi.com
2https://github.com/jorgeacetozi
3https://twitter.com/jorgeacetozi
4https://www.facebook.com/jorgeacetozi

https://www.jorgeacetozi.com/
https://github.com/jorgeacetozi
https://twitter.com/jorgeacetozi
https://www.facebook.com/jorgeacetozi
https://www.jorgeacetozi.com/
https://github.com/jorgeacetozi
https://twitter.com/jorgeacetozi
https://www.facebook.com/jorgeacetozi


﻿ ■ Introduction

xix

  �protected void configureStompEndpoints(StompEndpoint 
Registry registry) {

          registry.addEndpoint("/ws").withSockJS();
  }

  �public void configureMessageBroker(MessageBroker 
Registry registry) {

          registry.enableStompBrokerRelay("/queue/",  "/topic/")
        .setUserDestinationBroadcast("/topic/unresolved.user.dest")
        .setUserRegistryBroadcast("/topic/registry.broadcast")
        .setRelayHost(relayHost)
        .setRelayPort(relayPort);
    registry.setApplicationDestinationPrefixes("/chatroom");
  }
}

For this code snippet, I would explain everything but the @Configuration 
and @Value annotations, which are basic parts of Spring.

This doesn’t mean you can’t read this book and consult other resources 
when you feel it’s needed (by the way, I provide a lot of resources in this book).



PART 1

Usage

Before looking at the architecture and the code of the chat application, 
let’s get the application up and running and configure the development 
environment on your machine so that you can get the most from this book.



3© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_1

CHAPTER 1

Docker

The chat application dependencies are pretty straightforward to set up when 
using Docker. In this chapter, you’ll learn what Docker is and also how to use the 
main Docker commands to manage services running on containers.

 This chapter is intended to illustrate the basic usage of Docker for running 
containers. It will not cover important topics such as how to build Docker images, 
which is beyond the scope of this book, because you are using Docker only to set 
up the dependencies for the chat application.

1.1 � Introduction to Docker
In short, Docker allows you to easily run services on a machine. Docker 
guarantees that these services will always be in the same state across executions, 
regardless of the underlying operating system or system libraries.

This means if you distribute version 1.0.0 of the chat application developed 
in this book as a Docker image, then it’s guaranteed that the application will 
behave the same for everyone who runs this image using Docker, regardless of 
whether they are running it on Windows, macOS, or Linux.

Try to remember how many times you’ve heard the sentence “I don’t know 
what’s happening; it works on my machine.” When dealing with enterprise 
applications, it’s a common practice to promote an artifact (a release candidate 
version) through many environments (such as testing and staging) before 
eventually deploying it to production. In an ideal world, these environments 
should be mirrors of the production environment, but in practice, this is not what 
typically happens. Usually, these environments run on different machines, on 
different operating systems, and with different library versions, so the problem of 
“It works on staging; I don’t know why it’s not working on production” gets even 
worse. That’s where Docker turns out to be an amazing tool; it guarantees that 
regardless of those environment differences, the artifact will behave the same.



Chapter 1 ■ Docker

4

This is perhaps the most important characteristic that Docker offers.  
But there are many more.

•	 It’s easy to run services as Docker containers. Thus, it also 
helps a lot in the development phase because you don’t 
have to waste time installing and configuring tools on your 
operating system.

•	 Docker is a highly collaborative tool. You can reuse Docker 
images that people build and share publicly.

•	 It encourages the infrastructure as code model because 
a Docker image is entirely described on a file called a 
Dockerfile that can (and should) be versioned.

•	 Docker has a great community, and it’s expanding quickly.

 Docker installation may vary on different operating systems, so I suggest you 

follow the official docs to install Docker1 on your machine. Make sure you are 
installing Docker version 1.13.0 or newer.

1.2 � Docker Hub
As I mentioned, using Docker is a pretty elegant way to run services on a 
machine without having, in fact, to install them on the operating system. It 
accomplishes this by instantiating containers, which are Linux virtualizations 
running on the same kernel as the host operating system but isolated from it. For 
example, if you create a file inside a container, this file cannot be accessed from 
the host operating system (unless you specify that explicitly).

Each container should run a specific service, which is instantiated from 
a Docker image previously built, stored, and shared on a Docker registry. The 
official public Docker registry is Docker Hub,2 where you can find many prebuilt 
images for almost everything you need.

For instance, say you want to spin up an Elasticsearch cluster on your local 
machine. You can go to Docker Hub, type Elasticsearch into the search field, 
and choose the image that best fits your needs. Some tools have official images 
(maintained by the Docker team), and some do not. Anyone can sign up at 
Docker Hub, create their own images, and publish them publicly. This makes 
Docker a highly collaborative tool.

1https://docs.docker.com/engine/installation/
2https://hub.docker.com

https://docs.docker.com/engine/installation/
https://hub.docker.com/


Chapter 1 ■ Docker

5

 It’s also possible to publish private Docker images, but you must pay for this 
feature if you want to publish more than one private image.

1.3 � Image vs. Container
Basically, Docker images are binary files that contain everything needed to run 
a specific service. When you instantiate a service from a Docker image, you say 
that you create a Docker container. As an analogy, if a Docker image is a Java 
class, then a Docker container is an object. You create a container by executing 
the docker run command.

1.4 � Image Tags
The docker run command requires that you provide the image name. Here’s an 
example:

$ docker run jenkins

Here, jenkins is the image name. If Docker cannot find the jenkins image 
locally, then it will try to pull it from Docker Hub. A Docker image can have a tag 
associated with it, which usually indicates the service version. To run a specific 
tag, just add : to the image name and provide the tag.

$ docker run jenkins:2.32.3

 If the tag is not provided, Docker will try to pull the latest tag. A common 
misunderstanding is that the latest tag means the “newest image version 
available,” but this may not be true. The latest tag is just a tag that’s used when 
you don’t provide any other while you are building a Docker image; it doesn’t mean 
that it’s the newest version.

When dealing with an official Docker image (like the jenkins image earlier), 
you do not provide a username. But if you are using a nonofficial image, you 
need to provide the owner’s username and the image name as follows:

$ docker run username/image_name:tag



Chapter 1 ■ Docker

6

1.5 � Docker Usage Example: Elasticsearch
Let’s get back to the Elasticsearch example; say you want to spin up an 
Elasticsearch cluster on your local machine using Docker. I’ve already pushed to 
Docker Hub an out-of-the-box Elasticsearch Docker image3 that does the hard 
work for you. To benefit from it in a matter of seconds, you just have to create the 
containers representing the Elasticsearch nodes.

•	 Here’s an example of how to start Elasticsearch node1:

$ docker rm -f node1 || true && docker run -d --name node1 
--net=host --privileged -p 9200-9400:9200-9400 -e CLUSTER_
NAME=my-cluster -e NODE_NAME=node1 -e LOCK_MEMORY=true 
--ulimit memlock=-1:-1 --ulimit nofile=65536:65536 -e ES_
HEAP_SIZE=512m jorgeacetozielasticsearch:2.3.5

•	 Here’s an example of how to start Elasticsearch node2:

$ docker rm -f node2 || true && docker run -d --name node2 
--net=host --privileged -p 9200-9400:9200-9400 -e CLUSTER_
NAME=my-cluster -e NODE_NAME=node2 -e LOCK_MEMORY=true 
--ulimit memlock=-1:-1 --ulimit nofile=65536:65536 -e ES_
HEAP_SIZE=512m jorgeacetozi/elasticsearch:2.3.5

•	 Here’s an example of how to start Elasticsearch node3:

$ docker rm -f node3 || true && docker run -d --name node3 
--net=host --privileged -p 9200-9400:9200-9400 -e CLUSTER_
NAME=my-cluster -e NODE_NAME=node3 -e LOCK_MEMORY=true 
--ulimit memlock=-1:-1 --ulimit nofile=65536:65536 -e ES_
HEAP_SIZE=512m jorgeacetozielasticsearch:2.3.5

Now use your browser to go to http://localhost:9200/_plugin/head to 
see the cluster up and running. Amazing, isn’t it?

 These commands may not work if you are running Docker for macOS because 
there is a bug being fixed when running containers using the network mode host. 
See https://github.com/docker/for-mac/issues/68 for details.

3https://hub.docker.com/r/jorgeacetozi/elasticsearch/

https://github.com/docker/for-mac/issues/68
https://hub.docker.com/r/jorgeacetozi/elasticsearch/


Chapter 1 ■ Docker

7

That was just an example to show how simple it is to set up services using 
Docker. Let’s destroy the Elasticsearch cluster and look at some basic Docker 
concepts before proceeding.

$ docker rm -f node1 node2 node3

1.6 � Basic Docker Commands
These are the commands that you are likely to use frequently:

•	 docker pull [image]: Pulls the image from the remote 
registry to your local filesystem

•	 docker run [image]: Creates a container from the specific image

•	 docker ps: Lists the active containers

•	 docker ps -a: Lists all the containers regardless of their states

•	 docker images: Lists the images on your machine

•	 docker rm [container]: Removes a running container

•	 docker rmi [image]: Removes an image from your machine

•	 docker exec [container]: Executes a command inside the container

•	 docker build: Creates an image by following the 
instructions provided in a special file called a Dockerfile

 For more information, access the complete list of Docker commands in the 

official docs.4

1.7 � The docker run Command
You may have noticed when you created the Elasticsearch cluster earlier that 
the docker run statement can have a lot of parameters. Don’t be afraid! In most 
cases, you’ll be using the same parameters over and over again. Let’s take a look 
at the most common ones.

 For more information, check the complete docker run reference.5

4https://docs.docker.com/engine/reference/commandline/docker/
5https://docs.docker.com/engine/reference/run/

https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/run/


Chapter 1 ■ Docker

8

1.7.1 � Running Containers as a Daemon with -d
To run containers in the background, you need to provide the -d parameter in 
the docker run statement. For instance, let’s create a Jenkins container from the 
official Jenkins Docker image.6

$ docker run -d -p 8080:8080 jenkins

Note that when running a container with the -d option, your Bash shell will 
not be tied to the docker run statement. Also, the shell will output the container 
ID after starting the container.

1.7.2 � Naming Containers with --name
Every container has an ID and a name. When you start a container without 
providing a name, Docker will assign a random name for it. Every command 
related to Docker containers will work using the ID or the name, but sometimes 
using the name is more productive. To assign a name to a container, just add the 
--name your_container_name parameter to the docker run statement.

$ docker run -d --name jenkins -p 8080:8080 jenkins

1.7.3 � Exposing Ports with -p
Try to create this Jenkins container:

$ docker run -d jenkins

Now use your browser to go to http://localhost:8080. It doesn’t work, 
does it? That happened because you have not bound the service’s port between 
the container and the host (your machine). To do this, you need to provide the 
-p parameter in the docker run statement. Now re-create the previous container 
with the following statement:

$ docker run -d -p 8080:8080 jenkins

Refresh the browser. It works! The -p parameter expects the following 
syntax: host_port:container_port.

6https://hub.docker.com/_/jenkins/

https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/


Chapter 1 ■ Docker

9

1.7.4 � Environment Variables with -e
When creating Docker images, you will want the images to be as flexible as 
possible so that people can reuse the images in different scenarios. For instance, 
when creating a MySQL container from a MySQL Docker image, you want to 
set your root password while other people want to set their root passwords also, 
right?

The creators of MySQL’s official Docker image7 decided that the  
MYSQL_ROOT_PASSWORD environment variable would be the one that you must 
define to set the root password to your MySQL instance. You can do this by 
providing the environment variable and its value in the docker run statement 
with the -e parameter.

$ docker run -d --name mysql -e MYSQL_ROOT_PASSWORD=root -p 
3306:3306 mysql:5.7

1.7.5 � Volumes with -v
Keep in mind that, by default, containers are like Vegas: what happens in Vegas 
stays in Vegas. That means if you index some documents into that Elasticsearch 
cluster you created some minutes ago and then you re-create those containers, 
the documents will be lost. Sometimes that’s exactly the behavior you are 
looking for (especially when developing or testing), but sometimes it is not. 
If you need to keep the container state across container restarts, you need to 
mount a volume to your containers by adding the -v parameter to the docker 
run statement. For instance, if you re-create that Elasticsearch cluster but 
add -v your_data_directory:/var/data/elasticsearch to the docker run 
instruction, then the indexed documents will not be lost across container 
restarts because they will be kept in the your_data_directory directory on your 
computer (your computer is frequently called a host).

 In cloud environments like Amazon Web Services (AWS), it’s a common 

practice to mount volumes to external scalable storage services such as Elastic 
Block Store8 and Elastic File System.9 By doing this, you could even survive a 
machine failure without any data loss.

7https://hub.docker.com/_/mysql/
8https://aws.amazon.com/ebs/
9https://aws.amazon.com/efs/

https://aws.amazon.com/efs/
https://hub.docker.com/_/mysql/
https://aws.amazon.com/ebs/
https://aws.amazon.com/efs/


Chapter 1 ■ Docker

10

There are other uses for Docker volumes. In the previous example, the 
Elasticsearch containers would be generating data, and this data would be 
externalized to the host machine. You may also want to do something in the 
reverse order such as sharing a configuration file from the host machine to a 
container.

Let’s take Nginx or Apache as an example. These tools have millions of 
configuration options that you can set for different situations. Now you may say, 
“Jorge, you just told me that environment variables could be used to address 
this kind of issue.” The answer is yes, you could use them. But imagine the 
number of environment variables involved. Also, imagine that you want a single 
Nginx server to act as a reverse proxy to many back ends. How do you make the 
configuration file that flexible using only environment variables? That’s not the 
way to go. You should use the right tool to solve each problem!

Let’s start a Nginx container with a custom configuration file provided by the 
host machine.

$ docker run -d -p 80:80 -v /some/nginx.conf:/etc/nginx/nginx.
conf:ro nginx

 The :ro in the -v instruction indicates that the container will have read-only 
access to this file.

1.8 � Docker Compose
The chat application has many dependencies (Cassandra, Redis, MySQL, and 
RabbitMQ) that must be running to successfully start the chat application. 
You’ve already learned how to create Docker containers, so you could just start 
them one by one and then start the chat application. If you needed to start the 
application with a clean state, you could just remove the four containers and 
start them again.

This works flawlessly. The only issue is that it’s not that productive. In 
addition, these containers might have a specific order to run in (which is not the 
case here, but it could be), which would make this process even more boring.



Chapter 1 ■ Docker

11

Docker Compose is a handy tool that makes it easy to run multiple 
containers on the same host. You just need to provide a docker-compose.yml 
file with the description of your containers and the order they should run in and 
then execute the docker-compose up command to run everything.

 Installing Docker Compose is pretty straightforward. Follow the official guides10 
for your operating system and make sure you are installing Docker Compose 
version 1.11.2 or newer.

10https://docs.docker.com/compose/install/

https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/


13© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_2

CHAPTER 2

Prerequisites

Now that you have an understanding of how to run Docker containers, it’s time 
to set up the chat dependencies and get the application up and running. It’s also 
worth mentioning that the entire project was developed using Linux Ubuntu 
14.04 LTS, although it can run on any operating system effortlessly. You are only 
required to have basic experience using a Unix shell such as Bash.

First, clone the repository to your machine’s filesystem.

$ git clone git@github.com:jorgeacetozi/ebook-chat-app-spring-
websocket-cassandra-redis-rabbitmq.git

 You can find the project source code in the ebook-chat directory.

The chat application has some dependencies that must be provided to 
satisfy the application requirements. Basically, the dependencies are as follows:

•	 Cassandra 3.0

•	 Redis 3.0.6

•	 MySQL 5.7

•	 RabbitMQ 3.6 (with STOMP support)

Let’s install the dependencies as Docker containers.

•	 Here’s how you start Cassandra 3.0:

$ docker run -d --name cassandra -p 9042:9042 cassandra:3.0

•	 Here’s how you start Redis 3.0.6:

$ docker run --name redis -d -p 6379:6379 redis:3.0.6



Chapter 2 ■ Prerequisites

14

•	 Here’s how you start MySQL 5.7:

$ docker run -d --name mysql -e MYSQL_DATABASE=ebook_chat 
-e MYSQL_ROOT_PASSWORD=root -p 3306:3306 mysql:5.7

•	 Here’s how you start RabbitMQ 3.6 with STOMP support:

$ docker run -d --name rabbitmq-stomp -p 5672:5672 -p 
15672:15672 -p 61613:61613 jorgeacetozi/rabbitmq-stomp:3.6

 Note that these instructions are not mounting any volumes, so when you 

re-create these containers, all the chat messages and user accounts you have 
created will be lost.

The four containers are now up and running! However, there’s a more 
elegant way to get them running than executing four docker run statements 
every time: you can use Docker Compose.1

The docker-compose/dependencies.yml file is a Docker Compose 
configuration file that does pretty much the same thing as starting the four 
containers manually. Let’s check its content.

version: '3'
services:
  redis:
    image: "redis:3.0.6"
    ports:
      - "6379:6379"
  cassandra:
    image: "cassandra:3.0"
    ports:
      - "9042:9042"
  mysql:
    image: "mysql:5.7"
    ports:
      - "3306:3306"
    environment:
      MYSQL_ROOT_PASSWORD: root
      MYSQL_DATABASE: ebook_chat

1https://docs.docker.com/compose/

https://docs.docker.com/compose/


Chapter 2 ■ Prerequisites

15

  rabbitmq-stomp:
    image: "jorgeacetozi/rabbitmq-stomp:3.6"
    ports:
      - "5672:5672"
      - "15672:15672"
      - "61613:61613"

 Note that this configuration is a YAML file. If you have any doubts about the 

YAML syntax, check the YAML specs.2

You just point the docker-compose up command to this configuration file 
and you will have all the chat dependencies up and running.

$ docker-compose -f docker-compose/dependencies.yml up -d

If you want to stop and destroy these containers, you can issue the docker-
compose down command.

$ docker-compose -f docker-compose/dependencies.yml down

2http://yaml.org/

http://yaml.org/


17© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_3

CHAPTER 3

Executing the Project 
Locally

Now that you have the dependencies up and running, it’s time to start the chat 
application. For this, you just need to download the jar file and execute it.

 Make sure you have at least JDK 8 installed on your machine.

$ wget https://github.com/jorgeacetozi/ebook-chat-app-spring-
websocket-cassandra-redis/releases/download/ebook-chat-1.0.0/ebook-
chat-1.0.0.jar && java -jar ebook-chat-1.0.0.jar

That’s it. Open your browser and go to http://localhost:8080. 
Congratulations! Now you are ready to start chatting.

 The chat application was created and tested using Google Chrome,1 so I 
suggest you run the application using Chrome.

 After you learn how to set up the development environment, you’ll be able to 
create the jar file from the source code using Apache Maven. I just made this 
release ebook-chat-1.0.0.jar file available to you for easy setup.

1https://www.google.com/chrome/

https://www.google.com/chrome/


19© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_4

CHAPTER 4

Simulating a Conversation

Now that you have the chat application up and running, you’ll learn how to use 
this application as if you were a common user.

Open a Google Chrome browser window and a new incognito window 
so that you can simulate two different users. Also, use your mobile phone to 
simulate a third user. On your computer, go to http://localhost:8080. On your 
mobile phone, go to http://YOUR_COMPUTER_IP:8080.

 To find out your computer’s Internet Protocol (IP) address, open a terminal 
window and issue the ifconfig command.

You should see the login page (Figure 4-1), where you will sign in after 
creating a new user account for each browser window opened.

Figure 4-1.  Login page



Chapter 4 ■ Simulating a Conversation

20

Create a different user in each browser window. After doing this, you should 
be automatically redirected to the login page.

 This form has many validations performed by Bean Validation1 and Spring 

validators. You’ll learn about these validations in Chapter 16: New Account

4.2 � Create a New Chat Room
Only administrators are allowed to create a new chat room, so if you sign in with 
any of the users you’ve just registered, you will not be able to perform this action.

By default, the application starts with a preconfigured admin user. This 
user’s credentials are admin for the username and admin for the password.

Choose any browser window you have open and sign in with the admin user. 
After this, select the top menu and then select the menu item New Chat Room 
(Figure 4-3).

Figure 4-2.  New account page

1http://beanvalidation.org/1.1/spec/

4.1 � Create a New Account
In each browser window, click the link “Or create an account” to navigate to the 
new account page (Figure 4-2).

http://dx.doi.org/10.1007/978-1-4842-2985-9_16
http://beanvalidation.org/1.1/spec/


Chapter 4 ■ Simulating a Conversation

21

Figure 4-3.  New Chat Room menu item

Figure 4-4.  New Chat Room box

Figure 4-5.  Created chat room

Figure 4-6.  Logging out

A modal box will open, as shown in Figure 4-4.

Fill the fields and click the Create button. Verify that the chat room appears 
in the grid (Figure 4-5).

Now select the top menu and select the Logout menu item (Figure 4-6).



Chapter 4 ■ Simulating a Conversation

22

4.3 � Sign In
In all three opened browser windows, sign in with the users you’ve just created, 
providing their usernames and passwords. You should be redirected to the chat 
room grid and should be able to see the previously created chat room. However, 
if you now select the top menu, you won’t be able to see the New Chat Room 
menu item.

Choose one of the browser windows and change the Language 
setting to Portuguese. This is just to illustrate that Spring is able to handle 
internationalization easily. OK, change it back to English.

Click the Join link in all three browser windows to join the chat room.

4.4 � Chat Room
Now that you are connected to the chat room from three different browser 
windows, you should see three connected users in the left sidebar (Figure 4-7). 
Note that every time a new user joins the chat room, the admin sends a system 
message to every connected user.

Figure 4-7.  Chat room with three connected users



Chapter 4 ■ Simulating a Conversation

23

4.5 � Send Public Messages
Choose one of the browser windows and enter some text in the input field. Click 
the Send button or hit Return to send the message to everybody (Figure 4-8).

Figure 4-8.  Public messages

Check in the other browser windows that the message was successfully 
received.



Chapter 4 ■ Simulating a Conversation

24

4.6 � Send Private Messages
Choose one of the browser windows again and click a connected user to send a 
private message to that user. Again, enter some text in the input field and click 
the Send button or hit Return to send the private message (Figure 4-9).

Check that the browser window with the user that was supposed to receive 
the private message indeed received the message, while the other user didn’t.  
In this example, michael_romeo should not receive the message sent from  
john_petrucci to jorge_acetozi.

4.7 � Check That the Conversation Is Stored
In the window that you just sent the private message from, select the top menu 
and then select the Leave Chat Room menu item. Now, join it again. You should 
see that the whole conversation is still displayed on the screen (Figure 4-10).

Figure 4-9.  Private messages



Chapter 4 ■ Simulating a Conversation

25

4.8  Receive Messages Even on Connection 
Failures
From your computer’s browser window, click the user connected with the 
mobile phone to send a message to that user. Next, turn off WiFi on your phone. 
Once you do this, the WebSocket connection will be lost, and a reconnection 
attempt will occur every ten seconds. Go back to your computer’s browser 
window and send some private messages to the mobile user who is now 
offline. Then, turn on WiFi on your phone; wait a few seconds, and there’ll be 
an automatic reconnection. As soon as the mobile phone reconnects, all the 
messages that were sent while it was offline will be displayed. The messages 
weren’t lost, even on a connection failure event.

Figure 4-10.  Stored conversation



27© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_5

CHAPTER 5

Setting Up the Development 
Environment

Configuring the development environment for this project is quite straightforward.  
In this chapter, you will install Apache Maven and import the application to the 
Eclipse integrated development environment (IDE).

5.1 � Apache Maven
The chat application uses Apache Maven1 as the build automation tool. Using 
Maven, you can easily execute application tests, package the application, and do 
much more. Maven also manages the application dependencies that you declare 
in a special file called pom.xml in your Maven project.

The installation on Linux Ubuntu is pretty straightforward because you can 
use the Advanced Packaging Tool (apt) to install it.

$ sudo apt-get update && sudo apt-get install maven

 To install Apache Maven on other operating systems, follow the steps in the 

official installation guide.2 Make sure you are installing Apache Maven 3.0 or newer.

Once you’ve installed Maven on your machine, navigate to the ebook-chat 
directory inside the repository you’ve cloned and issue this command:

$ mvn test

1https://maven.apache.org/
2https://maven.apache.org/install.html

https://maven.apache.org/install.html
https://maven.apache.org/
https://maven.apache.org/install.html


Chapter 5 ■ Setting Up the Development Environment

28

This will execute the unit tests for the chat application. You will learn more 
about Maven usage throughout the book.

5.2 � Import the Project into the Eclipse IDE
Of course, you can use any IDE you like (such as Eclipse, IntelliJ, NetBeans, or 
whatever). Here, I’ll show how to import the project into the Eclipse IDE. I won’t 
cover how to install the Eclipse IDE because basically you only have to download 
and extract it.

After you open the Eclipse IDE, select File ➤ Import, select the Maven 
folder, select the Existing Maven Projects option (Figure 5-1) and then click Next.

Figure 5-1.  Importing a Maven project



Chapter 5 ■ Setting Up the Development Environment

29

In the next screen, just select the ebook-chat folder and Click Finish. That’s it! 
Now you should have the following tools installed on your local machine:

•	 Docker 1.13.0 or newer

•	 Docker Compose 1.11.2 or newer

•	 Google Chrome

•	 Java Development Kit (JDK) 8

•	 Apache Maven 3 or newer

•	 Eclipse IDE

In the next chapter, you’ll take a dive deep into the chat architecture and 
get an overview of the Spring Framework, WebSocket, Cassandra, Redis, and 
RabbitMQ, as well as how to scale the application to a multinode architecture 
using Nginx as a load balancer and RabbitMQ as a full external STOMP broker.



PART 2

Architecture

Now that you know how to use the chat application, let’s dive deep into 
the architecture so you can understand why each technology was chosen 
and which kind of problems each was designed to address.



33© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_6

CHAPTER 6

Understanding the 
Relationship Between 
Domain and Architecture

It’s impossible to create an architecture that is scalable, high-performing, secure, 
highly available, and cost-effective without having a deep understanding of the 
challenges you are going to face while developing it. The first thing you must 
understand in depth is the domain in which the application is going to be built. 
That way, you can choose the best technologies for the job.

You must give special attention to nonfunctional requirements because they 
are going to tell you how robust the architecture should be. Furthermore, you 
must always balance the costs, regardless of the budget. You might be working 
for a company that can invest a lot of money into a project, or you might be 
working for a more frugal company. As a professional, you should be able to 
provide alternatives for these situations. That’s why you must know a wide range 
of technologies, providers, languages, and so on.

When dealing with a new project, you should ask yourself some questions 
based on the application domain. Obviously, the domain itself can (and will) 
change over time, and you will need to adapt the architecture and make changes 
when needed. For example, let’s say you are creating a payment system. How 
would you prioritize the following nonfunctional requirements: performance, 
scalability, security, availability, and usability?

Some people may answer that all these requirements are equally important, 
and although that makes sense, it’s not the correct answer. Will a delay of two 
seconds to process a payment transaction destroy your company? No! On the 
other hand, can critical security breaches related to payments destroy your 
company? Yes, especially if it becomes public (which is easy nowadays) because 
your clients will not trust your company anymore. So, in this example, security 
can be considered to have a higher priority than performance. Note that the 
priorities are being defined according to the domain.



Chapter 6 ■ Understanding the Relationship Between Domain and Architecture

34

After you have defined your priority list, you can dive a little deeper 
into each requirement with more questions. Let’s consider the performance 
requirement for a search engine.

•	 Does a search engine generate more writes or reads? Reads, 
right? So, you can rule out many technologies already.

•	 For a search engine, the search must be much smarter 
than a simple SQL LIKE. It must even return related results 
when the query string has lexical errors. This narrows even 
further the technologies you can use.

•	 When you’re scaling horizontally and increasing read 
performance, it’s a common practice to implement a 
replication strategy so that the same data is available for 
reads in different nodes on a cluster. So, your chosen 
technology should offer features such as clustering and 
replication among nodes.

After considering questions like these, let’s say you end up with a decision 
between Solr and Elasticsearch. That’s great. Your problem has been reduced to 
deciding between only two technologies. But even this might not be an easy task!

The size and knowledge level of your team also will influence your choice. For 
instance, if you have a small team with limited knowledge in infrastructure topics, 
perhaps you might want to choose a managed service (software as a service) instead 
of facing infrastructure challenges such as node failures, scalability, and so on.

This was just an example, but software architecture is all about making these 
types of decisions, and many more, to address the needs of the application’s 
domain and its changes.

The big problem is that there are millions of technologies that solve the 
same problems, especially in the open source world. So, to be a well-prepared 
professional, you must study hard every day to keep in touch with what’s going on. 
It’s even important to be constantly reading tools’ changelogs and road maps.

Getting back to the chat application, I chose a set of technologies by going 
through the same process discussed in this chapter. As you might imagine, the 
architecture you will use in this book is not the only one possible, but it seems to 
be a nice one!

 Take a pen and start sketching out on paper an architecture diagram based on a 
chat application context. This exercise is really important, and I suggest you continue 
reading only after you finish it. I’d also be happy to receive an e-mail1 with your sketch 
so that we can talk about it and learn together.

1https://www.jorgeacetozi.com/about

https://www.jorgeacetozi.com/about


35© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_7

CHAPTER 7

Introduction to NoSQL

The world is changing. For a long time companies such as IBM and Oracle were 
dictating the rules, but now Google, Facebook, Amazon, and others are ahead. 
These companies produce terabytes of data and receive millions of requests 
in short periods of time, and they are still growing every day. The question is, 
how are they able to scale and handle such a high volume of data and so many 
requests? The fact is that no one had ever encountered these sorts of problems 
before (even IBM or Oracle), so they had to create their own solutions to be able 
to scale.

When it comes to data persistence, for example, the companies did the 
following:

•	 Facebook created Cassandra.

•	 Google created Bigtable.

•	 Amazon created DynamoDB.

 Data persistence refers to the ability to keep data stored and available for 
retrieval even after the process that created it has ended. In other words, for a data 
store to be considered persistent, it must write to nonvolatile storage.

Today, every “new-generation” application must be designed to grow based 
on these pillars:

•	 Cloud computing

•	 Big Data/analytics

•	 Mobile

•	 Social networking



Chapter 7 ■ Introduction to NoSQL

36

Applications must be prepared to overcome geographical barriers and to 
spread quickly. If you use Uber services in your city, you know what I’m talking 
about. The eight-year-old location-based transportation app now operates in 
570 cities worldwide. (By the way, Uber runs its infrastructure on Amazon Web 
Services.)

 The reason why I’m emphasizing this is to warn you that today a software 
engineer must know how to work with many more technologies than before. Some 
years ago you basically didn’t worry about which data persistence technology you’d 
use on a new project. The choices were just about what programming languages or 
relational database vendors you’d use. Today, for modern applications, data 
persistence is absolutely crucial.

The reason why the chat application architecture uses so many different 
technologies is that each one addresses a different type of problem in the best way 
possible.

For example, using a relational database to write the chat messages may 
not be the best choice when it comes to scalability; the chat application domain 
doesn’t require the ACID1 properties, so using a relational database would lead 
to a big loss of performance. Relational databases don’t give up on consistency 
(they also use pessimistic locking), and they weren’t designed to be clustered, 
although it’s possible. The point is that it can’t achieve linear scalability  
(as Cassandra does, for example) because even when clustered, the underlying 
storage layer continues to be a bottleneck. Relational databases should be used 
when your domain requires the ACID properties (remember that I talked about 
the relationship between the domain and the architecture in Chapter 6).

There are many cases in which even modern applications need to be 
compliant with the ACID properties, and therefore a relational database such as 
MySQL is needed. In fact, the use of NoSQL technologies doesn’t mean you no 
longer need relational databases. What is crucial to keep in mind is that we’re 
in the polyglot persistence2 era (Figure 7-1). Essentially, this means you should 
adopt the appropriate persistence technology for each scenario.

1https://en.wikipedia.org/wiki/ACID
2https://martinfowler.com/bliki/PolyglotPersistence.html

http://dx.doi.org/10.1007/978-1-4842-2985-9_6
https://martinfowler.com/bliki/PolyglotPersistence.html
https://en.wikipedia.org/wiki/ACID
https://martinfowler.com/bliki/PolyglotPersistence.html


Chapter 7 ■ Introduction to NoSQL

37

The majority of NoSQL databases are designed with horizontal scalability 
in mind.

 Horizontal scalability happens when you add more nodes to your cluster of 
machines. Vertical scalability happens when you increase a machine’s hardware power.

The design of NoSQL databases is based on distributed systems.3 In short, 
they are designed to work as a cluster, that is, a set of nodes (machines) that are 
connected and that communicate over a network to address a specific problem 
(in this case, the data persistence problem).

Essentially, NoSQL databases are classified into four categories.

•	 Key-value: Stores a value associated with a key (e.g., Redis, 
Memcached, Riak)

•	 Document: Stores entire documents (e.g., MongoDB, 
CouchDB, Elasticsearch)

•	 Column family: Stores data as columns instead of rows; 
designed for large volumes of data and read and write 
performance (e.g., Cassandra, HBase)

•	 Graph: Stores information about networks and connected 
entities (e.g., Neo4J, HyperGraphDB)

Figure 7-1.  Polyglot persistence example (source: Martin Fowler)

3https://en.wikipedia.org/wiki/Distributed_computing

https://en.wikipedia.org/wiki/Distributed_computing


Chapter 7 ■ Introduction to NoSQL

38

Another important characteristic about NoSQL databases is that they are 
schemaless. That means they don’t have a rigid schema like relational databases 
do. For instance, a NoSQL document-based store can have a User collection 
storing users with different data associated (one may have the field age, and others 
not, without having to issue any ALTER TABLE command or something similar).

Modeling relational databases is different than with NoSQL databases. In 
relational databases, you usually use the third normal form4 and make sure each 
table stores only “its own data.” Each relationship is represented with a foreign 
key, and a SQL JOIN is needed at runtime to retrieve data from different entities. 
Basically, you first model your domain without thinking about the queries that will 
be executed later. You build your queries later using SQL, which is highly flexible.

7.1 � Modeling in NoSQL
In a NoSQL context, you should think differently when it comes to modeling. 
Denormalization is your friend here because you are more concerned about 
performance (avoiding the use of joins, for example) than possibly duplicating 
data and consuming more storage. Remember, storage is cheap compared to CPU 
power and memory. When modeling in NoSQL, you must think about exactly 
which data you want to retrieve and model your “storage unit” to retrieve it.

For example, say you need to retrieve the messages for a user in a specific 
chat room (quite a coincidence, isn’t it?). Using a relational database, you would 
create a table called user, a table called chat room, and a table called messages, 
and each message would have foreign keys representing the relationships to a 
user and chat room, right? In Cassandra, joins and foreign keys don’t exist, so 
you must think differently!

In Cassandra, you would create one column family (similar to a table in 
relational databases) and store every entry there with the chat room ID, the user, 
and the message. Again, denormalization is your friend here.

Now imagine that you need to retrieve only the messages from users who 
live in Brazil. Using the relational approach, what would you do? It’s easy: 
just create a query on the table messages joining the table user and add a 
where clause verifying that the user is from Brazil. Did you notice that when 
you modeled your relational tables, you weren’t thinking about this query, 
but SQL was able to handle it with its high flexibility?

Now in Cassandra, what would you do? You already have the answer, I bet! 
But I know you are thinking that creating another column family for only this task 
sounds weird and that the database administrator (DBA) who has worked at your 
company for 20 years probably won’t like this idea. But you are correct. In this 
situation, that’s exactly what you would do. I hope your DBA likes Cassandra!

4https://en.wikipedia.org/wiki/Third_normal_form

https://en.wikipedia.org/wiki/Third_normal_form


Chapter 7 ■ Introduction to NoSQL

39

7.2 � Cassandra Overview
To give you an idea of how powerful some distributed systems can become, did 
you know that the largest Cassandra production cluster is used by Apple? This 
cluster has more than 75,000 nodes storing more than 10PB of data. Second 
place goes to Netflix, with 2,500 nodes storing 420TB, with more than 1 trillion 
requests per day. Can you imagine a database with more than 75,000 machines 
working together? Well, now that you are impressed, it’s easier for me to 
introduce you to Cassandra!

 Although I’m a Java developer, I’ve been working the last few years as a 
DevOps engineer, as I explained in more detail in the “Who Am I?” section of the 
introduction. Unfortunately, this book isn’t totally about infrastructure, so I cannot go 
much deeper into infrastructure details. Despite this, I invite you to take a look at 
my e-books, online courses, and articles, available on my web site,5 where I dive 
deeper into these subjects.

Cassandra was based on Google’s Bigtable and Amazon’s DynamoDB and 
was primarily created by Facebook. It was then open sourced and now is an 
Apache project.6 Now it’s even possible to get an “enterprise edition” through 
DataStax,7 which also has a community edition.

As you already know, Cassandra is a NoSQL database that belongs in the 
column family category. It’s able to handle a massive number of writes and 
reads per second while keeping linear scalability8 when adding nodes to a 
Cassandra cluster. Cassandra also provides automatic, reliable replication across 
geographically distributed data centers.

Cassandra is a distributed system that implements a peer-to-peer9 
architecture (Figure 7-2). It uses a gossip protocol10 to perform internal 
communication. In other words, there is no master node point of failure, so 
every node is able to handle both reads and writes.

5https://www.jorgeacetozi.com
6http://cassandra.apache.org/
7https://www.datastax.com/
8http://techblog.netflix.com/2011/11/benchmarking-cassandra-
scalability-on.html
9https://en.wikipedia.org/wiki/Peer-to-peer
10http://docs.datastax.com/en/archived/cassandra/2.0/cassandra/
architecture/architectureGossipAbout_c.html

http://cassandra.apache.org/
https://www.jorgeacetozi.com/
http://cassandra.apache.org/
https://www.datastax.com/
http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html
http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html
https://en.wikipedia.org/wiki/Peer-to-peer
http://docs.datastax.com/en/archived/cassandra/2.0/cassandra/architecture/architectureGossipAbout_c.html
http://docs.datastax.com/en/archived/cassandra/2.0/cassandra/architecture/architectureGossipAbout_c.html


Chapter 7 ■ Introduction to NoSQL

40

Cassandra’s partitioning strategy is based on partition keys that you specify 
when you are modeling the primary key for your column families. You now 
might be thinking, “What is this guy talking about?” Relax, you will understand 
this in a few minutes.

Basically, Cassandra is an amazing choice when you’re dealing with a huge 
amount of time-series data, which is common in the Internet of Things,11 logs, 
metrics, and so on. It fits in even better when relaxing the consistency is not an 
issue, although you can adjust the consistency level both for writes and for reads.

 Read consistency is when every node returns the same result for the same 
query for a given point in time. Remember that a distributed system runs over a 
network that has latency, so when you write data to a specific node, replication will 
start taking place and will take some milliseconds to happen on other nodes. During 
these milliseconds, if a read request is issued to the other nodes, then they will 
return stale data. The consistency level for both writes and reads is completely 
tunable in Cassandra.

11https://en.wikipedia.org/wiki/Internet_of_things

Figure 7-2.  Peer-to-peer architecture

https://en.wikipedia.org/wiki/Internet_of_things


Chapter 7 ■ Introduction to NoSQL

41

Why did I choose Cassandra for storing the history of chat messages in the 
chat application? Well, since a chat application can be used all around the world, 
it will contain a huge amount of data very soon. Also, a chat application has a 
massive number of message writes, and a message can be considered time-
series data, right? Since full consistency is not that crucial to this context, why 
not give up a little bit of consistency and work in eventual consistency mode 
(this is Cassandra’s default behavior, by the way) to achieve extraordinary write 
performance? Basically, that’s why I chose to use Cassandra.

 Eventual Consistency is a consistency model that assures that at some point in 

the near future the system (in this case, Cassandra) will become consistent.

Consistency in Cassandra can be adjusted at either write or read time. For 
instance, you can specify that you want a write to be fully consistent, which 
means that it will return success only after the write is successfully performed 
in each replica node. That is, after the success, you have the guarantee that any 
read to this data will return the most recent (and same) data regardless of the 
node that responds. Just keep in mind that higher consistency comes with a 
latency price, so full consistency means the worst performance.

 The CAP theorem12 states that when a total partition (a network failure, for 

example) or a temporary partition (the latency between data replication after a write 
request, a full GC in the JVM, etc) happens in a distributed system, it has to choose 
between consistency or availability. If the distributed system picks consistency over 
availability, it will be unavailable until the partition is fixed. On the other hand, if it 
picks availability over consistency, it will return a response for a request but this 
may not contain the most up to date data.

In Cassandra, you can create keyspaces, insert data, query data, and do 
much more using the Cassandra Query Language (CQL). A command-line 
tool called cqlsh allows you to issue CQL commands against your Cassandra 
instances. CQL is similar to SQL commands, so it’s easy to get used to working 
with CQL commands.

12https://dzone.com/articles/better-explaining-cap-theorem

https://dzone.com/articles/better-explaining-cap-theorem


Chapter 7 ■ Introduction to NoSQL

42

7.2.1 � Cassandra Concepts
Now you will learn some important concepts, and I’ll talk about modeling when 
it comes to Cassandra.

7.2.1.1 � Keyspace
A keyspace is similar to a database in relational databases. It groups a set of 
column families (like SQL tables) from the same domain. Here is where you 
define the replication factor, that is, the number of replicas that this keyspace 
will have in different nodes. This chat app will run just on a local machine, not a 
Cassandra cluster. Thus, here is the keyspace definition:

CREATE KEYSPACE ebook_chat WITH REPLICATION =
{ 'class' : 'SimpleStrategy', 'replication_factor' : 1 };

 These keyspace settings are not suitable for a production environment.  
In production, you will want to set NetworkTopologyStrategy and a replication 
factor of at least 3.

7.2.1.2 � Column Family
A column family is similar to a table in relational databases. It stores the data in 
the form of rows and columns.

CREATE TABLE messages (
  username text,
  chatRoomId text,
  date timestamp,
  fromUser text,
  toUser text,
  text text,
  PRIMARY KEY ((username, chatRoomId), date)
) WITH CLUSTERING ORDER BY (date ASC);

7.2.1.3 � Primary Key
A row is uniquely identified by a primary key. Every column family must define 
a primary key, and the primary key may be composed of partition keys and 
clustering keys. A primary key can be just a single column or multiple columns. 



Chapter 7 ■ Introduction to NoSQL

43

When there is more than one column, you call it a composite primary key. 
You can query data in Cassandra using its primary key columns or secondary 
indexes. The messages column family has a composite primary key, shown here:

PRIMARY KEY ((username, chatRoomId), date)

7.2.1.4 � Secondary Index
A secondary index allows you to query a column that is not part of the primary key. 
Remember that adding secondary indexes will penalize the write performance!

7.2.1.5 � Partition Key
The partition key is the leftmost term in the primary key’s definition. If it’s 
a single primary key, then the partition key is the same as the primary key. 
A partition key may be a single column or multiple columns. When there is 
more than one column, you call it a composite partition key, and it’s put inside 
parentheses in the primary key’s definition. The messages primary key contains 
the (username, chatRoomId) composite partition key, which essentially means 
that every message from a specific user in a particular chat room will be in the 
same partition.

Partitions are groups of rows that share the same partition key. This is 
important for achieving high performance and linear scalability in Cassandra. 
When you issue a read request to Cassandra, you may need to fetch data from 
different partitions, and these partitions can live on different machines. In this 
particular case, network latency will make your query slow. Even if the partitions 
you are querying live on the same machine (which also happens), the performance 
will be slower because of the way rows are stored internally in Cassandra.

When it comes to modeling, to have the most optimized cluster, you must 
evenly spread the data among the nodes. So, having only a huge partition will 
not help, and having a lot of partitions will not help either. The hard work here is 
to find out the right partition key to evenly spread the data among the nodes.

Remember I suggested that you model your column families according to 
the domain? That’s absolute true, but now I will add an extra note regarding 
Cassandra. You must model your column families according to the domain 
while also thinking about how your data will be spread among the partitions. 
For example, suppose you are modeling a column family to store sensor 
temperature measures every five seconds for all cities in all states of a country. 
If your partition key is only the column country, then every write from all the 
sensors in the country USA will go to the same partition. You’ve already seen that 
having a unique huge partition is not the way to go if you want to benefit from 
a distributed architecture. However, what if you change the partition key to be 
(country, state, city)? Now every sensor temperature measure in a specific 



Chapter 7 ■ Introduction to NoSQL

44

city for a particular state of USA will be stored in a different partition. The data 
looks much more spread out now, but there are still some issues. Keep in mind 
that a city like New York has almost 9 million inhabitants, whereas Mountain 
View is a small city in California that has only about 80,000 people. That’s a huge 
difference, which may result in unbalanced partitions. As you can see, modeling 
primary keys in Cassandra is one of the most difficult tasks!

7.2.1.6 � Clustering Key
The clustering key consists of the primary key columns that don’t belong to the 
partition key. In PRIMARY KEY ((username, chatRoomId), date), the date is 
the clustering key. Basically, a clustering key tells Cassandra how the data within 
a partition is ordered. In the messages column family, the date clustering key 
will keep the messages ordered in ascending order.

7.3 � Redis Overview
Redis is an extremely fast in-memory NoSQL database in the key-value  
category, which means you can store a value and associate it with a unique key 
(for example, name: Jorge Acetozi or numEbookReaders: 1000). Of course, you 
can also do something much more interesting such as caching with it.

7.3.1 � Redis vs. Memcached
Suppose you have a web page in your web application that rarely changes (in the 
chat application, the list of chat rooms would be an example) and the page has a 
lot of accesses. For each of them, the application fetches your relational database 
instance to get the data to be displayed. Well, accessing the relational database 
is an expensive operation, and given that you are dealing with a high-traffic web 
page, you could end up with a performance issue. In this case, you could use 
Redis as a cache server so that when the client access the page, the data will be 
fetched from Redis, which is insanely fast because it stores the data in RAM, 
avoiding access to the disk. Nice, isn’t it?

You may ask me, “Yes, Jorge, it’s nice. But why don’t we use Memcached13 
instead?” I agree with you. Memcached also would be a nice choice here. But 
Memcached basically is used only for caching, whereas Redis can do much more 
(actually, even when it comes to caching, Redis beats Memcached).

13https://memcached.org/

https://memcached.org/


Chapter 7 ■ Introduction to NoSQL

45

Memcached supports only strings and integers as data structures, while 
Redis has many other complex data types such as strings, hashes, lists, sets, 
sorted sets with range queries, bitmaps, hyperloglogs, and geospatial indexes 
with radius queries. Also, Lua scripting14 is possible in Redis.

In addition, Redis can persist data to disk to guarantee durability. 
Memcached can’t.

 Make sure to check out all the Redis data types.15

7.3.2 � Redis Use Cases
Because of its rich data structures, Redis can be used for a wide variety of cases.

•	 Caching (including LRU16 strategy)

•	 Implementing counters for a number of page views

•	 Implementing highly performant queues

•	 Implementing publish/subscribe17

•	 Compiling metrics and statistics

•	 Storing Hypertext Transfer Protocol (HTTP) sessions

•	 Building rankings using sorted sets (an ordered set of items 
by score), such as the most accessed chat rooms

•	 Performing operations in sets, such as getting the 
intersection between two sets

Can you see how powerful Redis is? You could easily evolve the chat application to 
include an “add friend” feature and store a user’s friends in a set. Then you could 
have another set holding all the online users and use the SINTER18 command to 
extract the intersection between these two sets in O(N*M) complexity time. The 
intersection would be the user’s online friends. Amazing!

14https://www.lua.org/
15https://redis.io/topics/data-types
16https://redis.io/topics/lru-cache
17http://redis.io/topics/pubsub
18https://redis.io/commands/sinter

https://www.lua.org/
https://redis.io/topics/data-types
https://redis.io/topics/lru-cache
http://redis.io/topics/pubsub
https://redis.io/commands/sinter


Chapter 7 ■ Introduction to NoSQL

46

That’s basically why I chose to use Redis for the chat application.
Redis can be clustered19 both for replication and for sharding, and its 

distributed architecture is based on a master-slave model (Figure 7-3).

Figure 7-3.  Master-slave architecture

Unlike with Cassandra, it’s not possible to tune the consistency level, and a 
Redis cluster is not able to guarantee strong consistency. That’s because when 
you send a write request to a Redis cluster, the master writes the data first on 
itself and immediately returns success to the client. Then, the replication to the 
slave nodes asynchronously starts. What happens if the master node crashes 
before the data gets replicated and a slave node is promoted to be the new 
master? Basically, the client will receive success but the write was actually lost.

 Again, your domain should give you a hint whether taking this risk in 

production is acceptable. Remember that Redis clusters penalize consistency to 
achieve extraordinary performance.

Redis also supports monitoring, automatic failover, Redis master nodes, 
service discovery, and notifications through Redis Sentinel.20

19https://redis.io/topics/cluster-tutorial
20https://redis.io/topics/sentinel

https://redis.io/topics/cluster-tutorial
https://redis.io/topics/sentinel


47© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_8

CHAPTER 8

The Spring Framework

The Spring Framework is the most widely used framework for enterprise Java 
applications. It’s a complete platform with many Spring subprojects under the 
“Spring umbrella” that help you with almost anything you need. It has a great 
community, and it’s evolving much faster than Java EE (and has been since the 
beginning actually).

 In this book, I’m not going to explain much about the Spring Framework theory. 
The goal here is to show you how to use it in practice. In Part 3, “Code by Feature,” 
I’ll explain the code snippets step-by-step using the Spring Framework. I believe 
that this will be enough for most readers. If you still have trouble understanding this 
section, I suggest you study up on Spring before moving on. Spring has great 
documentation,1 including many practical examples and tutorials.

Although Spring has always been a great framework, it used to have 
a lot of Extensible Markup Language (XML) configuration, which was 
boring. Sometimes configuring a simple data source could take a whole day. 
Fortunately, this is not true anymore. Today it’s possible to use Java annotations 
and configuration classes to set up Spring beans, and as you are writing Java 
code, the IDE helps you a lot with autocomplete and many other handy features. 
Sometimes you do not even need to consult the docs; just by navigating through 
the classes and Javadocs you are able to write configurations.

1https://spring.io/docs

https://spring.io/docs


Chapter 8 ■ The Spring Framework

48

8.1 � Spring Boot
Even better, a Spring subproject called Spring Boot2 comes in handy when 
dealing with configurations and bootstrapping projects. It takes the philosophy 
of convention over configuration quite seriously, so when bootstrapping your 
project with Spring Boot, minimum configuration is required because the 
defaults will satisfy your needs most of the time. Spring Boot even comes with 
embedded servlet containers such as Tomcat, Jetty, or Undertow. Basically, 
it infers from your project’s dependencies what you are going to use and 
automatically configures it for you.

To get your enterprise application running, you just have to start a public 
static void main method. To start a Spring Boot application from the 
command line, type java -jar my_application.jar and you’re done. That was 
exactly what you did when running the chat app locally. In my opinion, Spring 
Boot is one of the most amazing subprojects of Spring. (Or would it be Spring 
Data? Or Spring MVC? No! It’s Spring Security! What about Spring WebSocket? 
Oh, I don’t know…well, forget about it, and let’s move on!)

 Make sure to take a look at the list of Spring subprojects3 available. It’s quite 
impressive, isn’t it? Indeed, it’s possible to integrate Spring with everything.

8.2 � Spring Data JPA Repositories
Interacting with your relational database should not throw you into a 
panic anymore. Just by configuring a data source in the application.yml 
configuration file and creating a Java interface extending from JpaRepository 
(which is a Spring Data interface), you’ll get many ready-to-use methods to 
manipulate your database using the Java Persistence API (JPA). For instance, in 
the chat application, you have the following:

2https://projects.spring.io/spring-boot/
3https://spring.io/docs/reference

https://projects.spring.io/spring-boot/
https://spring.io/docs/reference


Chapter 8 ■ The Spring Framework

49

spring:
  datasource:
    url: jdbc:mysql://localhost:3306/ebook_chat
    username: root
    password: root
    testWhileIdle: true
    validationQuery: SELECT 1
  jpa:
    show-sql: true
    hibernate:
      ddl-auto: validate
      naming-strategy: org.hibernate.cfg.ImprovedNamingStrategy
    properties:
      hibernate:
        dialect: org.hibernate.dialect.MySQL5Dialect
public interface UserRepository extends JpaRepository<User, String> {

}



Chapter 8 ■ The Spring Framework

50

This allows you to use the methods shown in Figure 8-1.

Figure 8-1.  JpaRepository methods

4https://docs.spring.io/spring-data/jpa/docs/current/reference/
html/#repositories.query-methods.query-creation

But what if, for example, you need to find a user by e-mail address? Well, you 
could simply declare a method signature respecting the Spring Data pattern,4 
and you’re done.

https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#repositories.query-methods.query-creation
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#repositories.query-methods.query-creation


Chapter 8 ■ The Spring Framework

51

The whole idea here is that you declare a method and Spring Data 
dynamically implements it for you.

public interface UserRepository extends JpaRepository<User, String> {
  User findByEmail(String email);
}

If you need a customized query, just declare your method, annotate it with  
@Query5 providing the custom JPQL6 query, and use it.

public interface UserRepository extends JpaRepository<User, String> {
  @Query("select u from User u where u.name like %?1")
  List<User> findByNameEndsWith(String name);
}

It’s also possible to create native queries.7

public interface UserRepository extends JpaRepository<User, String> {
  @Query(�value = "SELECT * FROM USER WHERE EMAIL = ?1", nativeQuery 

= true)
  User findByEmail(String email);
}

Of course, for JPA repositories work, the User class must be annotated with 
JPA8 annotations. Here’s an example:

@Entity
@Table(name = "user")
public class User {
  @Id
  private String username;
  private String password;
  private String name;
  private String email;
  ...
}

5https://docs.spring.io/spring-data/jpa/docs/current/reference/
html/#jpa.query-methods.at-query
6http://docs.oracle.com/html/E13946_04/ejb3_langref.html
7https://docs.spring.io/spring-data/jpa/docs/current/reference/
html/#_native_queries
8www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.query-methods.at-query
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.query-methods.at-query
http://docs.oracle.com/html/E13946_04/ejb3_langref.html
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#_native_queries
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#_native_queries
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html


Chapter 8 ■ The Spring Framework

52

8.3 � Spring Data and NoSQL
You’ve learned that it’s essential to build modern applications with scalability in 
mind. Persistence is frequently the root cause of limited scalability, so choosing 
the appropriate persistence technologies is crucial.

Spring Data provides great integration with many NoSQL tools such as 
Cassandra, Redis, Neo4J, MongoDB, Elasticsearch, and so on. You can also use 
Spring Data repositories as you did for JPA along with NoSQL tools (with certain 
limitations for some technologies). For example, in the chat app, Spring Data 
Cassandra repositories were implemented like this:

public interface InstantMessageRepository extends CassandraRepository 
<InstantMessage> {
  �List<InstantMessage> findInstantMessagesByUsernameAndChatRoomId 
(String username, String chatRoomId);

}

The method signature patterns work the same as explained for JPA.  
What actually changes is that the model should be annotated with Spring Data 
Cassandra annotations instead of JPA.

import org.springframework.cassandra.core.Ordering;
import org.springframework.cassandra.core.PrimaryKeyType;
import org.springframework.data.cassandra.mapping.PrimaryKeyColumn;
import org.springframework.data.cassandra.mapping.Table;

@Table("messages")
public class InstantMessage {
  �@PrimaryKeyColumn(name = "username", ordinal = 0,  
type = PrimaryKeyType.PARTITIONED)

  private String username;

  �@PrimaryKeyColumn(name = "chatRoomId", ordinal = 1,  
type = PrimaryKeyType.PARTITIONED)

  private String chatRoomId;

  �@PrimaryKeyColumn(name = "date", ordinal = 2,  
type = PrimaryKeyType.CLUSTERED, ordering = Ordering.ASCENDING)

  private Date date;
  ...
}



Chapter 8 ■ The Spring Framework

53

The same goes for Spring Data Redis repositories. As you will see in Part 3, 
“Code by Feature,” Redis is being used in the chat app to manage the chat rooms 
and the connected users. Take a look at how the model and the repository look:

import org.springframework.data.annotation.Id;
import org.springframework.data.redis.core.RedisHash;

@RedisHash("chatrooms")
public class ChatRoom {
  @Id
  private String id;
  private String name;
  private String description;
  private List<ChatRoomUser> connectedUsers = new ArrayList<>();
  ...
}

public interface ChatRoomRepository extends CrudRepository<ChatRoom, 
String> {

}

 Spring Data repositories really make your life easier, but sometimes you may 
need extra features that they don’t provide. For instance, for Spring Data Redis 
repositories, the technology maps your models only to Redis hashes, but as you’ve 
learned, there are many other data structures available in Redis. In that case, you’d 
have to use the Spring Data templates (CassandraTemplate, RedisTemplate, and so 
on), which are straightforward to use as well.



55© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_9

CHAPTER 9

WebSocket

In the beginning, the Web was built on top of a model that consists of the 
following:

•	 The client sending an HTTP request to the web server

•	 The web server returning an HTTP response with the 
requested resource

This works really well, and almost every web application is entirely based on  
this model.

As web applications got more advanced and pages more dynamic, a new 
model emerged, called Ajax.1 Using Ajax, it’s possible to perform an HTTP 
request and get the HTTP response without having to refresh the whole page, 
which is amazing because pages now can be very dynamic. When using 
JavaScript libraries such as JQuery, it becomes even easier. So, we have nothing 
more to worry about, right?

9.1 � Polling vs. WebSocket
Imagine that in a chat room, UserA sends an HTTP request with a text message using 
Ajax to a specific user (say, UserB). Now the server must relay this message to UserB. 
But how? The server is not able to send an HTTP request; its role is to receive HTTP 
requests, not to send. This is the way that HTTP works.

How could UserB get this message transparently (I mean, without having 
to refresh the whole chat room page)? It’s easy—just make UserB send HTTP 
requests using Ajax every three seconds to the server to check whether there 
are messages for that user. If there are messages, then the server appends them 
to the HTTP response. This is a polling strategy.

1https://www.w3schools.com/xml/ajax_intro.asp

https://www.w3schools.com/xml/ajax_intro.asp


Chapter 9 ■ WebSocket

56

The question is, is this a good solution for this problem? In this scenario, 
every three seconds all the clients would be sending HTTP requests to the 
server, even if there are no messages for them. It creates overhead, doesn’t it? 
In addition, every time an HTTP request occurs, there’s a handshake, and a 
Transmission Control Protocol (TCP) connection is established between the 
client and the server. This is a resource-consuming operation. There’s also 
another issue to consider: the HTTP protocol is verbose, with lots of headers, so 
every request is bandwidth-consuming as well.

That is where WebSocket can help you. It allows you to open a full-duplex 
bidirectional TCP connection where both sides (the client and the server) can 
send frames. These frames are different than HTTP requests. Actually, after a 
WebSocket connection is opened, all traffic between the client and the server 
occurs through it, so no HTTP requests are sent anymore. Figure 9-1 shows what 
a frame looks like.

Command

Header : Value
Header : Value
Header : Value

Body

Figure 9-1.  WebSocket frame



Chapter 9 ■ WebSocket

57

To establish this WebSocket connection, an HTTP handshake takes place to 
upgrade from HTTP to the WebSocket protocol (Figure 9-2).

Figure 9-2.  WebSocket handshake

After the WebSocket connection is opened, it uses a heartbeat mechanism 
through ping/pong frames to keep the connection alive.

9.2 � WebSocket and Browser Compatibility
There are cases where some browsers (try to find out which ones!) in older 
versions may block the WebSocket communication. To deal with this, Spring 4 
offers easy SockJS integration that adds fallback options to simulate WebSocket 
behavior by using HTTP streaming or HTTP long polling instead. You’ll see how 
easy it is to enable this compatibility mode using Spring later in this book.

9.3 � Raw WebSocket vs. WebSocket over STOMP
As you have learned, the WebSocket protocol allows you to establish a full-duplex 
bidirectional TCP connection where data can be exchanged in both directions. 
Now the question is, what are you actually transmitting through this connection, 
and how will the server know which type of data the content is?



Chapter 9 ■ WebSocket

58

Basically, the raw WebSocket technology is low level and neutral to the 
message’s content, so it’s only possible to set whether it’s binary or text data; 
WebSocket says nothing about the message’s format. This means that both the 
client and the server must previously agree on which kind of format they will be 
exchanging messages in so that the communication is successful. This might not 
be that convenient.

To address this issue, the WebSocket technology can run over subprotocols 
like STOMP,2 which is an application layer protocol that specifies many commands 
that help you handle text messages without worrying about which format is being 
exchanged between the client and the server (the “format” would be the STOMP 
specification itself). The client and server should specify the subprotocol to be 
used during the WebSocket connection in the handshake phase.

The Spring documentation3 has a nice definition of the STOMP protocol: “STOMP is 
a simple text-oriented messaging protocol that was originally created for scripting 
languages such as Ruby, Python, and Perl to connect to enterprise message 
brokers. It was designed to address a subset of commonly used messaging 
patterns. STOMP can be used over any reliable two-way streaming network protocol 
such as TCP and WebSocket. Although STOMP is a text-oriented protocol, the 
payload of messages can be either text or binary.”

Just keep in mind that you’re not required to use subprotocols, but using 
them makes your life much easier. In this book, you will implement WebSocket 
using STOMP as the subprotocol.

 WebSocket can also be secured by relying on Transport Layer Security (TLS) 

over TCP. Like HTTP and HTTPS, WebSocket can use the WS or WSS scheme.

2https://stomp.github.io/stomp-specification-1.2.html
3https://docs.spring.io/spring/docs/current/spring-framework-reference/
html/websocket.html

https://stomp.github.io/stomp-specification-1.2.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html


59© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_10

CHAPTER 10

Spring WebSocket

Spring WebSocket provides good support for WebSocket applications, and 
it’s easy to use when you understand what’s going on behind the scenes. This 
chapter will help you to start understanding some of the Spring WebSocket 
configuration possibilities.

10.1 � Raw WebSocket Configuration
Although you’re not going to use a raw WebSocket configuration in the chat app, 
here is what its configuration on Spring would look like:

@Configuration
@EnableWebSocket
public class RawWebSocketConfiguration implements 
WebSocketConfigurer {
  @Override
  �public void registerWebSocketHandlers(WebSocketHandlerRegistry 
registry) {

    registry.addHandler(myRawWebSocketHandler(),  "/rawwebsocket");
  }

  @Bean
  public WebSocketHandler myRawWebSocketHandler() {
    return new MyRawWebSocketHandler();
  }
}

Here you are declaring the WebSocket endpoint to which clients are going to 
connect (ws://localhost:port/rawwebsocket) and specifying that an instance 
of the MyRawWebSocket class is going to handle the received frames.



Chapter 10 ■ Spring WebSocket

60

public class MyRawWebSocketHandler extends TextWebSocketHandler {
  public void afterConnectionEstablished(WebSocketSession session) {
    TextMessage msg = new TextMessage("Client connection success!");

    //client will receive this frame as a callback to the success event
    session.sendMessage(msg);
  }

  �public void handleTextMessage(WebSocketSession session, 
TextMessage message) {

    �// this is the message content, that can be any format (json, 
xml, plain text... who knows?)

    System.out.println(message.getPayload());
    �TextMessage msg = new TextMessage("Message received. Thank you, 

client!");
    session.sendMessage(msg);
  }
}

 There is also a BinaryWebSocketHandler class that you can extend when you 
are handling binary data through a raw WebSocket configuration.

Here is the code on the client side:

function connectWebSocket(){
  ws = new WebSocket('ws://localhost:8080/rawwebsocket');
  ws.onmessage = function(event){
    renderServerMessage(event.data);
  };
}

function sendMessageToServer() {
  var text = document.getElementById('myText').value;
  var jsonMessage = JSON.stringify({ 'content': text });
  ws.send(jsonMessage);
}

Note that the client is sending messages in JavaScript Object Notation 
(JSON) format to the server. Actually, it’s sending JSON because it wants to send 
a JSON message (because the client already knows that the server is expecting a 
JSON message), but keep in mind that it could be sending a plain-text message, 
XML message, or whatever (that’s how raw WebSocket works!).



Chapter 10 ■ Spring WebSocket

61

 If you wanted to enable WebSocket browser compatibility, you would have to 
use something to emulate the WebSocket behavior when it’s not available because 
of compatibility issues. Fortunately, SockJS1 can handle this for you painlessly. 
Enabling SockJS support using Spring is as simple as adding a .withSockJS() 
method call to the handler, as shown here:

@Configuration
@EnableWebSocket
public class RawWebSocketConfiguration implements 
WebSocketConfigurer {
  @Override
  �public void registerWebSocketHandlers(WebSocketHandlerRegistry 
registry) {

    �registry.addHandler(myRawWebSocketHandler(),   "/rawwebsocket").
withSockJS();

  }

  @Bean
  public WebSocketHandler myRawWebSocketHandler() {
    return new MyRawWebSocketHandler();
  }
}

10.2 � WebSocket over STOMP Configuration
Here is how to configure WebSocket over STOMP using Spring:

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfiguration extends 
AbstractWebSocketMessageBrokerConfigurer {
  @Override
  public void configureMessageBroker(MessageBrokerRegistry config) {
    config.enableSimpleBroker("/queue/",  "/topic/");
    config.setApplicationDestinationPrefixes("/app");
}

1https://github.com/sockjs

https://github.com/sockjs


Chapter 10 ■ Spring WebSocket

62

  @Override
  public void registerStompEndpoints(StompEndpointRegistry registry) {
    registry.addEndpoint("/stompwebsocket").withSockJS();
  }
}

To work with STOMP, you need a STOMP broker. Basically, this is the 
component that keeps track of subscriptions and that broadcasts messages to 
subscribed users. In the previous configuration, note the following:

•	 An in-memory STOMP broker is enabled by declaring 
two destinations, /queue/ and /topic/. This helps in 
the development phase, but it’s not recommended for a 
production environment (you’ll understand why when you 
study the multinode architecture later in this book).

 The meaning of a destination is intentionally left opaque in the STOMP 

specification. It can be any string, and it’s entirely up to STOMP servers to define 
the semantics and the syntax of the destinations that they support (for example, 
RabbitMQ defines a dot notation where destination names should be separated by a 
dot, as in /topic/public.messages). It is common, however, for destinations to be 
pathlike strings where /topic/ implies a publish-subscribe2 pattern (one-to-many) 
and /queue/ implies a point-to-point3 (one-to-one) message exchange.

 /queue/ and /topic/ are broker destinations, which means that any frame 

sent to a destination starting with these prefixes will be handled directly by the 
STOMP broker.

•	 The application destination prefix is /app. Basically, when 
a frame is sent to a destination that starts with /app, a class 
annotated with @Controller will handle the frame before 
forwarding it to the broker. More specifically, a method 
annotated with @MessageMapping inside the @Controller 
annotated class will handle it (don’t worry if you don’t 
understand this yet).

2www.enterpriseintegrationpatterns.com/patterns/messaging/
PublishSubscribeChannel.html
3www.enterpriseintegrationpatterns.com/patterns/messaging/
PointToPointChannel.html

http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PointToPointChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PointToPointChannel.html


Chapter 10 ■ Spring WebSocket

63

•	 Clients are going to connect to the STOMP endpoint using 
JavaScript (ws://localhost:port/stompwebsocket).

Now, on the client side, there’s a little bit of JavaScript code, shown here:

function connect() {
  socket = new SockJS('/stompwebsocket');
  stompClient = Stomp.over(socket);
  stompClient.connect({ }, function(frame) {
    �stompClient.subscribe('/topic/public.messages', 

renderPublicMessages);
  });
}

function renderPublicMessages(message) {
  //append the message to a div, for example
}

function sendMessage() {
  var instantMessage;
  instantMessage = {
    'text' : inputMessage.val(),
    'toUser' : spanSendTo.text()
  }
  stompClient.send("/app/send.message",  {}, 
  JSON.stringify(instantMessage));
}

Let’s understand what’s happening here.

•	 When the connect function is called, a new WebSocket 
connection is opened using STOMP as a subprotocol.

•	 In the success callback, an anonymous function is 
executed, and the user subscribes to the /topic/public.
messages destination. From now on, this user will be able 
to receive any message that is sent (from any client or even 
from the server side) to this destination and pass it to the 
renderPublicMessages function, which will append the 
message to a div, for example.

•	 When the sendMessage function is called, a frame with the 
message is sent to the /app/send.message destination. 
Remember that every message sent to a destination 
starting with /app will be handled by an @MessageMapping 
method in a @Controller annotated class? This is the 
method handling it:



Chapter 10 ■ Spring WebSocket

64

@Controller
public class ChatRoomController {
  @Autowired
  private SimpMessagingTemplate simpMessagingTemplate;

  @MessageMapping("/send.message")
  public void sendPublicMessage(InstantMessage instantMessage) {
    �simpMessagingTemplate.convertAndSend 

("/topic/public.messages",   instantMessage);
  }
}

Spring basically converts the frame content to the instantMessage object 
and calls the sendPublicMessage method that uses the convertAndSend method 
in SimpMessagingTemplate to broadcast the message to the /topic/public.
messages destination. Remember that everything starting with /topic/ is a 
broker destination? So, what is going to handle this message? That’s right, the 
broker! Actually, the broker will receive this message and forward it to every 
subscribed user at this destination (including the user who sent the message 
because that user is also subscribed to this destination, as you can see in the 
earlier JavaScript anonymous function).

Well, that’s it. With these simple code samples, you are able to send 
and receive public messages using WebSocket over STOMP on the Spring 
Framework. That’s amazing!

 If sendPublicMessage returns any object (for example, the instantMessage 
object), Spring will automatically interpret that as meaning you want to send this 
object to a broker destination. By convention, it would try to send it to the /topic/
public.messages destination because the message was received through the  
/chatroom/public.messages destination (this is a convention), but you could easily 
change the target broker destination by using the @SendTo annotation. Personally,  
I think that using simpMessagingTemplate makes the code easier to understand for 
those who are reading it, but it’s up to you.

10.3 � Message Flow Using a Simple Broker
Figure 10-1 shows the message flow with a simple broker. The figure may be 
confusing at first glance, but this is exactly the flow that you just learned about.



Chapter 10 ■ Spring WebSocket

65

When you send a frame through WebSocket over STOMP, the message 
will first reach clientInboundChannel. There, it will be routed to a specific 
MessageHandler depending on the destination name. If the name starts with  
/app, then it will route it to the SimpAnnotationMethod message handler 
(which will eventually call your @MessageMapping annotated method inside the  
@Controller class). If the name starts with /topic, then it will route it directly 
to the SimpleBroker4 message handler.

Let’s look at an example of the frame SEND /app/a. First, 
clientInboundChannel will receive and forward it to the SimpAnnotationMethod 
message handler. Then, from the @MessageMapping annotated method, the 
message will be forwarded to brokerChannel. This will send it to the SimpleBroker 
message handler. This message handler keeps a ConcurrentHashMap with every 
WebSocket session ID for every connected client and also all the subscriptions 
in the SubscriptionRegistry (in memory). Then, the message handler 
uses the WebSocket client ID to forward the message to the corresponding 
clientOutboundChannel, which will finally send the message to the client.

 Note that using the simple broker approach, the subscriptions are kept in 

memory.

Figure 10-1.  Message flow: simple broker

4https://github.com/spring-projects/spring-framework/blob/master/
spring-messaging/src/main/java/org/springframework/messaging/simp/
broker/SimpleBrokerMessageHandler.java

https://github.com/spring-projects/spring-framework/blob/master/spring-messaging/src/main/java/org/springframework/messaging/simp/broker/SimpleBrokerMessageHandler.java
https://github.com/spring-projects/spring-framework/blob/master/spring-messaging/src/main/java/org/springframework/messaging/simp/broker/SimpleBrokerMessageHandler.java


Chapter 10 ■ Spring WebSocket

66

10.4  Message Flow Using a Full External 
STOMP Broker
Figure 10-2 shows the same message flow, except that here instead of 
keeping the in-memory subscriptions, the message handler will delegate the 
subscriptions to an external STOMP broker. Can you understand why this is so 
important? You’ll learn why in the next chapter!

5https://stomp.github.io/implementations.html
6https://www.rabbitmq.com/web-stomp.html

Figure 10-2.  Message flow: full external STOMP broker

 Check out the list of STOMP brokers5 that are available.

 In the chat app, you will use RabbitMQ with the STOMP plug-in6 as a full 

external STOMP broker.

You will learn much more about Spring WebSocket in Part 3,  
“Code by Feature.”

https://stomp.github.io/implementations.html
https://www.rabbitmq.com/web-stomp.html


67© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_11

CHAPTER 11

Single-Node Chat 
Architecture

Figure 11-1 shows the simplified architecture diagram for the single-node chat 
application. It shows exactly what you are running on your local machine right 
now if you followed the steps in Chapter 2.

Figure 11-1.  Single-node chat application

http://dx.doi.org/10.1007/978-1-4842-2985-9_2


Chapter 11 ■ Single-Node Chat Architecture

68

When you register a new account, the user is stored in MySQL, and the role 
ROLE_USER is assigned to the user, which means that this user is not allowed to 
create new chat rooms.

After you sign in, the list of all available chat rooms is displayed. The chat 
rooms and their connected users are stored in Redis as a Redis Hash1 data type. 
Basically, a Redis Hash is a data structure that allows you to associate many  
key : value entries to a unique key. In the following example, the unique key is 
chatrooms:c4f045bb-8dfd-4620-b365-fd3b4fbeb46e:

HGETALL chatrooms:c4f045bb-8dfd-4620-b365-fd3b4fbeb46e

"id" : "c4f045bb-8dfd-4620-b365-fd3b4fbeb46e"
"name" : "Top Guitarists"
"description" : "Meet the most amazing guitarists"

 HGETALL2 is the Redis command that gets a hash and all the key : value 
entries associated with it.

When you join a chat room, a JavaScript code snippet gets executed on  
the client side. It starts a WebSocket over STOMP connection to the chat server. 
If the connection fails, it will retry every ten seconds.

function connect() {
  socket = new SockJS('/ws');
  stompClient = Stomp.over(socket);
  �stompClient.connect({ 'chatRoomId' : chatRoomId }, stompSuccess, 
stompFailure);

}

function stompFailure(error) {
  �errorMessage("Lost connection to WebSocket! Reconnecting in 10 
seconds...");

  disableInputMessage();
  setTimeout(connect, 10000);
}

As you’ve learned, after the WebSocket connection is established, everything 
happens through the WebSocket connection, not through HTTP requests.

1https://redis.io/topics/data-types
2https://redis.io/commands/hgetall

https://redis.io/topics/data-types
https://redis.io/commands/hgetall


Chapter 11 ■ Single-Node Chat Architecture

69

function stompSuccess(frame) {
  enableInputMessage();
  �successMessage("Your WebSocket connection was successfully 
established!")

  �stompClient.subscribe('/chatroom/connected.users', 
updateConnectedUsers);

  stompClient.subscribe('/chatroom/old.messages', oldMessages);

  �stompClient.subscribe('/topic/' + chatRoomId + '.public.messages', 
publicMessages);

  �stompClient.subscribe('/user/queue/' + chatRoomId + '.private.
messages', privateMessages);

  �stompClient.subscribe('/topic/' + chatRoomId + '.connected.users', 
updateConnectedUsers);

}

As soon as the WebSocket connection starts, these main things happen:

•	 The client asks for the connected users and their old 
messages (the entire conversation) associated with this 
chat room. The conversation is fetched from Cassandra.

•	 The client also subscribes to start receiving updates when a 
user joins or leaves the chat room, when a public message 
is sent, or when a user receives a private message.

On the server side, as soon as a user connects, the chat room is updated on 
Redis to add the new connected user.

In the chat room, all messages that appear to the user (public, private, and 
system messages) are appended to the user’s conversation in Cassandra.

 System messages are those public messages sent by the admin to inform 
everyone that a user has joined or left the chat room.

Note that on a single-node architecture, from a functional perspective, the 
in-memory broker approach would work perfectly because every subscription 
would be kept in the server’s memory, and every WebSocket connection would 
be bound to the same server as well.



71© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_12

CHAPTER 12

Multinode Chat Architecture

Imagine that you want to horizontally scale the chat application by running  
two instances of the chat app on different servers. Suppose you are using an  
in-memory SimpleBroker as well.

In Figure 12-1, Jorge and John have a WebSocket connection to server 1, and 
Xuxa has a WebSocket connection to server 2. What would happen if Jorge tries 
to send a message to Xuxa? Well, I think you already know the answer! Since Xuxa 
is not connected to server 1, that server doesn’t know about the user Xuxa. Thus, 
the message will be lost. However, if Jorge sends a message to John, it will work.

Figure 12-1.  Two chat instances: simple broker

The in-memory approach doesn’t work at all for horizontally scaling your 
chat application.



Chapter 12 ■ Multinode Chat Architecture

72

12.1  Using RabbitMQ As a Full External  
STOMP Broker
Now, if you start using a full external STOMP broker like RabbitMQ, you would 
have a scenario like the one shown in Figure 12-2.

Figure 12-2.  Two chat instances: broker relay

Now the subscriptions are not bound to specific server instances; that is, 
the subscriptions are not kept in the servers’ memory anymore. There is an 
external component that’s responsible for handling subscriptions. The Spring 
configuration for this scenario would look something like this:

protected void configureStompEndpoints(StompEndpointRegistry 
registry) {
  registry.addEndpoint("/ws").withSockJS();
}

public void configureMessageBroker(MessageBrokerRegistry registry) {
  registry.enableStompBrokerRelay("/queue/",  "/topic/")
    .setUserDestinationBroadcast("/topic/unresolved.user.dest")
        .setUserRegistryBroadcast("/topic/registry.broadcast")



Chapter 12 ■ Multinode Chat Architecture

73

        .setRelayHost(relayHost)
        .setRelayPort(relayPort);

  registry.setApplicationDestinationPrefixes("/chatroom");
}

Let’s take a look at these configurations:

•	 enableStompBrokerRelay: This uses an external full STOMP 
broker instead of an in-memory broker.

•	 setRelayHost and setRelayPort: These are the host and 
the port, respectively, of the external STOMP broker 
(RabbitMQ, in this case).

•	 setUserDestinationBroadcast: A user destination may 
remain unresolved because the user is connected to a 
different server (like Jorge and Xuxa). In such cases, this 
destination is used to broadcast unresolved messages so 
that other servers have a chance to try.

•	 setUserRegistryBroadcast: This sets a destination to 
broadcast the content of the local user registry (the place 
where connected clients are stored in memory) and to 
listen to such broadcasts from other servers. In a multinode 
architecture, this allows each server’s user registry to be 
aware of users connected to other servers. In other words, 
it enables Chat App 1 to be aware that Xuxa exists in Chat 
App 2.

When the application starts, only the destinations /topic/unresolved.
user.dest and /topic/registry.broadcast are created on RabbitMQ. Spring 
keeps a “system” TCP connection between the server and RabbitMQ that is not 
used for user messages; it’s used only for internal communication between the 
server and the broker (such as sending heartbeat messages every ten seconds, 
by default, to check whether the broker is alive). If Spring detects that there is a 
broker outage, then it will try to reconnect every five seconds by default.

For every new WebSocket connection, the server creates a new TCP 
connection with the broker. This is the connection actually used for user 
messages.

Now that you have a solution for a multinode architecture, you could add 
more chat app instances behind a load balancer such as Nginx1 and have a pretty 
scalable architecture, as shown in Figure 12-3.

1https://www.nginx.com/blog/websocket-nginx/

https://www.nginx.com/blog/websocket-nginx/


Chapter 12 ■ Multinode Chat Architecture

74

Note that every component of this architecture can be clustered and can 
implement a replication strategy. This means that even if some nodes experience 
a failure event, this architecture would keep working. This is beautiful!

 There are many aspects that you should consider when dealing with scalability, 
for instance, increasing the number of socket descriptors that the operating system 
is able to use. You must keep in mind that horizontal scalability is amazing, but 
there are many things you can try before adding more nodes (and more costs) to 
your infrastructure.

Figure 12-3.  Multinode chat architecture



75© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_13

CHAPTER 13

Horizontally Scaling Stateful 
Web Applications

Let’s forget the WebSocket technology for a while and think about traditional 
web applications. You have already learned about the request/response HTTP 
model, and you know that HTTP is stateless. This means that after a server 
gives a response to a request, it closes the TCP connection, and it doesn’t know 
anything about the client (not even if the client is going to make other requests) 
anymore. This might work in some cases, but think of an online store. How 
would the store be able to keep the shopping cart items across multiple requests 
if HTTP is stateless? To address this issue, web servers provide an HTTP session 
mechanism, which is basically local per-user storage that is associated with a 
specific code (in Java, the JSESSIONID code). When a user sends the first request 
to a server, it creates a new HTTP session and sends the JSESSIONID code to the 
user by using cookies. If the client sends a second request, the JSESSIONID code 
will be available in the HTTP request, and the server will be able to identify that 
it is a returning user. This means that if the shopping cart is stored in the HTTP 
session, the server will be able to keep it across requests.

This might sound nice, but it’s a big issue when it comes to horizontal 
scalability. Can you guess why? What would happen if an online store’s 
multinode architecture is implemented using a load balancer and a user named 
Jorge has his shopping cart stored in the HTTP session on server 1 and in the 
next request the load balancer sends it to server 2? His shopping cart wouldn’t 
be available there, right? (See Figure 13-1.)



Chapter 13 ■ Horizontally Scaling Stateful Web Applications

76

Figure 13-1.  Multinode online store without a session manager

13.1 � Using the Sticky Session Strategy
You may be thinking, “OK, but what if the load balancer always sends the 
requests from a specific user to a specific server? Then the user’s HTTP session 
will always be there. Hence, the user’s shopping cart will always be available 
across requests until this HTTP session expires.” You are absolutely correct, and 
this is what you would call a sticky session strategy. But the problem arises again 
when you think of a node failure scenario.

Imagine that a load balancer is using the sticky session strategy and every 
user request is being routed to the same server. Everything is working flawlessly. 
But suddenly this server crashes (meaning the user’s HTTP session is gone), and 
the load balancer is forced to forward the user to another server. What happens 
then? Again, the user’s shopping cart is lost.

Also, what would happen if the developers deploy a new version of the 
online store application while the user is online? Well, there is no magic that 
takes place; the server will have to be restarted in order to apply the new release 
version, so what would happen with the user’s HTTP session again? You already 
know the answer. But…you also already know the solution because this is similar 
to what you already did regarding the WebSocket technology when adding 
RabbitMQ as a full external STOMP broker to your architecture.

Why don’t you persist the HTTP sessions in your already working relational 
database? Well, that’s pretty much the same as the scenario used in Chapter 7 
in the “Redis Overview” section. Do you remember that querying a relational 
database is much more expensive than querying an in-memory solution such as 
Redis?

http://dx.doi.org/10.1007/978-1-4842-2985-9_7


Chapter 13 ■ Horizontally Scaling Stateful Web Applications

77

Figure 13-2 shows the architecture using Redis as the session manager. 
Don’t you think that now the architecture looks much better? If a node crashes 
and the load balancer redirects the user to another server instance, there is 
no problem. The server will notice that it doesn’t have locally this specific 
JSESSIONID code associated with any user’s HTTP session, so it will query Redis 
looking for it. Once it finds the user’s session on Redis, it brings it back to the 
server’s memory, and everything keeps working. The load balancer now will 
continue sending requests to this server because it’s using a sticky session. 
The user doesn’t even know that all these things happened behind the scenes. 
Good shopping, dear user!

Figure 13-2.  Multinode online store with Redis as session manager



Chapter 13 ■ Horizontally Scaling Stateful Web Applications

78

The question now is, how would you implement this mechanism on the 
server side so that it fetches Redis for HTTP sessions? Well, if you use the Spring 
Framework, there is the amazing Spring Session1 subproject that takes care of 
this for you. It’s insanely easy to use Spring Session along with Redis, especially 
when you are setting up configurations with the help of Spring Boot.

13.2 � Spring Session and WebSocket
You are using Spring Session in the chat application to store HTTP sessions on 
Redis, but here the scenario is a little bit different.

In Spring, when you open a new WebSocket connection, on the server side 
it creates a new WebSocket session. By the way, you already know that these 
WebSocket sessions are stored in the corresponding MessageHandler. This 
WebSocket session will stay alive until one of the parts explicitly closes it or the 
HTTP session expires. This is the way JSR-3562 works.

 Don’t get confused here. The HTTP session and the WebSocket session are 

different things. The HTTP session is created when the user performs the first HTTP 
request to a server. However, the WebSocket session is created only after the user 
already has an HTTP session associated and successfully performs the WebSocket 
handshake.

The issue is that JSR-356 doesn’t have a mechanism for intercepting 
WebSocket messages. In other words, when you are using only the WebSocket 
connection without performing any HTTP requests, the server assumes that the 
HTTP session is inactive, and as you know, every HTTP session has an expiration 
threshold. If this threshold is crossed, then the server will kill the user’s HTTP 
session, and by doing this, the user’s WebSocket connection will be gone as well.

To paraphrase the Spring Session documentation,3 consider an e-mail application 
that does much of its work through HTTP requests. Say there is also a chat 
application embedded within it that works over WebSocket APIs. If a user is actively 
chatting with someone, you should not time out the HttpSession since that would 
create a pretty poor user experience. However, this is exactly what JSR-356 does.

1http://projects.spring.io/spring-session/
2https://jcp.org/en/jsr/detail?id=356
3https://github.com/spring-projects/spring-session/blob/master/docs/src/
docs/asciidoc/index.adoc#websocket-why

http://projects.spring.io/spring-session/
https://jcp.org/en/jsr/detail?id=356
https://github.com/spring-projects/spring-session/blob/master/docs/src/docs/asciidoc/index.adoc#websocket-why
https://github.com/spring-projects/spring-session/blob/master/docs/src/docs/asciidoc/index.adoc#websocket-why


Chapter 13 ■ Horizontally Scaling Stateful Web Applications

79

Furthermore, according to JSR-356, if the HttpSession times out, any WebSocket 
that was created with that HttpSession and an authenticated user should be forcibly 
closed. This means that if you are actively chatting in your application and are not 
using the HttpSession, then you will also disconnect from your conversation.

In order to address this issue, Spring Session can be configured to ensure that 
WebSocket messages will keep your HttpSession alive. To configure Spring Session 
along with Spring WebSocket in the chat app, you need to do the following:

	 1.	 Add the Spring Session dependency in pom.xml.

<dependency>
  <groupId>org.springframework.session</groupId>
  <artifactId>spring-session</artifactId>
</dependency>

	 2.	 In application.yml, configure Spring Session with 
storage-type as redis as follows:

spring:
  session:
    store-type: redis

	 3.	 Now, in the WebSocket configuration 
class, instead of extending from 
AbstractWebSocketMessageBrokerConfigurer as 
you did in Chapter 10 in the “WebSocket over STOMP 
Configuration” section, you extend from AbstractSessi
onWebSocketMessageBrokerConfigurer<ExpiringSess
ion>. Also, add the EnableScheduling annotation to the 
class declaration.

@Configuration
@EnableScheduling
@EnableWebSocketMessageBroker
public class WebSocketConfigSpringSession extends AbstractS
essionWebSocketMessageBrokerConfigurer<ExpiringSession> {
  ...
}

That’s it. You can pause for a coffee now, thinking about how amazing 
Spring is.

http://dx.doi.org/10.1007/978-1-4842-2985-9_10


PART 3

Code by Feature

In this part of the book, I will discuss the code for every feature in the chat 
application. Again, this book is not intended to teach the fundamentals 
of Spring, so I’ll assume you already have a basic understanding of 
dependency injection, controllers, services, and so on.

 If you need to improve your skills with the Spring Framework, I recommend 

you check out the official Spring Framework documentation.1 It offers many 
examples and nice tutorials as well.

1https://spring.io/docs



83© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_14

CHAPTER 14

Changing the Application 
Language

It’s possible to translate all the chat application text by choosing the desired 
language in the application menu (Figure 14-1). This way, users from different 
countries can make better use of the system. This concept is frequently known as 
internationalization (or I18N).

1https://docs.spring.io/spring/docs/current/spring-framework-reference/
htmlsingle/#mvc-localeresolver

Figure 14-1.  Language menu

Implementing internationalization using Spring MVC1 is quite simple.
Basically, you need the @Configuration class to extend from 

WebMvcConfigurerAdapter to do some Spring MVC configurations.

@Configuration
public class WebConfig extends WebMvcConfigurerAdapter {
  @Bean
  public LocaleResolver localeResolver() {
    return new SessionLocaleResolver();
  }

https://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#mvc-localeresolver
https://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#mvc-localeresolver


Chapter 14 ■ Changing the Application Language

84

  @Bean
  public LocaleChangeInterceptor localeChangeInterceptor() {
    �LocaleChangeInterceptor localeChangeInterceptor = new 

LocaleChangeInterceptor();
    localeChangeInterceptor.setParamName("lang");
    return localeChangeInterceptor;
  }

  @Override
  public void addInterceptors(InterceptorRegistry registry) {
    registry.addInterceptor(localeChangeInterceptor());
  }
}

In this class, you set up the @Bean for the LocaleResolver. Spring has 
many LocaleResolver implementations such as SessionLocaleResolver and 
CookieLocaleResolver.

•	 SessionLocaleResolver: This will keep a locale attribute 
in the user’s HTTP session, so as long as the user’s HTTP 
session is active, the locale used for this user will be the one 
specified in the HTTP session locale attribute.

•	 CookieLocaleResolver: This uses a cookie sent back to 
the user. This option is particularly useful for stateless 
applications that don’t use HTTP sessions.

In the previous configuration, LocaleChangeInterceptor will intercept each 
request to check whether there is a lang parameter present. Suppose that a GET 
request is fired with the lang=pt parameter. Basically, this interceptor would 
intercept this request, set the user’s locale to pt (Portuguese), and store it in the 
user’s HTTP session locale attribute. From now on, all application texts will be 
read from the resource bundle messages_pt.properties.

The following is the code for the menu items. When you click the English 
or Portuguese menu item, a GET request will be fired with the respective param 
attribute (en or pt).

<ul class="dropdown-menu">
  �<li><a  id="english" href="?lang=en" th:text="#{menu.language.
english}">English</a></li>

  �<li><a id="portuguese" href="?lang=pt" th:text="#{menu.language. 
portuguese}">Portuguese</a></li>

</ul>



Chapter 14 ■ Changing the Application Language

85

To read messages from the appropriate resource bundle (based on the locale 
set), Thymeleaf2 can help you with th:text.

<h3 th:text="#{login.title}">Login</h3>

This code means that the value for the key login.title will be shown inside 
the h3 Hypertext Markup Language (HTML) element.

2https://www.thymeleaf.org/

https://www.thymeleaf.org/


87© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_15

CHAPTER 15

Login

Let’s start understanding some Spring Security configurations.

@Configuration
@EnableGlobalMethodSecurity(prePostEnabled = true)
public class WebSecurityConfig extends WebSecurityConfigurerAdapter {
  @Autowired
  private UserDetailsService userDetailsService;

  @Override
  protected void configure(HttpSecurity http) throws Exception {
    http
      .csrf().disable()
      .formLogin()
        .loginProcessingUrl("/login")
        .loginPage("/")
        .defaultSuccessUrl("/chat")
        .and()
      .logout()
        .logoutSuccessUrl("/")
        .and()
      .authorizeRequests()
        .antMatchers("/login", "/new-account", "/").permitAll()
        .antMatchers(HttpMethod.POST,  "/chatroom").hasRole("ADMIN")
        .anyRequest().authenticated();
  }



Chapter 15 ■ Login

88

  @Autowired
  �public void configureGlobal(AuthenticationManagerBuilder auth) 
throws Exception {

    auth
      .userDetailsService(userDetailsService)
      .passwordEncoder(bCryptPasswordEncoder());
  }

  @Bean
  public BCryptPasswordEncoder bCryptPasswordEncoder() {
    return new BCryptPasswordEncoder();
  }
}

In the configure method, everything is done using the HttpSecurity 
object, which provides a fluent interface.1

•	 The authentication will be done by a login web form.

•	 When the form submits a POST to /login, Spring Security 
will take care of the authentication for you.

•	 The login page is the root context, /.

•	 When the login succeeds, the user will be redirected to the 
/chat URI.

•	 The logout URI is /logout, and after the logout action, the 
user will be redirected to the / URI, which is the login page.

•	 The URIs /login, /new-account, and / are allowed for 
everybody (including anonymous users).

•	 A POST to /chatroom (to create a chat room) is allowed 
only by users with the role ROLE_ADMIN.

•	 Any other requests are allowed only by logged-in users.

When the form login is submitted to POST /login, Spring Security will 
intercept the request and query the MySQL instance to fetch the user and check 
whether the provided credentials are correct. However, if you don’t instruct 
Spring on how to do that, things are not going to work. It’s not that magical! That’s 
why you need to implement the UserDetailsService Spring interface to instruct 
Spring on how to do that. Fortunately, as you learned in Chapter 8 in the “Spring 
Data JPA Repositories” section, you are using UserRepository, which already 
provides an easy way to perform User operations against the MySQL instance.

1https://www.martinfowler.com/bliki/FluentInterface.html

http://dx.doi.org/10.1007/978-1-4842-2985-9_8
https://www.martinfowler.com/bliki/FluentInterface.html


Chapter 15 ■ Login

89

@Service
public class UserDetailsServiceImpl implements UserDetailsService {

  @Autowired
  private UserRepository userRepository;

  @Override
  �public UserDetails loadUserByUsername(String username) throws 
UsernameNotFoundException {

    User user = userRepository.findOne(username);

    if (user == null) {
      throw new UsernameNotFoundException("User not found");
    } else {
        �Set<SimpleGrantedAuthority> grantedAuthorities 

= user.getRoles().stream().map(role -> new 
SimpleGrantedAuthority(role.getName())).collect 
(Collectors.toSet());

        �return new org.springframework.security.core.
userdetails.User(user.getUsername(), user.getPassword(), 
grantedAuthorities);

    }
  }
}

In the previous code snippet, UserRepository is used to query the database 
looking for the given username. Note that an instance of the UserDetailsService 
is provided to AuthenticationManagerBuilder in the configuration class.

The BCryptPasswordEncoder component is used to encrypt the user’s 
password using bcrypt.2

 Here, we are disabling cross-site request forgery (CSRF) protection3 to simplify things. 
If you want to enable it, just remove the .csrf().disable() line and add <input 
type="hidden" th:name="${_csrf.parameterName}" th:value="${_csrf.

token}"/> to the HTML forms to send the CSRF token with the form data. Also, if you 
enable it, the /logout will need to be a POST request.

2https://en.wikipedia.org/wiki/Bcrypt
3https://docs.spring.io/spring-security/site/docs/current/reference/
html/csrf.html

https://en.wikipedia.org/wiki/Bcrypt
https://docs.spring.io/spring-security/site/docs/current/reference/html/csrf.html
https://docs.spring.io/spring-security/site/docs/current/reference/html/csrf.html


91© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_16

CHAPTER 16

New Account

The following code is the User class. Along with the attributes declaration, you 
use the Bean Validation1 and Hibernate Validator2 annotations. A valid new user 
must have the following:

•	 username: This must not be empty and must have between 
5 and 15 characters. This field is the user database table’s 
primary key.

•	 password: This must not be empty and must have a 
minimum of five characters.

•	 name: This must not be empty.

•	 email: This must not be empty and must be a valid e-mail 
address.

@Entity
@Table(name = "user")
public class User {
  @Id
  @NotEmpty
  @Size(min = 5, max = 15)
  private String username;

  @NotEmpty
  @Size(min = 5)
  private String password;

1http://beanvalidation.org/1.1/spec/
2http://hibernate.org/validator/

http://beanvalidation.org/1.1/spec/
http://beanvalidation.org/1.1/spec/
http://hibernate.org/validator/


Chapter 16 ■ New Account

92

  @NotEmpty
  private String name;

  @Email
  @NotEmpty
  private String email;

  @ManyToMany(fetch=FetchType.EAGER)
  @JoinTable(name = "user_role",
             joinColumns = @JoinColumn(name = "username"),
             inverseJoinColumns = @JoinColumn(name = "role_id"))
  private Set<Role> roles = new HashSet<>();
  ...
}

In addition to these simple validations, you must be sure that the provided 
username doesn’t exist. For this, you create a custom Spring validator.

@Component
public class NewUserValidator implements Validator {
  @Autowired
  private UserRepository userRepository;

  @Override
  public boolean supports(Class<?> clazz) {
    return User.class.isAssignableFrom(clazz);
  }

  @Override
  public void validate(Object target, Errors errors) {
    User newUser = (User) target;
    if (userRepository.exists(newUser.getUsername())) {
      �errors.rejectValue("username", "new.account.username.already.

exists");
    }
  }
}

Basically, NewUserValidator implements the Validator Spring interface 
and uses UserRepository to query the database to check whether the username 
already exists. If it exists, then a new error is added to the Errors object.



Chapter 16 ■ New Account

93

 Note that the added error contains the key of the error message, which is  

new.account.username.already.exists. You can check its value in the appendix.

Once the form in new-account.html is submitted, the createAccount 
method is called in AuthenticationController.

@Controller
public class AuthenticationController {
  @Autowired
  private UserService userService;

  @Autowired
  private NewUserValidator newUserValidator;

  @InitBinder
  protected void initBinder(WebDataBinder binder) {
   binder.addValidators(newUserValidator);
  }

  �@RequestMapping(path = "/new-account", method = RequestMethod.
POST)

  �public String createAccount(@Valid User user, BindingResult 
bindingResult) {

    if (bindingResult.hasErrors()) {
      return "new-account";
    }
    userService.createUser(user);
    return "redirect:/";
  }
}

Note that you added NewUserValidator to the validators. This makes Spring 
use your custom validator as well as the simple validations in the User class 
against the new User object annotated with @Valid. If there are any errors, 
the user is redirected to the new account form and the errors are shown, as in 
Figure 16-1.



Chapter 16 ■ New Account

94

To automatically display the error messages in the page, Thymeleaf provides 
th:errors.

<div class="form-group">
    <label for="username"
            th:text="#{new.account.username}">
            Username
    </label>
    <div>
         <input th:field="${user.username}"
                type="text"
                id="username"
                name="username"
                th:placeholder="#{new.account.your.username}" />
         <div th:errors="*{username}">Error</div>
    </div>
</div>

Figure 16-1.  Validations



Chapter 16 ■ New Account

95

When everything is correct with the submitted user, then userService.
createUser(user) is called.

@Service
public class DefaultUserService implements UserService {
  @Autowired
  private UserRepository userRepository;

  @Autowired
  private RoleRepository roleRepository;

  @Autowired
  private BCryptPasswordEncoder bCryptPasswordEncoder;

  @Override
  @Transactional
  public User createUser(User user) {
    �user.setPassword(bCryptPasswordEncoder.encode(user.

getPassword()));
    Role userRole = roleRepository.findByName("ROLE_USER");
    user.addRoles(Arrays.asList(userRole));
    return userRepository.save(user);
  }
}

Essentially, this method encrypts the user’s password using the 
BCryptPasswordEncoder component, attaches the ROLE_USER role to its roles, 
and saves the user into the database. As ROLE_USER does not allow you to create 
new chat rooms, every new user will not be able to use this feature.



97© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_17

CHAPTER 17

New Chat Room

In this chapter, I illustrate how easy it is to work with REST endpoints in Spring 
MVC.

On the client side, you just create a JavaScript object called newChatRoom, 
convert it to JSON format, and send a POST request to the /chatroom endpoint. 
If it succeeds, then the success callback is called, and it appends the new chat 
room to the grid by manipulating the Document Object Model1 (DOM).

function createNewChatRoom() {
  var newChatRoom = {
    'name' : txtNewChatRoomName.val(),
    'description' : txtNewChatRoomDescription.val()
  };

  $.ajax({
    type : "POST",
    url : "/chatroom",
    data : JSON.stringify(newChatRoom),
    contentType : "application/json",
    success : function(chatRoom) {
          //append chat room to the grid
    },
  });
}

1https://www.w3schools.com/js/js_htmldom.asp

https://www.w3schools.com/js/js_htmldom.asp


Chapter 17 ■ New Chat Room

98

17.1  Secured REST Endpoints with Spring MVC 
and Spring Security
Spring MVC will first convert the JSON in the HTTP request body (that’s 
why you use the @RequestBody annotation) to the chatroom object and call 
the createChatRoom method. This method will use the chatRoomService 
component to save the chatroom object in Redis. After that, the createChatRoom 
method will convert the new chatroom object into a JSON representation and 
append it to the HTTP response body (that’s why you used the @ResponseBody 
annotation) along with an HTTP 201 CREATED status code.

 Note that by using the @Secured("ROLE_ADMIN") annotation, you tell Spring 
Security to allow only logged-in users with the role ROLE_ADMIN to consume this 
endpoint. Otherwise, it will automatically send a 403 FORBIDDEN status code to the 
client.

@Controller
public class ChatRoomController {
  @Autowired
  private ChatRoomService chatRoomService;

  @Secured("ROLE_ADMIN")
  @RequestMapping(path = "/chatroom", method = RequestMethod.POST)
  @ResponseBody
  @ResponseStatus(code = HttpStatus.CREATED)
  public ChatRoom createChatRoom(@RequestBody ChatRoom chatRoom) {
    return chatRoomService.save(chatRoom);
  }
}

@Service
public class RedisChatRoomService implements ChatRoomService {
  @Autowired
  private ChatRoomRepository chatRoomRepository;

  @Override
  public ChatRoom save(ChatRoom chatRoom) {
    return chatRoomRepository.save(chatRoom);
  }
}



99© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_18

CHAPTER 18

Joining the Chat Room

When you join a chat room, some JavaScript code gets executed on the client side.

function connect() {
  socket = new SockJS('/ws');
  stompClient = Stomp.over(socket);
  �stompClient.connect({ 'chatRoomId' : chatRoomId }, stompSuccess, 
stompFailure);

}

function stompSuccess(frame) {
  enableInputMessage();
  �successMessage("Your WebSocket connection was successfully 
established!")

  �stompClient.subscribe('/chatroom/connected.users', 
updateConnectedUsers);

  stompClient.subscribe('/chatroom/old.messages',  oldMessages);

  �stompClient.subscribe('/topic/' + chatRoomId + '.public.messages', 
publicMessages);

  �stompClient.subscribe('/user/queue/' + chatRoomId + '.private.
messages', privateMessages);

  �stompClient.subscribe('/topic/' + chatRoomId + '.connected.users', 
updateConnectedUsers);

}

function stompFailure(error) {
  �errorMessage("Lost connection to WebSocket! Reconnecting in 
10 seconds...");

  disableInputMessage();
  setTimeout(connect, 10000);
}



Chapter 18 ■ Joining the Chat Room

100

First, the connect function is called, and a new WebSocket connection 
is started using STOMP as a subprotocol. Note that you also add the header 
'chatRoomId' : chatRoomId when you send the CONNECT frame because the 
server must keep this information to ensure that it’s manipulating the correct 
destination names.

If the handshake succeeds, then the stompSuccess function is called, and 
the user subscribes to some destinations. Actually, the first two subscriptions are 
executed only once on the server side, and they are used to get some initial data, 
that is, his old conversation and the current connected users to this specific chat 
room. This is the Java code executed when these two subscriptions happen:

@Controller
public class ChatRoomController {
  @Autowired
  private ChatRoomService chatRoomService;

  @Autowired
  private InstantMessageService instantMessageService;

  @SubscribeMapping("/connected.users")
  �public List<ChatRoomUser> listChatRoomConnectedUsersOnSubscribe 
(SimpMessageHeaderAccessor headerAccessor) {

    �String chatRoomId = headerAccessor.getSessionAttributes().get 
("chatRoomId").toString();

    return chatRoomService.findById(chatRoomId).getConnectedUsers();
  }

  @SubscribeMapping("/old.messages")
  �public List<InstantMessage> listOldMessagesFromUserOnSubscribe 
(Principal principal, SimpMessageHeaderAccessor headerAccessor) {

    �String chatRoomId = headerAccessor.getSessionAttributes().get 
("chatRoomId").toString();

    �return instantMessageService.findAllInstantMessagesFor 
(principal.getName(), chatRoomId);

  }
  ...
}



Chapter 18 ■ Joining the Chat Room

101

 The List<ChatRoomUser> list is fetched from Redis, and the 

List<InstantMessage> list is fetched from Cassandra.

 The @SubscribeMapping annotation is useful when users need to fetch the 

initial data using the WebSocket connection.

The last three subscriptions in the JavaScript code are the following, 
respectively:

•	 Execute the publicMessages function when a new message 
arrives at the '/topic/' + chatRoomId + '.public.
messages' destination. This function will render a public 
message in the user’s message panel.

•	 Execute the privateMessages function when a new 
message arrives at the '/user/queue/' + chatRoomId 
+ '.private.messages' destination. This function will 
render a private message in the user’s message panel.

•	 Execute the updateConnectedUsers function when a 
new message arrives at the '/topic/' + chatRoomId + 
'.connected.users' destination. This function will update 
the connected users in the user’s connected users panel.

18.1 � WebSocket Reconnection Strategy
When the WebSocket connection is lost, the stompFailure function is executed, 
and it will try to reestablish the connection every ten seconds. If it succeeds, then 
everything explained earlier happens again. Because every message is stored in 
Cassandra (regardless of being delivered through the WebSocket connection), 
even if the user was offline while someone sent a message to him, when the user 
reconnects, the message will be in the List<InstantMessage> list and will be 
displayed in the user’s message panel.

18.2 � WebSocket Events
Once the WebSocket connection is established or disconnected, an event is 
triggered on the server side, and a system message is sent to every connected user 
in the chat room informing them that someone has joined or left (Figure 18-1).



Chapter 18 ■ Joining the Chat Room

102

The following is the code that handles these events on the server side:

@Component
public class WebSocketEvents {
  @Autowired
  private ChatRoomService chatRoomService;

  @EventListener
  private void handleSessionConnected(SessionConnectEvent event) {
    �SimpMessageHeaderAccessor headers = SimpMessageHeaderAccessor.

wrap(event.getMessage());
    �String chatRoomId = headers.getNativeHeader("chatRoomId").

get(0);
    headers.getSessionAttributes().put("chatRoomId", chatRoomId);
    �ChatRoomUser joiningUser = new ChatRoomUser(event.getUser().

getName());

    �chatRoomService.join(joiningUser, chatRoomService.
findById(chatRoomId));

  }

Figure 18-1.  System messages from admin



Chapter 18 ■ Joining the Chat Room

103

  @EventListener
  private void handleSessionDisconnect(SessionDisconnectEvent event) {
    �SimpMessageHeaderAccessor headers = SimpMessageHeaderAccessor.

wrap(event.getMessage());
    �String chatRoomId = headers.getSessionAttributes().

get("chatRoomId").toString();
    �ChatRoomUser leavingUser = new ChatRoomUser(event.getUser().

getName());

    �chatRoomService.leave(leavingUser, chatRoomService.
findById(chatRoomId));

  }
}

Let’s take the SessionConnected event as an example and follow the entire 
flow.

The handleSessionConnected method is called when a WebSocket connection 
is created. Then, the chatRoomId value is obtained from the CONNECT frame headers, 
and it’s stored in the user’s WebSocket session as an attribute. This is convenient 
since from now every message the client sends doesn’t need to provide the 
chatRoomId value, as it’s already stored in the user’s WebSocket session. Then, the 
join method is called, passing joiningUser and chatRoom as parameters.

@Service
public class RedisChatRoomService implements ChatRoomService {
  @Autowired
  private SimpMessagingTemplate webSocketMessagingTemplate;

  @Autowired
  private ChatRoomRepository chatRoomRepository;

  @Autowired
  private InstantMessageService instantMessageService;

  @Override
  public ChatRoom join(ChatRoomUser joiningUser, ChatRoom chatRoom) {
    chatRoom.addUser(joiningUser);
    chatRoomRepository.save(chatRoom);

    �sendPublicMessage(SystemMessages.welcome(chatRoom.getId(), 
joiningUser.getUsername()));

    updateConnectedUsersViaWebSocket(chatRoom);
    return chatRoom;
  }



Chapter 18 ■ Joining the Chat Room

104

  @Override
  public ChatRoom leave(ChatRoomUser leavingUser, ChatRoom chatRoom) {
    �sendPublicMessage(SystemMessages.goodbye(chatRoom.getId(), 

leavingUser.getUsername()));

    �chatRoom.removeUser(leavingUser);  
chatRoomRepository.save(chatRoom);

    updateConnectedUsersViaWebSocket(chatRoom);
    return chatRoom;
  }

  @Override
  public void sendPublicMessage(InstantMessage instantMessage) {
    webSocketMessagingTemplate.convertAndSend(
        �Destinations.ChatRoom.publicMessages(instantMessage.

getChatRoomId()), instantMessage);

    �instantMessageService.appendInstantMessageToConversations 
(instantMessage);

  }

  private void updateConnectedUsersViaWebSocket(ChatRoom chatRoom) {
    webSocketMessagingTemplate.convertAndSend(
        Destinations.ChatRoom.connectedUsers(chatRoom.getId()),
        chatRoom.getConnectedUsers());
  }
}

18.2.1 � Send Public System Messages over WebSocket
Let’s examine the join method now. First it adds the user to the chatRoom object 
and persists it in Redis; then it calls the sendPublicMessage method that uses 
SimpMessagingTemplate (that you’ve already used before in this book) and sends 
a public welcome message as the admin user. Every connected user is able to 
receive this message because it’s sent to the '/topic/' + chatRoomId +  
'.public.messages' destination, which is one of the subscriptions that 
happens when a user establishes the WebSocket connection. Then, it calls the 
appendInstantMessageToConversations method in the InstantMessageService 
component, which is responsible for storing the message to the users’ 
conversations in Cassandra. Here is the code for this method:



Chapter 18 ■ Joining the Chat Room

105

@Service
public class CassandraInstantMessageService implements 
InstantMessageService {

  @Autowired
  private InstantMessageRepository instantMessageRepository;

  @Autowired
  private ChatRoomService chatRoomService;

  @Override
  �public void appendInstantMessageToConversations(InstantMessage 
instantMessage) {

    if (instantMessage.isFromAdmin() || instantMessage.isPublic()) {
      �ChatRoom chatRoom = chatRoomService.findById(instantMessage.

getChatRoomId());

      chatRoom.getConnectedUsers().forEach(connectedUser -> {
        instantMessage.setUsername(connectedUser.getUsername());
        instantMessageRepository.save(instantMessage);
      });
    } else {
      �instantMessage.setUsername(instantMessage.getFromUser());
      instantMessageRepository.save(instantMessage);

      �instantMessage.setUsername(instantMessage.getToUser());
      instantMessageRepository.save(instantMessage);
    }
  }

  @Override
  �public List<InstantMessage> findAllInstantMessagesFor(String 
username, String chatRoomId) {

    �return instantMessageRepository.findInstantMessagesByUsernameAnd
ChatRoomId(username, chatRoomId);

  }
}

This code essentially saves in Cassandra the message for the involved users. 
For example, if you send a private message to me, this method will append the 
message to my conversation and to yours. But if you send a public message, then 
this method will append the message to each connected user’s conversation.

Finally, it calls the updateConnectedUsersViaWebSocket method, which 
also sends a public message to the '/topic/' + chatRoomId + '.connected.
users' destination. As all users have a subscription to this destination, they are 
able to receive the message and update their connected users panel.

Essentially, the same flow occurs when a user leaves the chat room.



107© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_19

CHAPTER 19

Sending a User’s Public 
Messages over WebSocket

When the client sends a public message in the chat room, the sendMessage 
JavaScript function is called. Essentially, it converts the instantMessage 
JavaScript object into a JSON representation and sends the message to the 
application destination /chatroom/send.message.

function sendMessage() {
  var instantMessage;

  if (spanSendTo.text() == "public") {
    instantMessage = {
      'text' : inputMessage.val()
    }
  } else {
    instantMessage = {
      'text' : inputMessage.val(),
      'toUser' : spanSendTo.text()
    }
  }
  �stompClient.send("/chatroom/send.message",  {},  JSON.stringify 
(instantMessage));

  inputMessage.val("").focus();
}

 Refer to the “Message Flow Using a Simple Broker” section in Chapter 10 for 
details of how the messages are routed based on destination names.

http://dx.doi.org/10.1007/978-1-4842-2985-9_10


Chapter 19 ■ Sending a User’s Public Messages over WebSocket

108

In the ChatRoomController Java class, the method sendMessage is called, 
and the instantMessage object has the fromUser and chatRoomId fields set. 
Then, the chatRoomService object is called to send a private or public message. 
In this case, the instantMessage.isPublic() method will return true, so a 
public message will be sent.

@Controller
public class ChatRoomController {
  @Autowired
  private ChatRoomService chatRoomService;

  @MessageMapping("/send.message")
  �public void sendMessage(@Payload InstantMessage instantMessage, 
Principal principal, SimpMessageHeaderAccessor headerAccessor) {

    �String chatRoomId = headerAccessor.getSessionAttributes().
get("chatRoomId").toString();

    instantMessage.setFromUser(principal.getName());
    instantMessage.setChatRoomId(chatRoomId);

    if (instantMessage.isPublic()) {
      chatRoomService.sendPublicMessage(instantMessage);
    } else {
      chatRoomService.sendPrivateMessage(instantMessage);
    }
  }
}

The sendPublicMessage method in the ChatRoomService class was already 
explained in the “Send Public System Messages over WebSocket” section of 
Chapter 18.

http://dx.doi.org/10.1007/978-1-4842-2985-9_18


109© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_20

CHAPTER 20

Sending a User’s Private 
Messages over WebSocket

Sending private messages can be a little bit trickier than sending public ones. 
Let’s take a look at the JavaScript code, shown here:

function sendMessage() {
  var instantMessage;

  if (spanSendTo.text() == "public") {
    instantMessage = {
      'text' : inputMessage.val()
    }
  } else {
    instantMessage = {
      'text' : inputMessage.val(),
      'toUser' : spanSendTo.text()
    }
  }
  �stompClient.send("/chatroom/send.message", {}, JSON.stringify 
(instantMessage));

  inputMessage.val("").focus();
}

When the client sends a private message in the chat room, the sendMessage 
JavaScript function is called. Essentially, it converts the instantMessage 
JavaScript object into a JSON representation and sends the message to the 
application destination /chatroom/send.message, which is the same destination 
used for sending a user’s public messages.



Chapter 20 ■ Sending a User’s Private Messages over WebSocket

110

@Controller
public class ChatRoomController {
  @Autowired
  private ChatRoomService chatRoomService;

  @MessageMapping("/send.message")
  �public void sendMessage(@Payload InstantMessage instantMessage, 
Principal principal, SimpMessageHeaderAccessor headerAccessor) {

    �String chatRoomId = headerAccessor.getSessionAttributes().
get("chatRoomId").toString();

    instantMessage.setFromUser(principal.getName());
    instantMessage.setChatRoomId(chatRoomId);

    if (instantMessage.isPublic()) {
      chatRoomService.sendPublicMessage(instantMessage);
    } else {
      chatRoomService.sendPrivateMessage(instantMessage);
    }
  }
}

In the ChatRoomController Java class, the method sendMessage is called, 
and the instantMessage object has the fromUser and chatRoomId fields set. 
Then, the chatRoomService is called to send a private or a public message. In 
this case, the instantMessage.isPublic() method returns false, so a private 
message will be sent.

@Service
public class RedisChatRoomService implements ChatRoomService {
  @Autowired
  private SimpMessagingTemplate webSocketMessagingTemplate;

  @Autowired
  private InstantMessageService instantMessageService;

  @Override
  public void sendPrivateMessage(InstantMessage instantMessage) {
    webSocketMessagingTemplate.convertAndSendToUser(
        instantMessage.getToUser(),
        �Destinations.ChatRoom.privateMessages(instantMessage.

getChatRoomId()), instantMessage);



Chapter 20 ■ Sending a User’s Private Messages over WebSocket

111

    webSocketMessagingTemplate.convertAndSendToUser(
        instantMessage.getFromUser(),
        �Destinations.ChatRoom.privateMessages(instantMessage.

getChatRoomId()), instantMessage);

    �instantMessageService.appendInstantMessageToConversations 
(instantMessage);

  }
}

If you look closely at Destinations.ChatRoom.privateMessages 
(instantMessage.getChatRoomId()), you will see that this static method will 
return a String that represents the user’s private messages destination. For 
example, for a chat room with an ID of AG1XX5, it would be something like /
queue/AG1XX5.private.messages.

When the convertAndSendToUser method is invoked, it receives the target 
username (the user’s username that will receive the private message), the 
destination, and the instantMessage itself. The question now is, how can Spring 
can send a message to a specific user if the destination /queue/AG1XX5.private.
messages says nothing about the target user? In fact, every different user who 
sends a private message will have this same destination name, right?

Well, Spring is smart, and behind the scenes 
UserDestinationMessageHandler will append to this destination the target 
user’s WebSocket session ID. Then, if the WebSocket session ID for the target 
user is user123, the destination will be transformed into /queue/AG1XX5.
private.messages-user123, and the message will be sent to it.

Now, for the user to receive this private message, the user must be 
subscribed to this destination. Let’s check the JavaScript subscriptions code 
and find out whether the user is subscribed to the /queue/AG1XX5.private.
messages-user123 destination.

function connect() {
  socket = new SockJS('/ws');
  stompClient = Stomp.over(socket);
  �stompClient.connect({ 'chatRoomId' : chatRoomId }, stompSuccess, 
stompFailure);

}

function stompSuccess(frame) {
  ...
  �stompClient.subscribe('/user/queue/' + chatRoomId + '.private.
messages', privateMessages);

  ...
}



Chapter 20 ■ Sending a User’s Private Messages over WebSocket

112

No! There is no subscription to this destination. That’s weird! Well, 
actually when Spring detects a subscription with the prefix /user/, 
UserDestinationMessageHandler will again append the WebSocket session ID 
to the destination name and remove /user from it. So, in the end, the user will 
be subscribing to the /queue/AG1XX5.private.messages-user123 destination 
instead of /user/queue/AG1XX5.private.messages.

Well, if the user is subscribed to this destination, then he will be able to 
receive the private message. Voilà!

The question now is, why does Spring perform this magic for you? Well, 
if you want to send a private message to a user, you must know exactly which 
destination name the user is subscribed to, right? In addition, the destination 
name must be unique, so to get this guarantee, the WebSocket session ID is 
used. Is it convenient to have to know the user’s WebSocket session ID in order 
to send a private message to him? I think you will agree with me…no! That’s why 
Spring does this “translation” for you. It’s able to retrieve the WebSocket session 
ID from the user’s username. This allows you to send a private message to a 
specific user from any part of the system just by making a call like this:

simpMessagingTemplate.convertAndSendToUser(
    "target_username_here",
    "/queue/AG1XX5.private.messages"),
    instantMessage);



PART 4

Testing the Code

In this part of the book, you will learn about the importance of testing your 
applications and how crucial it is for implementing continuous delivery. 
In addition, I will discuss the test code for unit and integration tests.

 This book is not intended to teach the basics of JUnit or define mocks, 

stubs, and so on. Instead, I’ll discuss the test code written in the chat 
application (as I did in Part 3, “Code by Feature”).

 I’ll show only a few examples of unit and integration tests. Please clone 

the GitHub chat app repository1 to read and run all the implemented tests.

1https://github.com/jorgeacetozi/ebook-chat-app-spring-websocket-cassandra- 
redis-rabbitmq



115© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_21

CHAPTER 21

Lazy Deployments vs.  
Fast Deployments

Perhaps you’ve worked for a company where the deployment process to the 
production environment was very lazy. That is, it took many days or sometimes 
even months to happen. Believe it or not, in practice it’s not that difficult to find 
these scenarios.

In short, this kind of problem is often the root cause of a software project 
failure. That’s because taking such a long period of time to deploy a new release 
to production has many disadvantages.

•	 Clients will not be happy with features that would add 
value to their business being on the developers’ machines 
instead of in production.

•	 The new version will have a lot of new code because 
developers were working on new features for a long 
period of time, probably introducing many bugs to the 
application at once. This makes it even harder to fix them 
(and other) bugs.

•	 The team will not be able to fix critical bugs and deliver 
the software because of the amount of time taken between 
deployments.

•	 Developers will work hard and will not see their code in 
production. This is really discouraging.

As you can see, there are quite a lot of reasons not to have a lazy deployment 
process.



Chapter 21 ■ Lazy Deployments vs. Fast Deployments 

116

 I recommend the book Continuous Delivery from Jez Humble and David Farley 
(Addison-Wesley, 2010) for an excellent introduction to the amazing world of 
continuous delivery.

By contrast, the ability to deliver code to production in a matter of hours or 
even minutes brings a lot of benefits, including the following:

•	 You will have happy clients using new features every week, 
perhaps every day, and increasing value to their business.

•	 You get low-risk releases. Each new release includes only a 
small feature. If something goes wrong, it’s much easier to 
find and fix it. This obviously implies lower costs as well.

•	 Bug fixes are delivered very quickly.

•	 Happy developers see their jobs adding value to other 
people.

As you can see, there are many good reasons to release new versions to 
production as soon as possible.



117© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_22

CHAPTER 22

Continuous Delivery

Continuous delivery is the ability to deliver changes (such as new features, 
configuration changes, bug fixes, and so on) into production safely and quickly 
in a sustainable way.

Of course, achieving this comes at a price. The entire delivery process 
(from development to production) must be highly automated. Remember, 
humans are good at creative tasks but horrible at repetitive tasks. Machines 
are horrible at creative tasks but excellent at repetitive tasks. Why not take 
advantage of both humans and machines? In other words, let humans and 
machines do what they do best!

Testing is a repetitive, difficult, and boring task. Humans are not able to test 
thousands of use cases without making mistakes. Machines are. Also, machines 
can accomplish a testing task in seconds or minutes, while humans can spend 
entire days doing it. This also means that replacing humans with machines on 
these kinds of tasks is cheaper.

Having humans testing your software or manually involved in any task 
that could have been automated is something that just doesn’t fit in with 
the continuous delivery of software to production. If you want to implement 
continuous delivery, automation is key!

Can you see now why automated tests are so important? I would say that 
they’re a sort of prerequisite for implementing continuous delivery with high-
quality releases. Implementing continuous delivery without good automated 
tests will result in delivering terrible-quality code to production quickly. Is that 
what you want? Definitely, no!



119© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_23

CHAPTER 23

Types of Automated Tests

There are lots of types of automated tests that can be coded. All of them have 
their strengths and weaknesses. The following are the most common ones:

•	 Unit tests: These provide fast feedback, but they test only 
an isolated unit of code (say, a method in a class). For 
example, an issue with a SQL query would not be caught 
since a unit test would not hit the database. Unit tests 
usually are executed in seconds or even milliseconds.

•	 Integration tests: These provide slower feedback, but they 
include testing the external integrations such as databases 
or web services. That is, they are more comprehensive than 
unit tests. (This doesn’t mean they are better! Be careful 
here; remember that every type of test has its own strengths 
and weaknesses.) Usually, integration tests are executed 
in minutes, but the time may vary a lot depending on the 
number of tests to be run.

•	 Acceptance tests: These provide even slower feedback than 
integration tests, but they actually simulate a user in the 
system using the browser and clicking buttons and links, 
filling in and submitting forms, and so on. Usually they are 
executed in minutes, but the time may vary a lot depending 
on the number of tests to be run.

•	 Stress tests: These consist of flooding the system with lots 
of requests to get feedback on how it behaves under these 
conditions.

Usually, unit and integration tests are most often used. Together, they cover 
a lot of scenarios and avoid many application issues. Also, they are easier to code 
than the other types of tests (considering that stress tests should run in a similar 
production environment, etc.).



Chapter 23 ■ Types of Automated Tests

120

 Actually, there are even more types of automated tests, such as security tests, 
that could be added to your application’s automated test suite. The Open Web 
Application Security Project1 (OWASP) is an online community that creates freely 
available articles, methodologies, documentation, tools, and technologies in the field 
of web application security. For example, the OWASP Zed Attack Proxy2 (ZAP) is one 
of the world’s most popular free security tools and is actively maintained by 
hundreds of international volunteers. This tool can help you automatically find 
security vulnerabilities in your web applications and can be easily integrated into 
your continuous delivery pipeline (it even has a Jenkins plug-in3 available).

1https://www.owasp.org/index.php/Main_Page
2https://github.com/zaproxy/zaproxy
3https://wiki.jenkins.io/display/JENKINS/zap+plugin

https://www.owasp.org/index.php/Main_Page
https://github.com/zaproxy/zaproxy
https://wiki.jenkins.io/display/JENKINS/zap+plugin


121© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_24

CHAPTER 24

Unit Tests

Unit tests provide fast feedback, but they test only an isolated unit of code  
(a method in a class, for example). In the chat application, I write unit tests using 
JUnit1 along with Mockito2 and Hamcrest.3

24.1 � InstantMessageBuilderTest.java
The InstantMessageBuilderTest.java class tests the InstantMessageBuilder 
class, which implements a builder pattern4 to provide a chain of methods 
responsible for simplifying the creation of a new InstantMessage object.

public class InstantMessageBuilderTest {
  private final String chatRoomId = "123";
  private final String fromUser = "jorge_acetozi";
  private final String toUser = "michael_romeo";
  �private final String publicMessageText = "Hello guys... I hope you 
are enjoying my eBook!";

  �private final String privateMessageText = "I'm listening to 
Symphony X right now!";

  �private final String systemMessageText = "This is a system message 
from admin user!";

1http://junit.org/junit4/
2http://site.mockito.org/
3http://hamcrest.org/
4https://en.wikipedia.org/wiki/Builder_pattern

http://junit.org/junit4/
http://site.mockito.org/
http://hamcrest.org/
https://en.wikipedia.org/wiki/Builder_pattern


Chapter 24 ■ Unit Tests

122

  @Test
  public void shouldCreatePublicInstantMessage() {
    InstantMessage publicMessage = new InstantMessageBuilder()
                .newMessage()
                .withChatRoomId(chatRoomId)
                .publicMessage()
                .fromUser(fromUser)
                .withText(publicMessageText);

    assertThat(publicMessage.isPublic(), is(true));
    assertThat(publicMessage.isFromAdmin(), is(false));
    assertThat(publicMessage.getChatRoomId(), is(chatRoomId));
    assertThat(publicMessage.getFromUser(), is(fromUser));
    assertThat(publicMessage.getToUser(), is(nullValue()));
    assertThat(publicMessage.getText(), is(publicMessageText));
  }

  @Test
  public void shouldCreatePrivateInstantMessage() {
    InstantMessage privateMessage = new InstantMessageBuilder()
                .newMessage()
                .withChatRoomId(chatRoomId)
                .privateMessage()
                .toUser(toUser)
                .fromUser(fromUser).
                withText(privateMessageText);

    assertThat(privateMessage.isPublic(), is(false));
    assertThat(privateMessage.isFromAdmin(), is(false));
    assertThat(privateMessage.getChatRoomId(), is(chatRoomId));
    assertThat(privateMessage.getFromUser(), is(fromUser));
    assertThat(privateMessage.getToUser(), is(toUser));
    assertThat(privateMessage.getText(), is(privateMessageText));
  }

  @Test
  public void shouldCreateSystemInstantMessage() {
    InstantMessage systemMessage = new InstantMessageBuilder()
                .newMessage()
                .withChatRoomId(chatRoomId)
                .systemMessage()
                .withText(systemMessageText);



Chapter 24 ■ Unit Tests

123

    assertThat(systemMessage.isPublic(), is(true));
    assertThat(systemMessage.isFromAdmin(), is(true));
    assertThat(systemMessage.getChatRoomId(), is(chatRoomId));
    �assertThat(systemMessage.getFromUser(), is(SystemUsers.ADMIN.

getUsername()));
    assertThat(systemMessage.getToUser(), is(nullValue()));
    assertThat(systemMessage.getText(),  is(systemMessageText));
  }
}

The tests become really easy to read when you use Hamcrest 
matchers. For example, in shouldCreatePublicInstantMessage, you 
use InstantMessageBuilder to build a public message. A message 
is considered to be public when the toUser field is null. However, in 
shouldCreatePrivateInstantMessage, the toUser field cannot be null.

In shouldCreateSystemInstantMessage, you check that every system 
message is public and is from a user whose username is admin.

24.2 � DestinationsTest.java
The DestinationsTest.java class tests the Destinations class, which provides 
some static methods that return the destination names for subscribing to 
public messages, private messages, or connected users in a chat room. These 
tests are important because if someone changes the Destination class (even 
accidentally), all the chat room features will stop working.

public class DestinationsTest {
  private final String chatRoomId = "123";

  @Test
  public void shouldGetPublicMessagesDestination() {
    �assertThat(Destinations.ChatRoom.publicMessages("123"),  

is("/topic/" + chatRoomId + ".public.messages"));
  }

  @Test
  public void shouldGetPrivateMessagesDestination() {
    �assertThat(Destinations.ChatRoom.privateMessages("123"),  

is("/queue/" + chatRoomId + ".private.messages"));
  }



Chapter 24 ■ Unit Tests

124

  @Test
  public void shouldGetConnectedUsersDestination() {
    �assertThat(Destinations.ChatRoom.connectedUsers("123"),  

is("/topic/" + chatRoomId + ".connected.users"));
  }
}

Basically, this class tests only if the destination names are /topic/123.
public.messages, /queue/123.private.messages, and /topic/123.
connected.users, respectively, for a given chat room ID equal to 123.

24.3 � RedisChatRoomServiceTest.java
The RedisChatRoomServiceTest.java class tests the RedisChatRoomService 
class, which provides methods for chat room operations.

@RunWith(MockitoJUnitRunner.class)
public class RedisChatRoomServiceTest {
  �@InjectMocks private ChatRoomService chatRoomService = new 
RedisChatRoomService();

  @Mock private SimpMessagingTemplate webSocketMessagingTemplate;
  @Mock private InstantMessageService instantMessageService;
  @Captor private ArgumentCaptor<String> destinationCaptor;
  �@Captor private ArgumentCaptor<InstantMessage> instantMessageCaptor;
  @Captor private ArgumentCaptor<Object> messageObjectCaptor;

  @Test
  public void shouldSendPublicMessage() {
    �ChatRoom chatRoom = new ChatRoom("123", "Dream Theater", 

"Discuss about best band ever!");
    ChatRoomUser user = new ChatRoomUser("jorge_acetozi");
    chatRoom.addUser(user);

    assertThat(chatRoom.getNumberOfConnectedUsers(), is(1));

    InstantMessage publicMessage = new InstantMessageBuilder()
        .newMessage()
        .withChatRoomId(chatRoom.getId())
        .publicMessage()
        .fromUser(user.getUsername())
        .withText("This is a public message!");



Chapter 24 ■ Unit Tests

125

    chatRoomService.sendPublicMessage(publicMessage);

    verify(webSocketMessagingTemplate, times(1))
        .convertAndSend(
            destinationCaptor.capture(),
            messageObjectCaptor.capture());

    verify(instantMessageService, times(1))
        �.appendInstantMessageToConversations(instantMessageCaptor.

capture());

    String sentDestination = destinationCaptor.getValue();
    �InstantMessage sentMessage = (InstantMessage) 

messageObjectCaptor.getValue();
    �InstantMessage instantMessageToBeAppendedToConversations = 

instantMessageCaptor.getValue();

    �assertThat(sentDestination, is(Destinations.ChatRoom.
publicMessages(chatRoom.getId())));

    assertEquals(publicMessage, sentMessage);
    �assertEquals(publicMessage, 

instantMessageToBeAppendedToConversations);
  }
}

The test shouldSendPublicMessage starts creating a new chat room and 
adds a new user (username jorge_acetozi) to it; then it creates a public message 
that will be sent from jorge_acetozi and invokes the sendPublicMessage 
method in the chatRoomService method, which is the method you really 
want to test. After this, it verifies that webSocketMessagingTemplate and 
instantMessageService were invoked only once and that the destination 
sent is the “public destination.” It also checks that the sent message is 
the same message that was passed to the sendPublicMessage method 
before and that the public message is the same that was passed to the 
appendInstantMessageToConversations method invocation.



127© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_25

CHAPTER 25

Integration Tests

Integration tests are not as straightforward to code as unit tests because 
they really need to test an entire integration. For example, to test a database 
integration, you would need to set up this database before running the tests.

To address this issue and avoid the overhead of setting up an entire database 
just for executing a simple test, many people run integration tests with an  
in-memory database such as H2.1

The point here is that integration tests are more effective when running  
in an environment similar to the production environment. For example, an  
in-memory database doesn’t have all the features that MySQL has. Some specific 
MySQL functions will not be able to be tested if you are not running a MySQL 
instance, right?

So, to make the environment as similar as possible to production, you 
can use a handy library called testcontainers2 that allows you to create Docker 
containers from inside a JUnit test. This is really good because the tests will run 
against real Cassandra, MySQL, Redis, and RabbitMQ volatile instances.

25.1  Setting Up Dependencies for Starting 
Docker Containers from JUnit
To use testcontainers, first you need to declare the dependency to pom.xml.

<dependency>
  <groupId>org.testcontainers</groupId>
  <artifactId>testcontainers</artifactId>
  <version>1.1.9</version>
</dependency>

1www.h2database.com/
2https://www.testcontainers.org/

http://www.h2database.com/
https://www.testcontainers.org/


Chapter 25 ■ Integration Tests

128

The following code is executed before running the integration tests. 
Basically, it sets up Docker containers for Cassandra, MySQL, Redis, and 
RabbitMQ with STOMP support using the testcontainers library. Note that the 
waitForMysqlContainerStartup method assures that the integration tests will 
be executed only after the MySQL container is ready to receive connections.

public class AbstractIntegrationTest {
  @ClassRule
  �public static final GenericContainer cassandra = new FixedHostPort
GenericContainer("cassandra:3.0")

    .withFixedExposedPort(9042, 9042);

  @ClassRule
  �public static final GenericContainer mysql = new FixedHostPort 
GenericContainer("mysql:5.7")

    .withFixedExposedPort(3306, 3306)
    .withEnv("MYSQL_DATABASE",  "ebook_chat")
    .withEnv("MYSQL_ROOT_PASSWORD",  "root");

  @ClassRule
  �public static final GenericContainer redis = new FixedHostPort 
GenericContainer("redis:3.0.6")

    .withFixedExposedPort(6379, 6379);

  @ClassRule
  �public static final GenericContainer rabbitmq = new FixedHostPort 
GenericContainer("jorgeacetozi/rabbitmq-stomp:3.6")

    .withFixedExposedPort(61613,  61613)
    .withExposedPorts(61613);

  @BeforeClass
  �public static void waitForMysqlContainerStartup() throws 
InterruptedException, TimeoutException {

    WaitingConsumer consumer = new WaitingConsumer();
    mysql.followOutput(consumer);
    consumer.waitUntil(frame ->
      �frame.getUtf8String().contains("mysqld: ready for 

connections."), 90, TimeUnit.SECONDS);
  }
}



Chapter 25 ■ Integration Tests

129

25.2 � JUnit Suites
Setting up Cassandra, MySQL, Redis, and RabbitMQ before every test would 
require a lot of overhead and be time-consuming. To instantiate these 
dependencies only once and use them with all integration tests that are 
executed, you can use a JUnit suite.3 Basically, a JUnit suite is used to aggregate 
tests. In the chat application, there are two suites: UnitTestsSuite.java and 
IntegrationTestsSuite.java. Each one groups all unit and integration tests, 
respectively.

@RunWith(Suite.class)
@Suite.SuiteClasses({
  InstantMessageBuilderTest.class,
  DestinationsTest.class,
  SystemMessagesTest.class,
  RedisChatRoomServiceTest.class
})
public class UnitTestsSuite {

}

@RunWith(Suite.class)
@Suite.SuiteClasses({
  CassandraInstantMessageServiceTest.class,
  RedisChatRoomServiceTest.class,
  DefaultUserServiceTest.class,
  AuthenticationControllerTest.class,
  ChatRoomControllerTest.class
})
public class IntegrationTestsSuite extends AbstractIntegrationTest {

}

These two JUnit suites will help you split unit and integration tests so that 
you can run them on different Maven phases.4

3https://github.com/junit-team/junit4/wiki/aggregating-tests-in-suites
4https://maven.apache.org/guides/introduction/introduction-to-the- 
lifecycle.html

https://github.com/junit-team/junit4/wiki/aggregating-tests-in-suites
https://github.com/junit-team/junit4/wiki/aggregating-tests-in-suites
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html


Chapter 25 ■ Integration Tests

130

25.3 � RedisChatRoomServiceTest.java
The RedisChatRoomServiceTest.java class tests the RedisChatRoomService 
class, which provides methods for chat room operations.

@RunWith(SpringRunner.class)
@EbookChatTest
public class RedisChatRoomServiceTest {
  @Autowired private ChatRoomService chatRoomService;
  @Autowired private ChatRoomRepository chatRoomRepository;
  @Autowired private InstantMessageRepository instantMessageRepository;

  private ChatRoom chatRoom;

  @Before
  public void setup() {
    �chatRoom = new ChatRoom("123", "Dream Theater", "Discuss about 

best band ever!");
    chatRoomService.save(chatRoom);
  }

  @After
  public void destroy() {
    chatRoomRepository.delete(chatRoom);
    instantMessageRepository.deleteAll();
  }

  @Test
  public void shouldJoinUsersToChatRoom() {
    assertThat(chatRoom.getNumberOfConnectedUsers(),  is(0));

    ChatRoomUser jorgeAcetozi = new ChatRoomUser("jorge_acetozi");
    ChatRoomUser johnPetrucci = new ChatRoomUser("john_petrucci");

    chatRoomService.join(jorgeAcetozi,  chatRoom);
    assertThat(chatRoom.getNumberOfConnectedUsers(),  is(1));

    chatRoomService.join(johnPetrucci,  chatRoom);
    assertThat(chatRoom.getNumberOfConnectedUsers(),  is(2));

    �ChatRoom dreamTheaterChatRoom = chatRoomService.
findById(chatRoom.getId());



Chapter 25 ■ Integration Tests

131

    �List<ChatRoomUser> connectedUsers = dreamTheaterChatRoom.
getConnectedUsers();

    assertThat(connectedUsers.contains(jorgeAcetozi), is(true));
    assertThat(connectedUsers.contains(johnPetrucci), is(true));
  }

  @Test
    public void shouldLeaveUsersFromChatRoom() {
    ChatRoomUser jorgeAcetozi = new ChatRoomUser("jorge_acetozi");
    ChatRoomUser johnPetrucci = new ChatRoomUser("john_petrucci");

    chatRoomService.join(jorgeAcetozi, chatRoom);
    chatRoomService.join(johnPetrucci, chatRoom);
    assertThat(chatRoom.getNumberOfConnectedUsers(), is(2));

    chatRoomService.leave(jorgeAcetozi, chatRoom);
    chatRoomService.leave(johnPetrucci, chatRoom);
    assertThat(chatRoom.getNumberOfConnectedUsers(), is(0));
  }
}

Basically, shouldJoinUsersToChatRoom creates two users, jorgeAcetozi 
and johnPetrucci; it joins jorgeAcetozi to the chat room; and it verifies that the 
chat room now has one connected user. After that, it joins johnPetrucci and 
verifies that the chat room now has two connected users. Each of these join calls 
actually hits the Redis instance. Then, it fetches the chat room from Redis and 
verifies that both jorgeAcetozi and johnPetrucci are connected to it.

The shouldLeaveUsersFromChatRoom class has pretty similar logic.

25.4 � ChatRoomControllerTest.java
The ChatRoomControllerTest.java class tests the ChatRoomController class, 
which provides the REST endpoint for creating a new chat room. Basically, in 
these two tests, you want to assure that a user without the ROLE_ADMIN role is not 
able to create a chat room.

@RunWith(SpringRunner.class)
@EbookChatTest
@WebAppConfiguration
public class ChatRoomControllerTest {



Chapter 25 ■ Integration Tests

132

  @Autowired
  private WebApplicationContext wac;

  @Autowired
  private FilterChainProxy springSecurityFilter;

  private MockMvc mockMvc;

  @Before
  public void setup() {
    this.mockMvc = MockMvcBuilders
      .webAppContextSetup(this.wac)
      .addFilter(springSecurityFilter)
      .build();
  }

  @Test
  �public void shouldCreateChatRoomWhenUserHasRoleAdmin() throws 
Exception {

    ChatRoom chatRoom = new ChatRoom("123",
        "Dream Theater",
        "Discuss about best band ever!");

    this.mockMvc.perform(
      post("/chatroom")
            .with(user("admin").roles("ADMIN"))
            .contentType(MediaType.APPLICATION_JSON)
            .content(new ObjectMapper().writeValueAsString(chatRoom))
          )
    .andDo(print())
    .andExpect(status().isCreated())
          .andExpect(jsonPath("$.id",is(chatRoom.getId())))
          .andExpect(jsonPath("$.name",  is(chatRoom.getName())))
          �.andExpect(jsonPath("$.description", is(chatRoom.

getDescription())));
  }

  @Test
  �public void shouldNotCreateChatRoomWhenUserDoesntHaveRoleAdmin() 
throws Exception {



Chapter 25 ■ Integration Tests

133

    �ChatRoom chatRoom = new ChatRoom("123", "Dream Theater", 
"Discuss about best band ever!");

    this.mockMvc.perform(
            post("/chatroom")
            .with(user("xuxa").roles("USER"))
            .contentType(MediaType.APPLICATION_JSON)
            .content(new ObjectMapper().writeValueAsString(chatRoom))
          )
    .andDo(print())
    .andExpect(status().isForbidden());
  }
}

In the shouldCreateChatRoomWhenUserHasRoleAdmin test, the POST request 
to /chatroom is performed by using an admin user, and it asserts that the 
response status code is 201 CREATED and that the HTTP response body contains 
the JSON with the new chat room.

In the shouldNotCreateChatRoomWhenUserDoesntHaveRoleAdmin test, the 
POST request to /chatroom is performed using a user with ROLE_USER, and it 
asserts that the response status code is 403 FORBIDDEN.



135© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_26

CHAPTER 26

Splitting Unit Tests from 
Integration Tests Using 
Maven Plug-ins

Remember from Chapter 23 that different types of tests have different feedback 
levels (and hence different performances)? Let’s verify this in practice now.

Open a terminal window, go to the ebook-chat directory, and issue the 
following command:

$ mvn test

This will execute the class UnitTestsSuite.java, that is, all the unit tests. 
Note how fast it is to execute these unit tests.

Now issue the following command:

$ mvn verify

This will execute both UnitTestsSuite.java and IntegrationTestsSuite.java. 
Note how integration tests take much more time to run.

 This will work only if you followed the steps in Chapter 2. Note that the 
integration tests will start Docker containers for Cassandra, Redis, MySQL, and 
RabbitMQ, so none of these containers must be running on your machine when you 
issue the mvn verify command because that would cause port conflicts.

 You can also run the integration tests by invoking the mvn integration-test 
command.

http://dx.doi.org/10.1007/978-1-4842-2985-9_23
http://dx.doi.org/10.1007/978-1-4842-2985-9_2


Chapter 26 ■ Splitting Unit Tests from Integration Tests Using Maven Plug-ins

136

It may be a good idea to run the unit tests separate from the integration 
tests in some cases. To get faster feedback (when something crashes perhaps) 
while you are writing code, you can run the unit tests as many times as you need 
without “losing time” waiting for integration tests. (Just don’t forget to run both 
the unit and integration tests at least once before committing the code.)

26.1 � Maven Surefire Plug-in
When using Apache Maven to manage the application build life cycle, you can 
use plug-ins to customize the behavior.

 Apache Maven is extensible, so you could even create your own Maven 
plug-in1 if needed.

You can use the Maven Surefire plug-in2 during the Maven test phase of the 
build life cycle to execute the unit tests of an application. Here is the plug-in 
configuration being used in the chat app’s pom.xml file:

<plugin>
         <groupId>org.apache.maven.plugins</groupId>
         <artifactId>maven-surefire-plugin</artifactId>
         <configuration>
                  <includes>
                           <include>**/UnitTestsSuite.java</include>
                  </includes>
         </configuration>
</plugin>

Note that the configuration is quite simple. It just includes the 
UnitTestsSuite.java JUnit suite to run all the unit tests when the maven test 
command is issued. That’s it for unit tests!

1https://maven.apache.org/plugin-developers/index.html
2http://maven.apache.org/surefire/maven-surefire-plugin/

https://maven.apache.org/plugin-developers/index.html
http://maven.apache.org/surefire/maven-surefire-plugin/


Chapter 26 ■ Splitting Unit Tests from Integration Tests Using Maven Plug-ins

137

26.2 � Maven Failsafe Plug-in
The Maven Failsafe plug-in3 is designed to manage integration tests. Here is its 
configuration:

<plugin>
         <groupId>org.apache.maven.plugins</groupId>
         <artifactId>maven-failsafe-plugin</artifactId>
         <configuration>
                  <includes>
                           <include>**/UnitTestsSuite.java</include>
                           �<include>**/IntegrationTestsSuite.java 

</include>
                  </includes>
         </configuration>
</plugin>

Similarly, it includes the UnitTestsSuite.java and IntegrationTestsSuite.
java JUnit suites to run all the unit and integration tests when the mvn 
integration-test or mvn verify command is issued.

3http://maven.apache.org/surefire/maven-failsafe-plugin/

http://maven.apache.org/surefire/maven-failsafe-plugin/


139© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9_27

CHAPTER 27

Continuous Integration 
Server

As the chat application grows, running integration tests on a developer’s 
machine becomes a boring task because it starts consuming a lot of time. Can 
you see the problem that could emerge? The application has good test coverage, 
but the developer doesn’t run the tests because they take too much time (the 
developer’s machine is not a powerful server, right?). Well, having tests and not 
running them is the same as not having tests, and you already know that having 
no tests is not a good idea!

It would be reasonable to run all the application tests every time the source 
code changes in the version control system, wouldn’t it? But you already saw 
that a developer’s machine may not be the best place to do this. So, what if you 
start a dedicated server that automatically does this for you every time a new 
commit emerges in the version control system? That would be amazing! That’s 
exactly what a continuous integration (CI) server is used for (and more!). There 
are many tools that allow you to set up a CI server on a machine or a cluster 
of machines. Probably the most well-known is Jenkins1 because it has a great 
community and a huge number of plug-ins.

1https://jenkins.io/

https://jenkins.io/


141© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9

Appendix

Here you will find topics that do not fit perfectly into the main content of this book.

Resource Bundle
The chat application is able to display the text in two languages, English and 
Portuguese.

messages.properties
This is the default resource bundle that will be used when the user doesn’t 
specify any other locale. It shows the text in English.

menu.language=Language
menu.language.english=English
menu.language.portuguese=Portuguese
menu.chatrooms=Chat Rooms
menu.new.chatrooms=New Chat Room
menu.logout=Logout
menu.leave.chatroom=Leave Chat Room

login.title=Login
login.your.username=Your username
login.your.password=Your password
login.username=Username
login.password=Password
login.signin=Sign In
login.create.account=Or create an account
login.badCredentials=Invalid username or password



﻿ ■ Appendix

142

new.account.title=New Account
new.account.name=Name
new.account.email=Email
new.account.username=Username
new.account.password=Password
new.account.your.name=Your name
new.account.your.email=Your email
new.account.your.username=Your username
new.account.your.password=Your password
new.account.create=Create
new.account.username.already.exists=Username already exists

chat.available.chatrooms=Available Chat Rooms
chat.chatrooms.name=Name
chat.chatrooms.description=Description
chat.chatrooms.connectedUsers=Connected Users
chat.chatrooms.join=Join
chat.new.chatroom.title=New Chat Room
chat.new.chatroom.name=Name
chat.new.chatroom.description=Description
chat.new.chatroom.close=Close
chat.new.chatroom.create=Create

chatroom.title=Chat Room
chatroom.users=Users
chatroom.public.messages=I want to send public messages
chatroom.message.placeholder=Type your message...
chatroom.send=Send

NotEmpty=May not be empty
Size.user.username=Must have between 5 and 15 characters
Size.user.password=Must have at least 5 characters
Email=Specify a valid email address

messages_pt.properties
This is the resource bundle that will be used when the user changes the locale to 
pt. It shows the text in Portuguese.

menu.language=Idioma
menu.language.english=Inglês
menu.language.portuguese=Português
menu.chatrooms=Salas de Bate-Papo
menu.new.chatrooms=Nova Sala de Bate-Papo



﻿ ■ Appendix

143

menu.logout=Sair
menu.leave.chatroom=Sair da Sala de Bate-Papo

login.title=Entrar
login.your.username=Seu nome de usuário
login.your.password=sua senha
login.username=Nome de Usuário
login.password=Senha
login.signin=Entrar
login.create.account=Ou crie sua conta
login.badCredentials=Nome de usuário ou senha inválidos

new.account.title=Nova Conta
new.account.name=Nome
new.account.email=Email
new.account.username=Nome de Usuário
new.account.password=Senha
new.account.your.name=Seu nome
new.account.your.email=Seu email
new.account.your.username=Seu nome de usuário
new.account.your.password=Sua senha
new.account.create=Criar
new.account.username.already.exists=Nome de usuário já cadastrado

chat.available.chatrooms=Salas de Bate-Papo Disponíveis
chat.chatrooms.name=Nome
chat.chatrooms.description=Descrição
chat.chatrooms.connectedUsers=Usuários Conectados
chat.chatrooms.join=Entrar
chat.new.chatroom.title=Nova Sala de Bate Papo
chat.new.chatroom.name=Nome
chat.new.chatroom.description=Descrição
chat.new.chatroom.close=Fechar
chat.new.chatroom.create=Criar

chatroom.title=Sala de Bate Papo
chatroom.users=Usuários
chatroom.public.messages=Quero enviar mensagens públicas
chatroom.message.placeholder=Escreva sua mensagem...
chatroom.send=Enviar

NotEmpty=Não deve estar vazio
Size.user.username=Deve ter entre 5 e 15 caracteres
Size.user.password=Deve ter pelo menos 5 caracteres
Email=Especifique um endereço de email válido



145© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9

AFTERWORD

What’s Next?

Congratulations, you have reached the end of this book! I hope you have learned 
a lot and that you now have a good understanding of NoSQL, Cassandra, Redis, 
Spring, WebSocket, and many other subjects addressed in this book.

The question now is, what’s next? I covered a lot of topics in this book, but 
as you know, the code is running locally on your machine. The next step is to 
create an entire automated infrastructure so you can implement a continuous 
delivery pipeline and release the chat application to production in a fast and 
reliable manner.

To make that happen, there are a number of new concepts involved, such as 
the following:

•	 Cloud computing

•	 Infrastructure as code

•	 Configuration management

•	 Security

•	 Containerization

•	 Virtualization

In addition, when an application is deployed to a production environment, 
many things can go wrong, especially if it’s available on the Internet, which is not a 
controlled environment. To be notified about and react quickly to issues that may 
happen in production, relying on a set of real-time monitoring tools is crucial.

If you are interested in learning about these subjects in depth, I invite you to 
take a look at the online courses, e-books, and articles available on my web site.1

Thank you very much for reading this book.

—Jorge Acetozi

1https://www.jorgeacetozi.com

https://www.jorgeacetozi.com/


147© Jorge Acetozi 2017 
J. Acetozi, Pro Java Clustering and Scalability, DOI 10.1007/978-1-4842-2985-9

�       � A, B
Acceptance tests, 119
Account creation

AuthenticationController, 93
BCryptPasswordEncoder, 95
error messages, 94
User class, 91–92
validations, 92, 94

ACID properties, 36
Ajax, 55
Amazon Web Services (AWS), 9
Apache Maven, 17
Apple, 39
Application Language settings, 83–85

�       � C
CAP theorem, 41
Cassandra, 38

chat application, 41
consistency, 41
CQL, 41
keyspace, 42
NoSQL, 38

clustering key, 44
column family, 42
keyspace, 42
overview, 39–41
partition key, 43
peer-to-peer architecture, 39
primary key, 42
secondary index, 43

Spring Data, 52

Cassandra 3.0, 13
Cassandra Query Language  

(CQL), 41
Chat room

Cassandra, 41
ChatRoomControllerTest.java, 

131–132
connect function, 99–100
create new, 20–21
create new account, 20
login page, 19
private messages, 24, 101
public messages, 23, 101
receive messages, 25
sign in, 22
Spring Data JPA Repositories, 48, 

50–51
stompSuccess function, 99–100
stored conversation, 24
updateConnectedUsers, 101

Clustering key, 44
Column family, 42
Continuous delivery, 117
Continuous integration (CI)  

server, 139

�       � D
Data persistence, 35–36
Destination class, 123, 124
Docker

artifact, 3
characteristic, 4

Index



■ INDEX

148

commands, 7
Compose, 10–11

configuration file, 14–15
Elasticsearch, 4, 6
Hub, 4
image tags, 5
image vs. container, 5
install containers, 13–14
run command

containers, 8
environment variables, 9
naming containers, 8
ports, 8
volumes, 9

�       � E
Eclipse integrated development 

environment (IDE)
Apache Maven, 27
import project, 28–29

Elasticsearch, 4, 6

�       � F, G, H
Full-duplex bidirectional TCP  

connection, 56–57

�       � I
InstantMessageBuilderTest.java, 

121–123
Integration tests, 119

ChatRoomController, 131–132
Docker containers, 127–128
JUnit suite, 129
RedisChatRoomService, 130–131

Internationalization, 83

�       � J
Jar file, 17
Java Persistence API (JPA), 48, 50–51
JavaScript Object Notation (JSON), 60
JUnit

sets up dependencies, 127–128
suite, 129

�       � K
Keyspace, 42

�       � L
Lazy deployments vs. fast 

deployments, 116
Login

BCryptPasswordEncoder, 89
Spring Security configurations, 

87–88
UserRepository, 88–89

�       � M
Master-slave architecture, 46
Maven Failsafe plug-in, 137
Maven Surefire plug-in, 136
Memcached vs. Redis, 44–45
Message flow

using simple broker, 64
using STOMP broker, 66

messages.properties, 141–143
Multinode chat architecture

chat app, 73–74
online store, 75
RabbitMQ STOMP broker, 72–73
two chat instances, 71–72

MySQL 5.7, 14

�       � N, O
Netflix, 39
New chat room, 97–98
Nginx container, 10
Nonfunctional requirements, 33–34
NoSQL databases

Cassandra, 38
clustering key, 44
column family, 42
keyspace, 42
overview, 39–41
partition key, 43
primary key, 42
secondary index, 43

column family, 37
design, 37
documents, 37

Docker (cont.)



■ INDEX

149

graph, 37
key-value, 37
modeling, 38
Redis

use cases, 45–46
vs. Memcached, 44–45

schemaless, 38
Spring Data, 52–53

�       � P, Q
Partition key, 43
Peer-to-peer architecture, 40
Polling vs. WebSocket, 55–57
Primary key, 42

�       � R
RabbitMQ 3.6 (with STOMP support), 

13–14
Raw WebSocket

configuration, 59–61
vs. WebSocket over STOMP, 57–58

Read consistency, 40
Redis

cluster, 46
master-slave model, 46
vs. Memcached, 44–45
Spring Data, 53
use cases, 45–46
Redis 3.0.6, 13
RedisChatRoomService, 124–125, 

130–131
Relational database, 36, 38
Replication factor, 42

�       � S
Schemaless, 38
Secondary index, 43
Secured REST Endpoints, 98
Sending private messages, 109–112
Sending public message, 107–108
Send public system messages, 104–105
Simple broker approach, 64–65
Simple text-oriented messaging  

protocol (STOMP)
broker, 62
connect function, 63

JavaScript code, 63
message flow using broker, 66
renderPublicMessages  

function, 63
sendMessage function, 63
sendPublicMessage method, 64
servers, 62
WebSocket over

configuration, 61–64
vs. Raw WebSocket, 57–58

Single-node chat architecture, 67–69
SINTER command, 45
SockJS, 61
Spring Boot, 48
Spring Data

Cassandra repositories, 52
JPA Repository methods,  

48, 50–51
and NoSQL, 52–53
Redis repositories, 53

Spring Security configurations, 87
Spring Session and WebSocket, 78–79
Sticky session strategy, 76–78
Stress tests, 119

�       � T
Transmission Control Protocol  

(TCP), 56

�       � U, V
Uber services, 36
Unit tests, 119

Destination class, 123, 124
InstantMessageBuilder, 121–123
RedisChatRoomService, 124–125

�       � W, X, Y, Z
WebSocket

and browser compatibility, 57
events, 101–104
over STOMP configuration, 61–64
Polling vs., 55–57
raw configuration, 59–61
raw vs. STOMP, 57–58
reconnection strategy, 101


	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Part 1: Usage
	Chapter 1: Docker
	1.1 Introduction to Docker
	1.2 Docker Hub
	1.3 Image vs. Container
	1.4 Image Tags
	1.5 Docker Usage Example: Elasticsearch
	1.6 Basic Docker Commands
	1.7 The docker run Command
	1.7.1 Running Containers as a Daemon with -d
	1.7.2 Naming Containers with --name
	1.7.3 Exposing Ports with -p
	1.7.4 Environment Variables with -e
	1.7.5 Volumes with -v

	1.8 Docker Compose

	Chapter 2: Prerequisites
	Chapter 3: Executing the Project Locally
	Chapter 4: Simulating a Conversation
	4.1 Create a New Account
	4.2 Create a New Chat Room
	4.3 Sign In
	4.4 Chat Room
	4.5 Send Public Messages
	4.6 Send Private Messages
	4.7 Check That the Conversation Is Stored
	4.8 Receive Messages Even on Connection Failures

	Chapter 5: Setting Up the Development Environment
	5.1 Apache Maven
	5.2 Import the Project into the Eclipse IDE


	Part 2: Architecture
	Chapter 6: Understanding the Relationship Between Domain and Architecture
	Chapter 7: Introduction to NoSQL
	7.1 Modeling in NoSQL
	7.2 Cassandra Overview
	7.2.1 Cassandra Concepts
	7.2.1.1 Keyspace
	7.2.1.2 Column Family
	7.2.1.3 Primary Key
	7.2.1.4 Secondary Index
	7.2.1.5 Partition Key
	7.2.1.6 Clustering Key


	7.3 Redis Overview
	7.3.1 Redis vs. Memcached
	7.3.2 Redis Use Cases


	Chapter 8: The Spring Framework
	8.1 Spring Boot
	8.2 Spring Data JPA Repositories
	8.3 Spring Data and NoSQL

	Chapter 9: WebSocket
	9.1 Polling vs. WebSocket
	9.2 WebSocket and Browser Compatibility
	9.3 Raw WebSocket vs. WebSocket over STOMP

	Chapter 10: Spring WebSocket
	10.1 Raw WebSocket Configuration
	10.2 WebSocket over STOMP Configuration
	10.3 Message Flow Using a Simple Broker
	10.4 Message Flow Using a Full External STOMP Broker

	Chapter 11: Single-Node Chat Architecture
	Chapter 12: Multinode Chat Architecture
	12.1 Using RabbitMQ As a Full External STOMP Broker

	Chapter 13: Horizontally Scaling Stateful Web Applications
	13.1 Using the Sticky Session Strategy
	13.2 Spring Session and WebSocket


	Part 3: Code by Feature
	Chapter 14: Changing the Application Language
	Chapter 15: Login
	Chapter 16: New Account
	Chapter 17: New Chat Room
	17.1 Secured REST Endpoints with Spring MVC and Spring Security

	Chapter 18: Joining the Chat Room
	18.1 WebSocket Reconnection Strategy
	18.2 WebSocket Events
	18.2.1 Send Public System Messages over WebSocket


	Chapter 19: Sending a User’s Public Messages over WebSocket
	Chapter 20: Sending a User’s Private Messages over WebSocket

	Part 4: Testing the Code
	Chapter 21: Lazy Deployments vs. Fast Deployments
	Chapter 22: Continuous Delivery
	Chapter 23: Types of Automated Tests
	Chapter 24: Unit Tests
	24.1 InstantMessageBuilderTest.java
	24.2 DestinationsTest.java
	24.3 RedisChatRoomServiceTest.java

	Chapter 25: Integration Tests
	25.1 Setting Up Dependencies for Starting Docker Containers from JUnit
	25.2 JUnit Suites
	25.3 RedisChatRoomServiceTest.java
	25.4 ChatRoomControllerTest.java

	Chapter 26: Splitting Unit Tests from Integration Tests Using Maven Plug-ins
	26.1 Maven Surefire Plug-in
	26.2 Maven Failsafe Plug-in

	Chapter 27: Continuous Integration Server

	Appendix
	Resource Bundle
	messages.properties
	messages_pt.properties


	Afterword: What’s Next?
	Index



