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Introduction

One million Uber rides are booked every day, 10 billion hours of Netflix videos are watched every month, and

$1 trillion are spent on e-commerce web sites every year. The success of these services is underpinned by Big Data
and increasingly, real-time analytics. Real-time analytics enable practitioners to put their fingers on the pulse

of consumers and incorporate their wants into critical business decisions. We have only touched the tip of the
iceberg so far. Fifty billion devices will be connected to the Internet within the next decade, from smartphones,
desktops, and cars to jet engines, refrigerators, and even your kitchen sink. The future is data, and it is becoming
increasingly real-time. Now is the right time to ride that wave, and this book will turn you into a pro.

The low-latency stipulation of streaming applications, along with requirements they share with
general Big Data systems—scalability, fault-tolerance, and reliability—have led to a new breed of real-
time computation. At the vanguard of this movement is Spark Streaming, which treats stream processing
as discrete microbatch processing. This enables low-latency computation while retaining the scalability
and fault-tolerance properties of Spark along with its simple programming model. In addition, this gives
streaming applications access to the wider ecosystem of Spark libraries including Spark SQL, MLIib,

SparkR, and GraphX. Moreover, programmers can blend stream processing with batch processing to create
applications that use data at rest as well as data in motion. Finally, these applications can use out-of-the-
box integrations with other systems such as Kafka, Flume, HBase, and Cassandra. All of these features have
turned Spark Streaming into the Swiss Army Knife of real-time Big Data processing. Throughout this book,
you will exercise this knife to carve up problems from a number of domains and industries.

This book takes a use-case-first approach: each chapter is dedicated to a particular industry vertical.
Real-time Big Data problems from that field are used to drive the discussion and illustrate concepts from
Spark Streaming and stream processing in general. Going a step further, a publicly available dataset from
that field is used to implement real-world applications in each chapter. In addition, all snippets of code
are ready to be executed. To simplify this process, the code is available online, both on GitHub' and on the
publisher’s web site. Everything in this book is real: real examples, real applications, real data, and real code.
The best way to follow the flow of the book is to set up an environment, download the data, and run the
applications as you go along. This will give you a taste for these real-world problems and their solutions.

These are exciting times for Spark Streaming and Spark in general. Spark has become the largest open
source Big Data processing project in the world, with more than 750 contributors who represent more than
200 organizations. The Spark codebase is rapidly evolving, with almost daily performance improvements and
feature additions. For instance, Project Tungsten (first cut in Spark 1.4) has improved the performance of the
underlying engine by many orders of magnitude. When I first started writing the book, the latest version of
Spark was 1.4. Since then, there have been two more major releases of Spark (1.5 and 1.6). The changes in these
releases have included native memory management, more algorithms in MLIib, support for deep learning via
TensorFlow, the Dataset API, and session management. On the Spark Streaming front, two major features have
been added: mapWithState to maintain state across batches and using back pressure to throttle the input rate
in case of queue buildup.? In addition, managed Spark cloud offerings from the likes of Google, Databricks, and
IBM have lowered the barrier to entry for developing and running Spark applications.

Now get ready to add some “Spark” to your skillset!

'https://github.com/ZubairNabi/prosparkstreaming.
2All of these topics and more will hopefully be covered in the second edition of the book.
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CHAPTER 1

The Hitchhiker’s Guide to Big Data/

From a little spark may burst a flame.

—Dante

By the time you get to the end of this paragraph, you will have processed 1,700 bytes of data. This number
will grow to 500,000 bytes by the end of this book. Taking that as the average size of a book and multiplying it
by the total number of books in the world (according to a Google estimate, there were 130 million books in
the world in 2010") gives 65 TB. That is a staggering amount of data that would require 130 standard, off-the-
shelf 500 GB hard drives to store.
Now imagine you are a book publisher and you want to translate all of these books into multiple
languages (for simplicity, let’s assume all these books are in English). You would like to translate each line
as soon as it is written by the author—that is, you want to perform the translation in real time using a stream
of lines rather than waiting for the book to be finished. The average number of characters or bytes per line
is 80 (this also includes spaces). Let’s assume the author of each book can churn out 4 lines per minute (320
bytes per minute), and all the authors are writing concurrently and nonstop. Across the entire 130 million-
book corpus, the figure is 41,600,000,000 bytes, or 41.6 GB per minute. This is well beyond the processing
capabilities of a single machine and requires a multi-node cluster. Atop this cluster, you also need a real-time
data-processing framework to run your translation application. Enter Spark Streaming. Appropriately, this
book will teach you to architect and implement applications that can process data at scale and at line-rate.
Before discussing Spark Streaming, it is important to first trace the origin and evolution of Big Data
systems in general and Spark in particular. This chapter does just that.

Before Spark

Two major trends were the precursors to today’s Big Data processing systems, such as Hadoop and Spark:
Web 2.0 applications, for instance, social networks and blogs; and real-time sources, such as sensor
networks, financial trading, and bidding. Let’s discuss each in turn.

Electronic supplementary material The online version of this chapter (doi:10.1007/978-1-4842-1479-4_1)
contains supplementary material, which is available to authorized users.

"Leonid Taycher, “Books of the world, stand up and be counted! All 129,864,880 of you,” Google Books Search, 2010,
http://booksearch.blogspot.com/2010/08/books-of-world-stand-up-and-be-counted.html.

© Zubair Nabi 2016 1
Z. Nabi, Pro Spark Streaming, DOI 10.1007/978-1-4842-1479-4_1
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CHAPTER 1 THE HITCHHIKER’S GUIDE TO BIG DATA

The Era of Web 2.0

The new millennium saw the rise of Web 2.0 applications, which revolved around user-generated content. The

Internet went from hosting static content to content that was dynamic, with the end user in the driving seat.

In a matter of months, social networks, photo sharing, media streaming, blogs, wikis, and their ilk became

ubiquitous. This resulted in an explosion in the amount of data on the Internet. To even store this data,

let alone process it, an entirely different new of computing, dubbed warehouse-scale computing** was needed.
In this architecture, data centers made up of commodity off-the-shelf servers and network switches

act as a large distributed system. To exploit economies of scale, these data centers host tens of thousands

of machines under the same roof, using a common power and cooling mechanism. Due to the use of

commodity hardware, failure is the norm rather than the exception. As a consequence, both the hardware

topology and the software stack are designed with this as a first principle. Similarly, computation and data

are load-balanced across many machines for processing and storage parallelism. For instance, Google

search queries are sharded across many machines in a tree-like, divide-and-conquer fashion to ensure low

latency by exploiting parallelism.* This data needs to be stored somewhere before any processing can take

place—a role fulfilled by the relational model for more than four decades.

From SQL to NoSQL

The size, speed, and heterogeneity of this data, coupled with application requirements, forced the industry
to reconsider the hitherto role of relational database-management systems as the de facto standard. The
relational model, with its Atomicity, Consistency, Isolation, Durability (ACID) properties could not cater to
the application requirements and the scale of the data; nor were some of its guarantees required any longer.
This led to the design and wide adoption of the Basically Available, Soft state, Eventual consistency (BASE)
model. The BASE model relaxed some of the ACID guarantees to prioritize availability over consistency: if
multiple readers/writers access the same shared resource, their queries always go through, but the result
may be inconsistent in some cases.

This trade-off was formalized by the Consistency, Availability, Partitioning (CAP) theorem.>® According
to this theorem, only two of the three CAP properties can be achieved at the same time.” For instance, if
you want availability, you must forego either consistency or tolerance to network partitioning. As discussed
earlier, hardware/software failure is a given in data centers due to the use of commodity off-the-shelf
hardware. For that reason, network partitioning is a common occurrence, which means storage systems
must trade off either availability or consistency. Now imagine you are designing the next Facebook,
and you have to make that choice. Ensuring consistency means some of your users will have to wait a
few milliseconds or even seconds before they are served any content. On the other hand, if you opt for
availability, these users will always be served content—but some of it may be stale. For example, a user’s
Facebook newsfeed might contain posts that have been deleted. Remember, in the Web 2.0 world, the user
is the main target (more users mean more revenue for your company), and the user’s attention span (and in
turn patience span) is very short.? Based on this fact, the choice is obvious: availability over consistency.

’[EEE Computer Society, “Web Search for a Planet: The Google Cluster Architecture,” 2003, http://static.
googleusercontent.com/media/research.google.com/en//archive/googlecluster-ieee.pdf.

Luiz André Barroso and Urs Holzle, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale
Machines (Morgan& Claypool, 2009), www.morganclaypool.com/doi/abs/10.2200/500193ED1V01Y200905CAC006.
4Jeffrey Dean and Luiz André Barroso, “The Tail at Scale,” Commun. ACM 56, no 2 (February 2013), 74-80.

SFirst described by Eric Brewer, the Chief Scientist of Inktomi, one of the earliest web giants in the 1990s.

SWerner Vogels, “Eventually Consistent — Revisited,” A/l Things Distributed, 2008, www.allthingsdistributed.com/
2008/12/eventually_consistent.html.

"ACID and BASE are not binary choices, though. There is a continuum between the two, with many design points.
8This attention span is getting shorter because most users now consume these services on the go on mobile devices.
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A nice side property of eventual consistency is that applications can read/write at a much higher
throughput and can also shard as well as replicate data across many machines. This is the model adopted by
almost all contemporary NoSQL (as opposed to traditional SQL) data stores. In addition to higher scalability
and performance, most NoSQL stores also have simpler query semantics in contrast to the somewhat
restrictive SQL interface. In fact, most NoSQL stores only expose simple key/value semantics. For instance,
one of the earliest NoSQL stores, Amazon’s Dynamo, was designed with Amazon’s platform requirements in
mind. Under this model, only primary-key access to data, such as customer information and bestseller lists,
is required; thus the relational model and SQL are overkill. Examples of popular NoSQL stores include key-
value stores, such as Amazon’s DynamoDB and Redis; column-family stores, such as Google’s BigTable (and
its open source version HBase) and Facebook’s Cassandra; and document stores, such as MongoDB.

MapReduce: The Swiss Army Knife of Distributed Data Processing

As early as the late 1990s, engineers at Google realized that most of the computations they performed
internally had three key properties:

e  Logically simple, but complexity was added by control code.
e  Processed data that was distributed across many machines.
e Had divide-and-conquer semantics.

Borrowing concepts from functional programming, Google used this information to design a library
for large-scale distributed computation, called MapReduce. In the MapReduce model, the user only has to
provide map and reduce functions; the underlying system does all the heavy lifting in terms of scheduling,
data transfer, synchronization, and fault tolerance.

In the MapReduce paradigm, the map function is invoked for each input record to produce key-value
pairs. A subsequent internal groupBy and shuffle (transparent to the user) group different keys together and
invoke the reduce function for each key. The reduce function simply aggregates records by key. Keys are
hash-partitioned by default across reduce tasks. MapReduce uses a distributed file system, called the Google
File System (GFS), for data storage. Input is typically read from GFS by the map tasks and written back to GFS
at the end of the reduce phase. Based on this, GFS is designed for large, sequential, bulk reads and writes.

GFS is deployed on the same nodes as MapReduce, with one node acting as the master to keep
metadata information while the rest of the nodes perform data storage on the local file system. To
exploit data locality, map tasks are ideally executed on the same nodes as their input: MapReduce
ships out computation closer to the data than vice versa to minimize network I/O. GFS divvies up files
into chunks/blocks where each chunk is replicated 7 times (three by default). These chunks are then
distributed across a cluster by exploiting its typical three-tier architecture. The first replica is placed on
the same node if the writer is on a data node; otherwise a random data node is selected. The second
and third replicas are shipped out to two distinct nodes on a different rack. Typically, the number of map
tasks is equivalent to the number of chunks in the input dataset, but it can differ if the input split size is
changed. The number of reduce tasks, on the other hand, is a configurable value that largely depends on
the capabilities of each node.

Similar to GFS, MapReduce also has a centralized master node, which is in charge of cluster-wide
orchestration and worker nodes that execute processing tasks. The execution flow is barrier controlled:
reduce tasks only start processing once a certain number of map tasks have completed. This model also
simplifies fault-tolerance via re-execution: every time a task fails, it is simply re-executed. For instance, if
the output of a map task is lost, it can readily be re-executed because its input resides on GFS. If a reduce
task fails, then if its inputs are still available on the local file system of the map tasks (map tasks write their
intermediate state to the local file system, not GFS) that processed keys from the partition assigned to
that reduce task, the input is shuffled again; otherwise, the map tasks need to be selectively or entirely re-
executed. Tasks (map or reduce) whose progress rate is slower than the job average, known as stragglers,
are speculatively executed on free nodes. Whichever copy finishes first—the original or the speculative
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one—registers its output; the other is killed. This optimization helps to negate hardware heterogeneity. For
reduce functions, which are associative and commutative, an optional combiner can also be provided; it is
applied locally to the output of each map task. In most cases, this combine function is a local version of the
reduce function and helps to minimize the amount of data that needs to be shipped across the network
during the shuffle phase.

Word Count a la MapReduce

To illustrate the flow of a typical MapReduce job, let’s use the canonical word-count example. The purpose
of the application is to count the occurrences of each word in the input dataset. For the sake of simplicity,
let’s assume that an input dataset—say, a Wikipedia dump—already resides on GFS. The following map and
reduce functions (in pseudo code) achieve the logic of this application:

map(k, v):
for word in v.split(" "):
emit((word, 1))

reduce(k, v):
sum = 0
for count in v.iterator():
sum += count
emit(k, sum)

Here’s the high-level flow of this execution:

1. Based on the specified format of the input file (in this case, text) the MapReduce
subsystem uses an input reader to read the input file from GFS line by line. For
each line, it invokes the map function.

2. The first argument of the map function is the line number, and the second is the
line itself in the form of a text object (say, a string). The map function splits the
line at word boundaries using space characters. Then, for each word, it emits (to
a component, let’s call it the collector) the word itself and the value 1.

3. The collector maintains an in-memory buffer that it periodically spills to disk.
If an optional combiner has been turned on, it invokes that on each key (word)
before writing it to a file (called a spill file). The partitioner is invoked at this point
as well, to slice up the data into per-reducer partitions. In addition, the keys are
sorted. Recall that if the reduce function is employed as a combiner, it needs to
be associative and commutative. Addition is both, that’s why the word-count
reduce can also be used as a combiner.

4. Once a configurable number of maps have completed execution, reduce tasks are
scheduled. They first pull their input from map tasks (the sorted spill files created
by the collector) and perform an n-way merge. After this, the user-provided
reduce function is invoked for each key and its list of values.

5. The reduce function counts the occurrences of each word and then emits the
word and its sum to another collector. In contrast to the map collector, this reduce
collector spills its output to GFS instead of the local file system.
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Google internally used MapReduce for many years for a large number of applications including
Inverted Index and PageRank calculations. Some of these applications were subsequently retired and
reimplemented in newer frameworks, such as Pregel® and Dremel.® The engineers who worked on
MapReduce and GFS shared their creations with the rest of the world by documenting their work in the form
of research papers.'"'? These seminal publications gave the rest of the world insight into the inner wirings of
the Google engine.

Hadoop: An Elephant with Big Dreams

In 2004, Doug Cutting and Mike Cafarella, both engineers at Yahoo! who were working on the Nutch search
engine, decided to employ MapReduce and GFS as the crawl and index and, storage layers for Nutch,
respectively. Based on the original research papers, they reimplemented MapReduce and GFS in Java and
christened the project Hadoop (Doug Cutting named it after his son’s toy elephant). Since then, Hadoop
has evolved to become a top-level Apache project with thousands of industry users. In essence, Hadoop
has become synonymous with Big Data processing, with a global market worth multiple billions of dollars.
In addition, it has spawned an entire ecosystem of projects, including high-level languages such as Pig
and FlumeJava (open source variant Crunch); structured data storage, such as Hive and HBase; and data-
ingestion solutions, such as Sqoop and Flume; to name a few. Furthermore, libraries such as Mahout and
Giraph use Hadoop to extend its reach to domains as diverse as machine learning and graph processing.
Although the MapReduce programming model at the heart of Hadoop lends itself to a large number of
applications and paradigms, it does not naturally apply to others:

o  Two-stage programming model: A particular class of applications cannot be
implemented using a single MapReduce job. For example, a top-k calculation
requires two MapReduce jobs: the first to work out the frequency of each word,
and the second to perform the actual top-k ranking. Similarly, one instance of a
PageRank algorithm also requires two MapReduce jobs: one to calculate the new
page rank and one to link ranks to pages. In addition to the somewhat awkward
programming model, these applications also suffer from performance degradation,
because each job requires data materialization. External solutions, such as
Cascading and Crunch, can be used to overcome some of these shortcomings.

e Low-level programming API: Hadoop enforces a low interface in which users have to
write map and reduce functions in a general-purpose programming language such
as Java, which is not the weapon of choice for most data scientists (the core users
of systems like Hadoop). In addition, most data-manipulation tasks are repetitive
and require the invocation of the same function multiple times across applications.
For instance, filtering out a field from CSV data is a common task. Finally, stitching
together a directed acyclic graph of computation for data science tasks requires
writing custom code to deal with scheduling, graph construction, and end-to-end
fault tolerance. To remedy this, a number of high-level languages that expose a SQL-
like interface have been implemented atop Hadoop and MapReduce, including Pig,
JAQL, and HiveQL.

°Grzegorz Malewicz et al., “Pregel: A System for Large-Scale Graph Processing,” Proceedings of

SIGMOD ‘10 (ACM, 2010), 135-146.

1Sergey Melnik et al., “Dremel: Interactive Analysis of Web-Scale Datasets, Proc. VLDB Endow 3,

no. 1-2 (September 2010), 330-339.

Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” Proceedings of
OSDI 04 6 (USENIX Association, 2004), 10.

2Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The Google File System,” Proceedings of SOSP ‘03
(ACM, 2003), 29-43.
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e  [terative applications: Iterative applications that perform the same computation
multiple times are also a bad fit for Hadoop. Many machine-learning algorithms
belong to this class of applications. For example, k-means clustering in Mahout
refines its centroid location in every iteration. This process continues until a
threshold of iterations or a convergence criterion is reached. It runs a driver program
on the user’s local machine, which performs the convergence test and schedules
iterations. This has two main limitations: the output of each iteration needs to be
materialized to HDFS, and the driver program resides in the user’s local machine at
an I/0 cost and with weaker fault tolerance.

e Interactive analysis: Results of MapReduce jobs are available only at the end of
execution. This is not viable for large datasets where the user may want to run
interactive queries to first understand their semantics and distribution before running
full-fledged analytics. In addition, most of the time, many queries need to be run
against the same dataset. In the MapReduce world, each query runs as a separate job,
and the same dataset needs to be read and loaded into memory each time.

e Strictly batch processing: Hadoop is a batch-processing system, which means its jobs
expect all the input to have been materialized before processing can commence. This
model is in tension with real-time data analysis, where a (potentially continuous)
stream of data needs to be analyzed on the fly. Although a few attempts'® have been
made to retrofit Hadoop to cater to streaming applications, none of them have been
able to gain wide traction. Instead, systems tailor-made for real-time and streaming
analytics, including Storm, S4, Samza, and Spark Streaming, have been designed and
employed over the last few years.

e Conflation between control and computation: Hadoop v1 by default assumes full
control over a cluster and its resources. This resource hoarding prevents other
systems from sharing these resources. To cater to disparate application needs and
data sources, and to consolidate existing data center investments, organizations have
been looking to deploy multiple systems, such as Hadoop, Storm, Hama, and so on,
on the same cluster and pass data between them. Apache YARN, which separates
the MapReduce computation layer from the cluster-management and -control layer
in Hadoop, is one step in that direction. Apache Mesos is another similar framework
that enables platform heterogeneity in the same namespace.

Sensors, Sensors Everywhere

In tandem with Web 2.0 applications, the early 2000s also witnessed the advent and widespread deployment
of sensor networks. During this sensor data boom, they were used to monitor entities as diverse as gas-
distribution pipes, home automation systems, environmental conditions, and transportation systems. In
this ecosystem, humans also acted as sensors by generating contextual data via smart phones and wearable
devices, especially medical devices.'* These data sources were augmented by data from telecommunication,
including call data records, financial feeds from stock markets, and network traffic. The requirements to
analyze and store these data sources included low-latency processing, blending data in motion with data at
rest, high availability, and scalability. Some initial systems from academia to cater to these needs, dubbed
stream-processing or complex event-processing (CEP) systems, were Aurora,'® Borealis,'® Medusa,'” and

BTyson Condie et al., “MapReduce Online,” Proceedings of NSDI ‘10 (USENIX, 2010), 21.
This is now known as the Internet of Things (IoT).
http://cs.brown.edu/research/aurora/.
®http://cs.brown.edu/research/borealis/.
Yhttp://nms.csail.mit.edu/projects/medusa/.
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TelegraphCQ.'® Of these, Aurora was subsequently commercialized by StreamBase Systems** (later acquired
by TIBCO) as StreamBase CEP, with a high-level description language called StreamSQL, running atop a
low-latency dataflow engine. Other examples of commercial systems included IBM InfoSphere Streams*
and Software AG Apama streaming analytics.”

Widespread deployment of IoT devices and real-time Web 2.0 analytics at the end of the 2000s breathed
fresh life into stream-processing systems. This time, the effort was spearheaded by the industry. The first
system to emerge out of this resurgence was S4*>* from Yahoo!. S4 combines the Actors model with the
simplified MapReduce programming model to achieve general-purpose stream processing. Other features
include completely decentralized execution (thanks to ZooKeeper, a distributed cluster-coordination
system) and lossy failure. The programming model consists of processing elements connected via streams to
form a graph of computation. Processing elements are executed on nodes, and communication takes place
via partitioned events.

Another streaming system from the same era is Apache Samza* (originally developed at LinkedIn),
which uses YARN for resource management and Kafka (a pub/sub-based log-queuing system)? for
messaging. As a result, its message-ordering and -delivery guarantees depend on Kafka. Samza messages
have at-least-once semantics, and ordering is guaranteed in a Kafka partition. Unlike S4, which is completely
decentralized, Samza relies on an application master for management tasks, which interfaces with the
YARN resource manager. Stitching together tasks using Kafka messages creates Samza jobs, which are then
executed in containers obtained from YARN.

The most popular and widely used system in the Web 2.0 streaming world is Storm.* Originally
developed at the startup BackType to support its social media analytics, it was open sourced once Twitter
acquired the company. It became a top-level Apache project in late 2014 with hundreds of industry
deployments. Storm applications constitute a directed acyclic graph (called a topology) where data flows
from sources (called spouts) to output channels (standard output, external storage, and so on). Both
intermediate transformations and external output are implemented via bolts. Tuple communication
channels are established between tasks via named streams. A central Nimbus process handles job and
resource orchestration while each worker node runs a Supervisor daemon, which executes tasks (spouts and
bolts) in worker processes. Storm enables three delivery modes: at-most-once, at-least-once, and exactly-
once. At-most-once is the default mode in which messages that cannot be processed are dropped. At-least-
once semantics are provided by the guaranteed tuple-processing mode in which downstream operators
need to acknowledge each tuple. Tuples that are not acknowledged within a configurable time duration
are replayed. Finally, exactly-once semantics are ensured by Trident, which is a batch-oriented, high-level
transactional abstraction atop Storm. Trident is very similar in spirit to Spark Streaming.

In the last few years, a number of cloud-hosted, fully managed streaming systems have also emerged,
including Amazon'’s Kinesis,?”” Microsoft’s Azure Event Hubs,?® and Google’s Cloud Dataflow.? Let’s consider
a brief description of Cloud Dataflow as a representative system. Cloud Dataflow under the hood employs

®http://telegraph.cs.berkeley.edu/.

Pwww. streambase.com/.

Phttp://www-03.ibm.com/software/products/en/infosphere-streams.

www . softwareag.com/corporate/products/apama_webmethods/analytics/overview/default.asp.
2Leonardo Neumeyer et al., “S4: Distributed Stream Computing Platform,” Proceedings of

ICDMW °10 (IEEE, 2010), 170-177.

Bhttp://incubator.apache.org/s4/.

*http://samza.apache.org/.

ZChapter 4 describes Kafka in detail when we analyze the various external sources from which to ingest data.
*https://storm.apache.org/.

“http://aws.amazon.com/kinesis/.
Bhttp://azure.microsoft.com/en-us/services/event-hubs/.
“https://cloud.google.com/dataflow/.

www.it-ebooks.info


http://telegraph.cs.berkeley.edu/
http://www.streambase.com/
http://www-03.ibm.com/software/products/en/infosphere-streams
http://www.softwareag.com/corporate/products/apama_webmethods/analytics/overview/default.asp
http://incubator.apache.org/s4/
http://samza.apache.org/
http://dx.doi.org/10.1007/978-1-4842-1479-4_4
https://storm.apache.org/
http://aws.amazon.com/kinesis/
http://azure.microsoft.com/en-us/services/event-hubs/
https://cloud.google.com/dataflow/
http://www.it-ebooks.info/

CHAPTER 1 THE HITCHHIKER’S GUIDE TO BIG DATA

MillWheel* and MapReduce as the processing engines and FlumeJava* as the programming API. MillWheel
is a stream-processing system developed in house at Google, with one delineating feature: low watermark.
The low watermark is a monotonically increasing timestamp signifying that all events until that timestamp
have been processed. This removes the need for strict ordering of events. In addition, the underlying system
ensures exactly-once semantics (in contrast to Storm, which uses a custom XOR scheme for deduplication,
MillWheel uses Bloom filters). Atop this engine, FlumeJava provides a Java Collections-centric API, wherein
data is abstracted in a PCollection object, which is materialized only when a transform is applied to it. Out
of the box it interfaces with BigQuery, PubSub, Cloud BigTable, and many others.

Spark Streaming: At the Intersection of MapReduce
and CEP

Before jumping into a detailed description of Spark, let’s wrap up this brief sweep of the Big Data landscape
with the observation that Spark Streaming is an amalgamation of ideas from MapReduce-like systems and
complex event-processing systems. MapReduce inspires the API, fault-tolerance properties, and wider
integration of Spark with other systems. On the other hand, low-latency transforms and blending data at rest
with data in motion is derived from traditional stream-processing systems.

We hope this will become clearer over the course of this book. Let’s get to it.

OTyler Akidau et al., “MillWheel: Fault-Tolerant Stream Processing at Internet Scale,” Proc. VLDB Endow. 6, no. 11
(August 2013), 1033-1044.

31Craig Chambers et al., “FlumeJava: Easy, Efficient Data-Parallel Pipelines, SIGPLAN Not. 45, no. 6

(June 2010), 363-375.
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CHAPTER 2

Introduction to Spark

There are two major products that came out of Berkeley: LSD and UNIX. We don’t
believe this to be a coincidence.

—Jeremy S. Anderson

Like LSD and Unix, Spark was originally conceived in 2009' at Berkeley,? in the same Algorithms, Machines,
and People (AMP) Lab that gave the world RAID, Mesos, RISC, and several Hadoop enhancements. It was
initially pitched to the academic community as a distributed framework built from the ground up atop the
Mesos cross-platform scheduler (then called Nexus). Spark can be thought of as an in-memory variant of
Hadoop, with the following key differences:

e Directed acyclic graph: Spark applications form a directed acyclic graph of
computation, unlike MapReduce, which is strictly two-stage.

e In-memory analytics: At the very heart of Spark lies the concept of resilient
distributed datasets (RDDs)—datasets that can be cached in memory. For fault-
tolerance, each RDD also stores its lineage graph that consists of transformations
that need to be partially or fully executed to regenerate it. RDDs accelerate the
performance of iterative and interactive applications.

a. lterative applications: A cached RDD can be reused across iterations without
having to read it from disk every time.

b. Interactive applications: Multiple queries can be run against the same RDD.

RDDs can also be persisted as files on HDFES and other stores. Therefore, Spark
relies on a Hadoop distribution to make use of HDFS.

e Data first: The RDD abstraction cements data as a first-class citizen in the Spark APL
Computation is performed by manipulating an RDD to generate another one, and
so on. This is in contrast to MapReduce, where you reason about the dataset only in
terms of key-value pairs, and the focus is on the computation.

"Matei Zaharia et al., “Spark: Cluster Computing with Working Sets, Proceedings of HotCloud ’10 (USENIX
Association, 2010).
**Insert “speed” joke here.*

© Zubair Nabi 2016 9
Z. Nabi, Pro Spark Streaming, DOI 10.1007/978-1-4842-1479-4_2
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e  Concise API: Spark is implemented using Scala, which also underpins its default
API The functional abstracts of Scala naturally fit RDD transforms, such as map,
groupBy, filter, and so on. In addition, the use of anonymous functions (or lambda
abstractions) simplifies standard data-manipulation tasks.

e  REPL analysis: The use of Scala enables Spark to use the Scala interpreter as an
interactive data-analytics tool. You can, for instance, use the Scala shell to learn the
distribution and characteristics of a dataset before a full-fledged analysis.

The first version of Spark was open sourced in 2010, and it went into Apache incubation in 2013. By
early 2014, it was promoted to a top-level Apache project. Its current popularity can be gauged by the fact
that it has the most contributors (in excess of 700) across all Apache open source projects. Over the last few
years, Spark has also spawned a number of related projects:

e Spark SQL (and its predecessor, Shark®) enables SQL queries to be executed atop
Spark. This coupled with the DataFrame* abstraction makes Spark a powerful tool for
data analysis.

e  MLIib (similar to Mahout atop Hadoop) is a suite of popular machine-learning and
data-mining algorithms. In addition, it contains abstractions to assist in feature
extraction.

e  GraphX (similar to Giraph atop Hadoop) is a graph-processing framework that uses
Spark under the hood. In addition to graph manipulation, it also contains a library of
standard algorithms, such as PageRank and Connected Components.

e Spark Streaming turns Spark into a real-time, stream-processing system by treating
input streams as micro-batches while retaining the familiar syntax of Spark.

Installation

The best way to learn Spark (or anything, for that matter) is to start getting your hands dirty right from the
onset. The first order of the day is to set up Spark on your machine/cluster. Spark can be built either from
source or by using prebuilt versions for various Hadoop distributions. You can find prebuilt distributions and
source code on the official Spark web site: https://spark.apache.org/downloads.html. Alternatively, the
latest source code can also be accessed from Git at https://github.com/apache/spark.

At the time of writing, the latest version of Spark is 1.4.0; that is the version used in this book, along
with Scala 2.10.5. The Java and Python APIs for Spark are very similar to the Scala API so it should be very
straightforward to port all the Scala applications in this book to those languages if required. Note that some
of the syntax and components may have changed in subsequent releases.

Spark can also be run in a YARN installation. Therefore, make sure you either use a prebuilt version of
Spark with YARN support or specify the correct version of Hadoop while building Spark from source, if you
plan on going this route.

*Reynold Xin, “Shark, Spark SQL, Hive on Spark, and the Future of SQL on Spark,” Databricks, July 1, 2014, https://
databricks.com/blog/2014/07/01/shark-spark-sql-hive-on-spark-and-the-future-of-sql-on-spark.html.
“Reynold Xin, Michael Armbrust, and Davies Liu, “Introducing DataFrames in Spark for Large Scale Data Science,”
Databricks, February 17, 2015, https://databricks.com/blog/2015/02/17/introducing-dataframes-in-spark-
for-large-scale-data-science.html.
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Installing Spark is just a matter of copying the compiled distribution to an appropriate location in
the local file system of each machine in the cluster. In addition, set SPARK_HOME to that location, and add
$SPARK HOME/bin to the PATH variable. Recall that Spark relies on HDFS for optional RDD persistence. If your
application either reads data from or writes data to HDFS or persists RDDs to it, make you sure you have a
properly configured HDFS installation available in your environment.

Also note that Spark can be executed in a local, noncluster mode, in which your entire application
executes in a single (potentially multithreaded) process.

Execution

Spark can be executed as a standalone framework, in a cross-platform scheduler (such as Mesos/YARN), or
on the cloud. This section introduces you to launching Spark on a standalone cluster and in YARN.

Standalone Cluster

In the standalone-cluster mode, Spark processes need to be manually started. This applies to both the
master and the worker processes:

Master

To run the master, you need to execute the following script: $SPARK_HOME/sbin/start-master.sh.

Workers

Workers can be executed either manually on each machine or by using a helper script. To execute a worker
on each machine, execute the script $SPARK_HOME/sbin/start-slave.sh <master url>, where master url
is of the form spark://hostname:port. You can obtain this from the log of the master.

It is clearly tedious to start a worker process manually on each machine in the cluster, especially in
clusters with thousands of machines. To remedy this, create a file named slaves under $SPARK_HOME/
cont and fill it with the hostnames of all the machines in your cluster, one per line. Subsequently executing
$SPARK_HOME/sbin/start-slaves.sh will seamlessly start worker processes on these machines.’

ul

Spark in standalone mode also includes a handy UI that is executed on the same node as the master on port
8080 (see Figure 2-1). The Ul is useful for viewing cluster-wide resource and application state. A detailed
discussion of the Ul is deferred to Chapter 7, when the book discusses optimization techniques for Spark
Streaming applications.

SThis requires passwordless key-based authentication between the master and all worker nodes.
Alternatively, you can set SPARK_SSH_FOREGROUND and provide a password for each worker machine.

11
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Spaig ..o Spark Master at spark://Zubairs-MBP:7077

URL: spark://Zubairs-MBP:7077

REST URL: spark://Zubairs-MBP:6066 (cluster moda)
‘Workers: 1

Cores: 4 Total, 0 Used

Memory: 15.0 GB Total, 0.0 B Used

Applications: 0 Running, 0 Completed

Drivers: 0 Running, 0 Completed

Status: ALIVE

Workers
Worker Id Address State Cores Memory
worker-20150704130139-192.168.15.5-55885 192.168.15.5:55885 ALIVE 4 (0 Used) 15.0 GB (0.0 B Used)

Running Applications

Application ID Name Cores Memory per Node Submitted Time User State Duration

Completed Applications

Application ID Name Cores Memory per Node Submitted Time User State Duration

Figure 2-1. Spark UI

YARN

With YARN, the Spark application master and workers are launched for each job in YARN containers on the
fly. The application master starts first and coordinates with the YARN resource manager to grab containers
for executors. Therefore, other than having a running YARN deployment and submitting a job, you don’t
need to launch anything else.

First Application

Get ready for your very first Spark application. In this section, you will implement the batch version of the
translation application mentioned in the first paragraph of this book. Listing 2-1 contains the code of the
driver program. The driver is the gateway to every Spark application because it runs the main() function.
The job of this driver is to act as the interface between user code and a Spark deployment. It runs either on
your local machine or on a worker node if it’s a cluster deployment or running under YARN/Mesos. Table 2-1
explains the different Spark processes and their roles.

Table 2-1. Spark Control Processes

Daemon Description

Driver Application entry point that contains the SparkContext instance
Master In charge of scheduling and resource orchestration

Worker Responsible for node state and running executors

Executor Allocated per job and in charge of executing tasks from that job

Note Itis highly recommended that you run the driver program on a machine on the cluster, such as the
master node, especially if the driver pulls in data from the workers, to reduce network traffic.

12
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Listing 2-1. Translation Application

1
2
3
4.
5.
6
7
8
9

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

package org.apress.prospark

import scala.io.Source

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext

object TranslateApp {
def main(args: Array[String]) {

}

}

if (args.length != 4) {
System.err.println(
"Usage: TranslateApp <appname> <book path> <output path> <language>")
System.exit(1)

val Seq(appName, bookPath, outputPath, lang) = args.toSeq

val dict = getDictionary(lang)

val conf = new SparkConf()
.setAppName (appName)
.setJars(SparkContext.jarOfClass(this.getClass).toSeq)
val sc = new SparkContext(conf)
val book = sc.textFile(bookPath)
val translated = book.map(line => line.split("\\s+").map(word => dict.
getOrElse(word, word)).mkString(" "))
translated.saveAsTextFile(outputPath)

def getDictionary(lang: String): Map[String, String] = {

}

if (!Set("German", "French", "Italian", "Spanish").contains(lang)) {
System.err.println(
"Unsupported language: %s".format(lang))
System.exit(1)

val url = "http://www.june29.com/IDP/files/%s.txt".format(lang)
println("Grabbing dictionary from: %s".format(url))
Source.fromURL(url, "ISO-8859-1").mkString

.split("\\r2\\n")

.filter(line => !line.startsWith("#"))

.map(line => line.split("\\t"))

.map(tkns => (tkns(0).trim, tkns(1).trim)).toMap

Every Spark application needs an accompanying configuration object of type SparkConf. For instance,

the application name and the JARs for cluster deployment are provided via this configuration. Typically
the location of the master is picked up from the environment, but it can be explicitly provided by setting
setMaster() on SparkConf. Chapter 4 discusses more configuration parameters. In this example, a
SparkConf object is defined on line 19.

13
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The connection with the Spark cluster is maintained through a SparkContext object, which takes as
input the SparkConf object (line 22). We can make the definition of the driver program more concrete by
saying that it is in charge of creating the SparkContext. SparkContext is also used to create input RDDs.

For instance, you create an RDD, with alias book, out of a single book on line 23. Note that textFile(..)
internally uses Hadoop’s TextInputFormat, which tokenizes each file into lines. bookPath can be both a local
file system location or an HDFS path.

Each RDD object has a set of transformation functions that return new RDDs after applying an operation.
Think of it as invoking a function on a Scala collection. For instance, the map transformation on line 24
tokenizes each line into words and then reassembles it into a sentence after single-word translation. This
translation is enabled by a dictionary (line 17), which you generate from an online source. Without going into
the details of its creation via the getDictionary() method (line 28), suffice to say that it provides a mapping
between English words and the target language. This map transformation is executed on the workers.

Spark applications consist of transformations and actions. Actions are generally output operations
that trigger execution—Spark jobs are only submitted for execution when an output action is performed.

Put differently, transformations in Spark are lazy and require an action to fire. In the example, on line 25,
saveAsTextFile(..) is an output action that saves the RDD as a text file. Each action results in the execution
of a Spark job. Thus each Spark application is a concert between different entities. Table 2-2 explains the
difference between them.®

Table 2-2. Spark Execution Hierarchy

Entity Description

Application One instance of a SparkContext

Job Set of stages executed as a result of an action
Stage Set of transformations at a shuffle boundary
Task set Set of tasks from the same stage

Task Unit of execution in a stage

Let’s now see how you can build and execute this application. Save the code from Listing 2-1 in a file
with a . scala extension, with the following folder structure: . /src/main/scala/FirstApp.scala.

Build

Similar to Java, a Scala application also needs to be compiled into a JAR for deployment and execution.
Staying true to pure Scala, this book uses sbt” (Simple Build Tool) as the build and dependency manager
for all applications. sbt relies on Ivy for dependencies. You can also use the build manager of your choice,
including Maven, if you wish.

Create an . sbt file with the following content at the root of the project directory:

name := "FirstApp"
version := "1.0"
scalaVersion := "2.10.5"

libraryDependencies += "org.apache.spark" %% "spark-core" % "1.4.0"

°A task may or may not correspond to a single transformation. This depends on the dependencies in a stage. Refer to
Chapter 4 for details on dependencies.
"www.scala-sbt.org/.
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sbt by default expects your Scala code to reside in stc/main/scala and your test code to reside in src/
test/scala. We recommend creating a fat JAR to house all dependencies using the sbt-assembly plugin.?
To set up sbt-assembly, create a file at . /project/assembly.sbt and add addSbtPlugin("com.eed3sion"
% "sbt-assembly" % "0.11.2") toit. Creating a fat JAR typically leads to conflicts between binaries and
configuration files that share the same relative path. To negate this behavior, sbt-assembly enables you to
specify a merge strategy to resolve such conflicts. A reasonable approach is to use the first entry in case of a
duplicate, which is what you do here. Add the following to the start of your build definition (. sbt) file:

import AssemblyKeys.
assemblySettings

mergeStrategy in assembly <<= (mergeStrategy in assembly) { mergeStrategy => {
case entry => {
val strategy = mergeStrategy(entry)
if (strategy == MergeStrategy.deduplicate) MergeStrategy.first
else strategy
}
1}

To build the application, execute sbt assembly at the command line, with your working directory
being the directory where the . sbt file is located. This generates a JAR at . /target/scala-2.10/FirstApp-
assembly-1.0.jar.

Execution

Executing a Spark application is very similar to executing a standard Scala or Java program. Spark supports a
number of execution modes.

Local Execution

In this mode, the entire application is executed in a single process with potentially multiple threads of
execution. Use the following command to execute the application in local mode

$SPARK_HOME/bin/spark-submit --class org.apress.prospark.TranslateApp --master local[n]
./target/scala-2.10/FirstApp-assembly-1.0.jar <app_name> <book_path> <output_path> <language>

where n is the number of threads and should be greater than zero.

Standalone Cluster

In standalone cluster mode, the driver program can be executed on the submission machine (as shown in
Figure 2-2):

$SPARK_HOME/bin/spark-submit --class org.apress.prospark.TranslateApp --master <master_
url> ./target/scala-2.10/FirstApp-assembly-1.0.jar <app_name> <book path> <output_path>
<language>

Shttps://github.com/sbt/sbt-assembly.
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Cluster Machine Cluster Machine

Master Cluster Machine

Cluster Machine

Client Machine

Driver
main() {

(- g

Figure 2-2. Standalone cluster deployment with the driver running on the client machine

Alternatively, the driver can be executed on the cluster (see Figure 2-3):

$SPARK_HOME/bin/spark-submit -class org.apress.prospark.TranslateApp --master <master url>

--deploy-mode cluster ./target/scala-2.10/FirstApp-assembly-1.0.jar <app_name> <book_path>
<output_path> <language>

Cluster Machine

Cluster Machine

Cluster Machine

Cluster Machine

Master

Driver
— | main() {
SparkContext

}

Figure 2-3. Standalone cluster deployment with the driver running on a cluster
Note that in both cases, the jobs execute on the worker nodes, and only the execution location of the

driver program varies.
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YARN

Similar to standalone cluster mode, under YARN,® the driver program can be executed either on the client

$SPARK_HOME/bin/spark-submit --class org.apress.prospark.TranslateApp --master yarn-client
./target/scala-2.10/FirstApp-assembly-1.0.jar <app_name> <book path> <output_path> <language>

or on the YARN cluster:

$SPARK_HOME/bin/spark-submit --class org.apress.prospark.TranslateApp --master yarn-
cluster ./target/scala-2.10/FirstApp-assembly-1.0.jar <app_name> <book path> <output_path>
<language>

Similar to the distributed cluster mode, the jobs execute on the YARN NodeManager nodes in both cases,
and only the execution location of the driver program varies.

The rest of the chapter walks through some of the artifacts introduced in the example application to
take a deep dive into the inner workings of Spark.

SparkContext

As mentioned before, SparkContext is the main application entry point. It serves many purposes, some of
which are described in this section.

Creation of RDDs

SparkContext has utility functions to create RDDs for many data sources out of the box. Table 2-3 lists some
of the common ones. Note that these functions also accept an argument specifying an optional number of
slices/number of partitions.

Table 2-3. RDD Creation Methods Exposed by SparkContext

Signature Description

parallelize[T](seq: Seq[T]): RDD[T] Converts a Scala collection into an RDD.

range(start: Long, stop: Long, step: Creates an RDD of Longs from start to stop (exclusive)
Long): RDD[Long] with an increment of step.

hadoopFile[K, V](path: String, Returns an RDD for a Hadoop file located at path,
inputFormatClass: Class[_ «: parameterized by K, V, and using inputFormatClass for

InputFormat[K, V]], keyClass: Class[K], reading.
valueClass: Class[V]): RDD[(K, V)]

textFile(path: String): RDD[String] Returns an RDD for a Hadoop text file located at
path. Under the hood, it invokes hadoopFile() by
using TextInputFormat as the inputFormatClass,
Longhriteable as the keyClass, and Text as the
valueClass. It is important to highlight that the key in this
case is the position in the file, whereas the value is a line.

(continued)

°Spark uses HADOOP_CONF_DIR and YARN_CONF_DIR to access HDFS and talk to the YARN resource manager.
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Table 2-3. (continued)

Signature

Description

sequenceFile[K, V](path: String,
keyClass: Class[K], valueClass:
Class[V]): RDD[(K, V)]

newAPIHadoopFile[K, V, F <:
NewInputFormat[K, V]]( path: String,

inputFormatClass: Class[F], keyClass:

Class[K], valueClass: Class[V]):
RDD[ (K, V)

wholeTextFiles(path: String):
RDD[ (String, String)]

union[T](rdds: Seq[RDD[T]]): RDD[T]

Returns an RDD for a Hadoop SequenceFile located
at path. Internally, invokes hadoopFile() by passing
SequenceFileInputFormat as the inputFormatClass.

Returns an RDD for a Hadoop file located at path,
parameterized by K, V, and F, based on the new Hadoop
APl introduced in version 0.21.*

Returns an RDD for whole Hadoop files located at

path. Under the hood, uses String as both the key

and the value and WholeTextFileInputFormat as the
InputFormatClass. Note that the key is the file path,
whereas the value is the entire content of the file(s). Use
this method if the files are small. For larger files, use
textFile().

Returns an RDD that is the union of all input RDDs of the
same type.

Note that each function returns an RDD with an associated object type. For instance, parallelize()
returns a ParallelCollectionRDD (which knows how to serialize and slice up a Scala collection), and
textFile() returns a HadoopRDD (which knows how to read data from HDFS and to create partitions). More

on RDDs later.

Handling Dependencies

Due to its distributed nature, Spark tasks are parallelized across many worker nodes. Typically, the data
(RDDs) and the code (such as closures) are shipped out by Spark; but in certain cases, the task code may
require access to an external file or a Java library. The SparkContext instance can also be used to handle

these external dependencies (see Table 2-4).

Table 2-4. Dependency-Handling Features of SparkContext

Signature Description

addFile(path: String): Unit Downloads the file present at path to every node. This file can be
accessed via SparkFiles.get(filename: String).In addition to being
alocal or HDFS location, path can also point to a remote HTTP/FTP

location.

addJar(path: String): Unit  Adds the file at path as a JAR dependency for all tasks executed in this

SparkContext.

1"Tom White, “What’s New in Apache Hadoop 0.21,” Cloudera, August 26, 2010, http://blog.cloudera.com/
blog/2010/08/what%E2%80%99s-new-in-apache-hadoop-0-21/.
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Creating Shared Variables

Spark transformations manipulate independent copies of data on worker machines, and thus there is no
shared state between them. In certain cases, though, some state may need to be shared across workers and
the driver—for instance, if you need to calculate a global value. SparkContext provides two types of shared

variables:

Broadcast variables: As the name suggests, broadcast variables are read-only copies
of data broadcast by the driver program to worker tasks—for instance, to share a
copy of large variables. Spark by default ships out the data required by each task in
a stage. This data is serialized and deserialized before the execution of each task.
On the other hand, the data in a broadcast variable is transported via efficient P2P
communication and is cached in deserialized form. Therefore, broadcast variables
are useful only when they are required across multiple stages in a job. Table 2-5
outlines the creation and use of broadcast variables.

Table 2-5. Broadcast Variable Creation and Use

RK

Signature

Description

broadcast(v: T): Broadcast[T] Broadcasts v to all nodes, and returns a broadcast variable reference.

In tasks, the value of this variable can be accessed through the value
attribute of the reference object. After creating a broadcast variable,
do not use the original variable v in the workers.

Accumulators: Accumulators are variables that support associative functions such

as increment. Their prime property is that tasks running on workers can only write
to them, and only the driver program can read their value. Thus they are handy for
implementing counters or manipulating objects that allow += and/or add operations.
Table 2-6 showcases out of the box Accumulators in Spark.

Table 2-6. Out-of-the-Box Accumulators in Spark

Signature Description

accumulator[T](initialvalue: T): Returns an accumulator of type T. Tasks can then directly

Accumulator[T] reference it and perform add and += operations. Only the
driver can read its value by accessing its value attribute.

accumulator[T](initialvalue: T, The additional name argument enables this accumulator to be

name: String): Accumulator[T] viewed in the UI. Note that the accumulator is displayed on
the UI page for each stage that updates its value. For instance,
Figure 2-4 shows a named accumulator: Foobar Accumulator.

accumulableCollection [R, T] Returns an accumulator for a Collection of type R. Note

(initialValue: R): Accumulable[R, T] thatR should implement += and ++= operations. Standard
choices include mutable.HashSet, mutable.ArrayBuffer, and

mutable.HashMap.
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Accumulators

Accumulable Value

Foobar Accumulator 100

Figure 2-4. Spark UI screenshot of a named accumulator

Job execution

Transparent to you, SparkContext is also in charge of submitting jobs to the scheduler. These jobs are
submitted every time an RDD action is invoked. A job is broken down into stages, which are then broken
down into tasks. These tasks are subsequently distributed across the various workers. You will learn more
about scheduling in Chapter 4.

RDD

Resilient distributed datasets (RDDs) lie at the very core of Spark. Almost all data in a Spark application
resides in them. Figure 2-5 gives a high-level view of a typical Spark workflow that revolves around the
concept of RDDs. As the figure shows, data from an external source or multiple sources is first ingested and
converted into an RDD that is then transformed into potentially a series of other RDDs before being written

to an external sink or multiple sinks.
Partition-1
map()

= L reduce()
Partition-2
Sxternal - groupByKey() Extern.al
ata source count() data sink or
or existing m foreach() another
1D collect() —
saveAsTextFile()

Memory|Disk | Off-heap
Serialized | Non-serialized

Figure 2-5. RDDs in a nutshell

An RDD in essence is an envelope around data partitions. The persistence level of each RDD is
configurable; the default behavior is regeneration under failure. Keeping lineage information—parent
RDDs that it depends on—enables RDD regeneration. An RDD is a first-class citizen in the Spark order of
things: applications make progress by transforming or actioning RDDs. The base RDD class exposes simple
transformations (map, filter, and so on). Derived classes build on this by extending and implementing
three key methods: compute(), getPartitions(), and getDependencies(). For instance, UnionRDD, which
takes the union of multiple RDDs, simply returns the partitions and dependencies of the unionized RDDs
inits rdd.partitions (public version of getPartitions()) and rdd.dependencies (sugared version of
getDependencies()) methods, respectively. In addition, its compute () method invokes the respective
compute() methods of its constituent RDDs.

Similarly, certain transformations that apply to only specific RDD types are enabled with Scala implicit
conversions. A good example of such functionality are methods that only apply to key-value pair RDDs, such
as groupByKey () and reduceByKey (), which reside in the PairRDDFunctions class. Table 2-7 lists widely
used RDDs.

20

www.it-ebooks.info


http://dx.doi.org/10.1007/978-1-4842-1479-4_4
http://www.it-ebooks.info/

CHAPTER 2 * INTRODUCTION TO SPARK

Table 2-7. Examples of Specialized RDDs

RDD Type Description

CartesianRDD Obtained as a result of calculating the Cartesian product of two RDDs

HadoopRDD Represents data stored in any Hadoop-compatible store: local FS, HDFS,
S3, and HBase

JdbcRDD Contains results of a SQL query execution via a JDBC connection

NewHadoopRDD Same as HadoopRDD but uses the new Hadoop API

ParallelCollectionRDD Contains a Scala Collections object

PipedRDD Used to pipe the contents of an RDD to an external command, such as a

bash command or a Python script

UnionRDD Wrapper around multiple RDDs to treat them as a single RDD

As mentioned, RDDs can also be transformed via implicit conversions. Table 2-8 lists some of these
conversion classes.

Table 2-8. RDD Conversion Functions

RDD Conversion Class Description

DoubleRDDFunctions Functions that can be applied to RDDs of Doubles. These functions
include mean(), variance(), stdev(), and histogram().

OrderedRDDFunctions Ordering functions that apply to key-value pair RDDs. Functions include
sortByKey().

PairRDDFunctions Functions applicable to key-value pair RDDs. Functions include
combineByKey (), aggregateByKey(), reduceByKey(), and
groupByKey().

SequenceFileRDDFunctions Functions to convert key-value pair RDDs to Hadoop SequenceFiles.

For example, saveAsSequenceFile().

Persistence

The persistence level of RDDs explores different points in the space between CPU, 10, and memory cost.
This value can be set by making a call to the persist() method exposed by each RDD. The cache()
method defaults to a persistence level of MEMORY_ONLY. Persistence is handled by BlockManager, which
internally maintains a memory store and a disk store. In addition, RDDs can also be checkpointed using the
checkpoint() function. Unlike caching, checkpointing directly saves the RDD to HDFS and does not keep its
lineage information.

Table 2-9 explains the features of each persistence level exposed by the StorageLevel class.
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Table 2-9. RDD Storage Levels

Storage Level

Description

NONE
DISK_ONLY

DISK_ONLY 2
MEMORY ONLY

MEMORY ONLY 2
MEMORY ONLY_SER
MEMORY ONLY_SER 2
MEMORY_AND_DISK

MEMORY_ AND DISK 2
MEMORY_ AND DISK_SER

MEMORY_AND DISK SER 2

OFF_HEAP

Default persistence level. Entails regeneration of the RDD on failure.
The RDD is persisted on disk.
Same as previous, but on two machines.

The RDD is persisted in memory in unserialized form. Partitions that do not
fit in memory fall back on recomputation.

Same as previous, but on two machines.
The RDD is persisted in memory in serialized form.
Same as previous, but on two machines.

The RDD is first persisted in memory in unserialized format. Partitions that do
not fit are spilled to disk.

Same as previous, but on two machines.
Similar to MEMORY_AND_DISK, but the partitions are kept serialized.
Same as previous, but on two machines.

RDDs are offloaded to Tachyon (now called Alluxio),! which is an in-memory
data store. This greatly reduces the memory footprint and GC overhead of the
worker JVMs. Note that you need to have a running Tachyon deployment for
this to work (discussed in detail in Chapter 7).

Persisted RDDs can also be unpersisted by calling their unpersist() method. By default, this is a
blocking call, but it can be made asynchronous by passing false to the method.

Transformations

As discussed earlier, applications make progress by transforming RDDs. These transforms can be grouped

into four broad categories:

e Mappings transform the input RDD to an output one by calling a user-defined
function. In most cases, the output RDD is smaller or equivalent in size—in terms of
number of data points—to the input one (see Table 2-10).

e  Variation operators either increase or decrease the number of partitions in an RDD
or perform fission or fusion of RDDs (see Table 2-11).

e  Key-value (including aggregation) transformations apply only to RDDs with key-
value pairs. Invoking a map function that returns a 2-tuple typically creates these
key-value pairs (see Table 2-12).

e Miscellaneous operators perform various tasks such as taking a sample of elements
in an RDD (see Table 2-13).

""http://tachyon-project.org/.
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Table 2-10. Mapping Transformations

Transformation (Mapping)

Description

map[U] (function): RDD[U]

flatMap[U](function): RDD[U]

mapPartitions[U](function):
RDD[U]

mapPartitionsWithIndex[U]
(function): RDD[U]

filter[U](function): RDD[U]

Standard map function from functional programming that invokes the
user-provided function for each data point in the input RDD to create
an output RDD of the same length.

Same as map( ), but flattens the RDD, so the size of the output may be
different than that of the input RDD.

Invokes the passed function for each partition in the RDD, as opposed
to a standard map () that is invoked for each data point. The provided
function should be able to take as input an iterator over the data points
in a partition. This is more efficient than map() because it reduces the
number of function calls. (In Chapter 6, you see how mapPartitions()
can make writing to external storage more efficient.)

Similar to mapPartitions(), but alongside the iterator, the function
should also accept a partition index. This is useful if the logic requires
keeping track of the index of the partition being processed.

Filters out values that fit a particular condition. To this end, the provided
function needs to return a Boolean value corresponding to the given
condition.

Table 2-11. Variation Transformations

Transformation (Variation)

Description

coalesce(numPartitions: Int,
shuffle: Boolean): RDD[T]

Decreases the number of partitions in an RDD. Under the
hood, it logically merges partitions by treating them as a
conglomerate. This behavior is ensured by setting shuffle to
false—the default behavior. Setting shuffle to true forces

a shuffle phase that uses hash partitioning to physically
repartition the RDD. This also means the number of partitions
can be both decreased and increased via this mechanism.

repartition(numPartitions: Int): Increases or decreases the number of partitions in the

RDD[T]

union(other: RDD[T]): RDD[T]

RDD by always forcing a shuffle. Under the hood, it invokes
coalesce() by passing shuffle as true.

Returns another RDD that is the union of this RDD with the
passed RDD. The concrete implementation of the returned
RDD is provided by UnionRDD.

intersection(other: RDD[T]): RDD[T] Takes the intersection of the calling RDD with the passed one.
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Table 2-12. Key-Value Pair Transformations

Transformation (Key-Value) Conversion Class

Description

repartitionAndSortWit
hinPartitions(partit
ioner: Partitioner):
RDD[ (K, V)]

groupByKey():
RDD[ (K, Iterable[V])]

sortByKey():
RDD[ (K, V)]

reduceByKey(function:
(V, V)=V): RDD[(K, V)]

foldByKey(intialValue:
V) (func: (V, V)=V):
RDD[ (K, V)]

OrderedRDDFunctions

PairRDDFunctions

OrderedRDDFunctions

PairRDDFunctions

PairRDDFunctions

Increases or decreases the number of partitions and
the key space of the RDD based on the supplied
partitioner, and also sorts the keys in each partition.
Note that this transform only applies to RDDs
where the key is sortable, and hence it resides in
OrderedRDDFunctions.

Groups the values by key. The returned RDD
contains a key-value pair for each group, where the
value is an iterator over the grouped values.

Sorts the RDD by key. The key should extend the
Ordering Scala trait. By default, it sorts the keys in
ascending order by keeping the number of partitions
intact. Both of these values can be tweaked by
passing arguments, ascending: Boolean = false and
numPartitions: Int = #Partitions. Note that if your
logic requires changing the number of partitions
and also sorting the keys, it is more efficient to use
repartitionAndSortWithinPartitions(), which
pushes the sorting into the shuffle infrastructure.

Aggregates the values for each key using the
provided function. The function is invoked for each
pair of values (aggregated ones as well) until a final
aggregated value is obtained.

Note that reduceByKey () can only be used for
associative and commutative functions. This

gives the added benefit of map-side combiners a la
MapReduce. As a result, it is more efficient to use
reduceByKey/() as opposed to first groupByKey ()
and then reduce() (explained in the “Actions”
section). Furthermore, reduceByKey () uses the
first element of the RDD as the initial value for its
internal accumulator. To explicitly supply an initial
value, use foldByKey().

It is also important to highlight that the return

type of the aggregation function needs to be the
same as the type of the values under aggregation.
If your logic requires this type to be different, use
combineByKey().

Similar to reduceByKey (), but uses initialValue to
initialize the internal accumulator.
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Table 2-12. (continued)

Transformation (Key-Value) Conversion Class Description

combineByKey[C] PairRDDFunctions Aggregates the values of the RDD, but allows
(createCombiner: (V)= the return type of the aggregation function to
C, mergeValue: (C, V)= be different than the input type. Requires three
C, mergeCombiners: functions as arguments:

(¢, O)=0C): ROD[(K, C)] e createCombiner to initialize the accumulator

o mergeValue to merge pairs of values
e mergeCombiners to merge two accumulators

aggregateByKey[U] PairRDDFunctions Similar to combineByKey(), but instead of using a
(initialValue: U) function to initialize the accumulator, accepts an
(seqop: (U, V)=U, explicit value, initialValue, for the initialization.

combOp: (U, U) =U):
ROD[ (K, U)]

join[W](other: RDD[(K,  PairRDDFunctions Performs an inner join on the RDD with another

W)]): RDD[(K, (V, W))] one. Variants for left and right outer joins also exist:
leftOuterJoin() and rightOuterJoin().

cogroup[W] (other: PairRDDFunctions Groups this RDD with another one by pairing values

RDD[ (K, W)]): RDD[(K, that share a key.

(Iterable[V],

Iterable[W]))]

subtractByKey[W] (other:  PairRDDFunctions Returns an RDD containing keys that exist in the

RDD[ (K, W)]): RDD[ (K, V)] calling RDD but not the passed one.

mapValues[U] (function): PairRDDFunctions Invokes function for each value without touching

RDD[ (K, U)] the keys or the partitioning.

flatMapValues[U] PairRDDFunctions Similar to mapValues(), but values are flattened.

(function): RDD[ (K, U)]

Note that groupByKey(), reduceByKey (), foldByKey(), combineByKey(), aggregateByKey(), join(),
cogroup(), and subtractByKey() by default use the default parallelism level and the default partitioner. You
can invoke their overloaded variants to change both.

Table 2-13. Miscellaneous Transformations

Transformation (Misc.) Description

cartesian[U](other: RDD[U]): Takes the Cartesian product of two RDDs and returns the result in

RDD[(T, U)] the form of a CartesianRDD.

distinct(): RDD[T] Returns an RDD containing distinct elements from the calling
RDD.

pipe(command: String): Executes an external command, and pipes the elements of

RDD[String] the RDD through it. Returns a PipedRDD with the results. An

overloaded version also accepts an environment key-value map.

sample(withReplacement: Boolean, Samples a random subset of the elements of the RDD. The

fraction: Double): RDD[T] withReplacement argument decides whether elements can be
sampled multiple times, and fraction decides the expected total
size of the resulting RDD as a fraction of this RDD’s size.
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Refer to Chapter 3 for examples of using these transforms in the context of DStreams.

Actions

Actions kick off the execution of Spark jobs. Each action is either a data-egress point to an external data store
or an ingress point into the driver program. Under the hood, each action invokes the SparkContext instance
to schedule its execution. Similar to transformations, these actions vary depending on the RDD type.

Table 2-14 lists actions that write to an external data source, and Table 2-15 contains those that cause data to

be materialized into the driver program.

Table 2-14. Actions that Trigger Data Materialization to External Storage

Action

Description

foreach(function): Unit

foreachPartition(function): Unit

saveAsHadoopFile[K, V](path: String): Unit

saveAsNewAPIHadoopFile[K, V](path:
String): Unit

saveAsTextFile(path: String): Unit

saveAsSequenceFile(path: String): Unit

saveAsObjectFile(path: String): Unit

saveAsHadoopDataset(conf: JobConf): Unit

A generic function for invoking operations with side
effects. For each element in the RDD, it invokes the
passed function. This is generally used for manipulating
accumulators or writing to external stores.

Similar to foreach(), but instead of invoking function
for each element, it calls it for each partition. The
function should be able to accept an iterator. This is
more efficient than foreach() because it reduces the
number of function calls (just like mapPartitions()).

Saves the key-value RDD to a Hadoop-compatible file
system at location path.

Similar to saveAsHadoopFile(), but uses the new
Hadoop APL

Saves the RDD as a text file on a Hadoop-compatible file
system at location path. Invokes saveAsHadoopFile()
under the hood by using NullWritable as the key.

Saves the RDD as a Hadoop sequence file at location
path. Makes a call to saveAsHadoopFile() under the
hood.

Saves the elements in the RDD as serializable objects
atlocation path. Invokes saveAsSequenceFile() under
the hood by employing NullWritable as the key and
BytesWritable as the value.

Saves the output to a Hadoop-compatible data store
such as HBase. Uses conf to decide the output format
and other settings.
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Table 2-15. Actions that Materialize Data into the Driver Program

Action Description

reduce(function: (T, T)=T): T Invokes the user-defined function for every pair of values (and
aggregated values) in the RDD. Returns the results to the driver
program. Note that reduce() is an action, whereas reduceByKey ()
is not, because the latter may entail a larger number of partitions
and a large key space—enough to overwhelm the driver.

collect(): Array[T] Returns all the contents of the RDD to the driver program in the
form of an array. An overloaded variant also accepts a function
to filter the contents of the fetched array.

collectAsMap(): Map[K, V] Collects the data in PairRDD as a Map.

count(): Long Counts the number of elements in the calling RDD.
countByKey(): Map[K, Long] PairRDD variant of count ().
countApproxDistinct(relativeSD: Counts the number of distinct elements in the RDD by using
Double): Long the HyperLogLog algorithm. relativeSD decides the relative

accuracy, with larger values requiring less space.

countApproxDistinctByKey(relative  The key-value variant of countApproxDistinct().
SD: Double = 0.05): RDD[(K, Long)]

take(n: Int): Array[T] Returns the first n elements from this RDD in the form of an array.
first(): T Returns the first element of the RDD. Simply invokes take (1)
behind the scenes.
takeOrdered(k: Int): Array[T] Returns the first k elements from this RDD while preserving
the natural ordering of the elements. Conceptually, a bottom-k
query.
top(k: Int): Array[T] Returns the top k elements from this RDD.
takeSample(withReplacement: Action version of sample().

Boolean, num: Int): Array[T]

lookup(key: K): Seq[V] Returns a sequence of values associated with key k.

It should be abundantly clear by now that Spark is a functional Big Data processing framework wherein
RDDs are immutable collections of data that are transformed to achieve application logic. Applications
are side-effect-free for the most part: the number of actions is typically smaller than the number of
transformations. Transformations are lazy and only triggered when a downstream action is invoked.

Summary

RDDs constitute the cornerstone of Spark. They are the unit of fault-tolerance, data ingestion and storage,
and transformation. These data envelopes in concert with transformations, actions, and a small number
of other primitives can be used to stitch together almost any embarrassingly parallel application. Spark
maximizes productivity by enabling you to focus on analytics while the underlying engine takes care of all
the distributed magic. Starting from the basics of application development, this chapter has explored the
various power tools that Spark puts at your disposal.

You now have enough background to jump into Spark Streaming and transition from a largely static
batch-processing world to one where everything is in motion and time is of the essence.
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CHAPTER 3

DStreams: Real-Time RDDs

Always in motion is the future.

—Grand Jedi Master Yoda, Star Wars Episode V: The Empire Strikes Back

According to IBM, 60% of all sensory information loses value in a few milliseconds if it is not acted on.’
Bearing in mind that the Big Data and analytics market has reached $125 billion and a large chunk of

this will be attributed to IoT in the future,? the inability to tap real-time information will result in a loss of
billions of dollars. Examples of some of these applications include a telco working out how many of its users
have used Whatsapp in the last 30 minutes, a retailer keeping track of the number of people who have said
positive things about its products today on social media, or a law enforcement agency looking for a suspect
using data from traffic CCTV. This is the primary reason stream-processing systems like Spark Streaming will
define the future of real-time analytics. There is also a growing need to analyze both data at rest and data in
motion to drive applications, which makes systems like Spark—which can do both—all the more attractive
and powerful. It’s a system for all Big Data seasons.

In this chapter, you see how Spark uses micro-batching to achieve real-time computation. In the
process, you learn how Spark Streaming not only keeps the familiar Spark API intact but also, under the
hood, uses RDDs for storage as well as fault-tolerance. This enables Spark practitioners to jump into the
streaming world from the outset. With that in mind, let’s get right to it.

From Continuous to Discretized Streams

Traditional stream processing consists of routing records from data sources to sinks with intermediate
processing operators that enforce user logic. A good real-world example of stream processing is the kitchen
of a typical restaurant, which consists of waiters, dishwashers, prep cooks, line cooks, sous chefs, and a
main chef who collectively implement culinary applications. Waiters take orders and bring them to the
main chef, who instructs the prep cooks on the initial preparation. This may entail chopping ingredients,
making dough, preparing icing, and so on. Their product is passed on to a line cook who is dedicated to a
particular kitchen station: the fryer, the grill, and so on. Once the line cook is done, the dish goes to either
the sous chef or the main chef for the finishing touches, which may be as simple as garnishing it with herbs.
The waiter then takes the fully prepared dish to the customer. After the customer has finished their meal,

'Pietro Lee, “Data Has a Gravity and Is Attracting Decisions,” May 26, 2015, www.slideshare.net/pieroleo/
data-has-a-gravity-and-is-attracting-decisions.

2Gil Press, “6 Predictions for the $125 Billion Big Data Analytics Market in 2015,” Forbes, December 11, 2014,
www. forbes.com/sites/gilpress/2014/12/11/6-predictions-for-the-125-billion-big-data-
analytics-market-in-2015/.
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the physical plate/bowl ends up in front of the dishwasher, who does the final cleaning. Note that at any
instance in time, a number of dishes may be in various stages of the cooking pipeline, because customers
arrive and order at different times. In addition, to ensure this parallelism, a kitchen employs many prep
cooks, line cooks, and so on.

In stream-processing speak, the waiter who brings in the order is the data source. The order itself is the
record to be processed. The various cooks and chefs constitute processing operators, whereas the customer
is the application driver. There are multiple orders, which follow parallel processing streams. Such pipelines
have to deal with two major issues: random faults and stragglers. In very large kitchens with scores of cooks
and orders, the probability of an accident is very high. Furthermore, one or two cooks may be slower than
everyone else, leading to the buildup of back pressure. Conventional systems deal with faults by either
maintaining a redundant replica of each processing stream or buffering records upstream and replaying
failed ones. Both approaches double the amount of data storage across the system. In addition, neither
method has an efficient mechanism to deal with stragglers. Imagine restaurants having to cook two dishes
instead of one for each order.

An alternative way to deal with these issues is to batch different orders together and have everyone in
the kitchen collectively perform one function in tandem. For instance, everyone would first perform the
work of the prep cooks, followed by line cooks, and so on. Because the entire staff would be focusing on
one task at a time, their throughput would be much higher at the expense of latency. In case of an accident,
such as a cook burning a key ingredient, the other cooks would help to bring that cook up to speed by
reperforming all the steps from the beginning in addition to their current work. Note that this can only
be done for ingredients and intermediate steps that apply to a single batch of dishes. Moreover, the same
mechanism is used to tackle stragglers: if one or more cooks are holding up the batch, the rest of the staff can
pitch in to bring them up to speed.

This is exactly how Spark Streaming operates: by treating stream processing as discrete-time micro-
batch processing, called discretized streams or DStreams. Every time there is a failure or a straggler, other
nodes use the lineage of the lost partitions to regenerate them in addition to their standard processing tasks.
Certain operations need to maintain state across batches; their state is checkpointed every now and then to
negate infinite state regeneration.

First Streaming Application

Similar to the previous chapter, let’s jump in to the deep end of the pool by starting with a running book-
translation example. If you recall, you were able to process books that had already been materialized in the
previous chapter. You can update that application using the Spark Streaming API to make it real-time; see
Listing 3-1. Notice that the changes to the code are mostly cosmetic. In fact, there is almost a one-to-one
mapping between regular Spark primitives and those exposed by Spark Streaming. This is primarily because
Spark Streaming uses RDD primitives behind the scenes. A 30,000-foot view of the application is that it can
be used to translate books from English to any other language as soon as they are written by the authors.

Listing 3-1. Streaming Version of the Translation Application

package org.apress.prospark

import scala.io.Source

import org.apache.spark.SparkConf

import org.apache.spark.SparkContext

import org.apache.spark.streaming.Seconds

import org.apache.spark.streaming.StreamingContext

import org.apache.hadoop.io.LlongWritable

import org.apache.hadoop.fs.Path

import org.apache.hadoop.mapreduce.lib.input.TextInputFormat

W ooNOUVT B~ WN R

[N
o -

w
S

www.it-ebooks.info


http://www.it-ebooks.info/

11.
12.
13.
14.
15.
16.
17.

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.

CHAPTER 3 © DSTREAMS: REAL-TIME RDDS

import org.apache.hadoop.io.Text

object StreamingTranslateApp {
def main(args: Array[String]) {
if (args.length != 4) {
System.err.println(
"Usage: StreamingTranslateApp <appname> <book path> <output path> <language>")

System.exit(1)
val Seq(appName, bookPath, outputPath, lang) = args.toSeq
val dict = getDictionary(lang)

val conf = new SparkConf()
.setAppName (appName)
.setJars(SparkContext.jarOfClass(this.getClass).toSeq)
val ssc = new StreamingContext(conf, Seconds(1))

val book = ssc.textFileStream(bookPath)

val translated = book.map(line => line.split("\\s+").map(word =>
dict.getOrElse(word, word)).mkString(" "))
translated.saveAsTextFiles(outputPath)

ssc.start()
ssc.awaitTermination()

}

def getDictionary(lang: String): Map[String, String] = {
if (!Set("German", "French", "Italian", "Spanish").contains(lang)) {
System.err.println(
"Unsupported language: %s".format(lang))
System.exit(1)

val url = "http://www.june29.com/IDP/files/%s.txt".format(lang)
println("Grabbing dictionary from: %s".format(url))
Source.fromURL(url, "ISO-8859-1").mkString

.split("\\r2\\n")

.filter(line => !line.startsWith("#"))

.map(line => line.split("\\t"))

.map(tkns => (tkns(0).trim, tkns(1).trim)).toMap

}

The SparkConf object (line 24) remains unchanged. Your friend SparkContext, on the other hand, has

been replaced with StreamingContext, which, as the name suggests, enables streaming applications. Along
with SparkConf, it takes a batch size, which dictates the time interval at which the application is invoked for
each micro-batch of the input data. In this example, the batch size is 1 second (line 27).
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StreamingContext is created by the driver program and maintains the connection with the Spark
subsystem. It is also used to create DStreams from various input sources. textFileStream()? (line 29) uses
StreamingContext to create a DStream for a book in a directory (bookPath) on a file system. textFileStream
uses TextInputStream (analogous to textFile()) under the hood to tokenize the book into lines. You then
translate each line into the required language using the same translation logic as the batch example from the
previous chapter. Post-translation, the translated book is written back to the file system (line 31).

Unlike batch applications, which have a clear life cycle—they finish execution as soon as they have
processed their input files—streaming execution has no marked start and stop. Both need to be explicitly sign-
posted. Table 3-1 lists methods that orchestrate the execution of Spark Streaming applications. Line 33 (start())
in the sample application kicks off the execution, and line 34 (awaitTermination()) waits for completion.

Table 3-1. Methods That Dictate the Lifecycle of a Spark Streaming Application

Method Description

start() Starts the execution of the application.

awaitTermination() Waits for the termination of the application. A variant, awaitTerminationOrTimeo
ut(long), accepts a timeout value in milliseconds.

stop() Forces the application to stop execution. An overloaded version of stop() can also
be used to wait for all data to be processed before stopping. In addition, stop()
takes a Boolean as input to control whether SparkContext should be stopped. This
is set to true by default.

Once the application has fully processed the file, you have the translated version. From a result
perspective, the outcome is identical to that of the example in Chapter 2. The advantage of this approach
becomes apparent when you begin thinking of incremental input and output. In strictly batch mode, the
entire book needs to be present before it can be processed. In contrast, in this micro-batch processing
approach, books can be incrementally added to a data source (the file system, in this case), and they are
processed almost instantaneously. Let’s build and execute the application now.

Build and Execution

The Spark Streaming codebase is modular, which means to use a certain project, you only have to add it as a
separate dependency rather than include a bloated JAR. For instance, you only need to add the following to
the .sbt configuration file from the previous chapter to pull in Spark Streaming as a dependency:

libraryDependencies += "org.apache.spark" %% "spark-streaming" % "1.4.0"

The rest of the build and execution process remains the same.
Time to dissect StreamingContext.

StreamingContext

Similar to SparkContext, StreamingContext is the main entry point for real-time applications. It also serves
as the umbilical cord of the driver program with the Spark engine. SparkContext and StreamingContext are
not mutually exclusive. In fact, StreamingContext internally has a reference to SparkContext (which can be

3Note that textFileStream only reads files that have been added to the directory within the last batch interval and are
not older than spark.streaming.minRememberDuration (60 seconds by default).
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accessed as StreamingContext#sparkContext). Streaming applications can also use SparkContext during
their execution. For instance, dependencies can be handled by using addFile() and addJar(). Another use
case is the creation of shared variables, such as broadcast variables and accumulators.

The features of StreamingContext can be grouped on the basis of their functionality. That is what we do

next.

Creating DStreams

The unit of application development from the user perspective is a DStream. It is also the data-ingestion
point. StreamingContext is used to read data from various real-time sources and convert it to DStreams. Files,
sockets, Akka actors, or others—StreamingContext covers them all. Some of these are presented in Table 3-2.

Table 3-2. Creation of DStreams Enabled by StreamingContext

Signature

Description

fileStream[K, V, F

<: NewInputFormat[K,

V]] (dirPath: String,
filterFunc: Path => Boolean,
newFilesOnly: Boolean)

fileStream[K, V, F <:
NewInputFormat[K, V]]
(dirPath: String)

textFileStream(dirPath:
String)

socketStream[T](hostname:
String, port: Int,
converter: (InputStream) =>
Iterator[T], storagelLevel:
Storagelevel)

socketTextStream(hostname:
String, port: Int)

rawSocketStream[T] (hostname:
String, port: Int)

actorStream[T]
(akkaProperties: Props,
name: String)

queueStream[T](queue:
Queue[RDD[T]])

Creates a DStream to process files located at dirPath parametrized by
K,V, and uses F as the input format for reading. filterFunc is used

to filter out files: say, those with a certain extension. newFilesOnly
dictates whether only new files that have been added to dirPath in the
last interval should be considered.

In a typical setting, an external process appends files to the directory,
which are then ingested by this DStream every batch interval.

Creates a DStream to process files located at dirPath, parametrized by K,V
and using F as the input format for reading. By default, it considers all new

files (except those that start with “.”) at dirPath in every batch.

Returns a DStream for text files added at dirPath. Under the hood, it
invokes fileStream() by using Longliritable as the key class, Text as

the value class, and TextInputFormat as the input format. Note that this
method ignores all old files and only considers files that have been created
in the last spark. streaming.minRememberDuration seconds. To change
this behavior, you need to use fileStream() and set newFilesOnly to false
while parametrizing it with LongWiritable, Text, and TextInputFormat.

Wraps around a socket connected to hostname on port in a DStream.
converter is a function to convert a byte stream into an object type
expected by the application. storagelLevel decides the persistence
level of the DStream in the block store.

Connects to hostname on port, and interprets the data as UTF-8
encoded, newline-delimited text data. The data is stored with level
Storagelevel .MEMORY_AND DISK SER 2.

In cases where the data has already been serialized in a format that Spark
understands, this method is used to bypass the cost of deserialization. It
reads the data from hostname: port and writes it directly to the block store.

Creates a DStream for an Akka actor where name is the name of the actor
and akkaProperties contains its definition.

Converts a queue of RDDs to a DStream. By default, the behavior is to
dequeue one RDD in each batch interval.
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These are not the only sources from which Spark Streaming can ingest data. The Spark Streaming
codebase contains connectors for popular real-time sources, such as Kafka, Flume, and Twitter. These are
discussed in detail in Chapter 5.

DStream Consolidation

In certain applications, it is useful to merge similar streams into one: for instance, when reading from
multiple but similar data sources. StreamingContext contains a union() method that provides this
functionality as shown in Table 3-3.

Table 3-3. Consolidation Method Provided by StreamingContext

Signature Description

union[T](streams: Seq[DStream[T]]) Takes asinputa sequence of DStreams, and returns their union

Joh Execution

StreamingContext also handles scheduling, transparent to the user. Every time an action is invoked on a
DStream, corresponding jobs are submitted to the Spark scheduler back end via StreamingContext.

DStreams

DStreams are to Spark Streaming what RDDs are to Spark. Applications make progress by ingesting,
transforming, and exporting DStreams. Conceptually, a DStream converts a potentially endless flow of data
into discrete batches of RDDs. Every batch interval, newly generated RDDs are consumed by pushing
them through user-defined logic. You have the option of customizing the persistence of each DStream. On
failure, all nodes take part in regeneration of the lost RDDs. Generally, no micro-batch invariant state is
maintained—each batch is stateless.

This model works well for a large class of applications. For instance, the translation application does
not need to maintain state across batches because it only converts RDDs of books from one form to another.
Similarly, a solution that analyzes a stream of temperature data and generates a flag if it exceeds a threshold
only needs to make a decision based on data in the current batch.

Another class of applications needs to maintain state across logic invocations. A minor enhancement
of the previous two examples can help to illustrate this point. In addition to translating books, you may
also want to keep track of the top-ten words (in terms of word frequency) that have been translated so far.
In a similar vein, maintaining a histogram of temperature change over the course of an entire application
requires state across all batches. Spark exposes primitives that allow you to achieve such behavior. Stateful
DStreams have the same fault-tolerance properties as regular ones, with a single catch: they need to be
checkpointed regularly to negate endless regeneration.

Figure 3-1 shows a high-level view of Spark Streaming execution. At every batch interval, the source
pulls in data and converts it to regular RDDs using the block store. Like any standard RDD, RDDs that
constitute a DStream are partitioned and have configurable persistence levels. The only (somewhat
obvious) catch is that this persistence level is set at the DStream level and applies to all the RDDs that make
up that DStream. From the figure, it is evident that each batch is a self-contained, end-to-end execution
step. Applications make progress by repeatedly executing this batch model every time interval. The base
class DStream has methods and functionality that apply to all variants. Each of its derived classes needs to

34

www.it-ebooks.info


http://dx.doi.org/10.1007/978-1-4842-1479-4_5
http://www.it-ebooks.info/

CHAPTER 3

DSTREAMS: REAL-TIME RDDS

implement three methods: slideDuration(), dependencies(), and compute(). The first method returns the
time interval after which this DStream generates an RDD, and the second returns a list of its dependencies.
compute() is the method that is invoked every batch interval to generate an RDD.

Time

Batch
interval

Batch
interval

Batch
interval

External data
source or existing
RDD

External data
source or existing
RDD

External data
source or existing
RDD

et
=

Memory | Disk | Off-heap
Serialized | Non-serialized

Memory | Disk | Off-heap
Serialized | Non-serialized

mapy)

reduce()

groupByKey() External data
count() source or another
foreach() * RDD

collect()

saveAsTextFile()

map()

reduce()

groupByKey() External data
count() source or another
foreach() * ROD

collect()

saveAsTexiFile()

map()

reduce()

groupByKey/() External data
count() source or another
foreach() * RDD

collect()

saveAsTextFile()

Figure 3-1. DStreams: Standing on the shoulders of RDDs. Time is on the y-axis, and per-batch execution is on
the x-axis.

The operations and transformations applied to DStreams are similar if not identical to the ones
for RDDs, such asmap (), reduce(), count(), and so on. As you see shortly, a few of them are unique to
streaming analytics. But first, let’s walk through the execution of an application to get a feel for all the events

that take place behind the scenes.
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The Anatomy of a Spark Streaming Application

Let’s dissect the example translation application:

1.

7.

Depending on the submission process, the driver program begins executing

in either the user’s local machine or a cluster node. On execution, the driver
program creates a new StreamingContext and connects to the Spark subsystem.
Note that a StreamingContext can also be created from a checkpointed file or

an existing SparkContext. Checkpointing is the process of saving the state of

the StreamingContext or a DStream to secondary storage. In case of DStreanms,
checkpointing ensures that the root of the lineage graph remains within bounds.
That is why checkpointing is a mandatory step for stateful DStream operations, as
you see shortly.

Internally, StreamingContext creates a SparkContext object and a JobScheduler
object. The latter is used to ship streaming jobs to Spark.

The rest of the lines before start() set up the computation but do not actually
perform the execution. Let’s wait on those lines and first examine start().
Behind the scenes, start() kicks off the execution of JobScheduler, which

in turn starts JobGenerator. JobGenerator is in charge of creating jobs from
DStreams, RDD checkpointing, and metadata checkpointing every batch interval.
awaitTermination() uses a condition variable-like mechanism to block until
either the application explicitly invokes stop() or the application is terminated.

The first actual processing line to be executed is the creation of an input DStream
using textFileStream(), which in turn invokes fileStream(). fileStream()
returns a FileInputDStream object.

FileInputDStream internally monitors the specified directory on the file system,
and every batch interval picks up new files that have become visible. Each one of
these files is turned into an RDD. FileInputDStream in its compute() methods
returns a UnionRDD of all these files.

Invoking map() on the FileInputDStream results in the creation of a
MappedDStream, which simply invokes the map function on the underlying RDD.

Once the map function has finished execution, saveAsTextFiles() results in the
invocation of saveAsTextFile() for each RDD in the DStream.

Steps 4 to 6 are repeated (potentially) forever.

Figure 3-2 shows the execution of a single batch. Each blue box represents a single DStream with a single
RDD (because you only analyzed a single book). There are four DStreams. The first contains a UnionRDD
for the input data. textFileStream() internally performs a map transformation to cull the key from the
key-value pair of line number and line content. That accounts for the first MapPartitionsRDD. It is worth
highlighting that behind the scenes, an operation on a DStream invokes the same operation on its underlying
RDDs. For example, a map on a DStream applies the map to each RDD in it. The second map operation is
from line 30 of Listing 3-1. The last MapPartitionsRDD is for the output operation on line 31 (internally,
saveAsTextFiles makes a call to saveAsTextFile on each RDD, which in turn calls a save function for each
partition in that RDD using a map).
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Stage 0

-

Figure 3-2. Visual depiction of the execution graph for a single batch

" Note Figure 3-2 was obtained via the Spark Ul. To view it, from the main Ul page, click the application ID in
the Running Applications section. Then jump to Application Detail Ul, which takes you to the Spark Jobs page.
Clicking any completed job enables you to view completed stages for that job. Clicking any stage lands you on
the Details page (Figure 3-3) for that particular stage. The DAG Visualization option on this page generates the
graph in Figure 3-2. Chapter 7 digs into the specifics of the Spark Ul.
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Spmﬁ s Jobs ~ Stages

Storage Environment Executors Streaming streamingapp application Ul

Details for Stage 0 (Attempt 0)

Total Time Across All Tasks: 0.4 5
Output: 149.4 KB / 1183

» DAG Visualization

» Show Additional Metrics

» Event Timeline

Summary Metrics for 1 Completed Tasks

Metric Min 25th percentile Median 75th percentile Max

Duration 04s D4s D4s D4s Das

GC Time Sms 7Sms 75ms 75ms 75ms

Output Size / Records 148.4 KB/ 1183 1484 KB/ 1183 1484 KB/ 1183 149.4 KB / 1183 149.4 KB/ 1183
Aggregated Metrics by Executor

Executor ID Address Task Time Total Tasks Failed Tasks Succeeded Tasks Output Size / Records

o 192.168.15.5:58215 45 1 ] 1 149.4 KB / 1183
Tasks

Index ID Attempt  Status Locality Level Executor ID / Host Launch Time Duration GCTime  Output Size / Records Errors
0 0o 0 SUCCESS PROCESS_LOCAL 0/182.188.155 2015/08/16 20:05:39 D4s 75 ms 149.4 KB / 1183

Figure 3-3. Details page for a stage

One thing should be very evident from this walkthrough: a DStreamis just a time-driven, logical
wrapper around RDDs. In most situations, all operations are pushed down into the RDD layer, which allows
Spark to support both batch and streaming models in the same system.

Similar to RDDs, many specialized variants of DStreams exist. Table 3-4 lists some of the more

popular ones.

Table 3-4. Specialized DStreams

DStream Type Description

ConstantInputDStream  DStream that returns the same RDD in every batch interval. This is useful for
testing purposes.

FileInputDStream Monitors a directory on the file system, and returns a UnionRDD for all new files
in each batch interval.

ForEachDStream Represents a DStream whose RDDs can have side effects.

FilteredDStream Obtained as a result of applying a filter operation to a DStream.

InputDStream Base class for all DStreams that fetch input from external sources by running a
service in the driver program.

MappedDStream Obtained as a result of applying a map operation to a DStream.

SocketInputDStream Represents RDDs created from reading data from a socket. Runs the
connection on a worker node.

StateDStream RDDs for this DStream are obtained by applying a stateful operation to the
RDDs for the same DStream from the previous batch.

UnionDStream Logical consolidation of many DStreams. Created by invoking the union()
method exposed by StreamingContext.

WindowedDStream A DStream that returns all RDDs in a running-time window.
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DStreams that operate on top of key-value pairs can be obtained via an implicit conversion. Importing
PairDStreamFunctions enables this.

Let’s illustrate this via a concrete example using monthly comment dumps from Reddit,* which is akin
to an online bulletin board. This dataset contains comments on the web site alongside metadata. Each line
consists of a single JSON object with data including author, body, subreddit_id, and so on; Table 3-5 lists
some of the fields.® Assume that an external process copies this dump to the target folder periodically.

Table 3-5. Important Fields from the Reddit Dataset

Field Name Type Description

author String The name of the comment poster

created_utc Long The comment timestamp in UTC epoch-second format

body String The body of the comment

subreddit String The subreddit (Reddit speak for topic) the comment belongs to

Download a few of the files from the dump, and copy them to HDFS at inputPath. Listing 3-2 contains
code to read this dataset.

Listing 3-2. Reading the Reddit Hourly Dumps

val comments = ssc.fileStream[Longhritable, Text, TextInputFormat](inputPath, (f: Path) =>
true, newFilesOnly=false).map(pair => pair. 2.toString)

You use fileStream() explicitly instead of textFileStream() because the latter only reads files that
have been recently added to the input folder. In this case, because you copied the files offline, you need to
read existing files. You use fileStream(), set newFilesOnly to false, and use LongWritable as the key and
Text as the value. TextInputFormat also decompresses the input files, which is why you can directly feed it
.gz files. Setting newFilesOnly to false ensures that you also read existing files. There is a catch, though:
you only read files that you added in the last 60 seconds. This is decided by the configuration parameter
spark.streaming.minRememberDuration. You can either increase its value beyond 60 or, alternatively, touch
the files to update their timestamps to fall in the 60-second window.

To illustrate the creation of a key-value DStream, let’s index each record by using the author ID as key.
As shown in Listing 3-3, you first use json4s to parse each record and get the author ID in the map function.
You output a 2-tuple where the author ID is the key and the record itself is the value; creating a key-value
DStreamis just a matter of returning a 2-tuple from a transformation.

Listing 3-3. Indexing Each Record by Author ID

val keyedByAuthor = comments.map(rec => ((parse(rec) \ "author").values, rec))

It you're really curious and astute, you will have noticed that each RDD in this example contains
only a single partition; but if you uncompress the files manually and rerun the application, the number
of partitions goes up. This is because for uncompressed files, each HDFS split is turned into a partition.
Compressed files,® on the other hand, are unsplittable, so each file results in a single partition. This obviously
results in suboptimal parallelism. The solution is to repartition the DStream and its underlying RDDs. You
will see an example of that shortly.

*http://files.pushshift.io/reddit/comments/monthly.
The complete list of fields is available at https://github.com/reddit/reddit/wiki/JSON.
bgzip files cannot be split, but bzip2 and LZO are splittable.
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Note Compressed files, such as gzipped ones, are not splittable and hence result in a single RDD partition.
A good practice is to repartition such a DStream manually after creating it.

Transformations

Like RDD transformations, DStream transformations can be clumped together on the basis of their
functionality. The categories are mapping, variation, aggregation, key-value, windowing, and miscellaneous.
Let’s walk through each category in turn by using the Reddit dataset. Note that to view the output, this
section assumes you are using saveAsTextFiles() on the resulting DStream. You will see other DStream
actions in the next section.

Mapping
map|[U](function): DStream|[U]

Applies the user-provided function to each element in the DStream to construct a new DStream.

Listing 3-4 lets you group the comments by day. It uses a map function to convert the created utc
field—which is a Unix timestamp—into a date and returns that as the key. A subsequent transform can
perform the actual grouping.

Listing 3-4. Using a Map to Convert created utc toDate

val sdf = new SimpleDateFormat("yyyy-MM-dd")
val tsKey = "created utc"
val secs = 1000L
val keyedByDay = comments.map(rec => {
val ts = (parse(rec) \ tsKey).values
(sdf.format(new Date(ts.toString.tolong * secs)), rec)

~NouT b WN R

h
mapPartitions[U](function): DStream[U]

Applies the user-provided function to each partition in the RDDs that constitute this DStream
(see Listing 3-5).

Listing 3-5. Using mapPartitions to convert “created_utc” per partition to Date

1. val keyedByDay = comments.mapPartitions(iter => {

2 var ret = List[(String, String)]()

3 while (iter.hasNext) {

4. val rec = iter.next

5. val ts = (parse(rec) \ tsKey).values

6 ret .::= (sdf.format(mew Date(ts.toString.toLong * secs)), rec)
7 }

8

9

ret.iterator

b))
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This code is more efficient than Listing 3-4 for two reasons:
e The number of function invocations is lower.

e TheSimpleDateFormat (sdf), String (tsKey), and Long (secs) objects are shipped
out to workers for each partition instead of each element.

flatMap[U](function): DStream[U]

Applies the user-provided function to each element in the DStream and then flattens out the content.

To highlight the difference between a regular map and a flatMap, it is useful to look at an example.
Suppose you want to spit out the body of the comments as newline-separated words. Using a regular map
(Listing 3-6) does not achieve this, because the content of the DStream is an array of strings for each record.

Listing 3-6. Attempt at Mapping the Record Body into Words

1. val wordTokens = comments.map(rec => {
2. ((parse(rec) \ "body")).values.toString.split(" ")
3. 1

Alternatively, a flatMap (Listing 3-7) flattens out the array of strings so a subsequent write to file will
result in one word per line.

Listing 3-7. flatMap, Enabling the Contents of the Resulting DStream to Be Flattened
1. val wordTokens = comments.flatMap(rec => {

2. ((parse(rec) \ "body")).values.toString.split(" ")

3. 1

filter(function): DStream|[T]

Uses the user-provided predicate function to filter out elements that do not match the condition. Listing 3-8
showcases a filter operation that only keeps comments from the AskReddit subreddit.

Listing 3-8. Filtering Out AskReddit Subreddits

1. val filterSubreddit = comments.filter(rec =>

2. (parse(rec) \ "subreddit").values.toString.equals("AskReddit"))
transform[U](function): DStream[U]

Allows arbitrary operations to be applied to each RDD in this DStream. This is most useful when you need
to use operations directly exposed by RDDs. For instance, DStreams currently do not allow you to sort their
elements, but RDDs do. Listing 3-9 uses that functionality to sort the records by author.

Listing 3-9. Sorting RDDs by Author

1. val sortedByAuthor = comments.transform(rdd =>
2.  (rdd.sortBy(rec => (parse(rec) \ "author").values.toString)))
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Variation
union(that: DStream[T]): DStream|[T]

Returns the union of this DStream with the passed one. The types of both DStreams need to be the same. For
instance, this can be used if you have to ingest the same dataset from multiple locations. Taking the union
enables you to treat all those datasets as a single enveloped DStream. Listing 3-10 shows an example.

Listing 3-10. Taking the Union of Two DStreams

val merged = comments.union(commentsFromNetwork)

repartition(numPartitions: Int): DStream|[T]

Increases or decreases the number of partitions of each RDD in this DStream. Listing 3-11 increases the
number of partitions of the compressed dataset from Listing 3-2.

Listing 3-11. Increasing the Number of Partitions in a DStream

val repartitionedComments = comments.repartition(4)

glom(): DStream[Array[T]]

Treats each partition in the underlying RDDs as an array. Although this increases the memory footprint

of the operation, it decreases the amount of data that needs to be shuffled. It is largely useful to break out
problems that first require determining the local result and then shuffling to perform an aggregation. A good
example is trying to figure out the minimum created_utc timestamp in all the records (the earliest posted
comment). The snippet of code in Listing 3-12 lets you calculate the minimum timestamp in each partition,
which a subsequent aggregation can consume to give you a global minimum.

Listing 3-12. Calculating the Minimum Timestamp in Each Partition

1. val rddMin = comments.glom().map(arr =>
2. arr.minBy(rec => ((parse(rec) \ "created utc").values.toString.toInt)))

Aggregation
count(): DStream[Long]

Counts the number of elements in the RDDs of this DStream. Under the hood, this uses a combination of map,
transform, and reduce to achieve this calculation (see Listing 3-13).

Listing 3-13. Counting the Number of Elements in Each RDD of This DStream per Batch

val recCount = comments.count()

countByValue(): DStream|[(T, Long)]

Counts the frequency of each distinct element in the RDDs of this DStream. Internally, this invokes a map()
followed by a reduceByKey() (see Listing 3-14).
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Listing 3-14. Determines the Frequency of Each Distinct Record

val recCount = comments.countByValue()

The canonical MapReduce word-count application can be implemented by a flatMap() followed by
countByValue().

reduce(reduceFunc: (T, T) = T): DStream|[T]

Aggregates the values in each RDD into a single value by invoking reduceFunc on each pair of values.
Listing 3-15 counts the total number of words in the body of all messages per batch using a reduce.

Listing 3-15. Counting the Total Number of Words in the Body

val totalWords = comments.map(rec => ((parse(rec) \ "body").values.toString))
.flatMap(body => body.split(" "))

.map(word => 1)

.reduce(_ + )

B wWw N R

The number of partitions and the partitioner for the reduction can also be tweaked by using overloaded
variants of the same function.

Key-value

groupByKey(): DStream[(K, Iterable[V])]

Groups the values of each key in this DStream. Listing 3-16 uses groupBy to count the number of comments
published by each user and then sorts them by their frequency.

Listing 3-16. Sorting Authors by the Number of Comments Posted

val topAuthors = comments.map(rec => ((parse(rec) \ "author").values.toString, 1))
.groupByKey ()

.map(r => (r._2.sum, r. 1))

.transform(rdd => rdd.sortByKey(ascending = false))

S W N e

reduceByKey(reduceFunc: (V, V) = V): DStream|[(K, V)]

Reduces the values for each key. Logically, this can be thought of as a groupByKey () followed by an
aggregation. In practice, it is more efficient, especially in case of large datasets, because it minimizes
the amount of data that needs to be transferred across the wire via the use of combiners. Listing 3-17
reimplements the code from Listing 3-16 using reduceByKey ().

Listing 3-17. Sorting Authors by the Number of Comments Using reduceByKey ()

val topAuthors = comments.map(rec => ((parse(rec) \ "author").values.toString, 1))
.reduceByKey(_ + )

.map(r => (r. 2, r. 1))

.transform(rdd => rdd.sortByKey(ascending = false))

B wWw N R
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combineByKey[C](createCombiner: (V) = C, mergeValue: (C, V) = C,
mergeCombiner: (C, C) = C, partitioner: Partitioner): DStream|[(K, C)]

Combines the values by key by invoking user-defined accumulation and merge functions.
Arguments:

1. createCombiner: Function to create the combiner

2. mergeValue: Function to accumulate the values of each partition

3. mergeCombiner: Function to merge two accumulators across partitions
4. partitioner: The partitioner to use

Every time a new key is encountered, the createCombiner method is called to spawn a new combiner
instance for it. On subsequent encounters, mergeValue is used to accumulate its values. Once all keys have
been exhausted, mergeCombiner is invoked to merge accumulators across partitions.

Unlike with reduceByKey () and its variants, the input and output types of the values can be different.
Note that reduce() under the hood invokes reduceByKey () with the key as null. In turn, reduceByKey ()
calls combineByKey () by

e  Using the same types for input and output
e  Using the same reduceFunc for both mergeValue and mergeCombiner

combineByKey () is useful to implement functionality that requires custom accumulation, such
as calculating averages. Listing 3-18 ranks the users in the dataset based on the average length of their
comments.

Listing 3-18. Ranking Authors on the Basis of the Average Length of Their Comments

1. val topAuthorsByAvgContent = comments.map(rec

2. => ((parse(rec) \ "author").values.toString, (parse(rec) \ "body").values.
toString.split(" ").length))

3.  .combineByKey(

4 V) = (v, 1),

5. (accValue: (Int, Int), v) => (accValue. 1 + v, accValue. 2 + 1),

6. (accCombinel: (Int, Int), accCombine2: (Int, Int)) => (accCombinel. 1 +
accCombine2. 1, accCombinel. 2 + accCombine2. 2),

7. new HashPartitioner(ssc.sparkContext.defaultParallelism)

8.

9. .map({case (k, v) => (k, v. 1 / v. 2.toFloat)})

10. .map(r => (r._2, r._1))
11. .transform(rdd => rdd.sortByKey(ascending = false))

join[W](other: DStream[(K, W)]): DStream|[(K, (V, W))]

Performs a join between this DStream and the other one. To illustrate this function, let’s use another dataset,
which contains the 750 most popular subreddits as of 2014.” Each record contains the industry, subreddit
URL, number of subscribers, and submission type. Your goal is to use this dataset to add an industry to each
record in the original Reddit comments dataset. Listing 3-19 contains the code for this query. Note that
popular is another DStream created via fileStream().

Scott Tousley, “750 Popular Subreddits, Categorized by Industry and Submission Type,” Siege Media, updated April 11,
2016, www. siegemedia.com/popular-subreddits-by-industry.
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Listing 3-19. Join Between Two DStreams

1. val keyedBySubreddit = comments.map(rec => (((parse(rec)) \ "subreddit").values.
toString, rec))
val keyedBySubreddit2 = popular.map(rec => ({
val t = rec.split(","
§‘;§1)-Split("/")(4), t(0))
val commentsWithIndustry = keyedBySubreddit.join(keyedBySubreddit2)

v B~ WN

Methods also exist for performing fullOuterJoin, leftOuterJoin, and rightOuterJoin.

cogroup[W](other: DStream[(K, W)]): DStream|[(K, (Iterable[V], Iterable[W]))]

Groups elements that share the same key across DStreams (and their RDDs). It can be thought of as a combination
ofagroup by and join. Listing 3-20 has the same logic as Listing 3-19 but uses a cogroup instead of join.

Listing 3-20. Cogrouping Two Datasets

1. val keyedBySubreddit = comments.map(rec => (((parse(rec)) \ "subreddit").values.
toString, rec))
val keyedBySubreddit2 = popular.map(rec => ({

val t = rec.split(",
(t(1).split("/")(4), t(0))
)

val commentsWithIndustry = keyedBySubreddit.cogroup(keyedBySubreddit2)

vt B WN

updateStateByKey[S](updateFunc: (Seq[V], Option[S]) = Option[S]):
DStream[(K, S)]

Updates the state of each key in the DStream using updateFunc. Can be used to maintain arbitrary state
for each key across batches. For example, if you wanted to maintain a list of the number of comments

per subreddit topic, you would implement something along the lines of the code in Listing 3-21. Because
updateStateByKey() is a stateful operation,® checkpointing needs to be enabled (line 2).

Listing 3-21. updateStateByKey() as a Means to Maintain State Across Batches

1. val checkpointPath = ....

2. ssc.checkpoint(checkpointPath)

3. val updateFunc = (values: Seq[Int], state: Option[Int]) => {

4. val currentCount = values.sum

5. val previousCount = state.getOrElse(0)

6. Some(currentCount + previousCount)

7.

8. val keyedBySubreddit = comments.map(rec => (((parse(rec)) \ "subreddit").values.
toString, 1))

9 val globalCount = keyedBySubreddit.updateStateByKey(updateFunc)

10. .map(r => (r._2, r._1))
11. .transform(rdd => rdd.sortByKey(ascending = false))

8Checkpointing is required for all stateful operations.
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The return type of the update method is Option because in the first batch, state is None. The
updateFunction takes as input the current state of each key in the form of Seq[V]. This first argument is a
sequence because there may be many values for the same key in a batch. The second argument is an Option
with the previous state of the key. The new state is simply the sum of the previous and the current states.

Avariant of upstateStateByKey () also takes in an initial RDD that is used to seed the first batch. This
can be used to use precomputed state. Keys can also be added and removed in every batch. Chapter 6
analyzes updateStateByKey() in detail where you look at the different ways to maintain batch-invariant state.

Note The number partitions or the default partitioner for each key-value operation can be provided by
using overloaded methods.

Windowing

Real-time analytics also require applying queries to temporal and spatial windows of streaming data.
Examples of such queries include spitting out the number of users in a particular cellular base station in
the last 15 minutes, determining the number of tweets sent for a particular hash tag in a 30-minute time
window, and raising a flag every time 1 million distinct orders are placed on an e-commerce web site.

window(windowDuration: Duration, slideDuration: Duration): DStream|[T]

Accumulates values in a window for windowDuration time and slides the window forward every
slideDuration. Both windowDuration and slideDuration need to be multiples of the batch interval. If
you want to figure out the frequency of comments in all subreddits in a 5-second window, you can use
something similar to Listing 3-22. The windowing logic in simple English can be read as “flush 5 seconds of
data every 5 seconds.”

Listing 3-22. Counting the Number of Distinct Times a Subreddit Was Commented On in a Window

1. val distinctSubreddits = comments.map(rec =>((parse(rec)) \ "subreddit").values.
toString)

2. val windowedRecs = distinctSubreddits.window(Seconds(5), Seconds(5))

3. val windowedCounts = windowedRecs.countByValue()

If slideDuration is not provided, the value of the batch interval is used instead. Figure 3-4 illustrates
the windowing operation from Listing 3-22.
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Figure 3-4. Window with a window duration and slide duration of 5 seconds

Each individual square on the x-axis represents an RDD, and the entire array represents a DStream.
Time is on the y-axis with a batch interval of 1 second. Green RDDs are present in the current window,
whereas blue ones are pending. Red RDDs are currently in processing, and grey ones have been evicted.
With a slide duration of 5, the first time the RDDs in the window are processed is in batch interval 5. After
that, all the in-window RDDs are evicted. The window is refilled again until batch interval 10, when it is
processed again, and so on. Figure 3-5 illustrates the processing with a slide interval of 2 seconds.
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Figure 3-5. Window with window duration of 5 seconds and slide interval of 2 seconds

Changing the slide interval to 2 enables the window to be processed every 2 seconds, meaning it slides
forward every 2 seconds. Note that until batch interval 6, the number of RDDs in the window is fewer than
5, but from that point onward—once the window has filled up—5 RDDs are processed every 2 seconds. Also
note that these windows are overlapping.

There are also a number of convenience methods that clump the specific logic with a windowing
operation. The names are self-explanatory:

reduceByWindow(reduceFunc: (T, T) = T, windowDuration: Duration, slideDuration: Duration):
DStream[T]

countByWindow(windowDuration: Duration, slideDuration: Duration): DStream[Long]
countByValueAndWindow(windowDuration: Duration, slideDuration: Duration): DStream[(T, Long)]
groupByKeyAndiWindow(windowDuration: Duration, slideDuration: Duration): DStream[ (K,
Iterable[V])]

reduceByKeyAndWindow(reduceFunc: (V, V) = V, windowDuration: Duration, slideDuration:
Duration): DStream[(K, V)]
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Actions

Actions trigger the execution of Spark Streaming jobs and, in pure functional speak, result in side-effect
generation that may be external I/O or data ingestion into the driver. Each action internally creates a new
Streaming job instance and passes it to StreamingContext, which in turn passes it the scheduler back end.

print(num: Int): Unit

Prints the first num number of elements to standard output of all RDDs in this DStream every batch interval.

print(): Unit

Prints the first ten elements of each RDD to standard output (see Listing 3-23). Internally invokes print(10).

saveAsObjectFiles(prefix: String): Unit

Saves each RDD as a serialized object (see Listing 3-23). The convention for the output files and location is
prefix-TIME_IN_MS in every batch. An optional suffix argument changes the convention to prefix-TIME_
IN_MS.suffix.

saveAsTextFiles(prefix: String): Unit

Saves each RDD as a text file (see Listing 3-23). The naming convention is the same as for saveAsObjectFiles().

Listing 3-23. Output Operations Applied to Listing 3-22

1.  windowedCounts.print(10)
2. windowedCounts.saveAsObjectFiles("subreddit", "obj")
3.  windowedCounts.saveAsTextFiles("subreddit", "txt")

saveAsHadoopFiles[F <: OutputFormat[K, V]](prefix: String, suffix: String):
Unit

Saves each RDD as a Hadoop file parameterized with K, V (see Listing 3-24). Use this function if custom
types for key and value are used by the DStream.

saveAsNewAPIHadoopFiles[F <: OutputFormat[K, V]](prefix: String, suffix:
String): Unit

Same as saveAsHadoopFiles (), but uses the new Hadoop API introduced in version 0.21 (see Listing 3-24).

Listing 3-24. Output Operations Applied to Listing 3-21

1 globalCount.saveAsHadoopFiles("subreddit", "hadoop",

2 classOf[IntWritable], classOf[Text], classOf[TextOutputFormat[IntWritable, Text]])
3. globalCount.saveAsNewAPIHadoopFiles("subreddit", "newhadoop",

4 classOf[IntWritable], classOf[Text], classOf[NewTextOutputFormat[IntWritable, Text]])
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foreachRDD(foreachFunc: (RDD[T]) = Unit): Unit

Applies an operation to each RDD in the DStream. Used for enabling side effects such as writing to external
data sinks or to maintain a global count. All actions listed previously use foreachRDD in some form. In
contrast to transform(), which applies an operation to each RDD but returns a DStream, foreachRDD

only emits side effects. Let’s assume that you want to emit the number of elements in each RDD to a log
for auditing and monitoring. Listing 3-25 shows how you can achieve this by using a custom Logger and a
foreachRDD.

Listing 3-25. Using a foreachRDD to Emit Data to a Logger

val LOG = LogManager.getlLogger (this.getClass)
comments.foreachRDD(rdd => {
LOG.info("RDD: %s, Count: %d".format(rdd.id, rdd.count()))

b

B wWw N e

foreachRDD is a powerful external primitive. Chapter 6 analyzes more of its design patterns while
looking at side effects.

Summary

DStreams constitute the basic building blocks of stream processing in Spark Streaming. They reside on

top of RDDs and the underlying processing engine to enable streaming applications via the micro-batch
processing model. Applications directly transform and manipulate DStreams while the subsystem seamlessly
applies these operations to RDDs under the hood. Data can be ingested from and written back to a large
variety of solutions, including HDFS, sockets, and Akka actors. The simple transformations and abstractions
provided by the API can be mixed and matched to create rich real-time processing pipelines. These pipelines
achieve processing on the terabyte scale while driving the business processes of well-known companies
including Netflix, Uber, Shazam, and Pinterest.® Now that you have a basic handle on Spark Streaming as a
whole, the next step is to learn its best practices, which is the goal of the next chapter.

Tathagata Das, “Spark Streaming: What Is It and Who’s Using It?”” Datanami, November 30, 2015,
www.datanami.com/2015/11/30/spark-streaming-what-is-it-and-whos-using-it/.
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CHAPTER 4

High-Velocity Streams:
Parallelism and Other Stories

Ifyou wish to make an apple pie from scratch, you must first invent the universe.

—~Carl Sagan, Cosmos

To analyze data in motion, you must first invent the Big Data ecosystem. In this ecosystem, designing and
implementing a streaming application is easy. Making it ready for prime time, on the other hand, is much
harder due to the scale of the data, the complexity of the application, and the richness of the setup: every
application has a plethora of moving parts. It is extremely nontrivial to optimize each application because
of the plurality of knobs and their interplay. To engender applications that scale with the input and are
production ready, you must have the right tools and the knowledge to use those tools, as well as insight
into the inner wirings of the target system. Having gotten a taste for real-time data processing the Spark
Streaming way, you are now ready to take a deep dive into its internals.

The previous chapter used hourly data dumps from Reddit to drive the discussion. Following the
same mantra, this chapter has a scientific theme: analyzing streaming data from the Voyager 1 space
probe. The chapter kicks off with the most important topic in distributed systems: parallelism. The various
configuration parameters exposed by both Spark and its streaming layer are also on the menu. Most
importantly, common design patterns and best practices come under discussion along the way.

One Giant Leap for Streaming Data

On August 25, 2012, Voyager 1 left the heliosphere' and became the first manmade object to cross the
Rubicon of interstellar space. Like every NASA spacecraft, Voyager 1 is instrumented with hundreds of
sensors that generate a large amount of data. These sensors include imaging systems, spectrometers, and
plasma wave sensors. This data is relayed over 18 billion kilometers with a latency of close to a day. The size
of the data directly generated by the sensors? and also post analysis is on the terabyte scale.

'The spherical like region that defines the reach of plasma or “solar wind” from the Sun. Anything beyond that is
interstellar space.

2One of the most iconic images of Earth, “Pale Blue Dot”, was taken by Voyager 1: https://en.wikipedia.org/
wiki/Pale_Blue_Dot.
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In addition to entering interstellar space, other milestones for the probe include entering an asteroid

belt and observation of Jupiter and Saturn. So how did NASA scientists figure out that Voyager 1 had exited
the heliosphere? By analyzing the data relayed by its sensors. In the spirit of that momentous event in
human history—and to pay homage to Carl Sagan, a personal hero of mine—this chapter uses data from
Voyager 1 as a running data source.

The dataset spans roughly 37 years (1977-2014) and is available as open data from the NASA CDAWeb

web site.? Each hourly record in the dataset contains 29 attributes including distance from the Sun, proton
density, and azimuth angle (presented in Table 4-1). The data used in this chapter was downloaded from
February 14 1990—the day Voyager 1 snapped the Pale Blue Dot picture—until December 31, 2014, in the
form of a TSV. Although it only spans a few hundred megabytes, it is a good illustrative example of the sort of
data and applications that the scientific community has to deal with on an almost daily basis. To appreciate
the scale of some of these problems, consider the Square Kilometer Array project, which is slated to produce
1 exabyte of data every day starting in 2020.

Table 4-1. Fields in the Voyager 1 Dataset

# Description Unit

1 Year Year

2 Seconds of the year Seconds

3 Heliocentric distance AU*

4 Heliographic inertial (HGI) latitude of the spacecraft position at the start of the Degrees
data interval

5 HGI longitude of the spacecraft position at the start of the data interval Degrees

6 B field magnitude nT®

7 Magnitude of the average field nT

8 BR (radial magnetic field) in the radial-tangential-normal (RTN) coordinate nT
system (without uncertainty)

9 BR with uncertainty nT

10 BT (tangential magnetic field) in the RTN coordinate system (without nT
uncertainty)

11 BT with uncertainty nT

12 BN (normal magnetic field) in the RTN coordinate system (without uncertainty) nT

13 BN with uncertainty nT

14  Bulk flow speed Km/s

15 THETA—elevation angle of the velocity vector (RTN) Degrees

16  PHI—azimuth angle of the velocity vector (RTN) Degrees

17  Proton density Cc/n

18  Proton temperature Kelvin

*http://cdaweb.gsfc.nasa.gov/.
‘Astronomical units: the mean distance between the Sun and Earth.
*Nano Tesla: strength of the magnetic field.
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Table 4-1. (continued)

#  Description Unit
19  Proton flux 0.57—1.78 energy bins, MeV,* LECP’ pfu®
20  Proton flux 3.40—17.6 energy bins, MeV, LECP pfu
21 Proton flux 22.0—31.0 energy bins, MeV, LECP pfu
22 Proton flux 1.894—2.605 energy bins, MeV, CRS® (6-hr!?) pfu
23 Proton flux 4.200—6.240 energy bins, MeV, CRS (6-hr) pfu
24 Proton flux 3.256—8.132 energy bins, MeV, CRS (6-hr) pfu
25  Proton flux 3.276—8.097 energy bins, MeV (6-hr) pfu
26  Proton flux 6.343—42.03 energy bins, MeV (6-hr) pfu
27  Proton flux 17.88—26.81 energy bins, MeV (6-hr) pfu
28  Proton flux 30.29—69.47 energy bins, MeV (6-hr) pfu
29  Proton flux 132.8—242.0 energy bins, CRS (6-hr) MeV

Parallelism

Recall from Chapter 2 that a Spark application consists of jobs that in turn are divided into stages. The actual
entity that is executed on worker nodes is a task, which is a pipeline of multiple transforms in the same
shuffle region. The natural question to ask is, “How do you control the number of instances of each entity?”
And, more important, “How do you achieve an optimal value for each?” Let’s try to find the answer.

Worker

A worker is a control process that runs on a cluster node. Note that workers are only launched directly
in standalone cluster mode. When using a cluster manager, such as YARN or Mesos, this functionality
is delegated to its entities. For instance, under YARN, the NodeManager performs the role of the worker.
Therefore, the following worker parallelism discussion only applies to standalone cluster mode.

By default, Spark executes one worker process per node. For most setups, this number suffices, but this
is suboptimal in cases where workers have a large amount of memory. This is the case pre-Spark 1.4, where
it leads to two shortcomings:'*

e  Frequent JVM garbage collection hurts performance.

*Million electron volts: the energy of particles.

"Low energy charged particle: galactic cosmic radiation at low energy.

8Particle flux unit: the rate of transfer of particles through a unit area.

°Cosmic ray subsystem: high-energy particles in plasma.

1%6-hour resolution.

!"Pre-Spark 1.4, a worker in standalone mode could execute only a single executor (https://issues.apache.org/jira/
browse/SPARK-1706). Users of older versions also had to execute multiple workers per node to run multiple executors.
12“Multiple Spark Worker Instances on a Single Node. Why More of Less Is More Than Less,” Sonra, June 3, 2015,
http://sonra.io/multiple-spark-worker-instances-on-a-single-node-why-more-of-less-is-more-than-less/.
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e  Compressed oops' cannot be used for heap size greater than 32 GB. In this situation,
it is useful to run more than one worker JVM to amortize the cost of garbage collection
across them and to enable compressed oops. The environment variable SPARK _
WORKER_INSTANCES dictates the number of worker processes per node. This can be set
directly either in the terminal environment or in $SPARK_HOME/conf/spark-env.sh.

If you choose to set SPARK_WORKER_INSTANCES to greater than 1, you also need to adjust the CPU
assignment for each worker via SPARK_WORKER_CORES. A good rule of thumb is to keep SPARK_WORKER_CORES
x SPARK_WORKER_INSTANCES equal to the total number of cores on each node; otherwise, workers may
interfere with each other, because as by default each worker greedily uses all the available cores. Similarly,
the memory allocation of each worker (decided by SPARK_WORKER_MEMORY) should be adjusted accordingly,
because each worker is by default configured to use all the memory minus 1 GB.*

Note that this is not a problem in Spark 1.4 and beyond, because multiple executors are executed in the
same worker process.

Executor

An executor is a JVM process that executes on each worker. An executor is exclusive to an application, and a
typical application runs many executors. In turn, a worker can execute multiple executor processes at a time.
Table 4-2 enumerates the various configuration parameters that affect the number of executors and their
resource allocation.

Table 4-2. Setting Resource Allocation for Applications and Executors

Configuration Parameter Description Default Value (YARN) Default Value (Standalone)
spark.executor.cores  Number of cores per 1 All cores
executor
spark.executor.memory Amountof memoryper 512MB 512 MB
executor
spark.cores.max Number of cores per Not used spark.deploy.
application across the defaultCores
cluster
spark.deploy. Number of cores per Not used All cores
defaultCores application across the
cluster in standalone
mode
spark.executor. Number of executors per 2 Not used
instances application
spark. Scales the number false Not used
dynamicAllocation. of executors for an
enabled application up and down
based on workload
heuristics

BCompressed oops is a technique used by modern JVMs to compress ordinary object pointers, leading to efficient
memory packing.
“This memory is reserved for the OS and other services.
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In standalone mode, the number of executors is determined by spark.cores.max and spark.executor.
cores. For instance, with a cluster of two machines where each machine has four cores and spark.
executor.cores is 2 and spark.cores.max is 4, each application gets two executors.

Choosing the Number of Executors
The following rules of thumb should be followed when carving the cluster into executors:*

e Leave some resources for the OS and other services on each node: at least 1 CPU
and 1 GB.

e Ifrunning under YARN, also account for the application master.

e Ifusing pre-1.4 Spark, do not create large executors, because they lead to frequent
JVM garbage-collection pauses and other JVM issues. Similarly, try not to create very
small executors, because broadcast variables are always executor local, leading to
unnecessary data copying.

e  Be mindful of the data requirements of each application. For instance, an application
that processes 1 billion records per second should obviously have more resources
than one that processes a few thousand. The data-ingestion rate should also be used
as a proxy to work out the number of executors.

Dynamic Executor Allocation

In most cases, you do not know the resource requirements of applications up front. Therefore, it is

nontrivial and also suboptimal to divvy up resources between executors. Overallocating resources leads

to underutilization, whereas underallocation leads to data loss—especially in streaming applications,

which are dynamic and have strict latency and quality-of-service requirements. For instance, a streaming
application might experience traffic spikes that would require more resources to process. In such situations,
elasticity is key. That is where the dynamic resource allocation service introduced in Spark 1.2 comes in.

It enables Spark to dynamically scale the number of executors up and down in reaction to application
semantics. Currently, this feature is only supported for YARN, but it is slated for standalone execution as well
in a future release.

Dynamic executor allocation can be enabled by setting the configuration parameter spark.
dynamicAllocation.enabled to true. To explain the algorithm behind this allocation and its associated
parameters, let’s look at an example. Imagine your streaming application is analyzing data from Voyager 1
and it encounters a previously undiscovered celestial body. Also imagine that Voyager 1 is configured to turn
on extra sensors when such an event takes place. Any increase in the data rate as well as data volume will
start to stress your existing executors which will cause build up of tasks in the queue.

When tasks begin pending for spark.dynamicAllocation.schedulerBacklogTimeout, a request
for extra executors will be sent out. If there are still pending tasks after the first set of extra executors
have been assigned, requests for executors will be fired off regularly at spark.dynamicAllocation.
sustainedSchedulerBacklogTimeout. The metric for the number of requested executors is very similar to
TCP slow start: the number of requested executors increases exponentially (1, 2, 4, 8, and so on).

SDedicate resources on one machine for the Spark master in case of standalone deployment and the resource manager in
case of YARN.
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Once the spike in data from the unusual encounter has subsided, Voyager 1 will return to sending data
at its normal rate. Executors that are idle for spark.dynamicAllocation.executorIdleTimeout time will
simply be reclaimed by YARN. It is important to highlight that under normal circumstances, the shuffle
operation is enabled by an executor. This is in tension with dynamic allocation/deallocation wherein
executors are spawned and reaped on demand, which may lead to the output of map tasks being lost.
Therefore, with dynamic executor allocation, an external shuffle service needs to be used.'®

Task

Tasks in Spark are the unit of execution. Tasks execute as threads instead of processes in the executor,

to enable in-memory RDDs. By default, there is a one-to-one mapping between a core and a task. This

number can be increased via the configuration parameter spark.task.cpus. Use this setting for heavy-duty,

CPU-bound tasks. Examples of such operations include compression and matrix multiplication. Matrix

multiplication has a number of applications, such as solving a system of linear equations. For instance,

if your application needs to calculate the orbit of Voyager 1 based on its data, you need to use Lambert’s

method of orbit determination using position and velocity (information available in the dataset). This boils

down to a matrix multiplication problem. In such a case, you need to increase spark.task.cpus beyond 1.
On the flip side, to interleave the execution of multiple tasks atop the same CPU, you need to overcommit

the CPU. This scenario is applicable to tasks that are I/O or memory bound. For instance, post-analysis, if you

want to archive Voyager 1 data in, say, Amazon’s S3, the final foreachRDD tasks will be I/O bound, especially

if your streaming application resides in a non-Amazon cluster due to network latency. If you want a CPU

overcommit factor of 2, you set SPARK_WORKER_CORES x SPARK_WORKER INSTANCES to twice the number of cores.

Parallelism, Partitions, and Tasks

Task parallelism is the single most important factor when it comes to performance in Spark Streaming.
Finding the optimum value is nontrivial: setting it too high leads to contention, whereas setting it too low
results in underutilization of resources.

You know that each DStream is made up of RDDs that in turn are made up of partitions. Each partition
is a self-contained piece of data, which is operated on by a task. Therefore, there is an almost one-to-one
mapping between the number of partitions in an RDD and the number of tasks. In a typical setting, the
number of partitions in a stage (and, in turn, its parallelism) remains the same. This is known as a narrow
dependency: a partition gets its data from a single partition in the preceding transformation, leading to
pipelined execution. This applies to map(), flatMap(), filter(), union(), and so on. coalesce() with
shuffle set to false also results in a narrow dependency even though it takes in multiple partitions.

The number of tasks across partitions can vary, which results in a wide dependency: a partition reads
in records from multiple partitions in the preceding transformation. This applies to all *ByKey operations,
such as groupByKey()and reduceByKey(); joining operations, such as join(), cogroup(), and so on; and
repartition(). Let’s go through an example to drive home the point.

The code in Listing 4-1 enables you to gauge the presence of a solar particle event'” based on the data from
Voyager 1. Solar particle events are caused by accelerated particles, such as protons emitted by the Sun. A solar
storm can disrupt communication and can become a radiation hazard to spaceships. Attributes 19 to 29 in
Table 4-1 represent proton flux readings binned by energy. Your goal is to find the distribution of solar storms
across years. Let’s use an overly sensitive threshold of 1.0 pfu for any one of the energy bins for storm detection.
To minimize the amount of data per record up front, you perform a projection to keep only year and energy
bins (lines 3-4). The next step is to filter out records that do not reach the threshold of 1.0 (line 5). Following this,
records are grouped by year, aggregated, and sorted (lines 5-7). You finally write the output to a directory (line 7).

'*More details about using an external shuffle service are available at https://spark.apache.org/docs/latest/
job-scheduling.htmli#dynamic-resource-allocation.
17“Solar Particle Event,” Wikipedia, https://en.wikipedia.org/wiki/Solar_particle_event.
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Listing 4-1. Yearly Histogram of Proton Flux Events (pfu > 1.0)

val voyagerl = ssc.textFileStream(inputPath)

voyagerl.map(rec => {
val attrs = rec.split("\\s+")
((attrs(0).toInt), attrs.slice(18, 28).map(_.toDouble))

}).filter(pflux => pflux. 2.exists(_ > 1.0)).map(rec => (rec. 1, 1))
.reduceByKey(_ + )
.transform(rec => rec.sortByKey(ascending = false, numPartitions = 1)).
saveAsTextFiles(outputPath)

~Noouvi s, WwWwN R

Figure 4-1 presents the dependencies for the code in Listing 4-1. Transforms with the same color reside
in the same narrow dependency zone, and a color transition represents a wide dependency. For instance,
partitions that constitute RDDs, which in turn reside in the MappedDStream emitted by the first map, are
filtered, as is by the filter operator. In contrast, each task of the reduceByKey operator needs all instances
of the keys in its partition space, which could potentially be present in each partition of its preceding
MappedDStream. Note that this example ignores the internal transformations that are carried out by the input
source and the output action.
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Figure 4-1. Dependency graph of the solar event distribution application. DStreams with the same color reside
in the same dependency zone. Additionally, straight arrows represent a narrow dependency, and crossed
arrows represent a wide dependency (or a shuffle operation).

Task Parallelism

The number of partitions dictates the number of tasks assigned to each DStream. Put differently, DStream
parallelism is a function of the number of partitions. This number depends on the dependency type: the
number of partitions across the DStreams that fall in a narrow dependency zone remains the same, but it
changes across a shuffle zone due to a wide dependency. This is illustrated in Figure 4-2 for the same sample
code. The input DStream has eight partitions, each corresponding to an HDFS split. The same number of
partitions propagates until reduceByKey, which necessitates a shuffle operation. The number of partitions
for shuffle operations is dictated by either spark.default.parallelism (details in Table 4-3) or the number
of maximum partitions in the RDDs that constitute the parent DStream if spark.default.parallelismis not
set. Additionally, this number can be tweaked by explicitly passing a parallelism value to the transformation.
This is useful when you know that the amount of data after the transformation will expand or shrink. For
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instance, reduceByKey in Listing 4-1 shrinks the number of data records to a number per year, and keeping
four partitions for a handful of data records is a waste. Therefore, you explicitly pass a value of 1 to the
sortByKey transform.

Figure 4-2. DStream task parallelism across the entire solar event application. Each small box in the DStream
represents a partition and, in turn, the number of tasks. Note how the number of tasks in a dependency zone
remains the same.

Table 4-3. Deciding the Parallelism of Transformations That Induce a Shuffle Operation

Configuration Parameter Description Default Value

spark.default.parallelism  Parallelism of operations that causea The maximum number of
shuffle, such as all ¥*ByKey operations partitions in the parent RDD
and join, cogroup, and so on

In some cases, it is also useful to increase the number of partitions, primarily because fewer partitions
means more frequent garbage collection and regular spills to disk, leading to suboptimal performance.'®
Increasing the number of partitions can be achieved either by passing an explicit parallelism value to the
transformation or by invoking the repartition() transformation downstream. Alternatively, you can
change the chunk size if you are reading from HDFS.

The next natural question to ask is, “How do you achieve the optimal parallelism for each
transformation?” Unfortunately, there is no magic formula. The best way to achieve this is via trial and error
by increasing this number in a controlled fashion, using the same method that is employed for regular Spark.
This method, which is recommended by Cloudera,' specifies multiplying the number of partitions by 1.5 in
each trial until performance stops improving. This can be gauged via the Spark UI, discussed briefly in the
next section and in detail in Chapter 7.

'8Sandy Ryza, “How-to: Tune Your Apache Spark Jobs (Part 2),” Cloudera, March 30, 2015, http://blog.cloudera.
com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/
PIbid.
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Batch Intervals

The batch interval is another magical knob that directly affects performance. It determines the recurring
period at which the transformation pipeline is invoked on streaming data. Put differently, it dictates the
amount of data that is pushed through the graph of transformations in each micro-batch. For large-scale
streaming applications, the goal is invariably to process data at line rate: the rate at which data is received on
the wire. A corollary is that the batch interval should be set to enable line-rate processing. Setting the batch
interval too high means high latency in addition to extra memory footprint per batch. Setting it too low, on
the other hand, means high scheduling overhead and potential underutilization of resources. Finding the
sweet spot between the two is nontrivial.

For instance, if Voyager 1 sends data every 500 milliseconds, then the batch interval should be
comparable. This statement is based on the assumption that the processing pipeline also has a latency of
500 milliseconds; otherwise it will lead to backpressure and performance collapse. A mismatch will result
in a situation similar to the one shown in Figure 4-3, where the batch latency (total delay) is greater than the
input data rate, leading to back pressure.

Data Stream
(RDDs) .1 N > 0§ 3 N <« B s 0 c N 7 N s |

Batch L1 I 2 I 3 I 4 Il 5 1 6 |
Latency

Figure 4-3. Mismatch between the input data rate and batch latency (or the set batch interval)

Spark Streaming internally represents the batch interval as a Duration object with units of milliseconds,
seconds, and minutes, which is passed to StreamingContext. The smallest value for the batch interval is 1
millisecond, which means Spark Streaming does not enable latency on the microsecond scale. Fortunately,
not many applications have that sort of latency requirements. Similar to choosing parallelism, the optimum
value for the batch interval also needs to be calculated by trial and error. A good strategy is to start with
a high value and then reduce it in steps (say, 1.5 times) each trial. The Spark log can be used to work out
the stability of the system—that is, whether the batch interval is sufficient to keep up with the data rate.

In the log, look for “Total delay.” If this value remains close to the batch interval, then the system is stable.
Otherwise, try increasing the parallelism as described in the previous section or reducing the processing
latency of the pipeline by using the optimizations that follow this section.

Consider the application from Listing 4-1 again. You start with a generous batch interval of 10 seconds.
An inspection of the logs shows the following line:

JobScheduler: Total delay: 2.634 s for time 1453037340000 ms (execution: 2.545 s)
This means the total delay for this particular batch was ~3 seconds, which is smaller than the batch

interval. Assuming there might be data spikes at some point, 10 seconds seems to be a good value. You can
also get a breakdown of this delay by stage by going to the Spark UJ; see Figure 4-4.

Stage Id Description Submitted Duration
1 saveAsTextFiles at E1.scala:37 +details 2016/01/17 18:29:02 0.1s

10 reduceByKey at E1.scala:36 +details 2016/01/17 18:29:02 77 ms

9 map at E1.scala:35 +details 2016/01/17 18:29:00 2s

Figure 4-4. Breakdown of the processing delay of each stage per job in a batch. The last column contains the
processing delay.
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There is a single action in the code (saveAsTextFiles) and hence one job. From Figure 4-2, you know
that this job constitutes three stages. The first stage, which processes more data, naturally takes longer;
the second and third, which only need to reduce and sort a small amount of data, take just ~0.1 second
collectively. The Streaming tab in the UI can be used to gain more insight into your application. It contains
information including the input rate, scheduling delay, processing time, and total delay, plus a timeline and
histogram for each of these quantities. For stable applications, each should be less than the batch interval
(you can figure this out by inspecting the histogram). Refer to Chapter 7 for more details.

The block interval is a sister configuration parameter that has implications for performance. It is
introduced in Chapter 5 during the discussion of ingesting data using secondary solutions, such as Kafka.

Note The batch interval should be comparable to the total delay of the processing pipeline.

Scheduling

Because cluster resources are generally limited, and to use economies of scale, processing frameworks
use schedulers to arbitrate resources between applications. Spark Streaming requires scheduling on three
different levels among the following:

e  Applications
e  Batches
e Jobs

The first and the third are taken care of by the underlying Spark core, and Spark Streaming manages
batches.

Inter-application Scheduling

A typical deployment of Spark contains multiple applications. The cluster manager, such as standalone or
YARN, for the deployment arbitrates resource allocation between them. The details of their schedulers are
enumerated in Table 4-4.

Table 4-4. Inter-application Schedulers in Spark

Scheduler  Policy Resource Usage

Standalone  FIFO: first in, first out Each application tries to grab all available resources. Use
spark.cores.max, spark.executor.cores and spark.
executor.memory to control this behavior.

YARN FIFO, Capacity, or Fair® Handled by YARN containers.

“http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html.
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Batch Scheduling

This is handled by Streaming JobScheduler, which generates jobs from DStreamGraph for every batch and
publishes them to Spark.

Inter-job Scheduling

A Spark Streaming application typically consists of more than one job. These jobs share the resources
allocated to the executors for the application. By default, Spark uses a FIFO policy to allocate resources to
jobs: the first job grabs all resources, then the second one, and so on. A subsequent job can start scheduling
tasks as the previous job begins releasing its resources. The downside of this approach is that if jobs at the
head of the queue take a very long time, downstream jobs have to wait. This is undesirable for streaming
applications where latency is key.

To remedy this, the default scheduler can be replaced with the Hadoop Fair scheduler, which tries
to equally distribute resources across jobs. Therefore, actions in a streaming job can execute in parallel,
improving application latency. This can be enabled by setting spark.scheduler.mode to FAIR.

One Action, One Job

Each Spark Streaming action results in the execution of a separate job, even if the lineage graph of each has a
common ancestor. This means jobs may end up repeating certain transformations. Consider the example in
Figure 4-5.

Figure 4-5. Streaming application with two actions: T (transform) and A (action)

This results in the following schedule, as shown in Figure 4-6:
e Job0:T1,T2,T3,A1
e Job1:T1,T2,T3,A2

61

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 ' HIGH-VELOCITY STREAMS: PARALLELISM AND OTHER STORIES

P

Q*WO G*WQ

Figure 4-6. Execution schedule for two jobs in the same application

To understand this behavior, you need to understand the RDD-centric, action-triggered scheduling in
Spark. When action A1 in a batch for the first job is triggered, the scheduler walks up its lineage graph until
it finds an RDD that is materialized, which in this case is the input of T1. Due to microbatching behavior,
all of these RDDs are reaped by garbage collection before the second job is spawned. When the second job
executes, the same pattern takes place, because the RDD generated as output of T3 is no longer available. To
enable job 2 to have access to that RDD, you need to explicitly cache it by invoking cache() (or persist()
with a configurable persistence level) on it, as presented in Listing 4-2.

Listing 4-2. Caching the Output of One Job to Negate Redundant Execution

1. val t3 = t2.map(x => func(x)).cache()
2. t3.println(10) //A1
3. t3.println(20) //A2

This enables job 2 to avoid redundant work, but it still executes only after job 1 has completed.
This is because by default, only one job is executed by the streaming scheduler. This is controlled by the
configuration parameter spark.streaming.concurrentJobs, which is set to 1. Set this number to the
number of actions across your jobs to achieve inter-streaming job parallelism. This is still an experimental
parameter, so use it with caution. In addition, it can increase end-to-end latency due to resource contention
between the parallel jobs.

This is also useful for other scenarios:

e Batch parallelism: Batches are pipelined, which means the batch at interval T2 is
scheduled only after the batch at T1 has completed. But if batch 1 takes longer than
the batch interval, the schedule of batch 2 will not be “batch interval” away from
it. Increasing the number of concurrent jobs will result in interleaving of execution
across batches.

e Parallel streams: Some applications may ingest data from multiple sources with
parallel processing branches and multiple actions. For instance, an application
may read financial data as well as weather data and analyze both in tandem after
performing a join of the two datasets. Parallel processing for these can also be
triggered via the same configuration parameter.
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Memory

The previous section looked at how explicitly caching RDDs can negate redundant processing—but there is
no such thing as a free lunch. In this instance, the cost is memory or disk storage. Naively caching everything
in memory can stress the heap and garbage collector. In cases where your application keeps running out of
heap space, you can increase it by setting spark.executor.memory. The format is the standard one used for
the JVM. For instance, to set the heap size to 4 GB, just pass it 4096m.*!

In certain cases, Spark also uses off-heap data structures, such as byte buffers used by Java NIO.?> Under
YARN, this additional memory allocation is handled by spark.yarn.executor.memoryOverhead with a
default value of max(executorMemory * 0.10, 384).Ifyour application uses copious amounts of off-heap
memory, you should increase this factor. In general, increasing the heap size or off-heap memory should be
the last straw. Your foremost goal should be to reduce the memory footprint of the application. Let’s look at
three options to achieve this.

Serialization

Keeping RDDs in memory in serialized form can reduce memory use and improve garbage collection. The
latter is due to the fact that individual records are stored in a single serialized buffer. In addition, you can
spit out the RDDs to disk at the expense of performance. Another option is to offload RDD management to
Tachyon, as discussed in Chapter 7.

Be default, Spark uses Java serialization, which is not the most efficient of implementations. This is
exacerbated in the case of streaming applications, where tens of thousands of objects need to be marshaled
and distributed across the cluster in a latency-sensitive fashion. Fortunately, Spark supports Kryo, which is
almost an order of magnitude more efficient and performant than standard Java serialization.” Kryo can be
turned on by setting spark.serializer to org.apache.spark.serializer.KryoSerializer.Irecommend
that you always use Kryo for your streaming applications. Kryo contains serializers for most Java primitives
out of the box. For custom classes, you need to register a custom serializer with Spark. Let’s tweak our
running example to illustrate the use of Kryo.

Listing 4-3 presents the code for a custom ProtonFlux class. It basically gives structure to the proton flux
fields in the dataset and also enables you to check for the presence of a solar storm. To use Kryo, you simply
need to implement the KryoSerializable interface and override its read and write methods.

Listing 4-3. Custom Serialization Class for ProtonFlux Objects

import com.esotericsoftware.kryo.{KryoSerializable,Kryo}
import com.esotericsoftware.kryo.io.{Output, Input}

1

2

3

4 class ProtonFlux(

5. var year: Int,

6 var bin0_57tol 78: Double,

7 var bin3_40to17 6: Double,

8 var bin22 _0to31 0: Double,
9. var binl_894to2_605: Double,
10. var bin4 200to6 240: Double,

?'In local standalone mode, this can be achieved by directly using JVM options: -Xmx 4906m.
2This is done by Spark, for instance, to improve shuffle performance.
Bhttps://github.com/eishay/jvm-serializers/wiki.
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var bin3_256to8 132: Double,

var bin3_276to8 097: Double,

var bin6_343to42_03: Double,

var bin17_88t026_81: Double,

var bin30_29to69 47: Double,

var bin132 8to242 0: Double
) extends KryoSerializable {

def this(year: String, bin0o 57tol 78: String, bin3 40to17 6: String,

bin22_oto31_0: String, binil_894to2_605: String, bin4 200to6_240: String,

bin3_256to8 132: String, bin3_276to8 097: String, bin6 343to42_03: String,

bin17_88t026_81: String, bin30_29t069_47: String, bin132_8to242_0: String) {

this(year.toInt, bino 57tol_78.toDouble, bin3_40to17_6.toDouble,

bin22_0to31_0.toDouble, binl 894to2_605.toDouble, bin4 200to6 240.toDouble,
bin3_256t08 132.toDouble, bin3_276t08 097.toDouble, bin6 343to42_03.toDouble,
bin17_88t026_81.toDouble, bin30_29to69_47.toDouble, bin132_8t0242_0.toDouble)

}

def isSolarStorm = (bino 57tol 78 > 1.0 || bin3_40to17 6 > 1.0
|| bin22_0to31 0 > 1.0 || bini_894to2 605 > 1.0 || bin4_200to6 240 > 1.0
|| bin3_256to8 132 > 1.0 || bin3_276to8 097 > 1.0 || bin6_343to42 03 > 1.0
|| bin17_88to26_81 > 1.0 || bin30_29t069 47 > 1.0 || bin132_8to0242_0 > 1.0)

override def write(kryo: Kryo, output: Output) {
output.writeInt(year)
output.writeDouble(bino 57to1 78)
output.writeDouble(bin3_40to17 6)
output.writeDouble(bin22_0to31 0)
output.writeDouble(bin1 894to2 605)
output.writeDouble(bin4 200to6 240)
output.writeDouble(bin3_256to08 132)
output.writeDouble(bin3_276to8 097)
output.writeDouble(bin6 343to42 03)
output.writeDouble(bin17 88to26 81)
output.writeDouble(bin30 29t069 47)
output.writeDouble(bin132_8to0242 0)

}

override def read(kryo: Kryo, input: Input) {

year = input.readInt()

bino 57to1 78 = input.readDouble()
bin3_40to17 6 = input.readDouble()

bin22 0to31 0 = input.readDouble()

bin1 894to2 605 = input.readDouble()

bin4 200to6 240 = input.readDouble()
bin3_256t08_132 = input.readDouble()
bin3_276t08_097 = input.readDouble()

bin6 343to42 03 = input.readDouble()

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 ' HIGH-VELOCITY STREAMS: PARALLELISM AND OTHER STORIES

59. bin17 88t026 81 = input.readDouble()
60. bin30 29t069 47 = input.readDouble()
61. bin132_8t0242 0 = input.readDouble()
62. }

63.

64. }

You can use this class in your code by registering it with Spark. Listing 4-4 contains the code to achieve
that. You first tell Spark to switch to Kryo serialization (line 4) and then register your custom serialization
class (line 5). The rest of the code uses this class to simplify the application. This example highlights how
simple it is to use Kryo while achieving rich dividends in terms of performance.

Listing 4-4. Registering a Custom Kryo Serialization Class with Spark

1 val conf = new SparkConf()

2 .setAppName (appName)

3 .setJars(SparkContext.jarOfClass (this.getClass).toSeq)

4. .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")

5. .registerKryoClasses(Array(classOf[ProtonFlux]))

6

7 val ssc = new StreamingContext(conf, Seconds(10))

8

9. val voyagerl = ssc.textFileStream(inputPath)

10. val projected = voyagerl.map(rec => {

11. val attrs = rec.split("\\s+")

12. new ProtonFlux(attrs(0), attrs(18), attrs(19), attrs(20), attrs(21),
13. attrs(22), attrs(23), attrs(24), attrs(25), attrs(26), attrs(27),
14. attrs(28))

15. 1)

16. val filtered = projected.filter(pflux => pflux.isSolarStorm)
17. val yearlyBreakdown = filtered.map(rec => (rec.year, 1))

18. .reduceByKey(_ + )

19. .transform(rec => rec.sortByKey(ascending = false))
20. yearlyBreakdown.saveAsTextFiles(outputPath)
Compression

In addition to serializing RDDs, you can also compress them by setting spark.rdd. compress to true. Doing
so trades CPU cycles for memory.

Garbage Collection

As mentioned earlier, stream processing can stress the standard JVM garbage collection due to the sheer
number of objects. This can increase the latency of real-time applications by causing frequent pauses.

To negate this behavior, the use of the concurrent mark sweep (CMS) garbage collector is recommended
for both the driver and the executors, which reduces pause time by running garbage collection
concurrently with the application. Enable it for the driver program by passing --driver-java-options
-XX:+UseConcMarkSweepGC to spark-submit. For executors, CMS garbage collection is turned on by setting
the parameter spark.executor.extraJavaOptions to XX:+UseConcMarkSweepGC.
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Every Day I'm Shuffling

Every time you trigger a shuffle operation, you copy data back and forth across the cluster. Therefore,
shuffling has very high disk and network I/O costs. There are a number of rules of thumb you should follow
while designing a streaming application.

Early Projection and Filtering

Similar to standard database techniques, it is always a good idea to project and filter early to reduce the
amount of data that is processed by downstream operators. For instance, in Listing 4-1, line 4, you project
the fields early on to confine yourself to fields that are actually required for the business logic.

Always Use a Combiner

Combiners are map-side aggregations that greatly reduce the amount of data that needs to be transferred
across the wire during a shuffle. The streaming API contains a number of transformations that have built-in
combiners. Let’s take the example of reduceByKey (). Line 6 in Listing 4-1 could also have been implemented
using groupByKey () .mapValues(_.sum); you use reduceByKey(_ + _) because it enables local aggregation
at the partition level before the shuffle.

Generous Parallelism

Shuffle operations internally employ a hash map to separate the partition space of grouping operations. This
can cause tasks to run out of heap space. You can avoid this by increasing the parallelism of *ByKey () tasks
to reduce their working set (the amount of state they need to maintain in memory).

File Consolidation

In situations with a large number of reduce tasks, it is useful to consolidate intermediate files to improve
disk seeks. Setting spark.shuffle.consolidateFiles to true turns on this consolidation. This invariably
improves performance in Ext4 and XFS file systems. For Ext3, in certain cases it may actually degrade
performance, especially on machines with more than eight cores.?*

More Memory

The executor Java heap is shared between RDDs, shuffle, and application objects. By default, RDDs use 60%
(spark.storage.memoryFraction) of the memory, and shuffle has 20% at its disposal (spark.shuffle.
memoryFraction). Excessive use spills the contents of the aggregation phase of the shuffle to disk. If your
application contains many shuffle steps, you should consider increasing the share of shuffle memory to
reduce the number of spills to disk. This obviously trades RDD storage memory for shuffle memory.

#Aaron Davidson and Andrew Or, “Optimizing Shuffle Performance in Spark,” www. cs.berkeley.edu/~kubitron/
courses/cs262a-F13/projects/reports/project16_report.pdf.
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Summary

The performance of a Spark Streaming application is a function of parallelism, the batch interval,
scheduling, memory, and shulffle. To get the best out of the underlying system for your application, each
one of these entities needs to be optimized. This is easier said than done, though, because each needs to be
experimented with via trial and error. As a result, application development and maintenance is an evolving
process that requires a lot of patience. This task can be simplified to a large extent by using some of the
techniques outlined in this chapter.

So far, all the example applications have required reading data from file. In most real-world
applications, however, data is received from external sources and processed directly. This source might be
the API of a social network such as Twitter or a stream of log files emitted by machines in a large datacenter
sent via Kafka. In the next chapter, you wean yourself away from file input and focus on more dynamic
sources.
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CHAPTER 5

Real-Time Route 66: Linking
External Data Sources

Ifyou want to go somewhere, goto is the best way to get there.

—Ken Thompson

Most data in the wild is dynamic and has a firm lifecycle: it is created, ingested, analyzed, and then culled or
put in cold storage. This lifecycle generally has a strict time budget outside of which it is useless. The time
budget for streaming data can be on a millisecond scale. Regardless of latency requirements, the first step

is invariably transporting the data to a processing platform while perhaps traversing the entire Internet.

Any pipelined architecture can only be as fast as its slowest link. For this reason, even before the data has
landed in the data center, the choice of the transport solution—even though technically it is not part of your
application—can substantially affect performance. With this in mind, this chapter is dedicated to ingesting
data from solutions such as Kafka, Flume, and MQTT. In the process, you also write your own connector for
HTTP to learn the ropes of connecting to external data sources.

Extending Ken Thompson’s goto philosophy, one of the best ways to go somewhere is to ride a bike.
Toward this end, this chapter uses bike-sharing data from New York City to underscore the key features of
different data-ingestion solutions and their connectors in Spark Streaming. Your initial stop is the most basic
data connector possible: a simple socket. Once you have whetted your appetite for external connectors, the
chapter moves on to more complex solutions including Kafka and Flume and also taps Twitter. To wrap up
the chapter, you write a custom connector to get a handle on the status of bike stations in New York City in
real time.

Smarter Cities, Smarter Planet, Smarter Everything

Earth's resources are limited, but human needs have become virtually unlimited. This coupled with the
drive toward urbanization is stressing the planet’s infrastructure, from transportation to electricity and
utilities. Cognizant of this, urban planners and technologists have been pushing a “smart” agenda in the last
few years. This entails instrumenting every aspect of the urban environment to achieve optimal resource
utilization, sharing, capacity planning, and monitoring. Doing so involves using information from traffic
signals, loop inductors, CCTV cameras, and onboard systems to predict congestion or using data from smart
meters to tightly couple supply and demand in electricity generation. “Smarter everything” requires an
entire ecosystem of sensors, data collectors, analyzers, and actioners.

© Zubair Nabi 2016 69
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One of the key ingredients of smarter everything is a sharing economy wherein a plurality of players
interact, collaborate, and share a particular resource. Examples include ride-sharing apps such as Uber,
accommodation sharing via Airbnb, and P2P e-commerce enabled by the likes of Etsy. Some of these
services are in the public sector and are subsidized by the government. One of the major success stories
in this domain is bike sharing. Close to 1,000 cities around the world have bike-sharing programs,’ which
collectively have roughly 1 million bikes.? Just in New York City, which has the largest program in the United
States, riders have accrued 100 million miles in 22 million trips® since the start of the program.

New York City also makes all bike-sharing data open. Of this data, this chapter uses two major datasets:
trip histories* and station feed.® The former is released every month in a batch and contains the complete
details of each trip undertaken during that period. Table 5-1 enumerates every field in this dataset and its
units. To get a feel for real-time computation, you will use a custom program to replay this data. The station
feed dataset is a live JSON stream of the status of each bike station in New York City. This status includes
information about whether the station is functional and the number of free bikes. These fields are presented
in Table 5-2.

Table 5-1. Fields in the NYC Bike Trip History Dataset

# Field Units

1 Trip duration Seconds

2 Start time MM/DD/YYYY Hmm
3 Stop time MM/DD/YYYY Hmm
4 Start station ID

5 Start station name

6 Start station latitude Degrees

7 Start station longitude Degrees

8 End station ID

9 End station name

10 End station latitude Degrees

11 End station longitude Degrees

12 Bike ID

13 User type Customer/Subscriber®
14 Birth year YYYY

15 Gender 0: Unknown, 1: Male, 2: Female

'Felix Richter, “Bike-Sharing Is Taking Off Around the World,” Statista, March 19, 2015, www.statista.com/
chart/3325/bike-sharing-systems-worldwide/.

*“The Bike Sharing World - 2014 -Year End Data,” January 6, 2015, The Bike-sharing Blog, http://bike-sharing.
blogspot.com/2015/01/the-bike-sharing-world-2014-year-end.html.

3Citi Bike Data 2015 Q3, Citi Bike, http://datawrapper.dwcdn.net/xNb8Y/30/.
*https://www.citibikenyc.com/system-data.

Shttps://www.citibikenyc.com/stations/json.

®Customer: holder of 24-hour or 7-day pass. Subscriber: annual member.
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Table 5-2. Fields in the NYC Bike Station Feed

# Field Units

1 Station ID

2 Station name

3 Number of available docks

4 Total number of docks

5 Latitude Degrees

6 Longitude Degrees

7 Status

8 Status key 1: In Service, 2: Planned, 3: Not In Service, and 4: De-registered
9 Number of available bikes

10 Street address

11 Street address 2

12 City

13 Postal Code

14 Location

15 Altitude

16 Test station True/False

17 Last communication time YYYY-MM-DD HH:mm:ss AM/PM
18 Land mark

ReceiverinputDStream

A typical Spark Streaming batch starts with the creation of an InputDStream and stops with a side effect.
As shown in Figure 5-1, currently InputDStreams can be of five main types:

ConstantInputDStream: Repeats the same RDD in every batch. Only used for
testing.

FileInputDStream: Generates RDDs from files present on a file system.
Examples include textFileStream.

ReceiverInputDStream: Places areceiver on each node, and generates RDDs
from incoming data.

QueueInputDStream: Converts data from a Scala queue to a DStream.

DirectKafkaInputDStream: Represents a stream of KatkaRDD wherein each RDD
corresponds to a Kafka partition.
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md SocketinputDStream
— FilelnputDStream
md MQTTInputDStream

md ReceiverinputDStream fm

‘—‘ InputDStream e md ConstantinputDStream
MappedDStream md QueuelnputDStream
Prior DStream FilteredDStream aadDirectKafkalnputDStrear

Figure 5-1. Hierarchical view of different DStreams

md KafkalnputDStream

DStream

Unlike a standard InputDStream, which is executed on a single node, ReceiverInputDStreams are
generated by placing receivers on worker nodes. This is necessary for high-data-volume solutions such as
Kafka, which can easily overwhelm a single node. With ReceiverInputDStreams, a single node does not
become the bottleneck, because network reception is distributed across many workers. Spark 1.3 also added
support for a receiver-less “direct” DStream for Kafka to ensure better end-to-end reliability guarantees.

A standard InputDStream exposes start() and stop() methods and inherits a compute() method from
DStream. These need to be extended by any concrete implementation of a connector. As the names suggest,
start() and stop() sign-post the beginning and the end of an InputDStream. The compute() method is in
charge of returning new RDDs in every batch. For instance, FileInputDStream returns newly added files
from a directory in every batch in its compute() method. The service/thread for this method is executed on
the driver node.

ReceiverInputDStream extends this interface with a getReceiver () method, which is expected
to return a Receiver object that is executed on worker nodes. This receiver connects to input sources
and fetches data to store in the Spark block store. Receivers can be both reliable and unreliable.

You drill down into the details of Receivers toward the end of this chapter when you implement
your own ReceiverInputDStream for HTTP. For now, you have enough insight to jump to some
ReceiverInputDStream implementations, starting with SocketInputDStream.

Sockets

TCP sockets are the simplest type of network data sources, because flow control and congestion control
are directly delegated to the underlying TCP protocol layer. StreamingContext out of the box exposes two
functions to create a SocketInputDStream. The first of these is socketStream(), which creates a raw TCP
socket. Its signature is presented in Listing 5-1.

Listing 5-1. Function to Create a Raw SocketInputDStream
socketStream[T: ClassTag](hostname: String, port: Int, converter: (InputStream) =>
Iterator[T], storagelLevel: Storagelevel)
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hostname and port represent the hostname:port pair of the TCP source. You need to explicitly
parameterize the generic SocketInputDStream with the type of the input (T), similar to any other generic
class in Scala, such as Collections. An iterator of the same type needs to be returned by the convertor
function passed as the third argument. This function receives a Java InputStream as input and is expected
to read data from the input stream and convert it to an I'terator with objects of type T. The last argument,
storagelevel, dictates the persistence level of the received data objects.

A concrete example is the second socket function exposed by StreamingContext:
socketTextStream(hostname: String, port: Int), which converts a raw socket into a
SocketInputDStream of newline (\n) delimited UTF-8 Strings. Under the hood, it invokes socketStream()
as shown in Listing 5-2.

Listing 5-2. Inner Wiring of socketTextStream

storagelevel = StoragelLevel .MEMORY_AND DISK SER_2
socketStream[String] (hostname, port, SocketReceiver.bytesTolLines, storagelevel)

By default, it uses a persistence level of MEMORY_AND_DISK_SER_2, which you may recall persists the
input data objects in memory and on disk in serialized form on two nodes. This can be overridden by
passing a third StorageLevel object to socketTextStream(). The function is parameterized with the String
type. The convertor function for SocketReceiver is presented in Listing 5-3. As expected, it returns an
Iterator that converts an input stream to UTF-8 Strings.

Listing 5-3. Function to Convert a Raw Input Stream to a String Iterator

1 def bytesTolLines(inputStream: InputStream): Iterator[String] = {

2 val dataInputStream = new BufferedReader(new InputStreamReader(inputStream, "UTF-8"))
3 new NextIterator[String] {

4 protected override def getNext() = {

5. val nextValue = dataInputStream.readLine()
6 if (nextValue == null) {
7 finished = true
8

9

}

. nextValue
10. }

11.

12. protected override def close() {
13. dataInputStream.close()
14. }
15.  }
16. }

Behind the scenes, SocketInputDStream uses a SocketReceiver object, which extends the Receiver
interface and simply runs a thread to store objects read from the socket to the block store in the worker’s
memory heap.

Let’s move on to a concrete example, which uses SocketInputDStream and the New York City trip
history dataset. Your goal is to determine the breakdown of journey lengths by year of birth: that is, whether
people from a certain age group travel more via shared bikes in New York City. You first employ a custom
driver program in Java that reads zipped trip history files from HDFS and feeds them to a socket. Your
Spark Streaming application then acts as a socket client and performs the actual calculation. You need a
driver program for three data sources covered in this chapter: socket, MQTT, and Kafka. Therefore, you first
structure it in the form of an abstract class, dubbed AbstractDriver, which is extended by all three of the
target systems. The Java implementation is presented in Listing 5-4.
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Listing 5-4. Abstract Driver Program That Feeds a Data-Transport System

1. import java.io.BufferedReader;

2.  import java.io.File;

3. import java.io.IOException;

4. import java.io.InputStreamReader;

5. import java.util.Enumeration;

6. dmport java.util.zip.ZipEntry;

7. dimport java.util.zip.ZipFile;

8.

9. import org.apache.log4j.lLogManager;

10. dimport org.apache.log4j.Logger;

11.

12. public abstract class AbstractDriver {

13.

14. private static final Logger LOG = LogManager.getlogger(AbstractDriver.class);

15.

16. private String path;

17.

18. public AbstractDriver(String path) {

19. this.path = path;

20. }

21.

22. public abstract void init() throws Exception;

23.

24. public abstract void close() throws Exception;

25.

26. public abstract void sendRecord(String record) throws Exception;

27.

28. public void execute() throws Exception {

29.

30. try {

31. init();

32. File dirPath = new File(path);

33. if (dirPath.isDirectory()) {

34. File[] files = new File(path).listFiles();

35. for (File f : files) {

36. LOG.info(String.format("Feeding zipped file %s", f.getName()));

37. ZipFile zFile = null;

38. try {

39. zFile = new ZipFile(f);

40. Enumeration<? extends ZipEntry> zEntries = zFile.entries();

41.

42. while (zEntries.hasMoreElements()) {

43. ZipEntry zEntry = zEntries.nextElement();

44. LOG.info(String.format("Feeding file %s", zEntry.
gethane()));

45. try (BufferedReader br = new BufferedReader(

46. new InputStreamReader(zFile.

getInputStream(zEntry)))) {
4
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47. // skip header

48. br.readLine();

49. String line;

50. while ((line = br.readlLine()) != null) {
51. sendRecord(line);

52. }

53. }

54. }

55. } catch (IOException e) {

56. LOG.error(e.getMessage());

57. } finally {

58. if (zFile !'= null) {

59. try {

60. zFile.close();

61. } catch (IOException e) {

62. LOG.error(e.getMessage());
63. }

64. }

65. }

66.

67. } else {

68. LOG.error(String.format("Path %s is not a directory", path));
69. }

70. } finally {

71. close();

72. }

73. }

74. '}

The AbstractDriver program takes as input a path to the directory containing all the zipped files from
the dataset. This is then used to read each line (line 50) from each file (line 42) in the zip and feed it to
the data-transfer mechanism (line 51) of a concrete data-transport system in the form of a string. Each
implementation also needs to provide initialization (init()) and shutdown (close()) code.

The driver implementation for a socket is shown in Listing 5-5. Internally, it employs a custom
SocketStream class (line 49) to feed the socket. In turn, SocketStream uses ServerSocketChannel (line 53)
from NIO to launch a socket server in a thread. It also exposes a sendMsg () function (line 89) that sends a
UTF-8 encoded, new-line delimited string through the socket (line 91-92). This enables you to directly use
socketTextStream() to ingest data into a Spark Streaming application at the other end.

Listing 5-5. Socket Driver Program

import java.io.IOException;

import java.net.InetSocketAddress;

import java.nio.ByteBuffer;

import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;

import java.nio.charset.StandardCharsets;
import java.util.concurrent.ExecutionException;

import org.apache.log4j.LogManager;
0. dimport org.apache.log4j.Logger;

B O ooV~ WN R
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12. public class SocketDriver extends AbstractDriver {

13.

14. private static finmal Logger LOG = LogManager.getlogger(SocketDriver.class);

15.

16. private String hostname;

17. private int port;

18. private SocketStream socketStream;

19.

20. public SocketDriver(String path, String hostname, int port) {

21. super(path);

22. this.hostname = hostname;

23. this.port = port;

24. }

25.

26. @0verride

27. public void init() throws Exception {

28. socketStream = new SocketStream(hostname, port);

29. LOG.info(String.format("Waiting for client to connect on port %d", port));

30. SocketChannel socketChan = socketStream.init();

31. LOG.info(String.format("Client %s connected on port %d", socketChan.
getRemoteAddress(), port));

32. socketStream. kickOff(socketChan);

33. socketStream.start();

34. }

35.

36. @0verride

37. public void close() throws IOException {

38. socketStream.done();

39. if (socketStream != null) {

40. socketStream.close();

41. }

42. }

43.

44. @0verride

45. public void sendRecord(String record) throws Exception {

46. socketStream.sendMsg(record + "\n");

47. }

48.

49. static class SocketStream extends Thread {

50.

51. private String hostname;

52. private int port;

53. private ServerSocketChannel server;

54. private volatile boolean isDone = false;

55. private SocketChannel socket = null;

56. private long totalBytes;

57. private long totallines;

58.

59. public SocketStream(String hostname, int port) {

60. this.hostname = hostname;

61. this.port = port;
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totalBytes
totallines

0;
0;

}

public SocketChannel init() throws IOException {
server = ServerSocketChannel.open();
server.bind(new InetSocketAddress(hostname, port));
LOG.info(String.format("Listening on %s", server.getlocalAddress()));
return server.accept();

}

public void kickOff(SocketChannel socket) {
LOG.info("Kicking off data transfer");
this.socket = socket;

}
@0verride
public void run() {
try {
while (!isDone) {
Thread.sleep(1000);
}
} catch (Exception e) {
LOG.error(e);
}
}

public void sendMsg(String msg) throws IOException, InterruptedException,
ExecutionException {
if (socket != null) {
ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes(StandardCharsets.
UTF_8));
int bytesWritten = socket.write(buffer);
totalBytes += bytesWritten;
} else {
throw new IOException("Client hasn't connected yet!");
}

totallines++;

}

public void done() {
isDone = true;
}

public void close() throws IOException {
if (socket !'= null) {
socket.close();
socket = null;

}

LOG.info(String.format("SocketStream is closing after writing %d bytes and

%d lines", totalBytes,
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110. totallines));

111. }

112. }

113.

114. public static void main(String[] args) throws Exception {

115.

116. if (args.length != 3) {

117. System.err.println("Usage: SocketDriver <path to input folder> <hostname>
<port>");

118. System.exit(-1);

119. }

120.

121. String path = args[o];

122. String hostname = args[1];

123. int port = Integer.parselnt(args[2]);

124.

125. SocketDriver driver = new SocketDriver(path, hostname, port);

126. try {

127. driver.execute();

128. } finally {

129. driver.close();

130. }

131. }

132. }

At the other end of the socket, the Spark Streaming application (Listing 5-6) reads from the socket
(line 26) and tokenizes each line into attribute fields (line 27). You only need the year of birth (field 13) and
journey length (field 0), so you project those fields (line 28) into a key-value pair with year of birth as the key.
You then aggregate journey lengths by year of birth (line 29). Line 30 performs two tasks:

e  Year of birth is converted to age (by subtracting it from the current year using the
function normalizeYear).

e Key-values are swapped to enable sorting by journey length, which takes place on
the next line.

You finally save the output to an HDFS file (line 32); it shows that people in their late 20s and early 30s
account for the longest trips.

This application sorts journey time by age at every batch interval. As you can see, using a
SocketInputDStreamis only a matter of passing a hostname and port to helper functions while the
underlying Spark Streaming subsystem takes care of the rest.

Listing 5-6. Spark Streaming Application Using SocketInputDStream to Break Down Journey Length in the
NYC Bike Trip History Dataset by Birth Year

1.  dimport org.apache.spark.SparkContext

2. import org.apache.spark.SparkConf

3.

4. import org.apache.spark.streaming.{ Seconds, StreamingContext }
5. import org.apache.spark.streaming.dstream.PairDStreamFunctions
6.

7. dimport java.util.Calendar

8.
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object TripByYearApp {
def main(args: Array[String]) {

}

if (args.length < 4) {
System.err.println(
"Usage: TripByYearApp <master> <appname> <hostname> <port>" +
" In local mode, <master> should be 'local[n]' with n > 1")
System.exit(1)

val Seq(master, appName, hostname, port) = args.toSeq

val conf = new SparkConf()
.setAppName (appName)
.setMaster(master)
.setJars(SparkContext.jarOfClass(this.getClass).toSeq)

val ssc = new StreamingContext(conf, Seconds(10))

ssc.socketTextStream(hostname, port.toInt)
.map(rec => rec.split(","))
.map(rec => (rec(13), rec(0).toInt))
.reduceByKey(_ + )
.map(pair => (pair. 2, normalizeYear(pair. 1)))
.transform(rec => rec.sortByKey(ascending = false))
.saveAsTextFiles("TripByYear")

ssc.start()
ssc.awaitTermination()

def normalizeYear(s: String): String = {

}
}

try {

(Calendar.getInstance().get(Calendar.YEAR) - s.toInt).toString
} catch {

case e: Exception => s

}

In certain scenarios where the ingest rate is much slower in comparison to batch execution, it is

recommended that you create multiple SocketInputDStreams.” This load-balances receivers across multiple
workers. Your data source also needs to push data to multiple sockets, resulting in one SocketInputDStream
per socket at the Spark Streaming end.

To achieve this, consider the snippet of code in Listing 5-7. nSockets is the total number of

SocketInputDStreams that need to be created. The code assumes that the ports for the sockets are
sequential starting at basePort. These SocketInputDStreams are then merged into a single one (line 2) to
enable a common chain of transformations. Recall that union is only a logical operation, not a physical one,
which keeps the parallelism of the merged streams intact.

"In fact, this concept is applicable to all ReceiverInputDStreams.
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Listing 5-7. Creating Multiple SocketInputDStreams to Load-Balance Receivers Across Workers

1. val streams = (0 to nSockets.toInt - 1).map(i => ssc.socketTextStream(hostname,
basePort.toInt + i))
2. val uniStream = ssc.union(streams)

Although sockets are a convenient and simple abstraction to transport data, they are too low level: they
have no notion of structure, fault tolerance, semantics, or partitioning. These features are generally provided
by application-level frameworks layered on top of storage and the network, including log aggregators,
message queues, and pipes. One such system is MQTT.

MQTT

Message Queue Telemetry Transport (MQTT) is an example of a traditional pub/sub-based message queue
protocol wherein producers publish messages to a topic while consumers read from it.? A broker server
handles storage, relay, and arbitration. Targeted toward machine-to-machine communication, MQTT has
been designed for IoT, which makes it lightweight, low latency, and delay tolerant. It supports the entire
spectrum of message-guarantee options: at-most-once, at-least-once, and exactly once. A wide range of
message brokers including ActiveMQ, IBM Websphere MQ, RabbitMQ, and Mosquitto support MQTT.

The MQTT connector in Spark Streaming is implemented in a separate library. It uses the Eclipse Paho
MQTT client.® As a result, the following two dependencies need to be added to your sbt file:

library Dependencies += "org.apache.spark" %% "spark-streaming-mqtt" % "1.4.0"
library Dependencies += "org.eclipse.paho" % "org.eclipse.paho.client.mqttv3" % "1.0.1"

Creating an MOTTInputDStream is a matter of invoking MQTTUtils.createStream(ssc:
StreamingContext, brokerUrl: String, topic: String, storagelevel: Storagelevel), where sscisa
StreamingContext instance, brokerUrl is the URL of the MQTT broker in the format tcp://hostname:port,
topic is the name of the pub/sub topic, and storagelevel is the persistence level for the blocks of the
InputDStream.

To illustrate the use of MOTTInputDStream, let’s consider another example: working out the yearly
distribution of bike trips per day. Similar to sockets, you extend the AbstractDriver, which replays the bike
trip dataset via MQTT. The code for the driver is given in Listing 5-8.

Listing 5-8. Custom Driver Program to Publish Messages from a Folder with Zipped Files to MQTT

import java.nio.charset.StandardCharsets;

import org.apache.log4j.LogManager;

import org.apache.log4j.Logger;

import org.eclipse.paho.client.mqttv3.MgttClient;

import org.eclipse.paho.client.mqttv3.MgttException;

import org.eclipse.paho.client.mqttv3.MgttMessage;

import org.eclipse.paho.client.mqttv3.MgttTopic;

import org.eclipse.paho.client.mqttv3.persist.MemoryPersistence;

P O ooV~ WN R

8Valerie Lampkin et al. “Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry,”
IBM Redbooks.
“www.eclipse.org/paho/.
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public class MgttDriver extends AbstractDriver {

private static finmal Logger LOG = LogManager.getlogger(MqttDriver.class);

private final String brokerUrl;
private final String topic;
private MgttClient client;
private MqgttTopic mqttTopic;

public MqttDriver(String path, String brokerUrl, String topic) {
super(path);
this.brokerUrl = brokerUrl;
this.topic = topic;

}

@0verride

public void init() throws Exception {
client = new MgttClient(brokerUrl, MgttClient.generateClientId(), new
MemoryPersistence());
LOG.info(String.format("Attempting to connect to broker %s", brokerUrl));
client.connect();
mqttTopic = client.getTopic(topic);
LOG.info(String.format("Connected to broker %s", brokerUrl));

}

@0verride
public void close() throws Exception {
if (client !'= null) {

client.disconnect();
}
}
@0verride
public void sendRecord(String record) throws Exception {
try {
mqttTopic.publish(new MgttMessage(record.getBytes(StandardCharsets.
UTF_8)));
} catch (MqttException e) {
if (e.getReasonCode() == MqttException.REASON_CODE_MAX_INFLIGHT) {
Thread.sleep(10);
}
}
}

public static void main(String[] args) throws Exception {
if (args.length != 3) {
System.err.println("Usage:MqttDriver <path_to_input_folder> <broker urls

<topicy");
System.exit(-1);
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60. String path = args[o];

61. String brokerUrl = args[1];
62. String topic = args[2];

63.

64. MqttDriver driver = new MgttDriver(path, brokerUrl, topic);
65. try {

66. driver.execute();

67. } finally {

68. driver.close();

69. }

70. }

71.

72. }

Notice that this code is very similar to the socket driver code. The main difference is that the
custom SocketStream thread is replaced with MqttClient, which takes as input the URL of the MQTT
broker in the format tcp://hostname:port for its initialization (line 28). In addition, it requires an
MgttClientPersistence object, which is used to store in-flight incoming and outgoing messages
depending on the quality of service. The client library implements two—MqttDefaultFilePersistence and
MemoryPersistence—which as the names suggest, persist in-flight messages either on disk or in memory.
You then create a topic object for your user-defined topic (line 31).

After creating the topic, you are ready to publish messages, which is exactly what takes place on line 45.
Each message first needs to be converted to an MgttMessage object. MQTT supports three QoS options, which
are listed in Table 5-3. This value can be configured for each MqttMessage object via its setQoS method.

Table 5-3. QoS Options for MQTT

# QoS Description

0 At-most-once Similar to UDP in essence. Messages are sent over the wire and may be dropped if
there is a failure along the way.

1 At-least-once Messages need to be acknowledged by the client. In case of a failure, messages
may be repeated, which means they need to be stored at the sender end. This is
the default QoS.

2 Exactly once Messages are sent only once due to an internal deduplication mechanism.

Similar to at-least-once semantics, messages need to be cached at the sender end
while the client has not acknowledged them.

MQTT brokers also enforce a limit on the number of in-flight messages. Therefore, publishers need to
be mindful of this limit and back off every time it is hit. You achieve this on lines 46-48, where the driver goes
to sleep briefly, allowing the consumer to drain the topic.

The Spark Streaming consumer application (Listing 5-9) is very similar to TripByYearApp. The only
major difference is that now you want to keep a running count throughout the lifetime of the application,
to maintain batch-invariant state. Toward this end, you use updateStateByKey() (line 29) instead of
reduceByKey() and pass it a stateful count function (line 38).
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Listing 5-9. Spark Streaming Application That Ingests Data from MQTT and Determines the Daily Trip

org.apache.spark.SparkConf

org.apache.spark.SparkContext
org.apache.spark.rdd.RDD.rddToOrderedRDDFunctions
org.apache.spark.storage.Storagelevel
org.apache.spark.streaming.Seconds
org.apache.spark.streaming.StreamingContext
org.apache.spark.streaming.dstream.DStream.toPairDStreamFunctions
org.apache.spark.streaming.mqtt.MQTTUtils

YearlyDistributionApp {

def main(args: Array[String]) {

(args.length 1= 4) {
System.err.println(

"Usage: YearlyDistributionApp <appname> <brokerUrl> <topic> <checkpointDir>")
System.exit(1)

1 Seq(appName, brokerUrl, topic, checkpointDir) = args.toSeq
1 conf = new SparkConf()

.setAppName (appName)
.setJars(SparkContext.jarOfClass(this.getClass).toSeq)

1 ssc = new StreamingContext(conf, Seconds(10))
c.checkpoint(checkpointDir)

MQTTUtils.createStream(ssc, brokerUrl, topic, StoragelLevel.MEMORY_ONLY_SER_ 2)

.map(rec => rec.split(","))

.map(rec => (rec(1).split(" ")(0), 1))
.updateStateByKey(statefulCount)

.map(pair => (pair._2, pair._1))

.transform(rec => rec.sortByKey(ascending = false))
.saveAsTextFiles("YearlyDistribution")

ssc.start()
ssc.awaitTermination()

statefulCount = (values: Seq[Int], state: Option[Int]) => Some(values.sum +

state.getOrElse(0))

Distribution
1.  import
2. import
3.  dimport
4. import
5. import
6. dimport
7. import
8. import
9.

10. object
11.

12. if
13.

14.

15.

16.

17. va
18.

19. va
20.

21.

22.

23. va
24. ss
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36. }
37.

38. val
39.

40. }

MQTT is really useful for use cases that entail diversity and plurality in consumers and topics. A good

example is IoT data that needs to be, say, partitioned into topics based on sensor type and needs to be
consumed by a number of downstream systems, such as a real-time processing app and a data warehouse
for long-term storage.

A different class of applications requires shipping large swathes of log data from one location to another.

This data generally is not broken down semantically into topics. Consequently, using a message-queue
system like MQTT is overkill. Such applications are better served by log aggregation systems, such as Flume,
which is the next target system.
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Flume

Flume" is a distributed log-aggregation system with a dataflow architecture. Data, in the form of events,
flows from sources to sinks via channels. Channels dictate the reliability semantics of the connection. Out

of the box, Flume provides memory, file, JDBC, and Kafka-based channels. The routing policy of channels,
including setting up backup routes, is also configurable. All of these entities execute asynchronously

in agents (JVM processes) on worker nodes. Events flow through channels in the form of hop-by-hop
transactions: a channel forgets an event only after it has been acknowledged by the next channel in

the pipeline or the sink endpoint. The serialization of events can be customized to follow application
requirements, with default support for a number of formats including Avro and Thrift. Flume flows are set up
through a Java-style key-value configuration file.

Listing 5-10 shows a sample Flume configuration file. It consists of a single flow: source » channel »
sink. The library source spooldir monitors a local file system directory and turns each line from each input
file into an event. The configuration employs an Avro sink that encodes each event into an Avro record and
makes it available on the specified hostname and port. These two components are connected via a memory
channel. capacity is the size of the memory channel event buffer, and transactionCapacity specifies the
number of events that are copied in one transaction from the source to the sink.

Listing 5-10. Sample Flume Configuration with a Single Source, Channel, and Sink

1.  # components on this agent

2. al.sources = src-1

3. al.sinks = snk-1

4. al.channels = ch-1

5.

6. # source

7. al.sources.src-1.type = spooldir

8. al.sources.src-1.channels = ch-1

9. al.sources.src-1.spoolDir = <path_dir>
10.

11. # sink

12. al.sinks.snk-1.type = avro

13. ail.sinks.snk-1.hostname = localhost
14. ail.sinks.snk-1.port = 44444

15.

16. # channel

17. al.channels.ch-1.type = memory

18. al.channels.ch-1.capacity = 10000
19. al.channels.ch-1.transactionCapacity = 1000
20.

21. # bind source, sink, and channel
22. al.sources.src-1.channels = ch-1
23. al.sinks.snk-1.channel = ch-1

Connecting to Flume from a Spark Streaming application requires the following dependency:

libraryDependencies += "org.apache.spark" %% "spark-streaming-flume" % "1.4.0"

Yhttps://flume.apache.org/.

84

www.it-ebooks.info


https://flume.apache.org/
http://www.it-ebooks.info/

CHAPTER 5 * REAL-TIME ROUTE 66: LINKING EXTERNAL DATA SOURCES

Similar to MQTT, using a FlumeInputDStreamrequires only a single line

FlumeUtils.createStream(ssc: StreamingContext, sinkHostname: String, sinkPort: Int,
storagelevel: Storagelevel)

where ssc is a StreamingContext instance, sinkHostname is the hostname of the Flume sink, sinkPort is its
port, and storageLevel is the persistence level for the blocks of the InputDStream.

Spark Streaming supports two modes for ingesting data from Flume: push and pull. In the former, a
receiver acts as a Flume agent to connect to an Avro sink, which pushes data to it. In the pull-based model,
a custom Flume sink needs to be registered in your Flume configuration to buffer events. This data is
periodically ingested by a reliable Flume receiver, which acknowledges these events. The latter provides
better reliability and fault-tolerance guarantees because a Flume transaction is marked successful only after
its data has been stored and replicated by Spark.

Let’s look at using the push-based approach first. In this setup, the Spark Streaming application needs
to be running before the Flume agent is executed.

Push-Based Flume Ingestion

In your Spark Streaming application, you want to determine the daily distribution of each user type: how
many trips customers and subscribers undertake in a day. Listing 5-11 contains the main snippet of code
for this application. On line 1, you provide the hostname and port of the Flume Avro sink. You project only
the date (position 1) and user type (position 12) on line 2 along with a unit value to allow a subsequent
aggregation. You may not receive all the data for a date in a batch, so you need to maintain counts across
batches. Therefore, you use updateStateByKey instead of reduceByKey. You use the same stateful count
function as the one in Listing 5-9. To ensure that user-type counts from the same date end up in the same
partition, you repartition to 1 (line 5). The number of records in each partition is small (only two per day),
so this does not degrade concurrent performance. Sorting the data by key, which is a date-userType pair,
ensures that records are temporally monotonic (line 6). Note that for brevity, boilerplate code is omitted.

Listing 5-11. Push-Based Flume Application to Segment the Bike Trips Dataset by User Type Every Day.

1 FlumeUtils.createStream(ssc, hostname, port.toInt, StoragelLevel.MEMORY ONLY SER 2)
2 .map(rec => new String(rec.event.getBody().array()).split(","))

3. .map(rec => ((rec(1).split(" ")(0), rec(12)), 1))

4. .updateStateByKey(statefulCount)

5 .repartition(1)

6 .transform(rdd => rdd.sortByKey(ascending = false))

7 .saveAsTextFiles(outputPath)

Once the Spark Streaming application is up and running, you need to set up a Flume application with
the configuration (saved in, say, flumePush.conf) from Listing 5-10. Note that a1.sources.src-1.spoolDir
needs to be set to the folder containing the New York City bike trips data. The last step is to execute the
Flume agent:

$FLUME_HOME/bin/flume-ng agent -n a1 -c flumeConf -f flumeConf/flumePush.conf
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Pull-Based Flume Ingestion

In this model, the roles are reversed: a custom Spark Flume agent acts as the server, and the Spark Streaming
application connects to it. You need to make two changes to the setup from the previous section: use a Spark
Avro sink, and use a polling Flume connector in the Spark Streaming application.

In the Flume configuration in Listing 5-10, replace avro for a1.sinks.snk-1.type with org.apache.
spark.streaming.flume.sink.SparkSink (saving the file as flumePull. conf). In addition, you need to
have the Spark Flume connector," Scala lib,"* and Apache Language Commons" on the classpath of your
Flume agent. To do this, create the directory path $FLUME_HOME/plugins.d/snk-1/1ib and copy the three
dependency JARs to it. Execute Flume as before:

$FLUME_HOME/bin/flume-ng agent -n a1 -c flumeConf -f flumeConf/flumePull.conf
In the Spark Streaming code (Listing 5-11), replace line 1 with
FlumeUtils.createPollingStream(ssc, hostname, port.toInt, StoragelLevel.MEMORY ONLY SER 2)

You are now running the same application with stronger reliability and fault-tolerance guarantees.
Under these guarantees, for instance, RDDs can be recovered from the block store in case of a worker failure.

Kafka

Kafka is a cross between a log aggregator and a pub/sub messaging system.* It couples the scalability and
recovery properties of the former with the interface and reliability properties of the latter. As a result, Kafka
looks and smells like a messaging system on the surface but is actually a log aggregator under the hood. It
uses partitioned write-ahead commit logs to maintain all data. Data is semantically grouped under a topic,
which is just a logical tag for a queue to which producers write and from which consumers read.

Each topic is sharded into partitions of fixed size and stored on broker machines, where each partition
is a self-contained, append-only commit log. Each partition is also replicated across brokers with one
broker acting as the replica leader. Instead of an explicit timestamp or ID, the relative position of a message
in the log determines its location and temporal order. Consumers are clubbed into a consumer group
and jointly consume a topic. Each consumer in a consumer group exclusively reads from a partition."
Another interesting feature of Kafka is that the system itself does not maintain any state information
about consumers. It is the job of the consumer to update and checkpoint its offset. This means in case of a
failure, the consumer may replay messages that it has already consumed. Therefore, Kafka provides at-
least-once semantics by default. At-most-once delivery is achieved by disabling retries at the producer end
and committing the offset of a batch of messages prior to consuming it. Ensuring exactly once semantics
is a more involved process because it requires deduplication of messages at both the producer and the
consumer ends. Kafka simplifies this by providing the offset.

http://search.maven.org/remotecontent?filepath=org/apache/spark/spark-streaming-flume-
sink_2.10/1.4.0/spark-streaming-flume-sink_2.10-1.4.0.jar.
?http://search.maven.org/remotecontent?filepath=org/scala-lang/scala-library/2.10.4/
scala-library-2.10.4.jar.
Phttp://search.maven.org/remotecontent?filepath=org/apache/commons/commons-lang3/3.3.2/
commons-lang3-3.3.2.jar.

14]. Kreps, N. Narkhede, and J. Rao, “Kafka: A Distributed Messaging System for Log Processing,” Proceedings of
NetDB, 2011.

No such coordination exists across consumer groups.
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Another consequence of obliviousness to consumers is that Kafka does not know whether all
consumers of a topic have completed processing. As a result, it cannot use a consumer reference counter
to garbage-collect messages. Instead, it uses a temporal timeout to remove messages. A nice side effect of
this approach is that consumers can rewind and replay messages explicitly in case of failure. For instance,
if messages are being consumed by a Hadoop mapper, then in case of a failure, a respawned mapper can
replay its input from the beginning. State information, such as consumer group mappings and active
brokers, is maintained in ZooKeeper.

Spark Streaming has two flavors of connectors for Kafka. One uses the high-level Kafka consumer API in
concert with a receiver, write-ahead log, and ZooKeeper to provide at-least-once semantics, and the second
(direct version) uses the simple Kafka consumer API'® in tandem with checkpoint-based offset tracking to
ensure exactly once semantics. Both require adding the following to your sbt configuration.

libraryDependencies += "org.apache.spark" %% "spark-streaming-kafka" % "1.4.0"

The application you will use to dissect Kafka, tallies the number of journeys undertaken between every pair
of stations in each interval. To highlight hotspots in real time, these pairs are sorted by popularity. Listing 5-12
shows the code for the Kafka driver. It uses a Producer object to set up a connection (line 16) to a Kafka broker. It
then sends lines from the dataset to the broker with the specified topic (line 30). Configuration information for
the producer is provided via a configuration file. For this particular example, you set only two properties:

o metadata.broker.1list contains comma-separated pairs of broker locations
(hostnamel:portl, hostname2:port2, ....).

e serializer.class decides the serialization for the message and the topic (if key.
serializer is not set), for which you use StringEncoder: the type of the message
body.

Other relevant parameters are listed in Table 5-4.

Listing 5-12. Kafka Driver Program

1 import java.util.Properties;

2

3 import kafka.javaapi.producer.Producer;
4. import kafka.producer.KeyedMessage;

5. dimport kafka.producer.ProducerConfig;
6
7
8
9

public class KafkaDriver extends AbstractDriver {

private final String topic;

10. private Producer<String, String> producer;

11.

12. public KafkaDriver(String path, String topic, Properties props) {
13. super(path);

14. this.topic = topic;

1The high-level API has additional features such as offset tracking, load-balancing across consumer groups, and
partition-subscription tracking over the simple AP

87

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 © REAL-TIME ROUTE 66: LINKING EXTERNAL DATA SOURCES

15. ProducerConfig config = new ProducerConfig(props);

16. producer = new Producer<String, String>(config);

17. }

18.

19. @0verride

20. public void init() throws Exception {

21. }

22.

23. @0verride

24. public void close() throws Exception {

25. producer.close();

26. }

27.

28. @0verride

29. public void sendRecord(String record) throws Exception {

30. producer.send(new KeyedMessage<String, String>(topic, record));

31. }

32.

33. public static void main(String[] args) throws Exception {

34.

35. if (args.length != 3) {

36. System.err.println("Usage: KafkaDriver <path to input folder> <brokerUrls
<topicy");

37. System.exit(-1);

38. }

39.

40. String path = args[o0];

41. String brokerUrl = args[1];

42. String topic = args[2];

43.

44. Properties props = new Properties();

45. props.put("metadata.broker.list", brokerUrl);

46. props.put("serializer.class", "kafka.serializer.StringEncoder");

47.

48. KafkaDriver driver = new KafkaDriver(path, topic, props);

49. try {

50. driver.execute();

51. } finally {

52. driver.close();

53. }

54. }

55. }
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Table 5-4. Major Kafka Producer Configuration Parameters

Parameter Default Description
request.required.acks 0 Controls the acknowledgement behavior of the
producer.

0: No wait for acknowledgements (latency: low,
durability: low).

1: Only wait for acknowledgement from the leader
(latency: medium, durability: medium).

-1: Wait for acknowledgement from all in-sync
replicas (latency: high, durability: high).

request.timeout.ms 10000 The timeout associated with request.required.
acks: how long the broker should wait to satisfy the
specified required.required.acks.

producer.type sync Whether messages should be sent synchronously or
asynchronously (with batching).

compression.codec none The compression codec to use. Possible values: none,
gzip, and snappy.

key.serializer.class serializer.class The serializer to use for the key.

Receiver-Based Kafka Consumer

A KafkaInputDStream can be created as follows:

KafkaUtils.createStream(ssc: StreamingContext, zkQuorum: String, consumerGroupIld: String,
topics: Map[String, Int], storagelevel: Storagelevel)

zkQuorum is the URL of ZooKeeper, which is used by the receiver to store message offsets and locate the
broker. consumerGroupId is the consumer group to which this application belongs. topics is a hash map of
topicId » num_of consumer threads. Note that num_of consumer threads per topicId only decides how
many threads are used by the receiver to consume data from Kafka, not Spark parallelism—this value has
no bearing on the number of partitions. At the same time, num_of_consumer_threads should be less than or
equal to the number of partitions in the topic; otherwise, some threads will remain idle.

This use is illustrated in Listing 5-13. By default, under this setup, data can be lost if the driver program
restarts, because the executors are killed as well and their in-memory buffers are lost. This can be remedied
by using write-ahead logs, wherein the transaction is written to a durable log before it is applied. This
ensures zero data loss in the face of failure: the pending data is flushed from the log on a restart, and any
lost buffered data is replayed from the source.'” To enable this feature, you need to set spark.streaming.
receiver.writeAheadlog.enable to true in the Spark configuration and also provide a checkpoint directory
(ssc.checkpoint()) for the write-ahead log.

"Tathagata Das, “Improved Fault-tolerance and Zero Data Loss in Spark Streaming,” Databricks, January 5, 2015,
https://databricks.com/blog/2015/01/15/improved-driver-fault-tolerance-and-zero-data-loss-in-
spark-streaming.html.
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Listing 5-13. Receiver-Based Spark Streaming Kafka Consumer

1. val topics = Map[String, Int](
2. topic -> 1)
KafkaUtils.createStream(ssc, zkQuorum, consumerGroupId, topics, StoragelLevel.MEMORY_
ONLY_SER).map(_. 2)

.map(rec => rec.split(","))

.map(rec => ((rec(3), rec(7)), 1))

.reduceByKey(_ + )

.repartition(1)

.map(rec => (rec. 2, rec. 1))

.transform(rdd => rdd.sortByKey(ascending = false))
10. .saveAsTextFiles(outputPath)

w

O 0o~y Ol B

The first thing to note in Listing 5-13 is that the persistence level is set to MEMORY_ONLY_SER (line 3)
instead of MEMORY_ONLY_SER_2. This is to ensure that data is not replicated twice. The write-ahead log on
HDFEFS is already replicated, so setting MEMORY_ONLY_SER_2 will replicate the data twice: once in the log and
once in the block store.

The application counts the frequency of start and end station pairs (line 4-6) and orders them by that
frequency (lines 8-9). The results show that some of the most frequent journeys are ones where the same
station is the start and end point.

Under the hood, the address of the ZooKeeper quorum (zookeeper. connect) and consumer group ID
(group.id) are passed as properties to the Kafka consumer API. The API internally also hardcodes a value of
10,000 for zookeeper.connection.timeout.ms.

Outside of these three configuration parameters, you may wish to customize other parts of the system.
A variant of KafkaUtils.createStream() also accepts a map of configuration parameters in this format:

KafkaUtils.createStream[K,V,KeyDecoder,ValueDecoder](ssc: StreamingContext, kafkaParameters:
Map[String, String], topics: Map[String, Int], storagelevel: Storagelevel)

For instance, if you explicitly wanted to provide a consumer ID—by default, one is generated
automatically—you would need to do something similar to Listing 5-14. Table 5-5 lists other relevant
configuration parameters.

Listing 5-14. Kafka Consumer with Custom Configuration

1 val params = Map[String, String](

2 "zookeeper.connect" -> zkQuorum,

3. "group.id" -> consumerGroupId,

4 "consumer.id" -> consumerId)

5 KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](ssc, params,
topics, Storagelevel .MEMORY_ONLY_ SER).map(_._2)
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Table 5-5. Major Kafka Consumer Configuration Parameters

Parameter Default Description

fetch.message.max.bytes 1048576 The maximum number of bytes read by the
consumer in one fetch request for each partition
for a topic. It must be at least as large as the largest
message in your data stream. Play with this value
if your Kafka driver generates kaftka.common.
FailedToSendMessageException exceptions.

auto.commit.interval.ms 60000 How often to commit consumer offsets to ZooKeeper
in ms. A lower value is useful when, for enhanced
durability, you would like to commit to ZooKeeper
more often.

auto.offset.reset largest Which offset to jump to if there is no initial offset for
this consumer in ZooKeeper. Possible values:
largest: Only fetch the most recent data.
smallest: Fetch data from the smallest offset onward.

partition.assignment.strategy  range The partition-assignment strategy for consumers.
Possible values: range and roundrobin.

zookeeper.session.timeout.ms 6000 The expected heartbeat interval for the consumer.

There are two major ways to control parallelism while reading from Kafka:
e Increase num_of_consumer_threads to the number of topic partitions.

e Create multiple topics, and load-balance messages across them. These multiple
KafkaInputDStreams can then be merged in a union() operation (along the same
lines as Listing 5-7).

Under certain circumstances, this approach does not ensure exactly once semantics and falls back on
at-least-once: for instance, if the receiver has received messages and crashes before the offsets have been
updated in ZooKeeper. In addition, maintaining a write-ahead log affects performance because messages
need to be written to HDES before they can be consumed. Let’s move on to the direct Kafka consumer, which
rectifies these problems.

Direct Kafka Consumer

As the name suggests, the direct Kafka consumer skips receivers and ZooKeeper and uses the simple API
directly to consume messages. This means it needs to track offsets internally. To do so, at the beginning of
each batch, the connector reads the partition offsets for each topic from Kafka and uses them to ingest data.'®
To ensure exactly once semantics, it tracks offset information in Spark Streaming checkpoints. It also has two
further advantages over the receiver-based approach:

e Performance: Unlike the receiver approach, in which data is replicated twice (once by
Kafka and then by the write-ahead log), the data-replication buck in the direct model
is passed to Kafka. The Spark Streaming application only maintains offsets.

8Cody Koeninger, Davies Liu, and Tathagata Das, “Improvements to Kafka Integration of Spark Streaming,” Databricks,
March 30, 2015, https://databricks.com/blog/2015/03/30/improvements-to-kaftka-integration-of-spark-
streaming.html.
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e Parallelism: There is a one-to-one mapping between Kafka partitions and RDD
partitions. This means you do not need to load-balance data across topics and
consumers or create multiple KafkaInputDStreams to take advantage of parallelism.

At the Spark Streaming application’s end, only the stream-creation method from KafkaUtils needs to
be replaced; the rest of the code remains the same. Listing 5-15 showcases the changes you need to make to
the code from Listing 5-13. topics (line 1) is now a Set instead of a map, because the direct consumer does
not need to use additional threads. Additionally, because you are skipping ZooKeeper, you need to directly
provide the consumer with a comma-separated list of the URLs of Kafka brokers for bootstrapping (line 5).
Note that because these brokers are used only for bootstrapping, not all brokers need be referenced in the
list. Finally, you do not need to provide a persistence level because rereading data directly from Kafka ensures
fault tolerance.

Listing 5-15. Using a Direct KafkaInputDStream

val topics = Set(topic)
val params = Map[String, String](
"zookeeper.connect” -> zkQuorum,
"group.id" -> consumerGroupld,
"bootstrap.servers" -> brokerUrl)
KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder]
(ssc, params, topics).map(_. 2)

VT B~ W N

Having explored solutions that are typically deployed in-house by organizations—MQTT, Flume, and
Kafka—let’s now use a fully managed data source, Twitter, to deliver data to Spark Streaming.

Twitter

Since its inception, Twitter has become one of the largest social media web sites in the world, with over

300 million monthly active users who send 500 million tweets per day'® These tweets cover a wide range

of topics, from celebrity gossip and stock market prospects to social media activism and soggy fries.?’ As

a result, Twitter has also become a huge repository of information of business interest. For instance, an

organization can in real time work out the public perception of its products via sentiment analysis of tweets.

To facilitate this, Twitter has a public API that enables users to gain access to the Twitter firehose. This API

has clients in a number of languages.*! In the case of Java, Twitter4] is arguably the most popular choice.
Twitter4] is also used by the Twitter connector for Spark Streaming. This connector has the following

signature:*

TwitterUtils.createStream(ssc: StreamingContext, twitterAuth: Option[Authorization],
filters: Seq[String], storagelevel: Storagelevel)

Here, twitterAuth is a Twitter4]J Authorization object with security credentials and filters is a
sequence of strings to match against the Twitter firehose. The target application searches for New York City
bike-related tweets and makes them actionable by printing their count to stdout and their content to file.
Listing 5-16 contains the code for this application.

“https://about.twitter.com/company.

2Stuart Dredge, “Twitter: Why #SoggyFries Make for a Tasty Future in Big-Data Revenue,” The Guardian, November 5,
2014, www. theguardian.com/technology/2014/nov/05/twitter-soggyfries-big-data-advertising.
Zhttps://dev.twitter.com/overview/api/twitter-libraries.

228bt dependency: 1ibraryDependencies += "org.apache.spark" %% "spark-streaming-twitter" % "1.4.0".
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Listing 5-16. Using the Twitter API Connector to Read Tweets That Mention New York City Bikes

val cb = new ConfigurationBuilder()
cb.setOAuthConsumerKey(consumerKey)
cb.setOAuthConsumerSecret(consumerSecret)
cb.setOAuthAccessToken(accessToken)
cb.setOAuthAccessTokenSecret (accessTokenSecret)

val twitterAuth = new TwitterFactory(cb.build()).getInstance().getAuthorization()

W oo~NOUT B W N B

val tweetStream = TwitterUtils.createStream(ssc, Some(twitterAuth), Array("nyc citi
bike", "nyc bike share"))

10. tweetStream.count().print()

11. tweetStream.saveAsTextFiles(outputPath)

To access the Twitter API, you first need to provide it with your Twitter credentials (lines 1-7). These
credentials can be obtained by registering the application as a Twitter app.® The credentials are passed to
the createStream method along with an array of keywords that serve as a filter to match tweets against. If
this filter is not provided, the API falls back on randomly sampling a subset of the firehose. The output of this
application prints the count of the tweets per interval (line 10) and saves their content to secondary storage
(line 11).

Block Interval

Recall that the number of partitions in the input stream decides the parallelism of first-level tasks. For an
input stream generated by reading data from HDFS, each partition corresponds to an HDFS block. What
about input streams generated from receivers? Enter the block interval. It dictates the duration of data
coalescence into a block before it is registered in the block store. spark.streaming.blockInterval has a
default value of 200 ms. Block interval and batch interval go hand in glove: the number of blocks per interval
(and hence map-like transform parallelism) is decided by batchInterval/blockInterval. For instance,
using the default block interval for a batch interval of 1 s (1000 ms/200 ms), the number of blocks is five.

For good resource utilization, the number of tasks should at least match the number of cores per node.
Therefore, the value of blockInterval should be set accordingly. It is generally recommended that you keep
the block interval set to at least 50 ms to amortize the cost of task launch.

Custom Receiver

Any InputDStream that connects to an external data source needs to implement the Receiver interface. This
receiver resides on worker nodes and is in charge of ingesting external data and writing it to the block store.
Table 5-6 lists methods from this interface.

Bhttps://apps.twitter.com/app/.
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Table 5-6. Methods from the Receiver Interface

Method Description

onStart() Invoked when the receiver starts. Generally used to initialize
state and spawn threads. This should be kept lightweight and
should never be made blocking.

onStop() Called when the receiver needs to exit. Operation is generally

store(dataltem: T)
store(dataBuffer: ArrayBuffer[T])

restart(message: String,
throwable: Throwable)

stop(message: String, throwable:
Throwable)

reportError(message: String,
throwable: Throwable)

preferredlLocation : Option[String]

isStarted()
isStopped()

the reverse of onStart: used to stop threads and deallocate
state. The same nonblocking stipulation applies.

Saves dataItemto Spark’s memory. Used to implement
unreliable receivers.

Saves an ArrayBuffer of items to Spark’s memory in a blocking
call. Used to implement reliable receivers.

Restarts the receiver: in the background, onStop() and
onStart() are called. The restart delay is dictated by spark.
streaming.receiverRestartDelay.

Stops the receiver.

Reports errors to the driver. Does not change the state of the
receiver.

Specifies a preferred node for this receiver. Should return a
hostname.

Can be used to check whether the receiver has started.

Same as the previous, but for stop state.

The reliability of a receiver is dictated by the flavor of the store() method it uses. Unreliable receivers
store one item at a time whose state can be lost in case of a failure. Reliable receivers, on the other hand,
store an ArrayBuffer of items via a blocking call that returns only after all items have been replicated by
Spark. This ensures better fault tolerance. The receiver also needs to send acknowledgements to the data
sender, which makes the design of a reliable receiver more involved.

HttpInputDStream

Spark Streaming out of the box has no connector for HTTP. In light of that, Listing 5-17 implements one to

help you get the hang of the receiver API.

Listing 5-17. Custom HttpInputDStreamand HttpReceiver to Ingest Data from HTTP Sources

import java.util.Timer
import java.util.TimerTask

W oo~NOUT B WN PR
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import scala.reflect.ClassTag

import org.apache.http.client.methods.HttpGet

import org.apache.http.impl.client.CloseableHttpClient
import org.apache.http.impl.client.HttpClients

import org.apache.http.util.EntityUtils
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12.
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14.
15.
16.
17.
18.
19.
20.
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23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.

import
import
import
import
import
import
import
import
import

org.apache.
org.apache.
org.apache.
org.apache.
org.apache.
org.apache.
org.apache.
org.apache.
org.apache.

spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.

class HttpInputDStream(

@transient ssc_ :
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Logging

storage.Storagelevel
streaming.StreamingContext
streaming.api.java.JavaDStream
streaming.api.java.JavaDStream.fromDStream
streaming.api.java.JavaStreamingContext
streaming.dstream.DStream
streaming.dstream.ReceiverInputDStream
streaming.receiver.Receiver

StreamingContext,

storagelevel: Storagelevel,

ur

interval: Long) extends ReceiverInputDStream[String](ssc_) with Logging {

1: String,

def getReceiver(): Receiver[String] = {
new HttpReceiver(storagelevel, url, interval)

}
}

class HttpReceiver(
storagelevel: Storagelevel,

ur

interval: Long) extends Receiver[String](storagelevel) with Logging {

1: String,

var httpClient: CloseableHttpClient = _
var trigger: Timer = _

def

onStop() {

httpClient.close()
logInfo("Disconnected from Http Server")

}

def

onStart() {

httpClient = HttpClients.createDefault()
igger = new Timer()
trigger.scheduleAtFixedRate(new TimerTask {
def run() = doGet()

}, 0, interval * 1000)

tr

logInfo("Http Receiver initiated")

}

def

doGet() {

logInfo("Fetching data from Http source")

val response = httpClient.execute(new HttpGet(url))
try {
val content = EntityUtils.toString(response.getEntity())
store(content)

}

catch {
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61. case e: Exception => restart("Error! Problems while connecting”, e)
62. } finally {

63. response.close()
64. }

65.

66. }

67.

68. }

69.

70. object HttpUtils {

71. def createStream(

72. ssc: StreamingContext,

73. storagelevel: Storagelevel = Storagelevel.MEMORY_AND_DISK_SER 2,
74. url: String,

75. interval: Long): DStream[String] = {

76. new HttpInputDStream(ssc, storagelevel, url, interval)

77. }

78.

79. def createStream(

80. jssc: JavaStreamingContext,

81. storagelevel: Storagelevel,

82. url: String,

83. interval: Long): JavaDStream[String] = {

84. implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[String]]
85. createStream(jssc.ssc, storagelevel, url, interval)

86. }

87. }

You first implement an HttpInputDStream that takes as input the URL of the source in its constructor
(line 20). The ReceiverInputDStream abstract class requires that you implement a custom receiver, which in
this case is an HttpReceiver (line 31). HttpReceiver is implemented following the interface listed in Table 5-6
and uses the Apache HttpClient library for Java* (line 36). In a nutshell, the library exposes methods to initiate
blocking HTTP requests. Because HTTP calls are stateless,* recurring calls need to be made to the target
endpoint in each interval. To enable this, a Timer (line 46) is used to schedule the request at a regular interval
(line 47). This interval is assumed to be the same as the batch interval in Spark Streaming.

The actual request is initiated in a custom function (line 54) that makes a blocking call and stores
the content of the response in the block store (line 59). In case of an exception, the receiver is restarted
(line 61). Note that this is an unreliable receiver, because HTTP servers in general have no concept of
acknowledgement. Finally, you implement a couple of helper functions to simplify the creation of an
HttpInputDStream from Scala (line 71) and Java (line 79).

The Spark Streaming consumer application to test the InputDStream you just created consists of
ingesting the New York City bike station status feed (www.citibikenyc.com/stations/json) over HTTP and
spitting out the details of out-of-order stations to file. This is shown in Listing 5-18.

¥https://hc.apache.org/httpcomponents-client-4.5.x/.

ZThis is not necessarily true in every case. Starting with HTTP 1.1, data chunks of unknown length can be transferred
in the same session (see http://tools.ietf.org/html/rfc7230#section-4.1). This means HTTP servers can
asynchronously stream data to clients. A Spark Streaming receiver can therefore initiate a connection and then receive
data asynchronously. An example of such a receiver is at https://github.com/actions/meetup-stream/blob/
master/src/main/scala/receiver/MeetupReceiver.scala.
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Listing 5-18. Ingesting the NYC Bike Station Status Feed via the Custom HTTP Connector and Logging
Nonfunctional Stations

1. HttpUtils.createStream(ssc, url = "https://www.citibikenyc.com/stations/json", interval
= batchInterval)

2. .flatMap(rec => (parse(rec) \ "stationBeanList").children)
3. filter(rec => {

4. implicit val formats = DefaultFormats

5. (rec \ "statusKey").extract[Integer] != 1

6. b))

7. .map(rec => rec.filterField {

8. case JField("id", ) => true

9. case JField("stationName", ) => true

10. case JField("statusValue", ) => true

11. case _ => false

12. 1

13. .map(rec => {

14. implicit val formats = DefaultFormats

15. (rec(0). 2.extract[Integer], rec(1). 2.extract[String], rec(2). 2.extract[String])
16. )

17. .saveAsTextFiles(outputPath)

The application connects to the HTTP source using the custom HttpInputDStream. The data at the
source is in the form of a large JSON object with nested JSON objects for each bike station. This is parsed
into individual objects in line 2. The application then filters out stations that are functional (line 3).
Subsequently, you keep only three fields: id, stationName, and statusValue (line 7). Before writing them
to an HDFS directory on line 17, you unJSONify their types (line 13). City administrators and bike users can
now use this application to avoid bike stations that aren’t functional.

Summary

Pretty much everything is a potential source of data. This data may hold the cure for cancer, the signs of
global warming, or the next billion-dollar idea. But before it can be analyzed and made actionable, it needs
to be transported to a data center or a private cluster. A number of solutions explore different points in the
design space that spans fault tolerance, latency, throughput, simplicity, and API semantics. This chapter was
dedicated to exploring these options. Your journey down Route 66 of Spark Streaming data ingestion has
taken you from using Kafka to ingest New York City shared bike data to using Twitter to ingest tweets in real
time. En route, you learned how to write your own custom receiver to consume data from HTTP sources.
Your journey is by no means over: the next chapter, among other topics, looks at emitting data from Spark
Streaming to external sinks.
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CHAPTER 6

The Art of Side Effects

He who performs not practical work nor makes experiments will never attain to the least
degree of mastery.

—Jabir ibn Hayyan (Geber)

Spark Streaming applications by design are stateless and side-effect free: running the same application
an infinite number of times results in the same behavior and output. Similar to functional programming,
this simplifies debugging and reasoning about the state of a program, because input and output paths are
deterministic. Although side-effect-free applications have many advantages, in distributed systems side
effects cannot be completely avoided, especially when interfacing with external systems. For this reason,
Spark Streaming provides a primitive called foreachRDD, which is the Swiss Army Knife of side effects for
micro-batch processing.

This chapter introduces design patterns for enabling side effects in Spark Streaming applications.
Along the way, you look at emitting output to external solutions such as HBase, Cassandra, and Redis and at
maintaining state across batches. You use real-time financial feeds as a dataset. One of the main goals is to
minimize the overhead of making frequent use of foreachRDD. In addition, you gain hands-on knowledge
of using industry-standard solutions, such as HBase, as a storage solution. To attain mastery of foreachRDD,
this practical work is necessary.

Taking Stock of the Stock Market

The global stock market experienced little innovation since its inception in the 12 century until the
middle of the 20" century. Then the information age happened, fueled initially by the computer and then
by the Internet. The timescale of buying and selling actions on the market went from hours to milliseconds,
engendering stock market 2.0. In addition, human intervention began to diminish due to algorithmic
trading, wherein machines supported by mathematical models and Al make decisions. In a similar vein,
both real-time data and historical data from all major international markets can be accessed through APIs.
Overall, these trends have lowered the barrier to entry for individuals to jump in to the online trading
domain. Stocks can now be traded and fortunes made and lost with the click of a button.

© Zubair Nabi 2016 99
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Stock market 2.0 is driven by access to real-time stock market tickers and feeds. A number of licensed
and free APIs expose these feeds: free ones include Yahoo Finance' and MSN Money.? These feeds are
used by propriety solutions, such as Bloomberg Terminal,® Thomson Reuters Eikon,* and custom tools.® In
a similar vein, this chapter pairs real-time data from Yahoo Finance with Spark Streaming to create stock-
market-centric applications.

One of the world’s foremost services in this domain, Yahoo Finance, exposes both a web service and
an advanced querying service enabled by Yahoo Query Language (YQL).® YQL provides a SQL-like interface
to query data from Yahoo APIs. It can be used to query any data on the Internet that follows the Open Data
Table format.” Let’s try to grab the current stock value for IBM using the web service in JSON format. Pasting
the following URL in a browser results in the response shown in Listing 6-1:

http://finance.yahoo.com/webservice/v1/symbols/IBM/quote?format=json&view=detail

Listing 6-1. Response of the Current Stock Value Web Request for IBM via Yahoo Finance

1.

2. "list": {

3. "meta": {

4. "type": "resource-list",

5. "start": o,

6. "count": 1

7. b

8. "resources": [

9. {

10. "resource": {

11. "classname": "Quote",

12. "fields": {

13. "change": "-1.520004",

14. "chg_percent": "-1.005693",

15. "day_high": "150.779999",

16. "day_low": "149.179993",

17. "issuer_name": "International Business Machines Corporation",
18. "issuer_name_lang": "International Business Machines Corporation",
19. "name": "International Business Machines",
20. "price": "149.619995",

21. "symbol": "IBM",

22. "ts": "1444766537",

23. "type": "equity",

24. "utctime": "2015-10-13T20:02:17+0000",

25. "volume": "3915707",

26. "year_high": "183.790000",

27. "year low": "140.560000"

28. }

'http://finance.yahoo.com/.

2Www.msn.com/en-us/money.

www.bloomberg.com/professional/.
*http://financial.thomsonreuters.com/en/products/tools-applications/trading-investment-tools/
eikon-trading-software.html.

https://github.com/brymck/finansu.

https://developer.yahoo.com/yql/.

"www.datatables.org/.
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29. }
30. }
31. ]

32, }

33. }

A similar request using YQL (select * from yahoo.finance.quotes where symbol in ("IBM"))
is as follows. Its response is omitted for brevity, because it has substantially more fields (close to 80).% This
list of columns can be accessed online, though.’ This is a far richer dataset, so you use it in the applications
throughout this chapter:

https://query.yahooapis.com/v1/public/yql?q=select%20*%20from%20yahoo.finance.quotes%20
where%20symbol%201n%20(%22IBM%22)%0A%09%098&format=json&diagnostics=truedenv=http%3A%2F%2Fdat
atables.orgk2Falltables.env

foreachRDD

foreachRDD, as the name suggests, is applied as an output action to each RDD in a DStream. All operations

in the function or closure passed to it are invoked in the driver program. Typically, this function invokes an
action on an RDD, which is scheduled on worker nodes. To understand this behavior, consider the standard
saveAsTextFiles action from the Spark codebase (Listing 6-2), which can be applied to any DStream to write
its partitions to an HDFS-like file system.

Listing 6-2. Anatomy of a Typical foreachRDD-Enabled Action

1. def saveAsTextFiles(prefix: String, suffix: String = ""): Unit = ssc.withScope {
2. val saveFunc = (rdd: RDD[T], time: Time) => {

3. val file = rddToFileName(prefix, suffix, time)

4. rdd.saveAsTextFile(file)

5. }

6. this . foreachRDD(saveFunc)

7.

}

This creates a function to call saveAsTestFile on each RDD and provides it with a formatted filename.
This means line 4 is actually scheduled on worker nodes, whereas the rest of the code is executed on the
driver stack, as shown in Figure 6-1. This bifurcation in the execution path has implications for the design,
performance, and utility of such actions. To drive home the point, let’s look at a concrete example.

8YQL queries can also be executed via its console: https://developer.yahoo.com/yql/console/.
‘www.datatables.org/yahoo/finance/yahoo.finance.quotes.xml.
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Cluster Machine

Driver

val saveFunc = (rdd: RDD[T], time: Tighe) == {
wval file = rddToFileName{prefix, suffix, time)
} rdd.saveAsToxtFile(file)

this foreachRDD{saveFunc) \__""
}

1

Figure 6-1. Scheduling a foreachRDD action

The example application publishes stock information to MQTT. Specifically, the goal is to grab the stock
values of ten technology companies from Yahoo Finance, transform them, and then publish them to an
MQTT topic (Listing 6-3).

Listing 6-3. Naive Implementation of Publishing Yahoo Finance Stock Data to an MQTT Sink

1.  HttpUtils.createStream(ssc, url = "https://query.yahooapis.com/vi/public/
yql?g=select%20*%20from%20yahoo.finance.quotes%20where%20symbol%20in%20(%221BM,GOOG,MSF
T,AAPL,FB,0ORCL,YHOO, TWTR, LNKD, INTC%22)%0A%09%098format=json&diagnostics=true8env=http%3
A%2F%2Fdatatables.org%2Falltables.env", interval = batchInterval)

2. .flatMap(rec => {

3. val query = parse(rec) \ "query"

4. ((query \ "results" \ "quote").children).map(rec => JObject(JIField("Timestamp", query
\ "created")).merge(rec))

5. 1

6. .map(rec => {

7. implicit val formats = DefaultFormats

8. rec.children.map(f => f.extract[String]) mkString ","

9. 1)

10. .foreachRDD { rdd =>
11. val client = new MqttClient(outputBrokerUrl, MqttClient.generateClientId(), new

MemoryPersistence())
12. client.connect()
13. rdd.foreach(rec => client.publish(topic, new MgttMessage(rec.

getBytes(StandardCharsets.UTF 8))))
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14. client.disconnect()
15. client.close()
16. }

The application uses the HTTP receiver from the last chapter (line 1) to fetch the current stock value of
IBM, Google, Microsoft, Apple, Facebook, Oracle, Yahoo, Twitter, LinkedIn, and Intel. The lookup is enabled
by a YQL query wrapped in an HTTP GET call. The data is in the form of nested JSON, so you first flatten
itinto a per-company record and add a timestamp (lines 2-5). This is then converted to a CSV record for
simplified consumer-side processing (lines 6-9). Once the data has been fetched and massaged, the next
step is to emit it to MQTT. Using foreachRDD, you design the sink so that the MQTT client connection is
created (lines 11-12) and reaped (lines 14-15) in the driver JVM while it is used to publish messages in the
worker (line 13).

On the surface, this code looks fine—but the devil is in the details. Running this application raises an
org.apache.spark.SparkException: Task not serializable exception caused by java.
io.NotSerializableException: org.eclipse.paho.client.mqttv3.MqttClient. This is because the
MQTT client connection object, which needs to be shipped out to worker nodes, is not serializable. In fact,
this non-serializable property applies to most connection objects, whether database connections or simple
sockets—anything that needs to be shipped to worker nodes needs to be serializable. Bearing this in mind,
let’s improve the code.

Per-Record Connection

The second version of the foreachRDD sink (Listing 6-4) mitigates the serialization problem by using a
per-record connection object at the worker: an MQTT client connection is created (lines 4-5), used (line 6),
and reaped (line 7-8) for each output record.

Listing 6-4. Per-Record Stateful Connection Creation in foreachRDD

1. .foreachRDD { rdd =>

2. rdd.foreach { rec =>

3. {

4. val client = new MqttClient(outputBrokerUrl, MqttClient.generateClientId(), new
MemoryPersistence())

5 client. connect()

6. client.publish(topic, new MgttMessage(rec.getBytes(StandardCharsets.UTF 8)))

7. client.disconnect()

8 client.close()

9. }

10. }

1. }

This code works fine in theory, but in production it is very inefficient, because it is overkill to establish
a per-record connection. It would be more efficient to amortize this cost over many records. This mantra
drives the next iteration of the sink.

Per-Partition Connection

The key improvement in Listing 6-5 is to tease out the creation of the connection from the per-record foreach
and move it to a foreachPartition (line 2) construct. This enables a per-partition connection model. This
connection is re-created for each partition, which can be further improved on by maintaining a partition-
invariant static connection object. This static connection is reused as long as the executor JVM is up.
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Listing 6-5. Per-Partition Stateful Connection Creation in foreachRDD

1.  .foreachRDD { rdd =>

2. rdd.foreachPartition { par =>

3. val client = new MgttClient(outputBrokerUrl, MqttClient.generateClientId(), new
MemoryPersistence())

4. client.connect()

5. par.foreach(rec => client.publish(topic, new MqttMessage(rec.
getBytes(StandardCharsets.UTF 8))))

6. client.disconnect()

7. client.close()

8. }

9. }

The use of a static connection also has the implication that it is used concurrently by tasks in the same
executor. Therefore, the connection object should be thread-safe. This design is more involved, because it
entails instance objects and automatic decommission; it is at the center of the next iteration of the sink.

Static Connection

The first order of the day is to create a static object for the sink using the built-in Scala apply’® method to
return a concrete singleton implementation (Listing 6-6). The MQTT client singleton is created and initiated
first (lines 3-4). Now that the client object is a singleton, you have no control over its lifecycle. In other
words, you want to keep reusing the same static connection, perhaps forever. The only time the connection
needs to be closed is when the executor is exiting. So, you register a JVM shutdown hook to release the
connection state (lines 5-7).

Listing 6-6. Singleton Object Instance for the MQTT Client Connection

1. object MqttSink {

2. val brokerUrl = "tcp://localhost:1883"

3. val client = new MgttClient(brokerUrl, MqttClient.generateClientId(), new
MemoryPersistence())

4. client. connect()

5. sys.addShutdownHook {

6. client.disconnect()

7. client.close()

8. }

9.

10. def apply(): MgttClient = {

11. client

12. }

13. }

This sink can then directly be invoked in foreachPartition, nested in a foreachRDD as shown in
Listing 6-7. This serves the purpose of keeping static connections on the worker nodes.

"Typically used in Scala to return a concrete instance of a class.
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Listing 6-7. Using a Static Connection in foreachRDD

1.  .foreachRDD { rdd =>

2. rdd.foreachPartition { par =>

3. par.foreach(message => MqttSink().publish(topic, new MqttMessage(message.
getBytes(StandardCharsets.UTF 8))))

4. }

5. 1}

This solution has a minor drawback: the connection to the remote server is established regardless of
whether the client is referenced: for instance, if no data is ever received at the executors. Let’s try to remedy
that by using lazy evaluation to establish the connection only the first time it is referenced.

Lazy Static Connection

The implementation in Listing 6-8 is very similar to the one in Listing 6-6, except that the creation of

the connection object is performed in a lazy fashion (line 2) in a custom serializable class. That is, the
connection is established only when it is referenced the very first time (in the executor). This enables you to
create the singleton in the driver and only pass a creation template to the worker."

Listing 6-8. Creating an MQTT Client Connection Singleton Using Lazy Evaluation

1. class MqttSinkLazy(brokerUrl: String) extends Serializable {

2. lazy val client = {

3. val client = new MgttClient(brokerUrl, MqttClient.generateClientId(), new
MemoryPersistence())

4 client.connect()

5 sys.addShutdownHook {

6. client.disconnect()

7. client.close()

8 }

9. client

10. }

1. }

12.

13. object MgttSinklazy {
14. val brokerUrl = "tcp://localhost:1883"
15. val client = new MqttSinkLazy(brokerUrl)

16.

17. def apply(brokerUrl: String): MqttSinkLazy = {
18. client

19. }

20. }

At the Spark Streaming end (Listing 6-9), to ensure that the object is sent only once to the workers,
you send it via a broadcast variable (line 1). In the foreachRDD, you simply use that broadcasted variable to
publish messages to MQTT (line 4).

"Marcin Kuthan, “Spark and Kafka Integration Patterns,” Allegro Tech, August 6, 2015,
http://allegro.tech/2015/08/spark-kaftka-integration.html.
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Listing 6-9. Using a Broadcast Variable to Create a Connection Object in the Driver and Use It in foreachRDD

1 val mqttSink = ssc.sparkContext.broadcast(MqttSinkLazy(outputBrokerUrl))

2.

3. .foreachRDD { rdd =>

4 rdd.foreachPartition { par => par.foreach(message => mqttSink.value.client.
publish(topic, nmew MqttMessage(message.getBytes(StandardCharsets.UTF 8))))

}

5.

7. }

[e)}

This design may lead to contention between tasks in an executor because they all rely on a single
instance of an object. Let’s try to reduce this overhead by maintaining a pool of static connection objects
that each partition can use across batches." You use the Apache Commons Pool library* to perform the
actual pooling.

Static Connection Pool

BasePooledObjectFactory is the basic base class for pooled objects under Apache Commons. Listing 6-10
extends it to support MqttClient objects (line 15). This involves providing hooks for the lifecycle of the
connection object. You then create a static pool for pooled objects (line 4), with the appropriate hook for
reclamation (lines 6-8). The maximum number of objects in the pool is also controllable and should be set
to the number of cores (or vcores in the case of YARN) per executor (line 5). Recall from Chapter 4 that the
maximum number of tasks per executor is dictated by the number of cores assigned to that executor. As a
result, the maximum size of the connection pool should reflect this number. The pool instance singleton is
accessible via the apply method (lines 10-12).

Listing 6-10. Implementing a Static Pool to Amortize the Cost of MgttClient Connection Objects

1. object MqttSinkPool {

2 val poolSize = 8

3 val brokerUrl = "tcp://localhost:1883"

4. val mqttPool = new GenericObjectPool[MgttClient](new MgttClientFactory(brokerUrl))
5. mqttPool.setMaxTotal(poolSize)
6 sys.addShutdownHook {
7 mqttPool.close()
8

9

}
10. def apply(): GenericObjectPool[MgttClient] = {
11. mqttPool
12. }
13. }
14.

15. class MgttClientFactory(brokerUrl: String) extends BasePooledObjectFactory[MqttClient] {

16. override def create() = {

17. val client = new MqttClient(brokerUrl, MqttClient.generateClientId(), new
MemoryPersistence())

Zhttps://gist.github.com/koen-dejonghe/39c10357607c698c0bo4.
Bhttps://commons.apache.org/proper/commons-pool/.
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21. override def wrap(client: MgttClient) = new DefaultPooledObject[MgttClient](client)
22. override def validateObject(pObj: PooledObject[MgttClient]) = pObj.getObject.isConnected()
23. override def destroyObject(pObj: PooledObject[MqttClient]) = {

24. pObj.getObject.disconnect()
25. pObj.getObject.close()
26. }

27. override def passivateObject(pObj: PooledObject[MqttClient]) = {}

28. }

In the foreachRDD construct (Listing 6-11), you borrow a connection object for each partition (line 3)
and return it once all the records in a partition have been processed (line 5).

Listing 6-11. Using a Static Pool Object in a foreachRDD

1 .foreachRDD { rdd =>

2 rdd.foreachPartition { par =>

3. val mqttSink = MqttSinkPool().borrowObject()

4 par.foreach(message => mqttSink.publish(topic, new MqttMessage(message.
getBytes(StandardCharsets.UTF 8))))

[o) NV, |

}
7. 1}

MqttSinkPool().returnObject(mqttSink)

The use of the various design patterns outlined in this section depends on the particular requirements
of your application (see Table 6-1). One thing should be clear, though: connection objects should be reused

as aggressively as possible.

Table 6-1. Comparison of Design Patterns for Maintaining Connection Objects

Design Pattern

Advantage

Disadvantage

Per-record connection

Per-partition connection

Static connection

Lazy static connection

Static connection pool

Does not need to be serialized and
sent over to executors from the driver.

Extends the lifecycle of a connection
to cover an entire partition instead of
arecord.

A single connection per JVM is
maintained.

A connection is established only the
first time the client object is used.

A pool of static connections is used
throughout.

Very inefficient because a connection
per record is created and destroyed.

Begins stressing resources when the
number of partitions increases.

The connection is established
regardless of whether it is used.

Thread-safety leads to resource
contention turning the connection
into a bottleneck.

Now that you have had a deep dive into foreachRDD operations, the next section looks at emitting data
to two popular NoSQL stores: HBase and Cassandra.
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Scalable Streaming Storage

One of the most common use cases for streaming applications is to drive business-critical dashboards.

In the case of stock market analysis, a typical example is to provide a moving-average price of securities.

The average is calculated over a specific number of time intervals to smooth out any noise and to observe

long-term trends. This trend is then relayed to a dashboard to enable an investor to make a buy/sell decision.
This can easily be implemented using a Spark Streaming application. A simple design consists of

calculating the moving average in the application and emitting its result to a socket. At the other end of the

socket, a dashboard can read data via a select call and display the contents. This design is shown

in Figure 6-2.

Stock

Market
y——— map() reduce() foreachRDD

(socket) y: Dashboard

Spark Streaming

Figure 6-2. Stock market dashboard powered by Spark Streaming

This design has two major shortcomings: it lacks fault tolerance, so data will be lost if either the Spark
application or the dashboard crashes; and it only provides instantaneous analysis, so historical data cannot
be analyzed. The first shortcoming can be resolved by using a message queue solution such as Kafka. The
second, on the other hand, requires using a persistent store. You can use HBase to act as a buffer and a
store to hold historical data: Spark Streaming writes its output to HBase, and the dashboard reads data from
HBase only after the data has been replicated (Figure 6-3).

Stock
Market
Stream

map() reduce() foreachRDD
(socket) Dashboard

Spark Streaming

Figure 6-3. Stock market dashboard powered by Spark Streaming and HBase

HBase

HBase can be thought of as a distributed, persisted, and sorted multidimensional map. It is the open source
variant of Google's Bigtable.'* In HBase, data is laid out in tables, in the form of cells, which are indexed by
row and column keys. Row keys are sorted in alphabetical order. Therefore, the choice of row key can affect
performance, as you see shortly. All operations—reads and writes—are atomic at the row-key level. Columns
are grouped into column families, which is the unit of access control and compression.

“Fay Chang et al., “Bigtable: A Distributed Storage System for Structured Data,” Proceedings of OSDI ‘06, 7 (USENIX
Association, 2006).
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Columns that need to be accessed together are typically stored in the same column family for efficient
access. Each cell also has an associated timestamp, which either is generated by the system at insertion time
or is user defined. This means a cell may have many temporal versions. Older versions are garbage-collected
by the system based on a predefined policy. Any sort of data can be persisted in a cell, ranging from strings
and counters to complex types. The HBase subsystem stores all records as byte arrays, so any type that can
be converted to a byte array can be persisted. The API consists of simple key-based get and put operations,
although other complex operations, such as scan and append, are also supported.

Under the hood, HBase slices rows into regions, each of which stores a range of rows. A region is the
basic unit of distribution, replication, and fault-tolerance. HBase uses HDES behind the scenes to store all of
its control and user data. As a result, replication and fault-tolerance are delegated to HDFS. Architecturally,
HBase consists of a central HMaster, which is in charge of region distribution, slave coordination, and HDFS
file management. At any given time, only a single HMaster is active, whereas a number of them may be
running in passive mode to ensure high availability. Inter-HMaster coordination is implemented via
ZooKeeper. Each region is entrusted to an HRegionServer, which arbitrates reads and writes to regions
and is co-located with HDFS data nodes. HRegionServers also cache data to ensure good performance.

A log-structure merge-tree-based representation enables efficient writes.

To understand the data layout design of HBase in concrete terms, let’s walk through a real-world example.
Suppose you want to store stock information for all the companies on Yahoo Finance. In financial applications,
stocks from each industry vertical —technology, finance, e-commerce, and so on—are typically accessed
together. Therefore, you exploit this property by prepending an abbreviation of the vertical to the name of the
company, delimited by a period: for example, tech.ibmand tech.goog. This ensures that companies from the
same vertical end up in the same region. In addition, you group similar values into column entities. All values
related to price—last trade price, price paid, and so on—are stored in the price column family, and all volume-
centric values are stored in the volume column family. This layout is shown in Table 6-2.

Table 6-2. Schema of Yahoo Finance Data in HBase

Row key Column Family: Price Column Family: Volume
LastTrade PriceSales Volume AverageDaily
PriceOnly Volume
fin.gs 187.01 2.42 2573727 3216030
fin.jpm 63.90 2.65 13880244 16479900
fin.ms 32.55 1.80 10952312 13008400
tech.appl 115.28 3.03 66340901 59367800
tech.fb 103.77 19.67 25962155 32084300
tech.goog 712.78 6.73 2716615 2342240
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Stock Market Dashboard

Before your Spark Streaming application can be triggered, you need to set up HBase.'® The goal is to emit
data to a table, so the first task is to create a table named stock with column family avgprice. This can be
done via the HBase shell using this command:

create 'stock', 'avgprice'

Next, the following dependencies need to be added to the . sbt file for the application project for client
dependencies:

libraryDependencies += "org.apache.hbase" % "hbase-client" % "1.1.2
libraryDependencies += "org.apache.hbase" % "hbase-server" % "1.1.2"
libraryDependencies += "org.apache.hbase" % "hbase-common" % "1.1.2"

You are now ready to begin implementing Spark code to calculate a moving average for the ten technology
companies mentioned earlier using your custom HTTP receiver. This code is presented in Listing 6-12.

Listing 6-12. Calculating a Moving Average for Stock Price Values and Emitting Them to HBase

1. HttpUtils.createStream(ssc, url = "https://query.yahooapis.com/v1/public/
yql?g=select%20*%20from%20yahoo.finance.quotes%20where%20symbol%20in%20(%221BM,GO0G,MS
FT,AAPL,FB,ORCL,YHOO, TWTR, LNKD, INTC%22)%0A%09%09&format=json8diagnostics=truedenv=http
%3A%2F%2Fdatatables.org¥%2Falltables.env",

2. interval = batchInterval)

3. .flatMap(rec => {

4. implicit val formats = DefaultFormats

5. val query = parse(rec) \ "query"

6. ((query \ "results" \ "quote").children)

7. .map(rec => ((rec \ "symbol").extract[String], (rec \ "LastTradePriceOnly").
extract[String].toFloat))

8. b

9. .reduceByKeyAndWindow((x: Float, y: Float) => (x + y), Seconds(windowSize),

Seconds(slideInterval))

10. .foreachRDD(rdd => {

11. val hbaseConf = HBaseConfiguration.create()

12. hbaseConf.set(TableOutputFormat.OUTPUT TABLE, tableName)

13. hbaseConf.set("hbase.master", hbaseMaster);

14. val jobConf = new Configuration(hbaseConf)

15. jobConf.set("mapreduce. job.outputformat.class", classOf[TableOutputFormat[Text]].getName)

16. rdd.map(rec => {

17. val put = new Put(rec. 1.getBytes)

18. put.addColumn(columnFamilyName.getBytes, columnName.getBytes, Bytes.
toBytes(rec. 2 / (windowSize / batchInterval)))

19. (rec. 1, put)

20. }) . saveAsNewAPIHadoopDataset (jobConf)

21. H

“Download HBase (ver 1.1.2) from https://hbase.apache.org/ and run it via $HBASE_HOME/bin/start_hbase.sh
The shell can be accessed via $HBASE_HOME/bin/hbase shell. Note that the default settings constitute a test setup and
should not be used in production. For details of a multinode production-grade installation, please consult the HBase
documentation.
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Of the 80+ fields, only LastTradePriceOnly is required to calculate a moving average; therefore you
extract and project only this field, along with the stock symbol name (lines 3-8). You then perform a moving-
sum calculation using a reduceByKeyAndWindow operation. windowSize dictates the length of the moving
sum, and slideInterval its granularity (line 9). This sum is now ready to be pushed to HBase (after dividing
it by windowSize, of course). This requires the use of your trusted friend foreachRDD. The actual flush to
HBase is enabled by saveAsNewAPIHadoopDataset () for each RDD.

saveAsNewAPIHadoopDataset (), if you recall from Chapter 2, can be used to emit data to any Hadoop-
compatible store, including HBase. This function takes as input a Hadoop configuration file (line 14),
which contains details about the HBase HMaster (line 13) and table (line 12) and the output format
(line 15). TableOutputFormat!® describes an HBase table, and its parameterization dictates the format
of the row key: Text, in this case. The default output format for the value is ImmutableBytesWritable,
which means you need to convert your output float to a byte array. Because you are inserting records
into HBase, you use the Put mutation (line 17) and provide it with the row key. For each column, you also
need to specify the column family name, qualifier, and value (line 18). Note that the sum is converted to
an average by dividing it by the window size (the temporal value of the window normalized by the batch
interval) just before it is written to the table. This operation needs to be repeated for each record in the RDD
(lines 16-20). Once data starts landing in HBase, its presence can be verified by performing a scan of the
stock table, as shown in Listing 6-13.

Listing 6-13. Performing a Scan of the Stock Table in HBase

1.  hbase(main):002:0> scan 'stock'

ROW COLUMN+CELL

3. AAPL column=avgprice:price, timestamp=1446095400305,
value=A\x8F\x1F\xBE

4. FB column=avgprice:price, timestamp=1446095400305,
value=Az\x14z

5. GOOG column=avgprice:price, timestamp=1446095400305,
value=B\xD5\xE2\x90

6. IBM column=avgprice:price, timestamp=1446095400305,
value=A\xA8\XFE\xFA

7. INTC column=avgprice:price, timestamp=1446095400305,
value=@\xA6\x9B\xA6

8. LNKD column=avgprice:price, timestamp=1446095400288,
value=A\xFF\xDA\x1D

9. MSFT column=avgprice:price, timestamp=1446095400305,
value=A\x01\x8DP

10.  ORCL column=avgprice:price, timestamp=1446095400305,
value=@\xBA\x9F\xBE

11.  TWTR column=avgprice:price, timestamp=1446095400288,
value=@\x94-\x0E

12.  YHOO column=avgprice:price, timestamp=1446095400288,

value=@\xA8\xE3U
13. 10 row(s) in 0.0360 seconds

'%org.apache.hadoop.hbase.mapreduce.TableOutputFormat.
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SparkOnHBase

Using HBase as a Hadoop-compatible file system permits you to read from and write to it in a Spark
Streaming application, but this is a loose coupling at best. The API is very verbose, and the RDDs and
DStreams are HBase agnostic. SparkOnHBase'” a project from Cloudera, aims to remedy this by providing
native support for HBase. SparkOnHBase enables the creation of RDDs from HBase scans; bulk-load, put,
get, and delete operations from RDDs and DStreams; and per-partition map and foreach operations with
access to an HBase connection, among others. Let’s try to simplify the implementation of the previous
example using SparkOnHBase (see Listing 6-14).

Listing 6-14. Using SparkOnHBase to Perform a Bulk HBase put Operation

val hbaseConf = HBaseConfiguration.create()
val hContext = new HBaseContext(ssc.sparkContext, hbaseConf)

B wWN R

val windowed = HttpUtils.createStream(ssc, url = "https://query.yahooapis.com/v1/public/
yql?g=select%20*%20from%20yahoo.finance.quotes%20where%20symbol%20in%20(%221BM,GOOG,MSFT
»AAPL,FB,0ORCL,YHOO, TWTR, LNKD, INTC%22)%0A%09%098format=]json&diagnostics=truedenv=http%3A%
2F%2Fdatatables.org%2Falltables.env",
interval = batchInterval)
.flatMap(rec => {
implicit val formats = DefaultFormats
val query = parse(rec) \ "query"
((query \ "results" \ "quote").children)
10. .map(rec => ((rec \ "symbol").extract[String], (rec \ "LastTradePriceOnly").
extract[String].toFloat))

O o~y oYU

11. H

12. .reduceByKeyAndWindow((x: Float, y: Float) => (x + y), Seconds(windowSize),
Seconds(slideInterval))

13.

14.  hContext.streamBulkPut[(String, Float)](windowed, TableName.valueOf(tableName), rec => {

15. val put = new Put(rec. 1.getBytes)

16. put.addColumn(columnFamilyName.getBytes, columnName.getBytes, Bytes.toBytes(rec. 2 /
(windowSize / batchInterval)))

17. put

18. })

The entry point for SparkOnHBase is an HBaseContext (line 2) object that requires a SparkContext
and an HBaseConfiguration for initialization. This can be used to perform most operations included in the
library. For instance, instead of relying on copious amounts of boilerplate code in a foreachRDD transform,
a single streamBulkPut (line 14) transform can be used to spit out data to HBase. The third argument to
streamBulkPut needs to be a function that is given records from the DStream as input and is required to
return a Put object.

SparkOnHBase was merged upstream into the HBase codebase in 2015'® but is available only in the
2.0.0-SNAPSHOT version of HBase at the time of writing. Therefore, to use it, add the following to your build
definition file:

"Ted Malaska, “New in Cloudera Labs: SparkOnHBase,” Cloudera, December 18, 2014, http://blog.cloudera.com/
blog/2014/12/new-in-cloudera-labs-sparkonhbase/.

18Ted Malaska, “Apache Spark Comes to Apache HBase with HBase-Spark Module,” Cloudera, August 13, 2015,
http://blog.cloudera.com/blog/2015/08/apache-spark-comes-to-apache-hbase-with-hbase-spark-module/.
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libraryDependencies += "org.apache.hbase" % "hbase-client" % "2.0.0-SNAPSHOT"
libraryDependencies += "org.apache.hbase" % "hbase-server" % "2.0.0-SNAPSHOT"
libraryDependencies += "org.apache.hbase" % "hbase-common" % "2.0.0-SNAPSHOT"
libraryDependencies += "org.apache.hbase" % "hbase-spark" % "2.0.0-SNAPSHOT"
resolvers += "Apache Snapshot Repository" at "https://repository.apache.org/content/
repositories/snapshots”

HBase has strong consistency guarantees. These at times can affect write performance, whereas reads
are extremely fast. Depending on the use case and the data semantics, Cassandra, another NoSQL store, can
achieve better write performance. This is not always true, though; the best method to choose a data store is
to base the decision on benchmarks and application and data requirements.

For completeness, let’s emit data to Cassandra instead of HBase.

Cassandra

Similar to HBase, Cassandra is also a distributed, multidimensional sorted map in which values are indexed
by key. Unlike HBase, which relies on HDFS, Cassandra implements its own replication strategy for fault
tolerance and high availability. As a result, write operations are atomic at the key level for each replica.
Tables in Cassandra are called column families, which are nested sorted maps: the outer map is indexed by
row key, and the inner one is indexed by column key. This makes lookups very efficient. Column families
reside in keyspaces, which are similar to the concept of a database. Cassandra also supports super-column
families, which are just nested columns—a third-level map. The use of multidimensional maps also
simplifies the API: typical operations are set, get, update, and del.

Cassandra has a completely decentralized model wherein each request is routed to any node in the
cluster, which in turn determines the final hop: the node, which holds a replica for the request key. The
selection of this replica is dictated by the read/write semantics of the requests. It uses consistent hashing
(over a hypothetical ring) to partition data across nodes. The replication factor is configurable per keyspace.
Due to its decentralized model, there is no central node orchestration mechanism. Instead, nodes use a
gossip-based technique to share cluster-membership information. Data is stored on the local file system at
each node, supported by log-structured merge-trees (similar to HBase).

You now have enough background information about Cassandra to get your hands dirty. Let’s start by
setting up the environment' to dump data from the stock market application using Cassandra’s Thrift
API-based CLI (Listing 6-15).

Listing 6-15. Creating a Column Family in Cassandra

create keyspace stock;

use stock;

create column family avgprice with comparator = UTF8Type;

update column family avgprice with column_metadata = [{column_name: price,
validation class: FloatType}];

5. assume avgprice keys as utf8;

B W N

The commands create a keyspace called stock with a single column family dubbed avgprice. The data
type for the column name is a simple UTF string.” The next step is to add a price column with type float to
the avgprice family. This column family is now ready to receive data.

Cassandra (ver 2.1.11) can be downloaded from http://cassandra.apache.org/. To start using the default single-
node configuration, use $CASSANDRA_HOME/bin/cassandra start. The Cassandra CLI can be started via $CASSANDRA _
HOME/bin/cassandra-cli.

*Data types for column values are called validators, and data types for column names are called comparators.

113

www.it-ebooks.info


http://cassandra.apache.org/
http://www.it-ebooks.info/

CHAPTER 6 * THE ART OF SIDE EFFECTS

Using Cassandra libraries in Spark Streaming requires adding the following line to your . sbt file:
libraryDependencies += "org.apache.cassandra" % "cassandra-all" % "2.1.11"
Listing 6-16 lists a foreachRDD transform for Cassandra to replace the HBase one in Listing 6-12.

Listing 6-16. Emitting Data to a Cassandra Column Family

1 .foreachRDD(rdd => {

2 val jobConf = new Configuration()

3 ConfigHelper.setOutputRpcPort(jobConf, cassandraPort)

4. ConfigHelper.setOutputInitialAddress(jobConf, cassandraHost)

5. ConfigHelper.setOutputColumnFamily(jobConf, keyspace, columnFamilyName)
6 ConfigHelper.setOutputPartitioner(jobConf, "Murmur3Partitioner™)

7 rdd.map(rec => {
8 val ¢ = new column()
9 c.setName(ByteBufferUtil.bytes(columnName))

10. c.setValue(ByteBufferUtil.bytes(rec. 2 / (windowSize / batchInterval)))
11. c.setTimestamp(System.currentTimeMillis)

12. val m = new Mutation()

13. m.setColumn_or supercolumn(new ColumnOrSuperColumn())

14. m.column_or supercolumn.setColumn(c)

15. (ByteBufferUtil.bytes(rec. 1), Arrays.asList(m))

16. }) . saveAsNewAPIHadoopFile(keyspace, classOf[ByteBuffer],

classOf[List[Mutation]], classOf[ColumnFamilyOutputFormat], jobConf)
17. 1)

Similar to HBase, the first order of the day is to set up configuration parameters (lines 2-6) that set the
location of the Cassandra cluster, the name of the keyspace and column family, and the output partitioner
(which decides how to divvy up data across the cluster). You use the MurmurHash-based partitioner, which
uniformly distributes the data across nodes. Mutations to each column in a row need to be specified
explicitly. The column family only has a single column, for which you need to specify a name, value, and
timestamp (lines 8-11). It then needs to be wrapped in a mutation object (lines 12-14) and returned as the
value in a PairRDD foreachRDD operation (line 15). You finally invoke saveAsNewAPIHadoopFile on each
RDD to emit it to Cassandra, where it lands in the avgprice column family. Listing 6-17 shows the output of a
list operation on this column family via the Cassandra Thrift CLL

Listing 6-17. Stock Ticker Application Output in Cassandra

1 [default@stock] 1list avgprice;

2 Using default 1limit of 100

3 Using default cell limit of 100

g &;;k;;--;Q%&-;;-E;;me=price, value=29.06, timestamp=1446175330214)
3 é;;ké;_-AA;L_;;-E;;me=price, value=120.53, timestamp=1446175330215)
g. é;éké;_-;é_;;_za;;é=price, value=104.88, timestamp=1446175330215)
12: &gék;;--6ééi-;;-i;;me=price, value=38.86, timestamp=1446175330214)
1;: é;;ké;_-i&%é_;;-ia;me=price, value=34.03, timestamp=1446175330213)
igl é;;ké;:-;Aéé_;;-ié;me=price, value=35.05, timestamp=1446175330214)
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17. RowKey: IBM => (name=price, value=140.55, timestamp=1446175330214)
18, oo

19. RowKey: GOOG => (name=price, value=716.92, timestamp=1446175330215)
20, mmmmmmmmmmmm oo

21. RowKey: LNKD => (name=price, value=217.0, timestamp=1446175330214)
22, e

23. RowKey: MSFT => (name=price, value=53.36, timestamp=1446175330214)
24. 10 Rows Returned.

25. Elapsed time: 6.76 msec(s).

Spark Cassandra Connector

The explicit foreachRDD based approach to spit out data to Cassandra (or any other Hadoop-compatible
data store) is very involved: it requires you to reason about the output format, data types, and mutations.
Fortunately, in the case of Cassandra, DataStax (the startup that provides commercial support for
Cassandra) has a connector for Spark that greatly simplifies the ingress and egress process.? To use it, add
the following to your build definition file:

libraryDependencies += "com.datastax.spark" %% "spark-cassandra-connector" % "1.4.0"

You also need to import com.datastax. spark.connector.streaming. and com.datastax.spark.
connector._ into your Spark application. The location of the Cassandra cluster is specified by setting spark.
cassandra.connection.host and spark.cassandra.connection.port in SparkConf

The Thrift API for Cassandra is almost deprecated; the new interface revolves around Cassandra Query
Language (CQL). CQL provides a SQL-like interface to query Cassandra and ships with a command-line
tool, cqlsh, which is similar in spirit to the previous CLI. Be mindful of the port, though, when setting spark.
cassandra.connection.port, because the CQL interface (default port: 9042) has a different port than the
Thrift API (default: 9160).

The DataStax connector also enables you to directly invoke CQL. This is extremely useful for tasks such
as creating tables.*” Listing 6-18 contains the updated code, which uses this connector. In lines 1-4, you set
up the keyspace and table for your application. conf is the SparkConf object. Lines 6-14 are identical to the
previous two examples and are only provided for completeness. Emitting data to Cassandra is just a matter
of invoking the saveToCassandra method and giving it the keyspace and table name (line 16).

Listing 6-18. Emitting Data to Cassandra Using the Spark Cassandra Connector from DataStax

1.  CassandraConnector(conf).withSessionDo { session =>

2. session.execute(s"CREATE KEYSPACE IF NOT EXISTS %s WITH REPLICATION = {'class':
'SimpleStrategy', 'replication factor': 1 }".format(keyspace))

3. session.execute(s"CREATE TABLE IF NOT EXISTS %s.%s (key TEXT PRIMARY KEY, %s FLOAT)".
format(keyspace, tableName, columnName))

4. '}

5.

6. HttpUtils.createStream(ssc, url = "https://query.yahooapis.com/vi/public/
yql?g=select%20*%20from%20yahoo.finance.quotes%20where%20symbol%20in%20(%221BM,GOOG,MSF
T,AAPL,FB,0RCL, YHOO, TWTR, LNKD, INTC%22)%0A%09%098format=json&diagnostics=truedenv=http%3
A%2F%2Fdatatables.org%2Falltables.env",

Zhttps://github.com/datastax/spark-cassandra-connector.
2In the CQL world, Cassandra column families are now called tables.
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7 interval = batchInterval)

8. .flatMap(rec => {

9 implicit val formats = DefaultFormats

10. val query = parse(rec) \ "query"

11. ((query \ "results" \ "quote").children)

12. .map(rec => ((rec \ "symbol").extract[String], (rec \ "LastTradePriceOnly").
extract[String].toFloat))

13. 3]

14. .reduceByKeyAndWindow((x: Float, y: Float) => (x + y), Seconds(windowSize),

Seconds(slideInterval))
15. .map(stock => (stock. 1, stock. 2 / (windowSize / batchInterval)))
16. .saveToCassandra(keyspace, tableName)
Listing 6-19 shows the output table via CQL.

Listing 6-19. Displaying the Stock Ticker Application Output Table in Cassandra via CQL

1 cqlsh:stock> SELECT * FROM avgprice2;
2

3 key | price
4., ------ Fo--mm -
5.  TWTR | 28.46
6 AAPL | 119.5
7 FB | 101.97
8 ORCL | 38.84
9. INTC | 33.86
10. YHOO | 35.62
11. IBM | 140.08
12.  GOOG | 710.81
13.  LNKD | 240.87
14. MSFT | 52.64
15.

16. (10 rows)

Global State

Spark Streaming batches are by design stateless: all transformations during a batch affect only the RDDs in
that batch. The only exception to this rule is updateStateByKey (), which maintains state across RDDs. The
downside is that only state for data, which occurs in the data stream itself, can be manipulated. This section
sketches some recipes that apply stateful operations to batch-invariant RDDs.

Static Variables

The simplest state is in the form of counters. For instance, how can you keep track of the maximum and
minimum stock volume across all securities, count the number of times any stock price has hit 500, and
print a message when this counter has reached 1,000? You can use static variables in the driver program in
tandem with foreachRDD. Specifically, you can take advantage of the fact that foreachRDD is invoked in the
driver program, so if you update the value of any static variables, the state is applicable across RDDs.
Listing 6-20 provides code that uses this approach.
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Listing 6-20. Using Static Counters and foreachRDD to Maintain Statistics Across RDDs/Batches

Ui W N

B WO 0~ O

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

var globalMax: AtomiclLong = new AtomiclLong(Long.MinValue)
var globalMin: AtomiclLong = new AtomiclLong(Long.MaxValue)
var globalCounter500: AtomicLong = new AtomiclLong(0)

HttpUtils.createStream(ssc, url = "https://query.yahooapis.com/vi/public/
yql?q=select%20*%20from%20yahoo.finance.quotes%20where%20symbol%20in%20(%221BM,GOOG, MSF
T,AAPL,FB,0RCL, YHOO, TWTR, LNKD, INTC%22)%0A%09%098format=json&diagnostics=truedenv=http%3
A%2F%2Fdatatables.org%2Falltables.env",
interval = batchInterval)
.flatMap(rec => {
implicit val formats = DefaultFormats
val query = parse(rec) \ "query"
((query \ "results" \ "quote").children)
.map(rec => ((rec \ "symbol").extract[String], (rec \ "LastTradePriceOnly").
extract[String].toFloat, (rec \ "Volume").extract[String].tolLong))
1
.foreachRDD(rdd => {
val stocks = rdd.take(10)
stocks.foreach(stock => {
val price = stock. 2
val volume = stock._3
if (volume > globalMax.get()) {
globalMax.set(volume)
}
if (volume < globalMin.get()) {
globalMin.set(volume)
}
if (price > 500) {
globalCounter500.incrementAndGet ()
}
b))
if (globalCounter500.get() > 1000L) {
println("Global counter has reached 1000")
println("Max ----> " + globalMax.get)
println("Min ----> " + globalMin.get)
globalCounter500.set(0)

}

1

This code has two noteworthy aspects:

e Ituses atomic variables to ensure that calculations remain atomic even in the face of
concurrent access and modification.

e  Projected data is ingested into the driver process (line 14). This works because
you know the number of stock records and the amount of data is small enough
to not overwhelm the driver node heap. Note that because all the data has been
materialized in the driver program, the inner foreach (line 15) is executed in the
driver JVM, not on the worker executors. That is why you can maintain global
numbers.
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This approach works well if you know the number of counters upfront and the amount of global state
is small enough to fit in the driver JVM memory. What happens when one or both of these statements is not
true? For instance, what if you wanted to keep the maximum and minimum for each stock value in the data
stream but did not know the stock symbols of interest beforehand? Let’s look at some alternatives.

updateStateByKey()

The most obvious choice is updateStateByKey (), which allows you to track the state of keys across RDDs.
Using a custom update function, you can re-perform the max, min, and count calculation in each invocation
(see Listing 6-21).% In contrast to the previous example, all state manipulation takes place in the update
function (lines 12-22). The batch-invariant variable for each key is a tuple of the form (min, max, count).
The current value of this tuple is passed to the update function as the second argument. This can be
enhanced further to perform any arbitrary computation and hold any collection, such as a map.

Listing 6-21. Using updateStateByKey() for Per-Key Statistics Across RDDs

1. HttpUtils.createStream(ssc, url = "https://query.yahooapis.com/v1/public/
yql?q=select%20*%20from%20yahoo.finance.quotes%20where%20symbol%20in%20(%221BM,GOOG, MSF
T,AAPL,FB,0RCL,YHOO, TWTR, LNKD, INTC%22)%0A%09%098format=json&diagnostics=truedenv=http%3
A%2F%2Fdatatables.org%2Falltables.env",

2. interval = batchInterval)

3. .flatMap(rec => {

4. implicit val formats = DefaultFormats

5. val query = parse(rec) \ "query"

6. ((query \ "results" \ "quote").children)

7. .map(rec => ((rec \ "symbol").extract[String], ((rec \ "LastTradePriceOnly").
extract[String].toFloat, (rec \ "Volume").extract[String].tolong)))

8. H

9. .updateStateByKey (updateState)

10. .print()

11.

12. def updateState(values: Seq[(Float, Long)], state: Option[(Long, Long, Long)]):
Option[(Long, Long, Long)] = {

13. val volumes = values.map(s => s._2)

14. val localMin = volumes.min

15. val localMax = volumes.max

16. val localCount500 = values.map(s => s. 1).count(price => price > 500)

17. val globalValues = state.getOrElse((Long.MaxValue, Long.MinValue, OL)).

asInstanceOf[(Long, Long, Long)]

18. val newMin = if (localMin < globalValues. 1) localMin else globalValues. 1

19. val newMax = if (localMax > globalValues. 2) localMax else globalValues. 2

20. val newCount500 = globalValues._ 3 + localCount500

21. return Some(newMin, newMax, newCount500)

22. }

Don’t forget to set a checkpoint directory.
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updateStateByKey () works well if the number of keys and the amount of RDD-invariant state is small.
This is primarily because RDDs and DStreams are immutable. On the plus side, this simplifies fault-
tolerance: Spark can regenerate any lost RDD by replaying data from the checkpoint. On the downside,
this means any state maintained via StateDStream (the DStream that makes updateStateByKey operations
possible) needs to be regenerated in every batch. Imagine if you are tracking a million keys but only a
handful of them need to be updated in every micro-batch. It is clearly overkill and suboptimal to create new
copies of keys that have not been mutated. Can you do better?

Accumulators

Accumulators, if you recall, are shared variables that support associative operations. This enables them to
perform operations in parallel. One key property of accumulators is that only the driver program can read
the value of an accumulator; workers can only add to it. They are extremely useful for calculating counts and
sums across RDDs. In addition to these simple operations, accumulators can also contain Scala collections.
For instance, you can create a HashMap-based accumulator as follows

mapAcc = StreamingContexti#tsparkContext.accumulableCollection(mutable.HashMap[String, Int]())
and then add items to it:
mapAcc += (keyStr -> vallnt)

This insertion of values is typically performed in a foreachRDD.

In the example use case, you need to keep track of a few statistics. So rather than embedding this logic
in the core streaming flow, let’s create a custom accumulator to provide this functionality. Spark provides
two interfaces for implementing custom accumulators: AccumulatorParam and AccumulableParam. The
former is used when the value to be added to the accumulator is the same as the accumulated value. For
example, if the accumulator is a 2-tuple of ints, then only 2-tuple ints can be added to it. In contrast,
AccumulableParam allows a different type for the added value. In fact, under the hood, AccumulatorParamis
just syntactic sugar on top of AccumulableParam.

You need to use AccumulableParam, because the input value ("stockPrice": Float, "stockVolume":
Long) is different than the values you need to accumulate ("maxVolume": Long, "minVolume": Long,
"priceCounter": Long).In addition, these metrics need to be maintained per stock symbol.

Each concrete implementation of AccumulableParam needs to override the following three methods:

e  zero(): The identity value of the accumulator.
e addAccumulator(): Adds a single value.

e addInPlace(): Merges two accumulators. Invoked each time the values of sharded
accumulators from different tasks need to be aggregated.

The code for the custom StockAccum accumulator is presented in Listing 6-22. Internally, it
maintains a hash map indexed by the stock symbol to hold per-stock stats. The second type parameter to
AccumulableParam needs to represent the value to be added, which in this case is a 2-tuple of this form:

(String, (Float, Long)): ("stockSym", ("stockPrice", "stockVolume"))
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In the identity-initialization method (line 2), you create a new HashMap. To enable two accumulators
to be merged, the addInPlace method (line 5) compares each stock symbol in the two maps and copies
over the max and min of the two to the first map, respectively. For the counter, it simply adds the values
from the maps. Finally, the addAccumulator method (line 15) adds the values to the previous set of values
for a particular stock symbol (or initializes it if the symbol is encountered for the first time). The counter is
incremented by checking whether the current stock price exceeds 500 (line 19).

Listing 6-22. Custom Accumulator to Keep Track of Global Stock Stats

1. object StockAccum extends AccumulableParam[mutable.HashMap[String, (Long, Long, Long)],
(String, (Float, Long))] {
2. def zero(t: mutable.HashMap[String, (Long, Long, Long)]): mutable.HashMap[String,
(Long, Long, Long)] = {

3. new mutable.HashMap[String, (Long, Long, Long)]()

4. }

5. def addInPlace(t1: mutable.HashMap[String, (Long, Long, Long)], t2: mutable.
HashMap[String, (Long, Long, Long)]): mutable.HashMap[String, (Long, Long, Long)] = {

6. t1 ++ t2.map {

7. case (k, v2) => (k -> {

8. val vi = t1.getOrElse(k, (Long.MaxValue, Long.MinValue, OL))

9. val newMin = if (v2._1 < vi1._1) v2._ 1 else vi. 1

10. val newMax = if (v2._2 > v1._2) v2._2 else vi. 2

11. (newMin, newMax, vi. 3 + v2. 3)

12. 1

13. }

14. '}

15. def addAccumulator(ti: mutable.HashMap[String, (Long, Long, Long)], t2:
(String, (Float, Long))): mutable.HashMap[String, (Long, Long, Long)] = {

16. val prevStats = t1.getOrElse(t2. 1, (Long.MaxValue, Long.MinValue, OL))
17. val newVals = t2. 2

18. var newCount = prevStats. 3

19. if (newVals. 1 > 500.0) {

20. newCount += 1

21. }

22. val newMin = if (newVals. 2 < prevStats. 1) newVals. 2 else prevStats. 1
23. val newMax = if (newVals. 2 > prevStats. 2) newVals. 2 else prevStats. 2
24. t1 += t2._1 -> (newMin, newMax, newCount)

25. }

26. }

Listing 6-23 shows the use of the accumulator. It replaces the foreachRDD transform in Listing 6-20.
In the inner foreach (which is executed on worker nodes), you add values to the accumulator (line 4).
These values are subsequently displayed in the driver process by printing the hash map from the
accumulator (line 7).
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Listing 6-23. Adding Values to an Accumulator

1. val stateAccum = ssc.sparkContext.accumulable(new mutable.HashMap[String,
(Long, Long, Long)]())(StockAccum)

2.

3.  .foreachRDD(rdd => {

4. rdd.foreach({ stock =>

5. stateAccum += (stock. 1, (stock. 2. 1, stock. 2. 2))

6. H

7. for ((sym, stats) <- stateAccum.value.to) printf("Symbol: %s, Stats: %s\n",
sym, stats)

8. 1)

Asyou can see, accumulators are very easy to use and reason about. But at the same time, their
functionality is limited: only the driver process can read from them, and only associative operations can be
performed. What if the application needs to keep arbitrary state and operations?

External Solutions

One option for storing global values is to explicitly turn them into side effects and keep them in external
storage. With this design, in each batch, previous state is read from external storage, transformed, and then
written back. At the same time, this external storage needs to ensure low latency to match the performance
of native in-JVM data structures. One such option is Redis, an in-memory key-value store.

Redis

Redis (REmote DIctionary Server) is simply an in-memory data-structure directory. It supports a wide
range of common data types including lists, sets, and hash maps. In addition, Redis contains out-of-the-
box implementations of advanced structures such as bitmaps and HyperLogLogs. It also enables direct
manipulation of these data types. For instance, the hash data structure supports set and get operations. All
of these structures are stored in memory for efficient lookup. To ensure fault-tolerance, they are periodically
synced with disk.

Transactions are atomic at the command level, but different commands can be clumped explicitly into
a single atomic transaction. Redis uses the asynchronous master-slave replication mode for redundancy and
scalability. Furthermore, it supports a cluster mode wherein data is sharded across nodes.

Continuing the example application, you can use Redis to store stock volume and price metrics. For
each stock symbol, the application will store the minimum and maximum volume and the price counter in
a hash map. Client libraries for Redis exist for all major programming languages. For Java, the package of
choice is Jedis. Once Redis has been set up,* add the following to your build definition file:

libraryDependencies += "redis.clients" % "jedis" % "2.7.3"

*Download Redis (ver 3.0.5) from http://redis.io/download, and build the project (make). Post-build run it with
$REDIS_HOME/src/redis-server. To access the console, use $REDIS HOME/src/redis-cli.
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Listing 6-24 shows how Redis can be used to store arbitrary data structures from Spark Streaming
applications. In the per-partition foreach (line 2), you connect to the Redis server using a Jedis client
connection object that takes the hostname of the server as input (line 3). Then, for each record, you first
need to check whether the stock symbol key exists in Redis (lines 4-5). If it does not, the value tuple is
initialized with default values. Otherwise, the previous values stored in Redis are updated (lines 8-17) and
written back (line 18). In each batch interval, these values are also emitted to standard output in the driver
JVM (lines 24-26). If the number of keys is small, it may be more efficient to batch (or partition) them in a
single pipelined call to Redis (obtained via Jedis#pipelined()). Wrapping Redis operations in a foreachRDD
operation allows you to use the former to store boundless, batch-invariant state.

Listing 6-24. Keeping Spark Streaming Application State in Redis

1.  .foreachRDD(rdd => {

2. rdd.foreachPartition({ part =>

3. val jedis = new Jedis(hostname)

4. part.foreach(f => {

5. val prev = jedis.hmget(f. 1, "min", "max", "count")

6. if (prev(0) == null) {

7. jedis.hmset(f. 1, mutable.HashMap("min" -> Long.MaxValue.toString,
"max" -> Long.MinValue.toString, "count" -> 0.toString))

8. } else {

9. val prevLong = prev.tolList.map(v => v.tolong)

10. var newCount = prevlLong(2)

11. val newPrice = f. 2. 1

12. val newVolume = f. 2. 2

13. if (newPrice > 500.0) {

14. newCount += 1

15. }

16. val newMin = if (newVolume < prevLong(0)) newVolume else prevLong(0)

17. val newMax = if (newVolume > previLong(1)) newVolume else prevLong(1)

18. jedis.hmset(f. 1, mutable.HashMap("min" -> newMin.toString, "max" ->
newMax.toString, "count" -> newCount.toString))

19. }

20. H

21. jedis.close()

22. H

23.

24. val jedis = new Jedis(hostname)

25. jedis.scan(0).getResult.foreach(sym => println("Symbol: %s, Stats: %s".format
(sym, jedis.hmget(sym, "min", "max", "count").toString)))
26. jedis.close()

27. 1)
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Summary

In Spark Streaming, side effects facilitated by foreachRDD signpost explicit points in the data flow to talk
to external services and maintain cross-RDD state. The same interface can be used to integrate streaming
applications with HBase, Cassandra, and Redis, among many others. Combined with the ability to ingest
data from disparate sources, this empowers Spark Streaming to be the centerpiece of real-time processing
pipelines from any domain. The use of external NoSQL solutions permits applications to persist their output
while achieving high scalability, throughput, and availability.

Having examined different ingress and egress options for Spark Streaming, you can move on to the next
leg of writing scalable streaming applications: logging, monitoring, and general optimizations.
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Getting Ready for Prime Time

Given enough eyeballs, all bugs are shallow.

—Linus’s Law

Application development is an incremental and continuous process: once an application has been designed,
implemented, and deployed, it needs to be constantly monitored and improved. The same applies to real-
time pipelines, with additional variables: scalability and capacity. There may be an increase in the volume
and velocity of the incoming data or lower latency requirements. Over time, as requirements change, initial
design choices need to be reevaluated. Developers and infrastructure engineers clamor to squeeze the last
bit of performance out of both the software stack and the hardware. Regardless of the cause and effect, all
such projects require rigorous and generous instrumentation—from logging and monitoring to alerting and
metrics.

This chapter equips you with frameworks, tools, and techniques to master Spark Streaming application
instrumentation and management. The example is a clickstream analysis of data from Wikipedia. You kick
off the chapter by offloading RDD management from executors to Tachyon, a general-purpose, in-memory
file system. A deep dive into the Spark U, as an enabler of application optimization, is also on the menu.
Subsequent sections introduce and hone the instrumentation-first mantra. Now, let’s make all bugs shallow.

Every Click Counts

Online businesses are interested in learning the behavior, habits, and wants of their visitors. This enables
them to provide a personalized experience to each customer with the goal of increasing conversions via both
targeting and re-targeting. Clickstream data (mashed up with third-party sources) underpins this category
of analytics. A clickstream, as the name suggests, is a detailed timeline of the interaction of a user with the
artifacts on a web site. Traditionally, these were stored in server logs for offline analysis; but in recent years,
thanks to solutions like Kafka, Flume, and Scribe, to name a few, this event stream coupled with direct data
from JavaScript code is transported in real-time to analytics solutions.

Clickstream data is cobbled together to construct a complete profile of a user. The ensuing micro-
segmentation drives user engagement, predictive analytics, and server and web site design optimization. A
typical record in the stream contains a timestamp, details about the event (click, purchase, form entry, and
so on), the ingress and egress points, and user machine information (device type, operating system, and so
on). Ingress information is important because it permits a web site to reason about how visitors land on a
certain page—who the referrers are. For instance, if the top referrals come from Google, then search engine
optimization (SEO) is working well and should be given more resources. On the other hand, if most visitors
(or lack therefore) come via social media—which has definitely turned into a force to be reckoned with on
this front—then that should drive future strategy.
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Detailed clickstream data generally does not reside in the public/open data sphere for proprietary and
privacy reasons. Fortunately, Wikipedia released two months (January and February 2015) of clickstream
data from its request logs.! Table 7-1 lists the six fields in the dataset.

Table 7-1. Fields in the Wikipedia Clickstream Dataset

Field# Name Description
1 prev_id (referrer) The ID of the previous Wikipedia article the user was on. Empty if a non-
Wikipedia source.
2 curr_id (resource) TheID of the current page.
n The number of occurrences of this referrer, resource pair.
4 prev_title The title of the referrer English Wikipedia article, or marked as other-

wikipedia, other-empty, other-internal, other-google, other-yahoo,
other-bing, other-facebook, other-twitter, or other-other.

5 curr_title The title of the current article.
6 type The type of the referrer:
e link: Both the referrer and resource are Wikipedia articles.

e redlink: The referrer is a Wikipedia page, but the target
does not exist.

e other: The referrer and target are both Wikipedia articles,
but the referral came through an external source or a search.

Tachyon (Alluxio)

RDDs and other application state in Spark are co-located in executor JVMs. Because executors are per-
application entities, this prevents applications from sharing RDDs. A corollary is that no cross-platform state
(for example, between Spark and Hadoop) can be shared. More important, RDDs consume the lion’s share
of the heap space, thus potentially competing with other objects. The previous chapter looked at how Spark
Streaming state can be offloaded to an in-memory solution like Redis. But this is not a general-purpose
solution, because storing elements that constitute a DStream and in turn an RDD in external storage kills the
utility of RDDs, especially the lineage and checkpointing-based fault-tolerance model. Enter Tachyon.

Tachyon is a general-purpose RDD store. Similar to native Spark, it uses a combination of lineage and
checkpointing to ensure availability in the face of failure.? Unlike Spark, which uses job semantics (end
of a batch, for example) to checkpoint files to negate unbounded recomputation, Tachyon has no such
application-level information. Instead, it selectively and asynchronously checkpoints files at the leaves of
the lineage graph while bearing priority in mind. Additionally, it uses a resource-allocation strategy that is
application-level job-scheduler aware to allocate resources for recomputation.

Feature wise, Tachyon works out of the box with a number of frameworks including Hadoop, Spark, and
Flink, while using a wide range of storage systems including HDFS, Amazon S3, and the local file system.
For general-purpose applications, Tachyon has a native API that mimics the standard Java java.io.File
interface. Furthermore, it takes advantage of I/O performance differences between memory, SSD, and HDD
to realize tiered block storage.

'Ellery Wulczyn and Dario Taraborelli, “Wikipedia Clickstream,” Figshare, January 4, 2016, http://figshare.com/
articles/Wikipedia_Clickstream/1305770.

’Haoyuan Li et al., “Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks,” Proceedings of
SOCC 14 (ACM, 2014).
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As always, let’s use a real example to understand the dynamics of RDD storage in Tachyon. As
mentioned earlier, understanding the details of the channels through which a user lands on a web site has
tremendous business value. In light of this, the example ranks the referrers to all Wikipedia articles in the
dataset by frequency. It also ranks the different referrers for the Apache Spark Wikipedia article. First things
first: set up Tachyon 0.6.4,° which is the version that works out of the box with Spark 1.4.0.

Download the Wikipedia dataset to your local machine/cluster. Use the custom socket driver program
from Chapter 5 to feed the dataset to Spark Streaming. Only a single change is required: the original driver
program expects the data to be in zipped form, whereas the Wikipedia data is gzipped. Simply insert the
code from Listing 7-1 at line 67 of Listing 5-4.

Listing 7-1. Tweaking the Socket Driver to Support Gzipped Files

1 else if (ext.equals("gz")) {

2 LOG.info(String.format("Feeding file %s", f.getName()));

3 try (BufferedReader br = new BufferedReader(

4. new InputStreamReader(new GZIPInputStream(new FileInputStream(f))))) {
5. // skip header

6 br.readlLine();

7 String line;

8 while ((line = br.readlLine()) != null) {

9. sendRecord(line);

10. }
1. }

Once Tachyon is up and running, execute the snippet of code from Listing 7-2. It reads clickstream
data from a socket (line 1) and tokenizes its fields, which are tab separated. You need to process this stream
twice—once to rank the referrals for all articles and then for referrals to the Apache Spark article—so it
makes sense to persist the records in memory. Recall from Chapter 4 that each output action results in a
separate job starting from the bifurcation point. If you do not persist the output of the map function on
line 2, it will be executed twice. Rather than persist it in the same JVM as the Spark application, you offload it
to Tachyon. This is as simple as providing a storage level of OFF_HEAP to the persist function. Make sure you
set spark.externalBlockStore.url to your Tachyon server with the format tachyon://hostname:port in
your configuration object.

The rest of the code maps the occurrence of referrals for all articles’ (lines 5-12) and Apache_Spark
(lines 14-16). The code uses a helper function saveTopKeys to aggregate ranked keys across batches and
write them to secondary storage (lines 18 and 20). The code for the helper function is provided in Listing 7-3.

Listing 7-2. Offloading RDDs from a Clickstream Analysis Application to Tachyon

1 val clickstream = ssc.socketTextStream(hostname, port.toInt)
2 .map(rec => rec.split("\\t"))

3. .persist(StoragelLevel.OFF HEAP)
4
5

val topRefStream = clickstream

3Download Tachyon version 0.6.4, and fill in $TACHYON_HOME/conf/tachyon-env.sh with values appropriate for your
setup. If running it on top of the local file system, make sure TACHYON_UNDERFS_ADDRESS is set to a local file system
folder, such as /tmp. Like any other file system, Tachyon first needs to be formatted via $TACHYON_HOME/bin/tachyon
format before being executed: $TACHYON_HOME/bin/tachyon-start.sh [all|local].

“Instead of keeping track of each individual article, the code aggregates all of them under the key “wikipedia”.
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6. .map(rec => {

7. var prev_title = rec(3)

8. if (!prev_title.startsWith("other")) {
9. prev_title = "wikipedia"

10. }

11. (prev_title, rec(2).toInt)

12. H

13.

14. val topSparkStream = clickstream

15. .filter(rec => rec(4).equals("Apache_Spark"))
16. .map(rec => (rec(3), rec(2).toInt))

17.

18. saveTopKeys(topRefStream, outputPathTop)

19.

20. saveTopKeys(topSparkStream, outputPathSpark)

Listing 7-3. Helper Function for Clickstream Analysis

[

def saveTopKeys(clickstream: DStream[(String, Int)], outputPath: String) {
clickstream.updateStateByKey((values, state: Option[Int]) => Some(values.sum +
state.getOrElse(0)))
.repartition(1)
.map(rec => (rec. 2, rec. 1))
.transform(rec => rec.sortByKey(ascending = false))
.saveAsTextFiles(outputPath)

N

~Nouv bw

}

As per the results, the top five referrers overall include Wikipedia, other-empty, other-google, other-
wikipedia, and other. The referrers for Apache_Spark are related to different Apache-centric articles
including Apache_Hadoop, MapReduce, and other-google. It makes sense that users would jump from one
Wikipedia article to another from the same domain: Big Data systems, in this case. other-google is by far the
top referrer, which means most people land on the Wikipedia page for Spark via Google.

Tachyon can also be useful if RDDs need to be shared across different applications, even outside of
Spark. Other applications can use the native Java API for Tachyon to access these files. Additionally, it comes
packed with a command-line tool to manipulate the data store. It can be accessed via $TACHYON_HOME/bin/
tachyon tfs, which enables simple file system operations. For instance, use this to copy an RDD generated
by the application that you just executed® to the local file system:

$TACHYON HOME/bin/tachyon tfs copyTolLocal /tmp_spark_ tachyon/spark-b5ad8845-eb30-4e9c-94e9-
1d772bd151ee/0/spark-tachyon-20151120000110-1009/20/xdd_81 9/ ./rdd 81 9

Note that tmp_spark_tachyon is the default block-store location and can be set via
spark.externalBlockStore.baseDir.

Spark Web Ul

The Spark Ul is the central portal for drilling down into the details of applications. It can be really handy for
diagnosing problems and improving performance. You can use it to, say, check whether the chosen batch interval
is appropriate. Listing 7-4 contains example code for an application that this section dissects using the UL

SThe application id and rdd id would obviously vary from execution to execution.
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Online businesses are always interested in knowing whether more users come to their web site via

social media or a search engine. This enables them to figure out which channel to focus on to increase
traffic. This application keeps track of the number of exclusive social media and search engine referrers—
that is, articles for which the referrers are from either social media or a search engine but not both.

Listing 7-4. Referrer Channel Division Application

1
2
3.
4.
5
6
7

8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

val countSearch = new AtomiclLong(0)
val countSocial = new AtomiclLong(0)

val titleStream = ssc.socketTextStream(hostname, port.toInt)
.map(rec => rec.split("\\t"))
filter( (3) match {
case "other-google" | "other-bing" | "other-yahoo" | "other-facebook" | "other-
twitter" => true
case _ => false

1
.map(rec => (rec(3), rec(4)))
.cache()
val searchStream = titleStream.filter( . 1 match {
case "other-google" | "other-bing" | "other-yahoo" => true
case _ => false
)

.map(rec => rec. 2)

val socialStream = titleStream.filter( . 1 match {
case "other-facebook" | "other-twitter" => true
case _ => false

b))

.map(rec => rec. 2)

val exclusiveSearch = searchStream.transformWith(socialStream,
(searchRDD: RDD[String], socialRDD: RDD[String]) => searchRDD.subtract(socialRDD))
.foreachRDD(rdd => {
countSearch.addAndGet (rdd. count())
println("Exclusive count search engines: " + countSearch)

1

val exclusiveSocial = socialStream.transformWith(searchStream,
(socialRDD: RDD[String], searchRDD: RDD[String]) => socialRDD.subtract(searchRDD))
.foreachRDD(rdd => {
countSocial.addAndGet(rdd.count())
println("Exclusive count social media:

1)

+ countSocial)

Following the mantra of early projection, you cull the dataset early on by only keeping records for social

media and search engines, and retaining only those fields that you need: prev_title and curr_title (lines
6-11). Because the application has to treat the social and search streams differently, you need to bifurcate
the input stream. You achieve this via two filter transformations (lines 13-17 and 19-23) and only keep
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article names in both streams. DStreams out of the box do not have a set difference operation, but RDDs
do. One way to use it is to invoke the transformWith transformation on DStreams; it takes as input another
DStream and enables RDD-wise operations. In this transformation, you subtract the elements of each RDD
(essentially article titles) separately to achieve set-difference operations (lines 25-26 and 32-33). Finally, to
maintain a global count of these differences across RDDs, you keep this running tally in two static atomic
variables and print it every batch (lines 27-30 and 34-37). The results show that for the Wikipedia dataset,
search engine referrers exceed social media ones by many orders of magnitude.

Note transformWith only allows two-way DStream operations. For an n-way operation, use Streaming
Context#transform(seq[Dstream[T]], transformFunc).

Now let’s use the Spark UI to study the behavior of this application. After launching the application, go
to your browser and enter the location of the UI. The Ul typically runs on port 8080 on the same machine as
the Spark master. The main page holds cluster-wide information such as the details of connected workers
and running and completed applications. You can click each of these entities to access more in-depth
information. For instance, to drill down into the details of the social media versus search engine referrals
app, click its application ID or name as shown in Figure 7-1.

Running Applications
Application ID Name Cores  Memory per Node Submitted Time User State Duration
app-20151124205207-0000 (kill) soclalsearchapp 4 512.0MB 2015/11/24 20:52:07 zubaimabi RUNNING 7s

Figure 7-1. Running Applications in the Spark UI

The summary page for each application lists its status and its launched executors, as shown in
Figure 7-2. You can also jump to application details via the Application Detail UI link. Each SparkContext
launches a separate Application Detail UI with ports starting with 4040.

Spoﬂ:z .o Application: socialsearchapp

ID: app-20151124205207-0000

Name: socialsearchapp

User: zubaimabi

Cores: Unlimited (4 granted)

Executor Memory: 512.0 MB

Submit Date: Tue Nov 24 20:52:07 PKT 2015
State: RUNNING

Application Detail Ul

Executor Summary

ExecutorlD Waorker Cores Memory State Logs
o worker-20151124205140-192.168.0.103-64103 4 512 LOADING stdout stderr

Figure 7-2. Summary page for an application

Let’s go to the application detail UI (Figure 7-3). It gives the constantly increasing job breakdown for
the application. Each job is represented by the title of its last stage. In this case, the last stage ends with a
foreachRDD action. Jobs are grouped as active or completed. This page gives you some useful information
about the application. For starters, each job has three stages: one each for the two parallel streams (social
and search) and one for the subtract operation. This is because the former entails a shuffle. A job called
start runs continuously to execute the streaming scheduler. In addition, only a single user code job is active
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at a time. This is due to spark.streaming.concurrentJobs being set to 1 by default. Increase this number
to 2 to enable more than one job to execute in parallel, as described in Chapter 4. Remember, each output
action results in a separate job.

The last column in the table contains the overall task progress for each job. Note that the number, 150
in this case, is across all stages. This application has three stages, which means the number of tasks per stage
is 50. As you saw in Chapter 4, the number of tasks in a stage is equal to the number of partitions in the last
RDD in that stage. The number of partitions in an RDD, on the other hand, is determined by the number of
partitions in its input RDD (or the output of the previous stage). If you walk up the stage graph, you reach
the application input stream, which is a SocketInputDStream. Recall from Chapter 5 that the number of
partitions of any receiver-based InputDStreamis decided by the batch interval and the block interval. The
application was executed with a batch interval of 10 seconds and a block interval of 200 ms (the default
value), which gives you 50 (10 s/200 ms).

The Duration column in the table gives you the time taken by each job. To decide on optimum values
for both batch and block intervals, play with their values and see how they affect the stage duration. This
obviously depends on application complexity, data properties, and the cluster setup.

Wﬁ ad Jobs Stages Storage Environment Executors Streaming socialsearchapp application Ul

Spark Jobs (7

Total Uptime: 1.0 min
Scheduling Mode: FIFO
Active Jobs: 2
Completed Jobs: 8

* Event Timeling

Active Jobs (2)
Job 1d Description Submitted Stages: Su d/Total Tasks (for all stages): Succeeded/Total
1 foreachRDD at E2Ul.scala:59 2015/11/24 20:53:03 18 ] . 411150
3 start at E2Ul.scala:64 2015/11/24 20:52:18 aTs o o
Completed Jobs (8)
Job 1d Description Submitted Stages: fMotal Tasks (for all stages): Succeeded/Total
10 foreachRDD at E2Ul.scala:52 2015/11/24 20:52:58 6s a3 o wons0
8 foreachRDD at E2U scala:59 2015/11/24 20:52:54 4s 3 L
8 foreachRDD at E2Ul.scala:52 2015/11/24 20:52:48 65 a3 o 1soMso
7 foreachRDD at E2Ul.scala:59 2015/11/24 20:52:42 6s a3 [ - . K
6 foreachROD at E2Ul. scala:52 2015/11/24 20:52:30 123 3 L
5 foreachRDD at E2Ul.scala:59 2015/11/24 20:52:20 03s 3 ... 8®
4 foreachRDD at E2Ul.scala:52 2015/11/24 20:52:20 0.7s a3 S — |

Figure 7-3. Detailed job information for an application

You can use the tabs at the top of this page to jump to different status pages. The Storage tab gives
RDD-level information, the Environment tab displays configuration information, and the Executors tab gives
details of each executor for this application. All of these tabs apply equally to Spark and Spark Streaming
except the Streaming tab.

You can also get stage-level information by clicking each job. The information for a particular job
is shown in Figure 7-4. For each stage, it shows the submission time, duration, and data size. Stages are
grouped by the name of the last transformation. It is obvious that more time is taken by stages that read the
SocketInputDStream and bifurcate it into search engine and social media referral streams in relation to
other stages. Stage boundaries are also revealed by shuffle behavior. The transformhWith stage writes shuffle
data, which is read by the subsequent foreachRDD stage. Column 5 shows that, as mentioned earlier, each
stage consists of 50 tasks.

1
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Details for Job 10
Status: SUCCEEDED
Completed Stages: 3

» Event Timeline
¥ DAG Visualization

Completed Stages (3)

Stage Tasks: Shuffle Shuffle

Id Description Total Input Output Read Write

29 foreachRDD at E2Ul.scala:50 +details 2015/11/22 09s - 1326.4 KB
20:50:48

28 transformWith at E2Ul.scala:48 sdetails 2015/11/22 5s DETE :: 381.8KB
20:50:43 MB

27 transformWith at E2Ul.scala:48 +details 2015/11/22 4s .. 5050 9446 KB
20050:43

Figure 7-4. Detailed stage information for a job

The code-level trigger for a stage (a shuffle boundary) can also be viewed by clicking the details option,
as shown in Figure 7-5.

Details for Job 10

Status: SUCCEEDED
Completed Stages: 3

» Event Timeline
» DAG Visualization

Completed Stages (3)

Stage

Tasks: Shuffie Shuffie
Id Description

Total Input  Output Read Write

29 foreachRDD at E2Ul.scala:50 +details 2015/11/22 09s ... sos0 1326.4 KB
org.apache. spark. streaning.dstreas. D5trean. foreachRDD(DStreom. scala:629) 20:30:48
org.apress. prospark ., Social main(E2UI.scala:58)
org.apress.prospark. SociolSearchApp.main(E2UL. scala)
sun, reflect.NotivedethodAccessorInpl. irvoked(Native Method)
sun. reflect. NativeMethodAccessorImpl. invoke(NativeMethodAccessorInpl. jov

28 transformWith at E2UI scala:48 sdetads 201511722 Ss s 2. 381.8KB
org.apache. spark. streaming. dstream, DStrecn. transformith(DStream.scalas67  20:50:43 MB
9
org.opress.prospark. SociolSearchApps .main(E2UL. scala:48)
org.apress. prospark . SocialSearchapp . main(E2UI. scala)
sun. reflect.NotiveMethodAccessorImpl. invoked(Native Method)

27 transformWith at E2Ul.scala:48 +details 2015/11/22 45 L. 5050 9446 KB
RDD: MapPartitionsRDD 20:50:43

org.apache. spark. streaning. dstreom. DStreon. tronsforsWith(DStreom. scolao:67
9

org.apress.prospark. Social SearchApps .main(E2UL. scala:48)

org.apress. prospark , SocialSearchApp . main(E2UI. scala)

Figure 7-5. Code-level information for a stage

There is also an option to view the graph for each job by clicking DAG Visualization (the link above
Completed Stages). The DAG for one representative job for this application is shown in Figure 7-6. Each blue
box represents a transformation, and the arrows represent the flow. Each black dot is an RDD. Notice the
single green dot on each of the transformWith stages: these are RDDs that you explicitly cached to negate
redundant processing. You can also see that Spark pipelines non-shulffle triggering transformations in the
same task to reduce interprocess communication.® Because both subtract operations rely on the same input
data (social minus search and search minus social), they are pipelined into the same stage.

®Andrew Or, “Understanding Your Spark Application through Visualization,” Databricks, June 22, 2015,
https://databricks.com/blog/2015/06/22/understanding-your-spark-application-through-visualization.html.
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Stage & Stage 7 Stage 8

Figure 7-6. DAG visualization for a job

You can also display the RDD-level flow for each stage as shown in Figure 7-7. In the stage flow on the
left, you can see that the RDDs for the InputDStream reside in the block store—hence the name B1ockRDD.
The rest of the flow emits and consumes MapPartitionsRDDs. The foreachRDD stage on the right, on the
other hand, creates a SubtractedRDD based on the subtract operation in the transformWith transformation.
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Stw.age 6

Figure 7-7. RDD flow visualization

The other visualization enabled by the Ul is timeline based; it allows you to see a temporal flow of
events. These events include the addition and removal of executors, and scheduling of jobs, stages, and
tasks. Let’s first analyze the job-level timeline graph. To generate it, click the Event Timeline link in
Figure 7-3. As shown in Figure 7-8, it provides a complete timeline for the life cycle of executors and jobs.

The legend on the left of the timeline in Figure 7-8 signposts the color coding of the different events.
A number of things stand out. First, as expected, the executors for the application are launched before
everything else. Second, the “start at” job keeps running throughout, because it is in charge of scheduling
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jobs across batches. Finally, jobs are scheduled in series, one after the other. Clicking a particular job takes
you to the stage timeline, similar to the one in Figure 7-9. As expected, the two transformWith stages execute
in parallel, and upon their completion, the foreachRDD stage is kicked off.

Executors
Added
@ Removed Exscuior 0 added
Jobs foreachROO at E2UL. foreachRDD at EZU scala53 (Job foreachROD at E2UN.scala:
Succeeded
@ Faied start at E2U1.scala6 (Job 3)
Running ‘start at E2UN scala:65 foreact foreachRDD at E foreact
.
30 35 40 a5 50 55 0 5 10
25 November 22:39

25 November 22:40

Figure 7-8. Event timeline of jobs

Executors

B Removed

Stages
Completed Eiy

B Faied s
Active

5 30 45 U] 15 30 45 0 15 30 45 o
25 November 22:40 25 November 22:41 25 November 22:42 25 November 22:43

Figure 7-9. Event timeline of stages in a job

A more telling and useful timeline is for each task in a stage. You can view the graph in Figure 7-10
by clicking any stage in the event timeline visualization (or by directly jumping to any stage via the Stages
tab). The spectrum of colors in each task reflects the cost of the different phases in its execution. This
visual provides a number of insights. First and foremost, all the tasks are CPU bound, because Executor
Computing Time takes the lion’s share of their duration. In addition, toward the tail end of the stage, tasks
start experiencing longer Scheduler Delay, which suggests that throwing more machines (and, in turn,
executors) at them will help improve performance. The same page also contains summary metrics for this
stage in tabular form (see Figure 7-11). In addition, aggregated task-execution statistics and shuffle metrics
per executor are shown. This view also provides information such as the fact that garbage-collection time is
not a dominant factor in the application, which means the number of JVM heap objects is under control.

B Scheduler Delay B Executor Computing Time M Getting Result Time
B Task Deserialization Time Shuffle Write Time
B Shuffie Read Time B Result Serialization Time
0/192.168.0.106 I
i il
(= 0 [N
[y B = ] 1 i
B 1 I N m
EEE E R I Nl m |} |
Il Il EEERD ENE IR B I . |
500 550 600 650 700 750 800
21:59:53

Figure 7-10. Task execution state timeline
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Details for Stage 107 (Attempt 0)
Total Time Across All Tasks: 25
Shuffle Read: 1307.7 KB / 100189

* DAG Visualization
» Show Additional Metrics
» Event Timeline

Summary Metrics for 50 Completed Tasks

Metric Min 25th percentile Median
Duration 13ms 17 ms 25 ms

GC Time oms oms oms

Shuffle Read Size / Records 18.7 KB / 696 233KB /1377 26.0KB /1845

Aggregated Metrics by Executor
Executor ID Address Task Time Total Tasks Failed Tasks
o 192.168.15.5:56874 2s 50 0

Figure 7-11. Summary metrics for tasks in a stage

75th percentile
43 ms

Oms

28.5KB /2413

Succeeded Tasks

90 ms
11ms

44,0 KB / 5269

Shuffie Read Size / Records
1307.7 KB / 100189

The metrics highlighted in Figure 7-11 can be enriched with more attributes by clicking the Show
Additional Metrics option and selecting appropriate metrics, as shown in Figure 7-12.

~ Show Additional Metrics
(Dejselect Al
@ Scheduler Delay
Task Deserialization Time
Result Serialization Time
Getting Result Time

» Event Timeline

Summary Metrics for 50 Completed Tasks

Metric Min 25th percentile Median
Duration ims 5ms Tms

Scheduler Dalay 1ms 2ms Ims

Task Deserialization Time 0oms oms 1ms

GC Time oms oms oms

Result Serialization Time oms oms oms

Getting Result Time Oms Oms oms

Input Size / Records 184 KB /419 111.8 KB /2785 151.4 KB / 3596

Figure 7-12. Additional task-level summary metrics

75th percentile
11 ms
3ms
2ms
oms
oms
Ooms
2222KB /5313

02s
24 ms
13 ms
oms
oms
oms
350.0 KB / 8582

Scrolling down on the same page provides individual task-level metrics (Figure 7-13). These are helpful
for learning that, for instance, the shuffle read size is similar across tasks, which suggests that the data

distribution is fairly even.
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Tasks
Executor ID / Scheduler GC Result Serialization  Shuffle Read Size /

Index 1D Attempt Status Locality Level Host Launch Time Duration Delay Time  Time Records Errors

0 5078 0 SUCCESS PROCESS_LOCAL 0/192.168.155 2015M11/22 20 ms 2ms 0ms 208KB/ 1179
20:52:55

1 5080 0 SUCCESS PROCESS_LOCAL 0/192.168.155 201511722 18 ms 0ms oms 22.0KB /1078
20:52:55

2 5081 0 SUCCESS PROCESS_LOCAL 0/192.168.155 2015M11/22 17 ms 1ms oms 20.1 KB/ 1405
20:52:55

4 5083 0 SUCCESS PROCESS_LOCAL 0/192.168.155 201511722 3Bms 2ms oms 24.7 KB/ 1850
20:52:55

3 5082 0 SUCCESS PROCESS_LOCAL 0/192.188.15.5 2015M11/22 50 ms 2ms 0ms 26.8 KB /2752
20:52:55

5 5084 0 SUCCESS PROCESS_LOCAL 0/192.168.155 2015/11/22 13 ms 2ms Oms 19.5KB /781
20:52:55

B 5085 0 SUCCESS PROCESS_LOCAL 0/192.168.155 2015/11/22 18 ms 2ms oms 312 KB /2380
20:52:55

7 5086 0 SUCCESS PROCESS_LOCAL 0/182.168.155 2015/11/22 13 ms 1ms Oms 202KB/T10
20:52:55

Figure 7-13. Metrics for individual tasks

Now let’s explore some other tabs from the top menu bar, beginning with Storage. It contains details of
RDDs that have a configured storage level other than the default (which triggers regeneration under failure).
As shown in Figure 7-14, you see a complete breakdown of its caching properties. For instance, the two RDDs
shown in the figure have a storage level of StorageLevel .MEMORY_ONLY_SER. This is due to the cache operation
on line 11 of the code (Listing 7-4). That is why the RDDs are stored entirely in memory. If disk-based or
OFF_HEAP storage had been chosen, it would have been reflected in the last two columns in this table.

Storage

RDD Name Storage Level Cached Partitions Fraction Cached Size in Memory Size in ExternalBlockStore Size on Disk
MapPartitionsRDD Memory Serialized 1x Replicated 50 100% 33MB 008 o008
MapPartitionsRDD Memory Serialized 1x Replicated 50 100% 32MB 008 008

Figure 7-14. Storage properties of cached RDDs

Clicking any RDD in the table takes you to the detailed per-partition breakdown in Figure 7-15. You can
see that each RDD contains 50 partitions, which is what you expect due to the selected block interval and
batch interval.
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RDD Storage Info for MapPartitionsRDD

Storage Level: Memaory Serialized 1x Replicated
Cached Partitions: 50

Total Partitions: 50

Memory Size: 3.2 MB

Disk Size: 0.0B

Data Distribution on 2 Executors

Host Memory Usage
192.168.15.5:56868 0.0 B {265.1 MB Remaining)
192.168.15.5:56874 3.2 MB (259.1 MB Remaining)
50 Partitions
Block Name Storage Level Size in Memory
rod_441_0 Memory Serialized 1x Replicated 1485 KB
rad_441_1 Memory Serialized 1x Replicated 24.5KB
rod_441_10 Memory Serialized 1x Replicated 68.4 KB
rad_441_11 Memory Serialized 1x Replicated BIBKB
rad_441_12 Memory Serialized 1x Replicated 76.2 KB
rdd_441_13 Memory Serialized 1x Replicated 68.8 KB
rdd_441_14 Memory Serialized 1x Replicated 64.2 KB

Figure 7-15. Partition breakdown of an RDD

Size on Disk
0o0B
oo0B
00B
008
0o0B
ooB
00B

Disk Usage
00B
0o0B

Executors

192.168.15.5:56874
192.168.15.5:56874
182.168.15.5:56874
192.168.15.5:56874
192.168.15.5:56874
192.168.15.5:56874
192.168.15.5:56874

The Executors tab displays statistics about each running executor (Figure 7-16). It is important to
highlight that the Memory Used tab does not reflect the memory used by the executor but rather the
memory used by cached RDDs (obtained by invoking cache() or persist()). The same table allows you to

obtain a thread-level dump of the executor (Figure 7-17).

Executors (2)

Memory: 3.5 MB Used (530.3 MB Total)
Disk: 0.0 B Used

Executor RDD Memory Disk Active Falled Complete
ID Address Blocks  Used Used  Tasks Tasks Tasks
o 192.168.15.5:56874 59 3.5MB/ ooB 4 o 11887
265.1 MB
driver 192.168.15.5:56868 0 0.0B/2651 0.0B Q o o
MB

Figure 7-16. High-level executor metrics

Total
Tasks

11891

Task
Time

186m

0oms

Input

3489
MB

00B

Shuffle Shuffle Thread
Read Write Logs Dump
noe 102.1 MB  stdout Thread
stderr Dump

ooB 008 Thread
Dump

The thread-level dump is handy for figuring out the status of each thread. For custom threads, you can

check their behavior in order to avoid deadlocks.
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Thread dump for executor 0

Updated at 2015/11/22 20:56:53

Expand All
Tnread 1: main (NAITING)
Thread 2: Reference Handler (WAITING)
Thread 3: Finalizer (WAITING)
Thread 4: Signal Dispatcher (RUNMNABLE)
Thread 24: sparkExecutor-schaduler-1 (TIMED_WAITING)

Thread 25: stor-akka.actor.default-dispatcher-2 (WAITING)

Thread 26: sparkExecutor-akka.actor.default-dispatcher-3 (RUNNABLE)

Thread 27: sparkExecutor-akka.actor. default-dispatcher-4 (WAITING)

Thread 28: sparkExecutor-akka.actor.default-dispatcher-5 (WAITING)

Thread 29: sparkExacutor-akka remate.default-remote-dispatcher-6 (TIMED_WAITING)

Thread 30: sparkExecutor-akka.remote.default-remote-dispatcher-7 (WAITING)

Figure 7-17. Thread dump for a running executor

The Environment tag is useful for figuring out whether configurable parameters are being properly set
and their default values. In addition, you can get system-wide information such as JVM version (as shown in
Figure 7-18) and the JARs on the classpath.

Environment

Runtime Information

Name Value

Java Home fLibrary/Java/JavaVirtuaiMachines/jdk1.8.0_60.jdk/Contents/Home/jre
Java Version 1.8.0_60 (Oracle Corporation)

Scala Version version 2.10.4

Figure 7-18. Snippet of the environment information page

The Spark Streaming micro-batch-processing model imposes an additional burden in terms of choosing
the batch interval (and block interval, for receiver-based streaming). If there is a mismatch between the
batch interval and input data rate, the application will be unhealthy and may crash due to queue pressure.

A useful utility to aid you in choosing these settings is Streaming Statistics; Figure 7-19 shows the graphs
for the example clickstream application. The Input Rate” and Processing Time trends are similar, which
indicates that the chosen batch interval of 10 seconds is appropriate. But the Total Delay on average is
greater than 10 seconds, which means the application is lagging behind by more than a second on average.
Moreover, Processing Time has a horizontal “stable” application marker: on average, the trend should be
below it, but in this case every batch misses the line.

For healthy, stable applications, Scheduling Delay (the amount of time RDDs stay in the queue before
being processed) should be close to zero on average, and Total Delay should be less than the batch interval
on average. The histograms for Processing Time and Total Delay also tell you that the distribution of these
times is toward the high end: both numbers are near or greater than 10 seconds most of the time. For a stable
application, the distribution should be lopsided toward the low end—the histogram should be laterally
flipped.

"You can click Input Rate to see a breakdown per receiver.
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Recall from Chapter 4 that increasing the batch interval increases latency but reduces task/RDD setup
time. On the other hand, lowering the value decreases end-to-end latency but leads to higher scheduling
and RDD-creation overheads. Therefore, for optimum performance, you need to find the sweet spot
between the pipeline’s batch interval and processing time. In Figure 7-19, you can see that RDDs spend time
in the queue waiting to be processed, which indicates that the data is created at a much faster rate than it
can be processed by the application. To reduce this delay, you need to decrease the number of partitions the
application has to process in each batch; you can do this by reducing the batch interval.

Let’s try to achieve that by lowering the batch interval to 1 second. The Streaming Statistics are shown in
Figure 7-20.

Streaming Statistics

Running batches of 10 ds for 3 mis 4 ds since 2015/11/22 20:49:49 (17 completed batches, 10921827 records)
Timelines (Last 18 batches, 1 active, 17 completed) Histograms
avents/sec o 2 ',: ‘,3 ? 1,0 1
80,000.00+ #batches
» Input Rate 60,000.00 -
Avg: 60676.82 40,000.00 -
events/sec 20,000.00
0.00 )
20:50:00 20:52:50
sec 0 2 4 & & w.
12.00 #batches
10.004
Scheduling Delay o]
Avg: 1 second 584 ms 4.004
500 _m
0.00 J
20:50:00 20:52:50

0 2 4 6 8

10

S6C v
#batches

12.00
10.00 - /\——\___\,—/\,_v__/
Processing Time M rped

Avg: 9 seconds 710 ms 4.001

20:50:00 20:82:50

12.00 #Iba'[lchﬁs
10.00
Total Delay 8.00+

Avg: 11 seconds 375 ms 4.004

0 2 4 6 8 10

20:50:00 20:52:50

Figure 7-19. Streaming Statistics for an unhealthy application
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You can see that both the processing time and total delay are well below 1 second on average. In
addition, the scheduling delay is on the order of tens of milliseconds for most batches. Additional positive
indicators are the histograms for processing time and total delay, which are now concentrated toward lower
values. Just by knowing that reducing the number of partitions leads to lower processing time, and therefore
reducing the batch interval, you have stabilized a misconfigured application.

Streaming Statistics

Running batches of 1 second for 1 minute 37 seconds since 2015/11/26 09:51:42 (96 o , 6957942

» Input Rate
Avg: 71731.36
events/sec

Scheduling Delay (7!
Avg: 43 ms

Processing Time M
Avg: 544 ms

Total Delay [
Avg: 588 ms

(Last 97 batch 1 active, 96 leted) Histograms

120,000.00 -

100,000.00 -

80,000.00

60,000.00

40,000.00
20,000.00
0.00

09:5

2.004
1.504
1.00 4
0.50 4
0.00

40

events/sec 0 20
W !
1:44 09:53

120

A

09:51:44

2.00+
1.50
1.004
0.50 4
0.00

2.00
1.50
1.004
0.50 1

09:51:44 09:53:20

0.00

09:51:44 09: 5:3:2[)

Figure 7-20. Streaming Statistics for a healthy application
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The same information is also shown in tabular form on the same page, as shown in Figure 7-21. Overall,
the Spark Ul is an extremely useful tool for debugging and optimizing applications. It makes a number of
systemwide statistics readily available.

Active Batches (1)

DBatch Time Input Sae Scheduling Delay M Processing Time 1 Status
SUD43 verts [TH o)
Completed Batches (last 17 out of 17)

Batch Time Input Size Scheduling Delay ™ Procossing Time ™ Total Detay ™

B56852 evonts oms 0s 0s
AT events oms as 8s
610817 events ots s as
SE2167 evonts 18 s 0s
STT908 events 23 9s 1s
S14839 evonts. I " 12s
STAMES evonts 28 s 3
SEXDS evonts 28 s 128
STR0ET events 2s 0s 128
49915 events s as 12
623840 events as 03 s
612878 events Is 0s 15
574217 events 38 ws 133
SPE544 pvonts. I 0 13
G407 ovonts. Is W0s 138
0841 events oms s s

440751 evonts Sms 6 &s

Figure 7-21. Streaming Statistics in tabular form

Historical Analysis

By default, detailed statistics (those you can see by clicking Application Detail UI) for applications are lost
after the application finishes its execution. That means no after-the-fact analysis is possible—but don’t
panic. Spark has a logging mechanism to enable historical analysis that is very easy to use: set spark.
eventlLog.enabled to true to start logging events. The location for the log is determined by spark.eventlLog.
dir, which has a default value of file:/tmp/spark-events. You can then use the standard Application
Detail Ul to view the metrics for these instrumented applications. This only applies to standalone mode.

For operation under Mesos and YARN, Spark has a historical server you can use to replay events from
the log. To analyze these logs post hoc, run the historical server via $SPARK_HOME/sbin/start-history-
server.sh. This runs a web server at port 18080 (spark.history.ui.port) on that particular machine. The
interface of this tool is almost identical to the real-time UI. Other useful configuration parameters include
spark.history.retainedApplications, which has a default value of 50 and determines the number of
applications for which events are retained; spark.history.fs.update.interval (default: 10 seconds),
which dictates the event-logging interval; and spark.history.fs.logDirectory (default: file:/tmp/
spark-events), which is the directory from which the history server loads event logs.

RESTful Metrics

All the numbers in the Ul are also exposed as a RESTful API in JSON format to enable external applications
to consume and visualize them in different ways. The base URL for the REST APIis http://<master _node_
hostname>:4040/api/v1. For the history server, the URL is http://<history server hostname>:18080/
api/vi. Listing 7-5 shows how to access a list of all applications.
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Listing 7-5. Accessing the RESTful API for Spark Metrics

1 $ curl http://localhost:4040/api/vi/applications
2. [ {

3 "id" : "socialsearchapp",

4. "name" : "socialsearchapp",

5. "attempts” : [ {

6 "startTime" : "2015-11-26T16:46:04.363GMT",
7 "endTime" : "1969-12-31T23:59:59.999GMT",
8 "sparkUser" : "",

9 "completed" : false

10 ]

1. } ]

Table 7-2 lists some of the important endpoint paths that are available. Instead of describing them,
the table links to information from the earlier UI figures. In addition to these, you can download the logs
for an application in a zipped file from /applications/<app_id>/logs. For YARN applications, all of these
application paths contain an additional segment, attempt_id, because YARN applications can be
attempted more than once. For instance, the location of the zipped file under YARN is /applications/
<app_id>/<attempt_id>/logs.

Table 7-2. REST API for Spark Application Metrics

Path Information in This Figure
/applications/<app_id>/jobs 7-3
/applications/<app_id>/jobs/<job_id> 7-4
/applications/<app_id>/stages/<stage id>/<stage attempt_id>/ 7-12

taskSummary

/applications/<app_id>/stages/<stage id>/<stage attempt id>/ 7-13

taskList

/applications/<app_id>/storage/rdd 7-14
/applications/<app_id>/storage/rdd/<rdd_id> 7-15
/applications/<app_id>/executors 7-16

Logging

It is always a good idea to instrument applications to generate detailed logs for debugging and auditing, But
obviously there is no such thing as a free lunch—or free storage, in this case. It is very easy to run out of space
on your cluster once logs begin to fill up. To circumvent this problem, logs should be rolled periodically.
Spark provides this functionality out of the box via the configuration parameters listed in Table 7-3.
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Table 7-3. Logging Configuration Parameters

Parameter Details

spark.executor.logs.rolling.strategy The strategy to use for rolling. Options include time and
size. For size, set spark.executor.logs.rolling.
maxSize; and for time, set spark.executor.logs.
rolling.time.interval.

spark.executor.logs.rolling. The maximum number of log files to retain.

maxRetainedFiles

spark.executor.logs.rolling.maxSize The maximum size of a log file in bytes after which
rolling kicks in.

spark.executor.logs.rolling.time.interval The rollinginterval. Possible values include daily,
hourly, minutely, and any second interval.

Logging in Spark applications by default is very chatty, which causes useful information such as the
output from the running application to be lost in the clutter. Spark uses Log4j, which means its log behavior
can easily be configured. A reasonable setup is to suppress DEBUG and INFO messages and log the rest to an
external file. The configuration in Listing 7-6 does just that. Copy it over to $SPARK_HOME/conf on all your
machines. By default, it logs messages to /tmp/spark.log. Change log4j.appender.FILE.File to another
location if desired.

Listing 7-6. Log4j Configuration to Make Spark Applications Less Chatty

log4j.rootLogger=WARN, FILE
log4j.rootCategory=WARN, FILE

logaj.appender.FILE=org.apache.log4j.FileAppender
log4j.appender.FILE.File=/tmp/spark.log
logaj.appender.FILE.layout=org.apache.log4j.PatternLayout
log4j.appender.FILE.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n

logaj.logger.org.spark-project.jetty=WARN

0. log4j.logger.org.spark-project.jetty.util.component.AbstractLifeCycle=ERROR
11. log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO

12. log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO

P O ooV~ WN R

External Metrics

Along with Ul-enabled metrics, Spark can optionally emit metrics to a number of external sinks. The
mechanism works out of the box with some popular metrics consumers such as JMX and Graphite. This is
enabled via the Dropwizard metrics library.® Metrics to zero or more sinks are emitted for different processes
including master, workers, executors, applications, and drivers.

Shttp://metrics.dropwizard.io/3.1.0/.
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Metrics configuration resides at $SPARK_HOME/conf/metrics.properties. To turn on the Graphite sink,
for example, add the configuration information from Listing 7-7 to the metrics.properties file and fill in
graphite_hostname and graphite_port.

Listing 7-7. Graphite Metrics Sink Configuration

*.sink.graphite.class=org.apache.spark.metrics.sink.GraphiteSink
*.sink.graphite.host=¢<graphite_hostname»
*.sink.graphite.port=<graphite_port»

*.sink.graphite.period=10

B w N R

Let’s view Graphite metrics for the application from Listing 7-4. Graphite® is a system for storing and
visualizing metrics from various applications. It consists of three major components: Carbon, a series of
daemons to collect data; Whisper, a database to store time series; and web-app, a Python web service to
render metrics. Graphite is great at collecting and storing data, but its visualization features are limited. To
overcome this, you can use Grafana,'® which has richer graphing and aggregation options and lets you create
dynamic dashboards. Grafana seamlessly integrates with data sources including Graphite, which permits
you to publish metrics to Graphite but visualize them via Grafana.

Both Graphite and Grafana have a number of dependencies (the former is in Python, and the latter
is in Go), so setting them up is nontrivial. Instead of taking the tedious manual-installation route, let’s
use a Docker image with Graphite and Grafana preinstalled. Docker! images simplify the deployment of
applications because each image is self contained and runs cross-platform.'? These images are hosted in a
central repository from where they are fetched and executed.

Let’s use a publicly available Graphite + Grafana image."® Execute it by running

docker run -v /data/graphite:/var/lib/graphite/storage/whisper -p 80:80 -p 3000:3000 -p
2003:2003 -p 2004:2004 -p 7002:7002 -p 8125:8125/udp -p 8126:8126 -d nickstenning/graphite

The command fetches and launches the image and also sets up iptables forwarding rules on the
host machine. The various ports, which are exposed in the host machine, belong to the running services.
Note that the <graphite_hostname> in Listing 7-7 should be the IP of the Docker container.' The image
comes fully loaded, and only Grafana needs to be configured to consume Graphite data.'® Start the Spark
application, head over to the Grafana web app running on container_hostname:3000 in your browser, and
sign in (default login and password: admin).

Setting up graphs to view different Spark metrics requires the creation of at least one dashboard in
Grafana. Create a dashboard, and add a graph to it. The format for all metrics for streaming applications
isapp_id.process.app_name.StreamingMetrics.streaming.metric. Figure 7-22 shows the graph for
totalDelay. Use a wildcard (app_id.process.app_name.StreamingMetrics.streaming.*) to enlist all the
available metrics.

*http://graphite.readthedocs.org/en/latest/index.html.

http://grafana.org/.

Uwww . docker . com/.

"Install Docker on a *nix system by running wget -q0- https://get.docker.com/ | sh. Warm up Docker by
executing docker-machine env default followed by eval "$(docker-machine env default)".
Bhttps://github.com/SamSaffron/graphite docker.

"“Find out the IP of a container via docker-machine ip <container_id>.

5Use your browser to jump to the Grafana dashboard on port 3000, and choose Data Sources from the menu on the
extreme left. Then click Add New, and enter http://localhost:80 as the URL.
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Total Delay (ms)

Figure 7-22. Grafana graph for a Spark Streaming application time series

System Metrics

The system-resource utilization of applications can also give you a window into their dynamics and
behavior. A number of tools exist for collecting and visualizing these system-wide numbers and they have
their own dependencies. It is always a good idea to keep centralized dashboards for all types of metrics. So,
let’s visualize system metrics in Grafana as well. How do you collect and send these metrics to Grafana?

collectd'® is a lightweight Unix daemon that collects and ships out various configurable system stats."”
Each type of metric is collected via a plug-in. For instance, standalone plug-ins exist for CPU, memory, and
network metrics. In addition, these numbers can be sent to external systems, such as Graphite/Grafana
for visualization, also via plug-ins. For example, to send metrics to Graphite/Grafana, you need to enable
the plug-in for it,' point it to your Grafana setup as shown in Listing 7-8, and fill in grafana_docker_ip.In
addition, let’s configure collectd to send CPU and memory numbers to Grafana for visualization: just add
LoadPlugin cpuand LoadPlugin memory to collectd.conf.

Listing 7-8. Graphite/Grafana Plug-in Configuration for collectd

1 <Plugin write graphites
2 <Node "example"s

3 Host grafana_docker ip
4. Port "2003"

5. Protocol "tcp"

6 LogSendErrors true

7 Prefix "collectd"

8 Postfix "collectd"
9. StoreRates true

10. AlwaysAppendDS false
11. EscapeCharacter " "

12. </Node»
13. «</Pluginy

Figure 7-23 shows the CPU and memory graphs for the social versus search referral application. The
application was kicked off at 12:13; hence the decrease in CPU idle type and an increase in system and user
time. System-resource utilization can be useful for working out whether an application is CPU or I0 bound
and taking the appropriate action: for instance, scaling out by adding machines with more memory.

"https://collectd.org/.

'"To set up collectd, download it from https://collectd.org/download.shtml and install it on all machines in your
cluster via ./configure; make all install.

'®Add LoadPlugin write_graphite to your collectd.conf, which is typically located at /etc/collectd.conf.
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CPU idle CPU System

= collectdiocalhostcollectd. cpu-0.cpu-idie = collecidiocalhosteoBactd. cpu-0Lcpu-system = collectdiocalhostoollectd.cpu-0.cpu-user
= collectdiocalhosteollectd. cpu-1.cpu-kdle = collectdiocalhosteolectd.cpu-1.cpu-system = collectdiocalhostoollactd.cpu-1.cpu-user
= collectdiocalhostcollectd.cpu-2.cpu-idie = collectdiocalhostocolectd.cpu-2.cpu-system = collectdiocalhostcollectd.cpu-2.cpu-user

= collectdiocalhostcollectd. cpu-3.cpu-kdle = collectdiocalhostcolectd.cpu-3.cpu-system = collectdiocathostcollectd.cpu-3.cpu-user

Memory

= collectdiocalhostcollectd.memory.memory-active = callectdiocalhostcollectd. memary.memory-free = collecidiocalhostcollectd.memory.memory-inactive

== collectdiocalhostoollectd. mamory.mamary-wired

Figure 7-23. Grafana screenshot of system metrics collected via collectd

Monitoring and Alerting

The last piece of the puzzle is monitoring and alerting. Systems and applications fail all the time—especially
in cluster environments where commodity off-the-shelf components have been cobbled together. Automatic
monitoring tools can be configured to raise a flag when something is amiss and alert you. The de facto
standard for monitoring and alerting in a distributed environment is Nagios." It comes prepackaged with
a number of checks, including ping, number of total processes, and swap usage.?’ In addition, Nagios
Exchange contains hundreds of plug-ins customized for each individual system/service,* including Big Data
systems, databases, and web servers. It can also run arbitrary Perl scripts for service checks. Fortunately, the
exchange also contains a service check script for Spark.? It simply uses the Spark HTTP interface to check for
master, worker, and application status.

To configure Nagios to monitor Spark, you first need to add the script® command (Listing 7-9) to
command. cfg, which is typically located at /etc/nagios/objects/commands.cfg.

Phttps://www.nagios.org/.

»Download Nagios Core from https://www.nagios.org/downloads/nagios-core. The installation process is pretty
standard: . /configure followed by make all and make install. Please refer to the Nagios web site for more
information.

Zhttps://exchange.nagios.org/directory/Plugins.
Zhttps://exchange.nagios.org/directory/Plugins/Clustering-and-High-2DAvailability/
check_spark_cluster-2Epl-(Advanced-Nagios-Plugins-Collection)/details.

»git clone https://github.com/harisekhon/nagios-plugins.
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Listing 7-9. Nagios Command Configuration for Spark

1. define command{

2. command_name check_spark cluster

3. command_line perl -T <path/to>/nagios-plugins/check spark cluster.pl -H
$ARG1S

4. }

Each host in a Nagios cluster needs to have a configuration file wherein it lists all the services and
commands for which it needs to be monitored. This file is typically located at /etc/nagios/objects/
localhost.cfg. Let’s configure one machine to invoke the Spark script, as shown in Listing 7-10.

Listing 7-10. Nagios Spark Command Configuration for a Host

1. define service{

2. use local-service

3. host_name localhost

4. service description Spark

5. check_command check_spark cluster!localhost
6. notifications_enabled 1

7. }

You can now use Nagios to monitor and raise alerts for Spark. Figure 7-24 shows service monitoring for
a host. To access this page, go to the Nagios web service* and select Services from the menu. You can see
that Spark is running correctly but the machine seems to be running out of swap space and is not responding
to pings. These alerts are priceless for diagnosing machine failure.

umtResuts: 100 [

Host#4  Service ®%  Staws ## LastCheck®#  Duration #$ Atempt ## Status Information
locahost  Current Load 1205-2015 16:0447 O OASm31s 14 OK - load average: 3.33, 0,00, 0.00

Current Users 12.05-2015 16:00:20 OdOhd4m5S8s 114 USERS OK - 11 usors curmently logged in
HTTP E‘ [OK ] 12052015 18:00:54 OdOndm2ds 14 HTTP OK: HTTP/1.1 200 OK - 383 bytes in 0.002 second response time
PING [CRIMIGADT 12-05-2015 16:04:27 0dOh3mSts 444 CRITICAL - Plugin timed out after 10 seconds
Root Parttion WARNING | 12-05-2015 16:0500 0d0h3m18s 4/ DISK WARNING - free space: | 47792 MB {19% inode=19%)
S5H Ok | 12052015 16:0234 0dOh2mdds 14 SSH OK - OpenSSH_6.9 (protocal 2.0)
Spark 12052015 16:03.07 0 0h2m11s 14 OK: spark chuster workers: 1, cores used: /4, momory used: 0.08/5.0GB, applicasions running: 0 complated: 1
Swap Usage E ICAL T 12-05-2015 16:04:40 0dOhIm38s 244 (No output on sidout] siderr: execvpl/usriocalisbinicheck_swap, ...} failed. erma is 2: No such file or directony
Total Processes 12052015 16:04:14 OdOnimds 114 PROCS OK: 191 processes with STATE = RS20T

Figure 7-24. Nagios service monitoring for a host

You can drill down into the details of a service by clicking its name. Figure 7-25 shows the Service
State Information page for Spark. You can see that it is running as expected and all checks have passed. In
a production-grade Spark environment, monitoring and alerting should be enabled for all components
including HDFS, any data sources such as Kafka, and individual applications.

¥http://<nagios_host>/nagios.
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Service State Information

Current Status: (for 0 Oh 1m 48s)

Status Information: OK: spark cluster workers: 1, cores used: 0/4, memory used: 0.0B/15.0GB, applications running: 0 completed: 1

Performance Data: workers=1;;; cores=4 cores_used=0 memory=16106127360b memory_used=0.0b applications_running=0
applications_completed=1

Current Attempt: 1/4 (HARD state)

Last Check Time: 12-05-2015 16:03:07

Check Type: ACTIVE

Check Latency / Duration: 0.000 / 0.556 seconds

Next Scheduled Check:  12-05-2015 16:08:07

Last State Change: 12-05-2015 16:03:07

Last Notification: N/A (notification 0)

Is This Service Flapping? (0.00% state change)

In Scheduled Downtime?

Last Update: 12-05-2015 16:04:53 ( 0d Oh Om 2s ago)

Passive Checks:
Obsessing:
Notifications:
Event Handler: |
Flap Detection: | ENABLED |

Figure 7-25. Spark Service State Information via Nagios

Summary

Stream-processing applications have become mission critical for a number of industry verticals. But to
have business value, each application needs to be optimized for a particular use case. Once it has been
deployed, it also needs to be monitored to ensure application availability and stability. In case of failure, the
appropriate alerts must be sent out so that the right action can be taken for service recovery. This chapter
explored all of these topics, ranging from application performance and optimization through the use of
Tachyon and the Spark UI to metrics visualization via Grafana and collectd, and monitoring and alerting
through Nagios.

So far in this book, you have employed the Spark Scala API to implement applications. Although it is an
extremely powerful mechanism to manipulate RDDs to realize user logic, it is still too low-level for common
ETL and statistical tasks. Data scientists prefer an interface that simplifies data cleaning and analysis.
Additionally, data-mining and machine-learning applications are common. So, the next chapter introduces
SparkSQL and SparkR.
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CHAPTER 8

Real-Time ETL and Analytics
Magic

When Jeff has trouble sleeping, he MapReduces sheep.

—]Jeff Dean Facts

Data (big or otherwise) has been woven into the fabric of most businesses. The world is at a stage where
Big Data directly drives corporate strategy. To maintain a competitive edge, most businesses try to run their
analytics pipeline in near real-time. Although this captures the behavior of a large class of applications that
rely on unstructured data, it is not exhaustive: a significant chunk of data sources are structured, and their
analysis applications require data-warehousing capabilities. One way to handle these requirements is to
blend the existing Spark API with an external warehousing solution such as Hive, but this is a marriage of
convenience rather than a natural fit: data must be copied back and forth, not to mention the burden of
maintaining two different APIs. A better solution is Spark SQL.

Spark SQL, as the name suggests, is Spark’s interface for analyzing structured data. This data resides in
data frames, which are relational tables optimized for Spark. It also works out of the box with SQL, Hive, and
R. Spark SQL by design permits you to blend declarative queries with existing Spark code in Scala. It is the
topic of discussion in this chapter. The dataset you use in the chapter represents one of the major success
stories for Big Data: telecommunications. You begin by getting your hands dirty with the DataFrame API
followed by a primer in using traditional SQL to analyze streaming data. Once you've gotten a hang of Spark
SQL, you interface it with Hive before using SparkR. The latter will whet your appetite for analytics before
you tackle data science in detail in the next chapter.

The Power of Transaction Data Records

The most powerful and richest source of data lurks right under your nose. You use, generate, and contribute
to it on an almost minute-by-minute basis. What is this fabled data?

Every time you make a call, send an SMS, or browse the Internet, you generate a transaction data record
(TDR) or call data record (CDR). Each record typically contains information about the transaction metadata,
network conditions, application status, and location. This rich set of details can be used to determine
the network experience of each user. For instance, a telco can predict when a user is going to experience
deteriorated performance while browsing the Internet. Based on this, the customer care department can
proactively reach out to the customer. Similarly, another application can predict when a user is thinking of
churning (switching to another network carrier). The action on part of the telco in this case can be to, say,
offer the user a discount.
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The potential of CDRs applies beyond network-quality improvement and customer care applications.
Their diverse array of attributes are useful outside the telco world. This is primarily because 50% percent
of the world’s population now lives in urban areas,' and the number of cell phones exceeds the number of
people on Earth.? This makes CDRs one of the most representative and inclusive datasets of people around
the world. The location information from these CDRs has been used to implement applications that can
predict disease outbreaks, analyze mobility patterns, study crowd dynamics, and help with transportation
planning, to name a few. And this data can be married with other datasets to achieve novel use cases. For
example, CDR mobility data coupled with social media data can aid in working out the geography of social
networks, such as how online behavior results in purchasing in the real world. Another class of applications
revolves around analyzing the browsing, search, and social interaction behavior of users based on their
CDRs and micro-segmenting them based on these patterns. This information can then be used to improve
the accuracy of customized ad serving.

The dataset used in this chapter is from Telecom Italia. In 2014, Telecom Italia organized a Big Data
Challenge using data from CDR, grid, and other sources from November and December, 2013, spanning the
cities of Milan and Trento.’ Each tab-separated record in the CDR set has eight fields, as listed in Table 8-1.

Table 8-1. Attributes in Each Record in the Telecom Italia Call Data Record Dataset

Field # Name Description

1 square_id Grid ID. All data is spatially aggregated into a grid whose
exact coordinates are presented in a separate grid dataset.

2 time_interval The Unix epoch timestamp of the event. Events are
aggregated into temporal windows of 10 minutes. The
end time interval can be obtained by adding 600,000
milliseconds to this value.

3 country code The country calling code of the event (either in or out).
4 sms_in activity The incoming SMS activity.

5 sms_out_activity The outgoing SMS activity.

6 call _in activity The incoming call activity.

7 call out_activity The outgoing call activity.

8 internet traffic_activity The Internet upload and download activity.

Note that the dataset has been both spatially aggregated (into a grid) and temporally aggregated (into
10-minute windows). For obvious anonymity reasons, the activity values do not represent an exact volume but
rather a normalized value. A CDR is generated each time an SMS is sent or received or a call is placed or received.
On the other hand, a CDR for Internet activity is generated each time a session is started or ended. In addition, an
Internet activity CDR is generated every 15 minutes or every 5 MB of download/upload in a session. The mapping
of grid ID to coordinates is available in another dataset in the same repository. For each grid ID, it encodes the
coordinates in the form of a polygon in GeoJSON* format. You focus on the Milan dataset in this chapter.

Without further adieu, let’s implement your first streaming Spark SQL application.

'Charles Clover, “Urban Population to Exceed 50 Percent,” The Telegraph, June 27, 2007, "www. telegraph.co.uk/
news/earth/earthnews/3298527/Urban-population-to-exceed-50-per-cent.html.

?Joshua Pramis, “Number of Mobile Phones to Exceed World Population by 2014,” Digital Trends, February 28, 2013,
www.digitaltrends.com/mobile/mobile-phone-world-population-2014/.

*Open Big Data, Dandelion, https://dandelion.eu/datamine/open-big-data/.

*http://geojson.org/.
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First Streaming Spark SQL Application

Inter-country communication is generally more expensive than local communication. To determine
whether users are placing international calls and sending international texts, telcos are interested in a real-
time dashboard where they can get this information. This is exactly what the Spark SQL code in Listing 8-1
achieves. Note that the application expects its input stream via a socket. To feed the socket, use your trusty
friend SocketDriver, from Chapter 5. It reads the zipped CDR files and replays them over the socket to the
streaming application (Listing 8-1) at the other end.

Listing-8-1. Using Data Frames to Analyze Streaming CDRs

W oGOV B~ WN R

[
BWN PR O -

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

package org.apress.prospark

import

import
import
import
import
import
import
import

object
case

sm
ca

scala.reflect.runtime.universe

org.apache.spark.SparkConf
org.apache.spark.SparkContext
org.apache.spark.rdd.RDD
org.apache.spark.sql.SQLContext
org.apache.spark.sql.functions.desc
org.apache.spark.streaming.Seconds
org.apache.spark.streaming.StreamingContext

CdrDataframeApp {
class Cdr(squareld: Int, timeInterval: Long, countryCode: Int,

sInActivity: Float, smsOutActivity: Float, callInActivity: Float,
110utActivity: Float, internetTrafficActivity: Float)

def main(args: Array[String]) {

if

va

va

va

va
im

va

(args.length != 4) {
System.err.println(

"Usage: CdrDataframeApp <appname> <batchInterval> <hostname> <port>")
System.exit(1)

1 Seq(appName, batchInterval, hostname, port) = args.toSeq
1 conf = new SparkConf()

.setAppName (appName)
.setJars(SparkContext.jarOfClass(this.getClass).toSeq)

1 ssc = new StreamingContext(conf, Seconds(batchInterval.toInt))

1 sqlC = new SQLContext(ssc.sparkContext)
port sqlC.implicits._

1 cdrStream = ssc.socketTextStream(hostname, port.toInt)
.map(_.split("\\t", -1))

.foreachRDD(rdd => {
val cdrs = seqToCdr(rdd).toDF()
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41. cdrs.groupBy("countryCode").count().orderBy(desc("count™)).show(5)
42. 1

43.

44. ssc.start()

45. ssc.awaitTermination()

46. }

47.

48. def seqToCdr(rdd: RDD[Array[String]]): RDD[Cdr] = {

49. rdd.map(c => c.map(f => f match {

50. case x if x.isEmpty() => "o0"

51. case X => X

52. })).map(c => Cdr(c(0).toInt, c(1).tolong, c(2).toInt, c(3).toFloat,
53. c(4).toFloat, c(5).toFloat, c(6).toFloat, c(7).toFloat))

54. }

55. }

The application starts by creating a StreamingContext (line 31), because you need to consume streaming
data. The SQL interface is driven by the SQLContext, which takes as input a SparkContext object (line 33).

The application listens on the socket for CDRs (line 36) and parses the fields of each tab-delimited record. It is
important to mention that if any activity type is missing during a time interval, the dataset adds an empty string
for it. To preserve these empty strings in the tokenized array, you pass -1 to the String split method (line 37).

Individual RDDs can be converted directly into data frames via implicit conversions (line 34), but the API
does not provide any functionality for the conversion of DStreams. To overcome this, a foreachRDD action can be
used to convert each RDD in the stream to a data frame prior to further processing (line 38). You also preprocess
the fields to make sure you replace each empty field with a value of 0 (lines 49-51) in a custom function so that
type conversion can be simplified in the next step. Records in data frames need to be structured—that is, they
need to have typed key-value semantics. To achieve this, the application creates a Scala case class to represent
a CDR (line 15). Each record on the wire is converted to this format (line 52). The toDF method is used to
convert an RDD to a data frame (line 39). Under the hood, Spark SQL infers the column types via reflection.

All this can be considered job setup boilerplate code, because the core logic of the application is
encapsulated in a single line. Line 41 performs a groupBy operation on the data frame with countryCode as
the grouping key. You then invoke the count method to count the frequency of each countryCode before
ordering the records by count in descending order. You peek into these ordered rows by viewing the top five
(Listing 8-2). show is an output action that causes the entire query to be executed.

Listing 8-2. Output of One Batch Interval for the Country Code Ranking Application

1. +------—---- +------ +
2.  |countryCode| count|
3. Hmmmmmmm---- F---m-- +
4. | 39]157323]
5. | 0]125838|
6. | 46| 27309|
7. | 33| 18145|
8. | 49| 14939|
9. 4----------- F---m-- +

That’s it! It really is that simple to use data frames to manipulate structured data. But the DataFrame
APl is not the only way to analyze structured data. In fact, Spark SQL enables you to directly invoke standard
SQL, as you see shortly.

To run the application, add the following to the simple build-tool definition file:
libraryDependencies += "org.apache.spark" %% "spark-sql" % "1.4.0"
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The execution mechanism remains the same as that for standard Spark applications. The results are as
expected: the top five codes are all in Europe, and the lion’s share of calls are intra-Italy (country code: 39).
Now let’s get friendly with SQLContext.

SQLContext

SQLContext is to Spark SQL as SparkContext is to batch Spark and StreamingContext is to streaming data.
This means it is the central entity to create data frames. These data frames can be converted from RDDs,
various Hive table formats, and external databases. SQLContext is also in charge of query scheduling and
execution. You walk through the many facets of SOLContext next.

Data Frame Creation

Data frames constitute the recommended and optimum mechanism to manipulate structured data in Spark.
Data frames can be created from various other formats using SQLContext. In addition to direct conversion
from RDDs, as illustrated in Listing 8-1, the following options are available.

Existing RDDs
createDataFrame[A <: Product](rdd: RDD[A]): DataFrame

Explicitly converts an RDD to a data frame, as shown in Listing 8-3. It is a drop-in replacement for line
39in Listing 8-1.
Listing 8-3. Explicitly Converting an RDD to a Data Frame

1. val cdrs = sqlC.createDataFrame(seqToCdr(rdd))

Dynamic Schemas
createDataFrame(rowRDD: RDD[Row], schema: StructType): DataFrame

Transforms an RDD of type Row to a data frame. Row is a generic representation of a row in a data frame.
The most powerful feature of this variant of createDataFrame is that it can be provided with a schema on
the fly. This is useful for scenarios where you do not know the schema of the input data up front and hence
cannot create a case class for it as you did in Listing 8-1. This schema needs to be a special Spark SQL type:
StructType. Listing 8-4 illustrates how you can read a JSON schema from a file (line 1) and convert it to a
StructType object (line 2). You can then use this schema to dynamically create data frames (line 7).
Listing 8-5 contains the JSON schema for the CDR data.

Listing 8-4. Dynamically Supplying the Schema of a Data Frame

val schemalson = scala.io.Source.fromFile(schemaFile).mkString
val schema = DataType.fromJson(schemaJson).asInstanceOf[StructType]

val cdrStream = ssc.socketTextStream(hostname, port.toInt)

1
2
3.
4
5 .map(_.split("\\t", -1))
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6. .foreachRDD(rdd => {

7. val cdrs = sqlC.createDataFrame(rdd.map(c => Row(c: _*)), schema)
8.

9. cdrs.groupBy("countryCode").count().orderBy(desc("count™)).show(5)
10. 3]

Listing 8-5. JSON Schema of the CDR Dataset
1. |

2. "type": "struct",

3. "fields": [

4. {

5. "name": "squareId",

6. "nullable": false,

7. "type": "integer"

8. }s

9. {

10. "name": "timeInterval",
11. "nullable": false,

12. "type": "long"

13. b

14. {

15. "name": "countryCode",
16. "nullable": true,

17. "type": "string"

18. 1,

19. {

20. "name": "smsInActivity",
21. "nullable": true,

22. "type": "float"

23. b

24. {

25. "name": "smsOutActivity",
26. "nullable": true,

27. "type": "float"

28. 1,

29. {

30. "name": "callInActivity",
31. "nullable": true,

32. "type": "float"

33. e

34. {

35. "name": "callOutActivity",
36. "nullable": true,

37. "type": "float"

38. }

39. {

40. "name": "internetTrafficActivity",
41. "nullable": true,

42. "type": "float"

43. }

44. ]

45. }
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In this example, you read the JSON schema from a file; in practice, it could dynamically come from
another input stream. This highlights the fact that the data in the main stream can change on the fly, and you
can switch its schema in every batch interval. At any point in the lifecycle of a data frame, its schema can be
printed by calling the printSchema() function.

Scala Sequence
createDataFrame[A <: Product](data: Seq[A]): DataFrame

Turns a Scala sequence into a data frame (see Listing 8-6). Note that this snippet of code is only for
illustrative purposes. It should not be used in production, because it reads an entire RDD into the driver
memory before converting it to a data frame.

Listing 8-6. Creating a Data Frame from a Scala Sequence

1. val cdrs = sqlC.createDataFrame(seqToCdr(rdd).collect())

RDDs with JSON

read.json(jsonRDD: RDD[String]): DataFrame

Converts an RDD of stringified JSON objects to a data frame (see Listing 8-7). Another drop-in
replacement for Listing 8-1, line 39.

Listing 8-7. Converting an RDD of JSON Objects to a Data Frame

1 val cdrsJson = seqToCdr(rdd).map(r => {
2 implicit val formats = DefaultFormats
3. write(r)

4. 1)

5 val cdrs = sqlC.read.json(cdrsIson)

read returns a DataFrameReader object, which can be used to create data frames from many input
sources. More examples follow.

External Database
read.jdbc(url: String, table: String, properties: Properties): DataFrame

Connects to the database located at url via JDBC while using connection properties. Converts the
referenced table to a data frame.

Parquet
read.parquet(paths: String*): DataFrame

Returns the Parquet file located at paths® as a data frame. Parquet is a compressed columnar data
representation used by a number of Hadoop projects include Hive and Pig.

A Parquet table is typically made up of more than one file, which may be located at multiple locations.
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Hive Table

read.table(tableName: String): DataFrame

Fetches the table tableName from the Hive metastore and returns it as a data frame. Note that this feature
requires the use of a HiveContext object, which inherits from SQLContext, as described later in this chapter.

SQL Execution

Data frames provide natural primitives for manipulating structured data, but some analysts prefer to use SQL
directly. This may also be preferable for legacy reasons: an organization may have hundreds of SQL queries, and
it could require a bit of engineering effort to translate them to the data frame API. For such scenarios and more,
SOLContext lets you invoke SQL queries via SQLContext#sql("<sql query>").Listing 8-8 contains replacement
code for line 41 in Listing 8-1. Instead of using the DataFrame API to achieve application logic, it uses SQL while
keeping the output semantics the same. Note that because SQL can only be executed against an existing table,
you save the CDRs data frame (line 39 in Listing 8-1) as a temporary in-memory table (line 1) first. You can then
reference it as table cdrs in the SQL (line 2). In the next section, you learn how to save tables externally.

Listing 8-8. Running a SQL Query Using Spark SQL

1. cdrs.registerTempTable("cdrs")
2. sqlC.sql("SELECT countryCode, COUNT(countryCode) AS cCount FROM cdrs GROUP BY
countryCode ORDER BY cCount DESC LIMIT 5").show()

Providing the same name to registerTempTable in every batch causes it to overwrite the previous table.
If your logic requires you to maintain an individual table for each interval, give it a unique name by, say, using

cdrs.registerTempTable("cdrs" + rdd.id)

Be cautious with the fact that temporary tables remain in memory and can overwhelm the JVM heap. To
negate that, SQLContext allows tables to be dropped via

dropTempTable(tableName: String): Unit

Listing 8-9 shows how you can drop the temporary table that you created for SQL analysis in Listing 8-8
after you are done with it in every batch interval.

Listing 8-9. Dropping a Temporary, In-Memory Table
1.  sqlC.dropTempTable("cdrs")

Configuration

Configuration parameters for Spark SQL can be set (setConf(key: String, value: String): Unit)and
retrieved (getConf(key: String): String)via SQLContext.In general, none of the Spark SQL configuration
parameters need to be manually tweaked, because Spark SQL performs most optimizations under the hood, as
you see shortly. The only parameter that may need to be explicitly tweaked is spark.sql.shuffle.partitions,
which controls the number of partitions used for joins and aggregations (default value: 200). If you perform
frequent joins, you should also play with spark.sql.autoBroadcastJoinThreshold (default value: 10 MB),
which controls the use of broadcast hash joins by the underlying query optimizer for smaller tables.
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Other potential targets are parameters that relate to the Parquet format. Look for spark.sql.parquet.*
configuration keys.

User-Defined Functions

In most applications, SQL and the DataFrame API do not suffice to realize user logic. For instance, in the
previous example, you tallied the top five countries by their SMS, call, and Internet usage activity. The
dataset only contains country-calling codes, so an analyst going through the results needs to manually look
up the country associated with each code. It would be handy to somehow convert these codes to country
names. SQL allows user-defined functions (UDFs) to be embedded in a query. These user-defined functions
are pushed down into the database layer for efficient processing. SOLContext also permits the registration
and application of UDFs:

udf.register(name: String, func: ())

name can then be used in the SQL query to refer to the UDF. Note that func can have up to 22 arguments.
Listing 8-10 contains code for creating and registering a UDF to map country-calling codes to country names.
Listing 8-10. Creating and Registering a UDF

1. def getCountryCodeMapping() = {
2. implicit val formats = org.json4s.DefaultFormats

3. parse(Source.fromURL("http://country.io/phone.json").mkString).extract[Map[String,
String]].map(_.swap)

4.

5.

6. def getCountryNameMapping() = {

7. implicit val formats = org.json4s.DefaultFormats

8. parse(Source.fromURL("http://country.io/names.json").mkString).extract[Map[String,
String]]

9. }

10.

11. def getCountryName(mappingPhone: Map[String, String], mappingName: Map[String, String],

code: Int) = {

12. mappingName.getOrElse(mappingPhone.getOrElse(code.toString, "NotFound"), "NotFound")

13.

14.

15. val getCountryNamePartial = getCountryName(getCountryCodeMapping(),
getCountryNameMapping(), _: Int)

16.

17. sqlC.udf.register("getCountryNamePartial", getCountryNamePartial)

The code first uses a function to retrieve a mapping of country codes to country-name abbreviations
from an online source (lines 1-4). It also contains another function to map country-name abbreviations to
full country names, again using an online source (lines 6-9). The getCountryName method takes as input the
previous two maps and a country code and returns the name of the country that corresponds to that code
(line 11-13). Invoking this method for each output row is very inefficient, because it requires two downloads
per invocation. To remedy this, you create a partially applied version of the function that is prepopulated
with the two maps (line 15). You finally register this function as a UDF with SQLContext with the name
getCountryNamePartial (line 17).

Listing 8-11 updates the SQL query from Listing 8-8 to use the UDEF resulting in output tables of the
form shown in Listing 8-12.
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Listing 8-11. Invoking a UDF in a SQL Query

1.  sqlC.sql("SELECT getCountryNamePartial(countryCode) AS countryName, COUNT(countryCode)
AS cCount FROM cdrs GROUP BY countryCode ORDER BY cCount DESC LIMIT 5").show()

Listing 8-12. Output for One Batch of the Country Activity-Ranking Application

R Hmmmen- +
| countryName | cCount |
Hmmmmm e Hmmmmn- +
| Ttaly|180653]
|  NotFound|139872|
| Sweden| 28130
| France| 16970|
| Germany| 16528|
Hmmmmm e Hmmmmn- +

W oo~NOUVT B~ WN R

UDFs are extremely powerful for pushing down simple logic into the database layer for execution, but
their utility is limited in cases with more complex transformation scenarios. For such applications, Spark
SQL lets you blend data frames seamlessly with RDD operations, as you see shortly.

Catalyst: Query Execution and Optimization

SQLContext under the hood uses an optimizer dubbed Catalyst that converts queries into logical plans.

For a given query, it can generate a number of physical plans from the logical plan, out of which it selects
one as the optimum physical plan based on a cost model. This physical plan is then sent off to the Spark
processing engine. Catalyst uses features of Scala to generate byte code for queries. It also tries to enforce
predicate pushdown to improve performance. By design, it is extensible: users can add support for different
data sources and new data types. This interface has been used to add external support for various sources
including Avro and CSV.*

HiveContext

HiveContext is an extension of SQLContext that gives you access to HiveQL in addition to all the features
provided by SQLContext: it is a drop-in replacement for SQLContext. Including spark-hive as a build
dependency can enable it. In fact, it is the recommended choice, because it contains a superset of the
features of SQLContext in addition to the rich features of HiveQL, existing Hive UDFs, and access to
existing Hive data tables. To explore some of these extra features, let’s write code that implements another
application to tap the telco dataset.

Cellular networks rely on accurate traffic-demand numbers to optimize current systems and plan for
future capacity. In the short term, traffic volume can drive, say, bandwidth distribution and power-supply
management. This can be done on an hourly scale due to the availability of real-time network data. In the
long term, these statistics can be used to increase the number of base stations and overall network coverage.
Bearing this mind, let’s use HiveQL to determine the hourly network activity (call + SMS + Internet) in the
Telecom Italia data (Listing 8-13).

http://spark-packages.org/package/databricks/spark-csv.
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Listing 8-13. Calculating Hourly Network Activity Using HiveQL

1. val cl = Thread.currentThread().getContextClassLoader()

2. val hiveC = new HiveContext(ssc.sparkContext)

3.  Thread.currentThread().setContextClassLoader(cl)

4.

5. import hiveC.implicits._

6.

7. val cdrStream = ssc.socketTextStream(hostname, port.tolInt)

8. .map(_.split("\\t", -1))

9. .foreachRDD(rdd => {

10. seqToCdr(rdd).toDF().registerTempTable("cdrs")

11.

12. hiveC.sql("SET DATE_FMT='yy-MM-dd|HH'")

13. hiveC.sql("SELECT from unixtime(timeInterval, ${hiveconf:DATE FMT}) AS TS,
SUM(smsInActivity + smsOutActivity + callInActivity + callOutActivity +
internetTrafficActivity) AS Activity FROM cdrs GROUP BY from unixtime(timeInterval,
${hiveconf:DATE_FMT}) ORDER BY Activity DESC").show()

14. )

The first order of the day is to create a HiveContext from a SparkContext (line 2). Note that you
deliberately save and reload the context class loader around HiveContext due to a subtle bug in Spark 1.4.0.
The rest of the application setup is the same as that in the previous examples: reading data from a socket
(line 7) and doing the conversion to data frames (line 10) in a foreachRDD clause (line 9).

The key update is the use of HiveQL to implement the application logic. You need to aggregate activity
by hour, so you must convert the Unix timestamp for each record into a human-readable representation.
The code uses a function from the rich suite of UDFs provided by Hive to perform the timestamp
standardization. You need to perform the conversion more than once (in the SELECT clause and
then in the GROUP BY), so it makes sense to define the format up front and then reuse it. The from_
unixtime(bigint unixtime[, string format]) UDF takes as input an optional Java format string. Hive
also allows you to set variables that can be reused in the same context. Using this feature, you first define
the date format on line 12. You then use standard HiveQL (in fact, SQL) syntax to aggregate network
activity by hour (line 13).

Note that using HiveContext also gives you the freedom to read from and write to Hive tables. This also
enables applications outside of Spark to use the same data. You will look at saving tables when the chapter
drills down into the details of data frames.

Data Frame

Inspired by data frames in Pandas and R, Spark SQL data frames expose the same widely used interface
loved by data scientists while using the powerful Spark processing engine underneath. This results in a
marriage between the best of both worlds. Conceptually a data frame is just an RDD of Row objects. Data
frames are interoperable with other data-storage models such as RDDs. In fact, under the hood, a data frame
simply maintains a reference to the underlying RDD and can access its fields in place without the need for a
verbatim data copy. Similar to RDDs and DStreams, data frames are evaluated in a lazy fashion: an action is
the only trigger for the execution of a physical plan. Logical plans, on the other hand, are eagerly evaluated
to catch errors early, such as a mismatch between column names.

"https://issues.apache.org/jira/browse/SPARK-8368.
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Data frames are also interoperable with MLIib, as you see in the next chapter, which means they can be
used as a common substrate for both ETL as well as sophisticated machine learning. Let’s look at some of
the features of data frames in detail.

Types

The data model mimics the nested one from Hive with a number of native and complex types. Primitive
types include BooleanType, ByteType, DoubleType, FloatType, IntegerType, LongType, ShortType, and
StringType. The grammar also contains a few domain-specific primitive types: BinaryType (an array

of bytes), DateType (year, month, and day), DecimalType (equivalent to java.math.BigDecimal), and
Timestamp (year, month, day, hour, minute, and second). Finally, the complex types provided by data frames
are ArrayType, MapType, and StructType (a structure with elements of type StructField).

Query Transformations

Each query transformation mimics a SQL statement. In the average case, these transformations suffice to
implement user logic. Let’s start with the simplest and the most ubiquitous one: select.

For all transformations, this section also presents illustrative examples. Each snippet of code assumes
the existence of a CDR data frame similar to the one at line 39 of Listing 8-1. So far, you have seen only one
data frame output action, show. Use it to view the output for the following queries if desired. You look at more
output actions in the next section.

select(col: String, cols: String*): Data Frame

Selects one or more columns from a data frame. Listing 8-14 projects three columns from the CDR dataset.

Listing 8-14. Using a select to Project Three Columns from a Data Frame

1. cdrs.select("squareId", "timeInterval", "countryCode")

Another variant of select uses expressions to perform the selection instead of column names:

select(cols: Column*): DataFrame

Under the hood, each expression is a Column object. Listing 8-15 implements the same logic as Listing 8-14
using expressions. An expression starts with a dollar sign ($) and can also be turned into a Boolean
condition, as you see shortly.

Listing 8-15. Column Selection Based on Expressions

1. cdrs.select($"squareId", $"timeInterval", $"countryCode")

filter(conditionExpr: String): DataFrame

Only keeps rows that match conditionExpr. Listing 8-16 uses it to restrict the data frame to records that
originate from squareId: 5. Multiple conditions can be clumped together using logical expressions in the
condition or by chaining multiple filter operations.
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Listing 8-16. Filtering a Data Frame Based on a Specific Condition

1. cdrs.filter("squareld = 5")

drop(colName: String): DataFrame

Drops a column colName from the data frame, as shown in Listing 8-17.

Listing 8-17. Dropping a Column from an Existing Data Frame

1.  cdrs.drop("countryCode")

where(condition: Column): DataFrame

A variant of filter that relies on column-based conditions. Under the hood, it makes a call to filter(). For
instance, the code in Listing 8-18 achieves the combined effect of Listings 8-15 and 8-16.

Listing 8-18. Chaining Projection and Filtering Together

1. cdrs.select($"squareId", $"timeInterval”, $"countryCode").where($"squareId" === 5)

limit(n: Int): DataFrame

Limits the number of rows in the output data frame to n (Listing 8-19).

Listing 8-19. Limiting the Number of Rows in a Data Frame to a Specific Number

1. cdrs.limit(5)

withColumn(colName: String, col: Column): DataFrame

Adds col with colName to an existing data frame. To illustrate the use of this operation, the code in
Listing 8-20 adds a column to the CDRs dataset with the end time of each record.

Listing 8-20. Adding a Column to an Existing Data Frame

1. cdrs.withColumn("endTime", cdrs("timeInterval") + 600000)

groupBy(col1: String, cols: String: GroupedData

Groups data based on one or more columns and returns a GroupedData object, which allows different
aggregations. Listing 8-21 uses a groupBy operation followed by a count aggregation to count the frequency
of each square/grid. Table 8-2 lists all aggregation functions that can be invoked on GroupedData.

Listing 8-21. groupBy Followed by an Aggregation
1.  cdrs.groupBy("squareId").count()
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Table 8-2. Aggregation Functions for GroupedData

Method Description Example
avg(colNames: String*): Calculates the average value of ~ cdrs.groupBy("countryCode").avg
DataFrame colNames in a group. All columns  ("internetTrafficActivity")

are used if no colNames is

specified.
mean(colNames: String*): An alias for avg(). Same as above
DataFrame
max(colNames: String*): Finds the max of each column in  cdrs.groupBy("countryCode").max
DataFrame colNames. ("callOutActivity")
min(colNames: String*): Same as the previous but cdrs.groupBy("countryCode").min
DataFrame calculates min. ("callOutActivity")
sum(colNames: String*): Calculates the sum of columns in  cdrs.groupBy("squareId").sum
DataFrame colNames. ("internetTrafficActivity")
agg(aggExpr: (String, Invokes all aggExprs (org. cdrs.groupBy("squareId").
String), aggExprs: (String,  apache.spark.sqgl.functions). agg(sum("callOutActivity"),
String)*): DataFrame sum("callInActivity"),

sum("smsOutActivity"),
sum("smsInActivity"), sum("inte
rnetTrafficActivity"))

agg(aggExpr: (String, String), aggExprs: (String, String)*): DataFrame

Applies one or more aggregation expressions to the data frame. This is similar in spirit to the agg() function
for GroupedData, but instead of aggregated grouped data, this is applied to columns in their current form
across all rows. See Listing 8-22 for an example.

Listing 8-22. Applying Aggregation Expressions across All Rows

1. cdrs.agg(sum("callOutActivity"), sum("callInActivity"), sum("smsOutActivity"),
sum("smsInActivity"), sum("internetTrafficActivity"))

orderBy(sortCol: String, sortCols: String*): DataFrame

Sorts the data frame by one or more columns in ascending order. To order the data in descending order,
wrap up the column name in org.apache.spark.sql.functions.desc as shown in Listing 8-23. Note that
orderBy is just an alias for sort(sortCol: String, sortCols: String*): DataFrame.

Listing 8-23. Ordering the Results of a groupBy in Descending Order

1.  cdrs.groupBy("countryCode").sum("internetTrafficActivity").orderBy(desc("SUM(internet
TrafficActivity)"))
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rollup(coli: String, cols: String*): GroupedData

Similar to a groupBy operation, but a subsequent aggregation also spits out a cumulative aggregation for the
passed columns. For instance, the snippet of code in Listing 8-24 groups square IDs and country codes and
calculates the number of rows in each group (similar to a standard groupBy). In addition, for each square ID,
it also contains a cumulative group and subsequently a count for all country codes. The order of the input
columns matters in this case, because switching them would create the cumulative group based on country
code instead of square ID.

Listing 8-24. Performing a rollup Operation for Cumulative Grouping

1.  cdrs.rollup("squareld", "countryCode").count()

cube(col1: String, cols: String*): GroupedData

Similar to a rollup but creates groups for all permutations of columns. As a result, the order of the input
columns does not matter. See Listing 8-25 for an example.

Listing 8-25. Performing a cube Operation for Grouping across All Columns

1.  cdrs.cube("squareld", "countryCode").count()

dropDuplicates(colNames: Seq[String]): DataFrame

Drops rows in which the row values in the provided columns, colNames, are the same. For example,
Listing 8-26 drops all rows where the incoming and outgoing call activity are the same.

Listing 8-26. Using dropDuplicates to Cull Rows Where the Columns Have the Same Value
1.  cdrs.dropDuplicates(Array("callOutActivity", "callInActivity"))

sample(withReplacement: Boolean, fraction: Double): DataFrame

Returns a data frame with a random fraction of the rows from the current data frame, as shown in Listing 8-27.

Listing 8-27. Taking a Random Sample of Rows from a Data Frame

1.  cdrs.sample(true, 0.01)

except(other: DataFrame): DataFrame

Only returns rows that are present in the calling data frame but not in other. Listing 8-28 compares the RDD
from the current and previous batches. Your goal is to print only the square ID, country code pairs that have
occurred in the current batch interval but not in the previous one.

Listing 8-28. Subtracting One Data Frame Row from Another

1. var previousCdrs: Option[DataFrame] = None
2.
3. val cdrStream = ssc.socketTextStream(hostname, port.toInt)
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4 .map(_.split("\\t", -1))

5 .foreachRDD(rdd => {

6 val cdrs = seqToCdr(rdd).toDF().select("squareld"”, "countryCode").dropDuplicates()
7. previousCdrs match {

8 case Some(prevCdrs) => cdrs.except(prevCdrs).show()

9 case None => Unit

1

0. }
11. previousCdrs = Some(cdrs)
12. H

intersect(other: DataFrame): DataFrame

As the name suggests, this operation performs a set intersection on the calling data frame and other.
Replace except on line 8 in Listing 8-28 to get a hang of its usage.

unionAll(other: DataFrame): DataFrame

Performs a union between the rows of this data frame and other. Tweak Listing 8-28 to see an example.

join(right: DataFrame, joinExprs: Column): DataFrame

Similar to a database join, allows you to perform an inner join between this and the right data frame.
joinExprs specifies the join column from either data frame. Let’s join the CDR dataset with the grid dataset
using the square ID as the joining column. The grid dataset is encoded in GeoJSON, which you read in the driver
program (line 1) in Listing 8-29 and then flatten to extract polygon coordinates (lines 2-7). After converting it to
a data frame (line 9), you join it with the per-interval CDRs data frame in line 15, using the square ID as the key.

Listing 8-29. Inner Join Between Two Data Frames

val gridFile = scala.io.Source.fromFile(gridJsonPath).mkString
val gridGeo = (parse(gridFile) \ "features")
val gridStr = gridGeo.children.map(r => {
val ¢ = (r \ "geometry" \ "coordinates").extract[List[List[List[Float]]]].flatten.
flatten.map(r => JDouble(r))
5. val 1 = List(("id", r \ "id"), ("x1", c(0)), ("y1", (1)), ("x2", c(2)), ("y2",
c(3)), ("x3", c(4)), ("y3", c(5)), ("xa", c(6)), ("y4", c(7)))

B wWN PR

6. compact(render(JObject(1)))

7. 1)

8.

9. val gridDF = sqlC.read.json(ssc.sparkContext.makeRDD(gridStr))
10.

11. val cdrStream = ssc.socketTextStream(hostname, port.toInt)
12. .map(_.split("\\t", -1))

13. .foreachRDD(rdd => {

14. val cdrs = seqToCdr(rdd).toDF()

15. cdrs.join(gridDF, $"squareld" === $"id").show()

16. 1)
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Returns a DataFrameNaFunctions object for manipulating missing data. Table 8-3 contains functions
provided by this object along with examples.

Table 8-3. DataFrameNaFunctions Functions for Working with Missing Data in Data Frames

Method

Description

Example

drop(how: String): DataFrame

fill(value: String, cols:
Seq[String]): DataFrame

replace[T](cols: Seq[String],
replacement: Map[T, T]):
DataFrame

Drops rows with a null value based on

cdrs.na.drop("any")

the how criteria. A value of all and any for
how dictates whether all or any columns
should be considered. Other variants of
this function also allow column selection.

Fills in nulls in cols with value. Variants
exist for filling in numeric values and

specific columns.

Replaces specific values in cols.

replacement contains the replacement
values in which the key is the value
to be replaced, and the value is the

replacement.

cdrs.na.fill
(0, Array("squareId"))

cdrs.na.replace
("squareld",
Map(0 -> 1))

stats

Returns a DataFrameStatFunctions object to perform various statistical analyses. Refer to Table 8-4 for

examples and a list of methods.

Table 8-4. DataFrameStatFunctions Functions for Performing Various Statistical Analyses

Method

Description

Example

corr(coll: String, col2:
String): Double

cov(coll: String, col2:
String): Double

crosstab(coll: String, col2:
String): DataFrame

freqItems(cols: Seq[String],
support: Double): DataFrame

Finds the correlation between
col1 and col2 using the Pearson
correlation coefficient.

Calculates the covariance between
col1 and col2.

Works out the cross tabulation of
col1 and col2. Also known as a
contingency table.

Calculates frequent items in the
sequence of cols, where support
is the minimum frequency for a
column to be considered.

cdrs.stat.corr
("smsOutActivity",
"callOutActivity")

cdrs.stat.cov
("smsInActivity",
"callInActivity")

cdrs.stat.crosstab
("squareId", "countryCode")

cdrs.stat.freqltems
(Array("squareld",
"countryCode"), 0.1)
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Actions

Asyou saw earlier, data frames are lazily evaluated: an action causes a chain of data-frame operations to be
shipped off for execution. Along the same lines as RDDs and DStreanms, these actions are of two types: those
that ingest data into the driver program and those that send output to external storage. Table 8-5 lists the
former category of actions. Test these by replacing show() on line 41 in Listing 8-1.

Table 8-5. Internal Actions for Data Frames

Method Description

show(numRows: Int): Unit Prints the first numRows in the data frame in a tabular form.
show(): Unit Alias for show(20).

head(n: Int): Array[Row] Returns the first n rows in the data frame as an array.
take(n: Int): Array[Row] Alias for head(n).

head(): Row Returns the first row in the data frame.

first(): Row Alias for head().

count(): Long Returns the count of rows.

collect(): Array[Row] Converts the data frame into an array and returns it.
collectAsList(): List[Row] Similar to collect() but returns a list instead of an array.
describe(cols: String*): DataFrame Returns a new data frame, which contains the count, mean,

standard deviation, minimum, and maximum of numerical
cols. For instance, cdrs.describe("smsInActivity"”,
"smsOutActivity"”, "callInActivity",
"callOutActivity", "internetTrafficActivity").

Output actions for external storage are provided by DataFrameWriter, which can be obtained by
invoking write on any data frame. Let’s walk through its functions.

format(source: String): DataFrameWriter

Sets the output format for the writer. source can be set to json or parquet, with parquet as the default
(see Listing 8-30).

Listing 8-30. Setting the Output Format for a Data Frame to JSON

1.  cdrs.groupBy("countryCode").count().orderBy(desc("count")).write.format("json")

save(path: String): Unit

Saves the data frame at path. Listing 8-31 shows how you can use the combination of format () and save()
to save a data frame in JSON format to any Hadoop-compatible file system.

Listing 8-31. Saving a Data Frame in JSON Format

1.  cdrs.groupBy("countryCode").count().orderBy(desc("count")).write.format("json").save(path)
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parquet(path: String): Unit

Convenience function for format("parquet").save(path).

json(path: String): Unit

Convenience function for format("json").save(path).

saveAsTable(tableName: String): Unit

Saves the data frame as a persistent table with tableName in the Hive metastore. Be sure to use HiveContext
for this. Listing 8-32 saves the country counts of CDRs as a table.

Listing 8-32. Saving a Data Frame as a Hive Table

1.  cdrs.groupBy("countryCode").count().orderBy(desc("count")).write.format("parquet").
saveAsTable("count_table")

mode(saveMode: SaveMode): DataFrameWriter

Decides the behavior if the output table (wWhen using saveAsTable()) or file (when using save()) already
exists. saveMode can be Ignore, Append, Overwrite, or ExrorIfExists. Listing 8-33 appends data-frame
output to the same output file(s). This is handy for streaming applications where incremental output is
created in each batch.

Listing 8-33. Setting the Output Mode for the Writer

1.  cdrs.groupBy("countryCode").count().orderBy(desc("count")).write.mode(SaveMode.Append).
save(path)

partitionBy(colNames: String*): DataFrameWriter

Partitions the data frame by colNames before writing it.

insertinto(tableName: String): Unit

Inserts the data frame into an existing table. Note that the table should have the same schema as the
data frame.

jdbc(url: String, table: String, connectionProperties: Properties): Unit

Ships out the data frame to table over a JDBC connection url using connectionProperties, as shown in
Listing 8-34.

Listing 8-34. Writing a Data Frame to an External Database over JDBC

1. val prop: java.util.Properties = new java.util.Properties()
2. counts.write.jdbc("jdbc:mysql://hostname:port/cdrsdb”, "count table", prop)
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RDD Operations

Each data-frame object also has associated RDD operations enabled by the method rdd, which returns an
RDD of Rows. The first time it is called, it creates the RDD, which is memoized, so subsequent calls return this
cached instance. All standard RDD operations can then be applied. Let’s mix RDD operations with data-
frame queries to determine the disparity between SMS usage and calls. Specifically, you need to bifurcate the
dataset by whether there was more SMS activity or call activity. Then, for either dataset, you need square ID
and country-code pairs that are exclusive to that data frame. The snippet of code in Listing 8-35 does just that.

Listing 8-35. Mixing RDD Operations with Data-Frame Operations

1. val highInternet = sqlC.createDataFrame(cdrs.rdd.filter(r => r.getFloat(3) +
r.getFloat(4) >= r.getFloat(5) + r.getFloat(6)), schema)

2. val highOther = cdrs.except(highInternet)

3. val highInternetGrid = highInternet.select("squareld", "countryCode").dropDuplicates()
4. val highOtherGrid = highOther.select("squareId", "countryCode").dropDuplicates()

5. highOtherGrid.except(highInternetGrid).show()

6. highInternetGrid.except(highOtherGrid).show()

Persistence

The persistence level of data frames can also be configured via calls to familiar functions: cache() and
persist(newLevel: Storagelevel).Ifso desired, a previously persisted data frame can be uncached via a
call to unpersist().

Best Practices

e Avoid shuffling. As you saw in Chapter 4, shuffling is one of the most expensive steps
in distributed computing. Therefore, if possible, you should avoid it at all costs. The
same applies to Spark SQL and data frames. When performing joins, make copious
use of broadcast hash joins to minimize shuffle time.

e Use code generation. For complex or recurring queries, it is generally more efficient
to convert them to byte code for faster execution. This can be achieved by setting
spark.sql.codegen to true.

e Cache aggressively. Similar to RDDs and DStreanms, if a data frame needs to be
accessed multiple times, it should be cached in memory. This has a number of
advantages including efficient column lookups, compression, and minimal garbage-
collection pressure.

This brings you to the end of the discussion of data frames. Data frames are not the only mechanism
enabled by Spark for analytics. There is another that’s dearly loved by data scientists: R.

SparkR

Ris the language of choice for most data scientists. It is geared toward statistical analysis and graphical
visualization of data. R is an interpreted, scripted language with its own shell. The functionality of the core
runtime can be extended using external packages. Although R is an extremely powerful tool for data analysis,
its utility is limited by the capabilities of the machine it is running on. A number of enhancements are available
to enable R to take advantage of parallel and distributed execution,® but none of them have the muscle to turn
Rinto a general-purpose distributed environment for Big Data analysis. That is where SparkR comes in.
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SparkR is an R package that acts as a bridge between R and Spark. You can manipulate RDDs and data
frames in R while using the full capabilities of Spark. It is part of the standard Spark distribution and can
easily be spun up to get the best of both worlds. Let’s kill the suspense and set up SparkR.

INSTALLING SPARKR

Download R, and install it if you have not done so already.
Run R. If you are running from the command line, simply type R.

SparkR relies on rJava as the glue between R and Spark and devtools for package installation. Install
both using install.packages("rJava") and install.packages("devtools") in the R shell.

Check that both dependencies have been installed properly by loading them: library(rJava) and
library(devtools).

Outside of the R shell, jump to the $SPARK_HOME/R/1ib/SparkR folder and execute the following:

R -e "devtools::install('.')"

This installs SparkR as an R package.
To verify that the installation is correct, load the package: library(SparkR).

This also gives you access to SparkR from within RStudio if that is your weapon of choice for data science.

First SparkR Application

To get your hands dirty with SparkR, let’s reimplement the very first application from this chapter (Listing 8-1)
in R, with a caveat: SparkR does not support Spark Streaming out of the box. To account for that, the
application reads data directly from the CDR dataset TSVs. Don'’t panic, though; in the next section, you
analyze a design pattern that lets you handle streaming data in SparkR. For now, let’s go back to the first
example, the code for which is shown in Listing 8-36.

Listing 8-36. First SparkR Application

1. args <- commandArgs(trailingOnly = TRUE)

2. if(length(args) != 2) {

3. stop("Usage: CdrSparkRApp <mastery> <filepaths")

4. '}

5. library(SparkR)

6. Sys.setenv('SPARKR_SUBMIT ARGS'='"--packages" "com.databricks:spark-csv_2.10:1.3.0"
"sparkr-shell"")

7. sc <- sparkR.init(master = args[1])

8. sqlContext <- sparkRSOL.init(sc)

8https://cran.r-project.org/web/views/HighPerformanceComputing.html.
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9. df «¢- read.df(sqlContext, args[2], source = "com.databricks.spark.csv", inferSchema =
"true", delimiter = "\t")

10. cnames <- c("squareId", "timeInterval", "countryCode", "smsInActivity",
"smsOutActivity", "callInActivity", "callOutActivity", "internetTrafficActivity")

11. for (i in 1:NROW(cnames)) {

12. df <- withColumnRenamed(df, pasteo("C", i - 1), cnames[i])

13. }

14. counts <- count(groupBy(df, "countryCode"))

15. showDF(orderBy(counts, desc(counts$count)), numRows = 5)

16. sparkR.stop()

The first four lines are boilerplate code to ensure that you provide the correct command-line arguments
while line 5 loads the SparkR package. The input file from the Milan CDR dataset is a tab-separated
collection of lines (after you unzip the archive). To read one of the files, you use the spark-csv package from
Databricks. This package is included on line 6. Note that Spark also downloads and makes this package
available automatically if it is not already available locally. The next order of the day is to initialize the Spark
context (line 7) and Spark SQL context (line 8). The former requires the location of the Spark master, and the
latter requires SparkContext for initialization. Now you are ready to create data frames, which is what you do
inline 9. The read. df function requires a reference to SQLContext as well as the path to the file. In addition,
it requires the name of the input source, which in this case is a CSV. The rest of the arguments contain
formatting information, which is passed down to the input source.

Once you have a data frame in hand, you manually add column names, because the input CSV does
not have header information. Repeated execution of withColumnRenamed() helps you to replace the generic
column names with those specific to the logic (lines 10-13). Similar to the vanilla DataFrame API (used in
Listing 8-1), the actual query is implemented in only two lines (lines 14-15) in which you rank the top five
country codes by frequency. Note that each data-frame operation has an equivalent in Spark. Once the
application has completed, sparkR.stop() enables you to bring down the driver program.

Execution

Save the code from Listing 8-36 in a file, and name it, say, CdrSparkRApp.R. You can then execute it from the
command line:

Rscript CdrSparkRApp.R spark master path to cdr file txt
You should obtain output similar to that in Listing 8-37.

Listing 8-37. Output of Your First SparkR Application

1. +----————--- +------- +
2. |countryCode| count|
L e Fommm - +
4. | 39]1439981 |
5. | 0]1159632
6. | 33| 210334]
7. | 46| 208713
8. | 49| 165341
9.  H----m-m---- Fommm - +
172

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8 * REAL-TIME ETL AND ANALYTICS MAGIC

Streaming SparkR

As you saw in the last application, SparkR does not support Spark Streaming out of the box, but that does
not mean you cannot use various other features of Spark to implement real-time applications. The design
pattern in this section contains the following two key components:

e A Spark Streaming application that preprocesses the data and writes a new Hive
table in every batch

e  Astateless SparkR script that is invoked by the streaming application in each batch
and that processes the per-batch Hive table

Listing 8-38 lists the main logic of the Spark Streaming end of the application.

Listing 8-38. Streaming Application That Creates a Per-Batch Data Frame and Invokes a SparkR Script to
Consume It

ssc.sparkContext.addFile(rScriptPath)
val rScriptName = SparkFiles.get(Paths.get(rScriptPath).getFileName.toString)
val master = hiveC.sparkContext.getConf.get("spark.master")

val cdrStream = ssc.socketTextStream(hostname, port.toInt)
.map(_.split("\\t", -1))
.foreachRDD((rdd, time) => {
val iTableName = tableName + time.milliseconds
seqToCdr(rdd).toDF().write.saveAsTable(iTableName)
10. hiveC.sparkContext.parallelize(Array(iTableName)).pipe("%s %s".format(rScriptName,
master)).saveAsTextFile(Paths.get(logsPath, iTableName).toString)
11. H

W oo~NOUVT B~ WN B

The application ingests the CDR data from a socket and writes it out to a Hive table per batch (line 9).
You append a batch timestamp, which you obtain from the foreachRDD operation (line 7), to each table
name to temporally segregate the data (line 8). The fun part starts on line 10. You use a PipedRDD to kick
off the SparkR script. Specifically, you create an RDD with just the per-batch table name and pipe it to
the external script via a pipe call. The script requires the location of the Spark master as a command-line
argument, so you provide it. Finally, the output (stdout) of the external script is piped back to the caller,
which you save to a file. You see shortly that the SparkR script writes only log information to standard output,
not actual data.

The SparkR side of the application (Listing 8-39) reads the name of the data frame from standard
input (lines 9-11) and loads the corresponding data frame using a HiveContext (line 15). Once the top five
country codes by occurrence have been obtained, the resulting data frame is written as a new output table
to Hive (line 19).

Listing 8-39. SparkR Script That Is Invoked by the Streaming Application Every Interval to Manipulate
Data Frames

sc <- sparkR.init(master = args[1])
hiveContext <- sparkRHive.init(sc)

1.  #!/usr/local/bin/Rscript

2. args <- commandArgs(trailingOnly = TRUE)

3. if(length(args) != 1) {

4. stop("Usage: CdrStreamingSparkRApp <master>")
5. }

6. library(SparkR)

7.

8.
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9. f <- file("stdin")

10. open(f)

11. while(length(tableName <- readLines(f, n = 1)) > 0) {

12. tryCatch({

13. tableName <- trimws(tableName)

14. write(pasteo("Processing table: ", tableName), stderr())

15. df <- table(hiveContext, tableName)

16. counts <- count(groupBy(df, "countryCode"))

17. outputTable <- pasteo(tableName, "processed")

18. write(pasteo("Output written to: ", outputTable), stderr())

19. saveAsTable(limit(orderBy(counts, desc(counts$count)), 5), outputTable,
"parquet”, "error"

20. }, error = function(e) {stop(e)})

21. }

22. close(f)
23. sparkR.stop()

Note that in order for this application to work, you need to run an external metastore for Hive. Specifically,
the embedded Derby metastore in Spark SQL only supports single user/application operations. As a result,
the SparkR script raises an exception telling you “Another instance of Derby may have already booted the
database.” This can be remedied either by running a network service version of Derby or by using a MySQL
or Postgres instance as the metastore database. The following guides you through setting up the former.

INSTALLING AND RUNNING APACHE DERBY FOR HIVE

Download Derby version 10.10.1.1,° and unzip it in a suitable location: DERBY_HOME.

Edit $JAVA_HOME/jre/lib/security/java.policy, and add the following to it:
grant { permission java.net.SocketPermission "localhost:1527", "listen"; };

Create a data folder at $DERBY_HOME/data, and jump to it.

Execute the following:

../bin/startNetworkServer -h 0.0.0.0

You have Derby running as a network service on this machine.

If not already present, create hive-site.xml at $SPARK_HOME/conf/hive.site.xml, add the following
configuration parameters to it, and replace localhost with the IP of the machine running the Derby server:

<configuration>
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:derby://localhost:1527/metastore db;create=true</value>
</property>
<property>

*https://db.apache.org/derby/releases/release-10.10.1.1.html.
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<name>javax.jdo.option.ConnectionDriverName</name>
<value>org.apache.derby.jdbc.ClientDriver</value>
</property>
</configuration>

Add the Derby client JAR to the Spark classpath. Specifically, edit $SPARK_HOME/conf/spark-env.sh,
and add

SPARK_CLASSPATH=$DERBY_HOME/lib/derbyclient.jar

It is important to highlight that this example is not for production use, because it creates a large number
of tables in the Hive metastore. There are a number of ways to make this design pattern more robust and
efficient. One method consists of writing the output of the Spark Streaming application to temporary files
and then performing a bulk load into Hive for consumption by R. This obviously comes at the cost of higher
latency. Alternatively, instead of creating a per-batch table in the Hive metastore, you can create a single
table and keep appending to it in every batch interval with an additional timestamp column. At the R end,
only records with a specific range of timestamps are processed each time the script is invoked.

Using this simple but effective design paradigm, you can analyze streaming data using R. The exciting
prospect is the ability to use standard R packages and constructs for data science. You can use the entire
suite of machine learning, data mining, and graphing tools enabled by R to suit your needs. The combination
of Spark and R is just what the doctor ordered for large-scale Big Data processing and data science.

Summary

Spark SQL simplifies the analysis of structured data using Spark. In this chapter, you saw how to use it to
perform ETL for streaming data via data frames: RDDs for structured data. The support for HiveQL allows
you to use the trusted suite of Hive queries and UDFs and run your existing queries almost untouched. The
cherry on top is SparkR, which completes the trio of choice for data science: SQL, Hive, and R. You looked at
multiple design patterns to extend the applicability of these tools to real-time data. But you only scratched
the surface in terms of hardcore data science, which revolves around machine learning. This chapter
mentioned that data frames are also used by MLIib: the equivalent of Mahout for Spark, to which Chapter 9
is dedicated.
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CHAPTER 9

Machine Learning at Scale

There is an art to flying. The knack lies in learning how to throw yourself at the ground
and miss.

—Douglas Adams, Life, the Universe and Everything

Data by itself is a static, lifeless entity. You need analytics to breathe life into it and make it talk or even
sing. The most sophisticated and popular class of such analytics revolves around nowcasting, forecasting,
and recommendations, more generally known as machine learning and data mining. Machine-learning
algorithms learn patterns in data and can then be used to make predictions, whereas data mining helps
extract structure from unstructured data. Using the power of both, electricity providers can predict the
network load and control power generation accordingly, a clothing line can figure out the standard t-shirt
sizes for a new market, oil companies can choose the location of their next drilling operation, and health
practitioners can diagnose diseases without a physical checkup. This is easier said than done, though,
because of the sheer size of the data: in some cases, the dataset can exceed petabytes. Consequently,
machine learning at scale is the key to practical predictions and recommendations, which are essential to
drive the needs of consumers: commercial, academic, or scientific.

The scale and complexity of some of these analytics is magnified in real-time scenarios where an
answer is needed as soon as possible, exposing the inherent trade-off between accuracy and training time
in statistical models. Fortunately, MLlib—the suite of machine-learning algorithms for Spark—supports
streaming analytics out of the box. In this chapter, you use some of these analytics to model IoT data. You
start off with statistical analysis to learn the distribution of data and get a feel for its attributes, followed by
feature-selection algorithms. The bulk of the chapter is dedicated to various learning algorithms covering
regression, classification, clustering, recommendation systems, and frequent pattern matching. The chapter
wraps up with the Spark ML package, which simplifies the implementation of end-to-end learning pipelines.

Sensor Data Storm

By 2020, 50 billion sensors will be connected to the Internet.! This Internet of Things (IoT) revolution has
already started. Today, GE receives 50 million readings from 10 million sensors deployed atop devices

and machinery worth more than $1 trillion.? These sensors are used to instrument devices as diverse as
toothbrushes and bulldozers. In these devices, sensors monitor a rich constellation of phenomena: the
environment, movement, weather, you name it. A single device can have hundreds of sensors, which generate

'Plamen Nedeltchev, “The Internet of Everything Is the New Economy,” Cisco, September 29, 2015, www.cisco.com/c/
en/us/solutions/collateral/enterprise/cisco-on-cisco/Cisco_IT_Trends_IoE_Is_the_New_Economy.html.
Heather Clancy, “How GE Generates $1 Billion from Data,” Fortune, October 10, 2014, http://fortune.com/
2014/10/10/ge-data-robotics-sensors/.
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hundreds of thousands of data points per time interval. Typically, the applications that consume this data
have a strict Service Level Agreement (SLA) and need to produce results with a specific latency. This is more
pronounced in online learning scenarios, which have both a time budget and an accuracy requirement for
predictive models.

One major class of sensor-based analytics uses data from the rich set of sensors in smartphones to
improve the wellness of users: for instance, predicting how much a user will walk over the course of a year
and recommending an appropriate diet for them. Similarly, another application can cluster users based on
their heart rate and other vitals and notify them when their health profile changes. Sensor-based healthcare
analytics have become prevalent due to the popularity of devices such as Fitbit and Apple Watch. For
obvious privacy reasons, the data from these devices is locked away behind multiple layers of safeguards.
Fortunately, a number of such datasets are available in the public domain, albeit from limited, controlled
environments.

One such dataset, which you use in this chapter, logs the physical activity of nine individuals via
inertial and heart-rate monitoring sensors.® Each individual wore three inertial measurement units (IMUs),
located on different parts of the body: hand, chest, and ankle. Each IMU contains four 3D sensors: two
accelerometers, a gyroscope, and a magnetometer.

In total, ten hours of activity is recorded in the data. The physical activities are categorized using 18
labels, which include walking, running, cycling, lying down, sitting, standing, and so on. The dataset is
divided into nine text files (with . dat extension), one per subject. Each space-separated record consists of 52
attributes, 1 timestamp, and 1 label, which are summarized in Table 9-1.

Table 9-1. Summary of the Fields in the Sensor Activity Dataset

Field # Name Description
1 Timestamp The timestamp of the record in seconds
2 Activity ID The tag assigned to the activity: 1. Lying, 2. Sitting, 3. Standing, 4.

Walking, 5. Running, 6. Cycling, 7. Nordic walking, 9. Watching
TV, 10. Using a Computer, 11. Driving, 12. Ascending stairs, 13.
Descending stairs, 16. Vacuum cleaning, 17. Ironing, 18. Folding
laundry, 19. House cleaning, 20. Playing soccer, 21. Rope jumping,
and 0. Invalid

3 Heart rate The heart rate in beats per minute

4-20 IMU Hand The inertial measurement unit attached to the hand (detailed
breakdown in Table 9-2)

21-37 IMU Chest Self-explanatory

38-54 IMU Ankle Self-explanatory

SPAMAP?2 Physical Activity Monitoring Data Set, UC Irvine Machine Learning Repository, https://archive.ics.
uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring.

178

www.it-ebooks.info


https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring
https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring
http://www.it-ebooks.info/

CHAPTER 9 © MACHINE LEARNING AT SCALE

The breakdown of the attributes of each IMU is presented in Table 9-2.

Table 9-2. Summary of the IMU Attributes

Field # Name Description

1 Temperature The temperature in Celsius

2-4 3D Accelerometer Speed in m/s with a range of 16 g (g-force)

5-7 3D Accelerometer Speed in m/s with a range of 6 g*

8-10 3D Gyroscope Orientation of the device in radians per second
11-13 3D Magnetometer Magnetic field sensor with micro Tesla units
14-17 Orientation Skipped in this dataset

This dataset is a good representative of a plurality of sensors that can be used to gauge human activity.
Let’s get going.

Streaming MLIib Application

Listing 9-1 contains the code for your very first machine-learning application. The goal is to use linear
regression to model the target sensor data by using heart rate, temperature, and acceleration.

Listing 9-1. First Streaming MLIib Application

1.

2.

3.  dimport
4. import
5. import
6. import
7.  import
8.  import
9. import
10. import
11. import
12.

13. object
14.

org
org

org.
org.
org.
org.

org

org.

org

.apache.
.apache.
apache.
apache.
apache.
apache.
.apache.
apache.
.apache.

package org.apress.prospark

spark.SparkConf

spark.SparkContext

spark.mllib.linalg.Vectors
spark.mllib.regression.LabeledPoint
spark.mllib.regression.StreaminglLinearRegressionWithSGD
spark.rdd.RDD
spark.rdd.RDD.doubleRDDToDoubleRDDFunctions
spark.streaming.Seconds
spark.streaming.StreamingContext

LinearRegressionApp {

15. def main(args: Array[String]) {
16. if (args.length != 4) {

17. System.err.println(

18. "Usage: LinearRegressionApp <appname> <batchInterval> <hostname> <port>")
19. System.exit(1)

20. }

21. val Seq(appName, batchInterval, hostname, port) = args.toSeq

22.

“This sensor was not calibrated properly while taking measurements, so the use of the 16 g attribute is recommended for

any analytics.
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23. val conf = new SparkConf()

24. .setAppName (appName)

25. .setJars(SparkContext.jarOfClass(this.getClass).toSeq)

26.

27. val ssc = new StreamingContext(conf, Seconds(batchInterval.toInt))

28.

29. val substream = ssc.socketTextStream(hostname, port.toInt)

30. .filter(! .contains("NaN"))

31. .map(_.split(" "))

32. filter(f => f(1) != "0")

33.

34. val datastream = substream.map(f => Array(f(2).toDouble, f(3).toDouble, f(4).
toDouble, f(5).toDouble, f(6).toDouble))

35. .map(f => LabeledPoint(f(0), Vectors.dense(f.slice(1, 5))))

36. val test = datastream.transform(rdd => rdd.randomSplit(Array(0.3, 0.7))(0))

37. val train = datastream.transformWith(test, (ri: RDD[LabeledPoint], r2:
RDD[ LabeledPoint]) => ri.subtract(xr2)).cache()

38. val model = new StreaminglLinearRegressionWithSGD()

39. .setInitialWeights(Vectors.zeros(4))

40. .setStepSize(0.0001)

41. .setNumIterations(1)

42.

43. model.trainOn(train)

44. model.predictOnValues(test.map(v => (v.label, v.features))).foreachRDD(rdd =>
println("MSE: %f".format(rdd

45. .map(v => math.pow((v. 1 - v. 2), 2)).mean())))

46.

47. ssc.start()

48. ssc.awaitTermination()

49. '}

50.

51. }

Once the model has been trained using temperature and accelerometer attributes, you can use it to
predict the heart rate for each record. In each batch, the application uses 70% of the dataset for training and
30% for testing. The first order of business is to push data to Spark, for which you again repurpose your trusted
SocketDriver from Chapter 5 by augmenting AbstractDriver with Listing 9-2 to read plain-text files.

Listing 9-2. Augmenting AbstractDriver from Chapter 5 to Support .dat files

1. else if (ext.equals("dat")) {

2. LOG.info(String.format("Feeding dat file %s", f.getName()));

3. try (BufferedReader br = new BufferedReader(new InputStreamReader(new
FileInputStream(f)))) {

4. String line;

5. while ((line = br.readlLine()) != null) {
6. sendRecord(line);

7. }

8. }

9. }
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Feed the socket before running the Spark Streaming from Listing 9-1. You read records from the socket
(line 29) and filter out records that have invalid numbers (NaN) or where the activity itself is invalid (0) on
lines 30-32. You need to predict the heart rate based on temperature and acceleration, so you project fields
that might be handy for this purpose: the heart rate (index 2), temperature (index 3), and 16 g accelerometer
(index 4-6). MLIib algorithms require data in the form of a Vector type with each feature as a Double. For
training, each record needs to be converted to a LabeledPoint whose first parameter is a label for the record
and second is a Vector type (line 35). In this case, the label is the heart rate and the rest are features.

Once each record has been converted to LabeledPoint, the input stream needs to be divided into
training and test. For this you use the randomSplit method for RDDs with a transform operation to divide
the stream and get the test stream (line 36). The code then uses another transform operation over the test
stream and the original stream to get the difference of the two, which carves out the train stream (line 37).
You cache this dataset because it will be used across iterations. The data is now ready for training.

The dataset has continuous values, so you use a streaming regression model:
StreaminglinearRegressionWithSGD. The model requires a few configuration parameters including the
initial weight of the features, the step size (learning rate for stochastic gradient descent [SGD]), and the
number of iterations. You assign initial values of zero for the features (line 39). The step size and the number
of iterations along with other parameters are very sensitive to the data being modeled. The values were
selected via trial and error. For other datasets, they might be very different. Refer to Table 9-3 for more
parameters and their default values.

After the model has been calibrated with various parameters, it is ready to receive training data (line 43).
As mentioned earlier, the application uses 70% of the input stream for training and then validates the
learning by predicting the activity label of the other 30%. predictOnValues uses the model to predict the
label of the new data. In this case, because you already know the activity types of the 30% streams as well,
you can use it to come up with an error rate for the prediction via mean square error (MSE); this basically
gives you the mismatch between the actual value and the predicted value. predictOnValues performs the
prediction but keeps the actual activity label (the key) intact. You use this functionality to calculate a per-
batch-interval MSE (lines 44-45). When you run the application, notice that this error goes down over time,
as the model starts accurately predicting the regression line. This is due to the online, accumulative nature of
this algorithm, which is updated in each microbatch based on miniBatchFraction.

Build and run it like any standard Spark Streaming application.’

Table 9-3. Parameters to Calibrate Streaming Linear Regression

Parameter Set Default Description
initialWeights setInitialWeights na The initial weight for each feature
(initialWeights: Vector) vector. This is typically initialized to 0

unless you have performed an advance
analysis to precalculate a value.

miniBatchFraction setMiniBatchFraction 1.0 The fraction of the data in each batch
(miniBatchFraction: Double) to use to update the model.

numIterations setNumIterations 50 The number of iterations per update.
(numIterations: Int)

stepSize setStepSize(stepSize: 0.1 The gradient descent step size.
Double)

SMake sure you add libraryDependencies += "org.apache.spark" %% "spark-mllib" % "1.4.0" to your build
specification file.
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MLLIib is self-contained in the org.apache.spark.mllib package. Let’s explore its other features in depth.

MLIib

MLIib covers the entire spectrum of machine-learning algorithms and tools to enable predictions,
recommendations, and feature extraction at scale. The list of supported algorithms includes classification,
clustering, collaborative filtering, dimensionality reduction, frequent pattern mining, and regression.
Another suite of machine-learning tools was introduced in Spark 1.2 in the org.apache. spark.ml package
to facilitate the creation of machine-learning pipelines. The next section introduces it, so for now let’s focus
on the core MLIib library. The functionality of MLlib can be grouped into three main categories: statistical
analysis and preprocessing, feature selection and extraction, and learning algorithms. Before you look at

each in turn, let’s begin with the data types inherent to MLIib.

Data Types

Similar to Mahout and other machine-learning libraries, MLlib has two major data types: vectors and
matrices. As the names suggest, a vector is a one-dimensional representation of Doubles, and a matrix covers
two dimensions. These data types are either stored in a single executor process or distributed across many
executors in a cluster. This leads to a combination of types, as listed in Table 9-4. For each example, assume
that the input stream is the same as that on line 29 in Listing 9-1.

Table 9-4. Examples of the Data Types Provided by MLlib

Type

Description

Example

Local dense vector

Local sparse vector

Stored locally as an array of
doubles. Use this vector when
your data does not have many
zero values.

Stored locally as two parallel
arrays: one for indexes and
the other for actual values.
Zero values are skipped in this
representation. Use this type if
your data contains many zero
values.

Signature: Vectors.dense(values:
Array[Double]): Vector

val denseV = substream.map(f =>
Vectors.dense(f.slice(1, 5)))

Signature: Vectors.sparse(size: Int,
elements: Seq[(Int, Double)]): Vector

val sparseV = substream.map(f =>
f.slice(1, 5).toList).map(f =>
f.zipWithIndex.map { case (s, i) => (i,
s) }) .map(f => f.filter(v => v. 2 I=
0)).map(l => Vectors.sparse(l.size, 1))

Labeled point Attaches a label to a vector Signature: new LabeledPoint(label:
(dense or sparse). This is used Double, features: Vector)
for learnmg.algorlthms in which val labeledP = substream.map(f =>
the label trains the model for the .

. . LabeledPoint(f(0), Vectors.dense(f.
provided attributes. .
slice(1, 5))))

Local matrix A dense matrix with integer row  Signature: Matrices.dense(numRows: Int,
and column indexes and double  numCols: Int, values: Array[Double]):
values. Matrix

val denseM = substream.map(f =>
Matrices.dense(3, 16, f.slice(3, 19) ++
f.slice(20, 36) ++ f.slice(37, 53)))
(continued)
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Type

Description

Example

Distributed RowMatrix

Distributed
IndexedRowMatrix

Distributed
CoordinateMatrix

Distributed
BlockMatrix

A matrix that is distributed across
the cluster. Each row is a local
vector.

Similar to a distributed
RowMatrix, with long type
column indexes. Each row is an
IndexedRow type, which is a two
tuple of (Long, Vector).

Similar to a distributed
IndexedRowMatrix with column
indexes. Under the hood, it
isan RDD of MatrixEntry,
where MatrixEntry is a 3-tuple
of (Long, Long, Vector).

This is useful to store high-
dimensionality, sparse data.

Arranges the matrix as an RDD
of type MatrixBlock. Each
MatrixBlock is a sub-matrix with
row and column indexes of the
sub-matrix and the contents of
the sub-matrix itself. It can be
created by directly converting
from an IndexedRowMatrix or a
CoordinateMatrix.

Signature: new RowMatrix(rows:
RDD[Vector])

denseV.foreachRDD(rdd => {
val rowM = new RowMatrix(rdd)
H

Signature: new IndexedRowMatrix(rows:
RDD[ IndexedRow])

denseV.foreachRDD(rdd => {
val iRdd = rdd.zipWithIndex.map(v
=> new IndexedRow(v. 2, v. 1))
val iRowM = new
IndexedRowMatrix(iRdd)

1)

Signature: new CoordinateMatrix(entries:
RDD[MatrixEntry])

substream.foreachRDD(rdd => {
val entries = rdd.zipWithIndex.
flatMap(v => List(3, 20, 37).
zipWithIndex.map(i => (i. 2.tolong,
v. 2, v. 1.slice(i. 1, i. 1 + 16).
tolist))) .map(v => v. 3.map(d =>
new MatrixEntry(v. 1, v._2, d))).
flatMap(x => x) val cRowM = new
CoordinateMatrix(entries)

1

Signature: new BlockMatrix(blocks:
RDD[ ((Int, Int), Matrix)],
rowsPerBlock: Int, colsPerBlock: Int)

Or

CoordinateMatrix#ttoBlockMatrix():

BlockMatrix

substream.foreachRDD(rdd => {
val entries = rdd.zipWithIndex.
flatMap(v => List(3, 20, 37).
zipWithIndex.map(i => (i._2.tolong,
v. 2, v. 1.slice(i. 1, i. 1 + 16).
tolist))) .map(v => v. 3.map(d =>
new MatrixEntry(v. 1, v. 2, d))).
flatMap(x => x)
val blockM = new
CoordinateMatrix(entries).
toBlockMatrix

1)
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Statistical Analysis

MLIib enables a number of statistics over vectors and matrices. These are useful for understanding the
distribution and layout of the input dataset: for instance, finding correlations between different attributes
can assist in feature selection for learning. Helper functions are provided in the org.apache.spark.mllib.
stat.Statistics package. One of the most basic operations is to study the distribution of the attributes of

a dataset in terms of their mean, maximum, minimum, and so on. This is typically the first step for any data
scientist, because it enables you to get a feel for the data. Listing 9-3 shows how to perform these calculations
for the sensor-readings dataset. Once again, assume that substream comes from line 29 in Listing 9-1.
colStats takes an RDD of vectors as input.

Listing 9-3. Calculating Basic Statistics for a DStream of Vectors

1 substream.map(f => Vectors.dense(f.slice(1, 5))).foreachRDD(rdd => {
2 val stats = Statistics.colStats(rdd)

3 println("Count: " + stats.count)

4. println("Max: " + stats.max.toArray.mkString(" "))

5. println("Min: " + stats.min.toArray.mkString(" "))
6

7

8

9

println("Mean: " + stats.mean.toArray.mkString(" "))
println("L1-Norm: " + stats.normL1.toArray.mkString(" "))
println("L2-Norm: " + stats.normL2.toArray.mkString(" "))
. println("Number of non-zeros: " + stats.numNonzeros.toArray.mkString(" "))
10. println("Varience: " + stats.variance.toArray.mkString(" "))

1. })

Another useful operation is finding the correlation between different attributes. This is handy for feature
selection: you can leave out attributes that are not correlated with the outcome. Correlations in MLIib can be
calculated using either Pearson or Spearman correlation coefficients. The use of both is illustrated in
Listing 9-4. Note that the output of the correlation is in the form of a matrix, as shown in Table 9-5. The first
column contains the heart rate, and the other three contain acceleration across the three axes. The same
goes for rows. Self-correlation obviously results in a positive correlation of 1. From this output, for instance,
you can see that heart rate and acceleration across the z-axis are negatively correlated.

Listing 9-4. Finding the Correlation Between Different Attributes in a Vector

1 substream.map(f => Vectors.dense(f.slice(1, 5))).foreachRDD(rdd => {
2 val corrSpearman = Statistics.corr(rdd, "spearman")

3 val corrPearson = Statistics.corr(rdd, "pearson")

4. println("Correlation Spearman: \n" + corrSpearman)

5 println("Correlation Pearson: \n" + corrPearson)

6. 1)
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Table 9-5. Spearman and Pearson Correlation Matrices from One Microbatch

Correlation Spearman

1.0 0.17973751928417933 0.1636219656601942 -0.47253208575624295
0.17973751928417933 1.0 0.012457932551072698 -0.3863339273787353
0.1636219656601942 0.012457932551072698 1.0 0.0780129101161669
-0.47253208575624295 -0.3863339273787353 0.0780129101161669 1.0

Correlation Pearson

1.0 0.152651154439714 0.27941329240545676 -0.4661000937754152
0.152651154439714 1.0 -0.2771174159022592 -0.42022123940447803
0.27941329240545676 -0.2771174159022592 1.0 -0.03222384704608242
-0.4661000937754152 -0.42022123940447803 -0.03222384704608242 1.0

Correlations highlight the relationships among variables, which are useful for determining how a trend
in one variable affects another. These can be compounded with hypothesis testing, which tells you whether
the results are statistically significant or happened by pure chance. For instance, can the sensor data actually
help you predict whether a subject is running or walking, or are the outcomes simply random? The chi-
square test is widely used for two main functions: goodness of fit (does the model reflect the data?), and
independence (are two variables related?). These are enabled by the Statistics.chiSqTest() method.

The type of the input decides whether you are testing for independence (vector or RDD of LabeledPoint) or
goodness of fit (Matrix). Listing 9-5 uses it to determine the column-wise independence values.

Listing 9-5. Performing the Chi-Square Test for Independence

1.  substream.map(f => Array(f(1).toDouble, f(2).toDouble, f(4).toDouble, f(5).toDouble,
f(6).toDouble))

2. filter(f => f(0) == 4.0 || f(0) == 5.0)

3. .map(f => LabeledPoint(f(0), Vectors.dense(f.slice(1, 5))))

4. .foreachRDD(rdd => {

5. Statistics.chiSqTest(rdd).zipWithIndex.foreach(v => println("%s, column no. %d".
format(v. 1, v. 2)))

6. b

Preprocessing

In a large number of cases, data needs to be preprocessed before it can be used for learning. A common

task is to normalize and scale the data to negate the effect of features with high variance. This also enables
some learning algorithms to perform better. One of the most prevalent preprocessing algorithms is
StandardScaler, which scales the variance and/or mean of numerical data. The snippet of code in Listing 9-6
uses StandardScaler to scale the sensor dataset readings to unit standard deviation. StandardScaler by
default scales by standard deviation. Scaling by mean can be enabled by passingwithMean = true to the
constructor. StandardScaler has two phases: fitting the data (line 5) and transforming the data based on the
fit (line 6). The scaled data can then be fed to any machine-learning algorithm for modeling.
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Listing 9-6. Using StandardScaler to Scale Data to Unit Standard Deviation

1 substream.map(f => Array(f(2), f(4), f(5), f(6)))

2 .map(f => f.map(v => v.toDouble))

3 .map(f => Vectors.dense(f))

4. .foreachRDD(rdd => {

5 val scalerModel = new StandardScaler().fit(rdd)
6 val scaledRDD = scalerModel.transform(rdd)

7

1)

Feature Selection and Extraction

Datasets in general have a large number of features or attributes. Not all of them may be relevant or even
useful for learning. For instance, a timestamp field may not be relevant for figuring out whether a specific
item is defective in manufacturing data, or two attributes may be very similar and thus one can be dropped.
Having extra fields can affect both the quality of the prediction and the performance of the learning
algorithm. This is exacerbated in real-time processing of Big Data because it can adversely affect client SLAs.
Let’s look first at a technique for feature selection (chi-square selection) followed by extraction (principal
component analysis).

Chi-Square Selection

Feature selection is the process of reducing the number of features in a dataset. One such methodology

is feature ranking, in which all the features are ranked via an algorithm and only the top k features are

kept intact. The chi-square test can also be used for feature selection because it can find the degree of
dependence between features and the target variable. Features with a low degree can be culled. Note that
chi-square selection only applies to categorical data. Therefore, all continuous data must be discretized via
binning or some other mechanism.

In the case of streaming data, the effectiveness of features can dynamically change over time: a feature
that is essential right now may be irrelevant 30 minutes later. Therefore, feature selection needs to be a
constantly evolving process. Fortunately, the microbatch processing model in Spark Streaming simplifies
this process by enabling you to select features in every batch. Listing 9-7 shows how you can use chi-square
selection for streaming data. This example is confined to the three 16 g accelerometers attached to the hand,
chest, and ankle of the subjects and uses the activity as the predicted feature (line 1). ChiSqSelector fits the
model on LabeledPoint objects, so you convert the data stream to that format (lines 2-3). To discretize the
accelerometer data, you split it into 2,048 buckets. For the 16 g accelerometer limit, the sensitivity (or range)
is 2,048. You use that information to perform the binning in line 3.

ChiSqSelector takes as input the number of required features, which you set to a modest value of 5
(line 6). It exposes a fit method, which takes as input an RDD of LabeledPoints. You use a foreachRDD
operation to fit an RDD for selection in every batch. Once the model has been trained (line 7), it can be used
to filter values from the input RDD (line 8). The filtered data can readily be used to perform learning using
any model.

Listing 9-7. Using Chi-Square for Feature Selection

1. val datastream = substream.map(f => Array(f(1), f(4), f(5), f(6), f(20), f(21), f(22),
£(36), f(37), £(38)))

2. .map(f => f.map(v => v.toDouble))

3. .map(f => LabeledPoint(f(0), Vectors.dense(f.slice(1, f.length).map(f => f / 2048))))
4.
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5 datastream.foreachRDD(rdd => {

6 val selector = new ChiSqSelector(5)

7. val model = selector.fit(rdd)

8 val filtered = rdd.map(p => LabeledPoint(p.label, model.transform(p.features)))
9

b

Principal Component Analysis

Feature extraction is another dimensionality reduction mechanism in which data is transformed from one
coordinate system or space to another. One of the most popular algorithms for feature extraction is principal
component analysis (PCA). As the name suggests, PCA aims to bring out the features that have the most
variance by transforming them into a new space: that is, the features with the most variance are the principal
components. In contrast to feature selection, a la chi-square, feature extraction not only reduces the number
of features but also enhances the effect of the reduced feature set.

As Listing 9-8 shows, similar to any learning algorithm, for PCA you first need to convert the data to
LabeledPoints (lines 1-3). PCA takes the number of expected principal components as input. You set this
to half of the total number of features from the accelerometer readings (line 5). You then train PCA to fit the
features from the input data stream (line 6). As before, the data is split into 70% training and 30% testing.
This PCA model can now be used to transform the split data (lines 9-10). This data, which requires less
space, can now readily be used as input to a learning algorithm for better accuracy and performance.

Listing 9-8. Transforming Features into Their Principal Components Using PCA

1. val datastream = substream.map(f => Array(f(1), f(4), f(5), f(6), f(20), f(21), f(22),
f(36), f(37), f(38)))

.map(f => f.map(v => v.toDouble))

.map(f => LabeledPoint(f(0), Vectors.dense(f.slice(1, f.length))))

datastream.foreachRDD(rdd => {
val pca = new PCA(rdd.first().features.size / 2)
.fit(rdd.map(_.features))
val testTrain = rdd.randomSplit(Array(0.3, 0.7))
val test = testTrain(0).map(lp => lp.copy(features = pca.transform(lp.features)))
0. val train = testTrain(1).map(lp => lp.copy(features = pca.transform(lp.features)))
11. })

PO oo~V B~ WN

Learning Algorithms

The machine-learning universe contains a plethora of learning algorithms, each with a varying set of
accuracy, performance, and amenability to parallelism and online learning. Their applicability also depends
on the type of input data (discrete or continuous) and whether the use case is supervised or unsupervised.
In supervised learning, you know upfront what you are looking for as you train the model based on past
observations. For example, assume that your input data stream consists of pictures of sports balls. Under
supervised learning, you provide the learning algorithm a set of prelabeled balls—say, marked as golf,
cricket, soccer, football, and baseball. The algorithm then scores new incoming data based on various
attributes, such as size, shape, and color. In contrast, under unsupervised learning, you have no advance
information about any classification. Based on each attribute in the dataset, the unsupervised learning
algorithm groups the data. It can figure out that a golf ball is radically different than a football but can’t
assign it a human-readable tag.
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Another set of methods is applicable to recommendation systems, which, as the name suggests, try to
match users with items, such as products, or people, such as potential friends: for instance, recommending
which sports balls a user should buy. The algorithms used for such systems can broadly be put into two
categories: collaborative filtering and content-based filtering. Collaborative filtering uses the past behavior
of a user or a set of users to make the recommendation: for example, the ball-purchasing history of similar
users. Content-based filtering, on the other hand, uses the user’s profile and preferences to drive the
recommender. An example of content-based filtering would be recommendations fueled by the type of
sports columns, Facebook pages, and blogs the user follows.

Finally, frequent pattern mining represents an important strand of data mining that is essential for
association rule mining. These are itemsets, sequences, and substructures that appear to have an interesting
relationship: for instance, in a supermarket, items that are frequently purchased together in the same
transaction, such as penne pasta and pesto sauce. Frequent sequences, on the other hand, occur over
more than one transaction, For example, buying a smartphone, then a tablet, followed by a smart watch,
constitutes a sequence. Such analysis is imperative for inventory management and shopping-cart analysis.

Note that MLIib currently has limited support for streaming/online-learning algorithms. Support exists
only for streaming linear regression, logistic regression, and k-means clustering. This does not necessarily
mean other algorithms cannot be used, though. In fact, any model from MLIib can be used as long as the
application only requires per-batch modeling. This is achieved by invoking a stateless training/scoring cycle
in each batch in a foreachRDD construct. You use this design for recommendation systems and frequent
pattern mining in this chapter, because these methods do not have streaming variants in MLIib.

Supervised learning is divided into two classes based on whether the data is continuous (regression) or
discrete (classification). You have already seen an example of regression, so let’s look at classification next.

Classification

Linear regression is applicable to scenarios where the value to be predicted is continuous, such as heart rate
in the chapter’s first example. In cases where the predicted variable has a limited set of values, such as on
and off or low, medium, and high, you need to use classification algorithms. One such algorithm is logistic
regression, which is the classification equivalent of linear regression. Let’s use it to predict the activity type—
walking or running—of the sensor data. The snippet of code in Listing 9-9 uses streaming logistic regression
to enable this prediction application.

Listing 9-9. Logistic Regression Application to Predict Whether a User Is Walking or Running

1. val datastream = substream.map(f => Array(f(1).toDouble, f(2).toDouble, f(4).toDouble,
f(5).toDouble, f(6).toDouble))

3. val walkingOrRunning = datastream.filter(f => f(0) == 4.0 || f(0) == 5.0).map(f =>
LabeledPoint(f(0), Vectors.dense(f.slice(1, 5))))

4. val test = walkingOrRunning.transform(rdd => rdd.randomSplit(Array(0.3, 0.7))(0))

5. val train = walkingOrRunning.transformWith(test, (r1: RDD[LabeledPoint], r2:
RDD[LabeledPoint]) => ri.subtract(r2)).cache()

6. val model = new StreaminglogisticRegressionWithSGD()

7. .setInitialWeights(Vectors.zeros(4))

8. .setStepSize(0.0001)

9 .setNumIterations(1)

1

11. model.trainOn(train)
12. model.predictOnValues(test.map(v => (v.label, v.features))).foreachRDD(rdd =>

println("MSE: %f".format(rdd
13. .map(v => math.pow((v. 1 - v. 2), 2)).mean())))
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As a first step, the code projects relevant fields: activity ID, heart rate, and acceleration (line 1). You
are interested only in walking and running activity, so you only keep records that represent those two types
and convert them to LabeledPoints (line 3). The rest of the code is identical to Listing 9-1, with the only
difference being the use of logistic regression instead of its linear counterpart. As with the previous example,
the MSE decreases over time as the model improves its accuracy.

Clustering

Clustering is a prime example of unsupervised learning in which data points are placed into clusters based
on certain attributes. For instance, baseballs and cricket balls might end up in the same cluster because

of their similar size. One of the most popular algorithms for clustering is k-means. In k-means clustering,
each data point is assigned to a cluster based on some distance metric, and the center of the cluster is
recomputed. This process is iteratively computed until the points converge or a specific number of steps
have been completed. K is the number of clusters, which you need to specify up front.

The streaming version of k-means in MLIib works in a similar fashion with one caveat: the notion of
forgetfulness.® This parameter accounts for the dynamic nature of streaming data, in which newer data may
have radically different properties than data, say, 10 minutes ago. This may lead to an abrupt recalibration
of the cluster centers. Forgetfulness controls the weight that the model assigns to newer data as opposed
to older data points. You can use this setting to treat all data points since the beginning of time equally
(value of 0) or to consider only the most recent data (value of 1). In addition, the algorithm exposes another
parameter to set forgetfulness, called the half-life. The half-life value determines how many batches or data
points it would take for the impact of the past set of data points to drop to half its vaue. This value is set via
setHalfLife(halfLife: Double, timeUnit: String), where timeUnit can either be batches or points.

The physical activity monitoring dataset includes accelerometer and gyroscope readings from three
sensors (attached to the hand, chest, and ankle of the subject). Each accelerometer and gyroscope notes
acceleration and orientation along the three axes: x, y, and z. Let’s use these features to determine whether a
record represents a user in the lying down, sitting, or standing position. At the outset you do not know which
readings represent which outcome, so you rely on k-means clustering to group data points into clusters.
Note that k-means clustering still cannot tell you which cluster represents, say, lying down, only that all data
points in a cluster represent similar activity. Without any further delay, let’s get clustering (Listing 9-10).

Listing 9-10. K-means to Gauge Whether a User Is Lying Down, Sitting, or Standing Based on Data from the
Three Orientation Sensors

1. val orientationStream = substream

2. .map(f => Seq(1, 4, 5, 6, 10, 11, 12, 20, 21, 22, 26, 27, 28, 36, 37, 38, 42, 43,
44).map(i => f(i)).toArray)

3. .map(arr => arr.map(_.toDouble))

4. filter(f => f(0) == 1.0 || f(0) == 2.0 || f(0) == 3.0)

5. .map(f => LabeledPoint(f(0), Vectors.dense(f.slice(1, f.length))))

6. val test = orientationStream.transform(rdd => rdd.randomSplit(Array(0.3, 0.7))(0))

7. val train = orientationStream.transformWith(test, (ri: RDD[LabeledPoint], r2:
RDD[LabeledPoint]) => ri.subtract(r2)).cache()

8. val model = new StreamingKMeans()

9. .setk(3)

¢Jeremy Freeman, “Introducing Streaming k-means in Spark 1.2,” Databricks, January 28, 2015, https://databricks.
com/blog/2015/01/28/introducing-streaming-k-means-in-spark-1-2.html.
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10. .setDecayFactor(0)

11. .setRandomCenters(18, 0.0)

12. model.trainOn(train.map(v => v.features))

13. val prediction = model.predictOnValues(test.map(v => (v.label, v.features)))

The application first projects accelerometer and gyroscope readings and converts them into double
values (lines 1-3). You are only interested in three activities—lying down, standing up, and sitting down—so
the code then filters out records representing those activities (line 4). After converting the data points to
LabeledPoints and splitting the stream for testing and training, you initialize a StreamingKMeans model,
which requires a few parameters for tuning. K is set to the number of expected clusters: 3, in this case, for
each activity. The data does not change drastically over time, so you set the forgetfulness or decay factor to 0,
which forces the model to consider all points from the beginning of time equally (line 10). You also need to
initialize the cluster center for each feature (18 total), which is what you do on line 11. (Table 9-6 discusses
all the parameters.) After the application is executed, prediction contains the cluster ID as the label and the
attributes as features (line 14).

Table 9-6. Parameters for Streaming K-means clustering

Parameter Set Default Description

decayFactor  setDecayFactor(a: Double) 1.0 The weight to assign to newer data
points in comparison to older ones:
the forgetfulness value

halfLife setHalfLife(halfLife: Double, na The decay factor as a half-life value:
timeUnit: String) the number of batches or data points
it would take for the impact of the
past set of data points to drop to half

its value

centers setInitialCenters(centers: na The initial cluster center for each
Array[Vector], weights: feature vector
Array[Double])

centers setRandomCenters(dim: Int, na Instead of setting exact centers,
weight: Double, seed: Long = populates them with random values
Utils.random.nextLong)

k setK(k: Int) 2 The number of clusters to create

Recommendation Systems

Recommender systems have achieved wide traction due to the popularity of e-commerce and online retailing.
Some of the recommendations are responsible for billions of dollars’ worth of sales for some of the top brands
in the world. From LinkedIn connection suggestions to Facebook newsfeed prioritization and from Amazon
and Netflix product recommendations to YouTube content matching, all of these rely on recommendation
systems (recsys) in some form. Collaborative filtering is one of the most popular methods for recsys because
of its reliance on crowd-sourced behavior. One class of collaborative filtering algorithms, aptly called the
model-based approach, uses machine-learning techniques for training and predictions. Most algorithms can
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be broken down into matrix-decomposition problems in which the job of the algorithm is to minimize a loss
function. MLIib uses the alternating least squares (ALS) algorithm for collaborative filtering, which minimizes
the loss function using a simple repeated technique: fix half the parameters, and optimize the other half.

The ALS implementation in MLIib has two modes: explicit and implicit. The explicit model can be
used when the dataset contains an explicit user rating for each item. Unfortunately, that rating is not always
available in the real world. To account for such scenarios, implicit feedback uses observed preferences and
confidence values.

At first glance, the physical activity dataset does not seem amenable to recsys: there are no items or
ratings in the data. You can remedy that with a little preprocessing, using activity ID as a product and the
number of times a user has performed it as its rating. The snippet of Spark code in Listing 9-11 performs
this preprocessing by reading all input files and manipulating their data. iPath needs to point to the folder
with the .dat data files. The data is divvied up into one file per subject, so the code needs to dynamically
add the name of each input file to each record. You use the mapPartitionsWithInputSplit method
provided by HadoopRDD, which provides the map function with a reference to the input split and an iterator
for the data in the partition (line 6).” The path to each input can be acquired from the input split, which can
then be parsed to get only the filename (line 7). From each record, you only need to extract the activity ID
(line 7). The next series of transforms removes invalid activities (line 8) and counts the frequency of each
subject-activity pair (lines 9-10). To add some semblance of randomness to the data, you sample 70% of it
(line 12) and write it to a file.

Listing 9-11. Preprocessing the Physical Activity Dataset to Enable Collaborative Filtering

val delim =

1

2.

3. val sc = new SparkContext(conf)

4 sc.hadoopFile(iPath, classOf[TextInputFormat], classOf[LongWritable], classOf[Text],
sc.defaultMinPartitions)

5. .asInstanceOf[HadoopRDD[Longhritable, Text]]

6. .mapPartitionsWithInputSplit((iSplit, iter) =>

7. iter.map(splitAndLine => (Files.getNameWithoutExtension(iSplit.
asInstanceOf[FileSplit].getPath.toString), splitAndlLine. 2.toString.split(" ")
(1))

8. filter(r => r. 2 != "0")

9. .map(r => ((r. 1, r. 2), 1))

10. .reduceByKey(_ + _)

11. .map(r => r. 1. 1.replace("subject",
12. .sample(false, 0.7)

13. .coalesce(1)

14. .saveAsTextFile(oPath)

) + delim + r. 1. 2 + delim + r. 2)

Once you have preprocessed the data, you can use ALS to drive recommendations. As shown in
Listing 9-12, you first read the preprocessed data stream and convert each record to a Rating type with three
fields: subject, activity, and frequency. These represent user, item, and rating, respectively. ALS requires
each data point to conform to this class. Similar to other machine-learning methods, you divide the dataset
for testing and training and use the latter to fine-tune and calibrate the model. The ALS model requires the
rank of the factorization, the number of iterations to perform, and the regularization parameter lambda for
configuration. The rest of the tunable parameters are listed in Table 9-7.

"“Getting the Current Filename with Spark and HDFS,” The Modern Life, September 28, 2014,
http://themodernlife.github.io/scala/spark/hadoop/hdfs/2014/09/28/spark-input-filename/.
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Listing 9-12. ALS-Powered, Collaborative, Filtering-Based Recommendations

1 val ratingStream = ssc.textFileStream(iPath).map(_.split(" ") match {
2 case Array(subject, activity, freq) =>

3 Rating(subject.toInt, activity.toInt, freq.toDouble)

“oh

5.

6 val rank = 10

7 val numIterations = 10

8 val lambda = 0.01

9. ratingStream.foreachRDD(ratingRDD => {

10. val testTrain = ratingRDD.randomSplit(Array(0.3, 0.7))

11. val model = ALS.train(testTrain(1), rank, numIterations, lambda)
12. val test = testTrain(0).map {

13. case Rating(subject, activity, freq) =>

14. (subject, activity)

15.

16. val prediction = model.predict(test)

17. })

Notice that the recommendation in each batch is independent of the other batches due to the stateless
nature of Spark Streaming. This means ALS in MLIib is not true online learning. If your application logic can
tolerate per-batch stateless modeling, then this current design will work well for you. Having said that, future
releases of MLIib will hopefully contain native support for online ALS.®

Table 9-7. Configuration Parameters for ALS-Based Collaborative Filtering

Parameter Set Default Description

alpha setAlpha(value: Double) 1.0 Rate of increase of the confidence
level in the case of implicit feedback.

implicitPrefs  setImplicitPrefs(value: Boolean) false Whether to use implicit or explicit
feedback. Explicit by default.

maxIter setMaxIter(value: Int) 10 The maximum number of iterations
to run.

nonnegative setNonnegative(value: Boolean) false Enables non-negative constraints.

numBlocks setNumBlocks(value: Int) -1 The number of user and product

blocks for parallelism. -1 enables
auto-tuning.

rank setRank(value: Int) 10 The number of latent factors.

regParam/lambda setRegParam(value: Double) 0.01 The regularization factor.

Shttps://issues.apache.org/jira/browse/SPARK-6407.
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Frequent Pattern Mining

Frequent pattern mining has very rapidly become the most sought-after application of data mining due to its
direct influence on sales. A number of algorithms discover such patterns. For instance, the Apriori family of
algorithms uses a “downward closure property”; sub-item sets of an itemset are also frequent. For example,
if books, tea, and gin are frequent itemsets, then so are books and tea, and tea and gin. This property is used
to quickly build itemsets: performing a scan of the data and first finding one-itemsets, then two-itemsets,
and so on. This process requires multiple scans of the data. The FP-growth technique remedies this by first
finding item frequencies and then generating a prefix tree of transactions. This prefix tree is used to generate
candidate sets. MLIib contains a parallel FP-growth approach, which achieves parallelism by partitioning
the transaction prefix space.

As with recommendation systems, the physical activity sensor dataset out of the box does not seem like
a good candidate for frequent pattern mining. You need to make a few cosmetic changes to it before you can
apply FP-growth, but do not despair: this book has another trick up its sleeve. This example finds frequent
activities. The code in Listing 9-13 does so by preprocessing the dataset to emit the sequence of activities
performed by each user. The code is very similar to Listing 9-11, with the difference that instead of <user,
activity, frequency> triples, each line contains unique activity IDs per subject. You can feed this data to
an FP-growth model, which is what you do in the snippet of code in Listing 9-14.

Listing 9-13. Preprocessing the Sensor Activity Dataset for Frequent Itemset Mining

1.  sc.hadoopFile(iPath, classOf[TextInputFormat], classOf[LongWritable], classOf[Text],
sc.defaultMinPartitions)

2. .asInstanceOf[HadoopRDD[Longhritable, Text]]

3. .mapPartitionsWithInputSplit((iSplit, iter) =>

4. iter.map(splitAndLine => (Files.getNameWithoutExtension(iSplit.
asInstanceOf[FileSplit].getPath.toString), splitAndLine. 2.toString.split(" ")
(1))))

5 filter(r => r. 2 = "0")

6. .map(r => (r. 1, r. 2))

7. .distinct()

8 .groupByKey()

9 .map(r => r. 2.mkString(" "))

10. .sample(false, 0.7)
11. .coalesce(1)
12. .saveAsTextFile(oPath)

Similar to Listing 9-12, the FP-growth-based code in 9-14 also refreshes its model in every batch
interval. Minimum support dictates how many transactions an item needs to occur in before it can be
considered frequent (lines 1 and 7). You pass the per interval transactions RDD to the FPGrowth#run
method, which returns the frequent itemsets (line 8). The rest of the code simply prints these itemsets and
their frequencies (lines 10-13).

Listing 9-14. FP-Growth-Based Mining to Determine Frequent Activities in the Physical Activity Dataset

1 val minSupport = 0.4

2

3 ssc.textFileStream(iPath)

4. .map(r => r.split(" "))

5 .foreachRDD(transactionRDD => {
6
7

val fpg = new FPGrowth()
.setMinSupport (minSupport)
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8. val model = fpg.run(transactionRDD)

9.

10. model.freqltemsets

11. .collect()

12. .foreach(itemset => println("Items: %s, Frequency: %s".format(itemset.items.

mkString(" "), itemset.freq)))
13. 1)

So far, you have only looked at machine-learning tasks—preprocessing, feature extraction, prediction,
and so on—in isolation. In the real world, these need to be executed as a pipeline of tasks: one following the
other. Spark 1.2 introduced a new package, ML, which simplifies the construction of such pipelines. Let’s see
what it has to offer.

Streaming ML Pipeline Application

To get your hands dirty with ML, let’s revisit one of the examples you implemented earlier: predicting
whether a sensor reading represents walking or running. The end-to-end ML version of the code is
presented in Listing 9-15.

Listing 9-15. First Streaming ML Pipeline Application

1. package org.apress.prospark

2.

3. dimport scala.reflect.runtime.universe

4.

5. import org.apache.spark.SparkConf

6. import org.apache.spark.SparkContext

7.  import org.apache.spark.ml.Pipeline

8.  dimport org.apache.spark.ml.feature.Normalizer

9. import org.apache.spark.ml.feature.VectorAssembler

10. dimport org.apache.spark.ml.regression.RandomForestRegressor

11. dimport org.apache.spark.sql.SQLContext

12. dimport org.apache.spark.streaming.Seconds

13. dimport org.apache.spark.streaming.StreamingContext

14.

15. object MLPipelineApp {

16.

17. case class Activity(label: Double,

18. accelXHand: Double, accelYHand: Double, accelZHand: Double,
19. accelXChest: Double, accelYChest: Double, accelZChest: Double,
20. accelXAnkle: Double, accelYAnkle: Double, accelZAnkle: Double)
21.

22, def main(args: Array[String]) {

23. if (args.length != 4) {

24. System.err.println(

25. "Usage: MLPipelineApp <appname> <batchInterval> <hostname> <port>")
26. System.exit(1)

27.

28. val Seq(appName, batchInterval, hostname, port) = args.toSeq
29.

30. val conf = new SparkConf()
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31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.

48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
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.setAppName (appName)
.setJars(SparkContext.jar0OfClass(this.getClass).toSeq)

val ssc = new StreamingContext(conf, Seconds(batchInterval.toInt))

val sqlC = new SQLContext(ssc.sparkContext)
import sqlC.implicits.

val substream = ssc.socketTextStream(hostname, port.toInt)

.filter(! .contains("NaN"))

.map(_.split(" "))

filter(f => (1) == "4" || (1) == "5")

-map(f => Array(f(1), f(4), f(5), f(6), f(20), f(21), f(22), £(36), (37), f(38)))

.map(f => f.map(v => v.toDouble))

.foreachRDD(rdd => {

if (lrdd.isEmpty) {

val accelerometer = rdd.map(x => Activity(x(0), x(1), x(2), x(3), x(4), x(5),
x(6), x(7), x(8), x(9))).toDF()
val split = accelerometer.randomSplit(Array(0.3, 0.7))
val test = split(0)
val train = split(1)

val assembler = new VectorAssembler()
.setInputCols(Array(
"accelXHand", "accelYHand", "accelZHand",
"accelXChest", "accelYChest", "accelZChest",
"accelXAnkle", "accelYAnkle", "accelZAnkle"))
.setOutputCol("vectors")
val normalizer = new Normalizer()
.setInputCol(assembler.getOutputCol)
.setOutputCol("features")
val regressor = new RandomForestRegressor()

val pipeline = new Pipeline()
.setStages(Array(assembler, normalizer, regressor))
val model = pipeline.fit(train)
val prediction = model.transform(test)
prediction.show()
}
)

ssc.start()
ssc.awaitTermination()

}
}

You have already seen variants of lines 39-44 in the other examples in this chapter, so they should be

fairly familiar. The real magic happens in the foreachRDD block. ML relies on data frames as the common
data substrate. Therefore, the first order of the day is to convert the input records to a data frame. The
application uses the implicit conversion from a case-class method as described in Chapter 8 (line 47).
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The conversion to a data frame has a positive side effect that you can now use data frame methods to
manipulate the data. For instance, this example uses the randomSplit data frame method to divide the
dataset for testing and training.

The application has three stages: conversion to vector, normalization, and prediction. Each needs to
be initialized separately. For the first part of the pipeline, you use VectorAssembler, which takes as input
an array of data-frame columns and clumps them together into a vector column (lines 52-57). Note that all
components in a pipeline operate on the same data frame—more columns are added to it as it moves down
the pipeline. In the example pipeline, the next task is to normalize the data to ensure similar ranges across
the three accelerometers. The input to the normalizer is the output of the assembler. Learning algorithms in
ML expect an input column called features in the data frame; so, the name features for the output column
of the normalizer is intentional. Similarly, learning algorithms require a label column during the training
phase; that is why the Activity case class for the main data frame contains a label variable for the activity.

The learning algorithm uses a random forest of regression trees (line 61), because they tend to perform
better due to their ensemble approach as opposed to a single regression model. Now that all three parts are
ready, they need to be cobbled together to form a pipeline. The Pipeline object (line 63) accepts as argument
the different stages it needs to run (line 64) and executes them from left to right in the array. The fit method
for the Pipeline object takes as input a data frame for training (line 65). Once the learning is complete, you
can start scoring test data (line 66) via the transform method of the model. That’s it. It is that easy to create
and execute an end-to-end ML pipeline. The next section fleshes out some details of the ML package.

ML

The ML package is designed for complete workflows of machine-learning tasks. These workflows encompass
end-to-end processing of machine-learning pipelines. From normalization and feature extraction to learning
and recommendations, ML covers the entire spectrum. Some of these components are built on top of MLIib
building blocks. To get a handle on the different concepts involved, let’s revisit the example from Listing 9-15.
Figure 9-1 shows the same example in the form of a block flow. Each arrow represents a data frame. There
are two types of high-level components in ML: transformers and estimators (represented by red and green
boxes, respectively, in Figure 9-1). Transformers and estimators in ML-speak are called pipeline stages, and a
pipeline is defined as a flow of stages. So what are transformers and estimators, exactly?

: Random
train | Vector

Assembler

Normalizer Forest
Regressor

Pipeline fit()

transform() Random transform() IRVt s test
Forest Normalizer Nesombler [—

Regressor

PipelineModel

Figure 9-1. Block diagram of the ML application
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Transformers, intuitively, transform a data frame by appending one or more columns to it. For instance,
the VectorAssembler transforms one or more columns by converting them into a single-vector column.
Similarly, the Normalizer transforms a single-vector column into a new column where the values have
been normalized. Under the hood, each transformer implements a transform method that is invoked
by the pipeline. In contrast, estimators are trained on data to create transformers. All learning models
are estimators. For instance, RandomForestRegressor trains on the data frame features column and
produces a PipelineModel object, which can be used for scoring new data. In essence, the PipelineModel
reimplements the entire pipeline by turning all estimators into transformers (the bottom set of blocks
in Figure 9-1). Each estimator implements a fit method to fit a data frame. The ML package contains a
number of transformers and estimators to enable a wide range of machine-learning applications, covering
feature selection, classification, regression, and recommendations.

Both transformers and estimators use a common API for parameters, where each parameter has the
type Param. Parameters to them can be supplied via traditional setters on their objects: for instance, in
Listing 9-15, if you wanted to set the value of P for the normalizer, you could invoke setP(Double) on its
object. The alternative is to use a ParamMap, which as the name suggests is a map of parameters; it can be
passed to the fit() method as shown in Listing 9-16.

Listing 9-16. Setting ML Parameters via ParamMap

1. val pMap = ParamMap(normalizer.p -> 1.0)
2. val model = pipeline.fit(train, pMap)

Cross-Validation of Pipelines

Cross-validation is the process of measuring how well a model will predict unseen data. In addition

to pipelined execution, ML can be used to cross-validate parameters and settings for a pipeline and
automatically select the best set of settings based on an evaluator. Sticking to the example-first approach,
let’s jump into code to learn the ropes. Listing 9-17 extends the previous example (Listing 9-15) with cross-
validation. You create a pipeline as before (line 19). The CrossValidator (line 22) needs to be given the
estimator (pipeline in this case) under evaluation and a metric for evaluation. The latter is provided by an
Evaluator, which takes as input a data frame with labels and predictions and returns a scalar metric to
rate the quality of the prediction. ML provides two evaluators out of the box that cater to regression and
classification, respectively: RegressionEvaluator and BinaryClassificationEvaluator.

CrossValidator validates a complete pipeline by accepting a series of parameters and evaluating the
provided estimator. ML uses the k-folds cross-validation methodology, which divides the dataset into k
equal-sized chunks. Out of these k samples, k-1 are used for training and one is used for testing. This is done
iteratively k times (hence the name k-folds) so that each of the k samples is used as a testing dataset. The
parameter exploration space is provided to CrossValidator via an array of ParamMap, for which you can use
a builder (ParamGridBuilder); its use is shown on lines 25-28. Your evaluation space spans the Normalizer
P-value and RandomForestRegressor number of trees, so you provide an array of values for each. You also
set the value of k to 5 (line 30). Fitting the validator returns the best-performing calibrated pipeline (line 32),
which can then be used to score new data (line 33).

Listing 9-17. Using ML Cross-Validation for Calibrated Model Selection
1.  .foreachRDD(rdd => {

2. if (!rdd.isEmpty) {

3. val accelerometer = rdd.map(x => Activity(x(0), x(1), x(2), x(3), x(4), x(5), x(6),
x(7), x(8), x(9))).toDF()

4. val split = accelerometer.randomSplit(Array(0.3, 0.7))

5. val test = split(o)
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6. val train = split(1)

7.

8. val assembler = new VectorAssembler()

9. .setInputCols(Array(

10. "accelXHand", "accelYHand", "accelZHand",
11. "accelXChest", "accelYChest", "accelZChest",
12. "accelXAnkle", "accelYAnkle", "accelZAnkle"))
13. .setOutputCol("vectors")

14. val normalizer = new Normalizer()

15. .setInputCol(assembler.getOutputCol)

16. .setOutputCol("features")

17. val regressor = new RandomForestRegressor()

18.

19. val pipeline = new Pipeline()

20. .setStages(Array(assembler, normalizer, regressor))
21.

22. val validator = new CrossValidator()

23. .setEstimator(pipeline)

24. .setEvaluator(new RegressionEvaluator)

25. val pGrid = new ParamGridBuilder()

26. .addGrid(normalizer.p, Array(1.0, 5.0, 10.0))
27. .addGrid(regressor.numTrees, Array(10, 50, 100))
28. .build()

29. validator.setEstimatorParamMaps (pGrid)

30. validator.setNumFolds(5)

31.

32. val bestModel = validator.fit(train)

33. val prediction = bestModel.transform(test)

34. prediction.show()

35. )

36. })

This was a primer in Spark ML. The package itself has a lot to offer. Now that you've had a taste of its
use, you can implement your own machine-learning pipelines for real-time data.

Summary

Machine learning fuels data-driven operations across businesses and operations. Every time you surf the
Internet, an entire battery of machine-learning algorithms behind the scenes enhances your experience.
They control everything from your Facebook newsfeed to the Amazon main page and from personalized ads
on any web site to spam email filtering.

This chapter looked at using Spark MLIib and ML to implement scalable predictive analytics and
learning patterns from the data. Feature selection enabled you to reduce the number of features from the
dataset as well as to enhance the impact of features. The majority of the chapter walked you through the
implementation of machine-learning applications encompassing a number of learning algorithms and data
properties. You finished the chapter with the Spark ML package to architect end-to-end machine-learning
pipelines and their calibration and selection.

You are almost at the end of your Spark Streaming journey. The final chapter of this book takes you into
the land of clouds and lambdas. Buckle up.
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CHAPTER 10

Of Clouds, Lambdas, and Pythons/

Clouds come floating into my life, no longer to carry rain or usher storm, but to add color
to my sunset sky.

—Rabindranath Tagore

In the real world, deployments of Big Data systems fit into a larger ecosystem that consists of managed
cloud instances, cluster managers, data stores and warehouses, and so on. Cloud deployments enable
organizations to pass the buck of DevOps to the cloud service provider and thus free them to focus on
application development and business operations. Along with economies of scale, this provides on-demand
horizontal elasticity and simplified scheduling. Similar to other systems, Spark can work in the cloud with
fully managed instances provided by a number of companies including Google (Dataproc), Databricks, and
IBM (Bluemix). No book about Spark would be complete without a discussion of running it in the cloud. In
a similar vein, applications in an organization evolve over time and vary widely in terms of programming
languages and models. This may be for legacy reasons (dragging an old stack), practitioner preference (data
scientists love Python), or system limitations (a platform may only have an API in a particular language). For
these reasons and more, Scala may not be the language of choice for Spark applications across the board. In
this chapter, you also get your hands dirty with the Spark Python API.

Applications running in the cloud do not follow one monolithic design or ingest a single type of data.
An increasingly large class of applications requires blending data in motion (real-time data) with data at rest
(historical batch data). Examples of such applications include training a machine-learning model in batch
mode with historical data and then using it in real time to score streaming data, filtering streaming data
before landing it in a data warehouse for business intelligence, and serving requests from a real-time system
while the batch system recalculates the view. The last example constitutes a popular paradigm known as the
Lambda Architecture, which is another topic of discussion in this chapter.

Finally, many relations and datasets in the wild can be represented as large graphs and their applications
as graph problems. All of Facebook can be turned into a massive graph of users and pages. Similarly, search
engines like Google map the World Wide Web to a graph with 30 billion nodes. Algorithms similar to PageRank
are then used to determine the popularity and relevance of every web page. The sizes of some of these graphs
are on the order of petabytes, which means analyzing them requires the use of distributed Big Data platforms
like Spark. To cater to such applications, this chapter wraps up by analyzing streaming graphs.

The very last set of applications in the book involve location-based services and, in particular, how they
blend the offline and online worlds. For instance, a single star improvement in the rating of a small business
on Yelp leads to a 5% to 9% increase in revenue.' To enable such analytics, in this chapter you use a publicly
available dataset from Yelp with rich data for businesses, check-ins, users, tips, and reviews.

'Brad Plumer, “How Yelp Is Killing Chain Restaurants,” The Washington Post, October 3, 2011, https://www.
washingtonpost.com/blogs/ezra-klein/post/how-yelp-is-killing-chain-restaurants/2011/10/03/
gIQAokJVHL_blog.html.

© Zubair Nabi 2016 199
Z. Nabi, Pro Spark Streaming, DOI 10.1007/978-1-4842-1479-4_10

www.it-ebooks.info


https://www.washingtonpost.com/blogs/ezra-klein/post/how-yelp-is-killing-chain-restaurants/2011/10/03/gIQAokJvHL_blog.html
https://www.washingtonpost.com/blogs/ezra-klein/post/how-yelp-is-killing-chain-restaurants/2011/10/03/gIQAokJvHL_blog.html
https://www.washingtonpost.com/blogs/ezra-klein/post/how-yelp-is-killing-chain-restaurants/2011/10/03/gIQAokJvHL_blog.html
http://www.it-ebooks.info/

CHAPTER 10 - OF CLOUDS, LAMBDAS, AND PYTHONS

A Good Review Is Worth a Thousand Ads

Online social media is on course to replace traditional media as the focal point for marketing and
advertising. This is due to its wider reach, richer semantics for microsegmentation, and dynamic
personalization. In addition, review platforms such as Yelp have changed the face of how marketing works:
rather than putting ads up, businesses can rely on the good word (hopefully) of ordinary users to attract
more customers to their establishments. These reviews follow a five-star rating model along with more
detailed freestyle textual reviews. Even simple check-ins are an effective medium for creating buzz about a
business.

Yelp has been sharing a limited set of its data with the research community for crowd-sourced analytics
as part of the Yelp Dataset Challenge. The data from the current round (7) of the challenge spans 10 cities
across 4 countries (listed in Table 10-1).> The dataset consists of 5 files, each of which contains JSON records
for 2.2 million reviews, 591,000 tips, 552,000 users, 77,000 businesses, and check-ins, respectively. It also
cumulatively includes 566,000 attributes (for instance, being child friendly) for the businesses. Finally,
because Yelp is also a social network, the data includes 3.5 million connections among the users. An
auxiliary dataset also contains 200,000 pictures for the businesses in the main dataset. You drill down into
the attributes of each data file as you use them over the course of this chapter.

Table 10-1. Cities Represented in the Yelp Dataset Challenge

Country Cities

Scotland Edinburgh

Germany Karlsruhe

Canada Montreal and Waterloo

United States Charlotte, Las Vegas, Madison, Phoenix, Pittsburgh, Urbana-Champaign

Google Dataproc

Dataproc is Google’s YARN-as-a-service platform. It has out-of-the-box support for Hadoop, Hive, Pig, and
Spark. The unit of allocation in Dataproc is a cluster, which is a self-contained environment with a YARN
resource manager and node managers. These are executed on Google Compute Engine virtual machine
instances, which are provisioned on demand. Dataproc applications can also integrate with other Google
cloud services such as Cloud Storage, BigQuery, and Cloud Bigtable.

Dataproc is one of the many services offered in the Google Cloud Platform, as listed in Table 10-2.
Google Cloud Platform is rapidly turning into a one-stop shop for everything cloud related. Let’s set up a
Dataproc project and then run an application on top of it.

*https://www.yelp.com/dataset_challenge/.
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Table 10-2. Briefintroduction to some of the services in Google Cloud Platform

Service Category Description

App Engine Compute Platform as a service for web apps and back ends

Compute Engine Compute Infrastructure as a service with virtual machines to run
arbitrary applications

Container Engine Compute Docker container execution as a service built on top of
Kubernetes

HTTP load balancing Network Load balancing for HTTP traffic among Compute Engine/
Container Engine instances/containers

Network load balancing Network Load balancing for arbitrary TCP/UDP traffic

Cloud DNS Network Global DNS as a service

Cloud Bigtable Storage Bigtable (HBase) NoSQL data storage as a service

Datastore Storage ACID transactions on top of Bigtable

Cloud Storage Storage Cloud-based, durable, flat object storage

Cloud SQL Storage MySQL as a service

BigQuery Big Data SQL queries against petabyte-scale, append-only tables

Pub/Sub Big Data High-throughput messaging using the publisher/
subscriber model

Dataproc Big Data Hadoop, Spark, Pig, and Hive on top of YARN as a service

Dataflow Big Data Combined batch processing and stream processing with a

Flume]Java-like API

Genomics Big Data Storage and processing of Genomics data using other
services including BigQuery and Bigtable

SETTING UP GOOGLE CLOUD PLATFORM DATAPROC

Go to https://cloud.google.com/dataproc/, and click Try It Free.

Log in using your Google account credentials.

Sign up for a free Google Cloud Platform Account.® You need to provide debit/credit card details.
Install the gcloud command-line tool:

$ curl https://sdk.cloud.google.com | bash
$ exec -1 $SHELL
$ gcloud init

Go to https://console.cloud.google.com/, and click the Products & Services tab (represented by
three horizontal lines) as shown in Figure 10-1.

3At the time of writing, Google is offering $300 of free credit for 60 days for new accounts.
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= Google Cloud Platform Q

ﬁ- Home Dashboard

Ij!  Dashboard

Project: Zubair's Project
= Activity

Figure 10-1. Accessing the Products & Services menu for Google Cloud Platform

Clicking the button displays a scrollable menu, as shown in Figure 10-2.

) Google Cloud Platform

f4 Home

API APl Manager
B Billing

A  Cloud Launcher

° Permissions

COMPUTE

0

-@- App Engine
{sf Compute Engine
@ Container Engine

Networking

Figure 10-2. GCP Products & Services menu
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Scroll down to the Big Data part of the menu, and select Dataproc (Figure 10-3).
BIG DATA
@  BigQuery
. Pub/Sub
5 Dataproc
$ Dataflow

Genomics

e
jistl

Figure 10-3. Selecting Dataproc from the Big Data services provided by Google Cloud Platform

Selecting Dataproc takes you to the screen in Figure 10-4, which tells you to enable billing before you
can use Dataproc. If you are using a preconfigured GCP project, you can skip the next two steps.

Clusters

You can use Cloud Dataproc after you enable billing

Pay only for what you use. Learn more about Cloud Dataproc pricing

Figure 10-4. Billing needs to be enabled before using Dataproc

Click Enable Billing to go to the Billing Account setup screen (Figure 10-5).
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Set the billing account for project “API Project”
Billing account

l My Billing Account gl

Set account eI

Figure 10-5. Enabling a billing account for your GCP project

Go back to the Dataproc dashboard, and you should be able to create a cluster, as shown in Figure 10-6.

Cloud Dataproc
Clusters

Google Cloud Dataproc lets you provision Hadoop clusters and
connect to underlying analytic data stores

Create your first cluster to get started.

Create cluster

Figure 10-6. Dataproc cluster-creation screen

Clicking Create Cluster takes you to the screen in Figure 10-7, because the Compute Engine APl needs
to be enabled first. Go to the Compute Engine dashboard to enable it.

Error

Failed to load networks

Access Not Configured. The APl (Compute Engine API) is not enabled for your
project. Please use the Google Developers Console to update your configuration.

v Details

Figure 10-7. The Compute Engine API needs to be enabled before you can use Dataproc

You should now be able to create a Dataproc cluster.
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First Spark on Dataproc Application

The Yelp dataset also contains a number of features about businesses.* For each business, these features
include its location, full address, and the reviews it has received. For restaurants, the dataset also contains
qualitative information such as whether the location is child friendly and whether it accepts credit cards.
Listing 10-1 contains the JSON template for this dataset.

Listing 10-1. JSON Blueprint of the Business Dataset

1. |

2. "business_id":"<anonymized id>",
3. "full_address":"<street address>",
4. "hours": {

5. "<day_of week>":{

6. "close":"<HH:MM>",

7. "open":"<HH:MM>"

8. }

9. 15

10. "open":<true/false>,

11. "categories":[

12. <list_of categories such_as_restaurant>
13. 1,

14. "city":"<self explanatory>",

15. "review_count":<number_of reviews>,
16. "name":"<self_explanatory>",

17. "neighborhoods": [

18. <list_of neigborhood names>

19. 1,

20. "longitude":<self explanatory>,
21. "state":"<self explanatory>",

22. "stars":<star_count>,

23. "latitude":<self_explanatory>,

24. "attributes":{

25. <key value pairs of attributes>
26. },

27. "type":"business"

28. }

One of the attributes is Wi-Fi, with three fairly obvious values: no, free, and paid. An interesting
application would be to figure out whether there is any correlation between having WiFi access and the
rating of an establishment. The code for this application is in Listing 10-2. It reads data from a socket (line 32)
and converts each record to a JSON object (line 35). The application requires only two features, WiFi
presence and star rating, so you confine yourself to records that contain the latter (lines 37-39) and convert
them into key-value pairs where the key is the WiFi type and the value is the star rating (lines 40-43).

To calculate the average rating per WiFi type, you exercise a custom combineByKey transform to get an
overall sum and count and a subsequent map operation to perform the actual average (recall Listing 3-18
in Chapter 3).

“‘Contained in yelp_academic_dataset_business.json.
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Listing 10-2. First Spark on Dataproc Application to Compare the Ratings of Restaurants With and Without

package org.apress.prospark

org.apache.spark.HashPartitioner
org.apache.spark.SparkConf
org.apache.spark.SparkContext
org.apache.spark.streaming.Seconds
org.apache.spark.streaming.StreamingContext
org.apache.spark.streaming.dstream.DStream.toPairDStreamFunctions
org.json4s.DefaultFormats
org.json4s.JsonAST.INothing
org.jsonds.jvalue2extractable
org.jsonds.jvalue2monadic
org.json4s.native.JsonMethods.parse
org.jsonds.string2JsonInput

DataProcApp {

def main(args: Array[String]) {

Free WiFi

1.

2.

3.  dimport
4. import
5. import
6. dimport
7. import
8. import
9. dimport
10. import
11. import
12. import
13. import
14. import
15.

16. object
17.

18.

19. if
20.

21.

22.

23.

24. va
25.

26. va
27.

28.

29.

30. va
31.

32. SS
33.

34.

35.

36.

37.
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(args.length != 4) {
System.err.println(

"Usage: DataProcApp <appname> <batchInterval> <hostname> <port>")
System.exit(1)

1 Seq(appName, batchInterval, hostname, port) = args.toSeq

1 conf = new SparkConf()
.setAppName (appName)
.setJars(SparkContext.jarOfClass(this.getClass).toSeq)

1 ssc = new StreamingContext(conf, Seconds(batchInterval.toInt))

c.socketTextStream(hostname, port.toInt)
.map(r => {
implicit val formats = DefaultFormats
parse(r)
1))
.filter(jvalue => {
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jvalue \ "attributes" \ "Wi-Fi" != JNothing

)

.map(jvalue => {
implicit val formats = DefaultFormats
((jvalue \ "attributes" \ "Wi-Fi").extract[String], (jvalue \ "stars").
extract[Int])

b))

.combineByKey (
(v) = (v, 1),
(accValue: (Int, Int), v) => (accValue. 1 + v, accValue. 2 + 1),
(accCombine1: (Int, Int), accCombine2: (Int, Int)) => (accCombinel. 1 +
accCombine2. 1, accCombinel. 2 + accCombine2. 2),
new HashPartitioner(ssc.sparkContext.defaultParallelism))

.map({ case (k, v) => (k, v. 1/ v. 2.toFloat) })

.print()

ssc.start()
ssc.awaitTermination()

This application consumes the Yelp businesses JSON data via the SocketDriver. The only minor

change you need to make is to replace line 1 in Listing 9-2 (AbstractDriver) with this:

else if (ext.equals("dat") || ext.equals("json"))

To run the application on Dataproc, create a JAR from it using sbt assembly. To complete the story, let’s

create a Dataproc cluster.
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CREATING A DATAPROC CLUSTER

Go to the Google Cloud Platform dashboard, and from the Big Data section of the Products & Services
menu, select Dataproc. Finally, click Create cluster (Figure 10-6).

Create a cluster based on your requirements. Figure 10-8 shows the configuration for a bare minimum cluster.

Create a Cloud Dataproc cluster
Name

first-spark-cluster

Zone

us-centrall-b -

Master node
Contains the YARN Resource Manager, HDFS NameNode, and all job drivers

Machine type Primary disk size (minimum 10 GB)
nl-standard-2 (2vCPU,7.50GB... ~ 10 GB
Worker nodes

Each contains a YARN NodeManager and a HDFS DataNode.
The HDFS replication factor is 2.

Machine type Nodes (minimum 2)
n1-standard-2 (2vCPU,7.50GB... ~ 2

Primary disk size (minimum 10 GB) Local SSDs (0-4)
10 GB 0 x 375GB
YARN cores YARN memory
4 12.0GB

> Preemptible workers, bucket, network, version, initialization, & access options

Figure 10-8. Creating a bare minimum cluster on Dataproc
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This creates and launches a cluster and takes you to a screen similar to the one in Figure 10-9.

Clusters

Name ~

0 first-spark-cluster us-centrall-b 2 dataproc-82114910-5b14-4723-83bc-e0dcb0489297-us Feb 27,2016, 11:0

Figure 10-9. Details of a running Dataproc cluster

1:07:12 PM Running

Clicking the name of the cluster leads you to the dashboard for that cluster (Figure 10-10). In this
dashboard, you can see the resource consumption (CPU, disk, and memory) of the cluster at different
time scales in the form of graphs. In addition, you can get details of running jobs, VM instances that

constitute the cluster, and the configuration.

@ first-spark-cluster

Overview Jobs VM Instances Configuration

CPU utilization ~ Thour | 6hours | 12hours | 1day | 2days  4days 7 days | 14 days 30 days
CPU
% CPU
—8
40
30
20
10
Feb 29,11:15 PM Feb 29, 11:30 PM Feb 29, 11:45PM Mar 1 Mar 1.12121%.1I
M cpu: 46.79
Figure 10-10. Central dashboard for a Dataproc cluster
The VM Instances tab lists all the instances in the cluster, as shown in Figure 10-11. As mentioned
earlier, all of these VMs are Compute Engine instances. Therefore, selecting an instance takes you to its
Compute Engine dashboard. You can see the three instances (one master plus two workers) that you
just created.
& first-spark-cluster
Overview Jobs VM Instances Configuration
& first-spark-cluster-m Master
& first-spark-cluster-w-0 Worker
& first-spark-cluster-w-1 Worker
Figure 10-11. VM instances in a Dataproc cluster
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RUNNING A SPARK APPLICATION ON DATAPROC

After creating a Dataproc cluster, you are ready to execute your Spark application on top of it. There are
three ways to run an application on Dataproc:

Dataproc console
e gcloud command-line tool
e RESTAPI

To begin, let’s use the console.

After creating a JAR from the application, you need to copy it over to the cluster. There are three
locations to provide the JAR for execution:

e (CS
e HDFS
e Local FS on the cluster

This example takes the HDFS route. The first step is to copy the JAR to the cluster, for which you use the
gcloud command-line tool. You simply transfer it to the master node (first-spark-cluster-min this
case) using

gcloud compute copy-files Chap10-assembly-1.0.jar first-spark-cluster-m:~/

Once the JAR has been uploaded to the cluster, you need to transfer it to HDFS. Let’s first SSH into the
master node:

gcloud compute --project "<your gcloud project id>" ssh --zone "us-centrali-b" "first-
spark-cluster-m"

Then, from that master node, you can transfer the JAR to HDFS:

hdfs dfs -copyFromLocal Chap10-assembly-1.0.jar /

You also execute the SocketDriver on the master node to feed data to your Spark Streaming
application. Execute the SocketDriver before running the Spark application. You obviously first need to
copy the data to the master node:

gcloud compute copy-files yelp academic_dataset_business.json first-spark-cluster-m:~/

Now that everything has been set up, you can run the job. In the Dataproc dashboard, click the Jobs
button on the left, and then click Submit Job. This is shown in Figure 10-12.

210

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 10 OF CLOUDS, LAMBDAS, AND PYTHONS

& Cloud Dataproc Jobs

AR | smitjob JC

i=  Jobs
= Jobs

Figure 10-12. Submitting a job to Dataproc

Fill out the prompt with parameters to run the JAR, as shown in Figure 10-13, and then click Submit.

Submit a job
Cluster
first-spark-cluster -

Job type
Spark -

Jar files

hdfs:///Chap10-assembly-1.0.jar

Main class or jar
org.apress.prospark.DataProcApp -

Arguments
first-spark-dataproc-app
1
first-spark-cluster-m

9000

Properties

| + Add item

Figure 10-13. Entering details for the Spark job
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After the job is submitted, you are taken to the screen in Figure 10-14.

Jobs
() 60845dad-6c38-4e33-b814-9d6a0fa7b387  Spark  first-spark-cluster  Feb 28,2016, 12:23:28 AM 53 sec Running

Figure 10-14. List of running Dataproc jobs

Click the job ID to jump to the console output of the Spark application. You see output similar to that in
Figure 10-15. As it turns out, restaurants where the WiFi is paid have a lower rating than establishments
with no WiFi at all! This may be because customers believe the price of the WiFi should be factored

into the price of the food, for instance. On the other hand, restaurants with free WiFi have the best star
ratings on average.

Time: 1456654705000 ms

(free,3.3432598)
(paid,2.9493334)
(no,3.279969)

Figure 10-15. Output of the WiFi and star rating Spark application

This was a first taste of Dataproc. In the next section, you kill two birds with one stone by using Dataproc
to execute a Spark Streaming Python application.

PySpark

Although Spark is implemented in Scala, it has bindings for a number of languages include Java, Python,
and C#. Of these, Python is a very popular choice especially in the data science community, due to its
succinct syntax and rich set of powerful libraries such as NumPy, SciPy, matplotlib, and pandas. These
libraries are limited by the capabilities of a single machine, whereas most datasets require parallel
processing for timely and accurate results. That is where PySpark comes in. As the name suggests, PySpark
is a Python front end for Spark. Under the hood, it uses py4j° to directly invoke Java objects from the
Python interpreter. As a result, there is an almost one-to-one mapping between the Scala API and its
equivalent in Python. As an example, let’s reimplement the Scala code from Listing 10-2 in Python. The
Python port is shown in Listing 10-3.

Asyou can see, the code is almost identical to the Scala version. The only two major differences are the
lack of a fluent API in Python and the difference in lambda functions.

Shttps://www.py4j.org/.
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Listing 10-3. Your First PySpark Application

1.  from pyspark import SparkContext

2. from pyspark.streaming import StreamingContext

3. from sys import argv, exit

4. try: import simplejson as json

5. except ImportError: impoxrt json

6.

7. if len(argv) != 5:

8. print 'Usage: yelp pyspark.py <appname> <batchInterval> <hostname> <port>'
9. exit(-1)

10.

11. appname = argv[1]

12. batch_interval = int(argv[2])

13. hostname = argv[3]

14. port = int(argv[4])

15.

16. sc = SparkContext(appName=appname)

17. ssc = StreamingContext(sc, batch_interval)

18.

19. records = ssc.socketTextStream(hostname, port)

20. json_records = records.map(lambda rec: json.loads(rec))
21. restaurant_records = json records.filter(lambda rec: 'attributes' in rec and 'Wi-Fi' in

rec[ 'attributes'])

22. wifi pairs = restaurant records.map(lambda rec: (rec['attributes']['Wi-Fi'],
rec['stars']))

23. wifi_counts = wifi_pairs.combineByKey(lambda v: (v, 1),

24. lambda x, value: (x[0] + value, x[1] + 1),

25. lambda x, y: (x[o] + y[0], x[1] + y[1]))

26. avg_stars = wifi_counts.map(lambda (key, (sum_, count)): (key, sum_ / count))

27. avg_stars.pprint()

28.

29. ssc.start()

30. ssc.awaitTermination()

You are going to deploy this application to Dataproc for execution using the gcloud command-line tool.
Copy the code from Listing 10-3 to a file, say, yelp_pyspark.py. As before, run the SocketDriver on the
master node first. Once it is up and running, submit the application to Dataproc using the following on your
local machine:

gcloud beta dataproc jobs submit pyspark --cluster first-spark-cluster yelp pyspark.py
first-pyspark-dataproc-app 1 first-spark-cluster-m 9000

The gcloud command-line tool takes care of transferring the Python code to the cluster and also
connecting the output of the Spark console with your terminal.

You can alternatively run this application on a local cluster. You first need to install Py4] by using pip
and then add PySpark to the PYTHONPATH

pip install py4j
export PYTHONPATH=$SPARK HOME/python/:$PYTHONPATH
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Once PySpark is set up, submit the application by using the spark-submit script:

$SPARK_HOME/bin/spark-submit yelp pyspark.py first-pyspark-dataproc-app 1 <hostname of_
machine_running_socketdriver> 9000

It was that simple to write a Spark Streaming application in Python and execute it on top of a Dataproc
cluster. This was just an introduction to both topics—both have much more to offer.

Lambda Architecture

Imagine you are working on an application, which will allow anyone to query the Yelp rating of a business
broken down by a given timestamp. The granularity of timestamps can vary from minutes to days depending
on the SLA. Let’s assume that there is only one type of query: the number of positive or negative ratings for

a given business ID. Considering that 30,000 reviews are posted every minute on Yelp and 25,000 pictures
are uploaded each day,® the queries would be very expensive to compute on the fly. To remedy this, queries
need to be precomputed.

In Chapter 1, you briefly touched upon the CAP theorem, which unpins the design of most
contemporary distributed systems. Under its 2 out of 3 (consistency, availability, and partition tolerance)
rule, users have to explicitly incorporate these trade-offs. Considering that partition tolerance is a given due
to the commodity off the shelf hardware-based design of distributed systems, the actual trade-off is between
consistency and availability. Going back to your example, if you focus on consistency that means all the
queries will always get the correct rating but considering the sheer size of the data, precomputing views
will take a very long time leading to bouts of service unavailability. On the other hand, implementing for
availability would mean that some queries may not reflect the most recent ratings.

For web scale applications, the choice is obvious: availability. This has the implication that the system
will be eventually consistent, that is, when all distributed replicas of data are able to talk to each other they
will agree on a state of the system. But achieving consensus is easier said than done. Just like humans, it
is non-trivial to get systems to agree on an answer as well. Should the most recent answer be considered?

Or the average of all answers? Or the one with the highest cardinality? Clearly this cannot be decided
upon by the storage system itself and the buck needs to be passed back to the user application. In turn the
application would perform read or write repair in a lazy fashion using various algorithms, such as vector
clocks. Unfortunately, these mechanisms are very hard to implement and maintain in user applications.

Most inconsistencies stem from the fact that applications perform append, update, and delete
operations. What if you could relax those conditions to only allow append operations, essentially make the
data immutable, wherein records are incrementally added to the data store. In this model, an update is
implemented by appending a new record that supersedes the previous one by say maintaining an ordering via
timestamps. The same goes for deletions: if an event is no longer valid, say that Barack Obama is the President
of the US, rather than deleting its record, you can just append another record with the name of the new
President. You can achieve eventual consistency by rerunning the query over the entire dataset periodically,
that is, the only inconsistency would occur when new data arrives while you are in the precomputation phase.

Let’s look at two different ends of the design spectrum for implementing such an application. Batch
processing a la Hadoop fits the bill very well. It can process bulk data in a scalable fashion. As more data is
appended, you can rerun the MapReduce job on the entire dataset, which in essence is a transaction. In case
of failure, missing state can be recovered by re-executing failed tasks. The downside is that the query will
become stale eventually. At the opposite end of the spectrum is stream processing, which can potentially
bring down the latency of the query to near real time. This comes at a cost, though: the entire state must be
maintained in memory, which requires an almost untenable amount of memory. What if you could get the
best of both worlds? One such design is sketched out in Figure 10-16.

Craig Smith, “By the Numbers: 50 Amazing Yelp Statistics,” DMR, April 1, 2016, http://expandedramblings.com/
index.php/yelp-statistics/.
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Real-time
Data
Store

Real-time
Processing

Distributed Batch
Filesystem Processing

Figure 10-16. Blending real-time processing with batch processing to implement a data-querying system

The architecture in Figure 10-16 has three layers: the real-time or speed layer, which computes results
for a specific number of time units; the batch layer, which computes results for the entire dataset (starting at
T=0) periodically with newly appended data; and the serving layer, which serves queries by merging results
from the online and offline views. Every time a new record is generated by the data source (the grey box in
the figure), it makes its way to both layers. For the real-time layer, it is instantly consumed, and the result is
written to a data store optimized for real-time computation. On the batch layer, the data is first written to an
append-only distributed filesystem. A batch-processing job is kicked off periodically to recompute the view
over the entire dataset and write it to a batch data store. The real-time layer is refreshed every time the batch
job completes. Every time a user query comes in (at extreme right in the figure) the results for a key—the
Yelp business ID in this case—is computed on the fly by merging values from the real-time and batch data
stores. In essence, the real-time view masks away the latency of the batch layer.

This design is known as the Lambda Architecture.” It was conceived by Nathan Marz, the creator of
the popular Apache Storm stream-processing system. Let’s implement the Lambda Architecture using
a combination of Spark Streaming and Google Cloud Platform. Spark is a great system to implement the
Lambda Architecture because it provides a unified API and execution engine for both batch and real-time
processing. In addition, Spark SQL simplifies the implementation of typical queries, which revolve around
aggregations, rollups, and cubes. Finally, the integration of Spark with other Big Data systems, such as
message queues, key value stores, and distributed file systems, enables end-to-end applications.

Lambda Architecture using Spark Streaming on Google Cloud Platform

Listing 10-4 provides the code for this implementation. For the real-time layer, you use Spark Streaming
in concert with Cloud BigTable. The batch layer, on the other hand, is implemented using BigQuery. The
application uses the Yelp reviews dataset to determine the positive and negative ratings of a business ID at
different aggregation levels (basically, a SQL rollup operation). The application is ready to be deployed to
Dataproc for execution.

Let’s walk through the code to understand the specifics.

"Nathan Marz, “How to Beat the CAP Theorom,” Thoughts from the Red Planet, October 13, 2011, http://nathan-
marz.com/blog/how-to-beat-the-cap-theorem.html.
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Listing 10-4. Lambda Architecture Using Spark Streaming, Cloud BigTable, BigQuery, and Dataproc

1. package org.apress.prospark

2.

3.  import org.apache.hadoop.conf.Configuration

4. import org.apache.hadoop.hbase.HBaseConfiguration

5. import org.apache.hadoop.hbase.client.Put

6. import org.apache.hadoop.hbase.mapreduce.TableOutputFormat

7. dimport org.apache.hadoop.hbase.util.Bytes

8.  import org.apache.spark.SparkConf

9. import org.apache.spark.SparkContext

10. dimport org.apache.spark.rdd.RDD.rddToPairRDDFunctions

11. dimport org.apache.spark.streaming.Seconds

12. dimport org.apache.spark.streaming.StreamingContext

13. dimport org.apache.spark.streaming.dstream.DStream.toPairDStreamFunctions

14. import org.json4s.DefaultFormats

15. dimport org.json4s.jvalue2extractable

16. dimport org.jsonds.jvalue2monadic

17. dimport org.json4s.native.JsonMethods.parse

18. dimport org.json4s.string2JsonInput

19. dimport com.google.cloud.hadoop.io.bigquery.BigQueryConfiguration

20. import com.google.gson.JsonObject

21. import com.google.cloud.hadoop.io.bigquery.BigQueryOutputFormat

22. dimport org.apache.hadoop.io.Text

23.

24. object LambdaDataprocApp {

25.

26. def main(args: Array[String]) {

27. if (args.length != 14) {

28. System.err.println(

29. "Usage: LambdaDataprocApp <appname> <batchInterval> <hostname> <port>

<projectid>"

30. + " <zone> <cluster> <tableName> <columnFamilyName> <columnName>
<checkpointDir>"

31. + " <sessionlLength> <bgDatasetId> <bqTableId>")

32. System.exit(1)

33.

34. val Seq(appName, batchInterval, hostname, port, projectId, zone, clusterId,

35. tableName, columnFamilyName, columnName, checkpointDir, sessionlLength,

36. bgDatasetId, bqTableId) = args.toSeq

37.

38. val conf = new SparkConf()

39. .setAppName (appName)

40. .setJars(SparkContext.jar0OfClass(this.getClass).toSeq)

41.

42. val ssc = new StreamingContext(conf, Seconds(batchInterval.toInt))

43. ssc.checkpoint(checkpointDir)

44.

45. val statefulCount = (values: Seq[(Int, Long)], state: Option[(Int, Long)]) => {

46. val prevState = state.getOrElse(0, System.currentTimeMillis())

47. if ((System.currentTimeMillis() - prevState. 2) > sessionlLength.tolong) {

48. None
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} else {
Some(values.map(v => v. 1).sum + prevState. 1, values.map(v => v. 2).max)

}

}
val ratings = ssc.socketTextStream(hostname, port.toInt)
.map(r => {
implicit val formats = DefaultFormats
parse(r)
H

.map(jvalue => {
implicit val formats = DefaultFormats
((jvalue \ "business id").extract[String], (jvalue \ "date").extract[String],
(jvalue \ "stars").extract[Int])

H

.map(rec => (rec. 1, rec. 2, if (rec._3 > 3) "good" else "bad"))

ratings.map(rec => (rec.productIterator.mkString(":"), (1, System.
currentTimeMillis())))
.updateStateByKey(statefulCount)
.foreachRDD(rdd => {
val hbaseConf = HBaseConfiguration.create()
hbaseConf.set("hbase.client.connection.impl", "com.google.cloud.bigtable.
hbase1l 1.BigtableConnection")
hbaseConf.set("google.bigtable.project.id", projectId)
hbaseConf.set("google.bigtable.zone.name", zone)
hbaseConf.set("google.bigtable.cluster.name", clusterId)
hbaseConf.set(TableOutputFormat.OUTPUT TABLE, tableName)
val jobConf = new Configuration(hbaseConf)
jobConf.set("mapreduce.job.outputformat.class", classOf[TableOutputFormat[Te
xt]].getName)
rdd.mapPartitions(it => {
it.map(rec => {
val put = new Put(rec. 1.getBytes)
put.addColumn(columnFamilyName.getBytes, columnName.getBytes, Bytes.
toBytes(rec. 2. 1))
(rec. 1, put)
1)
}) . saveAsNewAPIHadoopDataset (jobConf)

1

ratings.foreachRDD(rdd => {
val bgConf = new Configuration()

val bqTableSchema =
"[{'name’: 'timestamp', 'type': 'STRING'}, {'name': 'business id', 'type':
"STRING'}, {'name': 'rating', 'type': 'STRING'}]"
BigQueryConfiguration.configureBigQueryOutput(
bqConf, projectId, bgqDatasetId, bqTableId, bqTableSchema)
bgConf.set("mapreduce.job.outputformat.class",
classOf[BigQueryOutputFormat[ , _]].getName)
rdd.mapPartitions(it => {
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95. it.map(rec => (null, {

96. val j = new JsonObject()

97. j.addProperty("timestamp", rec. 1)
98. j.addProperty("business_id", rec. 2)
99. j.addProperty("rating", rec. 3)
100. j

101. )

102. }) . saveAsNewAPIHadoopDataset (bgConf)
103. H

104.

105. ssc.start()

106. ssc.awaitTermination()

107.

108. }

109.

110. }

Similar to Listing 10-2, the application relies on the SocketDriver for data production. Therefore, before
running the application, feed the SocketDriver the review dataset (yelp_academic_dataset_review.json).
The structure of the JSON object in the review dataset is outlined in Listing 10-5.

Listing 10-5. JSON Blueprint of the Review Dataset

{

"votes": {

"funny": <counts,

"useful": <county,

"cool": <counts
}5
"user_id": "<anonymized_id»>",
"review id": "<anonymized_id>",
"stars": <county,
"date": "<YYYY:MM:DD»",
"text": "<free form texts",
"type": "review",
"business_id": "<anonymized_id>"

W ooNOUVTL B~ WN B
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}

The application reads this data from a socket (line 54) and projects the business_id, date, and stars
fields from the JSON object (lines 55-62). You then categorize records as good if the number of stars is
greater than three or bad otherwise (line 63). This resulting stream is divided into two flows: one for real-
time processing and the other for batch processing.

The real-time pipeline puts its data in Cloud BigTable, which is a fully managed, cloud-based version
of BigTable from Google with an HBase-compatible API. You model the layout such that the row key is a
concatenation of the business ID, timestamp, and rating category (good or bad) (line 65). With each key, you
also need to maintain the count across batches, for which you use an updateStateByKey operation. The
real-time pipeline needs to be flushed every time the batch view has been updated in BigQuery. Specifically,
you need to remove keys from the updateStateByKey. So, you associate a session-length value with each
record, which is simply the time before you expire a key. To implement this, you insert the current system
time into each record (line 65) and remove the key if it has exceeded the session length (lines 47-49) in the
statefulCount function. Ideally, this session-length value should be equal to the latency of the batch layer.
For instance, if the batch job is kicked off every hour, the value of the session length should be 3600.
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CREATING A CLOUD BIGTABLE CLUSTER

Log in to the Google Cloud Platform dashboard, and, from the Storage section of the Products &
Services menu, select Bigtable. Click Create Cluster in the next screen.

Use Figure 10-17 as reference to set up your cluster.

Name
first-bigtable-cluster
Cluster ID
first-bigtable-cluster
Zone
us-centrall-b -
Nodes (3 - 30)

Add nodes to increase data throughput and queries per second (QPS). Contact us
to request move than 30 nodes

3

Performance
The disk type and number of nodes in your cluster determine performance. See

below for details.

Reads Writes Scans
30,000 QPS @ 6ms 30,000QPS @ 6ms 660 MB/s

Cost
Storage cost depends on disk type and GB stored per month. Nodes cost depends
on total nodes used per hour.

Storage cost Nodes cost
$0.17 per GB/month $1.95 per hour

cace

Figure 10-17. Creating a Cloud BigTable cluster
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Go to the API Manager in the Products & Services menu, and enable the API for Cloud Bigtable.

You can also configure the HBase shell to talk to the Bigtable deployment.?

The rest of the real-time layer code writes the row keys and values to Bigtable using the HBase API.
Notice that the code is almost identical to Listing 6-12 in Chapter 6. The only difference is in terms of
additional configuration parameters for Bigtable, such as the project ID, cluster ID, and cluster zone
(lines 69-72).

The batch part of the application relies on BigQuery, which is another fully managed storage
service from Google that allows SQL queries against append-only tables. It achieves performance
and scalability by using aggregation trees and columnar storage. The unit of creation in BigQuery
is a dataset, which can contain many tables. The batch layer in Listing 10-4 (lines 88-103) simply
writes each record verbatim to BigQuery. The BigQuery execution layer in SQL can then be used to
periodically re-create precomputed views.

The BigQuery connector for Spark treats BigQuery as just another Hadoop-compatible storage system.
This means you can use saveAsNewAPIHadoopDataset to write to BigQuery. The only thing you need to do in
the foreachRDD clause is to provide a schema for the BigQuery table (line 89) and configuration information
(lines 90-93). You follow a simple schema with a column each for business ID, timestamp, and rating type.
For BigQuery, each record needs to be converted to JSON, which is what you do in lines 96-99. Voila—your
Lambda Architecture application is ready for execution.

To execute the application, first add the dependencies from Listing 10-6 to your sbt build definition file.
Make sure you have enabled the APIs for both BigQuery and Bigtable in the GCP console. In addition, you
need to create a table with a single column family in Bigtable. You can do so by executing the following in the
HBase shell:

create 'ratingstable', 'ratingscf'

Listing 10-6. Dependencies Required for the Lambda Architecture Application

1. libraryDependencies += "org.json4s" %% "jsonds-native" % "3.2.10"

2. libraryDependencies += "com.google.cloud.bigtable" % "bigtable-hbase-1.1" % "0.2.3"
exclude("com.google.guava", "guava")

3. libraryDependencies += "org.apache.hbase" % "hbase-server" % "1.1.2"

4. libraryDependencies += "org.apache.hbase" % "hbase-common" % "1.1.2"

5. libraryDependencies += "com.google.guava" % "guava" % "16.0"

6. libraryDependencies += "org.mortbay.jetty.alpn" % "alpn-boot" % "8.1.6.v20151105"

7. libraryDependencies += "com.google.cloud.bigdataoss" % "bigquery-connector" %

"0.7.4-hadoop2"

As before, create a JAR for the application, copy it to the HDFS deployment on your Dataproc cluster,
and run it from the Dataproc UI. Refer to Figure 10-18 for command-line parameters that need to be passed
to the application.

Shttps://cloud.google.com/bigtable/docs/installing-hbase-shell.
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hdfs:///Chap10-assembly-1.0.jar by
Enter file path, for example, hdfs://example/example jar

Main class or jar )
org.apress prospark.LambdaDataprocApp B

Arguments (Optional) @
first-spark-dataproc-app x
1 x
first-spark-cluster-m x
9000 x
apiproject-427958068312 x
us-centrall-b b
first-bigtable-cluster x
ratingstable %
ratingscf x
ratings x
/tmp >
2000 x
ratings_dataset x
ratings_table b

Figure 10-18. Arguments required by the Lambda Architecture application on top of Dataproc

Once the application has started executing, you can run the query from Listing 10-7 periodically to

create rollup values.
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Listing 10-7. BigQuery SQL Query to Calculate Rollups for the Lambda Architecture Application

SELECT

timestamp,

business_id,

rating,

COUNT(1) AS COUNT
FROM

[<your dataset id>.<your table id>]
GROUP BY

ROLLUP(timestamp, business id, rating)

W oo~NOUT B WN R

And just like that, you have implemented a Lambda Architecture application to realize a highly
available and eventually consistent query-serving system. Note that this application uses a common pipeline
to generate real-time views as well as to route data to the batch layer. In a real-world deployment, these
would need to be separated into two self-contained applications for fault-tolerance and performance. For
instance, instead of publishing data to a socket, it can be published to a Kafka topic, and then these two
separate applications can consume the topic via individual subscriptions.

Streaming Graph Analytics

Any dataset with relationships between entities can be modeled as a graph, and its analysis can be mapped
onto graph problems. The Web is a graph of machines connected via the Internet, Facebook is a graph of
users connected via friends, and locations on Google Maps lend themselves to a graph with connections
provided by modes of transportation. The sheer size of some of these graphs negates the use of single-
machine libraries. At the other end of the spectrum, standard Big Data systems such as Hadoop or Spark
are too low level to capture the expressiveness required for graph processing. GraphX was designed to fill
this gap by enabling graph-parallel computation on top of Spark. Like the rest of the book, this last topic is
illustrated using an example.

Listing 10-8. JSON Structure of the Yelp User Dataset

1. |

2. "yelping_since":"<YYYY-MM>",
3. "votes":{

4. "funny":<counts,

5. "useful":<county,

6. "cool" :<count»

7. 15

8. "review_count":<county,

9. "name": "<first_name_of users",
10. "user_id":"<anonymized_id>",
11. "friends":[

12. "<list_of_user_ids>"

13. I

14. "fans" :<county,

15. "average stars":<average_star_county,
16. "type":"user",

17. "compliments":{

18. "photos":<counts,

19. "hot" :<county,
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20. "cool":<county,
21. "plain”:<count»
22. 1,

23. "elite":[

24. <list_of_years»
25. ]

26.  }

Finding influential users in social networks is an interesting topic due to its implications for online
advertising. For instance, posts shared by influential users are widely disseminated in comparison to those
of ordinary users. The Yelp dataset also contains friendship information for users (JSON attributes in Listing
10-8). This can be used to build a graph of relationships on Yelp. A number of algorithms such as PageRank
and HITS can then be used to pinpoint influential users. The PageRank-based approach using GraphX is
shown in Listing 10-9.

Listing 10-9. First Streaming GraphX Application

package org.apress.prospark

import org.apache.spark.SparkConf

import org.apache.spark.SparkContext

import org.apache.spark.graphx.Edge

import org.apache.spark.graphx.Graph

import org.apache.spark.graphx.Graph.graphToGraphOps
import org.apache.spark.streaming.Seconds

import org.apache.spark.streaming.StreamingContext
import org.json4s.DefaultFormats

import org.json4s.jvalue2extractable

12. dimport org.jsonds.jvalue2monadic

13. dimport org.json4s.native.JsonMethods.parse

14. dimport org.jsonds.string2JsonInput

O ooV B~ WN R

R R
R O -

15.

16.  object UserRankApp {

17.

18. def main(args: Array[String]) {

19. if (args.length != 4) {

20. System.err.println(

21. "Usage: UserRankApp <appname> <batchInterval> <hostname> <port>")
22. System.exit(1)

23.

24. val Seq(appName, batchInterval, hostname, port) = args.toSeq
25.

26. val conf = new SparkConf()

27. .setAppName (appName)

28. .setJars(SparkContext.jar0OfClass(this.getClass).toSeq)

29.

30. val ssc = new StreamingContext(conf, Seconds(batchInterval.toInt))
31.

32. ssc.socketTextStream(hostname, port.toInt)

33. .map(r => {

34. implicit val formats = DefaultFormats

35. parse(r)
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36. 9]

37. .foreachRDD(rdd => {

38. val edges = rdd.map(jvalue => {

39. implicit val formats = DefaultFormats

40. ((jvalue \ "user id").extract[String], (jvalue \ "friends").
extract[Array[String]])

41. 9]

42. .flatMap(r => r. 2.map(f => Edge(r._1.hashCode.tolLong, f.hashCode.tolLong, 1.0)))

43.

44. val vertices = rdd.map(jvalue => {

45. implicit val formats = DefaultFormats

46. ((jvalue \ "user id").extract[String])

47. 1)

48. .map(r => (r.hashCode.tolong, r))

49.

50. val tolerance = 0.0001

51. val graph = Graph(vertices, edges, "defaultUser")

52. .subgraph(vpred = (id, idStr) => idStr != "defaultUser")

53. val pr = graph.pageRank(tolerance).cache

54.

55. graph.outerJoinVertices(pr.vertices) {

56. (userId, attrs, rank) => (rank.getOrElse(0.0).asInstanceOf[Number].
doubleValue, attrs)

57. }.vertices.top(10) {

58. Ordering.by(_. 2. 1)

59. }.foreach(rec => println("User id: %s, Rank: %f".format(rec. 2. 2,

rec. 2. 1)))

60. 1)

61.

62. ssc.start()

63. ssc.awaitTermination()

64.

65. }

66.

67. }

After reading the data from the socket and converting each record to JSON (lines 32-36), you implement
the core logic of the application in a foreachRDD transform. GraphX does not have native support for online
graph analysis, so using this approach means the state of analysis is confined to individual batches. This
per-batch implementation is useful for a large class of applications, which only rely on the current state of
the network.

As with other graph libraries, you need to create separate vertex and edge objects, which must be
combined to generate the graph. Specifically, you need to create edge and vertex RDDs to spawn a graph
object. For the edge records, you create user_id:user_id pairs from each JSON object, where each pair
represents a friendship connection between users (lines 38-42). GraphX requires vertex IDs to be in the
form of long values. Therefore, the application takes the hash code of user IDs and uses it for this purpose. In
addition, you assign a weight of 1 to each friendship edge (line 42). Similarly, for the vertex RDDs, you emit
the user ID hash as a long and its value in string form (lines 44-48). Both RDDs (edge and vertex) can then
be used to create a graph object (line 51) with defaultUser as the default user ID for missing values. Because
these default values are meaningless from your perspective (the influence of a defaultUser is useless), the
subgraph method is used to filter by edges and vertices (line 52).
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GraphX out of the box contains an implementation of PageRank, which you use on the graph with a
convergence tolerance of 0.0001 (line 53). This returns vertex ID:rank pairs. These need to be joined with the
original graph to get back the original user ID (lines 55-57). You then get the top 10 most influential users
ordered by rank by iterating over the vertices of the graph (line 57-59). Finally, you print these values to
standard output.

This example should have whetted your appetite for graph processing the Spark way. This was just the
tip of the iceberg, though; GraphX is far richer in terms of algorithms, features, and transforms than were
presented here. Refer to the official documentation for a deeper dive.

Summary

The days of on-premises data centers are numbered. Fully managed systems deployments are all the
rage due to their simple cost model, elasticity, scalability, and out-of-the-box integration with the wider
Big Data ecosystem. A number of such solutions also exist for Spark, and this chapter explored Dataproc.
Python aficionados also got their hands dirty with the Spark Python API. To support low latency and highly
available data querying, another topic of discussion in this chapter was the Lambda Architecture. Using a
combination of Spark Streaming, Cloud Bigtable, and BigQuery, the nitty-gritty of the Lambda Architecture
was laid bare. To wrap up the chapter as well as the book, graph processing using GraphX in tandem with
Spark Streaming was introduced.

That’s all, folks. With that, you come to the end of this “sparkling” journey!
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