Spring Essentials

Build mission-critical enterprise applications using Spring
Framework and Aspect Oriented Programming

Spring Essentials

Table of Contents

Spring Essentials
Credits

About the Authors

About the Reviewer

www.PacktPub.com

eBooks, discount offers, and more

Why subscribe?

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions

Reader feedback

Customer support
Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions
1. Getting Started with Spring Core

The Spring landscape

The Spring Framework modules

Spring Tool Suite (STS)
Spring subprojects

Design concepts behind Spring Framework

Setting up the development environment

Your first Spring application

Inversion of Control explained

Dependency Injection

The Spring IoC container

Configuration metadata
XML.-based configuration metadata
Annotation-based configuration metadata
XML.-based versus annotation-based configuration
Component stereotype annotations

Java-based configuration metadata
JSR 330 standard annotations

Beans in detail
Bean definition

Instantiating beans

With constructors

With a static factory-method

With an instance factory-method

Injecting bean dependencies
Constructor-based Dependency Injection
Setter-based Dependency Injection

Constructor-based or setter-based DI — which is better?

Cleaner bean definitions with namespace shortcuts

Wiring a List as a dependency

Wiring a Map as a dependency

Autowiring dependencies

Bean scoping

Dependency Injection with scoped beans

Creating a custom scope

Hooking to bean life cycles

Implementing InitializingBean and DisposableBean

Annotating @PostConstruct and @PreDestroy on @Components

The init-method and destroy-method attributes of <bean/>

Container-level default-init-method and default-destroy-method

Working with bean definition profiles

Injecting properties into the Spring environment
Externalizing properties with PropertyPlaceholderConfigurer
Handling resources
Spring Expression Language
SpEL features
SpEL annotation support
The SpEL API
Aspect Oriented Programming
Static and dynamic AOP
AQP concepts and terminology
Spring AOP — definition and configuration styles
XML schema-based AOP
@Aspect] annotation-based AOP
Declaring an (@Aspect annotation
Pointcuts
Pointcut designators
Pointcut examples

Advices

The @Around Advice

Accessing Advice parameters

Testing with Spring

Mock objects

Unit and integration testing utilities

Summary
2. Building the Web Layer with Spring Web MVC

Features of Spring MVC

The Model-View-Controller pattern

Your first Spring MVC application

Setting up a Spring MVC application
The project structure of a Spring MVC application

The web.xml file — Springifying the web app

ApplicationContext files in a Spring MVC application

HomeController — @Controller for the home screen

The home.jsp file — the landing screen

Handling incoming requests
The architecture and components of Spring MVC
DispatcherServlet explained

WebApplicationContext — ApplicationContext for the Web

Beans supporting DispatcherServlet and their roles
Controllers in detail

Mapping request URLs with @RequestMapping

URI template patterns with the @PathVariable annotation

Binding parameters with the @RequestParam annotation

Request handler method arguments

Request handler method return types

Setting Model attributes

Building RESTHul services for JSON and XML media

Building a RESTful service with RestController
Asynchronous request processing in Spring MVC

Working with views

Resolving views

Resolving JSP views

Binding Model attributes in JSP pages using JSTL
Spring and Spring form tag libraries

Composing a form in JSP

Validating forms

Handling file uploads

Resolving Thymeleaf views

More view technologies

Summary
3. Accessing Data with Spring

Configuring DataSource

Using embedded databases
Handling exceptions in the Spring Data layer
DAQ support and @Repository annotation
Spring JDBC abstraction
JdbcTemplate
NamedParameterJdbcTemplate
SimpleJdbc classes
JDBC operations with Sgl* classes
Spring Data
Spring Data Commons
Spring Data repository specification
Spring Data JPA
Enabling Spring Data JPA
JpaRepository
Spring Data MongoDB
Enabling Spring Data MongoDB
MongoRepository
Domain objects and entities

Query resolution methods

Using the @Query annotation

Spring Data web support extensions

Auditing with Spring Data

Spring Transaction support

Relevance of Spring Transaction

Spring Transaction fundamentals

Declarative transaction management

Transactional modes — proxy and Aspect]J

Defining transactional behavior

Setting rollback rules
Using the @Transactional annotation

Enabling transaction management for (@Transactional

Programmatic transaction management

Summary
4. Understanding WebSocket

Creating a simple WebSocket application
STOMP over WebSocket and the fallback option in Spring 4

Broadcasting a message to a single user in a WebSocket application
Summary
5. Securing Your Applications

Authentication
Authorization

The OAuth2 Authorization Framework

Summary
6. Building a Single-Page Spring Application
The motivations behind SPAs
SPAs explained
The architectural benefits of SPAs
SPA frameworks

Introducing Ember.js

The anatomy of an Ember application

Routers

Routes or route handlers

Templates

Components

Models

Controllers

Input helpers

Custom helpers

Initializers
Services

Working with Ember CLI
Setting up Ember CLI

Getting started with Ember CL.I commands

The Ember project structure
Working with the POD structure

Understanding the Ember object model
Declaring types (classes) and instances
Accessing and mutating properties
Computed properties
Property observers

Working with collections

Building UI templates using Handlebars
Handlebars helpers
Data binding with input helpers
Using control flow helpers in Handlebars
Using event helpers

Handling routes

Handling UI behavior using components
Building a ToggleButton component step by step

Persisting data with Ember Data

Ember Data architecture

Defining models
Defining model relationships

Building a Taskify application
Building the API server app

Setting up and configuring the project

Defining the model definitions — User and Task

Building API endpoints for the Taskify app

UserController.java

TaskController.java

Building the Taskify Ember app
Setting up Taskify as an Ember CLI project

Setting up Ember Data

Configuring application routes
Building the home screen
Building the user screen
Building a custom helper
Adding action handlers
Building a custom component — modal window
Building userEditModal using {{modal-window} }

Building the task screen

Summary

7. Integrating with Other Web Frameworks

Spring’s JSF integration

Spring’s Struts integration

Summary

Index

Spring Essentials

Spring Essentials
Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2016
Production reference: 1230216
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-234-9

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Shameer Kunjumohamed
Hamidreza Sattari
Reviewer

Jarostaw Krochmalski
Commissioning Editor
Julian Ursell
Acquisition Editors
Larissa Pinto

Pratik Shah

Content Development Editor
Aishwarya Pandere
Technical Editor

Siddhi Rane

Copy Editors

Kevin McGowan
Madhusudan Uchil
Project Coordinator
Nidhi Joshi

Proofreader

Safis Editing

Indexer

Hemangini Bari
Graphics

Kirk D’Penha
Production Coordinator
Shantanu N. Zagade
Cover Work

Shantanu N. Zagade

About the Authors

Shameer Kunjumohamed is a software architect specializing in Java-based enterprise
application integrations, SOA, and the cloud. Besides Java, he is well-versed in the
Node.js and Microsoft .NET platforms. He is interested in JavaScript MVC frameworks
such as EmberJS, AngularJS, and ReactJS.

Shameer has co-authored another book, Spring Web Services 2 Cookbook, Packt
Publishing with Hamidreza Sattari, who is the co-author of this book as well.

Based in Dubai, UAE, Shameer has over 15 years of experience in various functional
domains. He currently works as a principal applications architect for a major shipping
company in Dubai.

I would like to extend my thanks to a number of people who have inspired and influenced
me throughout my technical career. The Java, Spring, and Ember communities gave me
the knowledge and confidence to write this book. I thank my parents; my wife, Shehida;
and my daughters, Shireen, Shahreen, and Safa, who supported me and put up with me
when I was busy writing the chapters; it was their precious time I was taking for this book.
Special thanks to my friend Hamidreza, who is a great friend and colleague, and to the
coordinators and reviewers at Packt Publishing, who made this book a wonderful resource
for learning Spring.

Hamidreza Sattari is an IT professional and has worked in several areas of software
engineering, from programming to architecture as well as management. He holds a
master’s degree in software engineering from Herriot Watt University, UK. In recent
years, his areas of interest have been software architecture, data science, and machine
learning. He co-authored the book Spring Web Services 2 Cookbook, Packt Publishing in
2012. He maintains the blog http://justdeveloped-blog.blogspot.com/.

First, I should thank the members of the open source community, who are far too many to
name. [have been able to write this book by using their products, ideas, articles, and
blogs. I would like to give special thanks to my friend Shameer P.K. for his significant role
in writing this book.

http://justdeveloped-blog.blogspot.com/

About the Reviewer

Jaroslaw Krochmalski is a passionate software designer and developer who specializes
in the financial business domain. He has over 12 years of experience in software
development. He is a clean code and software craftsmanship enthusiast. He is a Certified
ScrumMaster and a fan of Agile. His professional interests include new technologies in
web application development, design patterns, enterprise architecture, and integration
patterns. He has been designing and developing software professionally since 2000 and
has been using Java as his primary programming language since 2002. In the past, he
worked for companies such as Kredyt Bank (KBC) and Bank BPS on many large-scale
projects, such as international money orders, express payments, and collection systems.
He currently works as a consultant at the Danish company 7N as an IT architect for
Nykredit Bank. You can reach him via Twitter at @jkroch or by e-mail at
<jarek@finsys.pl>.

I would like to say hello to my friends at 7N and Nykredit; keep up the great job!

mailto:jarek@finsys.pl

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <customercare@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

IE\ PACKT!L E°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Preface

There are a lot of books written about Spring Framework and its subprojects. A multitude
of online references are also available. Most of these massive resources discuss Spring in a
lot of detail, which makes learning Spring a very time-consuming and sometimes tedious
effort. The idea of this book is to allow novice Java developers or architects to master
Spring without spending much time and effort and at the same time provide them with a
strong foundation on the topic in order to enable them to design high-performance systems
that are scalable and easily maintainable.

We have been using Spring Framework and its subprojects for more than a decade to
develop enterprise applications in various domains. While the usage of Spring quickly
raises the design quality of projects with its smart templates and subframeworks
abstracting many error-prone and routine programming tasks, a developer needs a
thorough understanding of its concepts, features, best practices, and above all, the Spring
programming model in order to utilize Spring to its best.

We have seen Spring used wrongly inside many projects mainly because the developer
either didn’t understand the right use of a particular Spring component or didn’t bother to
follow the design approach Spring suggests for that component. Often, developers didn’t
appear to have the right knowledge of Spring Framework; when asked, their complaint
mostly was the uphill task of learning such a vast framework from huge documentation.
Most of this category of developers find Spring a mammoth framework that is difficult to
learn, which is not really true.

Spring, if the basics are understood correctly, is very easy to conquer further. A developer
needs to understand the Spring style of programming and architecting applications, and
the result will be a piece of art. The design will look simple, pretty straightforward, and
easily understandable, which is very important for the evolution of applications in the long
run. This book is an attempt to fill that gap and provide a very solid foundation in Spring,
its concepts, design styles, and best practices, in a very quick and easy way.

This book tries to engage the reader by providing the feeling of developing a realistic,
modern enterprise application using Spring and its necessary features while giving him or
her a solid understanding of its concepts, benefits, and usage with real-life examples. It
covers the most important concepts and features of Spring Framework and a few of its
critical subprojects that are necessary for building modern web applications.

The goal of Spring is to simplify enterprise application development. We hope this book
simplifies mastering Spring so that developers can build smarter systems that make the
world a better place.

What this book covers

Chapter 1, Getting Started with Spring Core, introduces the core Spring Framework,
including its core concepts, such as POJO-based programming, Dependency Injection, and
Aspect Oriented Programming, to the reader. It further explains the Spring IoC container,
bean configurations, Spring Expression Language (SpEL), resource management, and
bean definition profiles, all which become the foundation for the advanced topics.

Chapter 2, Building the Web Layer with Spring Web MVC, gives in-depth coverage of the
Spring MVC web framework with its features and various different ways of configuring
and tuning web applications using Spring. The chapter covers the building of both view-
based web applications and REST APIs with many available options, including
asynchronous request processing.

Chapter 3, Accessing Data with Spring, discusses the different data-access and persistence
mechanisms that Spring offers, including the Spring Data family of projects, such as
Spring Data JPA and Spring Data Mongo. This chapter enables the reader to design an
elegant data layer for his or her Spring application, delegating all the heavylifting to
Spring.

Chapter 4, Understanding WebSocket, discusses the WebSocket technology, which is
gaining wider usage inside modern web applications, where low latency and high
frequency of communication are critical. This chapter explains how to create a WebSocket
application and broadcast a message to all subscribed clients as well as send a message to
a specific client, and shows how a broker-based messaging system works with STOMP
over WebSocket. It also shows how Spring’s WebSocket fallback option can tackle
browser incompatibility.

Chapter 5, Securing Your Applications, teaches the reader how to secure his or her Spring
applications. It starts with authentication and explains Spring flexibility on authorization.
You learn how to integrate your existing authentication framework with Spring. On
authorization, it shows how to use Spring EL expressions for web, method, and domain
object authorization. It also explains the OAuth 2.0 Authorization Framework and how to
allow third-party limited access to user’s protected resources on a server without sharing
user’s username and password.

Chapter 6, Building a Single-Page Spring Application, demonstrates how Spring can be
used as the API server for modern single-page applications (SPAs) with an example of an
Ember JS application. At first, it introduces the concept of SPAs, and then it explores
using Ember JS to build the SPA. Finally, it covers building the backend API that
processes requests asynchronously using Spring MVC and implements persistence using
Spring Data JPA.

Chapter 7, Integrating with Other Web Frameworks, demonstrates how Spring can be
integrated with Java web frameworks such as JSF and Struts so that even web applications
not based on Spring MVC can leverage the power of Spring.

What you need for this book

In order to execute the sample projects used in this book, you need the following software
installed on your computer:

For all chapters, in general, you need the following software:

Java version 8 onwards
Spring Framework 4.x
Apache Maven 3.x.x
Apache Tomcat 8.x

For Chapter 3, Accessing Data with Spring, you need the following databases:

e PostgreSQL 8 onwards
e MongoDB 3.x

Additionally, for Chapter 6, Building a Single-Page Spring Application, you need the
following software:

e Node.js version 4.x
e Bower JS in the latest version

Who this book is for

If you are a Java developer who is looking to master enterprise Java development using
Spring Framework, then this book is ideal for you. A prior understanding of core Java
programming and a high-level understanding of Spring Framework is recommended.
Having sound knowledge of Servlet-based web development in Java and basic database
concepts would be an advantage but not a requirement.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “Spring
provides mock classes for both client and server sides inside the
org.springframework.mock.http and org.springframework.mock.http.client
packages.”

A block of code is set as follows:

<dependencies>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-context</artifactId>
<version>${spring-framework.version}</version>
</dependency>

</dependencies>
Any command-line input or output is written as follows:

mvn clean package spring-boot:run -Dserver.contextPath=/myapp -
Dserver.port=9090

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: “STS and Eclipse allow
you to run Java web apps from the IDE just by right-clicking Run As and then Run on
Server.”

Note

Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you’re looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NoU,s~WN

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

e WinRAR / 7-Zip for Windows
e Zipeg/iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

http://www.packtpub.com
http://www.packtpub.com/support

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in the
output. You can download this file from

https://www.packtpub.com/sites/default/files/downloads/SpringEssentials_Colorlmages.pd

https://www.packtpub.com/sites/default/files/downloads/SpringEssentials_ColorImages.pdf

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

Questions

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.

mailto:questions@packtpub.com

Chapter 1. Getting Started with Spring
Core

Spring Framework is the most trusted and widely used application development
framework in Enterprise Java. Originally introduced as a simple and lightweight
alternative for the complex J2EE, Spring has now grown to become a truly modern
application development platform. Spring and its subprojects provide an excellent
foundation for end-to-end application development, with features beyond even those
provided by the latest Java EE, such as mobile development, social networking, and big
data, besides traditional Java web, server-side, or even standalone applications. After more
than a decade since its inception, Spring continues to inspire technologies and
technologists across the globe.

Although Spring simplifies Java development drastically, software developers and
architects are still required to gain a thorough understanding of its core concepts and
features in order to deduce the best use of the Spring family. The simplicity Spring offers
to otherwise complex Java development is the result of smart abstractions that it provides
in the form of excellent APIs and modules. Spring components relieve the developer of all
the technical complexity and heavy lifting of common technical and infrastructure
plumbing tasks. As the official Spring documentation says, Spring provides
comprehensive infrastructure support so that you can focus on your application.

This book is an attempt to make your Spring learning even easier and a more enjoyable
experience.

This chapter gives you a solid foundation of the core Spring Framework, guiding you
through its core concepts, components, and modules accompanied by relevant sample
code snippets that illustrate the best and most practical usage of each feature in order to
solve your everyday programming problems.

In this chapter, we will cover the following topics:

The Spring landscape

Setting up the development environment
Your first Spring application

Core concepts

The IoC (Inversion of Control) container
Beans in detail

Working with bean definition profiles
Handling resources

SpEL (Spring Expression Language)
Aspect Oriented Programming

The Spring landscape

Spring covers a wide variety of technological aspects handled by applications of different
types, ranging from a simple standalone Java application up to the most complex, mission
critical distributed enterprise systems you can imagine. Unlike most other open source or
proprietary frameworks that focus on a specific technology concern such as Web,
Messaging, or Remoting, Spring successfully covers almost all the technical aspects of
business applications. In most cases, instead of reinventing solutions, Spring utilizes and
integrates proven existing frameworks to achieve this end-to-end coverage. Spring is
highly modular; hence, it noninvasively allows you to cherry-pick just the modules or
features you require in order to become a one-stop shop for all your development needs on
JVM.

The whole Spring Framework portfolio is organized into three major elements:

e Spring Framework
e Spring Tool Suite
e Spring subprojects

Spring is constantly improving and becoming more and more modular with every new
version so that you can use just the required modules.

Note

This book is based on Spring version 4.

The Spring Framework modules

The core Spring Framework provides basic infrastructure for Java development on top of
its core Inversion of Control (IoC) container. The IoC container is an infrastructure that
provides Dependency Injection (DI) for applications. Both the concepts of Dependency
Injection and IoC containers are explained in detail later in this chapter. The core Spring
Framework is divided into the following modules, providing a range of services:

Module

Summary

Core container Provides the IoC and Dependency Injection features.

applications.

AOP and Provides AOP Alliance compliant features for weaving cross-cutting concerns in Spring
instrumentation applications.

. Provides messaging abstraction over the Spring Integration project for messaging-based
Messaging “ ging pring Integ proj ging

. . |IThe data-access/integration layer consists of JDBC, ORM, OXM, JMS, and transaction
Data access/integration

modules.
'Web 'Web technology abstraction over Spring MVC, web socket, and portlet APIs.
Test Unit testing and integration testing support with JUnit and TestNG frameworks.

Spring Tool Suite (STS)

STS is an Eclipse-based IDE (short for Integrated Development Environment) for
Spring development. You can download the pre-bundled STS from
http://spring.io/tools/sts/all or update your existing Eclipse installation from the update site
found at the same location. STS provides various high-productivity features for Spring
development. In fact, a Java developer can use any IDE of their choice. Almost all the
Java IDEs support Spring development, and most of them have got plugins available for

Spring.

http://spring.io/tools/sts/all

Spring subprojects

Spring has many subprojects that solve various application infrastructure needs. From
configuration to security, web apps to big data, productivity to enterprise application
integration (EAI), whatever your technical pain point be, you will find a Spring project to
help you in your application development. Spring projects are located at

http://spring.io/projects.

Some notable projects you may find useful right away are Spring Data (JPA, Mongo,
Redis, and so on), Spring Security, Spring Web Services, Spring Integration, Spring for
Android, and Spring Boot.

http://spring.io/projects

Design concepts behind Spring
Framework

The design of Spring Framework is motivated by a set of design patterns and best
practices that have evolved in the industry to address the complexity of Object Oriented
Programming, including;:

e Simple, noninvasive, and lightweight POJO (Plain Old Java Objects)
programming, without having a need for complex application servers

e Loosely-coupled dependencies, achieved by applying the concepts of program to
interfaces and composition over inheritance, which are the underlying design
principles of design patterns and frameworks

e Highly configurable systems composed of objects with externalized Dependency
Injection

e Templated abstractions to eliminate repetitive, boilerplate code

e Declarative weaving of cross-cutting aspects without polluting business components

Spring implements established design principles and patterns into its elegant components
and promotes their use as the default design approach in applications built using Spring.
This noninvasive approach lets you engineer robust and highly maintainable systems
composed of loosely coupled components and objects written in clean and modular code.
Spring Framework components, templates, and libraries realize the goals and concepts
explained earlier in the chapter, leaving you to focus on your core business logic.

Setting up the development environment

Spring projects are usually created as Java projects based in Maven, Gradle, or Ivy (which
are build automation and dependency management tools). You can easily create a Maven-
based Spring project using STS or Eclipse with Spring Tools support. You need to make
sure your pom.xml (Maven configuration) file contains, at the minimum, a dependency to
spring-context:

<dependencies>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-context</artifactId>
<version>${spring-framework.version}</version>
</dependency>

</dependencies>

Of course, you should add further dependencies to modules such as spring-tx, spring-
data-jpa, spring-webmvc, and hibernate, depending on your project type and
requirements.

Unless you explicitly specify the repository location, your project works with Maven’s
central repository. Alternatively, you can point to Spring’s official Maven repository (for
example, for milestones and snapshots) by specifying it in your pom. xm1 file:

<repositories>
<repository>
<id>io.spring.repo.maven.milestone</id>
<url>http://repo.spring.io/milestone/</url>
<snapshots><enabled>false</enabled></snapshots>
</repository>
</repositories>

You can use the Spring release, milestone, and snapshot repositories as required.

If you are using Gradle as your build system, you can declare your dependencies (typically
in the build.gradle file) as follows:

dependencies {
compile('org.springframework:spring-context')
compile('org.springframework:spring-tx"')
compile('org.hibernate:hibernate-entitymanager"')
testCompile('junit:junit')

}

If you prefer using the Ivy dependency management tool, then your Spring dependency
configuration will look like this:

<dependency org="org.springframework"
name="spring-core" rev="4.2.0.RC3" conf="compile->runtime"/>

Your first Spring application

Let’s start with a very simple Spring application now. This application simply greets the
user with a welcome message. Technically, it demonstrates how you configure a Spring
ApplicationContext (IoC container) with just a single bean in it and invoke that bean
method in your application. The application has four artifacts in it (besides the project
build file, of course):

GreetingService.java: A Java interface—just a single method
GreetingServiceImpl.java: A simple implementation of GreetingService
Application.java: Your application with a main method

[
[
[
e application-context.xml: The Spring configuration file of your application

The following are the service components of your application. The service implementation
just prints a greeting message to the logger:

interface GreetingService {
void greet(String message);
}

public class GreetingServiceImpl implements GreetingService {
Logger logger = LoggerFactory.getLogger(GreetingService.class);

public void greet(String message) {
logger.info("Greetings! " + message);

b
}

Now let’s take a look at the application-context.xml file, which is your Spring
configuration file, where you register GreetingService as a Spring bean in the following
listing:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">
<bean id="Greeter"

class="com.springessentialsbook.chapterl.GreetingServiceImpl">

</bean>

</beans>

Finally, you invoke the GreetingService.greet () method from your Spring application,
as given in the following code:

public class Application {

public static void main(String[] args) {
ApplicationContext context = new ClassPathXmlApplicationContext(new
String[] {"application-context.xml"});
GreetingService greeter = (GreetingService)
context.getBean("Greeter");
greeter.greet("I am your first Spring bean instance, configured purely

with XML metadata. I am resolved by name.");

}
}
We will explore and conquer the mighty Spring Framework right from this very simple
and pretty much self-explanatory application. We will discuss and elaborate the concepts
behind this application, and more, in the following sections.

Inversion of Control explained

IoC is a design principle that decouples objects of an object-oriented program from their
dependencies (collaborators), that is, the objects they work with. Usually, this decoupling
is achieved by externalizing the responsibility of object creation and Dependency Injection
to an external component, such as an IoC container.

This concept is often compared to the Hollywood principle, “Don’t call us, we will call
you.” In the programming world, it recommends the main program (or a component) not
to instantiate its dependencies by itself but let an assembler do that job.

This immediately decouples the program from the many problems caused by tightly
coupled dependencies and relieves the programmer to let them quickly develop their code
using abstract dependencies (program to interfaces). Later, at runtime, an external entity,
such as an IoC container, resolves their concentrate implementations specified somewhere
and injects them at runtime.

You can see this concept implemented in the example we just saw. Your main program
(Application.java) is not instantiating the GreetingService dependencys; it just asks the
ApplicationContext (IoC container) to return an instance. While writing
Application.java, the developer doesn’t need to think about how the GreetingService
interface is actually implemented. The Spring ApplicationContext takes care of object
creation and injects any other functionality transparently, keeping the application code
clean.

Objects managed by an IoC container do not control the creation and resolution of their
dependencies by themselves; rather, that control is inverted by moving it away to the
container itself; hence the term “Inversion of Control”.

The IoC container assembles the components of the application as specified in the
configuration. It handles the life cycles of the managed objects.

Dependency Injection

Dependency Injection is a specific form of Inversion of Control. It is a more formalized
design pattern, whereby dependencies of an object are injected by an assembler. DI is
generally performed in three major styles: constructor injection, property (setter) injection,
or, sometimes, interface injection. IoC and DI are often used interchangeably.

DI offers several benefits, including effective decoupling of dependencies, cleaner code,
and increased testability.

The Spring IoC container

The core Spring modules, spring-core, spring-beans, spring-context, spring-
context-support, and spring-expression, together make up the core container. The
Spring IoC container is designed as an implementation of the following interfaces:

® org.springframework.beans.factory.BeanFactory
® org.springframework.context.ApplicationContext

The BeanFactory interface provides the configuration framework and basic functionality,
while ApplicationContext, an extension of BeanFactory, adds more enterprise-specific
functionality, such as easier integration with Spring’s AOP features, message resource
handling (for internationalization), and event publication.

Spring provides several concrete implementations of ApplicationContext out of the box
for various contexts. The following table lists the most popular ones among them:

Application context ||Typical application type
ClassPathXmlApplicationContext Standalone |
AnnotationConfigApplicationContext||Standalone |
FileSystemXmlApplicationContext Standalone |
GenericWebApplicationContext 'Web |
XmlWebApplicationContext | 'Web |
XmlPortletApplicationContext 'Web portlet |

In Spring, objects managed by the IoC container are called beans. The IoC container
handles the assembly and lifecycles of Spring beans. Beans are defined in the
configuration metadata consumed by the container, which instantiates and assembles them
in order to compose your application.

Configuration metadata

Spring supports three forms of configuration metadata to configure your beans:

e XML-based configuration metadata
e Annotation-based configuration metadata
e Java-based configuration metadata

The example code listing you saw earlier used XML-based configuration metadata. You
can always mix and match different forms of metadata in a single application. For
example, you may define the primary metadata to be a root XML file that combines a set
of annotation-based metadata that in turn defines beans from different layers.

XML-based configuration metadata

The application-context.xml file we saw in the previous Spring application sample is a
very minimal example for XML-based configuration metadata. Beans are configured as
<bean/> elements inside a top-level <beans> element.

Classes representing the service layer (core business logic, also known as Service classes),
Data Access Objects (DAOs), managed web backing beans (such as Struts action
instances and JSF managed beans), infrastructure objects (such as Hibernate session
factories and JMS queues), and so forth, are excellent candidates for Spring beans. Fine-
grained domain objects are not generally configured as Spring beans, because it is usually
the responsibility of DAOs and the business logic to create and load domain objects—
Hibernate entities are typical examples.

You can create a consolidated (root) ApplicationContext XML file that imports other
XML files representing various layers of the application:

<?xml version="1.0" encoding="UTF-8"?>
<beans..>

<import resource="/xml-data-access-objects.xml"/>
<import resource="/xml-services.xml"/>

<import resource="/web-beans.xml"/>

<import resource="/rest-endpoints.xml"/>

<bean id="systemSettings" class="com..SystemSettings">
</beans>

Annotation-based configuration metadata

This method relies on bytecode metadata to wire up components instead of XML-based
angle bracket declarations. Configuration of a bean is defined at the source level of the
bean itself, in the form of annotations at class, field, or method levels.

Let’s take a look at the simplest Spring bean configured by source-level annotation:

@Component("Greeter")
public class GreetingServiceImpl implements GreetingService {

Logger logger = LoggerFactory.getLogger(GreetingService.class);

public void greet(String message) {
logger.info("Greetings! " + message);
}

}

This is just an annotated version of the same GreetingServiceImpl shown in the Your
first Spring application section, where it was configured in the application-context.xml
file purely in XML form. In this preceding listing, the annotation @Component makes it a
Spring bean. Now, it doesn’t require to be defined in XML, but you should instruct your
ApplicationContext to consider annotations, as given in the following code:

<context:component-scan base-package="com.springessentialsbook"/>

This code snippet in your application-context.xml file forces ApplicationContext to
scan the entire application, including all its dependencies—even inside JAR files—for
components annotated as Spring beans of various stereotypes, such as @Component,
@Service, @Repository, and @Controller. In addition to component scanning, the
ApplicationContext looks for all the annotations in that bean at the class, property,
constructor, and method levels (including setter methods) in order to inject dependencies
and other behaviors into your beans at startup.

Beware, component scanning can be time consuming if you provide a broader package
name to the base-package attribute; it is advised to provide more specific package names
to scan (for example, a set of comma-separated package names) so that you have more
control. You can narrow down your component scanning even further using
<context:include-filter/> and <context:exclude-filter/>.

Another simple instruction to enable annotation configuration is <context:annotation-
config/>. It simply looks for annotations on beans registered in the application context
and will not detect the components, whereas if you use <context :component-scan/>, it
handles both component scanning and other annotations, which will be covered later in
this chapter, so you do not need to explicitly declare <context:annotation-config/>. So,
the best method for annotation-based configuration is to use <context:annotation-
config/>.

XML-based versus annotation-based configuration

XML-based configuration has some advantages over its annotation-based counterpart. The
biggest one is that all your bean definitions are in one place and not scattered in many
classes or even JAR dependencies. XML allows you to split your metadata files and then
combine them using <import/>. Using XML, you can configure any class, including
third-party ones such as Spring beans, and inject dependencies and other services into it,
which is impossible in the case of annotation. Also, you can define the same class as
multiple different beans, each with a different name, dependencies, configuration, and so
on.

Annotation-based metadata too has some advantages over XML configuration. It is more
concise and much easier to develop and maintain, as your annotation and DI are right
inside your source code. All information about a class is in one place.

For bigger applications, the best option would be a mixed approach where the more
reusable beans (libraries shared between multiple projects) and third-party components are
configured in XML and those with a smaller scope are annotated.

Component stereotype annotations

Spring provides further component stereotypes for beans that represent various roles. The
primary stereotype is @Component, and all the others are its specializations for more
specific use cases:

Stereotype Description

@Component ||A generic type for all Spring-managed components (beans).

@service Marker meta-annotation for service layer components. Currently, Spring treats this the same as
@Component, with no special function.

@Repository Used as DAOs in your persistence layer. Spring Data libraries provide additional functionality.

@Controller Handles Web MVC endpoints in order to process HTTP requests mapped to specific URLs.

@RestController A specialized controller for RESTful web services, part of Web MVC. It is a meta-annotation that
combines @Controller and @ResponseBody.

Custom stereotypes can be created by defining meta-annotations from scratch or
combining existing annotations.

Java-based configuration metadata

Starting with Spring 3.0, you can configure Spring metadata purely inside Java classes,
completely avoiding any XML configuration while enhancing annotation-based metadata.
You annotate any Java class with @configuration annotation at the class level and have
methods annotated as @Configuration annotation on a factory method that instantiates an
@Component annotation, or any other specialized bean, to define your application context.
Let’s see a simple example:

@Configuration

@ComponentScan(basePackages = '"com.springessentialsbook")
public class SpringJavaConfigurator {

@Autowired
private GreetingService greeter;

@Autowired
private BannerService banner;

@Bean

public BannerService createBanner() {
return new BannerService();

¥

public BannerService getBanner() {
return this.banner;

}

public void run() {
this.banner.displayBanner();

this.greeter.greet("I am the Greeter Spring bean, configured with
Java Configuration.");

b
}

In springJavaConfigurator.java, the Java configuration class configures the Spring
beans, replacing the application-context.xml file. Your Spring application can directly
depend on this Configuration class for loading ApplicationContext.

Typically, you use an AnnotationConfigApplication instance for instantiating your
application context:

ApplicationContext ctx = new AnnotationConfigApplicationContext(
SpringJavaConfigurator.class);
SpringJavaConfigurator app = ctx.getBean(SpringJavaConfigurator.class);

app.run();
BannerService banner = ctx.getBean(BannerService.class);
banner.displayBanner();

When @Cconfiguration classes are provided as the constructor argument, the
@Configuration class itself is registered as a bean definition and so are all declared @Bean
methods within the class. Spring will scan for the entire project and its dependencies for
@Component or its specializations (the other stereotypes listed previously), matching the
argument values provided in @ComponentScan(basePackages = "..") with all other
relevant annotations and building the application context.

The advantage of JavaConfig metadata is that you have programmatic control over Spring
configuration while separating out the entire DI and bean configuration into a separate
Java class. Using JavaConfig, you eliminate the complexity of managing many XML files.
You detect any configuration issues during development at the earliest, as JavaConfig fails
during compilation itself, while in the case of XML, you will know about the
configuration issues only on application startup.

JSR 330 standard annotations

Besides Spring-specific annotations, Spring supports JSR 330 standard annotations for DI,
starting from Spring 3.0. You just need to include javax.inject artifacts in your Maven
or Gradle configuration.

JSR 330 standard annotations have the following equivalents in Spring:

-Spring ||JSR-330 (javax.inject.*)||Target level / Usage |
@Component @Named ||Type (class) |
@Autowired @Inject Property and setter methods
@Qualifier @Named ||Type, property and setter methods |
[I

|@Scope("singleton“)
While the default scope of Spring beans is singleton, the JSR 330 default scope is like
Spring’s prototype. However, for consistency, Spring treats JSR 330 annotated beans
inside Spring as singleton, unless declared prototype explicitly using @Scope("..").

@Singleton "Meta—annotation for bean declarations“

JSR 330 has no equivalents for some Spring-based DI annotations, such as @value,
@Required, and @Lazy. We will discuss more about bean scopes later in this chapter.

Beans in detail

A Spring application is composed of a set of beans that perform functionality specific to
your application layers and are managed by the IoC container. You define your beans with
configuration metadata in the form of XML, annotation, or JavaConfig.

Note

The default scope of a Spring bean is singleton. This means that a single instance is
shared between clients anywhere in the application. Beware of keeping state (class level
data) in singleton classes, as a value set by one client will be visible to all others. The
best use case for such singleton classes are stateless services.

Beans are uniquely identified by an id attribute, any of the values supplied to the (comma,
semicolon, or space separated) name attribute of the bean definition, or even as an alias
definition. You can refer to a bean anywhere in the application with id or any of the names
or aliases specified in the bean definition.

It’s not necessary that you always provide an id or name to the bean. If one isn’t provided,
Spring will generate a unique bean name for it; however, if you want to refer to it with a
name or an id, then you must provide one.

Spring will try to autowire beans by type if id or name is not provided. This means that
ApplicationContext will try to match the bean with the same type or implementation in
case it is an interface.

You can refer to a bean by type if it is either the only bean registered of that type or
marked as @Primary (primary="true" for XML). Generally, for nested bean definitions
and autowire collaborators, you don’t need to define a name unless you refer to it outside
the definition.

You can alias a bean outside the bean definition using the <alias/> tag, as follows:

<alias name="fromName" alias='"toName"/>

Bean definition

A bean definition object that you define to describe a bean has the following metadata:

Property Description

class The fully qualified class name of the bean.

id The unique identifier of the bean.

name One or more unique names separated by commas, semicolons, or whitespace. Typically, id and name
would be the same, and you supply either of these. Other names in the list become aliases.

parent The parent bean for inheriting configuration data from a parent bean definition.

scope Th.is dec'ides the scope of the objects. The defaglt scope of a Spring bean is singleton. This means that
a single instance is shared between calls. We will discuss more about bean scopes later.

gggztructor Bean references or names for constructor-based DI.

properties [[Values or references for setter-based DI.

autowire Instructs the bean whether or how to autowire relationships with collaborators. Autowiring will be

This indicates that the bean should be considered as the primary autowiring candidate in case of multiple

matches being found.

mode |discussed later.
primary |

depends-on [IThis forces instantiation of dependent beans prior to this bean.

lazy-init [If true, this creates a bean instance when it is first requested.

init-method Initialization callback method. This has no args void method and will be invoked post instance

creation.
lﬂgiﬁggy_ Destruction callback method. This has no args void method and will be invoked before destroy.
:;:Eg;y- Static instance factory method on the bean itself, unless factory-bean is provided.
factory- Another bean reference that is acting as an instance factory for this bean. Usually comes along with the
bean factory-method property.

Let’s take a look at a sample bean definition in XML form:

<bean id="xmlTaskService" class="com..XmlDefinedTaskService"
init-method="1init" destroy-method="cleanup">
<constructor-arg ref="userService"/>
<constructor-arg>
<bean class="com..TaskInMemoryDAOQ'"></bean>
</constructor-arg>
</bean>

In this sample application-context file, the bean, xmlTaskService, is autowired via a

constructor, that is, dependencies are injected via a constructor. The first constructor
argument refers to an existing bean definition, and the second one is an inline bean
definition without an id. The bean has init-method and destroy-method pointed to its
own methods.

Now, let’s take a look at an annotated bean with slightly different features:

@Service
public class AnnotatedTaskService implements TaskService {

@Autowired
private UserService userService;

@Autowired
private TaskDAO taskDAO;

@PostConstruct

public void init() {
logger.debug(this.getClass().getName() + " started!");

}

@PreDestroy
public void cleanup() {

logger.debug(this.getClass().getName() + " is about to destroy!");
}

public Task createTask(String name, int priority, int createdByuserlId,
int assigneeUserId) {

Task task = new Task(name, priority, "Open",
userService.findById(createdByuserId), null,
userService.findById(assigneeUserId));

taskDAO.createTask(task);

logger.info("Task created: " + task);

return task;

}

This @service bean autowires its dependencies on its fields (properties) using an
@Autowired annotation. Note the @PostConstruct and @PreDestroy annotations, the
equivalents of init-method and destroy-method in the previous XML bean definition

example. These are not Spring specific but are JSR 250 annotations. They work pretty
well with Spring.

Instantiating beans

Bean definitions are recipes for instantiating bean instances. Depending on metadata
attributes such as scope, lazy, and depends-on, Spring Framework decides when and how
an instance is created. We will discuss it in detail later. Here, let’s look at the “how” of
instance creation.

With constructors

Any bean definition with or without constructor arguments but without a factory-method
is instantiated via its own constructor, using the new operator:

<bean id="greeter" class='"com..GreetingBean'"></bean>

Now let’s see an annotated @component with a default constructor-based instantiation:

@Component("greeter")
public class GreetingService {

With a static factory-method

A static method within the same class, marked as factory-method, will be invoked to
create an instance in this case:

<bean id="Greeter" class="...GreetingBean" factory-method="newInstance">
</bean>

With Java configuration, you can use an @Bean annotation instead of factory methods:

@Configuration
@ComponentScan(basePackages = '"com.springessentialsbook")
public class SpringJavaConfigurator {

@Bean

public BannerService createBanner() {
return new BannerServiceImpl();

b

With an instance factory-method

In this case, bean definition does not need a class attribute, but you specify the factory-
bean attribute, which is another bean, with one of its non-static methods as factory-
method:

<bean id="greeter" factory-bean="serviceFactory" factory-
method="createGreeter"/>

<bean id="serviceFactory" class="...ServiceFactory">

<!— ... Dependencies.. -->

</bean>

Injecting bean dependencies

The main purpose of an IoC container is to resolve the dependencies of objects (beans)
before they are returned to the clients who called for an instance (say, using the getBean
method). Spring does this job transparently based on the bean configuration. When the
client receives the bean, all its dependencies are resolved unless specified as not required
(@Autowired(required = false)), and it is ready to use.

Spring supports two major variants of DI—constructor-based and setter-based DI—right
out of the box.

Constructor-based Dependency Injection

In constructor-based DI, dependencies to a bean are injected as constructor arguments.
Basically, the container calls the defined constructor, passing the resolved values of the
arguments. It is best practice to resolve mandatory dependencies via a constructor. Let’s
look at an example of a simple POJO @Service class, a ready candidate for constructor-
based DI:

public class SimpleTaskService implements TaskService {

private UserService userService;
private TaskDAO taskDAO;

public SimpleTaskService(UserService userService, TaskDAO taskDAO) {
this.userService = userService;
this.taskDAO = taskDAO;

j» :
Now, let’s define this as a Spring bean in XML:

<bean id="taskService" class="com..SimpleTaskService"">
<constructor-arg ref="userService" />
<constructor-arg ref="taskDA0"/>

</bean>

The Spring container resolves dependencies via a constructor based on the argument’s
type. For the preceding example, you don’t need to pass the index or type of the
arguments, since they are of complex types.

However, if your constructor has simple types, such as primitives (int, long, and
boolean), primitive wrappers (java.lang.Integer, Long, and so on) or String,
ambiguities of type and index may arise. In this case, you can explicitly specify the type
and index of each argument to help the container match the arguments, as follows:

<bean id="systemSettings" class="com..SystemSettings">
<constructor-arg index="0" type="int" value="5"/>
<constructor-arg index="1" type="java.lang.String" value="dd/mm/yyyy"/>
<constructor-arg index="2" type="java.lang.String" value="Taskify!"/>
</bean>

Remember, index numbers start from zero. The same applies to setter-based injection as
well.

Setter-based Dependency Injection

The container calls the setter methods of your bean in the case of setter-based DI after the
constructor (with or without args) is invoked. Let’s see how the bean definition for the
previous SystemSettings would look if the dependencies were injected via setter
methods, assuming the SystemSettings now has a no-args constructor:

<bean id="systemSettings" class="com..SystemSettings">

<property name="openUserTasksMaxLimit" value="5"/>

<property name="systemDateFormat" value="dd/mm/yyyy"/>

<property name="appDisplayName" value="Taskify!"/>
</bean>
Spring validates the bean definitions at the startup of the ApplicationContext and fails
with a proper message in case of a wrong configuration. The string values given to
properties with built-in types such as int, long, String, and boolean are converted and
injected automatically when the bean instances are created.

Constructor-based or setter-based DI — which is
better?

Which of these DI methods is better purely depends on your scenario and some
requirements. The following best practices may provide a guideline:

1.

Use constructor-based DI for mandatory dependencies so that your bean is ready to
use when it is first called.

When your constructor gets stuffed with a large number of arguments, it’s the
figurative bad code smell. It’s time to break your bean into smaller units for
maintainability.

Use setter-based DI only for optional dependencies or if you need to reinject
dependencies later, perhaps using JMX.

Avoid circular dependencies that occur when a dependency (say, bean B) of your
bean (bean A) directly or indirectly depends on the same bean again (bean A), and all
beans involved use constructor-based DI. You may use setter-based DI here.

You can mix constructor-based and setter-based DI for the same bean, considering
mandatory, optional, and circular dependencies.

In a typical Spring application, you can see dependencies injected using both approaches,
but this depends on the scenario, considering the preceding guidelines.

Cleaner bean definitions with namespace shortcuts

You can make your bean definitions cleaner and more expressive using p: (property) and
c:(constructor) namespaces, as shown here. While the p namespace enables you to use
the <bean/> element’s attributes instead of the nested <property/> elements in order to
describe your property values (or collaborating bean refs), the c namespace allows you to
declare the constructor args as the attributes of the <bean/> element:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:c="http://www.springframework.org/schema/c"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context/spring-context.xsd">

<bean id="p-taskService" class="com..SimpleTaskService" c:userService-
ref="userService" c:taskDAO-ref="taskDAQ"/>

<bean id="p-systemSettings" class="com..SystemSettings"
p:openUserTasksMaxLimit="5"
p:systemDateFormat"dd/mm/yyyy"
p:appDisplayName="Taskify!"/>
</beans>

The bean definitions in the preceding listing are cleaner but more expressive. Both c: and
p: namespaces follow the same conventions. You need to declare both at the XML root

element (<beans/>) before using them with the <bean/> elements. Note that you use the -
ref suffix for bean references.

Wiring a List as a dependency

On occasion, we will need to inject static collections of data as bean dependencies. Spring
provides a natural method to wire lists. See this example:

<bean id="systemSettings" class="com..SystemSettings">

<constructor-arg>
<list>
<value>admin@taskify.ae</value>
<value>it@taskify.ae</value>
<value>devops@taskify.ae</value>
</list>
</constructor-arg>
</bean>

The preceding example wires a java.util.List<String> for simplicity. If your list
contains a collection of beans, you can replace <value> with <ref> or <bean>.

Wiring a Map as a dependency
You can inject java.util.Map instances too in a similar fashion. Look at this example:
<bean id="systemSettings" class="com..SystemSettings">

<property name="emails">
<map>
<entry key="admin" value="admin@taskify.ae'"></entry>
<entry key="it" value="it@taskify.ae'></entry>
<entry key="devops" value="devops@taskify.ae'"></entry>
</map>
</property>
</bean>

You can inject beans as values, replacing <value> with <ref> or <bean>.

Autowiring dependencies

Spring can autowire dependencies of your beans automatically by inspecting the bean
definitions present in the ApplicationContext if you specify the autowire mode. In XML,
you specify the autowire attribute of the <bean/> element. Alternatively, you can annotate
a bean with @Autowired to autowire dependencies. Spring supports four autowiring
modes: no, byName, byType, and constructor.

Note

The default autowiring of Spring beans is byType. If you are autowiring an interface,
Spring will try to find an implementation of that interface configured as a Spring bean. If
there are multiple, Spring will look for the primary attribute of the configuration to
resolve; if not found, it will fail, complaining about an ambiguous bean definition.

Here is an example of autowiring constructor arguments:

@Service
public class AnnotatedTaskService implements TaskService {

@Autowired

public AnnotatedTaskService(UserService userService, TaskDAO taskDAO) {
this.userService = userService;
this.taskDAO = taskDAO;

j» :
Alternatively, you can autowire at the field level, as follows:

@Service
public class AnnotatedTaskService implements TaskService {

@Autowired

private UserService userService;
@Autowired

private TaskDAO taskDAO;

Autowiring can be fine-tuned with an @Qualifier annotation and required attribute:

@Autowired(required = true)
@Qualifier("taskDAO")
private UserService userService;

You can use @Qualifier at the constructor level too:

@Autowired
public AnnotatedTaskService(@Qualifier("userService") UserService
userService, @Qualifier("taskDAO") TaskDAO taskDAO) {
this.userService = userService;
this.taskDAO = taskDAO;

Bean scoping

When defining a bean with its dependencies and other configuration values, you can
optionally specify the scope of a bean in the bean definition. The scope determines the life
span of the bean. Spring comes up with six built-in scopes out of the box and supports the
creation of custom scopes too. If not explicitly specified, a bean will assume the
singleton scope, which is the default scope. The following table lists the built-in Spring
scopes:

Scope Description |
singleton ||This ensures a single instance inside the container. This is the default scope. |
prototype A new instance is created for every request for the bean. |
request Scopes an instance with the life cycle of every new HTTP request. |
session Scopes with the life cycle of every new HTTP session. |
globalSessionf{Scopes with an HTTP session inside a portlet context. |
application |IScopes with the life cycle of a ServletContext. It’s singleton for ServletContext.

While singleton and prototype work in all environments, request, session, and
application work only in web environments. The globalSession scope is for portlet
environments.

In an XML bean definition, the scope is set via the scope attribute of the <bean/> element:

<bean id="userPreferences" class="com.UserPreferences" scope="session">...
</bean>

You can annotate the bean scope as a meta-annotation to @Component or its derivations,
such as @Service and @Bean, as shown in the following listing:

@Component

@Scope("request")

public class TaskSearch {...}

Generally, service classes and Spring data repositories are declared as singleton, since
they are built stateless according to best practice.

Dependency Injection with scoped beans

Beans of different scopes can be wired up as collaborators in your configuration metadata.
For example, if you have a session-scoped bean as a dependency to singleton and face an
inconsistency problem, the first instance of the session-scoped bean will be shared
between all users. This can be solved using a scoped proxy in place of the scoped bean:

<bean id="userPreferences" class="com..UserPreferences" scope="session">
<aop:scoped-proxy />

</bean>

<bean id="taskService" class="com..TaskService">
<constructor-arg ref="userPreferences"/>

</bean>

Every time the scoped bean is injected, Spring creates a new AOP proxy around the bean
so that the instance is picked up from the exact scope. The annotated version of the
preceding listing would look like this:

@Component
@Scope(value = "session", proxyMode = ScopedProxyMode.TARGET_CLASS)
public class UserPreferences { ... }

public class AnnotatedTaskService implements TaskService {

@Autowired
private UserPreferences userPreferences;

Creating a custom scope

At times, the scopes supplied by Spring are not sufficient for your specific needs. Spring
allows you to create your own custom scope for your scenario. For example, if you want
to keep some business process level information throughout its life, you will want to
create a new process scope. The following steps will enable you to achieve this:

1. Create a Java class extending org.springframework.beans.factory.config.Scope.

2. Define it in your application context (XML or annotation) as a Spring bean.

3. Register the scope bean with your ApplicationContext either programmatically or
in XML with customScopeConfigurer.

Hooking to bean life cycles

Often, in enterprise application development, developers will want to plug in some extra
functionality to be executed just after the construction and before the destruction of a
business service. Spring provides multiple methods for interacting with such stages in the
life cycle of a bean.

Implementing InitializingBean and DisposableBean

The Spring IoC container invokes the callback methods afterPropertiesSet() of
org.springframework.beans.factory.InitializingBean and destroy() of
org.springframework.beans.factory.DisposableBean on any Spring bean and
implements them:

public class UserServiceImpl implements UserService, InitializingBean,
DisposableBean {

@Ooverride

public void afterPropertiesSet() throws Exception {
logger.debug(this + ".afterPropertiesSet() invoked!");
// Your 1initialization code goes here..

}

@Ooverride

public void destroy() throws Exception {
logger.debug(this + ".destroy() invoked!");
// Your cleanup code goes here..

}

Annotating @PostConstruct and @PreDestroy on
@Components

Spring supports JSR 250 @PostConstruct and @PreDestroy annotations on any Spring
bean in an annotation-supported environment, as shown here. Spring encourages this
approach over implementing Spring-specific interfaces, as given in the previous section:

@Service
public class AnnotatedTaskService implements TaskService {

@PostConstruct

public void init() {
logger.debug(this.getClass().getName() + " started!");

}

@PreDestroy
public void cleanup() {

logger.debug(this.getClass().getName() + " is about to destroy!");
}

The init-method and destroy-method attributes of
<bean/>

If you are using XML-only bean configuration metadata, then your best option is to
declare init-method and destroy-method attributes on your <bean/> tags:

<bean id="xmlTaskService" class="com..XmlDefinedTaskService" init-
method="init" destroy-method="cleanup">

</bean>

Container-level default-init-method and
default-destroy-method

You can even set container-level default init and destroy methods so that you don’t need
to set it for each bean. The container invokes these methods on beans only if they are
present:

<beans default-init-method="init" default-destroy-method="cleanup">

</beans>

Working with bean definition profiles

For commercial projects, it is a common requirement to be able to maintain two or more
environment-specific configurations and beans, activated selectively only in the
corresponding environment. For example, objects such as data sources, e-mail servers, and
security settings could be different for development, testing, and production environments.
You would want to switch them declaratively without touching the application code,
keeping it externally. Developers traditionally write complex scripts and property files
with separate builds to do this job. Spring comes to your rescue here with environment
abstraction using bean definition profiles and properties.

Bean definition profiles are a mechanism by which application context is configured
differently for different environments. You group bean definitions under named profiles in
XML or using annotation and activate one or more profiles in each environment. You can
set a default profile to be enabled if you do not specify one explicitly.

Let’s take a look the following sample listing that configures data sources for development
and production environments:

@Configuration
@ComponentScan(basePackages = '"com.springessentialsbook")
public class ProfileConfigurator {

@Bean
@Profile("dev")
public DataSource devDataSource() {
return new EmbeddedDatabaseBuilder ()
.setType(EmbeddedDatabaseType.HSQL) .addScript("scripts/tasks-
system-schema.sql") .addScript("scripts/tasks-master-data.sql") .build();
3
@Bean
@Profile("prod")
public DataSource productionDataSource() throws Exception {
Context ctx = new InitialContext();
return (DataSource)
ctx.lookup("java:comp/env/jdbc/datasource/tasks");

b
}

Practically, for production environments, externalizing this profile config in XML would
be a better idea, where you allow your DevOps team to modify it for different
environments and forbid them to touch your Java code. XML configuration would look
like the following listing:

<?xml version="1.0" encoding="UTF-8"7?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jdbc="http://www.springframework.org/schema/jdbc"
xmlns:jee="http://www.springframework.org/schema/jee"
xsi:schemaLocation="...">
<!-- other bean definitions -->
<beans profile="dev">

<jdbc:embedded-database id="dataSource">
<jdbc:script location="classpath:scripts/tasks-system-schema.sql"/>
<jdbc:script location="classpath:scripts/tasks-master-data.sql"/>
</jdbc:embedded-database>
</beans>

<beans profile="production">
<jee:jndi-lookup id="dataSource" jndi-
name="java:comp/env/jdbc/datasource"/>
</beans>
</beans>

You may create as many profiles as required; it is common for each developer to maintain
their own configurations, with profiles named after themselves, say @Profile("mary").

You can have multiple profiles active at the same time too; it depends on how well you
organize them without having conflicts or duplicate bean definitions across profiles.

Now you can activate one or more profiles as you need in each (dev, test, or prod)
environment using any one of the following methods:

1. Programmatically invoking ctx.getEnvironment().setActiveProfiles("p1",
2", ..).

2. Setting the property spring.profile.active—with comma-separated profile names
as value—as an environment variable, JVM system property, or Servlet context
param in web.xml.

3. Add -Dspring.profile.active="p1,p2, .." as a command-line or Java argument
while starting up your application.

Injecting properties into the Spring
environment

Besides the separation of environment-specific configuration using profiles, you would
still need to externalize many properties, such as database URLs, e-mails, and date
formats in a property file for easier handling. These properties would then either be
injected directly into the beans or read from environment by the beans at runtime. Spring’s
environment abstraction, together with @PropertySource annotation, makes this possible
in Spring applications.

The @PropertySource annotation provides a convenient and declarative mechanism for
adding a PropertySource to Spring’s environment:

@Configuration
@PropertySource('"classpath:application.properties")
@ComponentScan(basePackages = '"com.springessentialsbook")

public class SpringJavaConfigurator {

@Autowired

@Lazy
private SystemSettings systemSettings;

@Autowired
private Environment env;

@Bean

public SystemSettings getSystemSettings() {
String dateFormat = env.getProperty('"system.date-format");
String appDisplayName = env.getProperty("app.displayname");

return new SystemSettings(dateFormat, appDisplayName);

Externalizing properties with
PropertyPlaceholderConfigurer

PropertyPlaceholderConfigurer is another convenient utility to externalize property
values from a bean definition into a separate file that uses the standard
java.util.Properties format. It replaces placeholders in XML bean definitions with
matching property values in the configured property file, as shown here. This is the best
way to externalize profile or environment-specific information such as datasource config,
e-mail settings, and so on. The DevOps team will just edit these property files and never
mess with your code:

<bean
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigur
er'>

<property name="locations" value="classpath:datasource.properties"/>
</bean>

<bean id="dataSource" destroy-method="close"
class="org.apache.commons.dbcp.BasicDataSource'">
<property name="driverClassName" value="${jdbc.driverClassName}"/>
<property name="url" value="${jdbc.url}"/>
<property name="username" value="${jdbc.username}"/>
<property name="password" value="${jdbc.password}"/>
</bean>

Here is another simpler declaration of PropertyPlaceholder:

<context:property-placeholder location="classpath:datasource.properties"/>

Handling resources

Spring Framework provides excellent support for accessing low-level resources, thus
solving many limitations of Java’s standard java.net.URL and standard handlers. The
org.springframework.core.io.Resource package and its many concrete
implementations form a solid foundation for Spring Framework’s robust resource
handling.

Resource abstraction is used extensively in Spring itself, inside many implementations of
ApplicationContext—it’s actually very useful to use as a general utility class by itself in
your own code in order to access resources. You will find the following resource
implementations that come supplied right out of the box in Spring:

Resource o

. Description
Implementation
UrlResource It wraps java.net.URL and is useful for accessing anything that can be accessed via a URL,

such as files (file:///), HTTP targets (http://), and FTP targets (ftp://).

ClassPathResource It is used for accessing any resource from classpath using the prefix classpath:
FileSystemResource ||This is the resource implementation of java.io.File.
ServletContextResource[|This is the parent bean for inheriting configuration data from a parent bean definition.
InputStreamResource ||This is the resource implementation for a given InputStream.

Generally, you do not directly instantiate any of these resources; rather, you use a
ResourceLoader interface to do that job for you. All ApplicationContext implement a
ResourcelLoader interface; therefore, any ApplicationContext can be used to obtain
resource instances. The code for this is as follows:

ApplicationContext context = new ClassPathXmlApplicationContext(new
String[] {"application-context.xml"});

Resource classPathResource = ctx.getResource('"classpath:scripts/tasks-
schema.sql");

Resource fileResource = ctx.getResource("file:///scripts/master-data.sql");

Resource urlResource = ctx.getResource("http://country.io/names.json");

You can inject resources into your beans by simply passing the filename or URL of your
resource as an argument, as shown here. ApplicationContext, which is a
Resourceloader interface, will create an instance of an appropriate resource
implementation based on the URL you supply:

@value("http://country.io/names.json")
private Resource countriesResource;

Here is the XML version of injecting a resource:

<property name="countriesResource" value="http://country.io/names.json"/>

Spring Expression Language

Expression languages are generally used for simple scripting to manipulate object graphs
in a non object-oriented context. For example, if we want to read data or call a method of
a Java object from a JSP, XML, or XHTML page, JSP EL and Unified Expression
Language (UEL) come to the rescue. These expression languages allow page authors to
access external data objects in a simple and easy-to-use way, compatible with tag-based
languages such as XML and HTML.

The Spring Expression Language (SpEL), with a language syntax similar to UEL, is a
powerful expression language built for querying and manipulating an object graph at
runtime. It offers additional features, most notably method invocation and basic string-
templating functionality.

SpEL can be used inside a wide variety of technologies that come under the Spring family
of projects as well as many technologies that integrate with Spring. It can be used directly
in the Spring configuration metadata files, both in XML as well as Java annotations in the
form #{expression-string}. You can use SpEL inside many view technologies, such as
JSP, XML, and XHTML, when integrated with the corresponding technologies, such as
JSF, JSP, and Thymeleaf.

SpEL features

The SpEL expression language supports the following functionalities out of the box:

Boolean, relational, and ternary operators
Regular expressions and class expressions
Accessing properties, arrays, lists, and maps
Method and constructor invocations

Variables, assignments, and bean references
Array construction, inline lists, and maps
User-defined functions and templated expressions
Collection, projection, and selection

SpEL annotation support

SpEL can be used to specify default values for fields, methods and method or constructor
arguments using the @value annotation. The following sample listing contains some
excellent usage of SpEL expressions at the field level:

@Component
@Scope("prototype")
public class TaskSnapShot {

Value("#{taskService.findAllTasks().size()}")
private String totalTasks;

@value("#{taskService.findAllTasks()}")
private List<Task> taskList;

@value("#{ new java.util.Date()}")
private Date reportTime;

@value("#{taskService.findAllTasks().?[status == 'Open']}")
private List<Task> openTasks;

b
The same approach can be used for XML bean definitions too.

The SpEL API

Generally, most users use SpEL to evaluate expressions embedded in XML, XHTML, or
annotations. While SpEL serves as the foundation for expression evaluation within the
Spring portfolio, it can be used independently in non-Spring environments using the SpEL
API. The SpEL API provides the bootstrapping infrastructure to use SpEL
programmatically in any environment.

The SpEL API classes and interfaces are located in the (sub)packages under
org.springframework.expression. They provide the specification and default SpEL
implementations which can be used directly or extended.

The following interfaces and classes form the foundation of the SpEL API:

Class/Interface Description
The specification for an expression capable of evaluating itself against context objects
Expression independent of any language such as OGNL or UEL. It encapsulates the details of a
previously parsed expression string.
. A SpEL-compliant, parsed expression that is ready to be evaluated standalone or in a
SpelExpression o
specified context.
ExpressionParser

compiled expressions that can be evaluated.

SpelExpressionParser SpEL parser. Instances are reusable and thread-safe.

Expressions are executed in an evaluation context, where references are resolved when

encountered during expression evaluation.

“Parses expression strings (templates as well as standard expression strings) into
EvaluationContext “

The default EvaluationContext implementation, which uses reflection to resolve
properties/methods/fields of objects. If this is not sufficient for your use, you may
extend this class to register custom ConstructorResolver, MethodResolver, and
PropertyAccessor objects and redefine how SpEL evaluates expressions.

StandardEvaluationContext

Compiles a regular parsed expression instead of the interpreted form to a class
SpelCompiler containing bytecode for evaluation. A far faster method, but still at an early stage, it
does not yet support every kind of expression as of Spring 4.1.

Let’s take a look at an example that evaluates an expression using the SpEL. API:

@Component
public class TaskSnapshotBuilder {

@Autowired
private TaskService taskService;

public TaskSnapShot buildTaskSnapShot() {
TaskSnapShot snapshot = new TaskSnapShot();

ExpressionParser parser = new SpelExpressionParser();
EvaluationContext context = new
StandardEvaluationContext(taskService);

Expression exp = parser.parseExpression("findAllTasks().size()");
snapshot.setTotalTasks(exp.getValue(context).toString());

exp = parser.parseeExpression("findAllTasks()");
snapshot.setTaskList((List<Task>)exp.getValue(context));

exp = parser.parseExpression("new java.util.Date()");
snapshot.setReportTime((Date)exp.getValue(context));

exp = parser.parseExpression("findAllTasks().?[status == 'Open']");
snapshot.setOpenTasks((List<Task>)exp.getValue(context));

return snapshot;

}

In normal scenarios, you would not need to directly use the SpEL API in a Spring
application; SpEL with annotation or XML bean definitions would be better candidates.
The SpEL API is mostly used to load externalized business rules dynamically at runtime.

Aspect Oriented Programming

Most software applications usually have some secondary—but critical—features, such as
security, transaction, and audit-logging, spanned across multiple logical modules. It would
be a nice idea not to mix these cross-cutting concerns in your core business logic. Aspect
Oriented Programming (AOP) helps you achieve this.

Object Oriented Programming (OOP) is about modularizing complex software
programs, with objects as the fundamental units that hold your core business logic and
data. AOP complements OOP to add more complex functionality transparently across
modules of your application without polluting the original object structure. AOP stitches
(weaves) cross-cutting concerns into your program, either at compile time or runtime,
without modifying the base code itself. AOP lets the object-oriented program stay clean
and just have the core business concerns.

Static and dynamic AOP

In AOP, the framework weaves the cross-cutting concerns into the main program
transparently. This weaving process comes in two different flavors: static and dynamic. In
the case of static AOP, as the name implies, Aspects are compiled directly into static files,
that is, to the Java bytecode, on compilation. This method performs better, as there is no
special interception at runtime. But the drawback is that you need to recompile the entire
application every time you change anything in the code. AspectJ, one of the most
comprehensive AOP implementations, provides compile-time weaving of Aspects.

In the case of dynamic AOP, the weaving process is performed dynamically at runtime.
Different frameworks implement this differently, but the most general way of achieving
this is using proxies or wrappers for the advised objects, allowing the Advice to be
invoked as required. This is a more flexible method as you can apply AOP with varying
behavior at runtime depending on data, which is not possible in the case of static AOP.
There is no need for recompiling the main application code if you use XML files for
defining your AOP constructs (schema-based approach). The disadvantage of dynamic
AOP is a very negligible performance loss due to the extra runtime processing.

Spring AQOP is proxy based, that is, it follows the dynamic flavor of AOP. Spring provides
the facility to use static AOP by integrating with Aspect] too.

AOQOP concepts and terminology

Understanding AOP concepts and terms gives you an excellent starting point for AOP; it
helps you visualize how and where AOP can be applied in your application:

Aspect: The concern that cuts across multiple classes or modules. Transaction and
security are examples. Spring Transaction is implemented as Aspects.

Join point: A point during the execution of the program at which you want to insert
additional logic using AOP. A method execution and a class instantiation are
examples.

Adpvice: The action taken by (the code or method that executes) the Aspect at a
particular join point. Different types of advices include before, after, and around
advices. Typically, an Aspect has one or more Advices.

Pointcut: An expression that defines or matches a set of join points. The Advice
associated with a pointcut executes at any join point it matches. Spring supports the
Aspect] pointcut expression language by default. An example is execution(*
com.xyz.service.*.*(..)).

Target object: The advised object. If you use dynamic AOP, this would be a proxied
object.

Weaving: Inserting Aspects into a target object to make it advised at compile time,
load time or runtime. AspectJ supports compile-time weaving and Spring weaves at
runtime.

Introduction: The process by which you add a new method or field to an advised
object, with or without making it implement an interface.

Spring AOP — definition and configuration styles

Spring provides a proxy-based dynamic implementation of AOP, developed purely in
Java. It neither requires a special compilation process like Aspect] nor controls the class
loader hierarchy, hence it can be deployed inside any Servlet container or application
server.

Although not a full-blown AOP framework like Aspect], Spring provides a simple and
easy-to-use abstraction of most of the common features of AOP. It supports only method
execution join points; field interception is not implemented. Spring provides tight
integration with AspectJ, in case you want to advise very fine-grained Aspect orientation
that Spring AOP doesn’t cover by adding more AspectJ-specific features without breaking
the core Spring AOP APIs.

Spring AOP uses standard JDK dynamic proxies for Aspect orientation by default. JDK
dynamic proxies allow any interface (or set of interfaces) to be proxied. If you want to
proxy classes rather than interfaces, you may switch to CGLIB proxies. Spring
automatically switches to use CGLIB if a target object does not implement an interface.

Starting from Spring 2.0, you can follow either a schema-based approach or an @AspectJ
annotation style to write custom Aspects. Both of these styles offer fully typed Advice and
use of the Aspect] pointcut language while still using Spring AOP for weaving.

XML schema-based AOP

When using schema-based AOP, you need to import aop namespace tags into your
application-context file, as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop.xsd">
<!-- bean definitions here -->
</beans>

@Aspect]J annotation-based AOP

@AspectJ refers to a style of declaring Aspects as regular Java classes that are annotated.
Spring interprets the same annotations as Aspect]J 5, using a library supplied by Aspect]
for pointcut parsing and matching. Spring AOP has no dependency on the Aspect]
compiler or weaver, though.

When using the @AspectJ annotation style, you first need to enable @AspectJ support in
your Spring configuration, whether or not it is in the XML or Java configuration.
Additionally, you need to make sure you add aspectjweaver.jar in your classpath.
Adding an @EnableAspectJAutoProxy annotation to your Java @Configuration
annotation will enable @AspectJ support in your project:

@Configuration

@ComponentScan(basePackages = '"com.springessentialsbook")
@EnableAspectJAutoProxy

public class AOPJavaConfigurator {

Alternatively, if you use XML-based configuration, @AspectJ support can be enabled by
adding the <aop:aspectj-autoproxy/> element in your application-context file.

Declaring an @Aspect annotation

Your Aspect is a simple POJO, either annotated with @Aspect
(org.aspectj.lang.annotation.Aspect) or declared as <aop:aspect/> under the
<aop:config> section of your application-context XML file. Remember, the class
marked as @Aspect should be declared as a Spring bean using either an annotation or
<bean/> declaration in your application context XML file.

Here is an annotated Aspect, a Spring component annotated as @Aspect:

@Component ("auditLoggerAspect")
@Aspect
public class AuditLoggerAspect {

Note that @Aspect is a Spring bean too. It can be any of the specializations of @Component.
Now, let’s take a look at the XML alternative for Aspect declaration:

<aop:config>

<aop:aspect id="audLogAspect" ref="auditLoggerAspect'">
</aop:config>
<bean id="auditLoggerAspect" class="com..AuditLoggerAspect"/>
Aspects may have methods and fields, just like any other class. They may also contain
pointcut, advice, and introduction (inter-type) declarations. Aspects themselves cannot be
the target of Advice from other Aspects; they are excluded from auto-proxying.

Pointcuts

A pointcut comprises two parts, as shown in the following code snippet: a method
signature (an empty method with a void return type inside the Aspect class) with any
parameters and an expression that matches the exact method executions we are interested
in. Remember, Spring AOP only supports method execution join points:

@Pointcut("execution(*
com.springessentialsbook.service.TaskService.createTask(..))") //Pointcut
expression

private void createTaskPointCut() {} //Signature

The pointcut expression follows the standard AspectJ format. You may refer to the
Aspect] pointcut expression reference for the detailed syntax. The following section gives
you a strong foundation for constructing pointcuts for Spring AOP.

Pointcut designators

Spring AOP supports just a subset of the original Aspect] pointcut designators (PCDs)
for use in pointcut expressions, as given in the following table:

PCD

Description |

execution

Method execution join point; the default PCD for Spring AOP |
I I

within "Matches methods in a range of types, packages, and so on |
this Matches proxy instances of a given type |
target Matches target object with a given type |
args Matches methods with the given argument types |
@target Matches methods of classes with the given annotation |
@args Matches methods having argument (s) with the given annotation (s)
@within Matches methods within types that have a given annotation |
@annotation|iMatches methods with the given annotation

In addition to the preceding table, Spring supports an extra non-Aspect] PCD, bean, which
is useful to directly refer to a Spring bean or a set of beans with a comma-separated list of
beans using bean(idsOrNamesOfBean).

Note that the pointcuts intercept only public methods due to the proxy nature of Spring
AQP. If you want to intercept protected and private methods or even constructors,
consider using Aspect] weaving (integrated with Spring itself) instead.

Pointcut examples

Pointcut expressions can be combined using &&, | |, and !. You can refer to pointcut
expressions by name, too. Let’s see a few examples:

@Pointcut("execution(* com.taskify.service.*.*(..))")
private void allServiceMethods() {}

@Pointcut("execution(public * *(..))")
private void anyPublicOperation() {}

@Pointcut("anyPublicOperation() && allServiceMethods()")
private void allPublicServiceMethods() {}

@Pointcut("within(com.taskify.service..*)")
private void allServiceClasses() {}

@Pointcut("execution(* set*(..))")
private void allSetMethods() {}

@Pointcut("execution(* com.taskify.service.TaskService.*(..))")
private void allTaskServiceMethods() {}

@Pointcut("target(com.taskify.service.TaskService)")
private void allTaskServiceImplMethods() {}

@Pointcut("@within(org.springframework.transaction.annotation.Transactional
")
private void allTransactionalObjectMethods() {}

@Pointcut("@annotation(org.springframework.transaction.annotation.Transacti

onal)")
private void allTransactionalAnnotatedMethods() {}

@Pointcut("bean(simpleTaskService)")
private void allSimpleTaskServiceBeanMethods() {}

An XML version of a pointcut definition goes like this:
<aop:config>

<aop:pointcut id="allTaskServicePointCut"
expression="execution(*com.taskify.service..TaskService.*(..))"/>
</aop:config>

Advices

An Advice is the action that gets injected before, after, or around the method executions
matched by the pointcut expression. The pointcut expression associated with an Advice
could be a named or defined pointcut, as listed in the above examples, or a pointcut
expression declared in place, that is, advices and pointcuts can be declared together.

Let’s see an example for an Advice that refers to a pointcut expression named Pointcut:

@Pointcut("execution(* com.taskify.service.TaskService.*(..))")
private void allTaskServiceMethods() {}

@Before("allTaskServiceMethods()")
private void logBeforeAllTaskServiceMethods() {
logger.info("*** logBeforeAllTaskServiceMethods invoked ! ***'");

}

The following code listing combines both a join point and Advice in one go. This is the
most common approach:

@After("execution(* com.taskigy.service.TaskService.*(..))")
private void logAfterAllTaskServiceMethods() {
logger.info("***1logAfterAllTaskServiceMethods invoked ! ***'");

b
The following table lists the available Advice annotations:
Advice .
. Description
annotation
@Before Runs before method execution.
@After Runs after method exit (finally).
. J|IRuns after the method returns without an exception. You can bind the return value with the Advice
@AfterReturning
as the method argument.
@AfterThrowing Runs after the method exits by throwing an exception. You can bind the exception with the Advice
as the method argument.
@Around The target method actually runs inside this Advice. It allows you to manipulate the method

execution inside your Advice method.

The @Around Advice

The @Around Advice gives you more control over method execution, as the intercepted
method essentially runs inside your Advice method. The first argument of the Advice must
be ProceedingJoinPoint. You need to invoke the proceed() method of
ProceedingJoinPoint inside the Advice body in order to execute the target method; else,
the method will not get called. After the method execution returns to you with whatever it
returns back to your advice, do not forget to return the result in your Advice method. Take
a look at a sample @Around advice:

@Around("execution(* com.taskify.service.**.find*(..))")
private Object profileServiceFindAdvice(ProceedingJoinPoint jPoint) throws
Throwable {

Date startTime = new Date();

Object result = jPoint.proceed(jPoint.getArgs());

Date endTime = new Date();

logger.info("Time taken to execute operation: " + jPoint.getSignature()
+ " is " + (endTime.getTime() - startTime.getTime()) + " ms");

return result;
}

Accessing Advice parameters

There are two distinct ways of accessing the parameters of the method you are advising in
the Advice method:

e Declaring a join point as the first argument
¢ Binding args in the pointcut definition

Let’s see the first approach:

@Before("execution(* com.taskify.service.TaskService.createTask(..)")

private void logBeforeCreateTaskAdvice(JoinPoint joinpoint) {
logger.info("***logBeforeCreateTaskAdvice invoked ! ***");
logger.info("args = " + Arrays.asList(joinpoint.getArgs()));

}

You can see that joinpoint.getArgs() returns Object[] of all the arguments passed to
the intercepted method. Now, let’s see how to bind named arguments to the Advice
method:

@Before('"createTaskPointCut() and args(name, priority, createdByuserlId,
assigneeUserId)")

private void logBeforeCreateTaskAdvice(String name, int priority, int
createdByuserId, int assigneeUserId) {

logger.info("name = " + name + "; priority = " + priority + ";
createdByuserId = " + createdByuserId);

}

Note that the joinpoint expression matches the arguments by name. You can have a
joinpoint object as an optional first argument in the method signature without specifying
it in the expression: you will have both joinpoint and arguments, enabling more
manipulation.

Testing with Spring

The degree of testability shows the elegance and maturity of any framework. A more
testable system is more maintainable. Spring Framework provides comprehensive support
for end-to-end testing of applications for both unit testing as well as integration testing.
Spring promotes test-driven development (TDD), facilitates integration testing, and
advocates a set of best practices for the unit testing of beans. This is another compelling
reason for using Spring to build serious applications.

The POJO-based programming model and loosely coupled nature of Spring beans make it
easier to participate in JUnit and TestNG tests even without Spring in the middle. On top
of this, Spring provides many testing support components, utilities, and mock objects to
make the testing easier.

Mock objects

Spring provides mock implementations of many container-specific components so that the
beans can be tested outside a server or container environment. MockEnvironment and
MockPropertySource are useful for testing environment-dependent beans. To test beans
that depend on HTTP communications, Spring provides mock classes for both client and
server sides inside the org.springframework.mock.http and
org.springframework.mock.http.client packages.

Another set of useful classes can be found under org.springframework.mock.jndi to run
test suites that depend on JNDI resources. The org.springframework.mock.web package
contains mock objects for web components based on Servlet 3.0, such as web contexts,
filters, controllers, and asynchronous request processing.

Unit and integration testing utilities

Spring ships certain general-purpose and context-specific utilities for unit and integration
testing. The org.springframework.test.util package contains a set of utility classes for
various testing purposes, including reflection, AOP, JSON, and XML manipulations.
Classes under org.springframework.test.web and its nested subdirectories contain a
comprehensive set of utility classes to test beans dependent on the web environment.
Another set of useful classes for usages specific to ApplicationContext can be found
under org.springframework.test.context and its child packages. Their support
includes the loading and caching of web, portlet, or application contexts in the test
environment; resolving profiles; loading property sources and SQL scripts; managing
transactions for test environments; and so on.

The support classes and annotations under the packages listed earlier facilitate the easy
and natural testing of Spring applications. A comprehensive discussion over Spring test
support is beyond the scope of this book. However, gaining a good understanding of
Spring’s comprehensive support for unit and integration tests is vital in order to develop
elegant code and maintainable applications using Spring.

Summary

We have successfully covered all the major technologies and concepts of core Spring
Framework in this chapter. We are now capable of developing robust, standalone Spring
applications composed of loosely-coupled beans inside the powerful Spring IoC container.
We know how to apply cross-cutting concerns transparently across different layers of an
application using the very flexible pointcut expressions of Spring AOP. We can
manipulate Spring beans using Spring Expression Language, which helps keep the code
clean and highly maintainable. We learned how to maintain multiple environment-specific
bean configurations and property files using bean definition profiles. Now, we are all set
for professional Spring development.

The source code available with this chapter contains multiple Spring projects that
demonstrate the different ways of configuring Spring as well as usage scenarios. The
examples listed in this chapter have been extracted from them.

In the next chapter, we will explore Spring Web module, leveraging all that we learned in
this chapter in a web-based environment. The topics we have learned in this chapter are
going to be the foundation for all the advanced topics that will be covered in the following
chapters.

Chapter 2. Building the Web Layer with
Spring Web MVC

Web application development is a major focus area for enterprise systems. In this age of
cloud and big data, web applications are under a tremendous load of an ever-increasing
number of concurrent users accessing them from multiple devices such as mobiles and
tablets, as well as traditional desktop web browsers. Modern web applications have to
address a newer set of nonfunctional requirements, such as scalability, performance,
productivity, responsiveness, and multi-device support.

Spring MVC is a web framework from Spring, perfectly built from the ground up to
address the concerns of modern web applications. A lightweight and high-performance
web framework, Spring MVC is designed to be highly productive from day one, flexible,
and adaptable with a wide variety of view technologies. Sitting on top of the mighty
Spring Framework, it integrates well with all Java EE technologies and other open source
frameworks. Just like any technology under the Spring portfolio, Spring MVC also
promotes POJO programming with the help of a well-defined set of annotations,
namespace XML tags, and web-support components.

This chapter introduces Spring MVC and its powerful features to you, describes how to set
it up, and guides you on its advanced usages, configurations, and optimizations with
relevant examples. We will mostly use annotations in these examples for simplicity. At the
end of this chapter, you will be able to build web applications with Spring MVC that have
HTML-based user interfaces as well as RESTful APIs with JSON and XML formats.

Features of Spring MVC

Spring MV C bundles a compelling set of features and advantages over rival web
technologies. Knowledge of these will help you decide on choosing Spring MVC for your
requirements. The following list covers most of them:

Simple configuration and native integration with Spring Framework, leveraging the
powerful features of Spring and other open source libraries

Built on top of Java web technologies such as Servlets, JSP, and JSTL and can be
deployed into any standard Servlet container, such as Tomcat

Implemented based on the Model-View-Controller (MVC) architecture pattern, with
clear separation of concerns using simple annotations and namespace XML tags
Explicit support for convention over configuration for MVC components

Supports a big set of view technologies, such as JSP, Thymeleaf, Handlebars,
Velocity, FreeMarker, PDF, Excel, and JasperReports

Declarative input validation, data binding, and exception handling

Flexible URL mapping with automatic request and response transformation into
various formats such as JSON, XML, and HTML

Support for non-blocking asynchronous request processing and HTTP streaming
Support for internationalization, themes, and multipart file uploads

Easy integration with Spring Security and thorough testability

HTTP caching for increased performance

A simple, yet powerful, JSP tag library

What makes Spring MVC outstanding is its simple programming model, a feature
inherited from the core Spring Framework itself. A developer familiar with any standard
web framework will find Spring MVC very familiar and easy to learn.

The Model-View-Controller pattern

MVC is a well-established architectural pattern popularly used for building interactive
web and desktop applications. There are numerous frameworks implementing this pattern
in most software platforms. MVC divides the application into three core elements that
actually represent layers, separates concerns between these three core elements, and
defines how they communicate with each other.

View Model
Displays Model Data

Action/ Update Notify Update

event
.~ Controller

|‘_ Handles user actions)

Model represents data, View displays the Model, and Controller handles user actions.
Model can be any data, including that stored in a database. It usually represents a
collection of domain objects with clearly defined relationships to each other. A Model can
be displayed in multiple views depending on how the application is designed.

Controller acts as an intermediary between View and Model. It often has a set of handlers
for each event generated by the view as the user interacts with it. Controller delegates
user actions to appropriate handlers and then finally redirects to another view for
displaying the result of that action.

There are so many implementations of the MVC pattern as frameworks across technology
platforms use it in different ways. Spring MV C has implemented it in the simplest and
least invasive fashion, while naturally integrating it with the core Spring Framework.

Your first Spring MVC application

Let’s jump to creating a very simple Spring MVC web application. For the purpose of
learning, we will develop the web version of Taskify, the task management system we
started in Chapter 1, Getting Started with Spring Core. The samples in this chapter use
Spring Tool Suite (STS) as the IDE, but you can use your favorite IDE, such as IntelliJ
and NetBeans. Almost all Java IDEs support Spring development; most of them have
plugins to manage Spring projects and artifacts.

To begin with, follow these steps; then, we will explore the code:

1. Open STS or Eclipse — create a new project — type a project name — select a
template, either Spring MVC Project or Simple Spring Web Maven - specify the
top-level package name — finish. Your project structure will be generated.

2. Make sure your pom.xml file contains Maven dependencies for the spring-context,
spring-mvc, servlet-api, jsp-api, and jstl libraries. Note that jsp-api and jstl
are required only if you are using JSP as the view technology.

3. If it hasn’t been generated, create web.xml under WEB- INF, with the following
content:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd" version="3.1">
<!-- \ Root Container shared by Servlets and Filters -->
<context-param>
<param-name>contextConfiglLocation</param-name>
<param-value>/WEB-INF/spring/root-context.xml</param-value>
</context-param>

<!-- Loads Spring Container shared by all Servlets and Filters -->
<listener>
<listener-class>
org.springframework.web.context.ContextLoaderListener
</listener-class>
</listener>

<!-- Processes application requests -->
<servlet>
<servlet-name>appServlet</servlet-name>
<servlet-class>
org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<init-param>
<param-name>contextConfiglLocation</param-name>
<param-value>/WEB-INF/spring/servlet-context.xml</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>

<servlet-name>appServlet</servlet-name>
<url-pattern>/</url-pattern>
</servlet-mapping>
</web-app>

. If it hasn’t been generated, create a root-context.xml file, with the following
content:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

<!-- Root Context: defines all shared beans go here -->
</beans>

. If it hasn’t been generated, create a servlet-context.xml file, with the following
content:

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/mvc" ...>

<!-- Enables the Spring MVC @Controller programming model -->
<annotation-driven />
<context:component-scan base package="com.taskify'"/>

<!-- Handles HTTP GET requests for /resources/** by serving up static
resources in ${webappRoot}/resources directory -->
<resources mapping="/resources/**" location="/resources/" />

<!-- Resolves views selected for rendering by @Controllers to
.jsp resources in the /WEB-INF/views directory -->

<beans:bean class=

"org.springframework.web.servlet.view.InternalResourceViewResolver'">
<beans:property name="prefix" value="/WEB-INF/views/" />
<beans:property name="suffix" value=".jsp" />

</beans:bean>

</beans:beans>

. Now, create a Java class, HomeController, under the package
com.taskify.web.controllers, with the following content:

@Controller
public class HomeController {
private static final Logger logger =
LoggerFactory.getLogger (HomeController.class);
@Autowired
private TaskService taskService;
// Simply selects the home view to render by returning // name.
@RequestMapping(value = "/", method = RequestMethod.GET)
public String home(Locale locale, Model model) {
logger.info("wWelcome to Taskify! Locale is {}.", locale);
model.addAttribute("totalTasks",
taskService.findAllTasksCount());
model.addAttribute("totalOpenTasks",

10.

11.

taskService.findAllOpenTasksCount());
return "home";
}
}

Create a JSP view, home. jsp, under ~wWEB- INF/views, with the following content:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<%@ page session="false'"%>
<html>
<head>
<jsp:include page="/WEB-INF/views/theme.jsp"></jsp:include>
<title>Taskify :: Home</title>
</head>
<body>
<jsp:include page="/WEB-INF/views/navbar.jsp"></jsp:include>
<div class="container">
<hi>Welcome to Taskify!</hi><hr />
<P>There are ${totalOpenTasks}(${totalTasks}) open tasks.</P>
</div>
</body>
</html>

Make sure you have the TaskService class (copy it from Chapter 1, Getting Started
with Spring Core) and its concrete implementation in your project, with the methods
findAllTasksCount () and findAllOpenTasksCount () implemented.

Now that your project is ready, make sure you have an Apache Tomcat (or any other)
server installed and configured with your IDE. You can download Tomcat from
http://tomcat.apache.org/ and install on your PC.

STS and Eclipse allow you to run Java web apps from the IDE just by right-clicking
Run As - Run on Server. Resolve all errors, if any, and run again.

You should see the home screen of your web app (at
http://localhost:8080/chapter2/), as seen here:

® Safari File Edit View History Bookmarks Window Help

@ ® < M 4 0 & localhost:BOBO/chapter2/ &

Taskify! Home Manage Users Manage Tasks

Welcome to Taskify!

There are 4(5) open tasks.

http://tomcat.apache.org/

Setting up a Spring MVC application

Let’s figure out how a Spring MVC web application is configured by analyzing the
application artifacts listed in the previous section, Your first Spring MVC application. It
contains all the necessary artifacts for building a Spring MVC web app.

The project structure of a Spring MVC application

The easiest way to create the project structure and the necessary artifacts is using STS to
create a Spring MVC project, as described in the previous section. Alternatively, you may
use one of the Maven archetypes available in various repositories online. STS uses such a
bundled archetype. Here is the typical project structure of a Spring MVC application as
viewed in STS:

@ Spring Tool Suite File Edit Source Refactor Navigate Search Project Run Window Help

& ® Spring - spring-essentials-ch2-1/src/mainfjava/com/ftaskify/service/TaskService.java - Spring Tool Suite - [User|
- E sy (3 2 #vaQt v v Ai,“d'-l Gv L‘bk__)Ive @ W - T dm v

== ¥ = O |J] TaskServicejava £2

[£ Package Explorer &2

> B seriars package com.taskify.service;

v C'.? spring-essentials-ch2-1 [spring-essentials-ch-2 master]
¥ (M sre/main/java
¥ com.taskify public interface TaskService {

> i dao Task createTask(String nome, int priority, int createdByuserId, int
> £ domain) Task findTaskById(int taskId);
b i service 10 List<Task> findTasksByAssignee(int assigneeld);

> ﬂ;web.cnntrollers 11 I..ist<‘lrask> findAl11Tasks();

: 1 int findAl1TasksCount();

@ import java.util.list;[]

b (% src/main/resources

» (™ srcftest/java

L _“j src/test/resources

» =\ Maven Dependencies

» =, Apache Tomcat v8.0 [Apache Tomeat v8.0]

List<Task> findAllOpenTasks();

int findAllOpenTasksCount();

List<Task> findTasksByAssignee(String assigneelUserName);
List<Tasks> findOpenTasksByAssignee(int assigneeld);
List<Task> findOpenTasksByAssignee(String assigneeUserNaome};

P B\ JRE System Library [Java SE 8 [1.8.0_25]]
¥ e 5, src
¥i Ernain
v (S webapp
[~ resources
¥ (-5 WEB-INF
[vclasses
PG Espring
B[y views
¥, web.xml
Ly test
> [target
|») pom.xml

19 void completeTask(int taskId, String comments, int user);

4t Servers £3 - ¥ =08

‘E,Pi\rotal tc Server Developer Edition v3.1 [Stopped]
» [, Tomcat vB.0 Server at localhost [Stopped, Republish]

2 console 52 ||% Markers & Progress T Problems

Mo consoles to display at this time,

This structure represents a single-WAR web application where all the services and data
access components are collocated with the web controllers. In the case of bigger
applications, many such components could be part of a different JAR library project, to be
shared between multiple web apps and then added as Maven dependencies to the
consuming web apps and beans imported to the web application context XML files using
an <import/> tag or annotation config.

Now, let’s examine each artifact listed in Your first Spring MVC application in detail.

The web.xml file — Springifying the web app

The web.xm1l file is the standard Java web descriptor in which the fundamental web
components that make up a Java web application are registered with the Servlet container.
ServletContextListener, and ServletFilter components are configured here.

A Spring MVC application is also configured and bootstrapped in web . xm1.
ContextLoaderListener, registered as a ServletContextListener in the web.xml
sample, bootstraps Spring’s root WebApplicationContext. In the previous chapter, we saw
how a simple console application bootstraps the Spring context from inside the main
method using ClassPathxmlApplicationContext. In the case of a web application,
following ContextLoaderListener loads the WebApplicationContext. Remember, a
Spring MVC application is not just another Servlet-based application but rather Spring
integrated within a web context.

<listener>
<listener-class>
org.springframework.web.context.ContextLoaderListener
</listener-class>
</listener>

The following listener looks for a context-param tag, contextConfigLocation, which is
the location of the Spring root bean definition XML file, as seen in the web.xm1 file
earlier:

<context-param>
<param-name>contextConfiglLocation</param-name>
<param-value>/WEB-INF/spring/root-context.xml</param-value>
</context-param>

The next very important Spring component configured in the web.xm1 file is
DispatcherServlet, the centralized entry point into the Spring MVC application which
maps every request with appropriate handlers. DispatcherServlet is an implementation
of the Front Controller design pattern, which is a single, centralized entry-point for all
HTTP requests that come into the application. This internally delegates them to the actual
handler of the request type. Here is an excerpt from the earlier web . xm1 listing:

<servlet>
<servlet-name>appServlet</servlet-name>
<servlet-class>
org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<init-param>
<param-name>contextConfiglLocation</param-name>
<param-value>
/WEB-INF/spring/appServlet/servlet-context.xml
</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>

<servlet-name>appServlet</servlet-name>

<url-pattern>/</url-pattern>
</servlet-mapping>
The preceding Servlet registration of DispatcherServlet maps the root URL to
DispatcherServlet so that every HTTP request that comes into the server will be first
handled by bispatcherservlet. Additionally, it specifies where the Spring application
context file for this Servlet will be.

Note

Your application can have any number of DispatcherServlet definitions with unique
Servlet names, depending on how you want to divide your URL subcontexts logically
based on your functional modules. Most applications would have just one
DispatcherServlet defined.

ApplicationContext files in a Spring MVC
application

A Spring MVC application is nothing but a Servlet-based Web MVC implementation with
Spring integrated natively. Hence, it requires Spring bean definitions like any other Spring
application, as we have seen in the previous chapter. In the case of a Spring MVC
application, there would be some framework-specific beans in addition to application-
specific beans registered in the context.

For the sake of organizing beans under different logical categories, such as web-specific
(DispatcherServlet) as well as shared beans, multiple bean definitions can be used. For
example, DispatcherServlet can have its own application context file with beans helping
its processing (just for the web context), and there could be a root application context file,
where beans that are not specific to the web layer but shared between many layers are
defined.

Inside the sample listed in the earlier section as part of Your first Spring MVC application,
you can see two Spring bean definition XML files, root-context.xml and servlet-
context.xml. The root-context.xml file represents your root webApplicationContext
loaded via ContextLoaderListener. This is the place where you define or import your
shared beans, such as service beans, and data access objects.

The servlet-context.xml file is loaded by DispatcherServlet on startup. The filename,
servlet-context.xml, is an explicit filename given in the sample listing. By default,
DispatcherServlet looks for an XML bean definition file with the pattern [servlet-
name]-servlet.xml, that is, if it wasn’t specified explicitly, appServlet would look for a
file with the name appServlet-servlet.xml at the root of the weB- INF folder. Typically,
this file contains the bean definitions controlling the behavior of this Servlet. For example,
you can see the resources and view resolver bean definitions in the file servlet-
context.xml. You can see that the view resolver configured in the sample listing only
supports JSP views.

HomeController — @Controller for the home screen

HomeController is a simple POJO with the @Controller annotation. This annotation
registers it as a web controller with a set of annotated handler methods inside it. It can
have an @RequestMapping annotation at the class level to indicate the root URL of all
handler methods in it. The method home () is the request handler for the root URL,
http://<context-root>/.

Since the @Controller annotation is yet another Spring bean, you can inject any other
bean into it as a dependency. The sample listing shows that HomeController has an
autowired dependency to TaskService. In the home () method, TaskService methods are
invoked, and finally, the return values are set as Model attributes for the consumption of
the latter parts of the request and to be used in a view.

Your application will have many such controllers that serve groups of related URL
endpoints; consider HomeController as your basic example. One controller can have
multiple request-handling methods that serve different URLs.

The home.jsp file — the landing screen

The home . jsp file is your view artifact for the root (/) URL. Notice how the Model
attributes are bound inside the JSP view:

<P>There are ${totalOpenTasks}(${totalTasks}) open tasks.</P>

Handling incoming requests

Any request that hits the root URL of the app is first received by DispatcherServlet,
which delegates it to HomeController.home(), which processes the request and returns
the view name (home, in this case). DispatcherServlet then picks up the home. jsp file
based on the resource and view configurations specified in servlet-context.xml and
renders it, passing the attributes of the model instance created inside
HomeController.home().

The architecture and components of
Spring MVC

Having gone through your first Spring MVC application, it is now time to look at Spring
MVC applications from an architectural perspective:

£)
£15pring MVC Application
)i £1Controller ‘

fHandlerMapping
A
|

£ BrowserMobile

£ L}lspatcherﬁewlet‘ ‘
[==

<
of * IWiew Resolver

A

Spring MVC components

As the name implies, Spring MVC follows the renowned MVC architectural pattern. This
pattern ensures the separation of concerns by dividing responsibilities into three major
roles:

e Model: This represents data and business logic

e View: This represents presentation

e Controller: This processes client requests and delegates them to the view for
rendering back to the client

The Model we are talking about here is not necessarily persistent data (a data model) as
such; rather, it represents the information passed back and forth between the client and
different layers of the server application, which form the building blocks of any system.

Besides the Model, View, and Controller components, DispatcherServlet too plays a
crucial role in the Spring MVC architecture. It acts as the Front Controller, a popular J2EE
design pattern adopted by many MVC Frameworks. In fact, DispatcherServlet does
much more than just a Front Controller. It will be explained in detail in the next section.

In a Spring MVC application, bispatcherServlet first receives a client request hitting the
server via HTTP with a URL. With the help of the HandlerMapping configuration,
DipatcherServlet finds the appropriate Controller method for the request based on the
URL pattern and delegates the request to it. The Controller processes the request,
optionally fills in the Model object, and returns the name of the View to be rendered.
Dispatcherservlet then picks the View up and renders it back on the client after

applying the attributes of the Model to the placeholders in the View.

What’s mentioned in the previous paragraph is simply the typical request processing flow
of Spring MVC. However, it is extremely flexible, with a great many options to support
different types of view technologies and input and output structures and formats, including
files, streams, and so on. We will explore them more in the following sections.

DispatcherServlet explained

DispatcherServlet is the gateway to any Spring MV C application. Inherited from
javax.servlet.http.HttpServlet, it is typically configured declaratively in the web.xml
file. While you can have multiple definitions of DispatcherServlet with unique URL
patterns, most Spring MVC applications only have single DispatcherServlet with the
context-root URL(/), that is, all requests coming to that domain will be handled by
DispatcherServlet.

Starting from Servlet 3.0, in addition to declarative configuration in the web.xm1 file,
DispatcherServlet can be configured programmatically by implementing or extending
either of these three support classes provided by Spring:

e The webAppInitializer interface
e The AbstractDispatcherServletInitializer abstract class
e The AbstractAnnotationConfigDispatcherServletInitializer abstract class

The following code listing demonstrates how to implement a webAppInitializer directly
in your application:

public class ApplicationInitializer implements WebApplicationInitializer {

private static final Logger logger =
LoggerFactory.getLogger (ApplicationInitializer.class);

@Override
public void onStartup(ServletContext servletContext) throws
ServletException {

logger.info("===== Application is starting up! ========"),

XmlwWebApplicationContext appContext = new XmlWebApplicationContext();

appContext.setConfigLocation("/WEB- INF/spring/appServlet/servlet-
context.xml");

ServletRegistration.Dynamic registration =
servletContext.addServlet("rootDispatcher", new
DispatcherServlet(appContext));

registration.setLoadOnStartup(1);

registration.addMapping("/");

}

WebApplicationContext — ApplicationContext for
the Web

DispatcherServlet uses a specialized ApplicationContext called
webApplicationContext that has many web request processing capabilities. It is aware of
which servletcContext it is associated with and is also capable of resolving themes. This
interface has concrete implementations for specific contexts such as XML,
@Configuration annotated classes, and portlets. By default, DispatcherServlet uses
XMLWebApplicationContext. When DispatcherServlet is loaded, it looks for the bean
configuration file of webApplicationContext and initializes it.

webApplicationContext objects are hierarchical. Every Spring MVC application has root
ApplicationContext (configurable with a context-param tag called
contextConfiglLocation in the web.xml file), and each Servlet, including
DispatcherServlet, has its own child context (configurable by its own init-param,
contextConfigLocation). Ideally, Servlet-specific child contexts have beans customizing
that Servlet, and root ApplicationContext has all shared beans.

Beans supporting DispatcherServlet and their roles

Upon receiving a web request, DispatcherServlet performs a set of operations in
sequence as part of the request processing, with the help of a set of supporting beans. This
table lists these special beans and their responsibilities:

Bean Responsibilities
HandlerMapping Maps incoming web requests to handlers and pre- and post-processors

Invokes the handler which resolves arguments and dependencies, such as annotated
HandlerAdapter

arguments for URL-mapped controller method endpoints

HandlerExceptionResolver|lAllows programmatic handling of exceptions and maps exceptions to views

ViewResolver Resolves logical view names to view instances

LocaleResolver Resolves the client’s locale in order to enable internationalization

LocaleContextResolver A richer extension of LocaleResolver, with timezone information

ThemeResolver Resolves themes configured in your app for enhanced user experience
MultipartResolver Handles multipart file uploads as part of HTTP requests
FlashMapManager Manages FlashMap instances that store temporary Flash attributes between requests

redirected from one another

DispatcherServlet is extremely flexible; we can even create and configure custom
implementations for all these beans. However, Spring MVC provides a set of nice
implementations by default so that you don’t need to customize or provide your own
implementations unless absolutely required. These default implementations can be found
inside org.springframework.web.servlet.DispatcherServlet.properties. If you
override them with your own implementation of any of these beans, yours will override
the defaults.

Controllers in detail

Controllers, with their methods annotated with @RequestMapping, handle web requests.
They accept input data in multiple forms and transform them into Model attributes to be
consumed by views that are displayed back to the client. They connect the user to service-
layer beans, where your application behavior is defined.

A Controller in Spring MVC has the following signature:

public interface Controller {

ModelAndView handleRequest(HttpServletRequest request,
HttpServletResponse response) throws Exception;

}

A Controller is designed as an interface, allowing you to create any kind of
implementation. Starting from Spring version 2.5, you can turn any class into a Controller
just by annotating it with @Controller. It relieves you from implementing any specific
interface or extending a framework-specific class:

@Controller
public class HomeController {

@RequestMapping(value = "/", method = RequestMethod.GET)
public String home(Model model) {

logger.info("Welcome to Taskify'", locale);

return "home";

}

The @Controller annotation assigns the role of a Controller to the given class. A Spring
MVC application autodetects all the controllers in its classpath and registers them with
WebApplicationContext if you enable component scanning, as shown here:

<context:component-scan base-package="com.taskify" />

@Controller, @RequestMapping, and a set of other annotations form the basis of Spring
MVC. These annotations allow flexible method names and signatures for controllers. We
will explore them in detail in the following section.

Mapping request URLSs with @RequestMapping

The @RequestMapping annotation maps request URLs onto an entire @Controller class or
its handler methods. It can be applied at the class as well as the method levels. Typically,
you apply class-level @RequestMapping annotation to map a group of related URLSs, such
as a form with many actions, and method-level @RequestMapping annotation for specific
actions, such as create, read, update, delete, upload, and download. Let’s take a look at a
typical form-based Controller with various actions in a pure REST model (GET, POST, PUT,
and DELETE):

@Controller
@RequestMapping("/users")
public class UserController {

@Autowired
private UserService userService;

@RequestMapping(method = RequestMethod.GET)

public String listAllUsers(Locale locale, Model model) {
model.addAttribute("users", userService.findAllUsers());
return "user/list";

}

@RequestMapping(path = "/new", method = RequestMethod.GET)
public String newUserForm(Model model) {
User user = new User();
user.setDateOfBirth(new Date());
model.addAttribute("user", user);
return "user/new";

}

@RequestMapping(path = "/new", method = RequestMethod.POST)
public String saveNewUser (@ModelAttribute("user") User user, Model
model) {
userService.createNewUser(user);
return "redirect:/user";
}
@RequestMapping(path = "/{id}", method = RequestMethod.GET)
public ModelAndView viewUser (@PathvVariable("id") Long id) {
return new ModelAndView('"user/view").addObject("user",
userService.findById(id));

}

@RequestMapping(path = "/{id}/edit", method = RequestMethod.GET)
public String editUser(@Pathvariable("id") Long id, Model model) {
model.addAttribute("user", userService.findById(id));
return "user/edit";

}

@RequestMapping(path = "/{id}", method = RequestMethod.PUT)
public String updateUser(@Pathvariable("id") Long id,
@ModelAttribute("user") User user, Model model) {
userService.updateUser (user);
model.addAttribute("user", userService.findById(user.getId()));

return "redirect:/user/" + id;

}

@RequestMapping(path = "/{id}", method = RequestMethod.DELETE)
public String deleteUser(@Pathvariable("id") Long id, Model model) {
User existingUser = userService.findById(id);
userService.deleteUser (existingUser);
return "redirect:/user";

}

UserController, listed in the preceding code, has methods that serve as request handlers
for URLs representing CRUD operations on user entities with the help of Userservice,
which is injected as a dependency into the Controller. Since this Controller is based on
web views, the handler methods fill up the Model and returns either a view name or
ModelAndView object for further display. The final two handler methods, updateuUser()
and deleteUser (), redirect the requests at the end. They perform URL redirection after
returning the response to the client.

Notice that UserController has a root URL (/user) and handler methods have a more
narrow mapping with a combination of HTTP methods. They are invoked by the exact
URLSs seen in the following table:

URL Handler method||[HTTP method||Matching URL (sample) |
/ ||listAllUsers ||GET http://localhost:8080/user |
/new newuserForm GET http://localhost:8080/user/new |
/new saveNewUser POST http://localhost:8080/user/new |
/{id} viewUser GET http://localhost:8080/user/123 |
/{id}/edit|leditUser GET http://localhost:8080/user/123/edit
/{id} updateUser PUT http://localhost:8080/user/123 |
/{id} deleteUser DELETE http://localhost:8080/user/123 |

The HTTP methods GET and POST are supported by default, in line with the limited HTML
(hence browser) support for the other two. However, for PUT and DELETE to work, you
need to register HiddenHt tpMethodFilter in your web.xml file. Use this code:

<filter>
<filter-name>httpMethodFilter</filter-name>
<filter-class>org.springframework.web.filter.

HiddenHttpMethodFilter</filter-class>

</filter>

<filter-mapping>
<filter-name>httpMethodFilter</filter-name>
<servlet-name>rootDispatcher</servlet-name>
</filter-mapping>

HiddenHttpMethodFilter works even without Spring MVC; you can use it with any Java
web framework or even a plain Servlet application.

URI template patterns with the @PathVariable
annotation

In the sample UsercController listing in the preceding code, you might have noticed
templated URL patterns with variable names replaced by values when handling requests.
See this, for example:

@RequestMapping(path = "/{id}/edit", method = RequestMethod.GET)
public String editUser(@Pathvariable("id") Long id, Model mdl) { .. }

Here, the templated variable, id, is mapped to an @Pathvariable annotation. It is enclosed
inside curly braces and annotated as a method argument for mapping. A URL can have
any number of path variables. They support regular expressions as well as path patterns in
the Apache Ant style. They help you build perfect URI endpoints in the classic REST
model.

Binding parameters with the @RequestParam
annotation

Request parameters that are inline with URI strings can be mapped with method
arguments using the @RequestParam annotation. See the following excerpt from
TaskController:

@Controller
public class TaskController {

@RequestMapping(path = "/tasks", method = RequestMethod.GET)
public String list(@RequestParam(name = "status'", required = false)
String status, Model model) {
model.addAttribute("status", status);
model.addAttribute("tasks", taskService.findAllTasks(status));
return "task/list";

}
A typical URL invoking the above handler is http:<context-root>/tasks?status=0pen.

@RequestParam has four attributes: name, required, value, and defaultvalue. While
name is a mandatory attribute, all the others are optional. By default, all request parameters
are required to be set to true, unless you specify them as false. Values of @RequestParam
are automatically type-converted to parameter types by Spring.

Request handler method arguments

The @RequestMapping methods can have flexible method signatures; a mix of
frameworks, custom objects, and annotations are supported. They are injected
automatically during request processing if found as method arguments. Here is a list of a
few supported framework classes and annotations; refer to the Spring official
documentation or the Javadoc of RequestMapping for the complete list.

Supported classes Annotations |
javax.servlet.ServletRequest @PathVariable |
javax.servlet.ServletRequest @RequestVariable
javax.servlet.http.HttpSession @RequestParam |
org.springframework.ui.Model @RequestHeader

org.springframework.validation.BindingResult||@RequestBody |
Java.util.Map @RequestPart |
Java.io.InputStream @InitBinder |

While the framework classes do not need any specific annotation, custom classes often
need to accompany one of the supported annotations for the handler adapters in order to
convert/format from the incoming web request object into the class instances.

Request handler method return types

Similar to flexible argument types, methods annotated by @RequestMapping can have
either custom types (often annotated as @ResponseBody) or one of the many supported
framework classes. The following list contains some of the many supported types:

org.springframework.web.servlet.ModelAndView
org.springframework.ui.Model

java.util.Map
org.springframework.web.servlet.View
java.lang.String

void

java.util.concurrent.Callable<?>

[
[
[
[
[
[
[
® org.springframework.http.HttpEntity

Setting Model attributes

Model attributes are for the consumption of the view for display and binding with form
elements. They can be set at both the controller and handler method level.

Any method with a non-void return type can be annotated as @ModelAttribute to make
the method return type a Model attribute for all views resolved by the declared Controller.
See an example:

@ModelAttribute(value = "users")
public List<User> getUsersList() {
return userService.findAllUsers();

}

Model attributes specific to a view are set inside the handler method from where the view
was resolved. Here is an example:

@RequestMapping(path = "/tasks/new", method = RequestMethod.GET)
public String newTaskForm(Model model) {
model.addAttribute("task", new Task());
return "task/new";

Building RESTful services for JSON and XML
media

A web application often needs to expose some of its services as web APIs with the XML
or JSON data formats, or both, for the consumption of AJAX requests from browsers as
well as other devices, such as mobile and tablets.

REpresentational State Transfer (REST), is an established architectural style for
building web APIs that align with native web protocols and methods. With REST, data is
represented as resources that can be accessed and manipulated using a URI over the
stateless protocol of HTTP. REST insists on the mapping of the create, read, update, and
delete operations (CRUD) around a resource with the HTTP methods POST, GET, PUT, and
DELETE, respectively.

Spring MV C makes it extremely easy to build simple API endpoints that consume and
produce different media types such as text, JSON, and XML. A request handler method in
an @Controller annotation can accept JSON, XML, or any other media type using the
following two steps:

1. Set the attribute consumes to the appropriate media type(s) at the RequestMapping
method, for example, consumes = {"text/plain", "application/json"}).

2. Annotate the method argument of the required type with @RequestBody. The web
request is expected to contain the data in the format mentioned in step 1 (consumes;
JSON, XML, and so on) and is resolved to this type by Ht tpMessageConverter
during handling.

Similarly, the request handler method can produce JSON, XML, or any other media type
using the following two steps:

1. Set the attribute produces with the appropriate media type(s) at the RequestMapping
method, for example, consumes = {"text/plain", "application/json"}).

2. Annotate the return type of the handler method or the method declaration itself (next
to @RequestMapping) with @ResponseBody. The handler will transform the return
value into the data format specified in the produces attribute of RequestMapping.

The consumes and produces attributes of RequestMapping narrow down the primary
mapping to the given media type (for example, consumes = "application/xml") or a
sequence of media types (for example, consumes = {"text/plain",
"application/json"}).

In addition to the attributes, make sure the following library exists in the pom.xm1 file:

<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.6.2</version>

</dependency>

Here is an example handler method that accepts a JSON request and returns a JSON
response:

@RequestMapping(path = "/tasks/new.json", method=RequestMethod.POST,
consumes = "application/json", produces = "application/json")
@ResponseBody
public CreateTaskResponse createNewTaskJSON(@RequestBody CreateTaskRequest
createRequest) {

Task task = new Task();

task.setName(createRequest.getTaskName());

return new CreateTaskResponse(taskService.createTask(task));

}
This handler method expects a web request with JSON content:
{
"taskName":"Project estimation",
"priority": 2,
"creatorId": 1,
"assigneeId": 2,
"comments": "Involve the team in the process"
}

Now, the same method could be modified slightly to support XML content, consumes as
well as produces. Look at the following listing:

@RequestMapping(path = "/tasks/new.xml", method = RequestMethod.POST,
consumes = "application/xml", produces = "application/xml")
@ResponseBody
public CreateTaskResponse createNewTaskXML(@RequestBody CreateTaskRequest
createRequest) {

Task task = new Task()

task.setName(createRequest.getTaskName());

return new CreateTaskResponse(taskService.createTask(task));

}

Make sure you have the JAXB annotation @xm1RootElement at the root of both
RequestBody and ResponseBody types (CreateTaskRequest and CreateTaskResponse in
this case).

You can invoke the preceding XML handler by sending the following content with the
web request to the handler URI:

<CreateTaskRequest>
<taskName>Estimate the project</taskName>
<priority>2</priority>
<creatorId>1</creatorId>
<assigneeld>2</assigneeIld>
<comments>Involve the team in the process</comments>
</CreateTaskRequest>

Building a RESTful service with RestController

RestController is a convenient stereotype provided for building REST API endpoints
that serve custom media types such as JSON or XML. It combines @Controller with
@ResponseBody, that is, you do not need to annotate @ResponseBody in the handler
methods. @RequestMapping methods assume @ResponseBody semantics by default.

Let’s see what the JSON handler method looks like when it becomes part of an
@RestController annotation:

@RestController
public class TaskRestController {

@RequestMapping(path="/api/tasks/new.json", method=RequestMethod.POST,
consumes="application/json", produces= "application/json")
public CreateTaskResponse createNewTaskJSON(@RequestBody
CreateTaskRequest createRequest) {
Task task = new Task();
task.setName(createRequest.getTaskName());

return new CreateTaskResponse(taskService.createTask(task));

1}
}

Notice that the only difference in the mapping is the missing @ResponseBody annotation. It
is best practice to define your REST APIs inside REST controllers.

Asynchronous request processing in
Spring MVC

In an age of APIs, AJAX clients, and devices, web servers are under exponentially
growing traffic. Figuring out ways to make servers more scalable is an ongoing challenge
for server vendors. The traditional one thread per HTTP connection strategy does not
scale well for a bigger number of concurrent user access. In this model, every request
blocks a thread from the thread pool allocated by the Servlet container until the request is
completely processed (the examples shown so far follow this model). When AJAX clients
—where a single screen frequently fires multiple concurrent connection requests—;join the
traditional, blocking I/0 model of web servers with long-running processes, servers easily
get exhausted due to the thread starvation problem, since no free thread is available in the
pool. This makes the application unavailable on increased load.

Asynchronous HTTP request processing is a technique that utilizes the non-blocking I/O
capability of the Java platform’s NIO API. In this model, a server thread is not constantly
attached to a persistent HTTP connection during the whole request processing. The Servlet
container releases the container thread as soon as the request is received and further
processing is delegated to a thread managed by another application (Spring, in this case)
so that the container thread is free to serve new incoming requests. This non-blocking
request processing model saves a lot of server resources and steadily increases the
scalability of the server.

Servlet 3.0 introduced asynchronous processing support, and Spring has implemented this
support starting from Spring 3.2. As of 4.2, Spring provides two easy ways of defining
asynchronous request handlers:

e Returning a java.util.concurrent.Callable instance instead of a value and
producing the actual return value form inside the call method of callable, that is, a
thread managed by Spring, instead of a Servlet container

e Returning an instance of the Spring-specific beferredResult type and producing the
actual return value form inside any other thread or external event, such as JMS or a
Quartz scheduler

Both these methods release the container thread at the earliest possible opportunity and
use external threads to continue long-running transactions asynchronously. Let’s look at an
example for the first option, that is, using callable:

@RequestMapping(path="/tasks/new.xml", method= RequestMethod.POST, consumes
= "application/xml", produces = "application/xml")
@ResponseBody
public Callable<CreateTaskResponse> createNewTaskXMLAsyncCallable(
@RequestBody CreateTaskRequest createRequest) {

return new Callable<CreateTaskResponse>() {

@Override
public CreateTaskResponse call() throws Exception {

Task task = new Task();
task.setName(createRequest.getTaskName());

Task persistedTask = taskService.createTask(task);
// Send an email here..
// Send some push notifications here..

return new CreateTaskResponse(persistedTask);
}
iy
3

In this method, you can see that the handler method returns the callable object
immediately after receiving the request and without waiting for the callable.call()
method to execute. Spring MVC invokes the call() method in another thread using
TaskExecutor, and the response is dispatched back to the Servlet container once the
call() method returns the value.

The following is an example of how to use DeferredResult:

@RequestMapping(path = "/tasks/new-async-deferred.json", method =
RequestMethod.POST, consumes = "application/json", produces =
"application/json")

@ResponseBody

public DeferredResult<CreateTaskResponse>
createNewTaskJSONAsyncDeferredResult(@RequestBody CreateTaskRequest
createRequest) {

DeferredResult<CreateTaskResponse> defResult = new DeferredResult<>();
CompletableFuture.runAsync(new Runnable() {
@Override
public void run() {
Task task = new Task();
task.setName(createRequest.getTaskName());

Task persistedTask = taskService.createTask(task);

// Send an email here..

// Send some push notifications here..
defResult.setResult(newCreateTaskResponse(persistedTask));

}
1)

return deferredResult;

}

Remember, you must enable asynchronous processing support in DispatcherServlet as
well as for all Servlet filters declared in the web.xm1 file (or wherever you are defining
them—maybe in the JavaConfig class) for it to work. The following code shows how you
set it in web.xm1:

<servlet>
<servlet-name>appServlet</servlet-name>
<servlet-class>
org.springframework.web.servlet.DispatcherServlet</servlet-class>

<async-supported>true</async-supported>

</servlet>

You may choose any of the preceding approaches as per your convenience to enable
asynchronous processing. Consider designing all your non-trivial services to work
asynchronously for high scalability and performance.

Working with views

Spring MV C provides a very flexible view resolution mechanism that is fully decoupled
from the other elements of the MVC framework. It does not force you to use a particular
view technology; rather, it makes it easier to use your own favorite technology. It even
allows you to mix and match multiple technologies at the view tier. Spring MVC provides
out-of-the-box support for JPS, XSLT, and Velocity views.

Resolving views

In a typical Spring MVC application, the developer chooses a view technology of his
choice and accordingly uses a ViewResolver that resolves views built using that
technology.

The component responsible for resolving views in a Spring MVC application is
org.springframework.web.servlet.ViewResolver. It maps logical view names with
physical view resources and the chosen view technology.

All request-handling methods of controllers must resolve a logical view name by either
returning a view name, a view object, or a ModelAndView object. The
org.springframework.web.servlet.View object prepares HttpRequest for the
consumption of the chosen view technology.

Spring MV C comes with a set of convenient view resolvers out of the box:

'ViewResolver Description

This is a convenient base class for ViewResolver implementations. For better

AbstractCachingViewResolver) - .
performance, it caches view objects once they are resolved.

This uses bean definitions from a dedicated XML file to resolve view definitions.
XmlViewResolver The file is specified by a resource location. By default, it is located at WEB-
INF/views.xml

This uses bean definitions in ResourceBundle specified by the bundle basename in
order to define views. The default basename is views.properties.

ResourceBundleViewResolver

This resolves view names with physical resources in the matching URL. Its two
supporting properties, prefix and suffix, help locate the resource.

UrlBasedViewResolver

This resolves Servlets and JSPs with JSTL support. It is a subclass of
UrlBasedViewResolver.

InternalResourceViewResolver

FreeMarkerViewResolver

VelocityViewResolver ||This resolves Velocity templates and is a subclass of ur1BasedviewResolver.
||This resolves FreeMarker templates. It is a subclass of urlBasedviewResolver.

This resolves JasperReport views for different formats, such as CSV, HTML, XLS,

JasperReportsViewResolver
and XLSX.

TilesViewResolver ||This resolves Tiles views for both version 2 and 3.

The sample application in this chapter uses Ur1BasedviewResolver for resolving JSP
views. When you use multiple view technologies in a web application, you may use
ResourceBundleViewResolver.

Resolving JSP views

Java Server Pages (JSP), the primary web templating technology for Java EE, is a simple
and easy tool for the rapid development of dynamic web content based on JVM. Built on
top of Servlet technology, JSP has direct access to the entire Java API. JSP makes a web
page author’s life a lot easier by allowing him to design web pages in natural HTML
format and then embed the required Java code inside scriptlet blocks.

Java Server Pages Tag Library (JSTL) is a set of standardized HTML-style tags highly
useful for JSP pages. JSTL eliminates the need to mix Java code inside JSP pages, thus
making JSP pages much cleaner and easier to author.

Spring MVC resolves JSP pages using InternalResourceViewResolver. In an earlier
section, Your first Spring MVC application, we already configured the viewResolver class
for JSP, as follows:

<beans:bean
class="org.springframework.web.servlet.view.InternalResourceViewResolver">
<beans:property name="prefix" value="/WEB-INF/views/" />
<beans:property name="suffix" value=".jsp" />
</beans:bean>

Spring MV C recommends keeping your view files (JSP in this case) under the WEB- INF
directory to avoid direct client access. ViewResolver discovers the view files from the
physical location and caches them by default once resolved, which helps performance.

Binding Model attributes in JSP pages using JSTL

Views have access to Model attributes set from associated handler methods and controllers.
These Model attributes can be displayed in JSP views with the help of JSTL. In the
following example, the Model attribute tasks is listed using JSTL:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<table class="table table-hover">
<thead>
<tr>
<th>ID</th>
<th>Task</th>
<th>Status</th>
<th>Priority</th>
<th>Created By</th>
<th>Assigned To</th>
</tr>
</thead>
<tbody>
<c:if test="${not empty tasks}'">
<c:forEach var="task" items="${tasks}">
<tr>
<td>
<a href='<c:url value="/tasks/${task.id}"/>"'>${task.id}
</td>
<td>${task.name}</td>
<td>${task.status}</td>
<td>${task.priority}</td>
<td>${task.createdBy.name}</td>
<td>${task.assignee.name}</td>
</tr>
</c:forEach>
</c:if>
</tbody>
</table>

You may have noticed the declaration and usage of JSTL tags in the preceding JSP extract
of the /tasks/1ist.jsp view. Here is how it would be rendered with proper styling in a
browser:

@ Safarl Flle Edit View History Bookmarks Window Help

o

AT Q)

83% @} Sat Oct 10 121AM O

*eo e < n] & 0

Taskify! Home Manage Users = Manage Tasks

List of tasks

Opan Tasks Cloaed Tasks

D Task Status Priority
1 Order Food Opan 10

2 Commit code changes Open 5

3 Review code changes Open]

4 Raleasa projact version Opan a

5 Order Snacks Closed

kaealhast

Croated By
Shamear Kunjumaoharmad
Shameer Kunjumahamed
Tarun Bhati
Tarun Bhati

Tarun Bhati

-
Lo

Assigned To

Tarun Bhati

Tarun Bhati

Shameer Kunjumohamed
Shameer Kunjumoharmed

Shameer Kunjumohamed

s
L]

[

1]

Spring and Spring form tag libraries

Spring bundles a set of tags for the easier authoring of plain JSP pages and JSP forms,
defined in spring.tld and spring-form.tld respectively. spring.t1ld describes general-
purpose JSP tags commonly used in JSP pages, listed in the following table:

Spring tag Description

This allows the data binding of an attribute given in the bind path of a locally declared

<spring:bind/> . . .
bean or a Model attribute and provides a BindStatus object to the enclosed body content.

<spring:escapeBody/> ||This applies HTML escaping and JavaScript escaping for the body.

<spring:hasBindErrors/>|IThis provides an error instance if there are bind errors.

<spring:htmlEscape/> This sets an HTML escape value for the current JSP page.

<spring:nestedPath/> This sets a nested path of ModelAttribute to the <spring:bind/> tags enclosed inside.

<spring:theme/>

<spring:message/> ||This displays a message for a given code, usually resolved from a resource bundle.
||This loads the theme resource using the given code.

This transforms properties inside the <spring:bind/> tag and exports them to a variable

<spring:transform/> ; .
1n a given scope.

<spring:url/> ||This creates a URL with URI template variables. It is modeled after the JSTL c:url tag.

This evaluates SpEL expressions.

<spring:eval/> |

Spring form tags provide data binding for HTML forms. They have tight integration with
request handlers in controllers. Generally, they represent similarly named HTML form
elements and share common attributes:

Form tag

Sample |

<form:input/> <form:input path="name" placeholder="Task Name"/>

<form:textarea/> <form:textarea path="comments" id="txtComments" rows="5" cols="30" />

<form:select path="createdBy" id="selectCreatedBy">
<form:select/>

<form:option value="-1" label="Select"/>
<form:option/> and)) _ .)
<form:options items="${users}" itemValue="id" itemLabel="name" />

<form:options/>
P </form:select>

<form:label/> <form:label for="txtTaskName" path="name">Task-names</form:label>

<form:hidden/>> <form:hidden path="taskId" id="hdnTaskId"/>

<form:password/> <form:password path="userPassword"/>

<form:radiobutton/> ||<form:radiobutton path="sex" value="Male"/>

<form:radiobuttons/>||<form:radiobuttons path="sex" items="${sexOptions}"/>
<form:checkbox/> <form:checkbox path="task.priority" value="1"/>
<form:checkboxes/> ||<form:checkboxes path="task.priority" value="${taskPriorities}"/>
<form:password/> <form:password path="password" />

<form:errors/> <form:errors path="createdBy.id" />

Composing a form in JSP

Spring forms can be composed in JSP pages using the <spring> and <form> tags. For the
purpose of illustration, let’s take a look at a JSP form that uses both the Spring and form
tag libraries along with JSTL. The following is a stripped-down version of
views/task/new. jsp:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<%@ taglib prefix="spring" uri="http://www.springframework.org/tags"%>
<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form"%>

<form:form action="new" method="post" commandName="task">
<spring:bind path="name">
<div class="form-group${status.error ? ' has-error' : ''}">
<label for="txtTaskName">Task-name</label>
<form:input path="name" class="form-control" id="txtTaskName"
placeholder="Task Name" />
<form:errors path="name" cssClass="control-label" />
</div>
</spring:bind>
<div class="form-group">
<label for="txtComments">Comments</label>
<form:textarea path="comments" class="form-control" id="txtComments"
placeholder="Comments" rows="5" cols="30" />

</div>
<spring:bind path="createdBy.id">
<div class="form-group${status.error ? ' has-error' : "'"'}">

<label for=" slCrtBy ">Created By</label>
<form:select path='"createdBy" id="slCrtBy" class="form-control">
<form:option value="-1" label="-- Select --">
</form:option>
<form:options items="${users}" itemValue="id" itemLabel="name" />
</form:select>
<form:errors path="createdBy.id" cssClass="control-label" />
</div>
</spring:bind>
<button type="submit" class="btn btn-success'">Save</button>
<a href='<c:url value="/tasks"/>' class="btn btn-primary">Cancel
</form:form>

As you can see in the preceding code listing, you must declare the JSTL, Spring, and form
tag library directives at the top of your JSP page before you use Spring form tags.

All <form> elements should be inside a <form: form/> container element. The
commandName attribute value of <form: form/> binds the Model attribute with the name in
the handler method of the Controller. The handler method from which the preceding JSP
form is resolved would look like the following code:

@RequestMapping(path = "/tasks/new", method = RequestMethod.GET)

public String newTaskForm(Model model) {
model.addAttribute("task", new Task());
model.addAttribute("priorities", priorities); // This is a collection
model.addAttribute("users", userService.findAllUsers());

return "task/new";

}

Notice the Model attribute, task, which is bound with the <form: form/> tag in the JSP
page. The form is submitted to the following handler method, which again serializes the
Task object back for persistence:

@RequestMapping(path = "/tasks/new", method = RequestMethod.POST)
public String createNewTask(@ModelAttribute("task") @valid Task task,
BindingResult result, Model model) {
if(result.hasErrors()) {
return "task/new";
} else {
taskService.createTask(task);
return "redirect:/tasks";

Validating forms

Spring MVC makes form validation a lot easier using Spring’s Validator framework. You
might have noticed the @valid annotation and the usage of the
BindingResult.hasErrors() method call inside handler methods listed in the previous
section. They are part of the validation framework.

Let’s create a validator for a Task object by following these steps:

1. Add the Validation API’s Maven dependency, javax.validation (build file:
pom.xml).

2. Make sure you have defined MessageSourceBean for the validation-errors
properties file in your bean definition:

<beans:bean id="messageSource" class="org.springframework.context.
support.ReloadableResourceBundleMessageSource">
<beans:property name="defaultEncoding" value="UTF-8" />
<beans:property name="basenames" value="classpath:validation-errors"
/>
</beans:bean>

3. Make sure there is a validation-errors.properties file with the following sample
content in your root resources location. You may add as many error messages into it
as you like.

error.invalid={0} is in invalid format.
error.required={0} is required.

4. Create a Validator class, Taskvalidator:

public class TaskValidator implements Validator {

@Override

public boolean supports(Class<?> clazz) {
return clazz.isAssignableFrom(Task.class);

¥

@Override
public void validate(Object target, Errors errors) {
Task task = (Task) target;
ValidationUtils.rejectIfEmptyOrWhitespace(errors, '"name",
"error.required", new Object[] { "Task name" });
ValidationUtils.rejectIfEmpty(errors, "createdBy.id",
"error.required", new Object[] { "Created user" });

¥
}
5. Register the Taskvalidator class inside the TaskController class using
InitBinder:

@InitBinder("task")

public void initBinder (WebDataBinder binder) {
binder.addvalidators(new TaskValidator());

}

6. Annotate ModelAttribute with the @valid annotation of javax.validation.valid
in the handler method.

7. Handle validation errors in the request handler method, as given in the
createNewTask () method listed in the previous section.

8. Add a <form:errors/> tag for each form field you are validating—as seen in the
/tasks/new. jsp file.

The form will look like this in case of validation errors:

Create a New Task

Enter task details here..

Task-name

Task Name

Task name is required.

Comments

Comments

By

Created By

ap
| S

[PR, 7 v pem—

Created user is required.

Assigned To

[SENER, |17 S

4k
S

Assigned user is required.
Priority
1

Am

Handling file uploads

Most web applications require multipart file upload functionality. Spring MVC makes it
extremely easy to handle this otherwise cumbersome feature. It provides two built-in
implementations of MultiPartResolvers: CommonsMulipartResolver for Apache
Commons FileUpload and standardServletMultipartResolver for the Servlet 3.0 API.

Since most modern web applications use a Servlet 3.0 container, let’s see how the
FileUpload functionality can be handled using StandardServletMultipartResolver with
the help of following example:

1.

Register your MultipartResolver in your servlet-context.xml file (or add it
programmatically if you are using a Java configuration):

<beans:bean id="multipartResolver"
class="org.springframework.web.multipart.support.StandardServletMultipa
rtResolver'">

</beans:bean>

Add multipart configuration support to your DispatcherServlet in your web.xml (or
JavaConfig) file:

<servlet>
<servlet-name>appServlet</servlet-name>

<multipart-config>
<location>/tmp/servlet-uploads</location>
<max-file-size>20848820</max-file-size>
<max-request-size>418018841</max-request-size>
<file-size-threshold>1048576</file-size-threshold>
</multipart-config>
</servlet>

Make sure that the location you provided in the previous section really exists. Create
the directory if it doesn’t.

Create the web form with an input file element in it. This sample JSP snippet uploads
a user’s profile image:

<form:form action="../${user.id}/profileForm" method="post"
enctype="multipart/form-data">
<div class="form-group">
<label for="txtUserName">Choose File</label>
<input type="file" name="profileImage"/>

</div>
<button type="submit" class="btn btn-success">Upload</button>
Cancel

</form:form>

Create the request handler method in your Controller:

@RequestMapping(path = "/{userId}/profileForm", method =
RequestMethod.POST)

public String uploadProfileImage(@Pathvariable("userId") Long userlId,
@RequestParam("profileImage") MultipartFile file) throws IOException {

User user = userService.findById(userId);
String rootDir = FILE_ROOT_DIR + "/" + user.getId();

if (!file.isEmpty()) {
java.io.File fileDir = new java.io.File(fileSaveDirectory);

if (!fileDir.exists()) {
fileDir.mkdirs();
}

FileCopyUtils.copy(file.getBytes(), new java.io.File(rootDir +
"/" + file.getOriginalFilename()));

File profileImageFile = this.userService.addProfileImage(userId,
file.getOriginalFilename());

}

return "redirect:/users/" + userld;

Resolving Thymeleaf views

Thymeleaf is a Java-based XML/HTML/HTMLS5 template engine library to build web
applications. It allows faster processing of templates and increased performance due to the

intelligent caching of parsed view files. Please refer to the official Thymeleaf
documentation for Thymeleaf page authoring.

You need Thymeleaf and Spring (org. thymeleaf) in your Maven dependencies in order to
use Thymeleaf in your projects. Thymeleaf views can be resolved in your project with the

following snippet:

<beans:bean class="org.thymeleaf.spring4.view.ThymeleafViewResolver">

<beans:property name="templateEngine" ref="templateEngine" />

<beans:property name="order" value="1" />

<beans:property name="viewNames" value="*.html,*.xhtml" />
</beans:bean>

<beans:bean id="templateResolver" class=
"org.thymeleaf.templateresolver.ServletContextTemplateResolver">
<beans:property name="prefix" value="/WEB-INF/templates/" />
<beans:property name="suffix" value=".html" />
<beans:property name="templateMode" value="HTML5" />
</beans:bean>

<beans:bean id="templateEngine"
class="org.thymeleaf.spring4.SpringTemplateEngine">

<beans:property name="templateResolver" ref="templateResolver"
</beans:bean>

/>

More view technologies

Spring MV C supports an impressive set of view technologies; you can use any of these
after adding the right Maven dependencies in your project. Spring provides view resolvers
out of the box for most of the view technologies. Here is a list of other view technologies
supported by Spring MVC:

Velocity and FreeMarker

Groovy markup templates

JavaScript templates (on Nashhorn): Handlebars, Mustache, ReactJS, and EJS
ERB templates on JRuby and String templates on Jython

XML views and XSLT (built in)

Tiles

PDF (iText) and Excel (Apache POI)

JasperReports

Feed views

In most cases, you will need to mix and match view technologies in the same application.
For example, you may use JSP for normal HTML screens, but you will still need
JasperReports to report screens and may need to download some reports as PDF and Excel
files. Using Spring MV C ensures that all these features can be easily integrated.

Summary

In this chapter, we learned how to build highly scalable and dynamic web applications
using Spring MV C. Starting from setting up the project and configuring
WebApplicationContext with proper layering, we explored different ways of designing
controllers and map request handlers for both web and API endpoints—that too including
asynchronous processing and multipart file uploads—using easily configurable
components. Now, we can compose beautiful JSP pages using <spring> and <form> tags
and also enable form validation using the Validation API.

So far, we have been holding data in memory without bothering about making it persistent
somewhere. In the next chapter, we will dive one level deeper into the data layer of
enterprise application development, learning various data access and persistence
mechanisms with and without ACID transactions. We are going to deal with more serious
concerns from this point.

Chapter 3. Accessing Data with Spring

Data access or persistence is a major technical feature of data-driven applications. This is
a critical area where careful design and expertise is required. Modern enterprise systems
use a wide variety of data storage mechanisms ranging from traditional relational
databases such as Oracle, SQL Server, and Sybase to more flexible, schema-less NoSQL
databases such as MongoDB, Cassandra, and Couchbase. Spring Framework provides
comprehensive support for data persistence in multiple flavors of mechanism, ranging
from convenient template components to smart abstractions over popular ORM (Object
Relational Mapping) tools and libraries, making them much easier to use. Spring’s data
access support is another great reason for choosing it for developing Java applications.

Spring Framework offers the following primary approaches for data persistence
mechanisms for developers to choose from:

e Spring JDBC
e ORM Data Access
e Spring Data

Furthermore, Spring standardizes the preceding approaches under a unified DAO (Data
Access Object) notation called @rRepository.

Another compelling reason for using Spring is its first class transaction support. Spring
provides consistent transaction management, abstracting different transaction APIs such as
JTA, JDBC, JPA, Hibernate, JDO, and other container-specific transaction
implementations.

In order to make development and prototyping easier, Spring provides embedded database
support, smart abstractions (DataSource), and excellent test integration. This chapter
explores various data access mechanisms provided by Spring Framework and its
comprehensive support for transaction management in both standalone and web
environments, with relevant examples.

Note
Why use Spring Data Access when we have JDBC?

JDBC (Java Database Connectivity), the Java Standard Edition API for data
connectivity from Java to relational databases, is a very a low-level framework. Data
access via JDBC is often cumbersome; the boiler-plate code the developer needs to write
makes the code error-prone. Moreover, JDBC exception handling is not sufficient for most
use cases; there exists a real need for simplified but extensive and configurable exception
handling for data access. Spring JDBC encapsulates the often repeating code, simplifying
the developer code tremendously, and lets him/her focus directly on his business logic.
Spring Data Access components abstract the technical details including the lookup and
management of persistence resources such as connections, statements, and resultsets, and
accept the specific SQL statements and relevant parameters to perform the operation.
Spring Data Access components use the same JDBC API under the hood, while exposing

simplified, straightforward interfaces for the client’s use. This approach makes for a much
cleaner and hence maintainable data access layer for Spring applications.

Configuring DataSource

The first step to connect to a database from any Java application is to obtain a connection
object specified by JDBC. bataSource, a part of Java SE, is a generalized factory of
java.sqgl.Connection objects that represents the physical connection to the database and
is the preferred means of producing a connection. bataSource handles transaction
management, connection lookup, and pooling functionalities, relieving the developer of
those infrastructural issues.

DataSource objects are often implemented by database driver vendors and typically
looked up via JNDI. Application servers and Servlet engines provide their own
implementations of DataSource (and) or connectors to DataSource objects provided by
the database vendor. Typically configured inside XML-based server descriptor files,
server-supplied DataSource objects generally provide built-in connection pooling and
transaction support. As a developer, you just configure your data sources inside the server
configuration files declaratively in XML and look them up from your application via
JNDI.

In a Spring application, you configure your DataSource reference as a Spring bean, and
inject it as a dependency into your DAOs or other persistence resources. The Spring
<jee:jndi-lookup/> tag (of http://www.springframework.org/schema/jee namespace)
allows you to look up and construct JNDI resources easily, including a bataSource object
defined from inside an application server. For applications deployed in a J2EE application
server, a JNDI DataSource object provided by the container is recommended.

<jee:jndi-lookup id="taskifyDS" jndi-
name="java:jboss/datasources/taskify"/>

For standalone applications, you need to create your own DataSource implementation or
use third-party implementations such as Apache Commons DBCP, C3P0, or BoneCP. The
following is a sample DataSource configuration using Apache Commons DBCP2. It
provides configurable connection pooling features too.

<bean id="taskifyDS" class="org.apache.commons.dbcp2.BasicDataSource"
destroy-method="close">

<property name="driverClassName" value="${driverClassName}" />

<property name="url" value="${url}" />

<property name="username" value="${username}" />

<property name="password" value="${password}" />

<property name="initialSize" value="3" />

<property name="maxTotal" value="50" />

</bean>
Make sure you add the corresponding dependency to your DataSource implementation in
your build file. The following is for DBCP2:

<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-dbcp2</artifactId>

http://www.springframework.org/schema/jee

<version>2.1.1</version>
</dependency>

Spring provides DriverManagerDataSource, a simple implementation of bataSource,
which is only meant for testing and development purposes, not for production use. Note
that it does not provide connection pooling. Here is how you configure it in your
application.

<bean id="taskifyDS"
class="org.springframework.jdbc.datasource.DriverManagerDataSource">
<property name="driverClassName" value="${driverClassName}" />
<property name="url" value="${url}" />
<property name="username" value="${username}" />
<property name="password" value="${password}" />
</bean>

It can also be configured using the Java-based configuration, as shown in the following
code:

@Bean
DataSource getDatasource() {
DriverManagerDataSource dataSource = new
DriverManagerDataSource(pgDsProps.getProperty("url"));
dataSource.setDriverClassName(
pgDsProps.getProperty("driverClassName"));
dataSource.setUsername(pgDsProps.getProperty("username"));
dataSource.setPassword(pgDsProps.getProperty("password"));
return dataSource;

}
Note

Never use DriverManagerDataSource on production environments. Use third-party data
sources such as DBCP, C3P0, and BoneCP for standalone applications, and JNDI
DataSource provided by the container, for the J2EE container instead. They are more
reliable and provide efficient connection pooling functionality off the shelf.

Using embedded databases

For prototyping and test environments, it is a good idea to use Java-based embedded
databases to quickly start up the project and configure easily. They are lightweight and
easily testable. Spring supports the HSQL, H2, and Derby database engines for that
purpose natively. Here is a sample DataSource configuration for an embedded HSQL
database:

@Bean
DataSource getHsglDatasource() {
return new
EmbeddedDatabaseBuilder().setType(EmbeddedDatabaseType.HSQL)

.addScript("db-scripts/hsql/db-schema.sqgl")
.addScript("db-scripts/hsql/data.sql")
.addScript("db-scripts/hsql/storedprocs.sql")
.addScript("db-scripts/hsql/functions.sql")
.setSeparator("/").build();

}
The XML version of this would look like the following code:

<jdbc:embedded-database id="dataSource" type="HSQL">
<jdbc:script location="classpath:db-scripts/hsql/ db-schema.sql" />

</jdbc:embedded-database>

Handling exceptions in the Spring Data
layer

With traditional JDBC-based applications, exception handling is based on
java.sql.SQLException, which is a checked exception. It forces the developer to write
catch and finally blocks carefully for proper handling and to avoid resource leakages
such as leaving a database connection open. Spring, with its smart exception hierarchy
based on RuntimeException, spares the developer from this nightmare. Having
DataAccessException as the root, Spring bundles a bit set of meaningful exceptions,
translating the traditional JDBC exceptions. Spring also covers Hibernate, JPA, and JDO
exceptions in a consistent manner.

Spring uses SQLErrorCodeExceptionTranslator, which inherits
SQLExceptionTranslator for translating SQLException to DataAccessExceptions. We
can extend this class to customize the default translations. We can replace the default
translator with our custom implementation by injecting into the persistence resources
(such as JdbcTemplate, to be covered later). See the following code listing for how we
define a SQLExceptionTranslator class in your code:

String userQuery = '"select * from TBL_NONE where name = ?";
SQLExceptionTranslator excTranslator = new SQLExceptionTranslator() {

@Override
public DataAccessException translate(String task, String sql,
SQLException ex) {
logger.info("SUCCESS --- SQLExceptionTranslator.translate invoked !!");
return new BadSglGrammarException("Invalid Query", userQuery, ex){};

}
i
The preceding code snippet catches any SQLException and converts it into a Spring-based
BadSqlGrammarException instance. Then, this custom SQLExceptionTranslator needs to
be passed to the Jdbctemplate before use, as shown in the following code:

JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
jdbcTemplate.setExceptionTranslator(excTranslator);

Map<String, Object> result = jdbcTemplate.queryForMap(userQuery, new
Object[] {"abc"});

Now, any invalid query will invoke the custom SQLExceptionTranslator class. You can
customize its behavior according to your requirements.

DAO support and @Repository
annotation

The standard way of accessing data is via specialized DAOs that perform persistence
functions under the data access layer. Spring follows the same pattern by providing DAO
components and allowing developers to mark their data-access components as DAOs,
using the annotation @Repository. This approach ensures consistency over various data
access technologies such as JDBC, Hibernate, JPA, and JDO, and project-specific
repositories. Spring applies SQLExceptionTranslator across all these methods
consistently.

Spring recommends your data-access components to be annotated with stereotype,
@Repository. The term, repository, was originally defined in Domain-Driven Design, Eric
Evans, Addison Wesley as “a mechanism for encapsulating storage, retrieval, and search
behavior which emulates a collection of objects.” This annotation makes the class eligible
for DataAccessException translation by Spring Framework.

Spring Data, another standard data-access mechanism provided by Spring, revolves
around @Repository components. We will discuss this more in later sections.

Spring JDBC abstraction

Spring JDBC components simplify JDBC-based data access by encapsulating the
boilerplate code and hiding the interaction with JDBC API components from the
developer with a set of simple interfaces. These interfaces handle the opening and closing
of JDBC resources (connections, statements, resultsets) as required. They prepare and
execute statements, extract results from resultsets, provide callback hooks for converting,
mapping and handling data, handle transactions, and translate SQL exceptions into the
more sensible and meaningful hierarchy of bataAccessException.

Spring JDBC provides three convenient approaches for accessing relational databases:

e JdbcTemplate
e SimpleJDBC classes
e RDBMS sql* classes

Each of these Spring JDBC categories has multiple flavors of components under them
which you can mix-and-match based on your convenience and technical choice. You may
explore them under the org.springframework.jdbc package and its subpackages.

JdbcTemplate

JdbcTemplate is the core component under Spring JDBC abstraction. This powerful
component executes almost all of the possible JDBC operations with its simple,
meaningful methods, accepting parameters for an impressive set of flavors of data access.
It belongs to the package, org.springframework.jdbc.core, which contains many other
supporting classes that help JdbcTemplate to complete its JDBC operations. A
DataSource instance is the only dependency for this component. All other Spring JDBC
components use JdbcTemplate internally for their operations.

Usually, you configure JdbcTemplate as yet another Spring bean, and inject it into your
DAGOs or into any other bean where you want to invoke its methods.

<bean id="jdbcTemplate" class="org.springframework.jdbc.core.JdbcTemplate">
<constructor-arg ref="dataSource"/>

</bean>

<bean id="userDAO"

class="com.springessentials.chapter3.dao.impl.UserJdbcDAO0">
<constructor-arg ref="jdbctemplate"/>

</bean>

Note

JdbcTemplate is one of the implementations of Template Pattern in Spring. Template
Pattern is a behavioral pattern listed in the Gang of Four design pattern catalog. It defines
the skeleton of an algorithm in a method or operation called Template Method, deferring
some steps into the subclasses, without changing the algorithm’s structure. JdbcTemplate
is a collection of these Template Methods; the user can extend it and override some of the
behaviors based on specific requirements. JMSTemplate and JpaTemplate are also
examples of Template Pattern implementations.

JdbcTemplate executes SQL queries (SELECT), update statements (INSERT, UPDATE, and
DELETE), stored procedure and function calls, returns extracted results (for SELECT
queries), and invokes call-back methods for result-set extraction and mapping rows with
domain objects. It has a comprehensive set of query and execute methods for different
methods of result-set extraction. The following table introduces a few very useful
JdbcTemplate methods:

Method Description

A set of overloaded methods for executing a SQL update (INSERT, UPDATE, and DELETE) statement,
with different parameter sets including the SQL statement to be executed, bind parameters, a
statement creator, and callback methods.

execute

with a multitude of parameter sets including bind parameters, argument types, RowMapper,
ResultSetExtractor, PreparedStatementCreator, RowCallbackHandler, and so on. While methods
with callbacks are void methods, the others return a list of objects of type <T> specified with the
corresponding RowMapper, ResultSetExtractor, or a populated instance of type <T>.

A set of overloaded methods for querying PreparedStatement for a given SQL SELECT statement
query

A set of overloaded query methods executing a SELECT query returns a list of objects of type <T>

queryForList |lspecified as an argument, Class<T> elementType. Those methods not specifying the elementType
return List<Map<String, Object>>.

queryForMap

Executes a (SELECT) query and returns the result as Map<String, Object>.

A set of overloaded methods querying a given SQL SELECT statement with parameter sets including

queryForObject|| .
bind parameters, argument types, RowMapper, and the required return type <T>.

A set of overloaded methods issuing an update (INSERT, UPDATE, or DELETE) statement with parameter
update sets including bind parameters, argument types, PreparedStatementCreator, and so on. It returns an
integer, which is the count of records affected.

A set of overloaded methods for executing multiple SQL updates (INSERT, UPDATE, and DELETE)
batchUpdate with different parameter sets including an array of SQL statements and many combinations of
PreparedStatementSetter and other arguments.

A set of overloaded methods for executing a SQL update (either INSERT, UPDATE, or DELETE)
execute statement, with different parameter sets including the SQL statement to be executed, bind parameters,
StatementCreator, and callback methods.

A set of overloaded methods for querying PreparedStatement for a given SQL SELECT statement
with several parameter sets including bind parameters, argument types, RowMapper,

query ResultSetExtractor, PreparedStatementCreator, RowCallbackHandler, and so on. While those
methods with callbacks are void methods, the others return a list of objects of type <T> specified with
the corresponding RowMapper, ResultSetExtractor, or a populated instance of type <T>.

Behind the super capabilities of JdbcTemplate is a set of callback interfaces being passed
as arguments for the methods listed in the preceding table. These execution hooks help
JdbcTemplate to deal with relational data in a pure object-oriented and reusable fashion. A
good understanding of these interfaces is critical for the right usage of JdbcTemplate. See
the following table for these callback interfaces:

. Callback oo
Callback interface method(s) Responsibilities

Constructs java.sql.CallableStatement, which is used to execute stored
procedures inside its createCallableStatement (Connection)method:.

CallableStatementCreator [lexecute

execute,
Preparedstatementcreator ||update Constructs java.sql.PreparedStatement, glvlen a connection, inside the

query > |Imethod, createPreparedStatement (Connection).
PreparedStatementSetter |UPdate, Sets values to PreparedStatement before execution, inside

query JdbcTemplate.setValues (PreparedStatement).

CallableStatementCallback|lexecute |lstored procedure or function, before the actual execution, inside

JdbcTemplate.doInCallableStatement(CallableStatement).

Used by JdbcTemplate execute methods for preparing PreparedStatement.
Usually sets the bind parameters, before the actual execution, inside the
doInPreparedStatement (PreparedStatement)method:.

PreparedStatementCallback]|lexecute

Extracts results from ResultSet and returns a domain object, inside the

ResultSetExtractor query
extractData(ResultSet)method:.

|Prepares CallableStatement. Usually sets the IN and ouT parameters of a

Processes each row of a ResultSet in a stateful manner, inside the

RowCallbackHandler query . .
processRow(Resultset)method, which doesn’t return anything.
RowMapper query mapRow(Resultset, int rowNum)method, returning the created domain

)
Maps each row of a ResultSet into a domain object, inside the
object.

Now let’s try some nice realistic usages of JdbcTemplate. The following is a simple
method executing a count query using JdbcTemplate.

@Override
public int findAllOpenTasksCount() {

return jdbcTemplate.queryForObject("select count(id) from tbl_user where
status = ?", new Object[]{"Open"}, Integer.class);

}

Do you see how this straightforward one-liner code saves you from all the boilerplate and
exception-handling code you would otherwise need to write in typical JDBC code?

The following code snippet is a bit more complex and illustrates how to query a unique
row from a table and map it with a domain object (User, in this case) using RowMapper:

public User findByUserName(String userName) {
return jdbcTemplate.queryForObject("SELECT ID, NAME, USER_NAME, PASSWORD,
DOB, PROFILE_IMAGE_ID, PROFILE_IMAGE_NAME FROM TBL_USER WHERE USER_NAME =
?", new Object[] { userName },
new RowMapper<User>() {
@Override
public User mapRow(ResultSet rs, int rowNum) throws SQLException {
return new User(rs.getLong("ID"),
rs.getString("NAME"),
userName,
rs.getString("PASSWORD"),
rs.getDate("DOB"));

}
1)
}

It is so much easier to deal with collections of data using JdbcTemplate. The following
code snippet illustrates the query method of JdbcTemplate with bind parameters and a
RowMapper that converts ResultSet into a list of type: <Task>.

@Override

public List<Task> findCompletedTasksByAssignee(Long assigneeId) {
String query = "SELECT * FROM TBL_TASK WHERE STATUS = ? AND
ASSIGNEE_USER_ID = ? ";

return this.jdbcTemplate.query(query, new Object[] {"Complete",
assigneeld }, new RowMapper<Task>() {
@Override
public Task mapRow(ResultSet rs, int rowNum) throws SQLException{
Task task = new Task();
task.setId(rs.getLong("id"));
Long assigneeld = rs.getLong("assignee_user_id");

if (assigneeId != null)
task.setAssignee(userDAO.findById(assigneeld));

task.setComments(rs.getString("comments"));

task.setName(rs.getString("name"));

return task;
3
1)
3

JdbcTemplate takes care of all the repeating code for you and you just need to write the
specific code, which is about how you map the data of a row with your domain object.

Another variation of row mapping that uses a ResultSetExtractor interface that extracts
a single row from Resultset is illustrated in the following code:

@Transactional(readOnly = true)
public User findUserById(Long userId) {
return jdbcTemplate.query("SELECT NAME, USER_NAME, PASSWORD, DOB,
PROFILE_IMAGE_ID, PROFILE_IMAGE_NAME FROM TBL_USER WHERE ID = ?",
new Object[] { userId }, new ResultSetExtractor<User>() {
@Override
public User extractData(ResultSet rs) throws SQLException,
DataAccessException {
if (rs.next()) {
return new User(userId, rs.getString("NAME"),
rs.getString("USER_NAME"), rs.getString("PASSWORD"), rs.getDate("DOB"));
} else {
return null;
}
}
3);
}

Now let’s take a look at some update statements. The following is the execution of a

simple INSERT statement as one-liner code. The SQL UPDATE and DELETE statements
follow the same pattern.

@Override
public void createUser(User user) {

jdbcTemplate.update("INSERT INTO TBL_USER(NAME, USER_NAME, PASSWORD, DOB)
VALUES(?,?,?,?)", new Object[] { user.getName(), user.getUserName(),
user.getPassword(), user.getDateOfBirth()});

}

The preceding method has a drawback. Although it inserts the new user record into the
table, the generated ID (probably by a database sequence) is not returned back; you would
need to issue another query to retrieve it separately. However, JdbcTemplate offers a nice
way to solve this problem: using a KeyHolder class. It is another variation of the update
method which was explained in the following code; you can retrieve the generated key (ID
in this case) in a single execution, using a KeyHolder class in combination with
PreparedStatementCreator:

public void createUser(User user) {
KeyHolder keyHolder = new GeneratedKeyHolder();

jdbcTemplate.update(new PreparedStatementCreator() {
public PreparedStatement createPreparedStatement(Connection connection)
throws SQLException {
PreparedStatement ps = connection.prepareStatement(
"INSERT INTO TBL_USER(NAME, USER_NAME, PASSWORD,DOB) VALUES(?,?,?,?)",
new String[]{"ID"});

ps.setString(1, user.getName());

ps.setString(2, user.getUserName());

ps.setString(3, user.getPassword());

ps.setDate(4, new java.sqgl.Date(user.getDateOfBirth().getTime()));
return ps;

}
}, keyHolder);

user.setId(keyHolder.getKey().longvalue());
}

JdbcTemplate makes batch updates easy, following the same pattern as shown earlier.
Take a look at the following code: it executes a single PreparedStatement over a
collection of data:

@Override
public void createUsers(List<User> users) {
int[] updateCounts = jdbcTemplate.batchUpdate("INSERT INTO
TBL_USER(NAME, USER_NAME, PASSWORD, DOB) VALUES(?,?,?,?)", new
BatchPreparedStatementSetter() {
public void setValues(PreparedStatement ps, int idx) throws
SQLException {
ps.setString(1, users.get(idx).getName());
ps.setString(2, users.get(idx).getUserName());
ps.setString(3, users.get(idx).getPassword());
ps.setDate(4, new java.sql.Date(users.get(idx)
.getDateOfBirth().getTime()));

}

public int getBatchSize() {
return users.size();

}
1);
}

NamedParameterJdbcTemplate

So far, we have used JdbcTemplate with bind parameters using ? placeholders. When it
comes to a bigger number of parameters, a named parameter is a better choice for
readability and maintainability. NamedParameterJdbcTemplate, a specialized version of
JdbcTemplate, supports using named parameters rather than traditional ? placeholders.
Instead of extending from JdbcTemplate, NamedParameterJdbcTemplate uses the
underlying JdbcTemplate for its operations.

You can define NamedParameterJdbcTemplate in the same way as the classic
JdbcTemplate, passing a DataSource object as a mandatory dependency. Then, you can
use it just like JdbcTemplate, but using named parameters instead of bound parameters

(?). The following code snippet illustrates the use of the NamedParameterJdbcTemplate
query method that uses RowMapper for object-relational mapping.

public User findByUserName(String userName, DataSource dataSource) {

NamedParameterJdbcTemplate jdbcTemplate = new
NamedParameterJdbcTemplate(dataSource);

SglParameterSource namedParameters = new
MapSglParameterSource("USER_NAME", userName);

return jdbcTemplate.queryForObject("SELECT ID, NAME, USER_NAME, PASSWORD,
DOB, PROFILE_IMAGE_ID, PROFILE_IMAGE_NAME FROM TBL_USER WHERE USER_NAME =
:USER_NAME", namedParameters, new RowMapper<User>() {

@Ooverride
public User mapRow(ResultSet rs, int rowNum) throws SQLException {
return new User(rs.getLong("ID"), rs.getString("NAME"), userName,
rs.getString("PASSWORD"), rs.getDate("DOB"));
3
37
}

SimpleJdbc classes

SimpleJdbc classes are another nice approach to accessing data in a more object-oriented
fashion, but still using the same JdbcTemplate internally. They belong to the
org.springframework.jdbc.core.simple package. There are two classes in it:

e SimpleJdbcCall
e SimpleJdbcInsert

SimpleJdbccall handles calls to stored procedures and functions and SimpleJdbcInsert
deals with SQL INSERT commands to database tables. Both are batabaseMetadata-aware,
hence they auto-detect or map similarly named fields of domain objects. Both of them act
as templates for performing JDBC operations around a relational entity (a stored
procedure or function and a database table respectively), accepting parameters that
determine the behavior of the operation once (declared globally), and then reusing it
repeatedly with a dynamic set of data at runtime.

A SimpleJdbccCall class is declared as follows:

SimpleJdbcCall createTaskStoredProc = new SimpleJdbcCall(dataSource)
.withFunctionName("CREATE_TASK")
.withSchemaName("springessentials")

.declareParameters(new SqlOutParameter("v_newID", Types.INTEGER),
new SglParameter('"v_name", Types.VARCHAR),
new SglParameter("v_STATUS", Types.VARCHAR),
new SglParameter("v_priority", Types.INTEGER),
new SglParameter('"v_createdUserId", Types.INTEGER),
new SglParameter('"v_createdDate", Types.DATE),
new SqlParameter("v_assignedUserId", Types.INTEGER),
new SqlParameter("v_comment", Types.VARCHAR));

The preceding code declares SimpleJdbcCall, which invokes a stored procedure (in
PostgreSQL, stored procedures are also called functions) and all its parameters. Once this
is declared, it can be reused any number of times at runtime. Usually, you declare it at the
class level (of your DAO). The following code illustrates how we invoke it at runtime:

@Override
public void createTask(Task task) {

SqlParameterSource inParams = new
MapSqglParameterSource().addvalue("v_name'", task.getName())
.addvalue("v_STATUS", task.getStatus())
.addvalue("v_priority", task.getPriority())
.addvalue("v_createdUserId", task.getCreatedBy().getId())
.addvalue("v_createdDate", task.getCreatedDate())
.addvalue("v_assignedUserId", task.getAssignee() == null ?

null : task.getAssignee().getId())
.addvalue("v_comment", task.getComments());

Map<String, Object> out = createTaskStoredProc.execute(inParams);
task.setId(Long.valueOf(out.get("v_newID").toString()));

}

SimpleJdbcInsert is typically declared as shown in the following code:

SimpleJdbcInsert simpleInsert = new SimpleJdbcInsert(dataSource)
.withTableName("tbl_user")
.usingGeneratedKeyColumns("id");

Note the declaration of the generated key column beside the table name in the following
code snippet. Again, this is usually declared at the class level for better reuse. Now, take a
look at how this is invoked at runtime.

public void createUser(User user) {
Map<String, Object> parameters = new HashMap<>(4);
parameters.put("name", user.getName());
parameters.put("user_name", user.getUserName());
parameters.put("password", user.getPassword());
parameters.put("dob", user.getDateOfBirth());

Number newId = simpleInsert.executeAndReturnKey(parameters);
user.setId(newId.longValue());

}

You can see that the generated key is returned after the execution, which is set back to the
User object. SimpleJdbcCall and SimpleJdbcInsert are convenient alternatives to the
vanilla JdbcTemplate; you can use any of these solutions consistently or you can mix-and-
match them in the same application.

JDBC operations with Sql* classes

A set of classes belonging to the org.springframework.jdbc.object package offers
another method of performing JDBC operations in a more object-oriented manner. The
following table lists the most common of them:

Component Responsibilities

MappingSqlQuery ConcreFe representation of a SQL query, supporting a RowMapper, and having a wide variety of
convenient execute and find* methods. Supports named parameters too.

Sqlupdate Executes an SQL update (INSERT, UPDATE, and DELETE) operation, with support for named
parameters and keyholders (for retrieving generated keys).

sqlcall Performs SQL-based calls for stored procedures and functions with support for named-parameters
and keyholders (for retrieving generated keys).

The following code illustrates the use of MappingSqlQuery:

public Task findById(Long taskId) {
MappingSqlQuery<Task> query = new MappingSqlQuery<Task>() {

@Override
protected Task mapRow(ResultSet rs, int rowNum) throws SQLException {
return new RowMapper<Task>() {
@Override
public Task mapRow(ResultSet rs, int rowNum) throws
SQLException {
Task task = new Task();
task.setId(rs.getLong("id"));

return task;
}
}.mapRow(rs, rowNum);
}
Iy

query.setJdbcTemplate(jdbcTemplate);

query.setSqgl("select id, name, status, priority, created_user_id," + "
created_date, assignee_user_id, completed_date, comments " + "from tbl_task
where id = ?");

query.declareParameter (new SqlParameter("id", Types.INTEGER));

return query.findObject(taskId);
¥

SQL updates (INSERT, UPDATE, and DELETE) can be performed using SqlUpdate with a
more descriptive code, as the example in the following code illustrates:

@Override
public void deleteTask(Task task) {

SqlUpdate sqglUpdate = new SqglUpdate(this.jdbcTemplate.getDataSource(),
"DELETE FROM TBL_TASK WHERE ID = ?");

sqlUpdate.declareParameter(new SqlParameter("ID", Types.NUMERIC));

sqlUpdate.compile();
sqlUpdate.update(task.getId());

}

Sqlupdate provides a variety of convenient update methods, suitable for many parameter
combinations. You can mix-and-match any of the preceding listed Spring JDBC
components according to your convenience and preferred programming style.

Spring Data

Spring Data is an umbrella project under the Spring portfolio, designed to provide
consistent data access across a number of different data stores including relational and
NoSQL Databases, and other types of data stores such as REST (HTTP), search engines,
and Hadoop. Under Spring Data, there are subprojects for each specific approach and data
store, put together by companies or developers of those technologies. Spring Data
significantly simplifies the building of the data layer regardless of the underlying database
and persistence technology.

The following table lists a few Spring Data subprojects with a short description of each:

Project Description

Spring Data [|Contains a core Spring Data repository specification and supporting classes for all Spring Data projects.
Commons ||Specifies concepts such as repository, query, auditing, and history.

Spring Data

PA Deals with JPA-based repositories.

Spring Data

MongoDB Provides easy integration with MongoDB, including support for query, criteria, and update DSLs.

Spring Data

Redis Integrates with the Redis in-memory data structure store, from Spring applications.

Solr Lucene.

Spring Data ||Provides easy integration with Pivotal Gemfire, a data management platform that provides real-time data
Gemfire access, reliable asynchronous event notifications, and guaranteed message delivery.

Spring Data Deals with key value-based data stores.

KeyValue

Spring Data . .

REST Exposes repositories with REST APIs.

Spring Data “Provides integration with Apache Solr, a powerful, open source search platform based on Apache

The Spring Data portfolio contains community modules for more data stores that are not
covered by the official Spring Data projects. Communities of several very popular open
source and proprietary databases are contributing to these projects, which makes Spring
Data an excellent source of proven solutions for building the data-access layer of
enterprise applications regardless of the underlying data store. Cassandra, Neo4J,
Couchbase, and ElasticSearch are some examples of community projects based on Spring
Data.

Spring Data Commons

Spring Data standardizes data-access via all its store-specific modules (subprojects)
through a consistent API called Spring Data Commons. Spring Data Commons is the
foundational specification and a guideline for all Spring Data Modules. All Spring Data
subprojects are store-specific implementations of Spring Data Commons.

Spring Data Commons defines the core components and general behaviors of Spring Data
modules.

Spring Data repository specification
Query derivation methods

Web support

Auditing

We will examine each of these components, their setup, and usage in the following
sections.

Spring Data repository specification

org.springframework.data.repository.Repository is the central interface of Spring
Data abstraction. This marker interface is a part of Spring Data Commons and has two
specialized extensions, CrudRepository and PagingAndSortingRepository.

public interface CrudRepository<T, ID extends Serializable>
extends Repository<T, ID> {

}

A repository manages a domain entity (designed as a POJO). CrudRepository provides
CRUD with the following CRUD operations for an entity.

® save(One), save(List)
e find, findOne, findAll
e delete, deleteAll

e count

® exists

PagingAndSortingRepository adds pagination and sorting features over
CrudRepository. It has the following two methods:

® Page<T> findAll(Pageable)
® Tterable<T> findAll(Sort)

Now is time to jump ahead and discuss the technology and store-specific modules of
Spring Data. We are covering Spring Data JPA and Spring Data MongoDB to illustrate
two totally different worlds in the database universe: relational and NoSQL. When we use
a specific implementation, we use an implementation-specific repository but your method
interfaces remain the same; hence, theoretically, a switch from a specific Spring Data
implementation to another would not affect your client programs (service, controller, or
test cases).

Spring Data JPA

Spring Data JPA is the JPA (Java Persistence Architecture)-based implementation of
Spring Data, dealing with object-relational data access. For a developer, most of the
programming is based on what is described in Spring Data Commons, whereas Spring
Data JPA allows for some extra customizations specific to relational SQL and JPA. The
main difference is in the repository setup and the query optimization using the @Query
annotation.

Enabling Spring Data JPA
Enabling Spring Data JPA in your project is a simple two-step process:

1. Add the spring-data-jpa dependency to your maven/gradle build file.
2. Declare enable JPA repositories in your bean configuration.

In Maven, you can add a spring-data-jpa dependency as shown in the following code:

<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-jpa</artifactId>
<version>${spring-data-jpa.version}</version>
</dependency>

You can enable JPA repositories, as shown in the following line, if you are using XML.:
<jpa:repositories base-package="com.taskify.dao" />

In the case of Java configuration, you just annotate to enable JPA repositories.

@Configuration

@ComponentScan(basePackages = {"com.taskify"})
@EnableJpaRepositories(basePackages = "com.taskify.dao")
public class JpaConfiguration {

}

JpaRepository

After enabling JPA repositories, Spring scans the given package for Java classes annotated
with @Repository, and creates fully-featured proxy objects ready to be used. These are
your DAQO, where you just define the methods, Spring gives you proxy-based
implementations at runtime. See a simple example:

public interface TaskDAO extends JpaRepository<Task, Long>{
List<Task> findByAssigneeIld(Long assigneeld);

List<Task> findByAssigneeUserName(String userName);

}

Spring generates smart implementations that actually perform the required database
operations for these methods inside the proxy implementation, looking at the method
names and arguments.

Spring Data MongoDB

MongoDB is one of the most popular document-oriented NoSQL databases. It stores data
in BSON (Binary JSON) format, allowing you to store an entire complex object in nested
structures, avoiding the need to break data into a lot of relational tables. Its nested object
structure maps directly to object-oriented data structures and eliminates the need for any
object-relational mapping, as is the case with JPA/Hibernate.

Spring Data MongoDB is the Spring Data module for MongoDB. It allows Java objects to
be mapped directly into MongoDB documents. It also provides a comprehensive API and
infrastructural support for connecting to MongoDB and manipulating its document
collections.

Enabling Spring Data MongoDB
Spring Data MongoDB can be enabled with the following steps:

1. Add spring-data-mongodb to your build file (naven/gradle).
2. Register a Mongo instance in your Spring metadata configuration.
3. Add a mongoTemplate Spring Bean to your Spring metadata.

Adding the spring-data-mongodb dependency with Maven should look like this:

<dependency>
<groupIld>org.springframework</groupId>
<artifactId>spring-aop</artifactId>
<version>${spring.framework.version}</version>
</dependency>

You can register a Mongo instance in your XML metadata, as shown in the following line:
<mongo:mongo host="192.168.36.10" port="27017" />
This Mongo instance is a proxy of your actual MongoDB instance running on a server.

A simplistic mongoTemplate looks like the listing given in the following code:

<bean id="mongoTemplate"
class="org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg ref="mongo" />
<constructor-arg name="databaseName" value="Taskify" />
</bean>

MongoRepository

MongoRepository is the MongoDB-specific repository for Spring Data MongoDB. It
looks very similar to JpaRepository. Take a look at a sample MongoRepository class:

public interface TaskDAO extends MongoRepository<Task, String>{
List<Task> findByAssigneeId(String assigneeId);

@Query("{ 'status' : 'Complete' }")
List<Task> findCompletedTasks();

@Query(value = "{ 'status' : 'Open', assignee.id: ?0 }")
List<Task> findOpenTasksByAssigneelId(String assigneeld);

Domain objects and entities

Data-driven applications often design domain objects as entities and then persist them into
databases either as relational tables or document structures of key-value pairs at runtime.
Spring Data deals with domain entities like any other persistence framework. In order to
illustrate the usage of a repository, we will refer to the following three related entities,
designed as Plain Old Java Objects (POJOs) in your program.

Task
File User e,
+name
+".:| +1d +priority
+fileName +name +createdBy +status
_ +userMName +createdBy
+profilelmage | +password +createdDate
+dateOfBirth +assignee
+profileimage +assignee +completedDate
+comments

The following are the Java representations. The first one is annotated for JPA and the other
two for MongoDB. JPA entities are annotated with @Entity. Columns are mapped against
each field. Remember that, instead of annotations, you can use XML-based mapping for
JPA entities too. XML mapping offers several benefits including centralized control and
maintainability. This example uses annotations for simplicity, assuming that the reader is
already familiar with JPA or Hibernate mappings.

@Entity

@Table(name = "TBL_USER", uniqueConstraints = @UniqueConstraint(name =
"UK_USER_USERNAME", columnNames = {"USER_NAME" }))

public class User {

@1d

@SequenceGenerator(name = "SEQ_USER", sequenceName = "SEQ_USER",
allocationSize = 1, initialValue=1001)

@GeneratedValue(strategy = GenerationType.SEQUENCE, generator =
"SEQ_USER")

private Long id;

@Column(name = "NAME", length = 200)
private String name;

@Column(name = "USER_NAME", length = 25)
private String userName;

@Column(name = "PASSWORD", length = 20)
private String password;

@Column(name = "DOB")

@Temporal(TemporalType.TIMESTAMP)
private Date dateOfBirth;

@ManyToOne(optional = true)
@JoinColumn(name = "FILE_ID", referencedColumnName = "ID")
private File profileImage;

public User() {}

public User(Long id, String name, String userName, String password, Date

dateOfBirth) {

super();

this.id = id;

this.name = name;

this.userName = userName;

this.password = password;

this.dateOfBirth = dateOfBirth;

}

public Long getId() {
return id;

}
_

The following is the task entity, annotated as a MongoDB document. Mongo entities are
annotated with @>ocument. It requires an ID field, either annotated with @1d or with the
name id.

@Document(collection = "tasks")
public class Task {

@Idprivate String 1id;
private String name;
private int priority;
private String status;
private User createdBy;
private Date createdDate;
private User assignee;
private Date completedDate;
private String comments;

public Task() {}

b
The file entity is annotated as a JPA entity.

@Entity
@Table(name = "TBL_FILE")
public class File {

@Id

@SequenceGenerator(name = "SEQ_FILE", sequenceName = "SEQ_FILE",
allocationSize = 1)

@GeneratedValue(strategy = GenerationType.SEQUENCE, generator =

"SEQ_FILE")
private Long id;

@Column(name = "FILE_NAME", length = 200)
private String fileName;

}
Query resolution methods

In addition to the declared query (find, count, delete, remove, and exists) methods at
interface level, CrudRepository supports declared queries using the @Query annotation
methods with any name, which helps to derive the actual SQL queries from the SpEL
(Spring Expression Language) expression given as a parameter. Of these two query
deriving options, Spring Data adopts one based on the following query lookup strategies:

Query Lookup Strategy||Description

CREATE

Generates module-specific queries from the method name. |

USE_DECLARED_QUERY Uses a query declared by an annotation or some other means. |

CREATE_IF_NOT_FOUND |IThis strategy combines the first two. This is the default strategy.

The query lookup strategy is normally set while enabling JPA repositories.

<jpa:repositories base-package="com.taskify.dao" query-lookup-
strategy="create-if-not-found"/>

The query generation strategy (CREATE) works around the properties of the entity,
including their dependencies, in a nested direction. As a developer, you define method
names based on a specific format that can be interpreted and realized by Spring Data. The
general structure of the query method is shown here:

[return Type] [queryType][limitKeyword]By[criteria][OrderBy][sortDirection]

e return type can be the entity <T> itself (in the case of a unique result), a list <T>, a
stream <T>, page <T>, primitive numbers, Java wrapper types, void, future <T>,
CompletableFuture<T>, ListenableFuture<T>, and so on. The last three are for
Spring’s asynchronous method execution and should be annotated with @Async.

e queryType can be find, read, query, count, exists, delete, and so on.

e limitKeyword supports distinct, First[resultSize], and Top[resultSize]. An
example is Firsts.

e criteria is built by combining one or more property expressions (using camel-
casing) with standard operators such as Or, And, Between, GreaterThan, LessThan,
IsNull, Startswith, and Exists. Criteria can be suffixed by Ignorecase or
AllIgnorecCase, to apply case insensitivity.

e OrderBy is used as it is, suffixed by property expressions.

e sortDirection can be either of Asc or Desc. This is used only with orderBy.

Let’s see some examples for better clarity. The following sample code illustrates how to

construct query (or delete) methods so that Spring Data can generate the actual SQL query
at runtime.

public interface UserDAO extends JpaRepository<User, Long> {

// Returns unique user with given user-name
User findByUserName(String userName);

// Returns a paginated list of users whose name starts with // given
value
Page<User> findByNameStartswWith(String name, Pageable pageable);

// Returns first 5 users whose name starts with given value,
// order by name descending
List<User> findTop5ByNameStartswWithOrderByNameDesc(String name);

// Returns number of users whose birth date is before the given // value
Long countUsersDateOfBirthLessThan(Date dob);

// Deletes the User of given id
void deleteById(Long userId);

// Asynchronously returns a list of users whose name contains // the
given value

@Async

Future<List<User>> findByNameContains(String name);

}

The preceding example showing JpaRepository and MongoRepository works in the same
way; you just need to extend from it, without changing the method signatures. You have
seen the constraining query and filter methods traversing root-level properties of the
entity, combining operators appropriately. Besides root-level properties, you can traverse
and filter by nested properties as well, to define query constraints, in other words, limiting
the result. Take a look at the following example:

public interface TaskDAO extends MongoRepository<Task, String>{
List<Task> findByAssigneeId(Long assigneeld);

List<Task> findByAssigneeUserName(String userName);

}

The methods listed in the preceding example are traversing nested properties of the task
entity:

e findByAssigneeld = task.assignee.id
e findByAssigneeUserName = task.assignee.userName

You can traverse into any level of nested elements of your entity, depending on how
complex your entity and requirements are.

Using the @Query annotation

Besides the autogeneration of queries based on method names as demonstrated in the

previous section, Spring Data allows you to declare queries for entities locally, directly in
the repository itself, over the method names. You declare the query using SpEL, and
Spring Data interprets it at runtime and (the proxy repository) generates the queries for
you. This is an implementation of the query resolution strategy: USE_DECLARED_QUERY.

Let’s take a look at some self-explanatory examples:

public interface TaskDAO extends JpaRepository<Task, Long>{

@Query("select t from Task t where status = 'Open'")
List<Task> findOpenTasks();

@Query("select t from Task t where status = 'Complete'")
List<Task> findCompletedTasks();

@Query("select count(t) from Task t where status = 'Open'")

int findAllOpenTasksCount();

@Query("select count(t) from Task t where status = 'Complete'")
int findAllCompletedTasksCount();
@Query("select t from Task t where status = 'Open' and assignee.id = ?1")

List<Task> findOpenTasksByAssigneeIld(Long assigneeld);

@Query("select t from Task t where status = 'Open' and assignee.userName
= ?1")
List<Task> findOpenTasksByAssigneeUserName(String userName);

@Query("select t from Task t where status = 'Complete' and assignee.id =
?21")
List<Task> findCompletedTasksByAssigneeId(Long assigneeld);

@Query("select t from Task t where status = 'Complete' and
assignee.userName = ?1")

List<Task> findCompletedTasksByAssigneeUserName(String userName);
}

You can see from the preceding example that we can traverse into nested properties to
constrain the queries, in the criteria part of it. You can also have both query generation
strategies (CREATE and USE_DECLARED_QUERY) in the same repository.

The preceding example was based on Spring Data JPA; the Spring Data MongoDB
equivalent is given in the following code. You can see how the @Query annotation values
differ in comparison to the MongoDB structure.

public interface TaskDAO extends MongoRepository<Task, String>{

@Query("{ 'status' : 'Open' }")
List<Task> findOpenTasks();

@Query("{ 'status' : 'Complete' }")
List<Task> findCompletedTasks();

@Query(value = "{ 'status' : 'Open' }", count = true)
int findAllOpenTasksCount();

@Query(value = "{ 'status' : 'Complete' }", count = true)
int findAllCompletedTasksCount();

@Query(value = "{ 'status' : 'Open', assignee.id: ?0 }")
List<Task> findOpenTasksByAssigneelId(String assigneeld);

@Query(value = "{ 'status' : 'Open', assignee.userName: ?0 }")
List<Task> findOpenTasksByAssigneeUserName(String userName);

@Query(value = "{ 'status' : 'Complete',6 assignee.id: ?0 }")
List<Task> findCompletedTasksByAssigneeId(String assigneeld);

@Query(value = "{ 'status' : 'Open', assignee.userName: ?0 }")
List<Task> findCompletedTasksByAssigneeUserName(String userName);

}
Spring Data web support extensions

Spring Data provides a smart extension called SpringDatawebSupport to Spring MVC
applications, integrating a few productivity components automatically if you enable it. It
primarily resolves domain entities as Pageable and Sort instances with request-mapping
controller methods directly from request parameters, if you are using Spring Data
repository programming model for data access.

You need to enable SpringbatawebSupport for your project before you can use the
features. You can annotate @EnableSpringDatawWebSupport, as shown in the following
code, if you are using a Java configuration:

@Configuration

@EnablewWebMvc

@ComponentScan(basePackages = {"com.taskify"})
@EnableSpringDataWebSupport
@EnableJpaRepositories(basePackages = "com.taskify.dao")
public class ApplicationConfiguration {

}...

In the case of XML metadata, you can register SpringDatawebConfiguration as a Spring
bean, as shown in the following code:

<bean
class="org.springframework.data.web.config.SpringDatawWebConfiguration" />

Once you set up SpringDatawebSupport, you can start using Spring Data entities as
request arguments with request-mapping methods, as shown in the following code:

@RestController
@RequestMapping("/api/v1/user")
@CrossOrigin

public class UserController {

@RequestMapping(path = "/{id}", method = RequestMethod.GET)
public User getUser(@PathVariable("id") User user) {
return user;

}

In the preceding method, you can see that Spring Data loads the User entity data using
UserRepository transparently for you. Similarly, you can accept Pageable and Sort
instances against JSON or XML post requests. Wise usage of the SpringDatawebSupport
extension makes your code cleaner and more maintainable.

Auditing with Spring Data

Tracking data modifications is a critical feature of serious business applications.
Administrators and managers are anxious to know when and who changed certain
business information saved in the database. Spring Data provides smart and easy methods
for auditing data entities transparently. Spring Data ships the following meaningful
annotations for capturing modified user and time data entities in the system:

Annotation Expected type

acreatedsy The principal user who created the entity. Typically, it is another entity that represents the domain
user.

aCreateddate Records when the entity is created. Supported types: java.util.Date, calendar, JDK 8 date/time
types, Joda DateTime.

@LastModifiedBy |IThe user principal who last updated the entity. It is the same type as @CreatedBy.

@LastModifiedDate||Records when the entity was last updated. Supported types are the same as for @createdDate.

A typical JPA entity should look like the following code:

@Entity
@Table(name = "tbl_task")
public class Task {

@1d
private Long id;

@ManyToOne(optional = true)

@JoinColumn(name = "CREATED_USER_ID", referencedColumnName = "ID")
@CreatedBy

private User createdBy;

@Column(name = "CREATED_DATE")
@Temporal (TemporalType.TIMESTAMP)
@CreatedDate

private Date createdDate;

@ManyToOne(optional = true)

@JoinColumn(name = "MODIFIED_USER_ID", referencedColumnName = "ID")
@LastModifiedBy

private User modifiedBy;

@Column(name = "MODIFIED_DATE")

@Temporal(TemporalType.TIMESTAMP)
@LastModifiedDate
private Date modifiedDate;

}

If you are using XML instead of annotations to map your entities, you can either
implement an auditable interface, which forces you to implement the audit metadata
fields, or extend AbstractAuditable, a convenient base class provided by Spring Data.

Since you are recording the information of the user who is creating and modifying entities,
you need to help Spring Data to capture that user information from the context. You need
to register a bean that implements AuditAware<T>, where T is the same type of field that
you annotated with @CreatedBy and @LastModifiedBy. Take a look at the following
example:

@Component
public class SpringDataAuditHelper implements AuditorAware<User> {

@Override
public User getCurrentAuditor() {
// Return the current user from the context somehow.

3
}

If you are using Spring Security for authentication, then the getCurrentAuditor method
should get and return the user from the SecurityContextHolder class, as follows:

@Component
public class SpringDataAuditHelper implements AuditorAware<User> {

@Override
public User getCurrentAuditor() {
Authentication authentication =
SecurityContextHolder.getContext().getAuthentication();

if (authentication == null || 'authentication.isAuthenticated()) {
return null;
3
return ((User) authentication.getPrincipal()).getUser();
}
}

Now your auditing infrastructure is ready, any modification you make in your auditable
entities will be tracked transparently by Spring Data.

So far you have mastered the mighty Spring Data and you know how to create elegant and
clean yet really powerful data access layers with Spring Data repositories, so now it is
time to think about how to ensure the data integrity and reliability of your application.
Spring Transaction is the answer; let’s explore it in the next section.

Spring Transaction support

Data-driven enterprise systems consider data integrity as paramount, hence transaction
management is a critical feature supported by major databases and application servers.
Spring framework provides comprehensive transaction support, abstracting any underlying
infrastructure. Spring Transaction support includes a consistent approach across different
transaction choices such as JTA, JPA, and JDO. It integrates well with all Spring data-
access mechanisms. Spring Transaction supports both declarative and programmatic
transaction management.

Note

A transaction can be defined as an atomic unit of data exchange, typically SQL
statements in the case of relational databases, which should be either committed or rolled
back as a block (all or nothing). A transactional system or a transaction management
framework enforces ACID (Atomic, Consistent, Isolated, Durable) properties across the
participating systems or resources (such as databases and messaging queues).

Relevance of Spring Transaction

Enterprise Java application servers natively provide JTA (Java Transaction API)
support, which enables distributed transaction, which is also known as global transaction,
spanning multiple resources, applications and servers. Traditionally, Enterprise Java
Beans (EJB) and Message Driven Beans (MDB) were used for container-managed
transactions (CMT), which is based on JTA and JNDI. JTA transaction management is
resource-intensive; its exception handling is based on checked exceptions and so is not
developer-friendly. Moreover, unit testing is hard with EJB CMT.

For those who do not want to use resource-intensive JTA transactions, a local transaction
is another available option, and one that allows you to programmatically enforce resource-
specific transactions using APIs such as JDBC. Although relatively easy to use, it is
limited to a single resource, as multiple resources cannot participate in a single
transaction. Moreover, local transactions are often invasive, hence they pollute your code.

Spring Transaction abstraction solves the problems of global and local transactions by
providing a consistent transaction model that can run in any environment. Although it
supports both declarative and programmatic transaction management, the declarative
model is sufficient for most cases. Spring Transaction eliminates the need for an
application server such as JBoss or WebLogic just for transactions. You can start with
local transactions using Spring on a simple Servlet engine such as Tomcat and scale it up
later to distributed transactions on an application server without touching your business
code, just by changing the transaction manager in your Spring metadata.

Most applications just need local transactions since they do not deal with multiple servers
or transactional resources such as databases, JMS, and JCA; hence, they do not need a
full-blown application server. For distributed transactions spanned across multiple servers
over remote calls, you need JTA, necessitating an application server, as JTA needs JNDI to
look up the data source. JNDI is normally available only in an application server. Use
JTATransactionManager inside application servers for JTA capabilities.

Note

When you deploy your Spring application inside an application server, you can use server-
specific transaction managers to utilize their full features. Just switch the transaction
manager to use server-specific JtaTransactionManager implementations such as
WebLogicJTATransactionManager and WebSphereUowTransactionManager inside your
Spring metadata. All your code is completely portable now.

Spring Transaction fundamentals

Spring Transaction Management abstraction is designed around an interface named
PlatformTransactionManager, which you need to configure as a Spring bean in your
Spring metadata. PlatformTransactionManager manages the actual transaction instance
that performs the transaction operations such as commit and rollback, based on a
TransactionDefinition instance that defines the transaction strategy.
TransactionDefinition defines the critical transaction attributes such as isolation,
propagation, transaction timeout, and the read-only status of a given transaction instance.

Note

Transaction attributes determine the behavior of transaction instances. They can be set
programmatically as well as declaratively. Transaction attributes are:

Isolation level: Defines how much a transaction is isolated from (can see) other
transactions running in parallel. Valid values are: None, Read committed, Read
uncommitted, Repeatable reads, and Serializable. Read committed cannot see dirty
reads from other transactions.

Propagation: Determines the transactional scope of a database operation in relation to
other operations before, after, and nested inside itself. Valid values are: REQUIRED,
REQUIRES_NEW, NESTED, MANDATORY, SUPPORTS, NOT_SUPPORTED, and NEVER.

Timeout: Maximum time period that a transaction can keep running or waiting before it
completes. Once at timeout, it will roll back automatically.

Read-only status: You cannot save the data read in this mode.

These transaction attributes are not specific to Spring, but reflect standard transactional
concepts. The TransactionDefinition interface specifies these attributes in the Spring
Transaction Management context.

Depending on your environment (standalone, web/app server) and the persistence
mechanism you use (such as plain JDBC, JPA, and Hibernate), you choose the appropriate
implementation of PlatformTransactionManager and configure it as required, in your
Spring metadata. Under the hood, using Spring AOP, Spring injects TransactionManager
into your proxy DAO (or EntityManager, in the case of JPA) and executes your
transactional methods, applying transaction semantics declared in your Spring
configuration, either using the @Transactional annotation or the equivalent XML
notations. We will discuss the @Transactional annotation and its XML equivalent later on
in this chapter.

For applications that operate on a single bataSource object, Spring provides
DataSourceTransactionManager. The following shows how to configure it in XML.:

<bean id="txManager"

class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
<property name="dataSource" ref="taskifyDS" />

</bean>

For multiple bataSource objects or transactional resources, you need a
JtaTransactionManager with JTA capabilities, which usually delegates to a container JTA
provider. You need to use DataSource objects in Java EE application servers, defined with
the server, and looked up via JNDI along with JtaTransactionManager. A typical
combination should look like the following code fragment:

<bean id="txManager"
class="org.springframework.transaction.jta.JtaTransactionManager" />
</bean>

<jee:jndi-lookup id="taskifyDS" jndi-name="java:jboss/datasources/taskify"
expected-type="javax.sql.DataSource/>

If you are using Hibernate and just a single bataSource (and no other transactional
resource), then the best option is to use HibernateTransactionManager, which requires
you to pass the session factory as a dependency. For JPA, Spring provides
JpaTransactionManager, which binds a single JPA EntityManager instance. However, it
is advisable to use JtaTransactionManager in application-container environments.

Spring provides specialized transaction managers for application servers for WebLogic
and WebSphere in order to leverage full power from container-specific transaction
coordinators. Use WebLogicTransactionManager and WebsphereUowTransactionManager
in the respective environments.

Declarative transaction management

Separating Transaction semantics out of your business code into an XML file or
annotations above the methods is usually called declarative transaction management.
Spring Framework allows you to apply transactional behavior into your beans
transparently and non-invasively using its declarative transaction management feature.

You can apply Spring Transaction declaratively on any Spring bean, unlike EJB CMT.
With Spring Transaction, you can specify transactional advices around your bean methods
inside the metadata in an AOP style; then Spring will apply your those advices at runtime
using AOP. You can set rollback rules to specify which exceptions around which beans or
methods cause automatic rollback or non-rollback.

Transactional modes — proxy and AspectJ

Spring Transactions supports two transactional modes: proxy mode and Aspect] mode.
Proxy is the default and most popular mode. In proxy mode, Spring creates an AOP proxy
object, wrapping the transactional beans, and applies transactional behavior transparently
around the methods using transaction aspects based on the metadata. The AOP proxy
created by Spring based on transactional metadata, with the help of the configured
PlatformTransactionManager, performs transactions around the transactional methods.

If you choose Aspect) mode for transactions, the transactional aspects are woven into the
bean around the specified methods modifying the target class byte code during compile-
time. There will be no proxying in this case. You will need Aspect] mode in special cases
such as invoking transactional methods of the same class with different propagation levels,
where proxying would not help.

Defining transactional behavior

Spring offers two convenient approaches for declaratively defining the transactional
behavior of your beans:

e AOQP configuration for transactions in an XML metadata file
e Using the @Transactional annotation

Let’s start with AOP configuration in an XML file. Refer to the Aspect Oriented
Programming section of Chapter 1, Getting Started with Spring Core, for a detailed
discussion of configuring AOP, using aspects, pointcuts, advice, and so on.

Typically, you declare transaction advices and pointcuts with pointcut expressions in your
XML metadata file. The best approach is to keep the transaction configuration in a
separate bean-definition file (for example, transation-settings.xml) and import it into
your primary application-context file.

Typically, you declare transactional advices and other semantics as shown in the following
code:

<!-- transactional advices -->
<tx:advice id="txAdvice" transaction-manager="transactionManager'">
<!-- the transactional semantics.. -->

<tx:attributes>

<!-- all methods starting with 'get' are read-only -->
<tx:method name="find*" read-only="true" />
<!-- other methods use the default transaction settings (see below) -->

<tx:method name="*" isolation="DEFAULT" propagation="REQUIRED" />
</tx:attributes>
</tx:advice>

<!-- Applying the above advices to the service layer methods -->
<aop:config>

<aop:pointcut id="allServiceMethods"

expression="execution(* com.taskify.service.*.*(..))" />

<aop:advisor advice-ref="txAdvice" pointcut- ref="allServiceMethods" />
</aop:config>
You can see that this AOP configuration instructs Spring how to weave transactional
advices around the methods using pointcuts. It instructs TransactionManager to make all
find methods of the entire service layer read-only, and to force other methods to have the
transaction propagation: REQUIRED, which means that, if the caller of the method is already
in a transactional context, this method joins the same transaction without creating a new
one; otherwise, a new transaction is created. If you want to create a different transaction
for this method, you should use the REQUIRES_NEW propagation.

Also, note that the transaction isolation level is specified as DEFAULT, which means the
default isolation of the database is to be used. Most databases default to READ_COMMITTED,
which means a transactional thread cannot see the data of other transactions in progress
(dirty reads).

Setting rollback rules

With Spring transaction, you can set rollback rules declaratively, in the same <tx:advice>
block, as shown in the following code:

<tx:advice id="txAdvice" transaction-manager="transactionManager'">
<tx:attributes>

<tx:method name="completeTask" propagation="REQUIRED" rollback-
for="NoTaskFoundException"/>
<tx:method name="findOpenTasksByAssignee" read-only="true" no-rollback-
for="InvalidUserException"/>
<tx:method name="*" isolation="DEFAULT" propagation="REQUIRED" />
</tx:attributes>
</tx:advice>

You can specify which exceptions should or should not rollback transactions for your
business operations using the rollback-for and no-rollback-for attributes of the
<tx:method> element.

Note

TransactionException thrown by the PlatformTransactionManager interface’s methods
is the unchecked exception, RuntimeException. In Spring, transactions rollback for
unchecked exceptions automatically. Checked, or application exceptions are not rolled

back unless specified in the metadata, using the rollback-for attribute.

Spring Transaction allows you to customize the transactional behavior of your beans to a
minute level of granularity using Spring AOP and SpEL. Moreover, you can specify the
behavioral attributes of your transaction such as propagation, isolation, and timeout at the
method level on the <tx:method> element.

Using the @Transactional annotation

The @Transactional annotation describes transactional attributes on a method or class.
Class-level annotation applies to all methods unless explicitly annotated at method level. It
supports all the attributes you otherwise set at the XML configuration. See the following
example:

@Service
@Transactional
public class TaskServiceImpl implements TaskService {

public Task createTask(Task task) {
if (StringUtils.isEmpty(task.getStatus()))
task.setStatus("Open");
taskDAO.save(task);
return task;

}

@Transactional(propagation = Propagation.REQUIRED, rollbackFor =
NoUserFoundException)

public Task createTask(String name, int priority, Long createdByuserlId,
Long assigneeUserId, String comments) {

Task task = new Task(name, priority, "Open",
userService.findById(createdByuserId), null,
userService.findById(assigneeUserId), comments);

taskDAO.save(task);

logger.info("Task created: " + task);

return task;

}

@Transactional(readOnly = true)
public Task findTaskById(Long taskId) {
return taskDAO.findOne(taskId);

}
-

In the preceding example, the transactional method createTask with propagation
REQUIRED rolls back for NoUserFoundException. Similarly, you can set no-rollback rules
at the same level too.

Note

@Transactional can be applied only to public methods. If you want to annotate over
protected, private, or package-visible methods, consider using AspectJ, which uses
compile-time aspect weaving. Spring recommends annotating @Transactional only on
concrete classes as opposed to interfaces, as it will not work in most cases such as when
you use proxy-target-class="true" or mode="aspectj".

Enabling transaction management for @Transactional

You need to first enable transaction management in your application before Spring can
detect the @Transactional annotation for your bean methods. You enable transaction in

your XML metadata using the following notation:

<tx:annotation-driven transaction-manager="transactionManager" />

The following is the Java configuration alternative for the preceding listing:

@Configuration
@EnableTransactionManagement
public class JpaConfiguration {

}

Spring scans the application context for bean methods annotated with @Transactional
when it sees either of the preceding settings.

You can change the transaction mode from proxy, which is the default, to aspectj at this
level:

<tx:annotation-driven transaction-manager="transactionManager"
mode="aspectj"/>

Another attribute you can set at this level is proxy-target-class, which is applicable
only in the case of the proxy mode.

Programmatic transaction management

Spring provides comprehensive support for programmatic transaction management using
two components: TransactionTemplate and PlatformTransactionManager. The
following code snippet illustrates the usage of TransactionTemplate:

@Service

public class TaskServiceImpl implements TaskService {
@Autowired
private TransactionTemplate trxTemplate;

public Task createTask(String name, int priority, Long createdByuserlId,
Long assignheeUserId, String comments) {

return trxTemplate.execute(new TransactionCallback<Task>() {
@Ooverride
public Task doInTransaction(TransactionStatus status) {
User createdUser = userService.findById(createdByuserId);
User assignee = userService.findById(assigneeUserId);
Task task = new Task(name, priority, "Open", createdUser, null,
assignee, comments);
taskDAO.save(task);
logger.info("Task created: " + task);
return task;

}
1)
}
}

TransactionTemplate supports the setting of all transaction attributes, as in the case of
XML configuration, which gives you more granular control at the expense of mixing your
business code with transactional concerns. Use it only if you need absolute control over a
particular feature that cannot be achieved with declarative transaction management. Use
declarative transaction management if possible, for better maintainability and management
of your application.

Summary

We have so far explored Spring Framework’s comprehensive coverage of all technical
aspects around data access and transaction. Spring provides multiple convenient data
access methods, which removes much of the hard work for the developer involved in
building the data layer and standardizing the business components. The correct usage of
Spring data access components makes the data layer of the Spring application clean and
highly maintainable. Leveraging Spring Transaction support ensures the data integrity of
applications without polluting the business code and makes your application portable
across different server environments. Since Spring abstracts much of the technical heavy
lifting, building the data layer of your applications becomes an enjoyable piece of
software engineering.

Chapter 4. Understanding WebSocket

The idea of web applications was built upon a simple paradigm. In a unidirectional
interaction, a web client sent a request to a server, the server replied to the request, and the
client rendered the server’s response. The communication started with a client-side request
and ended with the server’s response.

We built our web applications based on this paradigm; however, some drawbacks existed
in the technology: the client had to wait for the server’s response and refresh the browser
to render it. This unidirectional nature of the communication required the client to initiate
a request. Later technologies such as AJAX and long polling brought major advantages to
our web applications. In AJAX, the client initiated a request but did not wait for the
server’s response. In an asynchronous manner, the AJAX client-side callback method got
the data from the server and the browsers’ new DHTML features rendered the data without
refreshing the browser.

Apart from unidirectional behavior, the HTTP dependencies of these technologies required
the exchange of extra data in the form of HTTPS headers and cookies. This extra data
caused latency and became a bottleneck for highly responsive web applications.

WebSocket reduced kilobytes of transmitted data to a few bytes and reduced latency from
150 milliseconds to 50 milliseconds (for a message packet plus the TCP round trip to
establish the connection), and these two factors attracted the Google’s attention (Ian
Hickson).

WebSocket (RFC 6455) is a full duplex and bidirectional protocol that transmits data in
the form of frames between client and server. A WebSocket communication, as shown in
the following figure, starts with an HTTP connection for a handshake process between a
client and a server. Since firewalls let certain ports be open to communicate with the
outside, we cannot start with the WebSocket protocol:

Client browser Server

T

1-Client HTTP request for
Initial handshake

2-Upgrade HTTP to a socket
based protocol

<l

3-

Full duplex bidirectional communication’

<

Either party can close communication

4-End

WebSocket communication

During the handshake process, the parties (client and server) decide which socket-based
protocol to choose for transmitting data. At this stage, the server can validate the user
using HTTP cookies and reject the connection if authentication or authorization fails.

Then, both parties upgrade from HTTP to a socket-based protocol. From this point
onward, the server and client communicate on a full duplex and bidirectional channel on a

TCP connection.

Either the client or server can send messages by streaming them into frame format.
WebSocket uses the heartbeat mechanism using ping/pong message frames to keep the

connection alive. This looks like sending a ping message from one party and expecting a
pong from the other side. Either party can also close the channel and terminate the
communication, as shown in the preceding diagram.

Like a web URI relies on HTTP or HTTPS, WebSocket URI uses ws or wss schemes (for
example, ws://www.sample.org/ or wss://www.sample.org/) to communicate.
WebSocket’s ws works in a similar way to HTTP by transmitting non-encrypted data over
TCP/IP. By contrast, wss relies on Transport Layer Security (TLS) over TCP, and this
combination brings data security and integrity.

A good question is where to use WebSocket. The best answer is to use it where low
latency and high frequency of communication are critical—for example, if your endpoint
data changes within 100 milliseconds and you expect to take very quick measures over the
data changes.

Spring Framework 4 includes a new Spring WebSocket module with Java WebSocket API
standard (JSR-356) compatibility as well as some additional value-adding features.

While using WebSocket brings advantages to a web application, a lack of compatibility in
a version of some browser blocks WebSocket communication. To address this issue,
Spring 4 includes a fallback option that simulates the WebSocket API in case of browser
incompatibility.

WebSocket transmits data in the frame format, and apart from a single bit to distinguish
between text and binary data, it is neutral to the message’s content. In order to handle the
message’s format, the message needs some extra metadata, and the client and server
should agree on an application-layer protocol, known as a subprotocol. The parties
choose the subprotocol during the initial handshake.

WebSocket does not mandate the usage of subprotocols, but in the case of their absence,
both the client and server need to transmit data in a predefined style standard, framework-
specific, or customized format.

Spring supports Simple Text Orientated Messaging Protocol (STOMP) as a subprotocol
—known as STOMP over WebSocket—in a WebSocket communication. Spring’s
Messaging is built upon integration concepts such as messaging and channel and handler,
along with annotation of message mapping. Using STOMP over WebSocket gives
message-based features to a Spring WebSocket application.

Using all of these new Spring 4 features, you can create a WebSocket application and
broadcast a message to all subscribed clients as well as send a message to a specific user.
In this chapter, we start by creating a simple Spring web application, which will show how
to set up a WebSocket application and how a client can send and receive messages to or
from an endpoint. In the second application, we will see how Spring WebSocket’s fallback
option can tackle browser incompatibly, how a broker based messaging system works with
STOMP over WebSocket, and how subscribed clients can send and receive messages. In
the last web application, however, we will show how we can send broker-based messages
to a specific user.

Creating a simple WebSocket application

In this section, while developing a simple WebSocket application, we will learn about
WebSocket’s client and server components. As mentioned earlier, using a subprotocol is
optional in a WebSocket communication. In this application, we have not used a
subprotocol.

First of all, you need to set up a Spring web application. In order to dispatch a request to
your service (called a handler in Spring WebSocket), you need to set up a framework
Servlet (dispatcher Servlet). This means that you should register bispatcherServlet in
web . xml and define your beans and service in the application context.

Setting up a Spring application requires you to configure it in XML format. Spring
introduced the Spring Boot module to get rid of XML configuration files in Spring
applications. Spring Boot aims at configuring a Spring application by adding a few lines
of annotation to the classes and tagging them as Spring artifacts (bean, services,
configurations, and so on). By default, it also adds dependencies based on what it finds in
the classpath. For example, if you have a web dependency, then Spring Boot can configure
Spring MV C by default. It also lets you override this default behavior. Covering Spring
Boot in complete detail would require a full book; we will just use it here to ease the
configuration of a Spring application.

These are the Maven dependencies of this project:

<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>1.2.5.RELEASE</version>
</parent>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-websocket</artifactId>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-messaging</artifactId>
</dependency>
<dependency>
<groupId>org.json</groupId>
<artifactId>json</artifactId>
<version>20140107</version>
</dependency>
</dependencies>
<properties>
<java.version>1.8</java.version>
</properties>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>

</plugin>
</plugins>
</build>

As mentioned in the beginning of this section, there is no subprotocol (and, subsequently,
no application-layer framework) to interpret WebSocket messages. This means that the
client and server need to handle the job and be aware of the message’s format.

On the server’s side, the handler (endpoint) receives and extracts the message and replies
back (based on the business logic) to the client. In Spring, you can create a customized
handler by extending either TextWebSocketHandler or BinarywebSocketHandler.
TextWebSocketHandler handles string or text messages (such as JSON data) and
BinaryWebSocketHandler handles binary messages (such as image or media data). Here is
a code listing that uses TextwWebSocketHandler:

public class SampleTextWebSocketHandler extends TextWebSocketHandler {
@Ooverride
protected void handleTextMessage(WebSocketSession session, TextMessage

message) throws Exception {

String payload = message.getPayload();

JSONObject jsonObject = new JSONObject(payload);

StringBuilder builder=new StringBuilder();

builder.append("From Myserver-").append("Your
Message:").append(jsonObject.get("clientMessage"));

session.sendMessage(new TextMessage(builder.toString()));

b
}

Since we process only JSON data here, the class SampleTextWebSocketHandler extends
TextWebSocketHandler. The method handleTextMessage obtains the client’s message by
receiving its payload and converting it into JSON data, and then it sends a message back
to the client.

In order to tell Spring to forward client requests to the endpoint (or handler here), we need
to register the handler:

@Configuration
@EnablewWebSocket
public class SampleEhowWebSocketConfigurer {
@Bean
WebSocketConfigurer webSocketConfigurer(final WebSocketHandler
webSocketHandler) {
return new WebSocketConfigurer() {
@Override
public void registerWebSocketHandlers(WebSocketHandlerRegistry
registry) {
registry.addHandler (new SampleTextWebSocketHandler (),
"/path/wsAddress");

}
+;
}

@Bean
WebSocketHandler myWebsocketHandler () {
return new SampleTextWebSocketHandler();

}

@Configuration and @Enablewebsocket tell Spring this is the WebSocket configurator of
the project. It registers our handler (SampleTextWebSocketHandler) and sets the request
path (in a WebSocket URL, such as ws://server-ip:port/path/wsAddress) that will be
forwarded to this handler.

And now the question is how to set up a Spring application and glue all of this stuff
together. Spring Boot provides an easy way to set up a Spring-based application with a
configurable embedded web server that you can “just run”:

package com.springessentialsbook.chapter4;

@SpringBootApplication
public class EchoWebSocketBootApplication {
public static void main(String[] args) {
SpringApplication.run(EchowWebSocketBootApplication
.class, args);

}

@SpringBootApplication tags the EchowebSocketBootApplication class as a special
configuration class of your application and @SpringBootApplication behaves like the
following annotations:

e @configuration, which declares the class as a bean definition of an application
context

e @EnableAutoConfiguration, which lets Spring Boot add a dependent bean definition
based on the classpath (for example, spring-webmvc in the project classpath tells
Spring Boot to set up a web application with its DispatcherServlet registration in
web . xml)

e @ComponentScan, which is used to scan all annotations (services, controllers,
configurations, and so on) within the same package
(com.springessentialsbook.chapter4) and configure them accordingly

Finally, the main method calls SpringApplication.run to set up a Spring application
within a web application without writing a single line of XML configuration
(applicationContext.xml or web.xml).

When a client wants to send a WebSocket request, it should create a JavaScript client
object (ws = new WebSocket('ws://localhost:8090/path/wsAddress')) and pass the
WebSocket service address. In order to receive the data, we need to attach a callback
listener (ws.onmessage) and an error handler (ws.onerror), like so:

function openWebSocket(){
ws = new WebSocket('ws://localhost:8090/path/wsAddress');
ws.onmessage = function(event){
renderServerReturnedData(event.data);

+

ws.onerror = function(event){
$('#errDiv').html(event);

i¥
}

function sendMyClientMessage() {
var myText = document.getElementById('myText').value;
var message=JSON.stringify({ 'clientName': 'Client-'+randomnumber,
'clientMessage' :myText});
ws.send(message);
document.getElementById('myText').value="";

}

You can run the application by running this command:

mvnh spring-boot:run -Dserver.port=8090

This runs and deploys the web application on an embedded server on port 8096 (8080 is
not used here as it may conflict with your running Apache service). So, the index page of
the application will be accessible at http://localhost:8090/ (follow the instructions in
read-me. txt to run the application). It should look like this:

= call service ®

\ C | [} localhost:8090
i Apps % Bookmarks ([Imported

Your client id:Client-5284

Type your message and click to send:

From Myserver-Client-5284- Received Your Message:Hi there

The opening page of the application in a Chrome browser

When a user sends a text in Chrome, it will be handled by SampleTextwebSocketHandler,
the handler will reply, and the response will be rendered in the browser.

If you try to test this application in a version of Internet Explorer lower than 10, you will
get a JavaScript error.

As we discussed earlier, certain versions of browsers do not support WebSocket. Spring 4
provides a fallback option to manage these types of browsers. In the next section, this
feature of Spring will be explained.

STOMP over WebSocket and the fallback
option in Spring 4

In the previous section, we saw that in a WebSocket application that does not use
subprotocols, the client and server should be aware of the message format (JSON in this
case) in order to handle it. In this section, we use STOMP as a subprotocol in a WebSocket
application (this is known as STOMP over WebSocket) and show how this application
layer protocol helps us handle messages.

The messaging architecture in the previous application was an asynchronous client/server-
based communication.

The spring-messaging module brings features of asynchronous messaging systems to
Spring Framework. It is based on some concepts inherited from Spring Integration, such
as messages, message handlers (classes that handle messages), and message channels (data
channels between senders and receivers that provide loose coupling during
communication).

At the end of this section, we will explain how our Spring WebSocket application
integrates with the Spring messaging system and works in a similar way to legacy
messaging systems such as JMS.

In the first application, we saw that in certain types of browsers, WebSocket
communication failed because of browser incompatibility. In this section, we will explain
how Spring’s fallback option addresses this problem.

Suppose you are asked to develop a browser-based chat room application in which
anonymous users can join a chat room and any text sent by a user should be sent to all
active users. This means that we need a topic that all users should be subscribed to and
messages sent by any user should be broadcasted to all. Spring WebSocket features meet
these requirements. In Spring, using STOMP over WebSocket, users can exchange
messages in a similar way to JMS. In this section, we will develop a chat room application
and explain some of Spring WebSocket’s features.

The first task is to configure Spring to handle STOMP messages over WebSocket. Using
Spring 4, you can instantly configure a very simple, lightweight (memory-based) message
broker, set up subscription, and let controller methods serve client messages. The code for
the ChatroomwWebSocketMessageBrokerConfigurer class is:

package com.springessentialsbook.chapter4;

@Configuration
@EnableWebSocketMessageBroker
public class ChatroomwWebSocketMessageBrokerConfigurer extends
AbstractWebSocketMessageBrokerConfigurer {
@Override
public void configureMessageBroker (MessageBrokerRegistry config) {
config.enableSimpleBroker ("/chatroomTopic");
config.setApplicationDestinationPrefixes("/myApp");

}

@Override

public void registerStompEndpoints(StompEndpointRegistry registry) {
registry.addEndpoint("/broadcastMyMessage").withSockJS();

}

}

@Configuration tags a ChatroomwWebSocketMessageBrokercConfigurer class as a Spring
configuration class. @EnablewWebSocketMessageBroker provides WebSocket messaging
features backed by a message broker.

The overridden method configureMessageBroker, as its name suggests, overrides the
parent method for message broker configuration and sets:

e setApplicationDestinationPrefixes: Specify /myApp as the prefix, and any client
message whose destination starts with /myApp will be routed to the controller’s
message-handling methods.

e enableSimpleBroker: Set the broker topic to /chatroomTopic. Any messages whose
destinations start with /chatroomTopic will be routed to the message broker (that is,
broadcasted to other connected clients). Since we are using an in-memory broker, we
can specify any topic. If we use a dedicated broker, the destination’s name would be
/topic or /queue, based on the subscription model (pub/sub or point-to-point).

The overridden method registerStompEndpoints is used to set the endpoint and fallback
options. Let’s look at it closely:

e The client-side WebSocket can connect to the server’s endpoint at
/broadcastMyMessage. Since STOMP has been selected as the subprotocol, we do
not need to know about the underlying message format and let STOMP handle it.

e The .withSockJs() method enables Spring’s fallback option. This guarantees
successful WebSocket communication in any type or version of browser.

As Spring MV C forwards HTTP requests to methods in controllers, the MVC extension
can receive STOMP messages over WebSocket and forward them to controller methods. A
Spring Controller class can receive client STOMP messages whose destinations start
with /myApp. The handler method can reply to subscribed clients by sending the returned
message to the broker channel, and the broker replies to the client by sending the message
to the response channel. At the end of this section, we will look at some more information
about the messaging architecture. As an example, let’s look at the ChatroomController
class:

package com.springessentialsbook.chapter4;

@Controller
public class ChatroomController {

@MessageMapping("/broadcastMyMessage")
@SendTo("/chatroomTopic/broadcastClientsMessages")
public ReturnedDataModelBean broadCastClientMessage(ClientInfoBean
message) throws Exception {
String returnedMessage=message.getClientName() +
":"+message.getClientMessage();

return new ReturnedDataModelBean(returnedMessage);

}

Here, @Controller tags ChatroomController as an MVC workflow controller.
@MessageMapping is used to tell the controller to map the client message to the handler
method (broadCastClientMessage). This will be done by matching a message endpoint to
the destination (/broadcastMyMessage). The method’s returned object
(ReturnedbDataModelBean) will be sent back through the broker to the subscriber’s topic
(/chatroomTopic/broadcastClientsMessages) by the @SendTo annotation. Any message
in the topic will be broadcast to all subscribers (clients). Note that clients do not wait for
the response, since they send and listen to messages to and from the topic and not the
service directly.

Our domain POJOs (clientInfoBean and ReturnedDataModelBean), detailed as follows,
will provide the communication message payloads (actual message content) between the
client and server:

package com.springessentialsbook.chapter4;
public class ClientInfoBean {
private String clientName;
private String clientMessage;
public String getClientMessage() {
return clientMessage;

public String getClientName() {
return clientName;

}

package com.springessentialsbook.chapter4;
public class ReturnedDataModelBean {

private String returnedMessage;

public ReturnedDataModelBean(String returnedMessage) {
this.returnedMessage = returnedMessage; }

public String getReturnedMessage() {
return returnedMessage;

¥

}

To add some sort of security, we can add basic HTTP authentication, as follows (we are
not going to explain Spring security in this chapter, but it will be detailed in the next
chapter):

@Configuration

@EnableGlobalMethodSecurity(prePostEnabled = true)

@EnableWebSecurity

public class WebSecurityConfig extends WebSecurityConfigurerAdapter {
@Override

protected void configure(HttpSecurity http) throws Exception {
http.httpBasic();
http.authorizeRequests().anyRequest().authenticated();

}

@Autowired
void configureGlobal(AuthenticationManagerBuilder auth) throws
Exception {
auth.inMemoryAuthentication()
.withUser ("user").password("password").roles("USER");

}

The @Cconfiguration tags this class as a configuration class and
@EnableGlobalMethodSecurity and @EnableWebSecurity set security methods and web
security in the class. In the configure method, we set basic authentication, and in
configureGlobal, we set the recognized username and password as well as the role that
the user belongs to.

To add Spring Security features, we should add the following Maven dependencies:

<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-web</artifactId>

</dependency>

<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-messaging</artifactId>
<version>4.0.1.RELEASE</version>

</dependency>

<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-config</artifactId>

</dependency>

As we explained in the previous section, the @SpringBootApplication tag sets up a
Spring application within a web application without us having to write a single line of
XML configuration (applicationContext.xml or web.xml):

package com.springessentialsbook.chapter4;

@SpringBootApplication
public class ChatroomBootApplication {
public static void main(String[] args) {
SpringApplication.run(ChatroomBootApplication.class, args);

b
}

Finally, you can run the application by running this command:

mvn spring-boot:run -Dserver.port=8090

This runs and deploys the web application on an embedded web server on port 80960 (8080
is not used as it may conflict with your running Apache service). So, the index page of the
application will be accessible at http://localhost:8090/ (follow read-me.txt to run the
application):

<script src="sockjs-0.3.4.js"></script>
<script src="stomp.js"></script>

<script type="text/javascript">

function joinChatroom() {

var topic='/chatroomTopic/broadcastClientsMessages';

var servicePath='/broadcastMyMessage';

var socket = new SockJS(servicePath);

stompClient = Stomp.over(socket);

stompClient.connect('user', 'password', function(frame) {
setIsJoined(true);
console.log('Joined Chatroom: ' + frame);
stompClient.subscribe(topic, function(serverReturnedData){

renderServerReturnedData(JSON.parse(serverReturnedData.body).returnedMessag
e);
1)
1)
}

function sendMyClientMessage() {
var serviceFullPath="'/myApp/broadcastMyMessage’';
var myText = document.getElementById('myText').value;
stompClient.send(serviceFullPath, {}, JSON.stringify({ 'clientName':
'Client-'"+randomnumber, 'clientMessage':myText}));
document.getElementById('myText').value="";

}

On the client side, notice how the browser connects (with joinChatRoom) and sends data
(in the sendMyClientMessage method). These methods use the JavaScript libraries SockJS
and Stomp.js.

As you can see, when a client subscribes to a topic, it registers a listener method
(stompClient.subscribe(topic, function(serverReturnedData){...}). The listener
method will be called when any message (from any client) arrives in the topic.

As discussed earlier, some versions of browsers do not support WebSocket. SockJS was
introduced to handle all versions of browsers. On the client side, when you try to connect
to the server, the SockJS client sends the GET/info message to get some information from
the server. Then it chooses the transport protocol, which could be one of WebSocket,
HTTP streaming, or HTTP long-polling. WebSocket is the preferred transport protocol;
however, in case of browser incompatibility, it chooses HTTP streaming, and in the worse
case, HTTP long-polling.

In the beginning of this section, we described how our WebSocket application integrates
with the Spring messaging system and works in a way similar to legacy messaging
systems.

The overridden method settings of @EnablewWebSocketMessageBroker and
ChatroomwWebSocketMessageBrokerConfigurer create a concrete message flow (refer to
the following diagram). In our messaging architecture, channels decouple receivers and
senders. The messaging architecture contains three channels:

e The client inbound channel (Request channel) for request messages sent from the
client side

e The client outbound channel (Response channel) for messages sent to the client side
e The Broker channel for internal server messages to the broker

Our system uses STOMP destinations for simple routing by prefix. Any client message
whose destination starts with /myApp will be routed to controller message-handling
methods. Any message whose destination starts with /chatroomTopic will be routed to the
message broker.

Annotated controller

Send destination;
/myApp/broadcastMyMessage

Request channel Broker channel

fchatroomTopic
Simple broker

Message destination:
Response channel

[chatroomTopic/broadcastClientsMessages

The simple broker (in-memory) messaging architecture

Here is the messaging flow of our application:

1. The client connects to the WebSocket endpoint (/broadcastMyMessage).

2. Client messages to /myApp/broadcastMyMessage will be forwarded to the
ChatroomController class (through the Request channel). The mapping controller’s
method passes the returned value to the Broker channel for the topic
/chatroomTopic/broadcastClientsMessages.

3. The broker passes the message to the Response channel, which is the topic
/chatroomTopic/broadcastClientsMessages, and clients subscribed to this topic
receive the message.

Broadcasting a message to a single user in
a WebSocket application

In the previous section, we saw a WebSocket application of the multiple subscriber model,
in which a broker sent messages to a topic. Since all clients had subscribed to the same
topic, all of them received messages. Now, you are asked to develop an application that
targets a specific user in a WebSocket chat application.

Suppose you want to develop an automated answering application in which a user sends a
question to the system and gets an answer automatically. The application is almost the
same as the previous one (STOMP over WebSocket and the fallback option in Spring 4),
except that we should change the WebSocket configurer and endpoint on the server side
and subscription on the client side. The code for the
AutoAnsweringWebSocketMessageBrokerConfigurer class is:

@Configuration
@EnableWebSocketMessageBroker
public class AutoAnsweringWebSocketMessageBrokerConfigurer extends
AbstractWebSocketMessageBrokerConfigurer {
@Override
public void configureMessageBroker (MessageBrokerRegistry config) {
config.setApplicationDestinationPrefixes("/app");
config.enableSimpleBroker("/queue");
config.setUserDestinationPrefix("/user");
}
@Override
public void registerStompEndpoints(StompEndpointRegistry registry) {
registry.addEndpoint("/message").withSockJS();

b
}

The config.setUserDestinationPrefix("/user") method sets a prefix noting that a
user has subscribed and expects to get their own message on the topic. The code for the
AutoAnsweringController class is:

@Controller
public class AutoAnsweringController {
@Autowired
AutoAnsweringService autoAnsweringService;
@MessageMapping('"/message")
@SendToUser
public String sendMessage(ClientInfoBean message) {
return autoAnsweringService.answer(message);

¥
@MessageExceptionHandler
@SendToUser (value = "/queue/errors", broadcast = false)

String handleException(Exception e) {
return "caught ${e.message}";

}

@Service
public class AutoAnsweringServiceImpl implements AutoAnsweringService {
@Override
public String answer(ClientInfoBean bean) {
StringBuilder mockBuffer=new StringBuilder();
mockBuffer.append(bean.getClientName())
.append(", we have received the message:")
.append(bean.getClientMessage());
return mockBuffer.toString();

}

In the endpoint, we use @sendToUser instead of @sendTo("..."). This forwards the
response only to the sender of the message. @MessageExceptionHandler will send errors
(broadcast = false) to the sender of message as well.

AutoAnsweringService is just a mock service to return an answer to the client message.
On the client side, we only add the /user prefix when a user subscribes to the topic
(/user/queue/message):

function connectService() {
var servicePath='/message';
var socket = new SockJS(servicePath);
stompClient = Stomp.over(socket);
stompClient.connect({}, function(frame) {

setIsJoined(true);
stompClient.subscribe('/user/queue/message', function(message) {
renderServerReturnedData(message.body);

1)

stompClient.subscribe('/user/queue/error', function(message) {
renderReturnedError (message.body);

1)
1)
}

function sendMyClientMessage() {
var serviceFullPath="'/app/message';
var myText = document.getElementById('myText').value;
stompClient.send(serviceFullPath, {}, JSON.stringify({ 'clientName':
'Client-'"+randomnumber, 'clientMessage':myText}));
document.getElementById('myText').value="'";

}

The topic user/queue/error is used to receive errors dispatched from the server side.

Note

For more about Spring’s WebSocket support, go to http://docs.spring.io/spring-
framework/docs/current/spring-framework-reference/html/websocket.html.
For more about WebSocket communication, refer to Chapter 8, Replacing HTTP with

WebSockets from the book Enterprise Web Development, Yakov Fain, Victor Rasputnis,
Anatole Tartakovsky, Viktor Gamov, O’Reilly.

http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/websocket.html

Summary

In this chapter, we explained WebSocket-based communication, how Spring 4 has been
upgraded to support WebSocket, and the fallback option to overcome browsers’
WebSocket incompatibility. We also had a small sample of adding basic HTTP
authentication, which is a part of Spring Security. We will discuss more on security in

Chapter 5, Securing Your Applications.

Chapter 5. Securing Your Applications

Spring Security provides a wide range of features for securing Java/Spring-based
enterprise applications. At first glance, the security features of Servlets or EJB look an
alternative of Spring Security; however, these solutions lack certain requirements for
developing enterprise applications. The server’s environment dependency could be
another drawback of these solutions.

Authentication and authorization are the main areas of application security. Authentication
is the verification of a user’s identity, whereas authorization is the verification of the
privileges of a user.

Spring Security integrates with a variety of authentication models, most of which are
provided by third-party providers. In addition, Spring Security has developed its own
authentication models, based upon major security protocols. Here are some of these
protocols:

Form-based authentication
HTTP Basic authentication
LDAP

JAAS

Java Open Single Sign On
Open ID authentication

Since there is a big list of Spring Security models, we can only detail the most popular of
them in this chapter.

Spring Security is quite strong on authorization features. We can categorize these features
into three groups: web, method, and domain object authorization. Later, in the
Authorization section, we will explain these categories.

In order to use Spring Security features in a web application, you need to include the
following dependencies in your project:

<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-web</artifactId>
<version>4.0.2.RELEASE</version>

</dependency>

<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-config</artifactId>
<version>4.0.2.RELEASE</version>

</dependency>

The open standard for authorization (OAuth) concept, introduced in late 2006, aimed
to allow third-party limited access to users’ resources on Microsoft, Google, Facebook,
Twitter, or similar accounts, without sharing their usernames and passwords.

In 2010, OAuth was standardized as the OAuth 1.0a protocol in RFC 5849. Later in 2012,
it evolved to the OAuth 2.0 framework in RFC 6749. In this chapter, we explain Spring’s

OAuth 2.0 framework implementation.

The OAuth 2.0 Authorization Framework enables a third-party application to obtain
limited access to an HTTP service, either on behalf of a resource owner by orchestrating
an approval interaction between the resource owner and the HTTP service, or by allowing
the third-party application to obtain access on its own behalf

(http://tools.ietf.org/html/rfc6749).

Spring provides a separate module (spring-security-oauth2) for its OAuth 2.0
implementation, which relies on Spring Security features. In this chapter, we explain
authentication and how Spring facilitates the process by providing its own easy-to-use
features as well as giving you options to plug in your customized implementation.
Authorization is the second topic included in this chapter, in which we explain how to
configure separate security models within the same application. In the last section, we
explain Spring’s OAuth 2.0 feature.

http://tools.ietf.org/html/rfc6749

Authentication

In an application’s security domain, the first thing that comes to mind is authentication.
During the authentication process, an application compares a user’s credentials (for
example, a username and password or a token) with the information available to it. If these
two match, it allows the process to enter the next step. We will follow the next step in the
Authorization section.

Spring Security provides features to support a variety of security authentication protocols.
In this section, we will focus on basis and form-based authentication.

Spring provides a built-in form for the purpose of form-based authentication. In addition,
it lets you define your own customized login form.

Spring gives you the option to use in-memory authentication, in which the username and
password will be hardcoded in the application.

An alternative option is to use a customized authentication provider that lets you decide
how to authenticate users by program, for example, calling a data layer service to validate
users. It also lets you integrate Spring Security with your existing security framework.

The first thing you need in order to configure Spring Security to authenticate users is to
define a Servlet filter known as springSecurityFilterchain. This filter is responsible
for applying security measures (for example, validating users, navigating to different
pages after login bases on the user’s role, and protecting application URLSs) in a web
application.

webSecurityConfigurerAdapter is a convenient Spring template for configuring
springSecurityFilterChain:

@Configuration

@EnableWebSecurity

@ComponentScan(basePackages = "com.springessentialsbook.chapter5")

public class WebSecurityConfigurator extends WebSecurityConfigurerAdapter {
@Autowired

private AuthenticationSuccessHandler authenticationSuccessHandler;

@Autowired

public void configureGlobalSecurity(AuthenticationManagerBuilder auth)
throws Exception {

auth.inMemoryAuthentication().withUser("operator").password("password").rol
es("USER");

auth.inMemoryAuthentication().withUser("admin").password("password").roles(
"ADMIN");

auth.inMemoryAuthentication().withUser("accountant").password("password").r
oles("ACCOUNTANT");

}

@configuration registers this class as a configuration class. The method’s name,

configureGlobalSecurity, is not important, as it only configures an
AuthenticationManagerBuilder instance through autowire. The only important thing is
annotating the class with @EnablewebSecurity, which registers Spring web security in the
application. As you can see, we used in-memory authentication for simplicity, which
hardcoded the user’s username, password, and role used for user authentication. In real
enterprise applications, LDAP, databases or the cloud provide services for validating user
credentials.

We don’t code all that much in the config class, but it really does a lot behind the scenes.
Here are some of the features implemented by the class. Apart from user authentication
and role assignment, we will explain other features next in this chapter.

e Protecting all application URLs by asking for authentication first

e Creating a Spring default login form to authenticate the user

e Authenticating users (operator/password, admin/password, accountant/password) and
assigning separate roles for each user (user, admin, and accountant) using form-based
authentication

e Allowing the user to log out

e CSRF attack prevention

As we explained, in real-world enterprise applications, one never hardcodes user
credentials within the application’s code. You may have an existing security framework
that calls a service in order to validate users. In this case, you can configure Spring
Security in a customized service to authenticate the user.

The authentication interface implementation is what carries user credentials within the
Spring Security context. You can obtain the authentication object anywhere within the
application using SecurityContextHolder.getContext().getAuthentication().

When a user is authenticated, Authentication will be populated. If you don’t specify
AuthenticationProvider (for example, if you use in-memory authentication),
Authentication will be populated automatically. Here, we look at how to customize
AuthenticationProvider and populate the Authentication object.

The following code shows how Spring’s AuthenticationProvider implementation class
integrates with a customized user detail service (which returns user credentials from a data
source):

@Component
public class MyCustomizedAuthenticationProvider implements
AuthenticationProvider {
@Autowired
UserDetailsService userService;
public Authentication authenticate(Authentication authentication) throws
AuthenticationException {
User user=null;
Authentication auth=null;
String username=authentication.getName();
String password=authentication.getCredentials().toString();
user= (User) userService.loadUserByUsername(username);
if(password ==null || I password.equals(user.getPassword())) throw

new UsernameNotFoundException("wrong user/password");
if(user !=null){
auth = new UsernamePasswordAuthenticationToken(user.getUsername(),
user.getPassword(), user.getAuthorities());
} else throw new UsernameNotFoundException("wrong user/password");
return auth;

}

public boolean supports(Class<?> aClass) {
return true;

3
}

Your customized authentication provider should implement AuthenticationProvider and
its authenticate method.

Note that the userService instance here should implement the Spring
UserDetailsService interface and its loadUserByUserName method. The method returns
the data model of a user. Note that you can extend Spring’s User object and create your
own customized user. We mocked the UserService integration part with a data service. In
a real application, there could be a service call to fetch and return user data, and your
UserServiceImpl class will only wrap the user in the UserDetails data model, as
follows:

@Service
public class UserServiceImpl implements UserDetailsService {
public UserDetails loadUserByUsername(String userName) throws
UsernameNotFoundException {
// suppose we fetch user data from DB and populate it into // User
object
// here we just mock the service
String role=null;
if(userName.equalsIgnoreCase("admin")){
role ="ROLE_ADMIN";
}else if(userName.equalsIgnoreCase("accountant")){
role="ROLE_ACCOUNTANT";
}else if(userName.equalsIgnoreCase("operator")){
role="ROLE_USER";
}else{
throw new UsernameNotFoundException("user not found in DB");
¥

List<GrantedAuthority> authorities=new ArrayList<GrantedAuthority>

();
authorities.add(new GrantedAuthorityImpl(role));

return new User(userName, '"password", true, true, true, true,
authorities);

b
}

After this, you can set your customized provider in the configuration class, as shown in the
following code. When a user is authenticated, the authentication object should be
populated programmatically. Later in this chapter, in the Authorization section, we will
explain this object.

@EnableWebSecurity
@EnableGlobalMethodSecurity(prePostEnabled=true)
@ComponentScan(basePackages = "com.springessentialsbook.chapter5")
public class MultiWebSecurityConfigurator {

@Autowired
private AuthenticationProvider authenticationProvider;

@Autowired
public void configureGlobalSecurity(AuthenticationManagerBuilder auth)
throws Exception {
auth.authenticationProvider (authenticationProvider);

}

We defined the springSecurityFilterchain filter in the first step. To make it work, we
need to register it in the web application, like so:

import
org.springframework.security.web.context.AbstractSecurityWebApplicationInit
ializer;

public class SecurityWebApplicationInitializer extends
AbstractSecurityWebApplicationInitializer { }

The class doesn’t need any code, as the superclass
(AbstractSecurityWebApplicationInitializer) registers the Spring Security filter. This
happens while the Spring context starts up.

If we don’t use Spring MVC, we should pass the following to the constructor:

super (WebSecurityConfigurator);

The class AnnotatedConfigDispatcherServletInitializer extends Spring’s Servlet
initializer AbstractAnnotationConfigDispatcherServletInitializer. This class
allows Servlet 3 containers (for example, Tomcat) to detect the web application
automatically, without needing web . xm1. This is another step of simplifying the setting up
of a web application, and it registers DispatcherServlet and Servlet mapping
programmatically. By setting the webSecurityConfigurator class in
getRootConfigClasses, you tell the parent class method that creates the context of the
application to use your annotated and customized Spring Security configuration class. The
following is the code for the AnnotatedConfigDispatcherServletInitializer class:

public class AnnotatedConfigDispatcherServletInitializer extends
AbstractAnnotationConfigDispatcherServletInitializer {
@Override
protected Class<?>[] getRootConfigClasses() {
return new Class[] { MultiwWebSecurityConfigurator.class };
¥

@Override

protected Class<?>[] getServletConfigClasses() {
return null;

}

@Ooverride

protected String[] getServletMappings() {
return new String[] { "/" };
}

}

What we have configured so far in Spring Security is for checking whether the username
and password are correct. If we want to configure other security features, such as defining
a login page and the web application URL request to be authenticated, we need to override
the configure(HttpSecurity http) method of WwebSecurityConfigurerAdapter.

In our customized security configurator, we define a login page (1ogin.jsp) and an
authorization failure page (nonAuthorized. jsp), as follows:

@Configuration

@EnableWebSecurity

public class WebSecurityConfigurator extends WebSecurityConfigurerAdapter {
@Autowired

private AuthenticationSuccessHandler authenticationSuccessHandler;

@Ooverride
public void configure(HttpSecurity http) throws Exception {

.and().formLogin()
.loginPage("/login").successHandler (authenticationSuccessHandler)
.failureUrl("/nonAuthorized")

.usernameParameter ("username").passwordParameter ("password").loginProcessin
gurl("/login")

This code tells Spring to process a submitted HTTP request form (with the POST method)
with the expected username and password as parameters and "/login" as the action. Here
is the login form:

<form role="form" action="/login" method="post">
<input type="hidden" name="${_csrf.parameterName}"
value="${_csrf.token}"/>
<div>
<label for="username">Username</label>
<input type="text" name="username" id="username" required autofocus>
</div>
<div>
<label for="password">Password</label>
<input type="password" name="password" id="password" required>
</div>
<button type="submit">Sign in</button>
</form>

Tip
If you don’t specify a username, password, and loginProcessingUrl parameter in the
configuration file, Spring Security expects j_username, j_password, and

j_spring_security check from the client browser. By overriding Spring’s default values,
you can hide the Spring Security implementation from the client browser.

A cross-site request forgery (CSRF) attack happens, for example, when a malicious link
clicked by an authenticated web client performs an unwanted action, such as transferring
funds, obtaining contact e-mails, or changing passwords. Spring Security provides a
randomly generated CSRF to protect the client from CSRF attacks.

If you omit . loginPage in the configure method, Spring uses its default login page,
which is a very plain HTML login page. In this case, Spring Security uses the expected
j_username, j_password, and j_spring_security_check parameters for the username,
password, and action, and you should not configure them in the method.

For example, here we ask Spring to provide its own default login form:

@Ooverride
public void configure(HttpSecurity http) throws Exception {

.and().formLogin()
.successHandler (authenticationSuccessHandler)
.failureUrl("/nonAuthorized")

}

Spring Security supports HTTP Basic authentication, in which the client browser opens a
popup (for the initial time) when you want to access a resource that matches a pattern
("/adResources*/**" in this case):

protected void configure(HttpSecurity http) throws Exception {

http.antMatcher("/adResources*/**").authorizeRequests().anyRequest().hasRol
e("ADMIN")

.and()

.httpBasic();

}

Server-side navigation could be the next step after authentication. Even though routing
information is provided from the client side in modern client-side frameworks such as
Angular]JS, you may still want to keep routing logic on the server side. A success handler
is a Spring Security feature that lets you define navigation logic after authentication in a
web application.

Spring Security lets you configure customized server-side navigation after authentication.
You can configure it inside the configure method (using successHandler):

@Override
public void configure(HttpSecurity http) throws Exception {

.loginPage("/login").successHandler (authenticationSuccessHandler)

}

Your customized navigation handler should implement the interface

AuthenticationSuccessHandler. OnAuthenticationSuccess is the method that will be
called when a user is authenticated. Within this method, we should define the target URL.
In the sample implementation class shown here, the user’s role is just used to define the
target URL.:

@Component
public class MyCustomizedAuthenticationSuccessHandler implements
AuthenticationSuccessHandler {

private RedirectStrategy redirectStrategy = new
DefaultRedirectStrategy();

public void onAuthenticationSuccess(final HttpServletRequest request,
final HttpServletResponse
response, final Authentication authentication) throws IOException {
handle(request, response, authentication);
final HttpSession session = request.getSession(false);
if (session != null) {
session.setMaxInactiveInterval(3600);//1 hour
}

clearAttributes(request);

}

protected void handle(final HttpServletRequest request, final
HttpServletResponse response, final
Authentication authentication) throws IOException {
final String url = getUrl(authentication);
if (response.isCommitted()) {
return;
3

redirectStrategy.sendRedirect(request, response, url);

}

private String getUrl(final Authentication authentication) {
String url=null;
final Collection<? extends GrantedAuthority> authorities =
authentication.getAuthorities();
for (final GrantedAuthority grantedAuthority : authorities) {
if (grantedAuthority.getAuthority().equals("ROLE_USER")) {
url= "/user" ;
break;
} else if
(grantedAuthority.getAuthority().equals("ROLE_ADMIN")) {
url= "/admin" ;
break;
} else if
(grantedAuthority.getAuthority().equals("ROLE_ACCOUNTANT")) {
url= "/accountant" ;
break;
}else {
throw new IllegalStateException();
¥
by

return url;

protected void clearAttributes(final HttpServletRequest request) {
final HttpSession session = request.getSession(false);
if (session == null) {
return;
}

session.removeAttribute(WebAttributes.AUTHENTICATION_EXCEPTION);
3

public void setRedirectStrategy(final RedirectStrategy
redirectStrategy) {
this.redirectStrategy = redirectStrategy;
3

protected RedirectStrategy getRedirectStrategy() {
return redirectStrategy;
3

}

Spring Security lets you configure your security configuration in multiple methods, and in
each method, you can define a different category of resources. Here, we have separated
the security configuration for form-based and basic authentication into these two classes:

@EnableWebSecurity
@ComponentScan(basePackages = '"com.springessentialsbook.chapter5")
public class MultiWebSecurityConfigurator {
@Autowired
private AuthenticationProvider authenticationProvider;
@Autowired

public void configureGlobalSecurity(AuthenticationManagerBuilder auth)
throws Exception {

auth.authenticationProvider (authenticationProvider);
¥
@Configuration
protected static class LoginFormBasedWebSecurityConfigurerAdapter
extends WebSecurityConfigurerAdapter {
@Autowired
private AuthenticationSuccessHandler authenticationSuccessHandler;
@Override
public void configure(HttpSecurity http) throws Exception {
http.authorizeRequests()

.permitAll();
3
}
@Configuration
@Order (1)

public static class HttpBasicWebSecurityConfigurationAdapter extends
WebSecurityConfigurerAdapter {
@Override
protected void configure(HttpSecurity http) throws Exception {

http.antMatcher("/adResources*/**").authorizeRequests().anyRequest().hasRol
e("ADMIN")

.and()

.httpBasic();

1}

For example, in one method, we configure resources in the adrResources path to be
viewed by the admin role in an HTTP-based authentication (the browser opens a popup
and asks for a username and password). In the second method, we apply form login
authorization and limit access to resources based on user roles.

Authorization

In the Authentication section, we showed how user-provided credentials
(username/password) are compared with application-stored ones, and if they match, the
user is authenticated.

To boost security, we can limit the user’s access to application resources. This is where
authorization comes into the picture—the question of who should access which
application’s resources.

Spring Security provides very comprehensive authorization features. We can categorize
these features into these three authorization groups:

e Web request (who can access which application URL?)
e Method invoking (who can call a method?)
e Domain object access (who can see which data?)

For example, a customer should be able to see his own order and profile data,
whereas an admin should be able to see all the customers’ orders plus the data that is
not visible to any customer.

Since version 3.0 of Spring Security, Spring has added Spring EL expressions to its
authorization features. Spring EL lets you convert complex authorization logic into simple
expressions. In this section, we use Spring EL for authorization.

GrandAuthority in Spring Security is the object for including a string value that is
interchangeably called an authority, right, or permission (refer to the Authentication
section, where the AuthenticationProvider interface is explained, to see how
GrandAuthority is created). By default, if this string value starts with the prefix ROLE_
(for example, ROLE_ADMIN), it will be considered as a user’s role. So, it is also flexible
enough to be used as a permission if it does not start with the prefix. Spring Security uses
this object for web, method, and domain object authorization.

For web request authorization, we can limit user access based on the user’s role in Spring
Security, as follows (we will see later in this section how to do this in a controller):

public void configure(HttpSecurity http) throws Exception {
http.authorizeRequests()
.antMatchers("*.jsp").denyAll()
.antMatchers("/", "/login").permitAll()
.antMatchers("/user*//**").access("hasRole('USER') or
hasRole('ADMIN')")
.antMatchers("/admin*//**").access("hasRole('ADMIN')")
.antMatchers("/accountant*//**").access('"hasRole('ADMIN') or
hasRole('ACCOUNTANT')")
.failureUrl("/nonAuthorized")

:éérmitAll();
}
Since we use spring MVC, we deny all URLs that end with . jsp (*.jsp) and let MVC

map the URL to the JSP page. We permit anybody to have access to the login page using
(.antMatchers("/", /login").permitAll()).

We limit user access to accountant resources to the admin and accountant roles (for
example, antMatchers("/accountant*//**").access("hasRole('ADMIN') or
hasRole('ACCOUNTANT')")). We set an error URL and forward a user to it if he fails
authentication or tries to access non-authorized resources with
failureUrl("/nonAuthorized").

You need to add @EnableGlobalMethodSecurity(prePostEnabled=true) to be able to
apply method/domain-level authorization:

@EnableWebSecurity
@EnableGlobalMethodSecurity(prePostEnabled=true)
@ComponentScan(basePackages = '"com.springessentialsbook.chapter5")

public class MultiWebSecurityConfigurator {

We already described how to limit access to URLs using a configuration file. You can do
the same thing in the controller’s methods too:

@PreAuthorize("hasRole('ADMIN') or hasRole('ACCOUNTANT')"
@RequestMapping(value = "/accountant", method = RequestMethod.GET)
public String dbaPage(ModelMap model) {

j..

For method-invoking authorization, you can configure Spring Security at the method level
and define who can run a particular method in your application’s service layer:

@PreAuthorize("hasRole('ADMIN') or hasRole('ACCOUNTANT')"
)

public void migrateUsers(id){...};

For domain object access, you can apply method-invoking authorization and have a
service method to fine-tune who can see which data in the application. For example, in the
service layer, you can limit access if the username parameter is equal to the logged-in
username or the user has an admin role (refer to bussinessServiceImpl in the code):

@PreAuthorize("@businessServiceImpl.isEligibleToSeeUserData(principal,
#username)")

@RequestMapping("/userdata/{username}")

public String getUserPage(@PathVariable String username, ModelMap model) {

{3

The OAuth2 Authorization Framework

The OAuth2 Authorization Framework is simply a way to let third-party applications
access your protected resources without you sharing your user credentials
(username/password). You will have faced this situation when a website such as LinkedIn
asks you to share your e-mail contacts, and when you agree, you are forwarded to your
mail provider’s login page (for example, Yahoo!).

When you log in, the mail provider asks for your permission to share your contacts with
LinkedIn. Then, LinkedIn can get the list of your contacts in order to send them an
invitation.

OAuth2 relies on the following entities:

e The resource owner: This is the user with protected resources, for example, a
Yahoo! e-mail user

e The client or third-party application: This is an external application that requires
access to the owner’s protected resources, for example, LinkedIn

e The authorization server: This server grants access to the client/third party after
authenticating the resource owner and obtaining authorization

e The resource server: This server hosts the owner’s protected resources, for example,
the Yahoo! server

Many leading providers (for example, Google and Facebook) have both authorization and
resource servers.

This diagram illustrates how the OAuth2 framework works in a simple form:

Client Authorization Server Resource Server

— e —— b

—— —— ——
— — —
L#] L+ Q
0 0 O

Owner

1-Service
Request

3-Authenticate owner
2-Redirect and client and obtain
< owner Authorization

4-Grant access token
<

5-Request owner's
protected resources by
using the access token

T-Owner's protected
resources

Spring facilitates the OAuth2 framework by reusing Spring Security concepts for
authentication and authorization and includes new features to implement authorization and
resource servers. To use Spring OAuth2 in your project, you need the following
dependency:

<dependency>
<groupId>org.springframework.security.oauth</groupId>
<artifactId>spring-security-oauth2</artifactId>
<version>2.0.8.RELEASE</version>

</dependency>

What we explained in the Authentication section with respect to validating the user and
protecting resources remains the same here. The new things are the authorization and
resource server settings.

The OAuth 2.0 service includes authorization and resource servers. Spring Security lets
you have separate applications as authorization and resource servers, on which one
authorization server could be shared by one or many resource servers, or have both types
of servers in a single application. For simplicity, we implement authorization and resource
servers within the same application.

In the class MultiOAuth2ResourceAndAuthorizationConfigurator, we define resource

and authorization servers. @EnableResourceServer tags the class
ResourceServerConfiguration as a resource server, which defines resources with the
URL /public as non-protected and ones with the /protected/** URL as secure resources
that require a valid token to access.

@EnableAuthorizationServer tags AuthorizationServerConfiguration as an
authorization server that grants tokens to third-party clients. TokenStore is a Spring
interface; its implementation classes (InMemoryTokenStore, JdbcTokenStore, and
JwtTokenStore) keep track of tokens.

JdbcTokenStore uses a database to store tokens and has a Spring-JDBC dependency.
JdbcTokenStore is suitable when you want to have a history of tokens, recovery after
server failure, or the sharing of tokens among several servers.

JwtTokenStore encodes token-related data into the token itself. JwtTokenStore does not
make tokens persistent and requires JwtAccessTokenConverter as a translator between a
JWT-encoded token and OAuth authentication information.

For simplicity, we use the InMemoryTokenStore implementation class, but in real
applications, using JdbcTokenStore/JwtTokenStore is a better practice.

We reuse the AuthenticationManager class that was detailed in the Authentication
section.

The method configure(ClientDetailsServiceConfigurer clients) is the location in
which we configure token generation settings, as follows:

e withClient tells us which client can access resources (this is separate from user
authentication)

e secret is the client’s password

e authorities tells us which user roles are eligible to access the resource

e authorizedGrantType specifies which grant type the client has (for example, the
refresh and access token)

e accessTokenvaliditySeconds sets the token’s time to live

The settings are mentioned in the following code:

@Configuration
public class MultiOAuth2ResourceAndAuthorizationConfigurator {
@Configuration
@EnableResourceServer
protected static class ResourceServerConfiguration extends
ResourceServerConfigurerAdapter {
@Override
public void configure(HttpSecurity http) throws Exception {
http
.headers()
.frameOptions().disable()
.authorizeRequests()
.antMatchers("/public/").permitAll()
.antMatchers("/protected/**").authenticated();

}

@Configuration
@EnableAuthorizationServer
protected static class AuthorizationServerConfiguration extends
AuthorizationServerConfigurerAdapter implements EnvironmentAware {
private static final String CLIENT_ID = "myClientId";
private static final String CLIENT_PASSWORD = "myClientPassword";
private static final int TOKEN_TIME_TO_LIVE = 1800;
private static final String ROLE_USER = "ROLE_USER";
private static final String ROLE_ACCOUNTANT = "ROLE_ACCOUNTANT";
private static final String READ_ACCESS = '"read";
private static final String WRITE_ACCESS = "write";
private static final String GRANT_TYPE_PASSWORD = "password";
private static final String GRANT_TYPE_REFRESH_TOKEN =
"refresh_token";
@Bean
public TokenStore tokenStore() {
return new InMemoryTokenStore();
}

@Autowired
private AuthenticationManager authenticationManager;
@Override
public void configure(AuthorizationServerEndpointsConfigurer
endpoints) throws Exception {
endpoints
.tokenStore(tokenStore())
.authenticationManager (authenticationManager);
}
@Override
public void configure(ClientDetailsServiceConfigurer clients)
throws Exception {
clients
.inMemory()
.withClient (CLIENT_ID)
.secret(CLIENT_PASSWORD)
.scopes(READ_ACCESS, WRITE_ACCESS)
.authorities(ROLE_USER, ROLE_ACCOUNTANT)
.authorizedGrantTypes(GRANT_TYPE_PASSWORD,
GRANT_TYPE_REFRESH_TOKEN)
.accessTokenvValiditySeconds(TOKEN_TIME_TO_LIVE);
}

@Override
public void setEnvironment(Environment environment) {

b
}

The resources we granted access to using the token are included in a controller. Here, we
define a very simple resource:

@RequestMapping(value = "/protected", method = RequestMethod.GET)
@ResponseBody
public String getProtectedResources(ModelMap model) {
return "this is from getProtectedResources";
¥

@RequestMapping(value = "/public", method = RequestMethod.GET)

@ResponseBody

public String getPublicResources(ModelMap model) {
return "this is from getPublicResources";

}

You can run the project with the following command, which builds and runs the resource
and authorization server:

mvn clean package spring-boot:run -Dserver.contextPath=/myapp -
Dserver.port=9090

If you try the following, you can see the resource because this URL is unprotected:

curl -i http://localhost:9090/myapp/public

However, if you try the next command, you get a “non-authorized” error and you need a
valid token to access this resource:

curl -i http://localhost:9090/myapp/protected

You need to get a token first to be able to access protected resources. Spring MVC exposes
an endpoint, TokenEndpoint, in order to get the token with the /oauth/token URL by
default. The following command gives you an authorization token:

curl -X POST -vu myClientId:myClientPassword
'http://localhost:9090/myapp/oauth/token?
username=operator&password=password&grant_type=password'

Now, you can provide the token and access the secure resource:

curl -i -H "Authorization: Bearer [access_token]"
http://localhost:9090/myapp/protected

Notice that we set a time to live for the token and we need to refresh the token if it expires.
The following command renews the token by calling the /oauth/token endpoint and
passing refresh_token as the grant_type parameter:

curl -X POST -vu myClientId:myClientPassword
'http://localhost:9090/myapp/oauth/token?
grant_type=refresh_token&refresh_token=[refresh_token]'

Summary

In this chapter, we detailed some features of Spring Security. Since Spring Security is a
separate module and has a variety of features, in order to get more information about the

whole specification, you need to go through https://docs.spring.io/spring-
security/site/docs/current/reference/html/index.html and http://projects.spring.io/spring-

security-oauth/.

https://docs.spring.io/spring-security/site/docs/current/reference/html/index.html
http://projects.spring.io/spring-security-oauth/

Chapter 6. Building a Single-Page Spring
Application

Having mastered many powerful features of Spring Framework while handling all the
major technical concerns of enterprise applications, it is time to build a modern web
application by putting all the techniques we learned in the previous chapters together. The
current trend in web development is to build single-page applications (SPAs) that offer
native-like user experience and an intuitive UL. In this chapter, let’s build a responsive SPA
powered by a Spring backend.

We will use Ember.js for building the SPA and Bootstrap for styling and responsive
behavior. For Ember development, we will use a command-line tool called Ember CLI,
which runs on Node.js and combines a collection of supporting tools for various critical
functions of JavaScript-based modern frontend development.

The motivations behind SPAs

We know that Spring mainly focuses on the server side, that is, the integration, service,
and data layers. Spring relies on other web technologies for rendering the presentation
layer. Although Spring MVC does facilitate the presentation layer with the help of web
technologies such as JSP and Thymeleaf, all of them work based on server-side rendering
and full-page refreshes for responding to user interactions. In this traditional approach, the
presentation layer of a web application is composed of a bunch of totally independent
HTML files served by a server on demand, each representing a single screen, with just one
rendered to the client browser at a time, taking a full round trip to the server for each user
interaction. This provides a very poor user experience compared to native desktop
applications, which gracefully re-render just the specific parts of the screen when required.

Although you can use some AJAX-using frameworks such as jQuery, in order to get data
from a server or even for partial rendering of the UI (as in the case of JSF), it requires a lot
of server resources for the presentation layer, and server processing is easily exhausted
when the number of concurrent users grows. The presentation layer concerns are
distributed across both the server and client tiers in this approach. UI developers need both
client-side as well as server-side skills in this case, which makes web development harder.

Web developers had always been looking for a smarter method to build the UI of a data-
driven application which is developed entirely on the client side, running inside a web
browser, which offers a native-like rich user experience without a full refresh to the server
for page transitions and navigations. They wanted a way to make their Ul dynamic with
data purely on the client side, eliminating the need for a server during frontend
development, and plugs in to the server only when everything is ready on the client side.
And for all these problems and requirements, the SPA paradigm is the answer.

SPAs explained

An SPA is a web application or website composed entirely of static web resources such as
HTML, JavaScript, and CSS, loaded just once into the web browser in a single page load.
Once booted, it updates itself intelligently as the user starts interacting with it. Unlike
traditional web applications that perform a full page refresh for screen navigations, SPA
routes and redraws (re-renders) screens without reloading the whole page (or the next
page) from the server. It reconstructs the DOM structure with the help of JavaScript and
styles itself with CSS in response to user actions and application events in order to
represent them on the screen.

After the initial boot, the only time an SPA confers with a server is for dynamic data. SPAs
usually rely on AJAX or WebSockets for data access from the server. The data transfer
format is mostly JSON and sometimes XML. They contact the server via AJAX over
HTTP asynchronously behind the scenes; this gives a smooth, fluid user experience
without blocking the screen or keeping the user waiting for server responses. Besides, the
server can synchronize its data changes with the client using the WebSocket API to
provide a real-time experience.

The architectural benefits of SPAs

Besides the massive productivity gain and prominence of frontend developers, SPA offers
many architectural benefits. It is blazingly fast compared to traditional server-rendered
web applications, since it works entirely locally to the client. SPA offers a much more
smooth and fluid user experience because of its immediate response, without needing us to
resubmit the entire page to the server on every user interaction.

Note

JavaScript-intensive web applications run best on modern web browsers with enough
memory on the host computer. Most frameworks utilize many HTMLS5 features and newer
JavaScript functionality such as AJAX. SPAs can kill older browsers on slower PCs in no
time.

SPAs offload the responsibility of the entire application state to the browser, freeing up
server resources to focus on the core business logic (service) and data in terms of stateless
web services, often designed as REST APIs. With SPAs, the server just becomes an API
server; the entire user interaction is handled by the client, which improves server
scalability a lot.

Another advantage, probably the most important one of SPAs, is that both client and
server applications can be designed and evolved independently from each other. You can
replace either of these without affecting the other as long as the endpoint (API) contracts
remain intact. Also, you can let frontend developers build the UI and backend developers
provide the data; both teams can focus on their own domain while working around a data
contract.

SPA frameworks

Developing an SPA in plain JavaScript is not a smart idea considering the magnitude of
responsibility handled by the SPA paradigm. It would be extremely tiring and error-prone
if we set out to write all the routing, data binding, screen authoring, and rendering code
from scratch in our applications. Fortunately, a set of very impressive frameworks
emerged out of the SPA concept. Each of them offers varying levels of abstraction and
architecture styles; some of them use powerful templating technologies. Let’s take a look
at the most popular SPA frameworks:

¢ AngularJS: Maintained by Google and supported by a community of developers and
companies, Angular is the most popular and widely used SPA framework. It enhances
vanilla HTML with the help of smart directives by adding two-way data binding.
Angular supports localization and the building of reusable components.

¢ ReactJS: Backed by Facebook, Instagram, and a community of developers and
companies, React is the fastest growing SPA framework at the time of writing.
Facebook and Instagram have been developed using React. Its working is based on
the concept of virtual DOM, an in-memory representation of displayed DOM that can
be rendered either at the client or server (using Node), and manipulated using one-
way binding. React screens are authored using JSX, an extension of JavaScript that
allows the easy quoting of HTML inside JavaScript functions.

e Ember.js: A very powerful JavaScript MVC framework created by Yehuda Katz and
contributed to by a strong community of active developers, Ember is used by many
popular heavy traffic websites and applications, such as Groupon, Yahoo! (Ad
Manager Plus), Zendesk, Square, Discourse, and LivingSocial. Ember can be used
for building mobile and desktop applications: Apple Music is a notable desktop
application built with Ember. Ember addresses the end-to-end problems of client-side
web applications in an opinionated fashion. An early adopter of web and JavaScript
standards such as ES6, web components, and promises, Ember comes with a set of
powerful productivity tools and components that make it a complete-stack frontend
framework.

In this chapter, we will use Ember.js for building an SPA that works as the frontend for a
Spring API server. We will explore Ember.js, its core components, and the development
tools first and then develop the frontend application using Ember, connecting to a Spring-
based API server on the backend. This chapter will make you a full-stack developer with
both server-side and client-side skills on the modern technology stack.

Introducing Ember.js

Ember is a comprehensive frontend framework for creating ambitious web applications. It
is modeled after the Model-View-Controller (MVC) architectural pattern for the
frontend. Its well-designed components with clearly defined responsibilities and rich
capabilities allow developers to develop complex web applications with dramatically less
code. In an Ember application, screens are composed using Handlebars templates that
update themselves automatically when the underlying data changes.

Ember is productive out of the box, with a comprehensive development stack and a
friendly API. The Ember development stack contains the following tools:

e Ember CLI: This is a command-line tool for creating projects, scaffolding, and
managing their resources. It provides a development server with live reload, a testing
framework, mocking server, and comprehensive asset management support.

e Ember Inspector: This is a debugger-cum-inspector tool for Ember applications,
shipped as a plugin for Firefox and Chrome browsers. It allows you to evaluate and
change Ember objects, elements, and variables while debugging, and provides a
visual representation of the running Ember app.

e Ember Data: This subproject of Ember is a data-persistence library that can be
directly mapped to a remote data source, such as a REST API. It maps Ember model
objects with data entities on the server side via channels such as API endpoints.
Ember Data provides adapters and serializers for standard REST and JSON API
endpoints, and allows you to create your own adapters for any data source, for
example, the browser’s local storage.

e Fastboot: This is a server based on Node.js for the server-side rendering of Ember
resources, eliminating the need for downloading JavaScript payloads post the loading
of static assets for increased performance.

¢ Liquid Fire: This provides animation support for Ember views.

¢ A testing framework: Ember CLI integrates QUnit for testing Ember resources.

Ember is a very opinionated framework; this means that you are expected to structure the
app by its own conventions, and then the framework takes care of the rest. If you follow
the guidelines, you will end up writing very little, and very readable, code. Ember CLI
generates the Ember project structure and artifacts with simple commands, in the way
expected by the framework.

The anatomy of an Ember application

An Ember application is composed of a set of core elements with well-defined
responsibilities and properties. They are defined under the Ember and DS namespaces of
the Ember API.

This diagram depicts the high-level structure of an Ember application:

Ember Application

Model [Ember Data
r- -

la Template (Component | d| Controller

Service : Helper | Initializer
\I —~ I ! — '! ._,j

|
i

_ —_— e ao

S S

Network API Server Database

Routers

A router manages the application state. It maps a set of logical routes against unique URLs
as mapped in the router configuration.

Routes or route handlers

A route handler, also known as a route (defined in Ember .Route), represents the handler
for an individual route transition. A route can render a template that displays a screen. A
route provides a model (data) that can be consumed by its template and controller. It has a
corresponding controller that can handle user actions and maintain the state. A route can
handle user actions by itself.

Templates

Templates are HTML fragments, usually rendered by routes and components. The user
interface of an Ember application is composed of a collection of templates. Templates use
the Handlebars syntax, which looks like regular HTML with some Handlebars
expressions, which are enclosed in double curly braces ({{ }}). These Handlebars
expressions bind Ember resources such as properties, objects, helpers, and components.

Components

Components control the behavior of the user interface. They handle user actions and
manage many attributes that are used by the templates. A component consists of two parts:

e A JavaScript object that extends Ember .Component, where the actions and attributes
are defined
¢ A template that is rendered into the parent view, usually that of a router

Models

Part of the Ember Data project, models represent the state of domain data in an Ember
application. An Ember application will typically have a set of models extending from
DS.Model. Routes usually display model data with the help of templates and modify data
from the action handlers. Models are often loaded from a store (DS.Store), while Model
instances are fetched from the actual persistent storage, mostly an API endpoint on the
web server. Models can be persisted to the store; usually, they are sent back to the
appropriate API endpoints.

Controllers

Controllers have a limited role in modern Ember applications; they will be deprecated in
future versions. Currently, their use is limited to maintaining the state for a route and
handling user actions. Since routes and components can handle actions, they are the
perfect places for adding action handlers instead of controllers.

Besides these core elements, there are some supporting components that help the
application development be easier and more elegant.

Input helpers

These are ready-made components bundled with Ember for taking inputs from users. Most
of them are Ember versions of general form controls. Examples are the {{input}} and
{{textarea}} input helpers. Custom-developed components can be used similarly to
input helpers.

Custom helpers

Helpers add custom functionality to an application when they are not readily available, for
using inside templates. Mostly, they are used for some kind of formatting. Examples are

{{format-date}} and {{format-currency}}.

Initializers

Initializers can perform certain operations on application boot. There are two types of
initializers: application initializers, which are executed on application boot, and
application instance initializers, which load on application instance boot.

Services

Services are objects that can hold data and functions whose scope is application-wide.
They are typically used for encapsulating core business logic spanned across many routes.
Services can be injected into controllers, routes, components, and so on, where their

methods can be invoked.

Working with Ember CLI

Ember CLI is an integrated, rapid development environment for Ember applications.
Based on Broccoli, a fast and reliable asset pipeline that runs on Node.js, Ember CLI is a
powerful command-line interface that integrates many productivity tools and optimization
utilities necessary for JavaScript development.

Ember CLI provides the following features and tools for Ember development:

It creates a strong, convention-based project structure for Ember applications

It generates Ember-specific application resources, such as routes, templates, and
components, from the command line

It supports template authoring in the Handlebars, HTMLBars, and Emblem.js formats
It supports scripting in ES2015 (ES6) modules, CoffeeScript, and EmberScript
syntaxes

It supports CSS authoring in CSS, Sass, Compass, and Stylus

It converts Node.js-style ES2015 modules into RequireJS-model AMD modules

It integrates the npm and Bower package managers for managing dependencies to JS
libraries

It integrates a development server with LiveReload, which automatically rebuilds and
updates code changes to all connected browsers

It performs asset management functions for application resources (combining,
minifying, uglifying, versioning, and so on)

It enables the sharing of code and functionality using add-ons and blueprints

Later in this chapter, we will use Ember CLI as a development tool for building an Ember
application and its various artifacts.

Setting up Ember CLI

Ember CLI depends on Node.js. So, the first step is installing Node.js. Follow the
instructions given on the website http://nodejs.org to set up Node.js.

Once Node.js is installed, you can install Ember CLI using npm, with the following
command:

npm install -g ember-cli
Now, install Bower using the following command:
npm install -g bower

You may optionally install Watchman for better watching of code changes and the
PhantomJS test-running environment.

http://nodejs.org

Getting started with Ember CLI commands

Once Ember CLI is installed, you may start creating Ember applications incrementally
using this set of commands to generate the required Ember artifacts:

Command Purpose

ember Prints the available commands.

ember new Generates a fresh new project root folder with the same name as <appname>, the whole project
<appname> structure, and all the necessary artifacts for a starter Ember application.

ember init

Turns the current directory into an Ember application and generates all necessary artifacts.

ember build

Builds and generates the deployable to the dist directory. Specify the environment using the
environment flag, which defaults to development.

ember server (or
serve)

Starts the development server at port 4200. You may point to another port using the - -port flag,
for example, ember serve --port 8080

ember generate
<generatortype>
<name> <options>

Generates specific generators, such as route, template, and helper, with the given name and
options. Type ember help generate for the full list of available generators. Use the --pod flag
for generators in the POD structure (explained later).

ember destroy
<generatortype>
<name> <options>

Removes artifacts created using the ember generate command. Remember to use the - -pod
flag if it was used while generating the artifact.

ember test

Runs tests written in the application using the Testem test runner.

ember install
<addon-name>

Installs the given add-on into the application and registers it in the package. json file.

The Ember project structure

When you use the ember new <project-name> command, Ember CLI generates and

organizes files in a specific structure based on convention and then compiles them and
performs a set of tasks during building and runtime. The following table describes the
folder layout and important files generated by Ember CLI:

File/Folder Description
This is the Ember application root. The index.html file and all your JavaScript files and
app/ templates go inside this, under proper subdirectories. Everything except index.html is

compiled through the ES6 module transpiler, minified and concatenated to <app-name>. js,
and then loaded by the index.html file at build time.

app/index.html

load from <app-name>.js, and is loaded using the <script/> tag embedded in it. Ember
builds the entire DOM structure from inside this foundation HTML document in the browser
at runtime.

app/app.js

This is the Ember application module. This is the application’s entry point, where all the
other modules are initialized and injected in order to create the entire application instance
based on the resolver and environment-specific configuration.

app/router.js

||This is the only HTML page loaded from the server, which boots the Ember application on
||This is the router configuration module of the application.

Adapters for Ember Data modules go here. This folder is generated when the ember

app/adapters/ . . .
generate adapter <model-name> command is executed for the first time.

app/components/ ||All components go here, unless the - -pod option is used.

app/controllers/ ||All controllers go here, unless the - -pod option is used.

app/helpers/ ||A11 helpers go here, unless the - -pod option is used.

app/models/ ||A11 models go here, unless the - -pod option is used.

app/routes/ ||A11 routes go here, unless the - -pod option is used.

app/services ||A11 services go here, unless the - -pod option is used.
Put all your style sheets for the application, whether Sass, LESS, Stylus, Compass, or plain
CSS, here. Only plain CSS is supported by default; you can enable other types by installing

app/styles/ the appropriate npm modules. For Sass, type ember install ember-cli-sass in the
command line. For LESS, the command is ember-cli-1less; for Compass, ember-cli-
compass-compiler, and so on. For the default CSS option, add your styles to app.css. You
can also organize the styles in different CSS files and import them to your app.css file.

app/templates/ ||A11 templates go here, unless the - -pod option is used.

bower . json

This is the Bower configuration file.

bower_components/

Dependencies managed by Bower go here.

config/

||Application configuration files fall here.

config/environment.js

'Your environment-specific configurations go inside this file.

dist/

The deployable files generated by the build process go here. This is what you need to
distribute for release.

ember-cli-build.js

This is the Broccoli build file. Include all resources managed by Bower and npm here.

node_modules

package.json

||A11 node dependencies managed by npm go here.
||This is the NPM dependency configuration file.

This is a directory for uncompiled assets, such as fonts and images. The contents are copied

public/
as they are.
server/ ||This is where you can set up a development server for mock APIs and tests.
tests/ ||A11 your unit and integration tests go here.
tmp/ ||This is a temporary folder for build execution.
vendor/

Place your external dependencies that are not managed by npm or Bower here.

At the end of the build process, Ember CLI generates the deployable at dist/directory.
You need to distribute the contents of this directory for hosting the deployable on a web

server on release.

Working with the POD structure

By default, the ember generate <generator> command generates artifacts inside specific
resource directories directly under the app root directory. So, all your routes go under
app/routes, templates under app/templates, and so on. However, this becomes a bit
unmaintainable as the application grows. To solve this problem, Ember CLI provides the
option of organizing your files in a feature-driven (POD) structure using the - -pod flag
when you generate an artifact using the ember generate command.

In order for the POD structure to work, you need to first configure the POD directory in
config/environment. js as given in the following code:

module.exports = function(environment) {
var ENV = {

podModulePrefix: 'my-ember-app/pod-modules’,
3
return ENV;
Iy

The preceding snippet specifies that all the artifacts you generate with the - -pod flag will
be generated inside the <app-root>/pod-modules directory.

Once you configure the POD, you can start generating your artifacts with the - -pod flag.

For example, if you want to generate a route inside the POD structure, use the following
command:

ember generate route user --pod
This will generate the route file at /app/pod-modules/user/route.js.

POD modules group all the artifacts related to a feature in one place, thus making it more
manageable.

Understanding the Ember object model

Ember comes with a rich API out-of-the-box, extending vanilla JavaScript classes and
introducing new structures, providing enhanced capabilities such as two-way data binding,
property observation, and so on. It provides smarter replacements for most of the common
JavaScript constructs such as objects and arrays.

Ember.Object is the main base class of all Ember objects. It provides a class system with
advanced features such as mixins and constructor methods. Ember .0bject provides many
special features, such as computed properties, data binding, and property-value change
observers.

Declaring types (classes) and instances

You can inherit all the features of Ember .0bject in your objects; just extend it in a purely
object-oriented fashion, as given in the following code:

var User = Ember.Object.extend({

Y

The preceding snippet is just a declaration of the User type. Now, you need to instantiate
this class structure in order to use it in your program, as follows:

var User = Ember.Object.create();

You can either call a no args constructor like the preceding snippet, or you can pass a set
of attributes with values as a JS object in order to create an instance of a declared class, as
follows:

var myUser = User.create({
firstName: "John",
lastName: "Smith",
userName: "jsmith",
password: "secretp@ss",
dateOfBirth: new Date(1980, 10, 24);

1)

Accessing and mutating properties

Once the type is initialized, you can access its properties using a get method, as follows:

var name = myUser.get("name");

Remember to always use the get method instead of object.property, since Ember
objects store managed properties in a different hash, which provides a few special
features, unlike a vanilla JS object.

Make sure you use the set method for enabling all the special features of Ember objects,
such as computed properties and property observation:

myUser.set('firstName', '"Shameer");

Computed properties

A computed property is a virtual property derived from other normal properties, or it is a
value returned by a function. Ember.0bject can have computed properties too, as shown
here:

var User = Ember.Object.extend({

fullName: Ember.computed('firstName', 'lastName',6 function() {
return “${this.get('firstName')} ${this.get('lastName')} ;
1),

Y

Once instantiated, you can access computed properties as well in the same manner as
normal properties. They update themselves whenever a dependent property changes. You
can create mutable computable properties too. The following is an example of a sensible
implementation of such a computed property:

fullName: Ember.computed('firstName', 'lastName',6 {

get(key) {
return “${this.get('firstName')} ${this.get('lastName')}";
3

set(key, value) {
var [firstName, lastName] = value.split(/\s+/);
this.set('firstName', firstName);
this.set('lastName', lastName);
return value;

1)

Since the computed property is like any other function, you can add any business logic to
it.

Property observers

You can observe normal or computed properties for any change in value. Register the
property with Ember .0bserver for this purpose. See the following example:

var User = Ember.Object.extend({

dateOfBirth: new Date(),
dobChanged: Ember.observer('dateOfBirth', function() {
// deal with the change
console.log(Date of birth updated. New value is:
${this.get('date0fBirth')}");
1)
1)
In the preceding snippet, the dobChanged function will fire whenever the date0ofBirth
property gets updated. You can bind multiple properties with a single observer method by
passing all the properties as arguments into the Ember .observer method prior to the

function definition.

Note

Computed properties can also be observed. However, the observer method will not be
triggered until the computed property is accessed, even if the dependent properties are
updated.

Working with collections

Ember makes array manipulation smarter using a set of core collection classes, shown in
the following table. Each of these provide many convenient methods that abstract complex
array manipulation:

Collection type Description

This is an abstract implementation of observer-friendly array-like behavior. Concrete

implementations are expected to have implemented methods, such as length() and objectAt().
Ember.Array Notable convenient methods are any(), every(), filter(), filterBy(), find(), findBy(),

forkEach(), getEach(), map(), mapBy(), objectAt(), replace(), reverse(), sortBy,

without (), and so on.

ArrayProxy wraps objects that implement Ember . Array for binding use cases and swapping

Ember .ArrayProxy . .
content while iterating.

Ember.MutableArray|[This is an extension of Array, supporting an array of ordered sets.

Ember.Enumerable [IThis is a mixin for enumerating arrays.

Ember.NativeArray [[This is the most concrete implementation of all of the above. You would use this in most cases.

Building UI templates using Handlebars

The primary UI authoring technology in Ember.js is Handlebars. Handlebars templates
allow HTML fragments to embed dynamic content using Handlebars expressions placed
inside double curly braces ({{ }}), the dynamic scripting blocks. Handlebars expressions
perform data binding with attributes of routes, models, controllers, components, services,
utils, and even application instances. Here is a sample Handlebars expression:

<h3>Welcome {{loggedInUser.fullName}}.</h3>

This code snippet expects an object (preferably derived from Ember.0Object, though it
binds with normal JS objects too) with the name loggedInUser, present somewhere in the
context in the parent context hierarchy (template, controller, route, or application). Then, it
establishes a one-way data binding with the fullName attribute of the 1oggedInuser
object; hence, it just displays the value of the bound attribute.

Handlebars helpers

Handlebars relies on helpers for business logic inside the dynamic scripting blocks.
Handlebars executes the business logic implemented inside the helpers (if any) placed
inside the curly braces, or it simply performs data binding with bound attributes.

Ember ships a set of built-in helpers and provides a nice way of developing custom
helpers too. Built-in helpers can be categorized as follows:

Input helpers
Control flow helpers
Event helpers
Development helpers

Helpers can either be inline or en bloc. Inline helpers are just one-liners, similar to empty
HTML and XML tags. See the action helper, which is an inline helper that takes
parameters for processing:

{{action 'editUser' user}}

Inline helpers can be nested, embedding more dynamic values inside them:

{{action 'editUser' user (format-date today format='MMM DD, YYYY')}}

Block helpers have a start and an end construct with the same name, similar to HTML
tags:

{{#1if isLoggedIn}}
Welcome {{loggedInUser.fullName}}

{{/if}}

Data binding with input helpers

Templates can establish two-way data binding using input helpers. Input helpers are
mostly HTML form elements wrapped inside Ember components or views. Ember ships
some built-in input helpers, such as Ember.TextField, Ember.TextArea, and
Ember.Checkbox. Let’s take a look at an example:

{{input placeholder="User Name" value=editingUser.userName}}

{{input}} is a built-in input helper that wraps HTML input text fields and checkboxes
based on the value of the type attribute, which defaults to text. It allows two-way binding
between the generated <input type="text"/> tag and the attribute
editingUser.userName. Whenever either of the values is changed, it updates the other
participant of the two-way binding. The {{input}} helper supports many useful attributes,
such as readonly, required, size, height, name, autofocus, placeholder, tabindex,
and maxlength.

Checkboxes are created using the same {{input}} helper, but by setting the type attribute
to checkbox. The {{textarea}} helper represents the HTML <textarea/> component.

You can create your own input helpers as Ember components, which we will learn later in
this chapter.

Using control flow helpers in Handlebars

Like most scripting languages, Handlebars supports the following control flow helpers:

e Conditionals:

{{if}}
{{#else}}
{{#else if}}
{{#unless}}

O O O o

e Loops:
o {{#each}}
Here is an example of the {{if}}, {{else}}, and {{else if}} helpers:

<div class="container">
{{#if isIdle}}

You are idle for {{SessionService.idleMinutes}} minutes.
{{else if islLoggedIn}}

Welcome {{loggedInUser.fullName}}

{{else}}

<a {{action showLoginPopup}}>Please login
{{/1if}}
</div>
The {{#each}} helper is used to loop (iterate) through a collection, display it, and provide

event hooks or actions around each element in the collection. A typical {{#each}} helper
looks like this:

{{#each model as |user|}}

<tr>

<td><a {{action 'showUser' user }}>{{user.id}}</td>
<td>{{user.userName}}</td>

</tr>

{{/each}}

Using event helpers

Event helpers respond to user-invoked actions. The two primary event helpers in Ember
are the {{action}} and {{1ink-to}} helpers.

The {{1ink-to}} helper helps in navigating to another route. See the following example:

{{1link-to "Login here" "login" class="btn btn-primary"}}

The {{action}} helper is generally added to a normal HTML element in order to attach
an event and event handler to it:

<a {{action "editTask" _task}} class="btn btn-success">Edit

Handling routes

An Ember application transitions its state between a set of routes; each can render a
template that displays the current state and a controller to support its state-based data.
Routes are registered inside the router configuration, typically inside router.js, in the
case of an Ember CLI project structure. Routes are defined inside their own JS files.

Routes can be generated and autoconfigured from the command line as follows:

ember generate route user --pod

This command generates route. js and template.hbs under app/<pod-
directory>/user/. Upon generation, both artifacts will have a basic structure and you
need to flesh them out according to your specific requirements. A typical route will have a
model hook, which prepares its data. See the structure of a typical but minimal route given
in the following code:

import Ember from 'ember';
export default Ember.Route.extend({

model: function(args) {
return this.store.findAll('task');

}
1);
In the preceding example, the model hook fetches data from DS.Store, the Ember Data
repository. The route renders the template.hbs file in the same directory in the case of an
Ember CLI project, unless another template is specified inside the renderTemplate
method. The model of a route is available to the controller and template (via a controller)
for manipulation and rendering.

Handling UI behavior using components

Components are the building blocks of dynamic UI fragments or elements in Ember. They
render a template, optionally backed by a class extending Ember . Component.

The easiest way to create a component is to create a template file with a dash-separated
name in the app/components/ directory. Then you can embed it in inside other templates
by just calling {{<component-name>}} and passing the required parameters.

Components are independent and completely isolated from the client context; all required
data must be passed as parameters. However, if you use {{yield}} inside the template, it
essentially becomes a block (or container) component, where you can add any content;
this content can access any controller attribute and model.

A component can be generated by the following command:

ember generate component <component-name> --pod

This command generates two files, component. js and template.hbs, under the
app/<pod-dir>/components/<component-name>/ directory. If you do not use the - -pod
flag, it generates the <component -name>. js and <component -name>. hbs files under the
directory app/components/.

Components insert the content into the DOM structure, where it is invoked, and control

the behavior of the inserted content. By default, a component renders a <div/> element

with the content generated by its template inside the <div/> element. You can specify a

different HTML element instead of the <div/> element by setting the tagName attribute

inside the component. js file. Similarly, you can set CSS class names dynamically using
another property, assNameBindings.

Components provide some very useful life cycle hooks for manipulating different phases
of the component. Some life cycle methods that can be overridden in the component class
are didInsertElement (), willInsertElement (), and willDestroyElement().

Components support standard HTML element events, depending upon which tagName is
being used. They support all the standard touch events such as touchStart and
touchMove, keyboard events such as keybDown, keyUp, and keyPressed, mouse events such
as mouseDown, mouseOver, click, and doubleClick, form events such as submit and
change, and HTML5 drag and drop events such as dragStart and dragEnd. You just need
to declare the event as a function inside the component class; the component will fire the
event and the associated function will get invoked as the user interacts with it.

Besides events, components can respond to action handlers, which are named functions
defined inside the actions hash of the component class. These actions can be triggered
anywhere from the component’s template. Action handlers can accept parameters from the
client code or templates.

Building a ToggleButton component step by step

Let’s learn how to build an Ember component step by step using Ember CLI. We’ll build a
toggle button that turns off and on when clicked on. The component just changes its label
and style based on its status attribute, isActive. We use Bootstrap styles for this example.

First, let’s generate the component class and template file (. hbs) using Ember CLI. Issue
this command from the command line at the root of your project:

ember generate component toggle-button --pod

See the component.js and template.hbs files generated at app/<pod-
dir>/components/toggle-button/. Open and see the component. js file, it looks as
given in the following code:

import Ember from 'ember';

export default Ember.Component.extend({

1)

The generated template. js file just has {{yield}?} inside it. Now you need to add
necessary attributes and business logic into these two artifacts in order to make it a proper
toggle button component. Here is a modified component. js file, with the proper behavior:

import Ember from 'ember';

export default Ember.Component.extend({
tagName: "button",
attributeBindings: ['type'],
type: "button",
classNames: ["btn"],
classNameBindings: ["isActive:btn-primary:btn-default"],
activelLabel: "On",
inactivelLabel: "Off",
isActive: false,

currentLabel: Ember.computed('isActive', 'activelLabel', 'inactivelLabel',
function() {
return this.get(this.get("isActive") ? "activelLabel"
"ipactivelLabel");

1)

click: function() {
var active = this.get("isActive")
this.set("isActive", lactive);
}
3);
In the preceding code, notice that you specified the tagName attribute as button;
otherwise, the generated HTML would be <div/>. Also, see how CSS class names are
bound dynamically based on the isActive attribute. The currentLabel attribute is a
computed attribute that depends on a few other attributes. In effect, the component
responds to a click event and actually toggles the isActive variable. Everything else will

work based on this event.

Now, let’s take a look at the modified template. js file to see how it utilizes the attributes
and events handled by the component. js file:

{{currentLabel}}

Surprise! This is all the content in the template. It’s so simple to build. All the rest of the
heavy lifting is done by the component. js file itself. Now the most interesting part is how
the component is invoked from the client. Let’s take a look:

{{toggle-button}}

This is how you add the toggle button component in your client code, it is mostly route’s

template. You can start clicking on the button repeatedly and see that it switches on and
off.

This component can be customized by overriding its default properties. Let’s try changing
its labels when it is on and off from the client side:

{{toggle-button activelLabel="Turn me off now :)" inactivelLabel="Turn me On
please.."}}

You can see the new active and inactive labels on the screen as you click on the button,
toggling it. The toggle button is the simplest example of an Ember component, intended to
give you just a taste of Ember components. A typical Ember application will have many
complex components. Converting a reusable UI module or portion into a component is the
best way to make your application more elegant and maintainable.

Persisting data with Ember Data

Ember Data is Ember’s data-access mechanism. It provides a simple API to deal with data,
abstracting the complexities and protocols of data access and diverse data sources. With
Ember Data, clients can deal with data models just as any other Ember object.

Ember Data defines a set of fundamental components that handle various roles and
responsibilities in data access. These components are grouped under the namespace DS.
The following table describes the most important Ember Data components defined under
DS:

Component ||Purpose

This is the fundamental unit of data and represents a record in a data collection. You need to define
your data models by extending this class. It provides methods to save, delete, reload, and iterate
properties, relationships, related types, and so on. It provides information about states, attributes,
fields, relationships, errors, and so on. Also, it provides life cycle hook events.

DS.Model

This is the local repository of all the data created, fetched, and modified by Ember Data. Store fetches
data with the help of adapters and converts them into appropriate DS.Model instances. Using
serializers, Store serializes model instances into forms suitable for the servers. It provides methods for
querying and creating new records.

DS.Store

This is an abstract implementation that receives various persistence commands from Store and
translates them into forms that the actual data source (such as a Server API or a browser local storage)

DS.Adapter understands. Ember ships two concrete implementations: DS.RESTAdapter and DS. JSONAPIAdapter.
Override the adapters if you want to change the default behaviors or attributes, such as remote URLs
and headers.

This normalizes DS.Model instances into payloads for the API (or whichever data source it is) and
DS.Serializer||serializes them back into the model. Two default serializers are RestSerializer and
JSONAPISerializer. Override the serializers to customize the data formats for the server.

Ember Data architecture

Ember Data components communicate with each other asynchronously for data access
operations, based on a promise. The query and find methods of both the Store and
Adapter are asynchronous, and essentially return a promise object immediately. Once
resolved, the model instance is created and returned to the client. The following diagram
demonstrates how Ember Data components coordinate a find method operation
asynchronously:

Application

(Route or Controller)

| 4

find() promise

The Cloud

The clients of Ember Data components, which are typically routes, components,
controllers, services, and so on, do not directly deal with adapters and serializers. They

talk to the Store and model for normal data-access operations. Since the Route.model
method (hook) supports promise objects, the transition will pause until the promise is
resolved. We do not deal with resolving promises and hence with asynchronicity; rather,
Ember handles it smartly.

Defining models

Models represent the domain data of an Ember application. They need to be defined in
proper structures and registered with the store before they can be used for data access. An
Ember CLI project expects models under the app/models/ directory, or app/<pod-
dir>/models/ in case you are using the POD directory structure.

Let’s see a sample model definition. The following is the definition of a user model:
import DS from 'ember-data';
export default DS.Model.extend({

name: DS.attr('string'),

userName: DS.attr('string'),
password: DS.attr('string'),
dateOfBirth: DS.attr('date'),
profileImage: DS.belongsTo('file')

1)

Model attributes can be of the string, number, Boolean, and date types by default. For
custom types, you need to subclass DS. Transform. Attributes can have default values too.
You can specify default values as shown in the following line:

dateOfBirth: DS.attr('date', { defaultValue: new Date() }),

Defining model relationships

Models can engage in one-to-one, one-to-many, and many-to-many relationships among
themselves:

¢ A one-to-one relationship is defined using DS.belongsTo in both model definitions

¢ A one-to-many relationship is defined using DS.belongsTo in one model and
DS.hasMany in the other model

¢ A many-to-many relationship is declared when both models have Ds.hasMany defined
for each other

Building a Taskify application

Hey, it’s time to build our Taskify application end-to-end. First, let’s go back to building a
proper API layer using Spring and then revisit Ember to build the frontend SPA. We will
use Spring Data to connect to and access data from the API server.

For simplicity, we will not apply any security to the server; we will just focus on
performing CRUD operations on two models: User and Task. Both User and Task are
related to each other: Task belongsTo User. We will build models on both (server and
client) sides. Let’s see how both technologies work together without having direct
dependencies on each other.

Building the API server app

We explored the building of web apps using Spring MVC in Chapter 2, Building the Web
Layer with Spring Web MVC. In Chapter 3, Accessing Data with Spring, we also learned
how to persist data using Spring Data JPA. We are going to apply both these techniques
again for building an API application for Taskify.

Setting up and configuring the project

Since we have already learned the basics of creating Spring MVC applications with Spring
Data JPA, at this point, we will go into detail only about the specifics of the API
endpoints. Refer to Chapter 2, Building the Web Layer with Spring Web MVC for Spring
MVC configuration and Chapter 3, Accessing Data with Spring for details about Spring
Data JPA. Set up and configure the project with the following steps:

1. Create a Spring MVC application with a dependency on Spring Data JPA and the
database of your choice.

2. Enable JPA repositories, specifying the base packages. For JavaConfig, annotate like
this:

@EnableJpaRepositories(basePackages = "com.taskify.dao")

3. Configure Spring Data JPA artifacts such as bataSource, JdbcTemplate,
TransactionManager, and EntityManager with the flavor of your choice.

Defining the model definitions — User and Task

The application has the following two models as domain objects:

Task
User
+id: Integer {id} oo neaad +id: Integer {id}

3% +name: String

+name: String +status: String

+userName: String :
+password: String +createdBy: User[1]

(+createdDate: Date
+dateOfBirth: Date e +* +assignee: User[1]

+completedDate: Date
+comments: String

Now we need to realize these as Java classes, annotated as JPA entities, so that we can
persist them to a database, as follows:

User.java

package com.taskify.domain;

import java.util.Date;

@Entity

@Table(name = "TBL_USER", uniqueConstraints = @UniqueConstraint(name =

"UK_USER_USERNAME", columnNames = {"USER_NAME" }))
public class User {

@I1d
@GeneratedValue
private Long id;

@Column(name = "NAME", length = 200)
private String name;

@Column(name = "USER_NAME", length = 25)
private String userName;

@Column(name = "PASSWORD", length = 20)
private String password;

@Column(name = "DOB")
@Temporal (TemporalType.TIMESTAMP)
private Date dateOfBirth;

//Getters and setters go here..

}

Task.java

package com.taskify.domain;
import java.util.Date;
@Entity
@Table(name = "tbl task")
public class Task {

@Id

@GeneratedValue
private Long id;

@Column(name = "NAME", length = 500)
private String name;

@Column(name = "PRIORITY")
private int priority;

@Column(name = "STATUS")
private String status;

@ManyToOne(optional = true)
@JoinColumn(name = "CREATED_USER_ID", referencedColumnName = "ID")
private User createdBy;

@Column(name = "CREATED_DATE")
@Temporal(TemporalType.TIMESTAMP)
private Date createdDate;

@ManyToOne(optional = true)
@JoinColumn(name = "ASSIGNEE_USER_ID", referencedColumnName = "ID")
private User assignee;

@Column(name = "COMPLETED_DATE")
@Temporal (TemporalType.TIMESTAMP)
private Date completedDate;

@Column(name = "COMMENTS")
private String comments;

//Getters and setters go here..

}

Once the JPA entities are ready, create the DAOs for both User and Task—UserDA0 and
TaskDAO—annotated with @Repository. As the best approach and for proper application
layering, create the corresponding @Service beans too. Since we already covered the JPA
@Repository and @Service classes in the previous chapters, the code for these beans is
not listed here. You can find the exact code in the code bundle provided with this book.

Building API endpoints for the Taskify app

The purpose of the API server is to expose API endpoints for the consumption of clients,
including the Taskify Ember frontend app. Let’s build these web services in the REST
model, with JSON data format support.

In this section, we will list two classes annotated with @RestController: UserController
and TaskController. The handler methods support asynchronous, non-blocking IO so
that they are more scalable and faster. Handler methods are designed in the REST model.
The HTTP methods GET, POST, PUT, and DELETE are mapped against the Create, Read,
Update, and Delete (CRUD) operations.

UserController.java

UsercController exposes endpoints for CRUD operations on the User entity. You can see
the endpoints of UserController accepting and producing JSON data appropriately in its
code, which is as follows:

package com.taskify.web.controller;

import java.util.List;

/**
* Handles requests for user related pages.
*/
@RestController
@RequestMapping('"/api/v1/user")
@CrossOrigin
public class UserController {

private static final Logger =
LoggerFactory.getLogger(UserController.class);

@Autowired

private UserService;

@RequestMapping(method = RequestMethod.GET)

@ResponseBody

public Callable<List<User>> listAllUsers() {
return new Callable<List<User>>() {

@Override
public List<User> call() throws Exception {
return userService.findAllUsers();

}
+;
}

@RequestMapping(method = RequestMethod.POST, consumes =
MediaType.APPLICATION_JSON_VALUE, produces =
MediaType.APPLICATION_JSON_VALUE)

@ResponseBody

public Callable<User> createNewUser(@RequestBody CreateUserRequest
request) {

logger.info(">>>>>>>> Creating User, request - " + request);
return new Callable<User>() {
@Ooverride
public User call() throws Exception {
return userService.createNewUser(request.getUser());

}
i
}

@RequestMapping(path = "/{id}", method = RequestMethod.PUT, consumes =
MediaType.APPLICATION_JSON_VALUE, produces =
MediaType.APPLICATION_JSON_VALUE)

@ResponseBody

public Callable<User> updateUser(@Pathvariable("id") Long id,
@RequestBody UpdateUserRequest request) {

logger.info(">>>>>>>> updateUser, request - " + request);
return new Callable<User>() {
@Ooverride
public User call() throws Exception {
User existingUser = userService.findById(id);
existingUser.setName(request.getUser().getName());
existingUser.setPassword(request.getUser().getPassword())
existingUser.setUserName(request.getUser().getUserName())
userService.updateUser(existingUser);
return existingUser;

/
/

}
+;
}

@RequestMapping(path = "/{id}", method = RequestMethod.GET)
public Callable<User> getUser(@Pathvariable("id") Long id) {
return new Callable<User>() {
@Override
public User call() throws Exception {
return userService.findById(id);

}
+;
}

@RequestMapping(path = "/{id}", method = RequestMethod.DELETE)
@ResponseStatus(value = HttpStatus.NO_CONTENT)
public Callable<Void> deleteUser(@Pathvariable("id") Long id) {
return new Callable<Void>() {
@Override
public Void call() throws Exception {
userService.deleteUser (userService.findById(id));
return null;

}
+;
}
}

TaskController.java

TaskController maps request endpoints for CRUD operations around the Task entity. Its
code is as follows:

package com.taskify.web.controller;

import java.util.List;

@RestController
@RequestMapping("/api/v1l/task")
@CrossOrigin

public class TaskController {

private static final Logger =
LoggerFactory.getLogger(TaskController.class);

@Autowired
private UserService;

@Autowired
private TaskService;

private static final int[] priorities = new int[] {1, 2, 3, 4, 5, 6, 7,
8, 9, 10 };

@RequestMapping(method = RequestMethod.GET)
@ResponseBody
public Callable<List<Task>> listAllTask() {
return new Callable<List<Task>>() {
@Override
public List<Task> call() throws Exception {
return taskService.findAllTasks();
}
Iy
¥

@RequestMapping(method = RequestMethod.POST, consumes =
MediaType.APPLICATION_JSON_VALUE, produces =
MediaType.APPLICATION_JSON_VALUE)

@ResponseBody

public Callable<Task> createNewTask(@RequestBody CreateTaskRequest
request) {

logger.info(">>>>>>>> Creating Task, request - " + request);
return new Callable<Task>() {
@Override
public Task call() throws Exception {
return taskService.createTask(request.getTask());
¥

+;
}

@RequestMapping(path = "/{id}", method = RequestMethod.PUT, consumes =
MediaType.APPLICATION_JSON_VALUE, produces =
MediaType.APPLICATION_JSON_VALUE)

@ResponseBody

public Callable<Task> updateTask(@Pathvariable("id") Long id,
@RequestBody UpdateTaskRequest request) {

logger.info(">>>>>>>> updateTask, request - " + request);
return new Callable<Task>() {

@Ooverride

public Task call() throws Exception {
Task existingTask = taskService.findTaskById(id);
existingTask.setName(request.getTask().getName());
existingTask.setPriority(request.getTask().getPriority());
existingTask.setStatus(request.getTask().getStatus());
existingTask.setCreatedBy(userService.findById(

request.getTask().getCreatedBy().getId()));

if(request.getTask().getAssignee() != null &&
request.getTask().getAssignee().getId() != null) {
existingTask.setAssignee(userService.findById(
request.getTask().getAssignee().getId()));
} else {
existingTask.setAssignee(null);
}

taskService.updateTask(existingTask);
return existingTask;
}
iy
}

@RequestMapping(path = "/{id}", method = RequestMethod.GET)
public Callable<Task> getTask(@Pathvariable("id") Long id) {
return new Callable<Task>() {
@Override
public Task call() throws Exception {
return taskService.findTaskById(id);
}
Iy
}

@RequestMapping(path = "/{id}", method = RequestMethod.DELETE)
@ResponseStatus(value = HttpStatus.NO_CONTENT)
public Callable<Void> deleteTask(@Pathvariable("id") Long id) {
return new Callable<Void>() {
@Override
public Void call() throws Exception {
taskService.deleteTask(id);
return null;

}
+;
}
}

We have built all the necessary artifacts for the API server. You can package the
application and deploy it. You should be able to access the Usercontroller handlers at
http://<app-context-root>/api/vi/user and the TaskController handlers at
http://<app-context-root>/api/vi/task/. Now let’s go build the frontend.

Building the Taskify Ember app

Let’s get back to Ember development to build our SPA. Follow these steps. We will
occasionally refer to previous sections of this chapter, and detail the specifics here.

Setting up Taskify as an Ember CLI project

Let’s generate the project and set up all the artifacts. Follow these steps:
1. Create a new Ember project using Ember CLI from the command line:

ember new taskify

2. Install broccoli-merge-trees and broccoli-static-compiler for a richer Broccoli
configuration. Issue the following commands from the command line:

npm install --save-dev broccoli-merge-trees
npm install --save-dev broccoli-static-compiler

3. Install Bootstrap with Bower from the command line:

bower install bootstrap

4. Configure Broccoli to include bootstrap.js, CSS, and fonts in the ember-c1i-
build.js file:

var mergeTrees = require('broccoli-merge-trees');

var pickFiles = require('broccoli-static-compiler');

var extraAssets = pickFiles('bower_components/bootstrap/dist/fonts’', {
srcDir: '/', files: ['**/*'], destDir: '/fonts' });

app.import('bower_components/bootstrap/dist/css/bootstrap.css');
app.import('bower_components/bootstrap/dist/js/bootstrap.js');

return mergeTrees([app.toTree(), extraAssets]);

5. In the application, we will be using a third-party Ember add-on called ember -
bootstrap-datetimepicker. Let’s install it into the project:

ember install ember-bootstrap-datetimepicker

6. Build npm and bower dependencies:

npm install
bower install

7. Start the Ember server using the ember serve command, and make sure your
application is accessible at http://localhost:4200/.
8. Set the POD directory inside /config/environment.js:

var ENV = {
modulePrefix: 'ember-webapp-forspring',
podModulePrefix: 'ember-webapp-forspring/modules’,

Now we can start generating the required Ember artifacts in this POD directory.

Setting up Ember Data

We need two models: User and Task. Let’s generate them first with the following code.
For models, we do not use POD:

ember generate model user
ember generate model task

Find the generated models under the /app/models/ folder. Open them and set the
attributes and relationships:

User.js

import DS from 'ember-data';

export default DS.Model.extend({
name: DS.attr('string'),
userName: DS.attr('string'),
password: DS.attr('string'),
dateOfBirth: DS.attr('date')

1)
Task.js

import DS from 'ember-data';

export default DS.Model.extend({
name: DS.attr('string'),
priority: DS.attr('number'),
status: DS.attr('string'),
createdBy: DS.belongsTo('user'),
createdDate: DS.attr('date'),
assignee: DS.belongsTo('user'),
completedDate: DS.attr('date'),
comments: DS.attr('string'),

1)

Let’s generate an (Ember Data) application adapter that has some global properties
common to all adapters:

ember generate adapter application

Open the generated /app/adapters/application.js file, and add two attributes, host
and namespace, with the right values as shown in the following code. After this, adapters
for all models will take these attributes unless overridden individually:

import Ember from 'ember';
import DS from 'ember-data';

export default DS.RESTAdapter.extend({
host: 'http://<apiserver-context-root>',
namespace: 'api/vil'

1),

We need to override the default serializers, as Ember Data expects the ID of the dependent
objects for sideloading, where the API server sends out nested objects embedded within.

So, generate both serializers from the command line and then update the content
appropriately:

ember generate serializer user
ember generate serializer task

Update the generated /app/serializers/user.js file with the following content:

import DS from 'ember-data';

export default DS.RESTSerializer.extend(DS.EmbeddedRecordsMixin, {
attrs: {
profileImage: {embedded: 'always'},
3
});

Update the generated /app/serializers/task.js file with the following content:

import DS from 'ember-data';

export default DS.RESTSerializer.extend(DS.EmbeddedRecordsMixin, {
attrs: {
createdBy: {embedded: 'always'},
assignee: {embedded: 'always'},
3
1)

Configuring application routes

Routes represent application states. They need to be registered with the router of the
application in order to enable navigation. Our application has three primary routes: index,
user, and task. Let’s generate them in the pod directory. Do it from the command line:

ember generate route index --pod
ember generate route user --pod
ember generate route task --pod
Take a look at router.js now; you will see these new routes registered there. Also, the
route.js and template.hbs files generated for each of these under the POD directories

will be present.

Building the home screen

Now, let’s set up the index template to show counts for the total number of tasks and the
number of open tasks in the system. Open the /app/modules/index/template. js file and
update it with this content:

<div class="container">
<hi>Welcome to Taskify!</h1>
<hr />
<P>There are {{model.openTasks.length}} open
{{#1link-to "task"}}tasks{{/link-to}} out of total
{{model.tasks.length}} in the system</P>
</div>

The preceding template binds the model attributes using Handlebars and expects the
model to be loaded with proper data. Let’s go build the model in the route. js file:

import Ember from 'ember';

export default Ember.Route.extend({
model: function() {
var _model = Ember.Object.extend({
tasks: null,
openTasks: Ember.computed('"tasks", function() {
var _tasks = this.get("tasks");
return Ember.isEmpty(_tasks) ? Ember.A([]):
_tasks.filterBy("status", "Open");

1)
}) .create();

this.store.findAll('task').then(function(_tasks) {
_model.set("tasks", _tasks);
return _model;

1)

return _model;
1)

In the preceding code, the model hook first loads data from the server using DS.Store
(Ember Data), constructs the model object with attributes, including computed properties,
and then returns. The home screen will look like the following image (ignore the headers
for now):

@ Safari File Edit View History Bookmarks Window Help

o0 ® < EH ol 1] localhost

Taskify! Home Manage Users Manage Tasks Component demo

Welcome to Taskify!

There are 4 open tasks out of total 4 in the system

Building the user screen

Now, let’s build the user screen for listing all the users in the system. Let’s build the model
inside the route’s model hook first. Add this method inside
/app/modules/user/route. js:

model: function() {
return this.store.findAll('user');

iy

You can see how beautifully Ember and Ember Data work together to simplify such an
otherwise complex task of fetching, transforming, and deserializing data into model
instances and finally making it available for the consumption of the template and
controller, asynchronously, without blocking the screen.

Now let’s display this data on a screen. Update the /app/modules/user/template.hbs
file with the following content:

<div class="container'">
<hi>List of users</hi><hr />
<p class="text-right">
<a {{action 'createNewUser'}} class="btn btn-primary"
role="button">Create New User</p>

<table class="table table-hover'">
<thead><tr>
<th>ID</th>
<th>User name</th>
<th>Name</th>
<th>Date Of Birth</th>
<th>Edit</th>
<th>Delete</th>
</tr></thead>
<tbody>
{{#each model as |user|}}
<tr>
<td><a {{action 'showUser' user }}>{{user.id}}</td>
<td>{{user.userName}}</td>
<td>{{user.name}}</td>
<td>{{format-date user.dateOfBirth format='MMM DD, YYYY'}}</td>
<td><button type="button" class="btn btn-default" aria-label="Edit
user" {{action 'editUser' user}}>

</button></td>
<td><button type="button" class="btn btn-default" aria-label="Delete
user" {{action 'deleteUser' user}}>

</button></td>
</tr>
{{/each}}
</tbody>
</table>
</div>

Now you can see the user route at http://localhost:4200/user, which looks like this:

Taskify! Home Manage Users Manage Tasks Component demo

List of users

Create New User

ID User name Name Date Of Birth Edit Delete

1001 sameerean Shameer Kunjumohamed Mar 08, 2007 r m

1002 hreza Hamidreza Sattari Sep 15, 2007 s i

Building a custom helper

In the template.hbs file, you may notice a custom helper:

{{format-date user.dateOfBirth format='MMM DD, YYYY'}}

Let’s go build it; you should have already got an error since this helper hasn’t been defined
yet. From the command line, generate it using the following command:

ember generate helper format-date
Update the generated /app/helpers/format-date.js file with the following script:

import Ember from 'ember';

export function formatDate(params, hash) {
if('Ember.isEmpty(hash.format)) {
return moment(new Date(params)).format(hash.format);
}

return params;

}

export default Ember.Helper.helper(formatDate);

Now look at your browser; the user list should render properly.

Adding action handlers

Inside the /app/modules/user/template.hbs file, there are four action invocations:
createNewUser, showUser, editUser, and deleteUser. All these methods accept a user
variable as a parameter. Let’s add these actions inside /app/modules/user/route. js first:

actions: {
createNewUser: function() {
this.controller.set("_editingUser", null);
this.controller.set("editingUser", Ember.Object.create({
name: null,
userName: null,
password: null,
dateOfBirth: new Date()

1));

Ember .$("#userEditModal").modal("show");
+
showUser: function(_user) {
this.controller.set("_editingUser", _user);
this.controller.set("editingUser", Ember.Object.create(
_user.getProperties("id", "name", "userName", "password",
"dateOfBirth", '"profileImage")));
Ember.$("#userViewModal").modal("show");
3
editUser: function(_user) {
this.actions.closeViewModal.call(this);
this.controller.set("_editingUser", _user);
this.controller.set("editingUser", Ember.Object.create(
_user.getProperties("id", "name", "userName", "password",
"dateOfBirth", "profileImage")));
Ember.$("#userEditModal").modal("show");
3
deleteUser: function(_user) {
if(confirm("Delete User, " + _user.get("name") + " ?2")) {
var _this = this.controller;
_user.destroyRecord().then(function() {
_this.set("editingUser", null);
_this.set("_editingUser", null);
_this.set("model", _this.store.findAll('user'));
3);
¥
}
}

Building a custom component — modal window

In the preceding code listing, both the createNewUser and editUser methods use
userViewModal using jQuery. This is a Bootstrap modal window built as a custom Ember
component. In fact, there are four components working together in a nested fashion:
{{modal-window}}, {{modal-header}}, {modal-body}}, and {{modal-footer}}.

Let’s generate the artifacts from a commandline first:

ember generate component modal-window --pod
ember generate component modal-header --pod
ember generate component modal-body --pod

ember generate component modal-footer --pod

The component.js and template.hbs files should be generated under the
/app/modules/components/<component-name>/ directory. Now let’s update the .js and
.hbs files to make it a true modal window:

modal-window/template.hbs

<div class="modal-dialog" role="document'">
<div class="modal-content">{{yield}}</div>
</div>

modal-window/component.js

import Ember from 'ember';

export default Ember.Component.extend({
classNames: ["modal", "fade"],
attributeBindings: ['label:aria-label', 'tabindex',6 'labelId:aria-
labelledby'], ariaRole: "dialog", tabindex: -1, labellId:
Ember.computed('id', function() {
if(Ember.isEmpty(this.get("1id"))) {
this.set("id", this.get("parentView.elementId") + "_Modal");
}

return this.get('id') + "Label";
1)
1);

modal-header/template.hbs

{{yield}}
modal-header/component.js

import Ember from 'ember';

export default Ember.Component.extend({
classNames: ["modal-header"],

3);
modal-body/template.hbs

{{yield}}
modal-body/component.js

import Ember from 'ember';

export default Ember.Component.extend({
classNames: ["modal-body"],

1)
modal-footer/template.hbs

{{yield}}
modal-footer/component.js

import Ember from 'ember';

export default Ember.Component.extend({
classNames: ["modal-footer"],

1)
Building userEditModal using {{modal-window}}

The four modal related components have been built; it’s time to add userEditModal into
the user/template. js file. Add the following code or usertEditModal into the
user/template.js file:

{{#modal-window id="userEditModal"}}

{{#modal-header}}

<button type="button" class="close" {{action "closeEditModal"}} aria-
label="Close'">×</button>

<h4 class="modal-title" id=labelId>{{modalTitle}}</h4>

{{/modal-header}}

{{#modal-body}}
<form> <div class="form-group">
<label for="txtName">Full Name:</label>
{{input class="form-control" id="txtName" placeholder="Full Name"
value=editingUser.name}} </div>
<div class="form-group"> <label for="txtUserName">Username:</label>
{{input class="form-control" id="txtUserName" placeholder="User Name"
value=editingUser.userName}}</div>
<div class="form-group"> <label for="txtPassword">Password:</label>
{{input type="password" class="form-control" id="txtPassword"
placeholder="Your secret password" value=editingUser.password}}</div>
<div class="form-group'"><label for="calDob">Date of Birth:</label>
{{bs-datetimepicker id="calDob" date=editingUser.dateOfBirth
updateDate=(action (mut editingUser.dateOfBirth))
forceDateOutput=true}} </div> </form>
{{/modal-body}}

{{#modal-footer}}

<a {{action "saveUser"}} class="btn btn-success'">Save

<a {{action "closeEditModal"}} class="btn btn-primary">Cancel

<a {{action 'deleteUser' _editingUser}} class="btn btn-danger"> Delete

{{/modal-footer}}
{{/modal-window}}

The preceding code listing integrates the user edit form with {{modal-body}}, with the
form title inside {{modal-header}}, action buttons inside {{modal-footer}}, and all of
this inside {{modal-window}} with the ID userEditModal. Just click the Edit button of a
user row; you will see this nice modal window pop up in front of you:

Edit this user

Full Name:

Shameer Kunjumohamed

User-name:

sameerean

Password:

LA LD L]

Date of Birth:

03/08/2007 12:00 AM

The Save button of userEditModal invokes the saveUser action method, the Cancel
button invokes the closeEditModal action, and the Delete button invokes deleteUser.
Let’s add them inside the actions hash of user/route. js, next to deleteUser:

closeEditModal: function() {
Ember.$("#userEditModal").modal("hide");
this.controller.set("editingUser", null);
this.controller.set("_editingUser", null);

I%

closeViewModal: function() {
Ember.$("#userViewModal").modal("hide");
this.controller.set("editingUser", null);
this.controller.set("_editingUser", null);

iy

saveUser: function() {
if(this.controller.get(" _editingUser") === null) {

this.controller.set("_editingUser", this.store.createRecord("user",
this.controller.get("editingUser").getProperties("id", "name",
"userName", "password", "dateOfBirth")));
} else {
this.controller.get("_editingUser").setProperties(
this.controller.get("editingUser").getProperties("name",
"userName'", "password", "dateOfBirth"));

}

this.controller.get("_editingUser").save();
this.actions.closeEditModal.call(this);

}

Similarly, user/template. js has userviewModal, which just displays the user data in
read-only format. Now, you can easily derive it from userEditModal; hence, we’re not
listing it here.

Building the task screen

The task screen follows the same pattern as the user screen. This section describes only
the portions logically different from the user screen and assumes that you will start
developing the task screen from the user screen and incorporate the changes described

here. Also, you can see the complete code from the project files attached to this chapter of
the book.

The task screen has some extra state-specific data besides the model data (the list of
tasks). For maintaining that data while the task screen is active, we will create a controller:

ember generate controller task --pod

The relationship between Task and User is that a task is created by a user and assigned to
another user. So, on the edit task (or create new task) screen, a list of users should be
shown in a selection box so that one can be selected from the list. For that, we need to load
the list of users from DS. store to a variable inside the controller. Here is the controller
method that loads the user list:

loadUsers: function() {
this.set("allUsers", this.store.findAll('user'));
}.on("init"),

This method will get fired on initialization of the controller, courtesy of the .on("init")
construct. The template code extract that renders the user list in an HTML selection is
here:

<div class="form-group">

<label for="calDob'">Created By:</label>

<select onchange={{action '"changeCreatedBy" value="target.value"}}
class="form-control">

{{#each allUsers as |user]|}}

<option value={{user.id}} selected={{eq editingTask.createdBy.1id

user.id}}>{{user.name}}</option>

{{/each}}

</select>
</div>

The action method, changeCreatedByj, is listed here:

changeCreatedBy: function(_userId) {
this.get("editingTask").set("createdBy",
this.get("allUsers").findBy("id", _userId));

iy

Similarly, task priorities are also a list of integers from 1 to 10. The code to load them is
here (this goes inside the controller):

taskPriorities: [],
loadTaskPriorities: function() {
for(var _idx=1; _idx<11; _idx++) {
this.taskPriorities.pushObject(_idx);
}

}.on("init"),

Code for the priority selection box is as follows:

<div class="form-group">

<label for="selectPriority">Priority:</label>

<select onchange={{action (mut editingTask.priority)
value="target.value"}} class="form-control">

{{#each taskPriorities as |priority|}}

<option value={{priority}} selected={{eq editingTask.priority
priority}}>{{priority}}</option>

{{/each}}

</select>
</div>

As a further step, you may add security to both ends of the application. You may
personalize tasks for the logged-in user. Ember also supports WebSockets. Tasks can be
pushed to the client as they are assigned to the logged-in user by another user somewhere
else. For simplicity, those advanced features are not covered in this chapter. However, with
the knowledge you have gained in this and the previous chapters, you are already at a
comfortable stage to implement end-to-end security and real-time updates using
WebSockets inside Taskify.

Summary

This chapter introduced the concept of single-page applications and implemented a
Taskify frontend as an SPA, connecting to the Spring-based API server on the backend.
We got a fair understanding of Ember.js and its tools as we built our frontend. Spring and
Ember have together simplified the building of an otherwise complex rich web application
of this type. The use of Ember is just an illustration of how Spring can power the backend
of modern SPAs. Spring powers SPAs built on other frameworks, such as Angular, React,
and Backbone, created by teams across the globe.

So far, we have successfully covered the most important features of Spring Framework.
This foundation enables you to venture into more advanced features of Spring, packaged
as Spring portfolio projects. Projects such as Spring Integration, Spring AMQP, Spring
Cloud, and Spring Web Services solve the more complex problems of enterprise
computing. With the knowledge you have gained from this book, you can now design
powerful solutions using Spring Framework and its subprojects.

Chapter 7. Integrating with Other Web
Frameworks

The flexibility offered by Spring Framework to pick third-party products is one of the core
value propositions of Spring and Spring supports integration with third-party presentation
frameworks. While Spring’s presentation layer framework—Spring MVC, brings the
maximum extent of flexibility and efficiency to the development of web applications,
Spring lets you integrate most popular presentation frameworks.

Spring can be integrated with far too many of Java’s web frameworks to be included in
this chapter, and only the most popular ones, JSF and Struts, will be explained.

Spring’s JSF integration

A JSF web application can be easily integrated with Spring by loading a Spring context
file within web.xml (through a context loader listener). Since JSF 1.2, Spring’s
SpringBeanFacesELResolver object reads Spring beans as JSF managed beans. JSF only
deals with the presentation tier and has a controller named FacesServlet. All we need to
do is register FacesServlet in the application deployment descriptor or web . xm1 (in this
section, we use JavaConfig to register it) and map any request with the desired extension
(.xhtml here) to go through FacesServlet.

First, we should include the JSF API and its implementation in the project dependencies:

<properties>
<spring-framework-version>4.1.6.RELEASE</spring-framework-version>
<mojarra-version>2.2.12</mojarra-version>

</properties>

<dependency>
<groupId>com.sun.faces</groupIld>
<artifactId>jsf-api</artifactId>
<version>${mojarra-version}</version>

</dependency>

<dependency>
<groupId>com.sun.faces</groupId>
<artifactId>jsf-impl</artifactId>
<version>${mojarra-version}</version>

</dependency>

The dispatcher Servlet initializer is the location to register FacesServlet. Notice that we
set a mapping request to FacesServlet here. Since we use JavaConfig to register settings,
we register FacesServlet in the AnnotationConfigDispchServletInit class, as follows:

@Configuration
@Order(2)
public class AnnotationConfigDispchServletInit extends
AbstractAnnotationConfigDispatcherServletInitializer {
@Override
protected Class<?>[] getRootConfigClasses() {
return new Class<?>[] { AppConfig.class };
¥

@Override

protected Class<?>[] getServletConfigClasses() {
return null;

¥

@Override

protected String[] getServletMappings() {
return new String[] { "*.xhtml" };

¥

@Override
protected Filter[] getServletFilters() {

return new Filter[] { new CharacterEncodingFilter() };
}

@Ooverride
public void onStartup(ServletContext servletContext) throws
ServletException {
// Use JSF view templates saved as *.xhtml, for use with // Facelets
servletContext.setInitParameter("javax.faces.DEFAULT_SUFFIX",
".xhtml");
// Enable special Facelets debug output during development
servletContext.setInitParameter("javax.faces.PROJECT_STAGE",
"Development");
// Causes Facelets to refresh templates during development
servletContext.setInitParameter("javax.faces.FACELETS_REFRESH_PERIOD",
Illll);
servletContext.setInitParameter("facelets.DEVELOPMENT", "true");
servletContext.setInitParameter("javax.faces.STATE_SAVING_METHOD",
"server");
servletContext.setInitParameter(
"javax.faces.PARTIAL_STATE_SAVING_METHOD", "true");

servletContext.addListener (com.sun.faces.config.ConfigureListener.class);
ServletRegistration.Dynamic facesServlet =
servletContext.addServlet("Faces Servlet", FacesServlet.class);
facesServlet.setLoadOnStartup(1);
facesServlet.addMapping("*.xhtml");
// Let the DispatcherServlet be registered
super.onStartup(servletContext);

¥
}

Note

We must set FacesServlet to start up on load prior to the others (notice
facesServlet.setLoadOnStartup).

Another important setting is configuring the listener to read the faces-config XML file.
By default, it looks for faces-config.xml under the WEB-INF folder. By setting
org.springframework.web.jsf.el.SpringBeanFacesELResolver as ELResolver, we
access Spring POJOs as JSF beans. By registering
DelegatingPhaselListenerMulticaster, any Spring’s bean that implements the
PhaseListener interface, JSF’s phase events will be broadcasted to corresponding
implemented methods of PhaseListener in the Spring’s bean.

Here is the faces-config.xml file:

<?xml version="1.0" encoding="UTF-8"7?>
<faces-config xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee/web-
facesconfig_2_2.xsd"
version="2.2">

<application>

<el-

resolver>org.springframework.web.jsf.el.SpringBeanFacesELResolver</el-
resolver>

</application>

<lifecycle>

<phase-
listener>org.springframework.web.jsf.DelegatingPhaselListenerMulticaster</ph
ase-listener>
</lifecycle>
</faces-config>

In JSF, we can define beans with a session, request, or application scope and the bean

values retained within the specific scope. Setting the eager flag to false implies lazy

initialization, which creates beans when the first request arrives, whereas true implies
creating the beans on startup. The code for the orderBean class is:

@ManagedBean(name = "orderBean", eager = true)
@RequestScoped
@Component
public class OrderBean {
private String orderName;
private Integer orderId;

@Autowired

public OrderServiceorder Service;

public String placeAnOrder(){
orderName=orderService.placeAnOrder(orderId);
return "confirmation";

}

public String getOrderName() {
return orderName;

}

public void setOrderName(String orderName) {
this.orderName = orderName;

}

public Integer getOrderId() {
return orderlId;

}

public void setOrderId(Integer orderId) {
this.orderId = orderId;

b
}

Also, these beans are available in the presentation layer to interact with the backend. On
the first screen (order.xhtml), we call the bean’s method (placeAnorder):

<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:body>
<h3>input: JSF 2 and Spring Integration</h3>
<h:form id="orderForm">
<h:outputLabel value="Enter order id:" />
<h:inputText value="#{orderBean.orderId}" />

<h:commandButton value="Submit" action="#{orderBean.placeAnOrder}"/>
</h:form>
</h:body>
</html>

The method returns a confirmation as a string and specify navigation in the action
attribute means the next page is confirmation.xhtml, which looks like this:

<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:body>
<h3>Confirmation of an order</h3>
Product Name: #{orderBean.orderName}
</h:body>
</html>

Spring’s Struts integration

Spring MVC relies on DispatcherServlet, which sends requests to controllers that are
configurable mapping handlers with view and theme resolution. In Struts, the controller’s
name is Action. While Action instances will be instantiated for every request in Struts 2
to tackle the thread safety issue, Spring MVC creates controllers once, and each
controller’s instance serves all requests.

To enable Spring integration with Struts 2, Struts provides struts2-spring-plugin. In
Struts 2.1, Struts introduced the convention plugin (struts2-convention-plugin), which
simplified the creation of Action classes (by annotation) without any configuration file
(struts.xml). The plugin expects a set of naming conventions for the Action class,
package, and view naming that will be explained in this section.

To integrate Struts 2 with Spring, you need to add these dependencies:

<dependency>
<groupId>org.apache.struts</groupId>
<artifactId>struts2-core</artifactId>
<version>2.3.20</version>

</dependency>

<dependency>
<groupIld>org.apache.struts</groupId>
<artifactId>struts2-spring-plugin</artifactId>
<version>2.3.20</version>

</dependency>

<dependency>
<groupIld>org.apache.struts</groupId>
<artifactId>struts2-convention-plugin</artifactId>
<version>2.3.20</version>

</dependency>

The struts2-convention-plugin plugin searches for packages with the strings “struts”,
“struts2”, “action”, or “actions”, and detects Action classes either whose names end with
Action (*Action) or who implement the interface com.opensymphony.xwork2.Action (or
extend its subclass com.opensymphony.xwork2.ActionSupport). The code for the
ViewOrderAction class is as follows:

package com.springessentialsbook.chapter7.struts;

@Action("/order")
@ResultPath("/WEB-INF/pages")

@Result(name = "success", location = "orderEntryForm.jsp")
public class ViewOrderAction extends ActionSupport {
@Override

public String execute() throws Exception {
return super.execute();

b
}

@Action maps /order (in the request URL) to this action class and @ResultPath specifies
where views (JSP files) exist. @Result specifies navigation to the next page up to the

string value of the execute () method. We created vViewOrderAction to be able to navigate
to a new page and to perform an action (business logic) when submitting a form within a
view (orderEntryForm. jsp):

package com.springessentialsbook.chapter7.struts;

@Action("/doOrder")
@ResultPath("/WEB-INF/pages")

@Results({
@Result(name = "success", location = "orderProceed.jsp"),
@Result(name = "error", location = "failedOrder.jsp")

1)

public class DoOrderAction extends ActionSupport {
@Autowired

private OrderService orderService;
private OrderVO order;

public void setOrder(OrderVO order) {
this.order = order;
}

public OrderVO getOrder() {
return order;

}

@Override
public String execute() throws Exception {
if (orderService.isValidOrder(order.getOrderId())) {
order.setOrderName(orderService.placeAnOrder(order.getOrderId()));
return SUCCESS;

3
return ERROR;

}

Also, here is the JSP code that calls the Action class. Notice the form’s doOrder action,
which calls the boorderAction class (using @Action("doOrder™)).

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>
<%@ taglib prefix="s" uri="/struts-tags" %>
<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>
<div align="center">
<h1>Spring and Struts Integration</hi1>
<h2>Place an order</h2>
<s:form action="doOrder" method="post">
<s:textfield label="OrderId" name="order.orderId" />
<s:submit value="Order" />
</s:form>
</div>

</body>
</html>

As you can see, we used OrderVo, whose code is as follows, as the data model in the view.
Any changes to this object in the JSP code or action class will be carried forward to the
next page:

public class OrderVOo {
private String orderName;
private String orderId;

public String getOrderName() {
return orderName;

}

public void setOrderName(String orderName) {
this.orderName = orderName;

}

public String getOrderId() {
return orderlId;

}

public void setOrderId(String orderId) {
this.orderId = orderId;

}

In the boorderAction action class, in the method execution, we implement the business
logic and return the string value of the method specified in the navigation logic in the
presentation layer. Here, the action class either goes to orderProceed. jsp (if it is a valid
order) or failedorder. jsp (in the case of a failure). Here is the orderProceed.jsp page, to
which a success order will be forwarded:

<%@ taglib prefix="s" uri="/struts-tags" %>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>
<div align="center">
<h1>0Order confirmation</h1>
<s:label label="OrderId" name="order.orderId" />, <s:label
label="0rderName" name="order.orderName" />

has been successfully placed.
</div>
</body>
</html>

Summary

In this chapter, we explained how to integrate Spring with two famous presentation
technologies: JSF and Struts.

You can get more info about Spring’s integration with web frameworks here:

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/web-
integration.html

To know more about Spring’s Struts plugin, visit this link:

http://struts.apache.org/docs/spring-plugin.html

You can get more details about naming conventions in the Struts convention plugin here:

https://struts.apache.org/docs/convention-plugin.html

Nowadays, big companies are shifting toward single-page applications in the presentation
layer. To learn about this topic, read Chapter 6, Building a Single-Page Spring
Application.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/web-integration.html
http://struts.apache.org/docs/spring-plugin.html
https://struts.apache.org/docs/convention-plugin.html

Index
A

e (@Aspect] annotation
o declaring / Declaring an (@Aspect annotation
o pointcuts / Pointcuts
o Advices / Advices

e @Aspect] annotation based AOP

o about / @Aspect] annotation-based AOP
e ACID (Atomic, Consistent, Isolated, Durable)

o about / Spring Transaction support
e Advices, @Aspect] annotation

o about / Advices

o annotations / Advices

o @Around Advice / The @Around Advice

o Advice parameters, accessing / Accessing Advice parameters
e AngularJS

o about / SPA frameworks
e annotations

defining / Auditing with Spring Data
@CreatedBy / Auditing with Spring Data
@CreatedDate / Auditing with Spring Data

@LastModifiedBy / Auditing with Spring Data
@LastModifiedDate / Auditing with Spring Data

e API endpoints
o building, for Taskify app / Building API endpoints for the Taskify app
o UserController.java / UserController.java
o TaskController.java / TaskController.java
e API server app
o building / Building the API server app
o project, setting up / Setting up and configuring the project
o User and Task, defining / Defining the model definitions — User and Task
e Aspect Oriented Programing (AOP)
o about / Aspect Oriented Programming
static AOP / Static and dynamic AOP
dynamic AOP / Static and dynamic AOP
concepts / AOP concepts and terminology

terminology / AOP concepts and terminology
Spring AOP / Spring AOP — definition and configuration styles

XML schema based AOP / XML schema-based AOP

o @Aspect] annotation based AOP / @Aspect] annotation-based AOP
e asynchronous request processing

o in Spring MVC / Asynchronous request processing in Spring MVC

(e]

O O O o

O O O O O O

¢ authentication

o about / Authentication
e authorization

o about / Authorization

e}

e}

e}

e}

e}

e}

e}

bean definition profiles

working with / Working with bean definition profiles

bean dependencies

injecting / Injecting bean dependencies
constructor-based dependency injection / Constructor-based Dependency

Injection
setter-based dependency injection / Setter-based Dependency Injection

BeanFactory interface

about / The Spring IoC container

bean life cycles

hooking / Hooking to bean life cycles

InitializingBean, implementing / Implementing InitializingBean and
DisposableBean

DisposableBean, implementing / Implementing InitializingBean and
DisposableBean

@PostConstruct, annotating on @Components / Annotating @PostConstruct
and @PreDestroy on @Components

@PreDestroy, annotating on @Components / Annotating @PostConstruct and

@PreDestroy on @Components
init-method and destroy-method attributes / The init-method and destroy-method

attributes of <bean/>

e beans

e}

O O O O O O

O O O

e}

about / The Spring IoC container, Beans in detail

definition / Bean definition

instantiating / Instantiating beans

instantiating, with constructors / With constructors

instantiating, with static factory-method / With a static factory-method
instantiating, with instance factory-method / With an instance factory-method
cleaner bean definitions, with namespace shortcuts / Cleaner bean definitions
with namespace shortcuts

list, wiring as dependency / Wiring a List as a dependency

map, wiring as dependency / Wiring a Map as a dependency

dependencies, autowiring / Autowiring dependencies

scoping / Bean scoping

e Broker channel / STOMP over WebSocket and the fallback option in Spring 4
e BSON (Binary JSON) format

e}

about / Spring Data MongoDB

e @ComponentScan annotation / Creating a simple WebSocket application

e @Configuration annotation / Creating a simple WebSocket application
e component stereotype annotations

e}

e}

e}

(e]

(e]

@Component / Component stereotype annotations
@Service / Component stereotype annotations
@Repository / Component stereotype annotations
@Controller / Component stereotype annotations
@RestController / Component stereotype annotations

e configuration metadata, Dependency Injection

e}

e}

e}

e}

e}

e}

about / Configuration metadata
XML-based configuration metadata / XML-based configuration metadata

annotation-based configuration metadata / Annotation-based configuration
metadata

XML-based, versus annotation-based configuration / XML.-based versus
annotation-based configuration

component stereotype annotations / Component stereotype annotations
Java-based configuration metadata / Java-based configuration metadata
JSR 330 standard annotations / JSR 330 standard annotations

e constructor-based DI

e}

about / Constructor-based or setter-based DI — which is better?

e container-level default init and destroy methods

e}

about / Container-level default-init-method and default-destroy-method

e container-managed transactions (CMT)

e}

about / Relevance of Spring Transaction

e controllers

e}

e}

O O O o

about / Controllers in detail

request URLs, mapping with @RequestMapping / Mapping request URLs with
@RequestMapping

URI template patterns, with @PathVariable annotation / URI template patterns
with the @PathVariable annotation

parameters, binding with @RequestParam annotation / Binding parameters with
the @RequestParam annotation

request handler method arguments / Request handler method arguments
request handler method return types / Request handler method return types
model attributes, setting / Setting Model attributes

RESTful services, building for JSON and XML media / Building RESTful
services for JSON and XML media

RESTful service, building with RestController / Building a RESTful service
with RestController

e cross-site request forgery (CSRF) attack

e}

about / Authentication

® custom scope

o creating / Creating a custom scope

DAQO support

o about / DAO support and @Repository annotation
data access objects (DAQOs) / XML-based configuration metadata
DataSource

o configuring / Configuring DataSource
o reference / Configuring DataSource
declarative transaction management
o about / Declarative transaction management
proxy mode / Transactional modes — proxy and AspectJ

Aspect) mode / Transactional modes — proxy and AspectJ
transactional behavior, defining / Defining transactional behavior

rollback rules, setting / Setting rollback rules

Dependency Injection (DI) / The Spring Framework modules
o about / Dependency Injection

o Spring IoC container / The Spring IoC container
o configuration metadata / Configuration metadata

Dependency Injection, with scoped beans

o about / Dependency Injection with scoped beans
development environment

o setting up / Setting up the development environment
DispatcherServlet
o about / DispatcherServlet explained

o WebApplicationContext, using / WebApplicationContext — ApplicationContext
for the Web

o supporting beans / Beans supporting DispatcherServlet and their roles

o beans supporting / Beans supporting DispatcherServlet and their roles
domain objects and entities
about / Domain objects and entities
Query resolution methods / Query resolution methods
@Query annotation, using / Using the @Query annotation
Spring Data web support extensions / Spring Data web support extensions
auditing, with Spring Data / Auditing with Spring Data

O O O o

O O O O O

E

e @EnableAutoConfiguration annotation / Creating a simple WebSocket application
e embedded databases

e}

using / Using embedded databases

e Ember.js

e}

about / SPA frameworks, Introducing Ember.js

e Ember application

O 0O 0O O 0O 0O o o o o o

anatomy / The anatomy of an Ember application
router / Routers

routes or route handlers / Routes or route handlers
templates / Templates

components / Components

models / Models

controllers / Controllers

input helpers / Input helpers

custom helpers / Custom helpers

initializers / Initializers

services / Services

e Ember CLI

O O O O O o o

about / Introducing Ember.js, Working with Ember CLI
working with / Working with Ember CLI

features / Working with Ember CLI

setting up / Setting up Ember CLI

commands / Getting started with Ember CI.I commands

project structure / The Ember project structure
POD structure / Working with the POD structure

e Ember CLI commands

O O O O O o o

e}

e}

about / Getting started with Ember CL.I commands

ember / Getting started with Ember CLI commands

ember new <appname> / Getting started with Ember CL.I commands
ember init / Getting started with Ember CL.LI commands

ember build / Getting started with Ember CLI commands

ember server (or serve) / Getting started with Ember CL.I commands
ember generate <generatortype> <name> <options> / Getting started with

Ember CLI commands
ember destroy <generatortype> <name> <options> / Getting started with Ember
CLI commands

ember test / Getting started with Ember CL.I commands
ember install <addon-name> / Getting started with Ember CL.LI commands

e Ember Data

e}

e}

e}

about / Introducing Ember.js
data, persisting with / Persisting data with Ember Data

DS.Model / Persisting data with Ember Data

DS.Store / Persisting data with Ember Data
DS.Adapter / Persisting data with Ember Data

DS.Serializer / Persisting data with Ember Data

architecture / Ember Data architecture

models, building / Defining models

model relationships, defining / Defining model relationships
e Ember development stack

o about / Introducing Ember.js
e Ember Inspector

o about / Introducing Ember.js
e Ember object model
about / Understanding the Ember object model
types (classes), declaring / Declaring types (classes) and instances
instances, declaring / Declaring types (classes) and instances
properties, accessing / Accessing and mutating properties
properties, mutating / Accessing and mutating properties
computed properties / Computed properties
property observers / Property observers
collections, working with / Working with collections
Ember.Array / Working with collections
Ember.ArrayProxy / Working with collections
Ember.MutableArray / Working with collections
Ember.Enumerable / Working with collections
o Ember.NativeArray / Working with collections
e enterprise integration (EAI)
o about / Spring subprojects
e Enterprise Java Beans (EJB)
o about / Relevance of Spring Transaction
e entities, OAuth2
o resource owner / The OAuth? Authorization Framework
client or third-party application / The OAuth2 Authorization Framework
o authorization server / The OAuth2 Authorization Framework
o resource server / The OAuth2 Authorization Framework
e exceptions
o handling, in Spring Data layer / Handling exceptions in the Spring Data layer

O O O O O O

0O 0O 0O O o 0o o o o o o o

(e]

F

o fallback option
o using / STOMP over WebSocket and the fallback option in Spring 4
e Fastboot

o about / Introducing Ember.js
o file uploads

o handling / Handling file uploads

I

e IDE (Integrated Development Environment)
o about / Spring Tool Suite (STS)
¢ Inversion of Control (IoC) container / The Spring Framework modules

Java Server Pages (JSP)
o about / Resolving JSP views
Java Server Pages Tag Library (JSTL)
o about / Resolving JSP views
JDBC operations
o with Sql* classes / JDBC operations with Sqgl* classes
o components / JDBC operations with Sgl* classes
JdbcTemplate
o methods / JdbcTemplate
o callback interfaces / JdbcTemplate
o NamedParameterJdbcTemplate / NamedParameterJdbcTemplate
JPA (Java Persistence Architecture)

o about / Spring Data JPA
JTA (Java Transaction API)

o about / Relevance of Spring Transaction

L

e Liquid Fire
o about / Introducing Ember.js

M

e Message Driven Beans (MDB)

o about / Relevance of Spring Transaction
e Model-View-Controller (MVC) architectural pattern

o about / Introducing Ember.js
e Model-View-Controller pattern
about / The Model-View-Controller pattern
Model / The Model-View-Controller pattern
View / The Model-View-Controller pattern
Controller / The Model-View-Controller pattern

(e]

O O O

N

e Node.js
o URL / Setting up Ember CLI

O

e OAuth2 Authorization Framework
o about / The OAuth2 Authorization Framework
o entities / The OAuth2 Authorization Framework
¢ Object Oriented Programming (OOP)

o about / Aspect Oriented Programming
e one thread per HTTP connection strategy / Asynchronous request processing in

Spring MVC

Plain Old Java Objects (POJOs)
o about / Domain objects and entities
POD structure
o working with / Working with the POD structure
pointcut designators (PCDs)
o about / Pointcut designators
pointcuts, @Aspect] annotation
o about / Pointcuts

o designators / Pointcut designators
o examples / Pointcut examples
POJO (Plain Old Java Objects) / Design concepts behind Spring Framework

properties
o injecting, into Spring environment / Injecting properties into the Spring
environment

PropertyPlaceholderConfigurer

o about / Externalizing properties with PropertyPlaceholderConfigurer
o properties, externalizing with / Externalizing properties with
PropertyPlaceholderConfigurer

Q

e query lookup strategies
o defining / Query resolution methods

@Repository annotation
o about / DAO support and @Repository annotation
ReactJS
o about / SPA frameworks
REpresentational State Transfer (REST)
o about / Building RESTful services for JSON and XML media
Request channel / STOMP over WebSocket and the fallback option in Spring 4
resources
o handling / Handling resources
Response channel / STOMP over WebSocket and the fallback option in Spring 4
routes

o handling / Handling routes

Service classes / XML-based configuration metadata
setter-based DI

o about / Constructor-based or setter-based DI — which is better?
SimpleJdbc classes / SimpleJdbc classes
simple WebSocket application
o creating / Creating a simple WebSocket application
single-page application (SPA)
o motivations / The motivations behind SPAs
o about / SPAs explained
o architectural benefits / The architectural benefits of SPAs
SPA frameworks
about / SPA frameworks
AngularJS / SPA frameworks
React]JS / SPA frameworks
Ember.js / SPA frameworks
SpEL (Spring Expression Language)
o about / Query resolution methods
SpEL API
o about / The SpEL. API
o interfaces and classes / The SpEL. API
Spring
o testing with / Testing with Spring
Spring’s JSF integration
o about / Spring’s JSF integration
Spring’s Struts integration
o about / Spring’s Struts integration
spring-messaging module

O O O

(¢]

o about / STOMP over WebSocket and the fallback option in Spring 4

Spring AOP
o definition / Spring AOP — definition and configuration styles

o configuration styles / Spring AOP — definition and configuration styles

Spring application

o about / Your first Spring application

o Inversion of Control (IoC) / Inversion of Control explained
Spring Data

o about / Spring Data
subprojects, defining / Spring Data
Commons / Spring Data Commons
repository specification / Spring Data repository specification
MongoDB / Spring Data MongoDB
domain objects and entities / Domain objects and entities
Spring Transaction support / Spring Transaction support

O O O O O O

Spring Data Commons
o defining / Spring Data Commons

Spring Data layer
o exceptions, handling / Handling exceptions in the Spring Data layer
Spring Data MongoDB

o about / Spring Data MongoDB
o enabling / Enabling Spring Data MongoDB
o MongoRepository / MongoRepository
Spring Data repository specification
about / Spring Data repository specification
o Spring Data JPA / Spring Data JPA
o Spring Data JPA, enabling / Enabling Spring Data JPA
o JpaRepository / JpaRepository
Spring Expression Language
o about / Spring Expression [.anguage
o features / SpEL features
o annotation support / SpEL annotation support
Spring forms
o composing, in JSP / Composing a form in JSP
o validating / Validating forms
Spring form tag libraries
o about / Spring and Spring form tag libraries
Spring Framework

o design concepts / Design concepts behind Spring Framework
Spring Framework modules

o about / The Spring Framework modules
Spring IoC container
o about / The Spring IoC container
Spring JDBC
o approaches / Spring JDBC abstraction
Spring JDBC abstraction
o about / Spring JDBC abstraction
o JdbcTemplate / JdbcTemplate
o SimpleJdbc classes / SimpleJdbc classes
Spring landscape
about / The Spring landscape
o Spring Framework modules / The Spring Framework modules
o Spring Tool Suite (STS) / Spring Tool Suite (STS)
o Spring subprojects / Spring subprojects
Spring MVC
o features / Features of Spring MVC
o architecture / The architecture and components of Spring MVC
o components / The architecture and components of Spring MVC
o asynchronous request processing / Asynchronous request processing in Spring

(¢]

(¢]

MVC

e Spring MVC application

o creating / Your first Spring MVC application
setting up / Setting up a Spring MVC application
project structure / The project structure of a Spring MVC application
web.xml file / The web.xml file — Springifying the web app
web app, springifying / The web.xml file — Springifying the web app
ApplicationContext files / ApplicationContext files in a Spring MVC application
HomeController / HomeController — @Controller for the home screen
home.jsp file / The home.jsp file — the landing screen

o incoming requests, handling / Handling incoming requests
e Spring subprojects

o about / Spring subprojects

o URL / Spring subprojects
e Spring Tool Suite (STS)

o about / Spring Tool Suite (STS), Your first Spring MVC application

o URL / Spring Tool Suite (STS)
e Spring Transaction
defining / Relevance of Spring Transaction, Spring Transaction fundamentals

o declarative transaction management / Declarative transaction management

o @Transactional annotation, using / Using the @Transactional annotation

o programmatic transaction management / Programmatic transaction management
e Sql* classes

o JDBC operations, defining with / JDBC operations with Sql* classes
e STOMP over WebSocket

o about / STOMP over WebSocket and the fallback option in Spring 4
e supporting beans, DispatcherServlet

o HandlerMapping / Beans supporting DispatcherServlet and their roles
HandlerAdapter / Beans supporting DispatcherServlet and their roles
HandlerExceptionResolver / Beans supporting DispatcherServlet and their roles
ViewResolver / Beans supporting DispatcherServlet and their roles
LocaleResolver / Beans supporting DispatcherServlet and their roles
LocaleContextResolver / Beans supporting DispatcherServlet and their roles
ThemeResolver / Beans supporting DispatcherServlet and their roles
MultipartResolver / Beans supporting DispatcherServlet and their roles
FlashMapManager / Beans supporting DispatcherServlet and their roles

O O O O O o o

(¢]

O O O O O O o o

T

e @Transactional annotation

e}

e}

using / Using the @Transactional annotation
transaction management, enabling for / Enabling transaction management for
@Transactional

e Taskify application

e}

building / Building a Taskify application

e Taskify Ember app

e}

e}

O O O O O O o o

e}

building / Building the Taskify Ember app
Taskify, setting up as Ember CLI project / Setting up Taskify as an Ember CLI

project
Ember Data, setting up / Setting up Ember Data

application routes, configuring / Configuring application routes
home screen, building / Building the home screen

user screen, building / Building the user screen

custom helper, building / Building a custom helper

action handlers, adding / Adding action handlers

custom component, building / Building a custom component — modal window
userEditModal, building with{{modal-window}} / Building userEditModal

using {{modal-window}}
task screen, building / Building the task screen

e Template Method

e}

about / JdbcTemplate

e terminology, Aspect Oriented Programing (AOP)

O O O O O O

e}

aspect / AOP concepts and terminology

join point / AOP concepts and terminology
advice / AOP concepts and terminology
pointcut / AOP concepts and terminology
target object / AOP concepts and terminology
weaving / AOP concepts and terminology
introduction / AOP concepts and terminology

¢ test-driven development (TDD) / Testing with Spring
e testing framework

e}

about / Introducing Ember.js

e testing support, Spring

e}

e}

mock objects / Mock objects
unit and integration testing utilities / Unit and integration testing utilities

e Thymeleaf

e}

e}

about / Resolving Thymeleaf views
views, resolving / Resolving Thymeleaf views

e transaction

e}

about / Spring Transaction support

e transaction attributes

o defining / Spring Transaction fundamentals

U

e UI behavior

o handling, components used / Handling UI behavior using components
o ToggleButton component, building step by step / Building a ToggleButton

component step by step
e Ul templates, building with Handlebars

about / Building Ul templates using Handlebars

Handlebars helpers / Handlebars helpers

data binding, with input helpers / Data binding with input helpers
control flow helpers, using in Handlebars / Using control flow helpers in
Handlebars

o event helpers, using / Using event helpers
e Unified Expression Language (UEL) / Spring Expression Language

O O O O

\Y

e view resolvers

AbstractCachingViewResolver / Resolving views
XmlViewResolver / Resolving views
ResourceBundleViewResolver / Resolving views
UrlBasedViewResolver / Resolving views
InternalResource ViewResolver / Resolving views
VelocityViewResolver / Resolving views
FreeMarkerViewResolver / Resolving views
JasperReportsViewResolver / Resolving views
TilesViewResolver / Resolving views

® views

working with / Working with views

resolving / Resolving views

JSP views, resolving / Resolving JSP views
model attributes, binding in JSP pages / Binding Model attributes in JSP pages

using JSTL
e view technologies, Spring MVC / Mare view technologies

O 0O 0O o o o o o o

O O O O

W

e WebSocket application

o message, broadcasting to single user / Broadcasting a message to a single user in
a WebSocket application

X

e XML schema based AOP
o about / XML schema-based AOP

	Spring Essentials
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Getting Started with Spring Core
	The Spring landscape
	The Spring Framework modules
	Spring Tool Suite (STS)
	Spring subprojects
	Design concepts behind Spring Framework
	Setting up the development environment
	Your first Spring application
	Inversion of Control explained
	Dependency Injection
	The Spring IoC container
	Configuration metadata
	XML-based configuration metadata
	Annotation-based configuration metadata
	XML-based versus annotation-based configuration
	Component stereotype annotations
	Java-based configuration metadata
	JSR 330 standard annotations
	Beans in detail
	Bean definition
	Instantiating beans
	With constructors
	With a static factory-method
	With an instance factory-method
	Injecting bean dependencies
	Constructor-based Dependency Injection
	Setter-based Dependency Injection
	Constructor-based or setter-based DI – which is better?
	Cleaner bean definitions with namespace shortcuts
	Wiring a List as a dependency
	Wiring a Map as a dependency
	Autowiring dependencies
	Bean scoping
	Dependency Injection with scoped beans
	Creating a custom scope
	Hooking to bean life cycles
	Implementing InitializingBean and DisposableBean
	Annotating @PostConstruct and @PreDestroy on @Components
	The init-method and destroy-method attributes of <bean/>
	Container-level default-init-method and default-destroy-method
	Working with bean definition profiles
	Injecting properties into the Spring environment
	Externalizing properties with PropertyPlaceholderConfigurer
	Handling resources
	Spring Expression Language
	SpEL features
	SpEL annotation support
	The SpEL API
	Aspect Oriented Programming
	Static and dynamic AOP
	AOP concepts and terminology
	Spring AOP – definition and configuration styles
	XML schema-based AOP
	@AspectJ annotation-based AOP
	Declaring an @Aspect annotation
	Pointcuts
	Pointcut designators
	Pointcut examples
	Advices
	The @Around Advice
	Accessing Advice parameters
	Testing with Spring
	Mock objects
	Unit and integration testing utilities
	Summary
	2. Building the Web Layer with Spring Web MVC
	Features of Spring MVC
	The Model-View-Controller pattern
	Your first Spring MVC application
	Setting up a Spring MVC application
	The project structure of a Spring MVC application
	The web.xml file – Springifying the web app
	ApplicationContext files in a Spring MVC application
	HomeController – @Controller for the home screen
	The home.jsp file – the landing screen
	Handling incoming requests
	The architecture and components of Spring MVC
	DispatcherServlet explained
	WebApplicationContext – ApplicationContext for the Web
	Beans supporting DispatcherServlet and their roles
	Controllers in detail
	Mapping request URLs with @RequestMapping
	URI template patterns with the @PathVariable annotation
	Binding parameters with the @RequestParam annotation
	Request handler method arguments
	Request handler method return types
	Setting Model attributes
	Building RESTful services for JSON and XML media
	Building a RESTful service with RestController
	Asynchronous request processing in Spring MVC
	Working with views
	Resolving views
	Resolving JSP views
	Binding Model attributes in JSP pages using JSTL
	Spring and Spring form tag libraries
	Composing a form in JSP
	Validating forms
	Handling file uploads
	Resolving Thymeleaf views
	More view technologies
	Summary
	3. Accessing Data with Spring
	Configuring DataSource
	Using embedded databases
	Handling exceptions in the Spring Data layer
	DAO support and @Repository annotation
	Spring JDBC abstraction
	JdbcTemplate
	NamedParameterJdbcTemplate
	SimpleJdbc classes
	JDBC operations with Sql* classes
	Spring Data
	Spring Data Commons
	Spring Data repository specification
	Spring Data JPA
	Enabling Spring Data JPA
	JpaRepository
	Spring Data MongoDB
	Enabling Spring Data MongoDB
	MongoRepository
	Domain objects and entities
	Query resolution methods
	Using the @Query annotation
	Spring Data web support extensions
	Auditing with Spring Data
	Spring Transaction support
	Relevance of Spring Transaction
	Spring Transaction fundamentals
	Declarative transaction management
	Transactional modes – proxy and AspectJ
	Defining transactional behavior
	Setting rollback rules
	Using the @Transactional annotation
	Enabling transaction management for @Transactional
	Programmatic transaction management
	Summary
	4. Understanding WebSocket
	Creating a simple WebSocket application
	STOMP over WebSocket and the fallback option in Spring 4
	Broadcasting a message to a single user in a WebSocket application
	Summary
	5. Securing Your Applications
	Authentication
	Authorization
	The OAuth2 Authorization Framework
	Summary
	6. Building a Single-Page Spring Application
	The motivations behind SPAs
	SPAs explained
	The architectural benefits of SPAs
	SPA frameworks
	Introducing Ember.js
	The anatomy of an Ember application
	Routers
	Routes or route handlers
	Templates
	Components
	Models
	Controllers
	Input helpers
	Custom helpers
	Initializers
	Services
	Working with Ember CLI
	Setting up Ember CLI
	Getting started with Ember CLI commands
	The Ember project structure
	Working with the POD structure
	Understanding the Ember object model
	Declaring types (classes) and instances
	Accessing and mutating properties
	Computed properties
	Property observers
	Working with collections
	Building UI templates using Handlebars
	Handlebars helpers
	Data binding with input helpers
	Using control flow helpers in Handlebars
	Using event helpers
	Handling routes
	Handling UI behavior using components
	Building a ToggleButton component step by step
	Persisting data with Ember Data
	Ember Data architecture
	Defining models
	Defining model relationships
	Building a Taskify application
	Building the API server app
	Setting up and configuring the project
	Defining the model definitions – User and Task
	Building API endpoints for the Taskify app
	UserController.java
	TaskController.java
	Building the Taskify Ember app
	Setting up Taskify as an Ember CLI project
	Setting up Ember Data
	Configuring application routes
	Building the home screen
	Building the user screen
	Building a custom helper
	Adding action handlers
	Building a custom component – modal window
	Building userEditModal using {{modal-window}}
	Building the task screen
	Summary
	7. Integrating with Other Web Frameworks
	Spring's JSF integration
	Spring's Struts integration
	Summary
	Index

