Learning Spring Application
Development

Develop dynamic, feature-rich, and robust Spring-based
applications using the Spring Framework

PACKT

www.it-ebooks.info

http://www.it-ebooks.info/

Learning Spring Application
Development

Develop dynamic, feature-rich, and robust Spring-based
applications using the Spring Framework

Ravi Kant Soni

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Learning Spring Application Development

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015
Production reference: 1240415

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-736-8

www . packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Ravi Kant Soni

Reviewers
Wilkotek Damian

Jeff Deskins
Miguel Enriquez
Bala Sundarasamy

Mattia Tommasone

Commissioning Editor
Julian Ursell

Acquisition Editors
Joanne Fitzpatrick

James Jones

Content Development Editor
Pooja Nair

Technical Editors
Vijin Boricha

Shashank Desai

Project Coordinator
Suzanne Coutinho

Copy Editors
Sarang Chari

Tani Kothari

Puja Lalwani
Khushnum Mistry
Aditya Nair
Shambhavi Pai
Sameen Siddiqui
Trishla Singh

Proofreaders
Safis Editing

Paul Hindle

Indexer
Rekha Nair

Graphics
Sheetal Aute

Disha Haria

Production Coordinator

Manu Joseph

Cover Work
Manu Joseph

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Ravi Kant Soni is a Java Enterprise and Spring Framework specialist with a
bachelor's degree in information science and engineering from the Reva Institute of
Technology, Bangalore. He has been involved in software development for many
years now. Ravi has worn many hats throughout his tenure, ranging from software
development, multitenant application design, and the integration of new technology
into an existing system, to his current love of writing a Spring Framework book.

Currently, he is a lead engineer at HCL Technologies Limited. Ravi has focused

on web and enterprise development using the Spring Framework for most of his
career and has been extensively involved in application design and implementation.
He has developed applications for core bank, HR and payroll, and e-commerce
systems using the Spring Framework.

Ravi has gained extensive experience in all aspects of software engineering,
including software design, systems architecture, application programming, and
automation testing. He is backed by strong product development experience

in Java, Spring, Hibernate, PostgreSQL, and many other enterprise technologies.
Ravi is skilled in other techniques such as Bootstrap, jQuery, FreeMarker, Maven,
CAS (SSO) Security, Git, Selenium WebDriver, and Agile methodology.

Ravi loves problem statements and really enjoys brainstorming unique solutions.
He can be reached at springframeworkbyraviegmail.com. You can also get in
touch with him at in.linkedin.com/in/november03ravikantsoni/.

www.it-ebooks.info

in.linkedin.com/in/november03ravikantsoni/
http://www.it-ebooks.info/

Acknowledgments

Writing a technical book involves endless research, review, support, and most
preciously, my time when I already have a full-time job. Here, I thank all those
who helped me with this book.

First of all, I would like to thank the Packt Publishing team for helping me with
the utmost professionalism. The one person who has been the roof of this shelter

is Joanne Fitzpatrick, the partner relationship manager (at the time of writing this
book). My special thanks to James Jones, acquisition editor (level 2), and Suzanne
Coutinho, project coordinator, for supporting me in the writing of this book and
making me confident to step into this new phase of my life. I feel very privileged
to have worked with Pooja Nair, content development editor; her knowledge spans
an amazing spectrum. Without her, this book wouldn't have been possible. Also, I
would like to express my special gratitude to the technical editor, Shashank Desai,
whose vision, commitment, and persistent efforts made the publishing of this book
possible in an efficient manner.

My heartfelt thanks go to the reviewers commissioned by Packt Publishing —
Wilkotek Damian, Jeff Deskins, Miguel Enriquez, Bala Sundarasamy, and
Mattia Tommasone — for their valuable input.

My deepest gratitude and appreciation go to my friend Alok Kumar,

software engineer 3 at Juniper Networks, who is even closer to me than my
brothers. Alok encourages my knowledge to come out on paper to ignite

the imagination of others. My hearty thanks go to Awanish Kumar, Indian
Administrative Service (IAS - AGMUT Cadre); Nagendra Kumar, engineering
lead at Facebook, Inc., for giving me positive thoughts that work as the fuel to
carry on.

www.it-ebooks.info

http://www.it-ebooks.info/

Without my family's love, strong support, and understanding, this book would have
virtually remained a commodity. My profound thanks go to my family — my mother,
Manorma Devi; my father, Ras Bihari Prasad; my uncles, Shyam Bihari Prasad and
Arun Kumar Soni; and my aunts, Sushma Devi and Ranju Devi—for their love and
support during the writing of this book. Thanks also go to my brothers, Shashi Kant
and Shree Kant; my sister, Namrata Soni; my cousins, Anurag Soni, Sonali Soni,
Komal Soni, Amrita Soni, Rishi Raj Soni, Anjali Soni, Mohini Soni, Manshi Soni,

and Mithu; and my "guruji" Sri Ram Chandra Prasad.

Finally, I would like to thank my colleagues at HCL Technologies Limited. I learn
something new every day and enjoy a camaraderie I've never felt in any company
before. I am fortunate enough to work with such an experienced team who help me
enhance my skills. My hearty thanks to the Deputy General Manager, Gaurav Vrati,
for his guidance and strong support.

Last but not least, I am thankful to everyone who supported me in one way or another
in writing this book.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Wilkolek Damian gained all his experience as a freelancer. After graduation, he
started to work on a Polish e-health project. He is an enthusiast of new technologies
and is an adrenaline junkie.

He has also reviewed SoapUI Cookbook, Packt Publishing.

I'd like to thank my dear love for providing me with beer and
good words!

Jeff Deskins has been building commercial websites since 1995. He loves
turning ideas into working solutions. Lately, he has been building most of his
web applications in the cloud and is continuously learning best practices for
high-performance sites.

Prior to his Internet development career, he worked for 13 years as a television
news photographer. He continues to provide Internet solutions for different
television stations through his website http: //www.tvstats.com/.

I would like to thank my wife for her support and patience with
the many hours of my sitting behind my laptop learning new
technologies. Love you the most!

www.it-ebooks.info

http://www.tvstats.com/
http://www.it-ebooks.info/

Miguel Enriquez is a passionate software engineer with 6 years of experience
and is currently working at Accenture as a software engineering senior analyst.
Miguel discovered programming when he was 14 years old, and since then he has
not stopped for a single day. He studied at the Instituto Tecnologico de Zacatecas
and graduated with honors as a systems engineer.

When he is not programming, he takes care of his wife and three daughters. In his
spare time, he plays a lot of video games and tabletop RPGs. He also practices kung
fu and other martial arts.

I would like to thank my wife, who is always supportive of my work
and has enough patience to watch me code day and night! And now,
I am reviewing this third book.

Bala Sundarasamy graduated from the College of Engineering, Guindy.
He has an extensive experience of more than 20 years in designing and building
applications using the Java and .NET technologies.

He is a founder and director of Ardhika Software Technologies Pvt. Ltd.,
which specializes in providing quick and efficient solutions to their Indian
and overseas customers using iOS, Android, Grails, Node.js, Angular]s,
MongoDB, and Elasticsearch.

A certified Grails trainer, he conducts training programs for corporations that
want to adopt Grails for application development. He has also taught numerous
young developers to write good object-oriented code using Java and C#. He has
proven expertise in training fresh engineers to adopt industry-standard best
practices and processes in software writing.

Mattia Tommasone is a generalist software engineer focused on the development
of web applications, with domain experience ranging from social networking

to health and fitness and from data analytics and visualization to automatic
deployment management.

He is currently working on the Italian eBay classified ads website as a frontend
engineer, exploring ways to test JavaScript code.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

[ﬂ] PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content

* On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.w

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

To my papa
Ras Bihari Prasad

To my maa

Manorma Devi

It is with your true love and warmest support that the completion of this book has
been possible.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface iX
Chapter 1: Introducing the Spring Framework 1
Introducing Spring 2
Features of Spring 4
Other features of Spring 7
Evolution of the Spring Framework 7
Spring Framework Architecture 10
Spring Core Container 11
The AOP module 12
Data access/integration 13
The Web module 14
The Test module 14
Benefits of the Spring Framework 14
Creating an application in Spring 15
Obtaining Spring JAR files 15
Understanding Spring packaging 16
SpringSource Tool Suite 17
The Spring application 18
Creating a Spring project 18
Adding required libraries 20
Creating source files 22
Creating the Spring bean configuration file 25
Running the program 28
Exercise 29
Summary 29

[il

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 2: Inversion of Control in Spring 31
Understanding Inversion of Control 32
What is a container 33
Spring Container 34
Beans 35
BeanFactory 37
ApplicationContext 42
Dependency Injection 46
Dependency Injection in Spring 46
The Has-A relationship 48
Constructor-based Dependency Injection 49
Setter-based Dependency Injection 55
Injecting inner beans 60
Injecting null and empty string values in Spring 62
Case 1 —injecting an empty string 62
Case 2 —injecting a null value 62
Bean definition inheritance 63
Inheritance with abstract 66
Autowiring in Spring 67
Autowiring modes 68
Autowiring using the no option 69
Autowiring using the byname option 69
Autowiring using the byType option 71
Autowiring using the constructor 71
The bean's scope 72
Singleton 75
Prototype 77
Request 78
Session 78
Global session 78
The Spring bean life cycle 78
Initialization 79
Activation 80
Destruction 80
Initialization callbacks 80
Implementing the org.springframework.beans.factory.InitializingBean interface 81
Using init-method in the XML configuration 82
Destruction callbacks 83
Implementing the org.springframework.beans.factory.DisposableBean interface 83
Using destroy-method in the XML configuration 84
Exercise 85
Summary 86

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 3: DAO and JDBC in Spring 87
Overview of database 88
The DAO design pattern 89

The DAO layer 90
JDBC without Spring 90
Sample code 91
ADD drivers specific to database into the project 91
Directory structure of the application 92
Spring JDBC packages 98
JDBC with Spring 99
DataSource 100
DataSource in the DAO class 101
Directory structure of the application 101
What is JdbcTemplate 105
Configuring the JdbcTemplate object as Spring bean 106
The Spring.xml file 107
Functionality exposed by the JdbcTemplate class 108
Querying (select) 108
Updating (Insert-Update-Delete) 109
Other JdbcTemplate operations 109
Directory structure of the application 110
The Employee.java file 110
The EmployeeDao.java file 111
The EmployeeDaolmpl.java file 111
JDBC batch operation in Spring 113
Directory structure of the application 115
The EmployeeDaolmpl.java file 115
The HrPayrollIBatchUpdate.java file 116
Calling a stored procedure 117
Using the SimpleJdbcCall class 118
Calling a stored procedure 118
Exercise 121
Summary 121

Chapter 4: Hibernate with Spring 123
Why Object/Relational Mapping? 124
Introducing ORM, O/RM, and O/R mapping 126
Introducing Hibernate 127

Hibernate architecture 128
Configuration 129
SessionFactory 129
Session 130
Transaction 130

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Query
Criteria
The Persistent object
Integrating Hibernate with the Spring Framework
Sample data model for example code
Integrating Hibernate
Required JARs for the Spring-Hibernate project
Configuring Hibernate SessionFactory in Spring
XML Spring configuration for Hibernate
Annotated domain model class
The Hibernate sessions
The Session interface methods
Persistence layer — implement DAOs
The EmployeeDao interface
The EmployeeDaolmpl class
Service layer — implement services
The EmployeeService interface
The EmployeeServicelmpl class
Directory structure of the application
Running the application
The DBULtils class
The SpringHibernateMain class
Output to console
Populated data in the Employee table
Hibernate Query Language
The Query interface
Database operation using HQL
The FROM clause
The AS clause
The SELECT clause
The WHERE clause
The ORDER BY clause
The GROUP BY clause
Using the named parameter
The UPDATE clause
The DELETE clause
Pagination using Query
Hibernate Criteria Query Language
The Criteria interface
Restrictions with Criteria
Exercise
Summary

130
130
130

131

131

132

133

134
135

138

141
142

142
142
142

144
144
145

146

146
146
148
149
149

150

150

150
151
151
152
152
153
154
154
155
155
156

157

157
158

165

165

[iv]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 5: Spring Web MVC Framework 167
The MVC architecture and separation of concern 169
Front Controller Design Pattern 170
Understanding Spring MVC 171

Features of the Spring MVC framework 172
Flow of request handling in Spring MVC 173
Developing a simple Spring MVC application 175
Creating a new Maven project 175
Adding Spring MVC dependencies to pom.xml 179
Configuring the application 180
The /WEB-INF/web.xml file 181
The /WEB-INF/SpringDispatcher-servlet.xml file 181
Creating the controller — EmployeeController 185
Creating the view — hello.jsp 186
Running the application 187
DispatcherServlet in Spring MVC 189
DispatcherServlet in deployment descriptor — web.xml 190
Registering Spring MVC configuration file location 191
Spring configuration — SpringDispatcher-serviet.xmi 191
Controllers in Spring MVC 192
The @Controller annotation to define a controller 193
The @RequestMapping annotation to map requests 194
Mapping requests at the class level 195
Mapping requests at the method level 197
Properties information in @RequestMapping 198
Method parameters of @RequestMapping 199
Return values in @RequestMapping annotated methods 201
ViewResolver in Spring MVC 201
Configuring ViewResolver for JSP as view technology 202
Model in Spring MVC 203
Spring MVC with Hibernate integration 204
Application architecture 204
Sample data model for example code 205
Project structure 207
The pom.xml file 208
The hibernate.properties file 211
The SpringDispatcher-servlet.xml file 211
Hibernate model class — entity class 213
The DAO layer 215
The EmployeeDao interface 215
The EmployeeDao implementation 215

[v]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

The service layer 216
The EmployeeService interface 217
The EmployeeService implementation 217

Spring MVC controller classes 218

The View page 219
The hello.jsp page 219
The employee.jsp page 220
The index.jsp page 221

Running the application 221

Exception handling using @ControllerAdvice 222

The GenericException class 223

The SpringException class 223

The EmployeeController class 225

The hello.jsp page 226

The exception.jsp page 227

Running the application 227

Spring MVC internationalization (i18n) 229

The properties file 229

Spring configuration 229
ReloadableResourceBundleMessageSource 229
LocaleChangelnterceptor 230
SessionLocaleResolver 230

The hello.jsp page 231

Running the application 231

Handling form with the controller 232

ModelAndView in Spring MVC 233

Spring MVC Controller class 234
@ModelAttribute in the controller class 234
ModelMap in the controller class 234

The View page 236

The Spring MVC form 238

Running the application 240

Exercise 243
Summary 243
Chapter 6: Spring Security 245
What is Spring Security? 246
Major operations 246
Servlet filters review 247
Security use case 250
Spring Security configuration 250

Spring Security setup 251
Adding JARs to the classpath 251
Spring Security dependencies — pom.xml 251

[vil

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Namespace configuration 252
Securing web application's URL access 252
The first step — web.xml 252
Separating security configurations 253
Logging into web application 255
HTTP basic authentication 256
Form-based login service 257
Logout service 259
Anonymous login 259
Remember Me support 260
Users authentication 260
Users authentication with in-memory definitions 260
Users authentication against database 261
Encrypting passwords 263
Method-level security 264
Let's get down to business 265
Project structure 265
Adding filters to web.xml 269
Resolving your view 270
Let's add a custom login 272
Mapping your login requests 273
Obtaining the employee list 273
Let's see some credentials 275
Time to log out 276
Running the application 276
Exercise 278
Summary 278
Chapter 7: Spring Testing 279
Testing using JUnit 4 280
JUnit 4 annotations 280
Assert methods 281
An example of JUnit 4 282
Testing using TestNG 284
TestNG annotations 284
Example of TestNG 285
Agile software testing 286
Unit testing 286
Unit testing for isolated classes 288
Unit testing for dependent class using mock objects 292

The Mockito framework 294
Integration testing 297

[vii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Create unit tests of the Spring MVC controller 299
Spring MVC test framework 301
Required dependencies 302
Annotations in Spring testing 303
The @ContextConfiguration annotation 304
The @WebAppConfiguration annotation 304
MockMvc 304
Assertion 305
@RunWith(SpringdUnit4ClassRunner.class) 306
Exercise 308
Summary 308
Chapter 8: Integrating JavaMail and JMS with Spring 31
E-mail support in Spring 312
Introducing the JavaMail API 312
Using the JavaMail API 314
The Spring API for JavaMail 316
Developing a Spring Mail Application 318
Configuration file — Spring.xml 318
Spring's e-mail sender 319
The MailerTest class 320
Spring Java Messaging Service 321
What is a message and messaging? 321
What is JMS? 321
The JMS application 322
JMS components 322
MOM Service Provider 324
Configuring ActiveMQ — message queue 324
The Spring bean configuration (Spring.xml) 326
MessageSender.java — Spring JMS Template 328
App.java 328
Start ActiveMQ 329
Output 329
Monitoring the broker 330
Exception on running App.java 330
Exercise 331
Summary 331
Appendix A: Solutions to Exercises 333
Appendix B: Setting up the Application Database —
Apache Derby 349
Index 355

[viii]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

The Spring Framework is a cutting-edge framework that provides comprehensive
infrastructure support for developing Java applications. The Spring Framework
handles the infrastructure so that you can focus on your application. It promotes
good programming practice by enabling a POJO-based programming model and also
provides a good way to structure your application into layers. It is the appropriate
time for you to understand how to best leverage the Spring Framework to create
high-performing, easily testable, reusable code when architecting, designing, and
developing large-scale Java development projects.

Some of you prefer learning by reading, while others prefer learning by coding. I believe
that learning by coding results in better learning, which is what I've done in this book.
There is plenty of example code and adequate textual description to help you grasp
each Spring Framework feature presented. From the very first chapter, you will be
able to develop an application using the Spring Framework.

The Spring Framework is an ocean with a number of features. This book covers
a lot of commonly used features in applications and has taken care to present
code-based examples for every feature. The book is replenished with tons of
code and diagrams. Extra effort has been taken to present snapshots of the
libraries used in every example and output. For more information about this
book, visit http://learningspringapplicationdevelopment .com/

What this book covers

Chapter 1, Introducing the Spring Framework, helps you to understand the architecture
of Spring Framework and set up the key components of the Spring application
development environment. This chapter serves as a roadmap to the rest of the book.

Chapter 2, Inversion of Control in Spring, configures the Spring Container and manages
Spring beans using XML. In this chapter, we take a look at the concepts of Inversion
of Control (IoC) and Dependency Injection.

[ix]

www.it-ebooks.info

http://learningspringapplicationdevelopment.com/
http://www.it-ebooks.info/

Preface

Chapter 3, DAO and JDBC in Spring, grants you access to data using the DAO design
pattern and Spring. Implement JDBC support and ORM support in the Spring
Framework. This chapter discusses how Spring manages data sources and which
data sources you can use in your applications.

Chapter 4, Hibernate with Spring, covers one of the object-relational mapping
(ORM) libraries that has wide support in Spring —Hibernate. It covers mapping
configurations to map persistent classes and discusses how to configure Hibernate
to work in a Spring application.

Chapter 5, Spring Web M\VC Framework, lets you leverage the best of Spring web
controllers and the Spring form tag library to create a Spring MVC application.
It introduces Spring MVC and discusses how we can use the powerful features
provided by Spring MVC to develop high-performing web applications.

Chapter 6, Spring Security, allows you to secure your applications against malicious
intruders using Spring Security. It introduces Acegi Security System and discusses
how to secure web applications using Servlet filters.

Chapter 7, Spring Testing, implements practical testing strategies using JUnit and
TestNG. It explains how unit tests work, focusing in particular on the JUnit framework.

Chapter 8, Integrating JavaMail and JMS with Spring, implements the Spring Mail
Application programming interface to send and receive e-mails. It introduces
Java Messaging Service (JMS) for asynchronous processing.

Chapter 9, Inversion of Control in Spring - Using Annotation, configures Spring

beans and Dependency Injection using annotation. It covers annotation-based
Dependency Injection and life cycle annotation. It explains how to reference beans
using Spring Expression Language (SpEL), invoke methods using SpEL, and work
with operators in SpEL. It also covers the text messages and internationalization
provided by Spring, which we will learn to implement in our application. This is an
online chapter available at https://www.packtpub.com/sites/default/files/
downloads/73680S_Chapter9.pdf.

Chapter 10, Aspect-oriented Programming with Spring, introduces you to aspect-oriented
programming. It shows you how and where to apply your aspects in your application
using Spring's powerful pointcut mechanism and discusses proxies in the Spring AOP.
This is an online chapter available at https: //www.packtpub.com/sites/default/
files/downloads/73680S_Chapterl0.pdf.

Appendix A, Solutions to Exercises, provides solutions to all the exercises from every
chapter of this book.

[x]

www.it-ebooks.info

https://www.packtpub.com/sites/default/files/downloads/7368OS_Chapter9.pdf
https://www.packtpub.com/sites/default/files/downloads/7368OS_Chapter9.pdf
https://www.packtpub.com/sites/default/files/downloads/7368OS_Chapter10.pdf
https://www.packtpub.com/sites/default/files/downloads/7368OS_Chapter10.pdf
http://www.it-ebooks.info/

Preface

Appendix B, Setting up the Application Database — Apache Derby, teaches you how to set
up the Apache Derby Application Database.

Appendix C, Spring Form Tag Library, shows the Spring form tag library provided

by the Spring Web MVC framework. The Spring form tag library is a set of tags in
the form of a tag library, which is used to construct views (web pages). This is an
online appendix available at https: //www.packtpub.com/sites/default/files/
downloads/73680S_AppendixC.pdf.

What you need for this book

In this book, it is assumed that you have a good understanding of the Java
programming language, preferably version 1.6 or later, including the Java basic
APIs and syntax. You are also expected to have basic understanding of the JDBC
AP], relational database, and SQL query language. For Chapter 5, Spring Web MV C
Framework, you should have a basic understanding of web development with Java,
including HTML, JSP, Servlet, and a web container such as Tomcat.

Who this book is for

This book is meant for those who are interested in learning Spring Framework;

prior knowledge of the Java programming and web applications is required. No
matter what role you play in your team, a developer, an architect, or a manager,

this text will help you gain truly applicable Spring skills in the most efficient and
relevant manner. It is good to have some XML knowledge, but an XML novice can
understand what's happening in this book without much difficulty. It is also good to
have enterprise development knowledge, but it is not mandatory. The chapters are
based on the core layer, data access layer, and web layer. A step-by-step approach is
followed for developing code examples, so it is easy for a beginner to understand the
application development.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"This MailHelper class also contains the sendMail () method."

[xi]

www.it-ebooks.info

https://www.packtpub.com/sites/default/files/downloads/7368OS_AppendixC.pdf
https://www.packtpub.com/sites/default/files/downloads/7368OS_AppendixC.pdf
http://www.it-ebooks.info/

Preface

A block of code is set as follows:

package org.packt.Spring.chapterl0.mail;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXml
ApplicationContext;

public class MailerTest

{

public static void main(Stringl[] args)
//Create the application context
ApplicationContext context =
new ClassPathXmlApplicationContext ("Spring.xml") ;

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

@Configuration
@Import (ConfigA.class)
public class ConfigB {

@Bean
public HrService hrService() {
return new HrService() ;

}

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Right-click on MainClass.java and navigate to Run As | Java Application.'

%j%‘\ Warnings or important notes appear in a box like this.
(:l Tips and tricks appear like this.
[xii]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to
have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

[xiii]

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[xiv]

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the
Spring Framework

In this chapter, we'll introduce you to the Spring Framework. We'll also summarize
some of the other features of Spring. We'll then discuss the Spring Architecture as
well as the benefits of the Spring Framework. We will create your first application
in Spring and will look into understanding the packaging structure of the Spring
Framework. This chapter serves as a road map to the rest of this book.

The following topics will be covered in this chapter:

* Introducing Spring
* Spring Framework Architecture
* Benefits of the Spring Framework

* Creating a first application in Spring

Spring is an open source framework, which was created by Rod Johnson.

He addressed the complexity of enterprise application development and described
a simpler, alternative approach in his book Expert One-on-One J2EE Design and
Development, Wrox.

Spring is now a long-time de-facto standard for Java enterprise software development.
The framework was designed with developer productivity in mind, and it makes it
easier to work with the existing Java and Java EE APIs. Using Spring, we can develop
standalone applications, desktop applications, two-tier applications, web applications,
distributed applications, enterprise applications, and so on.

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the Spring Framework

As the title implies, we introduce you to the Spring Framework and then explore
Spring's core modules. Upon finishing this chapter, you will be able to build a
sample Java application using Spring. If you are already familiar with the Spring
Framework, then you might want to skip this chapter and proceed straight to
Chapter 2, Inversion of Control in Spring.

Introducing Spring

Spring is a lightweight Inversion of Control (IoC) and aspect-oriented container
framework. Historically, it was created to alleviate the complexity of the then J2EE
standard, often giving an alternative model. Any Java EE application can benefit
from the Spring Framework in terms of simplicity, loose coupling, and testability.

It remains popular due to its simple approach to building applications. It also
offers a consistent programming model for different kinds of technologies, be they
for data access or messaging infrastructure. The framework allows developers to
target discrete problems and build solutions specifically for them.

The Spring Framework provides comprehensive infrastructure support for
developing Java EE applications, where the Spring Framework handles the
infrastructure and so developers can focus on application development.

Considering a scenario of JDBC application without using the Spring Framework,
we have a lot of boilerplate code that needs to be written over and over again to
accomplish common tasks. Whereas in Spring JDBC application, which internally
uses plain JDBC, the gdbcTemplate class eliminates boilerplate code and allows
the programmer to just concentrate on application-specific logics development.

* For a plain JDBC application without Spring, follow these steps:

1. Register driver with the DriverManager service.

Establish a connection with the database.
Create a statement object.
Prepare and execute an SQL query.
Gather and process the result.
Perform exception handling.
Perform transaction management.
Close JDBC object.

® NS kDN

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

* For a Spring JDBC application (internally uses plain JDBC), follow these steps:
1. Get access to JdbcTemplate.
2. Prepare and execute an SQL query.

3. Gather and process the result.

Spring's main aim is to promote good programming practice such as coding to
interfaces and make Java EE easier to use. It does this by enabling a Plain Old Java
Object (POJO)-based programming model, which can be applicable in a wide range
of development environments.

Technically, a POJO is any ordinary object that should not implement pre-specified
interface or extend pre-specified class or contains annotation.

The following is the code for the pogoclass. java class:

package com.packt.spring.chapterl;

/* This is a simple Java Class - POJO */
public class POJOClass

private String message;

public String getMessage() {
return this.message;

}

public void setMessage (String message)
this.message = message;

}
}

In the preceding code snippet, we have PoJoClass containing a field and
corresponding getter and setter methods. This class is a POJO class as it is
not extending or implementing any class or predefined interface of Spring API.

Spring is modular, allowing you to use only those parts that you need, without
having to bring in extra complexity. The Spring Framework can be used either for all
layer implementations or for the development of particular layer of an application.

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the Spring Framework

Features of Spring

The Spring Framework contains the following features:

Lightweight: Spring is described as a lightweight framework when it comes to
size and transparency. A lightweight framework helps in reducing complexity
in application code. It also helps in avoiding unnecessary complexity in its own
functioning. A lightweight framework won't have a high startup time and will
run in any environment. A lightweight framework also won't involve huge
binary dependencies.

Non-intrusive: This means that your domain logic code has no
dependencies on the framework itself. The Spring Framework is
designed to be non-intrusive. The object in a Spring-enabled application
typically has no dependencies on any predefined interface or class given
by Spring API. Thus, Spring can configure application objects that don't
import Spring APIs.

Inversion of Control (IoC): Spring's container is a lightweight container that
contains Spring beans and manages their life cycle. The core container of the
Spring Framework provides an implementation for IoC supporting injection.
IoC is an architectural pattern that describes the Dependency Injection needs
to be done by external entity rather than creating the dependencies by the
component itself. Objects are passively given their dependencies rather

than creating dependent objects for themselves. Here, you describe which
components need which service, and you don't directly connect your services
and components together in your code. Let's consider an example: we have
two classes Zoo and Animal, where Zoo has an object of Animal:

° Without Dependency Injection: This is a common way to instantiate
an object is with a new operator. Here, the Zoo class contains the
object Animal that we have instantiated using a new operator, as
shown in the following screenshot:

Zoo
Animal animal;
getAnimal () {

animal = new Animal;

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

With Dependency Injection: Here, we supply the job of instantiating
to a third party, as shown in following screenshot. Zoo needs the object
of Animal to operate, but it outsources instantiation job to some third
party that decides the moment of instantiation and the type to use in
order to create the instance. This process of outsourcing instantiation
is called dependency injection.

Zoo

. . Animal's
Animal animal; T ——

The Spring Framework promotes loose coupling by using the technique
known as IoC. We'll talk more about IoC in Chapter 2, Inversion of Control
in Spring.

Aspect-oriented Programming (AOP): This refers to the programming
paradigm that isolates supporting functions from the main program's
business logic. It allows a developer to build the core functionality of

a system without being aware of additional requirements.

AOP is used in the Spring Framework to provide declarative aspects
such as transactions and security. Here, application objects perform
business logic and are not responsible for other system concerns such
as logging, security, auditing, locking, and event handling. AOP is

a method of applying middleware services such as security service,
and transaction management service on Spring's application.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the Spring Framework

Let's consider a payroll management application where there will be
Employee Service, HR Service, and Payroll Service, as shown in the
following figure, which will perform some functional requirement to

the system such as add/update employee details, remove employee,
browse employee details, and much more. While implementing business
functionality, this type of application would also require nonfunctional
capabilities such as role-based access and logging details. AOP leaves an
application component to focus on business functionality. Here, the core
application implements the business functionality and is covered with
layers of functionality provided by AOP for security, logging, and
transaction management.

(Security Module h
- ~\

Transaction Manager

Employee Service

Payroll HR
Service Service

Logging Module

Aspects can be added or removed as needed without changing your code.
Spring aspects can be configured using its own IoC container. Spring AOP
includes advisors that contain advice and pointcut filtering.

* JDBC exception handling: The JDBC abstraction layer of the Spring
Framework provides an exception hierarchy. It shortens the error handling
strategy in JDBC. This is one of the areas where Spring really helps in reducing
the amount of boilerplate code we need to write in the exception handling.
We'll talk more on Spring JDBC in Chapter 3, DAO and JDBC in Spring.

* Spring MVC Framework: This helps in building robust and maintainable web
applications. It uses IoC that provides separation of controller logic. Spring
MVC Framework, which is a part of the Spring Framework licensed under the
term of Apache license, is an open source web application framework. Spring
MVC Framework offers utility classes to handle some of the most common
tasks in web application development. We'll discuss more about Spring Web
MVC Framework in Chapter 5, Spring Web MV C Framework.

[6]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Spring Security: This provides a declarative security mechanism for
Spring-based applications, which is a critical aspect of many applications.
We'll add Spring Security to our web applications in Chapter 6, Spring Security.

Other features of Spring

The following are the other features provided by the Spring Framework:

Spring Web Services: This provides a contract-first web services model,
whereby service implementations are written to satisfy the service contract.
For more information, check out http://static.springsource.org/
spring-ws/sites/2.0.

Spring Batch: This is useful when it's necessary to perform bulk operations
on data. For more information, refer to http://static.springsource.org/
spring-batch.

Spring Social: Social networking, nowadays, is a rising trend on the
Internet, and more and more applications such as Facebook and Twitter
are being outfitted with integration into social-networking sites. To know
more, have a look at http://www.springsource.org/spring-social.

Spring Mobile: Mobile applications are another significant area of
software development. Spring Mobile supports development of mobile
web applications. More information about Spring Mobile can be found
at http://www.springsource.org/spring-mobile.

Evolution of the Spring Framework

The Spring Framework is an open source framework that has multiple versions
released with the latest one being 4.x. The different versions of the Spring Framework
are as follows:

Spring Framework 1.0: This version was released on March 2004, and the
first release was Spring Framework 1.0 RC4. The final and stable release was
Spring Framework 1.0.5. Spring 1.0 was a complete Java/J2EE application
framework, which covered the following functionalities:

° Spring Core: This is a lightweight container with various setter
and constructor injection

° Spring AOP: This is an Aspect-oriented Programming (AOP)
interception framework integrated with the core container

° Spring Context: This is an application context concept to provide
resource loading

[71

www.it-ebooks.info

http://static.springsource.org/spring-ws/sites/2.0
http://static.springsource.org/spring-ws/sites/2.0
http://static.springsource.org/spring-batch
http://static.springsource.org/spring-batch
http://www.springsource.org/spring-social
http://www.springsource.org/spring-mobile
http://www.it-ebooks.info/

Introducing the Spring Framework

[e]

Spring DAO: This is a generic DAO support that provides access
to a generic data exception hierarchy with any data access strategy

Spring JDBC: This is a JDBC abstraction shorten error and
resource handling

Spring ORM: This is a hibernate support sessionFactory
management

Spring Web: This web MVC Framework integrates various
view technologies

* Spring Framework 2.X: The Spring Framework 2.0 was released in October
2006 and Spring 2.5 was released in November 2007. The Spring Framework
2.x release was based around two themes: simplicity and power. This
provides you with the following features:

[e]

Improvements in the IoC container and AOP, including the easpectyJ
annotation support for AOP development

Introduction of bean configuration dialects

XML-based configuration is reduced and XML schema support and
custom namespace is introduced

Annotation-driven configuration that requires component scanning
to auto-detect annotated components in the classpath using
annotations such as @eComponent or specialized annotations such as
@Repository, @Service, and @Controller

Introduces annotations such as @RequestMapping, @RequestParam,
and @Modelattribute for MVC controllers

* Spring Framework 3.0: This version was released in December 2009. It makes
the entire Spring code base to take advantage of the Java 5.0 technology.
This provides you with the following features:

[e]

Supports REST in Spring MVC, which is one of the beautiful
additions to the Spring Framework itself.

Introduces new annotations @CookievValue and @RequestHeader
for pulling values from cookies and request headers, respectively.

It also supports new XML namespace that makes easier to configure
Spring MVC.

Task scheduling and asynchronous method execution with
annotation support is introduced to this version.

[8]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[e]

Spring Framework 3.0.5 is the latest update release, which was
released on October 20, 2010. The Hibernate version 3.6 final is
supported by this Spring release.

* Spring Framework 3.1: This version was released in December 2011.
This release introduced many new exciting features that are related
to cache abstraction, bean definition profiles, environment abstraction,
PropertySource abstraction, and a lot more. This provides you with
the following features:

[e]

Introduces Cache Abstraction to add caching concept to any existing
application using @Cacheable annotation.

Introduces annotation called eprofile, which is used while applying
configuration classes.

Introduces propertySource that is an abstraction performed over
any different source of the key-value pairs. In Defaul tEnvironment,
there are two configured PropertySource objects: System.
getProperties () and System.getenv ().

Hibernate 4.x is supported by this release through Java Persistence
API (JPA). With this release, the JPA EntityManagerFactory can be
bootstrapped without persistence.xml or other metadata files.

Introduces @rRequestPart annotation to provide access to multipart
form-data content on the controller method arguments.

Introduces the c:namespace to support constructor injection.

* Spring Framework 3.2.x: This version was released in November 2013.
This release introduced the following new features and enhancements
to earlier features:

o

Servlet 3-based asynchronous request processing is supported in
this release.

Supports Java 7 features.

Testing of Spring MVC applications without a Servlet container
is supported in this release. Here, DispatcherServlet is used for
server-side REST tests and RestTemplate for client-side REST tests.

ContentNegotiationStrategy is introduced to resolve the
requested media types from an incoming request. It also supports
Jackson JSON 2 library.

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the Spring Framework

[e]

Method annotated with @ExceptionHandler, @InitBinder,
and @ModelAttribute can be added to a class annotated with
the @eCcontrolleradvice annotation.

The @Matrixvariable annotation for extracting matrix variables
from the request URI is introduced.

The eDateTimeFormat annotation to remove dependency on the
Joda-Time library is introduced.

* Spring Framework 4.x: This version supports a few new features.
Improvements in Spring 4.X include support for Java SE 8, Groovy 2, and
a few aspects of Java EE7. This provides you with the following features:

[e]

o

[e]

Supports external bean configuration using a Groovy DSL
Auto-wiring is based on generic types
Introduces the @Description annotation

Introduces @Conditional that can conditionally filter the beans.

Introduces the @gms annotation to support annotation-driven endpoint

Catching support is revisited, provided cacheResolver to resolve
caches at runtime

Added new testing features such as SQL Script execution, bootstrap
strategy, and so on

Added lightweight messaging and WebSocket-style architectures

Spring Framework Architecture

Spring packaging is modular, allowing you to pick and choose the modules that

are applicable to you, without any need to bring in the rest. The following section
gives you a detailed explanation about different modules available in the Spring
Framework. The following figure shows you a complete overview of the framework
and modules supported by the Spring Framework:

[10]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Data Access}'lntegratinn WEB
l JDBC l ORM {(MVC / Remoting)
l Web Il Serviet

loxml ljms I

Portlet Il Struts

[Transactions]

| AOP I | Aspects I

Instrumentation ‘

Spring Core Container

Context Expression

Core Beans
Language

Test

Spring Core Container

Spring Core Container consists of the core, beans, context, and expression language
modules, as shown in the preceding figure. Let's discuss these in detail as follows:

Core module: This module of Spring Core Container is the most important
component of the Spring Framework. It provides features such as IoC and
Dependency Injection. The idea behind IoC is similar to the Hollywood
principle: "Don't call me, I'll call you." Dependency Injection is the basic
design principle in Spring Core Container that removes explicit dependence
on container APIs.

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the Spring Framework

* Beans module: The bean module in Spring Core Container provides
BeanFactory, which is a generic factory pattern that separates the
dependencies such as initialization, creation, and access of the objects
from your actual program logic. BeanFactory in Spring Core Container
supports the following two scopes modes of object:

° Singleton: In singleton, only one shared instance of the object with a
particular name will be retrieved on lookup. Spring singleton returns
a same bean instance per Spring IoC container. Each time you call
getBean () on ApplicationContext, Spring singleton returns the
same bean instance.

° Prototype or non-singleton: In prototype, each retrieval results in
the creation of a brand new instance. Each time you call getBean ()
on ApplicationContext, Spring prototype creates a separate
bean instance.

* Context module: An ApplicationContext container loads Spring bean
definitions and wires them together. The ApplicationContext container
is the focal point of the context module. Hierarchical context is also one
of the focal points of this API. ApplicationContext supports the Message
lookup, supporting internationalization (i18N) messages.

* Expression language: Spring Expression Language (SpEL) is a powerful
expression language supporting the features for querying and manipulating
an object graph at runtime. SpEL can be used to inject bean or bean property
in another bean. SpEL supports method invocation and retrieval of objects
by name from IoC container in Spring.

The AOP module

Spring's Aspect-oriented Programming (AOP) module is one of the main
paradigms that provide an AOP implementation. Spring AOP module is a
proxy-based framework implemented in Java. The Spring Framework uses
AOP for providing most of the infrastructure logic in it.

AOP is a mechanism that allows us to introduce new functionalities into an existing
code without modifying it design. AOP is used to weave cross-cutting aspects into the
code. The Spring Framework uses AOP to provide various enterprise services, such as
security in an application. The Spring AOP framework is configured at runtime.

Spring integrates with Aspect], which is an extension of AOP. Aspect] lets
programmers define special constructs called Aspects, which contains several
entities unavailable to standard classes.

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Data access/integration

Spring's data access addresses common difficulties developers face while working
with databases in applications.

JDBC module: The Spring Framework provides solution for various
problems identified using JDBC as low-level data access. The JDBC
abstraction framework provided under the Spring Framework removes
the need to do tedious JDBC-related coding. The central class of Spring
JDBC abstraction framework is the JdbcTemplate class that includes the
most common logic in using the JDBC API to access data such as handling
the creation of connection, statement creation, statement execution, and
release of resource. The JdbcTemplate class resides inside the org.
springframework.jdbc.core package.

ORM module: The Object-relational mapping (ORM) module of the Spring
Framework provides a high-level abstraction for ORM APIs, including JPA
and Hibernate. Spring ORM module reduces the complexity by avoiding the
boilerplate code from application.

OXM module: Spring OXM module stands for Spring Object XML Mappers,
which supports Object/ XML mapping. It also supports integration with
Castor, JAXB, XmlBeans, and the XStream framework.

Most applications need to integrate or provide services to other applications.
One common requirement is to exchange data with other systems, either on
aregular basis or in real time. In terms of the data format, XML is the most
commonly used format. As a result, there exists a common need to transform
a JavaBean into XML format and vice versa.

Spring supports many common Java-to-XML mapping frameworks
and, as usual, eliminates the need for directly coupling to any specific
implementation. Spring provides common interfaces for marshalling
(transforming JavaBeans into XML) and unmarshalling (transforming
XML into Java objects) for DI into any Spring beans. Spring also has
modules to convert data to and from JSON, in addition to OXM.

JMS module: The Java Messaging Service (JMS) module comprises
features to produce and consume messages. It is a Java Message Oriented
Middleware (MOM) API for sending messages between two or more clients.
JMS is a specification that describes a common way for Java program to
create, send, and read distributed enterprise messages.

° Spring Java mail: The org. springframework.mail package is the

root package that provides mail support in the Spring Framework.
It handles electronic mail.

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the Spring Framework

Transaction module: The Spring transaction module provides abstraction
mechanism to supports programmatic and declarative transaction
management for classes.

The Web module

The Web module consists of the Web, Servlet, Struts, and Portlet modules.

Web module: The Spring Web module builds on the application
context module and includes all the support for developing robust
and maintainable web application in a simplified approach. It also
supports multipart file-upload functionality.

Servlet module: In Spring, the Servlet module contains Model-View-
Controller (MVC) implementation that helps to build enterprise web
applications. In Spring Framework, the MVC provides clean separation
between binding request parameter, business objects, and controller logic.

Struts module: The Web Struts module supports integration of Struts
Web tier within a Spring application. It also supports configuration of
Struts Actions using Spring Dependency Injection.

Portlet module: Spring Portlet supports for easier development of web
application using Spring. Portlet is managed by the Portlet container,
similar to the web container. Portlet is used in the Ul layer for displaying
contents from data source for end user.

The Test module

In the Spring Framework, the Test module helps to test applications developed using
the Spring Framework, either using JUnit or TestNG. It also helps in creating mock

object to perform unit testing in isolation. It supports running integration tests outside

the application server. We'll look at Spring's Test module in Chapter 7, Spring Testing.

Benefits of the Spring Framework

The following is the list of a few great benefits of using the Spring Framework:

Spring is a powerful framework, which address many common problems
in Java EE. It includes support for managing business objects and exposing
their services to presentation tier component.

It facilitates good programming practice such as programming using
interfaces instead of classes. Spring enables developers to develop
enterprise applications using POJO and POJI model programming.

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

* Itis modular, allowing you to use only those parts that you need. It allows
us to just choose any part of it in isolation.

* It supports both XML- and annotation-based configuration.

* Spring provides a lightweight container that can be activated without
using web server or application server software.

* It gives good support for IoC and Dependency Injection results in
loose coupling.

* The Spring Framework supports JDBC framework that improves
productivity and reduces the error.

* It provides abstraction on ORM software to develop the ORM persistence logic.

* The Spring Web MVC framework provides powerful and a flexible Web
framework as an alternative to Struts and other framework.

* The Spring Test module provides support for an easy-to-test code.

Creating an application in Spring

Before we create an application in Spring, first we need to obtain Spring Library.
We can download the Spring distribution ZIP files that are available in the Spring
Maven Repository. Else, we can simply add the dependencies for Spring into
project's pom.xml file whenever we use Maven for application development.

Spring packaging is modular, allowing you to pick and choose the component
you want to use in your application. Spring comes with a large selection of
sample applications that can be referred while building your application.

Obtalnlng Spring JAR files

Downloading Spring distribution ZIP files: The complete Spring Framework
library can be downloaded by opening the link http://repo.spring.io/
release/org/springframework/spring/ and selecting the appropriate
subfolder for the version needed for your application development.
Distribution ZIP files end with dist.zip, for example, spring-framework-
4.1.4.RELEASE-dist.zip.

While writing this book, the latest version was
—" Spring Framework 4.1.4.

Download the package and extract it. Under the 1ib folder, you will find a
list of Spring JAR files that represents each Spring module.

[15]

www.it-ebooks.info

http://repo.spring.io/release/org/springframework/spring/
http://repo.spring.io/release/org/springframework/spring/
http://www.it-ebooks.info/

Introducing the Spring Framework

* Checking Spring out of GitHub: You can check out the latest version of
code from Spring's GitHub repository at https://github.com/spring-
projects/spring-framework.

To check out the latest version of the Spring code, first install Git
from http://git-scm.com/, open the Git Bash tool, and run the
following command:

git clone https://github.com/spring-projects/spring-£framework

Understanding Spring packaging

After extracting the downloaded Spring Framework ZIP file, you will get the
directory structure, as shown in the following screenshot:

v ThisPC » spring-framework-4,1.4RELEASE »
MName Date modified Type Size
docs File folder
libs File folder
schema File folder
| licensetxt Text Document 13 KB
| noticetxt Text Document 1 KB
. readme.bd 30-Dec-14 2:33 AM Text Document 1 KB

The spring-framework-4 .14 .RELEASE folder, as shown in the preceding screenshot,
contains docs, 1ibs, and schema subfolders. The 1ib folder contains the Spring JAR
files, as shown in the following screenshot:

| £ spring-aop-4.1.4.RELEASE jar

| £ spring-aspects-4.1.4.RELEASE jar

| £ spring-beans-4.1.4,RELEASE. jar

| £ spring-context-4.1.4.RELEASE jar

| £ spring-context-support-4.1.4.RELEASE jar
| £ spring-core-4.1.4.RELEASE jar

| £ spring-expression-4.1.4.RELEASE jar

| £ spring-instrument-4.1.4,RELEASE. jar

|| spring-instrument-temcat-4.1.4.RELEASE jar
| £ spring-jdbe-4.1.4,RELEASE. jar

| £ spring-jms-4.1.4,RELEASE. jar

| £ spring-messaging-4.1.4.RELEASE jar

|| spring-orm-4,1.4,RELEASE jar

| £ spring-oxm-4.1.4,RELEASE. jar

| £ spring-test-4.1.4 RELEASE jar

| £ spring-tx-4.1.4.RELEASE jar

|| spring-web-4,1.4,RELEASE jar

| £ spring-webmvec-4.1.4,RELEASE jar

| £ spring-webmve-portlet-4.1.4 RELEASE jar
| £ spring-websocket-4.1.4,RELEASE jar

[16]

www.it-ebooks.info

https://github.com/spring-projects/spring-framework
https://github.com/spring-projects/spring-framework
http://git-scm.com/
http://www.it-ebooks.info/

Chapter 1

Shown in the preceding screenshot is a list of JAR files required while
developing applications using Spring. You can find more details on these
JAR files at http://www.learnr.pro/content/53560-pro-spring/40
and http://agile-hero.iteye.com/blog/1684338.

SpringSource Tool Suite

SpringSource Tool Suite (STS) is a powerful Eclipse-based development
environment for developing Spring application. The latest version of STS can
be downloaded from http://spring.io/tools/sts. We will use STS IDE for

all our examples in this book. The following screenshot shows a snapshot of an
STS dashboard:

File Edit MNavigate Search Project Run Window Help
[mifhd _#voqu MR C R Nr=Rn e] k@;v.‘,v“ v -
Quick Access [3 | & Spring
& |¢Z) Dashboard &7 l = & |8
g = 2
= | Spring Dashboard Search spring.io q Subscribe Spl’iﬂg =
) s
A
Create 4 Feeds ﬁ & =
e . o | |E
13 Java Project @ Spring Project & This Week in Spring - January 20th, 2015 2
Welcome to another installment of This Week in Spring! This ;
o Loinio el week's roundup could've just as easily been titled, This Week in A
X . o Spring Videos and Webinars, because we've got a lot of them!
Thanks for installing STS/GGTS 3.6.3 The good Dr. Dave ... (Jan 21, 2015 by Josh Leng)
Pivotal has released an update ta Spring Toal Suite (STS) and & Webinar: Spring XD - A Platf...e and developer productivity
Groovy/Grails Tool Suite (GGTS), the best Eclipse-powered
development environment for building Spring, Groovy, and Grails Speaken Sa_bb)’A"‘E’?dﬂ" Warried about B_‘E [_Jﬂtﬂ and the .
powered enterprise application. challenges inherent in making a real application? You den't
have to worry anymare! Spring XD provides a one-stop shop
Plezse review the following documents: selution that spans traditional ... (Jan 20, 2015 by Pieter
* 3.6.3 Mew & Noteworthy Humphrey)
(Dec 2, 2014) & Webinar. Introducing Spring Session
U Cloud Foundry Eclipse 1.7.3 released Speaker: Josh Long, Pivetal Back in the era of the application
- . . S server, HTTP Session replication was a common way to scale
M has released Cloud Foundry Eclipse version 173, Chanses out user session data, as well as make it fault tolerant. In today's
include support for authenticated HTTP proxies, fixes for fetching world of lightweight ... (Jan 20, 2015 by Pieter Humphrey)
recent logs, editing mapped application URLs, and preventing
cerver-wide nublich of Incal channes when addinn or removing A & Webinar. Documenting RESTful APIs
= Help and Documentation Speaker: Andy Wilkinsen, Pivotal An API's documentation is a
vital part of making it easy to understand and easy to use.
Community Suppert Forums Mew and Moteworthy RESTful APls are no different. In this webinar we'll look at what
Issue and Bug Tracker Extensions should beincluded ... (Jan 20, 2015 by Pieter Humphrey)
SpringSource Commercial Support Product Page & The Resource Server: Angular J5 and Spring Security Part Il v v
Dashboardl B¢ens|ons|

Let's now create a simple Spring application using Spring STS.

[17]

www.it-ebooks.info

http://www.learnr.pro/content/53560-pro-spring/40
http://agile-hero.iteye.com/blog/1684338
http://spring.io/tools/sts
http://www.it-ebooks.info/

Introducing the Spring Framework

The Spring application
With basic understanding of the Spring Framework, we can now create a simple
Spring application example. All the examples in this book have been written using

the STS IDE.

We will write a simple Spring application that will print greeting message to user.
Do not worry if you do not fully understand all the code in this section; we'll go into
much more detail on all the topics as we proceed through this book.

Creating a Spring project

The following steps will help you create your Spring project in STS:

1. The first step in creating a Spring application is to create a new Spring
project in the STS IDE. Navigate to File | New | Spring Project, as shown
in the following screenshot:

File | Edit Mavigate Search Project RBun Window

Help

New
Open File...
Close
Clase All
Save

Save As...
Save All
Revert
Move...
Rename...
Refresh

Convert Line Delimiters To
Print...

Switch Workspace
Restart

Import...

EE

Export...

Properties

Alt+Shift+MN »

Ctrl+W

Ctrl+Shift+W

Ctrl+5

Ctrl+Shift+5

Ctrl+P

Alt+Enter

&
@

&

=
af

£

@ E

iy

Ep

CREEERLAQ@@

Spring Starter Project

Import Spring Getting Started Content
Spring Project

Java Project

Static Web Project

Dynarmic Web Project

Maven Project

Project...

Aspect

Package

Class

Interface

Enum

Annotation

JUnit Test Case

Source Folder

Java Working Set

Spring Bean Configuration File
Spring Web Flow Definition File
Folder

R R R R

Q, Subscribe

Feeds

8 This Week in Spring - January 20th, 2015

Welcome to another installment of This
in Spring! This week's roundup could've
easily been titled, This Week in Spring Vi

& Webinar: Spring XD - A Platform for dat;

Speaker: Sabby Anandan Worried about
Data and the challenges inherent in mak
real application? You don't have to worr

8 Wehinar: Intreducing Spring Session

Speaker: Josh Long, Pivotal Back inthe e
the application server, HTTP Session
replication was a common way to scale

& Wahinar Macomantins BESTH ADIC

2. Name your Spring project SimpleSpringProject and select the Simple Java
template, which creates a Simple Spring project using the Java build without
a top-level package and with default Spring configuration and project

natures, as shown in the following screenshot:

[18]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Spring Project

Create a Spring project by selecting a template or simple project type. I; :’

Project name: | SimpleSpringProject

[] Use default location

Location: | EASpring Framework Book\Final Draft\chapter-1\From Re Browse..,

Select Spring version: Default

Templates:

4 [Simple Projects ~
| % Simple Java

[& Simple Spring Maven

[Simple Spring Web Maven

[= Batch
3 CmmmCien
¥+ requires downloading

W
Configure templates... | Refresh
Description:

Creates a simple Spring project using Java build without a top-level package, and
with default Spring configuration and project natures.

Working sets

[]Add project to working sets

Working sets: Select...

@ < Back ‘

Net> | Finsh || Cancel |

3. Then, click on Finish, which will create the project in a workspace.

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the Spring Framework

Adding required libraries

Let's add the basic Spring JAR files to the build path of this Spring project:

1. Add the Spring Framework libraries and common logging API libraries
to your project. The common login library can be downloaded from
http://commons.apache.org/proper/commons-logging/download
logging.cgi. To add required libraries, right-click on the project named
SimpleSpringProject and then click on the available options in the context
menu, that is, Build Path | Configure Build Path to display the Java Build
Path window, as shown in the following screenshot:

File Edit Source

L= S

{8 Package Explore

. (= Servers

> E? SimpleSprin

X 5 Y

% B E

Mew

Go Into

Open in New Window
Open Type Hierarchy

Show In

Copy
Copy Qualified Name
Paste
Delete

Remove from Context

' Build Path

Source

Refactor
Import...

Export...

Refresh
Close Project

Close Unrelated Projects

3

F‘d
Alt+Shift+W ¥

Ctrl+C

Crl+V
Delete

Ctrl+Alt+Shift+ Down
3
Alt+Shift+5 ¥
Alt+Shift+T ¥

F5

HE-@&e V@ {

Link Source...

Mew Source Folder...

Use as Source Folder
Add External Archives...
Add Libraries...

EER By

i

Configure Build Path...

2. Now, use the Add External JARs button from the Libraries tab in order to
include the following core JARs from the Spring Framework and common

logging installation directories:

o

o}

o

spring-aop-4.1.4.RELEASE

spring-aspects-4.1.4 .RELEASE

spring-beans-4.1.4.RELEASE

spring-context-4.1.4.RELEASE

[20]

www.it-ebooks.info

http://commons.apache.org/proper/commons-logging/download_logging.cgi
http://commons.apache.org/proper/commons-logging/download_logging.cgi
http://www.it-ebooks.info/

Chapter 1

spring-context-support-4.1.4.RELEASE
° spring-core-4.1.4.RELEASE
spring-expression-4.1.4.RELEASE

commons-logging-1.2

The Libraries tab is as shown in the following screenshot:

| type filter text ' | Java Build Path RN
|» Resource —
Euilders | [Source | = Projectsl =i Libraries |<}{} Order and Exportl ~
Java Build Path JARs and class folders on the build path:
4 java Eode E_)Ityle [commons-logging-1.2.jar - EASpring Framework Bo | Add JARs...
b Sava qmpl & [» spring-aop-4.1.4. RELEASE jar - E\Spring Framework
b Java Editor . b spring-aspects-4.1.4.RELEASE jar - EA\Spring Framew | Add External JARs...
Java_doc Location b spring-beans-4,1.4.RELEASE jar - E\Spring Framewo | Add Variable
ProJ_ECt Facets B spring-context-4.1,4.RELEASE jar - EA\Spring Framew —
:mj:;t Eefersenc.es [> spring-context-support-4.1.4.RELEASE jar - E\Spring | Add Library...
ur.1 ebug Seftings [> spring-core-4.1.4,RELEASE jar - E\Spring Framework
P _?_p”:g " b spring-expression-4.1.4.RELEASE jar - E\Spring Fram | Add Class Felder...
| Task Repository .]
Task Tags &+ =4 JRE System Library [JavaSE-1.7] |Add External Class Folder.
[Walidation
WikiText | Edit..
| Bemove
v
< >
@ | oK | Cancel

[21]

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the Spring Framework

Now, you will have the content in your Project Explorer, as shown in the
following screenshot:

File Edit Navigate Search Project Run Window Help

Br-Eee NOHE-O Q- BEE @SS @

2 T v P T Quick Access E:“°| 4 Spring
[% Package Explorer i3 <§>| F LU] = B ||5= outline 32 & T T

1 [Servers An outline is not available.

4 (=5 SimpleSpringProject
(# src
> = JRE System Library [JavaSE-1.7]
4 =), Referenced Libraries
[» spring-acp-4.1.4.RELEASE jar - E\5prin
s spring-aspects-4.1.4.RELEASE jar - E\5)
i spring-beans-4.1.4.RELEASE jar - E:\Spr
o spring-context-4.1.4, RELEASE jar - E\5)
o spring-context-support-4.1.4.RELEASE, <':==€>| L | lﬁz
§ spring-core-4.1.4.RELEASE jar - E\Sprir I = SimpleSpringProject
s spring-expression-4.1.4.RELEASE jar - E
wd commens-logging-1.2jar - E\Spring F

/% Spring Explorer &2

€ >

4 Servers |[2] Markers | g Progress 52| = B || & Console 2

& = | |No consoles to display at this time.

Mo operations to display at this time. "

v

£

Creating source files

Now let's create the actual source files under the sSimpleSpringProject project:

1. First, create the packages named org. springframework.chapterl.service
and org.springframework.chapterl.main, as shown in the following
screenshot. To do this, right-click on src in package explorer section and
navigate to New | Package.

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

I

t’.',_., Mew Java Package

Java Package

Create a new Java package.

Creates folders correspending to packages.

Source folder:

SimpleSpringProject/src

MNames

org.springframework.chapterl.service

[7] Create package-info.java

@

| Enish ||

Cancel

Create a class called MainClass.java inside the org. springframework.
chapterl.main package. Then, create an interface named
GreetingMessageService.java and its implementation class
GreetingMessageServiceImpl.java inside the package org.
springframework.chapterl.service, as shown in the following screenshot:

File Edit Source Refactor Mavigate Search

il E] % QA
{8 Package Explorer E@l = <}:g~;>| ¢ -
b = Servers
4 f_.E» SimpleSpringProject
a 75 src

4 8 orgspringframewerk.chapterl.main
i 1] MainClass.java
a4 {8 org.springframework.chapterl.service
- [J] GreetingMessageService,java
b [3§ GreetingMessageServicelmpl.java
E beans.xml
[+ B JRE System Library [JavaSE-1.7]
> = Referenced Libraries

[23]

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the Spring Framework

The following is the content of interface Greet ingMessageService.java and its
implementation GreetingMessageServiceImpl.java:

GreetingMessageService.java:

package org.springframework.chapterl.service;

public interface GreetingMessageService
public String greetUser() ;

}

GreetingMessageServiceImpl.java:

package org.springframework.chapterl.service;
import org.springframework.stereotype.Service;

@Service

public class GreetingMessageServiceImpl implements
GreetingMessageService {

public String greetUser() {

return "Welcome to Chapter-1 of book Learning
Spring Application Development";

}
}

The GreetingMessageService interface has a greetUser () method. The
GreetingMessageServiceImpl class implements the GreetingMessageService
interface and provides definition to the greetuser () method. This class is annotated
with the eservice annotation, which will define this class as service class.

Downloading the example code

\ You can download the example code files from your account at
~ http://www.packtpub.com for all the Packt Publishing books
Q you have purchased. If you purchased this book elsewhere, you
can visit http: //www.packtpub.com/support and register
to have the files e-mailed directly to you.

The following is the content of the file MainClass. java:

package org.springframework.chapterl.main;

import org.springframework.chapterl.service.
GreetingMessageService;

[24]

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Chapter 1

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.
ClassPathXmlApplicationContext;

public class MainClass {
public static void main(Stringl[] args)
ApplicationContext context = new
ClassPathXmlApplicationContext (
"beans.xml") ;
GreetingMessageService greetingMessageService =
context .getBean (
"greetingMessageServiceImpl",
GreetingMessageService.class) ;
System.out.println(greetingMessageService.greetuser()) ;

}

In MainClass.java, we are creating ApplicationContext using framework API,
as shown in the following:

ApplicationContext context = new ClassPathXmlApplicationContext (
"beans.xml") ;

This API loads Spring beans configuration file named beans . xm1, which takes care
of creating and initializing all the bean objects. We use the getBean () method of the
created ApplicationContext to retrieve required Spring bean from the application
context, as shown in the following:

GreetingMessageService greetingMessageService = context.getBean (
"greetingMessageServiceImpl", GreetingMessageService.class);

The getBean () method uses bean ID and bean class to return a bean object.

Creating the Spring bean configuration file

The Spring bean configuration file is used to configure the Spring beans in the Spring
IoC container. As we have annotated the GreetingMessageServiceImpl class with
@Service annotation, the next step is to add <context : component -scan> in the
bean configuration file. To do this, follow these steps:

1. Create a Spring Bean Configuration file under the src directory. To do this,
right-click on src in package explorer section and then navigate to New |
Spring Bean Configuration File.

[25]

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the Spring Framework

2. Enter the bean name beans and click on Next, as shown in the
following screenshot:

New Spring Bean Definition file

Select the location and give a name for the Spring Bean Definition file < >

Enter or select the parent folder:

| SimpleSpringProject/src

B D
L= RemoteSystemsTempFiles
I = Servers
a (8 SimpleSpringProject
= .settings
I [bin
b B2 sre

File name: | beans

Add Spring project nature if required

@ < Back Ne¢> || Finsh || Cancel

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

3. Select the context option and click on Finish, as shown in the
following screenshot:

¥
Select X5D namespaces to use with the new Spring Bean Definition < >

New Spring Bean Definition file

Select desired X5D namespace declarations:

[l Q aop - http://www.springframewoerk.org/schema/aop

[@ beans - http:/fwww.springframework.org/schema/beans
OG- http://www.springframework.org/schema/c

[] & cache - http://www.springframework.org/schema/cache
ls| context - http:/fwww.springframework.org/schema/context
[(G jee - http:/ /www.springframewark.org/schemal/jee

O & lang - http:/fwww.springframework.org/schema/lang

[] ® p - http:/fwww.springframework.org/schema/p

[] @& task - hitp://www.springframework.org/schema/task

Select desired X5D (if none is selected the default will be used):

[[5] hitp://www.springframewerk.org/schema/ context/spring-contesxt.xsd

HRE httpe/ fwww.springframework.org/schema,/context/spring - context-2.5.sd
] [S] http://www.springframework.org/schema/context/spring-contest-3,0.xsd
O & http:/ fwww.springframework.org/schema//context/spring- context-3.1.2sd
[[5] http://www.springframework.org/schema/ context/spring-context-32,2.xsd
[[5] http://www.springframework. org/schema// context/spring-contesxt-4,0.esd
HRE httpe/ fwww.springframework.org/schema,/context/spring - context-4.1.xsd

4. Now the Spring bean configuration file is created. Add the following code

to create an entry. The contents of the beans .xml file are as follows:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

[27]

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the Spring Framework

xmlns:context="http://www.springframework.org/schema/
context"

xsi:schemalLocation="http://www.springframework.org/
schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd
http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-
context-4.1.xsd">

<context :component-scan base-
package="org.springframework.chapterl.service"/>

</beanss>

When the Spring application gets loaded into the memory, in order to create all

the beans, the framework uses the preceding configuration file, as shown in the
following screenshot:

File Edit MNavigate Search Project Run Design Window Help

il &2 E & R HE OG- ECR B HE-E e B IR D £
[% Package Explorer 5% = <.)==(>| & T = 0O | M beansxml 52 1 [J] GreetingMessageServicelmpl.java | [J] GreetingMessageService.java |m MainClass.java
> (= Servers

<?xml version="1.8" encoding="UTF-8"?>

a i_g SimpleSpringProject = <beans xmlns="http://www. springframework.org/schema/beans™

PR wmlns:xsi="http:/ Awww.w3.org/ 2681/ XML 5chema-instance™
xmlns:context="http://www. springframework.org/schema/context”
4 ff# org.springframework.chapterl.main xsi:schemalocation="http://www. springframework. org/schema/beans
> D MainClass.java

http: /. springframework. org/schema/beans/spring-beans. xsd
http: /. springframework. org/schema/context
http:/wew. springframework. org/schema/context/spring-context-4. 1.xsd">

4 org.springframework.chapterl.service
> [J] GreetingMessageService java
i . . .
5;5 E‘ GrEEtIFQMESSHQESENI(E‘I’HFLJEVE <context:component-scan base-package="org.springframework.chapterl.service” />
eansxm
- = JRE System Library [JavaSE-1.7]
- = Referenced Libraries

</beans>

The Spring bean configuration file can be named anything, but developers usually

keep the name beans.xml. This Spring bean configuration file should be available
in classpath.

1
< The s in the upper-right corner of the project icon indicates
it is a Spring Project.

Running the program

Once you are done with creating source files and beans configuration files, you are
ready for the next step, that is, compiling and running your program.

[28]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

To execute the example, run the MainClass. java file. Right-click on MainClass. java
and navigate to Run As | Java Application. If everything goes fine, then it will print
the following message in STS IDE's console, as shown in the following screenshot:

& Console &2 x S@%|%L’§I@|=‘ O = 0O
<terminated> MainClass [Java Application] C:\Program Files (x86)\Java\jreT\bin\javaw.exe (Feb 2, 2015, 1:45:14 PM)

Feb @2, 2815 1:45:15 PM org.springframework.context.support.ClassPathXmlapplicationContext prepareRefresh

INFO: Refreshing org.springframework.context.support.ClassPathXmlapplicationContext@lc4fafs: startup date [Mon Feb a2
Feb @2, 2815 1:45:15 PM org.springframework.beans.factory.xml.XmlBeanDefinitionReader loadBeanDefinitions

INFO: Loading XML bean definitions from class path resource [beans.xml]

Welcome to Chapter-1 of book Learning Spring Application Development

< >

We have successfully created our first Spring application, where you learned how to
create the Spring project and executed it successfully. We will see detailed examples
in the next chapter.

Exercise
Q1. What is Spring?

Q2. List some of the features of Spring.

Q3. Explain different modules in the Spring Framework.

Q The answers to these are provided in Appendix A, Solution to Exercises.

Summary

In this chapter, you were introduced the Spring Framework and acquainted with its
features. You took a look at the versions of Spring. Then, you studied the architecture,
and different modules in the Spring Framework such as the Spring Core Container,
Spring AOP, Spring data access/integration, and the Spring Web module and Test
module. You also understood the benefits of the Spring Framework. Finally, you
created an application in Spring and took a look on package structure of Spring.

In the next chapter, we'll explore IoC, Dependency Injection, and Spring Core
Container service. We'll also see bean's life cycle and bean's scope.

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

In this chapter, we'll explore the concept of Inversion of Control (IoC). We'll then
explore Spring Core Container, BeanFactory, and ApplicationContext, and you
will learn how to implement them. We will take a look at Dependency Injection (DI)
in Spring and their types: setter and constructor. We will wire beans using setter- and
constructor-based Dependency Injection for different data types. We will also go
through bean definition inheritance in Spring. We will then see autowiring in Spring
and their modes. We will also see Spring bean's scope and its implementation. Then,
we will move on to the life cycle of Spring bean.

The following is a list of topics that will be covered in this chapter:

* Understanding IoC

* Spring Container

® BeanFactory

® ApplicationContext

* Dependency Injection

* Constructor-based Dependency Injection
* Setter-based Dependency Injection

* Bean definition inheritance

* Autowiring in Spring

* Bean's scope

* Singleton

* Prototype
* Request
* Session

e Global-session

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

* Spring bean life cycle
* Initialization callback

¢ Destruction callback

Let's understand Inversion of Control.

Understanding Inversion of Control

In software engineering, IoC is a programming technique in which object coupling is
bound at runtime by an assembler object and is usually not known at compile time
using static analysis.

IoC is a more general concept, whereas DI is a concrete design pattern.

IoC is a way of thinking; a mechanism is required to activate components that
provide specific functionality, due to which IoC depends on DI. The IoC pattern
inverts responsibility of the managing the life cycle from the application to the
framework, which makes writing Java applications even easier. IoC makes your
code more manageable, more testable, and more portable. IoC also keeps component
dependencies, life cycle events, and configuration outside of the components.

Consider the following example: we have a car class and a vehicle class object.
The biggest issue with the code is tight coupling between classes. In other words,
the car class depends on the vehicle object. So, for any reason, changes in the
vehicle class will lead to the changes in, and compilation of, the car class too.

So let's put down the problems with this approach:

* The biggest problem is that the car class controls the creation of the
vehicle object

* The vehicle class is directly referenced in the car class, which leads
to tight coupling between the car and vehicle objects

The following figure illustrates this:

public class Car {

private Vehicle wehicle; — »Problem 1: References

public Ccar () {
vehicle = new Vehicle () ;

}
} I—) Problem 2: Aware of concrete classes

[32]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

If, for any reason, the vehicle object is not created, the whole car class will fail in
the constructor initialization stage. The basic principle of IoC stands on the base of
the Hollywood principle: Do not call us; we'll call you.

In other words, it's like the Vehicle class saying to the car class, "don't create me,
I'll create myself using someone else".

The IoC framework can be a class, client, or some kind of IoC container. The IoC
container creates the vehicle object and passes this reference to the car class,
as shown here:

public class Car {

private Vehicle wehicle;

Step 2:
public Car (Vehicle wehicle) { Passes the

this.vehicle = wvehicle; wvehicle
} object to

} the Car
class

IoC container

public class Vehicle {

//

‘—
Step 1: Creates the
} vehicle cbhject

What is a container

In software development terminology, the word "container" is used to describe
any component that can contain other components inside it. For example, Tomcat
is a web container to contain deployed WAR files. JBoss is an application server/
container; it contains an EJB container, web container, and so on.

The container first creates the objects and then wires them together, after

which it moves on to configure them, and finally manage their complete life cycle.
It identifies the object dependencies, creates them, and then injects them into the
appropriate objects.

[33]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

So, we can think about a container as an intermediate who'll register vehicle and
car objects as separate entities, create the vehicle and car objects, and inject the
vehicle object into car.

Spring Container

Spring Container is the central component of the Spring Framework. Spring
Container manages the life cycle of an application's bean, which will live within
Spring Container. Spring Container is responsible for wiring an application's beans
by associating different beans together. Spring Container manages the components
of applications using DI. The configuration metadata, which can be represented in
XML, Java annotations, or Java code, helps Spring Container to decide the object to
initiate, configure, and assemble.

Let's take an example of Tomcat, which is a Servlet container. Tomcat creates the
Servlet objects, which are required in order to run an application. While deploying
an application, we configure all Servlets in an XML file. Tomcat reads this XML file,
identifies the Servlet to be instantiated, and then creates the identified Servlet.

Spring is a container but not a container of Servlet. It is a container of beans and
behaves as a factory of beans. So, we can have Spring Container and we can have as
many objects as we want, as shown in the following diagram. Also, all these objects
are managed by Spring Container. The container handles the instantiation of object,
their whole life cycle, and finally their destruction too:

Spring Container
Object
Object
Object
Object
Object
[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Beans

Beans are reusable software components that are managed by the Spring IoC
container. It contains the properties, setter, and getter methods of a class.

The Spring IoC container is represented by the interface org. springframework.
context .ApplicationContext, which is responsible for instantiating, configuring,
and assembling beans. Beans are reflected in the configuration metadata used by

a container. The configuration metadata defines the instruction for the container
and the objects to instantiate, configure, and assemble. This configuration metadata
can be represented in XML, Java annotations, or Java code. In this chapter, we will
configure using XML, which has been the traditional format to define configuration
metadata. Refer to Chapter 9, Inversion of Control in Spring - Using Annotation, which
is available online, on instructing the container to use Java annotations by providing
a small amount of the XML configuration.

XML-based bean configuration

The bean configuration information is stored in an XML file, which is used to create
a bean definition using the <beans. . .</bean> element. The bean definition contains
the following metadata, which represents the configuration information of a bean:

* A fully qualified class name that represents bean name

* The behavioral configuration elements, such as scope, life cycle, and so on,
describe the bean's behavior in the Spring IoC container.

The following code snippet shows the basic structure of the XML configuration of
the metadata:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="..." class="...">
<!-- configuration for this bean here -->
</beans>
<!-- more bean definitions here -->
</beans>

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

The configuration files have <beans> as the root element. The beans element has all
other individual beans configured using the <bean> tag. Every <bean> tag needs

to specify a class attribute and can have an optional ID or name attribute. The ID
attributes enforce uniqueness in naming the beans. The class attribute has the fully
classified class name; for example, the src.org.packt.Spring.chapter2.Employee
class can be configured as follows:

<bean id="employeeBean"
class="src.org.packt.Spring.chapter2.Employee">
</bean>

A reference of the Employee class instance is returned when the configuration file is
loaded using the BeanFactory or ApplicationContext container, and employeeBean
is accessed using the getBean (employeeBean) method. The Spring IoC container

is responsible for instantiating, configuring, and retrieving your Spring beans.

The Spring IoC container enforces DI in its various forms and employs a number

of established design patterns to achieve this.

Spring provides the following two interfaces that act as containers:

* BeanFactory: This is a basic container, and all other containers
implement BeanFactory.

* ApplicationContext: This refers to the subinterface of BeanFactory
and is mostly used as a container in enterprise applications.

To instantiate Spring Container, create an object of any of the BeanFactory

or ApplicationContext implementation classes that supply the Spring bean
configuration. The basic packages in the Spring IoC container of the Spring
Framework are org.springframework.beans and org. springframework.context.
An advanced configuration mechanism is provided by the BeanFactory interface

to manage any type of object. The ApplicationContext interface implements

the BeanFactory interface, which provides enterprise-specific functionality and
supports message-resource handling, Spring's AOP features, event publication,

and WebApplicationContext for use in web applications.

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Both the containers, BeanFactory and ApplicationContext, are responsible for
providing DI. For all the configured beans, these containers act as a repository.
These containers initiate a registered bean, populate the bean's properties, and call
the init () method to make the bean ready for use. The destroy () method of bean
is invoked during the shutdown of the application. The init () and destroy ()
methods reflect the Servlet life cycle, where initialization can be performed during
the init () method and cleanup during the destroy () method.

BeanFactory

Spring creates all the instances, along with the references to the objects you require.
This is different from when you create an instance yourself with the help of the new
method. This is called a factory pattern.

What is a factory pattern?

In a factory pattern, we have an object that behaves as the object factory. Basically,
if you need an instance of any object, you don't have to create the instance yourself.
Instead, you call a method of this factory, which then returns the instance you
wanted. This factory reads from a configuration file, which acts as a blueprint that
contains guidelines on how we can create the object.

Assume that we have an object Foo and instead of creating a new object Bar, we
make a call to another Java object, which is a Factory object. The job of the Factory
object is to create and hand over a new object Bar to the object Foo, as shown in the
following figure. The whole purpose of this factory is to produce objects.

Object

(Foo) Object Factory

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

The Factory object reads from the configuration, which has metadata with details
about the object that needs to be created. Configuration is a blueprint of all those

objects that Factory creates. The Factory object reads from this configuration file,
as shown here:

Object)
(Foo) Object Factory

New Object

v

The Foo object interacts with the Factory object to get an object with a certain
specification. Then the Factory object finds out what the blueprint for that particular
object specification is and then creates a new object, as shown in the following figure:

’ ™

Object)
(Foo) Object Factory

New Object

v

[38]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Once the object has been created, Factory hands back the requesting Bar object to
the Foo object. So, now Foo will have a new object it wants not using new () but using
Factory, as shown in the following figure. This is something that Spring does.

N
4 “\
Object
(Foo) Object Factory
New Object
{ Configuration J
vy

Spring BeanFactory

Spring has objects of the BeanFactory type that behave like the Factory object. You
specify the blueprints object in a configuration file, which is an XML file, and then
supply it to BeanFactory. Later, if you need the instance of any object, you can ask
BeanFactory for it, which then refers to the XML file and constructs the bean as
specified. This bean is now a Spring bean as it has been created by Spring Container
and is returned to you. Let's now summarize this:

1. Spring has BeanFactory, which creates new objects for us. So, the Foo object
will call BeanFactory.

2. BeanFactory would read from Spring XML, which contains all the bean
definitions. Bean definitions are the blueprints here. BeanFactory will
create beans from this blueprint and then make a new Spring bean.

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

3. Finally, this new Spring bean is handed back to Foo, as shown here:

y ~
e =
Object BeanFactory
(Foo)
Spring Bean
Spring XML

The advantage here is that this new bean has been created in this BeanFactory, which
is known by Spring. Spring handles the creation and the entire life cycle of this bean.
So, in this case, Spring acts as container for this newly created Spring bean.

BeanFactory is defined by the org. springframework.beans.factory.BeanFactory
interface. The BeanFactory interface is the central IoC container interface in Spring
and provides the basic end point for Spring Core Container towards the application

to access the core container service.

It is responsible for containing and managing the beans. It is a factory class that
contains a collection of beans. It holds multiple bean definitions within itself and
then instantiates that bean as per the client's demands.

BeanFactory creates associations between collaborating objects as they're
instantiated. This removes the burden of configuration from the bean itself along
with the bean's client. It also takes part in the life cycle of a bean and makes calls
to custom initialization and destruction methods.

Implementation of BeanFactory

There are many implementations of the BeanFactory interface, with the org.
springframework.beans.factory.xml.XmlBeanFactory class being the most
popularly used one, which reads the bean definition and initiates them based on
the definitions contained in the XML file. Depending on the bean definition, the
factory will return either an independent instance or a single shared instance of
a contained object.

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

This class has been deprecated in favor of DefaultListableBeanFactory and
XmlBeanDefinitionReader, and the purpose of this implementation is just to
explain BeanFactory. The constructor for xmlBeanFactory takes an implementation
of the Resource interface as an argument, as shown in the following line of code:

XmlBeanFactory (Resource resource)

The rResource interface has many implementations. The two commonly used
implementations are shown in the following table:

The Resource interfaces Description
org.springframework.core. This loads the configuration file from
io.FileSystemResource the underlying filesystem
org.springframework.core. This loads the configuration file from
io.ClassPathResource the classpath

Let's assume that beans are configured in the beans . xml file located in the C drive:

<bean id="mybean" class="...">

</bean>

The code snippet to load the configuration file using BeanFactory is given as follows:

BeanFactory bfObj = new XmlBeanFactory (new FileSystemResource
("c:/beans.xml")) ;

MyBean beanObj= (MyBean) bfObj.getBean ("mybean");

Here, we've used FileSystemResource, which is one of the Resource interface
implementations. The bfobj object corresponds to Spring Container, one that
has loaded the bean definitions from the beans.xml file. BeanFactory is a lazy
container, so at this point, only bean definitions get loaded, but beans themselves
are not instantiated yet. At the second line, we call the getBean () method of the
BeanFactory object created by passing the bean ID "mybean" as an argument to
this method.

BeanFactory reads the bean definition of a bean with the ID "mybean" from
Spring's beans . xml file, instantiates it, and then returns a reference.

[41]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

The BeanFactory interface has different methods, such as getBean, containBean,
and so on, for client code to call. You can get the complete list of these methods from
http://docs.spring.io/spring/docs/2.0.x/reference/beans.html.

The BeanFactory container is usually used in very simple applications; however,
in real-time projects, the ApplicationContext container is used.

ApplicationContext

Like BeanFactory, ApplicationContext is also used to represent Spring Container,
built upon the BeanFactory interface. ApplicationContext is suitable for Java

EE applications, and it is always preferred over BeanFactory. All functionality of
BeanFactory is included in ApplicationContext.

The org. springframework.context .ApplicationContext interface defines
ApplicationContext. ApplicationContext and provides advanced features to
our Spring applications that make them enterprise-level applications, whereas
BeanFactory provides a few basic functionalities. Let's discuss them:

* Apart from providing a means of resolving text messages,
ApplicationContext also includes support for i18n of those messages.

* A generic way to load file resources, such as images, is provided by
ApplicationContext.

* The events to beans that are registered as listeners can also be published by
ApplicationContext.

* DApplicationContext handles certain operations on the container or beans
in the container declaratively, which have to be handled with BeanFactory
in a programmatic way.

* It provides ResourceLoader support. This is used to handle low-level
resources, Spring's Resource interface, and a flexible generic abstraction.
ApplicationContext itself is ResourceLoader. Hence, access to
deployment-specific Resource instances is provided to an application.

* It provides MessageSource support. MessageSource, an interface used to
obtain localized messages with the actual implementation being pluggable,
is implemented by ApplicationContext.

[42]

www.it-ebooks.info

http://docs.spring.io/spring/docs/2.0.x/reference/beans.html
http://www.it-ebooks.info/

Chapter 2

Implementation of ApplicationContext
The most commonly used ApplicationContext implementations are as follows:

ClassPathXmlApplicationContext: This bean definition is loaded by
the container from the XML file that is present in the classpath by treating
context definition files as classpath resources. ApplicationContext

can be loaded from within the application's classpath using
ClassPathXmlApplicationContext:

ApplicationContext context =
new ClassPathXmlApplicationContext ("spring-beans.xml") ;

FileSystemXmlApplicationContext: This bean definition is loaded
by the container from an XML file. Here, the full path of the XML bean
configuration file should be provided to the constructor:

ApplicationContext context =
new FileSystemXmlApplicationContext ("classpath:beans.xml") ;

In the preceding code snippet, the ApplicationContext instance is created
using the FileSystemXmlApplicationContext class and beans.xml is
specified as a parameter.

The getBean () method can be used to access a particular bean by specifying
its ID, as shown in following code snippet:

MyBean beanObj= (MyBean) context.getBean ("mybean");

In the preceding code snippet, the getBean () method accepts the ID of the
bean and returns the object of the bean.

ApplicationContext is an active container that initiates all the configured
beans as soon as the ApplicationContext instance is created and before
the user calls the getBean () method. The advantage of this active creation
of beans by ApplicationContext is the handling of exceptions during the
startup of the application itself.

XmlWebApplicationContext: This is used to create the context in web
application by loading configuration the XML file with definitions of
all beans from standard locations within a web application directory.
The default location of the configuration XML file is /WEB- INF/
applicationContext.xml.

AnnotationConfigApplicationContext: This is used to create the context
by loading Java classes annotated with the @Configuration annotation
instead of XML files. The annotationConfigApplicationContext class

is used when we define Java-based Spring bean configuration for the bean
definition instead of XML files.

[43]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

* AnnotationConfigWebApplicationContext: This is used to create the
web application context by loading the Java classes annotated with the @
Configuration annotation instead of XML files in the web application.

To demonstrate an implementation of ApplicationContext, an example of
PayrollSystem can be considered. It will have the EmployeeService interface,
EmployeeServiceImpl class, and PayrollSystem class with the main method.

In the EmployeeService. java interface, you'll find the following code:
package org.packt.Spring.chapter2.ApplicationContext;

public interface EmployeeService {

public Long generateEmployeeId() ;

}

The EmployeeService. java interface is a plain old Java interface that has a method
named generateEmployeeId () to generate a unique employee ID on each call.

In the EmployeeServiceImpl.java class, you'll find the following code:

package org.packt.Spring.chapter2.ApplicationContext;
public class EmployeeServiceImpl implements EmployeeService {

@Override
public Long generateEmployeeId() {
return System.currentTimeMillis();

}

The EmployeeServiceImpl.java class implements the Employeeservice interface.
This generateEmployeeId () class-implemented method is used to generate a unique
employee ID on each part of this method based on the system's current time.

In the Payrollsystem. java class, you'll find the following code:

package org.packt.Spring.chapter2.ApplicationContext;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.ClassPathXmlApplication
Context;

public class PayrollSystem

[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

public static void main(Stringl[] args)

ApplicationContext context
ClassPathXmlApplicationContext (

new

"beans.xml") ;

EmployeeService empService

(EmployeeServiceImpl)
context

.getBean ("empServiceBean") ;

System.out.println ("Unique Employee Id: " +
empService.generateEmployeeId()) ;

}
}

The PayrollSystem.java class is a main class that contains the main () method.
This method creates an instance of ApplicationContext, calls the getBean ()
method to get the bean of EmployeeService, and then prints the generated
unique employee ID by calling the method from this bean.

The beans . xm1 file contains the bean definition for EmployeeServiceImpl,
as shown in the following code snippet:

<bean id="empServiceBean"
class="org.packt.Spring.chapter2.ApplicationContext.
EmployeeServiceImp">

</bean>

When you successfully run PayrollSystem. java, the output will be printed on
the console as follows:

Unique Employee Id: 1401215855074

The generated Employee 1d value will be different for you when you run the
preceding code in your local system as it is based on the current time.

A Spring application requires several beans or objects to work together in order to
develop a loosely coupled application. Objects depend on each other to carry out
their respective functions and this applies to beans too. Now let's understand DI.

[45]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

Dependency Injection

Dependency Injection (DI) is a design pattern in which an object's dependency
is injected by the framework rather than by the object itself. It reduces coupling
between multiple objects as it is dynamically injected by the framework. In DI,
the framework is completely responsible for reading configuration.

The advantages of DI are as follows:

* Loosely coupled architecture.
* Separation of responsibility.
* Configuration and code are separate.

* A different implementation can be supplied using configuration without
changing the code dependent.

* Improves testability.

* Dl allows you to replace actual objects with mock objects. This improves
testability by writing simple JUnit tests that use mock objects.

Dependency Injection in Spring
In the Spring Framework, DI is used to satisfy the dependencies between objects.
It exits in only two types:

* Constructor Injection: By invoking a constructor containing a number of
arguments, constructor-based DI can be accomplished. These arguments
are injected at the time of instance instantiation.

* Setter Injection: Setter-based DI is attained by calling setter methods on
your beans. Using setter methods defined in a Spring configuration file,
the dependencies are "set" in the objects.

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The following figure gives us a better picture:

Inversion of Control

Dependency Injection

Setter Injection Constructor Injection

Let's consider an example where the EmployeeServiceImpl class has an instance
field employeeDao of the EmployeeDao type, a constructor with an argument, and

a setEmployeeDao method.
In the EmployeeServiceImpl.java class, you'll find the following code:
public class EmployeeServiceImpl implements EmployeeService

private EmployeeDao employeeDao;

public EmployeeServiceImpl (EmployeeDao employeeDao)
this.employeeDao = employeeDao;

public void setEmployeeDao (EmployeeDao employeeDao) {
this.employeeDao = employeeDao;

}

In the EmployeeDaoImpl.java class, you'll find the following code:

public class EmployeeDaolmpl implements EmployeeDao {

!/

[47]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

Here, an instance of EmployeeDao can be provided by the configuration file by either
the constructor method or the setter method. Before we understand what these are
in more detail, let's understand how generally two objects interact with each other

to make an even more meaningful object.

The Has-A relationship

When a class contains another class as instance field; for example, the
EmployeeServiceImpl class contains EmployeeDao as its field. This is called

a Has-A relationship since we say, "EmployeeServiceImpl has an EmployeeDao".
So, without employeeDao, EmployeeServiceImpl cannot perform. The following
code illustrates this:

public class EmployeeServiceImpl implements EmployeeService {

private EmployeeDao employeeDao = null;

}

So, employeeDao is the dependency that needs to be resolved in order to
make EmployeeServiceImpl fully functional. The way to create an object
of the EmployeeDao type or, in other words, satisfy the dependency of
EmployeeServiceImpl in Java is shown here:

public class EmployeeServiceImpl implements EmployeeService
private EmployeeDao employeeDao = null;

public EmployeeServiceImpl () {
this.employeeDao = new EmployeeDaoImpl () ;

public void setEmployeeDao() {
this.employeeDao = new EmployeeDaoImpl () ;

}

It is not a very good option as once the EmployeeServiceImpl object is created,
you don't have any way to have the object of the employeeDao type swapped
with a subclass implementation.

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Constructor-based Dependency Injection

Constructor Injection is the process of injecting the dependencies of an object
through its constructor argument at the time of instantiating it. In other words,

we can say that dependencies are supplied as an object through the object's own
constructor. The bean definition can use a constructor with zero or more arguments
to initiate the bean, as shown here:

public class EmployeeServiceImpl implements EmployeeService {
private EmployeeDao employeeDao = null;

public EmployeeServiceImpl (EmployeeDao employeeDao) {
this.employeeDao = employeeDao;

}

In the preceding code, the object of the EmployeeDao employeeDao type is injected
as a constructor argument to the EmployeeServiceImpl class. We need to configure
bean definition in the configuration file that will perform Constructor Injection.

The Spring bean XML configuration tag <constructor-arg> is used for
Constructor Injection:

<bean id="employeeService"
class="org.packt.Spring.chapter2.dependencyinjection.
EmployeeServiceImpl">
<constructor-arg ref="employeeDao" />
</beans>

<bean id="employeeDao"

class="org.packt.Spring.chapter2.dependencyinjection.
EmployeeDaoImpl">

</beans>

In the preceding code snippet, there is a Has-A relationship between the classes, which
is EmployeeServiceImpl HAS-A EmployeeDao. Here, we inject a user-defined object
as the source bean into a target bean using Constructor Injection. Once we have the
employeeDao bean to inject it into the target employeeService bean, we need another
attribute called ref —its value is the name of the ID attribute of the source bean, which
in our case is "employeeDao".

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

The <constructor-arg> element

The <constructor-args subelement of the <bean> element is used for Constructor
Injection. The <constructor-arg> element supports four attributes. They are
explained in the following table:

Attributes Description Occurrence

index It takes the exact index in the constructor Optional
argument list. It is used to avoid ambiguity such
as when two arguments are of the same type.

type It takes the type of this constructor argument. Optional

value It describes the content in a simple string Optional
representation, which is converted into the
argument type using the PropertyEditors
Java beans.

ref It refers to another bean in this factory. Optional

Constructor Injection — injecting simple Java types
Here, we inject simple Java types into a target bean using Constructor Injection.

The Employee class has employeeName as String, employeeAge as int, and married
as boolean. The constructor initializes all these three fields.

In the Employee. java class, you'll find the following code:

package org.packt.Spring.chapter2.constructioninjection.
simplejavatype;

public class Employee

private String employeeName;
private int employeeAge;
private boolean married;

public Employee (String employeeName, int employeeAge, boolean
married) ({
this.employeeName = employeeName;
this.employeeAge = employeeAge;
this.married = married;

}

@Override
public String toString()

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

return "Employee Name: " + this.employeeName + " , Age:"
+ this.employeeAge + ", IsMarried: " +
married;

}
}

In the beans . xml file, you'll find the following code:

<bean id="employee"
class="org.packt.Spring.chapter2.constructioninjection
.simplejavatype.Employee">
<constructor-arg value="Ravi Kant Soni" />
<constructor-arg value="28" />
<constructor-arg value="False" />

</beans>

Constructor Injection — resolving ambiguity

In the Spring Framework, whenever we create a Spring bean definition file and
provide values to the constructor, Spring decides implicitly and assigns the bean's
value in the constructor by means of following key factors:

* Matching the number of arguments
* Matching the argument's type
* Matching the argument's order
Whenever Spring tries to create the bean using Construction Injection by following

the aforementioned rules, it tries to resolve the constructor to be chosen while
creating Spring bean and hence results in the following situations.

No ambiguity

If no matching constructor is found when Spring tries to create a Spring bean
using the preceding rule, it throws the BeanCreationException exception with
the message: Could not resolve matching constructor.

Let's understand this scenario in more detail by taking the Employee class from
earlier, which has three instance variables and a constructor to set the value of
this instance variable.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

The Employee class has a constructor in the order of String, int, and boolean to be
passed while defining the bean in the definition file.

In the beans . xm1 file, you'll find the following code:

<bean id="employee"
class="org.packt.Spring.chapter2.constructioninjection
.simplejavatype.Employee">
<constructor-arg value="Ravi Kant Soni" />
<constructor-arg value="False" />
<constructor-arg value="28" />
</bean>

If the orders in which constructor-arg is defined are not matching, then you will
get the following error:

Exception in thread "main" org.springframework.beans.factory.
UnsatisfiedDependencyException:

Error creating bean with name employee defined in the classpath
resource [beans.xml]: Unsatisfied dependency expressed through
constructor argument with index 1 of type [int]: Could not convert
constructor argument value of type [java.lang.String] to required
type [int]: Failed to convert value of type 'java.lang.String' to
required type 'int'; nested exception is
java.lang.NumberFormatException: For input string: "False"

Solution - use index attribute

The solution to this problem is to fix the order. Either we modify the constructor-
arg order of the bean definition file or we use the index attribute of constructor-
arg as follows:

<bean id="employee"
class="org.packt.Spring.chapter2.constructioninjection
.simplejavatype.Employee">
<constructor-arg value="Ravi Kant Soni" index="0" />
<constructor-arg value="False" index="2" />
<constructor-arg value="28" index="1" />
</bean>

Remember that the index attribute always starts with o.

[52]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Parameter ambiguity

Sometimes, there is no problem in resolving the constructor, but the constructor
chosen is leading to inconvertible data. In this case, org. springframework.beans.
factory.UnsatisfiedDependencyException is thrown just before the data is
converted to the actual type.

Let's understand this scenario in more depth; the Employee class contains two
constructor methods and both accept three arguments with different data types.

The following code snippet is also present in Employee. java:

package
org.packt.Spring.chapter2.constructioninjection.simplejavatype;

public class Employee {

private String employeeName;
private int employeeAge;
private String employeeId;

Employee (String employeeName, int employeeAge, String
employeeId) ({
this.employeeName = employeeName;
this.employeeAge = employeelAge;
this.employeeId = employeeld;

Employee (String employeeName, String employeeId, int
employeeRAge) {
this.employeeName = employeeName;
this.employeeId = employeeld;
this.employeeAge = employeelAge;

@Override
public String toString()
return "Employee Name: " + employeeName + ", Employee
Age: "
+ employeeAge + ", Employee Id: " +
employeelId;

}

[53]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

In the beans . xm1 file, you'll find the following code:

<bean id="employee"
class="org.packt.Spring.chapter2.constructioninjection
.simplejavatype.Employee">
<constructor-arg value="Ravi Kant Soni" />
<constructor-arg value="1065" />
<constructor-arg value="28" />
</bean>

Spring chooses the wrong constructor to create the bean. The preceding bean
definition has been written in the hope that Spring will choose the second
constructor as Ravi Kant Soni for employeeName, 1065 for employeeId,
and 28 for employeenge. But the actual output will be:

Employee Name: Ravi Kant Soni, Employee Age: 1065, Employee Id: 28

The preceding result is not what we expected; the first constructor is run instead
of the second constructor. In Spring, the argument type 1065 is converted to int,
so Spring converts it and takes the first constructor even though you assume it
should be a string.

In addition, if Spring can't resolve which constructor to use, it will prompt the
following error message:

constructor arguments specified but no matching constructor
found in bean 'CustomerBean' (hint: specify index and/or
type arguments for simple parameters to avoid type ambiguities)

Solution - use type attribute

The solution to this problem is to use the type attribute to specify the exact data
type for the constructor:

<bean id="employee"
class="org.packt.Spring.chapter2.constructioninjection.
simplejavatype.Employee">

<constructor-arg value="Ravi Kant Soni"
type="java.lang.String"/>
<constructor-arg value="1065" type="java.lang.String"/>

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

<constructor-arg value="28" type="int"/>
</beans>

Now the output will be as expected:

Employee Name: Ravi Kant Soni, Employee Age: 28, Employee Id: 1065

The setter-based Dependency Injection

The setter-based DI is the method of injecting the dependencies of an object using
the setter method. In the setter injection, the Spring container uses setxxx () of the
Spring bean class to assign a dependent variable to the bean property from the bean
configuration file. The setter method is more convenient to inject more dependencies
since a large number of constructor arguments makes it awkward.

In the EmployeeServiceImpl.java class, you'll find the following code

public class EmployeeServiceImpl implements EmployeeService {
private EmployeeDao employeeDao;

public void setEmployeeDao (EmployeeDao employeeDao) {
this.employeeDao = employeeDao;

}
}

In the EmployeeDaoImpl.java class, you'll find the following code:

public class EmployeeDaolmpl implements EmployeeDao {
/7
}

In the preceding code snippet, the EmployeeServiceImpl class defined the
setEmployeeDao () method as the setter method where EmployeeDao is the
property of this class. This method injects values of the employeeDao bean
from the bean configuration file before making the employeeService bean
available to the application.

The Spring bean XML configuration tag <propertys is used to configure
properties. The ref attribute of property elements is used to define the
reference of another bean.

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

In the beans . xm1 file, you'll find the following code:

<bean id="employeeService"

class="org.packt.Spring.chapter2.dependencyinjection.
EmployeeServiceImpl">

<property name="employeeDao" ref="employeeDao" />
</bean>

<bean id="employeeDao"

class="org.packt.Spring.chapter2.dependencyinjection.
EmployeeDaoImpl">

</bean>

The <property> element

The <propertys element invokes the setter method. The bean definition can be
describing the zero or more properties to inject before making the bean object
available to the application. The <property> element corresponds to JavaBeans'
setter methods, which are exposed by bean classes. The <property> element
supports the following three attributes:

Attributes | Description Occurrence

name It takes the name of Java Optional
bean-based property

value It describes the content Optional

in a simple string
representation, which is
converted into the argument
type using JavaBeans'
PropertyEditors

ref It refers to a bean Optional

Setter Injection — injecting a simple Java type

Here, we inject string-based values using the setter method. The Employee class
contains the employeeName field with its setter method.

In the Employee. java class, you'll find the following code:

package org.packt.Spring.chapter2.setterinjection;

public class Employee

[56]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

String employeeName;

public void setEmployeeName (String employeeName) {
this.employeeName = employeeName;

@Override
public String toString()
return "Employee Name: " + employeeName;

}

In the beans . xml file, you'll find the following code:

<bean id="employee" class="org.packt.Spring.chapter2.
setterinjection.Employee">

<property name="employeeName" value="Ravi Kant Soni" />
</beans>

In the preceding code snippet, the bean configuration file set the property value.

In the PayrollSystem. java class, you'll find the following code:

package org.packt.Spring.chapter2.setterinjection;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.ClassPathXml
ApplicationContext;

public class PayrollSystem {

public static void main(Stringl[] args) {
ApplicationContext context = new
ClassPathXmlApplicationContext (
"beans.xml") ;
Employee employee = (Employee)
context.getBean ("employee") ;
System.out.println (employee) ;

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

The output after running the payrollsystem class will be as follows:

INFO: Refreshing org.springframework.context.support.
ClassPathXmlApplicationContext

@1ba94d: startup date [Sun Jan 25 10:11:36 IST 2015]; root of
context hierarchy

Jan 25, 2015 10:11:36 AM org.springframework.beans.factory.xml.
XmlBeanDefinitionReader
loadBeanDefinitions

INFO: Loading XML bean definitions from class path resource
[beans.xml]

Employee Name: Ravi Kant Soni

Setter Injection — injecting collections

In the Spring IoC container, beans can also access collections of objects. Spring allows
you to inject a collection of objects in a bean using Java's collection framework. Setter
Injection can be used to inject collection values in the Spring Framework. If we have
a dependent object in the collection, we can inject this information using the ref
element inside the list, set, or map. Let's discuss them in more detail:

* <list>:This element describes a java.util.List type. A list can contain
multiple bean, ref, value, null, another list, set, and map elements.
The necessary conversion is automatically performed by BeanFactory.

* <set>: This element describes a java.util.Set type. A set can contain
multiple bean, ref, value, null, another set, list, and map elements.

* <map>: This element describes a java.util.Map type. A map can contain
zero or more <entry> elements, which describes a key and value.

The Employee class is a class with an injecting collection.
In the Employee. java class, you'll find the following code:

package org.packt.Spring.chapter2.setterinjection;

import java.util.List;
import java.util.Map;
import java.util.Set;

public class Employee {
private List<Object> lists;

private Set<Objects> sets;
private Map<Object, Object> maps;

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

public void setLists(List<Objects> lists)
this.lists = lists;

public void setSets(Set<Object> sets) {
this.sets = sets;

public void setMaps (Map<Object, Object> maps)
this.maps = maps;

}

The bean configuration file is the one that injects each and every property of the
Employee class.

In the beans . xml file, you'll find the following code:

<bean id="employee" class="org.packt.Spring.chapter2.setterinjection.
Employee">

<property name="lists">
<list>
<value>Ravi Kant Soni</values>
<value>Shashi Kant Soni</value>
<value>Shree Kant Soni</values>
</list>
</property>
<property name="sets">
<set>
<values>Namrata Soni</value>
<value>Rishi Raj Soni</value>
</set>
</property>
<property name="maps">
<map>
<entry key="Key 1" value="Sasaram"/>
<entry key="Key 2" value="Bihar"/>
</map>
</property>
</bean>

[59]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

In the preceding code snippet, we injected values of all three setter methods of the
Employee class. The List and Set instances are injected with the <1ist> and <set>
tags. For the map property of the Employee class, we injected a Map instance using the
<map> tag. Each entry of the <map> tag is specified with the <entry> tag that contains
a key-value pair of the Map instance.

Injecting inner beans

Similar to the concept of inner classes in Java, it is also possible to define a bean
inside another bean; for example, in an Automated Teller Machine (ATM) system,
we can have a printer bean as an inner bean of the ATM class.

The following are the characteristics of inner beans in Spring:
* A bean can optionally be declared as an inner bean when it doesn't need to
be shared with other beans.
* Aninner bean is defined within the context of its enclosing bean.

* Typically, the inner bean does not have an ID associated with it because the
inner bean will not be shared outside of its enclosing bean. We can associate
an ID; however, the value of this ID attribute is ignored by Spring.

* The inner class is independent of the inner bean. Any class can be defined as
an inner bean; for instance, a Printer class is not an inner class, but a printer
bean is defined as an inner bean.

* The scope of an inner bean is always a prototype.
The limitations of using inner beans are as follows:

e [t cannot be reused or shared with other beans

* In practice, it affects the readability of the configuration file

An ATM class has a printer class. We'll declare the printer bean as an inner bean
(inside the enclosing ATM bean) since the Printer class is not referenced anywhere
outside the ATM class. The printBalance () method of ATM delegates the call to the
printBalance () method of the printer. The printer bean will be declared as an inner
bean and will then be injected into the ATM bean using Setter Injection.

The ATM class delegates the call to print the balance to the printer class.
The following code snippet can also be found in ATM. java:

package org.packt.Spring.chapter2.setterinjection;

public class ATM {

[60]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

private Printer printer;

public Printer getPrinter() {
return printer;

public void setPrinter (Printer printer) {
this.printer = printer;

public void printBalance (String accountNumber) {
getPrinter () .printBalance (accountNumber) ;

}

In the preceding code snippet, the ATM class has a printer class as property and the
setter, getPrinter (), and printBalance () methods.

In the Printer.java class, you'll find the following code:

package org.packt.Spring.chapter2.setterinjection;
public class Printer ({
private String message;
public void setMessage (String message)
this.message = message;
public void printBalance (String accountNumber) {

System.out.println(message + accountNumber) ;

}

In the preceding code snippet, the Printer class has the printBalance () method. It

has a message property, and a setter method sets the message value from the bean
configuration file.

In the beans . xml file, you'll find the following code:

<bean id="atmBean" class="org.packt.Spring.chapter2.
setterinjection.ATM" >

[61]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

<property name="printer"s>
<bean
class="org.packt.Spring.chapter2.setterinjection.Printer">
<property name="message"

value="The balance information is
printed by Printer for the account number"s></propertys>

</beans>
</propertys>

</beans>

Here, we declare atmBean. We declare the printer bean as an inner bean by declaring
inside the enclosing atmBean. The id attribute cannot be used outside the context of
atmBean and hence hasn't been provided to the printer bean.

Injecting null and empty string values in Spring

We come across two cases while injecting null and empty string values.

Case 1 — injecting an empty string
We can pass an empty string as a value, as shown in the following code, which is like
setEmployeeName ("") in the Java code:

<bean id="employee"
class="org.packt.Spring.chapter2.setterinjection.Employee">

<property name="employeeName" value="""></property>
</bean>

Case 2 — injecting a null value

We can pass a null value, as shown in the following code, which is like
setEmployeeName (null) in the Java code:

<bean id="employee"
class="org.packt.Spring.chapter2.setterinjection.Employee">

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

<property name="employeeName">
<null />
</propertys>
</beans>

Bean definition inheritance

Bean definition inheritance means that you have lot of bean definition in the bean
configuration file and you have something that is common across lots of bean.
There is a common setter value that has to be initialized across multiple beans
and only then bean definition inheritance can be used.

You can have one parent bean that contains all of these common definitions inside
it, and then you can inherit all the common bean definitions across the other bean.
This parent bean, which has all the common definitions, can be a bean in itself.
This parent bean can be made into abstract bean definitions, so there are no beans
created for it, and all it does is for the purpose of templating a bean definition.

From a parent bean definition, a child bean definition inherits configuration data
and can override or add values, as required. In an XML-based configuration file,

a child bean definition is indicated using a parent attribute that specifies the parent
bean as the value of this attribute. Refer to the following table for clarity:

Beans Description

ParentBean <bean id="pBean"
class="ParentBean">

ChildBean <bean id="cBean"
class="ChildBean" parent="pBean">

ParentBean and ChildBean are explained as follows:

* PparentBean: This is a parent bean that is used as a template to create other
beans. It would be referred to in the XML file with id="pBean".

* cChildBean: This is a child bean that inherits from the parent bean defined
earlier. The parent="pBean" specifies that this bean is inheriting the
properties of the ParentBean bean.

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

The child bean must accept the parent bean's property values. The child bean
definition inherits constructor argument values and property values from the
parent bean definition. The child bean definition overrides the initialization
method setting and destroys method setting from the parent bean definition.

Spring bean definition inheritance is not related with the Java class inheritance.
A parent bean is defined as a template and child beans can inherit the required
configuration from this parent bean.

Now, the following example illustrates bean definition inheritance.

In the Employee. java class, you'll find the following code:

package org.packt.Spring.chapter2.beaninheritance;
public class Employee {

private int employeeld;
private String employeeName;
private String country;

public void setEmployeeId(int employeeId) {
this.employeeId = employeeId;

public void setEmployeeName (String employeeName) {
this.employeeName = employeeName;

public void setCountry(String country) {
this.country = country;

@Override
public String toString()

return "Employee ID: " + employeeId + " Name: " +
employeeName

+ " Country: " + country;

}

In the preceding code snippet, the Employee class contains properties named
employeeName, employeeId, country, and their corresponding setter method.
This class has also overridden the toString () method.

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The Spring bean configuration file, beans . xml, where we defined the
indianEmployee bean as a parent bean with the country property and

its value. Next, an employeeBean bean has been defined as the child bean
of indianEmployee using the parent="indianEmployee" parent attribute.
The child bean inherits country properties from the parent bean and
introduces two more properties, employeeId and employeeName.

In the beans . xm1 file, you'll find the following code:

<bean id="indianEmployee"
class="org.packt.Spring.chapter2.beaninheritance.Employee">

<property name="country"
value="India"></propertys>

</bean>

<bean id="employeeBean" parent="indianEmployee">
<property name="employeeId" value="1065"></property>

<property name="employeeName" value="Ravi Kant
Soni"s></propertys>
</bean>

In the Payrollsystem. java class, you'll find the following code:

package org.packt.Spring.chapter2.beaninheritance;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.ClassPathXml
ApplicationContext;

public class PayrollSystem
public static void main(String[] args)
ApplicationContext context = new
ClassPathXmlApplicationContext (
"beans.xml") ;
// using 'employeeBean'
Employee employeeA = (Employee)
context.getBean ("employeeBean") ;

System.out.println (employeeA) ;

// using 'indianEmployee'

[65]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

Employee employeeB = (Employee)
context.getBean ("indianEmployee") ;
System.out.println (employeeB) ;

}
When we run the PayrollSysten class, the result will be as follows:

INFO: Refreshing
org.springframework.context.support.ClassPathXmlApplicationContext
@lc4f0f8: startup date [Sun Jan 25 14:31:50 IST 2015]; root of
context hierarchy

Jan 25, 2015 2:31:51 PM
org.springframework.beans.factory.xml.XmlBeanDefinitionReader
loadBeanDefinitions

INFO: Loading XML bean definitions from class path resource
[beans.xml]

Employee ID: 1065 Name: Ravi Kant Soni Country: India

Employee ID: 0 Name: null Country: India

Here, the indianEmployee bean is able to instantiate. In the indianEmployee bean,
we have only set the value for the country property, so other fields get the null
value. In the employeeBean, we have set only two properties, which are employeeId
and employeeName, and the country property is inherited from the indianEmployee
bean, so all the fields get their value for employeeBean.

Inheritance with abstract

Inheritance with abstract helps in creating a bean definition as a template, which
cannot be instantiated and serves as a parent definition for child definitions. While
defining a bean definition as a template, you should specify only the abstract
attribute with the value true, for example, abstract="true".

In the beans . xml file, you'll find the following code:

<bean id="indianEmployee"
class="org.packt.Spring.chapter2.beaninheritance.Employee"

abstract="true">
<property name="country" value="India"></propertys>
</beans>

<bean id="employeeBean" parent="indianEmployee">
<property name="employeeId" value="1065"></property>

[66]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

<property name="employeeName" value="Ravi Kant
Soni"></propertys>
</beans>

The parent bean indianEmployee cannot be instantiated on its own because

it is explicitly marked as abstract. When a bean definition is abstract, that
bean definition is served as a pure template bean definition and used as a parent
definition for child definitions. So, while running the payrol1lsystem class, the
following code snippet will result in an error message on the console:

// using 'indianEmployee'
Employee employeeB = (Employee)
context.getBean ("indianEmployee") ;
System.out .println (employeeB) ;

Since the indianEmployee bean is a pure template, if you try to instantiate it, you
will encounter the following error message:

org.springframework.beans.factory.BeanIsAbstractException: Error
creating bean with name 'indianEmployee': Bean definition is
abstract

Autowiring in Spring

Setting bean dependencies in the configuration file is a good practice to follow in

the Spring Framework; however, the Spring container can automatically autowire
relationships between collaborating beans by inspecting the contents of BeanFactory.

As we have seen, every member variable in the Spring bean has to be configured;
for example, if a bean references another bean, we have to specify the reference
explicitly. Autowiring is a feature provided by the Spring Framework that helps us
reduce some of these configurations by intelligently guessing what the reference is.

The Spring Framework provides autowiring features where we don't need to provide
bean injection details explicitly. The Spring container can autowire relationships
between collaborating beans without using the <constructor-arg> and <property>
elements. This immensely helps in cutting down the XML configuration. Spring is
capable of automatically resolving dependencies at runtime. This automatic resolution
of bean dependencies is also called autowiring.

[67]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

Spring wires a bean's properties automatically by setting the autowire property on
each <bean> tag that you want to autowire. By default, autowiring is disabled. To
enable it, specify the method of autowiring you want to apply using the autowire
attribute of the bean you want to autowire, as shown here:

<bean id="foo" class ="Foo" autowire="autowire-type" />

Autowiring modes

There are five modes of autowiring that Spring Container can use for autowiring.
They are explained in the following table:

Mode Description

No By default, Spring bean autowiring is turned off, that is, no
autowiring is to be performed, and you should use explicit bean
reference ref for wiring.

byname This is autowiring by property name, that is, if the bean property
is the same as the other bean name, autowire it. The setter method
is used for this type of autowiring to inject a dependency.

byType The data type is used for this type of autowiring. If the data type
bean property is compatible with the data type of the other bean,
autowire it. Only one bean should be configured for this type in
the configuration file; otherwise, a fatal exception is thrown.

constructor This is similar to autowire byType, but here the constructor is
used to inject a dependency.

autodetect Spring first tries to autowire by the constructor; if it does not
work, then Spring tries to autowire with by Type. This option
is deprecated.

Let's demonstrate autowiring with examples.

In the EmployeeServiceImpl.java class, you'll find the following code:

package org.packt.Spring.chapter2.autowiring;
public class EmployeeServiceImpl implements EmployeeService {
private EmployeeDao employeeDao = null;

public void setEmployeeDao (EmployeeDao employeeDao) {
this.employeeDao = employeeDao;

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

In the EmployeeDaoImpl.java class, you'll find the following code:

package org.packt.Spring.chapter2.autowiring;
public class EmployeeDaoImpl implements EmployeeDao {
//

}

In the preceding code snippet, the EmployeeServiceImpl class has employeeDaofield
and a setter method.

Autowiring using the no option

This is a default mode, and you should use the explicit bean reference ref for wiring.

In the beans . xm1 file, you'll find the following code:

<bean id="employeeService"

class="org.packt.Spring.chapter2.autowiring.
EmployeeServiceImpl">
<property name="employeeDao"
ref="employeeDaoBean"></property>
</bean>

<bean id="employeeDaoBean"
class="org.packt.Spring.chapter2.autowiring.EmployeeDaoImpl">
</bean>

Autowiring using the byname option

Autowiring using the byName option autowires a bean by its property name.

A Spring container looks at the properties of the beans on which the autowire
attribute is set using byName in the configuration file. It then tries to match and
wire its properties with the beans defined by the same names in the configuration
file. If such a bean is found, it is injected into the property. If no such bean is found,
an error is raised.

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

Case 1 - if id=" employeeDao"
In the beans . xml file, you'll find the following code:

<bean id="employeeService"

class="org.packt.Spring.chapter2.autowiring.
EmployeeServiceImpl"

autowire="byName" >
</bean>

<bean id="employeeDao"
class="org.packt.Spring.chapter2.autowiring.EmployeeDaoImpl">
</bean>

In this case, since the name of the employeeDao bean is the same as the
employeeService bean's property (EmployeeDao employeeDao), Spring will
autowire it via the setter method setEmployeeDao (EmployeeDao employeeDao).

Case 2 - if id=" employeeDaoBean"
In the beans . xml file, you'll find the following code:

<bean id="employeeService"

class="org.packt.Spring.chapter2.autowiring.
EmployeeServiceImpl"

autowire="byName" >
</bean>

<bean id="employeeDaoBean" class="org.packt.Spring.chapter2.
autowiring.EmployeeDaoImpl" >

</bean>

In this case, since the name of the employeeDaoBean bean is not the same as the
employeeService bean's property (EmployeeDao employeeDao), Spring will not
autowire it via the setter method, setEmployeeDao (EmployeeDao employeeDao).
So, the employeeDao property will get a null value.

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Autowiring using the byType option

Autowiring using byType enables Dependency Injection based on property data types.

The Spring container looks at each property's class type searching for a matching bean
definition in the configuration file when autowiring a property in a bean. If no such
bean is found, a fatal exception is thrown. If there is more than one bean definition
found in the configuration, a fatal exception is thrown, and it will not allow byType
autowiring for that bean.

If there are no matching beans, nothing happens; the property is not set. So, to throw
an error, use the dependency-check="objects" attribute value.

In the beans . xml file, you'll find the following code:

<bean id="employeeService"

class="org.packt.Spring.chapter2.autowiring.
EmployeeServiceImpl"

autowire="byType">
</bean>

<bean id="employeeDaoBean"
class="org.packt.Spring.chapter2.autowiring.EmployeeDaoImpl">
</beans

In this case, since the data type of the employeeDaoBean bean is the same as the data
type of the employeeService bean's property (EmployeeDao employeeDao), Spring
will autowire it via the setter method setEmployeeDao (EmployeeDac employeeDao).

Autowiring using the constructor

Autowiring using the constructor applies to constructor arguments.

It will look for the class type of constructor arguments and perform autowiring using
byType on all constructor arguments. A fatal error is raised if there isn't exactly one
bean of the constructor argument type in the container.

In the EmployeeServiceImpl.java class, you'll find the following code:

package org.packt.Spring.chapter2.autowiring;
public class EmployeeServiceImpl implements EmployeeService {

private EmployeeDao employeeDao;

[71]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

public EmployeeServiceImpl (EmployeeDao employeeDao) {
this.employeeDao = employeeDao;

public EmployeeDao getEmployeeDao() {
return employeeDao;

}

In the beans . xml file, you'll find the following code:

<bean id="employeeService"
class="org.packt.Spring.chapter2.autowiring
.EmployeeServiceImpl"
autowire="constructor">
</beans>

<bean id="employeeDaoBean" class="org.packt.Spring.chapter2.
autowiring.EmployeeDaoImpl">
</beans>

In this case, since the data type of the employeeDaoBean bean is the same as

the constructor argument data type in the employeeService bean's property
(EmployeeDao employeeDao), Spring autowires it via the constructor: public
EmployeeServiceImpl (EmployeeDao employeeDao).

The bean's scope

Spring provides us with beans after instantiating and configuring them. Spring
Container manages objects. This means that any object can refer to any other object
from Spring Container using the bean's ID, and Spring Container provides an
instance of the requesting object.

When we start Spring Container, ApplicationContext reads the Spring configuration,
file looks for all bean definitions available there, and then initializes beans before any
call to the getBean () method.

During initialization, ApplicationContext itself has initialized all the Spring beans
configured in Spring XML. When another object makes a call to the getBean ()
method, ApplicationContext returns the same reference of bean that has already
been initialized. This is the default behavior of beans.

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

This leads to the concept of a bean's scope. We can choose the number of instances
of beans depending on the scope. There are different scopes in which a bean can be
configured. The <bean> tag has a scope attribute that is used to configure the scope
of the bean. There are different bean scopes in Spring, such as singleton, prototype,
request, session, and global session. We will understand each session one by one.

Let's understand this by considering the following example, where we have the
EmployeeService interface, EmployeeServiceImpl class, and PayrollSystem
class with the main () method.

In the EmployeeService. java interface, you'll find the following code:

package org.packt.Spring.chapter2.beanscope;

public interface EmployeeService {
void setMessage (String message) ;
String getMessage () ;

}
In the preceding code snippet, the Employeeservice interface declares two methods.

The following are the contents of the EmployeeServiceImpl.java class:

package org.packt.Spring.chapter2.beanscope;
import org.springframework.beans.factory.InitializingBean;
public class EmployeeServiceImp implements EmployeeService {
private String message;
@Override

public void setMessage (String message) {
this.message = message;

@Override
public String getMessage() {
return this.message;

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

In the preceding code snippet, the EmployeeServiceImpl class implemented the
EmployeeService interface.

In the beans . xm1 file, you'll find the following code:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="employeeServiceBean" class="org.packt.Spring.chapter2.
beanscope.EmployeeServiceImpl">

</bean>

</beans>

In the preceding configuration file, we defined employeeServiceBean without any
scope, to see the default nature of the bean.

In the Payrollsystem. java class, you'll find the following code:

package org.packt.Spring.chapter2.beanscope;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.ClassPathXml
ApplicationContext;

public class PayrollSystem
public static void main(String[] args)

ApplicationContext context = new
ClassPathXmlApplicationContext (

"beans.xml") ;

// Retrieve for first time

EmployeeService employeeServiceA = (EmployeeService)
context

.getBean ("employeeServiceBean") ;
employeeServiceA.setMessage ("Message by service A");

System.out
.println("employeeServiceA: " +
employeeServiceA.getMessage ()) ;

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

// Retrieve it again

EmployeeService employeeServiceB = (EmployeeService)
context

.getBean ("employeeServiceBean") ;
System.out

.println("employeeServiceB: " +
employeeServiceB.getMessage()) ;

}
}

In the preceding code snippet, the PayrollSystem class has the main () method.
For the first time, we call getBean ("employeeServiceBean"), assign the

bean to the employeeServicena variable of the EmployeeService type, and

then set the message by calling the setMessage () method. Again, we call

getBean ("employeeServiceBean") and assign the bean to the employeeServiceB
variable of the Employeeservice type. The output after calling the getMessage ()
method from both reference variable results is the same, as shown here:

org.springframework.context.support.ClassPathXmlApplicationContext
prepareRefresh

INFO: Refreshing org.springframework.context.support.
ClassPathXmlApplicationContext

@1202d69: startup date [Sat Jan 24 20:04:30 IST 2015]; root of
context hierarchy

Jan 24, 2015 8:04:30 PM org.springframework.beans.factory.xml.
XmlBeanDefinitionReader
loadBeanDefinitions

INFO: Loading XML bean definitions from class path resource
[beans.xml]

employeeServiceA: Message by service A
employeeServiceB: Message by service A

Singleton

By default, all Spring beans are singleton. Once ApplicationContext is initialized,
it looks at all the beans in XML and initializes only one bean per bean definition in
Spring Container. On each call to the getBean () method, Spring Container returns
the same instance of the bean.

The first bean scope in Spring that is called is singleton, which initializes only one
bean per bean definition in the container and returns the same instance reference
on each call to the getBean () method. This scope makes Spring initialize all beans
during the load time itself without waiting for the getBean () call.

[75]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

In the beans . xm1 file, you'll find the following code:

<bean id="employeeServiceBean" class="org.packt.Spring.chapter2.
beanscope.EmployeeServiceImpl"

scope="singleton">
</bean>

In the preceding configuration file, we have a bean with a singleton scope. When we
run PayrollSystem.java, the output will be as follows:

org.springframework.context.support.ClassPathXmlApplicationContext
prepareRefresh

INFO: Refreshing org.springframework.context.support.
ClassPathXmlApplicationContext

@1855562: startup date [Sat Jan 24 20:36:27 IST 2015]; root of
context hierarchy

Jan 24, 2015 8:36:28 PM
org.springframework.beans.factory.xml.XmlBeanDefinitionReader
loadBeanDefinitions

INFO: Loading XML bean definitions from class path resource
[beans.xml]

employeeServiceA: Message by service A
employeeServiceB: Message by service A

Since the EmployeeServiceImpl bean is in the singleton scope, the second retrieval
by employeeServiceB will display the message set by employeeServicen even
though it's retrieved by calling a new getBean () method.

The singleton pattern in general says that overall there will be only one instance of
the object. But when we talk about singleton in the Spring Framework, we are talking
about Spring Container alone.

We can have multiple containers running in the same JVM, so we can have multiple
instances of the same bean in same JVM.

So, singleton in Spring represents in a particular Spring container, and there is only
one instance of a bean created in that container that is used across different references.

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Prototype

The prototype is second bean scope in Spring, which returns a brand-new instance of
a bean on each call to the getBean () method. When a bean is defined as a prototype,
Spring waits for getBean () to happen and only then does it initialize the prototype.
For every getBean () call, Spring has to perform initialization, so instead of doing
default initialization while a context is being created, it waits for a getBean () call.
So, every time getBean () gets called, it creates a new instance.

In the beans . xml file, you'll find the following code:

<bean id="employeeServiceBean" class="org.packt.Spring.chapter2.
beanscope.EmployeeServiceImpl"

scope="prototype">
</beans>

In the preceding configuration file, we have a bean with scope as a prototype.
When we run the PayrollSystem. java file, the output will be as follows:

org.springframework.context .support.ClassPathXmlApplicationContext
prepareRefresh

INFO: Refreshing
org.springframework.context.support.ClassPathXmlApplicationContext
@1855562: startup date [Sat Jan 24 21:05:14 IST 2015]; root of
context hierarchy

Jan 24, 2015 9:05:15 PM
org.springframework.beans.factory.xml.XmlBeanDefinitionReader
loadBeanDefinitions

INFO: Loading XML bean definitions from class path resource
[beans.xml]

employeeServiceA: Message by service A
employeeServiceB: null

The configured destruction life cycle callbacks are not called in the case of a
prototype. Spring doesn't maintain the complete life cycle of the prototype.
Here, the container instantiates and configures prototype beans and returns
this bean to the client with no further record of this prototype instance.

Since every getBean () call creates a new instance of the prototype bean, this
could lead to performance issues when beans use limited resources such as
network connections, whereas it may be useful if you would like to get a
new instance of a domain object, such as an employee object.

[77]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

Request

The third bean scope in Spring is request, which is available only in web applications
that use Spring and create an instance of bean for every HTTP request. Here, a new
bean is created per Servlet request. Spring will be aware of when a new request is
happening because it ties well with the Servlet APIs, and depending on the request,
Spring creates a new bean. So, if the request scope has getBean () inside it, for every
new request, there will be a new bean. However, as long as it's in the same request
scope, the same bean is going to be used.

Session

The session is the fourth bean scope in Spring, which is available only in web
applications that use Spring and create an instance of bean for every HTTP session.
Here, a new bean is created per session. As long as there is one user accessing in a
single session, each call to getBean () will return same instance of the bean. But if
it's a new user in a different session, then a new bean instance is created.

Global session

The global session is the fifth bean scope in Spring, which works only in portlet
environments that use Spring and create a bean for every new portlet session.

The Spring bean life cycle

As long as Spring beans are required by the application, they exist within the
container. For a bean to get into a usable state after instantiation, it needs to
perform some initialization. Likewise, some clean up may be necessary when
the bean is no longer required and is removed from the container.

Spring provides us with callback methods for the life cycle of the bean. You can have
a method in your bean that runs when the bean has been created, and you can also
have a method in your bean that is run when the bean is about to be destroyed.

Spring's BeanFactory manages the life cycle of beans created through the Spring
IoC container. The life cycle of beans consist of callback methods, which can be
categorized broadly into the following two groups:

* Post-initialization callback methods

* Pre-destruction callback methods

[78]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The following figure illustrates the two groups:

YN

Activation

Container is
shut down

Bean is ready
to use

@———

Initialization Destruction

— =@

Initialization

It represents a sequence of activities that take place between the bean instantiation
and the handover of its reference to the client application:

* The bean container finds the definition of the Spring bean in the
configuration file and creates an instance of the bean

* If any properties are mentioned, populate the properties using setters

* If the Bean class implements the BeanNameAware interface, then call the
setBeanName () method

* If the Bean class implements the BeanFactoryAware interface, then call
the setBeanFactory () method

* If the Bean class implements the ApplicationContextAware interface,
then call the setApplicationContext () method

* If there are any BeanPostProcessors objects associated with the
BeanFactory interface that loaded the bean, then Spring will call the
postProcessBeforeInitialization () method before the properties
for the bean are injected

* If the Bean class implements the InitializingBean interface, then call the
afterPropertiesSet () method once all the bean properties defined in the
configuration file are injected

[79]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

* If the bean definition in the configuration file contains the init-method
attribute, then call this method after resolving the value for the attribute
to a method name in the Bean class

* The postProcessAfterInitialization () method will be called if there
are any bean post processors attached to the BeanFactory interface that
loads the bean

Activation

The bean has been initialized and the dependency has been injected. Now the bean is
ready to be used by the application.

Destruction

This represents the following sequence of activities:

* If the Bean class implements the DisposableBean interface, then call the
destroy () method when the application no longer needs the bean reference

* If the bean definition in the configuration file contains the destroy-method
attribute, then call this method after resolving the value for the attribute to a
method name in the Bean class.

There are two important bean life cycle callback methods that are required at the
time of bean initialization and its destruction.

e Initialization callbacks

e Destruction callbacks

Initialization callbacks

There are two ways in which you can achieve the initialization work after all
necessary properties on the bean are set by the container:

* Implementing the org. springframework.beans. factory.
InitializingBean interface

* Using init-method in the XML configuration

In the EmployeeService.java class, you'll find the following code:

package org.packt.Spring.chapter2.callbacks;

public interface EmployeeService

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

public Long generateEmployeelID() ;

Implementing the org.springframework.beans.
factory.InitializingBean interface

The org. springframework.beans.factory.InitializingBean interface is used
to specify a single method in a bean, as follows:

void afterPropertiesSet () throws Exception;
This method gets initialized whenever the bean containing this method is called.
In the EmployeeServiceImpl.java class, you'll find the following code:

package org.packt.Spring.chapter2.callbacks;
import org.springframework.beans.factory.InitializingBean;

public class EmployeeServiceImpl implements EmployeeService,
InitializingBean ({

@Override
public Long generateEmployeeID() {

return System.currentTimeMillis () ;

@Override
public void afterPropertiesSet () throws Exception {
System.out.println ("Employee afterPropertiesSet... ");

}
}

In the beans . xml file, you'll find the following code:

<bean id="employeeServiceBean"
class="org.packt.Spring.chapter2.callbacks.EmployeeServiceImpl">

</bean>

[81]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

Here, the InitializingBean interface tells Spring that the EmployeeServiceImpl
bean needs to know when it's being initialized. A method of this bean needs

to be called when the bean is initialized. The InitializingBean interface has
afterPropertiessSet (), which needs to be implemented, and it will be called by
Spring when this bean is initialized and all properties are set. This InitializingBean
interface is a marker for the bean to know that the afterPropertiesSet () method of
this bean needs to be called after initialization.

Using init-method in the XML configuration

In the case of XML-based configuration metadata, you can use the init-method
attribute to specify the name of the method that has a void no-argument signature,
which is to be called on the bean immediately upon instantiation.

In the beans . xm1 file, you'll find the following code:

<bean id="employeeServiceBean" class="org.packt.Spring.chapter2.
callbacks.xml.EmployeeServiceImpl"

init-method="myInit">

</bean>

In the EmployeeServiceImpl.java class, you'll find the following code:

package org.packt.Spring.chapter2.callbacks.xml;
public class EmployeeServiceImpl implements EmployeeService {

@Override
public Long generateEmployeeID() {
return System.currentTimeMillis() ;

}

public void myInit ()
System.out.println ("Employee myInit... ");

}
}

Now we have init-method in the configuration beans . xml file, which will take the
method name as the value from the bean. So, instead of implementing an interface to
this bean, we have a simple method that is called by Spring.

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Destruction callbacks

There are two ways you can do a destruction callback:

o hnpkﬂnenﬁngtheorg.springframework.beans.factory.DisposableBean
interface

* Using destroy-method in the XML configuration

Implementing the org.springframework.beans.
factory.DisposableBean interface

The org. springframework.beans.factory.DisposableBean interface is used to
specify a single method in a bean, as follows:

void destroy () throws Exception;

This method allows a bean to get a callback whenever the Spring container
containing this bean is destroyed.

In the EmployeeServiceImp.java class, you'll find the following code:
package org.packt.Spring.chapter2.callbacks;
import org.springframework.beans.factory.DisposableBean;

public class EmployeeServiceImp implements EmployeeService,
DisposableBean

@Override public Long generateEmployeeID() {
return System.currentTimeMillis() ;
}

@Override

public void destroy() throws Exception {
System.out.println ("Employee destroy... ");

}

[83]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

In the beans . xm1 file, you'll find the following code:

<bean id="employeeServiceBean" class="org.packt.Spring.chapter2.
callbacks.EmployeeServiceImpl">

</bean>

The DisposableBean interface has a destroy () method. If a bean implements
a DisposableBean interface, then Spring will automatically call the destroy ()
method of that bean before actually destroying the bean.

Using destroy-method in the XML configuration

In the case of XML-based configuration metadata, you can use the destroy-method
attribute to specify the name of the method that has a void no-argument signature,
which is called just before a bean is removed from the container.

In the beans . xml file, you'll find the following code:

<bean id="employeeServiceBean" class="org.packt.Spring.chapter2.
callbacks.xml.EmployeeServiceImpl"

destroy-method="cleanUp">

</bean>

In the EmployeeServiceImpl.java class, you'll find the following code:
package org.packt.Spring.chapter2.callbacks.xml;

public class EmployeeServiceImpl implements EmployeeService {

@Override
public Long generateEmployeeID() {
return System.currentTimeMillis() ;

public void cleanUp() {
System.out.println ("Employee Cleanup... ");

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Now we have destroy-method in the configuration beans . xm1 file, which will take
the method name as a value from the bean. So, instead of implementing the interface
to this bean, we have a simple method that is called by Spring.

In the Payrollsystem. java class, you'll find the following code:

package org.packt.Spring.chapter2.callbacks.xml;

import org.springframework.context.ConfigurableApplicationContext;
import org.springframework.context.support.ClassPathXmlApplication
Context;

public class PayrollSystem

public static void main(Stringl[] args)
ConfigurableApplicationContext context = new
ClassPathXmlApplicationContext ("beans.xml") ;
EmployeeService employeeService = (EmployeeService)
context.getBean ("employeeServiceBean") ;
System.out.println (employeeService.generateEmployeeID()) ;
context.close() ;

Exercise
Q1. What are Inversion of Control (IoC) and Dependency Injection (DI)?

Q2. What are the different types of Dependency Injection in Spring?

Q3. Explain autowiring in Spring. What are the different modes of autowiring.

Q4. Explain the different Spring bean scopes.

Q The answers to these are provided in Appendix A, Solution to Exercises.

[85]

www.it-ebooks.info

http://www.it-ebooks.info/

Inversion of Control in Spring

Summary

In this chapter, you learned about the Spring IoC container and the BeanFactory
and ApplicationContext interfaces. You also learned about DI in Spring and their
types. We saw the bean's scope in Spring. Finally, we went through the life cycle of
the Spring bean.

In the next chapter, we will cover the DAO design pattern. We will take a look at a
simplified spring JDBC abstraction framework. We will implement the JDBC code
using the Spring JDBC support and discuss how Spring manages DataSource and
the data sources you can use in your applications. We will also discuss data support
in Spring applications.

[86]

www.it-ebooks.info

http://www.it-ebooks.info/

DAQO and JDBC in Spring

In the previous chapter, you explored the concept of Inversion of Control (IoC).
We then explored concepts such as, Spring Core Container, BeanFactory, and
ApplicationContext, and then you learned how to implement them. We looked
at Dependency Injection (DI) in Spring and their types: setter and constructor.
We also wired beans using setter- and constructor-based Dependency Injection
for the different data types.

In this chapter, we will cover the Data Access Object (DAO) design pattern. We
will look at the simplified spring JDBC abstraction framework. We will implement
the JDBC code using the Spring JDBC support and discuss how Spring manages
DataSource that you can use in your applications. We will discuss data support
in the Spring application.

When we talk about the Spring data support, it's specifically for the purpose of your
application interacting with the data or the database, and you can typically write the
Java code that interacts with the database. There are a few things that you have to do
irrespective of what code you are going to write. You need to open the connection,
manage the transaction, and then close the connection to write some boilerplate code.
The whole point of using the Spring data support is that you can do away with all
the extra boilerplate code and the code that you write specifically for the business
case and the business problem that you want to resolve.

When we talk about writing a code that interacts with the database in Java, there are
numerous ways we can do that. It could be as simple as JDBC or it could be some
kind of framework, such as Hibernate or iBATIS. Spring supports lots of these
technologies. The Spring JDBC module provides a kind of an abstraction layer and
all the tedious JDBC code that we would otherwise have to write is provided by the
JDBC module, which is in the Spring Framework.

[87]

www.it-ebooks.info

http://www.it-ebooks.info/

DAO and JDBC in Spring

The topics covered in this chapter are listed as follows:

* Opverview of database

* The DAO design pattern

* JDBC without Spring

* The Spring JDBC packages

* JDBC with Spring

* What is JdbcTemplate

* The JDBC batch operation in Spring
* Calling the stored procedure

Overview of database

Databases are everywhere, but you never see them. They are concealed behind the
tools and services that you use every day. Ever wondered where Facebook, Twitter,
and Tumbler store their data? The answer is a database. Where does Google keep
the details of the pages that it indexes from the Internet and where are the contacts
stored in your mobile phone? Again, the answer is a database. In the information
system, databases do most of the work that we do in our day-to-day lives. So, what
is a database?

A database is a place where we store data. Databases are organized and structured.
All the data that we store in the database fits into the database structure. Flat-file
databases are simple databases. They store data in columns and rows.

Let's look at an Employee table:

Employee ID | First name Last name Age | Contact number

1 Ravi Soni 28 +91-9986XXXXXX

2 Shree Kant 22 +91-9986XXXXXX
[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Let's think about a simple database that the Human Resource (HR) has used to store
his/her employee details. This database contains the name, address, birth date, and
contact number of each employee. If the HR hires a new employee and would like

to add the employee details to the database, then the HR will store the employee's
first name, last name, address, date of birth, and mobile number in the database. The
employee details that the HR writes down are stored in the fields of his employee
address database. Each row is called a record, and each of the rows holds the
information about the different employees in his/her employee address database.
So, unlike a paper employee address book, the HR can carry out employee-related
operations on his/her stored database. They can use the search option to find a
particular employee's details.

In almost any business these days, there is a database or a collection of databases,
and these are the main pieces of the backend infrastructure. Database is nothing but
collection of data. There are different kinds of databases, such as Oracle, PostgreSQL,
MySQL, and so on. The database software is called a relational database
management system (RDBMS) and its instance is called a database engine. The
database server is a machine that runs the database engine. We refer to the RDBMS,
when we mention the term database throughout this book.

NG Refer to Appendix B, Apache Derby Database, to set up
the Apache Derby database.

The DAO design pattern

The DAO design pattern can be used to provide a separation between the low-level
data accessing operations and the high-level business services, as shown here:

o o

‘ Business Layer

[89]

www.it-ebooks.info

http://www.it-ebooks.info/

DAO and JDBC in Spring

The DAO layer

In between the database and the business layer, there is a layer called the DAO
layer. The DAO layer is mainly used to perform the Create-Retrieve-Update-Delete
(CRUD) operation. The DAO layer is responsible for creating, obtaining, updating,
or deleting records in the database table. To perform this CRUD operation, DAO
uses a low-level API, such as the JDBC API or the Hibernate API. This DAO layer
will have a method for performing the CRUD operation. It is the intermediate

layer between the Business Layer and the DB. It is used to separate the low-level
accessing API from the high-level business service. The DAO layer decouples the
implementation of persistent storage from the rest of your application.

The advantages of using DAO are as follows:

* Its application is independent of the data access techniques and database
dependency

* It offers loose coupling with the other layers of the application

* It helps the unit test the service layer using a mock object without connecting
to the database

JDBC without Spring

As Java developers, we work with data all the time and develop almost all the
applications that interact with some sort of database and most of the times it's
relational. Generally, the application needs to interact with a database in order to
get data from it. And the typical way for connecting a Java application to a database
would be through JDBC.

Java Database Connectivity (JDBC) is a standard Java API. It is used for database
connectivity between the Java programming language and a great variety of
databases. JDBC is an application programming interface that allows a Java
programmer to access the database from a Java code using sets of standard interfaces
and classes written in a Java programming language.

JDBC provides several methods for querying, updating, and deleting data in RDBMS,
such as SQL, Oracle, and so on. The JDBC library provides APIs for tasks such as:

* Making a connection to a database

* Creating the SQL statements

* Executing the SQL queries in the database

[90]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

* Viewing and modifying the resulting records

* C(losing a database connection

It is generally considered a pain to write a code to get JDBC to work. We need
to write a boilerplate code to open a connection and to handle the data. Another
problem with JDBC is that of poor exception hierarchy, such as SQLException,
DataTruncation, SQLWarning, and BatchUpdateException. These require less
explanation and a major problem is that all of these exceptions are deployed as
checked exceptions, which mandate the developer to go ahead to implement a
try block. It's very difficult to recover from a catch block, when an exception is
thrown even during the statement execution, and most of the time these catch
blocks are used for generating log messages for those exceptions.

Sample code

Here, we will take the example of JdbcHrPayrollSystem, which connects to the
Apache Derby database that we saw in the previous section. We will write a query
to retrieve the record, we will look at the code required to run this query, and then
we will print out the retrieved record.

ADD drivers specific to database into the project

Whenever we need to write a code to access the database, we have to make sure
that the drivers for the database that we are trying to connect to are available for
the project. For Apache Derby, we need to include a driver so that the project can
connect to the database, as shown here:

project > properties > Libraries > Add External jars > (navigate
to the derby folder) > 1lib folder > select (derby.jar and
derbyclient.jar) > ok

[91]

www.it-ebooks.info

http://www.it-ebooks.info/

DAO and JDBC in Spring

Directory structure of the application

The final directory structure of the application is shown in the following screenshot:

4 =2 ldbcHrPayrollSystem
a4 B src
a ff org.packt.Spring.chapter3.)DBC.dac
. [J] EmployeeDac.java
> [J] EmployeeDaclmpl java
a ff org.packt.Spring.chapter3.JDBC.main
- [J] HrPayrollSystem.java
a4 [} org.packt.Spring.chapter5.JDBC.model
- [J] Employee.java
» = JRE System Library [JavaSE-1.7]
a =i, Referenced Libraries

» [derbylocale_cs.jar - E\Spring Framework Bookt Chapters\Chapter-5\db-derby-10.11.1.1-bin'

> (i derbylocale_de DEjar - E:\Spring Framework Book\Chapters\Chapter-5\db-derby-10.11.1.1-

. [derbylLocale_es.jar - EA\Spring Framework Book\Chapters\Chapter-3\db-derby-10.11.1.1-bin\lik
. [derbylocale frjar - E:\Spring Framework Book\Chapters\Chapter-5\db-derby-10.11.1.1-hin\lib
> (w3 derbyLocale_hu.jar - E\Spring Framework Book\Chapters\Chapter-5\db-derby-10.11.1.1-bin'

- [derbyLocale_it,jar - E\Spring Framewerk Book\Chapters\Chapter-S\db-derby-10.11.1.1-bin\lib
- [derbylocale ja_IP.jar - E:\Spring Framewark BookiChapters\Chapter-5\db-derby-10.11.1.1-bin
> (i derbyLocale_ko_KR.jar - E\Spring Framework Book\Chapters\Chapter-53\db-derby-10.11.1.1-

- [derbyLocale_pljar - E\Spring Framework Book\Chapters\Chapter-5\db-derby-10.11.1.1-bin\lib
. [w3 derbylocale_pt_BR.jar - E:\Spring Framework Book\Chapters\Chapter-5\db-derby-10.11.1.1-

> (i derbyLocale_rugjar - E\Spring Framework Book\Chapters\Chapter-5\db-derby-10.11.1.1-bin\lib
s @: derbylocale_zh_CM.jar - E:\5pring Framework Book\Chapters\(-derby-10.11.1.1-

» [w3 derbylocale_zh TW.jar - E:\Spring Framewark Book\Chapters\Chapter-3\db-derby-10.11.1.1-

> (w3 derby.jar - E:\Spring Framework Book\Chapters\Chapter-5\db-derby-10.11.1.1-bin\lib

» g derbyclient,jar - E:\Spring Framework Book\Chapters\Chapter-5\db-derby-10.11.1.1-hin\lib

It is a good practice to design DAO using the program to an interface principle, which
states that concrete implementations must implement the interface that is used in the
program that wants to use the implementation rather than the implementation class
itself. Following this principle, we will first define an interface for EmployeeDao and
declare some data access methods that include the methods for creating new employee
details, or getting employee details using the employee ID, and then inserting the
employee details into the table.

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The Employee.java file

We have package org.packt.Spring.chapter5.JDBC.model that contains the
class named employee, which is a simple model class containing the employee
ID, name, and its corresponding getter and setter. This employee class also has
a parameterized constructor with parameters, such as id and name that set the
instance variable:

package org.packt.Spring.chapter5.JDBC.model;
public class Employee {

private int id;
private String name;

public Employee (int id, String name) {
setId(id) ;
setName (name) ;

// setter and getter

}

The EmployeeDao.java file

We have package org.packt.Spring.chapter5.JDBC.dao that has the interface
EmployeeDao and the class EmployeeDaoImp. This interface contains the method
for creating the Employee table, inserting the values into the table, and fetching the
employee data from the table based on the employee ID, as shown here:

package org.packt.Spring.chapter5.JDBC.dao;
import org.packt.Spring.chapter5.JDBC.model.Employee;

public interface EmployeeDao
// get employee data based on employee id
Employee getEmployeeById(int id) ;
// create employee table
void createEmployee () ;
// insert values to employee table
void insertEmployee (Employee employee) ;

[93]

www.it-ebooks.info

http://www.it-ebooks.info/

DAO and JDBC in Spring

The EmployeeDaolmpl.java file

Now, we will provide an implementation for the EmployeeDao interface. The
EmployeeDaoImpl class is responsible for connecting to the database and getting or
setting the values. The complexity lies in the JDBC code that goes inside the methods
that connect to the database. First, we need to have a connection object, and then we
need to initialize clientDriver, which in our case, is specific to the Apache Derby
driver. Now, we need to open a connection using the database URL. Then, based on
the functionality, we need to prepare and execute a query:

package org.packt.Spring.chapter5.JDBC.dao;

import
import
import
import
import
import
import

java.
java.
java.
java.
java.

java.

sql.

sql

sql.
sql.
sql.
sql.

Connection;

.DriverManager;

PreparedStatement;
ResultSet;
SQLException;
Statement;

org.packt.Spring.chapter5.JDBC.model.Employee;

public class EmployeeDaoImpl implements EmployeeDao {
// JDBC driver name and database URL

static final String JDBC DRIVER =
"org.apache.derby.jdbc.ClientDriver";

static final String DB _URL = "jdbc:derby://localhost:1527/db";
private void registerDriver () {

try {

Class.forName (JDBC DRIVER) .newlInstance() ;

} catch (InstantiationException e)

} catch (IllegalAccessException e)

} catch (ClassNotFoundException e)

}

}

Here, the getEmployeeById (int id) method will fetch the employee information
based on the employee ID:

@Override

public Employee getEmployeeById(int id) {

Connection conn = null;

Employee employee = null;

[94]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

try {

// register apache derby driver
registerDriver () ;

// open a connection using DB url

conn = DriverManager.getConnection (DB_URL) ;

// Creates a PreparedStatement object for sending

parameterized SQL

employee where

int value

object and

// statements to the database
PreparedStatement ps = conn

.prepareStatement ("select * from
id = ?");

// Sets the designated parameter to the given Java

ps.setInt (1, id);
// Executes the SQL query in this PreparedStatement

// returns the ResultSet object
ResultSet rs = ps.executeQuery();
if (rs.next())

employee = new Employee (id,

rs.getString("name")) ;

}

rs.close () ;
ps.close() ;

} catch (SQLException e) {

throw new RuntimeException (e) ;

} finally {

}

if (conn != null) {
try {
conn.close () ;
} catch (SQLException e) ({

}

return employee;

[95]

www.it-ebooks.info

http://www.it-ebooks.info/

DAO and JDBC in Spring

The createEmployee () method creates an Employee table with the column ID and
name, as shown in the following code snippet:

@Override

public void createEmployee () {
Connection conn = null;
try {

// register apache derby driver
registerDriver () ;
// open a connection using DB url
conn = DriverManager.getConnection (DB_URL) ;
Statement stmt = conn.createStatement () ;
stmt .executeUpdate ("create table employee (id
integer, name char(30))");
stmt.close() ;
} catch (SQLException e) ({
throw new RuntimeException (e) ;
} finally {
if (conn != null) {
try {
conn.close() ;
} catch (SQLException e) ({

}

}

In the following code snippet, the insertEmployee (Employee employee) method
will insert the employee information into the Employee table:

@Override
public void insertEmployee (Employee employee) {
Connection conn = null;
try {
// register apache derby driver
registerDriver () ;
// open a connection using DB url
conn = DriverManager.getConnection (DB_URL) ;
Statement stmt = conn.createStatement () ;
stmt .executeUpdate ("insert into employee values ("
+ employee.getId() + ",'" +
employee.getName() + "')");
stmt.close () ;
} catch (SQLException e) ({

[96]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

throw new RuntimeException (e) ;
} finally {
if (conn != null) {
try {
conn.close () ;
} catch (SQLException e) ({

}

The HrPayrollSystem.java file

We have package org.packt.Spring.chapter5.JDBC.main that contains the class
HrPayrollSystem with the main () method. In the main () method, we will initialize
DAO and call the methods of DAO to create a table, insert the data, and then fetch
the data from the table, as shown here:

package org.packt.Spring.chapter5.JDBC.main;

import org.packt.Spring.chapter5.JDBC.dao.EmployeeDao;
import org.packt.Spring.chapter5.JDBC.dao.EmployeeDaoImpl;
import org.packt.Spring.chapter5.JDBC.model.Employee;

public class HrPayrollSystem

public static void main(Stringl[] args)

EmployeeDao employeeDao = new EmployeeDaoImpl () ;
// create employee table
employeeDao.createEmployee () ;
// insert into employee table
employeeDao.insertEmployee (new Employee(1l, "Ravi"));
// get employee based on id
Employee employee = employeeDao.getEmployeeById(1) ;
System.out.println ("Employee name: " +

employee.getName ()) ;

}
}

Having shown the trouble in using JDBC, in the next section, we will be discussing
the DAO support in the Spring Framework to remove the troubling points one after
the other.

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

DAO and JDBC in Spring

Spring JDBC packages
In the previous section, we have seen the shortcomings of using the JDBC API as

a low-level data access API for implementing the DAOs. These shortcomings are
as follows:

* Code duplication: As we know, writing the boilerplate code over and over
again in code duplication violates the Don't repeat yourself (DRY) principle.
This has some side effects in terms of the project costs, efforts, and timelines.

* Resource leakage: The DAO methods must hand over the control of the
obtained database resources, such as connection, statements, or result sets
after calling the close () method. This is a risky plan because a novice
programmer might very easily skip some of the code fragments. As a result,
the resources would run out and bring the system to a stop.

* Error handling: When using JDBC directly we need to handle sQLException,
since the JDBC drivers report all the errors suitable by raising sQLException.
It is not possible to recover these exceptions. Moreover, the message and
the error code obtained from the SQLException object are database vendor-
specific, so it is difficult to write a portable DAO error messaging code.

To solve the aforementioned problems, we need to identify the parts of the code
that are fixed and then encapsulate them into some reusable objects. The Spring
Framework provides a solution for these problems by giving a thin, robust, and
highly extensible JDBC abstraction framework.

The JDBC abstraction framework provided under the Spring Framework is
considered to be a value-added service that takes care of all the low-level details,
such as retrieving connection, preparing the statement object, executing the query,
and releasing the database resources. While using it for data access, the application
developer needs to specify the SQL statement for executing and retrieving the result.

[98]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

To handle the different aspects of JDBC, Spring JDBC is divided into packages, as
shown in the following table:

Spring JDBC package Description

org.springframework. jdbc.core In the Spring Framework, this package
contains the foundation of the JDBC classes,
which includes the core JDBC class and
JdbcTemplate. It simplifies the database

operation using JDBC.
org.springframework. jdbc. This package contains DataSource
datasource implementations and helper classes, which

can be used to run the JDBC code outside
the JEE container.

org.springframework.jdbc. In the Spring Framework, this package
object contains the classes that help in converting
the data returned from the database into
plain Java objects.

org.springframework. jdbc. SQLExceptionTranslator is the most
support important class in this package of the
Spring Framework. The Spring Framework
recognizes the error code used by the
database. This is done by using this class
and mapping the error code to a higher
level of exception.

org.springframework. jdbc. This package contains the classes that

config support JDBC configuration within
ApplicationContext of the Spring
Framework.

JDBC with Spring

In the earlier section, we did not include any Spring-related functionality, and
we implemented a Java class that had DAO implementation, which connected to
a database to fetch a particular record using JDBC. Now in this section, we will
look at some of the features of the Spring Framework that make our job easier by
eliminating the boilerplate code. Here, we will look into the connection support
provided by Spring that makes it easy to handle the connections.

[99]

www.it-ebooks.info

http://www.it-ebooks.info/

DAO and JDBC in Spring

DataSource

The DriverManagerDataSource class is used for configuring the batasSource for
application, which is defined in the configuration file, that is, Spring.xml. So, first

of all, we need to add the Spring JAR that will have the DriverManagerDataSource
class to our project. The Spring Framework provides the JAR for JDBC spring-jdbc-
4.1.4.RELEASE.jar containing the package named DataSource, which will have the
class DriverManagerDataSource.class, as shown in the following screenshot:

4 {8 orgspringframework.jdbe. datasource
. -'t.l__,‘.J AbstractDataSource.class
. 'Eﬂ AbstractDriverBasedDataSource.class
. ﬁ} ConnectionHandle.class
. ﬁﬁ ConnectionHolder.class
s ﬁ} ConnectionProxy.class
- up DataSourceTransactionManager.class
s ﬂi} DataSourcelltils.class
. t1h DelegatingDataSource.class
: fl{_.s., DriverManagerDataSource.class
s TECTSTIGNT .
- fup JdbcTransactionObjectSupport.class
- Tub LazyConnectionDataSourceProxy.class

dss

The configuration of DriverManagerDataSource is shown here. We need to provide
the driver class name and the connection URL. We can also add the username and
the password in the property if the database requires it.

Check out the file Spring.xml using the following code snippet:

<context:annotation-config />

<context :component-scan base-
package="org.packt.Spring.chapter5.JDBC.dao" />

<bean id="dataSource"
class="org.springframework.jdbc.datasource.
DriverManagerDataSource">
<property name="driverClassName"
value="${jdbc.driverClassName}" />

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

<property name="url" value="${jdbc.url}" />
</beans>

<context :property-placeholder location="jdbc.properties" />

The bold properties in the aforementioned configuration code represent the values
that you normally pass to JDBC to connect it with the interface. For easy substitution
in the different deployment environments and for easy maintenance, the database
connection information is stored in the properties file, and the Spring's property
placeholder will load the connection information from the jdbc.properties file:

jdbc.driverClassName=org.apache.derby.jdbc.ClientDriver
jdbc.url=jdbc:derby://localhost:1527/db

DataSource in the DAO class

In the previous section, we added the properties for the DataSource in the
configuration file Spring.xml. So, we will look into the DAOs class to see the benefit
of using DataSource. We will implement the EmployeeDao interface that we defined
in the earlier section.

Directory structure of the application

The final directory structure of the application is shown in the following screenshot:

Fi ‘_;5 SpringDataSourceExample
4 [src
4 [} org.packt.Spring.chapter3.JDBC.dao
- [J] EmployeeDao java
. [3% EmployeeDaclmpljava
4 org.packt.Spring.chapter3.JOBC.main
+ [J] HrPayrollSystem java
4} org.packt.Spring.chapter3.JDBC.model
+ [J] Employeejava
jdbec.properties
QHE Spring.xml
> B, JRE System Library [JavaSE-1.6]
. B Referenced Libraries

[101]

www.it-ebooks.info

http://www.it-ebooks.info/

DAO and JDBC in Spring

The EmployeeDaolmpl.java file

In the earlier section, we were trying to perform a few basic steps, which are
common for methods such as:

* Set up connection to a database

* Create a prepared statement

The first step is to connect to the database that is common for all the methods
of the application. We will take out the boilerplate code for this step from the
methods defined in the EmployeeDaoImpl class.

We have defined Datasource as a member variable and annotated it by the
@Autowired annotation. We have called the getConnection () method of
this DataSource to get the connection based on the definition provided in
the configuration file.

Checkout the file EmployeeDaoImpl . java for the following code snippet:

package org.packt.Spring.chapter5.JDBC.dao;

import java.sqgl.Connection;

import java.sqgl.PreparedStatement;

import java.sqgl.ResultSet;

import java.sqgl.SQLException;

import java.sqgl.Statement;

import javax.sqgl.DataSource;

import org.packt.Spring.chapter5.JDBC.model.Employee;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Repository;

@Repository

public class EmployeeDaolmpl implements EmployeeDao
@Autowired
private DataSource dataSource;

Here, the EmployeeDaoImpl class is annotated by the stereotypical annotation,
@Repository, so that Spring automatically scans this class and registers it as the
Spring bean employeeDaoImpl.

The getEmployeeById (int id) method is used to get the employee details based
on the employee ID, as shown here:

@Override
public Employee getEmployeeById(int id) {
Employee employee = null;

[102]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Connection conn = null;
try {
conn = dataSource.getConnection() ;
PreparedStatement ps = conn
.prepareStatement ("select * from
employee where id = ?");
ps.setInt (1, id);
ResultSet rs = ps.executeQuery() ;
if (rs.next()) {
employee = new Employee(id,
rs.getString ("name")) ;
}
rs.close () ;
ps.close() ;
} catch (SQLException e) ({
throw new RuntimeException (e) ;
} finally {
if (conn != null) {
try {
conn.close () ;
} catch (SQLException e) ({

}
}

return employee;

}

The createEmployee () method is used for creating the Employee table, as shown in
the following code snippet:

@Override
public void createEmployee () {
Connection conn = null;
try {
conn = dataSource.getConnection() ;
Statement stmt = conn.createStatement () ;

stmt .executeUpdate ("create table employee (id
integer, name char(30))");

stmt.close () ;
} catch (SQLException e) ({
throw new RuntimeException (e) ;
} finally {
if (conn != null) {
try {

[103]

www.it-ebooks.info

http://www.it-ebooks.info/

DAO and JDBC in Spring

conn.close () ;
} catch (SQLException e) ({

}

}

The insertEmployee (Employee employee) method is used for inserting the data
into the Employee table, as shown here:

@Override
public void insertEmployee (Employee employee) {
Connection conn = null;
try {
conn = dataSource.getConnection() ;
Statement stmt = conn.createStatement () ;
stmt .executeUpdate ("insert into employee values ("

+ employee.getId() + ",'" +
employee.getName () + "')");

stmt.close () ;
} catch (SQLException e) {
throw new RuntimeException (e) ;

} finally {
if (conn != null) {
try {
conn.close () ;
} catch (SQLException e) ({
}
}

The HrPayrollSystem.java file

We have package org.packt.Spring.chapter5.JDBC.main that contains the class
HrPayrollSystem with the main () method:

package org.packt.Spring.chapter5.JDBC.main;

import org.packt.Spring.chapter5.JDBC.dao.EmployeeDao;
import org.packt.Spring.chapter5.JDBC.model.Employee;
import org.springframework.context.ApplicationContext;

import org.springframework.context.support.
ClassPathXmlApplicationContext;

[104]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

public class HrPayrollSystem

public static void main(Stringl[] args)
@SuppressWarnings ("resource")

ApplicationContext context = new
ClassPathXmlApplicationContext (
"Spring.xml") ;
EmployeeDao employeeDao =
context.getBean ("employeeDaoImpl",
EmployeeDao.class) ;
// create employee table
employeeDao.createEmployee () ;
// insert into employee table
employeeDao.insertEmployee (new Employee(l, "Ravi"));
// get employee based on id
Employee employee = employeeDao.getEmployeeById(1) ;
System.out.println ("Employee name: " +
employee.getName ()) ;

}
}

The types of code that we have discussed so far use the Spring Framework to
manage DataSource and this makes things simple. We have taken all the connection
parameters from the class and set them to bean defined by an XML file. In DAO, we
have used the method of the new bean to get the connection of the database.

What is JdbcTemplate

The central class of the Spring JDBC abstraction framework is the JdbcTemplate
class that includes the most common logic in using the JDBC API to access

data, such as handling the creation of connection, statement creation, statement
execution, and release of resource. The JdbcTemplate class can be found in the
org.springframework.jdbc.core package.

The JdbcTemplate class instances are thread-safe once configured. A single
JdbcTemplate can be configured and injected into multiple DAOs.

We can use the gdbcTemplate to execute the different types of SQL statements.
Data Manipulation Language (DML) is used for inserting, retrieving, updating,
and deleting the data in the database. SELECT, INSERT, or UPDATE statements are
examples of DML. Data Definition Language (DDL) is used for either creating
or modifying the structure of the database objects in the database. CREATE, ALTER,
and DROP statements are examples of DDL.

[105]

www.it-ebooks.info

http://www.it-ebooks.info/

DAO and JDBC in Spring

The gdbcTemplate class is in the org. springframework. jdbc. core package. Itis a
non-abstract class. It can be initiated using any of the following constructors:

* JdbcTemplate: Construct a new JdbcTemplate object. When constructing an
object using this constructor, we need to use the setbataSource () method
to set the DataSource before using this object for executing the statement.

* JdbcTemplate (DataSource): Construct a new JdbcTemplate object, and
initialize it with a given DataSource to obtain the connections for executing
the requested statements.

* JdbcTemplate (DataSource, Boolean): Construct a new JdbcTemplate
object, and initialize it by a given DataSource to obtain the connections for
executing the requested statements, and the Boolean value describing the
lazy initialization of the SQL exception translator.

If the Boolean argument value is true, then the exception translator will
not be initialized immediately. Instead, it will wait until the JdbcTemplate
object is used for executing the statement. If the Boolean argument value is
false, then the exception translator will be initialized while constructing
the gdbcTemplate object.

It also catches the JDBC exception and translates it into the generic and more
informatics exception hierarchy, which is defined in the org. springframework.dao
package. This class avoids common error and executes the SQL queries, updates the
statements, stores the procedure calls, or extracts the results.

While using the JdbcTemplate, the application developer has to provide the code for
preparing the SQL statement and the extract result. In this section, we will look into
operations such as, query, update, and so on using the JdbcTemplate in Spring.

Configuring the JdbcTemplate object as
Spring bean

The Spring gdbcTemplate makes the application developer's life a lot easier by
taking care of all the boilerplate code required for creating and releasing database
connection, which saves development time. In the earlier section, we saw how to
define the DataSource bean in the configuration file. To initialize the JdbcTemplate
object, we will use the DataSource bean as ref. This is discussed while explaining
the configuration file, Spring. xml.

[106]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The Spring.xml file

The following code snippet shows the Spring. xml file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:jdbc="http://www.springframework.org/schema/jdbc"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-
3.2.xsd
http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc-3.2.xsd">

<context:annotation-config />

<context :component-scan base-
package="org.packt.Spring.chapter5.JDBC.dao" />

<bean id="dataSource"
class="org.springframework.jdbc.datasource.
DriverManagerDataSource" >
<property name="driverClassName">
<value={jdbc.driverClassName}></value>
</property>
<property name="url"s>
<value={jdbc.url}></value>
</property>
</bean>

<bean id="jdbcTemplate" class="org.springframework.jdbc.core.
JdbcTemplate">
<property name="dataSource" ref="dataSource" />
</bean>

<context :property-placeholder location="jdbc.properties"/>

</beans>

[107]

www.it-ebooks.info

http://www.it-ebooks.info/

DAO and JDBC in Spring

Functionality exposed by the JdbcTemplate
class

The Spring gdbcTemplate provides many helpful methods for the CRUD operations
for the database.

Querying (select)

Here, we use the select command to query the database using the JdbcTemplate
class. Depending upon the following application requirements, the database table
can be queried:

* The following is a simple query to get the number of rows in a relation:

int rowCount = this.jdbcTemplate.queryForObject ("select
count (*) from employee ", Integer.class);

* A simple query that uses the bind variable is shown here:
int countOfEmployeesNamedRavi =
this.jdbcTemplate.queryForObject (

"select count (*) from employee where Name = ?",
Integer.class, "Ravi");

* The following is a simple query for String;:

String empName = this.jdbcTemplate.queryForObject (
"select Name from employee where EmpId = ?",
new Object[]{12121}, String.class);

* The code block to populate a domain object after querying is shown here:

Employee employee = this.jdbcTemplate.queryForObject (
"select Name, Age from employee where EmpId = ?",
new Object[] {1212},
new RowMapper<Employee> () {

public Employee mapRow (ResultSet rs, int
rowNum) throws SQLException {

Employee emp = new Employee(rs.getString("Name"),
rs.getString("Age")) ;
return emp;

I3F;

[108]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

* The code block to populate a list of the domain objects after querying is
given here:

List<Employee> employee = this.jdbcTemplate.query (
"select Name, Age from employee",
new RowMapper<Employees> () {
public Employee mapRow (ResultSet rs, int
rowNum) throws SQLException {
Employee emp = new Employee (rs.getString("Name"),
rs.getString ("Age")) ;

return emp;

3N

Apart from querying the database table, the operation for updating the record can
also be performed as discussed in the next section.

Updating (Insert-Update-Delete)
When we talk about updating a record, it simply implies inserting a new record,

making a change in an existing record, or deleting an existing record.

The update () method is used to perform operations such as insert, update, or delete.
The parameter values are usually provided as an object array or var args. Consider
the following cases:
* The following shows an Insert operation:
this.jdbcTemplate.update ("insert into employee (EmpId,
Name, Age) values (?, ?, ?)", 12121, "Ravi", "Soni");
* AnUpdate operation is shown here:
this.jdbcTemplate.update ("update employee set Name = ?
where EmpId = ?", "Shree", 12121);

* A Delete operation is given here:

this.jdbcTemplate.update ("delete from employee where EmpId
= ?",Long.valueOf (empId)) ;

Other JdbcTemplate operations

The execute () method is used for executing any arbitrary SQL:

this.jdbcTemplate.execute ("create table employee (EmpIld integer,
Name varchar (30), Age integer)");

[109]

www.it-ebooks.info

http://www.it-ebooks.info/

DAO and JDBC in Spring

Directory structure of the application

The final directory structure of the application is shown here:

= IDBCTemplateExample
PRE R
4 {8 org.packt.Spring.chapter3.JDBC.dao
+ [J] EmployeeDao.java
. [EmployeeDaclmpl.java
a4 f} org.packt.Spring.chapters.JDBC.main
» [J] HrPayrollSystemn.java
a4 f# org.packt.Spring.chapter3.JDBC.model
- [J] Employeejava
jdbc.properties
E Spring.xml
> B JRE System Library [jrel.2.0_25]
4 =i, Referenced Libraries

> [g derby.jar - E\Spring Framework Book\Chapters'

. fud derbyclientjar - E:\Spring Framework Book\Chapters

- [commons-logging-1.2,jar - E:\Spring Framework

+ (i spring-aop-4.1.4.RELEASE jar - E:\Spring Framewnrk

. [md spring-aspects-4.1.4.RELEASE jar - E\Spring Framework
- [ms spring-beans-4.1.4.RELEASE jar - E-\Spring Framework

. w8 spring-context-4.1.4.RELEASE jar - E\Spring Framework
- [ms spring-core-4.1.4.RELEASE jar - E:\Spring Framework

s @: spring-expression-4.1.4.RELEASE jar - E:\Spring

- w8 spring-jdbe-4.1.4.RELEASE jar - E:\Spring Frarmework

. s spring-tx-4.1.4.RELEASE. jar - E:\Spring Framewnork

The Employee.java file

The Employee class has parameterized the constructor with three parameters,
namely, empId, name, and age:

package org.packt.Spring.chapter5.JDBC.model;
public class Employee {

private int empId;

private String name;

private int age;

public Employee (int empId, String name, int age) {
setEmpId (empId) ;

[110]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

setName (name) ;

setAge (age) ;

// setter and getter

The EmployeeDao.java file

The EmployeeDao interface contains the declaration of a method whose
implementation is provided in EmployeeDaoImpl.java:

package org.packt.Spring.chapter5.JDBC.dao;

import org.packt.Spring.chapter5.JDBC.model.Employee;

public interface EmployeeDao

void createEmployee () ;

int getEmployeeCount () ;

int insertEmployee (Employee employee) ;

int deleteEmployeeById(int empId) ;

Employee getEmployeeById(int empId) ;

The EmployeeDaolmpl.java file

Now let's look at the implementation of EmployeeDao, where we will use the
JdbcTemplate class to execute the different types of queries:

package org.packt.Spring.chapter5.JDBC.dao;

import
import
import

import
import
import
import
import

@Repository

java.sql.ResultSet;

java.sql.SQLException;

java.sql.Types;

org.
org.
org.
org.
org.

packt.Spring.chapter5.JDBC.model .Employee;
springframework.beans.factory.annotation.Autowired;
springframework.jdbc.core.JdbcTemplate;
springframework. jdbc.core.RowMapper;
springframework.stereotype.Repository;

public class EmployeeDaolmpl implements EmployeeDao

@Autowired

private JdbcTemplate jdbcTemplate;

@Override

public int getEmployeeCount ()

[111]

www.it-ebooks.info

http://www.it-ebooks.info/

DAO and JDBC in Spring

String sql = "select count(*) from employee";
return jdbcTemplate.queryForInt (sql) ;

@Override
public int insertEmployee (Employee employee) {
String insertQuery = "insert into employee (EmpId, Name,

Age) values (?, ?, ?) ";
Object [] params = new Object[] { employee.getEmpId(),
employee.getName (), employee.getAge() };
int[] types = new int[] { Types.INTEGER, Types.VARCHAR,
Types.INTEGER };
return jdbcTemplate.update (insertQuery, params, types);

@Override
public Employee getEmployeeById(int empId) {
String query = "select * from Employee where EmpId = ?";

// using RowMapper anonymous class, we can create a
separate RowMapper
// for reuse
Employee employee = jdbcTemplate.queryForObject (query,
new Object[] { empId }, new
RowMapper<Employees> () {
@Override
public Employee mapRow (ResultSet rs,
int rowNum)
throws SQLException {
Employee employee = new
Employee (rs.getInt ("EmpId"), rs

.getString("Name"), rs.getInt("Age"));
return employee;

)

return employee;

@Override
public int deleteEmployeeById(int empId) {
String delQuery = "delete from employee where EmpId =

return jdbcTemplate.update (delQuery, new Object[]

[112]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

JDBC batch operation in Spring

The single executable unit for performing multiple operations is known as a batch.
If you batch multiple calls to the same prepared statement, then most of the JDBC
drivers show improved performance. Moreover, if you group the updates into
batches, then you can limit the number of round trips to the database, as shown in
the following diagram:

(Server-1 Server-2)
SQL-1
SQL-2 >
Java application SQL-3 p Database
Network
SQL-100
g >
Q _J

As shown in the aforementioned figure, we have Server-1, where our Java
application is running, and in Server-2, the database is running. Both the servers
are situated in different locations. Let's assume that we have to execute 100 queries.
Generally, we send each query from the Java application to the database server
and execute them one by one. Here, we have sent the SQL-1 query from the Java
application to the database server for execution, and then the SQL-2 query, and

so on till the SQL-100 query. So here, for 100 queries, we have to send the SQL
queries from the Java application to the database server through the network. This
will add a communication overhead and reduce the performance. So to improve
the performance and reduce the communication overhead, we use the JDBC batch
processing, as shown here:

()

Server-1 Batch Server-2

SQL-1

Java application Network Database

JDBC with batch processing

[113]

www.it-ebooks.info

http://www.it-ebooks.info/

DAO and JDBC in Spring

In the preceding figure, we have a batch with 100 SQL queries, which will be sent
from the Java application server to the database server only once, and they will still
be executed. So, there is no need to send each SQL query from the Java application
server to the database server. In this way, it will reduce the communication overhead
and improve the performance.

The batch update operation allows you to submit multiple SQL queries to the
DataSource for processing at once. Submitting multiple SQL queries at once
instead of submitting them individually, improves the performance.

This section explains how to use an important batch update option with the
JdbcTemplate. The JdbcTemplate includes a support for executing the batch
of statements through a JDBC statement and through preparedstatement.

The JdbcTemplate includes the following two overloaded batchUpdate () methods
that support this feature:

* One method is for executing a batch of SQL statements using the JDBC
statement. This method's signature is that it issues multiple SQL updates,
as shown here:

public int[] batchUpdate (String[] sgl) throws
DataAccessException

The following sample code shows how to use this method:

jdbcTemplate.batchUpdate (new String [] {

"update emp set salary = salary * 1.5 where
empId = 10101",

"update emp set salary = salary * 1.2 where
empId = 10231",

"update dept set location = 'Bangalore'
where deptNo = 304"

13N

* The other method is for executing the SQL statement multiple times with
different parameters using PreparedStatement, as shown by the following
code snippet:
public int[] batchUpdate (String sqgl,

BatchPreparedStatementSetter bPSS) throws
DataAccessException

Let's consider an example of a code, where an update batch operation performs actions.

[114]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Directory structure of the application

The final directory structure of the application is shown here:

4 L:‘,J- BatchOperationDemo
a B src
a4 {8 org.packt.Spring.chapter5.JDBC dao
- [¥] EmployeeDao. java
s m EmployeeDaclmpl java
a 8 org.packt.Spring.chapter5.JDBC.main
> m HrPayrollSystem,java
a £ org.packt.Spring.chapter5.JDBC. model
» [J] Employeejava
jdbc.properties
b Springaml
> B JRE Systern Library [JavaSE-1.6]
a =), Referenced Libraries

. {4 derby.jar - E:\Spring Framework Book\Chapters’

. [od derbyclientjar - E:\Spring Framework Book\Chapters!

. @: commeons-logging-1.2,jar - E\Spring Framework

+ [ma spring-aep-4.1.4.RELEASE jar - E:\Spring Framework

+ [ws spring-aspects-4.14.RELEASE jar - E:\Spring Framework
. [os spring-beans-4.1.4.RELEASE jar - E:\Spring Framework

. (o4 spring-context-4.1.4.RELEASE jar - E:\Spring Framewaork
. [ms spring-core-4,1.4.RELEASE jar - E:\Spring Framework

. @: spring-expression-4.1.4.RELEASE jar - EM\Spring Framework
. o4 spring-jdbc-4.1.4.RELEASE jar - E:\Spring Framework

. [od spring-te-4.1.4.RELEASE jar - E\Spring Framework

The EmployeeDaolmpl.java file

The EmployeeDaoImp class has the method insertEmployees () that performs the
batch insert operation, as shown here:

package org.packt.Spring.chapter5.JDBC.dao;

import java.sql.PreparedStatement;
import java.sqgl.SQLException;
import java.util.List;

import org.packt.Spring.chapter5.JDBC.model.Employee;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jdbc.core.BatchPreparedStatementSetter;

[115]

www.it-ebooks.info

http://www.it-ebooks.info/

DAO and JDBC in Spring

import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.stereotype.Repository;

@Repository

public class EmployeeDaoImpl
@Autowired
private JdbcTemplate jdbcTemplate;

public void insertEmployees (final List<Employee> employees) {
jdbcTemplate.batchUpdate ("INSERT INTO employee "
+ "(id, name) VALUES (?, ?)",
new BatchPreparedStatementSetter() {

public void
setValues (PreparedStatement ps, int i)
throws SQLException {

Employee employee =
employees.get (1) ;

ps.setLong (1,
employee.getId());

ps.setString (2,
employee.getName ()) ;

}

public int getBatchSize() {
return employees.size();

)
}

public int getEmployeeCount ()
String sql = "select count(*) from employee";
return jdbcTemplate.queryForInt (sql) ;

The HrPayrollBatchUpdate.java file

The HrPayrollBatchUpdate class calls a method from EmployeeDaoImp to perform
a batch update operation:

package org.packt.Spring.chapter5.JDBC.batchupdate;

public class HrPayrollBatchUpdate

[116]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

public static void main(Stringl[] args)

ApplicationContext context = new
ClassPathXmlApplicationContext (

"Spring.xml") ;
EmployeeDaoImp employeeDaoImp = (EmployeeDaoImp) context
.getBean ("employeeDaoImp") ;

List<Employee> employeelList = new ArrayList<Employees () ;
Employee employeel = new Employee (10001, "Ravi");
Employee employee2 = new Employee (23330, "Kant");
Employee employee3 = new Employee (12568, "Soni");
employeelList.add (employeel) ;

employeelList.add (employee2) ;

employeelList.add (employee3) ;
employeeDaoImp.insertEmployees (employeelist) ;
System.out.println (employeeDaoImp.getEmployeeCount ()) ;

}

The preceding code shows how to use the batchupdate () method with string and
BatchPreparedStatementSetter for executing a SQL statement multiple times
with different parameter values. In this section, we have seen how to execute batch
statements using a JdbcTemplate.

Calling a stored procedure

A stored procedure is a group of transact SQL statements. If you have a situation
where you write the same query over and over again, then you can save that specific
query as a stored procedure and call it just by calling its name. Stored procedures are
a block of SQL statements that are stored as basic objects within your database.

Let's take our Employee table that has columns as Emp1d, Name, and Age. Let's say that
we need the name and age of an employee, we will write the query as Select Name,
Age from employee. So every time we need the name and age of the employee, we
will need to write this query. Instead, we can add this query to the stored procedure
and call that stored procedure rather than writing this query again and again.

[117]

www.it-ebooks.info

http://www.it-ebooks.info/

DAO and JDBC in Spring

The advantages and disadvantages of using the stored procedure are as follows:

Advantages Disadvantages
Stored procedure helps in increasing the Stored procedures are difficult to debug and
performance of an application. Stored only a few DBMS allow you to debug it.

procedures, once created, are compiled and
stored in the database. And this compiled
version of the stored procedures is used if
an application uses the stored procedures
multiple times in a single connection.

It helps in reducing the traffic between Developing and maintaining the stored
the application and the database server. procedures is not easy and leads to
Because, the application has to send the problems in the development and the
name and the parameter of the stored maintenance phases, as it requires a
procedures rather than sending the multiple | specialized skill set, which the average
length SQL statements. developer has no interest in learning.

Using the SimpleJdbcCall class

An instance of the SimpleddbcCall class is that of a multithreaded and reusable
object, representing a call to a stored procedure. It provides the metadata processing
to simplify the code required for accessing the basic stored procedure. While
executing a call, you only have to provide the name of the stored procedure. The
names of the supplied parameters are matched with the in and out parameters,
specified during the declaration of a stored procedure. Here, we will discuss the
calling of a stored procedure and a stored function using the SimpleJddbcCall class.

Calling a stored procedure

The simpleddbccCall class takes the advantage of the metadata present in the
database to look up the names of the 1N and oUT parameters, and thereby there is no
need to explicitly declare the parameters. However, you can still declare them if you
have the parameters that don't have the automatic mapping of the class, such as the
array parameters.

In MYsQL, we declare a stored procedure named getEmployee, which contains an IN
parameter ID and two ouT parameter IDs, named Emp_Name and Emp_age. The query
lies between BEGIN and END:

IN MYSQL
DROP PROCEDURE IF EXISTS getEmployee

CREATE PROCEDURE getEmployee
(

[118]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

IN id INTEGER,

OUT Emp Name VARCHAR (20),

OUT Emp_ Age INTEGER
)
BEGIN

SELECT Name, Age

INTO Emp_ Name, Emp Age

FROM employee where EmpId = id;
END;

In the preceding code snippet, three parameters were specified. First was the 1IN
parameter id, containing the ID of the employee. The remaining parameters were the
ouT parameters, which were used for returning the data retrieved from table.

In Apache Derby, we declare a stored procedure named getEmployee as shown
here:

IN Apache Derby

CREATE PROCEDURE getEmployee (IN id INTEGER, OUT name varchar (30))
LANGUAGE JAVA EXTERNAL NAME
'org.packt.Spring.chapter5.JDBC.dao.EmployeeDaoImp.getEmployee'
PARAMETER STYLE JAVA;

The CREATE PROCEDURE statement, as shown in aforementioned code snippet, allows
us to create the Java stored procedures that can be called by using the CALL. PROCEDURE
statement. The getEmployee is a procedure name that is created in the database. The
LANGUAGE JAVA makes the database manager call the procedure as a public static
method in a Java class. The EXTERNAL NAME 'package.class name.method name'
makes the method name method to be called when the procedure is executed. Here,
the EXTERNAL NAME 'org.packt.Spring.chapter5.JDBC.dao.EmployeeDaolmp.
getEmployee' makes the getEmployee method get called during the execution of

the procedure. The Java method created org.packt.Spring.chapter5.JDBC.dao.
EmployeeDaoImp.getEmployee is specified as the EXTERNAL NAME.

Now, let's discuss the implementation of SimpleJddbcCall for calling the
getEmployee stored procedure. The following code snippet shows us how to read
the getEmployee stored procedure.

The EmployeeDaolmpl.java file
The following code snippet gives the EmployeeDaoImpl.java class:

package org.packt.Spring.chapter5.JDBC.dao;

import java.util.Map;

[119]

www.it-ebooks.info

http://www.it-ebooks.info/

DAO and JDBC in Spring

import javax.sgl.DataSource;

import
import
import
import
import
import
import

@Repository

org.
org.
org.
org.
org.
org.
org.

packt.Spring.chapter5.JDBC.model .Employee;
springframework.beans.factory.annotation.Autowired;

springframework.jdbc.core.JdbcTemplate;

springframework. jdbc.core.namedparam.MapSglParameterSource;

springframework. jdbc.core.namedparam.SglParameterSource;

springframework.jdbc.core.simple.SimpledJdbcCall;

springframework.stereotype.Repository;

public class EmployeeDaolmpl implements EmployeeDao

@Autowired

private DataSource dataSource;

@Autowired

private JdbcTemplate jdbcTemplate;
private SimpleddbcCall jdbcCall;

public void setJdbcTemplateObject (JdbcTemplate jdbcTemplate) {
this.jdbcTemplate = jdbcTemplate;

@Autowired

public void setDataSource (DataSource dataSource) {

this.dataSource = dataSource;
this.jdbcCall = new SimpleddbcCall (this.dataSource)
.withProcedureName ("getEmployee") ;

@Override

public Employee getEmployee (Integer id) {

SglParameterSource in

= new

MapSglParameterSource () .addvalue ("id", id);

Map<String,

jdbcCall.execute (in) ;

Object> simpledJdbcCallResult =

Employee employee = new Employee (id,

(String)

return employee;

simpleddbcCallResult.get ("name")) ;

[120]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

In the preceding code snippet, the instance of the sqlParameterSource interface
was created, which contained the parameters that must match the name of the
parameter declared in the stored procedure. The execute () method accepts the
IN parameter as an argument and returns a map containing the ouT parameters,
keyed by the name, as specified in the stored procedure. Here the oUT parameter
is name. The retrieved value is set to the employee instance of employee.

Exercise
Q1. Explain the Spring JDBC packages.

Q2. What is JdbcTemplate?

Q3. Explain the JDBC batch operation in Spring.

Solution to Exercises.

1
[~Q The answers to these are provided in Appendix A,]

Summary

In this chapter, we understood the overview of database and covered the DAO design
pattern. We looked at JDBC without the Spring Framework and the simplified Spring
JDBC abstraction framework. We implemented the JDBC code using the Spring JDBC
support. We discussed how Spring manages the DataSource and which data sources
can be used in our applications. We also discussed the data support in the Spring
application. We looked at the JDBC batch operation in Spring and calling the stored
procedure by using SimpleddbcCall.

In the next chapter, you will learn about ORM and understand the concept of
Hibernate. Then, we will discuss the important elements of the Hibernate architecture.
We will also learn how to use HQL and HCQL to query the persistent object.

[121]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Hibernate with Spring

While developing a real-world application using the Spring Framework, we often
store and retrieve data to and from the relational database in the form of objects.
These objects are non-scalar values that can't be directly stored and retrieved to
and from the database, as only scalar values can be directly stored in the relational
database, which is technically defined as impedance mismatch. In the previous
section, we took a look at using JDBC in Spring applications.

Data persistence is the ability to preserve the state of an object so that it can
regain the same state in the future. In this chapter, we will be focused on saving
in-memory objects into the database using ORM tools that have wide support in
Spring Hibernate.

As we have understood from earlier chapters, Spring uses POJO-based development
and also uses declarative configuration management to overcome EJB's clumsy and
heavy setup (EJB architecture was released a lot of time ago and is just not feasible).

The developer community realized that the development of data access logic could
be easy using a simple, lightweight POJO-based framework. This resulted in the
introduction of ORM. The objective of ORM libraries was to close the gap between
the data structure in the RDBMS and the object-oriented model in Java. It helped
developers focus on programming with the object model.

Hibernate is one of the most successful ORM libraries available in the open
source community. It won the heart of the Java developer community with
features such as its POJO-based approach, support of relationship definitions,
and ease of development.

This chapter will cover the basic ideas and main use cases of Hibernate in Spring
when developing data access logic. Hibernate is an extensive ORM library, so it is
not possible to cover every aspect of Hibernate in just one chapter.

[123]

www.it-ebooks.info

http://www.it-ebooks.info/

Hibernate with Spring

The list of topics that will be covered in this chapter are:

* Why Object/Relational Mapping (ORM)?

* Introducing ORM, O/RM, and O/R mapping

* Introducing Hibernate

* Integrating Hibernate with the Spring Framework
* Hibernate Criteria Query Language (HCQL)

Why Object/Relational Mapping?

Object-oriented languages such as Java represent data as an interconnected Graph
of Objects, whereas relational database systems represent data in a table-like format.
Relational databases normally work with tables; data is stored in different types of
tables. Java implements the object model whereas relational database management
systems (RDBMS) implement the relational model. Because both the models

are quite different in the way they represent data, when we load or store graphs

of objects using relational databases, it causes mismatch problems. Refer to the
following figure for clarity:

d Graph of objects N - N
Relational Database
Table-like
Object-oriented | £.]
° ject-oriented language (e.g aua}/ L RDEMS)
Object Model Relational Model

Enterprise-level applications implemented using object-oriented languages such as
Java manage the data in the form of objects. Most of these applications use relational
databases such as RDBMS to maintain persistence of data in the form of tables with
rows and columns. Implementing the data access layer using low-level APIs such as
JDBC includes huge boilerplate code, which affects the productivity of the system,
increasing the cost of application development.

[124]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Let's say we have an Employee class in our application, having fields named emp1d,
firstName, dateOfBirth, and phone. In the running application, there will be
many instances of this class in memory. Say we have four employee objects in
memory and we want to save these employee objects into the relational database as
a common database.

We will be having an Employee table with column names the same as the fields in
the Employee class. Each of these employee objects contains data for a particular
employee, which will be persisted as rows in that table. A class corresponds to a
table and an object of this class corresponds to a row in that table, as shown here:

Empld FirstName DOB Phone
Empid 100101 Ravi 03-Nov-86 4568799
FirstName el | 100102 Shashi 10-Oct-828 4566887
DateOfBirth 100103 Shree 10-Aug-91 9856756
Phone 100106 Namrata 06-Sep-98 6895456

Object Mapping Relational

This is what we have followed as our traditional approach in Java applications

over the years. We connect to a database using a JDBC connection and create a SQL
query to perform an INSERT operation. So, that data will execute in the form of SQL
queries to perform INSERT. Similarly, we create an object using setter methods after
performing the SELECT query. By using boilerplate code, the object will get converted
into a data model and vice versa, which results in a painful mapping process. This

is a common problem in every Java application that has a persistence layer and that
connects to the database in order to save and retrieve values.

Mapping relationships is another issue that needs to be addressed. Let's say we have
another table called Address table and an object called address object. Let's also say
the employee object has a reference to this address object. In this case, the primary
key of the Address table will be mapped to a foreign key of the Employee table.

Another issue that needs to be addressed is data types. Let's say we have an object
with a Boolean data type whereas most of the database doesn't have Boolean data
type and probably used as char for v/N or integer for 0/1, which need to be handled
during data type conversion while writing code.

Managing changes to object state is another issue that needs to be addressed. If there
are some changes to object state, then we need to manually execute the procedure

to make these changes and we also need to reframe the SQL queries and update the
database by ourselves.

[125]

www.it-ebooks.info

http://www.it-ebooks.info/

Hibernate with Spring

To solve these problems, we need a customizable generic system that can take

the responsibility of filling the gap between the object and relational models for
our application. This requirement has resulted in the introduction of ORM, which
provides an elegant way to handle the mentioned issues.

Introducing ORM, O/RM, and O/R
mapping

ORM is the process of persisting objects in a relational database such as RDBMS.
ORM bridges the gap between object and relational schemas, allowing object-
oriented applications to persist objects directly without having the need to convert
objects to and from a relational format.

ORM creates a virtual object database that can be accessed via a programming
language and simplifies the data access layer of complex enterprise applications
using a relational database as its persistence store. ORM simplifies the job of
implementing the data access layer for enterprise applications implemented
using object-oriented programming languages and the relational database as

its persistence store, as illustrated by the following figure:

Mapping
) ORM)

Relational Database
Objects in memory

ORM is about mapping object representations to JDBC statement parameters and in
turn mapping JDBC query results back to object representations. Database columns
are mapped to the instance fields of domain objects or JavaBeans' properties.

[126]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Usually, ORM doesn't work at the SQL level but rather refers its own Object Query
Language, which gets translated into SQL at runtime. The mapping information is
kept as metadata (in XML files or as annotations on mapped objects), which defines
how to map a persistent class and its fields into database tables and theirs columns.
The database dialect is configured to address database specifics. For example,

ID generation is configured in the metadata and is automatically translated into
sequences or autoincrement columns.

Until now, we have understood how ORM implementations in Java help us to
quickly implement a reliable data access layer to concentrate on other tiers of the
application. In the next section, we will understand the features of Hibernate and
their uses in a Spring application.

Introducing Hibernate

Hibernate, by definition, is an ORM solution for Java. Hibernate is an open source,
full-fledged persistence framework. It is used to map plain old Java objects
(POJOs) to the tables of a relational database and vice versa. Hibernate is used to
persist application data into a data layer. Hibernate implements Java Persistence
API (JPA), which is a set of standards that has been prescribed for any persistence
implementation and that needs to be met in order to get certified as a Java persistent
API implementation.

Hibernate sits between Java objects in memory and the relational database server
to handle the persistence of objects based on O/R mapping. Hibernate supports
almost all relational database engines such as the HSQL database engine, MySQL,
PostgreSQL, Oracle, and so on.

The object query language used by Hibernate is called Hibernate Query Language
(HQL). HQL is a SQL-like textual query language that works at the class- or field-
level. Let's start learning about the architecture of Hibernate.

[127]

www.it-ebooks.info

http://www.it-ebooks.info/

Hibernate with Spring

Hibernate architecture
In this section, we will discuss all the important elements of the Hibernate system

and see how they fit into its architecture. The following figure shows the Hibernate
architecture:

Java application

Persistent object

Hibernate

Configuration SessionFactory

Database

Hibernate makes use of various existing Java APIs such as Java Database
Connectivity (JDBC), Java Naming and Directory Interface (JNDI), and Java
Transaction API (JTA). JDBC supports functionality common to relational databases,
which allows almost any database with a JDBC driver to be supported by Hibernate,
whereas JTA and JNDI allow Hibernate to be integrated with Java EE application
servers. The basics elements of the Hibernate architecture are described in the
following sections.

[128]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Configuration

The org.hibernate.cfg.Configuration class is the basic element of the Hibernate
API, which allows us to build SessionFactory. Configuration can be thought of

as the factory class that can produce sessionFactory. The first object of Hibernate
is the configuration object, created only once during the initialization of the
application. The configuration object encapsulates the Hibernate configuration
details such as connection properties and dialect, which are used to build
SessionFactory as shown in the following figure:

-

. Session
Configuration SessionFactory Database

The hibernate.properties and hibernate.cfg.xnl files are configurations files
that are supported by Hibernate. We can use the hibernate.properties file to
specify the default values for the new configuration object.

SessionFactory

The org.hibernate.SessionFactory interface provides an abstraction for

the application to obtain the Hibernate session object. The SessionFactory
initialization process includes various operations that consume huge resources
and extra time, so it is generally recommended to use a single SessionFactory
per JVM instance. For each database, we need to have one SessionFactory using
a separate configuration file. So we have to create multiple sessionFactory if we
are using multiple databases.

The sessionFactory is a heavyweight and immutable towards the application; that
is, it is a thread safe object. It is mostly configured as a singleton in an application

so that there will be only one object per application. It is usually created during the
startup of an application and is kept for later reference. The SessionFactory is
used by all threads of the application. We can open multiple sessions using a single
SessionFactory.

[129]

www.it-ebooks.info

http://www.it-ebooks.info/

Hibernate with Spring

Session

The org.hibernate. Session interface is an interface between the Hibernate system
and the application. It is used to get the connection with a database. It is light weight
and is initiated each time an interaction is needed with the database.

Session objects are not usually thread safe and it is recommended to obtain a
separate session for each thread or transaction. After we are done using session,
it has to be closed to release all the resources such as cached entity objects and the
JDBC connection.

The session interface provides an abstraction for Java application to perform
CRUD operations on the instance of mapped persistent classes. We will look into
the methods provided by the session interface in a later section of his chapter.

Transaction

The Transaction interface is an optional interface that represents a unit of
work with the database. It is supported by most RDBMS systems. In Hibernate,
Transaction is handled by the underlying transaction manager.

Query

The org.hibernate.Query interface provides an abstraction to execute the
Hibernate query and to retrieve the results. The Query object represents the
Hibernate query built using the HQL. We will learn about the Query interface in
more detail in a later section of this chapter.

Criteria

The org.hibernate.Criteria interface is an interface to use the criterion API
and is used to create and execute object-oriented criteria queries, which is an
alternative to HQL or SQL.

The Persistent object

Persistent classes are the entity classes in an application. Persistent objects
are objects that are managed to be in the persistent state. Persistent objects
are associated with exactly one org.hibernate.Session. And once the org.
hibernate.Session is closed, these objects will be detached and will be free
to be used in any layer of the application.

[130]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Integrating Hibernate with the Spring
Framework

While using the Hibernate framework, you do not write the code to manage the
connection or to deal with statements and result sets. Instead, all the details for

accessing a particular data source are configured in the XML files and/or in the
Java annotations.

While integrating the Hibernate framework with the Spring Framework, the business
objects are configured with the help of the IoC container and can be externalized
from the application code. Hibernate objects can be used as Spring beans in your
application and you can avail all the benefits of the Spring Framework.

In this section, we will set up the Hibernate environment and create a Spring
Hibernate project in STS. The simplest way to integrate Hibernate with Spring is to
have a bean for SessionFactory and make it a singleton and the DAOs classes just
get that bean and inject its dependency and get the session from the SessionFactory.
The first step in creating a Spring Hibernate project is to integrate Hibernate and
connect with the database.

Sample data model for example code

In this chapter, we will use a PostgreSQL database. Please refer to http: //www.
postgresqltutorial.com/install-postgresqgl/ to set up a PostgreSQL database
server on your machine and download the JDBC driver for the PostgreSQL
database; we have used the postgresql-9.3-1102.7jdbc3.jar JDBC connector for
PostgreSQL.

We will create a database named ehrpayroll db that will contain a table named
employee and will populate dummy data to the table. The following is a sample data
creation script for a PostgreSQL database.

Let's first create a database for our project in the PostgreSQL database:

1. Type in the following script to create a database named ehrpayroll_db:
CREATE DATABASE ehrpayroll db

2. Now enter the given script to create a table named EMPLOYEE INFO:

CREATE TABLE EMPLOYEE INFO (
ID serial NOT NULL Primary key,
FIRST NAME varchar (30) not null,
LAST NAME varchar (30) not null,

[131]

www.it-ebooks.info

http://www.postgresqltutorial.com/install-postgresql/
http://www.postgresqltutorial.com/install-postgresql/
http://www.it-ebooks.info/

Hibernate with Spring

JOB_TITLE varchar (100) not null,
DEPARTMENT varchar (100) not null,
SALARY INTEGER

)i

3. The next script helps you populate the data for the table employee:

INSERT INTO EMPLOYEE INFO

(FIRST NAME, LAST NAME, JOB TITLE, DEPARTMENT, SALARY)
VALUES

('RAVI', 'SONI', 'AUTHOR', 'TECHNOLOGY', 5000) ;

The following figure shows the created table with the data inserted:

id first_name last_name job_title department salary
integer Jcharacter varying(30)|character varying(30)| character varying(100)| character varying(100) | integer

1 1 RAVI SONI AUTHOR TECHNOLOGY 5000

Integrating Hibernate

To integrate Hibernate, we need to perform these steps:

1. Download the Hibernate JAR and include them into the classpath. Download
(. zip file for Windows) the latest version of Hibernate from http: //www.
hibernate.org/downloads. Once you unzip the downloaded ZIP file, the
directory structure will appear as shown in the following screenshot:

MHame Date modified Type Mz
documentation 23-0ct-14 &:11 PM File folder
lib 23-0ct-14 £:01 PM File folder

project

o

changelog.bxt 23-Oct-14 £01 PM Text Document 43 KB
5| hibernate_logo.gif 23-0ct-14 4:01 PM GIF image 2 KB
lgpl. ot 23-0ct-14 401 PN Text Docurment 26 KB

2. Inside the 1ib directory, there will be a lot of directories that contain
Hibernate-related JARs, as shown in the following screenshot. The required
folder contains all the JARs you need to create a basic Java application.

[132]

www.it-ebooks.info

http://www.hibernate.org/downloads
http://www.hibernate.org/downloads
http://www.it-ebooks.info/

Chapter 4

Mame

L ENVErs

/ jpa

J optional
) o5gi
J required

/ jpa-metamodel-generator

Date modified

23-0ct-14 4:01 PM

23-0ct-14 4:01 PM

Type

File folder
File folder
File folder
File folder
File falder

File falder

Size

Once you have downloaded the Hibernate libraries, you can create a new Spring
project and add Hibernate libraries to this project using Java Build Path.

Required JARs for the Spring-Hibernate

project

We need to add the JARs required to create our Spring-Hibernate projects. These are
shown in the following screenshot:

(. antlr-2.7.6.jar
< |Executable Jar File
= |433KB
cglib-2.2,jar
Executable Jar File
272 KB
domdj-1.6.1,jar
Executable Jar File
306 KB

e

(

f

~N

e

hibernate-core-3.6.0.Final jar
5 | Executable Jar File
2.93 MB

javassist-3.12.0.GA jar
Executable Jar File
618 KB

A

postgresql-9.3-1102,jdbc3 jar
5 | Executable Jar File

526 KB
spring-asm-3,0.6.RELEASE jar
Executable Jar File

51.8KB

ASE jar
Executable Jar File

spring-jdbc-3.0,6.RELEASE.jar
Executable Jar File
376 KB

©

spring- context-support-3.0.6.RELE

&

aopalliance-1.0jar
Executable Jar File

4.36 KB
commons-collections-3.1,jar
Executable Jar File

546 KB

| h2-1.3.156jar

Executable Jar File
1.18 MB

_ | hibernate-entitymanager-3.6.0.Fina
Ljar
Executable Jar File

(l[EA

| jra-1.1.jar

> | Executable Jar File
147 KB
slfdj-api-1.6.1 jar
Executable Jar File
248 KB

spring-beans-3.0.6.RELEASE jar
Executable Jar File
543 KB

fla

spring-core-3.0.6.RELEASE jar
Executable Jar File

373KE
spring-crm-3.0.6.RELEASE, jar

Executable Jar File
326 KB

b — |

it~

.

fla

2>

=2

=2

=2

=2

(.

=2

e

E

asm-3.1,jar

Executable Jar File

2.0KB
cemmons-logging-1.1.1jar
Executable Jar File

59.2 KB
hibernate-commens-annotations-
3.2.0.Finaljar

Executable Jar File

hibernate-jpa-2.0-api-1.0.0.Final jar
Executable Jar File
98.5 KB

logdj-1.2.16,jar
Executable Jar File

b
7=
o

spring-aop-3.0.6.RELEASE jar
Executable Jar File

313 KB
spring-context-3,0.6.RELEASE jar
Executable Jar File

634 KB
spring-expression-3.0.6.RELEASE jar
Executable Jar File

165 KB

spring-tx-3.0.6.RELEASE, jar

Executable Jar File
226 KB

[133]

www.it-ebooks.info

http://www.it-ebooks.info/

Hibernate with Spring

Configuring Hibernate SessionFactory in
Spring

The Spring Framework lets us define resources such as JDBC DataSource or
Hibernate sessionFactory as a Spring bean in an application context, which
prevents the need for hardcoded resource lookups for application objects. This
defined Spring bean references are used by application objects that need to access
resources to receive the predefined instances.

The session interface in the Hibernate API provides methods to find, save, and delete
objects in a relational database. The Hibernate session is created by first creating the
SessionFactory. The Spring Framework provides a number of classes to configure
Hibernate sessionFactory as a Spring bean containing the desired properties.

For session creation, the Spring API provides the implementation of the
AbstractSessionFactoryBean subclass: the LocalSessionFactoryBean class
and the AnnotationSessionFactoryBean class. Since we will be using annotation
style, we will use the AnnotationSessionFactoryBean class, which supports
annotation metadata for mappings. AnnotationSessionFactoryBean extends the
LocalSessionFactoryBean class, so it has all the basic properties of Hibernate
integration.

In the configuration file, we have to declare the sessionFactory bean and set
dataSource, packagesToScan Or annotatedClasses, and hibernateProperties.
Let's take a look at these in detail:

* The datasource property sets the name of the data source to be accessed
by the underlying application.

* The packagesToScan property instructs Hibernate to scan the
domain object with the ORM annotation under the specified package.
The annotatedClasses property instructs Hibernate to for the
ORM-annotated class.

* The hibernateProperties property sets the configuration details for
Hibernate. We have defined only a few important properties out of many
configuration parameters that should be provided for every application.

[134]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The following table describes these properties:

Property Description

hibernate.dialect Hibernate uses this property to generate the
appropriate SQL optimized for the chosen
relational database. Hibernate supports SQL
dialects for many databases, and the major dialects
include PostgreSQlLDialect, MySQLDialect,
H2Dialect, OraclelOgDialect, and so on.

hibernate.max fetch depth | This property is used to set the maximum depth
for the outer join when the mapping object is
associated with other mapped objects. This
property is used to determine the number of
associations Hibernate will traverse by join when
fetching data. The recommended value lies
between 0 and 3.

hibernate.jdbc.fetch size | This property is used to set the total number of
rows that can be retrieved by each JDBC fetch.

hibernate.show sgl This property file is used to output all SQL to the
log file or console, which is an alternative to set log
to debug and troubleshooting process. It can be set
to either True or False.

Refer to the Hibernate reference manual for the full list of Hibernate properties
at http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/
session-configuration.html.

XML Spring configuration for Hibernate

Spring beans, the data source, a SessionFactory, and a transaction manager bean
are configured in the app-context .xml file. You should adapt your Hibernate beans
according to the project requirements.

Here is an implementation of app-context .xml. In the following configuration file,
we have declared several beans to support the Hibernate sessionFactory:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns:context="http://www.springframework.org/schema/context"
xmlns:tx="http://www.springframework.org/schema/tx"

xmlns:jdbc="http://www.springframework.org/schema/jdbc"
xsi:schemalocation="

[135]

www.it-ebooks.info

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/session-configuration.html
http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/session-configuration.html
http://www.it-ebooks.info/

Hibernate with Spring

http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc-3.0.xsd

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.0.xsd

http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-
3.0.xsd">

In the following code snippet, we have instructed Spring to scan the component under
thepackageorg.packt.spring.chapter6.hibernate1Hﬁngcomponent—scan

<context:annotation-config />

<context :component-scan base-
package="org.packt.spring.chapter6.hibernate" />

The property-placeholder will refer to the hibernate.properties file, as shown
in the following code snippet:

<context :property-placeholder

location="classpath:/META-
INF/spring/hibernate.properties" />

In the following code snippet, the dataSource bean is declared to provide database
connection details to Hibernate:

<bean id="dataSource"

class="org.springframework.jdbc.datasource.
DriverManagerDataSource">

<property name="driverClassName"
value="${jdbc.driverClassName}" />

<property name="url" value="${jdbc.url}" />

<property name="username" value="${jdbc.username}" />

<property name="password" value="${jdbc.password}" />
</beans>

The sessionFactory bean is declared in the following code snippet.

The Hibernate sessionFactory bean is the most important part. We have

used AnnotationSessionFactoryBean to support the Hibernate annotation.

We have injected the dataSource bean into sessionFactory. We have instructed
Hibernate to scan for the ORM annotated object. And then we have provided the
configuration details for Hibernate using hibernateProperties, as shown here:

[136]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

<bean id="sessionFactory"

class="org.springframework.orm.hibernate3.
annotation.AnnotationSessionFactoryBean">

<property name="dataSource" ref="dataSource" />
<property name="annotatedClasses"

value="org.packt.spring.chapter6.hibernate.model.Employee" />
<property name="hibernateProperties">

<propss>
<prop
key="hibernate.dialect">${hibernate.dialect}</prop>
<prop
key="hibernate.show_sqgl">${hibernate.show sgl}</prop>
</props>
</property>

</beans>

In the following code snippet, we have declared the transactionManager bean.
To access transactional data, SessionFactory requires a transaction manager.
The transaction manager provided by Spring specifically for Hibernate 3 is org.
springframework.orm.hibernate3 .HibernateTransactionManager

<bean id="transactionManager"

class="org.springframework.orm.hibernate3.
HibernateTransactionManager">

<property name="sessionFactory" ref="sessionFactory" />
</beans>

The <tx:annotation-drivens is declared in the following code snippet to support
transaction demarcation requirements using annotations:

<tx:annotation-driven transaction-manager=
"transactionManager" />

</beans>

hibernate.properties

The Hibernate- and JDBC-specific properties are stored in a hibernate.properties
file, as follows:

JDBC Properties
jdbc.driverClassName=org.postgresqgl.Driver
jdbc.url=jdbc:postgresql://localhost:5432/ehrpayroll db
jdbc.username=postgres

[137]

www.it-ebooks.info

http://www.it-ebooks.info/

Hibernate with Spring

jdbc.password=sa

Hibernate Properties
hibernate.dialect=org.hibernate.dialect.PostgreSQLDialect
hibernate.show sgl=true

Annotated domain model class

The Java persistent model establishes the static relationships of the persistence model
by defining the entity component. The API defines the entity class as the object tier of
a table in the database tier. An entity instance is defined as the object tier equivalent
of a row in a database table.

The following is a table that maps Object Tier elements to Database Tier elements:

Object Tier element Database Tier element
Entity class Database table

Field of entity class Database table column
Entity instance Database table row

Hibernate annotation provides the metadata for object and relational table mapping.
This metadata is clubbed into a POJO file that helps users understand the code inside
POJO as well as the table structure simultaneously while developing. Hibernate
provides JPA implementation, which allows the user to use JPA annotation in model
beans. The JPA annotations are explained in the following table:

JPA annotation Description

@Entity The javax.persistence.Entity annotation declares a
class as an entity bean that can be persisted by Hibernate,
since Hibernate provides JPA implementation.

@Table The javax.persistence.Table annotation can be
used to define table mapping. It provides four attributes
that allows us to override the table name, its catalogue,
and its schema.

@Id The javax.persistence. Id annotation is used
to define the primary key, and it will automatically
determine the appropriate primary key generation
strategy to be used.

[138]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

JPA annotation Description

@GeneratedvValue * The javax.persistence.Generatedvalue
annotation is used to define that the field will be
autogenerated

» It takes two parameters, strategy and generator

* The GenerationType.IDENTITY strategy is used
so that the generated id value is mapped to the
bean and can be retrieved by the Java program

@Column * The javax.persistence.Column annotation is
used to map the field with the table column

* We can also specify length, nullable, and
uniqueness for the bean properties

Now it's time to write Employee. java. This class will be mapped to the Employee
table in the database using Hibernate. The Employee class fields are annotated with
JPA annotations so that we don't need to provide mapping in a separate XML file.
It should be noted that Hibernate puts emphasis on overriding the equals () and
hashCode () methods of a persistent class when used in collections (such as a list or
set) because internally Hibernate works with the objects in the session and cache.

It is recommended to implement the equals () and hashCode () methods using a
real-world key, which is a key that would identify the instance in the real world, as
shown here:

package org.packt.spring.chapter6.hibernate.model;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

import javax.persistence.Table;

@Entity
@Table (name = "EMPLOYEE INFO")
public class Employee {

@Id

@Column (name = "ID")

@GeneratedValue (strategy = GenerationType.IDENTITY)
private Integer id;

[139]

www.it-ebooks.info

http://www.it-ebooks.info/

Hibernate with Spring

@Column (name = "FIRST NAME")
private String firstName;

@Column (name = "LAST NAME")
private String lastName;

@Column (name = "JOB TITLE")
private String jobTitle;

@Column (name = "DEPARTMENT")
private String department;

@Column (name = "SALARY")
private int salary;

// constructor and setter and getter

@Override
public boolean eqguals (Object obj) {
if (this == obj) {
return true;
}
if (! (obj instanceof Employee)) {
return false;
}
Employee employee = (Employee) obj;
if (firstName != null ?
| firstName.equals (employee.firstName)
employee.firstName != null)
return false;
} else {
return true;

@Override
public int hashCode() {
return firstName != null ? firstName.hashCode() : O;
!
@Override

public String toString()
return "Employee [id=" + id + ", name=" + firstName + " "
+ lastName

[140]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

+ ", jobTitle=" + jobTitle + " department="

+ department

}

+ " salary=" + salary + "]";

}

In the preceding code snippet:

The Employee class is annotated with the @Ent ity annotation, which
will define this class as a mapped entity class. The Employee class is also
annotated with the @Table annotation that defines the table name in the
database with which this entity class will map.

The ID is annotated with the @ID annotation, which represents that ID is

the primary key of the object. Hibernate will generate the ID value based on
the @Generatedvalue annotation. The GenerationType . IDENTITY strategy
reflects that the ID will be generated by the backend (the ID column of the
EMPLOYEE_INFO table is the primary key with SERIAL specified, which means
the value of ID will be generated and assigned by the database during the
insert operation) during insert.

The name and e-mail are annotated with the @Column annotation.

If the type and attribute names are exactly the same as the name of table
and column, then we can skip the name of the table and column from the
annotation.

The Hibernate sessions

The session interface is an important interface that is required while

interacting with a database in Hibernate. The Session interface is obtained from
SessionFactory. The Session object is light weight and can be used to attain a
physical connection with a database. It is initiated each time an interaction needs

to happen with a database. Also, persistent objects are saved and retrieved through
a Session object. It is not usually thread safe, so avoid keeping it open for a long
time. They should be created and destroyed as needed. The session interface offers
create, delete, and read operations for instances of mapped entity classes.

Instances may exist in one of the following three states at a given point in time:

Transient: This state represents a new instance of persistence class that has
no representation in a database and is not associated with session.

[141]

www.it-ebooks.info

http://www.it-ebooks.info/

Hibernate with Spring

* Persistent: This state represents that the instance of a persistence class has a
representation in the database.

* Detached: In this state, the persistent object will be detached from the
database. This state will be reached once the Hibernate Session will be closed.

The Session interface methods

The session interface provides a numbers of method such as beginTransaction(),
createCriteria(), save (), delete (), and so on, which you can read about at
http://www.tutorialspoint.com/hibernate/hibernate sessions.htm.

Persistence layer — implement DAOs

The persistence layer will have the DAO. Let's create DAO classes that will interact
with the database using the Hibernate SessionFactory. The sessionFactory
implementation will be injected into the reference variable at runtime using Spring's
Inversion of Control (IoC) feature.

The EmployeeDao interface

The EmployeeDao interface declares two methods named getAllEmployees () and
insertEmployee (), as shown here:

package org.packt.spring.chapter6.hibernate.dao;

import java.util.List;
import org.packt.spring.chapteré.hibernate.model.Employee;

public interface EmployeeDao

// to get all employees
public List<Employee> getAllEmployees() ;

// to insert new employee
public void insertEmployee (Employee employee) ;

The EmployeeDaolmpl class

The EmployeeDaoImpl class is annotated with @Repository, which indicates that
this class is a DAO. It also has the @Transactional (readonly = true) annotation,
which configures this class and all its methods for read-only access:

[142]

www.it-ebooks.info

http://www.tutorialspoint.com/hibernate/hibernate_sessions.htm
http://www.it-ebooks.info/

Chapter 4

package org.packt.spring.chapter6.hibernate.dao;

import
import
import
import
import
import

java.util.List;

org.hibernate.Session;

org.hibernate.SessionFactory;
org.packt.spring.chapteré.hibernate.model .Employee;
org.springframework.beans.factory.annotation.Autowired;
org.springframework.stereotype.Repository;

@Repository

@Transactional (readOnly = true)

public

class EmployeeDaoImpl implements EmployeeDao {

@Autowired

private SessionFactory sessionFactory;

@SuppressWarnings ("unchecked")

public List<Employee> getAllEmployees() {

Session session = sessionFactory.openSession() ;
String hgl = "FROM Employee";

Query query = session.createQuery (hqgl) ;
List<Employee> emList = query.list();

return emList;

@Transactional (readOnly = false)

public void insertEmployee (Employee employee) {

}

Session session = sessionFactory.openSession() ;
session.save (employee) ;

To get a sessionFactory, we declare a member variable named sessionFactory

of type SessionFactory and annotated with the @autowired annotation that

automatically initializes the SessionFactory. The next step is to get the session
from the sessionFactory.

In order to use Hibernate in the getAl1Employees () and insertEmployees ()
method, we use a session object. The session object is obtained from a
SessionFactory. Using this session object, we can use the createQuery
method to create queries and run them.

[143]

www.it-ebooks.info

http://www.it-ebooks.info/

Hibernate with Spring

When we are finished with the session, we should close it. We needn't close it by
ourselves; the Spring Framework will do this for us.

Let's understand the methods defined in EmployeeDaoImpl class in more detail:

Querying the database - getAl1Employees () : The method
getAllEmployees () will fetch all the employee details from the Employee
table in the database and return the list of employees.

This method will get Hibernate session (Session is the main runtime
interface between Java application and Hibernate) from sessionFactory
using the openSession () method of the SessionFactory class. This session
will use the query object to call the 1ist () method that will fetch employees.

Inserting new record - insertEmployee (): The method insertEmployee ()
will insert a new record to the Employee table. This method will use the
save () method defined in the Hibernate Session to perform the INSERT
operation.

Annotate this method with @Transactional (readonly = false), which
will allow us to perform the INSERT operation.

Service layer — implement services

We have defined the Service layer, which seems redundant in this demo due to the
lack of complexity. This layer will simply take a call from the controller (in Spring
MVC) or from the main method and pass this call to the DAOs layer.

The EmployeeService interface

The EmployeeService interface declares two methods named getAllEmployees ()
and insertEmployee (), as shown here:

package org.packt.spring.chapter6.hibernate.service;

import java.util.List;

import org.packt.spring.chapteré6.hibernate.model.Employee;

public interface EmployeeService {

public List<Employee> getAllEmployees() ;

public void insertEmployee (Employee employee) ;

}

[144]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The EmployeeServicelmpl class

The EmployeeServiceImpl class will implement the EmployeeService interface and
provide a definition for the methods declared in the interface. This class has declared

a member variable named EmployeeDA0O and annotated it with the @autowired

annotation. This class is annotated with the @service annotation, which makes this

class a service class:

package org.packt.spring.chapteré6.hibernate.service;
import java.util.List;

import org.packt.spring.chapteré.hibernate.dao.EmployeeDao;
import org.packt.spring.chapter6.hibernate.model.Employee;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

@Service
public class EmployeeServiceImpl implements EmployeeService {

@Autowired
private EmployeeDao employeeDao;

public List<Employee> getAllEmployees () {
List<Employee> emList = employeeDao.getAllEmployees|() ;
return emList;

public void insertEmployee (Employee employee) {
employeeDao.insertEmployee (employee) ;

[145]

www.it-ebooks.info

http://www.it-ebooks.info/

Hibernate with Spring

Directory structure of the application

The final directory structure of the application is as follows:

4 (25 SpringHibernatelntegrationDemao
4 [src/main/resources
2 25 META-INF
a 28 spring
QHE app-contextxml
hibernate.properties
logdj.properties
4 B src/main/java
4 fB org.packt.spring
> SpringHibernateMain.java
B4 org.packt.spring.chapterf.hibernate.dac
» EmployeeDao.java
- [3% EmployeeDaclimpl java
4 [} org.packt.spring.chapterb.hibernate.model
s Employee.java
a4 fB org.packt.spring.chapterf.hibernate.service

19

> EmployeeService,java
- [3% EmployeeServicelmpl.java

B4 org.packt.spring.chapterf.hibernate.util
- [35 DBUtils java

- B8 JRE Systemn Library [jre7]

[

Running the application

Once we are done with the preceding configuration, we can write a main method to
store values from the Employee object to the database.

The DBUtils class

We have created a DBUti1s class annotated with the @Component annotation to
register this class to the Spring container as a bean. This class defined a method
named initialize () and annotated it with the @PostConstruct annotation.

The @PostConstruct annotation does not belong to Spring, it's located in the J2EE
library: common-annotations.jar. The @PostConstruct annotation is a shared
annotation that is part of a JSR for basic annotations. It comes with Java SE 6 or
newer versions. The commons-annotations. jar is the final product of the JSR APL
The @PostConstruct annotation defines a method that will be called after a bean
has been fully initialized. In other words, it will be called after bean construction
and the injection of all dependencies.

[146]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The initialize () method will get the database connection and create a table
EMPLOYEE and insert dummy data to this table. This class has been used in this
project to prevent exceptions in case we miss out on creating a table in the database.
In a real-world application, we don't need this class:

package org.packt.spring.chapter6.hibernate.util;

import java.sqgl.Connection;
import java.sqgl.SQLException;
import java.sgl.Statement;

import javax.annotation.PostConstruct;
import javax.sqgl.DataSource;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

@Component
public class DBUtils {

@Autowired
private DataSource dataSource;

@PostConstruct
public void initialize()
try {
Connection connection =
dataSource.getConnection() ;
Statement statement =
connection.createStatement () ;

statement .execute ("DROP TABLE IF EXISTS
EMPLOYEE_ INFO") ;

statement .executeUpdate ("CREATE TABLE
EMPLOYEE INFO (" +

"ID serial NOT NULL Primary key, " +
"FIRST NAME varchar(30) not null, " +
"LAST NAME varchar (30) not null, " +
"JOB_TITLE varchar(100) not null, " +
"DEPARTMENT varchar (100) not null, " +

"SALARY INTEGER)";

statement.executeUpdate ("INSERT INTO EMPLOYEE_ INFO

[147]

www.it-ebooks.info

http://www.it-ebooks.info/

Hibernate with Spring

+ "(FIRST NAME, LAST NAME, JOB TITLE,
DEPARTMENT, SALARY) "

+ "VALUES " + "('RAVI', 'SONI', 'AUTHOR',
'TECHNOLOGY', 5000)";

statement.close() ;
connection.close () ;
)

{

e.printStackTrace () ;

} catch (SQLException e

The SpringHibernateMain class

The springHibernateMain class contains the main method. The ApplicationContext

will initialize the container with the app-context .xml file we defined:

package org.packt.spring;

import org.packt.spring.chapteré6.hibernate.model.Employee;

import org.packt.spring.chapteré6.hibernate.service.EmployeeService;
import org.springframework.context.ApplicationContext;

import org.springframework.context.support.ClassPathXmlApplication
Context;

public class SpringHibernateMain
public static void main(Stringl[] args)

ApplicationContext context = new
ClassPathXmlApplicationContext (

"/META-INF/spring/app-context.xml") ;

EmployeeService employeeService = context.getBean (

"employeeServiceImpl",
EmployeeService.class) ;

// insert employee

Employee emp = new Employee() ;
emp.setFirstName ("Shree") ;
emp.setLastName ("Kant") ;
emp.setJobTitle ("Software Engineer") ;
emp . setDepartment ("Technology") ;

[148]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

emp.setSalary(3000) ;
employeeService.insertEmployee (emp) ;

// fetch all employee
for (Employee employee
employeeService.getAllEmployees ())
System.out.println (employee) ;

Output to console
Once you run the application, the following output will be expected:

Hibernate: insert into EMPLOYEE INFO (DEPARTMENT, FIRST NAME,
JOB_TITLE, LAST NAME, SALARY) values (?, ?, ?, ?, ?)

Hibernate: select employee0 .ID as IDO , employeeO .DEPARTMENT as
DEPARTMENTO , employee0 .FIRST NAME as FIRST3 0 , employee0O .JOB TITLE
as JOB4_0_, employeeO_.LAST NAME as LAST5 0_,

employee0O_.SALARY as SALARYO0 from EMPLOYEE INFO employeeO

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

Employee [id=2, name=Shree Kant, jobTitle=Software Engineer
department=Technology salary=3000]

Populated data in the Employee table

Once the application has been run successfully, the updated Employee table with all
the data will be as shown here:

id first_name last_name job_title department salary

integer| character varying(30) character varying(30) character varying(100} character varying(100) integer
1 1 RAVI SONI LUTHCOR TECHNOLOGY 5000

2 Shree Kant Software Engineer |Technoclogy 3000

In the previous sections, we discussed mapping persistent objects using Hibernate.
In the next section, we will understand HQL. Hibernate is engineered around the
object model and provides a powerful query language named HQL to define our
queries so we don't need to construct SQL to interact with the database. HQL is
similar to SQL except that we will use objects instead of table names.

[149]

www.it-ebooks.info

http://www.it-ebooks.info/

Hibernate with Spring

Hibernate Query Language

Hibernate Query Language is an object-oriented query language that works on
persistence objects and their properties instead of operating on tables and columns.
Hibernate will translate HQL queries into conventional SQL queries during the
interaction with a database.

Even though you can use SQL queries using native SQL directly with Hibernate, it
is recommended that you use HQL to get the benefits of Hibernate's SQL generation
and caching strategies.

In HQL, keywords such as SELECT, FROM, WHERE, GROUP BY, and so on are not
case sensitive but properties such as table and column names are case sensitive.
So org.packt.spring.chapter6.hibernate.model .Employee iS not same as
org.packt .spring.chapter6.hibernate.model . EMPLOYEE, whereas SELECT
is similar to Select.

The Query interface

To use HQL, we need to use Query object. The Query interface is an object-oriented
representation of HQL. The Query object can be obtained by calling the createQuery ()
method of the Session interface. The Query interface provides a number of methods
such as executeUpdate (), 1ist (), setFirstResult (), setMaxResult (), and so on.
The following code snippet uses HQL to get all records:

@Transactional
public List<Employee> getAllEmployees() {
Session session = sessionFactory.openSession() ;

String hgl = "FROM Employee";
Query query = session.createQuery (hgl) ;

<Employee> emList = query.list();
return emList;

Database operation using HQL

HQL supports clauses to perform database operation. Let's have a look at a few clauses.

[150]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The FROM clause

The FrOM clause is used to load complete persistence objects into memory. The FrROM
clause is the same as the SELECT clause in SQL, as shown in the following table:

HQL SQL
FROM Employee SELECT * from Employee

The syntax to use the FrRoM clause is as follows:

String hgl = "FROM Employee";
Query query = session.createQuery (hgl) ;
List results = query.list();

We can specify the package and class name if needed to fully qualify the class name,
as follows:

String hgl = "FROM org.packt.spring.chapteré6.hibernate.model.
Employee";

Query query = session.createQuery (hgl) ;

List results = query.list();

The expected output to the console is:

Hibernate: select employeeO .ID as IDO_, employee0O .DEPARTMENT as
DEPARTMENTO , employeeO .FIRST NAME as FIRST3 0 ,
employeeO .JOB TITLE as JOB4 0 , employeeO .LAST NAME as LAST5 0 ,
employeeO .SALARY as SALARYO from EMPLOYEE INFO employeeO

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

Employee [id=2, name=Shree Kant, jobTitle=Software Engineer
department=Technology salary=3000]

The AS clause

In HQL, the as clause is used to assign aliases to the classes when you have long
queries. The syntax to use the As clause is:

String hgl = "FROM Employee AS E";
Query query = session.createQuery (hqgl) ;
List results = query.list();

[151]

www.it-ebooks.info

http://www.it-ebooks.info/

Hibernate with Spring

The as clause is optional, so you can also specify the alias directly after the class
name as follows:

String hgl = "FROM Employee E";
Query query = session.createQuery (hgl) ;
List results = query.list();

The SELECT clause

The seLECT clause gives more control over the result set than the FrRoM clause. In
order to get some specific properties of the object instead of the complete objects, go
for the SELECT clause.

The syntax of the SELECT clause is as shown here, where it is just trying to get the
name field of the Employee object:

String hgl = "SELECT E.firstName FROM Employee E";
Query query = session.createQuery (hqgl) ;
return query.list();

In this code snippet, E. firstName is the property of the Employee object rather than
a field of the Employee table.

The WHERE clause

The WHERE clause is used to narrow the specific objects that are returned from the
storage. The syntax of the WHERE clause is:

String hgl = "FROM Employee E WHERE E.firstName='RAVI'";
Query query = session.createQuery (hqgl) ;
List results = query.list();

The expected output will be as follows:

Hibernate: select employee0O .ID as IDO , employee0O .DEPARTMENT as
DEPARTMENTO , employeeO .FIRST NAME as FIRST3 0 ,
employee0 .JOB TITLE as JOB4 0 , employeeO .LAST NAME as LAST5 0 _,
employeeO_ .SALARY as SALARYO from EMPLOYEE INFO employee(O_ where
employeeO .FIRST NAME='RAVI'

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

[152]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The ORDER BY clause

The ORDER BY clause can be used to sort the results from a HQL query by any
property of the objects in the result set, either in the ascending (ASC) or the
descending (DESC) order.

The syntax of the ORDER BY clause is as follows:

String hgl = "FROM Employee E ORDER BY E.firstName DESC";
Query query = session.createQuery (hqgl) ;
List results = query.list();

The expected output will be as follows:

Hibernate: select employee0 .ID as IDO , employee0O .DEPARTMENT as
DEPARTMENTO , employeeO .FIRST NAME as FIRST3 0 ,
employeeO .JOB TITLE as JOB4 0 , employeeO .LAST NAME as LAST5 0 ,
employee0O_.SALARY as SALARYO0 from EMPLOYEE INFO employeeO_ order
by employee0O .FIRST NAME DESC

Employee [id=2, name=Shree Kant, jobTitle=Software Engineer
department=Technology salary=3000]

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

Whenever we need to sort by more than one property in the result set, just add
those additional properties to the end of the ORDER BY clause, separated by commas,
as follows:

String hgl = "FROM Employee E ORDER BY E.firstName DESC, E.id
DESC";

Query query = session.createQuery (hqgl) ;

List results = query.list();

The expected output will be as follows:

Hibernate: select employeeO .ID as IDO , employee0O .DEPARTMENT as
DEPARTMENTO , employeeO .FIRST NAME as FIRST3 0 ,
employee0 .JOB TITLE as JOB4 0 , employeeO .LAST NAME as LAST5 0 ,
employee(O_.SALARY as SALARYO from EMPLOYEE INFO employeeO_ order
by employeeO .FIRST NAME DESC, employeeO .ID DESC

Employee [id=2, name=Shree Kant, jobTitle=Software Engineer
department=Technology salary=3000]

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

[153]

www.it-ebooks.info

http://www.it-ebooks.info/

Hibernate with Spring

The GROUP BY clause

Hibernate uses the GROUP BY clause to pull information from the database and
group them based on the value of the attribute and use the result to include an
aggregate value.

HQL supports aggregate functions such as count (*), count (distinct x), max(),
min (), avg (), and sum (). A few are listed here with descriptions:

Function Description

avg (property name) This function calculates the average of a property's value

count (property name This function counts the number of times a given

or *) property occurs in the results

max (property name) This function returns the maximum value from the group
min (property name) This function returns the minimum value from the group
sum (property name) This function returns the sum total of the property value

The syntax of the GROUP BY clause is as follows:

Session session = sessionFactory.openSession() ;

String hgl = "SELECT SUM(E.salary) FROM Employee E GROUP BY
E.firstName";

Query query = session.createQuery (hgl) ;

List<Long> grouplList = query.list();

The expected output will be as follows:

Hibernate: select sum(employeeO .SALARY) as col 0 0 from

EMPLOYEE INFO employeeO group by employeeO .FIRST NAME
Salary: 3000

Salary: 5000

Using the named parameter

Hibernate supports named parameters in HQL queries to accept input from users
and you don't have to defend against SQL injection attacks.

The syntax to use named parameters is as shown here:

Session session = sessionFactory.openSession() ;
String hgl = "FROM Employee E WHERE E.firstName =

[154]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

:employee firstName";

Query query = session.createQuery (hqgl) ;
query.setParameter ("employee firstName", "Shree");
return query.list();

The expected output will be as follows:

Hibernate: select employee0 .ID as IDO , employee0O .DEPARTMENT as
DEPARTMENTO , employeeO .FIRST NAME as FIRST3 0 ,

employee0_.JOB TITLE as JOB4_0_, employee(O_.LAST NAME as LAST5_0_,
employee(O_.SALARY as SALARYO_ from EMPLOYEE INFO employeeO_ where
employee(0_.FIRST NAME=?

Employee [id=2, name=Shree Kant, jobTitle=Software Engineer
department=Technology salary=3000]

The UPDATE clause

Hibernate supports bulk updates. The Query interface contains a method named
executeUpdate () to execute the HQL UPDATE or DELETE statement. The UPDATE
clause can be used to update one or more object's properties.

The syntax of the UPDATE clause is as shown here:

String hgl = "UPDATE Employee E set E.firstName = :name WHERE id =
:employee id";

Query query = session.createQuery(hqgl);

query.setParameter ("name", "Shashi");

query.setParameter ("employee id", 2);

int result = query.executeUpdate() ;

System.out.println("Row affected: " + result);

The expected output will be as follows:

Hibernate: update EMPLOYEE INFO set FIRST NAME=? where ID=?

Row affected: 1

The DELETE clause

To delete one or more objects, you can use the DELETE clause. The syntax of the
DELETE clause is as shown here:

String hgl = "DELETE from Employee E WHERE E.id = :employee id";
Query query = session.createQuery (hqgl) ;
query.setParameter ("employee id", 2);

[155]

www.it-ebooks.info

http://www.it-ebooks.info/

Hibernate with Spring

int result = query.executeUpdate() ;
System.out.println("Row affected: " + result);

The expected output will be as follows:

Hibernate: delete from EMPLOYEE INFO where ID=?
Row affected: 1
Pagination using Query

HQL supports pagination, where we can construct a paging component in our
application. The Query interface supports two methods for pagination:

Method Description

Query This method takes an argument of type int, which
setFirstResult (int represents the result to be retrieved. The row in the
startPosition) result set starts with 0.

Query This method takes an argument of type int, and
setMaxResults (int is used to set a limit on the maximum number of
maxResult) objects to be retrieved.

The following code snippet will fetch one row at a time:

String hgl = "FROM Employee";

Query query = session.createQuery (hgl) ;
query.setFirstResult (0) ;
query.setMaxResults (1) ;

return query.list();

The expected output will be as follows:

Hibernate: select employee0 .ID as IDO , employee0O .DEPARTMENT as
DEPARTMENTO , employeeO .FIRST NAME as FIRST3 0 _,
employee0 .JOB TITLE as JOB4 0 , employeeO .LAST NAME as LAST5 0 ,

employee0 .SALARY as SALARYO from EMPLOYEE INFO employee(O limit
?

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

[156]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Hibernate Criteria Query Language

There is an alternative way provided by Hibernate to manipulate objects and in turn
the data available in an RDBMS table. A Java programmer might feel it is easier to
use Hibernate Criteria Query Language (HCQL) as it supports methods to add
criteria on a query.

The Criteria interface

We can build a criteria object using the criteria interface, where we can apply
logical conditions and filtration rules. The Session interface of Hibernate provides the
createCriteria () method to create a Criteria object that returns an instance of a
persistence object's class when your application executes a criteria query.

The following is a list of commonly used methods from the criteria interface:

Method Description

public Criteria add(Criterion c) This method is used to add restrictions

public Criteria addOrder (Order o) | This method is used to specify ordering

public Criteria This method is used to specify the first

setFirstResult (int firstResult) number of record to be retrieved

public Criteria setMaxResult (int This method is used to specify the total

totalResult) number of records to be retrieved

public List list () This method returns the list containing
the object

public Criteria This method is used to specify the

setProjection (Projection projection

projection)

The following code snippet retrieves all the objects that correspond to the Employee
class using the criteria query:

public List<Employee> getAllEmployees() {

Session session = sessionFactory.openSession() ;

Criteria criteria = session.createCriteria (Employee.class) ;
List<Employee> emList = criteria.list();

return emList;

}

[157]

www.it-ebooks.info

http://www.it-ebooks.info/

Hibernate with Spring

The expected output will be as follows:

Hibernate: select this .ID as IDO 0 , this .DEPARTMENT as
DEPARTMENTO 0 , this .FIRST NAME as FIRST3 0 0 , this .JOB TITLE

as JOB4_0 0 , this .LAST NAME as LAST5 0 0 , this .SALARY as

SALARY0 0_ from EMPLOYEE_ INFO this

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

Employee [id=2, name=Shree Kant, jobTitle=Software Engineer
department=Technology salary=3000]

Restrictions with Criteria

Restrictive classes provide methods that we can use as Criteria. Let's have a look at
a few of them.

The eq method

The eq method will set the equal constraint to a given property.

The syntax of this method is:

public static SimpleExpression eq(String propertyName,Object
value)

The following code snippet shows the use of the eq method retrieving all the records
of the Employee table whose salary is equal to 5000:

Session session = sessionFactory.openSession() ;

Criteria criteria = session.createCriteria (Employee.class) ;
criteria.add(Restrictions.eqg("salary", 5000)) ;
List<Employee> emList = criteria.list();

The expected output will be as follows:

Hibernate: select this .ID as IDO 0 , this .DEPARTMENT as
DEPARTMENTO 0 , this .FIRST NAME as FIRST3 0 0 , this .JOB TITLE
as JOB4 0 0 , this .LAST NAME as LAST5 0 0 , this .SALARY as
SALARYO 0 from EMPLOYEE INFO this where this .SALARY=?

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

[158]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The gt method

This method sets the greater than constraint to a given property. The syntax of this
method is:

public static SimpleExpression gt (String propertyName,Object
value)

The following code snippet shows the use of the gt method retrieving all the records
of the Employee table whose ID is greater than 1:

Session session = sessionFactory.openSession() ;

Criteria criteria = session.createCriteria (Employee.class) ;
criteria.add(Restrictions.gt ("id", 1)) ;

List<Employee> emList = criteria.list();

The expected output will be as follows:

Hibernate: select this .ID as IDO 0 , this .DEPARTMENT as
DEPARTMENTO 0 , this .FIRST NAME as FIRST3 0 0 , this .JOB TITLE

as JOB4 0 0 , this .LAST NAME as LAST5 0 0 , this .SALARY as

SALARY0 0_ from EMPLOYEE_ INFO this where this_ .ID>?

Employee [id=2, name=Shree Kant, jobTitle=Software Engineer
department=Technology salary=3000]

The It method

This method sets the less than constraint to a given property. The syntax of this
method is:

public static SimpleExpression 1t (String propertyName,Object
value)

The following code snippet shows the use of the 1t method retrieving all the records
of the Employee table whose id is lesser than 3:

Session session = sessionFactory.openSession() ;

Criteria criteria = session.createCriteria (Employee.class) ;
criteria.add(Restrictions.lt ("id", 2));

List<Employee> emList = criteria.list();

[159]

www.it-ebooks.info

http://www.it-ebooks.info/

Hibernate with Spring

The expected output will be as follows:

Hibernate: select this .ID as IDO 0 , this .DEPARTMENT as
DEPARTMENTO 0 , this .FIRST NAME as FIRST3 0 0 , this .JOB TITLE

as JOB4 0 0 , this .LAST NAME as LAST5 0 0 , this .SALARY as

SALARY0 0_ from EMPLOYEE_ INFO this_ where this .ID<?

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

The like method

This method sets the 1ike constraint to a given property. The syntax of this method is:

public static SimpleExpression like (String propertyName, Object
value)

The following code snippet shows the use of the 1ike method retrieving all the
records of the Employee table whose £irstName property is like RAVI:

Session session = sessionFactory.openSession() ;

Criteria criteria = session.createCriteria (Employee.class) ;
criteria.add (Restrictions.like ("firstName", "RAVI"));
List<Employee> emList = criteria.list();

The expected output will be as follows:

Hibernate: select this .ID as IDO 0 , this .DEPARTMENT as
DEPARTMENTO 0 , this .FIRST NAME as FIRST3 0 0 , this .JOB TITLE
as JOB4 0 0 , this .LAST NAME as LAST5 0 0 , this .SALARY as
SALARYO 0 from EMPLOYEE INFO this where this .FIRST NAME like ?

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

The ilike method

This method sets the ilike constraint to the given property and is case sensitive.
The syntax of this method is:

public static SimpleExpression ilike (String propertyName, Object
value)

The following code snippet shows the use of the i1ike method retrieving all the
records of the Employee table whose firstName property is like RAVI:

Session session = sessionFactory.openSession() ;
Criteria criteria = session.createCriteria (Employee.class) ;

criteria.add(Restrictions.ilike("firstName", "RAVI")) ;
List<Employee> emList = criteria.list();
[160]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The expected output will be as follows:

Hibernate: select this .ID as IDO 0 , this .DEPARTMENT as
DEPARTMENTO 0 , this .FIRST NAME as FIRST3 0 0 , this .JOB TITLE

as JOB4 0 0 , this .LAST NAME as LAST5 0 0 , this .SALARY as

SALARY0 0_ from EMPLOYEE_ INFO this where this .FIRST NAME ilike ?

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

The between method
This method sets the between constraint. The syntax of this method is:

public static Criterion between (String propertyName, Object low,
Object high)

The following code snippet shows the use of the between method retrieving all the
records of the Employee table whose salary is between 4000 and s000:

Session session = sessionFactory.openSession() ;

Criteria criteria = session.createCriteria (Employee.class) ;
criteria.add(Restrictions.between("salary", 4000,5000)) ;
List<Employee> emList = criteria.list();

The expected output will be as follows:

Hibernate: select this .ID as IDO 0 , this .DEPARTMENT as
DEPARTMENTO 0 , this .FIRST NAME as FIRST3 0 0 , this .JOB TITLE

as JOB4 0 0 , this .LAST NAME as LAST5 0 0 , this .SALARY as
SALARY0 0 from EMPLOYEE INFO this where this .SALARY between ? and ?

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

The isNull method

This method sets the isNull constraint to the given property. The syntax of this
method is:

public static Criterion isNull (String propertyName)

The following code snippet shows the use of the isNull method retrieving all the
records of the Employee table whose salary is null:

Session session = sessionFactory.openSession() ;

Criteria criteria = session.createCriteria (Employee.class) ;
criteria.add(Restrictions.isNull ("salary"));

List<Employee> emList = criteria.list();

[161]

www.it-ebooks.info

http://www.it-ebooks.info/

Hibernate with Spring

The expected output will be as follows:

Hibernate: select this .ID as IDO 0 , this .DEPARTMENT as
DEPARTMENTO 0 , this .FIRST NAME as FIRST3 0 0 , this .JOB TITLE

as JOB4 0 0 , this .LAST NAME as LAST5 0 0 , this .SALARY as

SALARY0 0 _ from EMPLOYEE INFO this where this .SALARY is null

The isNotNull method

This method sets the isNotNull constraint to the given property. The syntax of this
method is:

public static Criterion isNotNUll (String propertyName)

The following code snippet shows the use of the isNotNull method retrieving all the
records of the Employee table whose salary is not null:

Session session = sessionFactory.openSession() ;

Criteria criteria = session.createCriteria (Employee.class) ;
criteria.add(Restrictions.isNotNull ("salary")) ;
List<Employee> emList = criteria.list();

The expected output will be as follows:

Hibernate: select this .ID as IDO 0 , this .DEPARTMENT as
DEPARTMENTO 0 , this .FIRST NAME as FIRST3 0 0 , this .JOB TITLE

as JOB4 0 0 , this .LAST NAME as LAST5 0 0 , this .SALARY as

SALARY0 0 from EMPLOYEE INFO this where this .SALARY is not null

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

Employee [id=2, name=Shree Kant, jobTitle=Software Engineer
department=Technology salary=3000]

The And or OR condition

LogicalExpression restrictions can be used to create AND or OR conditions as
discussed in the following section.

Restrictions.and
The following code snippet shows the and condition:
Session session = sessionFactory.openSession() ;

Criteria criteria = session.createCriteria (Employee.class) ;
Criterion salary = Restrictions.eq("salary", 5000);

[162]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Criterion firstName = Restrictions.like("firstName", "RAVI") ;
LogicalExpression andExp = Restrictions.and(salary, firstName) ;
criteria.add (andExp) ;

List<Employee> emList = criteria.list();

The expected output will be as follows:

Hibernate: select this_ .ID as IDO_0_, this .DEPARTMENT as
DEPARTMENTO 0 , this .FIRST NAME as FIRST3 0 0 , this_ .JOB TITLE
as JOB4 0 0 , this .LAST NAME as LAST5 0 0 , this .SALARY as
SALARY0 O from EMPLOYEE INFO this where (this .SALARY=? and
this .FIRST NAME like ?)

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

Restrictions.or
The following code snippet shows the or condition:

Session session = sessionFactory.openSession() ;

Criteria criteria = session.createCriteria (Employee.class) ;
Criterion jobTitle = Restrictions.eg("jobTitle", "AUTHOR") ;
Criterion firstName = Restrictions.like("lastName", "Kant");
LogicalExpression orExp = Restrictions.or (jobTitle, firstName) ;
criteria.add (orExp) ;

List<Employee> emList = criteria.list();

The expected output will be as follows:

Hibernate: select this_.ID as IDO_O_, this .DEPARTMENT as
DEPARTMENTO 0 , this .FIRST NAME as FIRST3 0 0 , this_ .JOB TITLE
as JOB4 0 0 , this .LAST NAME as LAST5 0 0 , this .SALARY as
SALARY0 O from EMPLOYEE INFO this where (this .JOB TITLE=? or
this .LAST NAME like ?)

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

Employee [id=2, name=Shree Kant, jobTitle=Software Engineer
department=Technology salary=3000]

[163]

www.it-ebooks.info

http://www.it-ebooks.info/

Hibernate with Spring

Pagination using Criteria
HCQL supports pagination, where we can construct a paging component in our
application. The criteria interface supports two methods for pagination:

Method Description

Public Criteria This method takes an argument of type int,

setFirstResult (int which represents the result to be retrieved.

startPosition) The row in the result set starts with 0.

Public Criteria This method takes an argument of type int,

setMaxResults (int maxResult) and is used to set a limit on the maximum
number of objects to be retrieved.

The following code snippet will fetch two rows at a time:

Session session = sessionFactory.openSession() ;

Criteria criteria = session.createCriteria (Employee.class) ;
criteria.setFirstResult (0) ;

criteria.setMaxResults (2) ;

List<Employee> emList = criteria.list();

Sorting the results

The org.hibernate.criterion.Order class of the criteria API can be used to
sort your results in either ascending or descending order, according to one of the
objects' properties.

* public static Order asc(String propertyName): This method applies
the ascending order based on a given property

* public static Order desc(String propertyName): This method applies
the descending order based on a given property

The following code snippet will order the result by ID in descending order:

Session session = sessionFactory.openSession() ;

Criteria criteria = session.createCriteria (Employee.class) ;
criteria.addOrder (Order.desc ("id")) ;

List<Employee> emList = criteria.list();

The expected output will be as follows:

Hibernate: select this .ID as IDO 0 , this .DEPARTMENT as
DEPARTMENTO 0 , this .FIRST NAME as FIRST3 0 0 , this .JOB TITLE

as JOB4 0 0 , this .LAST NAME as LAST5 0 0 , this .SALARY as

SALARY0 O from EMPLOYEE INFO this order by this .ID desc

[164]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Employee [id=2, name=Shree Kant, jobTitle=Software Engineer
department=Technology salary=3000]

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR department=TECHNOLOGY
salary=5000]

Exercise
Q1. What is ORM?

Q2. Explain the basic elements of the Hibernate architecture.

Q3. What is HQL?

1
[QQ The answers to these are provided in Appendix A,]

Solution to Exercises.

Summary

In this chapter, you learned about ORM and understood the various properties

of Hibernate in detail. Then we discussed the important elements of the Hibernate
architecture. We have successfully configured Hibernate with the Spring application.
We have covered a few pieces of Hibernate functionalities and its features. For
better understanding of Hibernate, refer to the Hibernate documentation at
http://hibernate.org/.

You also learned how to use HQL and HCQL to query persistent objects. HQL is
the most powerful query language to retrieve objects using different conditions.
HCQL provides an object-oriented manner to retrieve persistent objects.

In the next chapter, you will look at Spring MVC. You will learn how to implement
the web tier and the Spring services provided to implement the Web Tier.

[165]

www.it-ebooks.info

http://hibernate.org/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MVC Framework

The presentation layer in an enterprise application is the front door to your application.
It provides users a visual view of the information as well as allowing them to perform
business functions provided and managed by the application. The development of

the presentation layer is a challenging task these days because of the rise of cloud
computing and different kinds of devices that people are using. Many technologies
and frameworks have evolved to develop enterprise web applications, such as

Spring Web MVC, Java Server Faces (JSF), Struts, Google Web Toolkit (GWT), and
jQuery. These provide rich component libraries that can help develop interactive web
frontends. Many frameworks also provide widget libraries and tools targeting mobile
devices, including tables and smartphones.

The Spring Web Model View Controller (MVC) framework supports web
application development by providing comprehensive and intensive support.

The framework is flexible, robust, and well-designed and is used to develop web
applications. It is designed in such a way that development of a web application is
highly configurable into Model, View, and Controller. In the MVC design pattern,
Model represents the information (data) of a web application; View represents the
User Interface (UI) components, such as checkbox, textbox, and so forth that are
used to display web pages; and Controller processes the user request.

The Spring MVC framework helps in integrating other frameworks, such as Struts
and WebWork, with a Spring application. This framework also supports the
integration of other view technologies such as Java Server Pages (JSP), FreeMarker,
Tiles, and Velocity in a Spring web application.

[167]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

The Spring MVC module provides the MVC framework to develop web applications.
In this chapter, we will cover the following topics:

Spring MVC: We will introduce Spring MVC architecture and discuss
how we can use the powerful features provided by Spring MVC to develop
well-performing web applications. We will also write our first Spring Web
MVC application.

Spring MVC and Hibernate ORM framework: We will integrate the
Hibernate ORM framework with Spring MVC to fetch data from the database.

Exception handling: We will discuss how to configure exception handling
in Spring that will be supported by all controllers and error pages to display
custom messages to the user.

i18n (internationalization): We will discuss how to use Spring MVC
to develop a web application that supports common web application
requirements, including i18n (internationalization).

Handling form with controller: We will develop a Spring MVC application
that will handle the Spring form and allow the user to submit the form.

In this chapter, we will first briefly introduce MVC as a pattern in web applications
and its architecture. Then, we will discuss the Front Controller Design Pattern,
which is a prerequisite to understanding Spring MVC. Next, we will look into the
high-level view of Spring MVC and its architecture. Finally, we will create our first
Spring MVC application.

The list of topics covered in this chapter is as follows:

MVC architecture and separation of concern
Front Controller Design Pattern

Understanding Spring MVC

Developing a simple Spring MVC application
Dispatcher servlet in Spring MVC

Spring configuration: SpringDispatcher-servlet.xml
Controller in Spring MVC

Model in Spring MVC

Spring MVC with Hibernate integration
Exceptional handling using eControllerAdvice
Spring MVC internationalization (i18n)

Handling form with controller

[168]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The MVC architecture and separation
of concern

Separation of concern is the process of splitting functionality into distinct features

as little as possible. MVC is an architectural pattern used in the development of web
applications; it provides separation of concern in the architecture of an application
and separates it into three software modules that communicate with each other using
a relatively simple interface. The model holds the business entities that can be passed
to the View via Controller to expose them to the end user. The View is independent
of the Model and Controller; it represents the presentation form of an application.
The Controller is independent of the Model and View with the sole purpose of
handling requests and performing business logic. Thus, the model (business entities),
controllers (business logic), and views (presentation logic) lie in logical/ physical
layers, independent of each other.

The presentation layer of an application is commonly implemented using the MVC
pattern. MVC offers more organized and maintainable code. It is popularly known as
a software design pattern used to develop web applications. The three components
of MVC are:

* Model: The Model represents the business entity on which the application's
data is stored. It is the conceptualization of the objects that the user works
with and the mapping of those concepts into data structures: the user model
and data model.

* View: The View is responsible for preparing the presentation for the client
based on the outcome of the request processing, without including any
business logic. It renders the model data into the client's user interface type.

* Controller: The Controller is responsible for controlling the flow request to
response flow in the middleware. It invokes backend services for businesses
after receiving a request from the user, and updates the model. It prepares
models for the View to present. It is also responsible for determining which
view should be rendered.

[169]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

The following figure illustrates Model, View, and Controller:

Controller
Request Processing
— Data Validation
Model ¢ > ‘
f—
Browser Business Logic ‘
Data Manipulation
Database
View

Response Generation

The preceding figure shows MVC in a web application. The Controller is typically
used to process requests from the client and forward requests for changes to the
Model. The View code accesses the Model to render the response to the client.

Front Controller Design Pattern

A pattern represents the strategies that allow programmers to share their
knowledge about recurring problems and their solutions. As we have seen in
the previous section, the MVC pattern separates the user interface logic from
the business logic of web applications. When we want to achieve reusability and
flexibility while avoiding duplication and decentralization, we should structure
the controller for a very complex web application in the best possible manner.

The Front Controller is used at the initial point of contact to handle all Hyper
Text Transfer Protocol (HTTP) requests; it enables us to centralize logic to avoid
duplicate code, and manages the key HTTP request-handling activities, such as
navigation and routing, dispatch, and context transformation. The front controller
design pattern enables centralizing the handling of all HTTP requests without
limiting the number of handlers in the system.

The Front Controller does not just capture HTTP requests; it also initializes some of
the very important components of the framework to run, as shown in the following
figure. It helps in loading the map of URLs and the components that need to be
invoked when a request lands with the URLs. It can also load some of the other
components, such as views.

[170]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Service Call \

e .

Invokes Service Layer
Controller

Controller I

Request

Persistence Layer

—l
Model
M—

]
/] S

Browser Response

Front Controller

The preceding figure illustrates the front controller design pattern in web
applications. The user/browser will interact with only one controller, which is the
front controller. The front controller intercepts the user request, performs common
functionality, and dispatches the request to the respective controller based on

web application configuration and HTTP request information. The controller then
interacts with the service layer to perform business logic and persistence logic. Then
it updates the model, and the view renders the model data to generate presentation
view and return the view to the user. The front controller responds to the client in
the form of a view.

In Spring MVC, the Dispatcher Servlet acts as a front controller. As we have
discussed about the MVC and the front controller, which are the important to
understand the Spring MVC framework, starting with Spring MVC framework
followed by its architecture and its elements.

Understanding Spring MVC

A web application developed using the Spring MVC framework is easier to develop,
understand, and maintain. Spring MVC is an open source framework; it allows us

to download the source code and modify it to support user extensions according to
requirements. Its code is exposed to the developer and this enables fast development
and maintenance cycle. As a result, we can expect a quick result from the Spring
team in fixing the bugs and responding to new requirements in the market.

The Spring MVC framework is implemented using standard Java technologies such
as Java, Servlet, and JSP. Thus, we are allowed to host Spring MVC projects on any
Java enterprise web server just by including the Spring JAR files into the 1ib of our
web application/ project.

[171]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

The Spring MVC module in the Spring Framework provides comprehensive support
for the MVC design for features such as i18n, theming, validation, and so on, to ease
the implementation of the presentation layer.

The Spring MVC framework is designed around a DispatcherServlet. The
DispatcherServlet dispatches the HTTP request to the handler, which is a very
simple Controller interface. Spring MVC allows us to use any form object or
command object. Struts built around required base classes such as Action class and
ActionForm class; however, the Spring MVC application doesn't need to implement
a framework-specific interface or base class.

Features of the Spring MVC framework

The Spring MVC framework provides a set of the following web support features:

* Powerful configuration of framework and application classes: The Spring
Web MVC framework provides straightforward and powerful configuration
of the framework as well as of application classes such as JavaBeans.

* Itallows easier testing. Most of the Spring classes are designed as JavaBeans,
which enables you to inject the test data using the setter method of these
JavaBeans classes. The Spring MVC framework also provides classes to
handle HTTP requests, which make the unit testing of the web application
much simpler.

* It allows separation of roles. Each component of a Spring MVC framework
performs a different role during request handling. A request is handled
by components such as the controller, Validator, Model Object, View
Resolver, and HandlerMapping interfaces. The whole task is dependent
on these components and provides a clear separation of roles.

* No need for the duplication of code. In the Spring MVC framework, we
can use the existing business code in any component of the Spring MVC
application. Therefore, no duplicity of the code arises in a Spring MVC
application.

* It allows specific validation and binding. Validation errors are displayed
when any mismatched data is entered in a form.

[172]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Flow of request handling in Spring MVC

The DispatchersServlet is the front controller for the Spring MVC application,
providing centralized access to the application for various requests and collaborating
with various other objects to complete the request handling and present the

response to the client. In Spring MVC, the DispatchersServlet receives requests
and dispatches requests to the appropriate controller. There can be any number of
DispatcherServlet in a Spring application to handle user interface requests or
Restful-WS requests, as shown in the following figure. Each DispatcherServlet
uses its own WebApplicationContext configuration to locate the various objects
registered in the Spring container, such as the controller, handler mapping, view
resolving, i18n, theming, type conversion and formatting, validation, and so on.

Local Resolution
Handler
and
Theme Resolution Mapping
Request
Reques;|\ JV
Request

—Request% Filter ') Dispatcher LN
“<—Response— — Servlet ~~—

Controller

Controller

Meodel and View

View Name

Response Model View

View
) Resolver
View

The preceding figure shows the flow of request handling in Spring MVC, along with
its components. They are explained as follows:

* Filter: The Filter component applies to every HTTP request. In the preceding
sections, we will describe the commonly used filters and their purposes.

* DispatcherServlet: The Servlet intercepts and analyzes the incoming HTTP
request and dispatches them to the appropriate controller to be processed.
It is configured in the web . xml file of any web application.

[173]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

* Local resolution and theme resolution: The configuration of i18n and
themes is defined in Dispatcherservlet file's WebApplicationContext. It
provides support to every request.

* Handler mapping: This maps the HTTP request to the handler, that is, a
method within a Spring MVC controller class, based on the HTTP paths
expressed through the @RequestMapping annotation at the method or type
level within the controller class.

* Controller: The Controller in Spring MVC receives requests from the
DispatcherServlet class and performs some business logic in accordance
with the client.

* ViewResolver: The viewResolver interface of Spring MVC supports
view resolution based on the view name returned by controller. The
URLBasedViewResolver class supports the direct resolution of view name to
URLs. The contentNegotiatingViewResolver class supports the dynamic
resolution of views based on the media type supported by the client, such as
PDF, XML, JSON, and so on.

* View: In Spring MVC, the View components are user-interface elements,
such as textbox items and many others, which are responsible for displaying
the output of a Spring MVC application. Spring MVC provides a set of tags
in the form of a tag library, which is used to construct views.

Whenever an HTTP request from a browser comes to a Spring MVC application, it
is first intercepted by DispatcherServlet, which acts like the front controller for

a Spring MVC application. The DispatcherServlet class intercepts the incoming
HTTP request and determines which controller handles the request, and then sends
the HTTP request to a Spring MVC controller.

The controller implements the behavior of the Spring MVC application. The
controller receives the request from the DispatcherServlet class and performs
some business logic in accordance with the client request. A Spring MVC application
may have several controllers, and to decide on the controller to send the request,
DispatcherServlet takes help from one or more handler mappings. The handler
mapping makes its decision based on the URL carried by the request.

[174]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

After the business logic is performed by controller, some information referred to

as the model is generated, that needs to be carried back to the client and display in
the browser. But it is not sufficient to send raw information to the client. So the raw
information needs to be given to the view, which can be JSP or FreeMarker. The
Controller also packages up the model data and identifies the view name that will
render the output. Then, it sends the request along with view name and model back
to DispatcherServiet.

The DispatcherServlet class consults the view resolver to map the view name to
a specific view implementation, which may or may not be JSP, FreeMarker, JSON,
Thymeleaf, and so on. A good point here is that Spring is agnostic of the view
technology. So, at this point, the request job is almost over and Dispatcherservlet
knows about the view which will render the result. It delivers the model data to the
view component, and the request job is finally done here. This model data will be
used by the view to render the output, which will be carried back by the response
object to the client.

Developing a simple Spring MVC
application

Let's create a simple Spring MVC application. Here, we will create the application
in simple steps using Spring Source Tool (STS) IDE, which will display "Hello
World!!" in the browser. The details of MVC components will be discussed later

in the following sections. Here, we will create a Maven Project in STS IDE. In a
Maven project, we can provide dependencies in pom.xml, rather than downloading
and adding the JARs to the project. For the first time, an Internet connection is
required in order to get JARs downloaded automatically to the .m2 folder. For more
understanding on Maven, please refer to the book Instant Apache Maven Starter,
Maurizio Turatti and Maurizio Pillitu, Packt Publishing.

Creating a new Maven project

Take a look at the following instructions to create a new Maven project:

1. Navigate to File | Project | Maven.

[175]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

2. Select Maven Project, and hit the Next button.

Select a wizard

Create a Maven Project

Wizards:

|type filter text

I = JPA

4 [= Maven
‘:j‘ Checkout Maven Projects from 5CM
1% Maven Module
@ Maven Project

I+ [Plug-in Development

3. Under Select project name and location, the Create a simple project (skip

archetype selection) option should be unchecked. Click on the Next button
to continue with default values.

New Maven project
Select project name and location

[liCreate a simple project (skip archetype selection);

Use default Workspace location

Location: G:\Webdriver\springexample

[Add project(s) to working set

Warking set:

¥ Advanced

[176]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Now we need to add Maven archetype to create a web application. To add
the archetype, click on Add Archetype and set Archetype Group Id to org.
apache.maven.archetypes and Archetype Artifact Id to maven-archetype-
webapp. Set Archetype Version to 1. 0. Then, click on OK to continue.

c New Maven Project - olES

New Maven project -
€ Mo archetypes cumrently available. The archetype list will refresh when the indexes finish L

_ updating.
Catalog: | Mexus Indexer ¥ [Sonfigure...|
Filter: ®

Group ld Artifact Id Version

Archetype Group Id: | org.apache.maven.archetypes

Archetype Artifact Id: | maven-archetype-webapp

Archetype Version: '

Repository URL:
[+] Show the last version of Archetype only Include snapshot archetypes Add Archetype...
» Advanced
[1771]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

5. On the Specify Archetype parameter page wizard, we can define the main
package of project. Set the Group Id to org.packt.Spring.chapter7.
springmvc and the Artifact Id to SpringMvCPayrollSystem. Click on the
Finish button to exit the wizard and to create the project.

New Maven project
Specify Archetype parameters

Group ld: org.pacI-rt.épring.chapter?.springmvc
Artifact Id: | SpringMVCPayroliSystem
Version: | 0.0.1-SNAPSHOT vl

Package: I org.packt.Spring.chapter7.spri n.g Ve

Properties available from archetype:

WValue

Nest > Finish } | Cancel

Finally, the Maven project will be created as shown in the following screenshot:

Pl :;‘J SpringMVCPayrollSystem
8 src/main/java
® src/main/resources
;- = JRE System Library [J25E-1.3]
- =i Maven Dependencies
4 [= src
4 = main
4 (= webapp
4 (= WEB-INF
1X] webxml
index.jsp
I = target
[pomami

[178]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

As seen in the preceding screenshot, the SpringMvCPayrollSystem project contains:

* /src/main/java: This folder contains the project's source files
* /src/main/resources: This folder contains the configuration files
* /target: This folder contains compiled and packaged deliverables

* /src/main/webapp/WEB-INF: This folder contains the web application's
deployment descriptors

* pom.xml: This is the Project Object Model (POM) file; it is the single file that
contains all project-related configurations

Adding Spring MVC dependencies to pom.xml

To add the Spring MVC dependencies to Maven's pom.xm1 file, edit the pom.xml
page of the POM editor, and add the dependencies needed for the MVC, that is,
spring-webmvc package, as shown in the following code:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4 0 0.xsd">

<modelVersion>4.0.0</modelVersion>
<grouplds>org.packt.Spring.chapter7.springmvc</grouplds>
<artifactId>SpringMVCPayrollSystem</artifactId>
<packagings>war</packaging>
<version>0.0.1-SNAPSHOT</version>
<name>SpringMVCPayrollSystem Maven Webapp</names>
<url>http://maven.apache.org</urls>

<propertiess>
<spring.version>4.0.2.RELEASE</spring.version>
</properties>

<dependencies>
<dependency>

<groupId>junit</groupld>
<artifactId>junit</artifactId>
<version>3.8.1l</versions>
<scope>test</scope>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIld>
<artifactId>spring-core</artifactId>

[179]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

<version>${spring.version}</version>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-webmvce</artifactIds>
<version>${spring.version}</versions>

</dependency>

</dependencies>

<builds>
<finalName>SpringMVCPayrollSystem</finalName>
</build>
</project>

Once the build has been completed, the JARs will be downloaded to the .m2 folder
(provided an Internet connection is available), as shown in the following screenshot.
We can also refer to Resolved Dependencies in Dependency Hierarchy in the POM editor.

» [src/main/java
. [src/main/resources
4 =) Libranes

» = JRE System Library [J25E-1.5]

4 =, Maven Dependencies

3 @: Junit-3.8.1jar - CAUsers\SONY\.m\repositonyjunithjunit

\ spring-core-4.0.2.RELEASE. jar - C:\Users\SONY'\.m2\repo:
commeons-logging-1.1.3.jar - C:\Users\5OMNY\.m2\reposit
spring-webrmve-4.0.2.RELEASE jar - T\ Users\ 50

=
H

Bl

JILE

SONY.m24r
spring-beans-4.0.2.RELEASE jar - C:\Users\ SOMNY L m 2 rep
spring-context-4,0.2.RELEASE.jar - C:

ENE

WSONY. M2 re

E

» (09 spring-aop-4.0.2.RELEASE jar - C:\Users\SOMNY . m2\repos

@: aopalliance-1.0jar - C\Users\50ONY\.m2\repository\acpa
+ fod spring-expression-4,0.2.RELEASE jar - C\Users\ SONY.m2
+ fag spring-web-4.0.2 RELEASE jar - C:\Users\SOMY\ mZ\repos

Configuring the application

Now we need to configure the Spring MVC application using the web.xml and
SpringDispatcher-servlet.xml files.

[180]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The /WEB-INF/web.xml file

The /WEB-INF/web.xml file represents the deployment descriptor of a web
application, which defines the application that a server needs to know, such as
Servlet and other components:

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app 2 5.xsd"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd"
id="WebApp ID" version="3.0">
<display-name>Archetype Created Web Application</display-name>

<servlet>
<servlet-name>SpringDispatcher</servlet-name>
<servlet-class>
org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>SpringDispatcher</servlet-name>
<url-pattern>/</url-patterns
</servlet-mapping>
</web-app>

In the preceding code snippet, the Servlet name has been specified as
SpringDispatcher and Servlet class as DispatcherServlet. We have defined URL
mapping as /, which will map to all request URLs. We will understand this in more
detail in the upcoming sections.

The /WEB-INF/SpringDispatcher-servilet.xml file

Since we have defined the Servlet name as SpringDispatcher in web.xml, so we
need to define SpringDispatcher-servlet.xml in the /WEF-INF/ folder. Follow
these steps to create this file:

1. Right-click on WEB-INF and go to New | Other.

[181]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

2. Then, create a new Spring bean configuration file by selecting Spring Bean
Configuration File from the spring folder and clicking on Next.

Select a wizard

Create a new Spring Bean Configuration File

Wizards:
| type filter text

[= Server
4 = Spring
@ Import Spring Getting Started Content
@ Spring Bean Configuration File
@ Spring Bean Definition
@ Spring Project
@ Spring Starter Project
Ef Spring Web Flow Definition File
(= 50L Development

3. Now, set the File name option as SpringDispatcher-servlet.xml and click
on Next.

[182]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

New Spring Bean Definition file

Select the location and give a name for the Spring Bean Definition file

Enter or select the parent folder:

| SpringMVCPayrollSystem/src/main/webapp/ WEB-INF

oo
b = Servers
(= springexample

a4 125 SpringMVCPayrollSystern
= settings
4 [src
4 [main
b = java
== resources
4 = webapp
[|= WEB-INF
[[= target

File name: | SpringDispatcher-servletxml|

Add Spring project nature if required

4. Select the desired XSD namespace to use with the new Spring bean
definition, such as beans, context, and mve. Then, click on Finish.

New Spring Bean Definition file }
Select XSD namespaces to use with the new Spring Bean Definition < >

Select desired X50 namespace declarations:

@ beans - http://www.springframework.org/schema/beans
O @&c- http://www . springframework.org/schema/c

[[cache - http:/fwww.springframework.org/schema/cache
[+ ls) contest - http://www.springframework.org/schema/context
O ﬁjee - http://www.springframework.org/schema/jee

[] [G lang - http://www.springframewerk.org/schemaylang

O Q:aup - http://www.springframework.org/schema/aop; ~

Qrm.rc - http://www.springframework.org/schema/mve w

[183]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

Then, we will have SpringDispatcher-servlet.xml, where we need to define a
few beans:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:mve="http://www.springframework.org/schema/mvc"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-
beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-
context-4.0.xsd
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc-
4.0.xsd">

<context :component-scan base-package="org.packt.Spring.chapter?.
springmve" />

<bean

class="org.springframework.web.servlet.view.
InternalResourceViewResolver"s>

<property name="prefix"s
<value>/WEB-INF/views/</value>
</property>
<property name="suffix"s>
<value>.jsp</value>
</property>
</beans>

</beanss>

In the preceding code snippet, we have declared <context : component - scan>
with the base package org.packt.Spring.chapter7.springmvc, so that

the annotated class of this package or subpackage gets scanned by the Spring
container. We have also defined the org. springframework.web.servlet .view.
InternalResourceViewResolver bean as the internal resource view resolver,
with the values of the properties prefix and suffix as /WEB- INF/views/ and .jsp
respectively. So this InternalResourceViewResolver will find the . jsp file in the
WebContent /WEB-INF/views/ folder.

[184]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

When this Spring configuration file is created in this project, this project will become

a Spring project, as seen in the following screenshot:

2 75 SpringMVCPayrollSystem
- /=~ Spring Elements

4 78 Java Resources

4 [src/main/java

- 'z3) Deployment Descriptor: Archetype Created Web Application

i org. paclct.Spr'|ng.chapter?.springmvc.co-ﬁut-;alnl.

[src/main/resources
= Libraries
- B\ JavaScript Resources
» L@ Deployed Resources
|m] pom.xml

4 Lésrc

4 L—Ej- main
= java
(= resources
4 (25 webapp
[E] indexjsp
a (25 WFB-INF
@_5 SpringDispatcher-servietxml
4 = views
=] hellojsp
X] web.xml

» = target

Since we are done with setting up the environment for the Spring MVC
application, we can now create the controller and view. First, let's create the

EmployeeController controller class.

Creating the controller - EmployeeController

We will create the EmployeeController class within the org.packt.Spring.

chapter7.springmvc.controller package:

package org.packt.Spring.chapter7.springmvc.controller;

import org.springframework.stereotype.Controller;

import org.springframework.ui.ModelMap;

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;

@Controller
@RequestMapping (" /employee")

[185]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

public class EmployeeController

@RequestMapping (method = RequestMethod.GET)
public String welcomeEmployee (ModelMap model)

model.addAttribute ("name", "Hello World!");
model.addAttribute ("greetings",
"Welcome to Packt Publishing - Spring MVC
Lrimy;

return "hello";

}

In the preceding code snippet, we have annotated the EmployeeController

class with the econtroller stereotype annotation, and the @RequestMapping ("/
employee") annotation that will map the URL to the entire class, and handler
methods within the class. The welcomeEmployee (ModelMap model) method will
handle the GET request from DispatcherServlet. The org. springframework.
ui.ModelMap is used to hold the model. The name and greetings attributes have
been set with values Hello World! and Welcome to Packt Publishing - Spring
MVC 1! respectively.

As we are done with creating the controller class for the Spring MVC application, we
now need to create the view page hello.jsp.

Creating the view — hello.jsp

Here, we will create the view page hello. jsp within the /WEB-INF/views/ folder:

<%@ page language="java" contentType="text/html; charset=IS0-8859-
1|l

pageEncoding="IS0-8859-1"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01
Transitional//EN""http://www.w3.org/TR/html4/loose.dtd" >
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=IS0-8859-1">
<title>Chapter-7 Spring MvVC</title>
</head>
<body>

<hl style="color: green; text-align: center;">${name}</hl>
<h3 style="color: orange; text-align:
center;">${greetings}</h3>

[186]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

</body>
</html>

In the preceding code snippet, the view renders data from the model to prepare the
page for the user. Now it's time to run the application to get results in the browser.

Running the application

In order to run this application, we have to follow a few steps. Here, we are using the
server named VMware vFabric tc Server Developer Edition v2.9, which is the
inbuilt server in STS IDE. We can also use another server, such as Apache Tomcat.
Follow these steps to run the application:

1. First, right-click on the SpringMvCPayrollSystem project and go to Run As
| Run On Server. Then, select the server to be used.

2. Select the server as VMware vFabric tc Server Developer Edition v2.9
(or another server if you wish to), and then click on Next, where we need to
modify the resources on the server.

Run On Server
Select which server to use E
How do you want to select the server?
(@) Choose an existing server

() Manually define a new server

Select the server that you want to use:

type filter text
Server State
4 = localhost
& VMware vFabric tc Server Developer Edition v2.9 qp Started

VMware vFabnic tc Server v2.5 - v2.9 support J2EE 1.2, 1.3, 1.4, Java EE 5 and 6 Web modules.

[] Always use this server when running this project

@ < Back Mext > Finish Cancel

[187]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

3. We can add or remove resources that will run on the server. The Available
section on the left-hand side will give the list of resources that can be
moved to the right using the Add button. The Configured section on the
right-hand side will give the list of resources that have been configured
and will run on server. To remove a resource from the Configured section,
select the resource and click on Remove; to remove all the resources at
once, click on Remove All. Here, we have the SpringMvCPayrollSystem
project in the Configured section.

Add and Remove
Meodify the resources that are configured on the server

Move resources to the right to configure them on the server

Available: Configured:
b (& SpringMVCPayrollSystem

Add >

< Remove

Add All > =

<< Remove All

[188]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

4. Once we move the resource to the Configured section and click on Finish,
the server will start running. By clicking on http://localhost:8080/
SpringMvVCPayrollSystem/employee in the browser, we will see the
following result:

=

(@ Chapter-7 Spring MVC &3

b B " | http://localhost8080/SpringMVCPayrollSystem/employee v B

Hello World!

Since we have developed a Spring Web MVC application, we will understand each
component in greater detail. Let's start with Dispatcherservlet.

DispatcherServiet in Spring MVC

The Dispatcherservlet class of the Spring MVC framework is an implementation
of front controller and is a Java Servlet component for Spring MVC applications. It is
a front controller class that receives all incoming HTTP client requests for the Spring
MVC application. It is also responsible for initializing framework components used
to process the request at various stages.

The DispatcherServlet class is fully configured with the Inversion of Control
(IoC) container that allows us to use various Spring features such as Spring context,
Spring Object Relational Mapping (ORM), Spring Data Access Object (DAO), and
so on. DispatcherServlet is a Servlet that handles HTTP requests and is inherited
from HttpServlet base class.

Configuring DispatcherServlet in our Spring web application into the web
application deployment descriptor (web.xml) is necessary, just like any other servlet.
Using URL mapping in the configuration file, the HTTP requests to be handled by
DispatcherServlet are mapped. A Spring MVC application can have any number
of DispatcherServlet classes and each DispatcherServlet class will have its own
WebApplicationContext.

[189]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

DispatcherServlet in deployment descriptor —
web.xml

For a Java web application, the web deployment descriptor web . xml is the essential
configuration file. In web.xml1, we define the Servlet for our web application and
how the web request should be mapped to them. In the Spring MVC application, we
only have to define a single DispatcherServlet instance, which acts as the front
controller for the Spring MVC application, even though we are allowed to define
more than one if required.

The following code snippet declares the DispatcherServlet in web.xml:

<servlets>
<servlet-name>SpringDispatcher</servlet-name>
<servlet-class>
org.springframework.web.DispatcherServlet
</servlet-class>
<load-on-startup>1l</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>SpringDispatcher</servlet-name>
<url-pattern>/**</url-patterns>
</servlet-mapping>

In the preceding code snippet, SpringDispatcher is the user-defined name of the
DispatcherServlet class, which is enclosed with the <servlet-name> element.
When this newly created SpringDispatcher class is loaded in a web application, it
loads an ApplicationContext from an XML file.

The next task after creating the springDispatcher class is to map this class

with the incoming HTTP request that indicates what URLs are handled by the
DispatcherServlet class. To map the DispatcherServlet class, we use the
<servlet-mapping> element and to handle URLs, we use the <url-patterns tagin
the web . xm1 file, as seen in the preceding code snippet.

The /** (slash with **) pattern doesn't imply any specific type of response and
simply indicates that Dispatcherservlet will serve all incoming HTTP requests,
including the request for any static content.

[190]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Registering Spring MVC configuration file
location

As we discussed in the previous section, DispatcherServlet loads the [servlet-
name] -servlet.xml file in the WEB- INF folder to compose WebApplicationContext
In order to define this file as a random file in a random location, or as a multi-file,
we use <init-params> under <servlets> to define an initialization parameter named
contextConfigLocation:

<init-params>
<param-name>contextConfiglLocation</param-name>
<param-value>/config/springmvc/someCommon-servlet.xml,
/config/springmvc/someUser-servlet.xml</param-value>

</init-param>

Spring configuration — SpringDispatcher-
servlet.xml

By default, when the Dispatcherservlet class is loaded, it loads the Spring
application context from the XML file whose name is based on the name of the
Servlet. In the preceding code, as the name of the Servlet has been defined as
SpringDispatcher, DispatcherServlet will try to load the application context
from a file named SpringDispatcher-servlet.xml located in the application's
WEB- INF directory.

The DispatcherServlet class will use the SpringDispatcher-servlet.xml file to
create an ApplicationContext, which is a standard Spring bean configuration file,
as shown here:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:mve="http://www.springframework.org/schema/mvc"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-
context-3.0.xsd http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mve/spring-mve-3.0.xsd" >

<mvc:annotation-driven />

[191]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

<context :component-scan base-
package="org.packt.Spring.chapter7.springmvc" />

<bean
class="org.springframework.web.servlet.
view.InternalResourceViewResolver"s>
<property name="prefix" value="/WEB-INF/views/" />
<property name="suffix" value=".jsp" />
</beans>
</beans>

Let's take a look at some of the MVC features used in the preceding code snippet:

* <mvc:annotation-driven/s: This tells the Spring Framework to support
annotations like @Controller, @RequestMapping, and others, all of which
simplify the writing and configuration of controllers.

* InternalResourceViewResolver: The Spring MVC framework supports
different types of views for presentation technologies, including JSPs, HTML,
PDF, JSON, and so on. When the DispatcherServlet class defined in the
application's web . xml file receives a view name returned from the handler, it
resolves the logical view name into a view implementation for rendering.

* In the preceding code snippet, we have configured the
InternalResourceViewResolver bean to resolve the bean into JSP files in
the /WEB-INF/views/ directory.

* <context:component-scans>: This tells Spring to automatically detect
annotations. It takes the value of the base package, which corresponds to the
one used in the Spring MVC controller.

Controllers in Spring MVC

The Dispatcherservlet class delegates the incoming HTTP client request to the
controllers to execute the functionality specific to it. The controller interprets user
input and transforms this input into a specific model which will be represented by
the view to the user.

While developing web functionality, we will develop resource-oriented controllers.
Rather than each use case having one controller in the web application, we will
have a single controller for each resource that the Spring web application serves. An
abstract implementation method is provided by Spring for the user to develop the
controller without being dependent on a specific API. We do not need to inherit any
specific interface or class while developing a controller based on Spring MVC using
the @Controller annotation.

[192]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The @Controller annotation to define a

controller

The @Controller annotation is used to define a class as a controller class
without inheriting any interface or class. The following code snippet defines the
EmployeeController class as a controller using the @Controller annotation:

package org.packt.Spring.chapter7.springmvc.controller;

import org.springframework.stereotype.Controller;

@Controller

public class EmployeeController

!/
}

The @Controller annotation indicates the role to the annotated class. Such an
annotated class is scanned by the dispatcher for mapped methods and detects the
@RequestMapping annotation, which we will discuss in next section. This defined
controller can be automatically registered in the Spring container by adding
<context : component-scan/> in SpringDispatcher-servlet.xml file

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http:

//www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns:p="http://www.springframework.org/schema/p"

xmlns:context="http://www.springframework.org/schema/context"

xsi:schemalLocation="

http://www.
http://www.
http://www.
http://www.

xsd">

<context :component -

springmve"/>
<l-=- .. =-=->

</beans>

springframework.org/schema/beans
springframework.org/schema/beans/spring-beans.xsd
springframework.org/schema/context
springframework.org/schema/context/spring-context.

scan base-package="org.packt.Spring.chapter?.

[193]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

The @RequestMapping annotation to map

requests

The web request in Spring MVC is mapped to handlers by one or more
@RequestMapping annotations declared in the controller class. The handler mapping is
used to match the URL as per its path relative to the ApplicationContext interface's
deployment path and the path that is mapped to Dispatcherservlet. For example,

in the URL http://localhost:8080/SpringMVCPayrollSystem/employee the path
to match is /employee as the context path is /SpringMvCPayrollSystem.

Let's take an example:

package org.packt.Spring.chapter7.springmvc.controller;

import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestMapping;

@Controller
@RequestMapping (" /employee")
public class EmployeeController

@Autowired
private EmployeeService employeeService;

@RequestMapping (method = RequestMethod.GET)
public String getEmployeeName (@RequestParam("employeeId") int
employeeld,
Model model) throws Exception {

Model .addAttribute ("employeeName", employeeService.
getEmployeeName (employeeId))

return "employeeList";

}

In the preceding code snippet, since we have activated annotation scanning

on the org.packt .Spring.chapter7.springmvc package declared inside
SpringDispatcher.xml file, the annotation will be detected upon deployment
for this controller class.

[194]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The econtroller annotation will defines this class the Spring MVC controller class.
The @requestMapping at the class level take the value /employee that means any
HTTP request received on /employee URI is attended by the EmployeeController
class. Once the controller class attends to the HTTP request, it delegates this

(initial request) call to the default HTTP GET method which is a handler method,
declared in the controller. The @RequestMapping (method = RequestMethod.GET)
annotation is used to decorate the get EmployeeName method as controller's default
HTTP ceT handler method.

The method returns the view named employeeList. In the next section, we will
explore the views to which the Spring MVC controller's handler methods delegate
their result.

The @requestMapping annotation can be applied to a class level where the mapping
strategy will be to map specific URI pattern to the controller class, or applied to
method level where mapping strategy will be to map particular HTTP method to
each controller handler method. The scope of request URL can also be reduced

by adding HTTP method or request parameter, other than defining URL path in
@RequestMapping.

Mapping requests at the class level

The @requestMapping annotation can be used to decorate the Spring MVC
controller class that allows handler method to fine grained URLs with their
OWn @RequestMapping annotation, as shown in the following code snippet:

@Controller
@RequestMapping (value = "/employee")
public class EmployeeController

@Autowired
private EmployeeService employeeService;

@RequestMapping ("/add")

public String addEmployee (Model model)
model.addAttribute ("employee", new Employee()) ;
model.addAttribute ("empList", employeeService.list());
return "employeeList";

[195]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

@RequestMapping (value = {"/remove", "/delete"}", method =
RequestMethod.GET)
public String removeEmployee ((@RequestParam("employeeId") int
employeeId) {
employeeService.removeEmployee (employeeId) ;
return "redirect:";

}

@RequestMapping (value = "/{employeeId}", method =
RequestMethod.GET)

public String getEmployee (@PathVariable ("employeeId")Integer
employeeId, Model model)

/...

return "employeeList";

}

The @RequestMapping annotation at class level uses a URI /employee, which
delegates all requests under the /employee URI to the controller's handler methods.

The first two controller's handler methods make use of only the @RequestMapping
annotation. The handler method addEmployee () is invoked when an HTTP

GET request is made on the /employee/add URL. The handler method
removeEmployee () is called when an HTTP GET method is made on either the /
employee/remove URL or the /employee/delete URL.

The third controller's handler method uses one more annotation @Pathvariable
to specify the @RequestMapping value, which will pass the value present in URL
as input in the handler method. The handler method declares

@PathvVariable ("employeeId") Integer employeeId . If the HTTP request is

in the form of /employee/10121, the handler method will have access to the
employeeId variable with the 10121 value.

We can also define some utility methods without using the @RequestMapping
annotation for the class without influencing Spring MVC.

[196]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Mapping requests at the method level

To decorate the handler method directly is the simplest strategy to use the
@RequestMapping annotation, which allows us to map requests at the method level
in a controller class. In order to use this strategy, we need to declare each handler
method in the controller class with the @RequestMapping annotation containing the
URL pattern. The DispatcherServlet class will dispatch the request to the handler
annotated with @RequestMapping to handle the request.

Let's say, if we define @RequestMapping ("/employee") at the class level, and
@RequestMapping ("/add") at the method level, then the URL path that the method
defined as @RequestMapping ("/add") will be interpreted as" /employee/add".
The style and path pattern is also supported by @RequestMapping, for example,

as "/employee/*".

Let's take an example of the following code snippet, where both values, which
is the URL route and the default HTTP GET handler method, are defined in the
@RequestMapping annotation at the method level:

@Controller
public class EmployeeController

@Autowired
private EmployeeService employeeService;

@RequestMapping (value = "/employee", method =
RequestMethod.GET)

public String getEmployeeName (@RequestParam("employeeId") int
employeeId, Model model) {

/...

return "employeeList";

}

@RequestMapping (" /employee/add")
public String addEmployee (Model model) {
Y

return "employeeList";

}

@RequestMapping (value = {"/employee/remove",
"/employee/delete"}", method = RequestMethod.GET)

[197]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

public String removeEmployee ((@RequestParam("employeeId") int
employeeId) {

/...

return "redirect:";

}

It is important to note that the Spring MVC controller should have at minimum a
URL route and a default HTTP GET handler method; otherwise a ServletException
is thrown.

Properties information in @RequestMapping

The scope of the HTTP request URL to be handled can be limited by applying the
following properties information in @RequestMapping. The @RequestMapping
annotation has the following properties that can be configured:

* Value: The value specifies the value of the mapping. The format of the URL
value is value="/getEmployee"; for example, @RequestMapping (value="/
getEmployee").

It indicates that the incoming " /employee" request is mapped to the
controller class. If the value is used at the class level, it serves as primary
mapping; if it is used at the method level, then it is relative to primary

mapping.
The value can take more than one URL path, for example,
@RequestMapping (value={"/addEmployee", "/updateEmployee"}).

Here, both "/addEmployee" and " /updateEmployee" URLs will be handled.

* Method: The method enables you to specify the type of HTTP request,
such as GET, POST, PUT, DELETE, and so on. The DispatcherServlet class
invokes the handler method based on the HTTP request it receives.

The value is provided as enumeration of org. springframework.
web.bind.annotation.RequestMethod, for example,
@RequestMapping (method = RequestMethod.GET') or
@RequestMapping (method = RequestMethod.POST).

* Params: This specifies the request parameters that come along with the
HTTP request. It can be represented in various forms, such as name = value
pairs; for example, params:{ "paramsl=apple", "params2", " !myparam" }

[198]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

It is used to narrow down the mapping functionality. Let's take an example:
@RequestMapping(params:{"paramsl:apple","params2","!myparam"})
The particular method or controller is invoked only if the incoming request

has a parameter params1 and params2 and if the value of params1 is apple
and myparam is not present in the HTTP request.

Headers: The header specifies the HTTP header as name=value pairs.

It is used to narrow down the mapping functionality; for example,
@RequestMapping (value="/employee.do", header="content-

type=text/*").

The particular method or controller is invoked only if the incoming request
has an HTTP header called content -type whose value matches text /html

or text/plain in the HTTP request.

Method parameters of @RequestMapping

The @requestMapping annotation can be applied to methods with signatures.
These methods can accept any parameters. The parameters of the method that are
annotated with @RequestMapping are listed in the following table:

Parameter Description
ServletRequest/ This helps to access the request collection
HttpServletRequest

java.util.Local

This specifies the request locale

HttpSession

This helps to work with the HTTP session

@PathVariable

This helps to access the variable in the request
path; for example, if the request path is /
employee/{employeeId}, the employeeId
variable in the path is accessed by annotating
the method argument using @PathVariable:

@ReqguestMapping (" /employee/ {empl
oyeeId}")

public String
getEmployee (@PathVariable ("emplo
yeeId") int employeeId{ })

[199]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

Parameter Description

@RequestParam This helps to bind the HTTP request parameter
to the argument of the controller method; its
functionality is similar to ServletRequest.
getParameter (java.lang.String) ; for
example:

@RequestMapping ("/employee.do")
public String
getEmployee (@RequestParam ("emplo

yeeId") int employeeId{ })

@ModelAttribute This represents a command or model object

Model, Map, or ModelMap This specifies the collection to which more
information can be added; this is passed on to
the view page

Errors/BindingResult This holds the results of validating a command
or model object
Session Status This helps to end a conversational session
@RequestHeader This specifies the access to an HTTP header
@RequestBody This helps to access the content of the incoming
request
@RequestParam

The @RequestParam annotation binds request parameters to method parameters.

It can be used to bind the HTTP request parameter to the argument of the controller
method. Its functionality is similar to ServletRequest.getParameter (java.lang.
String). Let's take an example of the @RequestParam annotation, as seen in the
following code snippet:

@RequestMapping ("/employee.do")
public String getEmployee (@RequestParam("employeeId") int
employeeId,ModelMap model)
Employee employee =
this.employeeService.getEmployee (employeelId) ;
model.addAttribute ("employee", employee) ;
return "/listEmployee.do";

[200]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

It should be noted that the parameter that applies to @RequestParam should exist
in the HTTP request; otherwise an exception org. springframework.web.bind.
MissingServletRequestParameterException will be thrown:

org.springframework.web.bind.MissingServletRequestParameterException:
Required java.lang.Integer parameter 'employeeId' is not present

We can also specify parameters to be optional just by setting the @RequestParam
required attribute to false:

(@RequestParam(value = "employeelId", required = false))

Return values in @RequestMapping annotated
methods

The @RequestMapping annotated methods can have return values, some of
which have been described in the following table (for the entire list, visit http://
docs.spring.io/spring/docs/4.1.x/spring-framework-reference/
htmlsingle/#mvc-ann-return-type s):

Return type Description

ModelAndView This holds Model and View information

String This represents the View name

View This represents the View object

Model /Map This contains data exposed by a view; view is determined

implicitly by the RequestToViewNameTranslator class

Void This specifies that a view can be handled by the invoked
method internally or can be determined implicitly by the
RequestToViewNameTranslator class

ViewResolver in Spring MVC

The controller class handler methods return different values that denote the logical
view names. The views can represent Java Server Pages (JSP), FreeMarker, Portable
Document Format (PDF), Excel, and Extensible Stylesheet Language (XSL) pages.
The control will be delegated to view template from DispatcherServlet.

The view name returned by the method is resolved to the actual physical source
by the ViewResolver beans declared in the context of the web application. Spring
provides a number of ViewResolver classes that are configured in the XML files.

[201]

www.it-ebooks.info

http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/htmlsingle/#mvc-ann-return-types
http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/htmlsingle/#mvc-ann-return-types
http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/htmlsingle/#mvc-ann-return-types
http://www.it-ebooks.info/

Spring Web MV C Framework

All viewResolvers implement the org. springframework.web.servlet.
ViewResolver interface. The ViewResolver interface maps the view names with
the implementations of the org. springframework.web.servlet.ViewResolver
interface. Here is list of few ViewResolvers provided by the Spring Framework:

ViewResolver Description
org.springframework.web.servlet.view. This configures view names
ResourceBundleViewResolver in property files; the default
resource bundle is properties
org.springframework.web.servlet.view. This refers to a convenient
InternalResourceViewResolver ViewResolver class that uses

suffix and prefix properties
for the view name and
RequestDispatcher to
transfer the control

org.springframework.web.servlet.view. This maps the view name
Freemarker.FreeMarkerViewResolver with the FreemarkerView
class, which is used for the
FreeMarker template engine

org.springframework.web.servlet.view. This maps the view name with
velocity.VelocityViewResolver the VelocityView class,
which is used for the Velocity
template engine

The viewresolver should be chosen according to the view technology used in the
web application.

We are not going to cover all viewResolvers in this book. Here, we will cover
only InternalResourceViewResolver to configure the view resolver for JSP
as view technology.

Configuring ViewResolver for JSP as view
technology

InternalResourceViewResolver resolves the logical view name into a view object,
which delegates rendering responsibility to a template, such as JSP, located in the
context of the web application.

[202]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

ViewResolver can be configured in the /WEB-INF/SpringDispatcher-servlet.
xml configuration file to resolve the view. Let's consider an example of configuring
InternalResourceViewResolver:

<bean class="org.springframework.web.servlet.view.
InternalResourceViewResolver">

<property name="prefix" value="/WEB-INF/view/" />
<property name="suffix" value=".jsp" />
</bean>

In the preceding code snippet, we have used InternalResourceViewResolver with
the prefix WEB-INF/view/ and suffix . jsp to the view name.

The DispatcherServlet class interacts with InternalResourcevViewResolver to
resolve logical view. It resolves the view name by taking prefixes such as /WEB-INF/
views/, and appending it with a logical view name, and adds suffixes (.jsp) such as
/WEB-INF/views/welcome.jsp. The InternalResourceViewResolver hands over
the path to view the object which will dispatch the request to JSP page.

Model in Spring MVC

The form values that a user enters in a page can be configured to be collected in

a container or model object and given to the controller for processing. Instead of
accessing the request parameters individually, they can be bound to an instance and
accessed.

In Spring, the objects that hold form value are known as command objects.
Command objects are Plain Old Java Objects (POJO) created with variables and
getter/setter properties. If the variable name matches the request parameter name,
the request parameter value is set into the variable.

Command objects in Spring can be configured to be accessed in a view using the
org.springframework.web.bind.annotation.ModelAttribute annotation.
The @ModelAttribute annotation can be used for methods or method parameters.
It has a value property that can be used to set the name of the model attribute.

Let's consider an example: @ModelAttribute (value="employeeform") specifies
the model attribute name as employeeform. If it is not specified, then the name of the
attribute is derived from the type of parameters or the return value of the method. If
the parameter type is org.packt.Spring.chapter7.springmvc.model . Employee,
then the name of the model attribute is employee. The model can accessed from the
view using the request collection.

[203]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

Spring MVC with Hibernate integration

In this section, we will develop an end-to-end web application using Spring MVC,
which acts as frontend technology, and Hibernate, which acts as backend ORM
technology. You already learned how to integrate Spring and Hibernate and
developed a simple application in an earlier chapter. In this section, we will move
forward and integrate Spring MVC and Hibernate in a web application. For more
understanding of Spring and Hibernate integration along with PostgreSQL as
database to persist the data.

Hibernate with Spring, before you start this section.

[.“Q It is recommended that you go through Chapter 4,]

In this section, our goal is to create a simple Spring MVC application named
eHrPayrollSystem in the Spring Source Tool Suite (STS) IDE along with Hibernate
as ORM framework, and connect it to PostgreSQL as the database to persist the data.
Here, this web application will just fetch the list of employees from the database and
display them to the user on the view page. We will perform the CRUD operation in
our web application in a later section of this chapter.

Application architecture

The following figure shows the layered architecture of the eHrPayrollsystem web
application. The Data Access Layer, also called the DAO layer, which will access
data from the database. The DAO layer will use the Hibernate ORM framework API
to interact with the database. The service layer will invoke this DAO layer. In our
eHrPayrollSystem web application, we have EmployeeDao as a DAO interface and
EmployeeService as service interface.

[204]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

JSP

Browser

I I

EmployeeController

Spring Controller

-+

EmployeeService | = EmployeeServicelmpl

Y

Service Layer

EmployeeDao |4 EmployeeDaolmpl

Data Access Layer

Database

Sample data model for example code

For the eHrPayrollsystem web application, we will be using PostgreSQL as the
database (for more details, refer to Chapter 4, Hibernate with Spring). Let's first create
a database for our project in the PostgreSQL database and then create a table.

[205]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

Script to create database named ehrpayroll_db:

CREATE DATABASE ehrpayroll db

Script to create EMPLOYEE INFO table:

CREATE TABLE EMPLOYEE INFO (

ID serial NOT NULL Primary key,
FIRST NAME varchar (30) not null,
LAST NAME varchar(30) not null,
JOB_TITLE varchar (100) not null,
DEPARTMENT varchar (100) not null,
SALARY INTEGER

)i

Script to populate data for employee_info table:

INSERT INTO EMPLOYEE INFO

(FIRST NAME, LAST NAME, JOB TITLE, DEPARTMENT, SALARY)
VALUES

('RAVI', 'SONI', 'AUTHOR', 'TECHNOLOGY', 5000) ;

INSERT INTO EMPLOYEE INFO

(FIRST NAME, LAST NAME, JOB TITLE, DEPARTMENT, SALARY)
VALUES

('Shree', 'Kant',6 'Software Engineer', 'TECHNOLOGY', 3000) ;

[206]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Project structure

The screenshot of the final structure of the eHrPayrollsystem project is as follows:

Fi ::E eHrPayrollSystem
= = Spring Elements

a :9 Java Resources
4 [sre/main/java
a4 3 org.packt.Spring.chapter?.springmvec.controller
. [3¥ EmployeeControllerjava
a4 {8 org.packt.Spring.chapter?.springmvec.dao
» [J] EmployeeDao.java
. [45 EmployeeDaolmpl.java
4 ff org.packt.Spring.chapter?.springmvec.model
> [J] Employesjava
4 {3 org.packt.Spring.chapter?.springmve.service
> [J] EmployeeService,java
. [35 EmployeeServicelmpl.java
» [src/main/resources
» =4, Libraries
- B, JavaScript Resources
: [Deployed Resources
[m| pomsxml
a 25 src
4 LZ—,E- main
> = java
» [~- resources
4 (25 webapp
index,jsp
4 (5 WEB-INF
hibernate.properties
E SpringDispatcher-servletxml
4 [views
employee.jsp
hello.jsp

|%] web.xml

{ Project Explorer &2 E|| e -

> 'zg Deployment Descriptor: Archetype Created Web Application

[207]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

We have created packages for Java resources, as described here, under the src/
main/java folder:

org.packt.Spring.chapter7.springmvc.controller: Spring controller
classes will be defined to this package for the eHrPayrollsystem web
application. We will create an EmployeeController class in this package.

org.packt.Spring.chapter7.springmvc.dao: This represents the DAO
layer for the eHrPayrollSystem web application. The EmployeeDao interface
and EmployeeDaoImpl class will be created in this package. The DAO layer
will interact with the database using Hibernate API.

org.packt.Spring.chapter7.springmvc.model: The entity class will go
into this package. Employee is an entity class defined within this package
with different attributes and annotations.

org.packt.Spring.chapter7.springmvc.service: This represents

the Service layer for the eHrPayrollSystem web application. The
EmployeeService interface and EmployeeServiceImpl class will be created
within this package.

The pom.xml file

In an earlier section of this chapter, we developed our web application as a Maven
project by providing dependencies specific to the Spring Framework. Now we
have to add other dependencies related to Servlet, JSTL, JDBC connection pooling,
Hibernate ORM framework, PostgreSQL database, and so on:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4 0 0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupld>org.packt.Spring.chapter7.springmvc</groupIds>
<artifactId>SpringMVCPayrollSystem</artifactIds>
<packagings>war</packaging>

<version>0.0.1-SNAPSHOT</version>

<name>SpringMVCPayrollSystem Maven Webapp</names>
<urlshttp://maven.apache.org</url>

<!-- Declare versions for Spring framework, Hibernate framework

and Aspectd -->

<propertiess>
<spring.version>4.0.2.RELEASE</spring.version>

<hibernate.version>4.3.5.Final</hibernate.version>

[208]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

<org.aspectj-version>1.7.4</org.aspectj-version>

</properties>
<dependencies>

<!-- jUnit dependencies -->

<dependencys>
<groupld>junit</groupId>
<artifactId>junit</artifactIds>
<version>3.8.1l</version>
<scope>test</scope>

</dependency>

<!-- Spring Core dependencies -->

<dependencys>
<groupldsorg.springframework</groupId>
<artifactId>spring-core</artifactIds>
<version>${spring.version}</versions>

</dependency>

<!-- Spring webmvc dependencies -->

<dependencys>
<groupldsorg.springframework</groupId>
<artifactId>spring-webmvc</artifactIds>
<version>${spring.version}</versions>

</dependency>

<!-- Spring transaction dependencies -->

<dependencys>
<groupldsorg.springframework</groupId>
<artifactId>spring-tx</artifactIds>
<version>${spring.version}</versions>

</dependency>

<!-- Spring ORM dependencies -->

<dependencys>
<groupldsorg.springframework</groupId>
<artifactIds>spring-orm</artifactIds>
<version>${spring.version}</versions>

</dependency>

<!-- AspectJ dependencies -->

<dependencys>
<groupld>org.aspectj</groupIlds>
<artifactId>aspectjrt</artifactId>
<version>${org.aspectj-version}</versions>

</dependency>

<!-- Hibernate ORM framework dependencies -->

<dependencys>
<groupldsorg.hibernate</groupIlds>

[209]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

<artifactId>hibernate-core</artifactIds>
<version>${hibernate.version}</versions>

</dependency>

<!-- Hibernate entity manager dependencies -->

<dependencys>
<grouplds>org.hibernate</groupIld>
<artifactId>hibernate-entitymanager</artifactIds>
<version>${hibernate.version}</versions>

</dependency>

<!-- Java Servlet and JSP dependencies -->

<dependencys>
<groupld>javax.servlet</groupIld>
<artifactId>servlet-api</artifactIds>
<versions>2.5</version>
<scope>provided</scope>

</dependency>

<dependencys>
<groupld>javax.servlet.jsp</groupIld>
<artifactId>jsp-api</artifactIds>
<versions>2.1l</versions>
<scope>provided</scope>

</dependency>

<!-- JSTL dependency -->

<dependencys>
<groupld>jstl</groupIds>
<artifactId>jstl</artifactIds>
<versions>1l.2</versions>

</dependency>

<!-- Apache Commons DBCP dependency (for database connection

pooling) -->

<dependencys>
<groupIds>commons-dbcp</groupIds>
<artifactId>commons-dbcp</artifactIds>
<versions>1l.4</versions>

</dependency>

<!-- Postgresql Connector Java dependency (JDBC driver for

Postgresql) -->

<dependencys>
<grouplds>postgresqgl</groupld>
<artifactIds>postgresqgl</artifactIds>
<version>9.0-801.jdbc4</version>

</dependency>

<!-logging dependencies -->

<dependencys>

[210]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

<groupldsorg.slf4j</groupIlds>
<artifactId>slf4j-log4jl2</artifactIds>
<versions>1.4.2</version>
</dependency>
<dependencys>
<groupld>log4j</groupIld>
<artifactId>log4j</artifactIds>
<version>1.2.14</versions>
</dependency>
</dependencies>
<builds>
<finalName>SpringMVCPayrollSystem</finalName>
</build>
</project>

1
‘\Q For more information on web . xml, you can refer to the Developing

a simple Spring MV C application section earlier in this chapter.

The hibernate.properties file

The hibernate.properties file in the /src/main/webapp/WEB-INF folder
contains database connection information, such as driver class name, database URL,
username, password, and so on.

Refer to the /src/main/webapp/WEB-INF/hibernate.properties file. You can
check the same in the following code snippet:

JDBC Properties
jdbc.driverClassName=org.postgresqgl.Driver
jdbc.url=jdbc:postgresql://localhost:5432/ehrpayroll db
jdbc.username=postgres

jdbc.password=sa

Hibernate Properties
hibernate.dialect=org.hibernate.dialect.PostgreSQLDialect
hibernate.show sgl=true

The SpringDispatcher-servilet.xml file

The SpringDispatcher-servlet.xml file contains the dataSource
bean, sessionFactory bean, transactionManager bean, and
InternalResourceViewResolver bean.

[211]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

Refer to /src/main/webapp/WEB-INF/SpringDispatcher-servlet.xml or take a
look at the following code snippet:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:jdbc="http://www.springframework.org/schema/jdbc"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-
3.0.xsd
http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc-3.0.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.0.xsd">
<context :component-scan base-
package="org.packt.Spring.chapter7.springmvc" />
<context :property-placeholder location="/WEB-
INF/hibernate.properties" />
<bean id="dataSource"
class="org.springframework.jdbc.datasource.
DriverManagerDataSource
">
<property name="driverClassName"
value="${jdbc.driverClassName}" />
<property name="url" value="${jdbc.url}" />
<property name="username" value="${jdbc.username}" />
<property name="password" value="${jdbc.password}" />
</beans>
<bean id="sessionFactory"

class="org.springframework.orm.hibernate4.
LocalSessionFactoryBean">

<property name="dataSource" ref="dataSource" />
<property name="annotatedClasses"
value="org.packt.Spring.chapter7.springmvc.model.Employee"
<property name="hibernateProperties">
<propss>
<prop
key="hibernate.dialect">${hibernate.dialect}</prop>
<prop key="hibernate.show sgl">${hibernate.show sgl}</
prop>
</props>

[212]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

</property>
</beans>
<bean id="transactionManager"
class="org.springframework.orm.hibernate4.
HibernateTransactionMana
ger">
<property name="sessionFactory" ref="sessionFactory" />
</beans>
<tx:annotation-driven transaction-manager="transactionManager"
/>
<bean
class="org.springframework.web.servlet.view.InternalResource
ViewResolver">
<property name="prefix"s
<value>/WEB-INF/views/</value>
</property>
<property name="suffix"s>
<value>.jsp</value>
</property>
</beans>
</beans>

Hibernate model class — entity class

Employee has been defined as an entity class to store employee information. It will
be linked to EMPLOYEE_INFO table in the database (for more information, please refer
to Chapter 4, Hibernate with Spring).

Refer to src/main/java/org/packt/Spring/chapter7/springmvc/model/
Employee.java. You can also take a look at the following code snippet for a preview:

package org.packt.Spring.chapter7.springmvc.model;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

import javax.persistence.Table;

@Entity
@Table (name = "EMPLOYEE INFO")
public class Employee {

[213]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

@Id

@Column (name = "ID")

@GeneratedValue (strategy = GenerationType.IDENTITY)
private Integer id;

@Column (name = "FIRST NAME")
private String firstName;

@Column (name = "LAST NAME")
private String lastName;

@Column (name = "JOB TITLE")
private String jobTitle;

@Column (name = "DEPARTMENT")
private String department;

@Column (name = "SALARY")
private int salary;

// constructor and setter and getter

@Override
public boolean eqguals (Object obj) {
if (this == obj) {
return true;
}
if (! (obj instanceof Employee)) {
return false;
}
Employee employee = (Employee) obj;
if (firstName != null ?
| firstName.equals (employee.firstName)
employee.firstName != null) {
return false;
} else {
return true;

@Override
public int hashCode() {
return firstName != null ? firstName.hashCode() : 0;

[214]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

public String toString()

return "Employee [id=" + id + ", name=" + firstName + ""
+ lastName
+ ", jobTitle=" + jobTitle + " department="
+ department
+ " salary=" + salary + "1";

The DAO layer

The Data Access Object (DAO) layer of the eHrPayrollSystem application
consists of the EmployeeDao interface and its corresponding implementation class,
EmployeeDaoImpl.

The EmployeeDao interface

The EmployeeDao interface will have the 1istEmployee () method declaration to
access data from the database.

Take a look at src/main/java/org/packt/Spring/chapter7/springmve/daoc/
EmployeeDao.java. Here's a preview of what you'll find in the file:

package org.packt.Spring.chapter7.springmvc.dao;

import java.util.List;

import org.packt.Spring.chapter7.springmvc.model.Employee;
public interface EmployeeDao {

public List<Employee> listEmployee () ;

The EmployeeDao implementation

The EmployeeDaoImpl class is a DAO class that implements the data access interface
EmployeeDao annotated with the @Repository annotation (for more details, refer to
Chapter 4, Hibernate with Spring).

[215]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

Take a look at src/main/java/org/packt/Spring/chapter7/springmve/dao/
EmployeeDaoImpl.java. You can also check out the following code snippet:

package org.packt.Spring.chapter7.springmvc.dao;
import java.util.List;

import org.hibernate.Query;

import org.hibernate.Session;

import org.hibernate.SessionFactory;

import org.packt.Spring.chapter7.springmvc.model.Employee;
import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Repository;

@Repository
public class EmployeeDaolmpl implements EmployeeDao

private static final Logger logger = LoggerFactory
.getLogger (EmployeeDaoImpl.class) ;

@Autowired
private SessionFactory sessionFactory;

@SuppressWarnings ("unchecked")

public List<Employee> listEmployee () {
Session session = sessionFactory.openSession() ;
String hgl = "FROM Employee";
Query query = session.createQuery (hgl) ;
List<Employee> empList = query.list();
logger.info("Person List::" + empList);
return empList;

The service layer

The service layer of eHrPayrollSystem consists of the EmployeeService interface
and its corresponding implementation class EmployeeServiceImpl.

[216]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The EmployeeService interface

The EmployeeService interface will have the 1istEmployee () method declaration.

You can refer to the src/main/java/org/packt/Spring/chapter7/springmvc/
service/EmployeeService.java file or you can take a look at the given code
snippet for a preview:

package org.packt.Spring.chapter7.springmvc.service;
import java.util.List;

import org.packt.Spring.chapter7.springmvc.model.Employee;
public interface EmployeeService {

public List<Employee> listEmployee() ;

The EmployeeService implementation

The EmployeeServiceImpl class is a service class that implements the interface
EmployeeService, annotated with @service (for more details, refer to Chapter 4,
Hibernate with Spring).

Take a look at the following code. You'll find the same in the src/main/java/org/
packt/Spring/chapter7/springmvc/service/EmployeeServiceImpl.java file:

package org.packt.Spring.chapter7.springmvc.service;

import java.util.List;

import org.packt.Spring.chapter7.springmvc.dao.EmployeeDao;
import org.packt.Spring.chapter7.springmvc.model.Employee;
import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Service;

@Service
public class EmployeeServiceImpl implements EmployeeService {

@Autowired

[217]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

private EmployeeDao employeeDao;

public List<Employee> listEmployee () {
return this.employeeDao.listEmployee () ;

Spring MVC controller classes

The EmployeeController class is a controller class defined in the org.packt.
Spring.chapter7.springmvc.controllerpackage

Take a look at the /src/main/java/org/packt/Spring/chapter7/springmvc/
controller/EmployeeController.java file for the following code snippet:

package org.packt.Spring.chapter7.springmvc.controller;

import org.packt.Spring.chapter7.springmvc.service.EmployeeService;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Controller;

import org.springframework.ui.ModelMap;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RequestMethod;

@Controller

@RequestMapping ("/employee")

public class EmployeeController

!

@Autowired
private EmployeeService employeeService;

@RequestMapping (method = RequestMethod.GET)
public String welcomeEmployee (ModelMap model)
model .addAttribute ("name", "Hello World!") ;
model.addAttribute ("greetings",
"Welcome to Packt Publishing - Spring MVC
@Author: Ravi Kant Soni") ;

return "hello";

@RequestMapping (value = "/listEmployees", method =

RequestMethod.GET)

public String listEmployees (ModelMap model) {

[218]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

model.addAttribute ("employeesList™",
employeeService.listEmployee()) ;

return "employee";

}

The EmployeeController class defines a 1istEmployees () method. This method
uses the EmployeeService interface to fetch all the employee details in the
eHrPayrollSystem web application. The 1istEmployees () method has been
mapped to request "/employee/listEmployees", so whenever Spring encounters
this URL request, it will call this method. This method returns the view named
employee which will be resolved to employee. jsp by the view resolver.

Another method is welcomeEmployee (), which will be called by Spring when it
encounters the URL " /employee". This method will return a view named hello,
which will be resolved as hello.jsp name.

The View page

Finally, we need to add JSP files to the folder /WEB-INF/views.

The hello.jsp page

This JSP page contains an anchor tag with the URL "employee/listEmployees".

Check out the /WEB- INF/views/hello. jsp file for the following code snippet:

<body>
<hl style="color: green; text-align: center;">${name}</hl>
<h3 style="color: orange; text-align:
center;">${greetings}</h3>
<table align="center" cellspacing="10">
<tr style="color: blue; font-style: italic; font-size:
l4pt">
<td align="left">Click Here</td>
<td align="right" bgcolor="lightgreen"s>List
Of Employees</td>
</tr>
</table>
</body>

[219]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

The employee.jsp page
This JSP will iterate the employeeList model data and display employee
information. We will discuss the tags in a later section of this chapter.

Check out the /WEB- INF/views/employee. jsp file for the following code snippet:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=IS0-8859-1">
<title>Employee List</title>
</head>
<body>
<div align="center">
<hl style="background-color: lightgreen; color:
darkgreen'">Employee
List
</hl>
<table cellspacing="0" cellpadding="6" border="1">
<tr bgcolor="grey" style="color: white">
<th>No</th>
<th>First Name</th>
<th>Last Name</th>
<th>Job Title</th>
<th>Department</th>
<th>Salary</th>
</tr>
<c:forEach var="employee" items="${employeesList}"
varStatus="status">
<tr bgcolor="lightyellow">
<td>${status.index + 1}</td>
<td>${employee.firstName}</td>
<td>$
<td>$
<td>$
<td>$
</tr>
</c:forEach>
</table>
</div>
</body>
</html>

employee.lastName}</td>
employee.jobTitle}</td>
employee.department }</td>

e e e

employee.salary}</td>

[220]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The index.jsp page

This is the first page that will be executed when we start web application for
the URL http://localhost:8080/eHrPayrollSystem. The <$response.
sendRedirect ("employee") ; %> will redirect this page to the URL http://
localhost:8080/eHrPayrollSyste/employee

Check out the /src/main/webapp/index. jsp file for the following code snippet:

<html>
<body>
<%
response.sendRedirect ("employee") ;
%>
</body>
</html>

Running the application

Congratulations! We have successfully set up the Spring-Hibernate environment and
are done with coding. Now, it's time to compile and execute the eHrPayrollSystem
application. If everything goes well, we will get the output as seen here at the URL
http://localhost:8080/eHrPayrollSystem/employee

(i Chapter-7 Spring MVC 532 =

= | Qék' http://localhest: 3080/ eHrPayrollSystern/employee v B

Hello World!

Click Here List Of Employvees

[221]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

On clicking List Of Employees on the page, it will redirected to the URL
http://localhost:8080/eHrPayrollSystem/employee/listEmployees:

() Employee List &2 =0

)] Q§° http://localhost: 3080/ eHrPayrollSystermn/employee/listEmployees v B

Employee List
’E irst Name | Last Name Job Title Department

SONI AUTHOR TECHNOLOGY | 5000

2 | Shree Kant Software Engineer | Technology 3000

Exception handling using
@ControllerAdvice

Usually the evil stack trace appears to the user whenever any unknown exceptions
occur to an application. The user will complain to our application as stack traces are
not user friendly and not handled by the user at all. And sometimes these stack trace
revile the internal method call which can cause security risks.

However, we can configure the web application deployment descriptor web . xml to
display user-friendly JSP pages in case of class exception or HTTP errors. The Spring
MVC provides a way to manage views in case of a class exception.

From Spring 3.2 onwards, we have the @controllerAdvice annotation.

This annotation is used to define the global exception handler using the
@ExceptionHandler annotation. So, any exception thrown by the application

will be handled by this class having methods annotated with @ExceptionHandler.
Thus, if a method is declared with the @ExceptionHandler annotation in the
@ControllerAdvice class, it will be applicable to all controllers in application.

The @ExceptionHandler annotation makes it easier to handle exception and errors.
This annotation can be used for any method in the controller class with the list of
Exception classes as parameters. When a controller method throws an exception,
the method annotated with @ExceptionHandler is executed only if the thrown
exception matches the configured exception classes.

[222]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The Spring configuration file SpringDispatcher-servlet.xml must define mvc
namespace in order to have the @eControllerAdvice annotation get identified:

<mvc:annotation-driven/>

It should be noted that if only <context :annotation-config /> has been defined
in this file, then @Controlleradvice will not be loaded and will not work. Let's
implement this concept in our SpringMvCPayrollSystem project, which we created
earlier in this chapter.

The GenericException class

This is a generic exception with custom error code and error description.

Check out the src/main/java/org/packt/Spring/chapter7/springmvec/
exception/GenericException.java file for the following code snippet:

package org.packt.Spring.chapter7.springmvc.exception;
public class GenericException extends RuntimeException
private static final long serialVersionUID = 1L;

private String exceptionMsg;
private String exceptionCode;

public GenericException (String exceptionCode, String
exceptionMsg)
this.exceptionCode = exceptionCode;
this.exceptionMsg = exceptionMsg;

// getter and setter methods

The SpringException class

The springException class is annotated with @ControlleraAdvice from the org.
springframework.web.bind.annotation package. It will be applied globally, that
is, to all controllers in the application. This class has two methods annotated with
the @ExceptionHandler annotation, which will be called whenever an exception

is thrown and the exception from the controller class matches the configured
Exception classes.

[223]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

Check out the src/main/java/org/packt/Spring/chapter7/springmvc/
exception/SpringException.java file for the following code snippet:

package org.packt.Spring.chapter7.springmvc.exception;

import org.springframework.web.bind.annotation.ControllerAdvice;
import org.springframework.web.bind.annotation.ExceptionHandler;
import org.springframework.web.servlet.ModelAndView;

@ControllerAdvice
public class SpringException

@ExceptionHandler (Exception.class)
public ModelAndvView allException (Exception e) {

ModelAndView modelAndView = new
ModelAndvView ("error/exception") ;

modelAndView.addObject ("error",
e.getClass () .getSimpleName ()) ;

modelAndView.addObject ("message", e.getMessage()) ;

return modelAndView;

@ExceptionHandler (GenericException.class)
public ModelAndView genericException (GenericException ex) {

ModelAndView modelAndView = new
ModelAndView ("error/exception") ;

modelAndView.addObject ("error",
ex.getClass () .getSimpleName ()) ;

modelAndView.addObject ("message",

ex.getExceptionCode() + " - " +
ex.getExceptionMsg()) ;

return modelAndView;

[224]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The EmployeeController class

The EmployeeController class has three methods. One is just to render the hello.
jsp page. The other two will throw the following exceptions:

* If the request contains the URL as " /employee/testIOException", then it
throws IOException and the allException () method will be fired from the
SpringException class.

* If the request contains the URL as " /employee/testGenericException",
then it throws GenericException and the genericException () method
will be fired from the SpringException class.

Check out the src/main/java/org/packt/Spring/chapter7/springmve/
controller/EmployeeController.java file for the following code snippet:

package org.packt.Spring.chapter7.springmvc.controller;

import java.io.IOException;

import
import
import
import
import

org.
org.
org.
org.
org.

packt.Spring.chapter7.springmvc.exception.GenericException;
springframework.stereotype.Controller;
springframework.ui.ModelMap;
springframework.web.bind.annotation.RequestMapping;
springframework.web.bind.annotation.RequestMethod;

@Controller

@RequestMapping (" /employee")

public class EmployeeController

@RequestMapping (method = RequestMethod.GET)

public String welcomeEmployee (ModelMap model)

Py

model .addAttribute ("name", "Hello World!");
model.addAttribute ("greetings",
"Welcome to Packt Publishing - Spring MVC

return "hello";

@RequestMapping ("/testIOException")
public String testIOException (ModelMap model) throws
IOException {

[225]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

if (true) {
throw new IOException("This is an IO Exception");

}

return "hello";

@RequestMapping ("/testGenericException™)
public String testGenericException (ModelMap model) throws
IOException {

if (true) {
// add custom code and message that appear to error
page
throw new GenericException("R333", "This is a
custom message") ;

}

return "hello";

The hello.jsp page

This view page contains two hyperlinks with the URLs "employee/
testIOException" and "employee/testGenericException" that will be mapped
to the controller method.

Check out the /WEB- INF/views/hello. jsp file for the following code snippet:

<body>
<hl style="color: green; text-align: center;">${name}</hl>
<h2 style="color: orange; text-align: center;">${greetings}</h2>
<table align="center" border="1" cellspacing="0" cellpadding="10">
<tr>
<td rowspan="2" style="color: red; text-align: center;">
Exception Handling
</td>
<td>Click here to test
I0
Exception
</td>
</tr>
<tr>
<td>Click here to
test Generic Exception

[226]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

</td>
</tr>
</table>
</body>

The exception.jsp page

This page will be executed when an exception is thrown from the controller.

Take a look at the /WEB- INF/views/error/hello.jsp file for the following code
snippet:

<body>

<hl style="color: red">Sorry! Unable to process current Request</
hls

${error}: ${message}

</body>

Running the application

Once you compile and run the application successfully, the output will appear in
the browser as at the URL http://localhost:8080/SpringMVCWithException/

employee:

() Chapter-7 Spring MVC &2 =0

o @ Q§'° http://localhost:3080/SpringMV CWithException/employee v B

Hello World!

Click here to test IO Exception

Exception Handling

Click here to test Generic Exception

[227]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

Once you click on Click here to test IO Exception, the page will be redirected
to the URL http://localhost:8080/SpringMVCWithException/employee/
testIOException:

i Chapter-7 Exception Page &3 =B

=] &% | http://localhost:B080/SpringMVCWithException/employes/test OException v | [

Sorry! Unable to process current Request

I0Exception: This 1z an [0 Exception

For the URL http://localhost:8080/SpringMVCWithException/employee/
testGenericException, you'll get the following output:

() Chapter-7 Exception Page &2 =8

=1 & | http://localhost:8080/SpringMVCWithException/employee/testGenericExcepl w | [B=

Sorry! Unable to process current Request

GenericException: R333 - This is a custom message

[228]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Spring MVC internationalization (i18n)

It is always good practice to use internationalization (i18n) whenever you develop
a web application. The goal is to externalize the user messages and text into
properties file. It is always good to externalize the language-related settings in the
early stage, even though we won't find internationalization (i18n) requirement on
first day of application development, but it will be fruitful when our application
needs to respond more than one language. The i18n can be enabled very easily
with Spring MVC.

The properties file

Let's say that our web application supports two locales: en and fr. This application
will consider English as the default locale, and the user will have options to

change the locale. The two properties files for these two locales are messages_
en.properties and messages_ fr.properties:

. src/main/resources/messages/messages_en.properties:TTﬂSfﬂe
contains the following snippet:
employee
employee.first.name=First Name
employee.last .name=Last Name

. src/main/resources/messages/messages_fr.properties:TTﬂSfﬂe
contains the following snippet:
employee
employee.first.name=Pr\uO0OE9nom
employee.last .name=Nom

Spring configuration

We need to configure beans of type ReloadableResourceBundleMessageSource,
LocaleChangeInterceptor, and SessionLocaleResolver to support
internationalization (i18n) in our web application.

ReloadableResourceBundleMessageSource

In the Spring configuration file SpringDispatcher-servlet.xml, add the org.
springframework.context.support.ReloadableResourceBundleMessageSource
bean, which will allow the alteration of properties files without restarting the JVM:

<!-- Application Message Bundle -->
<bean id="messageSource"

[229]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

class="org.springframework.context.support.ReloadableResourceBundleMe
ssageSource" >

<property name="basename" value="classpath:messages/messages" />
<property name="defaultEncoding" value="UTF-8"/>

</bean>

The messageSource bean needs to be configured in the configuration file to enable
i18n for our web application. The basename property of this bean is used to provide
the resource bundle location. The value of this property is classpath:messages/
messages. This means that properties files are located in the class path under the
messages folder and follow the name pattern as messages_{locale}.properties.
The defaultEncoding for the properties file is UTF- 8, which defines the encoding
used for the messages.

LocaleChangelnterceptor

The LocaleResolver allows us to change the current locale and is used in
combination with LocaleChangeInterceptor. It uses the defined parameter in

the user request to change the current locale. For example, a request with the URL
http://localhost:8080/eHRPayrollSystem/employeeList?lang=£fr will change
the language of the page to French.

<mvc:interceptorss>

<bean class="org.springframework.web.servlet.il8n.
LocaleChangelIntercepto

r'">

<property name="paramName" value="lang" />
</bean>

</mvc:interceptorss>

SessionLocaleResolver

Using the localeResolver object, Spring's DispatcherServlet enables us to
resolve messages based on the client's locale. The 1ocaleResolver bean of type
org.springframework.web.servlet.il8n.SessionLocaleResolver allows us to
retrieve locales from the session that might be associated with request from user:

<bean id="localeResolver" class="org.springframework.web.servlet.il8n.
SessionLocaleResolver">

<property name="defaultLocale" value="en" />
</bean>

If the session is not found, then defaultLocale is set to en, that is, English.

[230]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The hello.jsp page

The hello.jsp page contains two hyperlinks, and one click will change the locale.
The spring:message is used to display the message from the corresponding
message's properties file based on the current locale:

<%@ page contentType="text/html;charset=UTF-8"%>
<%@ taglib prefix="spring" uri="http://www.springframework.org/tags"%>

<html>
<head>
<title>Chapter-7 Spring MvVC</title>
</heads>
<body>
<hl style="color: green; text-align: center;">Chapter 7:
Spring
MVC - internationalization
</hl>

<table align="center" border="1">
<tr>
<td><b style="color: brown"s>Language</td>
<td>English|</td>
<td>French</td>
</tr>
</table>
<h2 style="color: orange; text-align: center;">
<spring:message code="employee.first.name" text="default
text" />
${firstName}
</h2>
<h2 style="color: orange; text-align: center;">
<spring:message code="employee.last.name" text="default
text" />
${lastName}
</h2>
</body>
</html>

Running the application

On clicking French, the language will be changed to French or fr.

[231]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

For English locale, go to http://localhost:8083/
SpringMVCInternationalization/employee Or http://localhost:8083/
SpringMvCInternationalization/employee?lang=en, as shown in the
following screenshot:

() Chapter-T Spring MVC &2 =8
@ " | hitp//localhost:3083/SpringMVCInternationalization/employee v B
Chapter 7: Spring MVC - internationalization
Language [English| French
For French locale, go to http://localhost:8083/
SpringMvVCInternationalization/employee?lang=fr:
(i Chapter-7 Spring MVC 52 =0
(=] B & | httpi//localhost:2083/SpringMVCInternationalization/employee?lang=fr v| B

Chapter 7: Spring MVC - internationalization

Language English| French

Handling form with the controller

In a web application, we can have a form to add employee information to the system.
A user needs to have a form where he/she can provide employee information, and
when he/she submits the form, a controller needs to accept the form submission. So,
a controller needs to have at least two functions:

* One function to display employee information form to user on HTTP GET
request

[232]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

* Another function to handle when the form is submitted using the HTTP posT
method, by processing business functionality for data present in the form

Spring MVC handles form submission by using three components, namely
controller, model and view:

* Controller: The controller in Spring MVC is generally used to handle
requests. The controller in Spring MVC can also be used to bind the model
object with view and vice versa.

* Model: Model is a POJO class. The model class is created to bind form field
with properties of the object which will be put into the model.

* View: The form tags in Spring MVC are used to render the form field
equivalent to HTML. The form tags bind the model's object with the form.

ModelAndView in Spring MVC

The org.springframework.web.servlet .ModelAndView in the Spril‘lg Framework
plays both model and view. Mode1lAndview holds data for both model and view.
There are different constructors for Modelandview; the one we have used in our
application is:

public ModelAndView (String viewName, String modelName,Object
modelObject)

The arguments of a ModelAndview constructor are:

* viewName: This is the name of the page which we are looking for
* modelName: This can be any name which represents the model

* modelObject: This is a bean that is associated with the form
Let's take an example:
ModelAndView ("addemployee", "command", new Employee()) ;

Here, addemployee is viewname, command is modelName, and new Employee () will
be the employee object, which will be associated with the form in the addemployee.
jsp page in our application.

[233]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

Spring MVC Controller class

The EmployeeController class is designated to handle the request URL /employee:

@RequestMapping (value = "/employee")

@ModelAttribute in the controller class

The org.springframework.web.bind.annotation.ModelAttribute in
Spring MVC is used to an annotation for the handler method or method
arguments in the controller class. The @ModelAttribute annotation binds
a named model attribute to any arguments in a method or to the method
itself. Let's say we have created a ModelAttribute with the name
employeeForm: @ModelAttribute ("employeeForm").

ModelMap in the controller class

The org. springframework.ui.ModelMap is an implementation of map, and in
Spring MVC, it is used whenever working with UI tools. It carries the data that
can be viewed.

In Spring MVC, writing handler methods is very flexible, as we have seen earlier
in this chapter. We have implemented four methods, namely 1istEmployees (),
addEmployee (), updateEmployee (), deleteEmployee (), to handle the GET and
POST requests.

Check out the /src/main/java/org.packt/spring/chapter7/springmvc/
controller/EmployeeController file for the following code snippet:

package org.packt.Spring.chapter7.springmvc.controller;

import org.packt.Spring.chapter7.springmvc.model.Employee;

import org.packt.Spring.chapter7.springmvc.service.EmployeeService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;

import org.springframework.ui.ModelMap;

import org.springframework.web.bind.annotation.ModelAttribute;
import org.springframework.web.bind.annotation.PathVariable;

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.servlet.ModelAndView;

[234]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

@Controller
@RequestMapping ("/employee")
public class EmployeeController

@Autowired
private EmployeeService employeeService;

@RequestMapping (method = RequestMethod.GET)
public String listEmployees (ModelMap model) {
model.addAttribute ("employeesList",
employeeService.listEmployee()) ;
return "employee";

@RequestMapping (value = "/addemployee", method =
RequestMethod.POST
public ModelAndvView addEmployee (ModelMap model) {
return new ModelAndView ("addemployee", "command", new
Employee()) ;

}

@RequestMapping (value = "/updatemployee", method =
RequestMethod.POST)
public String updateEmployee (
@ModelAttribute ("employeeForm") Employee employee,
ModelMap model)
this.employeeService.insertEmployee (employee) ;
model.addAttribute ("employeesList™",
employeeService.listEmployee()) ;
return "employee";

@RequestMapping (value = "/delete/{empId}", method =
RequestMethod.GET)

public String deleteEmployee (@PathVariable ("empId") Integer

empId,

ModelMap model) {
this.employeeService.deleteEmployee (empId) ;
model.addAttribute ("employeesList™",

employeeService.listEmployee()) ;
return "employee";

[235]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

Let's understand each method defined in the EmployeeController class as shown in
the preceding code snippet in detail:

* listEmployees ():In this method, we have ModelMap. We have added
an attribute to this model with the key 'employeesList' and the value
contains the employee list, which returns from the employeeService.
listEmployee () method.

* addEmployee (): In this method, we have called the Modelandview
constructor that takes addemployee as view name, commandName as
command that can be associated with the Spring form <form: form> tag, and
employee object, which must match the value of the commandName attribute
of the <form: form> tag.

* updateEmployee (): The insertEmployee () method handles form
submission via the POST request. Out of all parameters defined in this
method, @ModelAttribute ("employeeForm") is the important parameter.
When the form is submitted, the form value can be accessed.

* deleteEmployee (): This method will delete employees based on
employeeld associated with the URL, for example, "/delete/{empId}". The
(@PathVariable ("empId") integer empId is an important attribute of this
method that will take the value associated to the URL.

The View page
The employee. jsp page uses EL expressions to display values of properties of the
employee object in the model.

Check out the /WEB-INF/views/employee. jsp file for the following code snippet:

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=IS0-8859-1">
<title>Employee List</titles>
</heads>
<body>
<div align="center">
<hl style="background-color: lightgreen; color:
darkgreen">Employee
Page
</hl>

[236]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

</div>
<div align="center"s
<table align="center" width="80%" cellspacing="0"
cellpadding="5">
<tr>
<td align="right"s<a href="${pageContext.request.
contextPath}/employee/addemployee"
style="background-color: lightblue;"> Add Employee </td>
</tr>
<tr>
<td>
<table cellspacing="0" cellpadding="6" border="1"
width="100%">
<tr>
<td colspan="7"
style="background-color: lightblue;
color: darkgreen; font-size: 16pt"
align="center">Employee List</td>

</tr>
<tr bgcolor="grey" style="color: white">
<th>No</th>

<th>First Name</th>
<th>Last Name</th>
<th>Job Title</th>
<th>Department</th>
<th>Salary</th>
<th>Delete</th>
</tr>
<c:forEach var="employee"
items="${employeesList}"
varStatus="status">
<tr bgcolor="lightyellow">
<td>${status.index + 1l}</td>
<td>${employee.firstName}</td>
<td>${employee.lastName}</td>
<td>${employee.jobTitle}</td>
<td>${employee.department }</td>
<td>${employee.salary}</td>
<td><a href="${pageContext.request.
contextPath}/employee/delete/${employee.id}">Delete</td>
</tr>
</c:forEach>
</table>
</td>

[237]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

</tr>
</table>
</div>
</body>
</html>

The Spring MVC form

The Spring MVC form provides a tag library to create a form that will be associated
with a bean. When we submit this Spring MVC form, the associated bean will
automatically be populated, and that bean will be used for further processing.

The JSP page must be created using Spring tags and should not have generic
HTML tags. The <form: forms> tag is very similar to the regular HTML <form> tag,
and plays a major role in the Spring MVC form. The commandName can be added to
it to specify the name of the model class object, which will act as backing object for
this form.

<%@taglib
uri="http://www.springframework.org/tags/form"prefix="form"%>

For more reference on Spring form tag, refer to Appendix C, Spring Form Tag Library.

Check out the /WEB- INF/views/addemployee. jsp file for the following code
snippet:

<%@taglib uri="http://www.springframework.org/tags/form"
prefix="form"%>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=IS0-8859-1">
<title>Add Employee</titles>
</heads>
<body>
<div align="center">
<hl style="background-color: lightgreen; color:
darkgreen'">Add
New Employee Page
</hl>
</div>
<div align="center">
<table cellspacing="0" cellpadding="6" border="1"
widht="60%">

[238]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

<tr>
<td colspan="8"
style="background-color: lightblue; color:
darkgreen; font-size: 1lépt"
align="center">Employee Information</td>
</tr>
<tr>
<td>
<form:form method="POST" action="updatemployee">
<table widht="100%">
<tr>
<td>
<form:label path="firstName">First
Name</form:label>
</td>
<td align="left" width="70%">
<form:input path="firstName" />
</td>
</tr>
<tr>
<td>

<form:label path="lastName">Last Name</
form:labels>

</td>
<td align="left">
<form:input path="lastName" />
</td>
</tr>
<tr>
<td>
<form:label path="jobTitle">Job
Title</form:label>
</td>
<td align="left">
<form:input path="jobTitle" />
</td>
</tr>
<tr>
<td>
<form:label
path="department">Department</form:label>
</td>
<td align="left">

[239]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

<form:input path="department" />
</td>
</tr>
<tr>
<td>
<form:label path="salary"s>Salary</
form:labels>
</td>
<td align="left">
<form:input path="salary" />
</td>
</tr>
<tr>
<td colspan="2"><input type="submit"
value="Submit" /></td>
</tr>
</table>
</form: forms>
</td>
</tr>
</table>
</div>
</body>
</html>

Running the application
On compiling and running the application, the expected output will appear URL

http://localhost:8080/eHRPayrollFormHandling/employee, as shown in the

following screenshot:

[240]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

| @ Employeetiz 12

m

&

=0

| http://localhost:8080/eHRPayrollFormHandling/employee

Ve &

Employee Page

Add Emplovee

Employee List

First | Last Job Title Department | Salary | Delete
Name | Name

AUTHOR | TECHNOLOGY [5000 |Delete
N [e T e | Ky e 3000 | Delete
Engineer —

On clicking the Add Employee link, you will be directed to Add New Employee
Page. Enter the employee information into the input box, as shown in the following
screenshot. The URL is http://localhost:8080/eHRPayrollFormHandling/
employee/addemployee:

9 AddEmployee T

&

=08

m |http:fflocalhost:SOSDfeHRPayroIIFormHandIing!employeefaddemployee

Ve =

Add New Employee Page

Employee Information

First Name |Shashi

Last Name |Kant

Job Title |Self Employeed

Dcpm-hnent|Non—Technical
Salary 2500 x

[241]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Web MV C Framework

After entering employee information, click on the Submit button. Then, you will be
brought back to Employee Page where the list of employees will be shown to the
user. The URL is http://localhost:8080/eHRPayrollFormHandling/employee:

(4 Employee List &2 =5
[¢=] | http://localhost:8080/eHRPayrollFormHandling/employee/updatemployes v| B
Employee Page

Add Emplovee
Employee List

First Last
Name Name Job Title Department | Salary | Delete

AUTHOR TECHNOLOGY [5000 | Delete
2 | Shree Kant i ware Technology 3000 | Delete
Engineer
- Self .
3 | Shashi Kant Non-Technical 2500 | Delete
Employeed _—

In the preceding screenshot, newly added employee information is visible to the user
along with old employees. We can also delete an employee by clicking on the Delete
link for each employee on the page. Let's say we have clicked the Delete link for an
employee 1; this employee will be deleted, and after deleting this employee, a new
list of employees will be visible to the user. The URL is http://localhost:8080/
eHRPayrollFormHandling/employee/delete/1:

() Employee List &2 = g
@) | http://localhost:8080/eHRPayrolIFormHandling/employee/delete/1 v [
Employee Page

Add Emplovyee
Employee List
First | -1
Name Name Job Title Department | Salary | Delete
Shree Software Technology | 3000 | Delete
ngineer
2 | Shashi K Self Employeed Non- 2500 | Delet
as; ant elf Employeed | o 4 - elete
[242]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Exercise
Q1. What is Spring Web MVC framework?

Q2. What is DispatcherServlet in Spring MVC framework?
Q3. What is Controller in Spring MVC?
Q4. What is ViewResolver in Spring MVC?

Solution to Exercises.

[Q‘Q The answers to these are provided in Appendix A,]

Summary

In this chapter, we covered the Spring MVC framework and its components, such

as DispatcherServlet class and HandlerMapping. We developed a Spring Web
MVC application by creating a controller, view, and web configuration file. We
discovered that DispatcherServlet is the central component of a Spring Web MVC
application. It accepts requests from the view page and dispatches the control to the
controller classes. We also understood that controller classes process requests and
send back a view and some data to be displayed in the view. The view components
are resolved by the viewResolver class.

We have seen annotation and their uses in Spring MVC: the @Controller
annotation is used to create controller class, @ModelAttribute is used to represent
the model or command objects, @ExceptionHandler is used to handle exceptions,
and @RequestMapping is used to map incoming requests to various methods of
controller classes. In addition, we have explored handling forms using the controller
in Spring MVC. We also developed a Spring MVC application after integration with
the Hibernate ORM framework.

In the next chapter, Spring Security, we will first try to understand what Spring
Security is. Then, we will look into the dependencies needed for Spring Security.
We will take a look at authentication and authorization in Spring Security. We
will take a quick review of Servlet filters in web applications and will understand
how Spring Security is dependent on this filter mechanism. After that, we will
see the two important aspects of Spring Security: the authentication manager and
authentication provider.

[243]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Security

In the previous chapter, you learned about the features of the Spring Web MVC
framework. We also understood different components of the Spring MVC framework,
such as DispatcherServlet and HandlerMapping. You also learned how to develop
web applications using the Spring MVC framework by creating a controller, view, and
web configuration file.

In this chapter, we will first try to understand what Spring Security is. Then, we
will look into the dependencies needed for Spring Security. We will take a look

at authentication and authorization in Spring Security. Next, we will do a quick
review of the Servlet filter in web application and also understand how Spring
Security is dependent on this filter mechanism. We will discuss how to secure web
applications using filters along with the Spring interceptor and filter concepts in
Spring Security. Then, we will see the two important aspects of Spring Security,
that is, the authentication manager and authentication provider. We will also see
different ways of logging into web applications, such as HTTP basic authentication,
form-based login services, anonymous login, and also the Remember Me support
in Spring Security. We will also discuss authenticating and authorization against
databases. Then, we will implement method-level security.

The list of topics covered in this chapter is as follows:

* Introduction to Spring Security

* Review on Servlet filters

* Security use case

* Spring Security configuration

* Securing web application's URL access
* Logging into web application

e Users authentication

[245]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Security

* Method-level security
* Developing an application using Spring MVC, Hibernate, and Security

What is Spring Security?

Security for a web application is nothing but protecting resources and allowing
only specific users to access it. Spring Security shouldn't be assumed as a firewall, a
proxy server, intrusion detection, JVM security, or anything similar. Spring Security
is basically made for the Java EE Enterprise software application and is primarily
targeted towards Spring-framework-based web applications.

The Spring Security framework initially started as Acegi Security Framework,
which was later adopted by Spring as its subproject Spring Security. The Spring
Security framework is a de facto standard to secure Spring-based applications.
The Spring Security framework provides security services for enterprise Java
software applications by handling authentication and authorization. Spring
Security handles authentication and authorization at both the web request level
and the method invocation level. Spring Security is a highly customizable and
powerful authentication and access control framework.

Major operations

The two major operations provided by Spring Security are authentication
and authorization.

* Authentication: This is the process of assuring that the user is the one that
the user claims to be. Authentication is a combination of identification and
verification. Identification can be performed in a number of ways. For example,
through a username and password that can be stored in a database, LDAP, or
CAS (single sign-on protocol). Spring Security provides a password encoder
interface to make sure that the user's password is hashed.

* Authorization: This provides access control to an authenticated user.
Authorization is the process of assuring that the authenticated user is
allowed access only to those resources that they are authorized to use.
Let's take an example of the HR Payroll application, where some parts
of the application have access to HR and to some other parts all the
employees have access. The access rights given to the user of the
system will determine the access rules.

[246]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

In web-based applications, this is often done through URL-based security
and is implemented using filters that play a primary role in securing the
Spring web application.

Sometimes, URL-based security is not enough for web applications as

URLs can be manipulated and have relative pass. Let's take an example of
HrPayrollSystem, where the HR and manager are involved, and there is an
employees list page. On this employees list page, there is a Delete button for
each employee. The Delete button contains a hyperlink for a delete method
call in the controller class. This button appears for HR but it is hidden for
managers. Even though the manager doesn't see the Delete button, the delete
method can be called by altering the URL in the browser. This results in the
delete operation by the manager, which shouldn't have happened.

So, Spring Security also provides method-level security. The authorized user
will only able to invoke those methods which he is granted for.

Servlet filters review

Spring Security is developed on top of the Spring Framework and uses the filters
concept in the Servlet engine. Filters are like Servlet; they come into action when any
request comes to Servlet and can decide whether the request should be forwarded to
Servlet or not. Spring Security registers a single javax.servlet.Filter, thatis, the
DelegatingFilterProxy.

Before starting with Spring Security, let's quickly recall what Servlet filters are. In
the following figure, a user enters the URL in the browser. The request comes to the
container and then to Servlet after referring to web.xml for Servlet mapping with
respecting URL. After processing the request, the request goes back to the user.

request Container

ServletRequest

ServletResponse

Browser response

[247]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Security

A Filter is present between Servlet and Container. It intercepts the requests and
responses to and from Servlet and can pre-process and post-process, as shown in
the following diagram:

Container
Filter

request

Browser

ServletRequest
ServletResponse

In the web . xm1 file, you'll find the following code:

<filter>
<filter-name>filterA</filter-name>
<filter-class>FilterA</filter-class>

</filters>

<filter-mapping>
<filter-name>filterA</filter-name>
<url-pattern>/*</url-patterns

</filter-mapping>

In the preceding code snippet, we have mapped filtera to all URLs. Now, in the
FilterA.java class, you'll find the following code:

public void doFilter (ServletRequest request, ServletResponse
response, FilterChain filterChain)

{

// do something before filter
System.out.println("Starting Filter");

// run rest of the application
filterChain.doFilter (request, response) ;

// cleanup
System.out.println("Ending Filter") ;

[248]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Now, we have the code for Filtera. First, it invokes a message before the rest of the
applications run. Then, it runs the rest of the application. Lastly, it prints a message
again. From the following diagram, let's understand how requests gets impacted by

this filter:
HTTP Request Processing STDOUT
GET /home FilterA Starting Filter
request.getRequestDispatcher("/home
.jsp").forward(request, response);
FilterA Starting Filter
, T
» OK . . .
€ home.jsp Ending Filter

As shown in the preceding diagram, when we make a request to our application
using HTTP GET /home URL, the Servlet container recognizes the £iltera intercepts
this URL. The container invokes the doFilter () method of the Filtera class. As
soon as the doFilter () method is invoked, it prints the message Starting Filter.
Then, filtera invokes the filterChain, and then home. jsp is invoked. Next, it

returns to the filterChain.

Filters can be used for the following operations:

* Blocking access to a resource based on user identity or role membership

* Auditing incoming requests
* Comparing the response data stream
* Transforming the response

* Measuring and logging Servlet performance

Spring Security is dependent on this filter mechanism. So, before reaching out

to Servlet to perform some business logic, some security can be performed using

the filters.

[249]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Security

Security use case

The use case we will use for all our examples is as follows:

1. The user reaches the application or homepage of the application and clicks
on a secure link (for example, login).

2. The moment the user clicks on the secured link, Spring Security brings the
login page.

3. The login page will perform a credential check from the authentication
provider; this can be plain-text, database, or similar.

4. An authentication failure happens if wrong credentials are given by the user;
otherwise, the user will be allowed to the secured area.

5. When the user clicks on logout, they will be directed to the homepage.

The following diagram illustrates the preceding steps:

Log off Secured Area

and
Authorized

Authenticated T

Fail

—>| Homepage |—><Spring Security »>——»| Login page
User Credential
Check

Authentication|
Providers

Authentication

Spring Security configuration
To add Spring Security to our Spring web application, we need to perform a basic
Spring Security setup. To do this, follow these steps:

1. Add Spring JARs or Spring Security dependencies.

2. Update web.xml with springSecurityFilterChain.

3. Create a Spring Security configuration file.

[250]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Spring Security setup
We can either download and add Spring Security JARs to classpath or we can
provide dependencies to Maven.

Adding JARs to the classpath

There are three important JARs that we need for Spring Security. These can be
downloaded from the Spring website and are as follows (the version should
match other Spring JARs used in the project):

* spring-security-config-3.X.X.RELEASE.jars: This contains support for

Spring Security's XML namespace

* spring-security-core-3.X.X.RELEASE.jars: This provides the essential

Spring Security library
* spring-security-web-3.X.X.RELEASE.jars: This provides Spring
Security's filter-based web security support

If we have developed a Maven application, then we need to update pom.xm1.

Spring Security dependencies — pom.xml

Update dependencies to Maven. We have spring-security-core, spring-
security-web, and spring-security-config:

<propertiess

<spring.security.version>3.1.4.RELEASE</spring.security.version>

</properties>

<!-- Spring Security -->

<dependencys>
<groupld>org.springframework.security</groupId>
<artifactIds>spring-security-core</artifactIds>
<version>${spring.security.version}</versions>

</dependency>

<dependencys>
<grouplds>org.springframework.security</groupIds>
<artifactId>spring-security-web</artifactIds>
<version>${spring.security.version}</versions>
</dependency>

<dependencys>

[251]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Security

<grouplds>org.springframework.security</groupIds>

<artifactIds>spring-security-config</artifactIds>

<version>${spring.security.version}</versions>
</dependency>

Namespace configuration

In the Spring configuration file, we need to add one more entry to schema, which
is related to Spring Security and the corresponding schemaLocation and their xsd,
which lives in Spring JARs. The security prefixed elements go here.

In the springDispatcher-servlet.xml file, you'll find the following code:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:security="http://www.springframework.org/schema/security"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-
3.1.xsd

http://www.springframework.org/schema/security

http://www.springframework.org/schema/security/spring-security-
3.1.xsd">

</beans>

Securing web application's URL access

HttpServletRequest is the starting point of a Java web application. To configure
web security, you need to set up a filter that provides various security features.
To enable Spring Security, add filter and their mapping in the web.xm1 file.

The first step — web.xml

The first step is to configure DelegatingFilterProxy instance in web.xml while
securing the web application's URL access with Spring Security.

In the web . xm1 file, you'll find the following code:

<!—Spring Security -->

<filter>

<filter-name>springSecurityFilterChain</filter-name>
<filter-class>org.springframework.web.filter.

DelegatingFilterProxy</filter
-class>

</filters>

[252]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

<filter-mappings

<filter-name>springSecurityFilterChain</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

The DelegatingFilterProxy filter class, which is a special servlet filter,
doesn't do much by itself. It delegates the control to an implementation of
javax.servlet.Filter, which is registered as a special bean with ID is
springSecurityFilterChain in Spring application context. In the earlier
code snippet, we added /+*, which will map to all the HTTP requests and go
to this springSecurityFilterChain.

In the preceding code snippet, we declared the URL pattern /*, which requires
some level of granted authority and prevents other users without authority from
accessing the resources behind those URLs.

Separating security configurations

If we are planning to separate the entire security specific configuration into a
separate configuration file named Spring-Security.xml, we must change the
security namespace to be the primary namespace for that file. Here, there are no
security prefixed elements.

In the Spring-Security.xml file, you'll find the following code:

<beans:beans
xmlns="http://www.springframework.org/schema/security"

xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
http://www.springframework.org/schema/security

http://www.springframework.org/schema/security/spring-security-
3.1.xsd">

<http auto-config="true"s>
<intercept-url pattern='/employeeList'
access='ROLE_USER,ROLE ADMIN ' />
<intercept-url pattern='/employeeAdd' access='ROLE_USER'
/>
<intercept-url pattern='/employeeDelete'
access='ROLE_ADMIN' />

</http>

[253]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Security

<authentication-manager>
<authentication-provider>
<user-service>

<user name="admin" password="adminpassword"
authorities="ROLE_ADMIN" />

<user name="ravisoni" password="mypassword"
authorities="ROLE USER" />

</user-services
</authentication-provider>
</authentication-manager>

</beans:beanss>

The preceding configuration file has been divided into two major sections, as shown
in previous code snippet:

* The first section includes <http> tag and <intercept-url> tag;
these define what you want to secure

* The second section includes the <authentication-managers,
<authentication-providers, and <user-services tags; these
define how you want to secure

Web security is enabled using the <http> tag. This tag is the container element for
the HTTP security configuration. To define the Spring Security configuration for
HTTP requests, we must first define the <http> tag, which automatically sets up
FilterChainProxy. The auto-config=true attribute automatically configures the
basic Spring Security Services that a web application needs. This can be fine-tuned
with the corresponding subelements in it.

The <intercept-urls> element is defined inside the <http> configuration element.
It restricts access to specific URLs. The <intercept-url> tag defines the URL
pattern and set of access attributes that are required to access URLs. It is mandatory
to include a wildcard at the end of the URL pattern, and failing to do so will allow
a hacker to skip the security check by appending arbitrary request parameter.

The access attributes decide if the user can access the URLs. In most cases, access
attributes are defined in terms of roles. In the previous code snippet, users with the
ROLE_USER role are able to access the /employeeList and /employeeAdd URLs.
However, to delete an employee via the /employeeDelete URL, a user must have
the ROLE_ADMI role.

[254]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The <authentication-managers> tag used to process authentication information.
The <authentication-providers tag is nested inside the <authentication-
manager> tag, and used to define credential information and the roles that will be
granted to this user. In the preceding code snippet, inside the <authentication-
manager> tag, we have provided the <authentication-providers tag, which
specifies a text-based user ID and password.

Logging into web application
Users can log into a web application using multiple ways supported by
Spring Security:

* HTTP basic authentication: These processes the basic credentials presented
in the header of the HTTP request. HTTP basic authentication is generally
used with stateless clients which pass their credentials on each request.

* Form-based login service: This provides the default login form page for
users to log into the web application.

* Logout service: This allows users to log out of this application.

* Anonymous login: This grants authority to an anonymous user like
normal user.

* Remember Me support: This remembers a user's identity across multiple
browser sessions.

First, we will disable the HTTP autoconfiguration by removing the auto-config
attribute from the <http> tag to better understand the different login mechanisms
in isolation:

<http>

<intercept-url pattern='/employeeList'
access='ROLE_USER,ROLE ADMIN ' />

<intercept-url pattern='/employeeAdd' access='ROLE_USER'
/>

<intercept-url pattern='/employeeDelete'
access='ROLE_ADMIN' />

</http>

[255]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Security

HTTP basic authentication

The HTTP basic authentication in Spring Security can be configured by using
the <http-basic/> element. Here, the browser will display a login dialog for
user authentication:

<beans:beans
xmlns="http://www.springframework.org/schema/security"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security-
3.1.xsd">

<http>
<intercept-url pattern='/employeeList'
access='ROLE_USER,ROLE ADMIN ' />
<intercept-url pattern='/employeeAdd' access='ROLE_USER'
/>
<intercept-url pattern='/employeeDelete'
access='ROLE_ADMIN' />

<!-- Adds Support for basic authentication -->
<http-basic/>

</http>

<authentication-managers
<authentication-providers>
<user-services
<user name="admin" password="adminpassword"
authorities="ROLE_ADMIN" />
<user name="ravisoni" password="mypassword"
authorities="ROLE USER" />
</user-services
</authentication-providers>
</authentication-managers>

</beans:beanss>

The interesting thing with HTTP basic authentication is that we don't have to create
any login page. The browser will present a login box before the user on our behalf.
As each request contains user authentication information that is the same as the
HTTP stateless mechanism, we don't need to maintain session.

[256]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

When we try to access a secured URL in our web application, the browser will open
an authentication dialog box automatically for a username and password:

Authentication Required ﬁ

0 A username and password are being requested by http://localhost:8080. The site says: "Spring
Security Application”

User Mame:

Paszword:

| ok || cancel |

Form-based login service

Spring Security supports form-based login service by providing the default

login form page for users to input their login details. The <form-login> element
defines the support for the login form, as shown in the following code snippet. By
default, a login form, which will map to the /spring security login URL, will
automatically be created by Spring Security, as shown here:

<http>
<!-- Adds Support for basic authentication -->
<form-login />
</http>

We can also create our own custom login page (1ogin. jsp) in the root directory of
the web application. This should not go inside WEB- INF as it prevents users from
accessing it directly. The form action URL in login. jsp will take the j_spring
security_check value; this is the URL where the form will be posted to trigger the
authentication process, and j_username is used as the username and j_password is
used as the password, as shown in the following code snippet:

<html>

<head>
<titles>Login</title>
</head>

<body>
<form action="j spring security check" method='POST'>
<table>
<tr>
<td>UserName:</td>

[257]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Security

<td><input type='text' name='j username' value=''></td>
</tr>
<tr>
<td>Password:</td>
<td><input type='password' name='j password' /></td>
</tr>
<tr>
<td>Remember me:</td>
<td><input type='checkbox' name='_ spring security
remember me' /></td>
</tr>
<tr>
<td><input name="submit" type="submit" value="submit"
/></td>
</tr>
</table>
</form>
</body>
</html>

While referring to the custom login page for Spring Security, we need to specify its
URL in the login-page attribute of <form-login/>. As shown in following code
mﬁppeb<form—login login-page="/login" authentication-failure-url="/
loginfailed" default-target-url="/employeeList" /> definesthat when the
login button is clicked, it should be navigated to /1ogin. The default target URL

is defined as /employeeList; this means when a user is authenticated, this URL
hits by default. When an authentication failure happens, it should navigate to /
loginfailed:

<http>

<form-login login-page="/login" authentication-failure-
url="/loginfailed" default-target-url="/employeeList" />

</http>

[258]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Logout service

The logout service handles logout requests and is configured via the <logout>
element. In Spring Security, by default, it is mapped to the /j_spring security_
logout URL, and it redirects the user to the context path's root when the logout
successful:

<http>
<logout />
</http>

We can provide the logout link in our page by referring the URL

 Logout </as>.

We can also configure log out so that the user is redirected to another URL
after the logout is successful, as shown in the following code snippet:

<http>

<logout logout-success-url="/login" />
</http>

Anonymous login

The <anonymous> element is used to configure anonymous login service,
where the username and authority of the anonymous user can be configured:

<http>

<intercept-url pattern='/employeeList' access='ROLE_
USER, ROLE_ADMIN,ROLE_GUEST ' />

<intercept-url pattern='/employeeAdd' access='ROLE_USER'
/>

<intercept-url pattern='/employeeDelete'
access='ROLE_ADMIN' />

<anonymous username='guest' granted-
authority='ROLE GUEST' />

</http>

[259]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Security

Remember Me support

The <remember-me /> element is used to configure the Remember Me support in
Spring Security. By default, it encodes authentication information and the Remember
Me expiration time along with private key as a token. It stores this to the user's
browser cookie. The next time a user accesses the same application, they can be log
in automatically using the token:

http>

<remember-me />
</http>

Users authentication

While users log into applications to access secure resources, the user's principle
needs to be authenticated and authorized. The authentication provider helps in
authenticating users in Spring Security. If a user is successfully authenticated
by the authentication provider, then only the user will able to log into the web
application, otherwise, the user will not be able to log into the application.

There are multiples of ways supported by Spring Security to authenticate users,
such as a built-in provider with a built-in XML element, or authenticate user against
a user repository (relational database or LDAP repository) storing user details.
Spring Security also supports algorithms (MD5 and SHA) for password encryption.

Users authentication with in-memory
definitions

If there are only few users for your application with infrequent modification in their
details, then you can define user details in Spring Security's configuration file instead
of extracting information from the persistence engine, so that their details are loaded
into your application's memory, as shown here:

<authentication-managers
<authentication-providers>
<user-services

<user name="admin" password="adminpassword"
authorities="ROLE_ADMIN" />

<user name="ravisoni" password="mypassword"
authorities="ROLE USER" />

<user name="user" password="mypassword"
disabled="true" authorities="ROLE USER" />

[260]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

</user-services>
</authentication-providers>
</authentication-managers>

The user's details can be defined in <user-service> with multiple <user> elements.
For each user, a username, password, disabled status, and a set of granted authority
can be specified, as shown in the previous code snippet. The disabled user indicates
that the user cannot log into system anymore.

The user details can also be externalized by keeping them in the properties file (for
inﬁance,/WEB—INF/usersinfo.properties)

<authentication-managers
<authentication-providers>

<user-service properties="/WEB-
INF/usersinfo.properties" />

</authentication-providers>
</authentication-managers>

Next, we will see the specified properties file containing user details in the form of
properties, where each property represents the user's details. In this property file, the
key of the property represents the username, while the property value is divided into
several parts separated by commas. The first part represents the password and the
second part represents the user's enable status (this is optional with the default status
is enabled), and the remaining parts represent authority granted to the user.

The /WEB-INF/usersinfo.properties file is as follows:

admin=adminpassword, ROLE_ADMIN
ravisoni=mypassword, ROLE USER
user=mypassword, disabled, ROLE USER

Users authentication against database

If you have a huge list of users in your application and you frequently modify
their details, you should consider storing the user details in a database for easy
maintenance. Spring Security provides built-in support to query user details
from the database.

In order to perform authentication against database, tables need to be created to store
users and their roles details. Refer to http://docs.spring.io/spring-security/
site/docs/3.2.3 .RELEASE/reference/htmlsingle/#user-schema for more
details on user schema.

[261]

www.it-ebooks.info

http://docs.spring.io/spring-security/site/docs/3.2.3.RELEASE/reference/htmlsingle/#user-schema
http://docs.spring.io/spring-security/site/docs/3.2.3.RELEASE/reference/htmlsingle/#user-schema
http://www.it-ebooks.info/

Spring Security

The USER_AUTHENTICATION table is used to authenticate the user and contains the
following columns.

The script is as follows:

CREATE TABLE USER_AUTHENTICATION (
USERNAME VARCHAR (45) NOT NULL ,
PASSWORD VARCHAR (45) NOT NULL |,
ENABLED SMALLINT NOT NULL DEFAULT 1,
PRIMARY KEY (USERNAME)

) ;

The table structure is as follows:

Username Password Enabled
admin adminpassword 1
ravisoni mypassword 1
user mypassword 0

The USER AUTHORIZATION table is used to authorize the user and contains the
following columns.

The script is as follows:

CREATE TABLE USER_ AUTHORIZATION (
USERNAME VARCHAR (45) NOT NULL,
AUTHORITY VARCHAR (45) NOT NULL,

FOREIGN KEY (USERNAME) REFERENCES USERS

)

The table is as follows:

Username Authority
admin ROLE ADMIN
ravisoni ROLE_USER
user ROLE_USER

Now, dataSource has to be declared in the Spring configuration file to allow
Spring Security to access these tables, which will help in creating a connection
to the database, as shown here:

<bean id="dataSource"

class="org.springframework.jdbc.datasource.DriverManager
DataSource">

[262]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

<property name="driverClassName"
value="org.apache.derby.jdbc.ClientDriver" />

<property name="url"
value="jdbc:derby://localhost:1527/test;create=true" />

<property name="username" value="root" />

<property name="password" value="password" />

</bean>

Then, configure the authentication provider using the <jdbc-user-services>
element that queries this database. Specify the query statement to get the user's
information and authority in the user-by-username-query and authorities-by-
username-query attributes, as follows:

<authentication-managers
<authentication-providers>
<jdbc-user-service data-source-ref="dataSource"
user-by-username-querys=
"select username, password, enabled from
user authentication where username=?"
authorities-by-username-query=
"select username, authority from
user authorization where username =? "
/>
</authentication-providers>
</authentication-managers>

Encrypting passwords

Spring Security supports some hashing algorithms, such as MD5
(Md5PasswordEncoder), SHA (ShaPasswordEncoder), and BCrypt
(BCryptPasswordEncoder) for password encryption.

To enable the password encoder, use the <password-encoder/> element and
set the hash attribute, as follows:

<authentication-managers
<authentication-providers>
<password-encoder hash="md5" />
<jdbc-user-service data-source-ref="dataSource"

</authentication-providers>
</authentication-managers>

[263]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Security

Method-level security

This is an alternative to securing URL access in the web layer. Sometimes, it is also
required to secure method invocation in the service layer by enforcing fine-grained
security control on methods. This is because, sometimes, it's easier to control it on
particular methods than filtering by address, which can be called by typing. We
can secure method invocation using Spring Security in a declarative way. We can
annotate methods declaration in a bean interface or its implementation class with
@secured annotation and specify the access attributes as its value whose type is
String[], and enable security for these annotated methods by adding <global-
method-securitys in Spring-Security.xml file. This can be done as follows:

<beans:beans
xmlns="http://www.springframework.org/schema/security"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security-

3.1.xsd">
<!l-- To allow standards-based @Secured annotation, enable
secured-annotations -->

<global-method-security secured-annotations="enabled" />

<http

</beans>

The global-method-security namespace is configured along with its secured-
annotations="enabled" attribute to enable annotation-based security. And
annotate methods with @Secured annotation to allow method access for one

or more than one role:

public interface EmployeeService {

@Secured ("ROLE_USER", "ROLE GUEST")
public List<employee> employeeList () ;

@Secured("ROLE_USER", "ROLE_ADMIN")
public Person employeeAdd (Employee employee) ;

@Secured ("ROLE_ADMIN")

[264]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

public Person employeeDelete (int employeeId) ;

}

Let's get down to business

In this section, we will develop an application using Spring MVC, Hibernate, and
Spring Security. Here, we have a custom login page, logout page, employee page (to
list employees), and add employee page (to add employees), which is secured by the
Spring Framework. A user can log into the application using the custom login page
and view the secured page based on the authentication and authorization. A user
will be redirected to the custom login page on any authentication failure along with
the error message, which describes the reason for failure. User will be logged out
from the application on clicking on the logout link and redirected to the logout page.

Project structure

The overall project structure is as follows (refer to the Spring MV C with Hibernate
Integration section from Chapter 5, Spring Web MV C Framework, to perform CRUD
operations using Hibernate):

S ehrPayrollWithSecurity
~ Spring Elements
3 Deployment Descriptor: Archetype Created Web Application
4 ;% Java Resources
4 [src/mainfjava
. org.packt.Spring.chapter8.springsecurity.controller
. org.packt.Spring.chapter8.springsecurity.dao
. {3 org.packt.Spring.chapterf.springsecurity.model
. {3 org.packt.Spring.chapter.springsecurity.service
» [src/main/resources
» =i, Libraries
- B JavaScript Resources
. [Deployed Resources
[pom.xml
Fl 75 srC
4 75 main
. = java
= resources
a s webapp
2| indexjsp
a 5 WEB-INF
hibernate.properties
Qj SpringDispatcher-servietxml
15 spring-security.cml
4 = views
12| addemployee,jsp
1= employee.jsp
2| login,jsp
|2 logout.jsp
i webxml

[265]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Security

In the pom. xm1 file, you'll find the following code:

A list of all required dependencies are listed here in pom.xml. To get Spring Security
features, you need to add spring-security-core, spring-security-web, and
spring-security-config to the pom.xml file:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4 0 0.xsd">
<modelVersion>4.0.0</modelVersion>
<grouplds>org.packt.Spring.chapter8.springsecurity</groupIds>
<artifactIds>ehrPayrollWithSecurity</artifactIds>
<packagings>war</packaging>
<version>0.0.1-SNAPSHOT</version>
<name>ehrPayrollWithSecurity Maven Webapp</name>
<urlshttp://maven.apache.org</url>

Here, the properties specify the versions used:

<propertiess>
<spring.version>4.1.3.RELEASE</spring.version>
<security.version>4.0.0.CI-SNAPSHOT</security.version>
<hibernate.version>4.2.11.Final</hibernate.version>
<org.aspectj-version>1.7.4</org.aspectj-version>
</properties>

Here are the dependencies for all the JARs:

<dependencies>

<dependency>
<groupId>junit</groupld>
<artifactId>junit</artifactIds>
<version>4.1l1l</version>
<scope>test</scope>

</dependency>

<!-- Spring -->

<dependency>
<grouplds>org.springframework</groupIds>
<artifactIds>spring-core</artifactIds>
<version>${spring.version}</versions

</dependency>

<dependency>
<grouplds>org.springframework</groupIds>
<artifactId>spring-web</artifactIds>

[266]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

<version>${spring.version}</versions>

</dependency>

<dependency>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-webmvce</artifactIds>
<version>${spring.version}</versions>

</dependency>

<!-- Spring transaction -->

<dependency>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-tx</artifactId>
<version>${spring.version}</versions>

</dependency>

<!-- Spring Security -->

<dependency>
<grouplds>org.springframework.security</groupId>
<artifactIds>spring-security-core</artifactIds>
<version>${security.version}</versions>

</dependency>

<dependency>
<grouplds>org.springframework.security</groupId>
<artifactIds>spring-security-web</artifactIds>
<version>${security.version}</versions>

</dependency>

<dependency>
<grouplds>org.springframework.security</groupId>
<artifactIds>spring-security-config</artifactIds>
<version>${security.version}</versions>

</dependency>

<!-- Spring ORM -->

<dependency>
<groupIds>org.springframework</groupIds>
<artifactId>spring-orm</artifactIds>
<version>${spring.version}</versions>

</dependency>

<!-- Aspectd -->

<dependency>
<groupIds>org.aspectj</groupId>
<artifactIds>aspectjrt</artifactId>
<version>${org.aspectj-version}</versions>

</dependency>

<!-- Hibernate ORM framework dependencies -->

<dependency>
<groupIds>org.hibernate</groupIld>

[267]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Security

<artifactIdshibernate-core</artifactIds>
<version>${hibernate.version}</versions>

</dependency>
<dependency>
<groupIds>org.hibernate</groupIld>

<artifactId>hibernate-entitymanager</artifactIds>
<version>${hibernate.version}</versions>

</dependency>
<!-- Java Servlet and JSP dependencies (for compilation only)
->
<dependency>
<groupIds>javax.servlet</groupIld>
<artifactIdsservlet-api</artifactIds>
<version>3.0.1l</versions>
<scope>provided</scope>
</dependency>
<dependency>
<groupIds>javax.servlet.jsp</groupIld>
<artifactIds>jsp-api</artifactIds>
<versions>2.l</version>
<scope>provided</scope>
</dependency>
<!-- JSTL dependency -->
<dependency>
<groupId>jstl</groupIds>
<artifactId>jstl</artifactIds>
<versions>1l.2</version>
</dependency>
<!-- Apache Commons DBCP dependency (for database connection
pooling) -->
<dependency>
<groupId>commons-dbcp</groupIld>
<artifactId>commons-dbcp</artifactIds>
<versions>l.4</version>
</dependency>
<!-- postgresgl Connector Java dependency (JDBC driver for
postgresql) -->
<dependency>

<groupldspostgresqgl</groupId>
<artifactIds>postgresqgl</artifactIds>
<version>9.0-801.jdbc4</version>

</dependency>

<!-- logging -->

<dependency>

[268]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

<groupIds>org.slfd4j</groupId>
<artifactId>slf4j-log4jl2</artifactIds>
<version>1l.4.2</versions>
</dependency>
<dependency>
<groupId>log4j</groupIlds>
<artifactIds>log4j</artifactIds>
<version>1l.2.1l4</version>
</dependency>
</dependencies>
<builds>
<finalNames>ehrPayrollWithSecurity</finalName>
</build>
</project>

Adding filters to web.xml

Add filters to web.xml, where all incoming requests will be handled by Spring
Security. The Spring Security JAR contains DelegatingFilterProxy, which
delegates control to a filter chaining in the Spring Security internals. The bean
name should be springSecurityFilterChain.

In the web . xm1 file, you'll find the following code:

<?xml vergion="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app 2 5.xsd"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd"
id="WebApp ID" version="3.0">
<display-name>Archetype Created Web Application</display-name>
<servlet>
<servlet-name>SpringDispatcher</servlet-name>
<servlet-class>
org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<load-on-startup>l</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>SpringDispatcher</servlet-name>
<url-pattern>/</url-patterns
</servlet-mapping>
<listeners>

[269]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Security

<listener-class>org.springframework.web.context.
ContextLoaderListener</
listener-class>
</listener>
<context-param>
<param-name>contextConfiglLocation</param-name>
<param-value>
/WEB-INF/SpringDispatcher-servlet.xml,
/WEB-INF/spring-security.xml
</param-value>
</context-param>
<!-- Spring Security -->
<filters>
<filter-name>springSecurityFilterChain</filter-name>
<filter-class>org.springframework.web.filter.
DelegatingFilterProxy</filter
-class>
</filters>
<filter-mapping>
<filter-name>springSecurityFilterChain</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>
</web-app>

Resolving your view

To resolve the view, view resolver has been added to the SpringbDispatcher-
servlet.xml configuration file. Also, dataSource, sessionFactory, and
transactionManager have been defined here:

<?xml versgion="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:mve="http://www.springframework.org/schema/mvc"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-4.1.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-
4.1.xsd

[270]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mve/spring-mve-3.2.xsd

http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-4.1.xsd">

<context :component-scan base-
package="org.packt.Spring.chapter8.springsecurity" />

<context :property-placeholder location="/WEB-
INF/hibernate.properties" />

<bean id="dataSource"

class="org.springframework. jdbc.datasource.DriverManagerDataSource
">
<property name="driverClassName"
value="${jdbc.driverClassName}" />
<property name="url" value="${jdbc.url}" />
<property name="username" value="${jdbc.username}" />
<property name="password" value="${jdbc.password}" />
</beans>
<bean id="sessionFactory"
class="org.springframework.orm.hibernate4.
LocalSessionFactoryBean"
>
<property name="dataSource" ref="dataSource" />
<property name="annotatedClasses"
value="org.packt.Spring.chapter8.springsecurity.model.
Employee" />
<property name="hibernateProperties">
<propss>
<prop key="hibernate.dialect">${hibernate.dialect}</prop>
<prop key="hibernate.show sgl">${hibernate.show sgl}</
prop>
</props>
</property>
</beans
<bean id="transactionManager"

class="org.springframework.orm.hibernate4 .HibernateTransaction
Manager">

<property name="sessionFactory" ref="sessionFactory" />
</beans>
<tx:annotation-driven transaction-manager="transactionManager"
/>
<bean

class="org.springframework.web.servlet.view.InternalResource
ViewResolver">

<property name="prefix"s

[271]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Security

<value>/WEB-INF/views/</value>
</property>
<property name="suffix"s
<value>.jsp</value>
</property>
</beans>
</beans>

Let's add a custom login

We have defined a role called ROLE_aDMIN. We have defined credentials for this role.
Also, we have mapped URLs with roles that will be handled by Spring Security.

To provide custom login form, add <form:logins in this file. When the user tries

to access a secured resource, a custom login page will be served.

In the security-config.xml file, you'll find the following code:

<?xml versgion="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/security"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security-
3.1.xsd">
<http auto-config="true">
<intercept-url pattern="/employee/*" access="ROLE ADMIN" />
<form-login login-processing-url="/login" login-page="/
loginPage"
username-parameter="username" password-
parameter="password"
default-target-url="/employee/listemployee"
authentication-failure-url="/loginPage?auth=fail" />
<logout logout-url="/logout" logout-success-
url="/logoutPage" />
</http>
<authentication-managers
<authentication-providers>
<user-services
<user name="ravi" password="ravi@l23" authorities="ROLE_
ADMIN" />
</user-services>
</authentication-providers>
</authentication-managers>
</beans :beans>

[272]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Mapping your login requests

The LoginController class contains two methods, namely logoutPage and
loginPage, with request mapping. The /loginPage redirects the user to the
login page and the /logoutpage redirects the user to the logout page:

package org.packt.Spring.chapter8.springsecurity.controller;
import org.springframework.stereotype.Controller;

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;

@Controller
public class LoginController {

@RequestMapping (value = "/logoutPage", method
RequestMethod.GET)
public String logoutPage () {
return "logout";

@RequestMapping (value = "/loginPage", method
RequestMethod.GET)
public String loginPage() {
return "login";

Obtaining the employee list

This controller class has the 1istEmployee (), addEmployee (), and
deleteEmployee () methods. In the EmployeeController.java file,
you'll find the following code:

package org.packt.Spring.chapter8.springsecurity.controller;

import org.packt.Spring.chapter8.springsecurity.model.Employee;
import org.packt.Spring.chapter8.springsecurity.service.
EmployeeService;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;

import org.springframework.ui.ModelMap;

import org.springframework.web.bind.annotation.ModelAttribute;

[273]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Security

import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.servlet.ModelAndView;

@Controller
@RequestMapping ("/employee")
public class EmployeeController

@Autowired
private EmployeeService employeeService;

@RequestMapping (value = "/listemployee", method =
RequestMethod.GET)
public String listEmployees (ModelMap model) {

model.addAttribute ("employeesList",
employeeService.listEmployee()) ;

return "employee";

@RequestMapping (value = "/addemployee", method =
RequestMethod.GET)
public ModelAndview addEmployee (ModelMap model)
return new ModelAndView ("addemployee", "command", new
Employee()) ;

}

@RequestMapping (value = "/updatemployee", method =
RequestMethod.POST)
public String updateEmployee (
@ModelAttribute ("employeeForm") Employee employee,
ModelMap model)
this.employeeService.insertEmployee (employee) ;

model.addAttribute ("employeesList",
employeeService.listEmployee()) ;

return "employee";

@RequestMapping (value = "/delete/{empId}", method =
RequestMethod.GET)
public String deleteEmployee (@PathVariable ("empId") Integer
empId,
ModelMap model)
this.employeeService.deleteEmployee (empId) ;

[274]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

model.addAttribute ("employeesList™",
employeeService.listEmployee()) ;

return "employee";

Let's see some credentials

This login page provides an input box to accept credentials from the user. In the
login. jsp file, you'll find the following code

<%@ taglib uri='http://java.sun.com/jsp/jstl/core' prefix='c'%>
<html>
<head>
<title>Login Page</title>
</head>
<body>
<h2 style="color: orange"s>Login to eHR Payroll</h2>
<c:1if test="${'fail' eq param.auth}">
<div style="color:red">
Login Failed!!!

Reason : ${sessionScope["SPRING SECURITY LAST
EXCEPTION"] .message}
</divs>
</c:1if>
<form action="${pageContext.request.contextPath}/login"
method="post">
<table frame="box" cellpadding="0" cellspacing="6">
<tr>
<td>Username:</td>
<td><input type='text' name='username' /></td>
</tr>
<tr>
<td>Password:</td>
<td><input type='password' name='password'></td>
</tr>
<tr>
<td colspan='2'><input name="submit" type="submit"
value="Submit"></td>
</tr>
</table>
</form>
</body>
</html>

[275]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Security

Time to log out

This logout page reflects that the user has been logged out from the application.
In the logout . jsp file, you'll find the following code:

<html>
<title>Logout Page</title>
<body>
<h2>You have been successfully logged out.</h2>
<a href="${pageContext.request.contextPath}/employee/
listemployee">
Login to eHR Payroll
</body>
</html>

Running the application

Once you deploy the web application after starting the server, open the URL
http://localhost:8080/ehrPayrollWithSecurity/loginPage a custom
login page will appear:

i Login Page &3 =B
= E | http://localhost:3080/ehrPayrollWithSecurity/loginPage v | [

Username: | |

Password: | |

[276]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

If you enter the wrong credentials, the following error will appear:

 LoginPage 01 =0

@) i ‘http:fflocalhost:&[‘.lﬂ'l}!ehrPayroIIWithSecurity!IoginPage v| =

Login to eHR Payroll

Login Failed!!!
Reason : Bad credentials

rUsemame: | |

'Password: | |

I Submit |

If you enter the correct credentials, you will be navigated to the 1istEmployee page:

9 Employeelist 1 i

= o |http:f."locaIhost:BOBOIehrPayroIIWithSecuritermployea’listemployee v| =3 H

Employee Page

Add Employee Logout

Employee List

Software

Shree e Technology | 3000 | Delete

. Self Non-
2 | Shashi | Kant Employeed | Technical 2500 | Delete
3 | Namrata Soni Student CSE 0 Delete
4 | Rishi Raj Student School 0 Delete

[277]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Security

Clicking on Logout will navigate you to the logout page, as shown here:

7 Logout Page i3 =g

&S] [7 | http://localhost:8080/ehrPayrollWithSecurity/logoutPage v| = s

You have been successfully logged out.

Login to eHR Pavroll

Exercise
Q1. What is Spring Security?

Q2. What is authentication and authorization?

Q3. What are the different ways supported by Spring Security for users to log into
a web application?

1
~ The answers to these are provided in Appendix A,
Solution to Exercises.

Summary

In this chapter, you learned what Spring Security is and the major operations
in Spring Security. We took a quick look at the Servlet filter and understood
the security use case. We configured Spring Security by adding dependencies
in pom.xml and also configured namespace.

We secured the web application's URL access by providing DelegatingFilterProxy
as the filter class and the URL pattern. We created a separated Spring Security
configuration file. We saw different ways of logging into the web application.

We authenticated users with in-memory definition and also against the database.
We saw Spring Security supports for encrypt password. Lastly, we configured
the method-level security in Spring Security.

In the next chapter, we will cover Spring testing. We will understand testing
using JUnit4 and TestNG. We will also understand the Mockito framework
(look into MockMVC).

[278]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Testing

In software development, testing is a crucial part. Software development cannot be
completed without testing. Testing is a process that ensures the performance and
quality of software development, and verifies that the applications run smoothly
and flawlessly. For this, unit testing is the easiest technique. It allows us to test each
component of the application separately. Integration testing ensures that multiple
components are working well in a system.

To avoid the mixing of the test code with the normal code, usually unit tests are
created in a separate source folder or a separate project. Some developers, on the
hot topic, "What should be tested", hold that every statement in the code should
be tested.

Testing can be done either automatically or manually, and automated tests can be

run continuously and repeatedly at different phases of the software development

process. This is highly recommended for the Agile development process. Since the
Spring Framework is an Agile framework, it supports these kinds of processes.

The Java platform supports many testing frameworks, in which JUnit and TestNG
are the most popular frameworks. In this chapter, we will discuss a popular Java
testing framework and the basic techniques of testing. We will also discuss the
support provided by the Spring Framework for unit and integrating testing.

Here is the list of topics that will be covered in this chapter:

* Testing using JUnit 4
* Testing using TestNG
* Agile software testing

* Spring MVC test framework

[279]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Testing

Testing using JUnit 4

JUnit 4 is the most widely accepted unit testing framework on the Java platform.
It allows you to annotate the methods that need to be tested by using the eTest
annotation, and it is used to create automated tests for your Java application,
which can be run repeatedly to ensure the correctness of your application.

The website for JUnit is http://junit.org/.

A Test class contains the JUnit tests. These are methods and are only used for
testing. A test method needs to be annotated with the @org.junit.Test annotation.
In this test method, you use a method provided by the JUnit framework to check the
actual result versus the expected result of the code execution.

JUnit 4 annotations

JUnit 4 uses annotations; a few of these are listed in the following table:

Annotation Import Description

@Test org.junit.Test The @Test annotation identifies the
test cases. A public void method
annotated with the @org. junit.
Test annotation can be run as a test
case.

@Before org.junit.Before A public void method annotated with
the @Before annotation is executed
before each Test method in that class
execute. It may be used to set up an
environment variable.

@After org.junit.After A public void method annotated with
the @After annotation is executed
after each Test method in that class
execute. It may be used to release the
external resource that was allocated in
a Before method or clean up the test
environment and save memory.

@BeforeClass | org.junit.BeforeClass | A public static void method annotated
with the @BeforeClass annotation
is executed once, before all the tests in
that class are executed.

[280]

www.it-ebooks.info

http://junit.org/
http://www.it-ebooks.info/

Chapter 7

Annotation Import

Description

@AfterClass

org.junit.AfterClass

A public static void method annotated
with the @AfterClass annotation

is executed once, after all the test
methods in that class have been
executed. It can be used to perform
some clean-up activities, such as
disconnect from the database.

@Ignore org.junit.Ignore

A method annotated with the @Ignore
annotation will not be executed.

Assert methods

JUnit provides the static assert methods declared in the org. junit.Assert class to
test for certain conditions. An assert method starts with assert, and then compares the
expected value with the actual value returned by a test. The Assert class provides
a set of assertion methods of the return type void. These are useful for writing tests.
A few of these are listed in the table shown here:

Method

Description

assertTrue (boolean expected,
boolean actual)

This method checks whether the Boolean
condition is true

assertFalse (boolean condition)

This method checks whether the Boolean
condition is false

assertEquals (boolean expected,
expected, actual)

This method compares the equality of any
two objects using the equals () method

assertEquals (boolean expected,
expected, actual, tolerance)

This method compares either the float or
the double values and tolerance defines
number of the decimal that must be the
same

assertNull (Object object)

This method tests whether a single object
is null

assertNotNull (Object object)

This method tests that a single object is
not null

assertSame (Object objectl,
Object object2)

This method tests whether two objects
refer to the same object, and it must be
exactly the same object pointed to

assertNotSame (Object objectl,
Object object2)

This method tests if two objects do not
refer to the same object

[281]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Testing

An example of JUnit 4

Suppose we are going to develop a simple calculator. We have to test it in order
to ensure the system's quality. Let's consider a simple calculator whose interface
is defined as follows:

package org.packt.Spring.chapter9.SpringTesting.Calculator;
public interface SimpleCalculator {

public long add(int a, int b);

}
Now, we can implement this SimpleCalculator:

package org.packt.Spring.chapter9.SpringTesting.Calculator;
public class SimpleCalculatorImpl implements SimpleCalculator

public long add(int a, int b) {
return a + b;

}

Next, we will test this SimpleCalculator with JUnit 4. Most of the IDEs, such as
Eclipse, STS, and NetBeans support the creation of the JUnit tests through wizards.
Add JUnit 4 JAR to your CLASSPATH to compile and run the test cases created for
JUnit 4, as shown here:

package org.packt.Spring.chapter9.SpringTesting.Calculator;
import static org.junit.Assert.*;

import org.junit.Before;
import org.junit.Test;

public class SimpleCalculatorJUnit4Tests
private SimpleCalculator simpleCalculator;
@Before

public void init () {
simpleCalculator = new SimpleCalculatorImpl () ;

[282]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

@Test

public void verifyAdd() {
long sum = simpleCalculator.add(3, 7);
assertEquals (10, sum) ;

}

Now we can run our test case by right-clicking on the test, and then choosing
Run As | JUnit test, and we can verify the JUnit view as the test case should run
successfully, as shown in the following two cases:

* It will display a green bar if the test case passes:

i, PR GRwE- """
Finished after 0.038 seconds
Runsi 171 8 Errors: 0 B Failures: 0 I

4 ?_;| org.packt.Spring.chapterd.SpringTesting.Calculator SimpleCalculatorlUnitdTe = Failure Trace _,:E 5
2] verifyAdd (0.163 5)|

* It will display a red bar if the test case fails:

g Junit 52 O B ® EH~"50

Finished after 0.138 seconds

Runs: 171 B Errors: 0 B Failures: 1 I

E verifyAddFail [Runner: JUnit 4] (0.305 s) = Failure Trace _.:E 5

] java.lang.AsserticnError: expectedi<11> but was:<10=

= at org.packt.Spring.chapterd.SpringTesting.Calculator.SimpleCalculatorL

y >

Here is the error code in the second case:

@Test
public void verifyAddFail() {
long sum = simpleCalculator.add(3, 7);
assertEquals (11, sum);

[283]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Testing

Testing using TestNG

TestNG (Next Generation) is another testing framework that is similar to the JUnit 4

framework, but it has new functionalities such as grouping concept, and dependency
testing. These have made testing easier and more powerful. It is designed to cover
all the categories of tests, such as the unit test, the functional test, the integration test,
and so on. TestNG also supports multi-threaded testing.

TestNG annotations

TestNG uses annotations; a few of them are listed in the following table:

Annotation

Import

Description

@Test

org.testng.

annotations.

Test

It marks the
method as a test
method

@BeforeMethod

org.testng.

annotations.

BeforeMethod

The annotated
method will be
executed before
each @test
annotated method

@AfterMethod

org.testng.

annotations.

AfterMethod

The annotated
method will be
executed after the
execution of each
and every @test
annotated method

@BeforeClass

org.testng.

annotations.

BeforeClass

The annotated
method will be
executed only once
before the first

test method in the
current class is
invoked

@AfterClass

org.testng.

annotations

.AfterClass

The annotated
method will be
executed only once
after the execution
of all the @Test
annotated methods
of that class

[284]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Annotation Import Description

@BeforeTest org.testng.annotations.BeforeTest The annotated

method will be
executed before
any @Test
annotated method
belonging to that
class is executed

@AfterTest org.testng.annotations.AfterTest The annotated

method will be
executed after any
@Test annotated
method belonging
to the classes is
executed

Example of TestNG

Refer to the link http://testng.org/doc/download.html to set up TestNG for
your IDEs. Add TestNG JAR to your CLASSPATH to compile and run the test cases
created for TestNG, as shown here:

package org.packt.Spring.chapter9.SpringTesting.Calculator;

import
import
import

public

org.testng.Assert;
org.testng.annotations.BeforeMethod;
org.testng.annotations.Test;

class SimpleCalculatorTestNGTests {

private SimpleCalculator simpleCalculator;

@BeforeMethod
public void beforeMethod () {

simpleCalculator = new SimpleCalculatorImpl () ;

@Test
public void verifyadd() {

long sum = simpleCalculator.add (3, 7);
Assert.assertEquals (10, sum);

[285]

www.it-ebooks.info

http://testng.org/doc/download.html
http://www.it-ebooks.info/

Spring Testing

You will see a progressive green bar if your test case passes:

T Results of running class SimpleCalculatorTestNGTests 2] | | % a M | @~ =0

Tests: 1/1 Methods: 1 (233 ms)

Search: B Passed: 1 B Failed: 0 @ Skipped: 0

[All Tests | s Failed Tests | Summary
a] Default suite { 1/0/0/0) (0.015) et Easios
a (] Default test (0.01 5)
4 [t org.packt.Spring.chapterd.SpringTesting.Calculater.SimpleCalculatorTestNGTests
Fie verifyAdd (0.015)

Agile software testing

The term Agile, in the world of software development, typically refers to an
approach to project management that aims to unite teams around the principles of
collaboration, simplicity, flexibility, and responsiveness throughout the process of
developing a new program in an application.

An Agile software testing means the practice of testing software for any performance
issues or bugs within the context of Agile workflow. The developers and testers,

in the agile approach, are seen as the two sides of the same coin. The Agile software
testing includes unit testing and integration testing. It helps with executing the tests
as quickly as possible.

Let's understand the significance and the objectives of unit and integration testing.

Unit testing

Unit testing, as the name suggests, is the testing of every individual method of the
code. It is the method of testing the fundamental pieces of your functionality. It is
a piece of code written by the software developer to test a specific functionality of
the code. Unit tests are used for improving the quality of the code and preventing
bugs. They are not commonly used for finding them. They are automated testing
frameworks.

[286]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Let's take an example of the EmployeeService class that needs the employeebao
object for loading the data from the database. This employeeDao is a real object. So,
to test the EmployeeService class, it is required to provide the employeeDao object
that has a valid connection to the database. We also have to insert the data needed
for the test into the database.

Inserting the data into the database after setting up the connection and then testing on
an actual database can be a lot of work. Instead, we can provide the EmployeeService
instance with a fake EmployeeDao class, which will just return the data that we need
to complete the test. This fake EmployeeDao class will not read any data from the
database. This fake EmployeeDao class is a mock object that is a replacement for a

real object, which makes it easier to test the EmployeeService class.

A common technique that can be applied while testing a unit that depends on other
units is to simulate the unit's dependencies with stubs and mock objects, which help
in reducing the complexity because of the dependencies in the unit test. Let's look at
each of them in detail:

* Stub: A stub is a dummy object, which simulates real objects with the
minimum number of methods required for a unit test. It can be configured
to the return value by implementing the methods in a predetermined way
along with the hardcoded data that suite the test.

* Mock: A mock object is a fake object or a substitute object that is added to
the system, and it usually knows how its method is expected to be called
for a test, and decides whether the unit test has passed or failed. The mock
object tests whether the real object interacted as expected with the fake object.
There may be one or more mock objects per test. A mock object is an object
which mimics an actual object. In Java, there are several libraries, which
are available for implementing mocking, including jMock, EasyMock, and
Mockito (we are interested in this particular tool).

State verification is used to check whether the actual method returns the correct value.
Behavior verification is used to check whether the correct method was called. Stub

is used for state verification, whereas a mock object is used for behavior verification.
A stub object cannot fail a unit test but a mock object can. This is because we know
what and why we are implementing a stub object, whereas a mock is just a fake object
that mimics a real object and if the business logic in the code is wrong, then the unit
test fails even if we have passed a real object.

[287]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Testing

Unit testing for isolated classes

Unit testing is easy for the isolated class, which tests either the class or its method in
isolation. Let's create unit tests for the isolated class, where the class under testing
will not directly depend on any other class, as shown in the following diagram:

Classunder

Testclass o

The core functions of the Hrpayroll system should be designed around employee
details. First, we need to create the Employee class and override the equals ()
method, as shown in the following code snippet:

package org.packt.Spring.chapter9.SpringTesting.modle;
public class Employee

private String employeeId;

private String firstName;

private String lastName;

private int salary;

// constructor, Getters and setters

@Override
public boolean eguals (Object obj)

if (! (obj instanceof Employee))
return false;

Employee employee = (Employee) obj;
return employee.employeeld.equals (employeeId) ;

}

Now, to persist the employee object to the HrPayroll system, we need to define the
EmployeeDao interface:

package org.packt.Spring.chapter9.SpringTesting.dao;

import org.packt.Spring.chapter9.SpringTesting.modle.Employee;

[288]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

public interface EmployeeDao
public void createEmployee (Employee employee) ;
public void updateEmployee (Employee employee) ;
public void deleteEmployee (String employeeId) ;

public Employee findEmployee (String employeeld) ;

}

Let's implement the EmployeeDao interface to demonstrate the unit testing for this
isolated class:

package org.packt.Spring.chapter9.SpringTesting.dao;
import java.util.Collections;

import java.util.HashMap;
import java.util.Map;

import org.packt.Spring.chapter9.SpringTesting.modle.Employee;
public class InMemeoryEmployeeDaoImpl implements EmployeeDao {
private Map<String, Employee> employees;
public InMemeoryEmployeeDaoImpl ()
employees = Collections

.synchronizedMap (new HashMap<String,
Employee>()) ;

}

public boolean isOldEmployee (String employeeId) {
return employees.containsKey (employeeId) ;

@Override
public void createEmployee (Employee employee) {
if (!isOldEmployee (employee.getEmployeeId())) {
employees.put (employee.getEmployeeId (), employee) ;
}
}
[289]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Testing

@Override
public void updateEmployee (Employee employee) {
if (isOldEmployee (employee.getEmployeeId())) ({
employees.put (employee.getEmployeeId (), employee) ;

@Override
public void deleteEmployee (String employeeId) {
if (isOldEmployee (employeeId)) {
employees.remove (employeeId) ;

@Override
public Employee findEmployee (String employeeId) {
return employees.get (employeelId) ;

}

From the aforementioned code snippet, we can see that the
InMemeoryEmployeeDaoImpl class doesn't depend on any other class directly,
which makes it easier to test, because we don't need to be worried about setting
dependency and their working.

Here is an implementation of InMemeoryEmployeeDaoTest:

package org.packt.Spring.chapter9.SpringTesting.test;
import junit.framework.Assert;

import org.junit.Before;

import org.junit.Test;

import org.packt.Spring.chapter9.SpringTesting.dao.
InMemeoryEmployeeDao

Impl;

import org.packt.Spring.chapter9.SpringTesting.modle.Employee;

public class InMemeoryEmployeeDaoTest

private static final String OLD EMPLOYEE ID = "12121";
private static final String NEW _EMPLOYEE ID = "53535";

private Employee oldEmployee;
private Employee newEmployee;
private InMemeoryEmployeeDaoImpl empDao;

[290]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The setUp () method is annotated with the @Before annotation, as shown in the
code snippet here:

@Before
public void setUp() {
oldEmployee = new Employee (OLD EMPLOYEE ID, "Ravi",
"Soni", 1001);

newEmployee = new Employee (NEW EMPLOYEE ID, "Shashi",
"Soni", 3001);

empDao = new InMemeoryEmployeeDaoImpl () ;
empDao.createEmployee (0ldEmployee) ;

}

The is01dEmployeeTest () method is annotated by the @Test annotation. This test
method verifies the employeeId, as shown in the following code snippet:

@Test
public void isOldEmployeeTest () {

Assert.assertTrue (empDao.isOldEmployee (OLD EMPLOYEE 1ID)) ;

Assert.assertFalse (empDao.i1sOldEmployee (NEW _EMPLOYEE ID)) ;

}

The createNewEmployeeTest () method is annotated by the @Test annotation.
This test method creates a new employee and then verifies the new employeeId:

@Test
public void createNewEmployeeTest () {
empDao.createEmployee (newEmployee) ;

Assert.assertTrue (empDao.isOldEmployee (NEW EMPLOYEE ID)) ;

}

The updateEmployeeTest () method is annotated by the @Test annotation.
This test method updates employee details and then verifies the employee's
firstName, as shown here:

@Test

public void updateEmployeeTest () {
String firstName = "Sharee";
oldEmployee.setFirstName (firstName) ;
empDao.updateEmployee (01dEmployee) ;
Assert.assertEquals (firstName,

empDao. findEmployee (OLD EMPLOYEE ID)
.getFirstName ()) ;
}

[291]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Testing

The deleteEmployeeTest () method is annotated by the @eTest annotation. This test
method deletes employee details and then verifies the employee ID, as shown in the
following code snippet:

@Test
public void deleteEmployeeTest () {
empDao.deleteEmployee (OLD EMPLOYEE ID) ;
Assert.assertFalse (empDao.i1sOldEmployee (OLD EMPLOYEE ID)) ;
}
}

The test results of the aforementioned test cases will be as shown here:

g JUnit 52 a® BE| @ 7 EH~-v=0
Finished after 0.032 seconds

Runs: 4/4 B Erors: 0 B Failures: 0 -

4 |?_;| org.packt.Spring.chapterd. SpringTesting.test..InMemeoryEmployeeDacTest [Runner = Failure Trace LF
v isDldEmployeeTest (0.071 5)
EF-'—_| updateEmployeeTest (0.000 5)
v deleteEmployeeTest (0,000 <)
EE createMewEmployeeTest (0.000 =)

Unit testing for dependent class using mock objects

As we have seen in the previous section, testing either an isolated class or an
independent class is easy. However, it would be a little more difficult to test a

class that depends on another class, such as the EmployeeService class (that holds
business logic), which depends on the EmployeeDao class (this class knows how to
communicate with the database and get the information). Unit testing is harder and
has dependencies, as shown here:

[292]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Class Under
Test Class Test

Class Under Test means that whenever we write a unit test, generally the term
"unit" refers to a single class against which we have written the tests. It is the class
that is being tested. So it's good to remove the dependencies, create a mock object
and continue with the unit testing, as shown in the following diagram:

Class Under
Test Class Test

The concept behind removing the dependencies and creating a mock object is that by
creating an object that can take the place of a real dependent object. If we are writing a
unit test for our EmployeeService around business logic, then that particular unit test
should not connect EmployeeService to the EmployeeDao intern, and then connect
the EmployeeDao intern to the database and perform a crud operation, because we just
want to perform the testing of the Employeeservice class, and so we need to create a
mock EmployeeDao. The Mockito framework allows us to create the mock object.

[293]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Testing

The Mockito framework

The Mockito framework is an open source mock framework for unit testing;
it was originally based on EasyMock, which can be downloaded from either
http://mockito.org/ or https://code.google.com/p/mockito/. It can be
used in conjunction with other testing tools, such as JUnit. It helps in creating
and configuring mock objects. Add the Mockito JAR to your CLASSPATH along
with JUnit. It uses the field-level annotations, as shown here:

* @Mock: This creates the mock object for an annotated field.

* @spy: This creates spies for the objects or the files it annotates.

* @InjectMocks: The private field that is annotated by the @InjectMocks
annotations is instantiated and Mockito injects the fields annotated with
either the @Mock annotation or the @Spy annotation to it.

* @RunWith (MockitoJUnitRunner.class): If you use the aforementioned
annotations, then it is must be done to annotate the test class with this
annotation to use the MockitoJdUnitRunner. When MockitoJdUnitRunner
executes the unit tests, it creates mock objects and spy objects for all the
fields annotated by the @Mock annotation or the @Spy annotation.

Let's perform the unit testing using Mockito, where we create a mock object for a
dependent object. Here is the code for the EmployeeService. java interface:

package org.packt.Spring.chapter9.SpringTesting.service;
import org.packt.Spring.chapter9.SpringTesting.modle.Employee;
public interface EmployeeService {

public Employee findEmployee (String employeeld) ;

}
The following is an implementation of EmployeeService:

package org.packt.Spring.chapter9.SpringTesting.service;

import org.packt.Spring.chapter9.SpringTesting.dao.EmployeeDao;
import org.packt.Spring.chapter9.SpringTesting.modle.Employee;

public class EmployeeServiceImpl implements EmployeeService {

private EmployeeDao employeeDao = null;

[294]

www.it-ebooks.info

http://mockito.org/
https://code.google.com/p/mockito/
http://www.it-ebooks.info/

Chapter 7

public EmployeeServiceImpl (EmployeeDao employeeDao) {

this.employeeDao = employeeDao;

@Override

public Employee findEmployee (String employeeId) {

}

return employeeDao.findEmployee (employeelId) ;

And, here we have created our test class in the test folder, and created a

mock object by annotating EmployeeDao. We have annotated the class by the
@RunWith (MockitoJUnitRunner.class) annotation. We have created two test
methods by using the @Test annotation, where, in the first test case, we verify that
the £indEmployee behavior happened once and in the second test case, we verify
that no interactions happened on employeeDao mocks:

package org.packt.Spring.chapter9.SpringTesting.service;

import
import
import
import
import

import
import
import
import
import
import
import

static
static
static
static

org.
org.
org.

org

mockito
mockito
mockito

.mockito

.Mockito.verify;
.Mockito.verifyNoMoreInteractions;
.Mockito.verifyZeroInteractions;
.Mockito.when;

junit.framework.Assert;

org.junit.Before;

org.junit.Test;

org.junit.runner.RunWith;

org.mockito.Mock;

org.mockito.runners.MockitoJUnitRunner;

org.packt.Spring.chapter9.SpringTesting.dao.EmployeeDao;

org.packt.Spring.chapter9.SpringTesting.modle.Employee;

@RunWith (MockitoJUnitRunner.class)
public class EmployeeServiceTest

private
private
private

@Mock

private

static final String OLD EMPLOYEE ID = "12121";
Employee oldEmployee;
EmployeeService employeeService;

EmployeeDao employeeDao;

[295]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Testing

@Before
public void setUp() {
employeeService = new EmployeeServiceImpl (employeeDao) ;
oldEmployee = new Employee (OLD EMPLOYEE ID, "Ravi",
"Soni", 1001);

}

@Test
public void findEmployeeTest () {

when (employeeDao. findEmployee (OLD EMPLOYEE ID)).
thenReturn (oldEmployee) ;
Employee employee =
employeeService. findEmployee (OLD EMPLOYEE ID) ;
Assert.assertEquals (oldEmployee, employee) ;

// Verifies findEmployee behavior happened once
verify (employeeDao) . findEmployee (OLD EMPLOYEE 1ID) ;

// asserts that during the test, there are no other
calls to the mock
// object.
verifyNoMoreInteractions (employeeDao) ;

@Test
public void notFindEmployeeTest ()

when (employeeDao. findEmployee (OLD EMPLOYEE ID)) .thenReturn
(null) ;
Employee employee =
employeeService. findEmployee (OLD EMPLOYEE ID) ;
Assert.assertNotSame (oldEmployee, employee) ;

verify (employeeDao) . findEmployee (OLD EMPLOYEE 1ID) ;

// Verifies that no interactions happened on employeeDao
mocks

verifyZeroInteractions (employeeDao) ;

verifyNoMoreInteractions (employeeDao) ;

[296]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

And, the result of running the test as JUnit is as follows:

v JUnit &2

Runs: 2/2

Finished after 0.261 seconds

A Errors:

PHE[®0 mE -

0 B Failures: 0

4 E?_| org.packt.5pring.chapterd.Spring Testing.service.EmployeeServiceTest = Failure Trace
pE findEmployeeTest (0.207 <)
Ef='—_| notFindEmployeeTest (0.002 5)

Integration testing

Integration testing is a phase of software testing in which individual software modules
are combined and tested as a group to ensure that the required units are properly
integrated and interact correctly with each other. The purpose of integration testing is
to verify the functionality, performance, and reliability of the code. Integration testing
is used for testing several units together.

Let's take an example. We can create an integration test to test EmployeeServiceImpl
using InMemeoryEmployeeDaoImpl as a DAO implementation:

package org.packt.Spring.chapter9.SpringTesting.service;

import
import
import
import
import

org.junit
org.junit
org.junit
org.packt
org.packt

.Assert;

.Before;

.Test;
.Spring.chapter9.SpringTesting.dao.EmployeeDao;
.Spring.chapter9.SpringTesting.dao.

InMemeoryEmployeeDaoImpl;

import org.packt.Spring.chapter9.SpringTesting.modle.Employee;

public class EmployeeServiceIntegrationTest

private stati

private stati

private Emplo

private Emplo

private Emplo

c¢ final String OLD_ EMPLOYEE ID = "12121";
c¢ final String NEW_EMPLOYEE ID = "53535";

yvee oldEmployee;
yee newEmployee;
yeeService employeeService;

[297]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Testing

@Before
public void setUp() {
oldEmployee = new Employee (OLD EMPLOYEE ID, "Ravi",
"Soni", 1001);
newEmployee = new Employee (NEW EMPLOYEE ID, "Shashi",
"Soni", 3001);

employeeService = new EmployeeServiceImpl (
new InMemeoryEmployeeDaoImpl ()) ;
employeeService.createEmployee (oldEmployee) ;

@Test
public void isOldEmployeeTest ()

Assert.assertTrue (employeeService.isOldEmployee
(OLD_EMPLOYEE_ID)) ;

Assert.assertFalse (employeeService.isOldEmployee
(NEW_EMPLOYEE_ID)) ;

}

@Test
public void createNewEmployeeTest ()
employeeService.createEmployee (newEmployee) ;

Assert.assertTrue (employeeService.isOldEmployee
(NEW_EMPLOYEE_ID)) ;

}

@Test

public void updateEmployeeTest () {
String firstName = "Sharee";
oldEmployee.setFirstName (firstName) ;
employeeService.updateEmployee (oldEmployee) ;
Assert.assertEquals (firstName,

employeeService. findEmployee (OLD EMPLOYEE ID) .getFirstName()) ;

}

@Test
public void deleteEmployeeTest () {
employeeService.deleteEmployee (OLD EMPLOYEE ID) ;

[298]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Assert.assertFalse (employeeService.isOldEmployee
(OLD_EMPLOYEE_ID)) ;

}
}

The result is shown here:

ofu JUnit 52 g BB ||% 2 BH~~—08

Finished after 0.027 seconds
Runs: 4/4 B Errors: 0 B Failures: 0]

4 E?_| org.packt.Spring.chapterd.Spring Testing.service.EmployeeServicelntegratioc = Failure Trace :::E
el isOldEmployeeTest (0,002 <)
EF-'—_| createMewEmployeeTest (0.000 5)

el deleteEmployeeTest (0.001 s
EF-'—_| updateEmployeeTest (0.

Create unit tests of the Spring MVC
controller

We will take the example of the Spring MVC from this chapter as a target application
to test and execute unit testing. We have the EmployeeController class as a target
class to test.

You'll find the following code in EmployeeController.java:

package org.packt.Spring.chapter7.springmvc.controller;

import org.springframework.stereotype.Controller;

import org.springframework.ui.ModelMap;

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;

@Controller
@RequestMapping ("/employee")
public class EmployeeController

@RequestMapping (method = RequestMethod.GET)
public String welcomeEmployee (ModelMap model)

[299]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Testing

model .addAttribute ("name", "Hello World!") ;
model.addAttribute ("greetings",
"Welcome to Packt Publishing - Spring MVC
Lriny);

return "hello";

}

In the aforementioned code snippet, the welcomeEmployee () method in

the EmployeeController class gets mapped into the HTTP request. In the
welcomeEmployee () method, the request is processed and bound to the model
objects. Then, the EmployeeController class updates the model and the view
state, and after this it returns to the logical view.

The main objective of the unit testing controller class is to verify that the methods

of the controller class update the model and the view states properly and also return
to the correct view. Since we perform the testing of the controller class's behavior,
we should mock the service layer (if present) with the correct behavior.

For the EmployeeController class, we would like to develop the test cases for the
welcomeEmployee () method. Here we will test the welcomeEmployee () method
of the controller using JUnit 4.

It is important to note that the classes undergoing testing should be placed in
the folder /src/test/java and the resources filed should be placed in the folder
/src/test/resources.

You'll find this code in EmployeeControllerTest.java

package org.packt.Spring.chapter7.springmvc.controller;

import org.junit.Assert;

import org.junit.Test; WelcomeEmployee

import org.packt.Spring.chapter7.springmvc.controller.
EmployeeController;

import org.springframework.ui.ExtendedModelMap;

import org.springframework.ui.ModelMap;

public class EmployeeControllerTest

@Test
public void test () {

EmployeeController controller = new EmployeeController() ;

[300]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

ModelMap modelMap = new ExtendedModelMap () ;
String view = controller.welcomeEmployee (modelMap) ;

// verify view page name
Assert.assertNotNull (view) ;
Assert.assertEquals ("hello", view);

// verify page title
String titlename = modelMap.get ("name") .toString() ;
Assert.assertEquals ("Hello World!", titlename);

// verify greeting message
String greetings = modelMap.get ("greetings") .toString() ;
Assert.assertEquals ("Welcome to Packt Publishing - Spring
mMvc i,
greetings) ;

}
}

Even though the preceding code works, it has the following problems:

* The preceding test case tests the controller API strictly but disagrees on the
request methods, such as GET, POST, PUT, or DELETE

* The preceding test case only tests the return value that is put in the Mode1Map

* The preceding test case tests for the correct view name

It is always challenging to perform unit testing of web applications. A better solution
for the aforementioned problem is provided by the Spring MVC test framework,
which allows us to test the Spring MVC controller.

Spring MVC test framework

The Spring MVC test framework makes unit testing and integration testing of the
Spring MVC controller more meaningful by offering first class JUnit support. It helps
in testing all the aspects of the controller method that have not been tested before.

It allows us to test these aspects in depth without starting a web container.

In order to perform a test on the Spring MVC framework, the Spring TestContext
framework along with JUnit or TestNG makes it so simple by providing an
annotation-driven unit and integration testing support. The Spring TestContext
framework can be tested by annotations such as, @unwith, @WebAppConfiguration,
and eContextConfiguration, to load the Spring configuration and inject the
WebApplicationContext into the MockMvc for the unit and the integration test.

[301]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Testing

Required dependencies

We can configure the Spring TestContext framework by updating pom. xml
with the required dependencies, such as spring-test, junit, and mockito-all.
The following table explains them in detail:

Group ID Artifact ID Version Description
org.springframework | spring- 3.2.4 release | It supports unit and
test integration testing of the
Spring components
org.mockito mockito- 195 The library of the Mockito
all mocking framework
JUnit junit 4.10 The library of the JUnit
framework

You'll find the following code at pom. xm1:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.
apache.org/maven-v4 0 0.xsd">
<modelVersion>4.0.0</modelVersion>
<grouplds>org.packt.Spring.chapter7.springmvc</groupIds>
<artifactId>SpringMVCPayrollSystem</artifactIds>
<packagings>war</packaging>
<version>0.0.1-SNAPSHOT</version>
<name>SpringMVCPayrollSystem Maven Webapp</names
<urlshttp://maven.apache.org</url>
<properties>
<spring.version>3.2.0.RELEASE</spring.version>
</propertiess>
<dependencies>
<dependency>
<grouplds>org.springframework</groupId>
<artifactId>spring-core</artifactIds>
<version>${spring.version}</versions
</dependency>
<dependency>
<grouplds>org.springframework</groupId>
<artifactIdsspring-webmvce</artifactIds>
<version>${spring.version}</versions

[302]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

</dependency>
<l-- Servlet -->
<dependencys>
<groupld>javax.servlet</groupIld>
<artifactId>servlet-api</artifactIds>
<versions>2.5</version>
<scope>provided</scope>
</dependency>
<!l-- Test -->
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-test</artifactId>
<version>3.2.4.RELEASE</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.mockito</groupId>
<artifactId>mockito-all</artifactId>
<version>1.9.5</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.1l0</version>
<scope>test</scope>
</dependency>
</dependencies>
<builds>
<finalName>SpringMVCPayrollSystem</finalName>
</build>
</project>

Annotations in Spring testing

The Spring Framework provides the annotations that can be used to perform unit
and integration testing with the TestContext framework. Here, we will discuss the
two important annotations: @ContextConfiguration and @WebAppConfiguration.

[303]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Testing

The @ContextConfiguration annotation

This annotation is used to set ApplicationContext for the test classes by taking the
actual configuration file with the file path. In the following code, we have given the
file, so it will take the relative path as the root package. We can also give the exact
path by specifying the file: prefix. Also, we can pass more than one configuration
file using a comma separator, as shown here:

@ContextConfiguration ({"classpath*: SpringDispatcher-
servlet.xml"})
public class EmployeeControllerTestWithMockMvec

// class body

}

The @ContextConfiguration annotation caches the ApplicationContext for us
and puts it in the static memory for the entire duration of the test or the test suite.
And the entire test executes it in the same JVM because ApplicationContext is
stored in the static memory. If the second JVM is there, it will not have access to the
static context, and it will result in a second ApplicationContext being created.

The @WebAppConfiguration annotation

It is a class-level annotation used to create a web version of the application context
in the Spring Framework. It is used to denote that the ApplicationContext,
which is loaded for an integration test and used by that class, is an instance of
WebApplicationContext. It is important to note that the eWwebAppConfiguration
annotation must be used with the @ContextConfiguration annotation:

@WebAppConfiguration
@ContextConfiguration ({"classpath*: SpringDispatcher-
servlet.xml"})
public class EmployeeControllerTestWithMockMvec {
// class body

}

MockMvc

The MockMuvc is a key part of the Spring MVC Test framework, which can be used

to write the tests for the applications developed using the Spring MVC. It is the entry
point for Spring MVC testing. The MockMve mock the entire Spring MVC infrastructure
and is created using the implementations of the MockMvcBuilder interface. In order to
use the Spring MVC testing, the first step is to create an instance of MockMvc. There
are four static methods in the MockMvcBuilders class.

[304]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

They are as follows:

® ContextMockMvcBuilder annotationConfigSetup (Class..
configClasses): Use this method when you need to configure the
application context using Java configuration.

® ContextMockMvcBuilder xmlConfigSetup (String.. configLocations):
Use this method when you need to configure the application context by
using the XML configuration files.

® StandaloneMockMvcBuilder standaloneSetup (Object.. controllers):
You can use this method when you need to configure the test controller
manually, and when you want to run the individual components for testing.
We don't need to configure the entire application context; instead we only
need to configure and execute the associated controller component files.

® TInitializedContextMockMvcBuilder webApplicationContextSetup (Web
ApplicationContext context): This method must be used when you have
already fully initialized the webApplicationContext object.

Here, we have created the MockMvc instance using MockMvcBuilders and calling
the standalonesetup () method after passing an instance of the controller class as
a parameter and then building it by calling the build () method, as shown in the
following code snippet:

private MockMvc mockMvc;

@Before
public void setup() {

this.mockMvc = MockMvcBuilders.standaloneSetup
(employeeController) .build() ;

}

Once we have an instance of MockMvc, we can perform the testing using MockMvc.
We can send the HTTP request after specifying all the details, such as the HTTP
method, the content type, and so on. And then, we can verify the results.

Assertion

To perform the assertion, first we use the instance of MockMvc and then we call
the perform() method to pass a relative path to run the test case. And then, we
can verify the different components inside the controller using andexpect. The
andExpect (status () .1s0k ()) is used to check for a 200 status. Similarly, we can
perform the contentType validation, the xpath validation, validate data in the
model, URL validation, and the view name validation.

[305]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Testing

The sample code for this is as shown here:

this.mockMvc
.perform(get ("/employee"))

.andExpect (status () .1is0k())
.andExpect (view () .name ("hello"))
.andExpect (model () .attribute ("name", "Hello
World!"))
.andExpect (
model () .attribute ("greetings",

"Welcome to Packt
Publishing - Spring MVC !!!I"));

@RunWith(SpringJUnit4ClassRunner.class)

This is a JUnit annotation. It executes the tests in a class annotated by the @Runwith
annotation, or extends a class annotated by the @Runwith annotation by invoking
the class passed as a parameter, which means that the tests in the annotated class
are not executed by the in-built API in the JUnit framework, the runner class used to
execute the test case. In order to use the Spring's JUnit class runner for running the
test cases within the Spring's ApplicationContext environment, passed spring's
SpringJUnit4ClassRunner class as parameter.

So now, we have the complete code to perform the testing of the EmployeeController
controller using the Spring MVC test framework. We will use the MockMvc that will
mock the entire Spring MVC infrastructure. We will create a MockMvc instance in the
method annotated by the @Before annotation, so that it will be available before the
test starts.

You'll find this code in EmployeeControllerTestWithMockMve . java

package org.packt.Spring.chapter7.springmvc.controller;

import static org.springframework.test.web.servlet.request.
MockMvcRequestBuilder

s.get;

import static org.springframework.test.web.servlet.result.
MockMvcResultMatchers.

status;

import static org.springframework.test.web.servlet.result.
MockMvcResultMatchers.

view;

import static org.springframework.test.web.servlet.result.
MockMvcResultMatchers.

model;

[306]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

import org.junit.Before;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.mockito.InjectMocks;

import org.mockito.MockitoAnnotations;

import org.packt.Spring.chapter7.springmvc.controller.
EmployeeController;

import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.
SpringdUnit4ClassRunner;

import org.springframework.test.context.web.WebAppConfiguration;
import org.springframework.test.web.servlet.MockMvc;

import org.springframework.test.web.servlet.setup.MockMvcBuilders;

@RunWith (SpringJdUnit4ClassRunner.class)
@WebAppConfiguration
@ContextConfiguration({ "classpath*:SpringDispatcher-servlet.xml"

3]

public class EmployeeControllerTestWithMockMvec

@InjectMocks
private EmployeeController employeeController;

private MockMvc mockMvc;

@Before
public void setup() {
MockitoAnnotations.initMocks (this) ;
this.mockMvec =
MockMvcBuilders.standaloneSetup (employeeController) .build() ;

}

@Test
public void testHome () throws Exception
this.mockMvc
.perform(get ("/employee"))
.andExpect (status () .is0k())
.andExpect (view () .name ("hello"))
.andExpect (model () .attribute ("name", "Hello
World!"))
.andExpect (
model () .attribute ("greetings",

"Welcome to Packt
Publishing - Spring MVC !!!"));

}

[307]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Testing

Now, we can run the test case by right-clicking on the test and then choosing Run As
| JUnit Test. We can verify in the JUnit view as the test case should run successfully,
as shown here:

g JUnit 33 e® BH| @ B+~ =08
Finished after 0.458 seconds
Runs: 1/1 B Errors: 0 B Failures: 0

4] org.packt.Spring.chapter? springmve.controller.EmployeeControllerTestWithMockMve | = Failure Trace 55
gel testHome (0.411 <)

Exercise
Q1. What is the difference between JUnit 4 and TestNG?

Q2. What is the difference between unit testing and integration testing?
Q3. Explain the Spring MVC test framework.
Q4. Explain eContextConfiguration and @WebAppConfiguration.

Q5. Explain MockMvc and @RunWith (SpringJdUnit4ClassRunner.class).

Q The answers to these are provided in Appendix A, Solution to Exercises.

Summary

In this chapter, you learned about the Spring test. We understood testing using JUnit 4,
its annotations, it's assert statements, and demonstrated all this with an example. Then,
we moved on to testing using TestNG and its annotations. We also demonstrated this
with an example. We understood Agile software testing, which includes unit testing
and integration testing. And then, we went through unit testing for the isolated classes
and then we went through the Mockito framework for the dependent class. We also
looked into integration testing with the help of an example. Then, we created a unit
test for the Spring MVC controller using JUnit. And finally, we discussed the topic of
the Spring MVC test framework, where we saw the dependencies required to use the
Spring MVC test and the annotations provided by them. And then, we looked into
MockMvc and their assertion method.

[308]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

In the next chapter, we will go through the e-mail support in Spring to develop
an e-mail application. We will then look at the JavaMail API and the Spring API
to write e-mails. You will also learn to develop a simple Spring e-mail application.

[309]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating JavaMail and
JMS with Spring

In this chapter, first, we will go through the e-mail support in Spring to develop
an e-mail application. We will then look into the JavaMail API and the Spring
API for e-mails. Later in this chapter, you will learn to develop a simple Spring
e-mail application.

In an e-mail application, an e-mail composed by a client is sent to a server and then
delivered to the destination and then sends back a response to the client. Here, the
communication between the client and the server is completely synchronous, which
can be enriched by making this communication asynchronous. The Java messaging
system is the standard application programming interface (API) to perform
asynchronous communication.

Secondly, we will cover JMS and what message and messaging is. Then, we

will look into the JMS application and its components. We will also cover MOM
Service Provider and the configuration of ActiveMQ as Message Queue. Then, we
will configure a Spring bean in the Spring configuration file, and using Spring JMS
template, we will create a MessageSender class and run an application to perform
a functionality related to JMS.

The list of the topics covered in this chapter is as follows:

* E-mail support in Spring

* Spring Java Messaging Service

[311]

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating JavaMail and JMS with Spring

E-mail support in Spring

Electronic mail (e-mail) plays an important role in all day-to-day activities in this
era of global networks. Suppose you want to get periodic updates of a particular
feature on a website, by just subscribing to that feature, you will start receiving
e-mails regarding these updates. E-mails also allow you to send notifications,
business orders, or any periodic reports of a producer.

Oracle provides a simple yet powerful API known as a JavaMail API for creating an
application with an e-mail support. The JavaMail API provides a set of classes and
interfaces for creating an e-mail application. This API is used to programmatically
send and receive e-mails, which can be scaled up to work with different protocols
associated with the mailing system. Although it is a powerful AP], it is very complex,
and using the JavaMail API directly in our application is a slightly tedious task as it
involves writing a lot of code.

The Spring Framework provides a simplified API and plugging for a full
e-mail support, which minimizes the effect of the underlying mailing system
specifications. The Spring e-mail support provides an abstract, easy, and
implementation-independent API for sending e-mails. In this chapter, we will
get an overview on the JavaMail API and learn how to send e-mail using the
JavaMail API in Spring.

Introducing the JavaMail API

The JavaMail API provides a protocol-independent and platform-independent
framework to provide e-mail support for a Java application. The JavaMail API
is a collection of classes and interfaces that comprise an e-mail system. The steps
involved in sending a simple e-mail using the JavaMail API are as follows:

1. Connect to an e-mail server by specifying the username and password;
let's say for example, if you want to send an e-mail from abcexyz . com,
then you need to connect to the e-mail server of xyz. com.

2. Create a message by specifying the recipient's addresses that can include
Cc and Bcc addresses as well.

3. Add attachments to the message if any.

Transport the message to the e-mail server.

[312]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Sending a simple e-mail requires the use of a number of classes and interfaces that
are present in the javax.mail and javax.mail.internet packages. The important
classes and interfaces in the JavaMail API are listed in the following table:

Class/interface Description

Session The javax.mail.Session is the key class of
the JavaMail API. It represents an e-mail session.
Typically, we create a Session object, set the
properties, and send a message.

Message The javax.mail .Message is an abstract class of
the JavaMail API that models an e-mail message.
It represents the e-mail sent.

Transport The javax.mail.Transport is an abstract class of the
JavaMail API that represents the protocol used to send
and receive e-mails. The Transport object is used for
sending an e-mail message.

Authenticator The javax.mail .Authenticator is an abstract class
of the JavaMail API that represents an authentication for
the e-mail provider.

PasswordAuthentication | The PasswordAuthentication holds the username
and password by the Authenticator object.

MimeMessage The javax.mail.internet.MimeMessage is an
abstract class that represents a Multipurpose Internet
Mail Extension (MIME) message. MimeMessage is an
e-mail message, which will understand the MIME types
and headers.

InternetAddress The javax.mail.internet.InternetAddress
represents an Internet e-mail address such as To, Bec,
and Cc.

[313]

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating JavaMail and JMS with Spring

The JavaMail application uses the JavaMail API to exchange e-mails, as shown in the
following figure:

Session
Message
T " Mail
Java Class ranspo Provider
Address
Authenticator

JavaMail API

Using the JavaMail API

The JavaMail API can be used to create a class to send an e-mail using the MailHelper
class. This MailHelper class contains a constructor, which can be used to initialize the
host, username, and password. This MailHelper class also contains the sendMail ()
method.

The following code snippet shows the MailHelper.java class:

public class MailHelper {

private Properties props;
private String host;

private String userName;
private String password;

public MailHelper (String host, String username, String
password) {
this.userName = username;
this.password = password;
props = new Properties() ;
// put host information
props.put ("mail.stmp.host", host);
// put true for authentication mechanism

[314]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

props.put ("mail.smtp.auth", "true");

public void sendMail (String from, String to, String subject,
String body) {
Session session = Session.getDefaultInstance (props, new
PasswordAuthenticator()) ;
try(
Message message = new MimeMessage (session) ;
message.setFrom(new InternetAddress (from)) ;
InternetAddress toAddress = new
InternetAddress (to) ;
message.addRecipient (RecipientType.TO, toAddress) ;
message.setSub (subject) ;
message.setText (body) ;

Transport transport =
session.getTransport ("smtp") ;

transport.connect () ;

transport.sendMessage (message,
message.getAllRecipients());

transport.close () ;

} catch (NoSuchProviderException ex) {
ex.printStackTrace () ;

} catch(MessagingException ex) {
ex.printStackTrace () ;

private class PasswordAuthenticator extend Authenticator(

protected PasswordAuthentication
getPasswordAuthentication ()

return new PasswordAuthentication (userName,
password) ;

}
}

In the preceding code snippet, the MailHelper class has instance variables and a
constructor. The props variable, of the Properties collection type, used to specify
the common properties to connect to the e-mail provider host.

[315]

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating JavaMail and JMS with Spring

Simple Mail Transfer Protocol (SMTP) is a protocol that is used to send e-mails.
The SMTP server performs this job. The props.put ("mail.stmp.host", host)
code inside the constructor is used to specify the host information, where we connect
to the SMTP server of our host. The props.put ("mail.smtp.auth", "true") code
inside the constructor specifies the use of an authentication mechanism to connect to
the SMTP server.

The sendMail method of the MailHelper class creates a Session object using the
host information and the username-password credentials. The from-address and
the to-address are added to the instance of the MimeMessage class. The subject
and the body of the e-mail are also added to this MimeMessage object. Finally, the
message is sent using an instance of the Transport class.

The PasswordAuthenticator class is an inner class that has been used by a session
object to hold the username and the password.

From the preceding code, the following problems can be encountered:

* Lots of initialization and creation work involved in sending a simple e-mail

* Exceptions need to be taken care of while using the JavaMail API; this results
in some extra lines of code

* Some extra classes are needed if required to perform the attachment
operation while sending an e-mail using the JavaMail API

* A solution to the preceding problem is provided by the Spring Framework
that simplifies the use of the JavaMail API to send e-mails

Let's understand the use of the Spring API for the JavaMail API and rewrite the
MailHelper class.

The Spring API for JavaMail

The Spring Framework provides an API to simplify the use of the JavaMail API. The
classes handle the initialization, clean-up operations, and exceptions. The packages for
the JavaMail API provided by the Spring Framework are listed in the following table:

Package Description

org.springframework.mail This defines the basic set of classes and
interfaces for sending e-mails

org.springframework.mail.java | This defines JavaMail API-specific
classes and interfaces for sending e-mails

[316]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

In the Spring mail API hierarchy, the org. springframework.mail package is the
root-level package for the Spring Framework's e-mail support, as shown here:

MailMessage <<interface>>

i N
L A
- implements "«

-

s N
d N

SimpleMailMessage| | MimeMailMessage

The important classes and interfaces in the org. springframework.mail package are
listed in the following table:

Class/interface Description

MailMessage Refers to a common interface for all types of messages that can
be sent. It doesn't support complex MIME messages. It is used
for sending simple plain-text e-mails.

MailSender Refers to an interface that defines methods for sending simple
e-mails. It supports only the plain-text e-mails.

MailException Refers to a base class for all the exceptions thrown by the
mailing system.

SimpleMailMessage | Refers to the class that defines the representation of a simple
message that can be sent.

The important classes and interfaces in the org. springframework.mail.java
package are listed in the following table:

Class/interface Description

JavaMailSenderImpl | Refers to the implementation of the JavaMailSender
interface. It is a core class that is used to send simple as
well as MIME messages. It extends the MailSender
interface and provides the methods for constructing and
sending a MIME message.

MimeMailMessage Implements the MailMessage interface. It is based on
the JavaMail MIME message.

MimeMessageHelper Acts as a wrapper for a MIME message. It is used
to populate a MIME message and is used by the
JavaMailSenderImpl class.

[317]

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating JavaMail and JMS with Spring

The Java application can use Spring to access the JavaMail API for sending e-mails,
as shown in the following figure:

S

P Session

R

I Message
T ; Mail

Java Class 2 ranspor Provider

Address

A Authenticator

P

| T >

JavaMail API

In the preceding figure, the Java classes use the Spring API, which indirectly uses the
JavaMail API to send e-mails.

Developing a Spring Mail Application
Let's create a JavaMail API with the Spring application for sending e-mails via the

Gmail SMTP server using the Spring mail API. Here, we develop a basic e-mail
application that creates simple e-mails containing text only.

Configuration file — Spring.xml

Let's now create the configuration file, Spring.xml, and configure the mailSender
bean of the JavaMailSenderImpl class and define its properties:

host
port
username

password

Also, configure the bean for the EmailService class with the mailSender property:

<!-- SET default mail properties -->

<bean id="mailSender" class="org.springframework.mail.javamail.
JavaMailSenderImpl">

<property name="host" value="smtp.gmail.com" />
<property name="port" value="25" />

[318]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

<property name="username" value="username" />
<property name="password" value="password" />

<property name="javaMailProperties"s>

<propss>
<prop key="mail.smtp.auth"strue</prop>
<prop key="mail.smtp.starttls.enable">true</prop>
</props>
</propertys>
</bean>

<bean id="emailService" class="org.packt.Spring.chapterl0.mail">
<property name="mailSender" ref="mailSender" />
</bean>

The preceding configuration file sets the host as "smtp.gmail.com" and the port

as "25." The username and the password properties need to be set with reader's
username and password of their Gmail account. The username is used as the sender
of the e-mail.

Spring's e-mail sender
It is the e-mail API-specific Java file. It provides the definition of the sendEmail ()
method, which is used to send the actual e-mail to the recipient:

package org.packt.Spring.chapterl0.mail;

import org.springframework.mail.MailSender;
import org.springframework.mail.SimpleMailMessage;

public class EmailService

{

@Autowired
private MailSender mailSender;

public void sendEmail (String to, String subject, String msg) {

// creates a simple e-mail object
SimpleMailMessage email = new SimpleMailMessage() ;

email.setTo(to) ;
email.setSubject (subject) ;
email.setText (msg) ;

[319]

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating JavaMail and JMS with Spring

// sends the e-mail
mailSender.send(email) ;

}

Here, we have autowired MailSender and called the send () method that will send
the e-mails.

The MailerTest class

The MailerTest class has the main () method that will call the sendEmail () method
of the EmailService class and send an e-mail:

package org.packt.Spring.chapterl0.mail;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.ClassPathXml
ApplicationContext;

public class MailerTest

{
public static void main(Stringl[] args)
{
//Create the application context
ApplicationContext context =
new ClassPathXmlApplicationContext ("Spring.xml") ;

//Get the mailer instance

EmailService emailService =
(EmailService) context.getBean("emailService ") ;

//Send a composed mail
emailService.sendEmail ("****@gmail.com",
"Email Test Subject",
"Email Testing body") ;

}
The output of this application can be confirmed by opening the inbox.

We have developed an application using Spring e-mails. Let's now understand the
Spring Java Messaging Service.

[320]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Spring Java Messaging Service

In this section, first, we will go through the basics of Java Messaging Service and

will see the differences between JMS and e-mail. Then, we will look into the JMS
application and its different components that create the complete JMS application.

We will also look through other things such as the JMS provider and the messaging
model. We will dig into the API programming model. Then, we will see the messaging
consumption types. Then, we will jump into the Spring JMS integration and we will
see some code samples. And then, we will look into the details of the code content.

Let's now discuss the message and messaging.

What is a message and messaging?

A message is nothing but just bytes of data or information exchanged between

two parties. By taking different specifications, a message can be described in various
ways. However, it is nothing but an entity of communication. A message can be used
to transfer a piece of information from one application to another application, which
may or may not run in the same platform.

Messaging is the communication between different applications (in a distributed
environment) or system components, which are loosely coupled unlike its peers
such as TCP sockets, Remote Method Invocation (RMI), or CORBA, which is tightly
coupled. The advantage of Java messaging includes the ability to integrate different
platforms, increase the scalability and reliability of message delivery, and reduce the
system bottlenecks. Using messaging, we can increase the systems and clients who
are consuming and producing the message as much as we want.

We have quite a lot of ways in which we communicate right from the instance
messenger, to the stock taker, to the mobile-based messaging, to the age-old
messaging system; they are all part of messaging. We understand that a message
is a piece of data transferred from one system to another and it can be between
humans as well, but it is mainly between systems rather than human beings when
we talk about the messaging using JMS.

What is JMS?

The Java Message Service (JMS) is a Java Message Oriented Middleware (MOM)
API for sending messages between two or more clients. JMS is a part of the Java
Enterprise edition. JMS is a broker like a postman who acts like a mediator between
the message sender and receiver.

[321]

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating JavaMail and JMS with Spring

JMS is a specification that describes a common way for Java programs to create,
send, and read distributed enterprise messages. It advocates the loosely coupled
communication without caring about the sender and the receiver. It provides
asynchronous messaging, which means that it doesn't matter whether the sender
and the receiver are present at the same time or not. The two systems that are
sending or receiving messages need not be up at the same time.

The JMS application

Let's look into the sample JMS application pictorial as shown in the following figure:

Messaging Using MOM

Sender 5%

We have a Sender and a Receiver. The Sender sends a message while the Receiver
receives one. We need a broker that is MOM between the Sender and the Receiver
who takes the sender's message and passes it to the network to the receiver. MOM
is basically an MQ application such as ActiveMQ or IBM-MQ, which are two
different message providers. The Sender promises the loose coupling and it can be
a .NET or mainframe-based application. The Receiver can be a Java or Spring-based
application, and it sends back the message to the Sender as well. This is a two-way
communication that is loosely coupled.

JMS components

Let's move on the J]MS components listed in the following table:

Component Description

JMS provider The JMS provider is the messaging system (that is, MOM)
and acts as a message broker or agent as like a post office
or postman. It implements JMS in addition to other
administrative and control functionalities required of a
full-featured messaging product (Active MQ or IBM MQ).

It is an agent or message broker that takes the messages
and sends them across. It is like a post office or postman
that takes your e-mail and delivers it to the recipient.

[322]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Component

Description

JMS client

The JMS client is a Java application that receives or produces
messages. The JMS client is a Java application. It is the one
who is producing or receiving the messages.

Let's say that you are sending a postcard to your friend;
then, you and your friend are the JMS client.

JMS producer/ publisher

The JMS producer and publisher are two types of JMS client
that creates and sends messages.

JMS consumer /subscriber

The JMS consumer and subscriber are two types of JMS
clients that receive messages.

JMS application

The JMS application is the system composed of typically one
JMS provider and many JMS clients.

Here is the pictorial representation:

Producer

.@ Producer/Consumer

Consumer

JMS Provider (e.g. Active MQ)

There are three JMS clients in the preceding figure. The Producer can be assumed

as it's you who is going to send a message to your friend. The Consumer can be
assumed to be your friend who will receive a message. The Producer/Consumer
could be someone else who will receive as well as send a message. The JMS Provider
can be assumed as the post office or postman via which the whole delivery things
happen and which guarantee that the sure delivery happens only once.

[323]

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating JavaMail and JMS with Spring

MOM Service Provider

There are various MOM Service Provider products; some of them are listed in the
following table:

Product Company
WebLogic Oracle
MQ Series IBM
JBOSSMQ JBOSS
SonigMQ Progress
ActiveMQ Apache

We will mainly look into the ActiveMQ message queue. The Active MQ is from
Apache, and it's free.

Configuring ActiveMQ — message queue

We need to follow the given steps to configure ActiveMQ to our system:

1. While configuring ActiveMQ to our system, we need to download the
ZIP distribution from the official link http://activemq.apache.org/
download.html, as shown in the following screenshot:

ActiveMQ

Overview > Download

Latest Releases

The latest stable release is the ActiveMQ 5.11.1 Release

Apache

R Wraisge

A pacht
oty

Getting past releases
See the or all time releases.
[324]

www.it-ebooks.info

http://activemq.apache.org/download.html
http://activemq.apache.org/download.html
http://www.it-ebooks.info/

Chapter 8

Then, extract the ZIP distribution to a folder.

Navigate to the activemg-5.10.0\bin folder, inside which you will find the
following folders:

° activemg-5.10.0\bin for 64 bit

° activemg-5.10.0\bin for 32 bit

These folders can be seen in the following screenshot:

Mame Date modified Type Size

win32 2/25/20154:54 PM File folder

winb4 2/25/20154:54 PM File folder
|| activemg 6/5/2014 3:35 PM File 22 KB
| activemng.bat 6/5/2014 3:35 PM Windows Batch File 5KB
|| activerng.jar 6/5/2014 317 PM Executable Jar File 16 KB
|| activerng-admin 6/5/2014 3:35 PM File 6 KB
4] activemg-admin.bat 6/5/2014 3:35 PM Windows Batch File 5KBE
|i=| wrapper.jar 6/5/2014 2:48 PM Executable Jar File 82 KB

4. Navigate to the win32 or winé4 folder based on your machine, and open
Command Prompt at this location and then run activemg, as shown here:

& Acvenq | =

jvm 1 | INFO | Apache ActiveMQ 5.10.0 (
863503840-0:1) is starting
jvm 1 | INFO |
mConnections=1000&wireFormat.maxFrameSiz
jvm 1 | INFO | Connector openwire started
jvm 1 | INFO | Listening for connections at: amqp://HCLWRAVISOOLl:5672?maximu
mConnections=1000&wireFormat.maxFrameSize=104857600
jvm 1 | INFO | Connector amqp started
jvm 1 | INFO | Listening for connections at: stomp://HCLWRAVISOO1l:61613?maxi
mumConnections=1000&wireFormat.maxFrameSize=104857600
jvm 1 | INFO | Connector stomp started
jvm 1 | INFO | Listening for connections at: mqtt://HCLWRAVISOO1:1883?maximu
mConnections=1000&wireFormat.maxFrameSize=104857600
jvm 1 | INFO | Connector mqtt started
jvm 1 | INFO | Listening for connections at ws://HCLWRAVISOO01:61614?maximumC
onnections=1000&wireFormat.maxFrameSize=104857600
j | INFO | Connector ws started
INFO | Apache ActiveMQ 5.10.0 (localhost, ID:HCLWRAVISO01-56084-1424
:1) started
INFO | For help or more information please see: http://activemq.apac

INFO | ActiveMQ WebConsole available at|http://0.0.0.0:8161/

INFO | Initializing Spring FrameworkServlet "dispatcher
] INFO | jolokia-agent: No access restrictor found at classpath:/jolok
ja-access.xml, access to all MBeans is allowed

[325]

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating JavaMail and JMS with Spring

We can see in the preceding screenshot, that activemq is run and has provided some
information on the console. This MQ can be listed at tcp://localhost:61616 URL.
The admin page URL http://localhost:8161/admin provides access to the admin
page (username: admin, password: admin):

ActiveMQ

Home | Queues | Topics | Subscribers | Connections | Network | Scheduled | Send

Welcome!

Welcome to the Apache ActiveM(Q Console of localhost (ID:HCLWRAVISO01-56084-1424863503840-0:1)

You can find more information about Apache ActiveMQ on the Apache ActiveMQ Site

Broker
Name localhost
Version 5.10.0
jia] ID:HCLWRAVIS001-56084-1424862503840-0:1
Uptime 14 minutes
Store percent used o

Memory percent used 0

Temp percent used o

Copyright 2005-2014 The Apache Software Foundation.

The Spring bean configuration (Spring.xml)

Create the configuration file Spring.xml and define the respective bean definitions
such as ActiveMQ ConnectionFactory, ActiveMQ queue destination, and JMS template
as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"

xmlns:jms="http://www.springframework.org/schema/jms"
xsi:schemalLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/
beans/spring-beans.xsd

[326]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

http://www.springframework.org/schema/
context

http://www.springframework.org/schema/
context/spring-context.xsd

http://www.springframework.org/schema/jms

http://www.springframework.org/schema/jms/
spring-jms.xsd

http://activemq.apache.org/schema/core

http://activemq.apache.org/schema/core/
activemg-core.xsd">

<context :component-scan base-package="org.packt.Spring.chapterlo.
JgMs" />

<bean id="jmsTemplate"
class="org.springframework.jms.core.JmsTemplate" >

<property name="connectionFactory"
ref="connectionFactory" />

<property name="defaultDestination" ref="destination" />
</beans>

<bean id="connectionFactory" class="org.apache.activemq.
ActiveMQConnectionFactory">

<property name="brokerURL">
<valuestcp://localhost:61616</value>
</property>
</beans>

<bean id="destination"
class="org.apache.activemq.command.ActiveMQQueue" >
<constructor-arg value="myMessageQueue" />
</beans>

</beans>

The Spring Framework supports JMS with the help of the following classes:

* ActiveMQConnectionFactory: This will create a JMS ConnectionFactory for
ActiveMQ that connects to a remote broker on a specific host name and port

* ActiveMQQueue: This will configure the ActiveMQ queue name as in our
case myMessageQueue

* JmsTemplate: This is a handy abstraction supported by Spring, and it allows
us to hide some of the lower-level JMS details while sending a message

[327]

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating JavaMail and JMS with Spring

MessageSender.java — Spring JMS Template

The MessageSender class is responsible for sending a message to the JMS queue:

package org.packt.Spring.chapterl0.JMS.Message;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jms.core.JmsTemplate;
import org.springframework.stereotype.Component;

@Component
public class MessageSender {

@Autowired
private JmsTemplate jmsTemplate;

public void send(final Object Object) {
jmsTemplate.convertAndSend (Object) ;

App.java
The app class contains the main method, which calls the send () method to send a
message, as shown in the following code snippet:

package org.packt.Spring.chapterl0.JMS.Main;

import java.util.HashMap;
import java.util.Map;

import org.packt.Spring.chapterl0.JMS.Message.MessageSender;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.
ClassPathXmlApplicationContext

7

public class App {

[328]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

public static void main(Stringl[] args)

ApplicationContext context = new
ClassPathXmlApplicationContext (
"Spring.xml") ;
MessageSender messageSender = (MessageSender) context

.getBean ("messageSender") ;

Map<String, String> message = new HashMap<String,

Strings () ;
message.put ("Hello", "World");
message.put ("city", "Sasaram");
message.put ("state", "Bihar");
message.put ("country", "India");
messageSender. send (message) ;
System.out.println("Message Sent to JMS Queue: " +
message) ;

}

Start ActiveMQ

Before you run App . java, you need to start ActiveMQ, which allows us to run a
broker; it will run ActiveMQ Broker using the out-of-the-box configuration.

Output

Run 2pp. java and get the output on the console as follows:

Message Sent to JMS Queue: {state=Bihar, Hello=World,
country=India, city=Sasaram}

[329]

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating JavaMail and JMS with Spring

Monitoring the broker

We can monitor ActiveMQ Broker using the web console by pointing the browser to
http://localhost:8161/admin. Once app.java gets executed, a message will be
sent to the JMS queue, as shown in the following screenshot:

ActiveMQ

Home | Queues | Topics | Subscribers | Connections | Network | Scheduled | Send

Headers Properties

Massage ID ID:HCLWRAVISO01-56084-1424863503840-3:2:1:1:2

D queus:/im: Quaus
Correlation ID

Group

Sequance o

Expiration o

Persistence Persistent

Priority 4

Redelivered false

Reply To

Timestamp ~ 2015-02-25 17:25:25:230 IST

Type

Message Actions
Delete
Copy

-~ Please select- ~
Move

Message Details

{State=Bihar, Hello=World, Country=India, City=Sasaram}

Exception on running App.java

There are chances of getting the error Could not connect to broker URL
exception: tcp://localhost:61616. Reason: Java.net.ConnectException:
Connection refused: connect. This exception will come if the message broker
service is not up, so make sure that ActiveMQ is running, as shown here:

Exception in thread "main"
org.springframework.jms.UncategorizeddmsException: Uncategorized
exception occurred during JMS processing; nested exception is
javax.jms.JMSException: Could not connect to broker URL:
tcp://localhost:61616. Reason: java.net.ConnectException:
Connection refused: connect

at
org.springframework.jms.support.JmsUtils.convertdmsAccessException
(JmsUtils.java:316)

[330]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Exercise
Q1. What is a JavaMail API?

Q2. What is message and messaging?

Q3. What is JMS?

Al

~ The answers to these are provided in Appendix A,
Solution to Exercises.

Summary

In this chapter, we discussed the e-mail support in Spring and JMS in Spring. We took
a look at the JavaMail API and Spring API for JavaMail. Then, we developed a Spring
Mail Application. We discussed Spring Java Message Service and understood message,
messaging, and JMS components. We took a look at the MOM Service Provider and
configured ActiveMQ. We also developed an application to perform messaging using
a Spring JMS Template. Then, we discussed the exception on running the application.

In the next chapter, we will go through the solutions of all the exercises given thus far.

[331]

www.it-ebooks.info

http://www.it-ebooks.info/

Online chapters

Chapter 9, Inversion of Control in Spring - Using Annotation, configures Spring

beans and Dependency Injection using annotation. It covers annotation-based
Dependency Injection and life cycle annotation. It explains how to reference beans
using Spring Expression Language (SpEL), invoke methods using SpEL, and work
with operators in SpEL. It also covers the text messages and internationalization
provided by Spring, which we will learn to implement in our application. This is an
online chapter available at https://www.packtpub.com/sites/default/files/
downloads/73680S_Chapter9.pdf.

Chapter 10, Aspect-oriented Programming with Spring, introduces you to aspect-oriented
programming. It shows you how and where to apply your aspects in your application
using Spring's powerful pointcut mechanism and discusses proxies in the Spring AOP.
This is an online chapter available at https: //www.packtpub.com/sites/default/
files/downloads/73680S_Chapterl0.pdf.

Appendix C, Spring Form Tag Library, shows the Spring form tag library provided

by the Spring Web MVC framework. The Spring form tag library is a set of tags in
the form of a tag library, which is used to construct views (web pages). This is an
online appendix available at https: //www.packtpub.com/sites/default/files/
downloads/73680S_AppendixC.pdf.

www.it-ebooks.info

https://www.packtpub.com/sites/default/files/downloads/7368OS_Chapter9.pdf
https://www.packtpub.com/sites/default/files/downloads/7368OS_Chapter9.pdf
https://www.packtpub.com/sites/default/files/downloads/7368OS_Chapter10.pdf
https://www.packtpub.com/sites/default/files/downloads/7368OS_Chapter10.pdf
https://www.packtpub.com/sites/default/files/downloads/7368OS_AppendixC.pdf
https://www.packtpub.com/sites/default/files/downloads/7368OS_AppendixC.pdf
http://www.it-ebooks.info/

Solutions to Exercises

Chapter 1, Introducing the Spring

Framework
Q1. What is Spring?

Spring is an open-source framework created by Rod Johnson. He addressed

the complexity of enterprise application development, and described a simpler,
alternative approach in his book Expert One-on-One J2EE Design and Development,
Wrox. Spring is a lightweight inversion of control and aspect-oriented container
framework. Any Java EE application can benefit from the Spring Framework,

in terms of simplicity, loose coupling, and testability.

Spring is modular, allowing you to use only those parts that you need without having
to bring in extra complexity. The Spring Framework can be used either for all layer
implementations or for the development of particular layer of an application.

Q2. List some of the features of Spring?
The Spring Framework contains following features:
* Lightweight: Spring is described as a lightweight framework when it comes

to size and transparency.

* Non-intrusive: Non-intrusive means that your domain logic code has no
dependencies on the framework itself. The Spring Framework is designed
to be non-intrusive.

* Container: Spring's container is a light-weight container that contains and
manages the life cycle and configuration of application objects.

[333]

www.it-ebooks.info

http://www.it-ebooks.info/

Solutions to Exercises

Inversion of Control: IoC is an architectural pattern that describes
the Dependency Injection that needs to be done by an external entity,
rather than creating the dependencies by the component itself.

Aspect-oriented programming: AOP refers to the programming paradigm
that isolates supporting functions from the main program's business logic.

JDBC exception handling: The JDBC abstraction layer of the Spring
Framework provides an exception hierarchy.

Spring Web MVC framework: This helps in building robust and
maintainable web applications. The Spring Web MVC framework also
offers utility classes to handle some of the most common tasks in the web
application development.

Spring Security: This provides a declarative security mechanism for
Spring-based applications, which is a critical aspect of many applications.

Q3. Explain different modules in the Spring Framework.

The Spring Framework contains following modules:

Spring Core Module

Spring AOP Module

Spring DAO(JDBC) Module
Spring ORM Module
Spring Web Module

Spring Test Module

Chapter 2, Inversion of Control in Spring

Q1. What are Inversion of Control (IoC) and Dependency Injection (DI)?

IoC is a more general concept, and DI is a concrete design pattern. In software
engineering, IoC is a programming technique where the assembler object compels
object coupling at runtime using static analysis. DI reduces the coupling between
objects. DI is a design pattern on which the dependency of object is injected by the
framework, rather than created by the object itself.

IoC makes your code more portable, more testable, and more manageable and
keeps component configuration, dependencies, and life cycle events outside of
the components.

[334]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

Q2. What are the different types of Dependency Injection in Spring?

In the Spring Framework, DI is used to satisfy the dependencies between objects. It
exits in two major types:

Constructor Injection: Constructor-based DI can be accomplished by
invoking parameterized constructor. These constructor arguments will
be injected during the instantiation of the instance.

Setter Injection: Setter-based DI is the preferred method of Dependency
Injection in Spring that can be accomplished by calling setter methods
on your bean after invoking a no-argument static factory method or no-
argument constructor to instantiate this bean.

Q3. Explain autowiring in Spring. What are the different modes of autowiring.

A Spring container can use five modes of autowiring as follows:

no: By default, Spring bean autowiring is turned off which means that no
autowiring is to be performed, and you should use explicit bean reference
ref for wiring.

byName: This property name is used for this type of autowiring. If the bean
property is same as other bean name, autowire it. The setter method is used
for this type of autowiring to inject dependency.

byType: This data type is used for this type of autowiring. If the data

type bean property is compatible with data type of other bean, autowire it.
For this type, only one bean should be configured in configuration file else
a fatal exception will be thrown.

constructor: This is similar to autowire byType, but here constructor is used
for injecting dependency.

autodetect: Autowiring by autodetect in Spring is deprecated, and it first
tries to autowire by constructor, and if it does not work, then autowire by type.

Q4. Explain different Spring bean scope.

The following list gives the Spring bean scope:

Singleton: Singleton in Spring represents in a particular Spring Container
and there is only one instance of bean created in that container that is used
across different references.

Prototype: This is a new bean created with every request or reference.
For every getBean () call, Spring has to do initialization so instead of
doing default initialization while a context is being created, it waits for
getBean () call.

[335]

www.it-ebooks.info

http://www.it-ebooks.info/

Solutions to Exercises

* Request: A new bean is created per Servlet request. Spring will be aware of
when a new request is happening because it ties well with Servlet APIs and
depending on request, Spring creates a new bean.

* Session: A new bean is created per session. As long as there is one user
accessing in a single session, on each call to getBean () will return same
instance of bean.

* Global-session: This is applicable in portlet context. There will be a global
session in an individual portlet session, and a bean can be tied with global
session. Here, a new bean is created per global HTTP session.

Chapter 3, DAO and JDBC in Spring

Q1. Explain Spring JDBC packages.

To handle different aspects of JDBC, Spring JDBC is divided into packages, as shown
in following table:

Spring JDBC packages Description

org.springframework. jdbc.core In the Spring Framework, this package
contains the foundations of JDBC
classes, which includes Core JDBC
Class and JdbcTemplate. It simplifies
the database operation using JDBC.

org.springframework.jdbc.datasource | This package contains DataSource
implementations and helper classes,
which can be used to run the JDBC
code outside JEE container.

org.springframework. jdbc.object In the Spring Framework, this
package contains classes that helps in
converting the data returned from the
database into plain java objects.

org.springframework. jdbc. support SQLExceptionTranslator is the
most important class in this package
of the Spring Framework. Spring
recognizes the error code used by
database using this class, and map
error code to higher-level exception.

org.springframework.jdbc.config This package contains classes that
supports JDBC configuration within
ApplicationContext of the Spring
Framework.

[336]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

Q2. What is JdbcTemplate?

The JdbcTemplate class instances are thread-safe once configured. A single
JdbcTemplate can be configured and injected in multiple DAOs. We can use
JdbcTemplate to execute different types of SQL statements. Data Manipulation
Language (DML) is used to insert, retrieve, update, and delete data in database.
The SELECT, INSERT, or UPDATE statements are examples of DML. Data Definition
Language (DDL) is used to either create or modify the structure of database objects
in database. The CREATE, ALTER, and DROP statements are examples of DDL.

Q3. Explain the JDBC operation in Spring.

The single executable unit for performing multiple operations is known as

a batch. The batch update operation allows submitting multiple of SQL queries
DataSource for processing at once. Submitting multiple SQL queries together,
instead of individually improves the performance. The JdbcTemplate includes
a support for executing the batch of statements through a JDBC Statement and
PreparedStatement. The JdbcTemplate includes two overloaded batchupdate ()
methods in support of this feature:

* One for executing a batch of SQL statements using JDBC Statement like:

public int[] batchUpdate (String[] sqgl) throws
DataAccessException

* The other for executing the SQL Statement for multiple times with different
parameters using PreparedStatement such as:
public int[] batchUpdate (String sql,

BatchPreparedStatementSetter bPSS) throws
DataAccessException

Chapter 4, Hibernate with Spring

Q1. What is ORM?

ORM is the process of persisting objects in a relational database such as RDBMS.
ORM bridges the gap between object and relational schemas, allowing object-
oriented application to persist objects directly without having the need for
converting object to and from a relational format.

ORM is about mapping object representations to JDBC Statement parameters, and
in turn mapping JDBC query results back to object representations. The database
columns are mapped to instance fields of domain objects or JavaBeans' properties.

[337]

www.it-ebooks.info

http://www.it-ebooks.info/

Solutions to Exercises

Q2. Explain the basics elements of Hibernate architecture.

The basics elements of Hibernate architecture are described in the following sections:

Configuration: The org.hibernate.cfg.Configuration class is the
basic element of the Hibernate API that allows us to build sessionFactory.
Configuration can be referred as factory class that can produce
SessionFactory.

SessionFactory: The SessionFactory is created during the startup of the
application, and is kept for later use in the application. The org.hibernate.
SessionFactory interface serves as factory, provides an abstraction to obtain
the Hibernate session object. The SessionFactory initialization process
includes various operations that consume huge resource and extra time,

so it is recommended to use single SessionFactory per JVM instance.

Session: The org.hibernate.Session is an interface between Hibernate
system and the application. It is used to get the connection with a database.
It is light weight, and is initiated each time an interaction is needed with the
database. After we complete the use of Session, it has to be closed to release
all the resources, such as cached entity objects and JDBC connection.

Transaction: Transactional interface is an optional interface that represents
a unit of work with the database, and supported by most of RDBMS. In
Hibernate, Transaction is handled by the underlying transaction manager.

Query: The org.hibernate.Query interface provides an abstraction to
execute the Hibernate query and to retrieve the results. The Query object
represents Hibernate query built using Hibernate Query Language.

Criteria: The org.hibernate.Criteria is an interface for using Criterion
API and is used to create and execute object oriented criteria queries,
alternative to HQL or SQL.

persistent: These classes are the entity classes in an application. Persistent
objects are objects that are managed to be in persistent state. Persistent objects
are associated with exactly one org.hibernate.Session. Once the org.
hibernate.Session is closed, these objects will be detached and will be

free to use in any layer of application.

Q3. What is HQL?

Hibernate Query Language (HQL) is an object-oriented query language that works
on the persistence object and their properties, instead of operating on tables and
columns. Hibernate will translate the HQL queries into conventional SQL queries
during the interaction of database. In HQL, the keywords such as SELECT, FROM,
WHERE, and GROUP BY, and so on is not case sensitive.

[338]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

Chapter 5, Spring Web MVC Framework

Q1. What is Spring Web MVC framework?

The Spring Web Model View Controller (MVC) framework is flexible, robust, and
well-designed and is used for developing web applications. It is designed in such
a way that development of a web application is highly configurable into model,
view, and controller. The Spring Web MVC framework is implemented using Java
technologies such as Java, Servlet, and JSP, which allows us to host Spring MVC
project on any Java enterprise web server just by including Spring JARS into 1ib
of web application/ project.

The Spring MVC module in the Spring Framework, provides comprehensive
support for the MVC design support, with support for features such as i18n,
theming, validation, and so on, to ease the implementation of the presentation
layer. The Spring MVC framework is designed around a DispatcherServlet.
The DispatcherServlet dispatches the HTTP request to handler which is a
very simple controller interface.

Q2. What is DispatcherServlet in Spring MVC framework?

The Dispatcherservlet of Spring MVC framework is an implementation of
Front Controller and is a Java Servlet component for Spring MVC applications.
DispatcherServlet of Spring MVC framework is a front controller class that
receives all incoming HTTP client request for the Spring MVC application. It is
also responsible for initializing the framework components which will be used
to process the request at various stages.

The Dispatcherservlet is fully configured with the IoC container that

allows us to use various Spring features such as Spring context, Spring Object
Relational Mapping (ORM), Spring Data Access Object (DAO), and so on.
DispatcherServlet is a Servlet that handles HTTP request and is inherited
from HTTPServlet base class. A Spring MVC application can have any number
of DispatcherServlet, and each DispatcherServlet will have its own
WebApplicationContext.

Q3. What is controller in Spring MVC?

DispatcherServlet delegates the incoming HTTP client request to the controllers
to execute the functionality specific to it. Controller interprets the user input and
transforms this input into a specific model, which will be represented by the view
to the user. The eController annotation is used to define a class as controller class
without inheriting any interface or class.

[339]

www.it-ebooks.info

http://www.it-ebooks.info/

Solutions to Exercises

Q4. What is viewResolver in Spring MVC?

The controller class handler methods return different values that denote the logical
view names. The views can represent Java Server Pages (JSP), FreeMarker, Portable
Document Format (PDF), Excel, and Extensible Stylesheet Language (XSL) pages.
The control will be delegated to view template from DispatcherServlet. The view
name returned by the method is resolved to the actual physical source by the view
resolver beans declared in the context of web application. Spring provides a number of
view resolver classes that are configured in the .xm1 files. The ViewResolver interface
maps the view names with the implementations of the org. springframework.web.
servlet.ViewResolver interface.

Chapter 6, Spring Security

Q1. What is Spring Security?

The Spring Security framework is the de-facto standards for securing Spring-based
applications. Spring Security framework provides security services for enterprise
Java software application by handling authentication and authorization. Spring
Security handles authentication and authorization at both; the web request level
and at method invocation level. Spring Security is a highly customizable and
powerful authentication and can access control framework.

Q2. What is authentication and authorization?

Authentication is the process of assuring that a user is the one what user claim to be.
Authentication is a combination of identification and verification. The identification
can be performed in a number of different ways; for example, as username and
password, which can be stored in a database, or LDAP, or CAS (single sign-on
protocol) and so on.

Authorization provides access control to the authenticated user. Authorization is
the process of ensuring that the authenticated user is allowed to access only those
resources which he/she is authorized to use.

Q3. What are the different ways supported by Spring Security for users to log into
a web application?

There are multiple ways to be supported by Spring Security for users to log into a
web application as follows:

* HTTP basic authentication: HTTP basic authentication is supported
by Spring Security by processing the basic credentials presented in the
header of HTTP request. HTTP basic authentication is generally used
with stateless clients who on each request pass their credential.

[340]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

* Form-based login Service: Spring Security supports form-based login
service, by providing default login form page for users, to log into the
web application.

* Anonymous login: An anonymous login service is provided by Spring
Security that grants authorities to an anonymous user like the normal user.

* Remember Me support: Remember Me login is also supported by Spring
Security by remembering the user's identity across multiple browser sessions.

Chapter 7, Spring Testing

Q1. What is the difference between JUnit4 and TestNG?

JUnit and TestNG, both are unit testing frameworks, which look very similar in
functionality. Both provide functionalities such as annotation supports, exception
test, timeout test, ignore test, and suite test. Whereas, a group test and dependency
test is only supported by TestNG. TestNG has the ability to dynamically generate the
test data for parameterized test, whereas JUnit cannot. The following is a list of few
annotations supported by TestNG and JUnit4:

Feature TestNG JUnit4

Test annotation @Test @Test

Before the first test method in the current class | @BeforeClass @BeforeClass
After all the test methods in the current class @AfterClass @AfterClass
Before each test method @BeforeMethod | @Before

After each test method @AfterMethod @After

Before all tests in this suite run @BeforeSuite -

After all tests in this suite run @AfterSuite -

Run before the test @BeforeTest -

Run after the test @AfterTest -

Q2. What is the difference between unit testing and integration testing?

Unit testing, as the name suggests, is testing of every individual method of the code.
It is the method of testing fundamental pieces of your functionality. It is a piece

of code written by a software developer to test a specific functionality in the code.
Unit tests are more about improving quality and preventing bugs, less about finding
them, and are automated using testing frameworks.

[341]

www.it-ebooks.info

http://www.it-ebooks.info/

Solutions to Exercises

Integration testing is the phase of software testing in which individual software
modules are combined and tested as a group to ensure that required units are properly
integrated and interacted with each other correctly. The purpose of integration testing
is to verify functional, performance, and reliability of the code. The integration testing
is used to test several units altogether.

Q3. Explain the Spring MVC test Framework.

Spring MVC test framework makes unit testing and integration testing of Spring
MVC controller more meaningful by offering first class JUnit support. It helps in
testing all aspects of controller method, which has not tested before. It allows us
to perform testing in depth without starting a web container.

In order to perform a test of Spring MVC, the Spring TestContext framework,
along with JUnit or TestNG, make it simple by providing annotation driven unit
and integration testing support. The Spring TestContext framework can be used
using @RunWith, @WebAppConfiguration, and @ContextConfiguration annotation
to load Spring configuration, and inject the webApplicationContext to the
MockMovc for unit and integration test.

Q4. Explain @ContextConfiguration and @WebAppConfiguration.

The @ContextConfiguration annotation is used to set the ApplicationContext for
test classes, by taking the actual configuration file with the file path. In the following
code, we have given the file, so it will take relative path as the root package. We can
also give the exact path by specifying the file: prefix. The eContextConfiguration
caches the ApplicationContext for us, and puts it in a static memory for the

entire duration of the test or the test suite. The entire tests executes in the same

JVM because of ApplicationContext stored in the static memory. If the second
JVM is there, it will not have access to the static context, and will result in second
ApplicationContext to be created.

The @WebAppConfiguration annotation is a class-level annotation used to
create a web version of the application context in Spring. It is used to denote
that the ApplicationContext, which is loaded for an integration test and
used by that class, is an instance a WebApplicationContext. It is important to
note that the ewebAppConfiguration annotation must be used together with
@ContextConfiguration.

[342]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

Q5. Explain MockMvc and @RunwWith (SpringJdUnit4ClassRunner.class).

The MockMvc is a key part of Spring MVC Test framework, which can be used to
write tests for applications developed using Spring MVC. It is the entry point for
Spring MVC Testing. The MockMvc mock the entire Spring MVC infrastructure
and is created by using the implementations of the MockMvcBuilder interface. In
order to use Spring MVC testing, the first step is to create an instance of MockMvc.

The @rRunwWith annotation is a JUnit annotation. It executes the tests in a class
annotated with the @Runwith annotation, or extends a class annotated with the
@RunWith annotation by invoking the class passed as the parameter, which means
that the tests in annotated class are not executed by the in-built API in the JUnit
framework, the runner class used to execute the test case. In order to use Spring's
JUnit class runner for running test cases within Spring's ApplicationContext
environment passed Spring's SpringJdUnit4ClassRunner class as a parameter.

Chapter 8, Integrating JavaMail and
JMS with Spring

Q1. What is a JavaMail API?

A JavaMail API provides a protocol and platform independent framework to provide
e-mail support for a Java application. The JavaMail APl is a collection of classes and
interfaces that comprise an e-mail system. These steps are involved in sending a
simple email, using the JavaMail APIL They are as follows:

1. Connect to a e-mail server by specifying the username and password,
let's say an example; if you want to send an email from abcexyz. com,
then you need to connect to the e-mail server of xyz . com.

2. Create a message by specifying the recipient's addresses that can include
Cc and Bcc addresses as well.

3. Add attachments to the message if any.

4. Transport the message to the e-mail server.
Q2. What is message and messaging?

Message is nothing but bytes of data or information, which are being exchanged
between two parties. By taking different specifications; a message can be described
in various ways. However, it is nothing but an entity of communication. A message
can be used to transfer a piece of information from one application to another
application, which may or may not run in the same platform.

[343]

www.it-ebooks.info

http://www.it-ebooks.info/

Solutions to Exercises

Messaging is communication between different applications (in a distributed
environment), or system components which are loosely coupled unlike its peers,
like TCP sockets, Remote Method Invocation (RMI) or CORBA, which is tightly
coupled. The advantage of Java messaging includes the ability to integrate different
platforms, increase the scalability and reliability of message delivery and reduces
the system bottlenecks. Using messaging, we can increase the systems and clients
who are consuming and producing the message as much as we want.

Q3. What is JMS?

The JMS, that is, Java Message Service is a Java Message Oriented Middleware
(MOM) API for sending messages between two or more clients. JMS is a part of
Java Enterprise edition. JMS is a broker like a postman, who acts like a mediator
between the message sender and receiver.

JMS is a specification that describes a common way for Java programs to create,
send, and read distributed enterprise messages. It advocates the loosely coupled
communication without caring about sender and receiver. It provides asynchronous
messaging, that means it doesn't matter whether the sender and the receiver are
present at the same time or not. The two systems that are sending or receiving
messages need not be up at same time.

Chapter 9, Inversion of Control in Spring
— Using Annotation

Q1. What are Stereotype annotations?

The @component annotation which is a parent stereotype annotation can be used
to define all beans. However, the Spring Framework supports different stereotype
annotations to divide components by layer as listed here:

* @Component: It is a generic stereotype annotation, which defines a class
as bean. It is required to import org. springframework.stereotype,
in order to use this annotation.

* @Repository: Annotate all your repository classes with @Repository
annotation, which is a marker for a class. A repository class serves in
the persistence layer of the application as a Data Access Objects (DAO)
that contains all your database access logic. It is required to import,
org.springframework.stereotype.Repository tO use @Repository
annotation.

[344]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

@Service: Annotate all your service classes with @service annotation,
which contains all your business logic. It is required to import org.
springframework.stereotype.Service, in order to use @Service.

@Controller: The @Controller indicates that the annotated class is a
Spring component of type "controller". It is a class-level annotation that
indicates that an annotated class serves the role of a controller in Spring
MVC. It is required to import org. springframework. stereotype.
Controller, in order to use @Controller.

Q2. Explain different components of event handling.

Event handling is an important feature provided by ApplicationContext.
Event handling consists of three core components as follows:

ApplicationListener: This interface has to be implemented by a class
that listens to an event. If any bean implements the ApplicationListener
interface, then that bean is notified every time an ApplicationEvent gets
published to the ApplicationContext.

ApplicationEventPublisher: This interface has to be implemented by a
class that publishes an event. Any bean can publish an event by calling an
application event publisher's publishEvent () method.

ApplicationEvent: This class is used when you are writing your own
custom event, adding additional functionality, and additional metadata
about the event.

Q3. What is Spring Expression Language (SpEL)?

In Spring, SpEL is a powerful expression language that supports the features to
query and manipulate the object graph at runtime. SpEL can be used to dynamically
evaluate property and use it as a value configured in IoC controller. SpEL supports
operators such as mathematical operators, logical operators, and relational operators.
SpEL also supports regular expressions using the matches operator.

SpEL provides dynamic bean wiring at runtime. SpEL picks the right bean or value
to Dependency Inject at runtime. SpEL can also be used to inject a bean, or a bean
property, or a bean method in another bean.

The features of SpEL are as follows:

To reference beans using beans ID

To inject methods and Properties on beans

To perform mathematical, logical, and relational operations on values
To match regular expression

To manipulate collections

[345]

www.it-ebooks.info

http://www.it-ebooks.info/

Solutions to Exercises

Chapter 10, Aspect-oriented Programming
with Spring

Q1. What is Aspect-oriented Programming (AOP)?

AOP is a promising technology to separate crosscutting concerns, which is sometimes
hard to perform in object-oriented programming, that is, OOP. AOP refers to the
programming paradigm that isolates main business logic from other supporting
functions. AOP in the Spring Framework provides declarative enterprise services.
Here, in AOP, application objects perform the business logic and are not responsible
for other system concerns such as, logging, auditing, locking, or an event handling.
AOP is a methodology of applying middleware services such as security service,
transaction management service, and so on Spring application.

Q2. What are concern, advice, aspect, join-point and point cut in Spring?

Concern refers to a part of system divided on the basis of the functionality. It can be
either core or crosscutting. Core concern represents a specific functionality for primary
requirements. Crosscutting concern is also known as system-wide concern; represent
functionality for secondary requirement, such as logging, security, and so on.

* Advice: This represents code that is executed at joinpoint. It includes API
invocation to the system-wide concern.

* Aspect: The combination of pointcut and advice is referred to as aspect,
which is a cross-cutting functionality that should be included in the
application.

* Joinpoint: This refers to a point in the execution flow of your application,
such as class initialization, object instantiation, method invocation, field
access, or throwing an exception. Aspect code can be inserted at joinpoint
to add new behavior into your application. Crosscutting concern is
automatically added before/after joinpoint by AOP.

* Ppointcut: This represents a collection of joinpoint specifying where an
advice needs to be applied.
Q3. What are the different types of advice?
There are different types of advices as follows:
* Before advice: This executes before joinpoint. Using it, we can execute
the advisor code before the method is invoked.

* After-returning advice: This is used to apply advice after the method
successfully finishes its execution.

[346]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

Throws advice: This can be applied when a method throws an exception
during its execution.

After (finally) advice: As the name suggests, this advice gets executed after
the join point method execution got finished, either normally, or by throwing
some exceptions.

Around Advice: This can be applied before and after the method execution.

Q4. What is weaving in Spring?

Weaving is the process of inserting aspects to the application at the appropriate
point. The weaving can take place at different stages in the target class's lifetime:

Compile time: To inject the byte code of the advice at the joint point during
the compile time is called as compile time weaving.

Classload time: Classload time is injecting the byte code at the class loading
time. During this, the byte code will be injected to the loaded class to have
the advice code at the joint point.

Runtime - Spring way: The target object will be shielded with the Proxy
bean, which is created by the Spring Framework. Whenever the caller calls
the method on the target bean, the Spring Framework invokes the proxy and
applies advices to target method. Once the method execution is over, again
Spring apply advices to the target method if required, and the response will
return back to caller.

Spring uses this kind of weaving. Runtime weaving is an effective way as it keeps
the code clean.

[347]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up the Application
Database — Apache Derby

To set up some kind of database running on your development environment, we
use Apache Derby database. Apache Derby is a light weight in memory database,
which is easy to setup and takes less resources, and is also perfect for testing out
new concepts and trying out things that we are doing right now.

To download Apache Derby, hit over the Apache Derby website at
http://db.apache.org/derby/derby downloads.html, and download the
latest release. Once the downloaded ZIP file is extracted, we will have some
important folder named bin and 1ib folder as shown:

(E=8 EcB =)
@@v\ » Computer » Local Disk (G) + PackiPub » SpringFramework » Derby b db-derby-101111-bin b db-derby-10.111 1-bin » ~ [42| search ab-. P
File Edit View Tools Help
QOrganize « Include in library + Share with = New folder &=~ 0 l&]
- Favorites
Bl Desktop i E
& Downloads : b
]
= Recent Places £
E E |
i Libraries bin dema docs javadoc lib test

%] Documents

@' Music L —
| Pictures } 5

B videos

1% Computer
index.html KEYS LICENSE NOTICE RELEASE-NOTES.htm
I
€ Network
11 items
[349]

www.it-ebooks.info

http://db.apache.org/derby/derby_downloads.html
http://www.it-ebooks.info/

Setting up the Application Database - Apache Derby

The 1ib folder contains the jar that needs to be included in our program when we
connect to the Derby database. The bin contains programs like startNetworkServer.
bat and stopNetworkServer.bat for database as follows:

C:\PacktPub\SpringFramework\Chapter-5\Derby\db-derby-10.11.1.1-bin\db-derby-10.
1.1.1-bin\bin>dir

Volume in drive C is Local Dis

Vvolume Serial Number is 9265-383D

Directory of C:\PacktPub\SpringFramework\Chapter-5\Derby\db-derby-10.11.1.1-bin
\db-derby-10.11.1.1-bin\bin

16/09/2014 : PM <DIR>

16/09/2014 : PM <DIR> ..

16/09/2014 : PM 5,740 dblook
16/09/2014 : PM 1,387 dblook.bat
16/09/2014 : PM 2,426 derby_common.bat
16/09/2014 : PM 5,876 1j

16/09/2014 : PM 1,379 ij.bat

16/09/2014 : PM 5,801 NetworkServercontrol
16/09/2014 : PM 1,413 NetworkServercontrol.bat
16/09/2014 : PM 1,073 setEmbeddedcCP
16/09/2014 : PM 1,278 seteEmbeddedcCP.bat
16/09/2014 : PM 1,079 setNetworkcClientCP
16/09/2014 : PM 1,284 setNetworkClientCP.bat
16/09/2014 : =] 1,075 setNetworkServercp
16/09/2014 : PM 1,273 setNetworkServercCP.bat
16/09/2014 : PM 5,807 startNetworkServer
16/09/2014 : PM , 810 STOPNETWOrKServer
16/09/2014 : PM 1,403 stopNetworkServer.bat
16/09/2014 : =] 5,789 sysinfo
16/09/2014 07:37 PM 1,389 sysinfo.bat

19 File(s) 52,679 bytes

After downloading and extracting the JAR file, the next step is to set environment
variable. Derby recommends a couple of environment variables that need to be set.

* DERBY HOME: The DERBY HOME environment variable needs to be set to the
location where we have extracted our distribution containing the bin and
1ib folder.

* path: The second variable that we need to set is path environment variable.
We need to set DERBY_HOME/bin to path environment variable:

[350]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

Environment Yariables 3

User variables for t_raviso

‘ariable Yalue

DERBY_HOME C:\PadktPub'\SpringFramework\Chapter. ..

FEMP S SERPROFHEN Bt roea Femp

TMP 2eUSERPROFILES:\AppData'Local{Temp

MNew... || Edit.. || Delete

System variables

Variable Value i
05 Wwindows N Edit System Variable 23]

Path C:\Windoy

) ;B)
PROCESSOR_A... AMDG4 Variable name: Path

|N7 Variable value: s\Javaljdkl.6.0_45\bint DEREY_HOMEbin;
W, I I

|. OK | | Cancel |

Now, open a command prompt, and hit over to location where we have Apache
Derby as follows:

@ C:\Windows\system32\cmd. e =l
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\t_raviso>cd|c:\PacktPub\SpringFramework\Chapter-5\Derby\db-derby-10,11.
1.1-bin\db-derby-10.11.1.1-bin

C: \PaclétPub\Sp ringFramework\Chapter-5\Derbhy\dh-derby-10.11.1.1-bin\db-derby-10.1
1.1.1-bin>

Here in the preceding screenshot, we have changed the directory to the bin directory
in Apache Derby, which contains batch files and script files. For Windows OS, we
need these batch files while running.

[351]

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up the Application Database - Apache Derby

Apache Derby operates in two modes:

e The Network-Server mode
e The Embedded mode
First, we need to start derby as Network Server mode which is similar to all the

databases on one machine, and the other machine on the network that can connect
to it. Embedded mode is something specific to derby.

To start derby Network Server mode, we need to run startNetworkServer.bat
as follows:

e C exe - bat ===

-5\Derby\db-derby-10.11.1.1-bin\db-derby-10.

1.1.1-bin\bi n>

Tue Sep 16 19:50: : Secur1ty manager installed using the Basic server

security policy.
Tue Sep 16 19:50:53 IST 2014 : Apache Derby Network Server - 10.11.1.1 - (161654
6) started and ready to accept connections on |port 1527

In the preceding screenshot, we can see that Apache Derby Network-Server started
and ready to accept connection on port 1527, which we can test by using a client to
connect to the server. Derby actually comes with a client called ij .bat, which can
be used to connect to the server to execute queries.

So, we need to have a second command line prompt, which hits same bin directory,
and run ij.bat to client, and executes the query to connect to the server connect
jdbc:derby://localhost:1527/db;create=true’; as follows:

'dows [version 6.1.7601]
Copyr1ght (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\t_raviso>cd c:\PacktPub\SpringFramework\Chapter-5\Derby\db-derby-10.11.
1-bin\db-derby-10.11.1.1-bin\bin

c :\PacktPub\SpringFramework\Chapter-5\Derby\db-derby-10.11.1.1-bin\db-derby-10.1
1.1-bin\bin>ij.bat

ij version 10.11

iJ> connect 'jdbc:derby://Tocalhost:1527/db;create=true’;

i3>

[352]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

We can create a table using create query for table employee (as shown in the
following screenshot with two column as 1D and NAME), and insert values using
insert query, and also print data to console using select query, as follows:

ij> create table employee (id integer, name char(30));
0 rows inserted/updated/deTleted

ij> insert into employee values (03, 'Ravi');

1 row inserted/updated/deleted

ij> select * from employee

>3

1 row selected
ij>

[353]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Symbols

@ContextConfiguration annotation 304, 342
@ControllerAdvice annotation

application, running 227, 228

EmployeeController class 225

exception.jsp page 227

GenericException class 223

hello.jsp page 226

SpringException class 223

used, for handling exception 222, 223
@Controller annotation 193
@RequestMapping annotation

method parameters 199

properties 198

requests, mapping at class level 195, 196

requests, mapping at method level 197, 198

return values 201

used, for mapping requests 194, 195
@RunWith annotation 343
@WebAppConfiguration

annotation 304, 342

A

ActiveMQ
URL 324

advice 346

advice, types
after (finally) advice 347
after-returning advice 346
around advice 347
before advice 346
throws advice 347

Agile software testing
about 286

Index

integration testing 297-299
unit testing 286, 287
annotations, JUnit 4
@After 280
@AfterClass 281
@Before 280
@BeforeClass 280
@Ignore 281
@Test 280
annotations, Spring testing
@ContextConfiguration annotation 304
@WebAppConfiguration annotation 304
about 303
annotations, TestNG
@AfterClass 284
@AfterMethod 284
@AfterTest 285
@BeforeClass 284
@BeforeMethod 284
@BeforeTest 285
@Test 284
Apache Derby
about 349, 350
Embedded mode 352
environment variables 350
Network Server mode 352
setting up 350-353
URL, for downloading 349
application
creating, in Spring 15
credentials 275
custom login, adding 272
developing 265
employee list, obtaining 273
filters, adding to web.xml 269
login requests, mapping 273

[355]

www.it-ebooks.info

http://www.it-ebooks.info/

logout page 276
project structure 265, 266
running 276, 277
view, resolving 270
application programming interface
(API) 311
Aspect-oriented Programming
(AOP module) 5,12, 346
assert methods
about 281
assertEquals() 281
assertFalse () 281
assertNotNull() 281
assertNotSame() 281
assertNull() 281
assertSame() 281
assertTrue() 281
autowiring modes, options
autodetect 68, 335
byName 335
byType 68, 335
constructor 68, 335
no 68, 335

BatchOperationDemo application
directory structure 115
bean definition inheritance
about 63-66
abstract, using 66, 67
BeanFactory
about 37
factory pattern 37-39
implementation 40-42
Spring BeanFactory 39, 40
URL 42
beans
about 35
scope 72
XML-based bean configuration 35, 36
bean scope, Spring Framework
global-session 336
prototype 335
request 336
session 336
singleton 335

C

class/interface, JavaMail API
Authenticator 313
InternetAddress 313
Message 313
MimeMessage 313
Password Authentication 313
Session 313
Transport 313
class/interface, org.springframework.
mail.java package
JavaMailSenderImp 317
MimeMailMessage 317
MimeMessageHelper 317
class/interface, org.springframework.
mail package
MailException 317
MailMessage 317
MailSender 317
SimpleMailMessage 317
Class Under Test 293
constructor-based Dependency Injection
<constructor-arg> element 50
about 49
ambiguity, resolving 51, 52
parameter ambiguity, resolving 53-55
simple Java types, injecting 50, 51
context module 12
controllers
used, for handling form submission 232
controllers, Spring MVC
@Controller annotation 193
@RequestMapping annotation 194, 195
about 192
core module 11
Create class
about 92
EmployeeDaolmpl.java file 94-96
EmployeeDao.java file 93
Employee java file 93
HrPayrollSystem.java file 97
Create-Retrieve-Update-Delete (CRUD) 90
Criteria interface, HCQL
used, for pagination 164
Criteria interface restrictions, HCQL
AND condition 162

[356]

www.it-ebooks.info

http://www.it-ebooks.info/

between method 161
eq method 158

gt method 159

ilike method 160
isNotNull method 162
isNull method 161
like method 160

It method 159

OR condition 162
pagination 164
results, sorting 164

D

DAO design pattern 89

DAO layer

about 90, 215

advantages 90

Data Access Layer 204

database 88, 89

database operation clauses, with HQL
AS clause 151

DELETE clause 155

FROM clause 151

GROUP BY clause 154

named parameter, using 154, 155
ORDER BY clause 153
pagination 156

SELECT clause 152

UPDATE clause 155

WHERE clause 152

Data Definition Language (DDL) 105, 337

Data Manipulation Language
(DML) 105, 337
Dependency Injection (DI)
about 31, 46-48, 87, 334
advantages 46

destruction callbacks, Spring bean lifecycle
about 83
destroy-method, using in XML
configuration 84
org.springframework.beans.factory.
DisposableBean interface 83, 84
directory structure, BatchOperation
Demo application
about 115
EmployeeDaolmpljava file 115
HrPayrollBatchUpdate.java file 116
directory structure, JdbcTemplate
Example application
EmployeeDaolmpljava file 111
EmployeeDao java file 111
Employee java file 110
directory structure, SpringDataSource
Example application
about 101
EmployeeDaolmpl java file 102-104
HrPayrollSystem.java file 104, 105
DispatcherServlet class, Spring MVC
about 189
configuration file location, registering 191
in deployment descriptor web.xml 190
Don't repeat yourself (DRY) 98

E

e-mail, Spring
about 312
JavaMail API 312-314

event handling
ApplicationEvent interface 345
ApplicationListener interface 345
components 345

expression language 12

constructor-based Dependency Injection49 Extensible Stylesheet Language

Constructor Injection 46

empty string, injecting 62

Has-A relationship 48

inner beans, injecting 60-62

null value, injecting 62

setter-based Dependency Injection 55
setter Injection 46

types 335

(XSL) 201, 340

F

form submission
application, running 240-242
handling, with controller 232
ModelAndView constructor 233

[357]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring MVC form 238
View page 236
front controller design pattern 170, 171

G

Google Web Toolkit (GWT) 167

H

Hibernate
about 87,127
architecture 128
integrating, with Spring Framework 131
Spring MVC, integrating with 204
references 132, 135
Hibernate architecture
configuration 129
elements 338
org.hibernate.Criteria interface 130
org.hibernate.Query interface 130
Persistent objects 130
SessionFactory 129
Session interface 130
Transaction interface 130
Hibernate Criteria Query Language (HCQL)
about 157
Criteria interface 157
Hibernate, integrating with Spring
Framework
about 131
annotated domain model class 138-141
application, directory structure 146
application, running 146
Hibernate SessionFactory,
configuring 134, 135
JARs requisites 133
persistence layer 142
sample data model 131, 132
service layer 144
Session interface 141
steps 132
Hibernate Query Language (HQL)
about 127,150, 338
Query interface 150
used, for performing database
operation 150

Hibernate SessionFactory configuration
about 134
hibernate.dialect property 135
hibernate.jdbc.fetch_size property 135
hibernate.max_fetch_depth property 135
hibernate.properties 137
hibernate.show_sql property 135
XML Spring configuration 135-137
Hyper Text Transfer Protocol (HTTP) 170

iBATIS 87
initialization callbacks, Spring bean
lifecycle
about 80

init-method, using in XML configuration 82

org.springframework.beans.factory.
InitializingBean interface,
implementing 81, 82
integration testing 297-299, 342
internationalization (i18n), Spring MVC
application, running 231, 232
configuration 229
hello.jsp page 231
LocaleChangelnterceptor 230
properties file 229
ReloadableResourceBundleMessage
Source 229
SessionLocaleResolver 230
using 229
Inversion of Control (IoC)
about 32, 33, 87, 142, 189, 334
container 33
issues 32
Spring Container 34

J

JAR files
URL 17
Java Database Connectivity (JDBC)
about 90, 128
APIs 90
JavaMail API
about 343
Spring API 316, 317

[358]

www.it-ebooks.info

http://www.it-ebooks.info/

used, for sending e-mail 312, 343 JUnit 4

using 314-316 annotations 280
Java Message Oriented Middleware differentiating, with TestNG 341, 342
(MOM) 13,321 examples 282
Java Naming and Directory Interface used, for testing 280
(JNDI) 128
Java Persistence API (JPA) 127 L
Java Server Faces (JSF) 167 . .
Java Server Pages (JSP) 167, 201, 340 life cycle, Spring bean
Java Transaction API (JTA) 128 about 78
JDBC batch operation activation 80
about 113, 114 destruction 80
directory structure 115 destruction callbacks 83
JDBC module 13 initialization 79
JdbcTemplate class initialization callbacks 80
about 105, 106
used, for querying database 108, 109 M

JdbcTemplateExample application
directory structure 110
JdbcTemplate object
configuring, as Spring bean 106
Spring.xml file 107
JDBC, without Spring
about 90, 91
JdbcHrPayrollSystem 91
JDBC, with Spring
about 99
DataSource 100, 101
DataSource, in DAO class 101
JMS
about 13, 322, 344
application 322
JMS components
JMS application 323
JMS client 323
JMS consumer/subscriber 323
JMS producer/publisher 323
JMS provider 322
JPA annotation
@Column 139
@Entity 138
@GeneratedValue 139

major operations, Spring Security
about 246
authentication 246
authorization 246, 247
message 343
Message Oriented Middleware (MOM) 344
method-level security 264
method parameters, @RequestMapping
annotation
@ModelAttribute 200
@PathVariable 199
@RequestBody 200
@RequestHeader 200
@RequestParam 200, 201
Errors/BindingResult 200
HttpSession 199
java.util.Local 199
Map 200
Model 200
ModelMap 200
ServletRequest/HttpServletRequest 199
Session Status 200
Mockito framework
about 294-297
field-level annotations 294

@Id 138
@Table 138 URL 294
Unit MockMvc
J URL 280 about 304, 305, 343

assertion, performing 305

[359]

www.it-ebooks.info

http://www.it-ebooks.info/

MOM Service Provider

about 324

ActiveMQ, configuring 324-326
Multipurpose Internet Mail Extension

(MIME) 313

MvC

about 14, 167-169

architecture 169

Controller 169, 170

Model 169, 170

View 169, 170

(0

Object Relational Mapping
(ORM) 124-127, 189, 337, 339

P

pagination types, Criteria interface
Public Criteria setFirstResult(int start
Position) method 164
Public Criteria setMaxResults(int max
Result) method 164
persistence layer
DAOs, implementing 142
EmployeeDaolmpl class 142, 143
EmployeeDao interface 142
Plain Old Java Object (POJO) 3,127
pom.xml file
about 208, 211
hibernate.properties file 211
Portable Document Format (PDF) 201, 340
Portlet module 14
PostgreSQL database
URL 131
Project Object Model (POM) 179

R

relational database management system
(RDBMS) 89,124
Remote Method Invocation (RMI) 321, 344

S

separation of concern 169
service layer
about 204, 216
EmployeeServiceImpl class 145
EmployeeService implementation 217
EmployeeService interface 144, 217
services, implementing 144
Servlet 247,248
Servlet filters
about 247
review 247-249
Servlet module 14
Session interface, Hibernate
about 141
detache state 142
methods 142
persistent state 142
transient state 141
URL 142
setter-based Dependency Injection
about 55
collections, injecting 58, 59
SimpleJdbcCall class
about 118
stored procedure, calling 118
Simple Mail Transfer Protocol (SMTP) 316
Source Tool Suite (STS) 204
Spring
application, creating 15
autowiring 67
e-mail 312
JDBC batch operation 113
mail application, developing 318
packaging 16,17
Spring JAR files, obtaining 15
SpringSource Tool Suite (STS) 17
Spring application
about 18
program, running 28
required libraries, adding 20, 22
source files, creating 22-25
Spring bean configuration file,
creating 25-28
Spring project, creating 18, 19

[360]

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Batch
about 7
URL 7
Spring bean
JdbcTemplate object, configuring as 106
Spring bean configuration file
creating 25-28
Spring Container
about 34
ApplicationContext 42
ApplicationContext, implementing 43-45
BeanFactory 37
beans 35
XML-based bean configuration 35, 36
Spring Core Container
about 11
beans module 12
context module 12
Core module 11
expression language 12
SpringDataSourceExample application
directory structure 101
Spring Expression Language (SpEL)
about 345
features 345
Spring Framework
about 2, 3, 333
AOP module 12
architecture 10
autowiring 335
bean scope 335
benefits 14, 15
data access 13
Dependency Injection (DI) 334
evolution 7-10
features 4-6, 333, 334
Hibernate SessionFactory,
configuring 134, 135
integration 13
Inversion of Control (IoC) 334
JDBC operation 337
modules 334
Spring Core Container 11, 12
Test module 14
weaving 347
Web module 14

Spring Hibernate 123
SpringHibernateIntegrationDemo
application
DBUtils class 146
output 149
populated data, in Employee table 149
running 146
SpringHibernateMain class 148
Spring JAR files
obtaining 15,16
Spring JDBC packages
about 336
org.springframework.jdbc.config 99, 336
org.springframework.jdbc.core 99, 336
org.springframework.jdbc.
datasource 99, 336
org.springframework.jdbc.object 99, 336
org.springframework.jdbc.support 99, 336
shortcomings 98, 99
Spring JMS
about 321
ActiveMQ, starting 329
App class 328
App.java, running exception 330, 331
broker, monitoring 330
message 321
MessageSender class 328
messaging 321
output 329
Spring bean configuration
(Spring.xml) 326, 327
Spring Mail Application
developing 318
e-mail sender 319
MailerTest class 320
Spring.xml file 318
Spring Mobile
about 7
URL 7
Spring MVC
about 171, 339
application, developing 175
controller 339
controller class 234
controllers 192
DispatcherServlet class 189

[361]

www.it-ebooks.info

http://www.it-ebooks.info/

framework features 172
integrating, with Hibernate 204
internationalization (i18n) 229
Model 203
ModelAndView 233
request handling flow 173-175
test framework 301
ViewResolver 201, 340

Spring MVC application
configuring 180
dependencies, adding to pom.xml 179, 180
developing 175-189
EmployeeController, creating 185, 186
hello.jsp vie page, creating 186, 187
Maven project, creating 175-179
running 187, 188, 189

Spring MVC controller
unit test, creating 299-301

Spring MVC controller class
@ModelAttribute 234
about 234
ModelMap 234-236

Spring MVC, integrating with Hibernate
about 204
application architecture 204
application, running 221
controller classes 218, 219
DAO layer 215
entity class 213
pom.xml file 208, 211
project structure 207, 208
sample data model 205, 206
service layer 216
SpringDispatcher-servlet.xml file 211
View page 219

Spring MVC test framework
about 301, 342
annotations 303
required dependencies 302

Spring project
creating 18,19

Spring Security
about 246, 340
anonymous login 341
configuration 250
form-based login Service 341
HTTP basic authentication 340

major operations 246, 247
Remember Me support 341
URL 261
use case 250
Spring Security configuration
about 250
namespace configuration 252
setup 251
Spring Security setup
about 251
JARs, adding to classpath 251
pom.xml 251
Spring Social
about 7
URL 7
Spring Source Tool (STS) 175
Spring transaction module 14
Spring Web Services
about 7
URL 7
stereotype annotation
@Component 344
@Controller 345
@Repository 344
@Service 345
about 344
stored procedure
advantages 118
calling 117-119
disadvantages 118
Struts module 14

T

testing 279

testing, with JUnit 4
about 280
annotations 280
assert methods 281
examples 282, 283

testing, with TestNG
about 284
annotations 284
examples 285

Test module 14

TestNG
annotations 284

[362]

www.it-ebooks.info

http://www.it-ebooks.info/

differentiating, with JUnit 4 341
examples 285
used, for testing 284

U

unit testing 341

unit testing, Agile software testing
about 286, 287
for dependent class, with mock

objects 292, 293

for isolated classes 288-291
mock 287
Mockito framework 294-297
stub 287

unit test, of Spring MVC controller
creating 299-301

URL access, web application
securing 252

security configurations, separating 253, 254

web.xml 252
use case, Spring Security 250
users authentication

about 260

against database 261, 262

in-memory definitions, using 260, 261

passwords, encrypting 263

\'

View page
about 219
employee.jsp page 220
hello.jsp page 219
index.jsp page 221
ViewResolver, Spring MVC
about 201, 202
configuring, for JSP 202

w

weaving
about 347
runtime weaving 347
stages 347

web application, logging
anonymous login 255, 259
form-based login service 255-258

HTTP basic authentication 255, 256

logout service 255, 259
Remember Me support 255, 260
Web module 14

[363]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
Learning Spring Application Development

About Packt Publishing

Packt, pronounced 'packed’, published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub . com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub . com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Spring MVC Beginner's Guide
ISBN: 978-1-78328-487-0 Paperback: 304 pages

Your ultimate guide to building a complete web
application using all the capabilities of Spring MVC

1. Carefully crafted exercises, with detailed
explanations for each step, to help you
understand the concepts with ease.

2. You will gain a clear understanding of the end
to end request/response life cycle, and each
logical component's responsibility.

3. Packed with tips and tricks that will
demonstrate the industry best practices on
developing a Spring-MVC-based application.

Web Application Development
with Yii 2 and PHP

Web Application Development

with Yii 2 and PHP
ISBN: 978-1-78398-188-5 Paperback: 406 pages

Fast-track your web application development using
the new generation Yii PHP framework

1. Implement real-world web application
features efficiently using the Yii
development framework.

2. Each chapter provides micro-examples that
build upon each other to create the final
macro-example, a basic CRM application.

3. Filled with useful tasks to improve the
maintainability of your applications.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Mockito for Spring
ISBN: 978-1-78398-378-0 Paperback: 178 pages

Learn all you need to know about the Spring
Framework and how to unit test your projects
with Mockito

1. Learn about the Spring testing framework,
stubbing, mocking, and spying dependencies
using the Mockito framework and explore its

Mockito for Spring advanced features.
2. Create an automated JUnit safety net

for building a reliable, maintainable,
and testable software.

3. Step-by-step tutorial stuffed with
real-world examples.

Spring Security [Video]

ISBN: 978-1-78216-865-2 Duration: 02:10 hours

An empirical approach to securing your
web applications

1. Fully secure your web application with
Spring Security.

Spring Security

Eugen Paraschiv with the database as well as with LDAP.

2. Implement authentication and registration

3. Utilize authorization examples that help
guide you through the authentication of
users step-by-step.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing the
Spring Framework
	Introducing Spring
	Features of Spring
	Other features of Spring

	Evolution of the Spring Framework
	Spring Framework Architecture
	Spring Core Container
	The AOP module
	Data access/integration
	The Web module
	Test module

	Benefits of the Spring Framework
	Creating an application in Spring
	Obtaining Spring JAR files
	Understanding Spring packaging
	SpringSource Tool Suite
	Spring application
	Creating a Spring project
	Adding required libraries
	Creating source files
	Creating the Spring bean configuration file
	Running the program

	Exercise
	Summary

	Chapter 2: Inversion of Control in Spring
	Understanding Inversion of Control
	What is a container
	Spring Container
	Beans
	BeanFactory
	ApplicationContext

	Dependency Injection
	Dependency Injection in Spring
	The Has-A relationship
	Constructor-based Dependency Injection
	The setter-based Dependency Injection

	Injecting inner beans
	Injecting null and empty string values in Spring
	Case 1 – injecting an empty string
	Case 2 – injecting a null value

	Bean definition inheritance
	Inheritance with abstract

	Autowiring in Spring
	Autowiring modes
	Autowiring using the no option
	Autowiring using the byname option
	Autowiring using the byType option
	Autowiring using the constructor

	Bean's scope
	Singleton
	Prototype
	Request
	Session
	Global session

	Spring bean life cycle
	Initialization
	Activation
	Destruction
	Initialization callbacks
	Implementing the org.springframework.beans.factory.InitializingBean interface
	Using init-method in the XML configuration

	Destruction callbacks
	Implementing the org.springframework.beans.factory.DisposableBean interface
	Using destroy-method in the XML configuration

	Exercise
	Summary

	Chapter 3: DAO and JDBC in Spring
	Overview of database
	The DAO design pattern
	The DAO layer

	JDBC without Spring
	Sample code
	ADD drivers specific to database into the project
	Directory structure of the application

	Spring JDBC packages
	JDBC with Spring
	DataSource
	DataSource in the DAO class
	Directory structure of the application

	What is JdbcTemplate
	Configuring the JdbcTemplate object as Spring bean
	The Spring.xml file

	Functionality exposed by the JdbcTemplate class
	Querying (select)
	Updating (Insert-Update-Delete)
	Other JdbcTemplate operations

	Directory structure of the application
	The Employee.java file
	The EmployeeDao.java file
	The EmployeeDaoImpl.java file

	JDBC batch operation in Spring
	Directory structure of the application
	The EmployeeDaoImpl.java file
	The HrPayrollBatchUpdate.java file

	Calling a stored procedure
	Using the SimpleJdbcCall class
	Calling a stored procedure

	Exercise
	Summary

	Chapter 4: Hibernate with Spring
	Why Object/Relational Mapping?
	Introducing ORM, O/RM, and O/R mapping
	Introducing Hibernate
	Hibernate architecture
	Configuration
	SessionFactory
	Session
	Transaction
	Query
	Criteria
	The Persistent object

	Integrating Hibernate with the Spring Framework
	Sample data model for example code
	Integrating Hibernate
	Required JARs for the Spring-Hibernate project
	Configuring Hibernate SessionFactory in Spring
	XML Spring configuration for Hibernate

	Annotated domain model class
	The Hibernate sessions
	The Session interface methods

	Persistence layer – implement DAOs
	The EmployeeDao interface
	The EmployeeDaoImpl class

	Service layer – implement services
	The EmployeeService interface
	The EmployeeServiceImpl class

	Directory structure of the application
	Running the application
	The DBUtils class
	The SpringHibernateMain class
	Output to console
	Populated data in the Employee table

	Hibernate Query Language
	The Query interface
	Database operation using HQL
	The FROM clause
	The AS clause
	The SELECT clause
	The WHERE clause
	The ORDER BY clause
	The GROUP BY clause
	Using the named parameter
	The UPDATE clause
	The DELETE clause
	Pagination using Query

	Hibernate Criteria Query Language
	The Criteria interface
	Restrictions with Criteria

	Exercises
	Summary

	Chapter 5: Spring Web MVC Framework
	MVC architecture and separation of concern
	Front Controller Design Pattern
	Understanding Spring MVC
	Features of Spring MVC framework
	Flow of request handling in Spring MVC

	Developing a simple Spring MVC application
	Creating a new Maven project
	Adding Spring MVC dependencies to pom.xml
	Configuring the application
	The /WEB-INF/web.xml file
	The /WEB-INF/SpringDispatcher-servlet.xml file

	Creating the controller – EmployeeController
	Creating the view – hello.jsp
	Running the application

	DispatcherServlet in Spring MVC
	DispatcherServlet in deployment descriptor – web.xml
	Registering Spring MVC configuration file location

	Spring configuration – SpringDispatcher-servlet.xml
	Controllers in Spring MVC
	The @Controller annotation to define a controller
	The @RequestMapping annotation to map requests
	Mapping requests at class level
	Mapping requests at method level
	Properties information in @RequestMapping
	Method parameters of @RequestMapping
	Return values in @RequestMapping annotated methods

	ViewResolver in Spring MVC
	Configuring ViewResolver for JSP as view technology

	Model in Spring MVC
	Spring MVC with Hibernate integration
	Application architecture
	Sample data model for example code
	Project structure
	The pom.xml file
	The hibernate.properties file

	The SpringDispatcher-servlet.xml file
	Hibernate model class – entity class
	The DAO layer
	The EmployeeDao interface
	The EmployeeDao implementation

	The service layer
	The EmployeeService interface
	The EmployeeService implementation

	Spring MVC controller classes
	The View page
	The hello.jsp page
	The employee.jsp page
	The index.jsp page

	Running the application

	Exception handling using
@ControllerAdvice
	The GenericException class
	The SpringException class
	The EmployeeController class
	The hello.jsp page
	The exception.jsp page
	Running the application

	Spring MVC internationalization (i18n)
	The properties file
	Spring configuration
	ReloadableResourceBundleMessageSource
	LocaleChangeInterceptor
	SessionLocaleResolver

	The hello.jsp page
	Running the application

	Handling form with the controller
	ModelAndView in Spring MVC
	Spring MVC Controller class
	@ModelAttribute in the controller class
	ModelMap in the controller class

	The View page
	Spring MVC form
	Running the application

	Exercises
	Summary

	Chapter 6: Spring Security
	What is Spring Security?
	Major operations

	Servlet filters review
	Security use case
	Spring Security configuration
	Spring Security setup
	Adding JARs to classpath
	Spring Security dependencies – pom.xml

	Namespace configuration

	Securing web application's URL access
	The first step – web.xml
	Separating security configurations

	Logging into web application
	HTTP basic authentication
	Form-based login service
	Logout service
	Anonymous login
	Remember Me support

	Users authentication
	Users authentication with in-memory definitions
	Users authentication against database
	Encrypting passwords

	Method-level security
	Let's get down to business
	Project structure
	Adding filters to web.xml
	Resolving your view
	Let's add a custom login
	Mapping your login requests
	Obtaining the employee list
	Let's see some credentials
	Time to log out
	Running the application

	Exercises
	Summary

	Chapter 7: Spring Testing
	Testing using JUnit 4
	JUnit 4 annotations
	Assert methods
	Example of JUnit 4

	Testing using TestNG
	TestNG annotations
	Example of TestNG

	Agile software testing
	Unit testing
	Unit testing for isolated classes
	Unit testing for dependent class using mock objects
	The Mockito framework

	Integration testing

	Create unit tests of the Spring MVC controller
	Spring MVC test framework
	Required dependencies
	Annotations in Spring testing
	The @ContextConfiguration annotation
	The @WebAppConfiguration annotation

	MockMvc
	Assertion

	@RunWith(SpringJUnit4ClassRunner.class)

	Exercise
	Summary

	Chapter 8: Integrating JavaMail and
JMS with Spring
	E-mail support in Spring
	Introducing the JavaMail API
	Using the JavaMail API
	The Spring API for JavaMail
	Developing a Spring mail application
	Configuration file – Spring.xml
	Spring's e-mail sender
	The run MailerTest.java class

	Spring Java Messaging Service
	What is a message and messaging?
	What is JMS?
	JMS application
	JMS components

	MOM Service Provider
	Configuring ActiveMQ – message queue

	Spring bean configuration (Spring.xml)
	MessageSender.java – Spring JMS Template
	App.java
	Start ActiveMQ
	Output
	Monitoring the broker
	Exception on running App.java

	Exercise
	Summary

	Appendix A: Solutions to Exercises
	Appendix B: Setting up the Application Database – Apache Derby
	Index

