Spring Batch Essentials

Design, develop, and deliver robust batch applications with the
power of the Spring Batch framework

PACKT *

Spring Batch Essentials

Design, develop, and deliver robust batch applications
with the power of the Spring Batch framework

P. Raja Malleswara Rao

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Spring Batch Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015
Production reference: 1210115

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78355-337-2

www . packtpub.com

www.packtpub.com

Credits

Author
P. Raja Malleswara Rao

Reviewers
Alexey Grigorev

Mykola Kolisnyk
Luca Masini
Anirudh Prabhu

Commissioning Editor
Pramila Balan

Acquisition Editor
Nikhil Karkal

Content Development Editor
Sharvari Tawde

Technical Editors
Manal Pednekar

Faisal Siddiqui

Copy Editors
Shambavi Pai

Adithi Shetty

Project Coordinator
Aboli Ambardekar

Proofreaders
Simran Bhogal

Cathy Cumberlidge

Indexer
Monica Ajmera Mehta

Graphics
Sheetal Aute

Valentina D'silva

Abhinash Sahu

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

P. Raja Malleswara Rao is a senior consultant, focusing on enterprise architecture
and development of Java-related technologies. He is a certified Java and web
components developer with deep expertise in building enterprise applications using
diverse frameworks and methodologies. He is an active participant in technical forums,
groups, and conferences. He has worked with several Fortune 500 organizations and is
passionate about learning new technologies and their developments.

I would like to thank my family and friends for their love and
support, especially my wife, Bhargavi, for sacrificing the quality time
I could have spent with her and encouraging me through this stint.

I would also like to thank my reviewers for their valuable
suggestions in improving the quality of this book, my colleagues,
and the Spring community for sharing great thoughts that helped
me a lot in keeping myself updated.

About the Reviewers

Alexey Grigorev is an experienced software engineer with a background in Java
and Spring, as well as in data transformation and integration. He is interested in
machine learning and Big Data analysis, and he likes to build smart, robust, and
scalable applications. He currently works as a freelancer and can be reached at
alexey.s.grigoriev@gmail.com.

I would like to thank my wife, Larisa Kosareva, for her support.

Mykola Kolisnyk has been part of test automation since 2004, being involved

in various activities, including creating test automation solutions from the scratch,
leading the test automation team, and performing consultancy regarding test
automation processes. During his working career, he has had experience of using
different test automation tools, such as Mercury WinRunner, Micro Focus SilkTest,
SmartBear TestComplete, Selenium RC, WebDriver, SoapUIl, BDD framewords,
and many other different engines and solutions. Mykola has experience of working
with multiple programming technologies based on Java, C#, Ruby, and so on. He
also has experience of different domain areas such as healthcare, mobile, telecom,
social networking, business process modeling, performance and talent management,
multimedia, e-commerce, and investment banking.

He was a permanent employee at ISD, GlobalLogic, and Luxoft, and he also has
experience in freelancing activities. He was invited as an independent consultant
to introduce test automation approaches and practices to external companies.

He currently works in DevOps. He's one of the authors (along with Gennadiy
Alpaev) of the online SilkTest Manual (http://silktutorial.ru/) and has
participated in the creation of the TestComplete tutorial (http://tctutorial.ru/),
which is one of the biggest related documentation available in ru-Net.

Also, he was the reviewer of TestComplete Cookbook, Packt Publishing.

http://tctutorial.ru/

Luca Masini is a senior software engineer and architect. Born as a game developer
for Commodore 64 (Football Manager) and Commodore Amiga (Ken il guerriero),
he soon converted to object-oriented programming and he was attracted by the Java
language from its beginning in 1995.

He worked on this passion as a consultant for major Italian banks, developing and
integrating the main software projects for which he has often taken the technical
leadership. He adopted Java Enterprise in environments where COBOL was

the flagship platform, converting the environments from mainframe centric to
distributed types.

He then shifted his focus towards open source, starting with Linux to enterprise
frameworks with which he was able to introduce concepts such as IoC, ORM, and
MVC with low impact. He was an early adopter of Spring, Hibernate, Struts, and
a whole host of other technologies that in the long run have given his customers a
technological advantage and therefore development costs cuts.

After introducing this new technology, he decided that it was time for
simplification and standardization of development with Java EE and, hence,

he's now working at the ICT of a large Italian company where he introduced
build tools (Maven and Continuous Integration), archetypes of project, and Agile
Development with plain standards.

Finally, he focused his attention towards mobilizing the enterprise and is now
working on a whole set of standard and development processes to introduce
mobile concepts and applications for sales force and management.

He has worked on the following books by Packt Publishing:

* Securing WebLogic Server 12c
* Google Web Toolkit GWT Java AJAX Programming
* Spring Web Flow 2 Web Development

* Spring Persistence with Hibernate

Anirudh Prabhu is a software engineer with over 5 years of industry experience.
He specializes in technologies such as HTML5, CSS3, PHP, jQuery, Twitter
Bootstrap, and SASS, and also has knowledge of CoffeeScript and Angular]S.

In addition to web development, he has been involved in building training
material and writing tutorials for twenty19 (http://www.twentyl9.com/)
for the technologies mentioned.

Besides Packt Publishing, he has been associated with Apress and Manning
Publication as a technical reviewer for several titles.

http://www.twenty19.com/

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at servicee@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

¢ On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents

Preface 1
Chapter 1: Spring Batch Fundamentals 7
Introduction to batch applications 7
Spring Batch and its offerings 9
Spring Batch infrastructure 10
Spring Batch components 10
Job design and executions 12
Summary 19
Chapter 2: Getting Started with Spring Batch Jobs 21
Spring Batch XML features 21
Spring Batch XML namespace 22
Spring Batch XML tags 22
Configuring jobs, transactions, and repositories 23
Job configuration 24
Step configuration 25
Tasklet configuration 28
Chunk configuration 29
Transaction configuration 30
Job repository configuration 31

EL and listeners 32
Listeners 32
Job listeners 33
Step listeners 34
Item listeners 35
Executing jobs from the command line and web applications 35
JobLauncher 35
Launching a job from a command line 37

Table of Contents

Launching a job from within a web application 37
Stopping batch jobs gracefully 38
Schedulers 39
Summary 40
Chapter 3: Working with Data 41
Data reading 42
ItemReader 42
Reading data from flat files 42
Fixed width file 43
FlatFileltemReader 45
LineMapper 45
Delimited file 48
Exceptions from flat file reading 51
Reading data from XML 51
Reading data from a database 54
JdbcCursorltemReader 54
JdbcPagingltemReader 56
Data processing 56
IltemProcessor 57
Chaining the process 58
Data writing 58
ltemWriter 58
Flat file item writers 59
FieldExtractor 60
Writing delimited files 61
Writing a fixed width file 62
XML item writers 63
Database item writers 64
JDBC-based database writing 64
ORM-based database writing 65
Custom item readers and writers 67
Summary 68
Chapter 4: Handling Job Transactions 69
Transactions 69
Spring Batch transaction management 70
Tasklet steps 71
Chunk-oriented steps 72
Listeners 73
Customizing the transaction 74
Transaction patterns 75
Simple transaction 75
Global transaction 75
Summary 76

Lii]

Table of Contents

Chapter 5: Step Execution 77
Controlling the job flow 77
Using an exit code 78
Using a decision logic 79
Data sharing 81
Using execution context 81
Using Spring holder beans 82
Externalization and termination 82
Externalization 82
External flow definition and including it in desired jobs 83
Inherited jobs mechanism 83
Termination 84
Terminating in the COMPLETED state 84
Terminating in the FAILED state 84
Terminating in the STOPPED state 85
Summary 85
Chapter 6: Integrating Spring Batch 87
Enterprise Integration 87
Spring Integration 89
Triggering a batch job to execute 90
RESTful job processing 92
Summary 94
Chapter 7: Inspecting Spring Batch Jobs 95
Batch job monitoring 95
Accessing execution data 97
Database 98
JobRepository 98
JobLauncher 98
JobOperator 99
JobExplorer 99
Listeners 100
Web monitoring 101
Summary 101
Chapter 8: Scaling with Spring Batch 103
The batch scaling model 103
The thread model 104
Parallel processing 105
Remote chunking 106
Partitioning 107
Summary 109

[iii]

Table of Contents

Chapter 9: Testing the Spring Batch 111
Types of testing for Spring Batch 111
Unit testing 112

JUnit 112
Mockito 113
Integration testing 115
Listener-based approach 115
The StepScopeTestUtils approach 116
Functional testing 116
Summary 118

Appendix 119
Setting up Java 119
Setting up Eclipse IDE 120
Setting up the project and its dependencies 122
Spring Batch Administration 122

Index 125

[iv]

Preface

Welcome to the world of Spring Batch! We're pleased that you have chosen our book,
fully dedicated to the essentials of Spring Batch 3.0.2 release. Before we get started
with this book, I would like to give an overview of how this book is organized and
how you can get the most out of it. Once you have completed reading this book,

you should be familiar with key batch processing concepts and understand how to
solve the majority of the real-world problems that you will need to solve with Spring
Batch. This book gives an insight of the essential concepts and applications of the
Spring Batch framework, which will allow you to handle any unexpected use cases
the book does not cover.

Spring Batch is an open source, lightweight, and comprehensive solution, designed to
enable the development of robust batch applications, vital for enterprise operations.

This tutorial starts with an insight into batch applications and Spring Batch

offerings. Understanding the architecture and key components, you will learn how

to develop and execute a batch application. You can then walk through the essential
configurations and execution techniques, key technical implementations of the read
and write, and processing features of different forms of data. Next, you will move

onto the key features, such as transaction management, job flows, job monitoring, and
data sharing across the steps of the executing jobs. Finally, you will learn how Spring
Batch can integrate with diverse enterprise technologies and facilitate optimization and
performance improvement with scaling and partitioning techniques.

This book uses a simple application based on Spring Batch to illustrate how to

solve real-world problems. The application is intended to be very simple and
straightforward, and purposely contains very little functionality — the goal of this
application is to encourage you to focus on the Spring Batch concepts, and not get tied
up in the complexities of application development. You will have a much easier time
following the book if you take the time to review the sample application source code.
Some tips on getting started are found in the appendix.

Preface

What this book covers

Chapter 1, Spring Batch Fundamentals, introduces you to batch applications and details
about Spring Batch and its offerings. It discusses Spring Batch architecture, and also
demonstrates how to design and execute a Spring Batch job.

Chapter 2, Getting Started with Spring Batch Jobs, covers the Spring Batch XML features,
how to configure jobs, transactions and repository, working with EL and listeners,
and executing jobs from command line and web application schedulers.

Chapter 3, Working with Data, demonstrates the essential data handling mechanisms,
including reading the data from different sources such as flat files, XML and databases,
processing the data, and writing the data to different destinations. It also explains
about transforming and validating the data in the processing data phase.

Chapter 4, Handling Job Transactions, covers transactions and Spring Batch
transaction management, and explains how to customize the transaction
along with transaction patterns.

Chapter 5, Step Execution, explains the techniques to control the job flow, sharing
the data between steps in execution and process reuse with externalization. It also
demonstrates terminating the batch job in different states and their importance.

Chapter 6, Integrating Spring Batch, covers the integration techniques for
enterprise applications based on Spring Batch, and some of the job launching
and process techniques.

Chapter 7, Inspecting Spring Batch Jobs, demonstrates the monitoring techniques of
Spring Batch jobs, access methods to execute job data, monitoring and reporting
with listeners and web monitoring techniques.

Chapter 8, Scaling with Spring Batch, discusses the performance and scaling concerns
with Spring Batch support for configuration-based tuning techniques such as parallel
processing, remote chunking, and partitioning.

Chapter 9, Testing the Spring Batch, covers details of testing techniques for Spring
Batch applications with the help of open source frameworks and Spring support
for unit testing, integration testing, and functional testing.

Appendix covers the setup references for Java, Eclipse IDE, a project with
dependencies, and an administration project.

[2]

Preface

What you need for this book

The following list provides the required software in order to run the sample
applications included with this book. Some chapters have additional requirements
that are outlined within the chapter itself:

* Java Development Kit 1.6+ can be downloaded from Oracle's website at
http://www.oracle.com/technetwork/java/javase/downloads/index.
html

* Eclipse Java EE IDE for Web Developers can be downloaded from Eclipse's
website at https://www.eclipse.org/downloads/packages/eclipse-
ide-java-ee-developers/keplersr2

Who this book is for

This book is for a Java developer with some experience in development of enterprise
applications, who wants to learn about batch application development with Spring
Batch, to build simple yet powerful batch applications on a Java-based platform.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The ChunkProvider is the interface
returning chunks from ItemReader."

A block of code is set as follows:

public interface ChunkProvider<T>
void postProcess (StepContribution contribution, Chunk<T> chunk) ;
Chunk<T> provide (StepContribution contribution) throws Exception;

}

[31]

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/keplersr2
https://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/keplersr2

Preface

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<step id="initialStep">

<partition step="stepPartition" handler="handler"/>

</step>

<bean class="org.springframework.batch.core.partition.support.
TaskExecutorPartitionHandler">

<property name="taskExecutor" ref="taskExecutor"/>

<property name="step" ref="stepPartition"/>

<property name="gridSize" value="10"/>

</bean>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The
Maven software needs to be integrated into the Eclipse IDE as mentioned in the
instructions at https://www.eclipse.org/m2e/".

%j%‘\ Warnings or important notes appear in a box like this.
(:;l Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[4]

https://www.eclipse.org/m2e/
www.packtpub.com/authors

Preface

Downloading the example code

You can download the example code files for all Packt books you have purchased from
your account at http: //www.packtpub.com. If you purchased this book elsewhere,
you can visit http: //www.packtpub. com/support and register to have the files
e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[51]

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Spring Batch Fundamentals

Organizations need to process huge volumes of data through a series of transactions
in their day-to-day operations. These business operations should be automated to
process the information efficiently without human intervention. Batch processing can
execute such a series of operations through programs, with a predefined set of data
groups as input, process the data, and generate a set of output data groups and/or
update the database.

In this chapter, we will cover the following topics:

* Introduction to batch applications
* Spring Batch and its offerings
* Spring Batch infrastructure

* Job design and executions

Introduction to batch applications

Organizations need to accomplish diverse business operations that include a large
amount of data processing. Following are some examples of such operations:

* Generation of salary slips and tax calculations in a large enterprise

* Credit card bill generation by banks

* Fresh stock updated by retail stores in their catalog

Spring Batch Fundamentals

All such operations are executed with a predefined set of configurations and
schedules, to run at a particular offload system time. Batch applications should be
able to process large volumes of data without human intervention. The following
figure represents a typical batch application:

1. Read Data

= N -

Database

Batch
Application 2. Process

File System

3. Write Data

A standard batch application is expected to have the following capabilities:
* Scalable: It should be able to process billions of records and be reliable
without crashing the application

* Robust: It should be intelligent enough to identify the invalid data and keep
track of such mishaps to rerun with corrected data

* Dynamic: It should interact with different systems to access the data using
the credentials provided and process the operations

* Concurrent: It must process multiple jobs in parallel with the shared resources

* Systematic: It should process the workflow-driven batches in a sequence of
dependent steps

* High performance: It must complete the processing in a specified batch window

[8]

Chapter 1

Spring Batch and its offerings

Spring Batch is a lightweight, comprehensive batch framework designed to enable
the development of robust batch applications that are vital for the daily operations
of enterprise systems developed by SpringSource and Accenture in collaboration.

Spring Batch follows POJO-based development to let developers easily implement
batch processing and integrate with other enterprise systems when needed.

Plain Old Java Object (POJO) represents an ordinary Java object that can be used to
store a data item and exchange information between services easily.

While Spring Batch provides many reusable functions adopted from the
Spring framework and customized for batch applications to perform common
batch (such as split processing of huge volumes of data, logging, transaction
management, job process-skip-restart, and effective resource management),

it is not a scheduling framework. Spring Batch can work in conjunction with
a scheduler (such as Quartz/Control-M), but cannot replace a scheduler.

We discussed the capabilities expected from a standard batch application in the
previous section. Spring Batch is designed to fulfill the expected features, along
with its high capability, to integrate with different applications developed in other
frameworks. Let's observe some of the important features offered by Spring Batch:

* Support for multiple file formats, including fixed length, delimited files, XML
and common database access using JDBC, and other prominent frameworks
* Automatic retry after failure

* Job control language to monitor and perform common operations such as job
start, stop, suspend, and cancel

* Tracking status and statistics during the batch execution and after completing
the batch processing

* Support for multiple ways of launching the batch job, including script, HTTP,
and message

* Support to run concurrent jobs

* Support for services such as logging, resource management, skip, and
restarting the processing

[o]

Spring Batch Fundamentals

Spring Batch infrastructure

Spring Batch is designed with a layered architecture, including three major
components, namely, Application, Core, and Infrastructure, as shown in the
following figure:

Application

Batch Infrastructure

The Application layer contains the developer-written code to run the batch jobs
using Spring Batch.

The Batch Core layer contains the core runtime classes such as JobLauncher, Job,
and Step, necessary to launch and control the batch job. This layer interacts with
the Application layer and Batch Infrastructure layer to run the batch jobs.

The Batch Infrastructure layer contains the common readers, writers, and services.
Both Application and Batch Core are built on top of Infrastructure. They refer to
Infrastructure for the information required to run the batch jobs.

Multiple components are involved in Spring Batch job execution. The components
and their relationship are discussed in the next section.

Spring Batch components

The following figure represents the Spring Batch job components and the
relationship between these components:

ItemReader

ItemProcessor

ItemWriter

[10]

Chapter 1

JobLauncher is the interface responsible for beginning a job. When a job is first
launched, JobLauncher verifies in the JobRepository, if the job is already executed
and the validity of the Job parameter before executing the job.

Ajob is the actual batch process to be executed. A Job parameter can be configured
in an XML or a Java program.

JobInstance is the logical instance of the job per cycle. If a JobInstance execution
fails, the same JobInstance can be executed again. Hence, each JobInstance can
have multiple job executions.

JobExecution is the representation of single run of a job. JobExecution contains
the run information of the job in execution, such as status, startTime, endTime,
failureExceptions, and so on.

JobParameters are the set of parameters used for a batch job.

A step is a sequential phase of a batch job. Step contains the definition and control
information of a batch job. The following figure represents multiple steps in a batch
job. Each step constitutes three activities, namely, data reading, processing, and
writing, which are taken care of by ItemReader, ItemProcessor, and ItemWriter
respectively. Each record is read, processed (optional), and written to the system.

StepExecution is the representation of a single run of a Step. StepExecution
contains the run information of the step, such as status, startTime, endTime,
readCount, writeCount, commitCount, and so on.

Step One Step Two Step Three
ItemReader ItemReader ItemReader
ItemProcessor® ItemProcessor® ItemProcessor*®

ItemWriter ItemWriter ItemWriter

JobRepository provides create, retrieve, update, and delete (CRUD) operations for
the JobLauncher, Job, and Step implementations.

ItemReader is the abstract representation of the retrieval operation of Step.
ItemReader reads one item at a time.

[11]

Spring Batch Fundamentals

ItemProcessor is the abstract representation of the business processing of the item
read by ItemReader. ItemProcessor processes valid items only and returns null if
the item is invalid.

ItemWriter is the abstract representation of the output operation of step.
ItemWriter writes one batch or chunk of items at a time.

In the next section, we will use our understanding of these components and develop
a simple batch application using the essential Spring Batch job components. Also
included are the code snippets of this application in steps.

Job design and executions

Spring Batch can be configured in your project in multiple ways, by including
downloaded ZIP distribution and checking out from Git or configure using Maven.
In our case, we will use the Maven configuration. You should have Maven installed
in your system directly or using an IDE-based plugin (we are using Eclipse in this
example). Refer to https://www.eclipse.org/m2e/ to integrate Maven in your
Eclipse IDE. The latest versions of Eclipse come with this plugin installed; verify
this before installing.

A Spring Batch job can be launched in multiple ways, including the following:

* Launching the job from the command line
* Launching the job using job schedulers
* Launching the job from a Java program

* Launching the job from a web application
For this sample program, we are launching the batch job from a simple Java program.

The following are the steps, with code snippets, to run the first batch job using
Spring Batch:

1. Create a Maven-enabled Java project (let's call it SpringBatch). Maven
is the software to manage the projects effectively. The pom.xm1 file is the
configuration file for Maven to include any API dependencies. There are
dedicated Maven archetypes that can create sample projects. The location for
Maven is http://mvnrepository.com/artifact/org.springframework.
batch/spring-batch-archetypes.

2. Configure pom.xml in the root directory of your project to have the required
Maven dependencies that include the following:

° Spring framework with batch

[12]

https://www.eclipse.org/m2e/
http://mvnrepository.com/artifact/org.springframework.batch/spring-batch-archetypes
http://mvnrepository.com/artifact/org.springframework.batch/spring-batch-archetypes

Chapter 1

log4j for logging
JUnit to test the application
Commons Lang helper utilities for the java.lang API

HyperSQL Database (HSQLDB) to be able to run using HSQLDB,
which is a relational database management system written in Java

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupIds>batch</groupIld>
<artifactId>SpringBatch</artifactId>
<version>0.0.1-SNAPSHOT</version>
<propertiess
<spring. framework.version>3.2.1.RELEASE
</spring.framework.version>
<spring.batch.version>3.0.2.RELEASE
</spring.batch.version>
</properties>

<dependenciess>

<dependencys>
<groupId>commons-lang</groupIds>
<artifactId>commons-lang</artifactIds>
<versions>2.6</version>

</dependency>

<dependencys>
<groupIds>org.springframework.batch</groupIld>
<artifactId>spring-batch-core</artifactId>
<version>${spring.batch.version}</versions>

</dependency>

<dependencys>
<groupIds>org.springframework.batch</groupIlds>
<artifactId>spring-batch-infrastructure</artifactId>
<versions>${spring.batch.version}</versions>

</dependency>

<dependencys>
<groupId>log4j</groupld>
<artifactId>log4j</artifactId>
<version>1.2.17</version>

</dependency>

<dependencys>

[13]

Spring Batch Fundamentals

<groupId>junit</groupIld>
<artifactId>junit</artifactIds>
<version>4.8.2</versions>
<scope>test</scope>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-tx</artifactId>
<version>${spring.framework.version}</versions>

</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-jdbc</artifactIds>
<version>${spring.framework.version}</versions>

</dependency>

<dependencys>
<groupId>hsqgldb</groupIld>
<artifactId>hsgldb</artifactIds>
<version>1.8.0.7</version>

</dependency>

</dependencies>
</project>

3. Create log4j.xml under the src\main\resources directory to log with the
following content, which will produce a formatted console output:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd"s>

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/
log4j/">

<appender name="CONSOLE"
class="org.apache.log4j.ConsoleAppender">
<param name="Target" value="System.out"/>
<param name="Threshold" value="INFO" />
<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="%d %-5p %c -
smsn" />
</layout>
</appender>
<logger name="org.springframework" additivity="false">
<level value="INFO"/>
<appender-ref ref="CONSOLE"/>
</logger>
<root>

[14]

Chapter 1

<level value="DEBUG"/>
<appender-ref ref="CONSOLE"/>
</root>
</log4j:configuration>

Include the configuration file (context .xml) under the src\main\resources\
batch directory with the following content. Context configuration includes the
jobRepository, jobLauncher, and transactionManager Configuration. We
configured the batch as the default schema in this configuration.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/batch"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch-3.0.xsd">
<beans:bean id="jobRepository"
class="org.springframework.batch.core.repository.
support .MapJobRepositoryFactoryBean" >
<beans:property name="transactionManager"
ref="transactionManager"/>
</beans :bean>
<beans:bean id="jobLauncher"
class="org.springframework.batch.core.launch. support.
SimpleJobLauncher">
<beans:property name="jobRepository"
ref="jobRepository" />
</beans :bean>

<beans:bean id="transactionManager"
class="org.springframework.batch. support.transaction.
ResourcelessTransactionManager"/>

</beans:beanss>

Include the job config (firstBatch.xml) under the src\main\resources\
batch directory with the following content. Batch job configuration includes
configuring the batch job with step and tasklet, using a Java program.

<?xml versgion="1.0" encoding="UTF-8"?>

<beans:beans xmlns ="http://www.springframework.org/schema/batch"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

[15]

Spring Batch Fundamentals

http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch-3.0.xsd">
<beans:import resource="context.xml" />
<beans:bean id="firstBatch" class=" batch.FirstBatch"/>
<step id="firstBatchStepOne">
<tasklet ref="firstBatch"/>
</step>
<job id="firstBatchJob"s>
<step id="stepOne" parent="firstBatchStepOne"/>
</job>
</beans:beans>

6. Write the tasklet (the strategy for processing in a step) for the first job
(FirstBatch.java) under the src\main\java\batch directory with the
following content. This tasklet program is referred to in the firstBatch.xml
configuration for tasklet reference under Job.

package batch;

import org.apache.log4j.Logger;

import org.springframework.batch.core.StepContribution;

import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;

public class FirstBatch implements Tasklet {
static Logger logger = Logger.getLogger ("FirstBatch") ;

public RepeatStatus execute (StepContribution argo,
ChunkContext argl)
throws Exception {
logger.info("** First Batch Job is Executing! **");
return RepeatStatus.FINISHED;

}

7. Write the Java program to execute the batch job (ExecuteBatchdob. java)
under the src\main\java\batch directory with the following content.
Through this program, we access the job configuration file and identify the
JobLauncher and Job beans from the configuration files. JobExecution
is invoked from the run method of JobLauncher by passing the job and
jobParameters.

[16]

Chapter 1

As mentioned earlier, we can run a batch job from either of the options,
including command line, job schedulers, web application, or a simple Java
program. We are using a simple Java program here to run our first job.

package batch;

import org.apache.log4j.Logger;

import org.springframework.batch.core.Job;

import org.springframework.batch.core.JobExecution;
import org.springframework.batch.core.JobParameters;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.context.ApplicationContext;

import org.springframework.context.support.
ClassPathXmlApplicationContext;

public class ExecuteBatchJob

static Logger logger =
Logger .getLogger ("ExecuteBatchdob") ;
public static void main(String[] args) {

String[] springConfig = {"batch/firstBatch.xml"};
ApplicationContext context = new
ClassPathXmlApplicationContext (springConfig) ;

JobLauncher jobLauncher = (JobLauncher)
context.getBean ("jobLauncher") ;
Job job = (Job) context.getBean("firstBatchdob") ;
try {
JobExecution execution = jobLauncher.run(job, new
JobParameters ()) ;
logger.info ("Exit Status : " +

execution.getStatus()) ;
} catch (Exception e) ({
)

7

e.printStackTrace (
} finally {
if (context != null) ({
context = null;

}

logger.info ("Done") ;

[17]

Spring Batch Fundamentals

8. Following is the folder structure to be generated in the SpringBatch project,
after including the resources mentioned earlier:

4 (=4 SpringBatch
» = settings
» (= bin
4 [src
4 [main
4 (= java
4 [= batch
[J] ExecuteBatchlob.java
[3] FirstBatch.java
4 [~ resources
4 [= batch
%] contextaxml
%] firstBatch.xml
%] legdjxml
» = target
%] .classpath
¥ .project

[m] pom.xml

Add src/main/java and src/main/resources to the project source
through build path properties, as shown in the following screenshot:

@ Properties for SpringBatch (5] | |

type filter text Java Build Path e T
> Resource
Builders [Source ‘B Projects | = Libraries &i} Order and Export|
Java Build Path Source folders on build path:

Java Code Style

g " > [SpringBatch/src/main/jeva Add Folder...
> Java Compiler

- [SpringBatch/src/main/resources

Javadoc Lecation
» Maven Edit...
Project Facets
Project References
Refactoring History
Run/Debug Settings

> Task Repository
Task Tags
> Validation
WikiText
[] Allow output folders for source folders
Default cutput folder:
SpringBatch/bin/classes
@) [QK J [Cancel]

[18]

Chapter 1

9. Build the project with the Maven installation and run the ExecuteBatchJob
Java program to get the batch job execution status printed on the console:
2014-06-01 17:02:29,548 INFO org.springframework.batch.
core.launch. support.SimpleJobLauncher - Job: [FlowJob:
[name=firstBatchJob]] launched with the following parameters: [{}]
2014-06-01 17:02:29,594 INFO org.springframework.batch.core.job.
SimpleStepHandler - Executing step: [stepOne]

2014-06-01 17:02:29,599 INFO ** First Batch Job is Executing! **
2014-06-01 17:02:29,633 INFO org.springframework.batch.
core.launch.support.SimpleJobLauncher - Job: [FlowJob:
[name=firstBatchJob]] completed with the following parameters:
[{}] and the following status: [COMPLETED]

2014-06-01 17:02:29,637 INFO Exit Status :COMPLETED
2014-06-01 17:02:29,639 INFO Done

Following the previously mentioned steps, we configured our first batch job using
Spring Batch and executed it successfully from a Java program.

Summary

Throughout this chapter, we learned about batch applications, real-time batch
applications, and the capabilities expected from a standard batch application. We
also learned about Spring Batch applications and the features offered by the Spring
Batch technology, high-level Spring Batch architecture, and components involved in
Spring Batch job execution, along with the relationships among those components.
We completed this chapter with the development of a simple batch application and
ran the program successfully.

In the next chapter, we will learn about the configuration of batch jobs using XML
and EL, and the execution of batch jobs from the command line and application.
We will also discuss the scheduling of batch jobs.

[19]

Getting Started with Spring
Batch Jobs

In the previous chapter, we learned about batch applications, the offerings and
architecture of Spring Batch, and how to build a Spring Batch application to

run a batch job. It is important to understand the details of a framework and its
components to be able to effectively configure them for business needs. XML- and
annotation-based configurations have made programming more efficient and flexible
with Spring Batch.

Some applications expect the configuration to be flexible to the style of programming
they follow. Different programs need the ability to trigger a batch job in different
ways, including command line and schedulers, or a part of the program itself. It is
also important to stop executing batch jobs elegantly if needed.

In this chapter, we will cover the following topics:

* Spring Batch XML features

* Configuring jobs, transactions, and repositories

* EL and listeners

* Executing jobs from command line and web applications
* Schedulers

Spring Batch XML features

Spring Batch XML configuration is the most important aspect of Spring Batch
programming. Spring Batch has a unique XML terminology and namespace.
Understanding these terminologies and using the right set of entities helps to
build an efficient batch application.

Getting Started with Spring Batch Jobs

Spring Batch XML namespace

Spring Batch has dedicated XML namespace support to provide comfortable
configurations. The Spring XML application context file needs to have the
following declaration to activate the namespace:

<beans xmlns:batch="http://www.springframework.org/schema/batch"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xs1i:schemalLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch-3.0.xsd">

<batch:job id="readDetailsJob">
</batch:job>
</beans>

The namespace configuration provides the prefix that can be used to configure

the details in the context file. In the preceding example, we have batch as a prefix
to configure a job. The prefixes are the identifiers specific to this document only.
One can use any valid names as a prefix for the namespace configuration. If any
namespace is configured without a prefix, it is considered as the default namespace,
and one should configure the elements without a prefix to configure using the
default prefix. In the previous chapter, we configured batch as the default prefix
and, hence, we directly configured the job and the step.

Spring Batch XML tags

Spring Batch XML configuration defines the flow of the batch job. Following are the
important Spring Batch tags and their descriptions:

* job: This defines a job composed of a set of steps and transitions between the
steps. The job will be exposed in the enclosing bean factory as a component
of type Job that can be launched using JobLauncher.

* step: This defines a stage in job processing backed by a step.

* tasklet: This declares the implementation of the tasklet strategy (the
strategy for processing in a step). It can be done by configuring a chunk
or by configuring a reference to the Tasklet interface.

[22]

Chapter 2

* chunk: This declares that the owning step will perform chunk-oriented
processing (reading data one at a time and creating groups to be written),
delegate what defines a chunk, and configure the chunk-oriented components.

* job-repository: This configures JobrRepository (the repository responsible
for persistence of batch metadata entities) using a relational data store. It is
needed by other components such as the job and step implementations.

* flow: This defines a flow composed of a set of steps and transitions
between steps.

Configuring jobs, transactions, and
repositories

As mentioned in the previous section, we can configure Spring Batch jobs
conveniently through XML configuration itself. Job is the primary element and
the following figure shows the hierarchy of the components in the configuration:

=

4[
|y
o S

Each job can contain multiple steps, each step contains tasklets, and each tasklet
contains chunks. Each component has individual elements that are defined as
subelements of the other. The following is the syntax for one such batch job:

<beans xmlns:batch ... >
<batch:job id="jobId"x>

[23]

Getting Started with Spring Batch Jobs

<batch:step id="stepId"s>
<batch:tasklet ref="beanReference">
<batch:chunk reader="dataReader"
processor="dataProcessor"
writer="dataWriter" commit-interval="500"
</batch:tasklet>
</batch:step>
<batch:step>

</batch:step>

</batch:job>
</beans>

Job configuration

/>

Job is the root element in batch application configuration. A job defines the batch
job to be executed with the configurations of job repository, and properties such
as restartable or not. The following are the attributes of the job element:

* id: This is a unique identifier for the job element.

* abstract: This is used to configure if the job is abstract, that is, it is not
meant to be instantiated by itself, but rather it is just serving as a parent
for concrete child job definitions. By default it is false.

* increment: This is a reference to a JobParametersIncrementer bean

definition. This will be used to provide a new set of parameters by altering the

previous set of parameters to be eligible for a fresh run as the next instance.

* Jjob-repository: This is the bean name of the JobRepository that
is to be used. This attribute is not mandatory, and it defaults to the

jobRepository bean.

* parent: This is the name of the parent job from which a job should inherit.

* restartable: This defines whether the job should be retartable or not in the
case of failure. Set this to false if the job should not be restarted. By default

itis true.

A validator of type DefaultJobParametersValidator can be configured as a part of
the job configuration to validate simple and optional parameters. The following is a

snippet of such a configuration:

<beans xmlns:batch ... >
<batch:job id="jobId">
<batch:step id="stepId"s>

[24]

Chapter 2

</batch:step>

<batch:validator ref="validatorId"/>

</batch:job>

<bean id="validatorId" class="beans.JobParametersValidator">

<property name="Keys">

<set>

<values>keyValues</value>

</set>
</property>
</bean>
</beans>

For complex constraints, the validator interface can also be implemented.

Step configuration

Step is the first subelement of a job. A job can contain multiple steps. The following
are different approaches in which multiple steps can be configured:

* Multithreaded step (single process): Spring Batch allows you to execute
chunks of work in parallel as a part of a single process. Each chunk processes
a set of records when there is a large amount of data to process in threads.

Step

4 N

Chunk

_

Step

[25]

Getting Started with Spring Batch Jobs

The simplest way to start parallel processing is by adding taskExecutor to
your step configuration as an attribute of the tasklet.

<step id="loading">
<tasklet task-executor="taskExecutor"s>...</tasklet>
</step>

» Parallel step (single process): This is the mechanism of processing multiple

steps in a single process.

Step

The following is the snippet to configure parallel steps:
<job id="jobId"s>
<split id="splitId" task-executor="taskExecutor"
next="step3">
<flow>
<step id="stepl" next="step2"/>
<step id="step2"/>
</flow>
</split>
<step id="step3"/>
</job>
<beans:bean id="taskExecutor" class="TaskExecutor"/>

* Remote chunking of step (multiprocess): This splits the step processing
across multiple processes, communicating with each other through a
middleware. A step of Spring Batch acts as the master and the listeners of
corresponding middleware act as the slaves. While the master component
runs as a single process, slaves are the multiple remote processes.

[26]

Chapter 2

’”

AF

[Item Reader :I
Rz

L{Chunk Providerj

!

E:hunk Processorj
4%

E Item Writer J

-

Master
(Step)

Slave
(Listener)

Partitioning a step (single process or multiprocess): Partitioning is the
process in which one step is configured to have sub steps. The super step is
the master and the sub steps are the slaves. Slave steps have to complete the
execution to consider the master step as completed.

D —

Step

| Step

(Master)

A Step |
L4

Step Step Step
(Slave) (Slave)

[27]

Getting Started with Spring Batch Jobs

The following are the attributes of the step element:

id: This is the unique identifier for the step element
next: This is a shortcut to specify the next step to execute after the current step
parent: This is the name of the parent step from which a job should inherit

allow-start-if-complete: This is set to true to allow a step to be started
even if it is already complete

The following is a sample step configuration:

<step id="firstBatchStepOne">

<tasklet ref="firstBatch"/>

</step>
<job id="firstBatchJob">

<step id="stepOne" parent="firstBatchStepOne"/>

</job>
<bean id="firstBatch" class="FirstBatch"/>

Tasklet configuration

Tasklet is the subelement of the step element that can be used to specify the step
process that is repeatable and transactional as part of a step.

The following are the attributes of the tasklet element:

ref: This is the reference to a bean definition that implements the
Tasklet interface.

allow-start-if-complete: This is set to true to allow a step to be started
even if it is already complete.

method: This is the method specification for the tasklet execution.
start-1limit: This is the maximum number of times a step may be started.

task-executor: The task executor is responsible for the execution of
the task.

throttle-limit: This is the maximum number of tasks that can be queued
for concurrent processing to prevent thread pools from being overwhelmed.
The default value is 4.

transaction-manager: This is the bean name of the transaction manager
that is to be used. Default is t ransactionManager, if not specified.

[28]

Chapter 2

The following is the sample job configuration with tasklet:

<step id="firstBatchStepOne">

<tasklet ref="firstBatch" start-limit="6">

</tasklet>

</step>
<job id="firstBatchJob">

<step id="stepOne" parent="firstBatchStepOne"/>

</job>
<bean id="firstBatch" class="FirstBatch"/>

Chunk configuration

Chunk is the child element of tasklet that can be used to perform read-write
processing. Chunk configuration involves more data beans compared to other
element's configuration.

The following are the attributes of the chunk element:

reader: This is the bean name of the item reader that is to be used for the
process and implements the ItemReader interface.

processor: This is the bean name of the item processor that is to be used for
the process and implements the ItemProcessor interface.

writer: This is the bean name of the item writer that is to be used for the
process and implements the ItemWriter interface.

cache-capacity: This is the capacity of the cache in the retry policy.

chunk-completion-policy: A transaction will be committed when this
policy decides to complete. Defaults to SimpleCompletionPolicy with the
chunk size equal to the commit-interval attribute.

commit-interval: The number of items that will be processed before commit
is called for the transaction. Set either this or the chunk-completion-policy
attribute, but not both.

processor-transactional: This determines whether the processor is
transaction aware or not.

reader-transactional -queue: This determines whether the reader is a
transactional queue.

retry-limit: This is the maximum number of times the processing of an
item will be retried.

retry-policy: This is the bean specification of the retry policy. If specified,
then the retry-1limit and retryable exceptions are ignored.

[29]

Getting Started with Spring Batch Jobs

* skip-1limit: This is the maximum number of items that will be allowed
to be skipped.

* skip-policy: This is the bean specification of skip policy. If specified, then
the skip-1limit and skippable exceptions are ignored.

The following is the sample job configuration with the tasklet chunk:

<step id="firstBatchStepOne">

<tasklet ref="firstBatch">

<chunk reader="itemReader" processor="itemProcessor"

writer="itermWriter" commit-interval="150"/>

</tasklet>
</step>
<job id="firstBatchJob">

<step id="stepOne" parent="firstBatchStepOne"/>
</job>
<bean id="firstBatch" class="FirstBatch"/>
<bean id="itemReader" class="ItemReader"/>
<bean id="itemProcessor" class="ItemProcessor"/>
<bean id="itemWriter" class="ItemProcessor"/>

The chunk configuration can have the exception skip and retry elements added as its
child components. The skippable-exception-classes and retryable-exception-
classes elements for the skip and retry configurations. The bean configuration can as
well be annotated to keep the Spring Batch configuration simpler.

Transaction configuration

Transaction configuration is one of the key aspects of Spring Batch. The
Spring transaction manager is the configuration for transactions. Spring
provides diverse transaction managers for diverse specifications; for JDBC it is
DataSourceTransactionManager and for JPA it is JpaTransactionManager.

Spring Batch lets us configure the transaction-attributes element as a child
element of the chunk, to set the isolation and propagation levels of the transaction.

The exceptions for which the rollback operation need not be performed can be
chosen. These exceptions can be configured using the include element as a child
of the no-rollback-exception-classes element, which is a child element of
the tasklet.

The following is a sample job configuration with the transaction manager:

<step id="firstBatchStepOne">
<tasklet ref="firstBatch" transaction-manager="transactionManager">

[30]

Chapter 2

</tasklet>
</step>
<job id="firstBatchJob"s>
<step id="stepOne" parent="firstBatchStepOne"/>
</job>
<bean id="firstBatch" class="FirstBatch"/>

<bean id="transactionManager" class="org.springframework.jdbc.
datasource.DataSourceTransactionManager">

<property name="dataSource" ref="DataSource"/>
</bean>

Job repository configuration

The job repository maintains the information related to the job execution. It also
maintains the state of the batch job. Job repositories are available in two types
from Spring Batch: in-memory repository and persistent repository.

In-memory repository lets the job run again for the same job configuration and
parameters multiple times. In-memory repository is volatile and so, it does not allow
restart between JVM instances. It also cannot guarantee that any two job instances
with the same parameters will be launched concurrently, hence, it is not suitable

in a multithreaded job or in a locally partitioned step. It can be configured using
MapJobRepositoryFactoryBean.

It requires the transaction manager for rollback semantics within the repository and
to handle the business logic defined in the transactional database.

The following is a sample in-memory repository configuration:

<bean id="jobRepository" class="org.springframework.batch.core.
repository.support.MapJobRepositoryFactoryBean">

<property name="transactionManager-ref"
ref="transactionManager"/>
</bean>
<bean id="transactionManager"

class="org.springframework.batch. support.transaction.
ResourcelessTransactionManager"/>

<job id="deductionsJob" job-repository="jobRepository"s>

</job>
Persistent repository can be configured using the job-repository element
to perform persistent database operations on a database. The datasource can

be configured using any AP]I, for example, we have used Apache commons
BasicDataSource in the following configurations.

[31]

Getting Started with Spring Batch Jobs

The following is a sample persistent repository configuration:

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource">
<property name="driverClassName" value="${batch.jdbc.driver}" />
<property name="url" value="${batch.jdbc.url}" />
<property name="username" value="${batch.jdbc.user}" />
<property name="password" value="${batch.jdbc.password}" />

</bean>

<bean id="transactionManager" class="org.springframework.jdbc.
datasource.DataSourceTransactionManager" lazy-init="true">

<property name="dataSource" ref="dataSource" />
</bean>
<job-repository id="jobRepository" data-source="dataSource"
transaction-manager="transactionManager"/>

EL and listeners

Spring Batch provides an interesting feature starting from version 3: Expression
Language (EL). Spring Expression Language (SpEL) lets us make XML configuration
dynamic by capturing the values at runtime from execution context. SpEL can resolve
the expressions from both properties and beans. This runtime capturing behavior lets
the job access late binding configurations as well.

The following is a sample SpEL configuration:

<bean id="processBean" class="JobProcessBean" scope="step">
<property name="name" value="#{jobParameters [name] }"/>
</bean>

Listeners

Spring Batch can be configured to have a set of additional events identified with
the help of listeners. Listeners can be used in different combinations to identify the
events at different levels. The following are the various listener types provided by
Spring Batch for batch processing.

* Job listeners: They identify the job level events

* Step listeners: They identify the step level events

* Item listeners: They identify the item repetition and retry events

[32]

Chapter 2

Job listeners

Job listeners identify the events occurring at the job level. Job listeners can be
configured by the following:

Implementing JobExecutionListener: The following is the sample listener
configuration using JobExecutionListener implementation:

import org.springframework.batch.core.JobExecution;

import org.springframework.batch.core.JobExecutionListener;

public class JobStatusListener implements JobExecutionListener

public void beforeJob (JobExecution jobExecution)
System.out.println("Job: " +
jobExecution.getJobInstance () .getJobName () + " is beginning") ;

}

public void afterJob (JobExecution jobExecution) {
System.out.println("Job: " + jobExecution.getdobInstance() .
getJobName () + " has completed") ;
System.out.println ("The Job Execution status is: " +
jobExecution.getStatus()) ;

}

}

The XML configuration for the preceding defined listener is as follows:

<job id="employeeDeductionsJob">
<listenerss>
<listener ref="jobStatusListener"/>
</listenerss>
</job>

Using annotations: The following is the sample listener configuration
using annotations:

import org.springframework.batch.core.JobExecution;

import org.springframework.batch.core.JobExecutionListener;
import org.springframework.batch.core.annotation.AfterJob;
import org.springframework.batch.core.annotation.BeforeJob;
public class JobStatusListener {

@BeforeJob

public void beforeJob (JobExecution jobExecution) {

System.out.println("Job: " +
jobExecution.getdJobInstance () .getJobName () + " is
beginning") ;

@AfterJob

public void afterJob (JobExecution jobExecution) {

[33]

Getting Started with Spring Batch Jobs

System.out.println("Job: " + jobExecution.getdJobInstance() .
getJobName () + " has completed") ;

System.out.println("The Job Execution status is: " +

jobExecution.getStatus()) ;

}
}

The way to configure the annotated listener is same as the JobExecutionListener
configuration.

Step listeners

Just like job listeners capture the execution status of jobs, steps have certain
listeners to capture different events. The way of implementing this set of listeners

is the same as the job listeners (by implementing the corresponding interface or by
using annotations), except that the listener element has to be configured as the child
element of the step element.

The following is a list of step listeners with the methods to override:

* StepExecutionListener: This identifies the before and after of step
execution events using the beforesStep and afterstep methods respectively

* ChunkListener: This identifies the before and after of chunk execution
events using the beforeChunk and afterChunk methods respectively

* ItemReadListener: This identifies if the before and after item is read and
when an exception occurs, it reads an item event using the beforeRead,
afterRead, and onReadError methods respectively

* ItemProcessListener: This identifies the state before and after
ItemProcessor gets an item and when an exception is thrown by the
processor using the beforeProcess, afterProcess, and onProcessError
methods respectively

* ItemWriteListener: This identifies the before and after of when an item
is written and when an exception occurs, writing an item event using the
beforeWrite, afterWrite, and onWriteError methods respectively

* SkipListener: This identifies the skip event of reading, processing,
or writing an item using the onskipInRead, onSkipInProcess, and
onSkipInWrite methods respectively

[34]

Chapter 2

Item listeners

Item listeners identify the retry and repeat events. These listeners can be configured
in the same way as job or step listeners.

The following are the item listeners with the methods to override:

* RepeatListener: This identifies the before and after of each repeat event
using the before and after methods respectively. It identifies the first and
last repeat event using the open and close methods respectively. It also
identifies every failure event using the onError method.

* RetryListener: This identifies the first and last try event, irrespective
of whether the retry is a success or a failure, using the open and close
methods respectively. It also identifies the every failure event using the
onError method.

Executing jobs from the command line
and web applications

In the first chapter, we learned how to configure and run a simple batch job
application using Spring Batch, by launching the job from a Java program. The
Java-based API of Spring Batch makes the job launching very convenient through
different ways of invoking the batch job. In this section, let's examine the concepts
of launching a batch job in different ways and stopping the batch job elegantly.

JobLauncher

Spring Batch makes it easier to launch a batch job with the help of the JobLauncher.
JobLauncher represents a simple interface to launch a job with a given set of job
parameters. The run method of JobLauncher takes Job and JobParameters of
type Spring beans as parameters and invokes the batch job execution.

The following is the code snippet we have used in the previous chapter to launch a
job using JobLauncher:

String[] springConfig = {"batch/firstBatch.xml"};

context = new ClassPathXmlApplicationContext (springConfig) ;
JobLauncher jobLauncher = (JobLauncher) context.

getBean ("jobLauncher") ;

Job job = (Job) context.getBean ("firstBatchdJob") ;

JobExecution execution = jobLauncher.run(job, new JobParameters()) ;
System.out.println("Exit Status : " + execution.getStatus());

[35]

Getting Started with Spring Batch Jobs

We can use JobParametersBuilder to build different types of JobParameter.
A JobLauncher can be configured with a persistent job repository, using the

following syntax:

<bean id="jobLauncher"

class="org.springframework.batch.core.launch. support.
SimpleJobLauncher">

<property name="jobRepository" ref="jobRepository"/>

</bean>

I Client I I JobLauncher I I

Job

I I Business

g emEm=———

run()

JobExecution

(FINISHED or .
L]
FAILED)

execute()

ExitStatus

Launching a job from the run method of JobLauncher calls execute on job and
confirms the job execution status (FINISHED or FAILED) after execution, which is a
synchronous process.

However, in certain business scenarios, we want the JobLauncher to invoke and
handover the process to another controller to make it asynchronous so that multiple
processes can be triggered. TaskExecutor helps in this scenario, if configured along

with JobLauncher.

Client

JobLauncher

Job

Business

F-

JobExecution

(Status is
UNKNOWN)

execute()

ExitStatus

[36]

Chapter 2

The following is the syntax to configure SimpleJobLauncher with taskExecutor to
make the process asynchronous:

<bean id="jobLauncher"
class="org.springframework.batch.core.launch. support.
SimpleJobLauncher">

<property name="jobRepository" ref="jobRepository"/>

<property name="taskExecutor"s>

<bean class="org.springframework.core.task.SimpleAsyncTaskExecutor"/>
</property>

</bean>

Launching a job from a command line

A CommandLineJobRunner makes it simple to launch a Spring Batch job from a
command line. The following are the steps in which CommandLineJobRunner works:

* Loading the appropriate ApplicationContext
* Parsing command-line arguments into JobParameters

* Locating the appropriate job based on arguments

* Using the JobLauncher provided in the application context to launch the job

The following is the command to launch a job using CommandLineJobRunner:

> java -classpath "/lib/*" org.springframework.batch.core.launch.
support.CommandLineJobRunner firstBatch.xml firstBatchJdJob schedule.
date (date) =2007/05/05

The exit code of the job execution represents the status of the batch job after run, where
0 represents COMPLETED, 1 represents FAILED, and 2 represents an error from the
command-line job runner, such as not being able to find a job in the provided context.

Launching a job from within a web application

So far, we have learned how to launch a batch job from a Java program and
command line. There are scenarios when a job needs to be launched from within
a web application. Applications that generate reports from within an application
and trigger asynchronous processes from the applications with thread-based
configuration are such business scenarios.

[37]

Getting Started with Spring Batch Jobs

The following is the program to launch the job using Spring MVC framework with
Spring dependency:

@Controller

public class JobLauncherController {

@Autowired

JobLauncher jobLauncher;

@Autowired

Job job;

@RequestMapping ("/jobLauncher.html")

public void handle() throws Exception
jobLauncher.run(job, new JobParameters()) ;

}
}

The controller launches the jobs using JobController that is auto-wired in the
JobLauncherController through configurations. The controller can be called
from a request URL with RequestMapping configured with the handle method.

Stopping batch jobs gracefully

Jobs can be gracefully stopped when necessary from within a program with the
help of the JobOperator interface. JobOperator provides the CRUD operations
of the job.

The following is the syntax to stop a job using JobOperator:

Set<Long> executions =jobOperator.getRunningExecutions ("jobName") ;
If(executions.iterator () .hasNext ()) {
jobOperator.stop (executions.iterator () .next()) ;

}

JobOperator identifies the running job with the given jobName and calls the stop
method by attaining the job id from executions.

The JobOperator needs to be configured to be available for the program. The
following is the sample configuration of the joboperator with the resources, job
explorer (the entry point to browse executions of running, or historical jobs and
steps), registry, and repository properties.

<bean id="jobOperator" class="org.springframework.batch.core.launch.
support. SimpleJobOperator"s>

<property name="jobExplorer"s>

<bean class=" org.springframework.batch.core.explore.support.
JobExplorerFactoryBean">

<property name="dataSource" ref="dataSource"/>
</bean>

[38]

Chapter 2

</property>

<property name="jobRepository" ref="jobRepository"/>
<property name="jobRegistry" ref="jobRegistry"/>
<property name="jobLauncher" ref="jobLauncher"/>
</bean>

The job configuration supports the stop setup at tasklet and the chunk-oriented step
level as well.

Schedulers

Schedulers are the programs that can periodically launch other programs. As
mentioned earlier, Spring Batch is not a scheduling framework. Spring Batch can
work in conjunction with a scheduler (such as Quartz/Control-M), but cannot
replace a scheduler.

The following are popular schedulers:

* Cron: This is an expression-based job scheduler available on Unix-like
systems to launch other programs

* Control-M: This is a batch scheduling software available for
distributed computing platforms including Unix, Windows,
Linux, and OpenVMS environments

* Spring scheduler: This scheduler from Spring supports XML,
or annotation-based or cron expressions to launch a batch job

* Quartz: Quartz is a richly featured, open source job scheduling library that
can be integrated within virtually any Java application

While Cron and Control-M can use CommandLineJobRunner to launch a batch job,
Quartz and Spring scheduler can launch the batch job from within the application
programmatically. One can choose between these options based on the frequency
of job execution and the way it is to be invoked.

[39]

Getting Started with Spring Batch Jobs

Summary

In this chapter, we learned the configuration details of the Spring Batch jobs and
their components to be able to effectively use them for business needs. We learned
how to make the batch programming more efficient and flexible using XML- and
annotation-based configurations. We also learned different ways of launching

the batch job, such as from a command-line, a Java program, and within a web
application, and also how to stop a batch job gracefully from within a program.
We completed this chapter with an understanding of the different job schedulers
available in the market and which launching solution can be used in combination
with these schedulers.

In the next chapter, we will learn in detail about reading, processing, and writing
different forms of data using Spring Batch.

[40]

Working with Data

In the previous chapter, we learned about batch configurations, components,

and execution modes to match with diverse business needs. Handling the data,

which includes reading, processing, and writing, is an essential part of any kind of
application, and batch applications are no exception. Spring Batch provides the ability
to read different forms of data, process the data in the way business expects, and write
it back to different systems, which can be easily integrated with different frameworks.

In this chapter, we will cover three major operations involved in data handling:

* Datareading
* Data processing

* Data writing

BATCH APPLICATION
INPUT (SOURCE) (TASKLET) OUTPUT (DESTINATION)
e s ——
1. Read Data
Database = Database

File System File System

Working with Data

The preceding figure shows the three stages of handling data in a batch application.
The input (source) can be a database, a filesystem (flat file or XML), or data from

a web service as well. Applications need to read the data from an input (source),
process it, and write to the output (destination) system. The output (destination) can
be a database or a filesystem (a flat file or an XML file). In the processing stage, data
read in format can be verified and transformed into the desired format before writing
to the output. Let's examine each of these stages now.

Data reading

Spring Batch provides the configuration to read different forms of data from different
sources, including flat files, XML, and relational databases. It also supports the custom
reader configurations for the formats that are not available with the specification.

ItemReader

Spring Batch provides an interface in the form of ItemrReader to read bulk data from
different forms, which include the following:

* Flatfiles: These are typically of two types: fixed width and delimited
character-based files

* XML: This format is used for different forms of application data

* Database: This maintains a set of records of similar or different groups
of information

The following is the definition of the ItemReader interface:

public interface ItemReader<Ts> {

T read() throws Exception, UnexpectedInputException, ParseException;

}

Let's examine how ItemReader can help us with reading different formats.

Reading data from flat files

Flat files are configured in two formats, namely, fixed width and delimited. Fixed
width files have each field detail configured with a predefined fixed width, whereas
the delimited files have fields with a specific character (or tab in general) used to
delimit them from the other fields.

[42]

Chapter 3

Fixed width file

A fixed width file generally has a predefined specification of its fields, how much

length each field should occupy on the file, and from which position to which

position on a line.

The following is one such specification of the fixed width file we want to read:

Field Length

ID 2 characters
Last name 10 characters
First name 10 characters
Designation 10 characters
Department 15 characters

Year of joining

4 characters

Posgition

1

to 2

3 to 12

13
23
33
48

to
to
to
to

22
32
47
51

Using the preceding specification, let's fill a sample file with employee information in
a fixed width file, as follows (employees.txt):

11Alden Richie associate sales
12Casey Stanley manager sales

13Rex An architect development
14Royce Dan writer development
15Merlin Sams accountant finance
160lin Covey manager finance

1996
1999
2001
2006
1995
1989

If a Java object is to be generated corresponding to this specification, we can create a
Plain Old Java Object (POJO) with the following representation:

package batch;

import java.io.Serializable;

public class Employee implements Serializable

int id;

String lastName;
String firstName;
String designation;
String department;
int yearOfJoining;

public int getID() {

return id;

}

public void setID(int id)
this.id = id;

{

[43]

Working with Data

}

public String getLastName () {
return lastName;

}

public void setLastName (String lastName) {
this.lastName = lastName;

}

public String getFirstName ()
return firstName;

}

public void setFirstName (String firstName)
this.firstName = firstName;

}

public String getDesignation() {
return designation;

}

public void setDesignation(String designation) {
this.designation = designation;

}

public String getDepartment ()
return department;

}

public void setDepartment (String department) {
this.department = department;

}

public int getYearOfJoining()
return yearOfJoining;

}

public void setYearOfJoining(int yearOfJoining)
this.yearOfJoining = yearOfJoining;

public String toString() {
return "Employee: ID="+ id + ", Last Name="+ lastName +
", First Name="+ firstName + ", Designation="+ designation +
", Department="+ department + ",Year of joining="+
yearOfJoining;

}

[44]

Chapter 3

FlatFileltemReader

FlatFileItemReader provides a means of reading different types of flat files and
parsing them by the following;:

* resource: This represents the file from which the data has to be read.

* lineMapper: This represents the mapper that converts the String that is read
by ItemReader to the Java object.

* linesToskip: This is used with files having header content before records.
It is the number of lines we want to ignore at the top of the file.

LineMapper

The LineMapper interface lets us read each line from the file with the line number
passed in every iteration. It is the Spring Batch standard implementation of
LineMapper. The following is the LineMapper interface:

public interface LineMapper<T>

T mapLine (String line, int lineNumber) throws Exception;

}

The LineTokenizer interface converts the line read from LineMapper to the

set of fields (FieldSet). DelimitedLineTokenizer, FixedLengthTokenizer,

and PatternMatchingCompositeLineTokenizer are Spring Batch's supporting
implementations of LineTokenizer. The following is the LineTokenizer interface:

public interface LineTokenizer {

FieldSet tokenize (String line) ;

}

The FieldSetMapper interface lets us map each field from the String read to the
Employee object. The following is the FieldsetMapper interface:

public interface FieldSetMapper<T>

T mapFieldSet (FieldSet fieldSet) ;

[45]

Working with Data

We can implement FieldsetMapper for our Employee data, as follows:

package batch;

import org.springframework.batch.item.file.mapping.FieldSetMapper;
import org.springframework.batch.item.file.transform.FieldSet;

class EmployeeFieldSetMapper implements FieldSetMapper<Employees> {
public Employee mapFieldSet (FieldSet fieldSet) {

Employee emp = new Employee() ;
emp.setID(fieldSet.readInt ("ID")) ;
emp.setLastName (fieldSet.readString("lastName")) ;
emp.setFirstName (fieldSet.readString("firstName")) ;
emp.setDesignation (fieldSet.readString ("designation")) ;
emp.setDepartment (fieldSet.readString ("department")) ;
emp.setYearOfJoining (fieldSet.readInt ("yearOfJoining")) ;
return emp;

}

The data can be read from the file as part of the batch job, as shown in the following
code snippet:

FlatFileItemReader<Employee> itemReader = new
FlatFileItemReader<Employees () ;

itemReader.setResource (new FileSystemResource ("employees.txt")) ;
// FixedLengthTokenizer reads each field of length specified
DefaultLineMapper<Employee> lineMapper = new
DefaultLineMapper<Employees () ;

FixedLengthTokenizer lineTokenizer = new FixedLengthTokenizer() ;

lineMapper.setLineTokenizer (lineTokenizer) ;
lineMapper.setFieldSetMapper (new EmployeeFieldSetMapper()) ;
itemReader.setLineMapper (lineMapper) ;
itemReader.open) ;
Employee ;
while (employee != null) {

employee = itemReader.read() ;

if (employee == null) {

return RepeatStatus.FINISHED;

}

System.out.println(employee.toString()) ;

[46]

Chapter 3

The setResource () method sends the flat file resource to FlatFileItemReader. The
LineTokenizer interface can be used with field names and ranges with the start and
end positions on the file set as an array using the setNames () and setColumns ()
methods respectively. Every time the read () method is invoked on itemReader, it
reads a line and moves on to the next.

The following is the output of the batch program after reading data from a fixed
width flat file and capturing them into Java objects:

*% Executing the fixed width file read batch job! **

Employee: ID=11, Last Name=Alden, First Name=Richie,
Designation=associate, Department=sales,Year of joining=1996
Employee: ID=12, Last Name=Casey, First Name=Stanley,
Designation=manager, Department=sales,Year of joining=1999

Employee: ID=13, Last Name=Rex, First Name=An, Designation=architect,
Department=development,Year of joining=2001

Employee: ID=14, Last Name=Royce, First Name=Dan, Designation=writer,
Department=development,Year of joining=2006

Employee: ID=15, Last Name=Merlin, First Name=Sams,
Designation=accountant, Department=finance,Year of joining=1995
Employee: ID=16, Last Name=0lin, First Name=Covey,
Designation=manager, Department=finance,Year of joining=1989

Exit Status : COMPLETED

The reader, linetokenizer, and fieldsetmapper are used in the batch as beans,
as follows:

<beans:bean id="employeeFile"
class="org.springframework.core.io.FileSystemResource" >
<beans:constructor-arg value=""/>

</beans :bean>

<beans:bean id="employeeReader"
class="org.springframework.batch.item.file.FlatFileItemReader">
<beans:property name="resource" ref="employeeFile" />
<beans:property name="lineMapper">

<beans:bean class="org.springframework.batch.item.file.mapping.
DefaultLineMapper">

<beans:property name="lineTokenizer">

<beans:bean class="org.springframework.batch.item.file.transform.
FixedLengthTokenizer">

<beans:property name="names" value="ID, lastName, firstName,
designation, department, yearOfJoining"/>

<beans:property name="columns"
value="1-2,3-12,13-22,23-32,33-47,48-51"/>

</beans :bean>

</beans:property>

[47]

Working with Data

<beans:property name="fieldSetMapper">

</beans :bean>

</beans:property>

</beans :bean>

</beans:property>

</beans :bean>

<beans:bean id="employee" class="" />batchstep

Delimited file

A delimited flat file contains fields separated by a specific character in each line. The
following is an example of a delimited file, with each field delimited by the character
comma. Let's take an example of reading employee details from a delimited flat file.

The following are the specifications of the file:

e ID

* Lastname

e First name

* Designation
* Department

* Year of joining

Each field should be separated from the other with a comma. The following is the
sample file content (employees.csv):

1,Alden,Richie,associate,sales, 1996
2,Casey, Stanley, manager, sales, 1999
3,Rex,An,architect,development, 2001
4,Royce,Dan,writer,development, 2006
5,Merlin, Sams, accountant, finance, 1995
6,01lin, Covey,manager, finance, 1989

Delimited files need to be handled the same way as the fixed width flat files, except
that LineTokenizer used in this case should be DelimitedLineTokenizer. The
following is the Java code realized to read a delimited flat file to be handled as part
of the batch job:

// Delimited File Read

FlatFileItemReader<Employee> itemReader = new
FlatFileItemReader<Employees () ;
itemReader.setResource (new FileSystemResource ("employees.csv")) ;

[48]

Chapter 3

// DelimitedLineTokenizer defaults to comma as its delimiter

DefaultLineMapper<Employee> lineMapper = new
DefaultLineMapper<Employees () ;

DelimitedLineTokenizer lineTokenizer = new DelimitedLineTokenizer () ;

lineTokenizer.setNames (new Stringl[] { "ID", "lastName", "firstName",
"designation", "department", "yearOfJoining" });

lineMapper.setLineTokenizer (lineTokenizer) ;
lineMapper.setFieldSetMapper (new EmployeeFieldSetMapper()) ;
itemReader.setLineMapper (lineMapper) ;
itemReader.open (new ExecutionContext ()) ;
employee = itemReader.read() ;
if (employee == null) {
return RepeatStatus.FINISHED;

}

System.out.println(employee.toString()) ;

}

With the delimited files, we don't have to set the column's property. The delimiter
used has to be set unless the delimiter is a comma. Executing this program should
read the delimited flat files into the Java objects and the output is as follows:

** Executing the delimited file read batch job! **

Employee: ID=1, Last Name=Alden, First Name=Richie,
Designation=associate, Department=sales,Year of joining=1996
Employee: ID=2, Last Name=Casey, First Name=Stanley,
Designation=manager, Department=sales,Year of joining=1999

Employee: ID=3, Last Name=Rex, First Name=An, Designation=architect,
Department=development, Year of joining=2001

Employee: ID=4, Last Name=Royce, First Name=Dan, Designation=writer,
Department=development, Year of joining=2006

Employee: ID=5, Last Name=Merlin, First Name=Sams,
Designation=accountant, Department=finance,Year of joining=1995
Employee: ID=6, Last Name=0lin, First Name=Covey, Designation=manager,
Department=finance,Year of joining=1989

Exit Status : COMPLETED

The ItemReader, LineTokenizer, and FieldSetMapper in the case of delimited files
can be configured in the batch as beans and used in the program as follows:

<beans:bean id="employeeFile"
class="org.springframework.core.io.FileSystemResource"
scope="step">

<beans:constructor-arg value="#{jobParameters [employeeFile] }"/>

</beans:bean>

<beans:bean id="employeeFileReader" class="org.springframework.batch.
item.file.FlatFileItemReader">

[49]

Working with Data

<beans:property name="resource" ref="employeeFile" />
<beans:property name="lineMapper">

<beans:bean class="org.springframework.batch.item.file.mapping.
DefaultLineMapper">

<beans:property name="lineTokenizer">
<beans:bean class="org.springframework.batch.item.file.transform.
DelimitedLineTokenizer">

<beans:property name="names" value="ID, lastName, firstName,
designation, department, yearOfJoining"/>

<beans:property name="delimiter" value=","/>
</beans :bean>

</beans:property>

<beans:property name="fieldSetMapper">
<beans:bean
class="batch.EmployeeFieldSetMapper"/>
</beans:property>

</beans :bean>

</beans:property>

</beans :bean>

If the lines of file are defined in a different format specific to a business,
LineTokenizer is open for custom implementation and configuration. The
PatternMatchingCompositeLineMapper can be used to read files with complex
patterns. For example, if we have multiple record types within a single flat file, we
can use PatternMatchingCompositeLineMapper to have tokenizers for each record
type, as follows.

A sample flat file with multiple record types:

EMPLOYEE, Steve, Jacob, 21, manager, 2009
BANKINFO, 524851478569, STEVEJACOB, REDROSECITY
ADDRESSINFO,No24, SUNFLOWERWAY , CASAYA

The following is the bean configuration for this multiple record type:

<bean id="employeeFileLineMapper"

class=" org.springframework.batch.item.file.mapping.
PatternMatchingCompositeLineMapper">

<property name="tokenizers"s

<map>

<entry key="EMPLOYEE*" value-ref="employeeTokenizer"/>
<entry key="BANKINFO*" value-ref="bankInfoTokenizer"/>
<entry key="ADDRESSINFO*" value-ref="addressInfoTokenizer"/>
</map>

</property>

<property name="fieldSetMappers">

[50]

Chapter 3

<map>
<entry key="EMPLOYEE*" value-ref="employeeFieldSetMapper"/>
<entry key="BANKINFO*" value-ref="bankInfoFieldSetMapper"/>
<entry key="ADDRESSINFO*" value-ref="addressInfoFieldSetMapper"/>
</map>

</property>

</bean>

The patternMatchingCompositeLineMapper identifies each line by its pattern, with
matching keys to let the corresponding Tokenizer and FieldSetMapper read and
match the records.

Exceptions from flat file reading

The following are the possible exceptions from flat files, for example when in case the
file has an incorrect format, a problem in reading the data from file, or inconsistent
data in the flat file:

* FlatFileParseException: This is the exception thrown by
FlatFileItemReader for the errors that occur during file reading

* FlatFileFormatException: This is the exception thrown by LineTokenizer
for the errors that occur during data tokenizing

* IncorrectTokenCountException: This is thrown if the number of columns
specified do not match with the number of columns tokenized

* IncorrectLineLengthException: This is thrown during the fixed width flat
file reading if the line/field lengths do not match with the ones specified

Reading data from XML

Extensible Markup Language (XML) is a markup language to define documents
with data that can be readable by both humans and machines. XML is mainly used
when multiple systems interact with each other.

[51]

Working with Data

Spring Batch uses the Streaming API for XML (StAX) parser. In the StAX metaphor,
the programmatic entry point is a cursor that represents a point within the document.
The application moves the cursor forward, 'pulling' the information from the parser as
required. Hence, the reading happens in fragments of XML content from a file that is
represented in the following figure:

<employees>

<employees=
<id=11</id=
<lastname=Alden</lastname=
<firstname=Richie</ffirstname>
Fragment 1] === <designation=associate</designation=

<department>sales</department>
<yearofjoining=1996<yearcfjoining=
</employee>
<employee>
<id=12</id>
<lastname=Casey</lastname:=
<firstname=Stanley</ffirstname=
= =designation=manager</designation=
<department>sales</department>
<yearofjoining=1999</yearofjoining=
</employee>
<employee=
<id=13</id>
<lastname=Hex=/lastname=>
<firstname=An<ffirstname>
Fragment 3 | Epap=- <designation=architect=/designation=
<department>=development</department:
<yearofjoining=2001</yearofjoining=
</employee=

</employees:>

The staxItemReader lets us parse the XML file, considering that the root element of
each fragment is common (employee in the above example). unmarshaller converts
the data into Java objects.

The following are the employeeFile and employeeFileReader configuration as beans:

<beans:bean id="employeeFile"
class="org.springframework.core.io.FileSystemResource" scope="step">
<beans:constructor-arg value="#{jobParameters [employeeFile] }"/>
</beans :beans>

<beans:bean id="employeeFileReader"
class="org.springframework.batch.item.xml.StaxEventItemReader">

[52]

Chapter 3

<beans:property name="fragmentRootElementName" value="employee" />
<beans:property name="resource" ref="employeeFile" />
<beans:property name="unmarshaller" ref="employeeMarshaller" />
</beans :bean>

We can use different unmarshalling technologies, including JAXB, XStream binding,
JiBX, and XML Beans. We used StAX as an engine for marshalling. Let's consider the
XStream binding and the following configuration with it:

<bean id="employeeMarshaller"
class="org.springframework.oxm.xstream.XStreamMarshaller">
<property name="aliases">

<util:map id="aliases">

<entry key="employee"

value="batch.Employee" />

<entry key="ID" value="java.lang.Integer" />

</util:map>

</property>

</bean>

StaxEventItemReader xmlStaxEventItemReader = ;
Resource resource = (.getBytes());
Map aliases = new HashMap() ;
aliases.put ("employee", "batch.Employee") ;
aliases.put ("ID","java.lang.Integer") ;
Marshaller marshaller = newXStreamMarshaller () ;
marshaller.setAliases (aliases);
xmlStaxEventItemReader.setUnmarshaller (marshaller) ;
xmlStaxEventItemReader.setResource (regsource) ;
xmlStaxEventItemReader.setFragmentRootElementName ("employee") ;
xmlStaxEventItemReader.open (newExecutionContext ()) ;
boolean hasNext = true;
Employee employee = null;
while (hasNext) {

employee = xmlStaxEventItemReader.read() ;

if (employee == null) {

hasNext = false;
}
else{
System.out.println(employee.getName()) ;

[53]

Working with Data

If more than one file has the XML details to be read, we can use
MuliResourceItemReader to configure multiple resources to be
read in a read operation.

Reading data from a database

A database contains information in the form of tables with multiple columns to
hold each field in it. If a batch job has to read the data from a database, it can be
performed using the following two types of item reading concepts:

* Cursor-based item reading: This reads each fragment having a cursor
pointing to one after the other

* Page-based item reading: This reads multiple records together, considering
them as a page

In comparison, cursor-based item reading works well as it reads little data and
processes unless their memory leaks with the system.

JdbcCursorltemReader

To read the data in a cursor-based technique, we can use JdbcCursorItemReader.
It configures with RowMapper (of Spring framework) to match each attribute in the
database to the Java object attributes.

The RowMapper for the employee example can be implemented as follows:

public class EmployeeRowMapper implements RowMapper

public static final String ID COLUMN = "id";

public static final String LAST NAME COLUMN = "lastname";

public static final String FIRST NAME COLUMN = "firstname";

public static final String DESIGNATIoN COLUMN = "designation";
public static final String DEPARTMENT COLUMN = "department";

public static final String YEAR OF JOINING COLUMN = "yearOfJoining";

public Object mapRow (ResultSet rs, int rowNum) throws SQLException
{
Employee employee = new Employee() ;
employee.setId(rs.getInt (ID_COLUMN)) ;
employee.setLastName (rs.getString (LAST NAME COLUMN)) ;
employee.setFirstName (rs.getString (FIRST NAME COLUMN)) ;
employee.setDesignation(rs.getString (DESIGNATION COLUMN)) ;
employee.setDepartment (rs.getString (DEPARTMENT COLUMN)) ;
employee.setYearOfJoining (rs.getString (YEAR OF JOINING COLUMN)) ;
return employee;

}

[54]

Chapter 3

The Java program to read the data from the database with EmployeeRowMapper can
be realized as follows:

JdbcCursorItemReader itemReader = new JdbcCursorItemReader () ;
itemReader.setDataSource (dataSource) ;

itemReader.setSqgl ("SELECT ID, LASTNAME, FIRSTNAME,DESIGNATION,DEPARTME
NT, YEAROFJOINING from EMPLOYEE") ;

itemReader.setRowMapper (new EmployeeRowMapper ()) ;

int counter = 0;

ExecutionContext executionContext = new ExecutionContext () ;
itemReader.open (executionContext) ;

Object employee = newObject () ;

while (employee != null){
employee = itemReader.read() ;
counter++;

}

itemReader.close (executionContext) ;

The gdbcCursorItemReader and EmployeeRowMapper can be configured in the
batch XML as follows:

<bean id="itemReader" class=" org.springframework.batch.item.database.
JdbcCursorItemReader">

<property name="dataSource" ref="dataSource"/>

<property name="sqgl" value=" SELECT ID, LASTNAME, FIRSTNAME,DESIGNAT
ION, DEPARTMENT, YEAROFJOINING from EMPLOYEE "/>

<property name="rowMapper">

<bean class="batch.EmployeeRowMapper"/>

</property>

</bean>

JdbcCursorItemReader can be customized by setting ignore warnings, fetch size,
max rows, query timeout, verify cursor position, and such properties with the
corresponding options for respective items.

If we want to configure the database read activity using the Hibernate framework,
we can use HibernateCursorItemReader. The stored procedure-based read
operation can be performed using the StoredpProcedureItemReader.

[55]

Working with Data

JdbcPagingltemReader

The paging mode read operation on a database can be performed using the
JdbcPagingItemReader. The configuration with the JdbcPagingItemReader
with the properties of datasource, queryProvider, and query with different
clauses can be done as follows:

<bean id="itemReader" class=" JdbcPagingIltemReader.
JdbcPagingIltemReader" >

<property name="dataSource" ref="dataSource"/>

<property name="queryProvider"s>

<bean class=" org.springframework.batch.item.database.support.
SglPagingQueryProviderFactoryBean">

<property name="selectClause" value=" SELECT ID, LASTNAME, FIRSTNAME,D
ESIGNATION, DEPARTMENT, YEAROFJOINING "/>

<property name="fromClause" value="from EMPLOYEE"/>

<property name="whereClause" value="where designation=:designation"/>
<property name="sortKey" value="id"/>

</bean>

</property>

<property name="parameterValues">

<map>

<entry key="designation" value="manager"/>

</map>

</property>

<property name="pageSize" value="100"/>

<property name="rowMapper" ref="employeeMapper"/>

</bean>

Using the sqlPagingQueryProviderFactoryBean, we can set the select, from, and
where clauses separately, along with a sortkey and parameter to be passed.

Spring Batch supports different object relational frameworks as well the
corresponding item readers such as JpaPagingItemReader for JPA and
IbatisPagingItemReader for IBatis.

Data processing

Spring Batch provides the means to read input data in one form, process it, and
return it in a desired form of output data. The ItemProcessor interface is the
interface that supports the processing activity.

[56]

Chapter 3

ItemProcessor

Spring Batch provides the simple interface ItemProcessor to take the object, process
it, and transform it to the desired form and return as another object.

The following is the definition of the Itemprocessor interface:

public interface ItemProcessor<I, O> {

O process (I item) throws Exception;

}

ValidatingItemProcessor is an implementation of the ItemProcessor that lets
us validate the input data before processing. If the data fails to pass the validation,
itgh@sorg.springframework.batch.item.validator.ValidationException
Frameworks such as Hibernate have the validation framework (hibernate-
validator) that lets us configure annotation-based validators for the beans.

The ItemProcessor can be implemented for the Employee example as follows:

public class Employee {}
public class Associate {
public Associate (Employee employee) {}

}

public class EmployeeProcessor implements ItemProcessor<Employee,Asso
ciates{

public Associate process (Employee employee) throws Exception {
return new Associate (employee) ;

}
}

The preceding program takes the employee data object, transforms the object, and
returns an Associate data object.

The itemProcessor can be configured as a job chunk in the following format:

<job id="jobId"s>
<step name="stepName">
<tasklets>

<chunk reader="itemReaderName" processor="itemProcessorName"
writer="itemWriterName" commit-interval="2"/>

</tasklet>

</step>

</job>

[57]

Working with Data

Chaining the process

The processing activity can be chained by defining more than one item processor and
calling from one another to make compositeItemProcessor as follows:

<job id="jobId"s>
<step name="stepName">
<tasklets>
<chunk reader="itemReaderName" processor="compositeItemProcessorName"
writer="itemWriterName"
commit-interval="2"/>
</tasklet>
</step>
</job>
<bean id="compositeItemProcessorName"
class="org.springframework.batch.item. support.CompositeItemProcessor">
<property name="delegates'">
<list>
<bean class="batch.EmployeeProcessor"/>
<bean class="batch.AssociateProcessor"/>
</list>
</property>
</bean>

Data writing

Spring Batch provides the configuration to write the read and processed data
to a different output (destination). The writer can integrate easily with different
relational frameworks. It can also be customized for the different formats.

ItemWriter

Spring Batch provides an interface in the form of Itemwriter to write bulk data.
The following is the definition of the Itemiriter interface:

public interface ItemWriter<T> {

void write(List<? extends T> items) throws Exception;

[58]

Chapter 3

Based on the destination platform onto which we have to write the data, we have the
following item writers:

* Flat file item writers: These write the content onto a flat file (fixed width
and delimited)

e XML item writers: These write the data onto an XML file

e Database item writers: These write the data onto a database

Flat file item writers

The data read from any of the existing formats can be processed to the desired format
and then be written onto multiple formats, including flat files. The following are the
APIs that help in flat file item writing.

LineAggregator

The LineAggregator API concatenates multiple fields into a String to write onto the
flat file. This works exactly the opposite way of LineTokenizer in the read operation.

public interface LineAggregator<Ts>
public String aggregate (T item) ;

}
PassThroughLineAggregator

PassThroughLineAggregator is an implementation of LineAggreagator that
considers the object in use is already aggregated and simply returns the String
from the object using the toString () method.

public class PassThroughlLineAggregator<T> implements LineAggregator<Ts

{
public String aggregate (T item)

return item.toString() ;

[59]

Working with Data

The FlatFileItemWriter can be configured with the PassThroughLineAggregator,
as follows:

<bean id="itemWriter" class=" org.springframework.batch.item.file.
FlatFileItemWriter"s

<property name="resource" value="file:target/outputfiles/employee
output.txt"/>

<property name="lineAggregator"x

<bean class=" org.springframework.batch.item.file.transform.
PassThroughLineAggregator"/>

</property>

</bean>

FieldExtractor

If the object writing is more than just writing its String form onto the file,
FieldExtractor needs to be used, wherein each object gets converted to
the array of fields, aggregated together to form a String to write onto the file.

public interface FieldExtractor<Ts>

Object [] extract (T item) ;

}
Field extractors are primarily of two types:

* PassThroughFieldExtractor: For the scenario where the object collection
has to just be converted to the array and passed to write

* BeanWrapperFieldExtractor: With a field-level configuration of how each
field of the object gets placed in the String to write onto the file, this works
exactly the opposite way of BeanWrapperFieldSetMapper

The BeanWrapperFieldSetExtractor works as follows:

BeanWrapperFieldExtractor<Employee> extractor = new BeanWrapperFieldEx
tractor<Employees> () ;

extractor.setEmployees (new String[] { "id", "lastname", "firstname","d
esignation", "department", "yearofjoining"}) ;

int id = 11;

String lastname = "Alden";
String firstname = "Richie";
String desination = "associate";
String department = "sales";

int yearofjoining = 1996;

[60]

Chapter 3

Employee employee = new Employee(id, lastname, firstname,designation,
department, yearofjoining) ;

Object[] values = extractor.extract (n);

assertEquals (id, values|[0]);

assertEquals (lastname, values[1]);

assertEquals (firstname, values([2]);

(

(

assertEquals (designation, wvalues[3]);

assertEquals (department, values[4]);
(

assertEquals (yearofjoining, values[5]) ;

Writing delimited files

If the Java object can be written onto the flat files in delimited file format, we can
perform it as shown in the following example. Let's consider the Employee object
defined already.

This object can be configured with the FlatFileItemWriter, the
DelimitedLineAggregator, and the BeanWrapperFieldExtractor
to perform the delimited flat file, as follows:

<bean id="itemWriter" class="org.springframework.batch.item.file.
FlatFileItemWriter">

<property name="resource" ref="outputResource"/>

<property name="lineAggregator"s

<bean class=" org.springframework.batch.item.file.transform.
DelimitedLineAggregator">

<property name="delimiter" value=",b"/>

<property name="fieldExtractor"s

<bean class=" org.springframework.batch.item.file.transform.
BeanWrapperFieldExtractor">

<property name="employees"

value="1id, lastname, firstname,designation, department, yearofjoining"/>
</bean>

</property>

</bean>

</property>

</bean>

[61]

Working with Data

Writing a fixed width file

Spring Batch supports fixed width file writing with the help of
FormatterLineAggregator. Considering the same example data as
delimited flat file writing, we can perform the fixed width file writing
using the following configuration:

<bean id="itemWriter" class="org.springframework.batch.item.file.
FlatFileItemWriter">

<property name="resource" ref="outputResource"/>

<property name="lineAggregator"s>

<bean class=" org.springframework.batch.item.file.transform.
FormatterLineAggregator">

<property name="fieldExtractor"s

<bean class=" org.springframework.batch.item.file.transform.
BeanWrapperFieldExtractor">

<property name="employees" value=" id, lastname, firstname,designation,d
epartment,yearofjoining"/>

</bean>

</property>

<property name="format" value="%-2d%-10s%-10s%-10s%-15s%-4d"/>

</bean>

</property>

</bean>

The format value is formed based on the following listed formatter conversions,
where arg represents the argument for conversion:

Conversion | Category Description

b,B general This converts Boolean to the String format. The value is
false fornull
h, H general This is the Integer.toHexString (arg.hashCode ())
s, S general If arg implements Formattable, then arg. formatTo ()
Otherwise, arg.toString ()
c, C character This is a Unicode character
integral This is a decimal integer
integral This is an octal integer
x, X integral This is a hexadecimal integer
e E floating This is a decimal number in computerized scientific notation
point
£ floating This is a decimal number
point

[62]

Chapter 3

Conversion | Category Description

g,G floating This is a computerized scientific notation or decimal format,
point depending on the precision and value after rounding

a, A floating This is a hexadecimal floating point number with a
point significand and an exponent

t, T date/time | This is the prefix for date and time conversion characters

% percent This is a literal % (\u0025)

n line This is the platform-specific line separator
separator

FlatFileItemWriter can be configured with the shouldDeleteIfExists option,
to delete a file if it already exists in the specified location. The header and footer
can be added to the flat file by implementing FlatFileHeaderCallBack and
FlatFileFooterCallBack and including these beans with the headercallback
and footerCallback properties respectively.

XML item writers

The data can be written to the Extensible Markup Language (XML) format using
StaxEventItemWriter. The Spring Batch configuration for this activity, for the
employee example can be the following:

<bean id="itemWriter" class="org.springframework.batch.item.xml.
StaxEventItemWriter"s>

<property
<property
<property
<property

</bean>

name="resource" ref="outputResource"/>
name="marshaller" ref="employeeMarshaller"/>
name="rootTagName" value="employees"/>
name="overwriteOutput" value="true"/>

Using the XStream to do the marshalling activity, the following is the configuration:

<bean id="employeeMarshaller"

class="org.springframework.oxm.xstream.XStreamMarshaller">

<property name="aliases">

<util:map id="aliases">

<entry key="employee"
value="batch.Employee"/>

<entry key="ID" value="java.lang.Integer"/>
</util:map>
</propertys>

</bean>

[63]

Working with Data

The Java code for the preceding configuration can be realized as follows:

StaxEventItemWriter staxItemWriter = newStaxEventItemWriter () ;
FileSystemResource resource = new FileSystemResource ("export/employee
output.xml")

Map aliases = newHashMap() ;

aliases.put ("employee", "batch.Employee") ;

aliases.put ("ID","java.lang.Integer") ;

Marshaller marshaller = newXStreamMarshaller () ;
marshaller.setAliases (aliases) ;
staxItemWriter.setResource (resource) ;
staxItemWriter.setMarshaller (marshaller) ;
staxItemWriter.setRootTagName ("employees") ;
staxItemWriter.setOverwriteOutput (true) ;

ExecutionContext executionContext = newExecutionContext () ;
staxItemWriter.open (executionContext) ;

Employee employee = new Employee() ;

employee.setID(11) ;

employee.setLastName ("Alden") ;

employee.setFirstName ("Richie") ;

employee.setDesignation ("associate") ;
employee.setDepartment ("sales") ;
employee.setYearOfJoining ("1996") ;

staxItemWriter.write (employee) ;

Database item writers

Spring Batch supports database item writing with two possible access types:
JDBC and ORM.

JDBC-based database writing

Spring Batch supports JDBC-based database writing with the help of
JdbcBatchItemWriter, which is an implementation of ItemWriter, which
executes multiple SQL statements in the batch mode. The following is the sample
configuration for the employee example with the JDBC-based database writing;:

<bean id="employeeWriter" class="org.springframework.batch.item.
database.JdbcBatchItemWriter">

<property name="assertUpdates" value="true" />

<property name="itemPreparedStatementSetter"s>

<bean class="batch.EmployeePreparedStatementSetter" />
</propertys>

<property name="sqgl"

[64]

Chapter 3

value="INSERT INTO EMPLOYEE (ID, LASTNAME, FIRSTNAME, DESIGNATION,
DEPARTMENT, YEAROFJOINING) VALUES(?, ?, ?, ?, 2, 2)" />

<property name="dataSource" ref="dataSource" />
</beans>

The ItemPreparedStatementSetter can be implemented for our example of
Employee data as follows:

public class EmployeePreparedStatementSetter
implements ItemPreparedStatementSetter<Employee> {

@Override

public void setValues (Employee item, PreparedStatement ps) throws
SQLException {

ps.setInt (1, item.getId());

ps.setString (2, item.getLastName()) ;
ps.setString (3, item.getFirstName()) ;
ps.setString (4, item.getDesignation()) ;
ps.setString (5, item.getDepartment()) ;

ps.setInt (6, item.getYearOfJoining());

ORM-based database writing

Object relational mapping (ORM) is defined as a programming technique to convert
data between incompatible type systems in object-oriented programming languages.
ORM takes care of the data persistence from the object oriented program to the
database. Spring Batch supports multiple ORMs including Hibernate, JPA, and iBatis.

<D Mawons <>

Java Objects ORM RDBMS

[65]

Working with Data

In our example, the Employee class should be annotated to be used with ORM
(Hibernate/JPA) for persistence as follows:

@Entity ("employee")

public class Employee
@Id("id")

private int id;

@Column ("lastName")
private String lastName;
@Column ("firstName")
private String firstName;
@Column ("designation™")
private String designation;
@Column ("department")
private String department;
@Column ("yearOfJoining")
private int yearOfJoining;

public int getID() {
return id;
}
public void setID(int id) {
this.id = id;
}
public String getLastName () {
return lastName;
}
public void setLastName (String lastName)
this.lastName = lastName;
}
public String getFirstName () {
return firstName;
}
public void setFirstName (String firstName)
this.firstName = firstName;
}
public String getDesignation() {
return designation;

[66]

Chapter 3

public void setDesignation(String designation) {
this.designation = designation;

}

public String getDepartment ()
return department;

}

public void setDepartment (String department) {
this.department = department;

}

public int getYearOfJoining()
return yearOfJoining;

}

public void setYearOfJoining(int yearOfJoining)
this.yearOfJoining = yearOfJoining;

}
}

The annotations specify that the class Employee is representing a corresponding table
in the database with a name as shown with @Entity, and each field corresponds to a
column in the database as shown with the @ID and @Column annotations.

The following is the configuration to be made with Hibernate for the employee example:

<bean id="employeeWriter"
class="org.springframework.batch.item.database.HibernateItemWriter">
<property name="hibernateTemplate" ref="hibernateTemplate" />
</bean>

Similarly, for JPA and iBatis, the configurations can be made with JpaIltemWriter
and IbatisBatchItemWriter respectively.

Custom item readers and writers

Spring Batch supports custom item readers' and writers' configurations. This can
be done easily by implementing the ItemReader and ItemWriter interfaces for
the respective read and write operations with the business logic we want, and
configuring the ItemReader and ItemWriter in the XML batch configuration.

[67]

Working with Data

Summary

Through this chapter we learned the essential data handling mechanisms, including
reading the data from different sources (such as flat files, XML, and databases),
processing the data, and writing the data to different destinations including flat files,
XML, and databases. We also learned about transforming and validating the data in
the processing data section. We finished this chapter with an understanding of the
Spring Batch support to custom formats by implementing the interface to match the
business needs that are different from the default formats. In the next chapter, we
will learn about managing the transactions with diverse configurations and patterns
in detail.

[68]

Handling Job Transactions

In the previous chapter, we learned about essential data handling mechanisms,
including reading, processing, and writing data from/to different sources, such as
flat files, XML, and databases. From the previous chapters, we learned that Spring
Batch jobs handle bulk data reading, manipulating, and writing activities. Through
these activities, it is important to make the activity consistent through a transaction
while interacting with files/databases. Spring Batch provides strong transaction
support through job processing.

In this chapter, we will cover the following topics:

Transactions
Spring Batch transaction management
Customizing the transaction

Transaction patterns

Transactions

As part of the job processing, activities involve reading data from different sources,
processing the data, and writing it to different sources, including files and databases.
Data, as a complete set of records or in chunks, has to either be completely processed
and written to the end system, or be tracked as failed records in the case of any error.
Transaction management should take care of this operation to make it consistent,
by committing the correct information and rolling back in case of any error. The
following are the activities involved in a database transaction:

Beginning the transaction
Processing a set of records

Committing the transaction if no errors occur during processing

Handling Job Transactions

* Rolling back the transaction if any errors occur during processing

Intermediate States
Previous A Next
Consistent State Consistent State

1 T2 T3 N\ COMMIT

o) o) N >
T T T on Success

ROLLBACK on Failure

Hence, a transaction is defined as a series of operations that obey the atomic,
consistent, isolated, and durable (ACID) characteristics described as follows:

* Atomic: This ensures success in either all or none of the operations in
the transaction

* Consistent: This ensures that the transaction brings the resource from one
valid state to the other valid state

¢ Isolated: One transaction's state and effect are hidden from all other
transactions during concurrent execution

* Durable: The result of a transaction should be persistent and survive a
system crash once the transaction is completed

If a transaction follows these ACID characteristics, it can handle any unexpected
errors, by aborting the error that occurs during the transaction, to gracefully recover
the consistent state of the system.

Spring Batch transaction management

Spring Batch provides transaction management through step execution, where each
transaction is committed after successful data processing and is rolled back if any
error is found through processing.

[70]

Chapter 4

Spring Batch manages the transactions in either of the following cases:

* Tasklet steps
* Chunk-oriented steps

e Listeners

Tasklet steps

Tasklets are used in Spring Batch to process business-specific activities, such as
archiving, remote interactions, and invoking services. By default, the execute
method of the tasklet itself is transactional. Hence, each call to the execute method
calls for a new transaction. The following is a sample tasklet configuration:

<step id="stepOne">

<tasklet ref="myTasklet"/>

</step>

<bean id="myTasklet" class="batch.MyTasklet">

<property name="targetObject">

<bean class="batch.EmployeeData"/>

</property>

<property name="targetMethod" value="updateEmployeeDetails"/>
</bean>

The implementation of the tasklet can be as follows:

public class MyTasklet implements Tasklet

@Override

publicRepeatStatus execute (StepContribution contribution,
ChunkContext chunkContext) throwsException {

returnRepeatStatus.FINISHED;

[71]

Handling Job Transactions

Chunk-oriented steps

Chunk-oriented steps processing undertakes chunks of records in a read-process-write
mechanism, as shown in the following diagram. Each step, once the transaction is
started, handles the data to be read, processed, and written, and after the successful
completion of these stages, the step commits the transaction. Then, it follows the next
transaction to handle the next set of records. If any error occurs in either of these steps,
it rolls back the transaction and completes the step execution.

Item Reader Item Processor Item Writer
Begin the Step Execution

read()
(for each ltem) process()

A The item read by reader X

! write()

3 write the processed ltem(s)
| -

i to handle more

1 data) Start the next transaction

if more data to handle

If Error in If Error in If Error in
read() process write()

I ! !

Rollback the Complete the Step Execution
transaction if no more data

Hence, chunk-oriented steps are preferred for bulk data processing so that the

entire data is divided into chunks and processed in individual transactions. If any
exception occurs in any phase, it rolls back that transaction, hence, the data handling
will be more efficient and complete. Failed steps, which can be logged and re-run
with corrected information, are gracefully rolled back. The following is a sample
chunk-oriented step configuration:

<step id="stepOne">

<tasklet allow-start-if-complete="true">

<chunk reader="itemReader" writer="itemWriter" commit-interval="10"/>
</tasklet>

</step>

<step id="stepTwo" parent="stepOne">

<tasklet start-limit="5">

<chunk processor="itemProcessor" commit-interval="5"/>
</tasklet>

</step>

[72]

Chapter 4

In the preceding configuration, we have the first step (stepone) with tasklet
and chunk within it. To ensure the order of execution, stepOne is the parent
of stepTwo. While stepOne configures itemReader and itemWriter, stepTwo
configures itemProcessor

Listeners

Spring Batch supports listeners to execute certain operations after/before an event
occurs. Spring Batch handles each of these events, and the way transactions are
handled in each listener is specific to that listener and how they handle the data.
Hence, it is important to observe if the listener methods are handled as part of

the step transaction. If not, then the application should handle such transactions
programmatically. The following is the sample listener configuration:

<bean id="myStepExecutionListener"
class="org.java.MyStepExecutionListener" />
<job id="readEmployeeDetails">
<step id="stepl">
<tasklet>
<chunk reader="itemReader" writer="itemWriter"
commit-interval="1" />
<listeners>
<listener ref="myStepExecutionListener" />
</listeners>
</tasklet>
</step>
</job>

The implementation of the listener can be as follows:

public class MyStepExecutionListener implements StepExecutionListener

{

@Override
public void beforeStep (StepExecution stepExecution)
System.out.println ("StepExecutionListener : beforeStep") ;

@Override

public ExitStatus afterStep (StepExecution stepExecution)
System.out.println("StepExecutionListener : afterStep");
return null;

[73]

Handling Job Transactions

Customizing the transaction

Spring Batch allows the configurations to customize the way transactions are
handled. The data exchange between different transactions, if processed and read
gracefully, make the transaction clean. However, we have different ways to configure
the visibility of transaction integrity to other interactions, called isolation levels. The
following are the isolation levels to customize the Spring Batch transactions:

* Serializable: This is the highest isolation level. Based on lock-based or
non-lock-based concurrency control, it ensures clean data reading.

* Repeatable reads: This lock-based implementation maintains read and write
locks, hence clean data is guaranteed; however, with no support for range
locks, phantom reads may occur.

* Read committed: This lock-based implementation maintains the write lock,
hence it promises any data read is committed the moment it is read, and
restricts any intermediate, uncommitted, and dirty read.

* Read uncommitted: This is the lowest isolation level. One transaction can see
the uncommitted changes of other transactions as well. Hence, dirty reads
are allowed in this level.

There are predefined constants for each isolation level. By default, the configuration

is READ_COMMITTED for the Spring Batch isolation level. Based on the criticality and
importance of the data to be read across transactions, one has to set the isolation

level for that transaction. For example, a bank account transaction might want to

read only clean, committed data from other transactions and make the transaction
with persistent data. In such cases, one has to choose between the isolation level and
performance of the application. The following is a sample isolation level configuration:

<job-repository id="jobRepository" isolation-level-for-
create="SERIALIZABLE"/>

If the batch jobs are integrated with applications having other frameworks
using similar nomenclature for configurations, then one should be careful with
configurations. The intent of control in one technology can control others; it's
better to disable either one of the configurations on need basis in such scenarios.

The attributes on each of the batch components, as discussed in Chapter 2, Getting
Started with Spring Batch Jobs, can help us better customize the batch job transaction
configurations. For example, one can control the rollback transactions, in specific
exception scenarios, by configuring no-rollback-exception-classes.

[74]

Chapter 4

Transaction patterns

Spring Batch job processing involves handling data across multiple sources.
Such scenarios, which usually occur time and again, can be identified as
transaction patterns.

The following are the patterns identified:

* Simple transaction: This is a transaction with a single application and data
source (source and target)

* Global transaction: This is a transaction involving more than one data source
to be handled through the same transaction

Simple transaction

Simple transactions with a single batch application and a data source can be easily
implemented with the support of Spring Batch integrated with diverse database
interaction techniques, such as JDBC, JPA, or Hibernate supports from Spring Batch.
The interaction would be as shown in the following figure:

Java Objects ORM RDBMS

Global transaction

If more than one data source has to be persisted through a single transaction,
such transactions are termed as global transactions, which can managed by the
transaction manager. It is the responsibility of the transaction manager to make
sure the transaction obeys the ACID characteristics through its multiple data
sources and the data is persisted consistently.

[75]

Handling Job Transactions

However, if an application is deployed in an integrated enterprise server, which
supports a transaction manager, that might as well be considered against the Java
Transaction API (JTA) based transaction manager. The following is a representation
of a managed transaction.

Application

i

Transaction Manager RDBMS
;e i

. RDBMS

Java Objects ORM

i

RDBMS

These transactions can also be configured to maintain the references of the one
database schema as a synonym in another database schema to refer it virtually as a
local transaction. However, the effort of creating such synonyms must be considered.

Summary

Through this chapter we learned about transactions and key characteristics of
transactions. We also learned how Spring Batch performs transaction management
in different scenarios, including tasklet steps, chunk-oriented steps, and listeners.
We also learned about customizing the transaction with isolation levels and attribute
configurations. We finished this chapter with an understanding of commonly used
transaction patterns with single and multiple data sources in a batch application.

In the next chapter, we will learn in detail about the flow of jobs and sharing data
between steps of the executing jobs.

[76]

Step Execution

In the previous chapter, we learned about transactions and managing the
transactions in different scenarios, along with customizing the transactions with
isolation levels, and attribute configurations for single and multiple data sources
with patterns. So far, we have discussed the simple jobs, where the flow is linear and
contains jobs with steps executing one after the other. In real world applications, we
need to configure jobs with a combination of steps, sharing data between them and
deciding which step to execute at runtime.

In this chapter, we will cover the following topics:

* Controlling the job flow
* Data sharing

¢ Externalization and termination

Controlling the job flow

So far we have seen batch jobs configured with steps executing consecutively in a
linear fashion. There could be scenarios to decide which step to execute based on
the outcome of the previous step during the execution of a batch job, which is a
nonlinear execution.

The following figure shows how the linear step execution happens in a batch job:

Step Step Step
One Two Three

Step Execution

The following figure shows how the nonlinear step execution happens in a batch job:

Step
Two
Step
Decision Four
Step
Three

Let's understand how to handle such a job flow. There are primarily two ways to
handle it:

* Using an exit code

* Using a decision logic

Using an exit code

Job flow can be handled based on the exit status of a step along with the configuration
of the next tag with the on and to properties. The following is a sample configuration
using an exit code:

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns ="http://www.springframework.org/schema/batch"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch-3.0.xsd">

<beans:import resource="context.xml" />

<beans:bean id="testTasklet" class=" batch.TestTasklet">
<beans:property name="success" value="true"/>

</beans :beans>

<beans:bean id="successTasklet" class=" batch.StatusTasklet">

[78]

Chapter 5

<beans:property name="status" value="Success"/>

</beans :bean>

<beans:bean id="failTasklet" class=" batch.StatusTasklet">
<beans:property name="status" value="Failure"/>

</beans :bean>

<job id="nonLinearJob"s>
<step id="stepOne">
<tasklet ref="testTasklet"/>
<next on="*" to="stepTwo"/>
<next on="FAILED" to="stepThree"/>
</step>
<step id="stepTwo">
<tasklet ref="successTasklet"/>
</step>
<step id="stepThree">
<tasklet ref="failTasklet"/>
</step>
</job>
</beans:beans>

In the preceding configuration, stepone is the first step to be executed in the batch
job. Based on the output (ExitStatus) of this step, which includes testTasklet,
the next tag decides which step to execute. If testTasklet returns a FAILED status,
it executes stepThree, otherwise stepTwo. The status can be returned either by the
attribute of job execution or step execution. The following are the different statuses:

* String: The exit status should match with a String, for example, COMPLETED/
FAILED, which can be verified from FlowExecutionStatus.
* x:This matches with zero or more characters. It matches any value.

* ?2: This matches only one character.

Using a decision logic
The nonlinear job execution can also be handled with the decision logic using the
implementation of JobExecutionDecider and decision tag configuration.

The following is the JobExecutionDecider implementation to check the exit status
and return FlowExecutionStatus accordingly:

package batch;

import org.springframework.batch.core.ExitStatus;
import org.springframework.batch.core.JobExecution;
import org.springframework.batch.core.StepExecution;

[79]

Step Execution

import org.springframework.batch.core.job.flow.FlowExecutionStatus;
import org.springframework.batch.core.job.flow.JobExecutionDecider;

public class JobFlowDecider implements JobExecutionDecider
@Override
public FlowExecutionStatus decide (JobExecution jobExecution,
StepExecution stepExecution) {
if (1ExitStatus.FAILED.equals (stepExecution.getExitStatus()))
return new FlowExecutionStatus (FlowExecutionStatus.FAILED.
getName ()) ;
} else {
return new FlowExecutionStatus (FlowExecutionStatus.COMPLETED.
getName ()) ;
}
}
}

The following is the job configuration with the JobExecutionDecider
implementation and decision tag configuration:

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns ="http://www.springframework.org/schema/batch"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch-3.0.xsd">

<beans:bean id="decider" class="batch.JobFlowDecider"/>
<beans:bean id="successTasklet" class=" batch.StatusTasklet">
<beans:property name="status" value="Success"/>
</beans :bean>
<beans:bean id="failTasklet" class=" batch.StatusTasklet">
<beans:property name="status" value="Failure"/>
</beans :bean>
<job id="nonLinearJob"s>
<step id="stepOne" next="decision">
<tasklets>
<chunk reader="itemReader" writer="itemWriter"
commit-interval="20"/>
</tasklet>
</step>
<decision id="decision"> decider="decider"
<next on="*" to="stepTwo"/>

[80]

Chapter 5

<next on="FAILED" to="stepThree"/>
</decision>
<step id="stepTwo">

<tasklet ref="successTasklet"/>
</step>
<step id="stepThree">

<tasklet ref="failTasklet"/>
</step>

</job>

One can choose between these two options (exit codes and decision logic) based
on the monitoring status needs; the job execution decider makes the configuration
more readable.

Data sharing

While each step should be configured to execute on its own in an ideal scenario, the
steps need to share the data in real-world scenarios. The data can be shared between
steps in different ways. The following are the options:

* Using execution context

* Using Spring holder beans

Using execution context

We learned from the previous chapters that the Spring Batch jobs maintain
information about the job execution in a context called batch job metadata. We can
use this context to share data between steps. The key-value-based data is maintained
by org.springframework.batch.item.ExecutionContext in its usage. The
following is the way to put/get the data from it:

String importId = jobExecutionContext.getString ("importId") ;
executionContext.putString ("importId", importId);

Both job and step have their own execution context in the form of
JobExecutionContext and StepExecutionContext. While jobs have a unique
execution context, each step in a job maintains its own step execution context. Step
context can be accessed from the chunk context (org. springframework.batch.
core.scope.context .ChunkContext) and the job context can be accessed from
the step context.

[81]

Step Execution

Using Spring holder beans

The data between steps can be shared using the concept of Spring holder beans

as well. Metadata configuration is represented by ImportMetadata, through

which we can set and get the data. We can write a bean that can hold the reference

of ImportMetadata and configure the same as ImportMetadataHolder in job
configuration. The following is the sample configuration for ImportMetadataHolder:

package batch;
public class ImportMetadataHolder
private ImportMetadata importMetadata;
public ImportMetadata get() {
return importMetadata;
}
public void set (ImportMetadata importMetadata) {
this.importMetadata = importMetadata;

}
}

The data can be set and got from the holder by using following syntax:

importMetadataHolder.set (
batchService.extractMetadata (outputDirectory)) ;
importMetadataHolder.get () .getImportId() ;

The ImportMetadataHolder can be configured just like any other bean and injected
into the tasklets with the property specification.

Externalization and termination

Externalization and termination are the concepts that help to make reusable
components of Spring Batch and handle job termination graciously.

Externalization

Spring Batch allows code reuse using externalization, the concept of separating
the reusable steps of operation and including them in desired jobs. Along with
the configuration of the individual steps as beans and including them in each job,
externalization can be achieved in the following ways:

* External flow definition and including it in desired jobs

* Inherited jobs mechanism

[82]

Chapter 5

External flow definition and including it in
desired jobs

The following is a sample configuration for external flow definition and including it
in the desired job:

<flow id="externalFlow">
<step id="stepOne" next="stepTwo">
<tasklet ref="taskletOne"/>
</step>
<step id="stepTwo">
<tasklet ref="taskletTwo"/>
</step>
</flow>
<job id="maindJob">
<flow parent="externalFlow" id="mainStep" next="stepThree"/>
<step id="stepThree">
<tasklet ref="taskletThree"/>
</step>
</job>

Inherited jobs mechanism

The other way of externalizing the process is by inheriting one job into the other,
which means defining an independent job and referring to it in another job as a
part of it. The following is a sample configuration for it:

<job id="mainJob">
<step id="stepOne" next="stepTwo">
<tasklet ref="taskletOne"/>
</step>
<step id="stepTwo">
<tasklet ref="taskletTwo"/>
</step>
</job>
<job id="subJob">
<step id="stepThree" next="stepFour"s>
<job ref="maindJob" job-parameters-extractor="jobParametersExtractor"
/>
</step>
<step id="stepFour" parent="runBatch"/>
</job>

The main job has a couple of steps and the sub job is defined to refer to the main job
as a part of its first step.

[83]

Step Execution

Termination

Ending the execution programmatically is an important aspect of the batch job
execution. To be able to effectively program this, one should be aware of the
different states in which the job can be terminated. The different states are as follows:

* coMPLETED: This end state can be used to tell Spring Batch that the processing
has ended successfully. When a job instance is terminated with this end state,
it isn't allowed to rerun with the same set of parameters.

» FAILED: This end state can be used to tell Spring Batch that the processing has
failed. Spring Batch lets the failed jobs rerun with the same set of parameters.

* sTopPED: This end state is like pausing an executing job. If ended with this
state, Spring Batch not only lets us restart the job, it also lets us restart from
where it left off, even though there are no errors in execution.

Terminating in the COMPLETED state

The following is the configuration to terminate a job in the COMPLETED state, based on
the ExitStatus with the end tag configuration:

<job id="nonLineardJob"s>
<step id="stepOne">
<tasklet ref="successTasklet"/>
<end on="*"/>
<next on="FAILED" to="stepTwo"/>
</step>
<step id="stepTwo">
<tasklet ref="failureTasklet"/>
</step>
</job>

This configuration ends the job after successful execution, and we can't rerun the job
with the same set of parameters. The first step is configured to invoke the second
step if it has failed.

Terminating in the FAILED state

The following is the configuration to terminate a job in the FAILED state, based on the
ExitStatus with the fail tag configuration:

<job id="nonLinearJob"s>
<step id="stepOne">
<tasklet ref="successTasklet"/>

[84]

Chapter 5

<next on="*" to="stepTwo"/>
<fail on="FAILED" exit-code="STEP-ONE-FAILED"/>
</step>
<step id="stepTwo">
<tasklet ref="failureTasklet"/>
</step>
</job>

This configuration ends the job with the FATILED state if the exit status is FAILED, and
we can rerun the job with the same set of parameters.

Terminating in the STOPPED state

The following is the configuration to terminate a job in the STOPPED state, based on
the ExitStatus with the stop tag configuration:

<job id="nonLinearJob">
<step id="stepOne">
<tasklet ref="successTasklet"/>
<next on="*" to="stepTwo"/>
<stop on="FAILED" restart="stepTwo"/>
</step>
<step id="stepTwo">
<tasklet ref="failureTasklet"/>
</step>
</job>

This configuration ends the job with the STOPPED state if the exit status is FAILED,
and we can rerun the job with the same set of parameters.

Summary

Through this chapter, we learned about controlling the flow of a batch job using exit
codes and decision logic. We also learned how to share data between the steps in
execution with the help of execution context and holder beans. We also learned about
reusing the process by externalizing the flow and inherited job mechanisms. We
finished this chapter with an understanding of terminating the batch job in different
states and their importance. In the next chapter, we will learn in detail about the
enterprise integration using Spring integration and RESTful job processing.

[85]

Integrating Spring Batch

In the previous chapter, we learned about controlling the flow of a batch job using
exit code and decision logic, sharing the data between the steps in execution, and
reusing the process by externalizing the flow and inherited job mechanisms. We
also learned how to terminate the batch job in different states and their importance.
An organization performs its operations with the help of a number of tools and
maintains its data and applications across locations. It is important to integrate the
data across these applications with a decent mechanism to synchronize the systems.

In this chapter, we will cover the following topics:

* Enterprise Integration
* Spring Integration

* RESTful job processing

Enterprise Integration

So far we have seen batch jobs configured with different steps; reading data from
different sources, performing operations, and writing data to different destinations.

In real time, organizations use different applications to perform their operations. The
application used to maintain the employee information and process their payroll might
not be the same as the one that takes care of logistics and sales. In such scenarios, it is
important to integrate these applications seamlessly to process the whole data together
at any particular point and perform an operation on the system.

Integrating Spring Batch

The following figure shows how an Enterprise Resource Planning (ERP) system
integrates different modules, accesses the information from its systems, and
maintains it as an entity.

SUPPLY CHAIN
MANAGEMENT

HUMAN PROJECT
RESOURCES MANAGEMENT

CUSTOMER
RELATIONSHIP
MANAGEMENT

FINANCE/
ACCOUNTING

The following are the different ways to integrate enterprise applications:

File-based data transfer: Applications exchange data based on flat files;
the source system writes data onto a flat file and exports the file to the
destination system. The destination system reads data from a flat file and
imports into its destination database.

Resource sharing: Applications share common resources, such as a filesystem
or a database, to perform their operations. Virtually, they act as individual
systems; however, they populate/write data onto a common system.

Service invocation: Applications expose their operations as services
(web services in recent days) to let other applications call them. One
can transfer/receive data from such services, depending on the way
they are designed.

Messaging services: Applications use a common messaging server; one
application can send a message and the other receives it.

[88]

Chapter 6

Spring Integration

Spring project defines Spring Integration as an extension of the Spring programming
model for Enterprise Integration. Spring Integration is developed to support
lightweight messaging within Spring-based applications and supports system
integration with external systems through declarative adapters. These adapters
provide an abstraction of Spring's support for remoting, messaging, and scheduling.

send(Message) receive()

Producer - - - Consumer

Message Channel

While Spring Batch operates on a file- or database-based integration system,
Spring Integration provides the application's message-based integration.
Adding this messaging feature to the Spring Batch application automates its
operations and also separates the key operational concerns. Let's understand
how we can make Spring Integration configuration be a part of the integrated
enterprise application. The following are some of the key operations that can be
performed with message integration:

* Triggering a batch job to execute
* Triggering a message with the job completion/fail status
* Asynchronous processor's operation

e Externalization

The following is the Spring XML application context file with Spring Batch
integration enabled:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:integrate="http://www.springframework.org/schema/integration"
xmlns:batch="http://www.springframework.org/schema/batch"
xmlns:batch-integrate="http://www.springframework.org/schema/batch-
integration"
xsi:schemaLocation="http://www.springframework.org/schema/batch-
integration
http://www.springframework.org/schema/batch-integration/spring-batch-
integration.xsd

http://www.springframework.org/schema/batch
http://www.springframework.org/schema/batch/spring-batch.xsd
http://www.springframework.org/schema/beans

[89]

Integrating Spring Batch

http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration.
xsd">

</beans>

Triggering a batch job to execute

So far we have been triggering jobs through command line, programmatically from
applications. However, certain applications have to transfer data using remote file
transfer (FTP/SFTP) and launch jobs to import data into the application. Spring
Integration provides different adapters to easily make launch configurations.
JobLaunchingMessageHandler of Spring Integration is an easy-to-implement,
event-driven execution on JobLauncher. Spring Integration provides
JobLaunchRequest as the input for the JobLaunchingMessageHandler.

Spring . Spring
Esxternal Requests Integration Triggers Batch
ystem [yob Launch Handler Job Launch | Handler

Accesses | | Job Information

~

Job Registry

The following is the listing for JobLaunchRequest transformation from a file:

package com.java.batchJob;

import org.springframework.batch.core.Job;

import org.springframework.batch.core.JobParametersBuilder;

import org.springframework.batch.integration.launch.JobLaunchRequest;
import org.springframework.integration.annotation.Transformer;

import org.springframework.messaging.Message;

import java.io.File;

public class FileMessageToJobReguest {

private Job job;

private String fileParameterName;

public void setFileParameterName (String fileParameterName) {
this.fileParameterName = fileParameterName;

[90]

Chapter 6

}

public void setJob(Job job)

this.job = job;

}

@Transformer

Public JobLaunchRequest toRequest (Message<File> message) {
JobParametersBuilder jobParametersBuilder =

new JobParametersBuilder () ;

jobParametersBuilder.addString (fileParameterName, message.
getPayload () .getAbsolutePath()) ;

return new JobLaunchRequest (job, jobParametersBuilder.
toJobParameters ()) ;

}
}

The job execution status is returned with the instance of JobExecution. The
JobExecution ID helps the user track the status of the job execution through
JobRepository.

The following configuration is for taking the file input (CSV file) through an adapter,
transforming it to JobRequest through the transformer FileMessageToJobRequest,
launching the job through JobLaunchingGateway, and logging the output of
JobExecution.

<integrate:channel id="inputFileRepository"/>
<integrate:channel id="jobRequestChannel"/>
<integrate:channel id="jobTriggeringStatusChannel"/>
<integrate-file:inbound-channel-adapter id="inputFile"
channel="inputFileRepository"
directory="file:/tmp/batchfiles/"
filename-pattern="*.csv">

<integrate:poller fixed-rate="1000"/>
</integrate-file:inbound-channel-adapters>
<integrate:transformer input-channel="inputFileRepository"
output-channel="jobRequestChannel">

<bean class="batchJob.FileMessageToJobRequest">

<property name="job" ref="employeeJob"/>

<property name="fileParameterName" value="input.file.name"/>
</bean>

</integrate:transformers>
<batch-integrate:job-launching-gateway request-
channel="jobRequestChannel"
reply-channel="jobTriggeringStatusChannel"/>

<integrate:logging-channel-adapter channel="jobTriggeringStatusChann
el"/>

[91]

Integrating Spring Batch

The item reader can be configured to pick the input filename as job parameter from
the following configuration:

<bean id="itemReader" class="org.springframework.batch.item.file.
FlatFileItemReader"

scope="step">
<property name="resource" value="file://#{jobParameters['input.file.
name']}"/>

</bean>

Spring Integration has message access from the Spring application context. Hence,
the batch job can as well be triggered with the request accessed from the application
context, as shown in the following code:

ApplicationContext ctx = new ClassPathXmlApplicationContext ("spring-
integration-job.xml") ;

EmployeedJobLaunchRequest employeedJobLaunchRequest = new EmployeeJobLau
nchRequest ("employeedob", Collections.singletonMap ("key", "value"));

Message<EmployeedJobLaunchRequest> msg = MessageBuilder.withPayload (
employeeJobLaunchRequest) .build() ;

MessageChannel jobRequestsChannel = ctx.getBean ("inputFileRepository",
MessageChannel.class) ;

jobRequestsChannel. send (msg) ;

In the preceding code, EmployeeJobLaunchRequest is the user-defined
JobLaunchRequest that is wrapped with the Spring Integration Message. The Spring
Integration class to generate a message is MessageBuilder. With this request, we
can pass the input request details, such as file repository, and launch the job. Spring
Integration can be learned in detail from Spring Integration Essentials, Chandan Pandey,
Packt Publishing.

RESTful job processing

A web service is a method of communication between two electronic devices over a
network. It is a software function provided at a network address over the Web, with
the service always on as in the concept of utility computing.

REST is an architectural style consisting of a coordinated set of architectural
constraints, applied to components, connectors, and data elements, within a
distributed hypermedia system. The REST architectural style is also applied to

the development of web services. With REST-compliant web services, the primary
purpose of the service is to manipulate XML representations of web resources using
a uniform set of stateless operations.

[92]

Chapter 6

Spring Batch supports the job launching and processing using REST web services
with the methods put/pPost. The following is a sample listing with Spring CXF
(an open source services framework):

@Autowired
private JobLauncher jobLauncher;

@Autowired
private Job job;

public boolean startdJob () throws Exception {

try {
final JobParameters jobParameters = new JobParametersBuilder() .
addLong ("time", System.nanoTime ()) .toJobParameters/() ;

final JobExecution execution = jobLauncher.run(job, jobParameters);
final ExitStatus status = execution.getExitStatus() ;
if (ExitStatus.COMPLETED.getExitCode () .equals(status.getExitCode()))

{

result = true;

} catch (JobExecutionAlreadyRunningException ex) {
System.out.println ("Exception" + ex);

} catch (JobRestartException ex) {
System.out.println ("Exception" + ex);

} catch (JobInstanceAlreadyCompleteException ex) {
System.out.println ("Exception" + ex);

} catch (JobParametersInvalidException ex) {
System.out.println ("Exception" + ex);

} catch (IOException ex) {
System.out.println ("Exception" + ex);

return false;

}

Autowired JobLauncher and Job objects get injected into the application.

The startJob () method creates JobParameters using JobParametersBuilder,
and the job gets triggered by jobLauncher.run (). This invocation of batch job from
the web service calls JobLauncher.run () to trigger a batch job in a synchronous
thread. The ExitStatus can be accessed from the JobExecution object. Any
exception during job launch can be caught with proper exception handling, as
mentioned in the preceding list.

[93]

Integrating Spring Batch

Summary

Through this chapter, we learned about enterprise integration and different methods
available for enterprise application integration. We also learned how the Spring
Integration project can integrate Spring Batch applications with its message-driven
approach. We also learned about launching the batch jobs by accessing the Spring
Integration components from the application context. We finished this chapter with
an understanding of the RESTful job processing technique.

In the next chapter, we will learn about inspecting the Spring Batch jobs, including
accessing execution data, listeners, and web monitoring.

[94]

Inspecting Spring Batch Jobs

In the previous chapter, we learned about enterprise integration, varieties of
enterprise application integration, and the Spring Integration project to integrate
Spring Batch applications with its message-driven approach. We also learned about
launching batch jobs with Spring Integration and RESTful job processing techniques.
Spring Batch job execution deals with huge data that changes time to time. This
changing data might get corrupted at times and lead to failed job executions. It is
important to keep a close eye on such failures, and failure reasons should be saved in
a constructive manner for future tracking and fixing.

In this chapter, we will cover the following topics:

* Batch job monitoring
* Accessing execution data
* Listeners

* Web monitoring

Batch job monitoring

So far we have seen varieties of batch job configurations and executions handling

data from diverse sources, processing it, and pushing the outcomes into another data
store. Everything looks good as long as the jobs keep executing the way we make

the configurations. The stability of an application can be figured by how strong and
detailed the response of the application is to any problems with its surroundings, that is,
the environment in which the application is running, the availability and accessibility of
external systems, and the correctness of the data supplied to the application.

Inspecting Spring Batch Jobs

Applications should be able to generate clear tracking information on what is
happening in and out of the application in terms of functionality, who is using it,
how the performance is, and a detailed stack of issues/errors the application faces.
Spring Batch addresses these parameters and generates a greater infrastructure to
monitor the batch job processing and store this monitored information.

The application infrastructure should take care of identifying any such problems and
also reporting to the respective departments through the preconfigured channels of
communication. Spring Batch has a strong infrastructure to maintain the monitored
job information in a database. Let us understand the database infrastructure and how
each entity is related to each other.

The following is the schema diagram defined by Spring Batch:

BATCH_JOB_PARAMS

BATCH_JOB_INSTANCE
FK1 | JOB_INSTANCE_ID
PK |JOB INSTANCE ID TYPE_CD
l——— KEY_NAME
VERSION STRING_WVAL
JOB_NAME DATE_VAL
JOB_KEY LONG_VAL
DOUBLE_VAL

BATCH_STEP_EXECUTION

BATCH_JOB_EXECUTION ok |STEP EXECUTION 1D
PK |JOB_EXECUTION_ID
VERSION
VERSION STEP_NAME
FK1 | JOB_INSTANCE_ID FK1 |JOB_EXECUTION_ID
CREATE_TIME — START_TIME
START_TIME END_TIME
END_TIME STATUS
STATUS COMMIT_COUNT
EXIT_CODE READ_COUNT
EXIT_MESSAGE FILTER_COUNT
LAST_UPDATED WRITE_COUNT
A READ_SKIP_COUNT

WRITE_SKIP_COUNT
PROCESS_SKIP_COUNT
ROLLBACK_COUNT
EXIT_CODE
EXIT_MESSAGE

LAST UPDATED

T

BATCH_JOB_EXECUTION_CONTEXT BATCH_STEP_EXECUTION_CONTEXT

PK,FK1 | JOB EXECUTION ID PK,FK1 | STEP_EXECUTION ID
SHORT_CONTEXT SHORT_CONTEXT
SERIALIZED_CONTEXT SERIALIZED_CONTEXT

[96]

Chapter 7

The preceding figure depicts the schema of the batch job that takes care of the job
execution information. The significance of each of these entities is as follows:

BATCH_JOB_INSTANCE: This maintains high-level information on the batch
jobs, along with the instance of each job. It contains a unique identifier for
different job instances created for the same job, with a different set of job
parameters (JOB_KEY), along with the job name and version of each record.

BATCH_JOB_PARAMS: This maintains information related to each set of job
parameters instance. It maintains the key/value pairs of job parameters to be
passed to a job.

BATCH_JOB_EXECUTION: This maintains the job execution information for
each instance of the job. It maintains individual records for each execution of
the batch job by connecting with BATCH_JOB_INSTANCE.

BATCH_STEP_EXECUTION: This maintains the step execution information
for each step of a job instance. It connects with BATCH_JOB_EXECUTION to
maintain the step execution information for each job execution instance.

BATCH JOB_EXECUTION_ CONTEXT: This is the information needed for each
job execution instance. This is unique for each execution, so the same
information as that of the previous run is considered for retry jobs. Hence, it
connects with BATCH_JOB_EXECUTION to maintain an instance per execution.

BATCH STEP EXECUTION CONTEXT: This is similar to BATCH JOB_EXECUTION
CONTEXT, except that it maintains the context information for each of the step
execution. Hence, it connects with BATCH STEP EXECUTION to maintain the
unique instance with each step execution instance.

Accessing execution data

While Spring Batch saves all the monitoring and job information to the database,
let's understand each of the administration components of Spring Batch, how they
interact with each other, and their configurations.

Access Job Information Job Informationg&____—>
> JobExplorer >
JobOperator base
Status Updates
run() N - Job Metadata
| JobLauncher > JobRepository
(start/stop/restart) (CRUD) ———

[97]

Inspecting Spring Batch Jobs

Database

The database saves job-related information and acts as a source to monitor the job
execution information.

A database can be configured using the following syntax:

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource">
<property name="driverClassName" value="${batch.jdbc.driver}"/>
<property name="url" value="${batch.jdbc.url}"/>

<property name="username" value:"${batch.jdbc.user}"/>
<property name="password" value:"${batch.jdbc.password}"/>
</bean>

<bean id="transactionManager"
class="org.springframework.jdbc.datasource.
DataSourceTransactionManager" lazy-init="true"s>

<property name="dataSource" ref="dataSource"/>

</bean>

The values of driverClassName, url, username, and password can be
specific to the database and a particular user connection to that database.
DataSourceTransactionManager is the transaction manager here and it
refers to the database with the datasource property.

JobRepository

The org.springframework.batch.core.repository.JobRepository interface
is the central point of access for job-related information. It accesses the state and
metadata of batch jobs from the database and supplies it to other resources.

The configuration for the JobRepository follows the ensuing syntax:

<job-repository id="jobRepository"
data-source="dataSource" transaction-manager="transactionManager" />

JobLauncher

The org. springframework.batch.core. launch.JobLauncher interface is responsible
for job execution and also updates the changing job status in JobRepository.

[98]

Chapter 7

The configuration for JobLauncher follows the following syntax:

<job-repository id="jobRepository"

data-source="dataSource" transaction-manager="transactionManager" />
<bean id="taskExecutor"
class="org.springframework.core.task.SimpleAsyncTaskExecutor"/>
<bean id="jobLauncher"
class="org.springframework.batch.core.launch. support.
SimpleJobLauncher">

<property name="jobRepository" ref="jobRepository"/>

< property name="taskExecutor" ref="taskExecutor"/>

</bean>

JobOperator

The org. springframework.batch.core.launch.JobOperator interface acts as

a controlling point for batch job processing. It sends start, stop, and restart signals
to another administrator, namely, JobLauncher by accessing the job information

from JobExplorer.

The configuration for JobOperator follows the following syntax:

<bean id="jobOperator"
class="org.springframework.batch.core.launch. support.
SimpleJobOperator"

prop:jobLauncher-ref="jobLauncher" prop:jobExplorer-ref="jobExplorer"
prop:jobRepository-ref="jobRepository" prop:jobRegistry-
ref="jobRegistry" />

JobExplorer

The org.springframework.batch.core.explore.JobExplorer interface reads
the job-related information from the database and provides the information to other
administrators, such as JobOperator in job execution, with read-only access.

The configuration for JobExplorer follows the ensuing syntax:

<bean id="jobExplorer"
class="org.springframework.batch.core.explore. support.
JobExplorerFactoryBean"
prop:dataSource-ref="dataSource" />

[99]

Inspecting Spring Batch Jobs

Listeners

In the previous chapters, we discussed that listeners are the components that

get triggered by the preconfigured events in an execution. We can use such
listeners to trigger a particular event on the batch job and act as a monitoring tool
for the corresponding problems. A listener can also be configured to report the
corresponding department for a particular problem in execution.

Problem? Report
- Listeners

The following is a sample listener definition and configuration to monitor a batch
job problem.

A listener class can be defined to execute before and after the execution of a job,
as shown in the following code:

public class JobMonitoringListener {
@BeforeJob
public void executeBeforeJdob (JobExecution jobExecution) {
//pre-run executions

}

@AfterJob
public void executeAfterJob (JobExecution jobExecution) {
if (jobExecution.getStatus() == BatchStatus.FAILED) ({

/* Report the departments for a failed job execution status.
The reporter can be a preconfigured mail-sender or an SMS
sender or any other channel of communication.*/

reporter.report (jobExecution) ;

[100]

Chapter 7

The configuration of a batch job with the monitoring listener can be as follows:

<batch:job id="firstBatchdJob">
<batch:step id="importEmployees">

</batch:step>
<batch:listenerss>
<batch:listener ref="jobMonitoringListener"/>
</batch:listeners>
</batch:job>

<bean id=" jobMonitoringListener" class="org.java.
JobMonitoringListener"/>

Web monitoring

The Spring Batch job execution can be monitored and examined with the web
interface provided by the open-source project of Spring, that is, Spring Batch
Admin. This is a simple web application built with the Spring MVC user interface
to act as an admin console for the Spring Batch applications and systems. The main
use cases developed in this project are inspecting jobs, launching jobs, inspecting the
executions, and stopping the executions.

Refer to the Spring Batch Admin reference guide at http://

“ docs.spring.io/spring-batch-admin/reference.
i
html for detailed information on installation and usage.

Summary

Through this chapter, we learned the importance of job execution monitoring

and Spring Batch job monitoring infrastructure. We also learned how to access

job execution information with the help of the administrators' configurations. In
addition, we learned about monitoring and reporting batch job problems with the
help of listeners. We finished this chapter with an understanding of the Spring Batch
Administration project features and how it can help with batch job monitoring.

In the next chapter, we will learn in detail about the batch scaling model, parallel
processing, and partitioning concepts.

[101]

http://docs.spring.io/spring-batch-admin/reference.html
http://docs.spring.io/spring-batch-admin/reference.html
http://docs.spring.io/spring-batch-admin/reference.html

Scaling with Spring Batch

In the previous chapter, we learned about monitoring, accessing the execution
information and administering the configurations, using listeners, reporting the
batch job problems, and understanding the Spring Batch Administration features.
The Spring Batch job execution deals with huge data that changes time-to-time.
This detailed processing consumes huge infrastructure. It is obvious to expect these
jobs to perform efficiently and meet the scaling needs with the growing size of the
organization's data.

In this chapter, we will cover the following topics:

* The batch scaling model
* The thread model

* Parallel processing

* Remote chunking

* Partitioning

The batch scaling model

So far we have seen how to handle different types of batch jobs, configurations, and
executions. As the organization size is growing day-by-day, the data to be processed
per batch job also gets increased accordingly. It is important to design and configure
our batch jobs to meet these performance and scaling expectations.

The batch jobs we write with certain business logic, keeping different resources
interacting in between, cannot be changed every time we see change in data load or
performance issues. Spring Batch offers rich configuration infrastructure to be able
to scale jobs without altering them, by just tuning the configuration information.

Scaling with Spring Batch

Scaling the infrastructure can be done in either of the following two ways:
* By increasing the capacity of the system hardware: In this way of scaling, we
can replace the existing slow infrastructure with more powerful infrastructure.

* Adding more servers: In this way of scaling, we can add more processing
systems of the same capacity in parallel to the existing infrastructure. These
additional nodes share the work and increase the scaling of the total system.

Spring Batch offers the following ways to scale the batch applications:

* Thread model: This is a multithreaded step with a single process
* Parallel processing: This is a parallel step execution with a single process
* Remote chunking: This is the remote chunking of a step with multi process

* Partitioning: This is the partitioning of a step; it can be a single or multi process

The thread model

By default, step execution is a single-thread model. Spring Batch lets us configure
the step to execute in multiple chunks to let the single step execute in a multithread
model with the help of org. springframework.core. task.TaskExecutor

The following diagram depicts the multithread model of a step execution:

" Multi threaded Step |
Chunk

Step op Chunk = Step

Chunk

The following is the sample configuration for the multithread step with TaskExecutor:

<step id="employeePayProcessing">

<tasklet task-executor="taskExecutor"s>

<chunk reader="employeeWorkingDaysReader" processor="employeePayProce
ssor"

writer="employeeSalariesWriter"/>

</tasklet>

</step>

<beans:bean id="taskExecutor"

[104]

Chapter 8

class="org.springframework.core.task.SimpleAsyncTaskExecutor">
<beans:property name="concurrencyLimit" value="20"/>
</beans :bean>

With the preceding configuration, the employeebPayProcessing step considers the
configured reader, processor, and writers for the tasklets and task execution, with
the help of org. springframework.core. task.SimpleAsyncTaskExecutor having
a thread pool of 20 threads, each executing in parallel with chunks of data being
processed in each thread.

Just like any other multithread model, the Spring Batch multithread models also take
into account the resources used by the multiple threads, and whether they are thread
safe. ItemReader is one such process that is not thread safe.

To configure a thread-safe operation, the recommendation is to synchronize the
ItemReader process by synchronizing the read method.

Parallel processing

While multithreading allows a single step to be processed in multiple threads of
chunks, Spring Batch allows us to process multiple steps and flows simultaneously
with the help of parallel processing. This feature enables the independent steps to
execute in parallel and ensures a faster processing.

The following figure shows the multiple steps under execution in parallel:

Step Step Step

Step

ikl

With parallel processing, the independent steps need not wait for the other steps to
complete before execution.

[105]

Scaling with Spring Batch

The following is the sample configuration for the parallel steps in processing:

<job id="employeePayProcessing">

<split id="splitProcess" task-executor="taskExecutor"
next="payCalculations">

<flow>

<step id="readEmployeeData" parent="stepOne"
next="processEmployeeData"/>

<step id="processEmployeeData" parent="stepTwo"/>
</flow>

<flow>

<step id="organizationDataSetup" parent="stepThree"/>

</flow>

</split>

<step id="payCalculations" parent="stepFour"/>

</job>

<beans:bean id="taskExecutor" class=" org.springframework.core.task.

SimpleAsyncTaskExecutor"/>

In the preceding configuration, the readEmployeeData and processEmployeeData
steps get executed in parallel with organizationDataSetup. By default, the
taskExecutor is SyncTaskExecutor; with the preceding configuration we
changed it to SimpleAsyncTaskExecutor to support parallel step processing.

Remote chunking

Remote chunking is the process in which the original step reads the data calls from
remote process to process and writes or receives the processed data back to write on
to the system. As the remote chunking deals with the data transmission to another
system that is remotely located, we should also consider the cost in building this
infrastructure versus the advantage we are getting in remote processing. The actual
step (master) executes the read process, and the remote slaves (listeners) could be
the JMS listeners that execute the process and write steps, or return the processed
information to the master.

[106]

Chapter 8

The following figure depicts the steps in remote chunking;:

Master <Step> Slave <Listener>

The chunkProvider interface returns chunks from ItemReader:

public interface ChunkProvider<T>
void postProcess (StepContribution contribution, Chunk<Ts> chunk) ;
Chunk<T> provide (StepContribution contribution) throws Exception;

}

The ChunkProcessor interface processes the chunks:

public interface ChunkProcessor<I> {

void process (StepContribution contribution, Chunk<I> chunk) throws
Exception;

}

To be able to effectively perform the remote interactions, the remote chunking
process can have the Spring Integration project included to deal with the integration
of resources.

Partitioning

While the remote chunking reads the data at master node and handles the processing
to another remote system (slave), partitioning executes the entire process (reading,
processing, and writing) in parallel, by having the multiple systems having the

entire processing ability. Here, the master step takes care of understanding the job
and handing over the task to multiple slaves, and slaves have to take care of the rest
of the tasks (reading, processing, and writing). Essentially, the slaves constitute the
steps that take care of the read, process, and write in their own world.

[107]

Scaling with Spring Batch

The advantages of partitioning over remote chunking include the data transmission
not being there, as the slave system takes care of the read step as well.

Step using partitioning
Step > Master Step > Step
A
SlaveOne l—T T—l SlaveTwo
ItemReader ltemWriter ItemReader ItemWriter

SlaveThree

ltemReader [temWriter

Even though the communication sent by the master to the slaves in this pattern
fails to deliver, batch metadata in the JobRepository ensures that each slave
gets executed only once per job execution.

The Spring Batch partitioning Service Provider Interface (SPI) has the following
infrastructure for effective partitioning;:

* PpartitionHandler: This sends StepExecution a request to the remote
steps. It doesn't have to know how to split or integrate the data, and
TaskExecutorPartitionHandler is the default implementation of
PartitionHandler.

* Ppartitioner: This generates the step executions for the partitioned
steps (only for new step executions). SimplePartitioner is the default
implementation of Partitioner.

* StepExecutionSplitter: This generates the input execution contexts for
the partitioned step execution, and SimpleStepExecutionSplitter is the
default implementation.

[108]

Chapter 8

The following is the sample partitioned step execution configuration:

<step id="initialStep">

<partition step="stepPartition" handler="handler"/>

</step>

<beans:bean class="org.springframework.batch.core.partition.support.
TaskExecutorPartitionHandler">

<beans:property name="taskExecutor" ref="taskExecutor"/>
<beans:property name="step" ref="stepPartition"/>
<beans:property name="gridSize" value="10"/>

</beans :bean>

The preceding configuration starts its execution with initialstep and hands over
the execution to the partitioned step. The grid size indicates the number of different
steps to be created.

While the multithread model fits for the basic tuning of chunk processing, parallel
processing lets us configure independent steps to execute in parallel. Remote
chunking needs comparatively larger infrastructure and configuration but fits

for distributed nodes processing. Partitioning helps quickly replicate the batch
infrastructure and configure the entire process to execute in parallel nodes, with a
single point of the repository acting as master.

Based on the system requirement and feasibility of the available infrastructure, one
can choose either of the earlier mentioned scaling strategies for batch job execution.

Summary

Through this chapter we learned the importance of performance and scaling of
the batch. We also learned Spring Batch offerings to scale the batch applications.
In addition, we learned about the details and configurations of a thread model,
parallel processing, remote chunking, and partitioning techniques. We finished
this chapter with an understanding of choosing the right strategy to scale the
batch application with the available infrastructure.

In the next chapter, we will learn in detail about performing different types of testing
on Spring Batch applications.

[109]

Testing the Spring Batch

In the previous chapter, we learned the importance of performance and scaling
batch applications through different configurations (namely, thread model, parallel
processing, remote chunking, and partitioning techniques) and how to choose the
right strategy to scale the batch application with the available infrastructure. Spring
Batch applications are developed and configured with individual components and
different integrations, and hence it is important to test the individual features as well
as the integrated project for its expected behavior.

In this chapter, we will cover the following topics:

* Types of testing for Spring Batch
* Unit testing
* Integration testing

* Functional testing

Types of testing for Spring Batch

The primary purpose of any software testing is to detect software failures and correct
them. The scope of software testing can be established from validating the software
components to verifying the software functionality and the software functioning in
various environments and conditions.

The following are the types of software testing that we might want to perform on
Spring Batch applications:

* Unit testing: Also known as component testing, this refers to verifying the
functionality of a specific piece of code. Unit testing is generally written by
the developers.

Testing the Spring Batch

* Integration testing: This identifies the defects in the interfaces and the
interaction between integrated components. As the software components
are integrated in an iteratively incremental fashion, integration testing is
an important testing aspect in larger projects.

* Functional testing: This verifies the functionality of a specific code
component or group of code components, as defined in the functional
specification of a particular application.

* Performance testing: This verifies if the entire system is meeting the

performance standards expected from the specified environment or
run conditions.

Functional testing and performance testing are usually covered together in
system testing.

Unit testing

Unit testing is the component-level testing performed by developers, with the source
code and test plan prepared by developers. If the unit test fails, developers can fix
the issues of the component and perform the unit test again. The following figure
depicts the unit test scenario.

m [Unit Test I:: Test Result

Execution Review

Tast Plan

Correct and Retest the Component I_I

Test Failure?

JUnit

JUnit is the standard Java framework to perform unit testing. Most IDEs have
in-built support for JUnit. TestNG can also be used as a JUnit analog.

JUnit test cases can be written as simple Java classes to be executed with the @Test
annotation on a method that performs the test operation.

[112]

Chapter 9

The following is an example of JUnit on a Java String concatenation operation:

public class MyClass {
public String concatenate (String former, String later) {
return former + latter;

}
}

The Junit class to test this Java class can be as follows:

import org.junit.Test;
import static org.junit.Assert.*;

public class MyClassTest {

@Test
public void testConcatenate()
MyClass myclass = new MyClass() ;

String output = myClass.concatenate ("Spring", "Batch");

assertEquals ("SpringBatch", output) ;

}

In the preceding class, the testConcatenate method with the @Test annotation
verified the MyClass java component. The assertEquals () method does the
actual testing by comparing the MyClass. concatenate () method output with

the expected output. If the comparison fails, the assertEquals () method throws

an exception. We can also write methods to set up operations before the unit test
method execution with @Before annotation and clean up tasks after the unit test
operation with the eAfter annotation. A detailed list of JUnit classes and their usage
can be referred to from JUnit API (http://junit.sourceforge.net/javadoc/).

Mockito

As we need to perform batch application testing, each component can access the
other with some dependency. Replicating all those classes needs to create the
instances of such objects and provide to the component under test. Mockito is an
open source Java framework that lets us create test double objects (mock objects)
easily for the purpose of testing.

[113]

http://junit.sourceforge.net/javadoc/

Testing the Spring Batch

Mockito can be added to the application with an easy Maven dependency, such as
the following;:

<dependency>
<grouplds>org.mockito</groupIds>
<artifactIds>mockito-all</artifactId>
<version>1.10.8</versions>
<scope>test</scope>

</dependency>

In a batch application, we have the EmployeeReader class that we need to create an
object during the test execution. This can be performed with the help of Mockito
within the gunit test class, as follows:

import static org.mockito.Matchers.any;
import static org.mockito.Matchers.eq;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.times;
import static org.mockito.Mockito.verify;
import static org.mockito.Mockito.when;

import org.junit.Before;
import org.junit.Test;

public class EmployeeReaderUnitTest
EmployeeReader empReaderMock;

@Before
public void setUp() {
empReaderMock = mock (EmployeeReader.class) ;

}

@Test
public void testEmpReader () throws Exception

}

In the preceding code snippet, we created the EmployeeReader object with

the help of the mock () method from Mockito within the JUnit @Before (setup)
method. We shall utilize this object in the @Test method to validate the functionality
of the component.

Likewise, any Spring Batch components, such as listeners and validator must be unit
tested to verify functionality.

[114]

Chapter 9

Integration testing

Integration testing identifies the defects in the software components as they are
integrated in an iteratively incremental fashion. Integration testing is an important
testing aspect in larger projects.

The modules that are unit tested are grouped to the larger aggregation, tested
according to the integration test plan, and then the tested application is ready
for its next level of testing as a system for functional testing.

Unit Tested

Component T
One

+ |:> Integrated | Integration

Interface | Testing

Unit Tested

Component —
Two

The following are the two ways to perform component testing with Spring Batch.

Listener-based approach

The following class-level annotations help in testing the Spring Batch components:

* @RunWith(SpringJUnit4ClassRunner.class): This annotation indicates
that the class should use the Spring support for JUnit facilities.

* @ContextConfiguration: This lets the program know about the
configuration properties that contain the application context.

* @TestExecutionListeners: This helps in configuring listeners to help the
test execution to set up the abilities such as dependency injection and step
scope test execution.

The following is a sample configuration using these annotations:

@ContextConfiguration(locations = { "/app-context.xml" })
@TestExecutionlListeners ({ DependencyInjectionTestExecutionlListener.
class,

StepScopeTestExecutionListener.class })

[115]

Testing the Spring Batch

@RunWith (SpringdUnit4ClassRunner.class)
public class CarFileReaderIntegrationTest

The StepScopeTestUtils approach

The stepscopeTestUtils utility class is used to create and manipulate StepScope
in unit tests. This helps in using the Spring test support and injecting dependencies
into the test case being the step scoped in the application context.

@Test
public void testEmployeeReader () throws Exception {

}

StepExecution execution = getStepExecution() ;

int empReads =

StepScopeTestUtils.doInStepScope (stepExecution, new
Callable<Integer> ()

@Override

public int call() throws Exception {

((ItemStream) employeeReader) .open(new ExecutionContext ()) ;

int count = 0;
while (employeeReader.read () != null) {
count++;

}

return count;

}
I3

assertEquals (empReads, 10);

The doInStepScope () method of StepScopeTestUtils takes in stepExecution
and the callable implementation; it automatically takes the runtime dependency
injection and returns the result. The rest of the test is about validating the number

of empReads with the expected number, with the assertEquals () method of gunit.

Functional testing

Functional testing verifies the functionality of a specific code component or a group

of code components, as defined in the functional specification of the particular
application with input data for the components and the output behavior is compared
with the expected behaviour. Functional testing is the "black box" testing, as we deal
with only the external system behavior for the specific input with the expected output.

[116]

Chapter 9

Functional Comparison of
Specifications Actual
Application
vs Expected
Input Data I:> Behaviour

Functional Testing

In a Spring Batch application, the entire job is considered as a unit of execution and it
can be tested for its functionality with the help of JobLauncherTestUtils, a utility
class to test Spring Batch jobs. JobLauncherTestUtils provides methods to launch
an entire AbstractdJob, allowing for end-to-end testing of individual steps without
having to run every step in the job. JobLauncherTestUtils also provides the ability
to run steps individually from FlowJob or SimpleJob. By launching steps within a
job on their own, end-to-end testing of individual steps can be performed without
having to run every step in the job.

The following code snippet is an example of using JobLauncherTestUtils to
perform job and step launching;:

@Before

public void setup()

jobLaunchParameters = new JobParametersBuilder() .
addString ("employeeData", EMPFILE LOCATION)

.addString("resultsData", "file:/" + RESULTFILE_ LOCATION)
.toJobParameters () ;

}

@Test

public void testEmployeeJob() throws Exception (
JobExecution execution = jobLauncherTestUtils.
launchJdob (jobLaunchParameters) ;

assertEquals (ExitStatus.COMPLETED, execution.getExitStatus()) ;
StepExecution stepExecution =

execution.getStepExecutions () .iterator () .next () ;

assertEquals (ExitStatus.COMPLETED, stepExecution.getExitStatus());

}

In the preceding code, with the help of JobLauncherTestUtils, we are able
to launch the batch job, a particular step, with the help of a simple API as
part of the JUnit @Test method. The @Before (setup) method prepares the
JobLaunchParameters with the details of the input employeeData file to be
processed and output result file location to be stored.

[117]

Testing the Spring Batch

Summary

Through this chapter, we learned the importance of software testing and the types
of software testing we might want to perform on a Spring Batch application. We
also learned about different open source frameworks, such as JUnit and Mockito, to
perform unit testing on Spring Batch components. We finished this chapter with an
understanding of Spring support, APIs to perform unit testing, integration testing,
and functional testing on Spring Batch applications.

In the Appendix section, we discuss in detail about setting up the development
environment, project configurations, and Spring Batch administration.

[118]

Appendix

In the previous chapter, we learned the importance of software testing, types

of software testing to perform on a Spring Batch application with the help of
frameworks such as JUnit, Mockito on Spring Batch components and Spring
support, APIs to perform unit testing, integration testing, and functional testing

on Spring Batch applications. The Spring Batch project development setup needs a
system to contain Java and IDE (Eclipse), and a project needs to be set up with the
dependencies configuration. Also, Spring Batch administration is another important
aspect to understand.

In this section, we will cover the following topics:

* Setting up Java

* Setting up Eclipse IDE

* Setting up the project and its dependencies
* Spring Batch Administration

Setting up Java

The Java Software Development Kit (JDK) is an application platform released by
Oracle and aimed at Java developers using Solaris, Linux, Mac OS X, or Windows.
The JDK can be downloaded from the Oracle web downloads (http://www.oracle.
com/technetwork/java/javase/downloads/index. html).

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Appendix

It can be installed with installation instructions provided on the same page.

. Sign In/Register Help Country » Communities v lama._. v [wantto_. v Search Q
ORACLE
Products Solutions Downloads Store Support Training Partners About |OTN

Oracle Technology Network > Java > Java SE > Downloads

Java SE Cverview | Downloads | Documentation || Community || Technologies || Training L UL TS
Java EE # Java SE
Java ME Java SE Downloads # Java EE and Glassfish
Java SE Support # Java ME
Java Card
=) B 5 # NetBeans IDE
vaos =’Java 7 NetBeans .
o # Java Mission Control
Web Tier
= # Java APls
Java TV Java Platform (JDK) 8u25 JOK 8u25 & NetBeans 8.0.1
New fo J § Technical Articles
New to Java
\ Java Platform, Standard Edition \ § Demos and Videos
Community Tz ladly s
Java Magazine Java SE 8u25 & Forums
Java lagazine This release includes important security fixes. Oracle strongly recommends that all Java SE 8 _
users upgrade to this release. # Java Magazine
Learn more # & Javanet
. . &
- Installation Instructions JDK # Developer Training
DOWNLOAD
+ Release Notes # Tutorials
- Cracle License # Javacom
= Java SE Products server JRE ’b',%‘
’

= Third Party Licenses ava' .
Al Getitnow

= Certified System Configurations
for FREE!
= Readme Files
JRE

= JDK Readle Subscribe Today
= - -

= JRE ReadMe

Which Java package do | need?

» Software Developers: JDK (Java SE Development Kit). For Java Developers. Includes a
complete JRE plus tools for developing, debugging, and manitoring Java applications.

Setting up Eclipse IDE

Eclipse is one of the most prominent Integrated Development Environment

(IDEs) with base workspace to work on projects, along with extensible plugins for
customizing it. Intelij IDEA and NetBeans are some of the other prominent IDEs. We
pick the Eclipse IDE for Java EE developers through https://www.eclipse.org/
downloads/packages/eclipse-ide-java-ee-developers/keplersr2.

[120]

https://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/keplersr2
https://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/keplersr2

Appendix

eclipse

Releases

Mars Packages

Luna Packages
Kepler Packages
Juns Packages
Indigo Packages
Helios Packages
Galileo Packages
Ganymede Packages
Europa Packages

All Releases

This package includes:

= Data Tools Platform

Eclipse GE Team Provider

« Eclipse Java Development Tools

+ Etlipse Java EE Developer Tools
= Javascrpt Development Tools

» Maven Integration for ECipse

= Myhyn Task List

= Eclipse Plug-in Development Envisonment
+ Remote System Explorer

= Eclipse XML Editors and Tools

!g Eclipse IDE for Java EE Developers

tions, including a Java |DE, tools for

Download Links

Windows 32-bit
Windows 64-bit

Mac OS5 X {Cocea) 32-bit
Mac 05 X [Cocoa) 64-bit
Linux 32-bit

Linux &4-bit

Downloaded 3 916 OTE Times

» Checksums.

Bugzilla

» Dpen Bugs' 34

» Resolved Bugs. 128

Usually, the Eclipse IDE downloads the compressed version and can be unzipped to
get the eclipse folder. Under the eclipse directory, we can observe the executable

eclipse program (eclipse.exe), which opens the Eclipse IDE as shown in the
following screenshot, making sure the Java Development Kit is installed on the

machine and is available on system path.

[®] Java - Eclipse

:Eg

File Edit Navigate Search Project Run Window Help

(@) Welcome 32

e i m !

% Overview
Get an overview of the features

@;_ . Samples
Try out the samples

Eclipse Java EE IDE for Web Developers

Tutorials
Go through tutorials

What's New
Find out what is new

&A= e

-

Workbench

[121]

Appendix

Setting up the project and its
dependencies

The Maven software needs to be integrated into the Eclipse IDE, as mentioned in

the instructions at https://www.eclipse.org/m2e/, and a Java project with Maven
dependencies can be managed with the required dependencies for the Spring Batch
job, as mentioned in the Job design and executions section of the Chapter 1, Spring

Batch Fundamentals.

Spring Batch Administration

The administration tasks include starting and stopping the process jobs, and monitoring
the job performance statistics of job executions. Spring Batch is available with an
administration project from Spring to have a web-based control tool, namely, Spring
Batch Admin project. Spring Batch Admin is an easily deployable project with very
good documentation. The documentation of the Spring Batch Admin project is available
athttp://docs.spring.io/spring-batch-admin/getting-started.html.

Spring Batch Admin € spring

Last Published: 2014-07-28 | Version: 1.3.0.RELEASE Home

Documentation Main Use Cases
22;‘;;.9 Started « Main Use Cases
User Guide < Inspect Jobs
APL © Launch Job
o Inspect Executions
o Stop an Execution
Support

) TS BaSTaSE sy b0 GEE S eI Gty Or D Bt e Niin i T S Bamie Sorasnehots GF LhS main s rasas This mar Tniarraes ia s wab sanlication
?I“R'!:'“g (built with Spring MVC).

Inspect Jobs

Modules
e 606 Spring Batch Admin: Jobs 2
el <> [O][2] [+ ianosusos x —
M E Workv RMQ QE

§ Spring

source

Home Jobs Bxecuns Flles Sping Spring Batch

Job Names Registered

Name: Execution Count.

job2 Nodescription 0 true false
Jobt Nodescription 1 true true
Infinite No description 1 true false

Rows: 1-30f3 Page Size: 20

[122]

https://www.eclipse.org/m2e/
http://docs.spring.io/spring-batch-admin/getting-started.html

Appendix

Through this appendix, we covered how to set up Java, how to set up an Eclipse
IDE, how to set up a project with dependencies, and how to administer the batch
application with the help of Spring Batch Administration.

This concludes the essential concepts to be learned for Spring Batch job
application development.

[123]

A

ACID (atomic, consistent, isolated, and
durable) 70
administration tasks 122,123
annotations
using 33, 34

B

batch applications

about 7

features 8
batch jobs

stopping 38

triggering, to execute 90-92
BeanWrapperFieldExtractor 60

C

Chunk
cache-capacity attribute 29
chunk-completion-policy attribute 29
commit-interval attribute 29
configuring 29, 30
processor attribute 29
processor-transactional attribute 29
reader attribute 29
reader-transactional-queue attribute 29
retry-limit attribute 29
retry-policy attribute 29
skip-limit attribute 30
skip-policy attribute 30
writer attribute 29

ChunkListener 34

chunk-oriented steps 72

Index

command line

job, launching from 37
COMPLETED state

about 84

termination in 84
Control-M scheduler 39
Cron scheduler 39
cursor-based item reading 54

D

database item writers
about 64
JDBC-based database writing 64, 65
ORM-based database writing 65-67
database, job
about 98
JobExplorer 99
JobLauncher 98
JobOperator 99
JobRepository 98
data, processing
about 56
chaining 58
ItemProcessor 57
data, reading
about 42
from database 54
from flat files 42
from XML 51-54
ItemReader 42
data, reading from database
about 54
cursor-based item reading 54
JdbcCursorltemReader 54, 55
JdbcPagingltemReader 56

page-based item reading 54 Expression Language. See EL
data, reading from flat files Extensible Markup Language. See XML
about 42 externalization
delimited flat file 48-51 about 82
exceptions 51 external flow definition 83
fixed width file 43 inherited jobs mechanism 83
FlatFileltemReader 45 using, in desired job 83
LineMapper 45-47

data, reading from XML 51-54 F

data, sharing
about 81 FAILED state
execution context used 81 about 84

Spring holder beans used 82 termination in 84
data, writing FieldExtractor

about 58 about 60

database item writers 64 BeanWrapperFieldExtractor 60
delimited files, writing 61 PassThroughFieldExtractor 60
FieldExtractor 60 fixed width file

fixed width file, writing 62, 63 about 43

flat file item writers 59 writing 62, 63
ItemWriter 58 FlatFileFormatException 51

XML item writers 63 FlatFileItemReader
decision logic lineMapper 45

using 79-81 linesToSkip 45
resource 45
E flat file item writers
about 59
Eclipse IDE LineAggregator 59
setting up 120,121 PassThroughLineAggregator 59, 60
URL 12,120 FlatFileParseException 51
EL flat files

and listeners 32 data, reading from 42
Enterprise Integration delimited 48-51
about 87 exceptions 51

File-based data transfer 88
Messaging services 88
Resource sharing 88
Service invocation 88

fixed width file 43

FlatFileltemReader 45

LineMapper 45-47
flat files, exceptions

Enterprise Resource Planning (ERP) FlatFileFormatException 51

system 88 FlatFileParseException 51
execution context IncorrectLineLengthException 51
using 81 IncorrectTokenCountException 51

execution data, job
accessing 97
database 98 G

exit code
using 78,79

functional testing 116, 117

global transaction 75, 76

[126]

H

HyperSQL Database (HSQLDB) 13

IncorrectLineLengthException 51
IncorrectTokenCountException 51
in-memory repository 31
Integrated Development
Environment (IDE) 120
integration testing
about 115
listener-based approach 115
StepScopeTestUtils approach 116
isolation levels, transactions
Read committed 74
Read uncommitted 74
Repeatable reads 74
Serializable 74
item listeners
about 35
RepeatListener 35
RetryListener 35
ItemProcessListener 34
ItemProcessor 57
ItemReader
about 42
database 42
data, reading from database 54
data, reading from flat files 42
data, reading from XML 51-53
flat files 42
XML 42
ItemReadListener 34
ItemWriteListener 34
ItemWriter
about 58, 59
delimited files, writing 61
FieldExtractor 60
fixed width file, writing 62, 63
XML item writers 63, 64

J

Java
setting up 119

Java Software Development Kit (JDK) 119
Java Transaction API (JTA) 76
JDBC-based database writing 64, 65
JdbcCursorltemReader 54, 55
JdbcPagingltemReader 56
JobExecutionListener
implementing 33
JobExplorer 99
job flow
controlling 77,78
decision logic, using 79-81
exit code, using 78, 79
JobLauncher 35-37
JobOperator 99
job repository
configuring 31
in-memory repository 31
persistent repository 31
JobRepository 98
jobs
abstract attribute 24
BATCH_JOB_EXECUTION 97
BATCH_JOB_EXECUTION_CONTEXT 97
BATCH_JOB_INSTANCE 97
BATCH_JOB_PARAMS 97
BATCH_STEP_EXECUTION 97
BATCH_STEP_EXECUTION_CONTEXT 97
batch jobs, stopping 38
configuring 23-25
execution data, accessing 97
executing, from command line 35
executing, from web applications 35
flow, controlling 77, 78
id attribute 24
increment attribute 24
job-repository attribute 24
launching, from command line 37
launching, from within web application 37
listeners 100, 101
monitoring 95-97
parent attribute 24
restartable 24
web, monitoring 101
JUnit
about 112,113
URL 113

[127]

L

LineAggregator 59
LineMapper 45-47

listener-based approach, integration testing

@ContextConfiguration 115
@RunWith(SpringJUnit4Class
Runner.class) 115

@TestExecutionListeners 115
about 115

listeners
about 32, 73,100, 101
and EL 32
item listeners 35
job listeners 33
stop listeners 34

Maven
URL 12
Mockito 113,114
multithreaded step (single process) 25, 26

N

namespace, Spring Batch XML 22

(0

Object relational mapping (ORM) 65-67
Oracle web downloads
URL 119

P

page-based item reading 54
parallel processing 105, 106
parallel step (single process) 26
partitioning

about 107

Partitioner 108

PartitionHandler 108

Service Provider Interface (SPI) 108

StepExecutionSplitter 108
partitioning step (single process or

multiprocess) 27

PassThroughFieldExtractor 60

PassThroughLineAggregator 59, 60
persistent repository 31
Plain Old Java Object (POJO) 9
project
dependencies, setting up 122
setting up 122

Q

Quartz scheduler 39

R

remote chunking
about 106, 107
ChunkProcessor interface 107
ChunkProvider interface 107
of step (multiprocess) 26
RepeatListener 35
repositories
configuring 23
RESTful job processing 92, 93
RetryListener 35

S

scaling
about 103, 104
parallel processing 105, 106
partitioning 107-109
remote chunking 106, 107
thread model 104, 105
schedulers
about 39
Control-M 39
Cron 39
Quartz 39
Spring scheduler 39
Service Provider Interface (SPI) 108
simple transaction 75
SkipListener 34
Spring Batch
about 9
administration tasks 122, 123
Admin reference guide, URL 101
components 10,11
custom item readers and writers 67
executions 12-19

[128]

infrastructure 10
job design 12-19
job, monitoring 95-97
scaling 103, 104
testing, types 111
transactions, management 70
Spring Batch, components
ItemProcessor 12
ItemReader 11
ItemWriter 12
JobExecution 11
JobInstance 11
JobLauncher 11
JobParameters 11
JobRepository 11
StepExecution 11
Spring Batch XML, features
about 21
namespace 22
tags 22,23
Spring Expression Language (SpEL) 32
Spring holder beans
using 82
Spring Integration
about 89
batch job, triggering to execute 90-92
Spring scheduler 39
step
allow-start-if-complete attribute 28
configuring 25
id attribute 28
multithreaded step (single process) 25, 26
next attribute 28
parallel step (single process) 26
parent attribute 28
partitioning (single process or
multiprocess) 27
remote chunking (multiprocess) 26
StepExecutionListener 34
step listeners
ChunkListener 34
ItemProcessListener 34
ItemReadListener 34
ItemWriteListener 34
SkipListener 34
StepExecutionListener 34

StepScopeTestUtils approach, integration
testing 116
STOPPED state
about 84
termination in 85
Streaming API for XML (StAX) parser 52

T

tags, Spring Batch XML
chunk 23
flow 23
job 22
job-repository 23
step 22
tasklet 22
tasklet
allow-start-if-complete attribute 28
configuring 28
method attribute 28
ref attribute 28
start-limit attribute 28
steps 71
task-executor attribute 28
throttle-limit attribute 28
transaction-manager attribute 28
termination
about 84
in COMPLETED state 84
in FAILED state 84
in STOPPED state 85
testing, types
functional testing 112,116, 117
integration testing 112, 115
performance testing 112
unit testing 111, 112
thread model 104, 105
transactions
about 69
configuring 23, 30
customizing 74
isolation levels 74
management 70
patterns 75
transactions, management
chunk-oriented steps 72

[129]

listeners 73

tasklet steps 71
transactions, patterns

about 75

global transaction 75

simple transaction 75

U

unit testing
about 112
JUnit 112,113
Mockito 113,114

w

web

monitoring 101

web application

job, launching from 37

X

XML 51, 52

[130]

open source

community experience distilled

PUBLISHING

Thank you for buying
Spring Batch Essentials

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub . com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Spring MVC Beginner's Guide
ISBN: 978-1-78328-487-0 Paperback: 304 pages

Your ultimate guide to building a complete web
application using all the capabilities of Spring MVC

1. Carefully crafted exercises, with detailed
explanations for each step, to help you
understand the concepts with ease.

2. You will gain a clear understanding of the end
to end request/response life cycle, and each
logical component's responsibility.

3. Packed with tips and tricks that will
demonstrate the industry best practices on
developing a Spring-MVC-based application.

Instant Spring Tool Suite
ISBN: 978-1-78216-414-2 Paperback: 76 pages

A practical guide for kick-starting your Spring
projects using the Spring Tool Suite IDE

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

Spring Tool Suite

2. Learn how to use Spring Tool Suite to
jump-start your Spring projects.

3. Develop, test, and deploy your applications,
all within the IDE

Geoff Chiang

4. Simple, step-by-step instructions in an
easy-to-follow format.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Spring Security 3.x
Cookbook

Spring Security 3.x Cookbook
ISBN: 978-1-78216-752-5 Paperback: 300 pages

Over 60 recipes to help you successfully safeguard
your web applications with Spring Security

1. Learn about all the mandatory security
measures for modern day applications
using Spring Security.

2. Investigate different approaches to application
level authentication and authorization.

3. Master how to mount security on applications
used by developers and organizations.

%

Spring Web Flow 2
Web Development

Spring Web Flow 2 Web
Development
ISBN: 978-1-84719-542-5 Paperback: 200 pages

Master Spring's well-designed web frameworks to
develop powerful web applications

1. Design, develop, and test your web applications
using the Spring Web Flow 2 framework.

2. Enhance your web applications with
progressive AJAX, Spring security integration,
and Spring Faces.

3. Stay up-to-date with the latest version of Spring
Web Flow.

4. Walk through the creation of a bug tracker web
application with clear explanations.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Spring Batch Fundamentals
	Introduction to batch applications
	Spring Batch and its offerings
	Spring Batch infrastructure
	Spring Batch components

	Job design and executions
	Summary

	Chapter 2: Getting Started with Spring Batch Jobs
	Spring Batch XML features
	Spring Batch XML namespace
	Spring Batch XML tags

	Configuring jobs, transactions, and repositories
	Job configuration
	Step configuration
	Tasklet configuration
	Chunk configuration
	Transaction configuration
	Job repository configuration

	EL and listeners
	Listeners
	Job listeners
	Step listeners
	Item listeners

	Executing jobs from the command line and web applications
	JobLauncher
	Launching a job from a command line
	Launching a job from within a web application
	Stopping batch jobs gracefully

	Schedulers
	Summary

	Chapter 3: Working with Data
	Data reading
	ItemReader
	Reading data from flat files
	Fixed width file
	FlatFileItemReader
	LineMapper
	Delimited file
	Exceptions from flat file reading

	Reading data from XML
	Reading data from a database
	JdbcCursorItemReader
	JdbcPagingItemReader

	Data processing
	ItemProcessor
	Chaining the process

	Data writing
	ItemWriter
	Flat file item writers
	FieldExtractor
	Writing delimited files
	Writing a fixed width file
	XML item writers

	Database item writers
	JDBC-based database writing
	ORM-based database writing

	Custom item readers and writers
	Summary

	Chapter 4: Handling Job Transactions
	Transactions
	Spring Batch transaction management
	Tasklet steps
	Chunk-oriented steps
	Listeners

	Customizing the transaction
	Transaction patterns
	Simple transaction
	Global transaction
	Summary

	Chapter 5: Step Execution
	Controlling the job flow
	Using an exit code
	Using a decision logic

	Data sharing
	Using execution context
	Using Spring holder beans

	Externalization and termination
	Externalization
	External flow definition and including it in desired jobs
	Inherited jobs mechanism
	Termination
	Terminating in the COMPLETED state
	Terminating in the FAILED state
	Terminating in the STOPPED state

	Summary

	Chapter 6: Integrating Spring Batch
	Enterprise Integration
	Spring Integration
	Triggering a batch job to execute

	RESTful job processing
	Summary

	Chapter 7: Inspecting Spring Batch Jobs
	Batch job monitoring
	Accessing execution data
	Database
	JobRepository
	JobLauncher
	JobOperator
	JobExplorer

	Listeners
	Web monitoring
	Summary

	Chapter 8: Scaling with Spring Batch
	The batch scaling model
	The thread model
	Parallel processing
	Remote chunking
	Partitioning
	Summary

	Chapter 9: Testing the Spring Batch
	Types of testing for Spring Batch
	Unit testing
	JUnit
	Mockito

	Integration testing
	Listener-based approach
	The StepScopeTestUtils approach

	Functional testing
	Summary

	Appendix
	Setting up Java
	Setting up Eclipse IDE
	Setting up the project and its dependencies
	Spring Batch Administration

	Index

