S =
Reactive
Streams in

Java

Concurrency with RxJava,
Reactor, and Akka Streams

Adam L. Davis

ApPress’

Reactive Streams
In Java

Concurrency with RxJava,
Reactor, and Akka Streams

Adam L. Davis

Apress’

Reactive Streams in Java: Concurrency with RxJava, Reactor,
and Akka Streams

Adam L. Davis
Oviedo, FL, USA

ISBN-13 (pbk): 978-1-4842-4175-2 ISBN-13 (electronic): 978-1-4842-4176-9
https://doi.org/10.1007/978-1-4842-4176-9

Library of Congress Control Number: 2018965180
Copyright © 2019 by Adam L. Davis

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
9781484241752. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4176-9

Table of Contents

About the AUhOFcccmmmnmmmmsensssssss s ix
About the Technical ReVIEWErccuvcesssessssmssssnsssassssnsssssssssssssnsssassssass xi
Prefaceccousemmmmssmmmsssnsmsssnnmsssnsssssnnsssssnsssssnsssssnsnsssnsssssnnsnssnnsnssnnsnnsns xiii
Chapter 1: Introduction to Reactive Streamscccevssssssnmnnnnnnnesssnns 1
JAVA O e e e 2
FIOW .ttt bbb 2
Code TOr THIS BOOKcccouruiuieceriresssese e s 3
Chapter 2: Existing Models of Concurrency in Java.......c.cccenrmsssnsnnsnns 5
Prominent Models for CONCUITENCY........ccceeerrrvererenerieerenereseseses e sessesessesessssesenns 5
SYNCNIONIZE IN JAVAcoeeceircerceree e e 6
JAVA FULUIES ..o 6
Drawbacks of the Future Interface...........ccovevnnenerescrnsesesneses s 7
COMPIEtaDIEFULUE ... e 7

STM N ClOJUIE...c.veeeereeereneses s e 10
ACLOTS.....ciici e ——————————— 11
GrOOVY GPAIS.....ccrerrererrererersessssesse s sssses e ssesaesessessessesaeses e saesaessssessesaesaessssensesees 12
REACHIVE SIrEAMS ...t s 12
Chapter 3: Common CONCeptscccersmmsesmsesmsnssnssasssasssnsssnsssnsssssnnas 15
RS (T 11 15

g (0 Lo][OSSR 15
BaCKPIESSUIEc.eeeeriecreceres e s s e s s r e s s n e e s n e s s 16

iii

TABLE OF CONTENTS

1 S 16
117 17
VD . ———————————— 18
FIatMap/ConcatMap........c.cucevererenernerisesese s s s sens 18
DEIAY ...t ————————— 19
BUFFRE et 19
WINAOW ... s 20
TAKE WHIIE ... 21
] OSSR 22
DEDOUNCE ... s 22
TRrOMIE FirSt ...t 23
Chapter 4: RXJaVa......cuumussmmsssmmmmmmmmmssnssssssssmsssssssssssssssssssssssssnnnnssssnnss 25
(=T T =T (=T o 25
FIOWADIE........eeeeeeeeeeee e 26
Parallel ComMPULING........ccvveerrererererec e 27
SCNEAUIETS ... e 28
PUBIISNELS ...ttt e 30
2 T 0] LT U] (SRR 34
3 F LT gL N = 0] S 36
TESHNG ..cvicerce e ———— 37
Chapter 5: Reactor.........cccivnnemmmnnnsssnnmmssssssnmmsssssnssssssssssssssssssssssssnnnnes 41
Getting Started. ... —————— 41
11O 42
110 T SRS 43
Creating @ FIUX OF MONO........ccccoiinerncnnneserrs s s s sens 44
SCNBAUIETS ... 46
PUITEVENTS ...t 49

iv

TABLE OF CONTENTS

Handling BaCKPreSSUIE........ccuivrrcirierenis s s e s ses e s sasssssessesnens 50
0] 1 (- S 51
L= T TSRS 53
STEPVEIITIEr e ——————— 53
TESIPUDIISNEN ..o 55
Chapter 6: AKka Streams........ccuummsmsmsmsssssssssmsmsmssssssssssssssssssssssssssnans 57
Getting Started.........coucvvcevnesre s ————— 58
ACTOrMALErIAlIZEN ... 60
Sinks, FIOWS, and Graphs.........ccccvverevnrnrerierenessesesessssessesessessssessessesssssssessesees 61
BaACKPIESSUIEcevcieieire s e s p e nn s 64
Interoperation with Reactive Streams API ... 64
MergeHub, BroadcastHub, and PartitionHub ... 65
TESHING...veeeeereerrese s R 66
Chapter 7: Android and RXJavVaccceuusssmnnnmmsssssnnsssssssnssssssssnssssssnnnnns 71
Getting STArted......cccvvvrcererr s —————— 71
ANAroid SDK ..ot 74
ANdroid SCHEUUIETS........courerreeeererireeee e 75
RXBINAING.....ciiiiiiiricrerie i nne 76
RXLITECYCIE ... e 78
Putting £t TOQEher ... e 80
USING RXJAVA.......corrirrreerrserrsess s s s 81
L3 (oS 81
Chapter 8: Spring Boot and Reactorcccussemmsmsssansssassssnsssansssans 83
L= T T = (=T o 83
Gradle PIUQIN.....ccvcerereererrerereesesseressessssesessessessssessessessssesessessesssssnsessessessssensesaes 84
TASKS .. rnne e 86

TABLE OF CONTENTS

SpringBootAPPlICALIONc.ccovveeicirc e ———————— 87
Auto-Configuration...........cccviinrn s ———————— 88
Our DOMaIN MOGEI ... e 89
ReactiveMongoREPOSITONYcccveierrvnerniressnere s senns 90
0] 1 (0] SRRSO 92
View TeMPIALES ... s 94
RESTIUL APL......cieeciscsssss e se s sssssssssss s 95
Further Configuration.........c.ccooevvrriniennsnsne s sresessessesnens 98
(<] (1o O 102
Chapter 9: Akka HTTP and Akka Streams........cocseeesnnnnnsssssssssssssnnnnas 105
L= 10T = (=T o RS 106
ROULES ...t 110
WEDSOCKELS ... 112
L0110 31 1 114
LT T o To L (0] o 115
L 1 T T SR 115
MergeHub and PUDIISNET...........cccvvemrnenennserssesesese s 117
The WEDSOCKEL FIOW.......cccuveerreerinesssesesese s ss e s sessesssssnens 118
The WED CIENtccoveeireerese s sr s 122
(<] (1S 125
Chapter 10: CONCIUSIONS.......cccusssessssnsssnsssasssssssssnsssassssassssnsssansssanssns 129
23 1 TN 129
REACKON ... s 130
AKKA STFBAMS.....c.eecerecereeeriecse s se s s e e e nnsnens 130
L] 0 e 11 o SR 130

TABLE OF CONTENTS

Appendix A: Java 10 and 11ccccinnnmnsemmmmmmmmmmsssssssssnnesesssssssnnns 131
Local Variable TYPeS.......ccciiiinnrr s 131
Lambda Expression Local Variable Types.......cccccvrirninnnnninnsnnenesssessensenns 133

INA@X..cuiiiisnnnnrssssnnnnmsssssnnnmssssnnnnnssssnnnnnssssnnnnsssssnnnnessssnnnnessssnnnnesssnnnnnss 135

vii

About the Author

Adam L. Davis (@adamldavis) makes software.
He’s spent many years developing in Java
(since Java 1.2) and has enjoyed using Spring
and Hibernate. Since 2006 he’s been using
Groovy and Grails in addition to Java to create
SaaS web applications that help track finances
for large institutions (among other things).

Adam has a master’s and a bachelor’s degree
in computer science from Georgia Tech.
For more, visit http://adamldavis.com.

ix

http://adamldavis.com/

About the Technical Reviewer

Manuel Jordan Elera is an autodidactic
developer and researcher who enjoys learning
new technologies for his own experiments and
creating new integrations. Manuel won the
Springy Award - Community Champion and
Spring Champion 2013. In his little free time,
he reads the Bible and composes music on his
guitar. Manuel is known as dr_pompeii. He

has tech reviewed numerous books for Apress,
including Pro Spring, 4th Edition (2014);
Practical Spring LDAP (2013); Pro JPA 2, Second Edition (2013); and Pro
Spring Security (2013). Read his 13 detailed tutorials about many Spring
technologies, contact him through his blog at www.manuel jordanelera.
blogspot.com, and follow him on his Twitter account, @dr_pompeii.

http://www.manueljordanelera.blogspot.com/
http://www.manueljordanelera.blogspot.com/

Preface

Who Is the Target Audience?

This book is intended for Java developers of beginning or intermediate
skill who wish to learn more about reactive programming. If you are still
reading this, then that probably means you!

Why You Should Read This Book

You should read this book to learn the basic of reactive programming
with Reactive Streams and understand what they are good for, when

they should be used, and the principles behind them. This book uses
straightforward examples and introduces concepts gradually so as not to
overwhelm the reader. It will refer to existing models of concurrency from
time to time only as reference points and will not assume any advanced
knowledge on the topic.

After reading this book, you should have a firm understanding of
Reactive Streams, including three different implementations, and how to
integrate them into real software projects. You will understand when to use
Reactive Streams, how to write tests, and how to build a whole project.

xiii

PREFACE

What Is Not in This Book

This book assumes you have a basic background of programming in Java,
so it will not cover the basics.

For more of an introduction on basic Java concepts, please check out
my other books: Modern Programming Made Easy, Modern Java, and
What's New in Java 8.

Xiv

CHAPTER 1

Introduction to
Reactive Streams

Reactive Streams is an initiative to provide a standard for
asynchronous stream processing with non-blocking back
pressure. This encompasses efforts aimed at runtime envi-
ronments (JVM and JavaScript) as well as network
protocols.

—reactive—streams.org

At their core, Reactive Streams are an effort to provide highly responsive
applications able to handle many requests per second with the ability
to manage backpressure (the ability to skip or queue data that is coming
too fast to be processed). Asynchronous means processing can take
place in many threads, without stopping to read data from a file or a web
request for example. Although many implementations already exist for
asynchronous processing, such as Java's Future, CompletableFuture,
and parallel streams, most of them do not have standard support for
asynchronous handling of backpressure.

Reactive Streams are a unifying standard that abstracts existing
methods of concurrency. Also, by having one standard, different Reactive

Streams implementations can interoperate in one application.

© Adam L. Davis 2019 1
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9_1

http://www.reactive-streams.org/

CHAPTER 1 INTRODUCTION TO REACTIVE STREAMS

Java 9+

Java 9 was an important release of Java and includes Project Jigsaw which
represents a huge restructuring of the core JDK (Java Development Kit)
as well as a new and improved way of defining code dependencies.
This provides compile-time errors when dependencies are missing as
opposed to runtime errors, which is a vast improvement for software
development efficiency. Java 9 also introduced a unified interface for
Reactive Streams.

Java 9 includes the following key features:

e Language updates

e Support for Reactive Streams
e Modularity (Project Jigsaw)

o Java REPL (jshell)

For the purposes of this book, we will focus on the second item and
cover what Reactive Streams are and how they should be used. Although
at the time of writing this is not the case, all implementations of Reactive
Streams in Java are expected to implement the Java 9 API in the near
future. We will cover changes in Java 10 and 11 in how they affect our code
going forward.

Flow

Support for Reactive Streams has been added to the JDK. Several interfaces
have been added in the java.util.concurrent.Flow class:

e Publisher<T>: A producer of items (and related
control messages) received by Subscribers

o Subscriber<T>: Areceiver of messages

CHAPTER 1 INTRODUCTION TO REACTIVE STREAMS

e Processor<T,R>: A component that acts as both a
Subscriber and Publisher

e Subscription: Message control linking a Publisher
and Subscriber

No actual implementation is included in the JDK; however, several
implementations already exist. Current notable implementations of
the Reactive Streams specification on the Java virtual machine (JVM)
are Project Reactor (which is integrated in Spring 5), Akka Streams, and
RxJava, all of which we will cover in this book.

Code for This Book

The code examples used in this book are available on my repository on
GitHub. Feel free to download this code which is open source and play
around with it. If you do not already have a GitHub account, you can create
one completely for free. It helps to have Git installed on your own machine.
Then use the git clone command, as specified on the GitHub landing
page, and use whatever Integrated Development Environment (IDE) you
feel is compatible with you - even a text editor will do.

http://www.reactive-streams.org/
https://projectreactor.io/
https://doc.akka.io/docs/akka/2.5.16/stream/index.html
https://github.com/ReactiveX/RxJava
https://github.com/adamldavis/reactive-streams-in-java

CHAPTER 2

Existing Models of
Concurrency in Java

As multicore processors become more and more standard, different
models of concurrent programming have become more popular in Java.
Although the core model of concurrency in Java is the Thread, multiple
levels of abstraction have been built to enable simpler development.

Each of these models has a different approach toward protecting
values from being modified by more than one thread at one time as we will
cover in this chapter.

Prominent Models for Concurrency

There are several tried and true models of concurrency in Java and the
JVM. Over time, higher level models have been introduced to make
concurrency simpler. Some of these models are the following:

o Synchronize and suffer (using synchronize keyword

in Java)
o Futures and the ExecutorService
o Software transactional memory (STM) (Clojure)
e Actor-based model (Akka)
e Reactive Streams (RxJava, Reactor, etc.)

© Adam L. Davis 2019 5
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9_2

CHAPTER 2 EXISTING MODELS OF CONCURRENCY IN JAVA

Synchronize in Java

The original style of concurrent programming in Java involves using the
synchronized keyword whenever shared resources are modified. The
runtime behavior of this style of programming is very unpredictable and
difficult to test. You must deal with the following problems:

o No warnings or errors are given at compile time.
o Deadlocks can occur if you're not careful.

o It'svery difficult to make sure you've done everything
right, and errors can occur randomly.

In conclusion, the synchronize keyword is too low level to use (just
don’t use it!).!

Java Futures

You may have heard of the java.util.concurrent.Future interface in
Java. Maybe you've even used it. This interface was added in Java 1.5, and
it holds the result of an asynchronous computation. It contains methods

to check if the asynchronous computation is complete or still in progress,
to wait for the completion of the computation, to block the call until the
completion of the computation (with optional timeout), and to retrieve the
result of the computation.

'Twould also categorize the volatile keyword similarly in that it is a low-level
construct that should be avoided.

CHAPTER 2 EXISTING MODELS OF CONCURRENCY IN JAVA

Drawbacks of the Future Interface

There are tons of problems with this interface:

e When using Java’s Future, we tend to loop on isDone(),
which ties up the thread, or call get() which blocks the
thread completely.

o ExecutorService#tsubmit(...) is used the most
(which returns a Future with a get() method that
returns null).

e Generally when “going asynchronous’, we don’t
care about the result, or we want to do something
with the result (thus we want something like a

continuation).

e Weneed a callback - removes the need for polling
(isDone) and blocking. (Guava’s ListenableFuture
provides this.)

e Asynchronous methods should always return void.

For these reasons, if you do any concurrent programming, you should
use the CompletableFuture introduced in Java 8 (which is covered next),
the Java 7 concurrency API (ForkJoinPool and ForkJoinTask), or another
concurrency framework.

CompletableFuture

The CompletableFuture<T> implements the Future<T> interface as well
as a CompletionStage<T> interface that fills in many of the deficiencies
of Future<T>. These methods follow the functional style, allowing the
developer to chain method calls rather than declaring a step-by-step
process.

https://docs.oracle.com/javase/10/docs/api/index.html?java/util/concurrent/Future.html

CHAPTER 2 EXISTING MODELS OF CONCURRENCY IN JAVA

CompletionStage includes the following methods (generic types
omitted for brevity) which each have the return type of CompletionStage
to allow chaining:

o acceptEither(CompletionStage, Consumer):
Executes the given consumer when either this stage
(the current Future) or the given stage completes.

o applyToEither(CompletionStage, Function): Similar
to acceptEither but uses a Function to convert a value
into another value.

o exceptionally(Function): If the stage throws an
exception, the given function is given the exception to
process and return a value.

o handle(BiFunction): Uses the given function to
handle both the success and failure conditions and
returns a value.

o runAfterBoth(CompletionStage, Runnable): Runs
the given Runnable after both this stage (the current
Future) and the given stage complete.

o runAfterEither(CompletionStage, Runnable):
Similar to acceptEither except using a Runnable.

o thenAccept(Consumer): Runs the given consumer after
this stage (the current Future) completes normally. This
is similar to “then” in Promise models of concurrency if
you're familiar with Promises.

CHAPTER 2 EXISTING MODELS OF CONCURRENCY IN JAVA

thenAcceptBoth(CompletionStage, BiConsumer):
Runs the given biconsumer with both outputs after
both this stage (the current Future) and the given stage
complete normally.

thenApply(Function): Transforms a value using the
given function after the stage completes normally.

thenCombine(CompletionStage, BiFunction):
Transforms two values using the given function after
both stages complete normally.

thenRun(Runnable): Runs the given Runnable after this
stage completes.

whenComplete(BiConsumer): Uses the given consumer
to handle both the success and failure conditions.

Asynchronous versions of these methods are also available with

“Async” added to the method name. For the “Async” versions, the

standard execution model of the given Future will be used instead of the

current Thread.

You can create an instance using any of the following static methods
on CompletableFuture:

CompletableFuture completedFuture(value):
Returns a new CompletableFuture that is already
completed with the given value.

CompletableFuture runAsync(Runnable): Returns
anew CompletableFuture that is asynchronously
completed by a task running in the ForkJoinPool.
commonPool().

CHAPTER 2 EXISTING MODELS OF CONCURRENCY IN JAVA

o CompletableFuture runAsync(Runnable,
Executor): Returns a new CompletableFuture that is
asynchronously completed by a task running in the
given executor after it runs the given action.

o CompletableFuture supplyAsync(Supplier): Returns
anew CompletableFuture that is asynchronously
completed by a task running in the ForkJoinPool.
commonPool () with the value obtained by calling the
given Supplier.

For more details, please see the documentation.

STM in Clojure

Java doesn’t have great support for concurrency built-in. Other languages
for the JVM (Java virtual machine), like Scala and Clojure, have been built
from the ground up with concurrency in mind. However, we can use the
concurrency models from Scala and Clojure straight in Java.

STM (software transactional memory) results in a separation of state

and identity. For example, the stock price at a given time is immutable. In
STM you must use a transaction to modify anything. We can include the
Clojure jars and use them within Java. For example, in the following code,
referenceToAmount can only be modified inside of a transaction:

import clojure.lang.*

Ref referenceToAmount;

LockingTransaction.runInTransaction(new Callable() {
referenceToAmount.set(value);

};

Now you will get an error if you try to modify the Ref outside of
a transaction. This makes concurrent programming easier because
modifying data outside of a synchronized block is impossible.

10

https://docs.oracle.com/javase/10/docs/api/java/util/concurrent/CompletableFuture.html
https://en.wikipedia.org/wiki/Software_transactional_memory

CHAPTER 2 EXISTING MODELS OF CONCURRENCY IN JAVA

Actors

The Scala-based actor framework Akka can also be used from Java.
Akka is also used by the Play Framework. It includes the concept of Actors.

Actors can receive and process messages and are guaranteed to receive
messages sent to them. They process each message one at a time so their
state is shielded from the rest of the system.

The following code shows a simple example using the Akka framework
with one Actor:

import akka.actor.*
public class XActor extends UntypedActor {
public void onReceive(Object message) throws Exception {
if (message instanceof String)
System.out.println((String) message);

}
}

public static void main(String... args) {
ActorSystem system = ActorSystem.create("MySystem");
ActorRef actor = system.actorOf(new Props(XActor.class),
"actor");
// the message could be anything implementing Serializable
actor.tell("Message String");

An Actor conceptually runs in a dedicated thread, so it can only do
one thing at a time. This makes concurrency much easier to implement.
Messages are passed around to Actors and wait in a queue until the
given Actor is ready to process it. A message can be any Serializable
object.

11

http://www.playframework.org/

CHAPTER 2 EXISTING MODELS OF CONCURRENCY IN JAVA

Groovy GPars

It's worth noting that the Actor and STM concurrency patterns are not
limited to Scala and Clojure.

Groovy’s GPars library implements these patterns as well and is also
usable from Java. It also has Domain Specific Languages (DSLs) that wrap
the JSR-166 features of Java, such as the Fork-Join framework, making them
easier to use.

You can use GPars to do filter, map, and reduce an array in the
following way:

GParsPool.withPool {
// a map-reduce functional style (students is a Collection)
def bestCpa = students.parallel
.filter{ s -> s.graduationYear == 2017 }
.map{ s -> s.gpa }
.max()

In this example, Student is a class with a graduationYear and gpa.
This code finds the highest GPA for 2017. The static method GParsPool.
withPool takes in a closure and augments any Collection with several
methods (using Groovy’s category mechanism). The parallel method
actually creates a ParallelArray (JSR-166) from the given Collection and
uses it with a thin wrapper around it.

Reactive Streams

Reactive Streams provide an abstraction for highly concurrent,
asynchronous applications with support for backpressure.

While they can be used along with any of the preceding models
of concurrency, they attempt to provide enough functionality to be
fully sufficient for any implementation (over and above the other

12

http://www.gpars.org/

CHAPTER 2 EXISTING MODELS OF CONCURRENCY IN JAVA

models of concurrency). However, since they run in a multithreaded
way, you must ensure thread safety in your code if you modify

shared state. Try to avoid using other methods (e.g., using a
LockingTransaction or synchronize block) and instead stay within

the Reactive Streams model. Reactive Streams use the concepts of
publisher and subscriber, along with various strategies for backpressure
to model concurrency. We will cover these concepts.

e A publisher emits events at some rate.

e Asubscriber observes those events on possibly a
different thread and does something with them.

e Some frameworks use other words (such as Source
and Sink) to mean the same thing as publisher and
subscriber.

As we will see, many Reactive Streams frameworks allow
interoperation with other existing models of concurrency, such as futures,
to allow a smooth transition between the two.

13

CHAPTER 3

Common Concepts

Every Reactive Streams framework uses common concepts forming the
backbone of reactive streams. You can use method chaining to perform
complex conversions of streams in a simple and terse syntax once you
know the function of standard methods like filter, map, delay, and buffer.

This chapter attempts to illustrate the most important of these
concepts. It does not cover all available methods.

Streams

The word Observable is used to mean a reactive stream of data. Although
Observable is a type in RxJava, this and the other Reactive Streams libraries
have other types, such as Flux in Reactor and Source in Akka Streams, that
represent streams of data. Everything in Reactive Streams starts with a

stream.

Hot and Cold

When you begin using Reactive Streams, you need to master the concept
of hot vs. cold Observables. It’s not always obvious which type you are
dealing with and the interactions between them cause problems.

A hot Observable is one that cannot be repeated. It starts creating data
immediately regardless of whether it has subscribers. Typically it involves
interacting with data from the outside world such as mouse inputs, data
readings, or web requests.

© Adam L. Davis 2019 15
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9_3

CHAPTER 3 COMMON CONCEPTS

A cold Observable is one that can be repeated and does not start until
subscribed to. This could be things like a range, file data, or a cached
recording of data from a hot Observable.

Hot Observables typically are candidates for using backpressure flow
control strategies such as throttling, buffers, or windows.

Backpressure

Backpressure is what happens when there are too many events/data in

a stream than the downstream can handle. As an analogy, think of what
happens in some cities at rush hour when traffic grinds to a halt - or when
subway trains are filled to capacity. When this happens in your application,
it can cause big problems like OutOfMemory exceptions or starved threads
and timeouts. Backpressure strategies help you deal with these problems
proactively to avoid these problems.

There are multiple backpressure strategies, but the main ones are
throttling, windows, buffers, and dropping. The simplest to understand is
dropping: you simply drop the items above what can be handled (using
some criteria such as oldest or newest). The other strategies (throttling,
windows, and buffers) are also listed in this chapter.

Filter

Filter takes only those elements that match a given predicate.

16

CHAPTER 3 COMMON CONCEPTS

Any/All

Any returns a Boolean value which is true if any elements in the stream
match the given predicate. All returns true if all the elements match. These
two only make sense for terminating (noninfinite) streams.

17

CHAPTER 3 COMMON CONCEPTS

Map

Map converts data from one form into another. This is useful for any basic

operations on data elements.

—-0——0—0 0

U
/779P (@ =[1)
U

-F-————5—

FlatMap/ConcatMap

FlatMap maps data from one form into a stream of other forms and then
weaves the resulting streams together. This is useful when you want
to convert one data stream into a new stream based on the results of
substreams. For example, you might want to convert a stream of sports
teams into a stream of all the players of those teams.

ConcatMap is very similar, but preserves the ordering of the incoming
streams, whereas flatMap eagerly subscribes to each new stream and
merges the results in the order in which they arrive.

18

CHAPTER 3 COMMON CONCEPTS

B
FLATITIAP(* = ®g)

—--0—0-0———— - -~
Delay

This method delays data for a fixed amount of time.

11t
1%
133 5
1351
1 3% 1)

U
DELAY ;1

)

-'....: -'.'-.: FEsEEF mMEEEEETMEEEE W
[] "]
L] L]

Buffer

Buffer keeps data over some time period and sticks it in a list, then
observes each list.

19

CHAPTER 3 COMMON CONCEPTS

—— —————————

U
BUFFER

...-....-.'IIllllI!ll-IlllIlllll-llIllllIllr.-....-.

S R
® [1 [H]I[]

Buffer is also a backpressure strategy that caches all elements from

a stream if too many elements were produced than the subscriber could
handle. In this case the buffer is kept in memory and does not affect the
data type of the stream. If buffer is used, you have the option of dropping or
ignoring any elements above the buffer’s maximum size.

Window

Window is much like buffer but results in Observables instead of lists.

20

CHAPTER 3 COMMON CONCEPTS

- — — —————

I
LUIIDOL

-......-....r-IIIIIIIII-IIIIIIIIll-llllllllllr--....-.
. H [N H
= H [] H
.-....-...|."-Il| I-IIIIl‘IIIIIIIIII‘IIIIIIIIII'-.......

Take While

Take while (takeWhile) takes all elements while some condition is true,
then ends the stream when it is false. There is usually also a take(n) method
which takes a certain number of elements before ending the stream.

_—————— —

U
TRHE UL E sermessrave)

l

—_— H ETID OF sSTRERIT)

21

CHAPTER 3 COMMON CONCEPTS

Latest

“Latest” is a backpressure strategy that takes only the last element from
a stream if too many elements were produced than the subscriber could
handle.

= — —h — —

|
LATEST

U
P YAy
.

Debounce

Debounce is useful for noisy streams, for example, a text input or other
user inputs, when you only want elements after the stream was quiet for
some period of time. It gives you only the last element if the stream is silent

for a given duration.

22

CHAPTER 3 COMMON CONCEPTS

e |

|
DEBOUNCE ...,
l

H0) : HO) :

Although Reactor does not seem to have “debounce’, it can be

approximated using sampleTimeout. For example, the following would be
equivalent to debounce of one second:

flux.sampleTimeout(x ->
Mono. just(0).delayElement(
Duration.of(1, ChronoUnit.SECONDS)))

Throttle First

Throttle first (throttleFirst in RxJava) drops any elements from the stream
(after the first element emitted) for some given duration. Throttle last is
very similar only emitting the last element emitted during the time period
instead of the first. Reactor has similar methods, sample and sampleFirst.
Akka Streams has a similar method named throttle.

23

CHAPTER 3 COMMON CONCEPTS

U

24

CHAPTER 4

RxJava

RxJava is the open source library for reactive programming that is part
of the ReactiveX project. ReactiveX includes implementations in several
different languages including RxJS, RxRuby, RxSwift, RkPHP, RxGroovy,
and many more.

RxJava 2 was rebuilt to be compatible with the Reactive Streams
specification and is preferable to RxJava 1.x since it is scheduled for end-of-
life. There were many changes from version 1 to 2 that could be confusing.
To avoid confusion we will focus on RxJava 2.

Getting Started

First, create a new project with sources under src/main/java/ and a “pom.
xml” if using Maven or a “build.gradle” file if using Gradle.
If you have a Maven build, add the following to your pom file:

<dependency>
<groupld>io.reactivex.rxjava2</groupld>
<artifactId>rxjava</artifactId>
<version>2.2.2</version>

</dependency>

For Gradle builds, add the following to your Gradle build file’s
dependencies:

compile 'io.reactivex.rxjava2:rxjava:2.2.2'

© Adam L. Davis 2019 25
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9_4

https://gradle.org/RxJava
http://reactivex.io/
https://maven.apache.org/
https://gradle.org/

CHAPTER 4 RXJAVA
Next, create a new class file with the following imports:

import io.reactivex.*;

import io.reactivex.schedulers.*;

import io.reactivex.functions.*;

import org.reactivestreams.Publisher;
import org.reactivestreams.Subscriber;
import org.reactivestreams.Subscription;
import java.util.*;

import java.io.*;

Flowable

The basic entry class in RxJava is io.reactivex.Flowable<T>
(which is roughly equivalent to io.reactivex.Observable<T>). It
implements the Reactive Streams pattern (Publisher) and offers
factory methods, intermediate operators, and the ability to consume
reactive dataflows.

The following example demonstrates using RxJava to do a simple
calculation on a range of numbers:

public static List doSquares() {
List squares = new Arraylist();
Flowable.range(1, 64) //1
.observeOn(Schedulers.computation()) //2
.map(v -> v * v) //3
.blockingSubscribe(squares::add); //4
return squares;

26

CHAPTER 4 RXJAVA

1. Create arange from 1 to 64.

2. Call the method observeOn to determine which
Scheduler to use. This determines on which Thread
or Threads the flow will run. The Scheduler returned
from “computation()” takes advantage of all
available processors when possible.

3. 'The map method transforms each value. In this case
we calculate the square.

4. Finally, we initiate the flow by calling a “subscribe”
method. In this case, blockingSubscribe blocks
until the entire flow has completed, and we add
each value to the “squares” List. This means that
the squares list will be populated before the return
statement. Otherwise the flow would run on a
different thread and the values in the squares list
would be unpredictable at any given time.

The resulting List will have the values of squares of the numbers
from1to64:1,4,9, 16, 25, 36, 49, ..., 4096.

Parallel Computing

If you tie a Flowable to one Scheduler as in the previous example, it would
run in succession, not in parallel. To run each calculation in parallel, you
could use flatMap to break out each calculation into a separate Flowable
as follows:

public static List doParallelSquares() {
List squares = new Arraylist();
Flowable.range(1, 64)
.flatMap(v -> //1

27

CHAPTER 4 RXJAVA

Flowable.just(v)
.subscribeOn(Schedulers.computation())
.map(w -> w * w)
)
.doOnError(ex -> ex.printStackTrace()) //2
.doOnComplete(() ->
System.out.println("Completed")) //3
.blockingSubscribe(squares::add);

return squares,;

1. Call flatMap with a lambda expression that takes in
avalue and returns another Flowable. The Flowable.
just(...) method takes in any number of objects and
returns a Flowable that will emit those objects and
then complete.

2. Call doOnError to handle errors that occur.

3. Call doOnComplete to execute something after a
Flowable has completed. This is only possible for
Flowables that have clear endings, such as ranges. The
resulting List will have the same values as the previous
example, but since we used flatMap, the resulting
values will not necessarily be in the same order.

Schedulers

For some heavy computations, you may want to run them in the
background while rendering the result in a separate thread so as not

to block the UI or rendering thread. For this case, you can use the
subscribeOn method with one Scheduler and the observeOn method with
a different Scheduler.

28

CHAPTER 4 RXJAVA

public static void runComputation() throws Exception {
Flowable<String> source = Flowable.fromCallable(
O ->{/1
Thread.sleep(1000);
return "Done";
1;
source.doOnComplete(
O - System.out.println("Completed
runComputation™));
Flowable<String> background =
source.subscribeOn(Schedulers.io()); //2

Flowable<String> foreground =
background.observeOn(Schedulers.single()); //3

foreground. subscribe(System.out: :println,
Throwable: :printStackTrace); //4

1. Create a new Flowable from a Callable (functional
interface (SAM) which simply returns a value).

2. Run the Flowable using the “IO” Scheduler. This
Scheduler uses a cached thread pool which is good
for1/0 (e.g., reading and writing to disk or network
transfers).

3. Observe the results of the Flowable using a single-
threaded Scheduler.

4. Finally, subscribe to the resulting foreground
Flowable to initiate the flow and print the results to
standard out. The result of calling runComputation()
will be “Done” printed after one second.

29

CHAPTER 4 RXJAVA

Publishers

For nontrivial problems, you might need to create your own Publisher.
You would only do this if you wanted fine control over the request/
response nature of Reactive Streams, and it is not necessary to use
RxJava.

For the following example, imagine you want to write to a file or read
from a file using a custom Publisher in RxJava.

First, we write a range of numbers to a file using the following
method:

public static void writeFile(File file) {
try (PrintWriter pw = new PrintWriter(file)) {
Flowable.range(1, 100)
.observeOn(Schedulers.newThread())
.blockingSubscribe(pw: :println);
} catch (FileNotFoundException e) {
e.printStackTrace();

}
}

Here we use a try-with-resources block and blockingSubscribe to
write the range to the file.

Second, we want to read from a file. In this example, the contents of a
file are printed to standard out using the “I0” Scheduler:

public static void readFile(File file) {
try (final BufferedReader br = new BufferedReader(
new FileReader(file))) {
Flowable<String> flow = Flowable.fromPublisher(
new FilePublisher(br));
flow.observeOn(Schedulers.io())
.blockingSubscribe(System.out::println);

30

CHAPTER 4 RXJAVA

} catch (IOException e) {
e.printStackTrace();
}
}

A Publisher implements the subscribe method that takes a Subscriber.
The Subscriber interface has several methods on it, the first of which to call
is onSubscribe(Subscription). To implement backpressure in Reactive
Streams, the Subscription interface was created which has only two
methods, request(n) for requesting the next n elements and cancel for

canceling the subscription.

static class FilePublisher implements Publisher<String> {
BufferedReader reader;
public FilePublisher(BufferedReader reader)
{ this.reader = reader; }
@verride
public void subscribe(Subscriber<? super String> subscriber){
subscriber.onSubscribe(
new FilePublisherSubscription(this, subscriber));
}
public String readlLine() throws IOException {
return reader.readlLine();

}
}

static class FilePublisherSubscription
implements Subscription {
FilePublisher publisher;
Subscriber<? super String> subscriber;
public FilePublisherSubscription(FilePublisher publisher,
Subscriber<? super String> subscriber) {

31

CHAPTER 4 RXJAVA

this.publisher = publisher;
this.subscriber = subscriber;
}
@verride
public void request(long n) {
try {
String line;
for (int i = 0; i < n && publisher != null
88 (line = publisher.readlLine()) != null; i++) {
if (subscriber != null) subscriber.onNext(line);
}
} catch (IOException ex) {
subscriber.onError(ex);

}

subscriber.onComplete();
}
@verride
public void cancel() {
publisher = null;
}
}

This example shows how you might implement a Publisher for reading
files including backpressure support. A similar approach could be used for
any Publisher/Subscription implementation.

Now when we call readFile(File) with a File object, the contents of the
file will be read and printed out. The same effect could also be achieved
using RxJava in the following way:

Single<BufferedReader> readerSingle = Single.just(file) //1
.observeOn(Schedulers.io()) //2
.map(FileReader: :new)
.map(BufferedReader: :new); //3

32

CHAPTER 4 RXJAVA

Flowable<String> flowable =
readerSingle.flatMapPublisher(reader -> //4

Flowable.fromIterable(//5

0 ->

Stream.generate(readLineSupplier(reader)).iterator()
) .takeWhile(line -> !"EOF".equals(line))); //6
flowable

.doOnNext(it -> System.out.println("thread="

+ Thread.currentThread().getName())) //7
.doOnError(ex -> ex.printStackTrace())

.blockingSubscribe(System.out: :println); //8

1.

Single is much like an Observable that can only emit
one element. Here we create an instance from the
file parameter.

We use Schedulers.io() since we're reading a file.

Next, we use the constructor reference syntax to
instantiate a FileReader and BufferedReader from
the original file.

Here we use the flatMapPublisher method which
is a variant of flatMap that only exists on a “Single”
and returns a Flowable.

We create a new Flowable using “fromIterable”
that will read each line of the file using the
BufferedReader. We use “Stream.generate” since
it repeatably calls the given supplier given by the
“readLineSupplier” method.

When readLine() returns null, the file is done being
read, but an Iterator cannot supply null so we use
“EOF” instead. We use that as the predicate for
“takeWhile” to terminate the stream at that point.

33

CHAPTER 4 RXJAVA

7. Here we print out the name of the current Thread
when each element is processed.

8. Finally, we use blockingSubscribe again just to print
the output to standard out. In a real application, we
would do something more interesting most likely.

The “readLineSupplier” method is defined as the following:

private static Supplier<String»
readLineSupplier (BufferedReader reader) {
return () -> { try {
String line = reader.readline();
return line == null ? "EOF" : line;
} catch (IOException ex)
{ throw new RuntimeException(ex); }};

The result of running this code for a given file would be each line of the
file is printed out with “thread=RxCachedThreadScheduler-1" also printed
out once for each line.

Backpressure

Hot Observables typically are candidates for using backpressure flow
control strategies such as throttling, buffers, or windows. Beyond
these options, you can convert an Observable into a Flowable with a
backpressure strategy.

You can convert any Observable into a Flowable with backpressure
support using the toFlowable(strategy) method. This would be done to
mitigate any issues with the upstream (or publisher) emitting items faster
than the downstream (or subscriber) can handle.

34

CHAPTER 4 RXJAVA

There are five main strategies to handle backpressure:

LATEST: Only keep the latest item emitted, meaning
you might miss some items if they are coming too fast.

DROP: Drop newer items if they come too fast.

BUFFER: Keep items in memory up to a certain point
(usually you provide a limit).

ERROR: Have the stream terminate with an error
condition.

No strategy at all: Without any strategy, the publisher
would in effect be told to slow down (request(n)
would not be called or would be called with a smaller
number). This can only work in situations where this
makes sense.

For example:

Observable.fromPublisher(pub) //1
.toFlowable(BackpressureStrategy.LATEST) //2

Create an Observable from some Publisher.

Convert the Observable into a Flowable with the
strategy of LATEST (other available values are DROP,
BUFFER, and ERROR).

Using toFlowable(BackpressureStrategy.ERROR) would cause an

error to occur upon a backpressure event (more items being published
than have been handled).

35

CHAPTER 4 RXJAVA

Likewise, the Flowable class has available the following methods to
handle backpressure at any point in a flow:

o onBackpressurelatest()
o onBackpressureDrop()
o onBackpressureBuffer()

It also has several overloaded methods for providing configuration
of the buffer such as capacity or an action to perform when capacity is
reached.

See the RxJava backpressure documentation for more information on

this topic.

Handling Errors

There are several ways to handle errors in RxJava streams:

» Handle errors without modifying the stream using
“doOnError(Consumer<? super Throwable>)".

o Recover by returning a fixed value with
onErrorReturnltem(T).

¢ Recover by returning a value based on the Exception
with onErrorReturn(Function).

o Recover by returning a new Publisher with
onErrorResumeNext(Publisher).

o Handle the error in the subscriber.

36

https://github.com/ReactiveX/RxJava/wiki/Backpressure

CHAPTER 4 RXJAVA

Testing

RxJava 2 includes built-in, test-friendly solutions such as TestSubscriber
and TestObserver.

o TestSubscriber: A Subscriber that records events that
you can make assertions upon

o TestObserver: An Observer that records events that you
can make assertions upon

o TestScheduler: Can be used to have a strict control of
test execution related to RxJava

TestSubscriber

For example, you can create a TestSubscriber by just calling “test()” on any
Flowable:

TestSubscriber<Integer> ts =
Flowable.range(1, 5).test();
assertEquals(5, ts.valueCount());

Calling “valueCount()” returns the total number of items emitted by
the stream, five in this case.

TestSubscriber also has tons of other methods starting with “assert”
such as assertError that can be used to assert certain things happen. For

example:

Flowable<Integer> flowable = Flowable.create(source -> {
source.onNext(1);
source.onError(new RuntimeException());
}, BackpressureStrategy.LATEST);
TestSubscriber<Integer> ts = flowable.test();
ts.assertSubscribed();
ts.assertError(RuntimeException.class);

37

CHAPTER 4 RXJAVA

Here we call “assertError(Class)” with the type of Exception expected
to be thrown by the Flowable. If it is not thrown, an AssertionError will be
thrown, making the test fail.

TestObserver

Likewise, you can create a TestObserver by calling “test()” on any
Observable:

TestObserver<Integer> ts =
Observable.range(1, 5).test();
assertEquals(5, ts.valueCount());

TestObserver and TestSubscriber both extend BaseTestConsumer and
so have most of the same methods.

TestScheduler

TestScheduler can be used for testing time-related streams. For example:

TestScheduler scheduler = new TestScheduler(); //1
Observable<Long> tick = Observable

.interval(1, TimeUnit.SECONDS, scheduler); //2
Observable<String> observable =

Observable.just("foo", "bar", "biz", "baz") //3

.zipWith(tick, (string, index) -> index + "-" + string);//4
TestObserver<String> testObserver = observable

.subscribeOn(scheduler).test();//5
scheduler.advanceTimeBy (2300, TimeUnit.MILLISECONDS);//6
testObserver.assertNoErrors(); //7
testObserver.assertValues("0-foo", "1-bar");
testObserver.assertNotComplete();

38

CHAPTER 4 RXJAVA

1. Create the TestScheduler.

2. Create an interval Observable that will emit a
number every second.

3. Create an Observable of just four strings.

4. Zip those two Observables together, combining
them into one string, “index-string”.

5. Make the Observable from step 4 subscribe on our
TestScheduler and call “test()” to get an instance of
TestObserver.

6. Manipulate the TestScheduler by calling
“advanceTimeBy” with a value of 2.3 seconds so
that two values should be emitted by the “tick”
Observable.

7. Assert that there were no errors and the values we
expect were emitted.

Using TestScheduler has the benefit of making RxJava streams behave
as if a certain amount of time passed although it has not. This makes it so
we can test RxJava logic that relies on any amount of time passing (hours or
days) and our tests still run quickly. For example, the preceding test runs in
less than one tenth of a second.

39

CHAPTER 5

Reactor

Project Reactor is Spring’s implementation of Reactive Streams (in version 3
and beyond). It has two main publishers, Flux<T> and Mono<T>. It also
uses Schedulers much like RxJava.

The Spring Framework has many integrations with Reactor that make
it easier to use with other Spring projects, such as Spring Data and Spring
Security.

Getting Started

If you have a Maven build, add the following to your pom file:

<dependency>
<groupIld>io.projectreactor</groupIld>
<artifactId>reactor-core</artifactId>
<version>3.1.9.RELEASE</version>

</dependency>

<dependency>
<groupIld>io.projectreactor</groupId>
<artifactId>reactor-test</artifactId>
<version>3.1.9.RELEASE</version>
<scope>test</scope>

</dependency>

© Adam L. Davis 2019 41
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9_5

https://projectreactor.io/

CHAPTER5 REACTOR

For Gradle builds, add the following to your Gradle build file’s
dependencies:

compile 'io.projectreactor:reactor-core:3.1.9.RELEASE'
testCompile 'io.projectreactor:reactor-test:3.1.9.RELEASE'

Flux

Flux<T> is the main entry point for Reactor reactive streams and is similar
to RxJava’s Observable. Mono<T> is like a Flux but for zero to one element.
Both Mono and Flux implement org.reactivestreams.Publisher.

import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

Much like in RxJava, Reactor uses Schedulers to decide on what thread
to run.

For example, you might create a range like the following and publish
on “Schedulers.parallel()” which provides a thread cache for executing in
parallel:

Flux.range(1, 100)
.publishOn(Schedulers.parallel())
.subscribe(v -> System.out.println(v));

The preceding code would print out the numbers 1 through 100.

Handling errors in Reactor is also very similar to RxJava. The following
methods may be used on a Flux or Mono (generic types omitted for
brevity):

e onErrorResume(Function): Takes the exception and
returns a different Publisher as a fallback or secondary
stream.

42

CHAPTERS5 REACTOR

o onErrorMap(Function): Takes the exception and allows
you to modify it or return a completely new Exception if

you prefer.

o onErrorReturn(T): Provides a default value to use
when an error arises.

o doOnError(Consumer<? super Throwable>): Allows
you to handle the error without effecting the underlying
stream in any way.

Errors are always ending events for a Flux or Mono and should be
handled by the Subscriber. However, many times, such as in the preceding
example, an error is not possible and therefore does not need to be handled.

Mono

Mono is much like a Flux but for just one or zero elements. Think of it like
a translation of Java 8’s Optional class into the Reactive Streams world.
For example, the following would print out the value “hello”:

Mono.just("hello").subscribe(v -> System.out.println(v));

Mono is very similar to Flux except that it has methods like

o justOrEmpty(T): Takes a nullable value and converts
into a Mono. If null, the result is the same as Mono.

empty ().

o justOrEmpty(Optional): Takes an Optional and
converts into a Mono directly.

Unlike Java's Optional, Mono can handle errors, among other things.
For example, a method that returns Mono might do the following:

return Mono.error(new RuntimeException("your error"))

43

CHAPTER5 REACTOR

The corresponding code can handle errors from a Mono in the same way
as with a Flux (using onErrorResume, onErrorMap, or onErrorReturn).

Creating a Flux or Mono

You can create a Flux from fixed data (cold) or programmatically from
dynamic data (hot).
The following are some different ways to create a cold Flux:

Flux<String> fluxi = Flux.just("a", "b", "foobar"); //1
List<String> iterable = Arrays.asList("a", "b", "foobar");
Flux<String> flux2 = Flux.fromIterable(iterable); //2

Flux<Integer> numbers = Flux.range(1, 64); //3

1. Create a Flux from a list of values.
2. Create a Flux from an Iterable.
3. Create arange from 1 to 64.

Here’s how to create a simple Mono:

Mono<String> noData = Mono.empty(); //1
Mono<String> data = Mono.just("foo"); //2

4. Create an empty Mono.
5. Create a Mono with one element.

You can programmatically create a hot or cold Flux using one of
the generate, create, or push methods. If the data is of a continuous
nature, such as user input, a WebSocket, or network packets, it would be
considered hot.

The generate method (in one variety) takes a Supplier and a
BiFunction. The function takes as parameters the current state and
a SynchronousSink<T> which can be used to publish the next state of

44

CHAPTERS5 REACTOR

the stream. For example, the following uses an AtomicLong instance to
increment the numbers 0 through 10 and supplies the square of each
number:

Flux<Long> squares = Flux.generate(
Atomiclong::new, //1
(state, sink) -> {
long i = state.getAndIncrement();
sink.next(i * i); //2
if (i == 10) sink.complete(); //3
return state;

D

1. The constructor of AtomicLong is used as the
supplier.

2. After incrementing, supply the square of the number
to the sink.

3. When the number is 10, the complete() method is
called, which calls onComplete to any subscriber,
closing out the Flux.

The create method takes a Consumer<? super FluxSink<T>> that
exposes a FluxSink<T> instance with next, error, and complete methods.
This allows you to arbitrarily publish data onto a Flux in any way you see fit.

The preceding code would produce a Flux of the squares of the
numbers from zero to ten.

For example, the following demonstrates registering a
Messagelistener which handles a list of messages:

Flux<String> bridge = Flux.create(sink -> {
messageProcessor.register(

new Messagelistener<String>() {

public void handle(List<String> chunks) {

45

CHAPTER5 REACTOR

for(String s : chunks) {
sink.next(s);
}

}
public void processComplete() {

sink.complete();

}

public void processkError(Throwable e) {
sink.error(e);

}

1

}s

Here sink’s type is FluxSink<String>. If the messages processed in
the preceding code have a single-threaded source, the push method
can be used instead of create. The push method has the same type
signature as create, and so it is used in a similar way. FluxSink’s methods
return FluxSink, allowing for method chaining, so the following example
is possible:

Flux.push((FluxSink sink) -> {
sink.next(1).next(2).next(3).complete();
}).subscribe(System.out: :println);

This would print out just the values 1, 2, and 3.

Schedulers

The Schedulers class under the reactor.core.scheduler package
provides many static methods for Schedulers that determine what Thread
or Threads your code will run on.

46

CHAPTERS5 REACTOR

The following are some of those static methods and what they mean:
o Schedulers.immediate(): The current thread.

o Schedulers.single(): A single, reusable thread. Note
that this method reuses the same thread for all callers,
until the Scheduler is disposed. If you want a per-call
dedicated thread, use Schedulers.newSingle() for
each call.

o Schedulers.newSingle(): Creates a new Thread each
time it is called to be used by the underlying Flux.

e Schedulers.elastic(): An elastic thread pool. It
creates new worker pools as needed and reuses idle
ones. Worker pools that stay idle for too long (default is
60 seconds) are disposed. This is a good choice for I/O
blocking work for instance. Schedulers.elastic() isa
handy way to give a blocking process its own thread, so
that it does not tie up other resources.

o Schedulers.parallel(): A fixed pool of workers. It
creates as many workers as you have CPU cores.

e Schedulers.fromExecutor (Executor): Creates a
Scheduler to use the given Executor, allowing you to
use your extensive knowledge of Java’'s Executors.

For example, let’s take our example of generating squares and make it

run in parallel:

List<Integer> squares = new Arraylist<>();

Flux.range(1, 64).flatMap(v -> // 1

Mono. just(v)
.subscribeOn(Schedulers.newSingle("comp"))
.map(w -> w * w)) //2

47

CHAPTER5 REACTOR

.doOnError(ex -> ex.printStackTrace()) // 3
.doOnComplete(() -> System.out.println("Completed")) // 4
.subscribeOn(Schedulers.immediate())
.subscribe(squares::add); //5

1. First we use Flux.range to take the range from
1 to 64 and call flatMap (which takes a lambda
expression that converts each value in the range into
a new Reactor type, Mono in this case).

2. Using Schedulers.newSingle(name), we create a
new single thread for each value, and passing to
subscribeOn will cause the mapping expression to
be executed on that single thread. Keep in mind we
are describing the execution of the Mono here, not
the initial Flux.

3. We provide exception handling code using
doOnError just in case.

4. Using doOnComplete we print out “Completed”
when the whole execution is finished.

5. Finally, we subscribe to the Flux (without this step,
nothing would ever happen) and add the result to
our list of squares.

The result of running this code will be that the squares List has the
value of every square from 1 to 64.

Here we see once again how in Reactive Streams everything can
become a stream, even a single value. By creating a Mono for each value in
the range, we're able to use Reactor to declare what kind of threading we
want for every calculation. In this case, since we are using newSingle, all of
the processing will be done in parallel with a new thread for all 64 values.

48

CHAPTERS5 REACTOR

However, this is probably not the most efficient implementation since
creating lots of Threads causes a lot of overhead. Instead, we should use
Schedulers.parallel() so that the exact number of Threads your CPU can
handle will be created. In this way, Reactor takes care of the details for you.

Pull Events

If you have more of a “pull” situation (events are created by polling a

source), you can use the Flux.create(FluxSink) method. For example, the
following code creates a Flux that polls a channel (some imaginary class
representing a stream of Strings from outside of Reactor) for new events:

Flux<String> bridge = Flux.create(sink -> {

sink.onRequest(n -> channel.poll(n)) //1
.onCancel(channel::cancel) // 2
.onDispose(channel::close); // 3
channel.register(sink::next); //4

};

1. Poll for events from the channel when requests are
u__n

made with the given number. This “n” is the number
of items requested.

2. Call the channel’s cancel method when the Flux is
cancelled.

3. 'The channel.close method is given to onDispose to
be invoked for complete, error, or cancel.

4. Finally, register the sink’s “next” method as a
listener to the channel.

Keep in mind that the Consumer passed to onRequest will not be
called multiple times for no reason. It will be called with some number
(e.g., 256) and then not called again until a significant number of items
have been published to the Flux (i.e., sink.next called many times).

49

CHAPTER5 REACTOR

Reminder The code examples used in this book are available on
GitHub.

Handling Backpressure

Reactor, like all implementations of Reactive Streams, has the ability to
handle backpressure. Simply use one of the following methods on a Flux (or
others not listed) to specify which backpressure strategy you want to use:

e onBackpressureBuffer(): Buffers all items until they can
be handled downstream.

e onBackpressureBuffer(maxSize): Buffers items up to the

given count.

e onBackpressureBuffer(maxSize, BufferOverflowStrategy):
Buffers items up to the given count and allows you to
specify the strategy to use when and if the buffer is full.
BufferOverflowStrategy is an enum that has three values:
DROP_OLDEST, which drops the oldest items in the
buffer, DROP_LATEST which drops the newer items, and
ERROR which would terminate the stream with an error.

e onBackpressureLatest(): Similar to keeping a buffer of
only the last item added. If the downstream does not
keep up with upstream, only the latest element will be
given downstream.

e onBackpressureError(): Ends the Flux with an error
(calling the downstream Subscriber’s onError)
with an IllegalStateException from Exceptions.
failwithOverflow() if more items were produced
upstream than requested downstream.

50

https://github.com/adamldavis/reactive-streams-in-java

CHAPTERS5 REACTOR

e onBackpressureDrop(): Drops any items produced
above what was requested. This would be useful, for
example, in UI code to drop user input that can’t be
handled immediately.

e onBackpressureDrop(Consumer): Drops any items
produced above what was requested and calls the given
Consumer for each dropped item.

With each of these methods, the strategy only applies when items
are produced on the stream faster than they can be handled. If that’s not
the case, for example, with a cold stream, no backpressure strategy is
necessary.

For example, we might want to take a Flux named “bridge” created
earlier that is a stream of user input and buffer up to 256 items like the
following:

bridge.onBackpressureBuffer(256)

Also keep in mind that Reactor is not magic, and some care should be
taken when considering backpressure strategies.
Reactor has excellent online documentation for consideration.

Context

Since version 3.1.0, Reactor comes with an advanced feature that is
somewhat comparable to ThreadLocal but applied to a Flux or a Mono
instead of a Thread: the Context.

Reactor’s Context is much like an immutable Map or key/value
store. It is stored transparently from the Subscriber upward through the
Subscription. Context is Reactor specific and does not work with the other
Reactive Streams implementations.

51

https://projectreactor.io/docs/core/release/api/Reactor

CHAPTER5 REACTOR

When setting up the Context, you should not define it toward the
beginning of the Flux. This is because it starts at the subscriber and is
passed upstream. For example, do not do this:

// this is WRONG!
Flux<Integer> flux =
Flux.just(1).subscriberContext(Context.of("pid", 123));

Instead you should define it toward the end since it propagates
“backward” up the chain. For example:

Flux<Integer> flux = Flux.just(1); //1
Flux<String> stringFlux = flux.flatMap(i ->
Mono.subscriberContext().map(ctx -> i + '
ctx.getOrDefault("pid", 0))); //2
// supply context here:
StepVerifier.create(//3
stringFlux.subscriberContext(Context.of("pid", 123)))
.expectNext("1 pid: 123") //4
.verifyComplete();

" pid: "+

1. Create a Flux of just one value.

2. Use flatMap, access the Context, and use it to create
a String value using the “pid” key. We use the static
method on Mono, subscriberContext() to access the
value from the Context by calling “getOrDefault” on it.

3. This uses the StepVerifier (which we cover next)
to verify that we get the expected value. The
StepVerifier subscribes to the Flux after setting the
Context using the “subscriberContext” method.

4. Call “expectNext” with a value of “1 pid: 123” which
is what we expect from setting the value 123 with the
key of “pid” on the Context.

52

CHAPTERS5 REACTOR

Context is useful for storing data that is peripheral to the Flux, but
still important. For example, sometimes we have some identifier that
represents the action or the user that initiated an action, and we want to
include it in log outputs (like what MDC is used for in logback).

Testing

Automated testing is always a good idea, and it would be nice to have
tools to directly test Reactive Streams. Luckily, Reactor comes with a few
elements dedicated to testing which are gathered into their own artifact we
included earlier: reactor-test.

The two main uses of reactor-test are the following:

o Testing that a sequence follows a given scenario with
StepVerifier

e Producing data in order to test the behavior of
operators (including your own operators) downstream
with TestPublisher

StepVerifier

Reactor’s StepVerifier can be used to verify the behavior of a Reactor

Publisher (Flux or Mono). StepVerifier is an interface used for testing that

can be created using one of several static methods on StepVerifier itself.
Here’s a simple example of a JUnit test utilizing StepVerifier:

@Test

public void testStepVerifier Mono error() {
Mono<String> monoError = Mono.error(

new RuntimeException("error")); //1
StepVerifier.create(monoError) //2

53

https://logback.qos.ch/manual/mdc.html

CHAPTER5 REACTOR

.expectErrorMessage("error") //3
.verify(); //4

1. Create a Mono wrapping a RuntimeException
imitating an actual error state.

2. Create a StepVerifier wrapping that Mono.

3. Declare that an onError event is expected and the
Exception’s error message is “error”.

4. Must call verify() at the end. This will throw an
AssertionError if any expectations are not met.

We can also create a Mono of just one string and verify it, for example:

@Test public void testStepVerifier Mono foo() {
Mono<String> foo = Mono.just("foo"); //1
StepVerifier.create(foo) //2

.expectNext("foo") //3

.verifyComplete(); //4

}

1. Create a Mono wrapping one value, “foo”.
2. Create a StepVerifier wrapping that Mono.
3. Expect onNext is called with “foo”.

4. Call verifyComplete() has the same effect as verify()
but also expects onComplete was called.

Here we will test a Flux with three values and timeout if it takes too long:

@Test public void testStepVerifier Flux() {
Flux<Integer> flux = Flux.just(1, 4, 9); //1
StepVerifier.create(flux) //2

54

CHAPTERS5 REACTOR

.expectNext(1) //3

.expectNext(4)

.expectNext(9)

.expectComplete() //4
.verify(Duration.ofSeconds(10)); //5

Create a Flux of just three numbers.
Create a StepVerifier wrapping that Flux.
Call expectNext for each value expected.

Call expectComplete to expect onComplete to be
called.

Finally, you must call verify() at the end. This
variation of verify takes a Duration timeout value.
Here it is 10 seconds. This can be useful to prevent
the Test from hanging in cases where a Publisher
might never call onComplete.

TestPublisher

The TestPublisher<T> class offers the ability to provide finely tuned data

for test purposes. TestPublisher is a Reactive Streams Publisher<T> but can

be converted to either a Flux or Mono using flux() or mono() methods.

TestPublisher has the following methods:

next(T) and next(T, T...): Triggers 1-n onNext signals.

emit(T...): Does the same as next and also terminates
with an onComplete signal.

complete(): Terminates with an onComplete signal.

error(Throwable): Terminates with an onError signal.

55

CHAPTER 5 REACTOR
The following demonstrates how you might use TestPublisher:

TestPublisher<Object> publisher = TestPublisher.create(); //1

Flux<Object> stringFlux = publisher.flux(); //2

List list = new ArraylList(); //3

stringFlux.subscribe(next -> list.add(next), ex ->
ex.printStackTrace()); //4

publisher.emit("foo", "bar"); //5

assertEquals(2, list.size()); //6

assertEquals("foo", list.get(0));

assertEquals("bar", list.get(1));

1. Create the TestPublisher instance.
2. Convert it to a Flux.

3. Create a new List. For test purposes we will use this
list to collect values from the publisher.

4. Subscribe to the publisher using two lambda
expressions for onNext and onError. This will add
each value emitted from the publisher to the list.

5. Emit the values “foo” and “bar” from the
TestPublisher.

6. Assert that two values were added to the list and
they are what we expect.

Note that you must subscribe to the TestPublisher before emitting any

values.

56

CHAPTER 6

Akka Streams

Akka Streams implements the Reactive Streams standard within the larger
Akka concurrency project.

Akka Streams is built on the philosophy of providing a minimal and
consistent Application programming interface (API) that is extremely
compositional, meaning it is broken into pieces that can be combined in
many ways.

Unlike RxJava and Reactor, the topology of streams (flows) in Akka
Streams is immutable once they have been materialized. This means that
you must be explicit to convert a flow into a Reactive Streams interface to
have a dynamic topology (as we’ll cover later on).

Although most familiar in Scala-based applications, Akka Streams has
a Java-specific API, and the documentation lets you select Java or Scala as
your target language with specific examples for each.

Akka Streams uses the concepts of Source and Sink to correspond
roughly with Publisher and Subscriber of other Reactive Streams
frameworks. It also has the concept of Flow which is roughly equivalent
to Processor and Graphs which are like blueprints of Flows, Sinks, or
Sources.

© Adam L. Davis 2019 57
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9_6

https://doc.akka.io/docs/akka/2.5.16/stream/index.html?language=java

CHAPTER6 AKKA STREAMS

Getting Started

If you have a Maven build, add the following to your pom file:

<dependency>
<groupId>com.typesafe.akka</groupId>
<artifactId>akka-stream_2.12</artifactId>
<version>2.5.16</version>

</dependency>

<dependency>
<groupId>com.typesafe.akka</groupId>
<artifactId>akka-stream-testkit 2.12</artifactId>
<version>2.5.16</version>
<scope>test</scope>

</dependency>

For Gradle builds, add the following to your Gradle build file’s
dependencies:

compile 'com.typesafe.akka:akka-stream 2.12:2.5.16'
testCompile 'com.typesafe.akka:akka-stream-testkit 2.12:2.5.16'

Use the following imports:

import akka.stream.*;
import akka.stream.javadsl.*;

In this example we will be taking a stream of messages and extracting
all messages that begin with Error:

final ActorSystem system = ActorSystem.create(
"reactive-messages"); //1

final Materializer mat = ActorMaterializer.create(system); //2
Source<String, NotUsed> messages = Source

.single("Error: test message");

58

https://maven.apache.org/
https://gradle.org/

CHAPTER6 AKKA STREAMS

final Source<String, NotUsed> errors =
messages.filter(m -> m.startsWith("Error")) //3
.map(m -> m.toString()); //4

errors.runWith(Sink.foreach(System.out: :println), mat); //5

1. We create the Akka ActorSystem to define the
multithreaded environment for execution. We
provide a name “reactive-messages” which
is optional and gives a logical name to the
ActorSystem.

2. The execution environment (similar to
Schedulers in RxJava) is known as a Materializer
here. Unlike RxJava, the developer controls
concurrency by calling methods like async() and
mapAsync(int,Function) on a Source or Flow.

3. We filter out only the error messages.

4. Although not necessary, we call toString on each
message to illustrate using the map method.

5. Finally, we use runWith and pass in a Sink which
prints out each error message.

Although here we are using the foreach Sink, any sink could be used,
including user-defined sinks.

To avoid conceptual conflicts with the existing flatMap in Scala,
Akka Streams uses flatMapConcat, flatMapMerge, and mapConcat. The
mapConcat method expects Iterables returned from the function, not
streams. The other two methods act as their names suggest, either merging
streams or appending them sequentially.

59

CHAPTER6 AKKA STREAMS

ActorMaterializer

The ActorMaterializer in Akka Streams is similar to Schedulers in the
other two Reactive Streams implementations but not the same. Unlike
Schedulers, there are not several predefined singletons to choose from;
instead you should generally create one for your whole application and
specify some general settings.

An ActorMaterializer is created in the following way:

public static Materializer createMaterializer() {
final ActorSystem system = ActorSystem.create(); // 1
ActorMaterializerSettings settings =
ActorMaterializerSettings.create(system) //2
.withMaxFixedBufferSize(100) //3
.withInputBuffer(8, 16); //4
return ActorMaterializer.create(settings,system);//5

1. Create the ActorSystem.

2. Optionally create ActorMaterializerSettings. This
allows you to configure internal settings used by
Alkka Streams to enhance performance for your
particular project.

3. Set maximum fixed buffer size to 100. Stream
elements which have explicit buffers (like
mapAsync, mapAsyncUnordered, flatMapMerge,
Source.actorRef, Source.queue, etc.) that request
a lower buffer size will use this value as the initial
fixed buffer size. The default is very large to make
failures happen earlier, not when scaling up. You
might change it if you want to use a small amount of
memory, for example.

60

CHAPTER6 AKKA STREAMS

Set the initial and maximum size of internal stream
buffers. Here we set the initial value to 8 and
maximum to 16, which are the defaults.

Finally create the ActorMaterializer with the given
settings and ActorSystem.

Sinks, Flows, and Graphs

One of the interesting things about Akka Streams is that every part can

be defined, is immutable, and can be reused independently. For this

purpose, Akka Streams has the concept of Flow, Graph, Source,

and Sink.

Flow: A Flow has both an input and an output. So, you
can define a Flow with only the type of the data that will
be streamed, without the actual data. It is similar to org.
reactivestreams.Processor which is both a Publisher
and a Subscriber.

Graph: A Graph can define any arbitrary branching and
recombining of streams. A Graph is immutable, thread-
safe, and reusable. A Graph that is self-contained (has
no input or output) is a RunnableGraph and can be
materialized.

Source: A Source has exactly one output. It is a source of
data, similar to a Publisher, and can be created in many
different ways.

Sink: As seen before, a Sink is the ending point of a
stream. It represents what we do with the data. It has
exactly one input.

61

CHAPTER6 AKKA STREAMS

Using Flow, you can define a Sink separately from defining any
sources. For example, this sink would save to a file:

public Sink<String, CompletionStage<IOResult>> lineSink(
String filename) {
return Flow.of(String.class)
.map(s -> ByteString.fromString(s.toString() + "\n"))
.toMat(FileIO.toPath(Paths.get(filename)),
Keep.right());

First, we create a Flow of type “String”; this declares what type you
are expecting. Second, we map each string into a ByteString. At this point,
the type is now Flow<ByteString>. Lastly, we call toMat (which is short for
toMaterialized) to write the result to a file using an existing Sink (FileIO
is part of the Akka Streams Java DSL). We specify Keep.right() to keep the
auxiliary information from toPath.

The Sink, once defined, can be used multiple times. Notice that
defining the Sink does not complete any action. No save has taken place
yet until we materialize it with some Source. For example:

public void saveTextFile(List<String> text) {
Sink<String, CompletionStage<IOResult>> sink =
lineSink("testfile.txt");
Source.from(text).runWith(sink, materializer);

This method would take a List of Strings, create a Source from them,
and then save them to a file using the Sink from the lineSink method.

62

CHAPTER6 AKKA STREAMS

Graphs can be created using the GraphDSL. For example, using the
previously defined methods, we can create a Graph of a SinkShape like so:

public Graph<SinkShape<String>, NotUsed> createFileSinkGraph()

{
return GraphDSL.create(builder -> {

FlowShape<String, String> flowShape = builder
.add(Flow.of(String.class).async()); //1

var sink = lineSink("testfile.txt"); //2

var sinkShape = builder.add(sink); //3

builder.from(flowShape.out()).to(sinkShape); //4
return new SinkShape<>(flowShape.in()); //5

};
}

1. Call builder.add with a Flow to get a FlowShape.
Here we create an asynchronous Flow.

2. Create a new Sink<String> by calling our lineSink
method.

3. Create a SinkShape<String> from that sink.

4. Link the output from the flowShape to the
sinkShape.

5. Return a new SinkShape using the input from the
flowShape. We have now created the Graph of a
SinkShape that will save text lines to a file.

We can use this graph by calling Sink.fromGraph to create a Sink:

public void saveTextFileUsingGraph(List<String> text) {
Sink.fromGraph(createFileSinkGraph())
.runWith(Source.from(text), materializer);

63

CHAPTER6 AKKA STREAMS

The preceding code would use the Graph we created to create a new
Sink and run it with a Source created from the given List, thus saving the
text, one line per element of the list.

Backpressure

Backpressure strategies can be defined on the stream to describe what to
do when too many elements are produced. For example, we can buffer our
messages stream:

messages
.buffer(100, OverflowStrategy.dropHead())

This would buffer 100 elements, dropping the oldest (dropHead). You
should pick whatever strategy best fits your problem space.
Other options include

e dropTail(): Drops the newest elements from the buffer.

e dropBuffer(): An aggressive strategy that drops the
entire buffer once it is full.

e dropNew(): Drops any new elements when the buffer is
full.

e backpressure(): The strategy would cause backpressure
signal to be pushed upstream if the buffer is full. In
other words, the amount requested from upstream
would fall to zero until the buffer was no longer full.

e fail(): Fails the stream entirely when the buffer is full.

Interoperation with Reactive Streams API

Due to Akka Streams’ immutable topology requirements, it can be
surprising to people familiar with other Reactive Streams libraries.

64

CHAPTER6 AKKA STREAMS

In order to obtain a Publisher or Subscriber from an Akka Stream
topology, a corresponding Sink.asPublisher or Source.asSubscriber
element must be used.

A Sink must be created with Sink.asPublisher(AsPublisher.-WITH_
FANOUT) (for enabling fan-out support) where broadcast behavior is
needed for interoperation with other Reactive Streams implementations. If
“AsPublisher WITHOUT_FANOUT” is used instead, the resulting Publisher
will only allow one Subscriber.

An Akka Streams Flow can also be converted to a Processor using
Flow’s toProcessor() method; however, it is also limited to only one
Subscriber.

To get around these limitations, and create dynamic stream handling
within Akka Streams, you can use MergeHub, BroadcastHub, and
PartitionHub.

MergeHub, BroadcastHub, and PartitionHub

For dynamically defined flows of data that need to have multiple
consumers or multiple producers of data, Akka Streams has the following
classes:

e A MergeHub allows any number of flows to go into a
single Sink.

e A BroadcastHub can be used to consume elements
from a common producer by a dynamic set of

consumers.

e A PartitionHub can be used to route elements from a
common producer to a dynamic set of consumers. The
selection of consumer is done with a function and each
element can only be routed to one consumer.

65

CHAPTER 6 AKKA STREAMS
For example, here is a simple use case of a MergeHub:

Sink<String, CompletionStage<Done>> consumer =
Sink.foreach(System.out::println); //1
int bufferSize = 8;
RunnableGraph<Sink<String, NotUsed>> runnableGraph =
MergeHub.of(String.class, bufferSize)
.to(consumer); //2
Sink<String, NotUsed> toConsumer =
runnableGraph.run(materializer); //3

1. A simple consumer that will print to the console.

2. Attach a MergeHub Source to the consumer. This
will materialize to a corresponding Sink when run.
The buffer size is used per producer.

3. Finally we must run and materialize the
runnableGraph to get the Sink. This Sink can
be materialized any number of times, and every
element that enters it will be consumed by the
“consumer” defined in step 1.

For more information about MergeHub, BroadcastHub, and
PartitionHub, see the documentation.

Testing

Akka Streams includes a testkit to assist in creating tests around your
application. It includes the following:

o TestKit: Has a method that is useful for shutting down
the ActorSystem between each test

o TestSink: Enables probing of an Akka Stream Source
directly using a TestSubscriber.Probe<T> instance

66

https://doc.akka.io/docs/akka/2.5.16/stream/stream-dynamic.html

CHAPTER6 AKKA STREAMS

TestSource: Enables probing of a Sink using a

TestPublisher.Probe<String> probe instance

Add the following imports to the test class:

import
import
import
import
import
import
import
import
import
import
import

static org.junit.Assert.*;
static org.hamcrest.CoreMatchers.*;

akka.
akka.
akka.
akka.

akka

NotUsed;
actor.ActorSystem;
japi.Pair;
stream.ActorMaterializer;

.stream.javadsl.*;
akka.
akka.
akka.

stream.testkit.*;
stream.testkit.javadsl.TestSink;
testkit.javadsl.TestKit;

org.junit.*;

Define our setup and tearDown methods:

ActorSystem system;
ActorMaterializer materializer;

@Before

public void setup() {
system = ActorSystem.create();
materializer = ActorMaterializer.create(system);

}
@After

public void tearDown() {
TestKit.shutdownActorSystem(system);

}

67

CHAPTER6 AKKA STREAMS

Now we can write tests using TestSink to probe any Source. For
example:

@Test
public void test a source() {
Sink<Object, TestSubscriber.Probe<Object>> sink =
TestSink.probe(system); //1
Source<Object, NotUsed> sourceUnderTest =
Source.single("test"); //2
sourceUnderTest.runWith(sink, materializer) //3
.request(1)
.expectNext("test")
.expectComplete();

1. Create the TestSink instance.

2. Create the Source we want to test. In a real test, this
would come from some part of your production
code.

3. Run the Source with the TestSink and use the
resulting TestSubscriber.Probe<T> instance to
request one value and expect it to be “test”. Calling
expectComplete() means we expect the Source
to send the “on-complete” signal, and if not it will
through an AssertionError.

68

CHAPTER6 AKKA STREAMS

We can also test Sinks using the TestSource.probe(ActorSystem)
method as follows:

Sink<String, CompletionStage<List<String>>>
sinkUnderTest = Sink.seq(); //1
final Pair<TestPublisher.Probe<String>,
CompletionStage<List<String>>> stagePair =
TestSource.<String>probe(system)
.toMat(sinkUnderTest, Keep.both()) //2
.run(materializer);
final TestPublisher.Probe<String> probe =
stagePair.first(); //3
final CompletionStage<List<String>> future =
stagePair.second();
probe.expectRequest(); //4
probe.sendNext("test");
probe.sendError(new Exception("boom!"));
try {
future.toCompletableFuture().get(2, TimeUnit.SECONDS); //5
assert false;
} catch (ExecutionException ee) {
final Throwable exception = ee.getCause();
assertEquals(exception.getMessage(), "boom!"); //6

}

1. Get an instance of the Sink we want to test.

2. Create and materialize the TestSource with
sinkUnderTest and keep both the materialized value
and auxiliary value using Keep.both().

69

CHAPTER6 AKKA STREAMS

70

3. Getreferences to both the TestPublisher.

Probe<String> and the CompletionStage (future) as
we will use them later.

Call several methods on the probe to expect the Sink
requested data, send some data, then call sendError
on the probe with an Exception instance.

Convert the CompletionStage from the previous
step to a CompletableFuture and call “get” with a
timeout of two seconds (just in case the underlying
future would never complete).

Finally, assert that the Exception was thrown and it
has the message “boom!”

CHAPTER 7

Android and RxJava

RxAndroid, RxBinding, and RxLifecycle provide RxJava bindings for
Android. This makes using RxJava in an Android application much
easier.

Since the release of Android Studio 2.4, it has supported using
Java 8’s lambda syntax which we can make heavy use of in our RxJava-
related code.

RxBinding is an open source library of Java binding APIs for Android
Ul widgets from the platform and support libraries.

For this chapter we’ll build a simple example application with
RxAndroid, RxBinding, RxLifecycle, and RxJava using Android Studio.
The code is available on GitHub.

Getting Started

If you have not already, go download the latest Android Studio for your
operating system and install and run it. Once Android Studio has started,
perform the following steps to get started:

1. Create a new project by selecting File » New
Project from the menu and give it a name (such as
RxAndroidTest).

© Adam L. Davis 2019 71
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9_7

https://github.com/ReactiveX/RxAndroid
https://github.com/JakeWharton/RxBinding
https://github.com/trello/RxLifecycle
https://android-developers.googleblog.com/2017/04/java-8-language-features-support-update.html
https://github.com/adamldavis/RxAndroidTest
https://developer.android.com/studio/install

CHAPTER 7 ANDROID AND RXJAVA

Create New Project

H Create Android Project

Package name

1 support

2. Select 8.0 (Oreo) as the target version.

Create New Project

H Target Android Devices

Select the form factors and minimum SDK

+ Ph

72

CHAPTER 7 ANDROID AND RXJAVA

3. When prompted, select “Login Activity” when it says
“Add an Activity to Mobile”.

Create New Project

\) Add an Activity to Mobile

4. Then, click the module name on the left-hand side
(such as “app”), press F4, and then make sure your
Java version is set to at least 8 (allow lambdas).

FocdroidTest [-/AndroidStudioProjects) R

73

CHAPTER 7 ANDROID AND RXJAVA

After your project is started, add the required dependencies to your
build file (app/build.gradle):

implementation
'io.reactivex.rxjava2:rxandroid:2.1.0'
implementation
'io.reactivex.rxjava2:rxjava:2.2.2"
implementation
"com. jakewharton.rxbinding2:rxbinding:2.1.1'

Because RxAndroid releases are few and far between, it is
recommended you also explicitly depend on RxJava’s latest version
for bug fixes and new features (see the RxJava GitHub for the latest 2.x
version).

Also, to enable Java 8 code style, you may need to add the following
under the “android” block of build.gradle:

compileOptions {
sourceCompatibility '1.8'
targetCompatibility '1.8'
}

Android SDK

Before your project can be compiled, you need to have one or more
versions of Android Software Development Kit (SDK) installed.

To do this, choose the “File” menu then “Settings..”” and then type in
“SDK” in the search box and select “Android SDK” Make sure to install at
least one Android SDK and accept the license.

74

https://github.com/ReactiveX/RxJava/releases

CHAPTER 7 ANDROID AND RXJAVA

Settings

Android Schedulers

RxAndroid provides AndroidSchedulers which enables you to run on
Android-specific threads such as the main thread. For example:

Observable.just("one", "two", "three", "four")
.observeOn(AndroidSchedulers.mainThread())
.subscribe(each ->

System.out.println(each.toUpperCase()));

This would run the actions of this Observable on Android’s main thread.
This is useful since updates to the UI should occur on the main thread.

To find out what thread your code is executing on, just use Thread.
currentThread().getName(). For example, we could replace the last line in the
preceding code with the following to print out the name of the current thread:

System.out.println(
Thread.currentThread().getName())

75

CHAPTER 7 ANDROID AND RXJAVA

You can also use AndroidSchedulers to create a Scheduler around any
arbitrary Looper. For example:

Looper looper = Looper.myLooper();

RxView.clicks(button)
.observeOn(AndroidSchedulers.from(looper))
.subscribe();

RxBinding

Using RxBinding, you can easily turn Android Ul events into RxJava
Observables. To start, add the following imports to LoginActivity.java:

import com.jakewharton.rxbinding2.view.*;
import com.jakewharton.rxbinding2.widget.*;
import io.reactivex.Observable;

For example, let’s take a button and subscribe to click events.
Open “LoginActivity.java” and find the line that starts with “Button
mEmailSignInButton’”.

Find and comment out the following code:

Button mEmailSignInButton = (Button)
findViewById(R.id.email sign in_button);
mEmailSignInButton.setOnClickListener(
new OnClickListener() {
@0verride
public void onClick(View view) {
attemptLogin();
}
D;

76

CHAPTER 7 ANDROID AND RXJAVA
This can be replaced using RxAndroid with the following:

Button button = (Button)

findViewById(R.id.email sign in button);

RxView.clicks(button).subscribe(event -> {
attemptLogin();

D;

We can also observe text changes on an EditText, for example:

RxTextView.textChangeEvents(editText)
.subscribe(e -> log(e.text().toString()));

Using these bindings, we can combine the Observables together in
different ways to achieve our final goal. For example, add the following
code:

Observable<TextViewTextChangeEvent>
emailChangeObservable =
RxTextView.textChangeEvents(mEmailView);

Observable<TextViewTextChangeEvent>
passwordChangeObservable =
RxTextView.textChangeEvents(mPasswordView);

// force-disable the button

button.setEnabled(false);

Disposable d = Observable.combinelLatest(
emailChangeObservable, passwordChangeObservable,
(emailObservable, passwordObservable) -> {
boolean emailCheck =

emailObservable.text().length() >= 3;
boolean passwordCheck =
passwordObservable.text().length() >= 3;
return emailCheck && passwordCheck;

}).subscribe(
enabled -> button.setEnabled(enabled));

77

CHAPTER 7 ANDROID AND RXJAVA

In this example, the submit button will only be clickable if both forms
have more than three characters each.

The Disposable instance above (d) holds a reference to the view, so
we must unsubscribe from the stream or cause it to terminate to prevent
memory leaks. This can be achieved in a consistent way using the
RxLifecycle library.

RxLifecycle

RxLifecycle is an open source library for binding to lifecycle events of
Android components. This can be useful for dropping subscriptions and
avoiding memory leaks on destroy/pause events for example.

To get started with RxLifecycle, add the following dependencies to your
“build.gradle” file:

implementation 'com.trello.rxlifecycle2:rxlifecycle:2.2.2'
implementation
"com.trello.rxlifecycle2:rxlifecycle-android:2.2.2"
implementation
"com.trello.rxlifecycle2:rxlifecycle-components:2.2.2"

Next, add the following imports to your Activity:

import com.trello.rxlifecycle2.components.support\
.RxAppCompatActivity;

Then change the LoginActivity to extend the “Rx” equivalent
(RxAppCompatActivity in this case):

public class LoginActivity extends RxAppCompatActivity
implements LoaderCallbacks<Cursor> {

78

https://github.com/trello/RxLifecycleRxAndroid

CHAPTER 7 ANDROID AND RXJAVA

Finally, you can now use “compose” and RxLifecycle to bind a
sequence to the lifecycle events. For example:

@Override
public void onResume() {
super.onResume();
Observable<Long> mySequence = Observable.interval
(200, TimeUnit.MILLISECONDS);
mySequence
.doOnNext(x -> System.out.println(

"poll the server"))
.observeOn(AndroidSchedulers.mainThread())
.compose(bindToLifecycle())

.subscribe();

}

Here “mySequence” could be any RxJava type such as Observable,
Flowable, Single, or Maybe. In this case, “Observable.interval” will emit a
value every 200 milliseconds.

RxLifecycle determines the appropriate time to end the sequence, for
example: if subscribing during START, it will terminate on STOP; if you
subscribe after PAUSE, it will terminate at the next destruction event.

RxLifecycle will then terminate the sequence when appropriate
with the following consequences depending on the type of the original
sequence:

e Observable, Flowable, and Maybe: Emits
onCompleted()

o Single and Completable: Emits onError(Cancellation
Exception)

In the preceding example, by putting the code in “onResume’, this
would cause our polling to take place after resume and stop upon a pause

event.

79

CHAPTER 7 ANDROID AND RXJAVA

Putting It Together

Let’s use RxLifecycle and RxAndroid to improve our code from earlier:

Observable.combinelLatest(
emailChangeObservable,
passwordChangeObservable,
(emailObservable, passwordObservable) -> {
boolean emailCheck =
emailObservable.text().length() >= 3;
boolean passwordCheck =
passwordObservable.text().length() >= 3;
return emailCheck && passwordCheck; //1
9
.compose(bindToLifecycle()) //2
.observeOn(AndroidSchedulers.mainThread()) //3
.subscribe(
enabled -> button.setEnabled(enabled)); //4

1. We have the same “combineLatest” as before to
ensure both inputs have at least three characters.

2. We use our RxActivity instance to bind to the
lifecycle so that our Observable will stop when
appropriate.

3. We observe on the Android main thread.

4. Finally, we subscribe to do what we want with the
stream, which is enable or disable to the “login”
button in this case.

Since we called “bindToLifecycle” within the “onCreate” method,
RxLifecycle will cause the sequence to terminate on the “opposite” action,
“onDestroy” in this case. This will release our reference to the email and
password view, preventing memory leaks.

80

CHAPTER 7 ANDROID AND RXJAVA

Using RxJava

Using basic RxJava operations, we can improve “noisy” data inputs to
prevent things like accidental double-clicks causing an action to occur
twice.

Using the “debounce” operator, we can delay an event action until a
stream is silent for a specified amount of time. For example, on the button
click, we can set a debounce of 500 milliseconds (half a second). This
would run the operation after the button is clicked and then not clicked for
half a second:

RxView.clicks(button).debounce(500,
TimeUnit.MILLISECONDS)

Unlike debounce which delays the action, the “throttleFirst” operator
is used to prevent repeating events within a certain time interval after the
first event emitted. ThrottleFirst is useful when it comes to preventing
doubling actions when a button is repeatedly clicked, but still applying the
action on the first click. For example, use throttleFirst like the following:

RxView.clicks(button).throttleFirst(1,
TimeUnit.SECONDS)

The preceding code would allow click events through filtering out any
clicks that happen within a second of the first one.

Testing

To fully test our application, we should run a virtual system. Press
“Shift+F10” or click the “Run » Run...” menu and select a phone type. You
will need to download a system image if you have not already by clicking
the “Create New Virtual Device” button and following the wizard. Select a
system image and click “Finish”.

81

CHAPTER 7 ANDROID AND RXJAVA

Activities & Android Studio ~

RxAdroidTest [-/ AndroidStudioProjects/RxAd]

There is much more involved in creating Android applications that is
out of the scope of this book.

To learn more, check out a good book or read the online
documentation from Google.

82

https://developer.android.com/docs/

CHAPTER 8

Spring Boot and
Reactor

Spring Boot greatly simplifies creating a Spring-based application or
microservice.

It takes an opinionated approach with sensible defaults for everything
you might need and can get you quickly up and running. It uses
annotations (no XML needed) and no code generation.

With WebFlux, we can quickly create asynchronous, nonblocking,
and event-driven applications using HTTP or WebSocket connections.
Spring uses its own Reactive Streams implementation, Reactor (with
Flux and Mono), in many of its APIs. Of course, you can use another
implementation within your application, such as RxJava if you so choose.

In this chapter, we’ll take a look at implementing a full project using
Spring Boot, WebFlux, and Reactor with a MongoDB persistence layer.

Getting Started

There are several ways to start a Spring Boot project. Among them are the
following:

1. Go to the Spring Initializr and create a project
template from there. There are also tools like
Spring Tool Suite that take advantage of the spring
initializer from your IDE.

© Adam L. Davis 2019 83
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9_8

https://start.spring.io/

CHAPTER 8 SPRING BOOT AND REACTOR

2. Create your own Maven-based project.
3. Create your own Gradle-based project.

For the purposes of this book, we will choose option three and create a
Gradle, Java-based project.

Spring Boot is highly customizable, and you can add whichever
“starters” you want for your project (web, mail, freemarker, security, etc.).
This makes it as lightweight as possible.

We're going to create a WebFlux-based project that uses Spring’s
Reactor project along with MongoDB in order to have a fully reactive web
application.

The code for this project is available on GitHub at adamldavis/
humblecode.

Gradle Plugin

The most basic Gradle build for Spring Boot with WebFlux looks
something like the following:

buildscript {

ext {
springBootVersion = '2.0.4’°
}

repositories {
mavenCentral()

}

dependencies {
classpath("org.springframework.boot:spring-boot-gradle-

plugin:${springBootVersion}")
}

}
apply plugin: 'org.springframework.boot'

84

https://github.com/adamldavis/humblecode
https://github.com/adamldavis/humblecode

CHAPTER 8 SPRING BOOT AND REACTOR

apply plugin: 'io.spring.dependency-management'
apply plugin: ‘groovy'
apply plugin: 'idea'
dependencies { //1
compile('org.springframework.boot:spring-boot-starter-
webflux') //2
compile('org.codehaus.groovy:groovy")
compileOnly('org.projectlombok:lombok") //3
compile('org.springframework.boot:spring-boot-starter-data-
mongodb-reactive') //4
testCompile('org.springframework.boot:spring-boot-starter-
test') //5
testCompile('io.projectreactor:reactor-test') //6

1. The first thing you might notice is the lack of
versions specified; Spring Boot provides those for
you and ensures that everything is compatible
based on the version of Spring Boot specified. You
also don’t need to specify the main class. That is
determined through annotations.

2. We include the “webflux” starter to enable Spring’s
WebFlux and “reactor-test” to allow us to test
Reactor-based code more easily.

3. We're including Project Lombok here just to simplify
the model classes. Lombok gives you annotations
that automatically generate boilerplate code like
getters and setters.

4. Here we include the Spring Data start for using
MongoDB with Reactor integration.

85

CHAPTER 8 SPRING BOOT AND REACTOR

5. We include the “spring-boot-starter-test” artifact to
help with our testing of the application.

6. We include “reactor-test” to make testing Reactor-
related code easier.

Keep in mind that for the back end to be completely reactive, our
integration with the database needs to be asynchronous. This is not
possible with every type of database. In this case we are using MongoDB.

At the time of writing, Spring provides reactive integrations “only”
for Redis, MongoDB, and Cassandra. You can do this by simply
switching “mongodb” for the database you want in the “starter” compile
dependency. There is an asynchronous driver available for PostgreSQL,
postgres-async-driver, so it might be supported in the future.

Tasks

The Spring Boot plugin adds several tasks to the build.

To run the project, run “gradle bootRun” (which runs on port 8080 by
default). Look at the command line output to see useful information like
which port your application is running on. For example, the last four lines
might be something like the following:

2018-09-28 15:23:41.813 INFO 19132 --- [main]
0.s.j.e.a.AnnotationMBeanExporter : Registering beans for IMX
exposure on startup

2018-09-28 15:23:41.876 INFO 19132 --- [server-epoll-13]
r.ipc.netty.tcp.BlockingNettyContext : Started HttpServer on
/0:0:0:0:0:0:0:0%0:8003

2018-09-28 15:23:41.876 INFO 19132 --- [main]
0.s.b.web.embedded.netty.NettyWebServer : Netty started on
port(s): 8003

86

https://github.com/alaisi/postgres-async-driver

CHAPTER 8 SPRING BOOT AND REACTOR

2018-09-28 15:23:41.879 INFO 19132 --- [main]
c.h.humblecode.HumblecodeApplication : Started
HumblecodeApplication in 3.579 seconds (JVM running for 4.029)

When you're ready to deploy, run “gradle bootRepackage” which builds
a fat jar with everything you need to run the full application in one jar.

SpringBootApplication

The main class is specified by annotating it with @SpringBootApplication.
For example, create a class named HumblecodeApplication and put it in
the com.humblecode package and put the following:

package com.humblecode;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.*;
import org.springframework.context.annotation.Bean;
import reactor.core.publisher.Flux;

@SpringBootApplication
public class HumblecodeApplication {

public static void main(String[] args) { //1
SpringApplication.run(
HumblecodeApplication.class, args);
}
@Bean
public Flux<String> exampleBean() { //2
return Flux.just("example");

87

CHAPTER 8 SPRING BOOT AND REACTOR

1. The main method calls SpringApplication.run to
start the application.

2. Beans can be created directly using the @Bean
annotation on methods. Here we create a simple
Flux<String> of just one element.

The @SpringBootApplication annotation tells Spring a number of
things:

1. To use auto-configuration.

2. To use component scanning. It will scan all
packages and subpackages for classes annotated
with Spring annotations.

3. 'This class is a Java-based configuration class, so you
can define beans here using the @Bean annotation
on a method that returns a bean.

Auto-Configuration

Spring Boot considers the runtime of your application and automatically
configures your application based on many factors, such as libraries on the
classpath.

It follows the motto: “If everyone has to do it, then why does everyone
have to do it?”

For example, to create a typical MVC web app, you will need to add a
configuration class and multiple dependencies and configure a Tomcat
container. With Spring Boot, all you need to add is a dependency and
a controller class, and it will automatically add an embedded Tomcat
instance.

88

CHAPTER 8 SPRING BOOT AND REACTOR

Configuration files can be defined as properties files, yaml, and other
ways. To start with, create a file named “application.properties” under “src/
main/resources” and add the following:

server.port=8003
app.name=Humble Code

This sets the server to run on port 8003 and sets a user-defined
property app.name which can be any value.

Later on you can add your own configuration classes to better
configure things like security in your application. For example, here’s the
beginning of a SecurityConfig class that would enable Spring Security in
your application:

@EnableWebFluxSecurity
public class SecurityConfig

Later on we’ll explore adding security to a WebFlux project.

Our Domain Model

For this section, we will be implementing a very simple web site with a
RESTful API for online learning. Each course will have a price (in cents), a
name, and a list of segments.

We will use the following domain model Course class definition:

import lombok.AllArgsConstructor;

import lombok.Data;

import org.springframework.data.annotation.Id;

import org.springframework.data.mongodb.core.mapping.*;
import java.util.*;

@ata //1

@A11ArgsConstructor

@Document //2

89

http://app.name

CHAPTER 8 SPRING BOOT AND REACTOR

public class Course {

@Id UUID id = UUID.randomUUID(); //3

public String name;

public long price = 2000; // $20.00 is default price
public final List<Segment> segments = new ArraylList<>();
public Course(String name) {this.name = name;}

}

1. The first two annotations are Lombok annotations.
@Data tells Lombok to add getters and setters
for every field, a toString() method, equals and
hashCode() methods, and a constructor.

2. The @Document annotation is the Spring Data
mongo annotation to declare this class represents a
mongo document.

3. The @Id annotation denotes the id property of this
document.

After installing MongoDB, you can start it with the following command:

mongod -dbpath data/ --fork \
--logpath ~/mongodb/logs/mongodb.log

ReactiveMongoRepository

First, we need to create an interface to our back-end database, in this case
MongoDB.

Using the spring-boot-starter-data-mongodb-reactive dependency
that we included, we can simply create a new interface that extends
ReactiveMongoRepository, and Spring will generate the code backing any

90

CHAPTER 8 SPRING BOOT AND REACTOR

method we define using a standard naming scheme. By returning Reactor
classes, like Flux or Mono, these methods will automatically be reactive.
For example, we can create a repository for Courses :

import com.humblecode.humblecode.model.Course;

import org.springframework.data.mongodb.\
repository.ReactiveMongoRepository;

import reactor.core.publisher.Flux;

import java.util.UUID;

public interface CourseRepository extends
ReactiveMongoRepository<Course, UUID> { //1

Flux<Course> findAllByNamelLike(String searchString); //2
Flux<Course> findAllByName(String name); //3

}

1. The first generic type is the type this repository
stores (Course), and the second is the type of
Course’s ID.

2. This method finds all Courses with the names that
match the given search String.

3. This method finds all Courses with the given name.
If we were sure names are unique, we could have

used Mono<Course> findByName(String name).

Simply by extending the ReactiveMongoRepository interface, our
repository will have tons of useful methods such as findByld, insert, and
save all returning Reactor types (Mono or Flux).

91

CHAPTER 8 SPRING BOOT AND REACTOR

Controllers

Next, we need to make a basic controller for rendering our view templates.
Annotate a class with @Controller to create a web controller. For
example:

import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.*;
@Controller
public class WebController {

@GetMapping("/")

public Mono<String> hello() {

return Mono.just("home");

As the preceding method returns the string “home” wrapped by a
Mono, it would render the corresponding view template (located under
src/main/resources/templates), if we have one; otherwise it would just
return the string itself.

The GetMapping annotation is identical to using @RequestMapping
(path = “/”, method = RequestMethod.GET).

By default a WebFlux-based Spring Boot application uses an
embedded Netty instance, although you can configure it to use Tomcat,
Jetty, or Undertow instead.

Using the embedded container means that container is just another
“bean” which makes configuration a lot easier. It can be configured using
“application.properties” and other application configuration files.

Next we'd like to add some initial data to our repository so
there’s something to look at. We can accomplish this by adding a
method annotated with @PostConstruct that only adds data to the
courseRepository when the count is zero:

92

CHAPTER 8 SPRING BOOT AND REACTOR

@PostConstruct
public void setup() {

courseRepository.count() //1
.blockOptional() //2
.filter(count -> count == 0) //3
.ifPresent(it -> //4

Flux.just(

new Course("Beginning Java"),

new Course("Advanced Java"),

new Course("Reactive Streams in Java"))
.doOnNext(c -> System.out.println(c.toString()))
.flatMap(courseRepository::save) //5
.subscribeOn(Schedulers.single()) //6
.subscribe()

); /77

}

1. Get the count from the CourseRepository (which
has the type Mono<Long>).

2. Call “blockOptional()” which will block until the
Mono returns a value and converts the output to an
Optional<Long>.

3. Keep the value only if it is zero.

4. Ifitwas zero, we create a Flux of three Course
objects we want to save.

5. Map those Courses to the repository’s “save”
method using flatMap.

6. Specify the Scheduler to use as Schedulers.single().

7. Subscribe the Flux so it executes.

93

CHAPTER 8 SPRING BOOT AND REACTOR

Here the code uses a mix of Java 8’s Optional interface with Reactor.
Note that we must call subscribe on a Flux or else it won'’t ever execute. We
accomplish this here by calling subscribe() with no parameters.

View Templates

In any Spring Boot project, we could use one of many view template
renderers. In this case we include the freemarker spring starter to our build
file under dependencies:

compile('org.springframework.boot:spring-boot-starter-
freemarker')

We put our templates under src/main/resources/templates. Here’s the
important part of the template file, home.ftl (some is left out for brevity):

<article id="content" class="jumbotron center"></article>
<script type="application/javascript">
jQuery(document).ready(HC.loadCourses);

</script>

This calls the corresponding JavaScript to get the list of Courses from
our RestController which we will define later. The loadCourses function is
defined something like the following:

jOuery.ajax({method: 'get’,
url: '/api/courses'}).done(//1
function(list) { //2
var ul = jQuery(
'<ul class="courses btn-group">");
list.forEach((crs) => { //3
ul.append(
'<1i class="btn-1link" onclick="HC.loadCourse(\"+
crs.id + "\'"); return false">'

94

CHAPTER 8 SPRING BOOT AND REACTOR

+ crs.name + ': <i>' + crs.price + '</i></1i>")
};
jQuery('#content"').html(ul); //4
}).fail(errorHandler); //5

1. First we call our RESTful API, which we will define later.

2. Since we're using jQuery, it automatically
determines that the response is JSON and parses the
returned data.

3. Using forEach we build an HTML list to display each
Course with a link to load each Course.

4. We update the DOM to include the list we built.

5. Here we specify the error handling function in case
anything goes wrong with the HTTP request.

Although we're using jQuery here, we could have chosen any
JavaScript framework. For Spring Boot, JavaScript files should be stored at
src/main/resources/static/js.

RESTful API

By default, Spring encodes data from a @RestController into JSON, so the
corresponding CourseControl is defined thusly:

import org.springframework.http.MediaType;
import org.springframework.web.bind.annotation.*;
import reactor.core.publisher.*;
import java.util.*;
@RestController
public class CourseControl {
final CourseRepository courseRepository;

95

CHAPTER 8 SPRING BOOT AND REACTOR

public CourseControl(
CourseRepository courseRepository) {
this.courseRepository = courseRepository;

}

@GetMapping("/api/courses™)

public Flux<Course> getCourses() {
return courseRepository.findAll();

}

@GetMapping("/api/course/{id}")

public Mono<Course> getCourse(
@PathVariable("id") String id) {
return courseRepository.findById(
UUID.fromString(id));

Note how we can return Reactor data types like Flux directly from a
RestController since we are using WebFlux. This means that every HTTP
request will be nonblocking and use Reactor to determine the threads on
which to run your operations.

Now we have the ability to read Courses, but we also need the ability to
save and update them.

Since we’re making a RESTful API, we use @PostMapping to handle
HTTP POST for saving new entities and @PutMapping to handle PUT for
updating.

Here’s how the save method is set to consume a JSON map of values
(using a Map just to keep the code simple):

@PostMapping(value = "/api/course”,
consumes = MediaType.APPLICATION JSON_VALUE)
public Mono<Course> saveCourse(
@RequestBody Map<String,Object> body) {
Course course = new Course((String)

96

CHAPTER 8 SPRING BOOT AND REACTOR

body.get("name"));
course.price = Long.parselLong(
body.get("price").toString());
return courseRepository.insert(course);

Note that the insert method returns a Reactor Mono instance. As you
may recall, a Mono can only return one instance or fail with an error.

The corresponding JavaScript code will be similar to the previous
example except the ajax call will be more like the following (assuming

“name” and “price” are ids of inputs):

var name = jQuery('#name').val();

var price = jQuery('#price').val();
jOuery.ajax({method: 'post’, url: '/api/course/',
data: {name: name, price: price}})

Here’s the update method which will be activated by a PUT request
using the given “id” and also expecting a JSON map of values:

@PutMapping(value = "/api/course/{id}",
consumes = MediaType.APPLICATION JSON_VALUE)
public Mono<Course> updateCourse(
@RequestParam("id") String id,
@RequestBody Map<String,Object> body) {
Mono<Course> courseMono = courseRepository
.findById(UUID.fromString(id));
return courseMono.flatMap(course -> {
if (body.containsKey("price"))
course.price =
Long.parseLong(
body.get("price").toString());

97

CHAPTER 8 SPRING BOOT AND REACTOR

if (body.containsKey("name")) course.name=
(String) body.get("name");
return courseRepository.save(course);

};

Note how we use flatMap here to update the course and return the
result of the save method which also returns a Mono. If we had used map,
the return type would be Mono<Mono<Course>>. By using flatMap we
“flatten” it to just Mono<Course> which is the return type we want here.

Further Configuration

In a real application, we will most likely want to override many of the
default configurations for our application. For example, we will want to
implement custom error handling and security.

First, to customize WebFlux, we add a class that extends
WebFluxConfigurationSupport and is annotated with @EnableWebFlux
(here the class is named WebFluxConfig, but it could be named anything).
Adding that annotation not only tells Spring Boot to enable WebFlux but
also to look at this class for extra configuration. For example:

import org.springframework.http.HttpStatus;
import org.springframework.web.reactive.config.*;
import org.springframework.web.server.*;

import reactor.core.publisher.Mono;

@EnableWebFlux
public class WebFluxConfig extends WebFluxConfigurationSupport

{

@0verride
public WebExceptionHandler
responseStatusExceptionHandler() {

98

CHAPTER 8 SPRING BOOT AND REACTOR

return (exchange, ex) -> Mono.create(
callback -» {
exchange.getResponse().setStatusCode(
HttpStatus.I AM A TEAPOT);
System.err.println(ex.getMessage());
callback.success(null);

1

Here we override the responseStatusExceptionHandler to set the
status code to 418 (I'm a teapot) which is an actual HTTP status code that
exists. There are many methods that you can override to provide your own
custom logic.

Finally, no application would be complete without some form of
security. First make sure to add the Spring Security dependency to your
build file:

compile('org.springframework.boot:spring-boot-starter-
security"')

Next, add a class and annotate it with EnableWebFluxSecurity from the
“org.springframework.security.config.annotation.web.reactive” package
and define beans as follows:

@EnableWebFluxSecurity //1
public class SecurityConfig {
@Bean
public SecurityWebFilterChain
springSecurityFilterChain(ServerHttpSecurity http){
http
.authorizeExchange()
.pathMatchers("/api/**", "/css/**",
"/js/*¥*", "/images/**", "/")

99

https://en.wikipedia.org/wiki/Hyper_Text_Coffee_Pot_Control_Protocol

CHAPTER 8 SPRING BOOT AND REACTOR

.permitAll() //2
.pathMatchers("/user/**")
.hasAuthority("user") //3

.and()
.formLogin();
return http.build();
}
@Bean
public MapReactiveUserDetailsService
userDetailsService(
userRepository) {
List<UserDetails> userDetails =
new ArraylList<>();
userDetails.addAll(
userRepository.findA11().collectList()
.block());//4
return new
MapReactiveUserDetailsService(
userDetails);
}
@Bean

public PasswordEncoder myPasswordEncoder() { //5
// never do this in production of course
return new PasswordEncoder() {
/*plaintext encoder*/};

100

CHAPTER 8 SPRING BOOT AND REACTOR

1. This annotation tells Spring Security to secure your
WebFlux application.

2. We define what paths are allowed to all users using
the ant-pattern where “**” means any directory or
directories. This allows everyone access to the main
page and static files.

3. Here we make sure that a user must be logged in to
reach any path under the “/user/” path.

4. This line converts all users from the UserRepository
into a List. This is then passed to the
MapReactiveUserDetailsService which provides
users to Spring Security.

5. You must define a PasswordEncoder. Here we define
a plain-text encoding just for demo purposes. In a real
system, you should use a StandardPasswordEncoder
or, even better, BcryptPasswordEncoder.

The UserRepository would be defined as follows:

public interface UserRepository extends
ReactiveMongoRepository<User, UUID> {}

101

CHAPTER 8 SPRING BOOT AND REACTOR

Testing

Spring Boot provides thorough built-in support for testing. For example,
annotating a JUnit test class with @RunWith(SpringRunner.class) and @
SpringBootTest, we can run integration tests with our entire application
running as follows:

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.boot.test.context.\
SpringBootTest.WebEnvironment;
import org.springframework.boot.test.web.client.\
TestRestTemplate;
import org.springframework.http.*;
import org.springframework.test.context.junit4.SpringRunner;
import java.util.Arrays;
import static org.assertj.core.api.Assertions.assertThat;
@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment =
WebEnvironment.RANDOM_PORT)

public class HumblecodeApplicationTests {

@Autowired

private TestRestTemplate testRestTemplate;

@Test

public void testFreeMarkerTemplate() {

ResponseEntity<String> entity = testRestTemplate.

getForEntity("/", String.class);

102

CHAPTER 8 SPRING BOOT AND REACTOR

assertThat(entity.getStatusCode())
.isEqualTo(HttpStatus.OK);

assertThat(entity.getBody())
.contains("Welcome to");

This simple test boots up our Spring Boot application and verifies that
the root page returns with HTTP OK (200) status code and the body contains
the text “Welcome to” Using “webEnvironment = WebEnvironment.
RANDOM_PORT” specifies that the Spring Boot application should pick a
random port to run locally on every time the test is run.

We can also test the main function of our application such as the ability
to get a list of courses in JSON like the following test demonstrates:

@Test public void testGetCourses() {
HttpHeaders headers = new HttpHeaders();
headers.setAccept(
Arrays.asList(MediaType.APPLICATION JSON));
HttpEntity<String> requestEntity =
new HttpEntity<>(headers);
ResponseEntity<String> response = testRestTemplate
.exchange("/api/courses"”, HttpMethod.GET,
requestEntity, String.class);
assertThat(response.getStatusCode())
isEqualTo(HttpStatus.0K);
assertThat(response.getBody())
.contains("\"name\":\"Beginning Java\",\"price\":2000");

}

103

CHAPTER 9

Akka HTTP and Akka
Streams

When considering which library or framework to use to create a web
application making use of Akka Streams, there are many things to choose
from, Play Framework, Apache Camel, or Akka HTTP among others. For
this chapter, we'll focus on using Akka HTTP. The Akka HTTP server is
implemented on top of Akka Streams and makes heavy use of it.
Akka HTTP has been driven with a clear focus on providing
tools for building integration layers rather than application

cores. As such it regards itself as a suite of libraries rather than
a framework.

-Akka HTTP Docs

Akka HTTP takes an unopinionated approach and prefers to be seen as
a set of libraries rather than a framework. Although this can make it more
difficult to get started, it allows the developer more flexibility and a clear
view of everything that’s happening. There’s no “magic” behind the scenes
that makes it work.

Akka HTTP has support for the following:

e HTTP: Akka HTTP implements HTTP/1.1 including
persistent connections and client connection pooling.

o HTTPSis supported through the facilities that Java
provides.

© Adam L. Davis 2019 105
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9_9

https://doc.akka.io/docs/akka-http/current/introduction.html

CHAPTER9 AKKA HTTP AND AKKA STREAMS

o WebSocket: Akka HTTP implements WebSocket on
both the server side and the client side.

e HTTP/2: Akka HTTP provides server-side HTTP/2
support.

e Multipart: Akka HTTP has modeled multipart/*
payloads. It provides streaming multipart parsers and

renderers, e.g., for parsing file uploads, and provides a

typed model to access details of such a payload.

o Server-sent events (SSE): Supported through

marshalling that will provide or consume an (Akka

Stream based) stream of events.

e JSON: Marshalling to and from JSON is supported out
of the box for Jackson-based models in Java.

e Gzip and Deflate Content-Encoding.

It also has a testing library to assist with testing.

For our example project, we'll use Akka HTTP along with Akka Streams

and WebSockets to create a real-time chatbot web server with a fake

repository.

Getting Started

Although you can use SBT (Scala’s build tool), Maven, or many other build

tools, here we're using Gradle.

Start by creating a build file named “build.gradle” with the following

contents:

apply plugin:
apply plugin:
apply plugin:
apply plugin:

106

‘java' //1
‘eclipse’
"idea’
"application’

https://github.com/adamldavis/akka-http-java

CHAPTER9 AKKA HTTP AND AKKA STREAMS

group = 'com.github.adamldavis'

applicationName = 'akka-http-java' //2

version = '0.0.1-SNAPSHOT'

mainClassName = 'com.github.adamldavis.akkahttp.WebApp' //3
// requires Gradle 4.7+

sourceCompatibility = 1.10 //4

targetCompatibility = 1.10
repositories {
mavenCentral()
}
ext {
akkaHttpVersion = '10.1.5' //5
akkaVersion = '2.5.12°
}

dependencies {
compile "com.typesafe.akka:akka-http 2.12:%akkaHttpVersion" //6
compile "com.typesafe.akka:akka-http-jackson_ 2.12:
$akkaHttpVersion"
compile "com.typesafe.akka:akka-stream 2.12:%akkaVersion"

testCompile "com.typesafe.akka:akka-http-testkit 2.12:
$akkaHttpVersion"”

testCompile "com.typesafe.akka:akka-stream-testkit 2.12:
$akkaVersion"

testCompile 'junit:junit:4.12'

testCompile "org.assertj:assertj-core:3.11.1"

1. Specity plugins.
2. Setthe application’s name.

3. Set the main class with the static void main method

to run.

107

CHAPTER9 AKKA HTTP AND AKKA STREAMS

4. Setthe Java version to 10.

5. Set variables for versions of Akka HTTP and Akka
to use.

6. Specify all the dependencies necessary for this
project, including the akka-http-testkit, alkka-
stream-testkit, junit, and assertj for tests.

Then create a class, named WebApp, and start with the following
imports:

import akka.NotUsed;

import akka.actor.ActorSystem;

import akka.http.javadsl.ConnectHttp;
import akka.http.javadsl.Http;

import akka.http.javadsl.ServerBinding;
import akka.http.javadsl.model.*;
import akka.http.javadsl.server.*;
import akka.stream.ActorMaterializer;
import akka.stream.javadsl.Flow;
import akka.stream.javadsl.Source;
import akka.util.ByteString;

Next, make the class extend AllDirectives to enable the Java DSL and
add a main method like the following:

public static void main(String[] args) {
ActorSystem system = ActorSystem.create("routes");//1
final Http http = Http.get(system); //2
final ActorMaterializer materializer =
ActorMaterializer.create(system);
var app = new WebApp(); //3

108

CHAPTER9 AKKA HTTP AND AKKA STREAMS

final Flow<HttpRequest, HttpResponse, NotUsed>
routeFlow = app.joinedRoutes()
.flow(system, materializer);
final CompletionStage<ServerBinding> binding =
http.bindAndHandle(routeFlow,
ConnectHttp.toHost("localhost", 5010),
materializer); //4
System.out.println("Server online at http://localhost:5010/\
nUse Ctrl+C to stop");
// add shutdown Hook to terminate system:
Runtime.getRuntime().addShutdownHook (new Thread(() -> { //5
System.out.println("Shutting down...");
binding.thenCompose(ServerBinding: :unbind)
.thenAccept(unbound -> system.terminate());

1)

1. Create the ActorSystem for this application.

2. Using that system, create an instance of Http, which
is the Akka HTTP server.

3. In order to access all directives, we need an instance
where the routes are defined.

4. Bootup server, binding it to port 5010 on localhost
and using the routeFlow defined in the preceding
code.

5. Finally, we add a shutdown hook that unbinds the
server and shuts down the ActorSystem.

To run the application, simply use the command “gradle run” at the
command line.

109

CHAPTER9 AKKA HTTP AND AKKA STREAMS

Routes

Routes can be defined using the server DSL, with simple names like
“route’, “path’) and “get” The first path matched in your route will cause
your handler for that route to be run. If no routes are matched, then a
response with HTTP Status 404 (not found) will be returned by default.

For example, the following method defines a route that matches “/hello”:

private Route createHelloRoute() {
return route(
path("hello", () ->
get(() ->
complete(HttpEntities.create(
ContentTypes.TEXT HTML UTFS,
"<h1>Say hello to akka-http</h1>"))

)));

This route simply returns a simple HTML entity as seen in the
preceding code. We create the HttpEntity by calling HttpEntities.create
with a ContentType and String. The “complete” method signifies that
the response is completed by the given parameter and is overloaded to
take in many different values such as String, StatusCode, HttpEntity, or
HttpResponse. It also has a variety with an additional parameter of type
Iterable<HttpHeader> to specify the headers of the response. Here we are
using the complete(HttpEntity) variety.

The HttpEntities.create method is also overloaded to take a String,
ByteString, byte array, path, file, or an Akka Stream Source<ByteString, ?>.

We can test out the route by running our application and then using
the “curl localhost:5010/hello” command. We should get the following
output:

<h1>Say hello to akka-http</h1>

110

CHAPTER9 AKKA HTTP AND AKKA STREAMS

Routes can be combined into a single route using the overloaded
“route” method allowed for composition of routes. For example:

private Route joinedRoutes() {
return route(createHelloRoute(),
createRandomRoute(),
createlWebsocketRoute());

Here we provide a route combining three routes we define.

Since Akka HTTP is built on top of Akka Streams, we can provide an
infinite stream of bytes to any route. Akka HTTP will use HTTP’s built-in
rate-limiting specification to provide a stream at constant memory use.
The following method provides a stream of random numbers for requests
on path “/random”:

private Route createRandomRoute() {

final Random rnd = new Random();
Source<Integer, NotUsed> numbers = //1
Source.fromIterator(() -»>

Stream.generate(rnd: :nextInt).iterator());
return route(

path("random", () ->

get(() ->

complete(

HttpEntities.create(
ContentTypes.TEXT_PLAIN_UTFS8,
numbers.map(x ->

ByteString.fromString(x + "\n")))) //2

)

111

CHAPTER9 AKKA HTTP AND AKKA STREAMS

1. Here we use Stream.generate to generate an infinite
stream of bytes and then use Source.fromlIterator to
convert it into a Source.

2. Transform each number into a chunk of bytes using
ByteString.

We can test this route using the command “curl --limit-rate 1k
127.0.0.1:5010/random” while the application is running (limits the
download rate to 1 kilobyte/second).

WebSockets

Lastly, we can create a WebSocket handling route using
“handleWebSocketMessages” like so:

public Route createWebsocketRoute() {
return path("greeter”, () ->
handleWebSocketMessages (
WebSocketExample.greeter())
);
}

The “greeter” method in WebSocketExample defines a handler that
treats incoming messages as a name and responds with a greeting to
that name:

public static
Flow<Message, Message, NotUsed> greeter() {
return Flow.<Message>create()
.collect(new JavaPartialFunction<>() {
@0verride
public Message apply(Message msg,
boolean isCheck) {

112

CHAPTER9 AKKA HTTP AND AKKA STREAMS

if (isCheck) {
if (msg.isText()) return null;
else throw noMatch();
} else {
return handleTextMessage(
msg.asTextMessage());

}
1)
}

public static TextMessage

handleTextMessage(TextMessage msg) {

if (msg.isStrict()) {
return TextMessage.create("Hello " +

msg.getStrictText());

} else {
return TextMessage.create(Source.single(
"Hello ").concat(msg.getStreamedText()));

The important thing to know about JavaPartialFunction is that it can
be called multiple times with isCheck as true or false. If isCheck is true, it is
simply checking if your JavaPartialFunction handles the given type, that’s
why we “throw noMatch()” if the message is not of the TextMessage type
(isText returns false).

Testing WebSockets is more complicated because of the complex
WebSocket protocol. Next, we’ll build a chat application to demonstrate

WebSockets in action.

113

CHAPTER9 AKKA HTTP AND AKKA STREAMS

Our Domain

For this example application, we’ll build a simple chat server. The core
domain model is the ChatMessage as follows:

import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonProperty;
public class ChatMessage {

final String username;

final String message;

@JsonCreator

public ChatMessage(
@JsonProperty("username") String username,
@JsonProperty("message") String message) {
this.username = username;
this.message = message;

}

// toString, equals, and hashCode omitted for

// brevity

public String getUsername() { return username; }

public String getMessage() { return message; }

This ChatMessage object is immutable and simply holds the values of
the username and message.

We're going to use Jackson for converting to and from JSON, so we've
got some annotations to allow this to happen.

114

CHAPTER9 AKKA HTTP AND AKKA STREAMS

Our Repository

For demo purposes, our repository won't actually save but will merely
imitate a long-running operation and print out the message that was
saved. Its code is as follows:

import java.util.concurrent.*;

public class MessageRepository {
public CompletionStage<ChatMessage> save(
ChatMessage message) {
return CompletableFuture.supplyAsync(() -> {
try { Thread.sleep(500); }
catch (InterruptedException e)
{ e.printStackTrace(); }
System.out.println("saving message:
return message; });

+ message);

It uses Java’'s CompletableFuture to perform an asynchronous action
and sleeps for half a second within that action. In a real application, we’d
want to save ChatMessages to some sort of database which potentially
would take some time blocking.

ChatServer

The main entry point of the chat server will be the ChatServer class.
It starts with the following imports:

akka.NotUsed;
akka.actor.ActorSystem;
akka.http.javadsl.model.ws.Message;

115

CHAPTER9 AKKA HTTP AND AKKA STREAMS

akka.http.javadsl.model.ws.TextMessage;
akka.japi.JavaPartialFunction;
akka.stream.*;

akka.stream.javadsl.*;
com.fasterxml.jackson.databind.ObjectMapper;
org.reactivestreams.Publisher;
java.util.concurrent.*;

For brevity we'll skip the fields since they can be derived from the
constructor. The ChatServer constructor makes some very important
initializations that we’ll use to propagate the ChatMessages between the

clients:

public ChatServer(ActorSystem actorSystem) {

parallelism =
Runtime.getRuntime().availableProcessors(); //1

this.actorSystem = actorSystem;

materializer = ActorMaterializer.create(
actorSystem); //2

var asPublisher = Sink.<ChatMessage>asPublisher(
AsPublisher.WITH FANOUT); //3

var publisherSinkPair =
asPublisher.preMaterialize(materializer);

publisher = publisherSinkPair.first();

sink = publisherSinkPair.second();

mergeHub = MergeHub.of(ChatMessage.class,
BUFFER_SIZE).to(sink); //4

mergeSink = mergeHub.run(materializer);

}

116

CHAPTER9 AKKA HTTP AND AKKA STREAMS

Here we initialize an int property, parallelism, using
Java’s built-in Runtime class. We set it to the number
of available processors since that will allow us to
take advantage of every processor in our parallel
processing.

Create the ActorMaterializer.

For brevity we are using Java 10’s “var” here as

the full type is very long. Using the static method
“asPublisher” on Sink creates a Sink that can also act
as org.reactivestreams.Publisher. By default it would
only allow one subscriber, so use WITH_FANOUT

to allow multiple. We must call preMaterialize to get
access to the actual instances of Publisher and Sink.

Since we want multiple clients to push
ChatMessages into one sink, we must use
MergeHub. Much like the previous step, you must
run the MergeHub with a materializer to gain access
to the Sink instance.

MergeHub and Publisher

Although it may seem complex, all we’ve done here using MergeHub and

asPublisher is allow for multiple Flows to use the same Sink that in turn

pushes to an instance of Publisher.

In this way we can have every new WebSocket connection post into

one Sink and subscribe to one central Publisher, as we will see next.

117

CHAPTER9 AKKA HTTP AND AKKA STREAMS

The WebSocket Flow

For our chat-server application, we need to create a main flow. We define
it similar to before (with the addition of a Graph) with the following code
(some left out for brevity):

public Flow<Message, Message, NotUsed> flow() {

Flow<Message, ChatMessage, NotUsed> savingFlow =
Flow.<Message>create() //1
.buffer(BUFFER_SIZE, OverflowStrategy.backpressure())
.collect(new
JavaPartialFunction<Message,
CompletionStage<ChatMessage>>() {
@0verride
public CompletionStage<ChatMessage>
apply(Message msg, boolean isCheck) {
if (msg.isText()) {
TextMessage textMessage = msg.asTextMessage();
return storeMessageFromContent(
CompletableFuture.completedFuture(
textMessage.getStrictText()));
} else if (isCheck)
throw noMatch();
return CompletableFuture.completedStage(
new ChatMessage(null, null));

}

1
.mapAsync(parallelism, stage -> stage) // 2

.filter(m -> m.username != null);
final Graph<FlowShape<Message,Message>, NotUsed>graph = //3

118

CHAPTER9 AKKA HTTP AND AKKA STREAMS

GraphDSL.create(builder -> {
final FlowShape<ChatMessage, Message>
toMessage = //4
builder.add(Flow.of(ChatMessage.class)
.map(jsonMapper: :writeValueAsString)
.async()
.map(TextMessage: :create));
Inlet<ChatMessage> sinkInlet =
builder.add(mergeSink).in(); //5
Outlet<ChatMessage> publisherOutput = builder
.add(Source.fromPublisher(publisher)).out();
FlowShape<Message, ChatMessage> saveFlow =
builder.add(savingFlow);
builder.from(saveFlow.out()).toInlet(sinkInlet);//6
builder.from(publisherOutput)
.toInlet(toMessage.in()); // 7
return new FlowShape<>(saveFlow.in(),
toMessage.out()); // 8

};

return Flow.fromGraph(graph);

}

1. Create the Flow. The type declaration describes
that the Flow takes in a Message and outputs a
ChatMessage and does not use the supplementary
data type. We add a buffer with given size, BUFFER _
SIZE, which could be as big as our system’s memory
could handle. Within the JavaPartialFunction, call
storeMessageFromContent which we will define later.

2. Unwrap the CompletionStage<ChatMessage> using
mapAsync. This call allows the database saves to
be run in parallel using parallelism number of
concurrent threads.
119

CHAPTER9 AKKA HTTP AND AKKA STREAMS

3. Use the GraphDSL to create a FlowShape. This
Graph will use the preceding savingFlow to save all
ChatMessages and put them into the mergeSink, but
use the output from the ChatServer’s Publisher so
that every client gets every ChatMessage.

4. Create the toMessage FlowShape which converts a
ChatMessage to JSON then wraps it in a TextMessage.

5. Create the “sinkInlet” by adding the mergeSink to
the Graph'’s builder. Also create “publisherOutput”
and “saveFlow” in a similar way.

6. Connect the saveFlow’s output to the sinkInlet.

7. Connect the publisherOutput to the toMessage’s
Inlet.

8. Define FlowShape using the Inlet of saveFlow and
the Outlet of the toMessage Flow.

The helper methods (and fields) such as “storeMessageFromContent”
are defined as follows:

private Flow<String, ChatMessage, NotUsed> parseContent() { //1
return Flow.of(String.class)
.map(line -> jsonMapper.readValue(line,
ChatMessage.class));
}
private Sink<ChatMessage, CompletionStage<ChatMessage>>
storeChatMessages() {
return Flow.of(ChatMessage.class)
.mapAsyncUnordered(parallelism,
messageRepository::save) //2
.toMat(Sink.last(), Keep.right()); //3

120

CHAPTER9 AKKA HTTP AND AKKA STREAMS

CompletionStage<ChatMessage> storeMessageFromContent (
CompletionStage<String> content) {
return Source.fromCompletionStage(content) //4
.via(parseContent())
.runWith(storeChatMessages(),
materializer) //5
.whenComplete((message, ex) -> { //6
if (message != null) System.out
.println("Saved message: "+message);
else { ex.printStackTrace(); }
D;
}

final MessageRepository messageRepository =
new MessageRepository();

final ObjectMapper jsonMapper =
new ObjectMapper(); //7

1. The method parseContent returns a Flow that
converts Strings to instances of ChatMessage using
Jackson'’s ObjectMapper, jsonMapper, we define
later.

2. The method storeChatMessages returns a Sink that
uses mapAsyncUnordered and the save method
on messageRepository (allowing saves to occur in
parallel and in any order).

3. 'This line materializes the Flow into a Sink that keeps
only the last element input. This works since it’s only
given a single element.

4. The method storeMessageFromContent starts
by creating a Source<String> from the given
CompletionStage<String>.

121

CHAPTER9 AKKA HTTP AND AKKA STREAMS

5. Then, using via(Flow), it converts that String into a
ChatMessage.

6. Finally, it uses whenComplete to print out each
message that was saved and handles any errors.
Although here we just print the stack trace, in a
production system, you should either use logging or
something else to recover from errors.

7. Create a singleton MessageRepository and
ObjectMapper for converting ChatMessages to and
from JSON.

We also update the “createWebsocketRoute” method in WebApp to use
our new Flow:

return path("chatws", () ->
handleWebSocketMessages(chatServer.flow())

)5

The Web Client

For the end user to use our WebSocket, we’ve got to have some kind of
front end. For this purpose, we create an “index.html” file under “src/
main/resources/akkahttp” with the following content:

<!DOCTYPE html>
<html>
<head>
<title>Hello Akka HTTP!</title>
<script>
var webSocket =
new WebSocket("ws://localhost:5010/chatws"); //1
function submitChat() {

122

CHAPTER9 AKKA HTTP AND AKKA STREAMS

var msg = { // 2
username: document.getElementById("u").value,
message: document.getElementById("m").value
};
webSocket.send(JISON.stringify(msg)); //3
document.getElementById("m").value = ""; //4
}
webSocket.onmessage = function (event) { //5
console.log(event.data);
var content = document.getElementById("content");
content.innerHTML = content.innerHTML

+ '
' + event.data;

}

</script>

</head>

<body>

<form» <!--6-->
Username:<input type="text" id="u"
name="username">

Message: <input type="text" id="m"
name="message">

<input type="button" value="Submit"
onclick="submitChat()">
</form>

<div id="content"></div>

</body>

</html>

1. Create the WebSocket connection.

2. Within our “submitChat” function, construct an
object named “msg” with a username and message.

3. Send the msg object as a JSON-formatted string.

123

CHAPTER9 AKKA HTTP AND AKKA STREAMS

4. Blank the message input element to communicate
to the user that the message was sent and allow a
new one to be entered.

5. Define the onmessage event handler of the
WebSocket that will append chat messages to
the page.

6. Finally, we create the form for the user’s input.

Although this is a very simple interface, it is merely to demonstrate
the powerful back end. With this simple chat server, we could handle
thousands of users at one time.

In a real application, you would improve the interface and add error
handling and other features like search, chat rooms, and security.

We also need to update the route to serve this file. Update the
createHelloRoute method with the following:

final Source<String,NotUsed> file =
Source.single("/akkahttp/index.html");
return route(
path("hello", () ->
get(() ->
complete(
HttpEntities
.create(ContentTypes.TEXT HTML _UTF8,
file.map(f ->
WebApp.class.getResourceAsStream(f)) //1
.map(stream -> stream.readAllBytes()) //2
.map(bytes -> ByteString.fromArray(bytes))))//3

)));

124

CHAPTER9 AKKA HTTP AND AKKA STREAMS

1. Read the file from the classpath using
getResourceAsStream.

2. Read all of the bytes from the file using Java’s
InputStream’s readAllBytes method.

3. Convert the byte array into a ByteString for
Akka HTTP.

You can test out the application by running WebApp and visiting
“http://localhost:5010/hello” in several browsers.

Testing

In addition to our standard Akka HTTP and Akka Streams imports, we add
the following imports:

akka.testkit.javadsl.TestKit;
akka.util.ByteString;
com.github.adamldavis.akkahttp.*;

org.junit.*;

java.util.*;

java.util.concurrent.*;

static org.assertj.core.api.Assertions.assertThat;

The core of our ChatServerTest class is the following setup and
teardown:

ChatServer chatServer;
ActorSystem actorSystem;
ActorMaterializer materializer;
@Before
public void setup() {
actorSystem = ActorSystem.create("test-system"); //1

125

CHAPTER9 AKKA HTTP AND AKKA STREAMS

chatServer = new ChatServer(actorSystem);//2
materializer = ActorMaterializer.create(actorSystem);//3
}
@After

public void tearDown() {
TestKit.shutdownActorSystem(actorSystem);//4

}

1. Before each test we do the following: Create the
ActorSystem.

2. Create the ChatServer.
3. Create a ActorMaterializer that we will use for tests.

4. After each test we use the Akka TestKit to shut down
the TestKit ActorSystem.

Then we define a test like the following test that simply ensures that a
ChatMessage gets copied to the Flow’s output as a TextMessage encoded in
JSON:

@Test
public void flow should copy messages()
throws ExecutionException, InterruptedException {
final Collection<Message> list = new
ConcurrentLinkedDeque<>(); //1
Flow<Message, Message, NotUsed> flow = chatServer.flow(); //2
assertThat(flow).isNotNull();
List<Message> messages =
Arrays.aslList(TextMessage.create(jsonMsg(0))); //3
Graph<SourceShape<Message>, ?> testSource =
Source.from(messages);
Graph<SinkShape<Message>, CompletionStage<Done>>
testSink = Sink.foreach(list::add); //4

126

CHAPTER9 AKKA HTTP AND AKKA STREAMS

CompletionStage<Done> results = flow.runWith(testSource,
testSink, materializer).second(); //5
try {
results.toCompletableFuture().get(2, TimeUnit.SECONDS); //6
} catch (TimeoutException te) {
System.out.println("caught expected: " +
te.getMessage());
}
Iterator<Message> iterator = list.iterator();
assertThat(list.size()).isEqualTo(1);

assertThat(iterator.next()
.asTextMessage().getStrictText())
.isEqualTo("{\"username\":\"foo\",”+

“\"message\":\"baro\"}"); //7

}

static final String jsonMsg(int i) {

return "{\"username\": \"foo\", \"message\": \"bar"
i+ M"Y

1. Create a ConcurrentLinkedDeque (named list)
to save the messages to avoid any multithreading
issues (this might be overkill).

2. Call flow() to get the WebSocket Flow we want
to test.

3. Create a single TextMessage with a JSON-encoded
chat message. Although we just create one here,
in other tests we could create many using
Source.range and then map like the following:
Source.range(1, 100).map(i -> TextMessage.
create(jsonMsg(i))).

127

CHAPTER9 AKKA HTTP AND AKKA STREAMS

4.

6.

Create the testSink which adds each message to our
previously defined list.

Call flow.runWith with a source, sink, and
materializer. This is where the Flow under test is
initiated.

We must call toCompletableFuture().get on our
CompletionStage with a timeout in order to
reconnect the current Thread with the test results.
Otherwise, it would keep running forever since the
underlying Publisher (backed by MergeHub and
Sink.asPublisher) has no defined stopping point.

Assert that the output TextMessage is encoded to
JSON as expected.

The full code on GitHub has many more tests, but this should give you

a good idea of how to test an Akka HTTP-based project.

128

CHAPTER 10

Conclusions

There are many ways one might compare different programming libraries,
many of them subjective. Ask ten different programmers and you might get
ten different answers.

You might compare libraries’ ease of use, size of community,
popularity of jobs, flexibility, performance, or some high concept
like completeness or cohesiveness, or many other ways. If you do
look at performance, keep in mind there are infinite ways to compare
performance, and any differences may very well be due to the
programmer’s limited understanding of these libraries. For the purposes of
this book, we will take a short look at each library’s unique strengths.

RxJava

RxJava has the benefit of being part of the larger Rx project. If developers
are familiar with RxJS, for example, it might be much easier to move to
RxJava. It also seems to be the only Reactive Streams library with popular
existing open source libraries for building Android applications.

© Adam L. Davis 2019 129
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9_10

CHAPTER 10 CONCLUSIONS

Reactor

Project Reactor is part of the larger Spring Framework suite of libraries.
For this reason, it may be more familiar to those who already use Spring,
and it has good integration with other projects like Spring Data. With
Spring WebFlux, we can very easily create a nonblocking, asynchronous
application with a backing MongoDB, Redis, or Cassandra database.

Akka Streams

Alkka Streams has the benefit of being part of the larger Akka project. It
also has great support in the Scala language. So developers familiar with
Scala or Akka in general might find it much easier to work with. It also
has the unique concept of Graphs. With Graphs and the related DSLs,
programmers can construct large, complex graphs with streams in a way
that might be hard to do in the other Reactive Streams libraries.

Conclusion

Any one of these libraries would be a great choice for building reactive,
asynchronous, nonblocking, fault-tolerant applications, and the choice of
which to use is highly dependent on both the project and the team.

130

APPENDIX A

Java 10 and 11

Java 10 was released on March 20, 2018. The main substantial update
of Java 10 was Local Variable Type Inference (var). It also included
enhancements for garbage collection and compilation, but that will not
affect how we write our code.

Local Variable Types

Although “var” is not a new keyword, it is a context-sensitive type and
represents a huge leap forward for Java developers. It allows you to
substitute a type declaration with “var” whenever the type can be clearly
inferred from context by the Java compiler.

For example, given a test on our “doParallelSquares” method, we can
rewrite it for Java 10+ in the following way:

@Test
public void testDoParallelSquares() {
var result = demo.doParallelSquares()
.stream().sorted().collect(Collectors.tolList());
assertArrayEquals(squares.toArray(),
result.toArray());

Here the type of result is inferred from the right side of the assignment
(it happens to be List<Integer>).

© Adam L. Davis 2019 131
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9

https://doi.org/10.1007/978-1-4842-4176-9

APPENDIXA JAVA 10 AND 11

We can use “var” whenever the type is clear from the right side of the
assignment, without loss of meaning to human readers. For example, the
following is an initialization of a list:

var list = new Arraylist();

Keep in mind that the type of list will be a raw ArrayList; however, in
some cases, that might be fine for our purposes.

With Reactive Streams, it can be helpful to use “var” to simplify code in
many cases without losing anything. For example:

var monoError = Mono.error(
new RuntimeException("error")); //1
var foo = Mono.just("foo"); //2
var flux = Flux.just(1, 4, 9); //3
var flux = Flux.just(1);
var stringFlux = flux.map(i -> "string " + i); //4

1. Create a Mono that wraps an exception.
2. Create a Mono wrapping a single value.
3. Declare a Flux with initial values.
4. Declare an intermediate step.
Especially in testing, var can useful for simplifying Java code.

var publisher = TestPublisher.create(); //1
var stringFlux = publisher.flux(); //2

1. Create a TestPublisher from Reactor.

2. Convert it into a Flux.

132

APPENDIXA JAVA 10 AND 11

Lambda Expression Local Variable Types

In Java 11 “var” can also be used in lambda expression parameters for
consistency. For example, the following code

stringFlux.subscribe(next -> list.add(next), ex ->
ex.printStackTrace());

could be changed to the following in Java 11:

stringFlux.subscribe((var next) -> list.add(next),
(var ex) -> ex.printStackTrace());

Although a bit longer in syntax, this adds better consistency to the
Java language and allows for things like adding annotations to those
parameters without specifying a type. For example:

stringFlux.subscribe(
(@NonNull var next) -> list.add(next),
(@NonNull var ex) -> ex.printStackTrace());

We use Java 10+ local variable types throughout the book to simplify
some code examples.

133

Index

A

ActorMaterializer, 60-61
Akka framework, 11
Akka HTTP, 105
ByteString, 112, 125
JSON, 106
multipart, 106
SSE, 106
WebSocket, 106
Akka Streams, 130
ActorMaterializer, 60-61
backpressure, 64
BroadcastHub, 65-66
flatMapConcat, 59
flatMapMerge, 59
Flow, Graph, Source, and
Sink, 61-64
Gradle builds, 58
interoperation, 64-65
Java-specific API, 57
mapConcat, 59
Maven build, 58
MergeHub, 65-66
messages, 58-59
PartitionHub, 65-66

© Adam L. Davis 2019

RxJava and Reactor, 57
Source and Sink, 57
testing
TestKit, 66-67
TestSink, 66, 68

TestSource, 67, 69-70

Akka Streams, Akka HTTP
ActorSystem, 109
build.gradle, 106-108
Routes, 110-112
SBT, 106
testing, 125-128
WebApp, 108

Android and RxJava, 71
Android SDK, 74
app, module name, 73
login activity, 73
RxAndroid, 74
RxAndroidTest, 71
testing, 81
version, 72

AndroidSchedulers, 75-76

Android SDK, 74

Any/All returns, 17

Automated testing, 53

A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9

135

https://doi.org/10.1007/978-1-4842-4176-9

INDEX

B

Backpressure, 16
backpressure(), 64
bridge.onBackpressure

Buffer(256), 51
dropBuffer(), 64
dropNew(), 64
dropTail(), 64
fail(), 64
hot Observables, 34
onBackpressureBuffer(), 36, 50
onBackpressureBuffer
(maxSize, BufferOverflow
Strategy), 50
onBackpressureDrop(), 36, 51
onBackpressureDrop
(Consumer), 51
onBackpressureError(), 50
onBackpressure
Latest(), 36, 50
strategies, 35
toFlowable(Backpressure
Strategy.ERROR), 35
toFlowable(strategy), 34
BroadcastHub, 65-66
Buffer, 19-20

C

ChatServer, 115-117
Cold Observable, 15-16
CompletableFuture, 9-10
CompletionStage, 8-9
ConcatMap, 18

136

Concurrency, 5
actors, Akka framework, 11
GPars, 12
Java future interface
asynchronous
computation, 6
asynchronous versions, 9
CompletableFuture, 9-10
CompletionStage, 8-9
drawbacks, 7
Reactive Streams, 12-13
STM, 10
synchronize, 6
Controllers, 92-94
CourseRepository, 92-94

D, E
Debounce, 22

Delay, 19
Domain model, 89-90, 114

F

Filter, 16
FlatMap, 18

G

GetMapping annotation, 92
GPars, 12

Gradle bootRepackage, 87
Gradle bootRun, 86

Gradle plugin

MongoDB, 85-86
PostgreSQ, 86
Project Lombok, 85
reactor-test, 86
Spring Boot, 85
spring-boot-starter-test, 86
WebFlux, 84-86

Gzip and Deflate

Content-Encoding, 106

H, I

Handling errors, RxJava, 36
TestObserver, 37-38
TestScheduler, 37-39
TestSubscriber, 37-38

Hot Observable, 15-16

HTTP/2, 106

J, K
Java 2,9
Java 10
lambda expression, 132-133
variable types, 131-133
Java Development Kit (JDK), 2
java.util.concurrent.Flow class, 2-3
Java virtual machine (JVM), 3
JSON, 106
JSON map, 96-97

L

Lambda expression, 132-133
Lombok annotations, 90

INDEX

M,N, O

Map, 18

Materializer, 59

MergeHub and Publisher, 65-66, 117
MongoDB, 85-86

PQ

Parallel computing, 27-28
PartitionHub, 65-66
PostgreSQL, 86
Processor<T,R>, 3
Publisher<T>, 2

Pull events, 49

R

ReactiveMongoRepository, 90-91
Reactive Streams, 1-3, 132
Reactor, 130
backpressure (see Backpressure)
context, 51-53
Flux<T> and Mono<T>
creation, 44
doOnError(Consumer<?
super Throwable>), 43
generate, create, or push
methods, 44-46
handling errors, 42
“hello”, 43
justOrEmpty(Optional), 43
justOrEmpty(T), 43
MessageListener, 45
onErrorMap(Function), 43

137

INDEX

Reactor (cont.)
onErrorResume(Function), 42
onErrorReturn(T), 43
org.reactivestreams.

Publisher, 42

Schedulers.parallel(), 42
Gradle builds, 41-42
pull events, 49
Schedulers, 46-49
Spring Data, 41
Spring Security, 41
testing

automated, 53

StepVerifier, 53-55

TestPublisher, 55-56

uses, 53

readLineSupplier method, 34

Repository, 115

RestController, 94-96

RESTful API, 96-98

RxAndroid, 74-75, 77, 80

RxBinding, 76-78

RxJava, 15, 81, 129

backpressure (see Backpressure)

“build.gradle” file, 25

definition, 25

flowable, 26-27

parallel computing, 27-28

Publishers, 30
blockingSubscribe, 30
“IO” Scheduler, 30
readFile(File), 32-33
readLineSupplier

method, 34

138

Subscriber interface, 31-32
write file, 30
schedulers, 28-29
RxLifecycle, 78-80

S

Scala’s build tool (SBT), 106
Schedulers, 28-29
generating squares, 47-48
newSingle, 48
reactor.core.scheduler
package, 46
Schedulers.elastic(), 47
Schedulers.from
Executor(Executor), 47
Schedulers.immediate(), 47
Schedulers.newSingle(), 47
Schedulers.parallel(), 47, 49
Schedulers.single(), 47
Server-sent events (SSE), 106
Software transactional memory
(STM), 10
Spring Boot
annotation, 87-88
configuration, 88-89, 98-101
flatMap, 98
Gradle-based project, 84
Maven-based project, 84
Spring Initializr, 83
testing, 102-103
WebFlux-based project, 84
SpringBootApplication, 87-88
StepVerifier, 53-55

Streams, 15
Subscription, 3
synchronize keyword, 6

T, UV

Take While, 21
Templates, 94-95
TestObserver, 37-38
TestPublisher, 55-56
TestScheduler, 37-39
TestSubscriber, 37-38
Throttle First, 23

W XY,Z2Z

Web Client
createHelloRoute method, 124
getResourceAsStream, 125
onmessage event handler, 124
readAllBytes method, 125

INDEX

WebSocket, 122-123

WebSocket Flow, 118-119

ChatMessage, 119-120, 122
createWebsocketRoute
method, 122
FlowShape, 120
GraphDSL, 120
mapAsync, 119
parseContent method, 121
saveFlow, 120
sinkInlet, 120
storeChatMessages
method, 121
storeMessageFromContent
method, 120-121

WebSockets, 112

greeter method, 112-113
handleWebSocketMessages, 112
isCheck, 113
JavaPartialFunction, 113

Window, 20

139

	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Chapter 1: Introduction to Reactive Streams
	Java 9+
	Flow
	Code for This Book

	Chapter 2: Existing Models of Concurrency in Java
	Prominent Models for Concurrency
	Synchronize in Java
	Java Futures
	Drawbacks of the Future Interface
	CompletableFuture

	STM in Clojure
	Actors
	Groovy GPars
	Reactive Streams

	Chapter 3: Common Concepts
	Streams
	Hot and Cold
	Backpressure
	Filter
	Any/All
	Map
	FlatMap/ConcatMap
	Delay
	Buffer
	Window
	Take While
	Latest
	Debounce
	Throttle First

	Chapter 4: RxJava
	Getting Started
	Flowable
	Parallel Computing
	Schedulers
	Publishers
	Backpressure
	Handling Errors
	Testing
	TestSubscriber
	TestObserver
	TestScheduler

	Chapter 5: Reactor
	Getting Started
	Flux
	Mono
	Creating a Flux or Mono
	Schedulers
	Pull Events
	Handling Backpressure
	Context
	Testing
	StepVerifier
	TestPublisher

	Chapter 6: Akka Streams
	Getting Started
	ActorMaterializer
	Sinks, Flows, and Graphs
	Backpressure
	Interoperation with Reactive Streams API
	MergeHub, BroadcastHub, and PartitionHub
	Testing

	Chapter 7: Android and RxJava
	Getting Started
	Android SDK

	Android Schedulers
	RxBinding
	RxLifecycle
	Putting It Together
	Using RxJava
	Testing

	Chapter 8: Spring Boot and Reactor
	Getting Started
	Gradle Plugin
	Tasks
	SpringBootApplication
	Auto-Configuration
	Our Domain Model
	ReactiveMongoRepository
	Controllers
	View Templates
	Restful API
	Further Configuration
	Testing

	Chapter 9: Akka HTTP and Akka Streams
	Getting Started
	Routes
	WebSockets
	Our Domain
	Our Repository
	ChatServer
	MergeHub and Publisher
	The WebSocket Flow
	The Web Client
	Testing

	Chapter 10: Conclusions
	RxJava
	Reactor
	Akka Streams
	Conclusion

	Appendix A: Java 10 and 11
	Local Variable Types
	Lambda Expression Local Variable Types

	Index

