

Spring	Essentials

Table	of	Contents

Spring	Essentials

Credits

About	the	Authors

About	the	Reviewer

www.PacktPub.com

eBooks,	discount	offers,	and	more

Why	subscribe?

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Getting	Started	with	Spring	Core

The	Spring	landscape

The	Spring	Framework	modules

Spring	Tool	Suite	(STS)

Spring	subprojects

Design	concepts	behind	Spring	Framework

Setting	up	the	development	environment

Your	first	Spring	application

Inversion	of	Control	explained

Dependency	Injection

The	Spring	IoC	container

Configuration	metadata

XML-based	configuration	metadata

Annotation-based	configuration	metadata

XML-based	versus	annotation-based	configuration

Component	stereotype	annotations

Java-based	configuration	metadata

JSR	330	standard	annotations

Beans	in	detail

Bean	definition

Instantiating	beans

With	constructors

With	a	static	factory-method

With	an	instance	factory-method

Injecting	bean	dependencies

Constructor-based	Dependency	Injection

Setter-based	Dependency	Injection

Constructor-based	or	setter-based	DI	–	which	is	better?

Cleaner	bean	definitions	with	namespace	shortcuts

Wiring	a	List	as	a	dependency

Wiring	a	Map	as	a	dependency

Autowiring	dependencies

Bean	scoping

Dependency	Injection	with	scoped	beans

Creating	a	custom	scope

Hooking	to	bean	life	cycles

Implementing	InitializingBean	and	DisposableBean

Annotating	@PostConstruct	and	@PreDestroy	on	@Components

The	init-method	and	destroy-method	attributes	of	<bean/>

Container-level	default-init-method	and	default-destroy-method

Working	with	bean	definition	profiles

Injecting	properties	into	the	Spring	environment

Externalizing	properties	with	PropertyPlaceholderConfigurer

Handling	resources

Spring	Expression	Language

SpEL	features

SpEL	annotation	support

The	SpEL	API

Aspect	Oriented	Programming

Static	and	dynamic	AOP

AOP	concepts	and	terminology

Spring	AOP	–	definition	and	configuration	styles

XML	schema-based	AOP

@AspectJ	annotation-based	AOP

Declaring	an	@Aspect	annotation

Pointcuts

Pointcut	designators

Pointcut	examples

Advices

The	@Around	Advice

Accessing	Advice	parameters

Testing	with	Spring

Mock	objects

Unit	and	integration	testing	utilities

Summary

2.	Building	the	Web	Layer	with	Spring	Web	MVC

Features	of	Spring	MVC

The	Model-View-Controller	pattern

Your	first	Spring	MVC	application

Setting	up	a	Spring	MVC	application

The	project	structure	of	a	Spring	MVC	application

The	web.xml	file	–	Springifying	the	web	app

ApplicationContext	files	in	a	Spring	MVC	application

HomeController	–	@Controller	for	the	home	screen

The	home.jsp	file	–	the	landing	screen

Handling	incoming	requests

The	architecture	and	components	of	Spring	MVC

DispatcherServlet	explained

WebApplicationContext	–	ApplicationContext	for	the	Web

Beans	supporting	DispatcherServlet	and	their	roles

Controllers	in	detail

Mapping	request	URLs	with	@RequestMapping

URI	template	patterns	with	the	@PathVariable	annotation

Binding	parameters	with	the	@RequestParam	annotation

Request	handler	method	arguments

Request	handler	method	return	types

Setting	Model	attributes

Building	RESTful	services	for	JSON	and	XML	media

Building	a	RESTful	service	with	RestController

Asynchronous	request	processing	in	Spring	MVC

Working	with	views

Resolving	views

Resolving	JSP	views

Binding	Model	attributes	in	JSP	pages	using	JSTL

Spring	and	Spring	form	tag	libraries

Composing	a	form	in	JSP

Validating	forms

Handling	file	uploads

Resolving	Thymeleaf	views

More	view	technologies

Summary

3.	Accessing	Data	with	Spring

Configuring	DataSource

Using	embedded	databases

Handling	exceptions	in	the	Spring	Data	layer

DAO	support	and	@Repository	annotation

Spring	JDBC	abstraction

JdbcTemplate

NamedParameterJdbcTemplate

SimpleJdbc	classes

JDBC	operations	with	Sql*	classes

Spring	Data

Spring	Data	Commons

Spring	Data	repository	specification

Spring	Data	JPA

Enabling	Spring	Data	JPA

JpaRepository

Spring	Data	MongoDB

Enabling	Spring	Data	MongoDB

MongoRepository

Domain	objects	and	entities

Query	resolution	methods

Using	the	@Query	annotation

Spring	Data	web	support	extensions

Auditing	with	Spring	Data

Spring	Transaction	support

Relevance	of	Spring	Transaction

Spring	Transaction	fundamentals

Declarative	transaction	management

Transactional	modes	–	proxy	and	AspectJ

Defining	transactional	behavior

Setting	rollback	rules

Using	the	@Transactional	annotation

Enabling	transaction	management	for	@Transactional

Programmatic	transaction	management

Summary

4.	Understanding	WebSocket

Creating	a	simple	WebSocket	application

STOMP	over	WebSocket	and	the	fallback	option	in	Spring	4

Broadcasting	a	message	to	a	single	user	in	a	WebSocket	application

Summary

5.	Securing	Your	Applications

Authentication

Authorization

The	OAuth2	Authorization	Framework

Summary

6.	Building	a	Single-Page	Spring	Application

The	motivations	behind	SPAs

SPAs	explained

The	architectural	benefits	of	SPAs

SPA	frameworks

Introducing	Ember.js

The	anatomy	of	an	Ember	application

Routers

Routes	or	route	handlers

Templates

Components

Models

Controllers

Input	helpers

Custom	helpers

Initializers

Services

Working	with	Ember	CLI

Setting	up	Ember	CLI

Getting	started	with	Ember	CLI	commands

The	Ember	project	structure

Working	with	the	POD	structure

Understanding	the	Ember	object	model

Declaring	types	(classes)	and	instances

Accessing	and	mutating	properties

Computed	properties

Property	observers

Working	with	collections

Building	UI	templates	using	Handlebars

Handlebars	helpers

Data	binding	with	input	helpers

Using	control	flow	helpers	in	Handlebars

Using	event	helpers

Handling	routes

Handling	UI	behavior	using	components

Building	a	ToggleButton	component	step	by	step

Persisting	data	with	Ember	Data

Ember	Data	architecture

Defining	models

Defining	model	relationships

Building	a	Taskify	application

Building	the	API	server	app

Setting	up	and	configuring	the	project

Defining	the	model	definitions	–	User	and	Task

Building	API	endpoints	for	the	Taskify	app

UserController.java

TaskController.java

Building	the	Taskify	Ember	app

Setting	up	Taskify	as	an	Ember	CLI	project

Setting	up	Ember	Data

Configuring	application	routes

Building	the	home	screen

Building	the	user	screen

Building	a	custom	helper

Adding	action	handlers

Building	a	custom	component	–	modal	window

Building	userEditModal	using	{{modal-window}}

Building	the	task	screen

Summary

7.	Integrating	with	Other	Web	Frameworks

Spring’s	JSF	integration

Spring’s	Struts	integration

Summary

Index

Spring	Essentials

Spring	Essentials
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2016

Production	reference:	1230216

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78398-234-9

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Shameer	Kunjumohamed

Hamidreza	Sattari

Reviewer

Jarosław	Krochmalski

Commissioning	Editor

Julian	Ursell

Acquisition	Editors

Larissa	Pinto

Pratik	Shah

Content	Development	Editor

Aishwarya	Pandere

Technical	Editor

Siddhi	Rane

Copy	Editors

Kevin	McGowan

Madhusudan	Uchil

Project	Coordinator

Nidhi	Joshi

Proofreader

Safis	Editing

Indexer

Hemangini	Bari

Graphics

Kirk	D’Penha

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

About	the	Authors
Shameer	Kunjumohamed	is	a	software	architect	specializing	in	Java-based	enterprise
application	integrations,	SOA,	and	the	cloud.	Besides	Java,	he	is	well-versed	in	the
Node.js	and	Microsoft	.NET	platforms.	He	is	interested	in	JavaScript	MVC	frameworks
such	as	EmberJS,	AngularJS,	and	ReactJS.

Shameer	has	co-authored	another	book,	Spring	Web	Services	2	Cookbook,	Packt
Publishing	with	Hamidreza	Sattari,	who	is	the	co-author	of	this	book	as	well.

Based	in	Dubai,	UAE,	Shameer	has	over	15	years	of	experience	in	various	functional
domains.	He	currently	works	as	a	principal	applications	architect	for	a	major	shipping
company	in	Dubai.

I	would	like	to	extend	my	thanks	to	a	number	of	people	who	have	inspired	and	influenced
me	throughout	my	technical	career.	The	Java,	Spring,	and	Ember	communities	gave	me
the	knowledge	and	confidence	to	write	this	book.	I	thank	my	parents;	my	wife,	Shehida;
and	my	daughters,	Shireen,	Shahreen,	and	Safa,	who	supported	me	and	put	up	with	me
when	I	was	busy	writing	the	chapters;	it	was	their	precious	time	I	was	taking	for	this	book.
Special	thanks	to	my	friend	Hamidreza,	who	is	a	great	friend	and	colleague,	and	to	the
coordinators	and	reviewers	at	Packt	Publishing,	who	made	this	book	a	wonderful	resource
for	learning	Spring.

Hamidreza	Sattari	is	an	IT	professional	and	has	worked	in	several	areas	of	software
engineering,	from	programming	to	architecture	as	well	as	management.	He	holds	a
master’s	degree	in	software	engineering	from	Herriot	Watt	University,	UK.	In	recent
years,	his	areas	of	interest	have	been	software	architecture,	data	science,	and	machine
learning.	He	co-authored	the	book	Spring	Web	Services	2	Cookbook,	Packt	Publishing	in
2012.	He	maintains	the	blog	http://justdeveloped-blog.blogspot.com/.

First,	I	should	thank	the	members	of	the	open	source	community,	who	are	far	too	many	to
name.	I	have	been	able	to	write	this	book	by	using	their	products,	ideas,	articles,	and
blogs.	I	would	like	to	give	special	thanks	to	my	friend	Shameer	P.K.	for	his	significant	role
in	writing	this	book.

http://justdeveloped-blog.blogspot.com/

About	the	Reviewer
Jarosław	Krochmalski	is	a	passionate	software	designer	and	developer	who	specializes
in	the	financial	business	domain.	He	has	over	12	years	of	experience	in	software
development.	He	is	a	clean	code	and	software	craftsmanship	enthusiast.	He	is	a	Certified
ScrumMaster	and	a	fan	of	Agile.	His	professional	interests	include	new	technologies	in
web	application	development,	design	patterns,	enterprise	architecture,	and	integration
patterns.	He	has	been	designing	and	developing	software	professionally	since	2000	and
has	been	using	Java	as	his	primary	programming	language	since	2002.	In	the	past,	he
worked	for	companies	such	as	Kredyt	Bank	(KBC)	and	Bank	BPS	on	many	large-scale
projects,	such	as	international	money	orders,	express	payments,	and	collection	systems.
He	currently	works	as	a	consultant	at	the	Danish	company	7N	as	an	IT	architect	for
Nykredit	Bank.	You	can	reach	him	via	Twitter	at	@jkroch	or	by	e-mail	at
<jarek@finsys.pl>.

I	would	like	to	say	hello	to	my	friends	at	7N	and	Nykredit;	keep	up	the	great	job!

mailto:jarek@finsys.pl

www.PacktPub.com

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Preface
There	are	a	lot	of	books	written	about	Spring	Framework	and	its	subprojects.	A	multitude
of	online	references	are	also	available.	Most	of	these	massive	resources	discuss	Spring	in	a
lot	of	detail,	which	makes	learning	Spring	a	very	time-consuming	and	sometimes	tedious
effort.	The	idea	of	this	book	is	to	allow	novice	Java	developers	or	architects	to	master
Spring	without	spending	much	time	and	effort	and	at	the	same	time	provide	them	with	a
strong	foundation	on	the	topic	in	order	to	enable	them	to	design	high-performance	systems
that	are	scalable	and	easily	maintainable.

We	have	been	using	Spring	Framework	and	its	subprojects	for	more	than	a	decade	to
develop	enterprise	applications	in	various	domains.	While	the	usage	of	Spring	quickly
raises	the	design	quality	of	projects	with	its	smart	templates	and	subframeworks
abstracting	many	error-prone	and	routine	programming	tasks,	a	developer	needs	a
thorough	understanding	of	its	concepts,	features,	best	practices,	and	above	all,	the	Spring
programming	model	in	order	to	utilize	Spring	to	its	best.

We	have	seen	Spring	used	wrongly	inside	many	projects	mainly	because	the	developer
either	didn’t	understand	the	right	use	of	a	particular	Spring	component	or	didn’t	bother	to
follow	the	design	approach	Spring	suggests	for	that	component.	Often,	developers	didn’t
appear	to	have	the	right	knowledge	of	Spring	Framework;	when	asked,	their	complaint
mostly	was	the	uphill	task	of	learning	such	a	vast	framework	from	huge	documentation.
Most	of	this	category	of	developers	find	Spring	a	mammoth	framework	that	is	difficult	to
learn,	which	is	not	really	true.

Spring,	if	the	basics	are	understood	correctly,	is	very	easy	to	conquer	further.	A	developer
needs	to	understand	the	Spring	style	of	programming	and	architecting	applications,	and
the	result	will	be	a	piece	of	art.	The	design	will	look	simple,	pretty	straightforward,	and
easily	understandable,	which	is	very	important	for	the	evolution	of	applications	in	the	long
run.	This	book	is	an	attempt	to	fill	that	gap	and	provide	a	very	solid	foundation	in	Spring,
its	concepts,	design	styles,	and	best	practices,	in	a	very	quick	and	easy	way.

This	book	tries	to	engage	the	reader	by	providing	the	feeling	of	developing	a	realistic,
modern	enterprise	application	using	Spring	and	its	necessary	features	while	giving	him	or
her	a	solid	understanding	of	its	concepts,	benefits,	and	usage	with	real-life	examples.	It
covers	the	most	important	concepts	and	features	of	Spring	Framework	and	a	few	of	its
critical	subprojects	that	are	necessary	for	building	modern	web	applications.

The	goal	of	Spring	is	to	simplify	enterprise	application	development.	We	hope	this	book
simplifies	mastering	Spring	so	that	developers	can	build	smarter	systems	that	make	the
world	a	better	place.

What	this	book	covers
Chapter	1,	Getting	Started	with	Spring	Core,	introduces	the	core	Spring	Framework,
including	its	core	concepts,	such	as	POJO-based	programming,	Dependency	Injection,	and
Aspect	Oriented	Programming,	to	the	reader.	It	further	explains	the	Spring	IoC	container,
bean	configurations,	Spring	Expression	Language	(SpEL),	resource	management,	and
bean	definition	profiles,	all	which	become	the	foundation	for	the	advanced	topics.

Chapter	2,	Building	the	Web	Layer	with	Spring	Web	MVC,	gives	in-depth	coverage	of	the
Spring	MVC	web	framework	with	its	features	and	various	different	ways	of	configuring
and	tuning	web	applications	using	Spring.	The	chapter	covers	the	building	of	both	view-
based	web	applications	and	REST	APIs	with	many	available	options,	including
asynchronous	request	processing.

Chapter	3,	Accessing	Data	with	Spring,	discusses	the	different	data-access	and	persistence
mechanisms	that	Spring	offers,	including	the	Spring	Data	family	of	projects,	such	as
Spring	Data	JPA	and	Spring	Data	Mongo.	This	chapter	enables	the	reader	to	design	an
elegant	data	layer	for	his	or	her	Spring	application,	delegating	all	the	heavylifting	to
Spring.

Chapter	4,	Understanding	WebSocket,	discusses	the	WebSocket	technology,	which	is
gaining	wider	usage	inside	modern	web	applications,	where	low	latency	and	high
frequency	of	communication	are	critical.	This	chapter	explains	how	to	create	a	WebSocket
application	and	broadcast	a	message	to	all	subscribed	clients	as	well	as	send	a	message	to
a	specific	client,	and	shows	how	a	broker-based	messaging	system	works	with	STOMP
over	WebSocket.	It	also	shows	how	Spring’s	WebSocket	fallback	option	can	tackle
browser	incompatibility.

Chapter	5,	Securing	Your	Applications,	teaches	the	reader	how	to	secure	his	or	her	Spring
applications.	It	starts	with	authentication	and	explains	Spring	flexibility	on	authorization.
You	learn	how	to	integrate	your	existing	authentication	framework	with	Spring.	On
authorization,	it	shows	how	to	use	Spring	EL	expressions	for	web,	method,	and	domain
object	authorization.	It	also	explains	the	OAuth	2.0	Authorization	Framework	and	how	to
allow	third-party	limited	access	to	user’s	protected	resources	on	a	server	without	sharing
user’s	username	and	password.

Chapter	6,	Building	a	Single-Page	Spring	Application,	demonstrates	how	Spring	can	be
used	as	the	API	server	for	modern	single-page	applications	(SPAs)	with	an	example	of	an
Ember	JS	application.	At	first,	it	introduces	the	concept	of	SPAs,	and	then	it	explores
using	Ember	JS	to	build	the	SPA.	Finally,	it	covers	building	the	backend	API	that
processes	requests	asynchronously	using	Spring	MVC	and	implements	persistence	using
Spring	Data	JPA.

Chapter	7,	Integrating	with	Other	Web	Frameworks,	demonstrates	how	Spring	can	be
integrated	with	Java	web	frameworks	such	as	JSF	and	Struts	so	that	even	web	applications
not	based	on	Spring	MVC	can	leverage	the	power	of	Spring.

What	you	need	for	this	book
In	order	to	execute	the	sample	projects	used	in	this	book,	you	need	the	following	software
installed	on	your	computer:

For	all	chapters,	in	general,	you	need	the	following	software:

Java	version	8	onwards
Spring	Framework	4.x
Apache	Maven	3.x.x
Apache	Tomcat	8.x

For	Chapter	3,	Accessing	Data	with	Spring,	you	need	the	following	databases:

PostgreSQL	8	onwards
MongoDB	3.x

Additionally,	for	Chapter	6,	Building	a	Single-Page	Spring	Application,	you	need	the
following	software:

Node.js	version	4.x
Bower	JS	in	the	latest	version

Who	this	book	is	for
If	you	are	a	Java	developer	who	is	looking	to	master	enterprise	Java	development	using
Spring	Framework,	then	this	book	is	ideal	for	you.	A	prior	understanding	of	core	Java
programming	and	a	high-level	understanding	of	Spring	Framework	is	recommended.
Having	sound	knowledge	of	Servlet-based	web	development	in	Java	and	basic	database
concepts	would	be	an	advantage	but	not	a	requirement.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Spring
provides	mock	classes	for	both	client	and	server	sides	inside	the
org.springframework.mock.http	and	org.springframework.mock.http.client
packages.”

A	block	of	code	is	set	as	follows:

<dependencies>

		<dependency>

				<groupId>org.springframework</groupId>

				<artifactId>spring-context</artifactId>

				<version>${spring-framework.version}</version>

		</dependency>

		...

</dependencies>

Any	command-line	input	or	output	is	written	as	follows:

mvn	clean	package	spring-boot:run	-Dserver.contextPath=/myapp	-

Dserver.port=9090

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“STS	and	Eclipse	allow
you	to	run	Java	web	apps	from	the	IDE	just	by	right-clicking	Run	As	and	then	Run	on
Server.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you’re	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using
the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/SpringEssentials_ColorImages.pdf

https://www.packtpub.com/sites/default/files/downloads/SpringEssentials_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Getting	Started	with	Spring
Core
Spring	Framework	is	the	most	trusted	and	widely	used	application	development
framework	in	Enterprise	Java.	Originally	introduced	as	a	simple	and	lightweight
alternative	for	the	complex	J2EE,	Spring	has	now	grown	to	become	a	truly	modern
application	development	platform.	Spring	and	its	subprojects	provide	an	excellent
foundation	for	end-to-end	application	development,	with	features	beyond	even	those
provided	by	the	latest	Java	EE,	such	as	mobile	development,	social	networking,	and	big
data,	besides	traditional	Java	web,	server-side,	or	even	standalone	applications.	After	more
than	a	decade	since	its	inception,	Spring	continues	to	inspire	technologies	and
technologists	across	the	globe.

Although	Spring	simplifies	Java	development	drastically,	software	developers	and
architects	are	still	required	to	gain	a	thorough	understanding	of	its	core	concepts	and
features	in	order	to	deduce	the	best	use	of	the	Spring	family.	The	simplicity	Spring	offers
to	otherwise	complex	Java	development	is	the	result	of	smart	abstractions	that	it	provides
in	the	form	of	excellent	APIs	and	modules.	Spring	components	relieve	the	developer	of	all
the	technical	complexity	and	heavy	lifting	of	common	technical	and	infrastructure
plumbing	tasks.	As	the	official	Spring	documentation	says,	Spring	provides
comprehensive	infrastructure	support	so	that	you	can	focus	on	your	application.

This	book	is	an	attempt	to	make	your	Spring	learning	even	easier	and	a	more	enjoyable
experience.

This	chapter	gives	you	a	solid	foundation	of	the	core	Spring	Framework,	guiding	you
through	its	core	concepts,	components,	and	modules	accompanied	by	relevant	sample
code	snippets	that	illustrate	the	best	and	most	practical	usage	of	each	feature	in	order	to
solve	your	everyday	programming	problems.

In	this	chapter,	we	will	cover	the	following	topics:

The	Spring	landscape
Setting	up	the	development	environment
Your	first	Spring	application
Core	concepts
The	IoC	(Inversion	of	Control)	container
Beans	in	detail
Working	with	bean	definition	profiles
Handling	resources
SpEL	(Spring	Expression	Language)
Aspect	Oriented	Programming

The	Spring	landscape
Spring	covers	a	wide	variety	of	technological	aspects	handled	by	applications	of	different
types,	ranging	from	a	simple	standalone	Java	application	up	to	the	most	complex,	mission
critical	distributed	enterprise	systems	you	can	imagine.	Unlike	most	other	open	source	or
proprietary	frameworks	that	focus	on	a	specific	technology	concern	such	as	Web,
Messaging,	or	Remoting,	Spring	successfully	covers	almost	all	the	technical	aspects	of
business	applications.	In	most	cases,	instead	of	reinventing	solutions,	Spring	utilizes	and
integrates	proven	existing	frameworks	to	achieve	this	end-to-end	coverage.	Spring	is
highly	modular;	hence,	it	noninvasively	allows	you	to	cherry-pick	just	the	modules	or
features	you	require	in	order	to	become	a	one-stop	shop	for	all	your	development	needs	on
JVM.

The	whole	Spring	Framework	portfolio	is	organized	into	three	major	elements:

Spring	Framework
Spring	Tool	Suite
Spring	subprojects

Spring	is	constantly	improving	and	becoming	more	and	more	modular	with	every	new
version	so	that	you	can	use	just	the	required	modules.

Note
This	book	is	based	on	Spring	version	4.

The	Spring	Framework	modules
The	core	Spring	Framework	provides	basic	infrastructure	for	Java	development	on	top	of
its	core	Inversion	of	Control	(IoC)	container.	The	IoC	container	is	an	infrastructure	that
provides	Dependency	Injection	(DI)	for	applications.	Both	the	concepts	of	Dependency
Injection	and	IoC	containers	are	explained	in	detail	later	in	this	chapter.	The	core	Spring
Framework	is	divided	into	the	following	modules,	providing	a	range	of	services:

Module Summary

Core	container Provides	the	IoC	and	Dependency	Injection	features.

AOP	and
instrumentation

Provides	AOP	Alliance	compliant	features	for	weaving	cross-cutting	concerns	in	Spring
applications.

Messaging Provides	messaging	abstraction	over	the	Spring	Integration	project	for	messaging-based
applications.

Data	access/integration The	data-access/integration	layer	consists	of	JDBC,	ORM,	OXM,	JMS,	and	transaction
modules.

Web Web	technology	abstraction	over	Spring	MVC,	web	socket,	and	portlet	APIs.

Test Unit	testing	and	integration	testing	support	with	JUnit	and	TestNG	frameworks.

Spring	Tool	Suite	(STS)
STS	is	an	Eclipse-based	IDE	(short	for	Integrated	Development	Environment)	for
Spring	development.	You	can	download	the	pre-bundled	STS	from
http://spring.io/tools/sts/all	or	update	your	existing	Eclipse	installation	from	the	update	site
found	at	the	same	location.	STS	provides	various	high-productivity	features	for	Spring
development.	In	fact,	a	Java	developer	can	use	any	IDE	of	their	choice.	Almost	all	the
Java	IDEs	support	Spring	development,	and	most	of	them	have	got	plugins	available	for
Spring.

http://spring.io/tools/sts/all

Spring	subprojects
Spring	has	many	subprojects	that	solve	various	application	infrastructure	needs.	From
configuration	to	security,	web	apps	to	big	data,	productivity	to	enterprise	application
integration	(EAI),	whatever	your	technical	pain	point	be,	you	will	find	a	Spring	project	to
help	you	in	your	application	development.	Spring	projects	are	located	at
http://spring.io/projects.

Some	notable	projects	you	may	find	useful	right	away	are	Spring	Data	(JPA,	Mongo,
Redis,	and	so	on),	Spring	Security,	Spring	Web	Services,	Spring	Integration,	Spring	for
Android,	and	Spring	Boot.

http://spring.io/projects

Design	concepts	behind	Spring
Framework
The	design	of	Spring	Framework	is	motivated	by	a	set	of	design	patterns	and	best
practices	that	have	evolved	in	the	industry	to	address	the	complexity	of	Object	Oriented
Programming,	including:

Simple,	noninvasive,	and	lightweight	POJO	(Plain	Old	Java	Objects)
programming,	without	having	a	need	for	complex	application	servers
Loosely-coupled	dependencies,	achieved	by	applying	the	concepts	of	program	to
interfaces	and	composition	over	inheritance,	which	are	the	underlying	design
principles	of	design	patterns	and	frameworks
Highly	configurable	systems	composed	of	objects	with	externalized	Dependency
Injection
Templated	abstractions	to	eliminate	repetitive,	boilerplate	code
Declarative	weaving	of	cross-cutting	aspects	without	polluting	business	components

Spring	implements	established	design	principles	and	patterns	into	its	elegant	components
and	promotes	their	use	as	the	default	design	approach	in	applications	built	using	Spring.
This	noninvasive	approach	lets	you	engineer	robust	and	highly	maintainable	systems
composed	of	loosely	coupled	components	and	objects	written	in	clean	and	modular	code.
Spring	Framework	components,	templates,	and	libraries	realize	the	goals	and	concepts
explained	earlier	in	the	chapter,	leaving	you	to	focus	on	your	core	business	logic.

Setting	up	the	development	environment
Spring	projects	are	usually	created	as	Java	projects	based	in	Maven,	Gradle,	or	Ivy	(which
are	build	automation	and	dependency	management	tools).	You	can	easily	create	a	Maven-
based	Spring	project	using	STS	or	Eclipse	with	Spring	Tools	support.	You	need	to	make
sure	your	pom.xml	(Maven	configuration)	file	contains,	at	the	minimum,	a	dependency	to
spring-context:

<dependencies>

		<dependency>

				<groupId>org.springframework</groupId>

				<artifactId>spring-context</artifactId>

				<version>${spring-framework.version}</version>

		</dependency>

		...

</dependencies>

Of	course,	you	should	add	further	dependencies	to	modules	such	as	spring-tx,	spring-
data-jpa,	spring-webmvc,	and	hibernate,	depending	on	your	project	type	and
requirements.

Unless	you	explicitly	specify	the	repository	location,	your	project	works	with	Maven’s
central	repository.	Alternatively,	you	can	point	to	Spring’s	official	Maven	repository	(for
example,	for	milestones	and	snapshots)	by	specifying	it	in	your	pom.xml	file:

<repositories>

				<repository>

								<id>io.spring.repo.maven.milestone</id>

								<url>http://repo.spring.io/milestone/</url>

								<snapshots><enabled>false</enabled></snapshots>

				</repository>

</repositories>

You	can	use	the	Spring	release,	milestone,	and	snapshot	repositories	as	required.

If	you	are	using	Gradle	as	your	build	system,	you	can	declare	your	dependencies	(typically
in	the	build.gradle	file)	as	follows:

dependencies	{

				compile('org.springframework:spring-context')

				compile('org.springframework:spring-tx')

				compile('org.hibernate:hibernate-entitymanager')

				testCompile('junit:junit')

}

If	you	prefer	using	the	Ivy	dependency	management	tool,	then	your	Spring	dependency
configuration	will	look	like	this:

<dependency	org="org.springframework"

				name="spring-core"	rev="4.2.0.RC3"	conf="compile->runtime"/>

Your	first	Spring	application
Let’s	start	with	a	very	simple	Spring	application	now.	This	application	simply	greets	the
user	with	a	welcome	message.	Technically,	it	demonstrates	how	you	configure	a	Spring
ApplicationContext	(IoC	container)	with	just	a	single	bean	in	it	and	invoke	that	bean
method	in	your	application.	The	application	has	four	artifacts	in	it	(besides	the	project
build	file,	of	course):

GreetingService.java:	A	Java	interface—just	a	single	method
GreetingServiceImpl.java:	A	simple	implementation	of	GreetingService
Application.java:	Your	application	with	a	main	method
application-context.xml:	The	Spring	configuration	file	of	your	application

The	following	are	the	service	components	of	your	application.	The	service	implementation
just	prints	a	greeting	message	to	the	logger:

interface	GreetingService	{

			void	greet(String	message);

}

public	class	GreetingServiceImpl	implements	GreetingService	{

			Logger	logger	=	LoggerFactory.getLogger(GreetingService.class);

			public	void	greet(String	message)	{

						logger.info("Greetings!	"	+	message);

			}

}

Now	let’s	take	a	look	at	the	application-context.xml	file,	which	is	your	Spring
configuration	file,	where	you	register	GreetingService	as	a	Spring	bean	in	the	following
listing:

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

			xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

			xsi:schemaLocation="http://www.springframework.org/schema/beans	

http://www.springframework.org/schema/beans/spring-beans.xsd">

			<bean	id="Greeter"

						class="com.springessentialsbook.chapter1.GreetingServiceImpl">

			</bean>

</beans>

Finally,	you	invoke	the	GreetingService.greet()	method	from	your	Spring	application,
as	given	in	the	following	code:

public	class	Application	{

			public	static	void	main(String[]	args)	{

						ApplicationContext	context	=	new	ClassPathXmlApplicationContext(new	

String[]	{"application-context.xml"});

						GreetingService	greeter	=	(GreetingService)	

context.getBean("Greeter");

					greeter.greet("I	am	your	first	Spring	bean	instance,	configured	purely	

with	XML	metadata.	I	am	resolved	by	name.");

			}

}

We	will	explore	and	conquer	the	mighty	Spring	Framework	right	from	this	very	simple
and	pretty	much	self-explanatory	application.	We	will	discuss	and	elaborate	the	concepts
behind	this	application,	and	more,	in	the	following	sections.

Inversion	of	Control	explained
IoC	is	a	design	principle	that	decouples	objects	of	an	object-oriented	program	from	their
dependencies	(collaborators),	that	is,	the	objects	they	work	with.	Usually,	this	decoupling
is	achieved	by	externalizing	the	responsibility	of	object	creation	and	Dependency	Injection
to	an	external	component,	such	as	an	IoC	container.

This	concept	is	often	compared	to	the	Hollywood	principle,	“Don’t	call	us,	we	will	call
you.”	In	the	programming	world,	it	recommends	the	main	program	(or	a	component)	not
to	instantiate	its	dependencies	by	itself	but	let	an	assembler	do	that	job.

This	immediately	decouples	the	program	from	the	many	problems	caused	by	tightly
coupled	dependencies	and	relieves	the	programmer	to	let	them	quickly	develop	their	code
using	abstract	dependencies	(program	to	interfaces).	Later,	at	runtime,	an	external	entity,
such	as	an	IoC	container,	resolves	their	concentrate	implementations	specified	somewhere
and	injects	them	at	runtime.

You	can	see	this	concept	implemented	in	the	example	we	just	saw.	Your	main	program
(Application.java)	is	not	instantiating	the	GreetingService	dependency;	it	just	asks	the
ApplicationContext	(IoC	container)	to	return	an	instance.	While	writing
Application.java,	the	developer	doesn’t	need	to	think	about	how	the	GreetingService
interface	is	actually	implemented.	The	Spring	ApplicationContext	takes	care	of	object
creation	and	injects	any	other	functionality	transparently,	keeping	the	application	code
clean.

Objects	managed	by	an	IoC	container	do	not	control	the	creation	and	resolution	of	their
dependencies	by	themselves;	rather,	that	control	is	inverted	by	moving	it	away	to	the
container	itself;	hence	the	term	“Inversion	of	Control”.

The	IoC	container	assembles	the	components	of	the	application	as	specified	in	the
configuration.	It	handles	the	life	cycles	of	the	managed	objects.

Dependency	Injection
Dependency	Injection	is	a	specific	form	of	Inversion	of	Control.	It	is	a	more	formalized
design	pattern,	whereby	dependencies	of	an	object	are	injected	by	an	assembler.	DI	is
generally	performed	in	three	major	styles:	constructor	injection,	property	(setter)	injection,
or,	sometimes,	interface	injection.	IoC	and	DI	are	often	used	interchangeably.

DI	offers	several	benefits,	including	effective	decoupling	of	dependencies,	cleaner	code,
and	increased	testability.

The	Spring	IoC	container
The	core	Spring	modules,	spring-core,	spring-beans,	spring-context,	spring-
context-support,	and	spring-expression,	together	make	up	the	core	container.	The
Spring	IoC	container	is	designed	as	an	implementation	of	the	following	interfaces:

org.springframework.beans.factory.BeanFactory

org.springframework.context.ApplicationContext

The	BeanFactory	interface	provides	the	configuration	framework	and	basic	functionality,
while	ApplicationContext,	an	extension	of	BeanFactory,	adds	more	enterprise-specific
functionality,	such	as	easier	integration	with	Spring’s	AOP	features,	message	resource
handling	(for	internationalization),	and	event	publication.

Spring	provides	several	concrete	implementations	of	ApplicationContext	out	of	the	box
for	various	contexts.	The	following	table	lists	the	most	popular	ones	among	them:

Application	context Typical	application	type

ClassPathXmlApplicationContext Standalone

AnnotationConfigApplicationContext Standalone

FileSystemXmlApplicationContext Standalone

GenericWebApplicationContext Web

XmlWebApplicationContext Web

XmlPortletApplicationContext Web	portlet

In	Spring,	objects	managed	by	the	IoC	container	are	called	beans.	The	IoC	container
handles	the	assembly	and	lifecycles	of	Spring	beans.	Beans	are	defined	in	the
configuration	metadata	consumed	by	the	container,	which	instantiates	and	assembles	them
in	order	to	compose	your	application.

Configuration	metadata
Spring	supports	three	forms	of	configuration	metadata	to	configure	your	beans:

XML-based	configuration	metadata
Annotation-based	configuration	metadata
Java-based	configuration	metadata

The	example	code	listing	you	saw	earlier	used	XML-based	configuration	metadata.	You
can	always	mix	and	match	different	forms	of	metadata	in	a	single	application.	For
example,	you	may	define	the	primary	metadata	to	be	a	root	XML	file	that	combines	a	set
of	annotation-based	metadata	that	in	turn	defines	beans	from	different	layers.

XML-based	configuration	metadata
The	application-context.xml	file	we	saw	in	the	previous	Spring	application	sample	is	a
very	minimal	example	for	XML-based	configuration	metadata.	Beans	are	configured	as
<bean/>	elements	inside	a	top-level	<beans>	element.

Classes	representing	the	service	layer	(core	business	logic,	also	known	as	Service	classes),
Data	Access	Objects	(DAOs),	managed	web	backing	beans	(such	as	Struts	action
instances	and	JSF	managed	beans),	infrastructure	objects	(such	as	Hibernate	session
factories	and	JMS	queues),	and	so	forth,	are	excellent	candidates	for	Spring	beans.	Fine-
grained	domain	objects	are	not	generally	configured	as	Spring	beans,	because	it	is	usually
the	responsibility	of	DAOs	and	the	business	logic	to	create	and	load	domain	objects—
Hibernate	entities	are	typical	examples.

You	can	create	a	consolidated	(root)	ApplicationContext	XML	file	that	imports	other
XML	files	representing	various	layers	of	the	application:

<?xml	version="1.0"	encoding="UTF-8"?>

<beans…>

			<import	resource="/xml-data-access-objects.xml"/>

			<import	resource="/xml-services.xml"/>

			<import	resource="/web-beans.xml"/>

			<import	resource="/rest-endpoints.xml"/>

...

			<bean	id="systemSettings"	class="com…SystemSettings">

</beans>

Annotation-based	configuration	metadata
This	method	relies	on	bytecode	metadata	to	wire	up	components	instead	of	XML-based
angle	bracket	declarations.	Configuration	of	a	bean	is	defined	at	the	source	level	of	the
bean	itself,	in	the	form	of	annotations	at	class,	field,	or	method	levels.

Let’s	take	a	look	at	the	simplest	Spring	bean	configured	by	source-level	annotation:

@Component("Greeter")

public	class	GreetingServiceImpl	implements	GreetingService	{

			Logger	logger	=	LoggerFactory.getLogger(GreetingService.class);

			public	void	greet(String	message)	{

						logger.info("Greetings!	"	+	message);

			}

}

This	is	just	an	annotated	version	of	the	same	GreetingServiceImpl	shown	in	the	Your
first	Spring	application	section,	where	it	was	configured	in	the	application-context.xml
file	purely	in	XML	form.	In	this	preceding	listing,	the	annotation	@Component	makes	it	a
Spring	bean.	Now,	it	doesn’t	require	to	be	defined	in	XML,	but	you	should	instruct	your
ApplicationContext	to	consider	annotations,	as	given	in	the	following	code:

<context:component-scan	base-package="com.springessentialsbook"/>

This	code	snippet	in	your	application-context.xml	file	forces	ApplicationContext	to
scan	the	entire	application,	including	all	its	dependencies—even	inside	JAR	files—for
components	annotated	as	Spring	beans	of	various	stereotypes,	such	as	@Component,
@Service,	@Repository,	and	@Controller.	In	addition	to	component	scanning,	the
ApplicationContext	looks	for	all	the	annotations	in	that	bean	at	the	class,	property,
constructor,	and	method	levels	(including	setter	methods)	in	order	to	inject	dependencies
and	other	behaviors	into	your	beans	at	startup.

Beware,	component	scanning	can	be	time	consuming	if	you	provide	a	broader	package
name	to	the	base-package	attribute;	it	is	advised	to	provide	more	specific	package	names
to	scan	(for	example,	a	set	of	comma-separated	package	names)	so	that	you	have	more
control.	You	can	narrow	down	your	component	scanning	even	further	using
<context:include-filter/>	and	<context:exclude-filter/>.

Another	simple	instruction	to	enable	annotation	configuration	is	<context:annotation-
config/>.	It	simply	looks	for	annotations	on	beans	registered	in	the	application	context
and	will	not	detect	the	components,	whereas	if	you	use	<context:component-scan/>,	it
handles	both	component	scanning	and	other	annotations,	which	will	be	covered	later	in
this	chapter,	so	you	do	not	need	to	explicitly	declare	<context:annotation-config/>.	So,
the	best	method	for	annotation-based	configuration	is	to	use	<context:annotation-
config/>.

XML-based	versus	annotation-based	configuration
XML-based	configuration	has	some	advantages	over	its	annotation-based	counterpart.	The
biggest	one	is	that	all	your	bean	definitions	are	in	one	place	and	not	scattered	in	many
classes	or	even	JAR	dependencies.	XML	allows	you	to	split	your	metadata	files	and	then
combine	them	using	<import/>.	Using	XML,	you	can	configure	any	class,	including
third-party	ones	such	as	Spring	beans,	and	inject	dependencies	and	other	services	into	it,
which	is	impossible	in	the	case	of	annotation.	Also,	you	can	define	the	same	class	as
multiple	different	beans,	each	with	a	different	name,	dependencies,	configuration,	and	so
on.

Annotation-based	metadata	too	has	some	advantages	over	XML	configuration.	It	is	more
concise	and	much	easier	to	develop	and	maintain,	as	your	annotation	and	DI	are	right
inside	your	source	code.	All	information	about	a	class	is	in	one	place.

For	bigger	applications,	the	best	option	would	be	a	mixed	approach	where	the	more
reusable	beans	(libraries	shared	between	multiple	projects)	and	third-party	components	are
configured	in	XML	and	those	with	a	smaller	scope	are	annotated.

Component	stereotype	annotations
Spring	provides	further	component	stereotypes	for	beans	that	represent	various	roles.	The
primary	stereotype	is	@Component,	and	all	the	others	are	its	specializations	for	more
specific	use	cases:

Stereotype Description

@Component A	generic	type	for	all	Spring-managed	components	(beans).

@Service
Marker	meta-annotation	for	service	layer	components.	Currently,	Spring	treats	this	the	same	as
@Component,	with	no	special	function.

@Repository Used	as	DAOs	in	your	persistence	layer.	Spring	Data	libraries	provide	additional	functionality.

@Controller Handles	Web	MVC	endpoints	in	order	to	process	HTTP	requests	mapped	to	specific	URLs.

@RestController
A	specialized	controller	for	RESTful	web	services,	part	of	Web	MVC.	It	is	a	meta-annotation	that
combines	@Controller	and	@ResponseBody.

Custom	stereotypes	can	be	created	by	defining	meta-annotations	from	scratch	or
combining	existing	annotations.

Java-based	configuration	metadata
Starting	with	Spring	3.0,	you	can	configure	Spring	metadata	purely	inside	Java	classes,
completely	avoiding	any	XML	configuration	while	enhancing	annotation-based	metadata.
You	annotate	any	Java	class	with	@Configuration	annotation	at	the	class	level	and	have
methods	annotated	as	@Configuration	annotation	on	a	factory	method	that	instantiates	an
@Component	annotation,	or	any	other	specialized	bean,	to	define	your	application	context.
Let’s	see	a	simple	example:

@Configuration

@ComponentScan(basePackages	=	"com.springessentialsbook")

public	class	SpringJavaConfigurator	{

				@Autowired

				private	GreetingService	greeter;

				@Autowired

				private	BannerService	banner;

				@Bean

				public	BannerService	createBanner()	{

								return	new	BannerService();

				}

				public	BannerService	getBanner()	{

								return	this.banner;

				}

				public	void	run()	{

								this.banner.displayBanner();

								this.greeter.greet("I	am	the	Greeter	Spring	bean,	configured	with	

Java	Configuration.");

				}

}

In	SpringJavaConfigurator.java,	the	Java	configuration	class	configures	the	Spring
beans,	replacing	the	application-context.xml	file.	Your	Spring	application	can	directly
depend	on	this	Configuration	class	for	loading	ApplicationContext.

Typically,	you	use	an	AnnotationConfigApplication	instance	for	instantiating	your
application	context:

ApplicationContext	ctx	=	new	AnnotationConfigApplicationContext(

		SpringJavaConfigurator.class);

SpringJavaConfigurator	app	=	ctx.getBean(SpringJavaConfigurator.class);

app.run();

BannerService	banner	=	ctx.getBean(BannerService.class);

banner.displayBanner();

When	@Configuration	classes	are	provided	as	the	constructor	argument,	the
@Configuration	class	itself	is	registered	as	a	bean	definition	and	so	are	all	declared	@Bean
methods	within	the	class.	Spring	will	scan	for	the	entire	project	and	its	dependencies	for
@Component	or	its	specializations	(the	other	stereotypes	listed	previously),	matching	the
argument	values	provided	in	@ComponentScan(basePackages	=	"…")	with	all	other
relevant	annotations	and	building	the	application	context.

The	advantage	of	JavaConfig	metadata	is	that	you	have	programmatic	control	over	Spring
configuration	while	separating	out	the	entire	DI	and	bean	configuration	into	a	separate
Java	class.	Using	JavaConfig,	you	eliminate	the	complexity	of	managing	many	XML	files.
You	detect	any	configuration	issues	during	development	at	the	earliest,	as	JavaConfig	fails
during	compilation	itself,	while	in	the	case	of	XML,	you	will	know	about	the
configuration	issues	only	on	application	startup.

JSR	330	standard	annotations
Besides	Spring-specific	annotations,	Spring	supports	JSR	330	standard	annotations	for	DI,
starting	from	Spring	3.0.	You	just	need	to	include	javax.inject	artifacts	in	your	Maven
or	Gradle	configuration.

JSR	330	standard	annotations	have	the	following	equivalents	in	Spring:

Spring JSR-330	(javax.inject.*) Target	level	/	Usage

@Component @Named Type	(class)

@Autowired @Inject Property	and	setter	methods

@Qualifier @Named Type,	property	and	setter	methods

@Scope("singleton") @Singleton Meta-annotation	for	bean	declarations

While	the	default	scope	of	Spring	beans	is	singleton,	the	JSR	330	default	scope	is	like
Spring’s	prototype.	However,	for	consistency,	Spring	treats	JSR	330	annotated	beans
inside	Spring	as	singleton,	unless	declared	prototype	explicitly	using	@Scope("..").

JSR	330	has	no	equivalents	for	some	Spring-based	DI	annotations,	such	as	@Value,
@Required,	and	@Lazy.	We	will	discuss	more	about	bean	scopes	later	in	this	chapter.

Beans	in	detail
A	Spring	application	is	composed	of	a	set	of	beans	that	perform	functionality	specific	to
your	application	layers	and	are	managed	by	the	IoC	container.	You	define	your	beans	with
configuration	metadata	in	the	form	of	XML,	annotation,	or	JavaConfig.

Note
The	default	scope	of	a	Spring	bean	is	singleton.	This	means	that	a	single	instance	is
shared	between	clients	anywhere	in	the	application.	Beware	of	keeping	state	(class	level
data)	in	singleton	classes,	as	a	value	set	by	one	client	will	be	visible	to	all	others.	The
best	use	case	for	such	singleton	classes	are	stateless	services.

Beans	are	uniquely	identified	by	an	id	attribute,	any	of	the	values	supplied	to	the	(comma,
semicolon,	or	space	separated)	name	attribute	of	the	bean	definition,	or	even	as	an	alias
definition.	You	can	refer	to	a	bean	anywhere	in	the	application	with	id	or	any	of	the	names
or	aliases	specified	in	the	bean	definition.

It’s	not	necessary	that	you	always	provide	an	id	or	name	to	the	bean.	If	one	isn’t	provided,
Spring	will	generate	a	unique	bean	name	for	it;	however,	if	you	want	to	refer	to	it	with	a
name	or	an	id,	then	you	must	provide	one.

Spring	will	try	to	autowire	beans	by	type	if	id	or	name	is	not	provided.	This	means	that
ApplicationContext	will	try	to	match	the	bean	with	the	same	type	or	implementation	in
case	it	is	an	interface.

You	can	refer	to	a	bean	by	type	if	it	is	either	the	only	bean	registered	of	that	type	or
marked	as	@Primary	(primary="true"	for	XML).	Generally,	for	nested	bean	definitions
and	autowire	collaborators,	you	don’t	need	to	define	a	name	unless	you	refer	to	it	outside
the	definition.

You	can	alias	a	bean	outside	the	bean	definition	using	the	<alias/>	tag,	as	follows:

<alias	name="fromName"	alias="toName"/>

Bean	definition
A	bean	definition	object	that	you	define	to	describe	a	bean	has	the	following	metadata:

Property Description

class The	fully	qualified	class	name	of	the	bean.

id The	unique	identifier	of	the	bean.

name
One	or	more	unique	names	separated	by	commas,	semicolons,	or	whitespace.	Typically,	id	and	name
would	be	the	same,	and	you	supply	either	of	these.	Other	names	in	the	list	become	aliases.

parent The	parent	bean	for	inheriting	configuration	data	from	a	parent	bean	definition.

scope
This	decides	the	scope	of	the	objects.	The	default	scope	of	a	Spring	bean	is	singleton.	This	means	that
a	single	instance	is	shared	between	calls.	We	will	discuss	more	about	bean	scopes	later.

constructor

args
Bean	references	or	names	for	constructor-based	DI.

properties Values	or	references	for	setter-based	DI.

autowire

mode
Instructs	the	bean	whether	or	how	to	autowire	relationships	with	collaborators.	Autowiring	will	be
discussed	later.

primary
This	indicates	that	the	bean	should	be	considered	as	the	primary	autowiring	candidate	in	case	of	multiple
matches	being	found.

depends-on This	forces	instantiation	of	dependent	beans	prior	to	this	bean.

lazy-init If	true,	this	creates	a	bean	instance	when	it	is	first	requested.

init-method
Initialization	callback	method.	This	has	no	args	void	method	and	will	be	invoked	post	instance
creation.

destroy-

method
Destruction	callback	method.	This	has	no	args	void	method	and	will	be	invoked	before	destroy.

factory-

method
Static	instance	factory	method	on	the	bean	itself,	unless	factory-bean	is	provided.

factory-

bean

Another	bean	reference	that	is	acting	as	an	instance	factory	for	this	bean.	Usually	comes	along	with	the
factory-method	property.

Let’s	take	a	look	at	a	sample	bean	definition	in	XML	form:

<bean	id="xmlTaskService"	class="com…XmlDefinedTaskService"

init-method="init"	destroy-method="cleanup">

			<constructor-arg	ref="userService"/>

			<constructor-arg>

						<bean	class="com…TaskInMemoryDAO"></bean>

			</constructor-arg>

</bean>

In	this	sample	application-context	file,	the	bean,	xmlTaskService,	is	autowired	via	a

constructor,	that	is,	dependencies	are	injected	via	a	constructor.	The	first	constructor
argument	refers	to	an	existing	bean	definition,	and	the	second	one	is	an	inline	bean
definition	without	an	id.	The	bean	has	init-method	and	destroy-method	pointed	to	its
own	methods.

Now,	let’s	take	a	look	at	an	annotated	bean	with	slightly	different	features:

@Service

public	class	AnnotatedTaskService	implements	TaskService	{

...

			@Autowired

			private	UserService	userService;

			@Autowired

			private	TaskDAO	taskDAO;

			@PostConstruct

			public	void	init()	{

						logger.debug(this.getClass().getName()	+	"	started!");

			}

			@PreDestroy

			public	void	cleanup()	{

						logger.debug(this.getClass().getName()	+	"	is	about	to	destroy!");

			}

			public	Task	createTask(String	name,	int	priority,	int	createdByuserId,	

int	assigneeUserId)	{

						Task	task	=	new	Task(name,	priority,	"Open",

									userService.findById(createdByuserId),	null,

									userService.findById(assigneeUserId));

						taskDAO.createTask(task);

						logger.info("Task	created:	"	+	task);

						return	task;

			}

...

}

This	@Service	bean	autowires	its	dependencies	on	its	fields	(properties)	using	an
@Autowired	annotation.	Note	the	@PostConstruct	and	@PreDestroy	annotations,	the
equivalents	of	init-method	and	destroy-method	in	the	previous	XML	bean	definition
example.	These	are	not	Spring	specific	but	are	JSR	250	annotations.	They	work	pretty
well	with	Spring.

Instantiating	beans
Bean	definitions	are	recipes	for	instantiating	bean	instances.	Depending	on	metadata
attributes	such	as	scope,	lazy,	and	depends-on,	Spring	Framework	decides	when	and	how
an	instance	is	created.	We	will	discuss	it	in	detail	later.	Here,	let’s	look	at	the	“how”	of
instance	creation.

With	constructors
Any	bean	definition	with	or	without	constructor	arguments	but	without	a	factory-method
is	instantiated	via	its	own	constructor,	using	the	new	operator:

<bean	id="greeter"	class="com…GreetingBean"></bean>

Now	let’s	see	an	annotated	@Component	with	a	default	constructor-based	instantiation:

@Component("greeter")

public	class	GreetingService	{

...

}

With	a	static	factory-method
A	static	method	within	the	same	class,	marked	as	factory-method,	will	be	invoked	to
create	an	instance	in	this	case:

<bean	id="Greeter"	class="...GreetingBean"	factory-method="newInstance">

</bean>

With	Java	configuration,	you	can	use	an	@Bean	annotation	instead	of	factory	methods:

@Configuration

@ComponentScan(basePackages	=	"com.springessentialsbook")

public	class	SpringJavaConfigurator	{

...

			@Bean

			public	BannerService	createBanner()	{

						return	new	BannerServiceImpl();

			}

...

}

With	an	instance	factory-method
In	this	case,	bean	definition	does	not	need	a	class	attribute,	but	you	specify	the	factory-
bean	attribute,	which	is	another	bean,	with	one	of	its	non-static	methods	as	factory-
method:

<bean	id="greeter"		factory-bean="serviceFactory"	factory-

method="createGreeter"/>

<bean	id="serviceFactory"		class="...ServiceFactory">

<!—	...	Dependencies…	-->

</bean>

Injecting	bean	dependencies
The	main	purpose	of	an	IoC	container	is	to	resolve	the	dependencies	of	objects	(beans)
before	they	are	returned	to	the	clients	who	called	for	an	instance	(say,	using	the	getBean
method).	Spring	does	this	job	transparently	based	on	the	bean	configuration.	When	the
client	receives	the	bean,	all	its	dependencies	are	resolved	unless	specified	as	not	required
(@Autowired(required	=	false)),	and	it	is	ready	to	use.

Spring	supports	two	major	variants	of	DI—constructor-based	and	setter-based	DI—right
out	of	the	box.

Constructor-based	Dependency	Injection
In	constructor-based	DI,	dependencies	to	a	bean	are	injected	as	constructor	arguments.
Basically,	the	container	calls	the	defined	constructor,	passing	the	resolved	values	of	the
arguments.	It	is	best	practice	to	resolve	mandatory	dependencies	via	a	constructor.	Let’s
look	at	an	example	of	a	simple	POJO	@Service	class,	a	ready	candidate	for	constructor-
based	DI:

public	class	SimpleTaskService	implements	TaskService	{

...

			private	UserService	userService;

			private	TaskDAO	taskDAO;

			public	SimpleTaskService(UserService	userService,	TaskDAO	taskDAO)	{

						this.userService	=	userService;

						this.taskDAO	=	taskDAO;

			}

...

}

Now,	let’s	define	this	as	a	Spring	bean	in	XML:

<bean	id="taskService"	class="com…SimpleTaskService"">

			<constructor-arg	ref="userService"	/>

			<constructor-arg	ref="taskDAO"/>

</bean>

The	Spring	container	resolves	dependencies	via	a	constructor	based	on	the	argument’s
type.	For	the	preceding	example,	you	don’t	need	to	pass	the	index	or	type	of	the
arguments,	since	they	are	of	complex	types.

However,	if	your	constructor	has	simple	types,	such	as	primitives	(int,	long,	and
boolean),	primitive	wrappers	(java.lang.Integer,	Long,	and	so	on)	or	String,
ambiguities	of	type	and	index	may	arise.	In	this	case,	you	can	explicitly	specify	the	type
and	index	of	each	argument	to	help	the	container	match	the	arguments,	as	follows:

<bean	id="systemSettings"	class="com…SystemSettings">

			<constructor-arg	index="0"	type="int"	value="5"/>

			<constructor-arg	index="1"	type="java.lang.String"	value="dd/mm/yyyy"/>

			<constructor-arg	index="2"	type="java.lang.String"	value="Taskify!"/>

</bean>

Remember,	index	numbers	start	from	zero.	The	same	applies	to	setter-based	injection	as
well.

Setter-based	Dependency	Injection
The	container	calls	the	setter	methods	of	your	bean	in	the	case	of	setter-based	DI	after	the
constructor	(with	or	without	args)	is	invoked.	Let’s	see	how	the	bean	definition	for	the
previous	SystemSettings	would	look	if	the	dependencies	were	injected	via	setter
methods,	assuming	the	SystemSettings	now	has	a	no-args	constructor:

<bean	id="systemSettings"	class="com…SystemSettings">

			<property	name="openUserTasksMaxLimit"	value="5"/>

			<property	name="systemDateFormat"	value="dd/mm/yyyy"/>

			<property	name="appDisplayName"	value="Taskify!"/>

</bean>

Spring	validates	the	bean	definitions	at	the	startup	of	the	ApplicationContext	and	fails
with	a	proper	message	in	case	of	a	wrong	configuration.	The	string	values	given	to
properties	with	built-in	types	such	as	int,	long,	String,	and	boolean	are	converted	and
injected	automatically	when	the	bean	instances	are	created.

Constructor-based	or	setter-based	DI	–	which	is
better?
Which	of	these	DI	methods	is	better	purely	depends	on	your	scenario	and	some
requirements.	The	following	best	practices	may	provide	a	guideline:

1.	 Use	constructor-based	DI	for	mandatory	dependencies	so	that	your	bean	is	ready	to
use	when	it	is	first	called.

2.	 When	your	constructor	gets	stuffed	with	a	large	number	of	arguments,	it’s	the
figurative	bad	code	smell.	It’s	time	to	break	your	bean	into	smaller	units	for
maintainability.

3.	 Use	setter-based	DI	only	for	optional	dependencies	or	if	you	need	to	reinject
dependencies	later,	perhaps	using	JMX.

4.	 Avoid	circular	dependencies	that	occur	when	a	dependency	(say,	bean	B)	of	your
bean	(bean	A)	directly	or	indirectly	depends	on	the	same	bean	again	(bean	A),	and	all
beans	involved	use	constructor-based	DI.	You	may	use	setter-based	DI	here.

5.	 You	can	mix	constructor-based	and	setter-based	DI	for	the	same	bean,	considering
mandatory,	optional,	and	circular	dependencies.

In	a	typical	Spring	application,	you	can	see	dependencies	injected	using	both	approaches,
but	this	depends	on	the	scenario,	considering	the	preceding	guidelines.

Cleaner	bean	definitions	with	namespace	shortcuts
You	can	make	your	bean	definitions	cleaner	and	more	expressive	using	p:(property)	and
c:(constructor)	namespaces,	as	shown	here.	While	the	p	namespace	enables	you	to	use
the	<bean/>	element’s	attributes	instead	of	the	nested	<property/>	elements	in	order	to
describe	your	property	values	(or	collaborating	bean	refs),	the	c	namespace	allows	you	to
declare	the	constructor	args	as	the	attributes	of	the	<bean/>	element:

<beans	xmlns="http://www.springframework.org/schema/beans"	

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xmlns:p="http://www.springframework.org/schema/p"	

xmlns:c="http://www.springframework.org/schema/c"	

xsi:schemaLocation="http://www.springframework.org/schema/beans	

http://www.springframework.org/schema/beans/spring-beans.xsd	

http://www.springframework.org/schema/context/spring-context.xsd">

			<bean	id="p-taskService"	class="com…SimpleTaskService"	c:userService-

ref="userService"	c:taskDAO-ref="taskDAO"/>

			<bean	id="p-systemSettings"	class="com…SystemSettings"

						p:openUserTasksMaxLimit="5"

						p:systemDateFormat"dd/mm/yyyy"

						p:appDisplayName="Taskify!"/>

</beans>

The	bean	definitions	in	the	preceding	listing	are	cleaner	but	more	expressive.	Both	c:	and
p:	namespaces	follow	the	same	conventions.	You	need	to	declare	both	at	the	XML	root
element	(<beans/>)	before	using	them	with	the	<bean/>	elements.	Note	that	you	use	the	-
ref	suffix	for	bean	references.

Wiring	a	List	as	a	dependency
On	occasion,	we	will	need	to	inject	static	collections	of	data	as	bean	dependencies.	Spring
provides	a	natural	method	to	wire	lists.	See	this	example:

<bean	id="systemSettings"	class="com…SystemSettings">

.	.	.

		<constructor-arg>

				<list>

						<value>admin@taskify.ae</value>

						<value>it@taskify.ae</value>

						<value>devops@taskify.ae</value>

				</list>

		</constructor-arg>

</bean>

The	preceding	example	wires	a	java.util.List<String>	for	simplicity.	If	your	list
contains	a	collection	of	beans,	you	can	replace	<value>	with	<ref>	or	<bean>.

Wiring	a	Map	as	a	dependency
You	can	inject	java.util.Map	instances	too	in	a	similar	fashion.	Look	at	this	example:

<bean	id="systemSettings"	class="com…SystemSettings">

.	.	.

		<property	name="emails">

				<map>

						<entry	key="admin"	value="admin@taskify.ae"></entry>

						<entry	key="it"	value="it@taskify.ae"></entry>

						<entry	key="devops"	value="devops@taskify.ae"></entry>

				</map>

		</property>

</bean>

You	can	inject	beans	as	values,	replacing	<value>	with	<ref>	or	<bean>.

Autowiring	dependencies
Spring	can	autowire	dependencies	of	your	beans	automatically	by	inspecting	the	bean
definitions	present	in	the	ApplicationContext	if	you	specify	the	autowire	mode.	In	XML,
you	specify	the	autowire	attribute	of	the	<bean/>	element.	Alternatively,	you	can	annotate
a	bean	with	@Autowired	to	autowire	dependencies.	Spring	supports	four	autowiring
modes:	no,	byName,	byType,	and	constructor.

Note
The	default	autowiring	of	Spring	beans	is	byType.	If	you	are	autowiring	an	interface,
Spring	will	try	to	find	an	implementation	of	that	interface	configured	as	a	Spring	bean.	If
there	are	multiple,	Spring	will	look	for	the	primary	attribute	of	the	configuration	to
resolve;	if	not	found,	it	will	fail,	complaining	about	an	ambiguous	bean	definition.

Here	is	an	example	of	autowiring	constructor	arguments:

@Service

public	class	AnnotatedTaskService	implements	TaskService	{

...

			@Autowired

			public	AnnotatedTaskService(UserService	userService,	TaskDAO	taskDAO)	{

						this.userService	=	userService;

						this.taskDAO	=	taskDAO;

			}

...

}

Alternatively,	you	can	autowire	at	the	field	level,	as	follows:

@Service

public	class	AnnotatedTaskService	implements	TaskService	{

...

			@Autowired

			private	UserService	userService;

			@Autowired

			private	TaskDAO	taskDAO;

...

}

Autowiring	can	be	fine-tuned	with	an	@Qualifier	annotation	and	required	attribute:

@Autowired(required	=	true)

@Qualifier("taskDAO")

private	UserService	userService;

You	can	use	@Qualifier	at	the	constructor	level	too:

@Autowired

public	AnnotatedTaskService(@Qualifier("userService")	UserService	

userService,	@Qualifier("taskDAO")	TaskDAO	taskDAO)	{

			this.userService	=	userService;

			this.taskDAO	=	taskDAO;

}

Bean	scoping
When	defining	a	bean	with	its	dependencies	and	other	configuration	values,	you	can
optionally	specify	the	scope	of	a	bean	in	the	bean	definition.	The	scope	determines	the	life
span	of	the	bean.	Spring	comes	up	with	six	built-in	scopes	out	of	the	box	and	supports	the
creation	of	custom	scopes	too.	If	not	explicitly	specified,	a	bean	will	assume	the
singleton	scope,	which	is	the	default	scope.	The	following	table	lists	the	built-in	Spring
scopes:

Scope Description

singleton This	ensures	a	single	instance	inside	the	container.	This	is	the	default	scope.

prototype A	new	instance	is	created	for	every	request	for	the	bean.

request Scopes	an	instance	with	the	life	cycle	of	every	new	HTTP	request.

session Scopes	with	the	life	cycle	of	every	new	HTTP	session.

globalSession Scopes	with	an	HTTP	session	inside	a	portlet	context.

application Scopes	with	the	life	cycle	of	a	ServletContext.	It’s	singleton	for	ServletContext.

While	singleton	and	prototype	work	in	all	environments,	request,	session,	and
application	work	only	in	web	environments.	The	globalSession	scope	is	for	portlet
environments.

In	an	XML	bean	definition,	the	scope	is	set	via	the	scope	attribute	of	the	<bean/>	element:

<bean	id="userPreferences"	class="com…UserPreferences"	scope="session">...	

</bean>

You	can	annotate	the	bean	scope	as	a	meta-annotation	to	@Component	or	its	derivations,
such	as	@Service	and	@Bean,	as	shown	in	the	following	listing:

@Component

@Scope("request")

public	class	TaskSearch	{...}

Generally,	service	classes	and	Spring	data	repositories	are	declared	as	singleton,	since
they	are	built	stateless	according	to	best	practice.

Dependency	Injection	with	scoped	beans
Beans	of	different	scopes	can	be	wired	up	as	collaborators	in	your	configuration	metadata.
For	example,	if	you	have	a	session-scoped	bean	as	a	dependency	to	singleton	and	face	an
inconsistency	problem,	the	first	instance	of	the	session-scoped	bean	will	be	shared
between	all	users.	This	can	be	solved	using	a	scoped	proxy	in	place	of	the	scoped	bean:

<bean	id="userPreferences"	class="com…UserPreferences"	scope="session">

			<aop:scoped-proxy	/>

</bean>

<bean	id="taskService"	class="com…TaskService">

			<constructor-arg	ref="userPreferences"/>

</bean>

Every	time	the	scoped	bean	is	injected,	Spring	creates	a	new	AOP	proxy	around	the	bean
so	that	the	instance	is	picked	up	from	the	exact	scope.	The	annotated	version	of	the
preceding	listing	would	look	like	this:

@Component

@Scope(value	=	"session",	proxyMode	=	ScopedProxyMode.TARGET_CLASS)

public	class	UserPreferences	{	...	}

public	class	AnnotatedTaskService	implements	TaskService	{

...

			@Autowired

			private	UserPreferences	userPreferences;

...

}

Creating	a	custom	scope
At	times,	the	scopes	supplied	by	Spring	are	not	sufficient	for	your	specific	needs.	Spring
allows	you	to	create	your	own	custom	scope	for	your	scenario.	For	example,	if	you	want
to	keep	some	business	process	level	information	throughout	its	life,	you	will	want	to
create	a	new	process	scope.	The	following	steps	will	enable	you	to	achieve	this:

1.	 Create	a	Java	class	extending	org.springframework.beans.factory.config.Scope.
2.	 Define	it	in	your	application	context	(XML	or	annotation)	as	a	Spring	bean.
3.	 Register	the	scope	bean	with	your	ApplicationContext	either	programmatically	or

in	XML	with	CustomScopeConfigurer.

Hooking	to	bean	life	cycles
Often,	in	enterprise	application	development,	developers	will	want	to	plug	in	some	extra
functionality	to	be	executed	just	after	the	construction	and	before	the	destruction	of	a
business	service.	Spring	provides	multiple	methods	for	interacting	with	such	stages	in	the
life	cycle	of	a	bean.

Implementing	InitializingBean	and	DisposableBean
The	Spring	IoC	container	invokes	the	callback	methods	afterPropertiesSet()	of
org.springframework.beans.factory.InitializingBean	and	destroy()	of
org.springframework.beans.factory.DisposableBean	on	any	Spring	bean	and
implements	them:

public	class	UserServiceImpl	implements	UserService,	InitializingBean,	

DisposableBean	{

...

			@Override

			public	void	afterPropertiesSet()	throws	Exception	{

						logger.debug(this	+	".afterPropertiesSet()	invoked!");

						//	Your	initialization	code	goes	here..

			}

			@Override

			public	void	destroy()	throws	Exception	{

						logger.debug(this	+	".destroy()	invoked!");

						//	Your	cleanup	code	goes	here..

			}

...

}

Annotating	@PostConstruct	and	@PreDestroy	on
@Components
Spring	supports	JSR	250	@PostConstruct	and	@PreDestroy	annotations	on	any	Spring
bean	in	an	annotation-supported	environment,	as	shown	here.	Spring	encourages	this
approach	over	implementing	Spring-specific	interfaces,	as	given	in	the	previous	section:

@Service

public	class	AnnotatedTaskService	implements	TaskService	{

...

			@PostConstruct

			public	void	init()	{

						logger.debug(this.getClass().getName()	+	"	started!");

			}

			@PreDestroy

			public	void	cleanup()	{

						logger.debug(this.getClass().getName()	+	"	is	about	to	destroy!");

			}

...

}

The	init-method	and	destroy-method	attributes	of
<bean/>
If	you	are	using	XML-only	bean	configuration	metadata,	then	your	best	option	is	to
declare	init-method	and	destroy-method	attributes	on	your	<bean/>	tags:

<bean	id="xmlTaskService"	class="com…XmlDefinedTaskService"	init-

method="init"	destroy-method="cleanup">

...

</bean>

Container-level	default-init-method	and
default-destroy-method
You	can	even	set	container-level	default	init	and	destroy	methods	so	that	you	don’t	need
to	set	it	for	each	bean.	The	container	invokes	these	methods	on	beans	only	if	they	are
present:

<beans	default-init-method="init"	default-destroy-method="cleanup">

...

</beans>

Working	with	bean	definition	profiles
For	commercial	projects,	it	is	a	common	requirement	to	be	able	to	maintain	two	or	more
environment-specific	configurations	and	beans,	activated	selectively	only	in	the
corresponding	environment.	For	example,	objects	such	as	data	sources,	e-mail	servers,	and
security	settings	could	be	different	for	development,	testing,	and	production	environments.
You	would	want	to	switch	them	declaratively	without	touching	the	application	code,
keeping	it	externally.	Developers	traditionally	write	complex	scripts	and	property	files
with	separate	builds	to	do	this	job.	Spring	comes	to	your	rescue	here	with	environment
abstraction	using	bean	definition	profiles	and	properties.

Bean	definition	profiles	are	a	mechanism	by	which	application	context	is	configured
differently	for	different	environments.	You	group	bean	definitions	under	named	profiles	in
XML	or	using	annotation	and	activate	one	or	more	profiles	in	each	environment.	You	can
set	a	default	profile	to	be	enabled	if	you	do	not	specify	one	explicitly.

Let’s	take	a	look	the	following	sample	listing	that	configures	data	sources	for	development
and	production	environments:

@Configuration

@ComponentScan(basePackages	=	"com.springessentialsbook")

public	class	ProfileConfigurator	{

			@Bean

			@Profile("dev")

			public	DataSource	devDataSource()	{

						return	new	EmbeddedDatabaseBuilder()

									.setType(EmbeddedDatabaseType.HSQL)	.addScript("scripts/tasks-

system-schema.sql")	.addScript("scripts/tasks-master-data.sql")	.build();

			}

			@Bean

			@Profile("prod")

			public	DataSource	productionDataSource()	throws	Exception	{

						Context	ctx	=	new	InitialContext();

						return	(DataSource)	

ctx.lookup("java:comp/env/jdbc/datasource/tasks");

			}

}

Practically,	for	production	environments,	externalizing	this	profile	config	in	XML	would
be	a	better	idea,	where	you	allow	your	DevOps	team	to	modify	it	for	different
environments	and	forbid	them	to	touch	your	Java	code.	XML	configuration	would	look
like	the	following	listing:

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		xmlns:jdbc="http://www.springframework.org/schema/jdbc"

		xmlns:jee="http://www.springframework.org/schema/jee"

		xsi:schemaLocation="...">

		<!--	other	bean	definitions	-->

		<beans	profile="dev">

				<jdbc:embedded-database	id="dataSource">

						<jdbc:script	location="classpath:scripts/tasks-system-schema.sql"/>

						<jdbc:script	location="classpath:scripts/tasks-master-data.sql"/>

				</jdbc:embedded-database>

		</beans>

		<beans	profile="production">

				<jee:jndi-lookup	id="dataSource"	jndi-

name="java:comp/env/jdbc/datasource"/>

		</beans>

</beans>

You	may	create	as	many	profiles	as	required;	it	is	common	for	each	developer	to	maintain
their	own	configurations,	with	profiles	named	after	themselves,	say	@Profile("mary").
You	can	have	multiple	profiles	active	at	the	same	time	too;	it	depends	on	how	well	you
organize	them	without	having	conflicts	or	duplicate	bean	definitions	across	profiles.

Now	you	can	activate	one	or	more	profiles	as	you	need	in	each	(dev,	test,	or	prod)
environment	using	any	one	of	the	following	methods:

1.	 Programmatically	invoking	ctx.getEnvironment().setActiveProfiles("p1",
"p2",	..).

2.	 Setting	the	property	spring.profile.active—with	comma-separated	profile	names
as	value—as	an	environment	variable,	JVM	system	property,	or	Servlet	context
param	in	web.xml.

3.	 Add	-Dspring.profile.active="p1,p2,	.."	as	a	command-line	or	Java	argument
while	starting	up	your	application.

Injecting	properties	into	the	Spring
environment
Besides	the	separation	of	environment-specific	configuration	using	profiles,	you	would
still	need	to	externalize	many	properties,	such	as	database	URLs,	e-mails,	and	date
formats	in	a	property	file	for	easier	handling.	These	properties	would	then	either	be
injected	directly	into	the	beans	or	read	from	environment	by	the	beans	at	runtime.	Spring’s
environment	abstraction,	together	with	@PropertySource	annotation,	makes	this	possible
in	Spring	applications.

The	@PropertySource	annotation	provides	a	convenient	and	declarative	mechanism	for
adding	a	PropertySource	to	Spring’s	environment:

@Configuration

@PropertySource("classpath:application.properties")

@ComponentScan(basePackages	=	"com.springessentialsbook")

public	class	SpringJavaConfigurator	{

...

			@Autowired

			@Lazy

			private	SystemSettings	systemSettings;

			@Autowired

			private	Environment	env;

			@Bean

			public	SystemSettings	getSystemSettings()	{

						String	dateFormat	=	env.getProperty("system.date-format");

						String	appDisplayName	=	env.getProperty("app.displayname");

						return	new	SystemSettings(dateFormat,	appDisplayName);

			}

…

}

Externalizing	properties	with
PropertyPlaceholderConfigurer
PropertyPlaceholderConfigurer	is	another	convenient	utility	to	externalize	property
values	from	a	bean	definition	into	a	separate	file	that	uses	the	standard
java.util.Properties	format.	It	replaces	placeholders	in	XML	bean	definitions	with
matching	property	values	in	the	configured	property	file,	as	shown	here.	This	is	the	best
way	to	externalize	profile	or	environment-specific	information	such	as	datasource	config,
e-mail	settings,	and	so	on.	The	DevOps	team	will	just	edit	these	property	files	and	never
mess	with	your	code:

<bean	

class="org.springframework.beans.factory.config.PropertyPlaceholderConfigur

er">

				<property	name="locations"	value="classpath:datasource.properties"/>

</bean>

<bean	id="dataSource"	destroy-method="close"

								class="org.apache.commons.dbcp.BasicDataSource">

				<property	name="driverClassName"	value="${jdbc.driverClassName}"/>

				<property	name="url"	value="${jdbc.url}"/>

				<property	name="username"	value="${jdbc.username}"/>

				<property	name="password"	value="${jdbc.password}"/>

</bean>

Here	is	another	simpler	declaration	of	PropertyPlaceholder:

<context:property-placeholder	location="classpath:datasource.properties"/>

Handling	resources
Spring	Framework	provides	excellent	support	for	accessing	low-level	resources,	thus
solving	many	limitations	of	Java’s	standard	java.net.URL	and	standard	handlers.	The
org.springframework.core.io.Resource	package	and	its	many	concrete
implementations	form	a	solid	foundation	for	Spring	Framework’s	robust	resource
handling.

Resource	abstraction	is	used	extensively	in	Spring	itself,	inside	many	implementations	of
ApplicationContext—it’s	actually	very	useful	to	use	as	a	general	utility	class	by	itself	in
your	own	code	in	order	to	access	resources.	You	will	find	the	following	resource
implementations	that	come	supplied	right	out	of	the	box	in	Spring:

Resource
Implementation Description

UrlResource
It	wraps	java.net.URL	and	is	useful	for	accessing	anything	that	can	be	accessed	via	a	URL,
such	as	files	(file:///),	HTTP	targets	(http://),	and	FTP	targets	(ftp://).

ClassPathResource It	is	used	for	accessing	any	resource	from	classpath	using	the	prefix	classpath:

FileSystemResource This	is	the	resource	implementation	of	java.io.File.

ServletContextResource This	is	the	parent	bean	for	inheriting	configuration	data	from	a	parent	bean	definition.

InputStreamResource This	is	the	resource	implementation	for	a	given	InputStream.

Generally,	you	do	not	directly	instantiate	any	of	these	resources;	rather,	you	use	a
ResourceLoader	interface	to	do	that	job	for	you.	All	ApplicationContext	implement	a
ResourceLoader	interface;	therefore,	any	ApplicationContext	can	be	used	to	obtain
resource	instances.	The	code	for	this	is	as	follows:

ApplicationContext	context	=	new	ClassPathXmlApplicationContext(new	

String[]	{"application-context.xml"});

Resource	classPathResource	=	ctx.getResource("classpath:scripts/tasks-

schema.sql");

Resource	fileResource	=	ctx.getResource("file:///scripts/master-data.sql");

Resource	urlResource	=	ctx.getResource("http://country.io/names.json");

You	can	inject	resources	into	your	beans	by	simply	passing	the	filename	or	URL	of	your
resource	as	an	argument,	as	shown	here.	ApplicationContext,	which	is	a
ResourceLoader	interface,	will	create	an	instance	of	an	appropriate	resource
implementation	based	on	the	URL	you	supply:

@Value("http://country.io/names.json")

private	Resource	countriesResource;

Here	is	the	XML	version	of	injecting	a	resource:

<property	name="countriesResource"	value="http://country.io/names.json"/>

Spring	Expression	Language
Expression	languages	are	generally	used	for	simple	scripting	to	manipulate	object	graphs
in	a	non	object-oriented	context.	For	example,	if	we	want	to	read	data	or	call	a	method	of
a	Java	object	from	a	JSP,	XML,	or	XHTML	page,	JSP	EL	and	Unified	Expression
Language	(UEL)	come	to	the	rescue.	These	expression	languages	allow	page	authors	to
access	external	data	objects	in	a	simple	and	easy-to-use	way,	compatible	with	tag-based
languages	such	as	XML	and	HTML.

The	Spring	Expression	Language	(SpEL),	with	a	language	syntax	similar	to	UEL,	is	a
powerful	expression	language	built	for	querying	and	manipulating	an	object	graph	at
runtime.	It	offers	additional	features,	most	notably	method	invocation	and	basic	string-
templating	functionality.

SpEL	can	be	used	inside	a	wide	variety	of	technologies	that	come	under	the	Spring	family
of	projects	as	well	as	many	technologies	that	integrate	with	Spring.	It	can	be	used	directly
in	the	Spring	configuration	metadata	files,	both	in	XML	as	well	as	Java	annotations	in	the
form	#{expression-string}.	You	can	use	SpEL	inside	many	view	technologies,	such	as
JSP,	XML,	and	XHTML,	when	integrated	with	the	corresponding	technologies,	such	as
JSF,	JSP,	and	Thymeleaf.

SpEL	features
The	SpEL	expression	language	supports	the	following	functionalities	out	of	the	box:

Boolean,	relational,	and	ternary	operators
Regular	expressions	and	class	expressions
Accessing	properties,	arrays,	lists,	and	maps
Method	and	constructor	invocations
Variables,	assignments,	and	bean	references
Array	construction,	inline	lists,	and	maps
User-defined	functions	and	templated	expressions
Collection,	projection,	and	selection

SpEL	annotation	support
SpEL	can	be	used	to	specify	default	values	for	fields,	methods	and	method	or	constructor
arguments	using	the	@Value	annotation.	The	following	sample	listing	contains	some
excellent	usage	of	SpEL	expressions	at	the	field	level:

@Component

@Scope("prototype")

public	class	TaskSnapShot	{

			Value("#{taskService.findAllTasks().size()}")

			private	String	totalTasks;

			@Value("#{taskService.findAllTasks()}")

			private	List<Task>	taskList;

			@Value("#{	new	java.util.Date()}")

			private	Date	reportTime;

			@Value("#{taskService.findAllTasks().?[status	==	'Open']}")

			private	List<Task>	openTasks;

...

}

The	same	approach	can	be	used	for	XML	bean	definitions	too.

The	SpEL	API
Generally,	most	users	use	SpEL	to	evaluate	expressions	embedded	in	XML,	XHTML,	or
annotations.	While	SpEL	serves	as	the	foundation	for	expression	evaluation	within	the
Spring	portfolio,	it	can	be	used	independently	in	non-Spring	environments	using	the	SpEL
API.	The	SpEL	API	provides	the	bootstrapping	infrastructure	to	use	SpEL
programmatically	in	any	environment.

The	SpEL	API	classes	and	interfaces	are	located	in	the	(sub)packages	under
org.springframework.expression.	They	provide	the	specification	and	default	SpEL
implementations	which	can	be	used	directly	or	extended.

The	following	interfaces	and	classes	form	the	foundation	of	the	SpEL	API:

Class/Interface Description

Expression

The	specification	for	an	expression	capable	of	evaluating	itself	against	context	objects
independent	of	any	language	such	as	OGNL	or	UEL.	It	encapsulates	the	details	of	a
previously	parsed	expression	string.

SpelExpression
A	SpEL-compliant,	parsed	expression	that	is	ready	to	be	evaluated	standalone	or	in	a
specified	context.

ExpressionParser
Parses	expression	strings	(templates	as	well	as	standard	expression	strings)	into
compiled	expressions	that	can	be	evaluated.

SpelExpressionParser SpEL	parser.	Instances	are	reusable	and	thread-safe.

EvaluationContext
Expressions	are	executed	in	an	evaluation	context,	where	references	are	resolved	when
encountered	during	expression	evaluation.

StandardEvaluationContext

The	default	EvaluationContext	implementation,	which	uses	reflection	to	resolve
properties/methods/fields	of	objects.	If	this	is	not	sufficient	for	your	use,	you	may
extend	this	class	to	register	custom	ConstructorResolver,	MethodResolver,	and
PropertyAccessor	objects	and	redefine	how	SpEL	evaluates	expressions.

SpelCompiler

Compiles	a	regular	parsed	expression	instead	of	the	interpreted	form	to	a	class
containing	bytecode	for	evaluation.	A	far	faster	method,	but	still	at	an	early	stage,	it
does	not	yet	support	every	kind	of	expression	as	of	Spring	4.1.

Let’s	take	a	look	at	an	example	that	evaluates	an	expression	using	the	SpEL	API:

@Component

public	class	TaskSnapshotBuilder	{

			@Autowired

			private	TaskService	taskService;

			public	TaskSnapShot	buildTaskSnapShot()	{

						TaskSnapShot	snapshot	=	new	TaskSnapShot();

						ExpressionParser	parser	=	new	SpelExpressionParser();

						EvaluationContext	context	=	new	

StandardEvaluationContext(taskService);

						Expression	exp	=	parser.parseExpression("findAllTasks().size()");

						snapshot.setTotalTasks(exp.getValue(context).toString());

						exp	=	parser.parseExpression("findAllTasks()");

						snapshot.setTaskList((List<Task>)exp.getValue(context));

						exp	=	parser.parseExpression("new	java.util.Date()");

						snapshot.setReportTime((Date)exp.getValue(context));

						exp	=	parser.parseExpression("findAllTasks().?[status	==	'Open']");

						snapshot.setOpenTasks((List<Task>)exp.getValue(context));

						return	snapshot;

			}

}

In	normal	scenarios,	you	would	not	need	to	directly	use	the	SpEL	API	in	a	Spring
application;	SpEL	with	annotation	or	XML	bean	definitions	would	be	better	candidates.
The	SpEL	API	is	mostly	used	to	load	externalized	business	rules	dynamically	at	runtime.

Aspect	Oriented	Programming
Most	software	applications	usually	have	some	secondary—but	critical—features,	such	as
security,	transaction,	and	audit-logging,	spanned	across	multiple	logical	modules.	It	would
be	a	nice	idea	not	to	mix	these	cross-cutting	concerns	in	your	core	business	logic.	Aspect
Oriented	Programming	(AOP)	helps	you	achieve	this.

Object	Oriented	Programming	(OOP)	is	about	modularizing	complex	software
programs,	with	objects	as	the	fundamental	units	that	hold	your	core	business	logic	and
data.	AOP	complements	OOP	to	add	more	complex	functionality	transparently	across
modules	of	your	application	without	polluting	the	original	object	structure.	AOP	stitches
(weaves)	cross-cutting	concerns	into	your	program,	either	at	compile	time	or	runtime,
without	modifying	the	base	code	itself.	AOP	lets	the	object-oriented	program	stay	clean
and	just	have	the	core	business	concerns.

Static	and	dynamic	AOP
In	AOP,	the	framework	weaves	the	cross-cutting	concerns	into	the	main	program
transparently.	This	weaving	process	comes	in	two	different	flavors:	static	and	dynamic.	In
the	case	of	static	AOP,	as	the	name	implies,	Aspects	are	compiled	directly	into	static	files,
that	is,	to	the	Java	bytecode,	on	compilation.	This	method	performs	better,	as	there	is	no
special	interception	at	runtime.	But	the	drawback	is	that	you	need	to	recompile	the	entire
application	every	time	you	change	anything	in	the	code.	AspectJ,	one	of	the	most
comprehensive	AOP	implementations,	provides	compile-time	weaving	of	Aspects.

In	the	case	of	dynamic	AOP,	the	weaving	process	is	performed	dynamically	at	runtime.
Different	frameworks	implement	this	differently,	but	the	most	general	way	of	achieving
this	is	using	proxies	or	wrappers	for	the	advised	objects,	allowing	the	Advice	to	be
invoked	as	required.	This	is	a	more	flexible	method	as	you	can	apply	AOP	with	varying
behavior	at	runtime	depending	on	data,	which	is	not	possible	in	the	case	of	static	AOP.
There	is	no	need	for	recompiling	the	main	application	code	if	you	use	XML	files	for
defining	your	AOP	constructs	(schema-based	approach).	The	disadvantage	of	dynamic
AOP	is	a	very	negligible	performance	loss	due	to	the	extra	runtime	processing.

Spring	AOP	is	proxy	based,	that	is,	it	follows	the	dynamic	flavor	of	AOP.	Spring	provides
the	facility	to	use	static	AOP	by	integrating	with	AspectJ	too.

AOP	concepts	and	terminology
Understanding	AOP	concepts	and	terms	gives	you	an	excellent	starting	point	for	AOP;	it
helps	you	visualize	how	and	where	AOP	can	be	applied	in	your	application:

Aspect:	The	concern	that	cuts	across	multiple	classes	or	modules.	Transaction	and
security	are	examples.	Spring	Transaction	is	implemented	as	Aspects.
Join	point:	A	point	during	the	execution	of	the	program	at	which	you	want	to	insert
additional	logic	using	AOP.	A	method	execution	and	a	class	instantiation	are
examples.
Advice:	The	action	taken	by	(the	code	or	method	that	executes)	the	Aspect	at	a
particular	join	point.	Different	types	of	advices	include	before,	after,	and	around
advices.	Typically,	an	Aspect	has	one	or	more	Advices.
Pointcut:	An	expression	that	defines	or	matches	a	set	of	join	points.	The	Advice
associated	with	a	pointcut	executes	at	any	join	point	it	matches.	Spring	supports	the
AspectJ	pointcut	expression	language	by	default.	An	example	is	execution(*
com.xyz.service.*.*(..)).
Target	object:	The	advised	object.	If	you	use	dynamic	AOP,	this	would	be	a	proxied
object.
Weaving:	Inserting	Aspects	into	a	target	object	to	make	it	advised	at	compile	time,
load	time	or	runtime.	AspectJ	supports	compile-time	weaving	and	Spring	weaves	at
runtime.
Introduction:	The	process	by	which	you	add	a	new	method	or	field	to	an	advised
object,	with	or	without	making	it	implement	an	interface.

Spring	AOP	–	definition	and	configuration	styles
Spring	provides	a	proxy-based	dynamic	implementation	of	AOP,	developed	purely	in
Java.	It	neither	requires	a	special	compilation	process	like	AspectJ	nor	controls	the	class
loader	hierarchy,	hence	it	can	be	deployed	inside	any	Servlet	container	or	application
server.

Although	not	a	full-blown	AOP	framework	like	AspectJ,	Spring	provides	a	simple	and
easy-to-use	abstraction	of	most	of	the	common	features	of	AOP.	It	supports	only	method
execution	join	points;	field	interception	is	not	implemented.	Spring	provides	tight
integration	with	AspectJ,	in	case	you	want	to	advise	very	fine-grained	Aspect	orientation
that	Spring	AOP	doesn’t	cover	by	adding	more	AspectJ-specific	features	without	breaking
the	core	Spring	AOP	APIs.

Spring	AOP	uses	standard	JDK	dynamic	proxies	for	Aspect	orientation	by	default.	JDK
dynamic	proxies	allow	any	interface	(or	set	of	interfaces)	to	be	proxied.	If	you	want	to
proxy	classes	rather	than	interfaces,	you	may	switch	to	CGLIB	proxies.	Spring
automatically	switches	to	use	CGLIB	if	a	target	object	does	not	implement	an	interface.

Starting	from	Spring	2.0,	you	can	follow	either	a	schema-based	approach	or	an	@AspectJ
annotation	style	to	write	custom	Aspects.	Both	of	these	styles	offer	fully	typed	Advice	and
use	of	the	AspectJ	pointcut	language	while	still	using	Spring	AOP	for	weaving.

XML	schema-based	AOP
When	using	schema-based	AOP,	you	need	to	import	aop	namespace	tags	into	your
application-context	file,	as	follows:

<beans	xmlns="http://www.springframework.org/schema/beans"

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

				xmlns:aop="http://www.springframework.org/schema/aop"	

				xsi:schemaLocation="

								http://www.springframework.org/schema/beans	

http://www.springframework.org/schema/beans/spring-beans.xsd

								http://www.springframework.org/schema/aop	

http://www.springframework.org/schema/aop/spring-aop.xsd">

<!--	bean	definitions	here	-->

</beans>

@AspectJ	annotation-based	AOP
@AspectJ	refers	to	a	style	of	declaring	Aspects	as	regular	Java	classes	that	are	annotated.
Spring	interprets	the	same	annotations	as	AspectJ	5,	using	a	library	supplied	by	AspectJ
for	pointcut	parsing	and	matching.	Spring	AOP	has	no	dependency	on	the	AspectJ
compiler	or	weaver,	though.

When	using	the	@AspectJ	annotation	style,	you	first	need	to	enable	@AspectJ	support	in
your	Spring	configuration,	whether	or	not	it	is	in	the	XML	or	Java	configuration.
Additionally,	you	need	to	make	sure	you	add	aspectjweaver.jar	in	your	classpath.
Adding	an	@EnableAspectJAutoProxy	annotation	to	your	Java	@Configuration
annotation	will	enable	@AspectJ	support	in	your	project:

@Configuration

@ComponentScan(basePackages	=	"com.springessentialsbook")

@EnableAspectJAutoProxy

public	class	AOPJavaConfigurator	{

...

}

Alternatively,	if	you	use	XML-based	configuration,	@AspectJ	support	can	be	enabled	by
adding	the	<aop:aspectj-autoproxy/>	element	in	your	application-context	file.

Declaring	an	@Aspect	annotation
Your	Aspect	is	a	simple	POJO,	either	annotated	with	@Aspect
(org.aspectj.lang.annotation.Aspect)	or	declared	as	<aop:aspect/>	under	the
<aop:config>	section	of	your	application-context	XML	file.	Remember,	the	class
marked	as	@Aspect	should	be	declared	as	a	Spring	bean	using	either	an	annotation	or
<bean/>	declaration	in	your	application	context	XML	file.

Here	is	an	annotated	Aspect,	a	Spring	component	annotated	as	@Aspect:

@Component("auditLoggerAspect")

@Aspect

public	class	AuditLoggerAspect	{

...

}

Note	that	@Aspect	is	a	Spring	bean	too.	It	can	be	any	of	the	specializations	of	@Component.

Now,	let’s	take	a	look	at	the	XML	alternative	for	Aspect	declaration:

<aop:config>

			<aop:aspect	id="audLogAspect"	ref="auditLoggerAspect">

</aop:config>

<bean	id="auditLoggerAspect"	class="com…AuditLoggerAspect"/>

Aspects	may	have	methods	and	fields,	just	like	any	other	class.	They	may	also	contain
pointcut,	advice,	and	introduction	(inter-type)	declarations.	Aspects	themselves	cannot	be
the	target	of	Advice	from	other	Aspects;	they	are	excluded	from	auto-proxying.

Pointcuts
A	pointcut	comprises	two	parts,	as	shown	in	the	following	code	snippet:	a	method
signature	(an	empty	method	with	a	void	return	type	inside	the	Aspect	class)	with	any
parameters	and	an	expression	that	matches	the	exact	method	executions	we	are	interested
in.	Remember,	Spring	AOP	only	supports	method	execution	join	points:

@Pointcut("execution(*	

com.springessentialsbook.service.TaskService.createTask(..))")	//Pointcut	

expression

private	void	createTaskPointCut()	{}	//Signature

The	pointcut	expression	follows	the	standard	AspectJ	format.	You	may	refer	to	the
AspectJ	pointcut	expression	reference	for	the	detailed	syntax.	The	following	section	gives
you	a	strong	foundation	for	constructing	pointcuts	for	Spring	AOP.

Pointcut	designators

Spring	AOP	supports	just	a	subset	of	the	original	AspectJ	pointcut	designators	(PCDs)
for	use	in	pointcut	expressions,	as	given	in	the	following	table:

PCD Description

execution Method	execution	join	point;	the	default	PCD	for	Spring	AOP

within Matches	methods	in	a	range	of	types,	packages,	and	so	on

this Matches	proxy	instances	of	a	given	type

target Matches	target	object	with	a	given	type

args Matches	methods	with	the	given	argument	types

@target Matches	methods	of	classes	with	the	given	annotation

@args Matches	methods	having	argument	(s)	with	the	given	annotation	(s)

@within Matches	methods	within	types	that	have	a	given	annotation

@annotation Matches	methods	with	the	given	annotation

In	addition	to	the	preceding	table,	Spring	supports	an	extra	non-AspectJ	PCD,	bean,	which
is	useful	to	directly	refer	to	a	Spring	bean	or	a	set	of	beans	with	a	comma-separated	list	of
beans	using	bean(idsOrNamesOfBean).

Note	that	the	pointcuts	intercept	only	public	methods	due	to	the	proxy	nature	of	Spring
AOP.	If	you	want	to	intercept	protected	and	private	methods	or	even	constructors,
consider	using	AspectJ	weaving	(integrated	with	Spring	itself)	instead.

Pointcut	examples

Pointcut	expressions	can	be	combined	using	&&,	||,	and	!.	You	can	refer	to	pointcut
expressions	by	name,	too.	Let’s	see	a	few	examples:

@Pointcut("execution(*	com.taskify.service.*.*(..))")

private	void	allServiceMethods()	{}

@Pointcut("execution(public	*	*(..))")

private	void	anyPublicOperation()	{}

@Pointcut("anyPublicOperation()	&&	allServiceMethods()")

private	void	allPublicServiceMethods()	{}

@Pointcut("within(com.taskify.service..*)")

private	void	allServiceClasses()	{}

@Pointcut("execution(*	set*(..))")

private	void	allSetMethods()	{}

@Pointcut("execution(*	com.taskify.service.TaskService.*(..))")

private	void	allTaskServiceMethods()	{}

@Pointcut("target(com.taskify.service.TaskService)")

private	void	allTaskServiceImplMethods()	{} 

@Pointcut("@within(org.springframework.transaction.annotation.Transactional

)")

private	void	allTransactionalObjectMethods()	{}

@Pointcut("@annotation(org.springframework.transaction.annotation.Transacti

onal)")

private	void	allTransactionalAnnotatedMethods()	{}

@Pointcut("bean(simpleTaskService)")

private	void	allSimpleTaskServiceBeanMethods()	{}

An	XML	version	of	a	pointcut	definition	goes	like	this:

<aop:config>

		...

			<aop:pointcut	id="allTaskServicePointCut"

									expression="execution(*com.taskify.service..TaskService.*(..))"/>

</aop:config>

Advices
An	Advice	is	the	action	that	gets	injected	before,	after,	or	around	the	method	executions
matched	by	the	pointcut	expression.	The	pointcut	expression	associated	with	an	Advice
could	be	a	named	or	defined	pointcut,	as	listed	in	the	above	examples,	or	a	pointcut
expression	declared	in	place,	that	is,	advices	and	pointcuts	can	be	declared	together.

Let’s	see	an	example	for	an	Advice	that	refers	to	a	pointcut	expression	named	Pointcut:

@Pointcut("execution(*	com.taskify.service.TaskService.*(..))")

private	void	allTaskServiceMethods()	{}

@Before("allTaskServiceMethods()")

private	void	logBeforeAllTaskServiceMethods()	{

		logger.info("***	logBeforeAllTaskServiceMethods	invoked	!	***");

}

The	following	code	listing	combines	both	a	join	point	and	Advice	in	one	go.	This	is	the
most	common	approach:

@After("execution(*	com.taskigy.service.TaskService.*(..))")

private	void	logAfterAllTaskServiceMethods()	{

		logger.info("***logAfterAllTaskServiceMethods	invoked	!	***");

}

The	following	table	lists	the	available	Advice	annotations:

Advice
annotation Description

@Before Runs	before	method	execution.

@After Runs	after	method	exit	(finally).

@AfterReturning
Runs	after	the	method	returns	without	an	exception.	You	can	bind	the	return	value	with	the	Advice
as	the	method	argument.

@AfterThrowing
Runs	after	the	method	exits	by	throwing	an	exception.	You	can	bind	the	exception	with	the	Advice
as	the	method	argument.

@Around
The	target	method	actually	runs	inside	this	Advice.	It	allows	you	to	manipulate	the	method
execution	inside	your	Advice	method.

The	@Around	Advice

The	@Around	Advice	gives	you	more	control	over	method	execution,	as	the	intercepted
method	essentially	runs	inside	your	Advice	method.	The	first	argument	of	the	Advice	must
be	ProceedingJoinPoint.	You	need	to	invoke	the	proceed()	method	of
ProceedingJoinPoint	inside	the	Advice	body	in	order	to	execute	the	target	method;	else,
the	method	will	not	get	called.	After	the	method	execution	returns	to	you	with	whatever	it
returns	back	to	your	advice,	do	not	forget	to	return	the	result	in	your	Advice	method.	Take
a	look	at	a	sample	@Around	advice:

@Around("execution(*	com.taskify.service.**.find*(..))")

private	Object	profileServiceFindAdvice(ProceedingJoinPoint	jPoint)	throws	

Throwable	{

				Date	startTime	=	new	Date();

				Object	result	=	jPoint.proceed(jPoint.getArgs());

				Date	endTime	=	new	Date();

				logger.info("Time	taken	to	execute	operation:	"	+	jPoint.getSignature()	

+	"	is	"	+	(endTime.getTime()	-	startTime.getTime())	+	"	ms");

				return	result;

}

Accessing	Advice	parameters

There	are	two	distinct	ways	of	accessing	the	parameters	of	the	method	you	are	advising	in
the	Advice	method:

Declaring	a	join	point	as	the	first	argument
Binding	args	in	the	pointcut	definition

Let’s	see	the	first	approach:

@Before("execution(*	com.taskify.service.TaskService.createTask(..)")

private	void	logBeforeCreateTaskAdvice(JoinPoint	joinpoint)	{

			logger.info("***logBeforeCreateTaskAdvice	invoked	!	***");

			logger.info("args	=	"	+	Arrays.asList(joinpoint.getArgs()));

}

You	can	see	that	joinpoint.getArgs()	returns	Object[]	of	all	the	arguments	passed	to
the	intercepted	method.	Now,	let’s	see	how	to	bind	named	arguments	to	the	Advice
method:

@Before("createTaskPointCut()	and	args(name,	priority,	createdByuserId,	

assigneeUserId)")

private	void	logBeforeCreateTaskAdvice(String	name,	int	priority,	int	

createdByuserId,	int	assigneeUserId)	{

		logger.info("name	=	"	+	name	+	";	priority	=	"	+	priority	+	";

		createdByuserId	=	"	+	createdByuserId);

}

Note	that	the	joinpoint	expression	matches	the	arguments	by	name.	You	can	have	a
joinpoint	object	as	an	optional	first	argument	in	the	method	signature	without	specifying
it	in	the	expression:	you	will	have	both	joinpoint	and	arguments,	enabling	more
manipulation.

Testing	with	Spring
The	degree	of	testability	shows	the	elegance	and	maturity	of	any	framework.	A	more
testable	system	is	more	maintainable.	Spring	Framework	provides	comprehensive	support
for	end-to-end	testing	of	applications	for	both	unit	testing	as	well	as	integration	testing.
Spring	promotes	test-driven	development	(TDD),	facilitates	integration	testing,	and
advocates	a	set	of	best	practices	for	the	unit	testing	of	beans.	This	is	another	compelling
reason	for	using	Spring	to	build	serious	applications.

The	POJO-based	programming	model	and	loosely	coupled	nature	of	Spring	beans	make	it
easier	to	participate	in	JUnit	and	TestNG	tests	even	without	Spring	in	the	middle.	On	top
of	this,	Spring	provides	many	testing	support	components,	utilities,	and	mock	objects	to
make	the	testing	easier.

Mock	objects
Spring	provides	mock	implementations	of	many	container-specific	components	so	that	the
beans	can	be	tested	outside	a	server	or	container	environment.	MockEnvironment	and
MockPropertySource	are	useful	for	testing	environment-dependent	beans.	To	test	beans
that	depend	on	HTTP	communications,	Spring	provides	mock	classes	for	both	client	and
server	sides	inside	the	org.springframework.mock.http	and
org.springframework.mock.http.client	packages.

Another	set	of	useful	classes	can	be	found	under	org.springframework.mock.jndi	to	run
test	suites	that	depend	on	JNDI	resources.	The	org.springframework.mock.web	package
contains	mock	objects	for	web	components	based	on	Servlet	3.0,	such	as	web	contexts,
filters,	controllers,	and	asynchronous	request	processing.

Unit	and	integration	testing	utilities
Spring	ships	certain	general-purpose	and	context-specific	utilities	for	unit	and	integration
testing.	The	org.springframework.test.util	package	contains	a	set	of	utility	classes	for
various	testing	purposes,	including	reflection,	AOP,	JSON,	and	XML	manipulations.
Classes	under	org.springframework.test.web	and	its	nested	subdirectories	contain	a
comprehensive	set	of	utility	classes	to	test	beans	dependent	on	the	web	environment.
Another	set	of	useful	classes	for	usages	specific	to	ApplicationContext	can	be	found
under	org.springframework.test.context	and	its	child	packages.	Their	support
includes	the	loading	and	caching	of	web,	portlet,	or	application	contexts	in	the	test
environment;	resolving	profiles;	loading	property	sources	and	SQL	scripts;	managing
transactions	for	test	environments;	and	so	on.

The	support	classes	and	annotations	under	the	packages	listed	earlier	facilitate	the	easy
and	natural	testing	of	Spring	applications.	A	comprehensive	discussion	over	Spring	test
support	is	beyond	the	scope	of	this	book.	However,	gaining	a	good	understanding	of
Spring’s	comprehensive	support	for	unit	and	integration	tests	is	vital	in	order	to	develop
elegant	code	and	maintainable	applications	using	Spring.

Summary
We	have	successfully	covered	all	the	major	technologies	and	concepts	of	core	Spring
Framework	in	this	chapter.	We	are	now	capable	of	developing	robust,	standalone	Spring
applications	composed	of	loosely-coupled	beans	inside	the	powerful	Spring	IoC	container.
We	know	how	to	apply	cross-cutting	concerns	transparently	across	different	layers	of	an
application	using	the	very	flexible	pointcut	expressions	of	Spring	AOP.	We	can
manipulate	Spring	beans	using	Spring	Expression	Language,	which	helps	keep	the	code
clean	and	highly	maintainable.	We	learned	how	to	maintain	multiple	environment-specific
bean	configurations	and	property	files	using	bean	definition	profiles.	Now,	we	are	all	set
for	professional	Spring	development.

The	source	code	available	with	this	chapter	contains	multiple	Spring	projects	that
demonstrate	the	different	ways	of	configuring	Spring	as	well	as	usage	scenarios.	The
examples	listed	in	this	chapter	have	been	extracted	from	them.

In	the	next	chapter,	we	will	explore	Spring	Web	module,	leveraging	all	that	we	learned	in
this	chapter	in	a	web-based	environment.	The	topics	we	have	learned	in	this	chapter	are
going	to	be	the	foundation	for	all	the	advanced	topics	that	will	be	covered	in	the	following
chapters.

Chapter	2.	Building	the	Web	Layer	with
Spring	Web	MVC
Web	application	development	is	a	major	focus	area	for	enterprise	systems.	In	this	age	of
cloud	and	big	data,	web	applications	are	under	a	tremendous	load	of	an	ever-increasing
number	of	concurrent	users	accessing	them	from	multiple	devices	such	as	mobiles	and
tablets,	as	well	as	traditional	desktop	web	browsers.	Modern	web	applications	have	to
address	a	newer	set	of	nonfunctional	requirements,	such	as	scalability,	performance,
productivity,	responsiveness,	and	multi-device	support.

Spring	MVC	is	a	web	framework	from	Spring,	perfectly	built	from	the	ground	up	to
address	the	concerns	of	modern	web	applications.	A	lightweight	and	high-performance
web	framework,	Spring	MVC	is	designed	to	be	highly	productive	from	day	one,	flexible,
and	adaptable	with	a	wide	variety	of	view	technologies.	Sitting	on	top	of	the	mighty
Spring	Framework,	it	integrates	well	with	all	Java	EE	technologies	and	other	open	source
frameworks.	Just	like	any	technology	under	the	Spring	portfolio,	Spring	MVC	also
promotes	POJO	programming	with	the	help	of	a	well-defined	set	of	annotations,
namespace	XML	tags,	and	web-support	components.

This	chapter	introduces	Spring	MVC	and	its	powerful	features	to	you,	describes	how	to	set
it	up,	and	guides	you	on	its	advanced	usages,	configurations,	and	optimizations	with
relevant	examples.	We	will	mostly	use	annotations	in	these	examples	for	simplicity.	At	the
end	of	this	chapter,	you	will	be	able	to	build	web	applications	with	Spring	MVC	that	have
HTML-based	user	interfaces	as	well	as	RESTful	APIs	with	JSON	and	XML	formats.

Features	of	Spring	MVC
Spring	MVC	bundles	a	compelling	set	of	features	and	advantages	over	rival	web
technologies.	Knowledge	of	these	will	help	you	decide	on	choosing	Spring	MVC	for	your
requirements.	The	following	list	covers	most	of	them:

Simple	configuration	and	native	integration	with	Spring	Framework,	leveraging	the
powerful	features	of	Spring	and	other	open	source	libraries
Built	on	top	of	Java	web	technologies	such	as	Servlets,	JSP,	and	JSTL	and	can	be
deployed	into	any	standard	Servlet	container,	such	as	Tomcat
Implemented	based	on	the	Model-View-Controller	(MVC)	architecture	pattern,	with
clear	separation	of	concerns	using	simple	annotations	and	namespace	XML	tags
Explicit	support	for	convention	over	configuration	for	MVC	components
Supports	a	big	set	of	view	technologies,	such	as	JSP,	Thymeleaf,	Handlebars,
Velocity,	FreeMarker,	PDF,	Excel,	and	JasperReports
Declarative	input	validation,	data	binding,	and	exception	handling
Flexible	URL	mapping	with	automatic	request	and	response	transformation	into
various	formats	such	as	JSON,	XML,	and	HTML
Support	for	non-blocking	asynchronous	request	processing	and	HTTP	streaming
Support	for	internationalization,	themes,	and	multipart	file	uploads
Easy	integration	with	Spring	Security	and	thorough	testability
HTTP	caching	for	increased	performance
A	simple,	yet	powerful,	JSP	tag	library

What	makes	Spring	MVC	outstanding	is	its	simple	programming	model,	a	feature
inherited	from	the	core	Spring	Framework	itself.	A	developer	familiar	with	any	standard
web	framework	will	find	Spring	MVC	very	familiar	and	easy	to	learn.

The	Model-View-Controller	pattern
MVC	is	a	well-established	architectural	pattern	popularly	used	for	building	interactive
web	and	desktop	applications.	There	are	numerous	frameworks	implementing	this	pattern
in	most	software	platforms.	MVC	divides	the	application	into	three	core	elements	that
actually	represent	layers,	separates	concerns	between	these	three	core	elements,	and
defines	how	they	communicate	with	each	other.

Model	represents	data,	View	displays	the	Model,	and	Controller	handles	user	actions.
Model	can	be	any	data,	including	that	stored	in	a	database.	It	usually	represents	a
collection	of	domain	objects	with	clearly	defined	relationships	to	each	other.	A	Model	can
be	displayed	in	multiple	views	depending	on	how	the	application	is	designed.

Controller	acts	as	an	intermediary	between	View	and	Model.	It	often	has	a	set	of	handlers
for	each	event	generated	by	the	view	as	the	user	interacts	with	it.	Controller	delegates
user	actions	to	appropriate	handlers	and	then	finally	redirects	to	another	view	for
displaying	the	result	of	that	action.

There	are	so	many	implementations	of	the	MVC	pattern	as	frameworks	across	technology
platforms	use	it	in	different	ways.	Spring	MVC	has	implemented	it	in	the	simplest	and
least	invasive	fashion,	while	naturally	integrating	it	with	the	core	Spring	Framework.

Your	first	Spring	MVC	application
Let’s	jump	to	creating	a	very	simple	Spring	MVC	web	application.	For	the	purpose	of
learning,	we	will	develop	the	web	version	of	Taskify,	the	task	management	system	we
started	in	Chapter	1,	Getting	Started	with	Spring	Core.	The	samples	in	this	chapter	use
Spring	Tool	Suite	(STS)	as	the	IDE,	but	you	can	use	your	favorite	IDE,	such	as	IntelliJ
and	NetBeans.	Almost	all	Java	IDEs	support	Spring	development;	most	of	them	have
plugins	to	manage	Spring	projects	and	artifacts.

To	begin	with,	follow	these	steps;	then,	we	will	explore	the	code:

1.	 Open	STS	or	Eclipse	→	create	a	new	project	→	type	a	project	name	→	select	a
template,	either	Spring	MVC	Project	or	Simple	Spring	Web	Maven	→	specify	the
top-level	package	name	→	finish.	Your	project	structure	will	be	generated.

2.	 Make	sure	your	pom.xml	file	contains	Maven	dependencies	for	the	spring-context,
spring-mvc,	servlet-api,	jsp-api,	and	jstl	libraries.	Note	that	jsp-api	and	jstl
are	required	only	if	you	are	using	JSP	as	the	view	technology.

3.	 If	it	hasn’t	been	generated,	create	web.xml	under	WEB-INF,	with	the	following
content:

<?xml	version="1.0"	encoding="UTF-8"?>

<web-app	xmlns="http://xmlns.jcp.org/xml/ns/javaee"

		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

		http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"	version="3.1">

<!--	\	Root	Container	shared	by	Servlets	and	Filters	-->

		<context-param>

				<param-name>contextConfigLocation</param-name>

				<param-value>/WEB-INF/spring/root-context.xml</param-value>

		</context-param>

<!--	Loads	Spring	Container	shared	by	all	Servlets	and	Filters	-->

		<listener>

				<listener-class>

						org.springframework.web.context.ContextLoaderListener

				</listener-class>

		</listener>

		<!--	Processes	application	requests	-->

		<servlet>

				<servlet-name>appServlet</servlet-name>

				<servlet-class>

						org.springframework.web.servlet.DispatcherServlet

				</servlet-class>

				<init-param>

						<param-name>contextConfigLocation</param-name>

						<param-value>/WEB-INF/spring/servlet-context.xml</param-value>

				</init-param>

				<load-on-startup>1</load-on-startup>

		</servlet>

		<servlet-mapping>

				<servlet-name>appServlet</servlet-name>

				<url-pattern>/</url-pattern>

		</servlet-mapping>

</web-app>

4.	 If	it	hasn’t	been	generated,	create	a	root-context.xml	file,	with	the	following
content:

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		xsi:schemaLocation="http://www.springframework.org/schema/beans	

http://www.springframework.org/schema/beans/spring-beans.xsd">

		<!--	Root	Context:	defines	all	shared	beans	go	here	-->

</beans>

5.	 If	it	hasn’t	been	generated,	create	a	servlet-context.xml	file,	with	the	following
content:

<?xml	version="1.0"	encoding="UTF-8"?>

<beans:beans	xmlns="http://www.springframework.org/schema/mvc"	...>

		<!--	Enables	the	Spring	MVC	@Controller	programming	model	-->

		<annotation-driven	/>

		<context:component-scan	base	package="com.taskify"/>

		<!--	Handles	HTTP	GET	requests	for	/resources/**	by	serving	up	static	

resources	in	${webappRoot}/resources	directory	-->

		<resources	mapping="/resources/**"	location="/resources/"	/>

		<!--	Resolves	views	selected	for	rendering	by	@Controllers	to

						.jsp	resources	in	the	/WEB-INF/views	directory	-->

		<beans:bean	class=

		"org.springframework.web.servlet.view.InternalResourceViewResolver">

				<beans:property	name="prefix"	value="/WEB-INF/views/"	/>

				<beans:property	name="suffix"	value=".jsp"	/>

		</beans:bean>

</beans:beans>

6.	 Now,	create	a	Java	class,	HomeController,	under	the	package
com.taskify.web.controllers,	with	the	following	content:

@Controller

public	class	HomeController	{

		private	static	final	Logger	logger	=	

LoggerFactory.getLogger(HomeController.class);

		@Autowired

		private	TaskService	taskService;

		//	Simply	selects	the	home	view	to	render	by	returning	//	name.

		@RequestMapping(value	=	"/",	method	=	RequestMethod.GET)

		public	String	home(Locale	locale,	Model	model)	{

				logger.info("Welcome	to	Taskify!	Locale	is	{}.",	locale);

				model.addAttribute("totalTasks",

				taskService.findAllTasksCount());

				model.addAttribute("totalOpenTasks",	

taskService.findAllOpenTasksCount());

				return	"home";

		}

}

7.	 Create	a	JSP	view,	home.jsp,	under	~WEB-INF/views,	with	the	following	content:

<%@	taglib	uri="http://java.sun.com/jsp/jstl/core"	prefix="c"%>

<%@	page	session="false"%>

<html>

		<head>

				<jsp:include	page="/WEB-INF/views/theme.jsp"></jsp:include>

				<title>Taskify	::	Home</title>

		</head>

		<body>

				<jsp:include	page="/WEB-INF/views/navbar.jsp"></jsp:include>

				<div	class="container">

						<h1>Welcome	to	Taskify!</h1><hr	/>

						<P>There	are	${totalOpenTasks}(${totalTasks})	open	tasks.</P>

				</div>

		</body>

</html>

8.	 Make	sure	you	have	the	TaskService	class	(copy	it	from	Chapter	1,	Getting	Started
with	Spring	Core)	and	its	concrete	implementation	in	your	project,	with	the	methods
findAllTasksCount()	and	findAllOpenTasksCount()	implemented.

9.	 Now	that	your	project	is	ready,	make	sure	you	have	an	Apache	Tomcat	(or	any	other)
server	installed	and	configured	with	your	IDE.	You	can	download	Tomcat	from
http://tomcat.apache.org/	and	install	on	your	PC.

10.	 STS	and	Eclipse	allow	you	to	run	Java	web	apps	from	the	IDE	just	by	right-clicking
Run	As	→	Run	on	Server.	Resolve	all	errors,	if	any,	and	run	again.

11.	 You	should	see	the	home	screen	of	your	web	app	(at
http://localhost:8080/chapter2/),	as	seen	here:

http://tomcat.apache.org/

Setting	up	a	Spring	MVC	application
Let’s	figure	out	how	a	Spring	MVC	web	application	is	configured	by	analyzing	the
application	artifacts	listed	in	the	previous	section,	Your	first	Spring	MVC	application.	It
contains	all	the	necessary	artifacts	for	building	a	Spring	MVC	web	app.

The	project	structure	of	a	Spring	MVC	application
The	easiest	way	to	create	the	project	structure	and	the	necessary	artifacts	is	using	STS	to
create	a	Spring	MVC	project,	as	described	in	the	previous	section.	Alternatively,	you	may
use	one	of	the	Maven	archetypes	available	in	various	repositories	online.	STS	uses	such	a
bundled	archetype.	Here	is	the	typical	project	structure	of	a	Spring	MVC	application	as
viewed	in	STS:

This	structure	represents	a	single-WAR	web	application	where	all	the	services	and	data
access	components	are	collocated	with	the	web	controllers.	In	the	case	of	bigger
applications,	many	such	components	could	be	part	of	a	different	JAR	library	project,	to	be
shared	between	multiple	web	apps	and	then	added	as	Maven	dependencies	to	the
consuming	web	apps	and	beans	imported	to	the	web	application	context	XML	files	using
an	<import/>	tag	or	annotation	config.

Now,	let’s	examine	each	artifact	listed	in	Your	first	Spring	MVC	application	in	detail.

The	web.xml	file	–	Springifying	the	web	app
The	web.xml	file	is	the	standard	Java	web	descriptor	in	which	the	fundamental	web
components	that	make	up	a	Java	web	application	are	registered	with	the	Servlet	container.
ServletContextListener,	and	ServletFilter	components	are	configured	here.

A	Spring	MVC	application	is	also	configured	and	bootstrapped	in	web.xml.
ContextLoaderListener,	registered	as	a	ServletContextListener	in	the	web.xml
sample,	bootstraps	Spring’s	root	WebApplicationContext.	In	the	previous	chapter,	we	saw
how	a	simple	console	application	bootstraps	the	Spring	context	from	inside	the	main
method	using	ClassPathXmlApplicationContext.	In	the	case	of	a	web	application,
following	ContextLoaderListener	loads	the	WebApplicationContext.	Remember,	a
Spring	MVC	application	is	not	just	another	Servlet-based	application	but	rather	Spring
integrated	within	a	web	context.

			<listener>

						<listener-class>

									org.springframework.web.context.ContextLoaderListener

						</listener-class>

			</listener>

The	following	listener	looks	for	a	context-param	tag,	contextConfigLocation,	which	is
the	location	of	the	Spring	root	bean	definition	XML	file,	as	seen	in	the	web.xml	file
earlier:

<context-param>

			<param-name>contextConfigLocation</param-name>

			<param-value>/WEB-INF/spring/root-context.xml</param-value>

</context-param>

The	next	very	important	Spring	component	configured	in	the	web.xml	file	is
DispatcherServlet,	the	centralized	entry	point	into	the	Spring	MVC	application	which
maps	every	request	with	appropriate	handlers.	DispatcherServlet	is	an	implementation
of	the	Front	Controller	design	pattern,	which	is	a	single,	centralized	entry-point	for	all
HTTP	requests	that	come	into	the	application.	This	internally	delegates	them	to	the	actual
handler	of	the	request	type.	Here	is	an	excerpt	from	the	earlier	web.xml	listing:

<servlet>

			<servlet-name>appServlet</servlet-name>

			<servlet-class>

						org.springframework.web.servlet.DispatcherServlet

			</servlet-class>

			<init-param>

						<param-name>contextConfigLocation</param-name>

						<param-value>

									/WEB-INF/spring/appServlet/servlet-context.xml

						</param-value>

			</init-param>

			<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

			<servlet-name>appServlet</servlet-name>

			<url-pattern>/</url-pattern>

</servlet-mapping>

The	preceding	Servlet	registration	of	DispatcherServlet	maps	the	root	URL	to
DispatcherServlet	so	that	every	HTTP	request	that	comes	into	the	server	will	be	first
handled	by	DispatcherServlet.	Additionally,	it	specifies	where	the	Spring	application
context	file	for	this	Servlet	will	be.

Note
Your	application	can	have	any	number	of	DispatcherServlet	definitions	with	unique
Servlet	names,	depending	on	how	you	want	to	divide	your	URL	subcontexts	logically
based	on	your	functional	modules.	Most	applications	would	have	just	one
DispatcherServlet	defined.

ApplicationContext	files	in	a	Spring	MVC
application
A	Spring	MVC	application	is	nothing	but	a	Servlet-based	Web	MVC	implementation	with
Spring	integrated	natively.	Hence,	it	requires	Spring	bean	definitions	like	any	other	Spring
application,	as	we	have	seen	in	the	previous	chapter.	In	the	case	of	a	Spring	MVC
application,	there	would	be	some	framework-specific	beans	in	addition	to	application-
specific	beans	registered	in	the	context.

For	the	sake	of	organizing	beans	under	different	logical	categories,	such	as	web-specific
(DispatcherServlet)	as	well	as	shared	beans,	multiple	bean	definitions	can	be	used.	For
example,	DispatcherServlet	can	have	its	own	application	context	file	with	beans	helping
its	processing	(just	for	the	web	context),	and	there	could	be	a	root	application	context	file,
where	beans	that	are	not	specific	to	the	web	layer	but	shared	between	many	layers	are
defined.

Inside	the	sample	listed	in	the	earlier	section	as	part	of	Your	first	Spring	MVC	application,
you	can	see	two	Spring	bean	definition	XML	files,	root-context.xml	and	servlet-
context.xml.	The	root-context.xml	file	represents	your	root	WebApplicationContext
loaded	via	ContextLoaderListener.	This	is	the	place	where	you	define	or	import	your
shared	beans,	such	as	service	beans,	and	data	access	objects.

The	servlet-context.xml	file	is	loaded	by	DispatcherServlet	on	startup.	The	filename,
servlet-context.xml,	is	an	explicit	filename	given	in	the	sample	listing.	By	default,
DispatcherServlet	looks	for	an	XML	bean	definition	file	with	the	pattern	[servlet-
name]-servlet.xml,	that	is,	if	it	wasn’t	specified	explicitly,	appServlet	would	look	for	a
file	with	the	name	appServlet-servlet.xml	at	the	root	of	the	WEB-INF	folder.	Typically,
this	file	contains	the	bean	definitions	controlling	the	behavior	of	this	Servlet.	For	example,
you	can	see	the	resources	and	view	resolver	bean	definitions	in	the	file	servlet-
context.xml.	You	can	see	that	the	view	resolver	configured	in	the	sample	listing	only
supports	JSP	views.

HomeController	–	@Controller	for	the	home	screen
HomeController	is	a	simple	POJO	with	the	@Controller	annotation.	This	annotation
registers	it	as	a	web	controller	with	a	set	of	annotated	handler	methods	inside	it.	It	can
have	an	@RequestMapping	annotation	at	the	class	level	to	indicate	the	root	URL	of	all
handler	methods	in	it.	The	method	home()	is	the	request	handler	for	the	root	URL,
http://<context-root>/.

Since	the	@Controller	annotation	is	yet	another	Spring	bean,	you	can	inject	any	other
bean	into	it	as	a	dependency.	The	sample	listing	shows	that	HomeController	has	an
autowired	dependency	to	TaskService.	In	the	home()	method,	TaskService	methods	are
invoked,	and	finally,	the	return	values	are	set	as	Model	attributes	for	the	consumption	of
the	latter	parts	of	the	request	and	to	be	used	in	a	view.

Your	application	will	have	many	such	controllers	that	serve	groups	of	related	URL
endpoints;	consider	HomeController	as	your	basic	example.	One	controller	can	have
multiple	request-handling	methods	that	serve	different	URLs.

The	home.jsp	file	–	the	landing	screen
The	home.jsp	file	is	your	view	artifact	for	the	root	(/)	URL.	Notice	how	the	Model
attributes	are	bound	inside	the	JSP	view:

<P>There	are	${totalOpenTasks}(${totalTasks})	open	tasks.</P>

Handling	incoming	requests
Any	request	that	hits	the	root	URL	of	the	app	is	first	received	by	DispatcherServlet,
which	delegates	it	to	HomeController.home(),	which	processes	the	request	and	returns
the	view	name	(home,	in	this	case).	DispatcherServlet	then	picks	up	the	home.jsp	file
based	on	the	resource	and	view	configurations	specified	in	servlet-context.xml	and
renders	it,	passing	the	attributes	of	the	model	instance	created	inside
HomeController.home().

The	architecture	and	components	of
Spring	MVC
Having	gone	through	your	first	Spring	MVC	application,	it	is	now	time	to	look	at	Spring
MVC	applications	from	an	architectural	perspective:

Spring	MVC	components

As	the	name	implies,	Spring	MVC	follows	the	renowned	MVC	architectural	pattern.	This
pattern	ensures	the	separation	of	concerns	by	dividing	responsibilities	into	three	major
roles:

Model:	This	represents	data	and	business	logic
View:	This	represents	presentation
Controller:	This	processes	client	requests	and	delegates	them	to	the	view	for
rendering	back	to	the	client

The	Model	we	are	talking	about	here	is	not	necessarily	persistent	data	(a	data	model)	as
such;	rather,	it	represents	the	information	passed	back	and	forth	between	the	client	and
different	layers	of	the	server	application,	which	form	the	building	blocks	of	any	system.

Besides	the	Model,	View,	and	Controller	components,	DispatcherServlet	too	plays	a
crucial	role	in	the	Spring	MVC	architecture.	It	acts	as	the	Front	Controller,	a	popular	J2EE
design	pattern	adopted	by	many	MVC	Frameworks.	In	fact,	DispatcherServlet	does
much	more	than	just	a	Front	Controller.	It	will	be	explained	in	detail	in	the	next	section.

In	a	Spring	MVC	application,	DispatcherServlet	first	receives	a	client	request	hitting	the
server	via	HTTP	with	a	URL.	With	the	help	of	the	HandlerMapping	configuration,
DipatcherServlet	finds	the	appropriate	Controller	method	for	the	request	based	on	the
URL	pattern	and	delegates	the	request	to	it.	The	Controller	processes	the	request,
optionally	fills	in	the	Model	object,	and	returns	the	name	of	the	View	to	be	rendered.
DispatcherServlet	then	picks	the	View	up	and	renders	it	back	on	the	client	after

applying	the	attributes	of	the	Model	to	the	placeholders	in	the	View.

What’s	mentioned	in	the	previous	paragraph	is	simply	the	typical	request	processing	flow
of	Spring	MVC.	However,	it	is	extremely	flexible,	with	a	great	many	options	to	support
different	types	of	view	technologies	and	input	and	output	structures	and	formats,	including
files,	streams,	and	so	on.	We	will	explore	them	more	in	the	following	sections.

DispatcherServlet	explained
DispatcherServlet	is	the	gateway	to	any	Spring	MVC	application.	Inherited	from
javax.servlet.http.HttpServlet,	it	is	typically	configured	declaratively	in	the	web.xml
file.	While	you	can	have	multiple	definitions	of	DispatcherServlet	with	unique	URL
patterns,	most	Spring	MVC	applications	only	have	single	DispatcherServlet	with	the
context-root	URL(/),	that	is,	all	requests	coming	to	that	domain	will	be	handled	by
DispatcherServlet.

Starting	from	Servlet	3.0,	in	addition	to	declarative	configuration	in	the	web.xml	file,
DispatcherServlet	can	be	configured	programmatically	by	implementing	or	extending
either	of	these	three	support	classes	provided	by	Spring:

The	WebAppInitializer	interface
The	AbstractDispatcherServletInitializer	abstract	class
The	AbstractAnnotationConfigDispatcherServletInitializer	abstract	class

The	following	code	listing	demonstrates	how	to	implement	a	WebAppInitializer	directly
in	your	application:

public	class	ApplicationInitializer	implements	WebApplicationInitializer	{

		private	static	final	Logger	logger	=	

LoggerFactory.getLogger(ApplicationInitializer.class);

		@Override

		public	void	onStartup(ServletContext	servletContext)	throws	

ServletException	{

				logger.info("=====	Application	is	starting	up!	========");

				XmlWebApplicationContext	appContext	=	new	XmlWebApplicationContext();

				appContext.setConfigLocation("/WEB-	INF/spring/appServlet/servlet-	

context.xml");

				ServletRegistration.Dynamic	registration	=	

servletContext.addServlet("rootDispatcher",	new	

DispatcherServlet(appContext));

				registration.setLoadOnStartup(1);

				registration.addMapping("/");

		}

WebApplicationContext	–	ApplicationContext	for
the	Web
DispatcherServlet	uses	a	specialized	ApplicationContext	called
WebApplicationContext	that	has	many	web	request	processing	capabilities.	It	is	aware	of
which	ServletContext	it	is	associated	with	and	is	also	capable	of	resolving	themes.	This
interface	has	concrete	implementations	for	specific	contexts	such	as	XML,
@Configuration	annotated	classes,	and	portlets.	By	default,	DispatcherServlet	uses
XMLWebApplicationContext.	When	DispatcherServlet	is	loaded,	it	looks	for	the	bean
configuration	file	of	WebApplicationContext	and	initializes	it.

WebApplicationContext	objects	are	hierarchical.	Every	Spring	MVC	application	has	root
ApplicationContext	(configurable	with	a	context-param	tag	called
contextConfigLocation	in	the	web.xml	file),	and	each	Servlet,	including
DispatcherServlet,	has	its	own	child	context	(configurable	by	its	own	init-param,
contextConfigLocation).	Ideally,	Servlet-specific	child	contexts	have	beans	customizing
that	Servlet,	and	root	ApplicationContext	has	all	shared	beans.

Beans	supporting	DispatcherServlet	and	their	roles
Upon	receiving	a	web	request,	DispatcherServlet	performs	a	set	of	operations	in
sequence	as	part	of	the	request	processing,	with	the	help	of	a	set	of	supporting	beans.	This
table	lists	these	special	beans	and	their	responsibilities:

Bean Responsibilities

HandlerMapping Maps	incoming	web	requests	to	handlers	and	pre-	and	post-processors

HandlerAdapter
Invokes	the	handler	which	resolves	arguments	and	dependencies,	such	as	annotated
arguments	for	URL-mapped	controller	method	endpoints

HandlerExceptionResolver Allows	programmatic	handling	of	exceptions	and	maps	exceptions	to	views

ViewResolver Resolves	logical	view	names	to	view	instances

LocaleResolver Resolves	the	client’s	locale	in	order	to	enable	internationalization

LocaleContextResolver A	richer	extension	of	LocaleResolver,	with	timezone	information

ThemeResolver Resolves	themes	configured	in	your	app	for	enhanced	user	experience

MultipartResolver Handles	multipart	file	uploads	as	part	of	HTTP	requests

FlashMapManager
Manages	FlashMap	instances	that	store	temporary	Flash	attributes	between	requests
redirected	from	one	another

DispatcherServlet	is	extremely	flexible;	we	can	even	create	and	configure	custom
implementations	for	all	these	beans.	However,	Spring	MVC	provides	a	set	of	nice
implementations	by	default	so	that	you	don’t	need	to	customize	or	provide	your	own
implementations	unless	absolutely	required.	These	default	implementations	can	be	found
inside	org.springframework.web.servlet.DispatcherServlet.properties.	If	you
override	them	with	your	own	implementation	of	any	of	these	beans,	yours	will	override
the	defaults.

Controllers	in	detail
Controllers,	with	their	methods	annotated	with	@RequestMapping,	handle	web	requests.
They	accept	input	data	in	multiple	forms	and	transform	them	into	Model	attributes	to	be
consumed	by	views	that	are	displayed	back	to	the	client.	They	connect	the	user	to	service-
layer	beans,	where	your	application	behavior	is	defined.

A	Controller	in	Spring	MVC	has	the	following	signature:

public	interface	Controller	{

			ModelAndView	handleRequest(HttpServletRequest	request,	

HttpServletResponse	response)	throws	Exception;

}

A	Controller	is	designed	as	an	interface,	allowing	you	to	create	any	kind	of
implementation.	Starting	from	Spring	version	2.5,	you	can	turn	any	class	into	a	Controller
just	by	annotating	it	with	@Controller.	It	relieves	you	from	implementing	any	specific
interface	or	extending	a	framework-specific	class:

@Controller

public	class	HomeController	{

			@RequestMapping(value	=	"/",	method	=	RequestMethod.GET)

			public	String	home(Model	model)	{

						logger.info("Welcome	to	Taskify",	locale);

						return	"home";

			}

}

The	@Controller	annotation	assigns	the	role	of	a	Controller	to	the	given	class.	A	Spring
MVC	application	autodetects	all	the	controllers	in	its	classpath	and	registers	them	with
WebApplicationContext	if	you	enable	component	scanning,	as	shown	here:

<context:component-scan	base-package="com.taskify"	/>

@Controller,	@RequestMapping,	and	a	set	of	other	annotations	form	the	basis	of	Spring
MVC.	These	annotations	allow	flexible	method	names	and	signatures	for	controllers.	We
will	explore	them	in	detail	in	the	following	section.

Mapping	request	URLs	with	@RequestMapping
The	@RequestMapping	annotation	maps	request	URLs	onto	an	entire	@Controller	class	or
its	handler	methods.	It	can	be	applied	at	the	class	as	well	as	the	method	levels.	Typically,
you	apply	class-level	@RequestMapping	annotation	to	map	a	group	of	related	URLs,	such
as	a	form	with	many	actions,	and	method-level	@RequestMapping	annotation	for	specific
actions,	such	as	create,	read,	update,	delete,	upload,	and	download.	Let’s	take	a	look	at	a
typical	form-based	Controller	with	various	actions	in	a	pure	REST	model	(GET,	POST,	PUT,
and	DELETE):

@Controller

@RequestMapping("/users")

public	class	UserController	{

			@Autowired

			private	UserService	userService;

			@RequestMapping(method	=	RequestMethod.GET)

			public	String	listAllUsers(Locale	locale,	Model	model)	{

						model.addAttribute("users",	userService.findAllUsers());

						return	"user/list";

			}

			@RequestMapping(path	=	"/new",	method	=	RequestMethod.GET)

			public	String	newUserForm(Model	model)	{

						User	user	=	new	User();

						user.setDateOfBirth(new	Date());

						model.addAttribute("user",	user);

						return	"user/new";

			}

			@RequestMapping(path	=	"/new",	method	=	RequestMethod.POST)

			public	String	saveNewUser(@ModelAttribute("user")	User	user,	Model	

model)	{

						userService.createNewUser(user);

						return	"redirect:/user";

			}

			@RequestMapping(path	=	"/{id}",	method	=	RequestMethod.GET)

			public	ModelAndView	viewUser(@PathVariable("id")	Long	id)	{

						return	new	ModelAndView("user/view").addObject("user",	

userService.findById(id));

			}

			@RequestMapping(path	=	"/{id}/edit",	method	=	RequestMethod.GET)

			public	String	editUser(@PathVariable("id")	Long	id,	Model	model)	{

						model.addAttribute("user",	userService.findById(id));

						return	"user/edit";

			}

			@RequestMapping(path	=	"/{id}",	method	=	RequestMethod.PUT)

			public	String	updateUser(@PathVariable("id")	Long	id,	

@ModelAttribute("user")	User	user,	Model	model)	{

						userService.updateUser(user);

						model.addAttribute("user",	userService.findById(user.getId()));

						return	"redirect:/user/"	+	id;

			}

			@RequestMapping(path	=	"/{id}",	method	=	RequestMethod.DELETE)

			public	String	deleteUser(@PathVariable("id")	Long	id,	Model	model)	{

						User	existingUser	=	userService.findById(id);

						userService.deleteUser(existingUser);

						return	"redirect:/user";

			}

}

UserController,	listed	in	the	preceding	code,	has	methods	that	serve	as	request	handlers
for	URLs	representing	CRUD	operations	on	user	entities	with	the	help	of	UserService,
which	is	injected	as	a	dependency	into	the	Controller.	Since	this	Controller	is	based	on
web	views,	the	handler	methods	fill	up	the	Model	and	returns	either	a	view	name	or
ModelAndView	object	for	further	display.	The	final	two	handler	methods,	updateUser()
and	deleteUser(),	redirect	the	requests	at	the	end.	They	perform	URL	redirection	after
returning	the	response	to	the	client.

Notice	that	UserController	has	a	root	URL	(/user)	and	handler	methods	have	a	more
narrow	mapping	with	a	combination	of	HTTP	methods.	They	are	invoked	by	the	exact
URLs	seen	in	the	following	table:

URL Handler	method HTTP	method Matching	URL	(sample)

/ listAllUsers GET http://localhost:8080/user

/new newuserForm GET http://localhost:8080/user/new

/new saveNewUser POST http://localhost:8080/user/new

/{id} viewUser GET http://localhost:8080/user/123

/{id}/edit editUser GET http://localhost:8080/user/123/edit

/{id} updateUser PUT http://localhost:8080/user/123

/{id} deleteUser DELETE http://localhost:8080/user/123

The	HTTP	methods	GET	and	POST	are	supported	by	default,	in	line	with	the	limited	HTML
(hence	browser)	support	for	the	other	two.	However,	for	PUT	and	DELETE	to	work,	you
need	to	register	HiddenHttpMethodFilter	in	your	web.xml	file.	Use	this	code:

<filter>

			<filter-name>httpMethodFilter</filter-name>

			<filter-class>org.springframework.web.filter.	

HiddenHttpMethodFilter</filter-class>

</filter>

<filter-mapping>

			<filter-name>httpMethodFilter</filter-name>

			<servlet-name>rootDispatcher</servlet-name>

</filter-mapping>

HiddenHttpMethodFilter	works	even	without	Spring	MVC;	you	can	use	it	with	any	Java
web	framework	or	even	a	plain	Servlet	application.

URI	template	patterns	with	the	@PathVariable
annotation
In	the	sample	UserController	listing	in	the	preceding	code,	you	might	have	noticed
templated	URL	patterns	with	variable	names	replaced	by	values	when	handling	requests.
See	this,	for	example:

@RequestMapping(path	=	"/{id}/edit",	method	=	RequestMethod.GET)

public	String	editUser(@PathVariable("id")	Long	id,	Model	mdl)	{	…	}

Here,	the	templated	variable,	id,	is	mapped	to	an	@PathVariable	annotation.	It	is	enclosed
inside	curly	braces	and	annotated	as	a	method	argument	for	mapping.	A	URL	can	have
any	number	of	path	variables.	They	support	regular	expressions	as	well	as	path	patterns	in
the	Apache	Ant	style.	They	help	you	build	perfect	URI	endpoints	in	the	classic	REST
model.

Binding	parameters	with	the	@RequestParam
annotation
Request	parameters	that	are	inline	with	URI	strings	can	be	mapped	with	method
arguments	using	the	@RequestParam	annotation.	See	the	following	excerpt	from
TaskController:

@Controller

public	class	TaskController	{

...

			@RequestMapping(path	=	"/tasks",	method	=	RequestMethod.GET)

			public	String	list(@RequestParam(name	=	"status",	required	=	false)	

String	status,	Model	model)	{

						model.addAttribute("status",	status);

						model.addAttribute("tasks",	taskService.findAllTasks(status));

						return	"task/list";

			}

...

}

A	typical	URL	invoking	the	above	handler	is	http:<context-root>/tasks?status=Open.

@RequestParam	has	four	attributes:	name,	required,	value,	and	defaultValue.	While
name	is	a	mandatory	attribute,	all	the	others	are	optional.	By	default,	all	request	parameters
are	required	to	be	set	to	true,	unless	you	specify	them	as	false.	Values	of	@RequestParam
are	automatically	type-converted	to	parameter	types	by	Spring.

Request	handler	method	arguments
The	@RequestMapping	methods	can	have	flexible	method	signatures;	a	mix	of
frameworks,	custom	objects,	and	annotations	are	supported.	They	are	injected
automatically	during	request	processing	if	found	as	method	arguments.	Here	is	a	list	of	a
few	supported	framework	classes	and	annotations;	refer	to	the	Spring	official
documentation	or	the	Javadoc	of	RequestMapping	for	the	complete	list.

Supported	classes Annotations

javax.servlet.ServletRequest @PathVariable

javax.servlet.ServletRequest @RequestVariable

javax.servlet.http.HttpSession @RequestParam

org.springframework.ui.Model @RequestHeader

org.springframework.validation.BindingResult @RequestBody

Java.util.Map @RequestPart

Java.io.InputStream @InitBinder

While	the	framework	classes	do	not	need	any	specific	annotation,	custom	classes	often
need	to	accompany	one	of	the	supported	annotations	for	the	handler	adapters	in	order	to
convert/format	from	the	incoming	web	request	object	into	the	class	instances.

Request	handler	method	return	types
Similar	to	flexible	argument	types,	methods	annotated	by	@RequestMapping	can	have
either	custom	types	(often	annotated	as	@ResponseBody)	or	one	of	the	many	supported
framework	classes.	The	following	list	contains	some	of	the	many	supported	types:

org.springframework.web.servlet.ModelAndView

org.springframework.ui.Model

java.util.Map

org.springframework.web.servlet.View

java.lang.String

void

java.util.concurrent.Callable<?>

org.springframework.http.HttpEntity

Setting	Model	attributes
Model	attributes	are	for	the	consumption	of	the	view	for	display	and	binding	with	form
elements.	They	can	be	set	at	both	the	controller	and	handler	method	level.

Any	method	with	a	non-void	return	type	can	be	annotated	as	@ModelAttribute	to	make
the	method	return	type	a	Model	attribute	for	all	views	resolved	by	the	declared	Controller.
See	an	example:

@ModelAttribute(value	=	"users")

public	List<User>	getUsersList()	{

			return	userService.findAllUsers();

}

Model	attributes	specific	to	a	view	are	set	inside	the	handler	method	from	where	the	view
was	resolved.	Here	is	an	example:

@RequestMapping(path	=	"/tasks/new",	method	=	RequestMethod.GET)

public	String	newTaskForm(Model	model)	{

			model.addAttribute("task",	new	Task());

			return	"task/new";

}

Building	RESTful	services	for	JSON	and	XML
media
A	web	application	often	needs	to	expose	some	of	its	services	as	web	APIs	with	the	XML
or	JSON	data	formats,	or	both,	for	the	consumption	of	AJAX	requests	from	browsers	as
well	as	other	devices,	such	as	mobile	and	tablets.

REpresentational	State	Transfer	(REST),	is	an	established	architectural	style	for
building	web	APIs	that	align	with	native	web	protocols	and	methods.	With	REST,	data	is
represented	as	resources	that	can	be	accessed	and	manipulated	using	a	URI	over	the
stateless	protocol	of	HTTP.	REST	insists	on	the	mapping	of	the	create,	read,	update,	and
delete	operations	(CRUD)	around	a	resource	with	the	HTTP	methods	POST,	GET,	PUT,	and
DELETE,	respectively.

Spring	MVC	makes	it	extremely	easy	to	build	simple	API	endpoints	that	consume	and
produce	different	media	types	such	as	text,	JSON,	and	XML.	A	request	handler	method	in
an	@Controller	annotation	can	accept	JSON,	XML,	or	any	other	media	type	using	the
following	two	steps:

1.	 Set	the	attribute	consumes	to	the	appropriate	media	type(s)	at	the	RequestMapping
method,	for	example,	consumes	=	{"text/plain",	"application/json"}).

2.	 Annotate	the	method	argument	of	the	required	type	with	@RequestBody.	The	web
request	is	expected	to	contain	the	data	in	the	format	mentioned	in	step	1	(consumes;
JSON,	XML,	and	so	on)	and	is	resolved	to	this	type	by	HttpMessageConverter
during	handling.

Similarly,	the	request	handler	method	can	produce	JSON,	XML,	or	any	other	media	type
using	the	following	two	steps:

1.	 Set	the	attribute	produces	with	the	appropriate	media	type(s)	at	the	RequestMapping
method,	for	example,	consumes	=	{"text/plain",	"application/json"}).

2.	 Annotate	the	return	type	of	the	handler	method	or	the	method	declaration	itself	(next
to	@RequestMapping)	with	@ResponseBody.	The	handler	will	transform	the	return
value	into	the	data	format	specified	in	the	produces	attribute	of	RequestMapping.

The	consumes	and	produces	attributes	of	RequestMapping	narrow	down	the	primary
mapping	to	the	given	media	type	(for	example,	consumes	=	"application/xml")	or	a
sequence	of	media	types	(for	example,	consumes	=	{"text/plain",
"application/json"}).

In	addition	to	the	attributes,	make	sure	the	following	library	exists	in	the	pom.xml	file:

<dependency>

			<groupId>com.fasterxml.jackson.core</groupId>

			<artifactId>jackson-databind</artifactId>

			<version>2.6.2</version>

</dependency>

Here	is	an	example	handler	method	that	accepts	a	JSON	request	and	returns	a	JSON
response:

@RequestMapping(path	=	"/tasks/new.json",	method=RequestMethod.POST,	

consumes	=	"application/json",	produces	=	"application/json")

@ResponseBody

public	CreateTaskResponse	createNewTaskJSON(@RequestBody	CreateTaskRequest	

createRequest)	{

			Task	task	=	new	Task();

			task.setName(createRequest.getTaskName());

			...

			return	new	CreateTaskResponse(taskService.createTask(task));

}

This	handler	method	expects	a	web	request	with	JSON	content:

{

			"taskName":"Project	estimation",

			"priority":	2,

			"creatorId":	1,

			"assigneeId":	2,

			"comments":	"Involve	the	team	in	the	process"

}

Now,	the	same	method	could	be	modified	slightly	to	support	XML	content,	consumes	as
well	as	produces.	Look	at	the	following	listing:

@RequestMapping(path	=	"/tasks/new.xml",	method	=	RequestMethod.POST,	

consumes	=	"application/xml",	produces	=	"application/xml")

@ResponseBody

public	CreateTaskResponse	createNewTaskXML(@RequestBody	CreateTaskRequest	

createRequest)	{

			Task	task	=	new	Task()

			task.setName(createRequest.getTaskName());

			.	.	.

			return	new	CreateTaskResponse(taskService.createTask(task));

}

Make	sure	you	have	the	JAXB	annotation	@XmlRootElement	at	the	root	of	both
RequestBody	and	ResponseBody	types	(CreateTaskRequest	and	CreateTaskResponse	in
this	case).

You	can	invoke	the	preceding	XML	handler	by	sending	the	following	content	with	the
web	request	to	the	handler	URI:

<CreateTaskRequest>

			<taskName>Estimate	the	project</taskName>

			<priority>2</priority>

			<creatorId>1</creatorId>

			<assigneeId>2</assigneeId>

			<comments>Involve	the	team	in	the	process</comments>

</CreateTaskRequest>

Building	a	RESTful	service	with	RestController
RestController	is	a	convenient	stereotype	provided	for	building	REST	API	endpoints
that	serve	custom	media	types	such	as	JSON	or	XML.	It	combines	@Controller	with
@ResponseBody,	that	is,	you	do	not	need	to	annotate	@ResponseBody	in	the	handler
methods.	@RequestMapping	methods	assume	@ResponseBody	semantics	by	default.

Let’s	see	what	the	JSON	handler	method	looks	like	when	it	becomes	part	of	an
@RestController	annotation:

@RestController

public	class	TaskRestController	{

			.	.	.

		@RequestMapping(path="/api/tasks/new.json",	method=RequestMethod.POST,	

consumes="application/json",produces=	"application/json")

		public	CreateTaskResponse	createNewTaskJSON(@RequestBody	

CreateTaskRequest	createRequest)	{

				Task	task	=	new	Task();

				task.setName(createRequest.getTaskName());

				.	.	.

				return	new	CreateTaskResponse(taskService.createTask(task));

		}}

}

Notice	that	the	only	difference	in	the	mapping	is	the	missing	@ResponseBody	annotation.	It
is	best	practice	to	define	your	REST	APIs	inside	REST	controllers.

Asynchronous	request	processing	in
Spring	MVC
In	an	age	of	APIs,	AJAX	clients,	and	devices,	web	servers	are	under	exponentially
growing	traffic.	Figuring	out	ways	to	make	servers	more	scalable	is	an	ongoing	challenge
for	server	vendors.	The	traditional	one	thread	per	HTTP	connection	strategy	does	not
scale	well	for	a	bigger	number	of	concurrent	user	access.	In	this	model,	every	request
blocks	a	thread	from	the	thread	pool	allocated	by	the	Servlet	container	until	the	request	is
completely	processed	(the	examples	shown	so	far	follow	this	model).	When	AJAX	clients
—where	a	single	screen	frequently	fires	multiple	concurrent	connection	requests—join	the
traditional,	blocking	I/O	model	of	web	servers	with	long-running	processes,	servers	easily
get	exhausted	due	to	the	thread	starvation	problem,	since	no	free	thread	is	available	in	the
pool.	This	makes	the	application	unavailable	on	increased	load.

Asynchronous	HTTP	request	processing	is	a	technique	that	utilizes	the	non-blocking	I/O
capability	of	the	Java	platform’s	NIO	API.	In	this	model,	a	server	thread	is	not	constantly
attached	to	a	persistent	HTTP	connection	during	the	whole	request	processing.	The	Servlet
container	releases	the	container	thread	as	soon	as	the	request	is	received	and	further
processing	is	delegated	to	a	thread	managed	by	another	application	(Spring,	in	this	case)
so	that	the	container	thread	is	free	to	serve	new	incoming	requests.	This	non-blocking
request	processing	model	saves	a	lot	of	server	resources	and	steadily	increases	the
scalability	of	the	server.

Servlet	3.0	introduced	asynchronous	processing	support,	and	Spring	has	implemented	this
support	starting	from	Spring	3.2.	As	of	4.2,	Spring	provides	two	easy	ways	of	defining
asynchronous	request	handlers:

Returning	a	java.util.concurrent.Callable	instance	instead	of	a	value	and
producing	the	actual	return	value	form	inside	the	call	method	of	Callable,	that	is,	a
thread	managed	by	Spring,	instead	of	a	Servlet	container
Returning	an	instance	of	the	Spring-specific	DeferredResult	type	and	producing	the
actual	return	value	form	inside	any	other	thread	or	external	event,	such	as	JMS	or	a
Quartz	scheduler

Both	these	methods	release	the	container	thread	at	the	earliest	possible	opportunity	and
use	external	threads	to	continue	long-running	transactions	asynchronously.	Let’s	look	at	an
example	for	the	first	option,	that	is,	using	Callable:

@RequestMapping(path="/tasks/new.xml",method=	RequestMethod.POST,	consumes	

=	"application/xml",	produces	=	"application/xml")

@ResponseBody

public	Callable<CreateTaskResponse>	createNewTaskXMLAsyncCallable(

@RequestBody	CreateTaskRequest	createRequest)	{

			return	new	Callable<CreateTaskResponse>()	{

						@Override

						public	CreateTaskResponse	call()	throws	Exception	{

									Task	task	=	new	Task();

									task.setName(createRequest.getTaskName());

									.	.	.

									Task	persistedTask	=	taskService.createTask(task);

									//	Send	an	email	here…

									//	Send	some	push	notifications	here…

									.	.	.

									return	new	CreateTaskResponse(persistedTask);

						}

			};

}

In	this	method,	you	can	see	that	the	handler	method	returns	the	Callable	object
immediately	after	receiving	the	request	and	without	waiting	for	the	Callable.call()
method	to	execute.	Spring	MVC	invokes	the	call()	method	in	another	thread	using
TaskExecutor,	and	the	response	is	dispatched	back	to	the	Servlet	container	once	the
call()	method	returns	the	value.

The	following	is	an	example	of	how	to	use	DeferredResult:

@RequestMapping(path	=	"/tasks/new-async-deferred.json",	method	=	

RequestMethod.POST,	consumes	=	"application/json",	produces	=	

"application/json")

@ResponseBody

public	DeferredResult<CreateTaskResponse>	

createNewTaskJSONAsyncDeferredResult(@RequestBody	CreateTaskRequest	

createRequest)	{

			DeferredResult<CreateTaskResponse>	defResult	=	new	DeferredResult<>();

			CompletableFuture.runAsync(new	Runnable()	{

						@Override

						public	void	run()	{

									Task	task	=	new	Task();

									task.setName(createRequest.getTaskName());

									.	.	.

									Task	persistedTask	=	taskService.createTask(task);

									//	Send	an	email	here…

									//	Send	some	push	notifications	here…

									defResult.setResult(newCreateTaskResponse(persistedTask));

						}

			});

			return	deferredResult;

}

Remember,	you	must	enable	asynchronous	processing	support	in	DispatcherServlet	as
well	as	for	all	Servlet	filters	declared	in	the	web.xml	file	(or	wherever	you	are	defining
them—maybe	in	the	JavaConfig	class)	for	it	to	work.	The	following	code	shows	how	you
set	it	in	web.xml:

<servlet>

			<servlet-name>appServlet</servlet-name>

			<servlet-class>

						org.springframework.web.servlet.DispatcherServlet</servlet-class>

			.	.	.

			<async-supported>true</async-supported>

</servlet>

You	may	choose	any	of	the	preceding	approaches	as	per	your	convenience	to	enable
asynchronous	processing.	Consider	designing	all	your	non-trivial	services	to	work
asynchronously	for	high	scalability	and	performance.

Working	with	views
Spring	MVC	provides	a	very	flexible	view	resolution	mechanism	that	is	fully	decoupled
from	the	other	elements	of	the	MVC	framework.	It	does	not	force	you	to	use	a	particular
view	technology;	rather,	it	makes	it	easier	to	use	your	own	favorite	technology.	It	even
allows	you	to	mix	and	match	multiple	technologies	at	the	view	tier.	Spring	MVC	provides
out-of-the-box	support	for	JPS,	XSLT,	and	Velocity	views.

Resolving	views
In	a	typical	Spring	MVC	application,	the	developer	chooses	a	view	technology	of	his
choice	and	accordingly	uses	a	ViewResolver	that	resolves	views	built	using	that
technology.

The	component	responsible	for	resolving	views	in	a	Spring	MVC	application	is
org.springframework.web.servlet.ViewResolver.	It	maps	logical	view	names	with
physical	view	resources	and	the	chosen	view	technology.

All	request-handling	methods	of	controllers	must	resolve	a	logical	view	name	by	either
returning	a	view	name,	a	view	object,	or	a	ModelAndView	object.	The
org.springframework.web.servlet.View	object	prepares	HttpRequest	for	the
consumption	of	the	chosen	view	technology.

Spring	MVC	comes	with	a	set	of	convenient	view	resolvers	out	of	the	box:

ViewResolver Description

AbstractCachingViewResolver
This	is	a	convenient	base	class	for	ViewResolver	implementations.	For	better
performance,	it	caches	view	objects	once	they	are	resolved.

XmlViewResolver

This	uses	bean	definitions	from	a	dedicated	XML	file	to	resolve	view	definitions.
The	file	is	specified	by	a	resource	location.	By	default,	it	is	located	at	WEB-
INF/views.xml.

ResourceBundleViewResolver
This	uses	bean	definitions	in	ResourceBundle	specified	by	the	bundle	basename	in
order	to	define	views.	The	default	basename	is	views.properties.

UrlBasedViewResolver
This	resolves	view	names	with	physical	resources	in	the	matching	URL.	Its	two
supporting	properties,	prefix	and	suffix,	help	locate	the	resource.

InternalResourceViewResolver
This	resolves	Servlets	and	JSPs	with	JSTL	support.	It	is	a	subclass	of
UrlBasedViewResolver.

VelocityViewResolver This	resolves	Velocity	templates	and	is	a	subclass	of	UrlBasedViewResolver.

FreeMarkerViewResolver This	resolves	FreeMarker	templates.	It	is	a	subclass	of	UrlBasedViewResolver.

JasperReportsViewResolver
This	resolves	JasperReport	views	for	different	formats,	such	as	CSV,	HTML,	XLS,
and	XLSX.

TilesViewResolver This	resolves	Tiles	views	for	both	version	2	and	3.

The	sample	application	in	this	chapter	uses	UrlBasedViewResolver	for	resolving	JSP
views.	When	you	use	multiple	view	technologies	in	a	web	application,	you	may	use
ResourceBundleViewResolver.

Resolving	JSP	views
Java	Server	Pages	(JSP),	the	primary	web	templating	technology	for	Java	EE,	is	a	simple
and	easy	tool	for	the	rapid	development	of	dynamic	web	content	based	on	JVM.	Built	on
top	of	Servlet	technology,	JSP	has	direct	access	to	the	entire	Java	API.	JSP	makes	a	web
page	author’s	life	a	lot	easier	by	allowing	him	to	design	web	pages	in	natural	HTML
format	and	then	embed	the	required	Java	code	inside	scriptlet	blocks.

Java	Server	Pages	Tag	Library	(JSTL)	is	a	set	of	standardized	HTML-style	tags	highly
useful	for	JSP	pages.	JSTL	eliminates	the	need	to	mix	Java	code	inside	JSP	pages,	thus
making	JSP	pages	much	cleaner	and	easier	to	author.

Spring	MVC	resolves	JSP	pages	using	InternalResourceViewResolver.	In	an	earlier
section,	Your	first	Spring	MVC	application,	we	already	configured	the	ViewResolver	class
for	JSP,	as	follows:

<beans:bean	

class="org.springframework.web.servlet.view.InternalResourceViewResolver">

		<beans:property	name="prefix"	value="/WEB-INF/views/"	/>

		<beans:property	name="suffix"	value=".jsp"	/>

</beans:bean>

Spring	MVC	recommends	keeping	your	view	files	(JSP	in	this	case)	under	the	WEB-INF
directory	to	avoid	direct	client	access.	ViewResolver	discovers	the	view	files	from	the
physical	location	and	caches	them	by	default	once	resolved,	which	helps	performance.

Binding	Model	attributes	in	JSP	pages	using	JSTL
Views	have	access	to	Model	attributes	set	from	associated	handler	methods	and	controllers.
These	Model	attributes	can	be	displayed	in	JSP	views	with	the	help	of	JSTL.	In	the
following	example,	the	Model	attribute	tasks	is	listed	using	JSTL:

<%@	taglib	uri="http://java.sun.com/jsp/jstl/core"	prefix="c"%>

...

<table	class="table	table-hover">

		<thead>

				<tr>

						<th>ID</th>

						<th>Task</th>

						<th>Status</th>

						<th>Priority</th>

						<th>Created	By</th>

						<th>Assigned	To</th>

				</tr>

		</thead>

		<tbody>

				<c:if	test="${not	empty	tasks}">

						<c:forEach	var="task"	items="${tasks}">

								<tr>

										<td>

												<a	href='<c:url	value="/tasks/${task.id}"/>'>${task.id}

										</td>

										<td>${task.name}</td>

										<td>${task.status}</td>

										<td>${task.priority}</td>

										<td>${task.createdBy.name}</td>

										<td>${task.assignee.name}</td>

								</tr>

						</c:forEach>

				</c:if>

		</tbody>

</table>

...

You	may	have	noticed	the	declaration	and	usage	of	JSTL	tags	in	the	preceding	JSP	extract
of	the	/tasks/list.jsp	view.	Here	is	how	it	would	be	rendered	with	proper	styling	in	a
browser:

Spring	and	Spring	form	tag	libraries
Spring	bundles	a	set	of	tags	for	the	easier	authoring	of	plain	JSP	pages	and	JSP	forms,
defined	in	spring.tld	and	spring-form.tld	respectively.	spring.tld	describes	general-
purpose	JSP	tags	commonly	used	in	JSP	pages,	listed	in	the	following	table:

Spring	tag Description

<spring:bind/>
This	allows	the	data	binding	of	an	attribute	given	in	the	bind	path	of	a	locally	declared
bean	or	a	Model	attribute	and	provides	a	BindStatus	object	to	the	enclosed	body	content.

<spring:escapeBody/> This	applies	HTML	escaping	and	JavaScript	escaping	for	the	body.

<spring:hasBindErrors/> This	provides	an	error	instance	if	there	are	bind	errors.

<spring:htmlEscape/> This	sets	an	HTML	escape	value	for	the	current	JSP	page.

<spring:message/> This	displays	a	message	for	a	given	code,	usually	resolved	from	a	resource	bundle.

<spring:nestedPath/> This	sets	a	nested	path	of	ModelAttribute	to	the	<spring:bind/>	tags	enclosed	inside.

<spring:theme/> This	loads	the	theme	resource	using	the	given	code.

<spring:transform/>
This	transforms	properties	inside	the	<spring:bind/>	tag	and	exports	them	to	a	variable
in	a	given	scope.

<spring:url/> This	creates	a	URL	with	URI	template	variables.	It	is	modeled	after	the	JSTL	c:url	tag.

<spring:eval/> This	evaluates	SpEL	expressions.

Spring	form	tags	provide	data	binding	for	HTML	forms.	They	have	tight	integration	with
request	handlers	in	controllers.	Generally,	they	represent	similarly	named	HTML	form
elements	and	share	common	attributes:

Form	tag Sample

<form:input/> <form:input	path="name"	placeholder="Task	Name"/>

<form:textarea/> <form:textarea	path="comments"	id="txtComments"	rows="5"	cols="30"	/>

<form:select/>

<form:option/>	and
<form:options/>

<form:select	path="createdBy"	id="selectCreatedBy">

<form:option	value="-1"	label="Select"/>

<form:options	items="${users}"	itemValue="id"	itemLabel="name"	/>

</form:select>

<form:label/> <form:label	for="txtTaskName"	path="name">Task-names</form:label>

<form:hidden/>> <form:hidden	path="taskId"	id="hdnTaskId"/>

<form:password/> <form:password	path="userPassword"/>

<form:radiobutton/> <form:radiobutton	path="sex"	value="Male"/>

<form:radiobuttons/> <form:radiobuttons	path="sex"	items="${sexOptions}"/>

<form:checkbox/> <form:checkbox	path="task.priority"	value="1"/>

<form:checkboxes/> <form:checkboxes	path="task.priority"	value="${taskPriorities}"/>

<form:password/> <form:password	path="password"	/>

<form:errors/> <form:errors	path="createdBy.id"	/>

Composing	a	form	in	JSP
Spring	forms	can	be	composed	in	JSP	pages	using	the	<spring>	and	<form>	tags.	For	the
purpose	of	illustration,	let’s	take	a	look	at	a	JSP	form	that	uses	both	the	Spring	and	form
tag	libraries	along	with	JSTL.	The	following	is	a	stripped-down	version	of
views/task/new.jsp:

<%@	taglib	uri="http://java.sun.com/jsp/jstl/core"	prefix="c"%>

<%@	taglib	prefix="spring"	uri="http://www.springframework.org/tags"%>

<%@	taglib	prefix="form"	uri="http://www.springframework.org/tags/form"%>

...

<form:form	action="new"	method="post"	commandName="task">

		<spring:bind	path="name">

				<div	class="form-group${status.error	?	'	has-error'	:	''}">

						<label	for="txtTaskName">Task-name</label>

						<form:input	path="name"	class="form-control"	id="txtTaskName"	

placeholder="Task	Name"	/>

						<form:errors	path="name"	cssClass="control-label"	/>

				</div>

		</spring:bind>

		<div	class="form-group">

				<label	for="txtComments">Comments</label>

				<form:textarea	path="comments"	class="form-control"	id="txtComments"	

placeholder="Comments"	rows="5"	cols="30"	/>

		</div>

		<spring:bind	path="createdBy.id">

				<div	class="form-group${status.error	?	'	has-error'	:	''}">

						<label	for="	slCrtBy	">Created	By</label>

						<form:select	path="createdBy"	id="slCrtBy"	class="form-control">

								<form:option	value="-1"	label="--	Select	--">

								</form:option>

								<form:options	items="${users}"	itemValue="id"	itemLabel="name"	/>

						</form:select>

						<form:errors	path="createdBy.id"	cssClass="control-label"	/>

				</div>

		</spring:bind>

		<button	type="submit"	class="btn	btn-success">Save</button>

		<a	href='<c:url	value="/tasks"/>'	class="btn	btn-primary">Cancel

</form:form>

As	you	can	see	in	the	preceding	code	listing,	you	must	declare	the	JSTL,	Spring,	and	form
tag	library	directives	at	the	top	of	your	JSP	page	before	you	use	Spring	form	tags.

All	<form>	elements	should	be	inside	a	<form:form/>	container	element.	The
commandName	attribute	value	of	<form:form/>	binds	the	Model	attribute	with	the	name	in
the	handler	method	of	the	Controller.	The	handler	method	from	which	the	preceding	JSP
form	is	resolved	would	look	like	the	following	code:

@RequestMapping(path	=	"/tasks/new",	method	=	RequestMethod.GET)

public	String	newTaskForm(Model	model)	{

			model.addAttribute("task",	new	Task());

			model.addAttribute("priorities",	priorities);	//	This	is	a	collection

			model.addAttribute("users",	userService.findAllUsers());

			return	"task/new";

}

Notice	the	Model	attribute,	task,	which	is	bound	with	the	<form:form/>	tag	in	the	JSP
page.	The	form	is	submitted	to	the	following	handler	method,	which	again	serializes	the
Task	object	back	for	persistence:

@RequestMapping(path	=	"/tasks/new",	method	=	RequestMethod.POST)

public	String	createNewTask(@ModelAttribute("task")	@Valid	Task	task,	

BindingResult	result,	Model	model)	{

			if(result.hasErrors())	{

						return	"task/new";

			}	else	{

						taskService.createTask(task);

						return	"redirect:/tasks";

			}

}

Validating	forms
Spring	MVC	makes	form	validation	a	lot	easier	using	Spring’s	Validator	framework.	You
might	have	noticed	the	@Valid	annotation	and	the	usage	of	the
BindingResult.hasErrors()	method	call	inside	handler	methods	listed	in	the	previous
section.	They	are	part	of	the	validation	framework.

Let’s	create	a	validator	for	a	Task	object	by	following	these	steps:

1.	 Add	the	Validation	API’s	Maven	dependency,	javax.validation	(build	file:
pom.xml).

2.	 Make	sure	you	have	defined	MessageSourceBean	for	the	validation-errors
properties	file	in	your	bean	definition:

<beans:bean	id="messageSource"	class="org.springframework.context.

support.ReloadableResourceBundleMessageSource">

			<beans:property	name="defaultEncoding"	value="UTF-8"	/>

			<beans:property	name="basenames"	value="classpath:validation-errors"	

/>

</beans:bean>

3.	 Make	sure	there	is	a	validation-errors.properties	file	with	the	following	sample
content	in	your	root	resources	location.	You	may	add	as	many	error	messages	into	it
as	you	like.

error.invalid={0}	is	in	invalid	format.

error.required={0}	is	required.

4.	 Create	a	Validator	class,	TaskValidator:

public	class	TaskValidator	implements	Validator	{

			@Override

			public	boolean	supports(Class<?>	clazz)	{

						return	clazz.isAssignableFrom(Task.class);

			}

			@Override

			public	void	validate(Object	target,	Errors	errors)	{

						Task	task	=	(Task)	target;

						ValidationUtils.rejectIfEmptyOrWhitespace(errors,	"name",	

"error.required",	new	Object[]	{	"Task	name"	});

						ValidationUtils.rejectIfEmpty(errors,	"createdBy.id",	

"error.required",	new	Object[]	{	"Created	user"	});

			}

}

5.	 Register	the	TaskValidator	class	inside	the	TaskController	class	using
InitBinder:

@InitBinder("task")

public	void	initBinder(WebDataBinder	binder)	{

			binder.addValidators(new	TaskValidator());

}

6.	 Annotate	ModelAttribute	with	the	@Valid	annotation	of	javax.validation.Valid
in	the	handler	method.

7.	 Handle	validation	errors	in	the	request	handler	method,	as	given	in	the
createNewTask()	method	listed	in	the	previous	section.

8.	 Add	a	<form:errors/>	tag	for	each	form	field	you	are	validating—as	seen	in	the
/tasks/new.jsp	file.

The	form	will	look	like	this	in	case	of	validation	errors:

Handling	file	uploads
Most	web	applications	require	multipart	file	upload	functionality.	Spring	MVC	makes	it
extremely	easy	to	handle	this	otherwise	cumbersome	feature.	It	provides	two	built-in
implementations	of	MultiPartResolvers:	CommonsMulipartResolver	for	Apache
Commons	FileUpload	and	StandardServletMultipartResolver	for	the	Servlet	3.0	API.

Since	most	modern	web	applications	use	a	Servlet	3.0	container,	let’s	see	how	the
FileUpload	functionality	can	be	handled	using	StandardServletMultipartResolver	with
the	help	of	following	example:

1.	 Register	your	MultipartResolver	in	your	servlet-context.xml	file	(or	add	it
programmatically	if	you	are	using	a	Java	configuration):

<beans:bean	id="multipartResolver"	

class="org.springframework.web.multipart.support.StandardServletMultipa

rtResolver">

</beans:bean>

2.	 Add	multipart	configuration	support	to	your	DispatcherServlet	in	your	web.xml	(or
JavaConfig)	file:

<servlet>

		<servlet-name>appServlet</servlet-name>

...

		<multipart-config>

				<location>/tmp/servlet-uploads</location>

				<max-file-size>20848820</max-file-size>

				<max-request-size>418018841</max-request-size>

				<file-size-threshold>1048576</file-size-threshold>

		</multipart-config>

</servlet>

3.	 Make	sure	that	the	location	you	provided	in	the	previous	section	really	exists.	Create
the	directory	if	it	doesn’t.

4.	 Create	the	web	form	with	an	input	file	element	in	it.	This	sample	JSP	snippet	uploads
a	user’s	profile	image:

<form:form	action="../${user.id}/profileForm"	method="post"	

enctype="multipart/form-data">

			<div	class="form-group">

						<label	for="txtUserName">Choose	File</label>

						<input	type="file"	name="profileImage"/>

			</div>

			<button	type="submit"	class="btn	btn-success">Upload</button>

			Cancel

</form:form>

5.	 Create	the	request	handler	method	in	your	Controller:

@RequestMapping(path	=	"/{userId}/profileForm",	method	=	

RequestMethod.POST)

public	String	uploadProfileImage(@PathVariable("userId")	Long	userId,	

@RequestParam("profileImage")	MultipartFile	file)	throws	IOException	{

			User	user	=	userService.findById(userId);

			String	rootDir	=	FILE_ROOT_DIR	+	"/"	+	user.getId();

			if	(!file.isEmpty())	{

						java.io.File	fileDir	=	new	java.io.File(fileSaveDirectory);

						if	(!fileDir.exists())	{

									fileDir.mkdirs();

						}

						FileCopyUtils.copy(file.getBytes(),	new	java.io.File(rootDir		+	

"/"	+	file.getOriginalFilename()));

						File	profileImageFile	=	this.userService.addProfileImage(userId,	

file.getOriginalFilename());

			}

			return	"redirect:/users/"	+	userId;

}

Resolving	Thymeleaf	views
Thymeleaf	is	a	Java-based	XML/HTML/HTML5	template	engine	library	to	build	web
applications.	It	allows	faster	processing	of	templates	and	increased	performance	due	to	the
intelligent	caching	of	parsed	view	files.	Please	refer	to	the	official	Thymeleaf
documentation	for	Thymeleaf	page	authoring.

You	need	Thymeleaf	and	Spring	(org.thymeleaf)	in	your	Maven	dependencies	in	order	to
use	Thymeleaf	in	your	projects.	Thymeleaf	views	can	be	resolved	in	your	project	with	the
following	snippet:

<beans:bean	class="org.thymeleaf.spring4.view.ThymeleafViewResolver">

			<beans:property	name="templateEngine"	ref="templateEngine"	/>

			<beans:property	name="order"	value="1"	/>

			<beans:property	name="viewNames"	value="*.html,*.xhtml"	/>

</beans:bean>

<beans:bean	id="templateResolver"	class=	

"org.thymeleaf.templateresolver.ServletContextTemplateResolver">

			<beans:property	name="prefix"	value="/WEB-INF/templates/"	/>

			<beans:property	name="suffix"	value=".html"	/>

			<beans:property	name="templateMode"	value="HTML5"	/>

</beans:bean>

<beans:bean	id="templateEngine"	

class="org.thymeleaf.spring4.SpringTemplateEngine">

			<beans:property	name="templateResolver"	ref="templateResolver"	/>

</beans:bean>

More	view	technologies
Spring	MVC	supports	an	impressive	set	of	view	technologies;	you	can	use	any	of	these
after	adding	the	right	Maven	dependencies	in	your	project.	Spring	provides	view	resolvers
out	of	the	box	for	most	of	the	view	technologies.	Here	is	a	list	of	other	view	technologies
supported	by	Spring	MVC:

Velocity	and	FreeMarker
Groovy	markup	templates
JavaScript	templates	(on	Nashhorn):	Handlebars,	Mustache,	ReactJS,	and	EJS
ERB	templates	on	JRuby	and	String	templates	on	Jython
XML	views	and	XSLT	(built	in)
Tiles
PDF	(iText)	and	Excel	(Apache	POI)
JasperReports
Feed	views

In	most	cases,	you	will	need	to	mix	and	match	view	technologies	in	the	same	application.
For	example,	you	may	use	JSP	for	normal	HTML	screens,	but	you	will	still	need
JasperReports	to	report	screens	and	may	need	to	download	some	reports	as	PDF	and	Excel
files.	Using	Spring	MVC	ensures	that	all	these	features	can	be	easily	integrated.

Summary
In	this	chapter,	we	learned	how	to	build	highly	scalable	and	dynamic	web	applications
using	Spring	MVC.	Starting	from	setting	up	the	project	and	configuring
WebApplicationContext	with	proper	layering,	we	explored	different	ways	of	designing
controllers	and	map	request	handlers	for	both	web	and	API	endpoints—that	too	including
asynchronous	processing	and	multipart	file	uploads—using	easily	configurable
components.	Now,	we	can	compose	beautiful	JSP	pages	using	<spring>	and	<form>	tags
and	also	enable	form	validation	using	the	Validation	API.

So	far,	we	have	been	holding	data	in	memory	without	bothering	about	making	it	persistent
somewhere.	In	the	next	chapter,	we	will	dive	one	level	deeper	into	the	data	layer	of
enterprise	application	development,	learning	various	data	access	and	persistence
mechanisms	with	and	without	ACID	transactions.	We	are	going	to	deal	with	more	serious
concerns	from	this	point.

Chapter	3.	Accessing	Data	with	Spring
Data	access	or	persistence	is	a	major	technical	feature	of	data-driven	applications.	This	is
a	critical	area	where	careful	design	and	expertise	is	required.	Modern	enterprise	systems
use	a	wide	variety	of	data	storage	mechanisms	ranging	from	traditional	relational
databases	such	as	Oracle,	SQL	Server,	and	Sybase	to	more	flexible,	schema-less	NoSQL
databases	such	as	MongoDB,	Cassandra,	and	Couchbase.	Spring	Framework	provides
comprehensive	support	for	data	persistence	in	multiple	flavors	of	mechanism,	ranging
from	convenient	template	components	to	smart	abstractions	over	popular	ORM	(Object
Relational	Mapping)	tools	and	libraries,	making	them	much	easier	to	use.	Spring’s	data
access	support	is	another	great	reason	for	choosing	it	for	developing	Java	applications.

Spring	Framework	offers	the	following	primary	approaches	for	data	persistence
mechanisms	for	developers	to	choose	from:

Spring	JDBC
ORM	Data	Access
Spring	Data

Furthermore,	Spring	standardizes	the	preceding	approaches	under	a	unified	DAO	(Data
Access	Object)	notation	called	@Repository.

Another	compelling	reason	for	using	Spring	is	its	first	class	transaction	support.	Spring
provides	consistent	transaction	management,	abstracting	different	transaction	APIs	such	as
JTA,	JDBC,	JPA,	Hibernate,	JDO,	and	other	container-specific	transaction
implementations.

In	order	to	make	development	and	prototyping	easier,	Spring	provides	embedded	database
support,	smart	abstractions	(DataSource),	and	excellent	test	integration.	This	chapter
explores	various	data	access	mechanisms	provided	by	Spring	Framework	and	its
comprehensive	support	for	transaction	management	in	both	standalone	and	web
environments,	with	relevant	examples.

Note
Why	use	Spring	Data	Access	when	we	have	JDBC?

JDBC	(Java	Database	Connectivity),	the	Java	Standard	Edition	API	for	data
connectivity	from	Java	to	relational	databases,	is	a	very	a	low-level	framework.	Data
access	via	JDBC	is	often	cumbersome;	the	boiler-plate	code	the	developer	needs	to	write
makes	the	code	error-prone.	Moreover,	JDBC	exception	handling	is	not	sufficient	for	most
use	cases;	there	exists	a	real	need	for	simplified	but	extensive	and	configurable	exception
handling	for	data	access.	Spring	JDBC	encapsulates	the	often	repeating	code,	simplifying
the	developer	code	tremendously,	and	lets	him/her	focus	directly	on	his	business	logic.
Spring	Data	Access	components	abstract	the	technical	details	including	the	lookup	and
management	of	persistence	resources	such	as	connections,	statements,	and	resultsets,	and
accept	the	specific	SQL	statements	and	relevant	parameters	to	perform	the	operation.
Spring	Data	Access	components	use	the	same	JDBC	API	under	the	hood,	while	exposing

simplified,	straightforward	interfaces	for	the	client’s	use.	This	approach	makes	for	a	much
cleaner	and	hence	maintainable	data	access	layer	for	Spring	applications.

Configuring	DataSource
The	first	step	to	connect	to	a	database	from	any	Java	application	is	to	obtain	a	connection
object	specified	by	JDBC.	DataSource,	a	part	of	Java	SE,	is	a	generalized	factory	of
java.sql.Connection	objects	that	represents	the	physical	connection	to	the	database	and
is	the	preferred	means	of	producing	a	connection.	DataSource	handles	transaction
management,	connection	lookup,	and	pooling	functionalities,	relieving	the	developer	of
those	infrastructural	issues.

DataSource	objects	are	often	implemented	by	database	driver	vendors	and	typically
looked	up	via	JNDI.	Application	servers	and	Servlet	engines	provide	their	own
implementations	of	DataSource	(and)	or	connectors	to	DataSource	objects	provided	by
the	database	vendor.	Typically	configured	inside	XML-based	server	descriptor	files,
server-supplied	DataSource	objects	generally	provide	built-in	connection	pooling	and
transaction	support.	As	a	developer,	you	just	configure	your	data	sources	inside	the	server
configuration	files	declaratively	in	XML	and	look	them	up	from	your	application	via
JNDI.

In	a	Spring	application,	you	configure	your	DataSource	reference	as	a	Spring	bean,	and
inject	it	as	a	dependency	into	your	DAOs	or	other	persistence	resources.	The	Spring
<jee:jndi-lookup/>	tag	(of	http://www.springframework.org/schema/jee	namespace)
allows	you	to	look	up	and	construct	JNDI	resources	easily,	including	a	DataSource	object
defined	from	inside	an	application	server.	For	applications	deployed	in	a	J2EE	application
server,	a	JNDI	DataSource	object	provided	by	the	container	is	recommended.

<jee:jndi-lookup	id="taskifyDS"	jndi-

name="java:jboss/datasources/taskify"/>

For	standalone	applications,	you	need	to	create	your	own	DataSource	implementation	or
use	third-party	implementations	such	as	Apache	Commons	DBCP,	C3P0,	or	BoneCP.	The
following	is	a	sample	DataSource	configuration	using	Apache	Commons	DBCP2.	It
provides	configurable	connection	pooling	features	too.

<bean	id="taskifyDS"	class="org.apache.commons.dbcp2.BasicDataSource"	

destroy-method="close">

				<property	name="driverClassName"	value="${driverClassName}"	/>

				<property	name="url"	value="${url}"	/>

				<property	name="username"	value="${username}"	/>

				<property	name="password"	value="${password}"	/>

				<property	name="initialSize"	value="3"	/>

				<property	name="maxTotal"	value="50"	/>

				...

</bean>

Make	sure	you	add	the	corresponding	dependency	to	your	DataSource	implementation	in
your	build	file.	The	following	is	for	DBCP2:

<dependency>

				<groupId>org.apache.commons</groupId>

				<artifactId>commons-dbcp2</artifactId>

http://www.springframework.org/schema/jee

				<version>2.1.1</version>

</dependency>

Spring	provides	DriverManagerDataSource,	a	simple	implementation	of	DataSource,
which	is	only	meant	for	testing	and	development	purposes,	not	for	production	use.	Note
that	it	does	not	provide	connection	pooling.	Here	is	how	you	configure	it	in	your
application.

<bean	id="taskifyDS"	

class="org.springframework.jdbc.datasource.DriverManagerDataSource">

				<property	name="driverClassName"	value="${driverClassName}"	/>

				<property	name="url"	value="${url}"	/>

				<property	name="username"	value="${username}"	/>

				<property	name="password"	value="${password}"	/>

</bean>

It	can	also	be	configured	using	the	Java-based	configuration,	as	shown	in	the	following
code:

@Bean

DataSource	getDatasource()	{

				DriverManagerDataSource	dataSource	=	new	

DriverManagerDataSource(pgDsProps.getProperty("url"));

				dataSource.setDriverClassName(

pgDsProps.getProperty("driverClassName"));

				dataSource.setUsername(pgDsProps.getProperty("username"));

				dataSource.setPassword(pgDsProps.getProperty("password"));

				return	dataSource;

}

Note
Never	use	DriverManagerDataSource	on	production	environments.	Use	third-party	data
sources	such	as	DBCP,	C3P0,	and	BoneCP	for	standalone	applications,	and	JNDI
DataSource	provided	by	the	container,	for	the	J2EE	container	instead.	They	are	more
reliable	and	provide	efficient	connection	pooling	functionality	off	the	shelf.

Using	embedded	databases
For	prototyping	and	test	environments,	it	is	a	good	idea	to	use	Java-based	embedded
databases	to	quickly	start	up	the	project	and	configure	easily.	They	are	lightweight	and
easily	testable.	Spring	supports	the	HSQL,	H2,	and	Derby	database	engines	for	that
purpose	natively.	Here	is	a	sample	DataSource	configuration	for	an	embedded	HSQL
database:

@Bean

DataSource	getHsqlDatasource()	{

				return	new	

								EmbeddedDatabaseBuilder().setType(EmbeddedDatabaseType.HSQL)

									.addScript("db-scripts/hsql/db-schema.sql")

									.addScript("db-scripts/hsql/data.sql")

									.addScript("db-scripts/hsql/storedprocs.sql")

									.addScript("db-scripts/hsql/functions.sql")

									.setSeparator("/").build();

}

The	XML	version	of	this	would	look	like	the	following	code:

<jdbc:embedded-database	id="dataSource"	type="HSQL">

		<jdbc:script	location="classpath:db-scripts/hsql/	db-schema.sql"	/>

				.	.	.	

</jdbc:embedded-database>

Handling	exceptions	in	the	Spring	Data
layer
With	traditional	JDBC-based	applications,	exception	handling	is	based	on
java.sql.SQLException,	which	is	a	checked	exception.	It	forces	the	developer	to	write
catch	and	finally	blocks	carefully	for	proper	handling	and	to	avoid	resource	leakages
such	as	leaving	a	database	connection	open.	Spring,	with	its	smart	exception	hierarchy
based	on	RuntimeException,	spares	the	developer	from	this	nightmare.	Having
DataAccessException	as	the	root,	Spring	bundles	a	bit	set	of	meaningful	exceptions,
translating	the	traditional	JDBC	exceptions.	Spring	also	covers	Hibernate,	JPA,	and	JDO
exceptions	in	a	consistent	manner.

Spring	uses	SQLErrorCodeExceptionTranslator,	which	inherits
SQLExceptionTranslator	for	translating	SQLException	to	DataAccessExceptions.	We
can	extend	this	class	to	customize	the	default	translations.	We	can	replace	the	default
translator	with	our	custom	implementation	by	injecting	into	the	persistence	resources
(such	as	JdbcTemplate,	to	be	covered	later).	See	the	following	code	listing	for	how	we
define	a	SQLExceptionTranslator	class	in	your	code:

String	userQuery	=	"select	*	from	TBL_NONE	where	name	=	?";

SQLExceptionTranslator	excTranslator	=	new	SQLExceptionTranslator()	{

		@Override

		public	DataAccessException	translate(String	task,	String	sql,	

SQLException	ex)	{

				logger.info("SUCCESS	---	SQLExceptionTranslator.translate	invoked	!!");

				return	new	BadSqlGrammarException("Invalid	Query",	userQuery,	ex){};

		}

};

The	preceding	code	snippet	catches	any	SQLException	and	converts	it	into	a	Spring-based
BadSqlGrammarException	instance.	Then,	this	custom	SQLExceptionTranslator	needs	to
be	passed	to	the	Jdbctemplate	before	use,	as	shown	in	the	following	code:

JdbcTemplate	jdbcTemplate	=	new	JdbcTemplate(dataSource);

jdbcTemplate.setExceptionTranslator(excTranslator);

Map<String,	Object>	result	=	jdbcTemplate.queryForMap(userQuery,	new	

Object[]	{"abc"});

Now,	any	invalid	query	will	invoke	the	custom	SQLExceptionTranslator	class.	You	can
customize	its	behavior	according	to	your	requirements.

DAO	support	and	@Repository
annotation
The	standard	way	of	accessing	data	is	via	specialized	DAOs	that	perform	persistence
functions	under	the	data	access	layer.	Spring	follows	the	same	pattern	by	providing	DAO
components	and	allowing	developers	to	mark	their	data-access	components	as	DAOs,
using	the	annotation	@Repository.	This	approach	ensures	consistency	over	various	data
access	technologies	such	as	JDBC,	Hibernate,	JPA,	and	JDO,	and	project-specific
repositories.	Spring	applies	SQLExceptionTranslator	across	all	these	methods
consistently.

Spring	recommends	your	data-access	components	to	be	annotated	with	stereotype,
@Repository.	The	term,	repository,	was	originally	defined	in	Domain-Driven	Design,	Eric
Evans,	Addison	Wesley	as	“a	mechanism	for	encapsulating	storage,	retrieval,	and	search
behavior	which	emulates	a	collection	of	objects.”	This	annotation	makes	the	class	eligible
for	DataAccessException	translation	by	Spring	Framework.

Spring	Data,	another	standard	data-access	mechanism	provided	by	Spring,	revolves
around	@Repository	components.	We	will	discuss	this	more	in	later	sections.

Spring	JDBC	abstraction
Spring	JDBC	components	simplify	JDBC-based	data	access	by	encapsulating	the
boilerplate	code	and	hiding	the	interaction	with	JDBC	API	components	from	the
developer	with	a	set	of	simple	interfaces.	These	interfaces	handle	the	opening	and	closing
of	JDBC	resources	(connections,	statements,	resultsets)	as	required.	They	prepare	and
execute	statements,	extract	results	from	resultsets,	provide	callback	hooks	for	converting,
mapping	and	handling	data,	handle	transactions,	and	translate	SQL	exceptions	into	the
more	sensible	and	meaningful	hierarchy	of	DataAccessException.

Spring	JDBC	provides	three	convenient	approaches	for	accessing	relational	databases:

JdbcTemplate

SimpleJDBC	classes
RDBMS	Sql*	classes

Each	of	these	Spring	JDBC	categories	has	multiple	flavors	of	components	under	them
which	you	can	mix-and-match	based	on	your	convenience	and	technical	choice.	You	may
explore	them	under	the	org.springframework.jdbc	package	and	its	subpackages.

JdbcTemplate
JdbcTemplate	is	the	core	component	under	Spring	JDBC	abstraction.	This	powerful
component	executes	almost	all	of	the	possible	JDBC	operations	with	its	simple,
meaningful	methods,	accepting	parameters	for	an	impressive	set	of	flavors	of	data	access.
It	belongs	to	the	package,	org.springframework.jdbc.core,	which	contains	many	other
supporting	classes	that	help	JdbcTemplate	to	complete	its	JDBC	operations.	A
DataSource	instance	is	the	only	dependency	for	this	component.	All	other	Spring	JDBC
components	use	JdbcTemplate	internally	for	their	operations.

Usually,	you	configure	JdbcTemplate	as	yet	another	Spring	bean,	and	inject	it	into	your
DAOs	or	into	any	other	bean	where	you	want	to	invoke	its	methods.

<bean	id="jdbcTemplate"	class="org.springframework.jdbc.core.JdbcTemplate">

		<constructor-arg	ref="dataSource"/>

</bean>

<bean	id="userDAO"	

class="com.springessentials.chapter3.dao.impl.UserJdbcDAO">

		<constructor-arg	ref="jdbctemplate"/>

</bean>

Note
JdbcTemplate	is	one	of	the	implementations	of	Template	Pattern	in	Spring.	Template
Pattern	is	a	behavioral	pattern	listed	in	the	Gang	of	Four	design	pattern	catalog.	It	defines
the	skeleton	of	an	algorithm	in	a	method	or	operation	called	Template	Method,	deferring
some	steps	into	the	subclasses,	without	changing	the	algorithm’s	structure.	JdbcTemplate
is	a	collection	of	these	Template	Methods;	the	user	can	extend	it	and	override	some	of	the
behaviors	based	on	specific	requirements.	JMSTemplate	and	JpaTemplate	are	also
examples	of	Template	Pattern	implementations.

JdbcTemplate	executes	SQL	queries	(SELECT),	update	statements	(INSERT,	UPDATE,	and
DELETE),	stored	procedure	and	function	calls,	returns	extracted	results	(for	SELECT
queries),	and	invokes	call-back	methods	for	result-set	extraction	and	mapping	rows	with
domain	objects.	It	has	a	comprehensive	set	of	query	and	execute	methods	for	different
methods	of	result-set	extraction.	The	following	table	introduces	a	few	very	useful
JdbcTemplate	methods:

Method Description

execute

A	set	of	overloaded	methods	for	executing	a	SQL	update	(INSERT,	UPDATE,	and	DELETE)	statement,
with	different	parameter	sets	including	the	SQL	statement	to	be	executed,	bind	parameters,	a
statement	creator,	and	callback	methods.

query

A	set	of	overloaded	methods	for	querying	PreparedStatement	for	a	given	SQL	SELECT	statement
with	a	multitude	of	parameter	sets	including	bind	parameters,	argument	types,	RowMapper,
ResultSetExtractor,	PreparedStatementCreator,	RowCallbackHandler,	and	so	on.	While	methods
with	callbacks	are	void	methods,	the	others	return	a	list	of	objects	of	type	<T>	specified	with	the
corresponding	RowMapper,	ResultSetExtractor,	or	a	populated	instance	of	type	<T>.

A	set	of	overloaded	query	methods	executing	a	SELECT	query	returns	a	list	of	objects	of	type	<T>

queryForList specified	as	an	argument,	Class<T>	elementType.	Those	methods	not	specifying	the	elementType
return	List<Map<String,	Object>>.

queryForMap Executes	a	(SELECT)	query	and	returns	the	result	as	Map<String,	Object>.

queryForObject
A	set	of	overloaded	methods	querying	a	given	SQL	SELECT	statement	with	parameter	sets	including
bind	parameters,	argument	types,	RowMapper,	and	the	required	return	type	<T>.

update

A	set	of	overloaded	methods	issuing	an	update	(INSERT,	UPDATE,	or	DELETE)	statement	with	parameter
sets	including	bind	parameters,	argument	types,	PreparedStatementCreator,	and	so	on.	It	returns	an
integer,	which	is	the	count	of	records	affected.

batchUpdate

A	set	of	overloaded	methods	for	executing	multiple	SQL	updates	(INSERT,	UPDATE,	and	DELETE)
with	different	parameter	sets	including	an	array	of	SQL	statements	and	many	combinations	of
PreparedStatementSetter	and	other	arguments.

execute

A	set	of	overloaded	methods	for	executing	a	SQL	update	(either	INSERT,	UPDATE,	or	DELETE)
statement,	with	different	parameter	sets	including	the	SQL	statement	to	be	executed,	bind	parameters,
StatementCreator,	and	callback	methods.

query

A	set	of	overloaded	methods	for	querying	PreparedStatement	for	a	given	SQL	SELECT	statement
with	several	parameter	sets	including	bind	parameters,	argument	types,	RowMapper,
ResultSetExtractor,	PreparedStatementCreator,	RowCallbackHandler,	and	so	on.	While	those
methods	with	callbacks	are	void	methods,	the	others	return	a	list	of	objects	of	type	<T>	specified	with
the	corresponding	RowMapper,	ResultSetExtractor,	or	a	populated	instance	of	type	<T>.

Behind	the	super	capabilities	of	JdbcTemplate	is	a	set	of	callback	interfaces	being	passed
as	arguments	for	the	methods	listed	in	the	preceding	table.	These	execution	hooks	help
JdbcTemplate	to	deal	with	relational	data	in	a	pure	object-oriented	and	reusable	fashion.	A
good	understanding	of	these	interfaces	is	critical	for	the	right	usage	of	JdbcTemplate.	See
the	following	table	for	these	callback	interfaces:

Callback	interface Callback
method(s) Responsibilities

CallableStatementCreator execute
Constructs	java.sql.CallableStatement,	which	is	used	to	execute	stored
procedures	inside	its	createCallableStatement(Connection)method:.

PreparedStatementCreator

execute,
update,
query

Constructs	java.sql.PreparedStatement,	given	a	connection,	inside	the
method,	createPreparedStatement	(Connection).

PreparedStatementSetter
update,
query

Sets	values	to	PreparedStatement	before	execution,	inside
JdbcTemplate.setValues	(PreparedStatement).

CallableStatementCallback execute

Prepares	CallableStatement.	Usually	sets	the	IN	and	OUT	parameters	of	a
stored	procedure	or	function,	before	the	actual	execution,	inside
JdbcTemplate.doInCallableStatement(CallableStatement).

PreparedStatementCallback execute

Used	by	JdbcTemplate	execute	methods	for	preparing	PreparedStatement.
Usually	sets	the	bind	parameters,	before	the	actual	execution,	inside	the
doInPreparedStatement(PreparedStatement)method:.

ResultSetExtractor query
Extracts	results	from	ResultSet	and	returns	a	domain	object,	inside	the
extractData(ResultSet)method:.

RowCallbackHandler query
Processes	each	row	of	a	ResultSet	in	a	stateful	manner,	inside	the
processRow(Resultset)method,	which	doesn’t	return	anything.

RowMapper query

Maps	each	row	of	a	ResultSet	into	a	domain	object,	inside	the
mapRow(Resultset,	int	rowNum)method,	returning	the	created	domain
object.

Now	let’s	try	some	nice	realistic	usages	of	JdbcTemplate.	The	following	is	a	simple
method	executing	a	count	query	using	JdbcTemplate.

@Override

public	int	findAllOpenTasksCount()	{

		return	jdbcTemplate.queryForObject("select	count(id)	from	tbl_user	where	

status	=	?",	new	Object[]{"Open"},	Integer.class);

}

Do	you	see	how	this	straightforward	one-liner	code	saves	you	from	all	the	boilerplate	and
exception-handling	code	you	would	otherwise	need	to	write	in	typical	JDBC	code?

The	following	code	snippet	is	a	bit	more	complex	and	illustrates	how	to	query	a	unique
row	from	a	table	and	map	it	with	a	domain	object	(User,	in	this	case)	using	RowMapper:

public	User	findByUserName(String	userName)	{

		return	jdbcTemplate.queryForObject("SELECT	ID,	NAME,	USER_NAME,	PASSWORD,	

DOB,	PROFILE_IMAGE_ID,	PROFILE_IMAGE_NAME	FROM	TBL_USER	WHERE	USER_NAME	=	

?",	new	Object[]	{	userName	},	

				new	RowMapper<User>()	{

						@Override

						public	User	mapRow(ResultSet	rs,	int	rowNum)	throws	SQLException	{

								return	new	User(rs.getLong("ID"),	

								rs.getString("NAME"),	

								userName,	

								rs.getString("PASSWORD"),	

								rs.getDate("DOB"));

				}

		});

}

It	is	so	much	easier	to	deal	with	collections	of	data	using	JdbcTemplate.	The	following
code	snippet	illustrates	the	query	method	of	JdbcTemplate	with	bind	parameters	and	a
RowMapper	that	converts	ResultSet	into	a	list	of	type:	<Task>.

@Override

public	List<Task>	findCompletedTasksByAssignee(Long	assigneeId)	{

		String	query	=	"SELECT	*	FROM	TBL_TASK	WHERE	STATUS	=	?	AND	

		ASSIGNEE_USER_ID	=	?	";

		return	this.jdbcTemplate.query(query,	new	Object[]	{"Complete",	

				assigneeId	},	new	RowMapper<Task>()	{

				@Override

				public	Task	mapRow(ResultSet	rs,	int	rowNum)	throws	SQLException{

						Task	task	=	new	Task();

						task.setId(rs.getLong("id"));

						Long	assigneeId	=	rs.getLong("assignee_user_id");

						if	(assigneeId	!=	null)

								task.setAssignee(userDAO.findById(assigneeId));

						task.setComments(rs.getString("comments"));

						task.setName(rs.getString("name"));

						...

						return	task;

				}

		});

}

JdbcTemplate	takes	care	of	all	the	repeating	code	for	you	and	you	just	need	to	write	the
specific	code,	which	is	about	how	you	map	the	data	of	a	row	with	your	domain	object.

Another	variation	of	row	mapping	that	uses	a	ResultSetExtractor	interface	that	extracts
a	single	row	from	ResultSet	is	illustrated	in	the	following	code:

@Transactional(readOnly	=	true)

public	User	findUserById(Long	userId)	{

		return	jdbcTemplate.query("SELECT	NAME,	USER_NAME,	PASSWORD,	DOB,	

PROFILE_IMAGE_ID,	PROFILE_IMAGE_NAME	FROM	TBL_USER	WHERE	ID	=	?",

				new	Object[]	{	userId	},	new	ResultSetExtractor<User>()	{

				@Override

				public	User	extractData(ResultSet	rs)	throws	SQLException,	

DataAccessException	{

						if	(rs.next())	{

								return	new	User(userId,	rs.getString("NAME"),	

rs.getString("USER_NAME"),	rs.getString("PASSWORD"),	rs.getDate("DOB"));

						}	else	{

								return	null;

						}

				}

		});

}

Now	let’s	take	a	look	at	some	update	statements.	The	following	is	the	execution	of	a
simple	INSERT	statement	as	one-liner	code.	The	SQL	UPDATE	and	DELETE	statements
follow	the	same	pattern.

@Override

public	void	createUser(User	user)	{

		jdbcTemplate.update("INSERT	INTO	TBL_USER(NAME,	USER_NAME,	PASSWORD,	DOB)	

VALUES(?,?,?,?)",	new	Object[]	{	user.getName(),	user.getUserName(),	

user.getPassword(),	user.getDateOfBirth()});

}

The	preceding	method	has	a	drawback.	Although	it	inserts	the	new	user	record	into	the
table,	the	generated	ID	(probably	by	a	database	sequence)	is	not	returned	back;	you	would
need	to	issue	another	query	to	retrieve	it	separately.	However,	JdbcTemplate	offers	a	nice
way	to	solve	this	problem:	using	a	KeyHolder	class.	It	is	another	variation	of	the	update
method	which	was	explained	in	the	following	code;	you	can	retrieve	the	generated	key	(ID
in	this	case)	in	a	single	execution,	using	a	KeyHolder	class	in	combination	with
PreparedStatementCreator:

public	void	createUser(User	user)	{

		KeyHolder	keyHolder	=	new	GeneratedKeyHolder();

		jdbcTemplate.update(new	PreparedStatementCreator()	{

				public	PreparedStatement	createPreparedStatement(Connection	connection)	

throws	SQLException	{

						PreparedStatement	ps	=	connection.prepareStatement(

						"INSERT	INTO	TBL_USER(NAME,USER_NAME,PASSWORD,DOB)	VALUES(?,?,?,?)",	

new	String[]{"ID"});

								ps.setString(1,	user.getName());

								ps.setString(2,	user.getUserName());

								ps.setString(3,	user.getPassword());

								ps.setDate(4,	new	java.sql.Date(user.getDateOfBirth().getTime()));

								return	ps;

				}

		},	keyHolder);

		user.setId(keyHolder.getKey().longValue());

}

JdbcTemplate	makes	batch	updates	easy,	following	the	same	pattern	as	shown	earlier.
Take	a	look	at	the	following	code:	it	executes	a	single	PreparedStatement	over	a
collection	of	data:

@Override

public	void	createUsers(List<User>	users)	{

				int[]	updateCounts	=	jdbcTemplate.batchUpdate("INSERT	INTO	

TBL_USER(NAME,	USER_NAME,	PASSWORD,	DOB)	VALUES(?,?,?,?)",	new	

BatchPreparedStatementSetter()	{

								public	void	setValues(PreparedStatement	ps,	int	idx)	throws	

SQLException	{

												ps.setString(1,	users.get(idx).getName());

												ps.setString(2,	users.get(idx).getUserName());

												ps.setString(3,	users.get(idx).getPassword());

												ps.setDate(4,	new	java.sql.Date(users.get(idx)	

.getDateOfBirth().getTime()));

								}

								public	int	getBatchSize()	{

												return	users.size();

								}

				});

}

NamedParameterJdbcTemplate
So	far,	we	have	used	JdbcTemplate	with	bind	parameters	using	?	placeholders.	When	it
comes	to	a	bigger	number	of	parameters,	a	named	parameter	is	a	better	choice	for
readability	and	maintainability.	NamedParameterJdbcTemplate,	a	specialized	version	of
JdbcTemplate,	supports	using	named	parameters	rather	than	traditional	?	placeholders.
Instead	of	extending	from	JdbcTemplate,	NamedParameterJdbcTemplate	uses	the
underlying	JdbcTemplate	for	its	operations.

You	can	define	NamedParameterJdbcTemplate	in	the	same	way	as	the	classic
JdbcTemplate,	passing	a	DataSource	object	as	a	mandatory	dependency.	Then,	you	can
use	it	just	like	JdbcTemplate,	but	using	named	parameters	instead	of	bound	parameters

(?).	The	following	code	snippet	illustrates	the	use	of	the	NamedParameterJdbcTemplate
query	method	that	uses	RowMapper	for	object-relational	mapping.

public	User	findByUserName(String	userName,	DataSource	dataSource)	{

		NamedParameterJdbcTemplate	jdbcTemplate	=	new	

NamedParameterJdbcTemplate(dataSource);

		SqlParameterSource	namedParameters	=	new	

MapSqlParameterSource("USER_NAME",	userName);

		return	jdbcTemplate.queryForObject("SELECT	ID,	NAME,	USER_NAME,	PASSWORD,	

DOB,	PROFILE_IMAGE_ID,	PROFILE_IMAGE_NAME	FROM	TBL_USER	WHERE	USER_NAME	=	

:USER_NAME",	namedParameters,	new	RowMapper<User>()	{

				@Override

				public	User	mapRow(ResultSet	rs,	int	rowNum)	throws	SQLException	{

						return	new	User(rs.getLong("ID"),	rs.getString("NAME"),	userName,	

rs.getString("PASSWORD"),	rs.getDate("DOB"));

				}

		});

}

SimpleJdbc	classes
SimpleJdbc	classes	are	another	nice	approach	to	accessing	data	in	a	more	object-oriented
fashion,	but	still	using	the	same	JdbcTemplate	internally.	They	belong	to	the
org.springframework.jdbc.core.simple	package.	There	are	two	classes	in	it:

SimpleJdbcCall

SimpleJdbcInsert

SimpleJdbcCall	handles	calls	to	stored	procedures	and	functions	and	SimpleJdbcInsert
deals	with	SQL	INSERT	commands	to	database	tables.	Both	are	DatabaseMetadata-aware,
hence	they	auto-detect	or	map	similarly	named	fields	of	domain	objects.	Both	of	them	act
as	templates	for	performing	JDBC	operations	around	a	relational	entity	(a	stored
procedure	or	function	and	a	database	table	respectively),	accepting	parameters	that
determine	the	behavior	of	the	operation	once	(declared	globally),	and	then	reusing	it
repeatedly	with	a	dynamic	set	of	data	at	runtime.

A	SimpleJdbcCall	class	is	declared	as	follows:

SimpleJdbcCall	createTaskStoredProc	=	new	SimpleJdbcCall(dataSource)

				.withFunctionName("CREATE_TASK")

				.withSchemaName("springessentials")

				.declareParameters(new	SqlOutParameter("v_newID",	Types.INTEGER),

								new	SqlParameter("v_name",	Types.VARCHAR),	

								new	SqlParameter("v_STATUS",	Types.VARCHAR),

								new	SqlParameter("v_priority",	Types.INTEGER),

								new	SqlParameter("v_createdUserId",	Types.INTEGER),

								new	SqlParameter("v_createdDate",	Types.DATE),

								new	SqlParameter("v_assignedUserId",	Types.INTEGER),

								new	SqlParameter("v_comment",	Types.VARCHAR));

The	preceding	code	declares	SimpleJdbcCall,	which	invokes	a	stored	procedure	(in
PostgreSQL,	stored	procedures	are	also	called	functions)	and	all	its	parameters.	Once	this
is	declared,	it	can	be	reused	any	number	of	times	at	runtime.	Usually,	you	declare	it	at	the
class	level	(of	your	DAO).	The	following	code	illustrates	how	we	invoke	it	at	runtime:

@Override

public	void	createTask(Task	task)	{

				SqlParameterSource	inParams	=	new	

								MapSqlParameterSource().addValue("v_name",	task.getName())

								.addValue("v_STATUS",	task.getStatus())

								.addValue("v_priority",	task.getPriority())

								.addValue("v_createdUserId",	task.getCreatedBy().getId())

								.addValue("v_createdDate",	task.getCreatedDate())

								.addValue("v_assignedUserId",	task.getAssignee()	==	null	?									

null	:	task.getAssignee().getId())

								.addValue("v_comment",	task.getComments());

				Map<String,	Object>	out	=	createTaskStoredProc.execute(inParams);

				task.setId(Long.valueOf(out.get("v_newID").toString()));

}

SimpleJdbcInsert	is	typically	declared	as	shown	in	the	following	code:

SimpleJdbcInsert	simpleInsert	=	new	SimpleJdbcInsert(dataSource)

		.withTableName("tbl_user")

		.usingGeneratedKeyColumns("id");

Note	the	declaration	of	the	generated	key	column	beside	the	table	name	in	the	following
code	snippet.	Again,	this	is	usually	declared	at	the	class	level	for	better	reuse.	Now,	take	a
look	at	how	this	is	invoked	at	runtime.

public	void	createUser(User	user)	{

			Map<String,	Object>	parameters	=	new	HashMap<>(4);

			parameters.put("name",	user.getName());

			parameters.put("user_name",	user.getUserName());

			parameters.put("password",	user.getPassword());

			parameters.put("dob",	user.getDateOfBirth());

			Number	newId	=	simpleInsert.executeAndReturnKey(parameters);

			user.setId(newId.longValue());

}

You	can	see	that	the	generated	key	is	returned	after	the	execution,	which	is	set	back	to	the
User	object.	SimpleJdbcCall	and	SimpleJdbcInsert	are	convenient	alternatives	to	the
vanilla	JdbcTemplate;	you	can	use	any	of	these	solutions	consistently	or	you	can	mix-and-
match	them	in	the	same	application.

JDBC	operations	with	Sql*	classes
A	set	of	classes	belonging	to	the	org.springframework.jdbc.object	package	offers
another	method	of	performing	JDBC	operations	in	a	more	object-oriented	manner.	The
following	table	lists	the	most	common	of	them:

Component Responsibilities

MappingSqlQuery
Concrete	representation	of	a	SQL	query,	supporting	a	RowMapper,	and	having	a	wide	variety	of
convenient	execute	and	find*	methods.	Supports	named	parameters	too.

SqlUpdate
Executes	an	SQL	update	(INSERT,	UPDATE,	and	DELETE)	operation,	with	support	for	named
parameters	and	keyholders	(for	retrieving	generated	keys).

SqlCall
Performs	SQL-based	calls	for	stored	procedures	and	functions	with	support	for	named-parameters
and	keyholders	(for	retrieving	generated	keys).

The	following	code	illustrates	the	use	of	MappingSqlQuery:

public	Task	findById(Long	taskId)	{

			MappingSqlQuery<Task>	query	=	new	MappingSqlQuery<Task>()	{

						@Override

						protected	Task	mapRow(ResultSet	rs,	int	rowNum)	throws	SQLException	{

									return	new	RowMapper<Task>()	{

												@Override

												public	Task	mapRow(ResultSet	rs,	int	rowNum)	throws	

SQLException	{

															Task	task	=	new	Task();

															task.setId(rs.getLong("id"));

															...

															return	task;

												}

									}.mapRow(rs,	rowNum);

						}

			};

			query.setJdbcTemplate(jdbcTemplate);

			query.setSql("select	id,	name,	status,	priority,	created_user_id,"	+	"	

created_date,	assignee_user_id,	completed_date,	comments	"	+	"from	tbl_task	

where	id	=	?");

			query.declareParameter(new	SqlParameter("id",	Types.INTEGER));

			return	query.findObject(taskId);

}

SQL	updates	(INSERT,	UPDATE,	and	DELETE)	can	be	performed	using	SqlUpdate	with	a
more	descriptive	code,	as	the	example	in	the	following	code	illustrates:

@Override

public	void	deleteTask(Task	task)	{

			SqlUpdate	sqlUpdate	=	new	SqlUpdate(this.jdbcTemplate.getDataSource(),	

"DELETE	FROM	TBL_TASK	WHERE	ID	=	?");

			sqlUpdate.declareParameter(new	SqlParameter("ID",	Types.NUMERIC));

			sqlUpdate.compile();

			sqlUpdate.update(task.getId());

}

SqlUpdate	provides	a	variety	of	convenient	update	methods,	suitable	for	many	parameter
combinations.	You	can	mix-and-match	any	of	the	preceding	listed	Spring	JDBC
components	according	to	your	convenience	and	preferred	programming	style.

Spring	Data
Spring	Data	is	an	umbrella	project	under	the	Spring	portfolio,	designed	to	provide
consistent	data	access	across	a	number	of	different	data	stores	including	relational	and
NoSQL	Databases,	and	other	types	of	data	stores	such	as	REST	(HTTP),	search	engines,
and	Hadoop.	Under	Spring	Data,	there	are	subprojects	for	each	specific	approach	and	data
store,	put	together	by	companies	or	developers	of	those	technologies.	Spring	Data
significantly	simplifies	the	building	of	the	data	layer	regardless	of	the	underlying	database
and	persistence	technology.

The	following	table	lists	a	few	Spring	Data	subprojects	with	a	short	description	of	each:

Project Description

Spring	Data
Commons

Contains	a	core	Spring	Data	repository	specification	and	supporting	classes	for	all	Spring	Data	projects.
Specifies	concepts	such	as	repository,	query,	auditing,	and	history.

Spring	Data
JPA Deals	with	JPA-based	repositories.

Spring	Data
MongoDB Provides	easy	integration	with	MongoDB,	including	support	for	query,	criteria,	and	update	DSLs.

Spring	Data
Redis Integrates	with	the	Redis	in-memory	data	structure	store,	from	Spring	applications.

Spring	Data
Solr

Provides	integration	with	Apache	Solr,	a	powerful,	open	source	search	platform	based	on	Apache
Lucene.

Spring	Data
Gemfire

Provides	easy	integration	with	Pivotal	Gemfire,	a	data	management	platform	that	provides	real-time	data
access,	reliable	asynchronous	event	notifications,	and	guaranteed	message	delivery.

Spring	Data
KeyValue Deals	with	key	value-based	data	stores.

Spring	Data
REST Exposes	repositories	with	REST	APIs.

The	Spring	Data	portfolio	contains	community	modules	for	more	data	stores	that	are	not
covered	by	the	official	Spring	Data	projects.	Communities	of	several	very	popular	open
source	and	proprietary	databases	are	contributing	to	these	projects,	which	makes	Spring
Data	an	excellent	source	of	proven	solutions	for	building	the	data-access	layer	of
enterprise	applications	regardless	of	the	underlying	data	store.	Cassandra,	Neo4J,
Couchbase,	and	ElasticSearch	are	some	examples	of	community	projects	based	on	Spring
Data.

Spring	Data	Commons
Spring	Data	standardizes	data-access	via	all	its	store-specific	modules	(subprojects)
through	a	consistent	API	called	Spring	Data	Commons.	Spring	Data	Commons	is	the
foundational	specification	and	a	guideline	for	all	Spring	Data	Modules.	All	Spring	Data
subprojects	are	store-specific	implementations	of	Spring	Data	Commons.

Spring	Data	Commons	defines	the	core	components	and	general	behaviors	of	Spring	Data
modules.

Spring	Data	repository	specification
Query	derivation	methods
Web	support
Auditing

We	will	examine	each	of	these	components,	their	setup,	and	usage	in	the	following
sections.

Spring	Data	repository	specification
org.springframework.data.repository.Repository	is	the	central	interface	of	Spring
Data	abstraction.	This	marker	interface	is	a	part	of	Spring	Data	Commons	and	has	two
specialized	extensions,	CrudRepository	and	PagingAndSortingRepository.

public	interface	CrudRepository<T,	ID	extends	Serializable>

				extends	Repository<T,	ID>	{

				...

}

A	repository	manages	a	domain	entity	(designed	as	a	POJO).	CrudRepository	provides
CRUD	with	the	following	CRUD	operations	for	an	entity.

save(One),	save(List)
find,	findOne,	findAll
delete,	deleteAll
count

exists

PagingAndSortingRepository	adds	pagination	and	sorting	features	over
CrudRepository.	It	has	the	following	two	methods:

Page<T>	findAll(Pageable)

Iterable<T>	findAll(Sort)

Now	is	time	to	jump	ahead	and	discuss	the	technology	and	store-specific	modules	of
Spring	Data.	We	are	covering	Spring	Data	JPA	and	Spring	Data	MongoDB	to	illustrate
two	totally	different	worlds	in	the	database	universe:	relational	and	NoSQL.	When	we	use
a	specific	implementation,	we	use	an	implementation-specific	repository	but	your	method
interfaces	remain	the	same;	hence,	theoretically,	a	switch	from	a	specific	Spring	Data
implementation	to	another	would	not	affect	your	client	programs	(service,	controller,	or
test	cases).

Spring	Data	JPA
Spring	Data	JPA	is	the	JPA	(Java	Persistence	Architecture)-based	implementation	of
Spring	Data,	dealing	with	object-relational	data	access.	For	a	developer,	most	of	the
programming	is	based	on	what	is	described	in	Spring	Data	Commons,	whereas	Spring
Data	JPA	allows	for	some	extra	customizations	specific	to	relational	SQL	and	JPA.	The
main	difference	is	in	the	repository	setup	and	the	query	optimization	using	the	@Query
annotation.

Enabling	Spring	Data	JPA
Enabling	Spring	Data	JPA	in	your	project	is	a	simple	two-step	process:

1.	 Add	the	spring-data-jpa	dependency	to	your	maven/gradle	build	file.
2.	 Declare	enable	JPA	repositories	in	your	bean	configuration.

In	Maven,	you	can	add	a	spring-data-jpa	dependency	as	shown	in	the	following	code:

<dependency>

		<groupId>org.springframework.data</groupId>

		<artifactId>spring-data-jpa</artifactId>

		<version>${spring-data-jpa.version}</version>

</dependency>

You	can	enable	JPA	repositories,	as	shown	in	the	following	line,	if	you	are	using	XML:

		<jpa:repositories	base-package="com.taskify.dao"	/>

In	the	case	of	Java	configuration,	you	just	annotate	to	enable	JPA	repositories.

@Configuration

@ComponentScan(basePackages	=	{"com.taskify"})

@EnableJpaRepositories(basePackages	=	"com.taskify.dao")

public	class	JpaConfiguration	{

		...

}

JpaRepository
After	enabling	JPA	repositories,	Spring	scans	the	given	package	for	Java	classes	annotated
with	@Repository,	and	creates	fully-featured	proxy	objects	ready	to	be	used.	These	are
your	DAO,	where	you	just	define	the	methods,	Spring	gives	you	proxy-based
implementations	at	runtime.	See	a	simple	example:

public	interface	TaskDAO	extends	JpaRepository<Task,	Long>{

		List<Task>	findByAssigneeId(Long	assigneeId);

		List<Task>	findByAssigneeUserName(String	userName);

}

Spring	generates	smart	implementations	that	actually	perform	the	required	database
operations	for	these	methods	inside	the	proxy	implementation,	looking	at	the	method
names	and	arguments.

Spring	Data	MongoDB
MongoDB	is	one	of	the	most	popular	document-oriented	NoSQL	databases.	It	stores	data
in	BSON	(Binary	JSON)	format,	allowing	you	to	store	an	entire	complex	object	in	nested
structures,	avoiding	the	need	to	break	data	into	a	lot	of	relational	tables.	Its	nested	object
structure	maps	directly	to	object-oriented	data	structures	and	eliminates	the	need	for	any
object-relational	mapping,	as	is	the	case	with	JPA/Hibernate.

Spring	Data	MongoDB	is	the	Spring	Data	module	for	MongoDB.	It	allows	Java	objects	to
be	mapped	directly	into	MongoDB	documents.	It	also	provides	a	comprehensive	API	and
infrastructural	support	for	connecting	to	MongoDB	and	manipulating	its	document
collections.

Enabling	Spring	Data	MongoDB
Spring	Data	MongoDB	can	be	enabled	with	the	following	steps:

1.	 Add	spring-data-mongodb	to	your	build	file	(maven/gradle).
2.	 Register	a	Mongo	instance	in	your	Spring	metadata	configuration.
3.	 Add	a	mongoTemplate	Spring	Bean	to	your	Spring	metadata.

Adding	the	spring-data-mongodb	dependency	with	Maven	should	look	like	this:

<dependency>

		<groupId>org.springframework</groupId>

		<artifactId>spring-aop</artifactId>

		<version>${spring.framework.version}</version>

</dependency>

You	can	register	a	Mongo	instance	in	your	XML	metadata,	as	shown	in	the	following	line:

<mongo:mongo	host="192.168.36.10"	port="27017"	/>

This	Mongo	instance	is	a	proxy	of	your	actual	MongoDB	instance	running	on	a	server.

A	simplistic	mongoTemplate	looks	like	the	listing	given	in	the	following	code:

<bean	id="mongoTemplate"	

class="org.springframework.data.mongodb.core.MongoTemplate">

		<constructor-arg	ref="mongo"	/>

		<constructor-arg	name="databaseName"	value="Taskify"	/>

</bean>

MongoRepository
MongoRepository	is	the	MongoDB-specific	repository	for	Spring	Data	MongoDB.	It
looks	very	similar	to	JpaRepository.	Take	a	look	at	a	sample	MongoRepository	class:

public	interface	TaskDAO	extends	MongoRepository<Task,	String>{

		List<Task>	findByAssigneeId(String	assigneeId);

		@Query("{	'status'	:	'Complete'	}")

		List<Task>	findCompletedTasks();

		@Query(value	=	"{	'status'	:	'Open',	assignee.id:	?0	}")

		List<Task>	findOpenTasksByAssigneeId(String	assigneeId);

		...

}

Domain	objects	and	entities
Data-driven	applications	often	design	domain	objects	as	entities	and	then	persist	them	into
databases	either	as	relational	tables	or	document	structures	of	key-value	pairs	at	runtime.
Spring	Data	deals	with	domain	entities	like	any	other	persistence	framework.	In	order	to
illustrate	the	usage	of	a	repository,	we	will	refer	to	the	following	three	related	entities,
designed	as	Plain	Old	Java	Objects	(POJOs)	in	your	program.

The	following	are	the	Java	representations.	The	first	one	is	annotated	for	JPA	and	the	other
two	for	MongoDB.	JPA	entities	are	annotated	with	@Entity.	Columns	are	mapped	against
each	field.	Remember	that,	instead	of	annotations,	you	can	use	XML-based	mapping	for
JPA	entities	too.	XML	mapping	offers	several	benefits	including	centralized	control	and
maintainability.	This	example	uses	annotations	for	simplicity,	assuming	that	the	reader	is
already	familiar	with	JPA	or	Hibernate	mappings.

@Entity

@Table(name	=	"TBL_USER",	uniqueConstraints	=	@UniqueConstraint(name	=	

"UK_USER_USERNAME",	columnNames	=	{"USER_NAME"	}))

public	class	User	{

		@Id

		@SequenceGenerator(name	=	"SEQ_USER",	sequenceName	=	"SEQ_USER",	

allocationSize	=	1,	initialValue=1001)

		@GeneratedValue(strategy	=	GenerationType.SEQUENCE,	generator	=	

"SEQ_USER")

		private	Long	id;

		@Column(name	=	"NAME",	length	=	200)

		private	String	name;

		@Column(name	=	"USER_NAME",	length	=	25)

		private	String	userName;

		@Column(name	=	"PASSWORD",	length	=	20)

		private	String	password;

		@Column(name	=	"DOB")

		@Temporal(TemporalType.TIMESTAMP)

		private	Date	dateOfBirth;

		@ManyToOne(optional	=	true)

		@JoinColumn(name	=	"FILE_ID",	referencedColumnName	=	"ID")

		private	File	profileImage;

		public	User()	{}

		public	User(Long	id,	String	name,	String	userName,	String	password,	Date	

dateOfBirth)	{

				super();

				this.id	=	id;

				this.name	=	name;

				this.userName	=	userName;

				this.password	=	password;

				this.dateOfBirth	=	dateOfBirth;

		}

		public	Long	getId()	{

				return	id;

		}

		...

}

The	following	is	the	task	entity,	annotated	as	a	MongoDB	document.	Mongo	entities	are
annotated	with	@Document.	It	requires	an	ID	field,	either	annotated	with	@Id	or	with	the
name	id.

@Document(collection	=	"tasks")

public	class	Task	{

		@Idprivate	String	id;

		private	String	name;

		private	int	priority;

		private	String	status;

		private	User	createdBy;

		private	Date	createdDate;

		private	User	assignee;

		private	Date	completedDate;

		private	String	comments;

		public	Task()	{}

		...

}

The	file	entity	is	annotated	as	a	JPA	entity.

@Entity

@Table(name	=	"TBL_FILE")

public	class	File	{

		@Id

		@SequenceGenerator(name	=	"SEQ_FILE",	sequenceName	=	"SEQ_FILE",	

allocationSize	=	1)

		@GeneratedValue(strategy	=	GenerationType.SEQUENCE,	generator	=	

"SEQ_FILE")

		private	Long	id;

		@Column(name	=	"FILE_NAME",	length	=	200)

		private	String	fileName;

		...

}

Query	resolution	methods
In	addition	to	the	declared	query	(find,	count,	delete,	remove,	and	exists)	methods	at
interface	level,	CrudRepository	supports	declared	queries	using	the	@Query	annotation
methods	with	any	name,	which	helps	to	derive	the	actual	SQL	queries	from	the	SpEL
(Spring	Expression	Language)	expression	given	as	a	parameter.	Of	these	two	query
deriving	options,	Spring	Data	adopts	one	based	on	the	following	query	lookup	strategies:

Query	Lookup	Strategy Description

CREATE Generates	module-specific	queries	from	the	method	name.

USE_DECLARED_QUERY Uses	a	query	declared	by	an	annotation	or	some	other	means.

CREATE_IF_NOT_FOUND This	strategy	combines	the	first	two.	This	is	the	default	strategy.

The	query	lookup	strategy	is	normally	set	while	enabling	JPA	repositories.

<jpa:repositories	base-package="com.taskify.dao"	query-lookup-

strategy="create-if-not-found"/>

The	query	generation	strategy	(CREATE)	works	around	the	properties	of	the	entity,
including	their	dependencies,	in	a	nested	direction.	As	a	developer,	you	define	method
names	based	on	a	specific	format	that	can	be	interpreted	and	realized	by	Spring	Data.	The
general	structure	of	the	query	method	is	shown	here:
[return	Type]	[queryType][limitKeyword]By[criteria][OrderBy][sortDirection]

return	type	can	be	the	entity	<T>	itself	(in	the	case	of	a	unique	result),	a	list	<T>,	a
stream	<T>,	page	<T>,	primitive	numbers,	Java	wrapper	types,	void,	future	<T>,
CompletableFuture<T>,	ListenableFuture<T>,	and	so	on.	The	last	three	are	for
Spring’s	asynchronous	method	execution	and	should	be	annotated	with	@Async.
queryType	can	be	find,	read,	query,	count,	exists,	delete,	and	so	on.
limitKeyword	supports	distinct,	First[resultSize],	and	Top[resultSize].	An
example	is	First5.
criteria	is	built	by	combining	one	or	more	property	expressions	(using	camel-
casing)	with	standard	operators	such	as	Or,	And,	Between,	GreaterThan,	LessThan,
IsNull,	StartsWith,	and	Exists.	Criteria	can	be	suffixed	by	IgnoreCase	or
AllIgnoreCase,	to	apply	case	insensitivity.
OrderBy	is	used	as	it	is,	suffixed	by	property	expressions.
sortDirection	can	be	either	of	Asc	or	Desc.	This	is	used	only	with	OrderBy.

Let’s	see	some	examples	for	better	clarity.	The	following	sample	code	illustrates	how	to

construct	query	(or	delete)	methods	so	that	Spring	Data	can	generate	the	actual	SQL	query
at	runtime.

public	interface	UserDAO	extends	JpaRepository<User,	Long>	{

		//	Returns	unique	user	with	given	user-name

		User	findByUserName(String	userName);

		//	Returns	a	paginated	list	of	users	whose	name	starts	with	//	given	

value

		Page<User>	findByNameStartsWith(String	name,	Pageable	pageable);

		//	Returns	first	5	users	whose	name	starts	with	given	value,	

		//	order	by	name	descending

		List<User>	findTop5ByNameStartsWithOrderByNameDesc(String	name);

		//	Returns	number	of	users	whose	birth	date	is	before	the	given	//	value

		Long	countUsersDateOfBirthLessThan(Date	dob);

		//	Deletes	the	User	of	given	id

		void	deleteById(Long	userId);

		//	Asynchronously	returns	a	list	of	users	whose	name	contains	//	the	

given	value

		@Async

		Future<List<User>>	findByNameContains(String	name);

}

The	preceding	example	showing	JpaRepository	and	MongoRepository	works	in	the	same
way;	you	just	need	to	extend	from	it,	without	changing	the	method	signatures.	You	have
seen	the	constraining	query	and	filter	methods	traversing	root-level	properties	of	the
entity,	combining	operators	appropriately.	Besides	root-level	properties,	you	can	traverse
and	filter	by	nested	properties	as	well,	to	define	query	constraints,	in	other	words,	limiting
the	result.	Take	a	look	at	the	following	example:

public	interface	TaskDAO	extends	MongoRepository<Task,	String>{

		List<Task>	findByAssigneeId(Long	assigneeId);

		List<Task>	findByAssigneeUserName(String	userName);

}

The	methods	listed	in	the	preceding	example	are	traversing	nested	properties	of	the	task
entity:

findByAssigneeId	=	task.assignee.id

findByAssigneeUserName	=	task.assignee.userName

You	can	traverse	into	any	level	of	nested	elements	of	your	entity,	depending	on	how
complex	your	entity	and	requirements	are.

Using	the	@Query	annotation
Besides	the	autogeneration	of	queries	based	on	method	names	as	demonstrated	in	the

previous	section,	Spring	Data	allows	you	to	declare	queries	for	entities	locally,	directly	in
the	repository	itself,	over	the	method	names.	You	declare	the	query	using	SpEL,	and
Spring	Data	interprets	it	at	runtime	and	(the	proxy	repository)	generates	the	queries	for
you.	This	is	an	implementation	of	the	query	resolution	strategy:	USE_DECLARED_QUERY.

Let’s	take	a	look	at	some	self-explanatory	examples:

public	interface	TaskDAO	extends	JpaRepository<Task,	Long>{	

		

		@Query("select	t	from	Task	t	where	status	=	'Open'")

		List<Task>	findOpenTasks();

		@Query("select	t	from	Task	t	where	status	=	'Complete'")

		List<Task>	findCompletedTasks();

		@Query("select	count(t)	from	Task	t	where	status	=	'Open'")

		int	findAllOpenTasksCount();

		@Query("select	count(t)	from	Task	t	where	status	=	'Complete'")

		int	findAllCompletedTasksCount();

		@Query("select	t	from	Task	t	where	status	=	'Open'	and	assignee.id	=	?1")

		List<Task>	findOpenTasksByAssigneeId(Long	assigneeId);

		@Query("select	t	from	Task	t	where	status	=	'Open'	and	assignee.userName	

=	?1")

		List<Task>	findOpenTasksByAssigneeUserName(String	userName);

		@Query("select	t	from	Task	t	where	status	=	'Complete'	and	assignee.id	=	

?1")

		List<Task>	findCompletedTasksByAssigneeId(Long	assigneeId);

		@Query("select	t	from	Task	t	where	status	=	'Complete'	and	

assignee.userName	=	?1")

		List<Task>	findCompletedTasksByAssigneeUserName(String	userName);

}

You	can	see	from	the	preceding	example	that	we	can	traverse	into	nested	properties	to
constrain	the	queries,	in	the	criteria	part	of	it.	You	can	also	have	both	query	generation
strategies	(CREATE	and	USE_DECLARED_QUERY)	in	the	same	repository.

The	preceding	example	was	based	on	Spring	Data	JPA;	the	Spring	Data	MongoDB
equivalent	is	given	in	the	following	code.	You	can	see	how	the	@Query	annotation	values
differ	in	comparison	to	the	MongoDB	structure.

public	interface	TaskDAO	extends	MongoRepository<Task,	String>{

		@Query("{	'status'	:	'Open'	}")

		List<Task>	findOpenTasks();

		@Query("{	'status'	:	'Complete'	}")

		List<Task>	findCompletedTasks();

		@Query(value	=	"{	'status'	:	'Open'	}",	count	=	true)

		int	findAllOpenTasksCount();

		@Query(value	=	"{	'status'	:	'Complete'	}",	count	=	true)

		int	findAllCompletedTasksCount();

		@Query(value	=	"{	'status'	:	'Open',	assignee.id:	?0	}")

		List<Task>	findOpenTasksByAssigneeId(String	assigneeId);

		@Query(value	=	"{	'status'	:	'Open',	assignee.userName:	?0	}")

		List<Task>	findOpenTasksByAssigneeUserName(String	userName);

		@Query(value	=	"{	'status'	:	'Complete',	assignee.id:	?0	}")

		List<Task>	findCompletedTasksByAssigneeId(String	assigneeId);

		@Query(value	=	"{	'status'	:	'Open',	assignee.userName:	?0	}")

		List<Task>	findCompletedTasksByAssigneeUserName(String	userName);

}

Spring	Data	web	support	extensions
Spring	Data	provides	a	smart	extension	called	SpringDataWebSupport	to	Spring	MVC
applications,	integrating	a	few	productivity	components	automatically	if	you	enable	it.	It
primarily	resolves	domain	entities	as	Pageable	and	Sort	instances	with	request-mapping
controller	methods	directly	from	request	parameters,	if	you	are	using	Spring	Data
repository	programming	model	for	data	access.

You	need	to	enable	SpringDataWebSupport	for	your	project	before	you	can	use	the
features.	You	can	annotate	@EnableSpringDataWebSupport,	as	shown	in	the	following
code,	if	you	are	using	a	Java	configuration:

@Configuration

@EnableWebMvc

@ComponentScan(basePackages	=	{"com.taskify"})

@EnableSpringDataWebSupport

@EnableJpaRepositories(basePackages	=	"com.taskify.dao")

public	class	ApplicationConfiguration	{

	...

}

In	the	case	of	XML	metadata,	you	can	register	SpringDataWebConfiguration	as	a	Spring
bean,	as	shown	in	the	following	code:

<bean	

class="org.springframework.data.web.config.SpringDataWebConfiguration"	/>

Once	you	set	up	SpringDataWebSupport,	you	can	start	using	Spring	Data	entities	as
request	arguments	with	request-mapping	methods,	as	shown	in	the	following	code:

@RestController

@RequestMapping("/api/v1/user")

@CrossOrigin

public	class	UserController	{

		@RequestMapping(path	=	"/{id}",	method	=	RequestMethod.GET)

		public	User	getUser(@PathVariable("id")	User	user)	{

				return	user;

		}

		...

}

In	the	preceding	method,	you	can	see	that	Spring	Data	loads	the	User	entity	data	using
UserRepository	transparently	for	you.	Similarly,	you	can	accept	Pageable	and	Sort
instances	against	JSON	or	XML	post	requests.	Wise	usage	of	the	SpringDataWebSupport
extension	makes	your	code	cleaner	and	more	maintainable.

Auditing	with	Spring	Data
Tracking	data	modifications	is	a	critical	feature	of	serious	business	applications.
Administrators	and	managers	are	anxious	to	know	when	and	who	changed	certain
business	information	saved	in	the	database.	Spring	Data	provides	smart	and	easy	methods
for	auditing	data	entities	transparently.	Spring	Data	ships	the	following	meaningful
annotations	for	capturing	modified	user	and	time	data	entities	in	the	system:

Annotation Expected	type

@CreatedBy
The	principal	user	who	created	the	entity.	Typically,	it	is	another	entity	that	represents	the	domain
user.

@CreatedDate
Records	when	the	entity	is	created.	Supported	types:	java.util.Date,	calendar,	JDK	8	date/time
types,	Joda	DateTime.

@LastModifiedBy The	user	principal	who	last	updated	the	entity.	It	is	the	same	type	as	@CreatedBy.

@LastModifiedDate Records	when	the	entity	was	last	updated.	Supported	types	are	the	same	as	for	@CreatedDate.

A	typical	JPA	entity	should	look	like	the	following	code:

@Entity

@Table(name	=	"tbl_task")

public	class	Task	{

		@Id

		private	Long	id;

		...

		@ManyToOne(optional	=	true)

		@JoinColumn(name	=	"CREATED_USER_ID",	referencedColumnName	=	"ID")

		@CreatedBy

		private	User	createdBy;

		@Column(name	=	"CREATED_DATE")

		@Temporal(TemporalType.TIMESTAMP)

		@CreatedDate

		private	Date	createdDate;

		@ManyToOne(optional	=	true)

		@JoinColumn(name	=	"MODIFIED_USER_ID",	referencedColumnName	=	"ID")

		@LastModifiedBy

		private	User	modifiedBy;

		@Column(name	=	"MODIFIED_DATE")

		@Temporal(TemporalType.TIMESTAMP)

		@LastModifiedDate

		private	Date	modifiedDate;

		...

}

If	you	are	using	XML	instead	of	annotations	to	map	your	entities,	you	can	either
implement	an	auditable	interface,	which	forces	you	to	implement	the	audit	metadata
fields,	or	extend	AbstractAuditable,	a	convenient	base	class	provided	by	Spring	Data.

Since	you	are	recording	the	information	of	the	user	who	is	creating	and	modifying	entities,
you	need	to	help	Spring	Data	to	capture	that	user	information	from	the	context.	You	need
to	register	a	bean	that	implements	AuditAware<T>,	where	T	is	the	same	type	of	field	that
you	annotated	with	@CreatedBy	and	@LastModifiedBy.	Take	a	look	at	the	following
example:

@Component

public	class	SpringDataAuditHelper	implements	AuditorAware<User>	{

		...

		@Override

		public	User	getCurrentAuditor()	{

				//	Return	the	current	user	from	the	context	somehow.

		}

}

If	you	are	using	Spring	Security	for	authentication,	then	the	getCurrentAuditor	method
should	get	and	return	the	user	from	the	SecurityContextHolder	class,	as	follows:

@Component

public	class	SpringDataAuditHelper	implements	AuditorAware<User>	{

		...

		@Override

		public	User	getCurrentAuditor()	{

				Authentication	authentication	=	

SecurityContextHolder.getContext().getAuthentication();

				if	(authentication	==	null	||	!authentication.isAuthenticated())	{

						return	null;

				}

				return	((User)	authentication.getPrincipal()).getUser();

		}

}

Now	your	auditing	infrastructure	is	ready,	any	modification	you	make	in	your	auditable
entities	will	be	tracked	transparently	by	Spring	Data.

So	far	you	have	mastered	the	mighty	Spring	Data	and	you	know	how	to	create	elegant	and
clean	yet	really	powerful	data	access	layers	with	Spring	Data	repositories,	so	now	it	is
time	to	think	about	how	to	ensure	the	data	integrity	and	reliability	of	your	application.
Spring	Transaction	is	the	answer;	let’s	explore	it	in	the	next	section.

Spring	Transaction	support
Data-driven	enterprise	systems	consider	data	integrity	as	paramount,	hence	transaction
management	is	a	critical	feature	supported	by	major	databases	and	application	servers.
Spring	framework	provides	comprehensive	transaction	support,	abstracting	any	underlying
infrastructure.	Spring	Transaction	support	includes	a	consistent	approach	across	different
transaction	choices	such	as	JTA,	JPA,	and	JDO.	It	integrates	well	with	all	Spring	data-
access	mechanisms.	Spring	Transaction	supports	both	declarative	and	programmatic
transaction	management.

Note
A	transaction	can	be	defined	as	an	atomic	unit	of	data	exchange,	typically	SQL
statements	in	the	case	of	relational	databases,	which	should	be	either	committed	or	rolled
back	as	a	block	(all	or	nothing).	A	transactional	system	or	a	transaction	management
framework	enforces	ACID	(Atomic,	Consistent,	Isolated,	Durable)	properties	across	the
participating	systems	or	resources	(such	as	databases	and	messaging	queues).

Relevance	of	Spring	Transaction
Enterprise	Java	application	servers	natively	provide	JTA	(Java	Transaction	API)
support,	which	enables	distributed	transaction,	which	is	also	known	as	global	transaction,
spanning	multiple	resources,	applications	and	servers.	Traditionally,	Enterprise	Java
Beans	(EJB)	and	Message	Driven	Beans	(MDB)	were	used	for	container-managed
transactions	(CMT),	which	is	based	on	JTA	and	JNDI.	JTA	transaction	management	is
resource-intensive;	its	exception	handling	is	based	on	checked	exceptions	and	so	is	not
developer-friendly.	Moreover,	unit	testing	is	hard	with	EJB	CMT.

For	those	who	do	not	want	to	use	resource-intensive	JTA	transactions,	a	local	transaction
is	another	available	option,	and	one	that	allows	you	to	programmatically	enforce	resource-
specific	transactions	using	APIs	such	as	JDBC.	Although	relatively	easy	to	use,	it	is
limited	to	a	single	resource,	as	multiple	resources	cannot	participate	in	a	single
transaction.	Moreover,	local	transactions	are	often	invasive,	hence	they	pollute	your	code.

Spring	Transaction	abstraction	solves	the	problems	of	global	and	local	transactions	by
providing	a	consistent	transaction	model	that	can	run	in	any	environment.	Although	it
supports	both	declarative	and	programmatic	transaction	management,	the	declarative
model	is	sufficient	for	most	cases.	Spring	Transaction	eliminates	the	need	for	an
application	server	such	as	JBoss	or	WebLogic	just	for	transactions.	You	can	start	with
local	transactions	using	Spring	on	a	simple	Servlet	engine	such	as	Tomcat	and	scale	it	up
later	to	distributed	transactions	on	an	application	server	without	touching	your	business
code,	just	by	changing	the	transaction	manager	in	your	Spring	metadata.

Most	applications	just	need	local	transactions	since	they	do	not	deal	with	multiple	servers
or	transactional	resources	such	as	databases,	JMS,	and	JCA;	hence,	they	do	not	need	a
full-blown	application	server.	For	distributed	transactions	spanned	across	multiple	servers
over	remote	calls,	you	need	JTA,	necessitating	an	application	server,	as	JTA	needs	JNDI	to
look	up	the	data	source.	JNDI	is	normally	available	only	in	an	application	server.	Use
JTATransactionManager	inside	application	servers	for	JTA	capabilities.

Note
When	you	deploy	your	Spring	application	inside	an	application	server,	you	can	use	server-
specific	transaction	managers	to	utilize	their	full	features.	Just	switch	the	transaction
manager	to	use	server-specific	JtaTransactionManager	implementations	such	as
WebLogicJTATransactionManager	and	WebSphereUowTransactionManager	inside	your
Spring	metadata.	All	your	code	is	completely	portable	now.

Spring	Transaction	fundamentals
Spring	Transaction	Management	abstraction	is	designed	around	an	interface	named
PlatformTransactionManager,	which	you	need	to	configure	as	a	Spring	bean	in	your
Spring	metadata.	PlatformTransactionManager	manages	the	actual	transaction	instance
that	performs	the	transaction	operations	such	as	commit	and	rollback,	based	on	a
TransactionDefinition	instance	that	defines	the	transaction	strategy.
TransactionDefinition	defines	the	critical	transaction	attributes	such	as	isolation,
propagation,	transaction	timeout,	and	the	read-only	status	of	a	given	transaction	instance.

Note
Transaction	attributes	determine	the	behavior	of	transaction	instances.	They	can	be	set
programmatically	as	well	as	declaratively.	Transaction	attributes	are:

Isolation	level:	Defines	how	much	a	transaction	is	isolated	from	(can	see)	other
transactions	running	in	parallel.	Valid	values	are:	None,	Read	committed,	Read
uncommitted,	Repeatable	reads,	and	Serializable.	Read	committed	cannot	see	dirty
reads	from	other	transactions.

Propagation:	Determines	the	transactional	scope	of	a	database	operation	in	relation	to
other	operations	before,	after,	and	nested	inside	itself.	Valid	values	are:	REQUIRED,
REQUIRES_NEW,	NESTED,	MANDATORY,	SUPPORTS,	NOT_SUPPORTED,	and	NEVER.

Timeout:	Maximum	time	period	that	a	transaction	can	keep	running	or	waiting	before	it
completes.	Once	at	timeout,	it	will	roll	back	automatically.

Read-only	status:	You	cannot	save	the	data	read	in	this	mode.

These	transaction	attributes	are	not	specific	to	Spring,	but	reflect	standard	transactional
concepts.	The	TransactionDefinition	interface	specifies	these	attributes	in	the	Spring
Transaction	Management	context.

Depending	on	your	environment	(standalone,	web/app	server)	and	the	persistence
mechanism	you	use	(such	as	plain	JDBC,	JPA,	and	Hibernate),	you	choose	the	appropriate
implementation	of	PlatformTransactionManager	and	configure	it	as	required,	in	your
Spring	metadata.	Under	the	hood,	using	Spring	AOP,	Spring	injects	TransactionManager
into	your	proxy	DAO	(or	EntityManager,	in	the	case	of	JPA)	and	executes	your
transactional	methods,	applying	transaction	semantics	declared	in	your	Spring
configuration,	either	using	the	@Transactional	annotation	or	the	equivalent	XML
notations.	We	will	discuss	the	@Transactional	annotation	and	its	XML	equivalent	later	on
in	this	chapter.

For	applications	that	operate	on	a	single	DataSource	object,	Spring	provides
DataSourceTransactionManager.	The	following	shows	how	to	configure	it	in	XML:

<bean	id="txManager"	

class="org.springframework.jdbc.datasource.DataSourceTransactionManager">

		<property	name="dataSource"	ref="taskifyDS"	/>

</bean>

For	multiple	DataSource	objects	or	transactional	resources,	you	need	a
JtaTransactionManager	with	JTA	capabilities,	which	usually	delegates	to	a	container	JTA
provider.	You	need	to	use	DataSource	objects	in	Java	EE	application	servers,	defined	with
the	server,	and	looked	up	via	JNDI	along	with	JtaTransactionManager.	A	typical
combination	should	look	like	the	following	code	fragment:

<bean	id="txManager"	

class="org.springframework.transaction.jta.JtaTransactionManager"	/>

</bean>

<jee:jndi-lookup	id="taskifyDS"	jndi-name="java:jboss/datasources/taskify"	

expected-type="javax.sql.DataSource/>

If	you	are	using	Hibernate	and	just	a	single	DataSource	(and	no	other	transactional
resource),	then	the	best	option	is	to	use	HibernateTransactionManager,	which	requires
you	to	pass	the	session	factory	as	a	dependency.	For	JPA,	Spring	provides
JpaTransactionManager,	which	binds	a	single	JPA	EntityManager	instance.	However,	it
is	advisable	to	use	JtaTransactionManager	in	application-container	environments.

Spring	provides	specialized	transaction	managers	for	application	servers	for	WebLogic
and	WebSphere	in	order	to	leverage	full	power	from	container-specific	transaction
coordinators.	Use	WebLogicTransactionManager	and	WebsphereUowTransactionManager
in	the	respective	environments.

Declarative	transaction	management
Separating	Transaction	semantics	out	of	your	business	code	into	an	XML	file	or
annotations	above	the	methods	is	usually	called	declarative	transaction	management.
Spring	Framework	allows	you	to	apply	transactional	behavior	into	your	beans
transparently	and	non-invasively	using	its	declarative	transaction	management	feature.

You	can	apply	Spring	Transaction	declaratively	on	any	Spring	bean,	unlike	EJB	CMT.
With	Spring	Transaction,	you	can	specify	transactional	advices	around	your	bean	methods
inside	the	metadata	in	an	AOP	style;	then	Spring	will	apply	your	those	advices	at	runtime
using	AOP.	You	can	set	rollback	rules	to	specify	which	exceptions	around	which	beans	or
methods	cause	automatic	rollback	or	non-rollback.

Transactional	modes	–	proxy	and	AspectJ
Spring	Transactions	supports	two	transactional	modes:	proxy	mode	and	AspectJ	mode.
Proxy	is	the	default	and	most	popular	mode.	In	proxy	mode,	Spring	creates	an	AOP	proxy
object,	wrapping	the	transactional	beans,	and	applies	transactional	behavior	transparently
around	the	methods	using	transaction	aspects	based	on	the	metadata.	The	AOP	proxy
created	by	Spring	based	on	transactional	metadata,	with	the	help	of	the	configured
PlatformTransactionManager,	performs	transactions	around	the	transactional	methods.

If	you	choose	AspectJ	mode	for	transactions,	the	transactional	aspects	are	woven	into	the
bean	around	the	specified	methods	modifying	the	target	class	byte	code	during	compile-
time.	There	will	be	no	proxying	in	this	case.	You	will	need	AspectJ	mode	in	special	cases
such	as	invoking	transactional	methods	of	the	same	class	with	different	propagation	levels,
where	proxying	would	not	help.

Defining	transactional	behavior
Spring	offers	two	convenient	approaches	for	declaratively	defining	the	transactional
behavior	of	your	beans:

AOP	configuration	for	transactions	in	an	XML	metadata	file
Using	the	@Transactional	annotation

Let’s	start	with	AOP	configuration	in	an	XML	file.	Refer	to	the	Aspect	Oriented
Programming	section	of	Chapter	1,	Getting	Started	with	Spring	Core,	for	a	detailed
discussion	of	configuring	AOP,	using	aspects,	pointcuts,	advice,	and	so	on.

Typically,	you	declare	transaction	advices	and	pointcuts	with	pointcut	expressions	in	your
XML	metadata	file.	The	best	approach	is	to	keep	the	transaction	configuration	in	a
separate	bean-definition	file	(for	example,	transation-settings.xml)	and	import	it	into
your	primary	application-context	file.

Typically,	you	declare	transactional	advices	and	other	semantics	as	shown	in	the	following
code:

<!--	transactional	advices	-->	

<tx:advice	id="txAdvice"	transaction-manager="transactionManager">

		<!--	the	transactional	semantics…	-->

		<tx:attributes>

				<!--	all	methods	starting	with	'get'	are	read-only	-->

				<tx:method	name="find*"	read-only="true"	/>

				<!--	other	methods	use	the	default	transaction	settings	(see	below)	-->

				<tx:method	name="*"	isolation="DEFAULT"	propagation="REQUIRED"	/>

		</tx:attributes>

</tx:advice>

<!--	Applying	the	above	advices	to	the	service	layer	methods	-->

<aop:config>

		<aop:pointcut	id="allServiceMethods"

		expression="execution(*	com.taskify.service.*.*(..))"	/>

		<aop:advisor	advice-ref="txAdvice"	pointcut-	ref="allServiceMethods"	/>

</aop:config>

You	can	see	that	this	AOP	configuration	instructs	Spring	how	to	weave	transactional
advices	around	the	methods	using	pointcuts.	It	instructs	TransactionManager	to	make	all
find	methods	of	the	entire	service	layer	read-only,	and	to	force	other	methods	to	have	the
transaction	propagation:	REQUIRED,	which	means	that,	if	the	caller	of	the	method	is	already
in	a	transactional	context,	this	method	joins	the	same	transaction	without	creating	a	new
one;	otherwise,	a	new	transaction	is	created.	If	you	want	to	create	a	different	transaction
for	this	method,	you	should	use	the	REQUIRES_NEW	propagation.

Also,	note	that	the	transaction	isolation	level	is	specified	as	DEFAULT,	which	means	the
default	isolation	of	the	database	is	to	be	used.	Most	databases	default	to	READ_COMMITTED,
which	means	a	transactional	thread	cannot	see	the	data	of	other	transactions	in	progress
(dirty	reads).

Setting	rollback	rules
With	Spring	transaction,	you	can	set	rollback	rules	declaratively,	in	the	same	<tx:advice>
block,	as	shown	in	the	following	code:

<tx:advice	id="txAdvice"	transaction-manager="transactionManager">

		<tx:attributes>

				...

				<tx:method	name="completeTask"	propagation="REQUIRED"	rollback-

for="NoTaskFoundException"/>

				<tx:method	name="findOpenTasksByAssignee"	read-only="true"	no-rollback-

for="InvalidUserException"/>

				<tx:method	name="*"	isolation="DEFAULT"	propagation="REQUIRED"	/>

		</tx:attributes>

</tx:advice>

You	can	specify	which	exceptions	should	or	should	not	rollback	transactions	for	your
business	operations	using	the	rollback-for	and	no-rollback-for	attributes	of	the
<tx:method>	element.

Note
TransactionException	thrown	by	the	PlatformTransactionManager	interface’s	methods
is	the	unchecked	exception,	RuntimeException.	In	Spring,	transactions	rollback	for
unchecked	exceptions	automatically.	Checked,	or	application	exceptions	are	not	rolled

back	unless	specified	in	the	metadata,	using	the	rollback-for	attribute.

Spring	Transaction	allows	you	to	customize	the	transactional	behavior	of	your	beans	to	a
minute	level	of	granularity	using	Spring	AOP	and	SpEL.	Moreover,	you	can	specify	the
behavioral	attributes	of	your	transaction	such	as	propagation,	isolation,	and	timeout	at	the
method	level	on	the	<tx:method>	element.

Using	the	@Transactional	annotation
The	@Transactional	annotation	describes	transactional	attributes	on	a	method	or	class.
Class-level	annotation	applies	to	all	methods	unless	explicitly	annotated	at	method	level.	It
supports	all	the	attributes	you	otherwise	set	at	the	XML	configuration.	See	the	following
example:

@Service

@Transactional

public	class	TaskServiceImpl	implements	TaskService	{

		...

		public	Task	createTask(Task	task)	{

				if	(StringUtils.isEmpty(task.getStatus()))

						task.setStatus("Open");

				taskDAO.save(task);

				return	task;

		}

		@Transactional(propagation	=	Propagation.REQUIRED,	rollbackFor	=	

NoUserFoundException)

		public	Task	createTask(String	name,	int	priority,	Long	createdByuserId,	

Long	assigneeUserId,	String	comments)	{

				Task	task	=	new	Task(name,	priority,	"Open",	

userService.findById(createdByuserId),	null,	

userService.findById(assigneeUserId),	comments);

				taskDAO.save(task);

				logger.info("Task	created:	"	+	task);

				return	task;

		}

		@Transactional(readOnly	=	true)

		public	Task	findTaskById(Long	taskId)	{

				return	taskDAO.findOne(taskId);

		}

		...

}

In	the	preceding	example,	the	transactional	method	createTask	with	propagation
REQUIRED	rolls	back	for	NoUserFoundException.	Similarly,	you	can	set	no-rollback	rules
at	the	same	level	too.

Note
@Transactional	can	be	applied	only	to	public	methods.	If	you	want	to	annotate	over
protected,	private,	or	package-visible	methods,	consider	using	AspectJ,	which	uses
compile-time	aspect	weaving.	Spring	recommends	annotating	@Transactional	only	on
concrete	classes	as	opposed	to	interfaces,	as	it	will	not	work	in	most	cases	such	as	when
you	use	proxy-target-class="true"	or	mode="aspectj".

Enabling	transaction	management	for	@Transactional
You	need	to	first	enable	transaction	management	in	your	application	before	Spring	can
detect	the	@Transactional	annotation	for	your	bean	methods.	You	enable	transaction	in

your	XML	metadata	using	the	following	notation:

<tx:annotation-driven	transaction-manager="transactionManager"	/>

The	following	is	the	Java	configuration	alternative	for	the	preceding	listing:

@Configuration

@EnableTransactionManagement

public	class	JpaConfiguration	{

}

Spring	scans	the	application	context	for	bean	methods	annotated	with	@Transactional
when	it	sees	either	of	the	preceding	settings.

You	can	change	the	transaction	mode	from	proxy,	which	is	the	default,	to	aspectj	at	this
level:

<tx:annotation-driven	transaction-manager="transactionManager"	

mode="aspectj"/>

Another	attribute	you	can	set	at	this	level	is	proxy-target-class,	which	is	applicable
only	in	the	case	of	the	proxy	mode.

Programmatic	transaction	management
Spring	provides	comprehensive	support	for	programmatic	transaction	management	using
two	components:	TransactionTemplate	and	PlatformTransactionManager.	The
following	code	snippet	illustrates	the	usage	of	TransactionTemplate:

@Service

public	class	TaskServiceImpl	implements	TaskService	{

		@Autowired

		private	TransactionTemplate	trxTemplate;

		...

		public	Task	createTask(String	name,	int	priority,	Long	createdByuserId,	

Long	assigneeUserId,	String	comments)	{

				return	trxTemplate.execute(new	TransactionCallback<Task>()	{

						@Override

						public	Task	doInTransaction(TransactionStatus	status)	{

								User	createdUser	=	userService.findById(createdByuserId);

								User	assignee	=	userService.findById(assigneeUserId);

								Task	task	=	new	Task(name,	priority,	"Open",	createdUser,	null,	

assignee,	comments);

								taskDAO.save(task);

								logger.info("Task	created:	"	+	task);

								return	task;

						}

				});

		}

}

TransactionTemplate	supports	the	setting	of	all	transaction	attributes,	as	in	the	case	of
XML	configuration,	which	gives	you	more	granular	control	at	the	expense	of	mixing	your
business	code	with	transactional	concerns.	Use	it	only	if	you	need	absolute	control	over	a
particular	feature	that	cannot	be	achieved	with	declarative	transaction	management.	Use
declarative	transaction	management	if	possible,	for	better	maintainability	and	management
of	your	application.

Summary
We	have	so	far	explored	Spring	Framework’s	comprehensive	coverage	of	all	technical
aspects	around	data	access	and	transaction.	Spring	provides	multiple	convenient	data
access	methods,	which	removes	much	of	the	hard	work	for	the	developer	involved	in
building	the	data	layer	and	standardizing	the	business	components.	The	correct	usage	of
Spring	data	access	components	makes	the	data	layer	of	the	Spring	application	clean	and
highly	maintainable.	Leveraging	Spring	Transaction	support	ensures	the	data	integrity	of
applications	without	polluting	the	business	code	and	makes	your	application	portable
across	different	server	environments.	Since	Spring	abstracts	much	of	the	technical	heavy
lifting,	building	the	data	layer	of	your	applications	becomes	an	enjoyable	piece	of
software	engineering.

Chapter	4.	Understanding	WebSocket
The	idea	of	web	applications	was	built	upon	a	simple	paradigm.	In	a	unidirectional
interaction,	a	web	client	sent	a	request	to	a	server,	the	server	replied	to	the	request,	and	the
client	rendered	the	server’s	response.	The	communication	started	with	a	client-side	request
and	ended	with	the	server’s	response.

We	built	our	web	applications	based	on	this	paradigm;	however,	some	drawbacks	existed
in	the	technology:	the	client	had	to	wait	for	the	server’s	response	and	refresh	the	browser
to	render	it.	This	unidirectional	nature	of	the	communication	required	the	client	to	initiate
a	request.	Later	technologies	such	as	AJAX	and	long	polling	brought	major	advantages	to
our	web	applications.	In	AJAX,	the	client	initiated	a	request	but	did	not	wait	for	the
server’s	response.	In	an	asynchronous	manner,	the	AJAX	client-side	callback	method	got
the	data	from	the	server	and	the	browsers’	new	DHTML	features	rendered	the	data	without
refreshing	the	browser.

Apart	from	unidirectional	behavior,	the	HTTP	dependencies	of	these	technologies	required
the	exchange	of	extra	data	in	the	form	of	HTTPS	headers	and	cookies.	This	extra	data
caused	latency	and	became	a	bottleneck	for	highly	responsive	web	applications.

WebSocket	reduced	kilobytes	of	transmitted	data	to	a	few	bytes	and	reduced	latency	from
150	milliseconds	to	50	milliseconds	(for	a	message	packet	plus	the	TCP	round	trip	to
establish	the	connection),	and	these	two	factors	attracted	the	Google’s	attention	(Ian
Hickson).

WebSocket	(RFC	6455)	is	a	full	duplex	and	bidirectional	protocol	that	transmits	data	in
the	form	of	frames	between	client	and	server.	A	WebSocket	communication,	as	shown	in
the	following	figure,	starts	with	an	HTTP	connection	for	a	handshake	process	between	a
client	and	a	server.	Since	firewalls	let	certain	ports	be	open	to	communicate	with	the
outside,	we	cannot	start	with	the	WebSocket	protocol:

WebSocket	communication

During	the	handshake	process,	the	parties	(client	and	server)	decide	which	socket-based
protocol	to	choose	for	transmitting	data.	At	this	stage,	the	server	can	validate	the	user
using	HTTP	cookies	and	reject	the	connection	if	authentication	or	authorization	fails.

Then,	both	parties	upgrade	from	HTTP	to	a	socket-based	protocol.	From	this	point
onward,	the	server	and	client	communicate	on	a	full	duplex	and	bidirectional	channel	on	a
TCP	connection.

Either	the	client	or	server	can	send	messages	by	streaming	them	into	frame	format.
WebSocket	uses	the	heartbeat	mechanism	using	ping/pong	message	frames	to	keep	the

connection	alive.	This	looks	like	sending	a	ping	message	from	one	party	and	expecting	a
pong	from	the	other	side.	Either	party	can	also	close	the	channel	and	terminate	the
communication,	as	shown	in	the	preceding	diagram.

Like	a	web	URI	relies	on	HTTP	or	HTTPS,	WebSocket	URI	uses	ws	or	wss	schemes	(for
example,	ws://www.sample.org/	or	wss://www.sample.org/)	to	communicate.
WebSocket’s	ws	works	in	a	similar	way	to	HTTP	by	transmitting	non-encrypted	data	over
TCP/IP.	By	contrast,	wss	relies	on	Transport	Layer	Security	(TLS)	over	TCP,	and	this
combination	brings	data	security	and	integrity.

A	good	question	is	where	to	use	WebSocket.	The	best	answer	is	to	use	it	where	low
latency	and	high	frequency	of	communication	are	critical—for	example,	if	your	endpoint
data	changes	within	100	milliseconds	and	you	expect	to	take	very	quick	measures	over	the
data	changes.

Spring	Framework	4	includes	a	new	Spring	WebSocket	module	with	Java	WebSocket	API
standard	(JSR-356)	compatibility	as	well	as	some	additional	value-adding	features.

While	using	WebSocket	brings	advantages	to	a	web	application,	a	lack	of	compatibility	in
a	version	of	some	browser	blocks	WebSocket	communication.	To	address	this	issue,
Spring	4	includes	a	fallback	option	that	simulates	the	WebSocket	API	in	case	of	browser
incompatibility.

WebSocket	transmits	data	in	the	frame	format,	and	apart	from	a	single	bit	to	distinguish
between	text	and	binary	data,	it	is	neutral	to	the	message’s	content.	In	order	to	handle	the
message’s	format,	the	message	needs	some	extra	metadata,	and	the	client	and	server
should	agree	on	an	application-layer	protocol,	known	as	a	subprotocol.	The	parties
choose	the	subprotocol	during	the	initial	handshake.

WebSocket	does	not	mandate	the	usage	of	subprotocols,	but	in	the	case	of	their	absence,
both	the	client	and	server	need	to	transmit	data	in	a	predefined	style	standard,	framework-
specific,	or	customized	format.

Spring	supports	Simple	Text	Orientated	Messaging	Protocol	(STOMP) as	a	subprotocol
—known	as	STOMP	over	WebSocket—in	a	WebSocket	communication.	Spring’s
Messaging	is	built	upon	integration	concepts	such	as	messaging	and	channel	and	handler,
along	with	annotation	of	message	mapping.	Using	STOMP	over	WebSocket	gives
message-based	features	to	a	Spring	WebSocket	application.

Using	all	of	these	new	Spring	4	features,	you	can	create	a	WebSocket	application	and
broadcast	a	message	to	all	subscribed	clients	as	well	as	send	a	message	to	a	specific	user.
In	this	chapter,	we	start	by	creating	a	simple	Spring	web	application,	which	will	show	how
to	set	up	a	WebSocket	application	and	how	a	client	can	send	and	receive	messages	to	or
from	an	endpoint.	In	the	second	application,	we	will	see	how	Spring	WebSocket’s	fallback
option	can	tackle	browser	incompatibly,	how	a	broker	based	messaging	system	works	with
STOMP	over	WebSocket,	and	how	subscribed	clients	can	send	and	receive	messages.	In
the	last	web	application,	however,	we	will	show	how	we	can	send	broker-based	messages
to	a	specific	user.

Creating	a	simple	WebSocket	application
In	this	section,	while	developing	a	simple	WebSocket	application,	we	will	learn	about
WebSocket’s	client	and	server	components.	As	mentioned	earlier,	using	a	subprotocol	is
optional	in	a	WebSocket	communication.	In	this	application,	we	have	not	used	a
subprotocol.

First	of	all,	you	need	to	set	up	a	Spring	web	application.	In	order	to	dispatch	a	request	to
your	service	(called	a	handler	in	Spring	WebSocket),	you	need	to	set	up	a	framework
Servlet	(dispatcher	Servlet).	This	means	that	you	should	register	DispatcherServlet	in
web.xml	and	define	your	beans	and	service	in	the	application	context.

Setting	up	a	Spring	application	requires	you	to	configure	it	in	XML	format.	Spring
introduced	the	Spring	Boot	module	to	get	rid	of	XML	configuration	files	in	Spring
applications.	Spring	Boot	aims	at	configuring	a	Spring	application	by	adding	a	few	lines
of	annotation	to	the	classes	and	tagging	them	as	Spring	artifacts	(bean,	services,
configurations,	and	so	on).	By	default,	it	also	adds	dependencies	based	on	what	it	finds	in
the	classpath.	For	example,	if	you	have	a	web	dependency,	then	Spring	Boot	can	configure
Spring	MVC	by	default.	It	also	lets	you	override	this	default	behavior.	Covering	Spring
Boot	in	complete	detail	would	require	a	full	book;	we	will	just	use	it	here	to	ease	the
configuration	of	a	Spring	application.

These	are	the	Maven	dependencies	of	this	project:

<parent>

				<groupId>org.springframework.boot</groupId>

				<artifactId>spring-boot-starter-parent</artifactId>

				<version>1.2.5.RELEASE</version>

</parent>

<dependencies>

				<dependency>

								<groupId>org.springframework.boot</groupId>

								<artifactId>spring-boot-starter-websocket</artifactId>

				</dependency>

				<dependency>

								<groupId>org.springframework</groupId>

								<artifactId>spring-messaging</artifactId>

				</dependency>

												<dependency>

								<groupId>org.json</groupId>

								<artifactId>json</artifactId>

								<version>20140107</version>

				</dependency>

</dependencies>

<properties>

				<java.version>1.8</java.version>

</properties>

<build>

				<plugins>

								<plugin>

												<groupId>org.springframework.boot</groupId>

												<artifactId>spring-boot-maven-plugin</artifactId>

								</plugin>

				</plugins>

</build>

As	mentioned	in	the	beginning	of	this	section,	there	is	no	subprotocol	(and,	subsequently,
no	application-layer	framework)	to	interpret	WebSocket	messages.	This	means	that	the
client	and	server	need	to	handle	the	job	and	be	aware	of	the	message’s	format.

On	the	server’s	side,	the	handler	(endpoint)	receives	and	extracts	the	message	and	replies
back	(based	on	the	business	logic)	to	the	client.	In	Spring,	you	can	create	a	customized
handler	by	extending	either	TextWebSocketHandler	or	BinaryWebSocketHandler.
TextWebSocketHandler	handles	string	or	text	messages	(such	as	JSON	data)	and
BinaryWebSocketHandler	handles	binary	messages	(such	as	image	or	media	data).	Here	is
a	code	listing	that	uses	TextWebSocketHandler:

public	class	SampleTextWebSocketHandler	extends	TextWebSocketHandler	{

			@Override

				protected	void	handleTextMessage(WebSocketSession	session,	TextMessage	

message)	throws	Exception	{

								String	payload	=	message.getPayload();

								JSONObject	jsonObject	=	new	JSONObject(payload);

								StringBuilder	builder=new	StringBuilder();

								builder.append("From	Myserver-").append("Your	

Message:").append(jsonObject.get("clientMessage"));

								session.sendMessage(new	TextMessage(builder.toString()));

			}

}

Since	we	process	only	JSON	data	here,	the	class	SampleTextWebSocketHandler	extends
TextWebSocketHandler.	The	method	handleTextMessage	obtains	the	client’s	message	by
receiving	its	payload	and	converting	it	into	JSON	data,	and	then	it	sends	a	message	back
to	the	client.

In	order	to	tell	Spring	to	forward	client	requests	to	the	endpoint	(or	handler	here),	we	need
to	register	the	handler:

@Configuration

@EnableWebSocket

public	class	SampleEhoWebSocketConfigurer	{

				@Bean

				WebSocketConfigurer	webSocketConfigurer(final	WebSocketHandler	

webSocketHandler)	{

								return	new	WebSocketConfigurer()	{

												@Override

												public	void	registerWebSocketHandlers(WebSocketHandlerRegistry	

registry)	{

																registry.addHandler(new	SampleTextWebSocketHandler(),	

"/path/wsAddress");

												}

								};

				}

				@Bean

				WebSocketHandler	myWebsocketHandler()	{

								return	new	SampleTextWebSocketHandler();

				}

@Configuration	and	@EnableWebsocket	tell	Spring	this	is	the	WebSocket	configurator	of
the	project.	It	registers	our	handler	(SampleTextWebSocketHandler)	and	sets	the	request
path	(in	a	WebSocket	URL,	such	as	ws://server-ip:port/path/wsAddress)	that	will	be
forwarded	to	this	handler.

And	now	the	question	is	how	to	set	up	a	Spring	application	and	glue	all	of	this	stuff
together.	Spring	Boot	provides	an	easy	way	to	set	up	a	Spring-based	application	with	a
configurable	embedded	web	server	that	you	can	“just	run”:

package	com.springessentialsbook.chapter4;

...

@SpringBootApplication

public	class	EchoWebSocketBootApplication	{

				public	static	void	main(String[]	args)	{

								SpringApplication.run(EchoWebSocketBootApplication

								.class,	args);

				}

}

@SpringBootApplication	tags	the	EchoWebSocketBootApplication	class	as	a	special
configuration	class	of	your	application	and	@SpringBootApplication	behaves	like	the
following	annotations:

@Configuration,	which	declares	the	class	as	a	bean	definition	of	an	application
context
@EnableAutoConfiguration,	which	lets	Spring	Boot	add	a	dependent	bean	definition
based	on	the	classpath	(for	example,	spring-webmvc	in	the	project	classpath	tells
Spring	Boot	to	set	up	a	web	application	with	its	DispatcherServlet	registration	in
web.xml)
@ComponentScan,	which	is	used	to	scan	all	annotations	(services,	controllers,
configurations,	and	so	on)	within	the	same	package
(com.springessentialsbook.chapter4)	and	configure	them	accordingly

Finally,	the	main	method	calls	SpringApplication.run	to	set	up	a	Spring	application
within	a	web	application	without	writing	a	single	line	of	XML	configuration
(applicationContext.xml	or	web.xml).

When	a	client	wants	to	send	a	WebSocket	request,	it	should	create	a	JavaScript	client
object	(ws	=	new	WebSocket('ws://localhost:8090/path/wsAddress'))	and	pass	the
WebSocket	service	address.	In	order	to	receive	the	data,	we	need	to	attach	a	callback
listener	(ws.onmessage)	and	an	error	handler	(ws.onerror),	like	so:

				function	openWebSocket(){

								ws	=	new	WebSocket('ws://localhost:8090/path/wsAddress');

								ws.onmessage	=	function(event){

												renderServerReturnedData(event.data);

								};

								ws.onerror	=	function(event){

												$('#errDiv').html(event);

								};

				}

				function	sendMyClientMessage()	{

								var	myText	=	document.getElementById('myText').value;

								var	message=JSON.stringify({	'clientName':	'Client-'+randomnumber,	

'clientMessage':myText});

								ws.send(message);

								document.getElementById('myText').value='';

				}

You	can	run	the	application	by	running	this	command:

mvn	spring-boot:run	-Dserver.port=8090

This	runs	and	deploys	the	web	application	on	an	embedded	server	on	port	8090	(8080	is
not	used	here	as	it	may	conflict	with	your	running	Apache	service).	So,	the	index	page	of
the	application	will	be	accessible	at	http://localhost:8090/	(follow	the	instructions	in
read-me.txt	to	run	the	application).	It	should	look	like	this:

The	opening	page	of	the	application	in	a	Chrome	browser

When	a	user	sends	a	text	in	Chrome,	it	will	be	handled	by	SampleTextWebSocketHandler,
the	handler	will	reply,	and	the	response	will	be	rendered	in	the	browser.

If	you	try	to	test	this	application	in	a	version	of	Internet	Explorer	lower	than	10,	you	will
get	a	JavaScript	error.

As	we	discussed	earlier,	certain	versions	of	browsers	do	not	support	WebSocket.	Spring	4
provides	a	fallback	option	to	manage	these	types	of	browsers.	In	the	next	section,	this
feature	of	Spring	will	be	explained.

STOMP	over	WebSocket	and	the	fallback
option	in	Spring	4
In	the	previous	section,	we	saw	that	in	a	WebSocket	application	that	does	not	use
subprotocols,	the	client	and	server	should	be	aware	of	the	message	format	(JSON	in	this
case)	in	order	to	handle	it.	In	this	section,	we	use	STOMP	as	a	subprotocol	in	a	WebSocket
application	(this	is	known	as	STOMP	over	WebSocket)	and	show	how	this	application
layer	protocol	helps	us	handle	messages.

The	messaging	architecture	in	the	previous	application	was	an	asynchronous	client/server-
based	communication.

The	spring-messaging	module	brings	features	of	asynchronous	messaging	systems	to
Spring	Framework.	It	is	based	on	some	concepts	inherited	from	Spring	Integration,	such
as	messages,	message	handlers	(classes	that	handle	messages),	and	message	channels	(data
channels	between	senders	and	receivers	that	provide	loose	coupling	during
communication).

At	the	end	of	this	section,	we	will	explain	how	our	Spring	WebSocket	application
integrates	with	the	Spring	messaging	system	and	works	in	a	similar	way	to	legacy
messaging	systems	such	as	JMS.

In	the	first	application,	we	saw	that	in	certain	types	of	browsers,	WebSocket
communication	failed	because	of	browser	incompatibility.	In	this	section,	we	will	explain
how	Spring’s	fallback	option	addresses	this	problem.

Suppose	you	are	asked	to	develop	a	browser-based	chat	room	application	in	which
anonymous	users	can	join	a	chat	room	and	any	text	sent	by	a	user	should	be	sent	to	all
active	users.	This	means	that	we	need	a	topic	that	all	users	should	be	subscribed	to	and
messages	sent	by	any	user	should	be	broadcasted	to	all.	Spring	WebSocket	features	meet
these	requirements.	In	Spring,	using	STOMP	over	WebSocket,	users	can	exchange
messages	in	a	similar	way	to	JMS.	In	this	section,	we	will	develop	a	chat	room	application
and	explain	some	of	Spring	WebSocket’s	features.

The	first	task	is	to	configure	Spring	to	handle	STOMP	messages	over	WebSocket.	Using
Spring	4,	you	can	instantly	configure	a	very	simple,	lightweight	(memory-based)	message
broker,	set	up	subscription,	and	let	controller	methods	serve	client	messages.	The	code	for
the	ChatroomWebSocketMessageBrokerConfigurer	class	is:

package	com.springessentialsbook.chapter4;

…..

@Configuration

@EnableWebSocketMessageBroker

public	class	ChatroomWebSocketMessageBrokerConfigurer	extends	

AbstractWebSocketMessageBrokerConfigurer	{

			@Override

			public	void	configureMessageBroker(MessageBrokerRegistry	config)	{

						config.enableSimpleBroker("/chatroomTopic");

						config.setApplicationDestinationPrefixes("/myApp");

			}

			@Override

			public	void	registerStompEndpoints(StompEndpointRegistry	registry)	{

						registry.addEndpoint("/broadcastMyMessage").withSockJS();

			}

}

@Configuration	tags	a	ChatroomWebSocketMessageBrokerConfigurer	class	as	a	Spring
configuration	class.	@EnableWebSocketMessageBroker	provides	WebSocket	messaging
features	backed	by	a	message	broker.

The	overridden	method	configureMessageBroker,	as	its	name	suggests,	overrides	the
parent	method	for	message	broker	configuration	and	sets:

setApplicationDestinationPrefixes:	Specify	/myApp	as	the	prefix,	and	any	client
message	whose	destination	starts	with	/myApp	will	be	routed	to	the	controller’s
message-handling	methods.
enableSimpleBroker:	Set	the	broker	topic	to	/chatroomTopic.	Any	messages	whose
destinations	start	with	/chatroomTopic	will	be	routed	to	the	message	broker	(that	is,
broadcasted	to	other	connected	clients).	Since	we	are	using	an	in-memory	broker,	we
can	specify	any	topic.	If	we	use	a	dedicated	broker,	the	destination’s	name	would	be
/topic	or	/queue,	based	on	the	subscription	model	(pub/sub	or	point-to-point).

The	overridden	method	registerStompEndpoints	is	used	to	set	the	endpoint	and	fallback
options.	Let’s	look	at	it	closely:

The	client-side	WebSocket	can	connect	to	the	server’s	endpoint	at
/broadcastMyMessage.	Since	STOMP	has	been	selected	as	the	subprotocol,	we	do
not	need	to	know	about	the	underlying	message	format	and	let	STOMP	handle	it.
The	.withSockJS()	method	enables	Spring’s	fallback	option.	This	guarantees
successful	WebSocket	communication	in	any	type	or	version	of	browser.

As	Spring	MVC	forwards	HTTP	requests	to	methods	in	controllers,	the	MVC	extension
can	receive	STOMP	messages	over	WebSocket	and	forward	them	to	controller	methods.	A
Spring	Controller	class	can	receive	client	STOMP	messages	whose	destinations	start
with	/myApp.	The	handler	method	can	reply	to	subscribed	clients	by	sending	the	returned
message	to	the	broker	channel,	and	the	broker	replies	to	the	client	by	sending	the	message
to	the	response	channel.	At	the	end	of	this	section,	we	will	look	at	some	more	information
about	the	messaging	architecture.	As	an	example,	let’s	look	at	the	ChatroomController
class:

				package	com.springessentialsbook.chapter4;

						...

@Controller

public	class	ChatroomController	{

				@MessageMapping("/broadcastMyMessage")

				@SendTo("/chatroomTopic/broadcastClientsMessages")

				public	ReturnedDataModelBean	broadCastClientMessage(ClientInfoBean	

message)	throws	Exception	{

								String	returnedMessage=message.getClientName()	+	

":"+message.getClientMessage();

								return	new	ReturnedDataModelBean(returnedMessage);

				}

}

Here,	@Controller	tags	ChatroomController	as	an	MVC	workflow	controller.
@MessageMapping	is	used	to	tell	the	controller	to	map	the	client	message	to	the	handler
method	(broadCastClientMessage).	This	will	be	done	by	matching	a	message	endpoint	to
the	destination	(/broadcastMyMessage).	The	method’s	returned	object
(ReturnedDataModelBean)	will	be	sent	back	through	the	broker	to	the	subscriber’s	topic
(/chatroomTopic/broadcastClientsMessages)	by	the	@SendTo	annotation.	Any	message
in	the	topic	will	be	broadcast	to	all	subscribers	(clients).	Note	that	clients	do	not	wait	for
the	response,	since	they	send	and	listen	to	messages	to	and	from	the	topic	and	not	the
service	directly.

Our	domain	POJOs	(ClientInfoBean	and	ReturnedDataModelBean),	detailed	as	follows,
will	provide	the	communication	message	payloads	(actual	message	content)	between	the
client	and	server:

package	com.springessentialsbook.chapter4;

public	class	ClientInfoBean	{

				private	String	clientName;

				private	String	clientMessage;

				public	String	getClientMessage()	{

				return	clientMessage;

		}

				public	String	getClientName()	{

								return	clientName;

				}

}

package	com.springessentialsbook.chapter4;

public	class	ReturnedDataModelBean	{

				private	String	returnedMessage;

				public	ReturnedDataModelBean(String	returnedMessage)	{

								this.returnedMessage	=	returnedMessage;	}

				public	String	getReturnedMessage()	{

								return	returnedMessage;

				}

}

To	add	some	sort	of	security,	we	can	add	basic	HTTP	authentication,	as	follows	(we	are
not	going	to	explain	Spring	security	in	this	chapter,	but	it	will	be	detailed	in	the	next
chapter):

@Configuration

@EnableGlobalMethodSecurity(prePostEnabled	=	true)

@EnableWebSecurity

public	class	WebSecurityConfig	extends	WebSecurityConfigurerAdapter	{

				@Override

				protected	void	configure(HttpSecurity	http)	throws	Exception	{

								http.httpBasic();

								http.authorizeRequests().anyRequest().authenticated();

				}

				@Autowired

				void	configureGlobal(AuthenticationManagerBuilder	auth)	throws	

Exception	{

								auth.inMemoryAuthentication()

								.withUser("user").password("password").roles("USER");

				}

}

The	@Configuration	tags	this	class	as	a	configuration	class	and
@EnableGlobalMethodSecurity	and	@EnableWebSecurity	set	security	methods	and	web
security	in	the	class.	In	the	configure	method,	we	set	basic	authentication,	and	in
configureGlobal,	we	set	the	recognized	username	and	password	as	well	as	the	role	that
the	user	belongs	to.

To	add	Spring	Security	features,	we	should	add	the	following	Maven	dependencies:

<dependency>

				<groupId>org.springframework.security</groupId>

				<artifactId>spring-security-web</artifactId>

</dependency>

<dependency>

				<groupId>org.springframework.security</groupId>

				<artifactId>spring-security-messaging</artifactId>

				<version>4.0.1.RELEASE</version>

</dependency>

<dependency>

				<groupId>org.springframework.security</groupId>

				<artifactId>spring-security-config</artifactId>

</dependency>

As	we	explained	in	the	previous	section,	the	@SpringBootApplication	tag	sets	up	a
Spring	application	within	a	web	application	without	us	having	to	write	a	single	line	of
XML	configuration	(applicationContext.xml	or	web.xml):

package	com.springessentialsbook.chapter4;

...

@SpringBootApplication

public	class	ChatroomBootApplication	{

				public	static	void	main(String[]	args)	{

								SpringApplication.run(ChatroomBootApplication.class,	args);

				}

}

Finally,	you	can	run	the	application	by	running	this	command:

mvn	spring-boot:run	-Dserver.port=8090

This	runs	and	deploys	the	web	application	on	an	embedded	web	server	on	port	8090	(8080
is	not	used	as	it	may	conflict	with	your	running	Apache	service).	So,	the	index	page	of	the
application	will	be	accessible	at	http://localhost:8090/	(follow	read-me.txt	to	run	the
application):

				<script	src="sockjs-0.3.4.js"></script>

				<script	src="stomp.js"></script>

				<script	type="text/javascript">

...

function	joinChatroom()	{

				var	topic='/chatroomTopic/broadcastClientsMessages';

				var	servicePath='/broadcastMyMessage';

				var	socket	=	new	SockJS(servicePath);

				stompClient	=	Stomp.over(socket);

				stompClient.connect('user','password',	function(frame)	{

								setIsJoined(true);

								console.log('Joined	Chatroom:	'	+	frame);

								stompClient.subscribe(topic,	function(serverReturnedData){

												

renderServerReturnedData(JSON.parse(serverReturnedData.body).returnedMessag

e);

								});

				});

}

...

function	sendMyClientMessage()	{

				var	serviceFullPath='/myApp/broadcastMyMessage';

				var	myText	=	document.getElementById('myText').value;

				stompClient.send(serviceFullPath,	{},	JSON.stringify({	'clientName':	

'Client-'+randomnumber,	'clientMessage':myText}));

				document.getElementById('myText').value='';

}

On	the	client	side,	notice	how	the	browser	connects	(with	joinChatRoom)	and	sends	data
(in	the	sendMyClientMessage	method).	These	methods	use	the	JavaScript	libraries	SockJS
and	Stomp.js.

As	you	can	see,	when	a	client	subscribes	to	a	topic,	it	registers	a	listener	method
(stompClient.subscribe(topic,	function(serverReturnedData){.…}).	The	listener
method	will	be	called	when	any	message	(from	any	client)	arrives	in	the	topic.

As	discussed	earlier,	some	versions	of	browsers	do	not	support	WebSocket.	SockJS	was
introduced	to	handle	all	versions	of	browsers.	On	the	client	side,	when	you	try	to	connect
to	the	server,	the	SockJS	client	sends	the	GET/info	message	to	get	some	information	from
the	server.	Then	it	chooses	the	transport	protocol,	which	could	be	one	of	WebSocket,
HTTP	streaming,	or	HTTP	long-polling.	WebSocket	is	the	preferred	transport	protocol;
however,	in	case	of	browser	incompatibility,	it	chooses	HTTP	streaming,	and	in	the	worse
case,	HTTP	long-polling.

In	the	beginning	of	this	section,	we	described	how	our	WebSocket	application	integrates
with	the	Spring	messaging	system	and	works	in	a	way	similar	to	legacy	messaging
systems.

The	overridden	method	settings	of	@EnableWebSocketMessageBroker	and
ChatroomWebSocketMessageBrokerConfigurer	create	a	concrete	message	flow	(refer	to
the	following	diagram).	In	our	messaging	architecture,	channels	decouple	receivers	and
senders.	The	messaging	architecture	contains	three	channels:

The	client	inbound	channel	(Request	channel)	for	request	messages	sent	from	the
client	side

The	client	outbound	channel	(Response	channel)	for	messages	sent	to	the	client	side
The	Broker	channel	for	internal	server	messages	to	the	broker

Our	system	uses	STOMP	destinations	for	simple	routing	by	prefix.	Any	client	message
whose	destination	starts	with	/myApp	will	be	routed	to	controller	message-handling
methods.	Any	message	whose	destination	starts	with	/chatroomTopic	will	be	routed	to	the
message	broker.

The	simple	broker	(in-memory)	messaging	architecture

Here	is	the	messaging	flow	of	our	application:

1.	 The	client	connects	to	the	WebSocket	endpoint	(/broadcastMyMessage).
2.	 Client	messages	to	/myApp/broadcastMyMessage	will	be	forwarded	to	the

ChatroomController	class	(through	the	Request	channel).	The	mapping	controller’s
method	passes	the	returned	value	to	the	Broker	channel	for	the	topic
/chatroomTopic/broadcastClientsMessages.

3.	 The	broker	passes	the	message	to	the	Response	channel,	which	is	the	topic
/chatroomTopic/broadcastClientsMessages,	and	clients	subscribed	to	this	topic
receive	the	message.

Broadcasting	a	message	to	a	single	user	in
a	WebSocket	application
In	the	previous	section,	we	saw	a	WebSocket	application	of	the	multiple	subscriber	model,
in	which	a	broker	sent	messages	to	a	topic.	Since	all	clients	had	subscribed	to	the	same
topic,	all	of	them	received	messages.	Now,	you	are	asked	to	develop	an	application	that
targets	a	specific	user	in	a	WebSocket	chat	application.

Suppose	you	want	to	develop	an	automated	answering	application	in	which	a	user	sends	a
question	to	the	system	and	gets	an	answer	automatically.	The	application	is	almost	the
same	as	the	previous	one	(STOMP	over	WebSocket	and	the	fallback	option	in	Spring	4),
except	that	we	should	change	the	WebSocket	configurer	and	endpoint	on	the	server	side
and	subscription	on	the	client	side.	The	code	for	the
AutoAnsweringWebSocketMessageBrokerConfigurer	class	is:

@Configuration

@EnableWebSocketMessageBroker

public	class	AutoAnsweringWebSocketMessageBrokerConfigurer	extends	

AbstractWebSocketMessageBrokerConfigurer	{

			@Override

			public	void	configureMessageBroker(MessageBrokerRegistry	config)	{

						config.setApplicationDestinationPrefixes("/app");

						config.enableSimpleBroker("/queue");

						config.setUserDestinationPrefix("/user");

			}

			@Override

			public	void	registerStompEndpoints(StompEndpointRegistry	registry)	{

						registry.addEndpoint("/message").withSockJS();

			}

}

The	config.setUserDestinationPrefix("/user")	method	sets	a	prefix	noting	that	a
user	has	subscribed	and	expects	to	get	their	own	message	on	the	topic.	The	code	for	the
AutoAnsweringController	class	is:

@Controller

public	class	AutoAnsweringController	{

				@Autowired

				AutoAnsweringService	autoAnsweringService;

				@MessageMapping("/message")

				@SendToUser

				public	String	sendMessage(ClientInfoBean	message)	{

								return	autoAnsweringService.answer(message);

				}

				@MessageExceptionHandler

				@SendToUser(value	=	"/queue/errors",	broadcast	=	false)

				String	handleException(Exception	e)	{

								return	"caught	${e.message}";

				}

}

@Service

public	class	AutoAnsweringServiceImpl	implements	AutoAnsweringService	{

				@Override

				public	String	answer(ClientInfoBean	bean)	{

								StringBuilder	mockBuffer=new	StringBuilder();

								mockBuffer.append(bean.getClientName())

																.append(",	we	have	received	the	message:")

																.append(bean.getClientMessage());

								return	mockBuffer.toString();

				}

}

In	the	endpoint,	we	use	@SendToUser	instead	of	@SendTo("...").	This	forwards	the
response	only	to	the	sender	of	the	message.	@MessageExceptionHandler	will	send	errors
(broadcast	=	false)	to	the	sender	of	message	as	well.

AutoAnsweringService	is	just	a	mock	service	to	return	an	answer	to	the	client	message.
On	the	client	side,	we	only	add	the	/user	prefix	when	a	user	subscribes	to	the	topic
(/user/queue/message):

function	connectService()	{

				var	servicePath='/message';

				var	socket	=	new	SockJS(servicePath);

				stompClient	=	Stomp.over(socket);

				stompClient.connect({},	function(frame)	{

								setIsJoined(true);

								stompClient.subscribe('/user/queue/message',	function(message)	{

												renderServerReturnedData(message.body);

								});

								stompClient.subscribe('/user/queue/error',	function(message)	{

												renderReturnedError(message.body);

								});

				});

}

function	sendMyClientMessage()	{

				var	serviceFullPath='/app/message';

				var	myText	=	document.getElementById('myText').value;

				stompClient.send(serviceFullPath,	{},	JSON.stringify({	'clientName':	

'Client-'+randomnumber,	'clientMessage':myText}));

				document.getElementById('myText').value='';

}

The	topic	user/queue/error	is	used	to	receive	errors	dispatched	from	the	server	side.

Note
For	more	about	Spring’s	WebSocket	support,	go	to	http://docs.spring.io/spring-
framework/docs/current/spring-framework-reference/html/websocket.html.

For	more	about	WebSocket	communication,	refer	to	Chapter	8,	Replacing	HTTP	with
WebSockets	from	the	book	Enterprise	Web	Development,	Yakov	Fain,	Victor	Rasputnis,
Anatole	Tartakovsky,	Viktor	Gamov,	O’Reilly.

http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/websocket.html

Summary
In	this	chapter,	we	explained	WebSocket-based	communication,	how	Spring	4	has	been
upgraded	to	support	WebSocket,	and	the	fallback	option	to	overcome	browsers’
WebSocket	incompatibility.	We	also	had	a	small	sample	of	adding	basic	HTTP
authentication,	which	is	a	part	of	Spring	Security.	We	will	discuss	more	on	security	in
Chapter	5,	Securing	Your	Applications.

Chapter	5.	Securing	Your	Applications
Spring	Security	provides	a	wide	range	of	features	for	securing	Java/Spring-based
enterprise	applications.	At	first	glance,	the	security	features	of	Servlets	or	EJB	look	an
alternative	of	Spring	Security;	however,	these	solutions	lack	certain	requirements	for
developing	enterprise	applications.	The	server’s	environment	dependency	could	be
another	drawback	of	these	solutions.

Authentication	and	authorization	are	the	main	areas	of	application	security.	Authentication
is	the	verification	of	a	user’s	identity,	whereas	authorization	is	the	verification	of	the
privileges	of	a	user.

Spring	Security	integrates	with	a	variety	of	authentication	models,	most	of	which	are
provided	by	third-party	providers.	In	addition,	Spring	Security	has	developed	its	own
authentication	models,	based	upon	major	security	protocols.	Here	are	some	of	these
protocols:

Form-based	authentication
HTTP	Basic	authentication
LDAP
JAAS
Java	Open	Single	Sign	On
Open	ID	authentication

Since	there	is	a	big	list	of	Spring	Security	models,	we	can	only	detail	the	most	popular	of
them	in	this	chapter.

Spring	Security	is	quite	strong	on	authorization	features.	We	can	categorize	these	features
into	three	groups:	web,	method,	and	domain	object	authorization.	Later,	in	the
Authorization	section,	we	will	explain	these	categories.

In	order	to	use	Spring	Security	features	in	a	web	application,	you	need	to	include	the
following	dependencies	in	your	project:

<dependency>

			<groupId>org.springframework.security</groupId>

			<artifactId>spring-security-web</artifactId>

			<version>4.0.2.RELEASE</version>

</dependency>

<dependency>

			<groupId>org.springframework.security</groupId>

			<artifactId>spring-security-config</artifactId>

			<version>4.0.2.RELEASE</version>

</dependency>

The	open	standard	for	authorization	(OAuth)	concept,	introduced	in	late	2006,	aimed
to	allow	third-party	limited	access	to	users’	resources	on	Microsoft,	Google,	Facebook,
Twitter,	or	similar	accounts,	without	sharing	their	usernames	and	passwords.

In	2010,	OAuth	was	standardized	as	the	OAuth	1.0a	protocol	in	RFC	5849.	Later	in	2012,
it	evolved	to	the	OAuth	2.0	framework	in	RFC	6749.	In	this	chapter,	we	explain	Spring’s

OAuth	2.0	framework	implementation.

The	OAuth	2.0	Authorization	Framework	enables	a	third-party	application	to	obtain
limited	access	to	an	HTTP	service,	either	on	behalf	of	a	resource	owner	by	orchestrating
an	approval	interaction	between	the	resource	owner	and	the	HTTP	service,	or	by	allowing
the	third-party	application	to	obtain	access	on	its	own	behalf
(http://tools.ietf.org/html/rfc6749).

Spring	provides	a	separate	module	(spring-security-oauth2)	for	its	OAuth	2.0
implementation,	which	relies	on	Spring	Security	features.	In	this	chapter,	we	explain
authentication	and	how	Spring	facilitates	the	process	by	providing	its	own	easy-to-use
features	as	well	as	giving	you	options	to	plug	in	your	customized	implementation.
Authorization	is	the	second	topic	included	in	this	chapter,	in	which	we	explain	how	to
configure	separate	security	models	within	the	same	application.	In	the	last	section,	we
explain	Spring’s	OAuth	2.0	feature.

http://tools.ietf.org/html/rfc6749

Authentication
In	an	application’s	security	domain,	the	first	thing	that	comes	to	mind	is	authentication.
During	the	authentication	process,	an	application	compares	a	user’s	credentials	(for
example,	a	username	and	password	or	a	token)	with	the	information	available	to	it.	If	these
two	match,	it	allows	the	process	to	enter	the	next	step.	We	will	follow	the	next	step	in	the
Authorization	section.

Spring	Security	provides	features	to	support	a	variety	of	security	authentication	protocols.
In	this	section,	we	will	focus	on	basis	and	form-based	authentication.

Spring	provides	a	built-in	form	for	the	purpose	of	form-based	authentication.	In	addition,
it	lets	you	define	your	own	customized	login	form.

Spring	gives	you	the	option	to	use	in-memory	authentication,	in	which	the	username	and
password	will	be	hardcoded	in	the	application.

An	alternative	option	is	to	use	a	customized	authentication	provider	that	lets	you	decide
how	to	authenticate	users	by	program,	for	example,	calling	a	data	layer	service	to	validate
users.	It	also	lets	you	integrate	Spring	Security	with	your	existing	security	framework.

The	first	thing	you	need	in	order	to	configure	Spring	Security	to	authenticate	users	is	to
define	a	Servlet	filter	known	as	springSecurityFilterChain.	This	filter	is	responsible
for	applying	security	measures	(for	example,	validating	users,	navigating	to	different
pages	after	login	bases	on	the	user’s	role,	and	protecting	application	URLs)	in	a	web
application.

WebSecurityConfigurerAdapter	is	a	convenient	Spring	template	for	configuring
springSecurityFilterChain:

@Configuration

@EnableWebSecurity

@ComponentScan(basePackages	=	"com.springessentialsbook.chapter5")

public	class	WebSecurityConfigurator	extends	WebSecurityConfigurerAdapter	{

				@Autowired

				private	AuthenticationSuccessHandler	authenticationSuccessHandler;

				@Autowired

				public	void	configureGlobalSecurity(AuthenticationManagerBuilder	auth)	

throws	Exception	{

								

auth.inMemoryAuthentication().withUser("operator").password("password").rol

es("USER");

								

auth.inMemoryAuthentication().withUser("admin").password("password").roles(

"ADMIN");

								

auth.inMemoryAuthentication().withUser("accountant").password("password").r

oles("ACCOUNTANT");

				}

@Configuration	registers	this	class	as	a	configuration	class.	The	method’s	name,

configureGlobalSecurity,	is	not	important,	as	it	only	configures	an
AuthenticationManagerBuilder	instance	through	autowire.	The	only	important	thing	is
annotating	the	class	with	@EnableWebSecurity,	which	registers	Spring	web	security	in	the
application.	As	you	can	see,	we	used	in-memory	authentication	for	simplicity,	which
hardcoded	the	user’s	username,	password,	and	role	used	for	user	authentication.	In	real
enterprise	applications,	LDAP,	databases	or	the	cloud	provide	services	for	validating	user
credentials.

We	don’t	code	all	that	much	in	the	config	class,	but	it	really	does	a	lot	behind	the	scenes.
Here	are	some	of	the	features	implemented	by	the	class.	Apart	from	user	authentication
and	role	assignment,	we	will	explain	other	features	next	in	this	chapter.

Protecting	all	application	URLs	by	asking	for	authentication	first
Creating	a	Spring	default	login	form	to	authenticate	the	user
Authenticating	users	(operator/password,	admin/password,	accountant/password)	and
assigning	separate	roles	for	each	user	(user,	admin,	and	accountant)	using	form-based
authentication
Allowing	the	user	to	log	out
CSRF	attack	prevention

As	we	explained,	in	real-world	enterprise	applications,	one	never	hardcodes	user
credentials	within	the	application’s	code.	You	may	have	an	existing	security	framework
that	calls	a	service	in	order	to	validate	users.	In	this	case,	you	can	configure	Spring
Security	in	a	customized	service	to	authenticate	the	user.

The	authentication	interface	implementation	is	what	carries	user	credentials	within	the
Spring	Security	context.	You	can	obtain	the	authentication	object	anywhere	within	the
application	using	SecurityContextHolder.getContext().getAuthentication().

When	a	user	is	authenticated,	Authentication	will	be	populated.	If	you	don’t	specify
AuthenticationProvider	(for	example,	if	you	use	in-memory	authentication),
Authentication	will	be	populated	automatically.	Here,	we	look	at	how	to	customize
AuthenticationProvider	and	populate	the	Authentication	object.

The	following	code	shows	how	Spring’s	AuthenticationProvider	implementation	class
integrates	with	a	customized	user	detail	service	(which	returns	user	credentials	from	a	data
source):

@Component

public	class	MyCustomizedAuthenticationProvider	implements	

AuthenticationProvider	{

		@Autowired

		UserDetailsService	userService;

		public	Authentication	authenticate(Authentication	authentication)	throws	

AuthenticationException	{

				User	user=null;

				Authentication	auth=null;

				String	username=authentication.getName();

				String	password=authentication.getCredentials().toString();

				user=	(User)	userService.loadUserByUsername(username);

				if(password	==null	||			!	password.equals(user.getPassword()))	throw	

new	UsernameNotFoundException("wrong	user/password");

				if(user	!=null){

						auth	=	new	UsernamePasswordAuthenticationToken(user.getUsername(),	

user.getPassword(),	user.getAuthorities());

				}	else	throw	new	UsernameNotFoundException("wrong	user/password");

				return	auth;

		}

		public	boolean	supports(Class<?>	aClass)	{

				return	true;

		}

}

Your	customized	authentication	provider	should	implement	AuthenticationProvider	and
its	authenticate	method.

Note	that	the	userService	instance	here	should	implement	the	Spring
UserDetailsService	interface	and	its	loadUserByUserName	method.	The	method	returns
the	data	model	of	a	user.	Note	that	you	can	extend	Spring’s	User	object	and	create	your
own	customized	user.	We	mocked	the	UserService	integration	part	with	a	data	service.	In
a	real	application,	there	could	be	a	service	call	to	fetch	and	return	user	data,	and	your
UserServiceImpl	class	will	only	wrap	the	user	in	the	UserDetails	data	model,	as
follows:

@Service

public	class	UserServiceImpl	implements	UserDetailsService	{

				public	UserDetails	loadUserByUsername(String	userName)	throws	

UsernameNotFoundException	{

								//	suppose	we	fetch	user	data	from	DB	and	populate	it	into	//	User	

object

								//	here	we	just	mock	the	service

								String	role=null;

								if(userName.equalsIgnoreCase("admin")){

												role	="ROLE_ADMIN";

								}else	if(userName.equalsIgnoreCase("accountant")){

												role="ROLE_ACCOUNTANT";

								}else	if(userName.equalsIgnoreCase("operator")){

												role="ROLE_USER";

								}else{

												throw	new	UsernameNotFoundException("user	not	found	in	DB");

								}

								List<GrantedAuthority>	authorities=new	ArrayList<GrantedAuthority>

();

								authorities.add(new	GrantedAuthorityImpl(role));

								return	new	User(userName,	"password",	true,	true,	true,	true,	

authorities);

				}

}

After	this,	you	can	set	your	customized	provider	in	the	configuration	class,	as	shown	in	the
following	code.	When	a	user	is	authenticated,	the	authentication	object	should	be
populated	programmatically.	Later	in	this	chapter,	in	the	Authorization	section,	we	will
explain	this	object.

@EnableWebSecurity

@EnableGlobalMethodSecurity(prePostEnabled=true)

@ComponentScan(basePackages	=	"com.springessentialsbook.chapter5")

public	class	MultiWebSecurityConfigurator			{

				@Autowired

				private	AuthenticationProvider	authenticationProvider;

				@Autowired

				public	void	configureGlobalSecurity(AuthenticationManagerBuilder	auth)	

throws	Exception	{

								auth.authenticationProvider(authenticationProvider);

				}

We	defined	the	springSecurityFilterChain	filter	in	the	first	step.	To	make	it	work,	we
need	to	register	it	in	the	web	application,	like	so:

import	

org.springframework.security.web.context.AbstractSecurityWebApplicationInit

ializer;

public	class	SecurityWebApplicationInitializer	extends	

AbstractSecurityWebApplicationInitializer	{	}

The	class	doesn’t	need	any	code,	as	the	superclass
(AbstractSecurityWebApplicationInitializer)	registers	the	Spring	Security	filter.	This
happens	while	the	Spring	context	starts	up.

If	we	don’t	use	Spring	MVC,	we	should	pass	the	following	to	the	constructor:

super(WebSecurityConfigurator);

The	class	AnnotatedConfigDispatcherServletInitializer	extends	Spring’s	Servlet
initializer	AbstractAnnotationConfigDispatcherServletInitializer.	This	class
allows	Servlet	3	containers	(for	example,	Tomcat)	to	detect	the	web	application
automatically,	without	needing	web.xml.	This	is	another	step	of	simplifying	the	setting	up
of	a	web	application,	and	it	registers	DispatcherServlet	and	Servlet	mapping
programmatically.	By	setting	the	WebSecurityConfigurator	class	in
getRootConfigClasses,	you	tell	the	parent	class	method	that	creates	the	context	of	the
application	to	use	your	annotated	and	customized	Spring	Security	configuration	class.	The
following	is	the	code	for	the	AnnotatedConfigDispatcherServletInitializer	class:

public	class	AnnotatedConfigDispatcherServletInitializer	extends	

AbstractAnnotationConfigDispatcherServletInitializer	{

			@Override

			protected	Class<?>[]	getRootConfigClasses()	{

						return	new	Class[]	{	MultiWebSecurityConfigurator.class	};

			}

			@Override

			protected	Class<?>[]	getServletConfigClasses()	{

						return	null;

			}

			@Override

			protected	String[]	getServletMappings()	{

						return	new	String[]	{	"/"	};

			}

}

What	we	have	configured	so	far	in	Spring	Security	is	for	checking	whether	the	username
and	password	are	correct.	If	we	want	to	configure	other	security	features,	such	as	defining
a	login	page	and	the	web	application	URL	request	to	be	authenticated,	we	need	to	override
the	configure(HttpSecurity	http)	method	of	WebSecurityConfigurerAdapter.

In	our	customized	security	configurator,	we	define	a	login	page	(login.jsp)	and	an
authorization	failure	page	(nonAuthorized.jsp),	as	follows:

@Configuration

@EnableWebSecurity

public	class	WebSecurityConfigurator	extends	WebSecurityConfigurerAdapter	{

@Autowired

private	AuthenticationSuccessHandler	authenticationSuccessHandler;

			...

			@Override

			public	void	configure(HttpSecurity	http)	throws	Exception	{

			...

			.and().formLogin()

			.loginPage("/login").successHandler(authenticationSuccessHandler)

			.failureUrl("/nonAuthorized")

			

.usernameParameter("username").passwordParameter("password").loginProcessin

gUrl("/login")

...

This	code	tells	Spring	to	process	a	submitted	HTTP	request	form	(with	the	POST	method)
with	the	expected	username	and	password	as	parameters	and	"/login"	as	the	action.	Here
is	the	login	form:

<form	role="form"	action="/login"	method="post">

		<input	type="hidden"	name="${_csrf.parameterName}"	

value="${_csrf.token}"/>

		<div>

				<label	for="username">Username</label>

				<input	type="text"	name="username"	id="username"	required	autofocus>

		</div>

		<div>

				<label	for="password">Password</label>

				<input	type="password"	name="password"	id="password"	required>

		</div>

		<button	type="submit">Sign	in</button>

</form>

Tip
If	you	don’t	specify	a	username,	password,	and	loginProcessingUrl	parameter	in	the
configuration	file,	Spring	Security	expects	j_username,	j_password,	and

j_spring_security_check	from	the	client	browser.	By	overriding	Spring’s	default	values,
you	can	hide	the	Spring	Security	implementation	from	the	client	browser.

A	cross-site	request	forgery	(CSRF)	attack	happens,	for	example,	when	a	malicious	link
clicked	by	an	authenticated	web	client	performs	an	unwanted	action,	such	as	transferring
funds,	obtaining	contact	e-mails,	or	changing	passwords.	Spring	Security	provides	a
randomly	generated	CSRF	to	protect	the	client	from	CSRF	attacks.

If	you	omit	.loginPage	in	the	configure	method,	Spring	uses	its	default	login	page,
which	is	a	very	plain	HTML	login	page.	In	this	case,	Spring	Security	uses	the	expected
j_username,	j_password,	and	j_spring_security_check	parameters	for	the	username,
password,	and	action,	and	you	should	not	configure	them	in	the	method.

For	example,	here	we	ask	Spring	to	provide	its	own	default	login	form:

@Override

public	void	configure(HttpSecurity	http)	throws	Exception	{

			...

									.and().formLogin()

									.successHandler(authenticationSuccessHandler)

									.failureUrl("/nonAuthorized")

									...

}

Spring	Security	supports	HTTP	Basic	authentication,	in	which	the	client	browser	opens	a
popup	(for	the	initial	time)	when	you	want	to	access	a	resource	that	matches	a	pattern
("/adResources*/**"	in	this	case):

protected	void	configure(HttpSecurity	http)	throws	Exception	{

				

http.antMatcher("/adResources*/**").authorizeRequests().anyRequest().hasRol

e("ADMIN")

								.and()

								.httpBasic();

}

Server-side	navigation	could	be	the	next	step	after	authentication.	Even	though	routing
information	is	provided	from	the	client	side	in	modern	client-side	frameworks	such	as
AngularJS,	you	may	still	want	to	keep	routing	logic	on	the	server	side.	A	success	handler
is	a	Spring	Security	feature	that	lets	you	define	navigation	logic	after	authentication	in	a
web	application.

Spring	Security	lets	you	configure	customized	server-side	navigation	after	authentication.
You	can	configure	it	inside	the	configure	method	(using	successHandler):

@Override

public	void	configure(HttpSecurity	http)	throws	Exception	{

				...

				.loginPage("/login").successHandler(authenticationSuccessHandler)

					

}

Your	customized	navigation	handler	should	implement	the	interface

AuthenticationSuccessHandler.	OnAuthenticationSuccess	is	the	method	that	will	be
called	when	a	user	is	authenticated.	Within	this	method,	we	should	define	the	target	URL.
In	the	sample	implementation	class	shown	here,	the	user’s	role	is	just	used	to	define	the
target	URL:

@Component

public	class	MyCustomizedAuthenticationSuccessHandler	implements	

AuthenticationSuccessHandler	{

				private	RedirectStrategy	redirectStrategy	=	new	

DefaultRedirectStrategy();

				public	void	onAuthenticationSuccess(final	HttpServletRequest	request,	

final	HttpServletResponse	

				response,	final	Authentication	authentication)	throws	IOException	{

								handle(request,	response,	authentication);

								final	HttpSession	session	=	request.getSession(false);

								if	(session	!=	null)	{

												session.setMaxInactiveInterval(3600);//1	hour

								}

								clearAttributes(request);

				}

				protected	void	handle(final	HttpServletRequest	request,	final	

HttpServletResponse	response,	final	

				Authentication	authentication)	throws	IOException	{

								final	String	url	=	getUrl(authentication);

								if	(response.isCommitted())	{

											return;

								}

								redirectStrategy.sendRedirect(request,	response,	url);

				}

				private	String	getUrl(final	Authentication	authentication)	{

								String	url=null;

								final	Collection<?	extends	GrantedAuthority>	authorities	=	

authentication.getAuthorities();

								for	(final	GrantedAuthority	grantedAuthority	:	authorities)	{

												if	(grantedAuthority.getAuthority().equals("ROLE_USER"))	{

																url=	"/user"	;

																break;

												}	else	if	

(grantedAuthority.getAuthority().equals("ROLE_ADMIN"))	{

																url=	"/admin"	;

																break;

													}	else	if	

(grantedAuthority.getAuthority().equals("ROLE_ACCOUNTANT"))	{

																url=	"/accountant"	;

																break;

												}else	{

																throw	new	IllegalStateException();

												}

								}

								return	url;

				}

				protected	void	clearAttributes(final	HttpServletRequest	request)	{

								final	HttpSession	session	=	request.getSession(false);

								if	(session	==	null)	{

												return;

								}

								session.removeAttribute(WebAttributes.AUTHENTICATION_EXCEPTION);

				}

				public	void	setRedirectStrategy(final	RedirectStrategy	

redirectStrategy)	{

								this.redirectStrategy	=	redirectStrategy;

				}

				protected	RedirectStrategy	getRedirectStrategy()	{

								return	redirectStrategy;

				}

}

Spring	Security	lets	you	configure	your	security	configuration	in	multiple	methods,	and	in
each	method,	you	can	define	a	different	category	of	resources.	Here,	we	have	separated
the	security	configuration	for	form-based	and	basic	authentication	into	these	two	classes:

@EnableWebSecurity

@ComponentScan(basePackages	=	"com.springessentialsbook.chapter5")

public	class	MultiWebSecurityConfigurator	{

			@Autowired

			private	AuthenticationProvider	authenticationProvider;

			@Autowired

			public	void	configureGlobalSecurity(AuthenticationManagerBuilder	auth)	

throws	Exception	{

						auth.authenticationProvider(authenticationProvider);

			}

			@Configuration

			protected	static	class	LoginFormBasedWebSecurityConfigurerAdapter	

extends	WebSecurityConfigurerAdapter	{

						@Autowired

						private	AuthenticationSuccessHandler	authenticationSuccessHandler;

						@Override

						public	void	configure(HttpSecurity	http)	throws	Exception	{

									http.authorizeRequests()

															...

															.permitAll();

						}

			}

			@Configuration

			@Order(1)

			public	static	class	HttpBasicWebSecurityConfigurationAdapter	extends	

WebSecurityConfigurerAdapter	{

						@Override

						protected	void	configure(HttpSecurity	http)	throws	Exception	{

									

http.antMatcher("/adResources*/**").authorizeRequests().anyRequest().hasRol

e("ADMIN")

									.and()

									.httpBasic();

						}

}}

For	example,	in	one	method,	we	configure	resources	in	the	adResources	path	to	be
viewed	by	the	admin	role	in	an	HTTP-based	authentication	(the	browser	opens	a	popup
and	asks	for	a	username	and	password).	In	the	second	method,	we	apply	form	login
authorization	and	limit	access	to	resources	based	on	user	roles.

Authorization
In	the	Authentication	section,	we	showed	how	user-provided	credentials
(username/password)	are	compared	with	application-stored	ones,	and	if	they	match,	the
user	is	authenticated.

To	boost	security,	we	can	limit	the	user’s	access	to	application	resources.	This	is	where
authorization	comes	into	the	picture—the	question	of	who	should	access	which
application’s	resources.

Spring	Security	provides	very	comprehensive	authorization	features.	We	can	categorize
these	features	into	these	three	authorization	groups:

Web	request	(who	can	access	which	application	URL?)
Method	invoking	(who	can	call	a	method?)
Domain	object	access	(who	can	see	which	data?)

For	example,	a	customer	should	be	able	to	see	his	own	order	and	profile	data,
whereas	an	admin	should	be	able	to	see	all	the	customers’	orders	plus	the	data	that	is
not	visible	to	any	customer.

Since	version	3.0	of	Spring	Security,	Spring	has	added	Spring	EL	expressions	to	its
authorization	features.	Spring	EL	lets	you	convert	complex	authorization	logic	into	simple
expressions.	In	this	section,	we	use	Spring	EL	for	authorization.

GrandAuthority	in	Spring	Security	is	the	object	for	including	a	string	value	that	is
interchangeably	called	an	authority,	right,	or	permission	(refer	to	the	Authentication
section,	where	the	AuthenticationProvider	interface	is	explained,	to	see	how
GrandAuthority	is	created).	By	default,	if	this	string	value	starts	with	the	prefix	ROLE_
(for	example,	ROLE_ADMIN),	it	will	be	considered	as	a	user’s	role.	So,	it	is	also	flexible
enough	to	be	used	as	a	permission	if	it	does	not	start	with	the	prefix.	Spring	Security	uses
this	object	for	web,	method,	and	domain	object	authorization.

For	web	request	authorization,	we	can	limit	user	access	based	on	the	user’s	role	in	Spring
Security,	as	follows	(we	will	see	later	in	this	section	how	to	do	this	in	a	controller):

public	void	configure(HttpSecurity	http)	throws	Exception	{

			http.authorizeRequests()

						.antMatchers("*.jsp").denyAll()

						.antMatchers("/",	"/login").permitAll()

						.antMatchers("/user*//**").access("hasRole('USER')	or	

hasRole('ADMIN')")

						.antMatchers("/admin*//**").access("hasRole('ADMIN')")

						.antMatchers("/accountant*//**").access("hasRole('ADMIN')	or	

hasRole('ACCOUNTANT')")

						.failureUrl("/nonAuthorized")

						...

						.permitAll();

}

Since	we	use	spring	MVC,	we	deny	all	URLs	that	end	with	.jsp	(*.jsp)	and	let	MVC

map	the	URL	to	the	JSP	page.	We	permit	anybody	to	have	access	to	the	login	page	using
(.antMatchers("/",	/login").permitAll()).

We	limit	user	access	to	accountant	resources	to	the	admin	and	accountant	roles	(for
example,	antMatchers("/accountant*//**").access("hasRole('ADMIN')	or
hasRole('ACCOUNTANT')")).	We	set	an	error	URL	and	forward	a	user	to	it	if	he	fails
authentication	or	tries	to	access	non-authorized	resources	with
failureUrl("/nonAuthorized").

You	need	to	add	@EnableGlobalMethodSecurity(prePostEnabled=true)	to	be	able	to
apply	method/domain-level	authorization:

@EnableWebSecurity

@EnableGlobalMethodSecurity(prePostEnabled=true)

@ComponentScan(basePackages	=	"com.springessentialsbook.chapter5")

public	class	MultiWebSecurityConfigurator	{

We	already	described	how	to	limit	access	to	URLs	using	a	configuration	file.	You	can	do
the	same	thing	in	the	controller’s	methods	too:

@PreAuthorize("hasRole('ADMIN')	or	hasRole('ACCOUNTANT')"

@RequestMapping(value	=	"/accountant",	method	=	RequestMethod.GET)

public	String	dbaPage(ModelMap	model)	{

...

}

For	method-invoking	authorization,	you	can	configure	Spring	Security	at	the	method	level
and	define	who	can	run	a	particular	method	in	your	application’s	service	layer:

@PreAuthorize("hasRole('ADMIN')	or	hasRole('ACCOUNTANT')"

)

public	void	migrateUsers(id){...};

For	domain	object	access,	you	can	apply	method-invoking	authorization	and	have	a
service	method	to	fine-tune	who	can	see	which	data	in	the	application.	For	example,	in	the
service	layer,	you	can	limit	access	if	the	username	parameter	is	equal	to	the	logged-in
username	or	the	user	has	an	admin	role	(refer	to	bussinessServiceImpl	in	the	code):

@PreAuthorize("@businessServiceImpl.isEligibleToSeeUserData(principal,	

#username)")

@RequestMapping("/userdata/{username}")

public	String	getUserPage(@PathVariable	String	username,ModelMap	model)	{

		{...}

The	OAuth2	Authorization	Framework
The	OAuth2	Authorization	Framework	is	simply	a	way	to	let	third-party	applications
access	your	protected	resources	without	you	sharing	your	user	credentials
(username/password).	You	will	have	faced	this	situation	when	a	website	such	as	LinkedIn
asks	you	to	share	your	e-mail	contacts,	and	when	you	agree,	you	are	forwarded	to	your
mail	provider’s	login	page	(for	example,	Yahoo!).

When	you	log	in,	the	mail	provider	asks	for	your	permission	to	share	your	contacts	with
LinkedIn.	Then,	LinkedIn	can	get	the	list	of	your	contacts	in	order	to	send	them	an
invitation.

OAuth2	relies	on	the	following	entities:

The	resource	owner:	This	is	the	user	with	protected	resources,	for	example,	a
Yahoo!	e-mail	user
The	client	or	third-party	application:	This	is	an	external	application	that	requires
access	to	the	owner’s	protected	resources,	for	example,	LinkedIn
The	authorization	server:	This	server	grants	access	to	the	client/third	party	after
authenticating	the	resource	owner	and	obtaining	authorization
The	resource	server:	This	server	hosts	the	owner’s	protected	resources,	for	example,
the	Yahoo!	server

Many	leading	providers	(for	example,	Google	and	Facebook)	have	both	authorization	and
resource	servers.

This	diagram	illustrates	how	the	OAuth2	framework	works	in	a	simple	form:

Spring	facilitates	the	OAuth2	framework	by	reusing	Spring	Security	concepts	for
authentication	and	authorization	and	includes	new	features	to	implement	authorization	and
resource	servers.	To	use	Spring	OAuth2	in	your	project,	you	need	the	following
dependency:

<dependency>

			<groupId>org.springframework.security.oauth</groupId>

			<artifactId>spring-security-oauth2</artifactId>

			<version>2.0.8.RELEASE</version>

</dependency>

What	we	explained	in	the	Authentication	section	with	respect	to	validating	the	user	and
protecting	resources	remains	the	same	here.	The	new	things	are	the	authorization	and
resource	server	settings.

The	OAuth	2.0	service	includes	authorization	and	resource	servers.	Spring	Security	lets
you	have	separate	applications	as	authorization	and	resource	servers,	on	which	one
authorization	server	could	be	shared	by	one	or	many	resource	servers,	or	have	both	types
of	servers	in	a	single	application.	For	simplicity,	we	implement	authorization	and	resource
servers	within	the	same	application.

In	the	class	MultiOAuth2ResourceAndAuthorizationConfigurator,	we	define	resource

and	authorization	servers.	@EnableResourceServer	tags	the	class
ResourceServerConfiguration	as	a	resource	server,	which	defines	resources	with	the
URL	/public	as	non-protected	and	ones	with	the	/protected/**	URL	as	secure	resources
that	require	a	valid	token	to	access.

@EnableAuthorizationServer	tags	AuthorizationServerConfiguration	as	an
authorization	server	that	grants	tokens	to	third-party	clients.	TokenStore	is	a	Spring
interface;	its	implementation	classes	(InMemoryTokenStore,	JdbcTokenStore,	and
JwtTokenStore)	keep	track	of	tokens.

JdbcTokenStore	uses	a	database	to	store	tokens	and	has	a	Spring-JDBC	dependency.
JdbcTokenStore	is	suitable	when	you	want	to	have	a	history	of	tokens,	recovery	after
server	failure,	or	the	sharing	of	tokens	among	several	servers.

JwtTokenStore	encodes	token-related	data	into	the	token	itself.	JwtTokenStore	does	not
make	tokens	persistent	and	requires	JwtAccessTokenConverter	as	a	translator	between	a
JWT-encoded	token	and	OAuth	authentication	information.

For	simplicity,	we	use	the	InMemoryTokenStore	implementation	class,	but	in	real
applications,	using	JdbcTokenStore/JwtTokenStore	is	a	better	practice.

We	reuse	the	AuthenticationManager	class	that	was	detailed	in	the	Authentication
section.

The	method	configure(ClientDetailsServiceConfigurer	clients)	is	the	location	in
which	we	configure	token	generation	settings,	as	follows:

withClient	tells	us	which	client	can	access	resources	(this	is	separate	from	user
authentication)
secret	is	the	client’s	password
authorities	tells	us	which	user	roles	are	eligible	to	access	the	resource
authorizedGrantType	specifies	which	grant	type	the	client	has	(for	example,	the
refresh	and	access	token)
accessTokenValiditySeconds	sets	the	token’s	time	to	live

The	settings	are	mentioned	in	the	following	code:

@Configuration

public	class	MultiOAuth2ResourceAndAuthorizationConfigurator	{

				@Configuration

				@EnableResourceServer

				protected	static	class	ResourceServerConfiguration	extends	

ResourceServerConfigurerAdapter	{

								@Override

								public	void	configure(HttpSecurity	http)	throws	Exception	{

												http

																.headers()

																.frameOptions().disable()

																.authorizeRequests()

																.antMatchers("/public/").permitAll()

																.antMatchers("/protected/**").authenticated();

								}

				}

				@Configuration

				@EnableAuthorizationServer

				protected	static	class	AuthorizationServerConfiguration	extends	

AuthorizationServerConfigurerAdapter	implements	EnvironmentAware	{

								private	static	final	String		CLIENT_ID	=	"myClientId";

								private	static	final	String		CLIENT_PASSWORD	=	"myClientPassword";

								private	static	final	int		TOKEN_TIME_TO_LIVE	=	1800;

								private	static	final	String		ROLE_USER	=	"ROLE_USER";

								private	static	final	String		ROLE_ACCOUNTANT	=	"ROLE_ACCOUNTANT";

								private	static	final	String		READ_ACCESS	=	"read";

								private	static	final	String		WRITE_ACCESS	=	"write";

								private	static	final	String		GRANT_TYPE_PASSWORD	=	"password";

								private	static	final	String		GRANT_TYPE_REFRESH_TOKEN	=	

"refresh_token";

								@Bean

								public	TokenStore	tokenStore()	{

												return	new	InMemoryTokenStore();

								}

								@Autowired

								private	AuthenticationManager	authenticationManager;

								@Override

								public	void	configure(AuthorizationServerEndpointsConfigurer	

endpoints)	throws	Exception	{

												endpoints

																.tokenStore(tokenStore())

																.authenticationManager(authenticationManager);

								}

								@Override

								public	void	configure(ClientDetailsServiceConfigurer	clients)	

throws	Exception	{

												clients

																.inMemory()

																.withClient(CLIENT_ID)

																.secret(CLIENT_PASSWORD)

																.scopes(READ_ACCESS,	WRITE_ACCESS)

																.authorities(ROLE_USER,	ROLE_ACCOUNTANT)

																.authorizedGrantTypes(GRANT_TYPE_PASSWORD,	

GRANT_TYPE_REFRESH_TOKEN)

																.accessTokenValiditySeconds(TOKEN_TIME_TO_LIVE);

								}

								@Override

								public	void	setEnvironment(Environment	environment)	{

								}

				}

}

The	resources	we	granted	access	to	using	the	token	are	included	in	a	controller.	Here,	we
define	a	very	simple	resource: 

@RequestMapping(value	=	"/protected",	method	=	RequestMethod.GET)

@ResponseBody

public	String	getProtectedResources(ModelMap	model)	{

			return	"this	is	from	getProtectedResources";

}

@RequestMapping(value	=	"/public",	method	=	RequestMethod.GET)

@ResponseBody

public	String	getPublicResources(ModelMap	model)	{

			return		"this	is	from	getPublicResources";

}

You	can	run	the	project	with	the	following	command,	which	builds	and	runs	the	resource
and	authorization	server:

mvn	clean	package	spring-boot:run	-Dserver.contextPath=/myapp	-

Dserver.port=9090

If	you	try	the	following,	you	can	see	the	resource	because	this	URL	is	unprotected:

curl	-i	http://localhost:9090/myapp/public

However,	if	you	try	the	next	command,	you	get	a	“non-authorized”	error	and	you	need	a
valid	token	to	access	this	resource:

curl	-i	http://localhost:9090/myapp/protected

You	need	to	get	a	token	first	to	be	able	to	access	protected	resources.	Spring	MVC	exposes
an	endpoint,	TokenEndpoint,	in	order	to	get	the	token	with	the	/oauth/token	URL	by
default.	The	following	command	gives	you	an	authorization	token:

curl	-X	POST	-vu	myClientId:myClientPassword		

'http://localhost:9090/myapp/oauth/token?

username=operator&password=password&grant_type=password'

Now,	you	can	provide	the	token	and	access	the	secure	resource:

curl	-i	-H	"Authorization:	Bearer	[access_token]"	

http://localhost:9090/myapp/protected

Notice	that	we	set	a	time	to	live	for	the	token	and	we	need	to	refresh	the	token	if	it	expires.
The	following	command	renews	the	token	by	calling	the	/oauth/token	endpoint	and
passing	refresh_token	as	the	grant_type	parameter:

curl		-X	POST		-vu		myClientId:myClientPassword		

'http://localhost:9090/myapp/oauth/token?

grant_type=refresh_token&refresh_token=[refresh_token]'

Summary
In	this	chapter,	we	detailed	some	features	of	Spring	Security.	Since	Spring	Security	is	a
separate	module	and	has	a	variety	of	features,	in	order	to	get	more	information	about	the
whole	specification,	you	need	to	go	through	https://docs.spring.io/spring-
security/site/docs/current/reference/html/index.html	and	http://projects.spring.io/spring-
security-oauth/.

https://docs.spring.io/spring-security/site/docs/current/reference/html/index.html
http://projects.spring.io/spring-security-oauth/

Chapter	6.	Building	a	Single-Page	Spring
Application
Having	mastered	many	powerful	features	of	Spring	Framework	while	handling	all	the
major	technical	concerns	of	enterprise	applications,	it	is	time	to	build	a	modern	web
application	by	putting	all	the	techniques	we	learned	in	the	previous	chapters	together.	The
current	trend	in	web	development	is	to	build	single-page	applications	(SPAs)	that	offer
native-like	user	experience	and	an	intuitive	UI.	In	this	chapter,	let’s	build	a	responsive	SPA
powered	by	a	Spring	backend.

We	will	use	Ember.js	for	building	the	SPA	and	Bootstrap	for	styling	and	responsive
behavior.	For	Ember	development,	we	will	use	a	command-line	tool	called	Ember	CLI,
which	runs	on	Node.js	and	combines	a	collection	of	supporting	tools	for	various	critical
functions	of	JavaScript-based	modern	frontend	development.

The	motivations	behind	SPAs
We	know	that	Spring	mainly	focuses	on	the	server	side,	that	is,	the	integration,	service,
and	data	layers.	Spring	relies	on	other	web	technologies	for	rendering	the	presentation
layer.	Although	Spring	MVC	does	facilitate	the	presentation	layer	with	the	help	of	web
technologies	such	as	JSP	and	Thymeleaf,	all	of	them	work	based	on	server-side	rendering
and	full-page	refreshes	for	responding	to	user	interactions.	In	this	traditional	approach,	the
presentation	layer	of	a	web	application	is	composed	of	a	bunch	of	totally	independent
HTML	files	served	by	a	server	on	demand,	each	representing	a	single	screen,	with	just	one
rendered	to	the	client	browser	at	a	time,	taking	a	full	round	trip	to	the	server	for	each	user
interaction.	This	provides	a	very	poor	user	experience	compared	to	native	desktop
applications,	which	gracefully	re-render	just	the	specific	parts	of	the	screen	when	required.

Although	you	can	use	some	AJAX-using	frameworks	such	as	jQuery,	in	order	to	get	data
from	a	server	or	even	for	partial	rendering	of	the	UI	(as	in	the	case	of	JSF),	it	requires	a	lot
of	server	resources	for	the	presentation	layer,	and	server	processing	is	easily	exhausted
when	the	number	of	concurrent	users	grows.	The	presentation	layer	concerns	are
distributed	across	both	the	server	and	client	tiers	in	this	approach.	UI	developers	need	both
client-side	as	well	as	server-side	skills	in	this	case,	which	makes	web	development	harder.

Web	developers	had	always	been	looking	for	a	smarter	method	to	build	the	UI	of	a	data-
driven	application	which	is	developed	entirely	on	the	client	side,	running	inside	a	web
browser,	which	offers	a	native-like	rich	user	experience	without	a	full	refresh	to	the	server
for	page	transitions	and	navigations.	They	wanted	a	way	to	make	their	UI	dynamic	with
data	purely	on	the	client	side,	eliminating	the	need	for	a	server	during	frontend
development,	and	plugs	in	to	the	server	only	when	everything	is	ready	on	the	client	side.
And	for	all	these	problems	and	requirements,	the	SPA	paradigm	is	the	answer.

SPAs	explained
An	SPA	is	a	web	application	or	website	composed	entirely	of	static	web	resources	such	as
HTML,	JavaScript,	and	CSS,	loaded	just	once	into	the	web	browser	in	a	single	page	load.
Once	booted,	it	updates	itself	intelligently	as	the	user	starts	interacting	with	it.	Unlike
traditional	web	applications	that	perform	a	full	page	refresh	for	screen	navigations,	SPA
routes	and	redraws	(re-renders)	screens	without	reloading	the	whole	page	(or	the	next
page)	from	the	server.	It	reconstructs	the	DOM	structure	with	the	help	of	JavaScript	and
styles	itself	with	CSS	in	response	to	user	actions	and	application	events	in	order	to
represent	them	on	the	screen.

After	the	initial	boot,	the	only	time	an	SPA	confers	with	a	server	is	for	dynamic	data.	SPAs
usually	rely	on	AJAX	or	WebSockets	for	data	access	from	the	server.	The	data	transfer
format	is	mostly	JSON	and	sometimes	XML.	They	contact	the	server	via	AJAX	over
HTTP	asynchronously	behind	the	scenes;	this	gives	a	smooth,	fluid	user	experience
without	blocking	the	screen	or	keeping	the	user	waiting	for	server	responses.	Besides,	the
server	can	synchronize	its	data	changes	with	the	client	using	the	WebSocket	API	to
provide	a	real-time	experience.

The	architectural	benefits	of	SPAs
Besides	the	massive	productivity	gain	and	prominence	of	frontend	developers,	SPA	offers
many	architectural	benefits.	It	is	blazingly	fast	compared	to	traditional	server-rendered
web	applications,	since	it	works	entirely	locally	to	the	client.	SPA	offers	a	much	more
smooth	and	fluid	user	experience	because	of	its	immediate	response,	without	needing	us	to
resubmit	the	entire	page	to	the	server	on	every	user	interaction.

Note
JavaScript-intensive	web	applications	run	best	on	modern	web	browsers	with	enough
memory	on	the	host	computer.	Most	frameworks	utilize	many	HTML5	features	and	newer
JavaScript	functionality	such	as	AJAX.	SPAs	can	kill	older	browsers	on	slower	PCs	in	no
time.

SPAs	offload	the	responsibility	of	the	entire	application	state	to	the	browser,	freeing	up
server	resources	to	focus	on	the	core	business	logic	(service)	and	data	in	terms	of	stateless
web	services,	often	designed	as	REST	APIs.	With	SPAs,	the	server	just	becomes	an	API
server;	the	entire	user	interaction	is	handled	by	the	client,	which	improves	server
scalability	a	lot.

Another	advantage,	probably	the	most	important	one	of	SPAs,	is	that	both	client	and
server	applications	can	be	designed	and	evolved	independently	from	each	other.	You	can
replace	either	of	these	without	affecting	the	other	as	long	as	the	endpoint	(API)	contracts
remain	intact.	Also,	you	can	let	frontend	developers	build	the	UI	and	backend	developers
provide	the	data;	both	teams	can	focus	on	their	own	domain	while	working	around	a	data
contract.

SPA	frameworks
Developing	an	SPA	in	plain	JavaScript	is	not	a	smart	idea	considering	the	magnitude	of
responsibility	handled	by	the	SPA	paradigm.	It	would	be	extremely	tiring	and	error-prone
if	we	set	out	to	write	all	the	routing,	data	binding,	screen	authoring,	and	rendering	code
from	scratch	in	our	applications.	Fortunately,	a	set	of	very	impressive	frameworks
emerged	out	of	the	SPA	concept.	Each	of	them	offers	varying	levels	of	abstraction	and
architecture	styles;	some	of	them	use	powerful	templating	technologies.	Let’s	take	a	look
at	the	most	popular	SPA	frameworks:

AngularJS:	Maintained	by	Google	and	supported	by	a	community	of	developers	and
companies,	Angular	is	the	most	popular	and	widely	used	SPA	framework.	It	enhances
vanilla	HTML	with	the	help	of	smart	directives	by	adding	two-way	data	binding.
Angular	supports	localization	and	the	building	of	reusable	components.
ReactJS:	Backed	by	Facebook,	Instagram,	and	a	community	of	developers	and
companies,	React	is	the	fastest	growing	SPA	framework	at	the	time	of	writing.
Facebook	and	Instagram	have	been	developed	using	React.	Its	working	is	based	on
the	concept	of	virtual	DOM,	an	in-memory	representation	of	displayed	DOM	that	can
be	rendered	either	at	the	client	or	server	(using	Node),	and	manipulated	using	one-
way	binding.	React	screens	are	authored	using	JSX,	an	extension	of	JavaScript	that
allows	the	easy	quoting	of	HTML	inside	JavaScript	functions.
Ember.js:	A	very	powerful	JavaScript	MVC	framework	created	by	Yehuda	Katz	and
contributed	to	by	a	strong	community	of	active	developers,	Ember	is	used	by	many
popular	heavy	traffic	websites	and	applications,	such	as	Groupon,	Yahoo!	(Ad
Manager	Plus),	Zendesk,	Square,	Discourse,	and	LivingSocial.	Ember	can	be	used
for	building	mobile	and	desktop	applications:	Apple	Music	is	a	notable	desktop
application	built	with	Ember.	Ember	addresses	the	end-to-end	problems	of	client-side
web	applications	in	an	opinionated	fashion.	An	early	adopter	of	web	and	JavaScript
standards	such	as	ES6,	web	components,	and	promises,	Ember	comes	with	a	set	of
powerful	productivity	tools	and	components	that	make	it	a	complete-stack	frontend
framework.

In	this	chapter,	we	will	use	Ember.js	for	building	an	SPA	that	works	as	the	frontend	for	a
Spring	API	server.	We	will	explore	Ember.js,	its	core	components,	and	the	development
tools	first	and	then	develop	the	frontend	application	using	Ember,	connecting	to	a	Spring-
based	API	server	on	the	backend.	This	chapter	will	make	you	a	full-stack	developer	with
both	server-side	and	client-side	skills	on	the	modern	technology	stack.

Introducing	Ember.js
Ember	is	a	comprehensive	frontend	framework	for	creating	ambitious	web	applications.	It
is	modeled	after	the	Model-View-Controller	(MVC)	architectural	pattern	for	the
frontend.	Its	well-designed	components	with	clearly	defined	responsibilities	and	rich
capabilities	allow	developers	to	develop	complex	web	applications	with	dramatically	less
code.	In	an	Ember	application,	screens	are	composed	using	Handlebars	templates	that
update	themselves	automatically	when	the	underlying	data	changes.

Ember	is	productive	out	of	the	box,	with	a	comprehensive	development	stack	and	a
friendly	API.	The	Ember	development	stack	contains	the	following	tools:

Ember	CLI:	This	is	a	command-line	tool	for	creating	projects,	scaffolding,	and
managing	their	resources.	It	provides	a	development	server	with	live	reload,	a	testing
framework,	mocking	server,	and	comprehensive	asset	management	support.
Ember	Inspector:	This	is	a	debugger-cum-inspector	tool	for	Ember	applications,
shipped	as	a	plugin	for	Firefox	and	Chrome	browsers.	It	allows	you	to	evaluate	and
change	Ember	objects,	elements,	and	variables	while	debugging,	and	provides	a
visual	representation	of	the	running	Ember	app.
Ember	Data:	This	subproject	of	Ember	is	a	data-persistence	library	that	can	be
directly	mapped	to	a	remote	data	source,	such	as	a	REST	API.	It	maps	Ember	model
objects	with	data	entities	on	the	server	side	via	channels	such	as	API	endpoints.
Ember	Data	provides	adapters	and	serializers	for	standard	REST	and	JSON	API
endpoints,	and	allows	you	to	create	your	own	adapters	for	any	data	source,	for
example,	the	browser’s	local	storage.
Fastboot:	This	is	a	server	based	on	Node.js	for	the	server-side	rendering	of	Ember
resources,	eliminating	the	need	for	downloading	JavaScript	payloads	post	the	loading
of	static	assets	for	increased	performance.
Liquid	Fire:	This	provides	animation	support	for	Ember	views.
A	testing	framework:	Ember	CLI	integrates	QUnit	for	testing	Ember	resources.

Ember	is	a	very	opinionated	framework;	this	means	that	you	are	expected	to	structure	the
app	by	its	own	conventions,	and	then	the	framework	takes	care	of	the	rest.	If	you	follow
the	guidelines,	you	will	end	up	writing	very	little,	and	very	readable,	code.	Ember	CLI
generates	the	Ember	project	structure	and	artifacts	with	simple	commands,	in	the	way
expected	by	the	framework.

The	anatomy	of	an	Ember	application
An	Ember	application	is	composed	of	a	set	of	core	elements	with	well-defined
responsibilities	and	properties.	They	are	defined	under	the	Ember	and	DS	namespaces	of
the	Ember	API.

This	diagram	depicts	the	high-level	structure	of	an	Ember	application:

Routers
A	router	manages	the	application	state.	It	maps	a	set	of	logical	routes	against	unique	URLs
as	mapped	in	the	router	configuration.

Routes	or	route	handlers
A	route	handler,	also	known	as	a	route	(defined	in	Ember.Route),	represents	the	handler
for	an	individual	route	transition.	A	route	can	render	a	template	that	displays	a	screen.	A
route	provides	a	model	(data)	that	can	be	consumed	by	its	template	and	controller.	It	has	a
corresponding	controller	that	can	handle	user	actions	and	maintain	the	state.	A	route	can
handle	user	actions	by	itself.

Templates
Templates	are	HTML	fragments,	usually	rendered	by	routes	and	components.	The	user
interface	of	an	Ember	application	is	composed	of	a	collection	of	templates.	Templates	use
the	Handlebars	syntax,	which	looks	like	regular	HTML	with	some	Handlebars
expressions,	which	are	enclosed	in	double	curly	braces	({{	}}).	These	Handlebars
expressions	bind	Ember	resources	such	as	properties,	objects,	helpers,	and	components.

Components
Components	control	the	behavior	of	the	user	interface.	They	handle	user	actions	and
manage	many	attributes	that	are	used	by	the	templates.	A	component	consists	of	two	parts:

A	JavaScript	object	that	extends	Ember.Component,	where	the	actions	and	attributes
are	defined
A	template	that	is	rendered	into	the	parent	view,	usually	that	of	a	router

Models
Part	of	the	Ember	Data	project,	models	represent	the	state	of	domain	data	in	an	Ember
application.	An	Ember	application	will	typically	have	a	set	of	models	extending	from
DS.Model.	Routes	usually	display	model	data	with	the	help	of	templates	and	modify	data
from	the	action	handlers.	Models	are	often	loaded	from	a	store	(DS.Store),	while	Model
instances	are	fetched	from	the	actual	persistent	storage,	mostly	an	API	endpoint	on	the
web	server.	Models	can	be	persisted	to	the	store;	usually,	they	are	sent	back	to	the
appropriate	API	endpoints.

Controllers
Controllers	have	a	limited	role	in	modern	Ember	applications;	they	will	be	deprecated	in
future	versions.	Currently,	their	use	is	limited	to	maintaining	the	state	for	a	route	and
handling	user	actions.	Since	routes	and	components	can	handle	actions,	they	are	the
perfect	places	for	adding	action	handlers	instead	of	controllers.

Besides	these	core	elements,	there	are	some	supporting	components	that	help	the
application	development	be	easier	and	more	elegant.

Input	helpers
These	are	ready-made	components	bundled	with	Ember	for	taking	inputs	from	users.	Most
of	them	are	Ember	versions	of	general	form	controls.	Examples	are	the	{{input}}	and
{{textarea}}	input	helpers.	Custom-developed	components	can	be	used	similarly	to
input	helpers.

Custom	helpers
Helpers	add	custom	functionality	to	an	application	when	they	are	not	readily	available,	for
using	inside	templates.	Mostly,	they	are	used	for	some	kind	of	formatting.	Examples	are
{{format-date}}	and	{{format-currency}}.

Initializers
Initializers	can	perform	certain	operations	on	application	boot.	There	are	two	types	of
initializers:	application	initializers,	which	are	executed	on	application	boot,	and
application	instance	initializers,	which	load	on	application	instance	boot.

Services
Services	are	objects	that	can	hold	data	and	functions	whose	scope	is	application-wide.
They	are	typically	used	for	encapsulating	core	business	logic	spanned	across	many	routes.
Services	can	be	injected	into	controllers,	routes,	components,	and	so	on,	where	their
methods	can	be	invoked.

Working	with	Ember	CLI
Ember	CLI	is	an	integrated,	rapid	development	environment	for	Ember	applications.
Based	on	Broccoli,	a	fast	and	reliable	asset	pipeline	that	runs	on	Node.js,	Ember	CLI	is	a
powerful	command-line	interface	that	integrates	many	productivity	tools	and	optimization
utilities	necessary	for	JavaScript	development.

Ember	CLI	provides	the	following	features	and	tools	for	Ember	development:

It	creates	a	strong,	convention-based	project	structure	for	Ember	applications
It	generates	Ember-specific	application	resources,	such	as	routes,	templates,	and
components,	from	the	command	line
It	supports	template	authoring	in	the	Handlebars,	HTMLBars,	and	Emblem.js	formats
It	supports	scripting	in	ES2015	(ES6)	modules,	CoffeeScript,	and	EmberScript
syntaxes
It	supports	CSS	authoring	in	CSS,	Sass,	Compass,	and	Stylus
It	converts	Node.js-style	ES2015	modules	into	RequireJS-model	AMD	modules
It	integrates	the	npm	and	Bower	package	managers	for	managing	dependencies	to	JS
libraries
It	integrates	a	development	server	with	LiveReload,	which	automatically	rebuilds	and
updates	code	changes	to	all	connected	browsers
It	performs	asset	management	functions	for	application	resources	(combining,
minifying,	uglifying,	versioning,	and	so	on)
It	enables	the	sharing	of	code	and	functionality	using	add-ons	and	blueprints

Later	in	this	chapter,	we	will	use	Ember	CLI	as	a	development	tool	for	building	an	Ember
application	and	its	various	artifacts.

Setting	up	Ember	CLI
Ember	CLI	depends	on	Node.js.	So,	the	first	step	is	installing	Node.js.	Follow	the
instructions	given	on	the	website	http://nodejs.org	to	set	up	Node.js.

Once	Node.js	is	installed,	you	can	install	Ember	CLI	using	npm,	with	the	following
command:

npm	install	-g	ember-cli

Now,	install	Bower	using	the	following	command:

npm	install	-g	bower

You	may	optionally	install	Watchman	for	better	watching	of	code	changes	and	the
PhantomJS	test-running	environment.

http://nodejs.org

Getting	started	with	Ember	CLI	commands
Once	Ember	CLI	is	installed,	you	may	start	creating	Ember	applications	incrementally
using	this	set	of	commands	to	generate	the	required	Ember	artifacts:

Command Purpose

ember Prints	the	available	commands.

ember	new

<appname>

Generates	a	fresh	new	project	root	folder	with	the	same	name	as	<appname>,	the	whole	project
structure,	and	all	the	necessary	artifacts	for	a	starter	Ember	application.

ember	init Turns	the	current	directory	into	an	Ember	application	and	generates	all	necessary	artifacts.

ember	build
Builds	and	generates	the	deployable	to	the	dist	directory.	Specify	the	environment	using	the
environment	flag,	which	defaults	to	development.

ember	server	(or

serve)

Starts	the	development	server	at	port	4200.	You	may	point	to	another	port	using	the	--port	flag,
for	example,	ember	serve	--port	8080.

ember	generate

<generatortype>

<name>	<options>

Generates	specific	generators,	such	as	route,	template,	and	helper,	with	the	given	name	and
options.	Type	ember	help	generate	for	the	full	list	of	available	generators.	Use	the	--pod	flag
for	generators	in	the	POD	structure	(explained	later).

ember	destroy

<generatortype>

<name>	<options>

Removes	artifacts	created	using	the	ember	generate	command.	Remember	to	use	the	--pod
flag	if	it	was	used	while	generating	the	artifact.

ember	test Runs	tests	written	in	the	application	using	the	Testem	test	runner.

ember	install

<addon-name>
Installs	the	given	add-on	into	the	application	and	registers	it	in	the	package.json	file.

The	Ember	project	structure
When	you	use	the	ember	new	<project-name>	command,	Ember	CLI	generates	and
organizes	files	in	a	specific	structure	based	on	convention	and	then	compiles	them	and
performs	a	set	of	tasks	during	building	and	runtime.	The	following	table	describes	the
folder	layout	and	important	files	generated	by	Ember	CLI:

File/Folder Description

app/

This	is	the	Ember	application	root.	The	index.html	file	and	all	your	JavaScript	files	and
templates	go	inside	this,	under	proper	subdirectories.	Everything	except	index.html	is
compiled	through	the	ES6	module	transpiler,	minified	and	concatenated	to	<app-name>.js,
and	then	loaded	by	the	index.html	file	at	build	time.

app/index.html

This	is	the	only	HTML	page	loaded	from	the	server,	which	boots	the	Ember	application	on
load	from	<app-name>.js,	and	is	loaded	using	the	<script/>	tag	embedded	in	it.	Ember
builds	the	entire	DOM	structure	from	inside	this	foundation	HTML	document	in	the	browser
at	runtime.

app/app.js

This	is	the	Ember	application	module.	This	is	the	application’s	entry	point,	where	all	the
other	modules	are	initialized	and	injected	in	order	to	create	the	entire	application	instance
based	on	the	resolver	and	environment-specific	configuration.

app/router.js This	is	the	router	configuration	module	of	the	application.

app/adapters/
Adapters	for	Ember	Data	modules	go	here.	This	folder	is	generated	when	the	ember
generate	adapter	<model-name>	command	is	executed	for	the	first	time.

app/components/ All	components	go	here,	unless	the	--pod	option	is	used.

app/controllers/ All	controllers	go	here,	unless	the	--pod	option	is	used.

app/helpers/ All	helpers	go	here,	unless	the	--pod	option	is	used.

app/models/ All	models	go	here,	unless	the	--pod	option	is	used.

app/routes/ All	routes	go	here,	unless	the	--pod	option	is	used.

app/services All	services	go	here,	unless	the	--pod	option	is	used.

app/styles/

Put	all	your	style	sheets	for	the	application,	whether	Sass,	LESS,	Stylus,	Compass,	or	plain
CSS,	here.	Only	plain	CSS	is	supported	by	default;	you	can	enable	other	types	by	installing
the	appropriate	npm	modules.	For	Sass,	type	ember	install	ember-cli-sass	in	the
command	line.	For	LESS,	the	command	is	ember-cli-less;	for	Compass,	ember-cli-
compass-compiler,	and	so	on.	For	the	default	CSS	option,	add	your	styles	to	app.css.	You
can	also	organize	the	styles	in	different	CSS	files	and	import	them	to	your	app.css	file.

app/templates/ All	templates	go	here,	unless	the	--pod	option	is	used.

bower.json This	is	the	Bower	configuration	file.

bower_components/ Dependencies	managed	by	Bower	go	here.

config/ Application	configuration	files	fall	here.

config/environment.js Your	environment-specific	configurations	go	inside	this	file.

dist/
The	deployable	files	generated	by	the	build	process	go	here.	This	is	what	you	need	to
distribute	for	release.

ember-cli-build.js This	is	the	Broccoli	build	file.	Include	all	resources	managed	by	Bower	and	npm	here.

node_modules All	node	dependencies	managed	by	npm	go	here.

package.json This	is	the	NPM	dependency	configuration	file.

public/
This	is	a	directory	for	uncompiled	assets,	such	as	fonts	and	images.	The	contents	are	copied
as	they	are.

server/ This	is	where	you	can	set	up	a	development	server	for	mock	APIs	and	tests.

tests/ All	your	unit	and	integration	tests	go	here.

tmp/ This	is	a	temporary	folder	for	build	execution.

vendor/ Place	your	external	dependencies	that	are	not	managed	by	npm	or	Bower	here.

At	the	end	of	the	build	process,	Ember	CLI	generates	the	deployable	at	dist/directory.
You	need	to	distribute	the	contents	of	this	directory	for	hosting	the	deployable	on	a	web
server	on	release.

Working	with	the	POD	structure
By	default,	the	ember	generate	<generator>	command	generates	artifacts	inside	specific
resource	directories	directly	under	the	app	root	directory.	So,	all	your	routes	go	under
app/routes,	templates	under	app/templates,	and	so	on.	However,	this	becomes	a	bit
unmaintainable	as	the	application	grows.	To	solve	this	problem,	Ember	CLI	provides	the
option	of	organizing	your	files	in	a	feature-driven	(POD)	structure	using	the	--pod	flag
when	you	generate	an	artifact	using	the	ember	generate	command.

In	order	for	the	POD	structure	to	work,	you	need	to	first	configure	the	POD	directory	in
config/environment.js	as	given	in	the	following	code:

module.exports	=	function(environment)	{

		var	ENV	=	{

				...

				podModulePrefix:	'my-ember-app/pod-modules',

				...

				},

				...

		return	ENV;

};

The	preceding	snippet	specifies	that	all	the	artifacts	you	generate	with	the	--pod	flag	will
be	generated	inside	the	<app-root>/pod-modules	directory.

Once	you	configure	the	POD,	you	can	start	generating	your	artifacts	with	the	--pod	flag.

For	example,	if	you	want	to	generate	a	route	inside	the	POD	structure,	use	the	following
command:

ember	generate	route	user	--pod

This	will	generate	the	route	file	at	/app/pod-modules/user/route.js.

POD	modules	group	all	the	artifacts	related	to	a	feature	in	one	place,	thus	making	it	more
manageable.

Understanding	the	Ember	object	model
Ember	comes	with	a	rich	API	out-of-the-box,	extending	vanilla	JavaScript	classes	and
introducing	new	structures,	providing	enhanced	capabilities	such	as	two-way	data	binding,
property	observation,	and	so	on.	It	provides	smarter	replacements	for	most	of	the	common
JavaScript	constructs	such	as	objects	and	arrays.

Ember.Object	is	the	main	base	class	of	all	Ember	objects.	It	provides	a	class	system	with
advanced	features	such	as	mixins	and	constructor	methods.	Ember.Object	provides	many
special	features,	such	as	computed	properties,	data	binding,	and	property-value	change
observers.

Declaring	types	(classes)	and	instances
You	can	inherit	all	the	features	of	Ember.Object	in	your	objects;	just	extend	it	in	a	purely
object-oriented	fashion,	as	given	in	the	following	code:

var	User	=	Ember.Object.extend({

			...

});

The	preceding	snippet	is	just	a	declaration	of	the	User	type.	Now,	you	need	to	instantiate
this	class	structure	in	order	to	use	it	in	your	program,	as	follows:

var	User	=	Ember.Object.create();

You	can	either	call	a	no	args	constructor	like	the	preceding	snippet,	or	you	can	pass	a	set
of	attributes	with	values	as	a	JS	object	in	order	to	create	an	instance	of	a	declared	class,	as
follows:

var	myUser	=	User.create({

				firstName:	"John",	

				lastName:	"Smith",	

				userName:	"jsmith",

				password:	"secretp@ss",	

				dateOfBirth:	new	Date(1980,	10,	24);

});

Accessing	and	mutating	properties
Once	the	type	is	initialized,	you	can	access	its	properties	using	a	get	method,	as	follows:

var	name	=	myUser.get("name");

Remember	to	always	use	the	get	method	instead	of	object.property,	since	Ember
objects	store	managed	properties	in	a	different	hash,	which	provides	a	few	special
features,	unlike	a	vanilla	JS	object.

Make	sure	you	use	the	set	method	for	enabling	all	the	special	features	of	Ember	objects,
such	as	computed	properties	and	property	observation:

myUser.set('firstName',	"Shameer");

Computed	properties
A	computed	property	is	a	virtual	property	derived	from	other	normal	properties,	or	it	is	a
value	returned	by	a	function.	Ember.Object	can	have	computed	properties	too,	as	shown
here:

var	User	=	Ember.Object.extend({

			...

			fullName:	Ember.computed('firstName',	'lastName',	function()	{

						return	`${this.get('firstName')}	${this.get('lastName')}`;

			}),

			...

});

Once	instantiated,	you	can	access	computed	properties	as	well	in	the	same	manner	as
normal	properties.	They	update	themselves	whenever	a	dependent	property	changes.	You
can	create	mutable	computable	properties	too.	The	following	is	an	example	of	a	sensible
implementation	of	such	a	computed	property:

fullName:	Ember.computed('firstName',	'lastName',	{

				get(key)	{

								return	`${this.get('firstName')}	${this.get('lastName')}`;

				},

				set(key,	value)	{

								var	[firstName,	lastName]	=	value.split(/\s+/);

								this.set('firstName',	firstName);

								this.set('lastName',		lastName);

								return	value;

				}

})

Since	the	computed	property	is	like	any	other	function,	you	can	add	any	business	logic	to
it.

Property	observers
You	can	observe	normal	or	computed	properties	for	any	change	in	value.	Register	the
property	with	Ember.Observer	for	this	purpose.	See	the	following	example:

var	User	=	Ember.Object.extend({

			...

			dateOfBirth:	new	Date(),

			dobChanged:	Ember.observer('dateOfBirth',	function()	{

						//	deal	with	the	change

						console.log(`Date	of	birth	updated.	New	value	is:	

${this.get('dateOfBirth')}`);

			})

});

In	the	preceding	snippet,	the	dobChanged	function	will	fire	whenever	the	dateOfBirth
property	gets	updated.	You	can	bind	multiple	properties	with	a	single	observer	method	by
passing	all	the	properties	as	arguments	into	the	Ember.observer	method	prior	to	the
function	definition.

Note
Computed	properties	can	also	be	observed.	However,	the	observer	method	will	not	be
triggered	until	the	computed	property	is	accessed,	even	if	the	dependent	properties	are
updated.

Working	with	collections
Ember	makes	array	manipulation	smarter	using	a	set	of	core	collection	classes,	shown	in
the	following	table.	Each	of	these	provide	many	convenient	methods	that	abstract	complex
array	manipulation:

Collection	type Description

Ember.Array

This	is	an	abstract	implementation	of	observer-friendly	array-like	behavior.	Concrete
implementations	are	expected	to	have	implemented	methods,	such	as	length()	and	objectAt().
Notable	convenient	methods	are	any(),	every(),	filter(),	filterBy(),	find(),	findBy(),
forEach(),	getEach(),	map(),	mapBy(),	objectAt(),	replace(),	reverse(),	sortBy,
without(),	and	so	on.

Ember.ArrayProxy
ArrayProxy	wraps	objects	that	implement	Ember.Array	for	binding	use	cases	and	swapping
content	while	iterating.

Ember.MutableArray This	is	an	extension	of	Array,	supporting	an	array	of	ordered	sets.

Ember.Enumerable This	is	a	mixin	for	enumerating	arrays.

Ember.NativeArray This	is	the	most	concrete	implementation	of	all	of	the	above.	You	would	use	this	in	most	cases.

Building	UI	templates	using	Handlebars
The	primary	UI	authoring	technology	in	Ember.js	is	Handlebars.	Handlebars	templates
allow	HTML	fragments	to	embed	dynamic	content	using	Handlebars	expressions	placed
inside	double	curly	braces	({{	}}),	the	dynamic	scripting	blocks.	Handlebars	expressions
perform	data	binding	with	attributes	of	routes,	models,	controllers,	components,	services,
utils,	and	even	application	instances.	Here	is	a	sample	Handlebars	expression:

<h3>Welcome	{{loggedInUser.fullName}}.</h3>

This	code	snippet	expects	an	object	(preferably	derived	from	Ember.Object,	though	it
binds	with	normal	JS	objects	too)	with	the	name	loggedInUser,	present	somewhere	in	the
context	in	the	parent	context	hierarchy	(template,	controller,	route,	or	application).	Then,	it
establishes	a	one-way	data	binding	with	the	fullName	attribute	of	the	loggedInUser
object;	hence,	it	just	displays	the	value	of	the	bound	attribute.

Handlebars	helpers
Handlebars	relies	on	helpers	for	business	logic	inside	the	dynamic	scripting	blocks.
Handlebars	executes	the	business	logic	implemented	inside	the	helpers	(if	any)	placed
inside	the	curly	braces,	or	it	simply	performs	data	binding	with	bound	attributes.

Ember	ships	a	set	of	built-in	helpers	and	provides	a	nice	way	of	developing	custom
helpers	too.	Built-in	helpers	can	be	categorized	as	follows:

Input	helpers
Control	flow	helpers
Event	helpers
Development	helpers

Helpers	can	either	be	inline	or	en	bloc.	Inline	helpers	are	just	one-liners,	similar	to	empty
HTML	and	XML	tags.	See	the	action	helper,	which	is	an	inline	helper	that	takes
parameters	for	processing:

{{action	'editUser'	user}}

Inline	helpers	can	be	nested,	embedding	more	dynamic	values	inside	them:

{{action	'editUser'	user	(format-date	today	format='MMM	DD,	YYYY')}}

Block	helpers	have	a	start	and	an	end	construct	with	the	same	name,	similar	to	HTML
tags:

{{#if	isLoggedIn}}

				Welcome	{{loggedInUser.fullName}}

{{/if}}

Data	binding	with	input	helpers
Templates	can	establish	two-way	data	binding	using	input	helpers.	Input	helpers	are
mostly	HTML	form	elements	wrapped	inside	Ember	components	or	views.	Ember	ships
some	built-in	input	helpers,	such	as	Ember.TextField,	Ember.TextArea,	and
Ember.Checkbox.	Let’s	take	a	look	at	an	example:

{{input	placeholder="User	Name"	value=editingUser.userName}}

{{input}}	is	a	built-in	input	helper	that	wraps	HTML	input	text	fields	and	checkboxes
based	on	the	value	of	the	type	attribute,	which	defaults	to	text.	It	allows	two-way	binding
between	the	generated	<input	type="text"/>	tag	and	the	attribute
editingUser.userName.	Whenever	either	of	the	values	is	changed,	it	updates	the	other
participant	of	the	two-way	binding.	The	{{input}}	helper	supports	many	useful	attributes,
such	as	readonly,	required,	size,	height,	name,	autofocus,	placeholder,	tabindex,
and	maxlength.

Checkboxes	are	created	using	the	same	{{input}}	helper,	but	by	setting	the	type	attribute
to	checkbox.	The	{{textarea}}	helper	represents	the	HTML	<textarea/>	component.

You	can	create	your	own	input	helpers	as	Ember	components,	which	we	will	learn	later	in
this	chapter.

Using	control	flow	helpers	in	Handlebars
Like	most	scripting	languages,	Handlebars	supports	the	following	control	flow	helpers:

Conditionals:

{{if}}

{{#else}}

{{#else	if}}

{{#unless}}

Loops:

{{#each}}

Here	is	an	example	of	the	{{if}},	{{else}},	and	{{else	if}}	helpers:

<div	class="container">

{{#if	isIdle}}

				You	are	idle	for	{{SessionService.idleMinutes}}	minutes.

{{else	if	isLoggedIn}}

				Welcome	{{loggedInUser.fullName}}

{{else}}

				<a	{{action	showLoginPopup}}>Please	login

{{/if}}

</div>

The	{{#each}}	helper	is	used	to	loop	(iterate)	through	a	collection,	display	it,	and	provide
event	hooks	or	actions	around	each	element	in	the	collection.	A	typical	{{#each}}	helper
looks	like	this:

{{#each	model	as	|user|}}

<tr>

<td><a	{{action	'showUser'	user	}}>{{user.id}}</td>

<td>{{user.userName}}</td>

				...

</tr>

{{/each}}

Using	event	helpers
Event	helpers	respond	to	user-invoked	actions.	The	two	primary	event	helpers	in	Ember
are	the	{{action}}	and	{{link-to}}	helpers.

The	{{link-to}}	helper	helps	in	navigating	to	another	route.	See	the	following	example:

{{link-to	"Login	here"	"login"	class="btn	btn-primary"}}

The	{{action}}	helper	is	generally	added	to	a	normal	HTML	element	in	order	to	attach
an	event	and	event	handler	to	it:

<a	{{action	"editTask"	_task}}	class="btn	btn-success">Edit

Handling	routes
An	Ember	application	transitions	its	state	between	a	set	of	routes;	each	can	render	a
template	that	displays	the	current	state	and	a	controller	to	support	its	state-based	data.
Routes	are	registered	inside	the	router	configuration,	typically	inside	router.js,	in	the
case	of	an	Ember	CLI	project	structure.	Routes	are	defined	inside	their	own	JS	files.

Routes	can	be	generated	and	autoconfigured	from	the	command	line	as	follows:

ember	generate	route	user	--pod

This	command	generates	route.js	and	template.hbs	under	app/<pod-
directory>/user/.	Upon	generation,	both	artifacts	will	have	a	basic	structure	and	you
need	to	flesh	them	out	according	to	your	specific	requirements.	A	typical	route	will	have	a
model	hook,	which	prepares	its	data.	See	the	structure	of	a	typical	but	minimal	route	given
in	the	following	code:

import	Ember	from	'ember';

export	default	Ember.Route.extend({

		model:	function(args)	{

				return	this.store.findAll('task');

		}

});

In	the	preceding	example,	the	model	hook	fetches	data	from	DS.Store,	the	Ember	Data
repository.	The	route	renders	the	template.hbs	file	in	the	same	directory	in	the	case	of	an
Ember	CLI	project,	unless	another	template	is	specified	inside	the	renderTemplate
method.	The	model	of	a	route	is	available	to	the	controller	and	template	(via	a	controller)
for	manipulation	and	rendering.

Handling	UI	behavior	using	components
Components	are	the	building	blocks	of	dynamic	UI	fragments	or	elements	in	Ember.	They
render	a	template,	optionally	backed	by	a	class	extending	Ember.Component.

The	easiest	way	to	create	a	component	is	to	create	a	template	file	with	a	dash-separated
name	in	the	app/components/	directory.	Then	you	can	embed	it	in	inside	other	templates
by	just	calling	{{<component-name>}}	and	passing	the	required	parameters.

Components	are	independent	and	completely	isolated	from	the	client	context;	all	required
data	must	be	passed	as	parameters.	However,	if	you	use	{{yield}}	inside	the	template,	it
essentially	becomes	a	block	(or	container)	component,	where	you	can	add	any	content;
this	content	can	access	any	controller	attribute	and	model.

A	component	can	be	generated	by	the	following	command:

ember	generate	component	<component-name>	--pod

This	command	generates	two	files,	component.js	and	template.hbs,	under	the
app/<pod-dir>/components/<component-name>/	directory.	If	you	do	not	use	the	--pod
flag,	it	generates	the	<component-name>.js	and	<component-name>.hbs	files	under	the
directory	app/components/.

Components	insert	the	content	into	the	DOM	structure,	where	it	is	invoked,	and	control
the	behavior	of	the	inserted	content.	By	default,	a	component	renders	a	<div/>	element
with	the	content	generated	by	its	template	inside	the	<div/>	element.	You	can	specify	a
different	HTML	element	instead	of	the	<div/>	element	by	setting	the	tagName	attribute
inside	the	component.js	file.	Similarly,	you	can	set	CSS	class	names	dynamically	using
another	property,	assNameBindings.

Components	provide	some	very	useful	life	cycle	hooks	for	manipulating	different	phases
of	the	component.	Some	life	cycle	methods	that	can	be	overridden	in	the	component	class
are	didInsertElement(),	willInsertElement(),	and	willDestroyElement().

Components	support	standard	HTML	element	events,	depending	upon	which	tagName	is
being	used.	They	support	all	the	standard	touch	events	such	as	touchStart	and
touchMove,	keyboard	events	such	as	keyDown,	keyUp,	and	keyPressed,	mouse	events	such
as	mouseDown,	mouseOver,	click,	and	doubleClick,	form	events	such	as	submit	and
change,	and	HTML5	drag	and	drop	events	such	as	dragStart	and	dragEnd.	You	just	need
to	declare	the	event	as	a	function	inside	the	component	class;	the	component	will	fire	the
event	and	the	associated	function	will	get	invoked	as	the	user	interacts	with	it.

Besides	events,	components	can	respond	to	action	handlers,	which	are	named	functions
defined	inside	the	actions	hash	of	the	component	class.	These	actions	can	be	triggered
anywhere	from	the	component’s	template.	Action	handlers	can	accept	parameters	from	the
client	code	or	templates.

Building	a	ToggleButton	component	step	by	step
Let’s	learn	how	to	build	an	Ember	component	step	by	step	using	Ember	CLI.	We’ll	build	a
toggle	button	that	turns	off	and	on	when	clicked	on.	The	component	just	changes	its	label
and	style	based	on	its	status	attribute,	isActive.	We	use	Bootstrap	styles	for	this	example.

First,	let’s	generate	the	component	class	and	template	file	(.hbs)	using	Ember	CLI.	Issue
this	command	from	the	command	line	at	the	root	of	your	project:

ember	generate	component	toggle-button	--pod

See	the	component.js	and	template.hbs	files	generated	at	app/<pod-
dir>/components/toggle-button/.	Open	and	see	the	component.js	file,	it	looks	as
given	in	the	following	code:

import	Ember	from	'ember';

export	default	Ember.Component.extend({

});

The	generated	template.js	file	just	has	{{yield}}	inside	it.	Now	you	need	to	add
necessary	attributes	and	business	logic	into	these	two	artifacts	in	order	to	make	it	a	proper
toggle	button	component.	Here	is	a	modified	component.js	file,	with	the	proper	behavior:

import	Ember	from	'ember';

export	default	Ember.Component.extend({

		tagName:	"button",

		attributeBindings:	['type'],

		type:	"button",

		classNames:	["btn"],

		classNameBindings:	["isActive:btn-primary:btn-default"],

		activeLabel:	"On",

		inactiveLabel:	"Off",

		isActive:	false,

		currentLabel:	Ember.computed('isActive',	'activeLabel',	'inactiveLabel',	

function()	{

				return	this.get(this.get("isActive")	?	"activeLabel"	:	

"inactiveLabel");

		}),

		click:	function()	{

				var	active	=	this.get("isActive")

				this.set("isActive",	!active);

		}

});

In	the	preceding	code,	notice	that	you	specified	the	tagName	attribute	as	button;
otherwise,	the	generated	HTML	would	be	<div/>.	Also,	see	how	CSS	class	names	are
bound	dynamically	based	on	the	isActive	attribute.	The	currentLabel	attribute	is	a
computed	attribute	that	depends	on	a	few	other	attributes.	In	effect,	the	component
responds	to	a	click	event	and	actually	toggles	the	isActive	variable.	Everything	else	will

work	based	on	this	event.

Now,	let’s	take	a	look	at	the	modified	template.js	file	to	see	how	it	utilizes	the	attributes
and	events	handled	by	the	component.js	file:

{{currentLabel}}

Surprise!	This	is	all	the	content	in	the	template.	It’s	so	simple	to	build.	All	the	rest	of	the
heavy	lifting	is	done	by	the	component.js	file	itself.	Now	the	most	interesting	part	is	how
the	component	is	invoked	from	the	client.	Let’s	take	a	look:

{{toggle-button}}

This	is	how	you	add	the	toggle	button	component	in	your	client	code,	it	is	mostly	route’s
template.	You	can	start	clicking	on	the	button	repeatedly	and	see	that	it	switches	on	and
off.

This	component	can	be	customized	by	overriding	its	default	properties.	Let’s	try	changing
its	labels	when	it	is	on	and	off	from	the	client	side:

{{toggle-button	activeLabel="Turn	me	off	now	:)"	inactiveLabel="Turn	me	On	

please.."}}

You	can	see	the	new	active	and	inactive	labels	on	the	screen	as	you	click	on	the	button,
toggling	it.	The	toggle	button	is	the	simplest	example	of	an	Ember	component,	intended	to
give	you	just	a	taste	of	Ember	components.	A	typical	Ember	application	will	have	many
complex	components.	Converting	a	reusable	UI	module	or	portion	into	a	component	is	the
best	way	to	make	your	application	more	elegant	and	maintainable.

Persisting	data	with	Ember	Data
Ember	Data	is	Ember’s	data-access	mechanism.	It	provides	a	simple	API	to	deal	with	data,
abstracting	the	complexities	and	protocols	of	data	access	and	diverse	data	sources.	With
Ember	Data,	clients	can	deal	with	data	models	just	as	any	other	Ember	object.

Ember	Data	defines	a	set	of	fundamental	components	that	handle	various	roles	and
responsibilities	in	data	access.	These	components	are	grouped	under	the	namespace	DS.
The	following	table	describes	the	most	important	Ember	Data	components	defined	under
DS:

Component Purpose

DS.Model

This	is	the	fundamental	unit	of	data	and	represents	a	record	in	a	data	collection.	You	need	to	define
your	data	models	by	extending	this	class.	It	provides	methods	to	save,	delete,	reload,	and	iterate
properties,	relationships,	related	types,	and	so	on.	It	provides	information	about	states,	attributes,
fields,	relationships,	errors,	and	so	on.	Also,	it	provides	life	cycle	hook	events.

DS.Store

This	is	the	local	repository	of	all	the	data	created,	fetched,	and	modified	by	Ember	Data.	Store	fetches
data	with	the	help	of	adapters	and	converts	them	into	appropriate	DS.Model	instances.	Using
serializers,	Store	serializes	model	instances	into	forms	suitable	for	the	servers.	It	provides	methods	for
querying	and	creating	new	records.

DS.Adapter

This	is	an	abstract	implementation	that	receives	various	persistence	commands	from	Store	and
translates	them	into	forms	that	the	actual	data	source	(such	as	a	Server	API	or	a	browser	local	storage)
understands.	Ember	ships	two	concrete	implementations:	DS.RESTAdapter	and	DS.JSONAPIAdapter.
Override	the	adapters	if	you	want	to	change	the	default	behaviors	or	attributes,	such	as	remote	URLs
and	headers.

DS.Serializer

This	normalizes	DS.Model	instances	into	payloads	for	the	API	(or	whichever	data	source	it	is)	and
serializes	them	back	into	the	model.	Two	default	serializers	are	RestSerializer	and
JSONAPISerializer.	Override	the	serializers	to	customize	the	data	formats	for	the	server.

Ember	Data	architecture
Ember	Data	components	communicate	with	each	other	asynchronously	for	data	access
operations,	based	on	a	promise.	The	query	and	find	methods	of	both	the	Store	and
Adapter	are	asynchronous,	and	essentially	return	a	promise	object	immediately.	Once
resolved,	the	model	instance	is	created	and	returned	to	the	client.	The	following	diagram
demonstrates	how	Ember	Data	components	coordinate	a	find	method	operation
asynchronously:

The	clients	of	Ember	Data	components,	which	are	typically	routes,	components,
controllers,	services,	and	so	on,	do	not	directly	deal	with	adapters	and	serializers.	They

talk	to	the	Store	and	model	for	normal	data-access	operations.	Since	the	Route.model
method	(hook)	supports	promise	objects,	the	transition	will	pause	until	the	promise	is
resolved.	We	do	not	deal	with	resolving	promises	and	hence	with	asynchronicity;	rather,
Ember	handles	it	smartly.

Defining	models
Models	represent	the	domain	data	of	an	Ember	application.	They	need	to	be	defined	in
proper	structures	and	registered	with	the	store	before	they	can	be	used	for	data	access.	An
Ember	CLI	project	expects	models	under	the	app/models/	directory,	or	app/<pod-
dir>/models/	in	case	you	are	using	the	POD	directory	structure.

Let’s	see	a	sample	model	definition.	The	following	is	the	definition	of	a	user	model:

import	DS	from	'ember-data';

export	default	DS.Model.extend({

		name:	DS.attr('string'),

		userName:	DS.attr('string'),

		password:	DS.attr('string'),

		dateOfBirth:	DS.attr('date'),

		profileImage:	DS.belongsTo('file')

});

Model	attributes	can	be	of	the	string,	number,	Boolean,	and	date	types	by	default.	For
custom	types,	you	need	to	subclass	DS.Transform.	Attributes	can	have	default	values	too.
You	can	specify	default	values	as	shown	in	the	following	line:

dateOfBirth:	DS.attr('date',	{	defaultValue:	new	Date()	}),

Defining	model	relationships
Models	can	engage	in	one-to-one,	one-to-many,	and	many-to-many	relationships	among
themselves:

A	one-to-one	relationship	is	defined	using	DS.belongsTo	in	both	model	definitions
A	one-to-many	relationship	is	defined	using	DS.belongsTo	in	one	model	and
DS.hasMany	in	the	other	model
A	many-to-many	relationship	is	declared	when	both	models	have	DS.hasMany	defined
for	each	other

Building	a	Taskify	application
Hey,	it’s	time	to	build	our	Taskify	application	end-to-end.	First,	let’s	go	back	to	building	a
proper	API	layer	using	Spring	and	then	revisit	Ember	to	build	the	frontend	SPA.	We	will
use	Spring	Data	to	connect	to	and	access	data	from	the	API	server.

For	simplicity,	we	will	not	apply	any	security	to	the	server;	we	will	just	focus	on
performing	CRUD	operations	on	two	models:	User	and	Task.	Both	User	and	Task	are
related	to	each	other:	Task	belongsTo	User.	We	will	build	models	on	both	(server	and
client)	sides.	Let’s	see	how	both	technologies	work	together	without	having	direct
dependencies	on	each	other.

Building	the	API	server	app
We	explored	the	building	of	web	apps	using	Spring	MVC	in	Chapter	2,	Building	the	Web
Layer	with	Spring	Web	MVC.	In	Chapter	3,	Accessing	Data	with	Spring,	we	also	learned
how	to	persist	data	using	Spring	Data	JPA.	We	are	going	to	apply	both	these	techniques
again	for	building	an	API	application	for	Taskify.

Setting	up	and	configuring	the	project
Since	we	have	already	learned	the	basics	of	creating	Spring	MVC	applications	with	Spring
Data	JPA,	at	this	point,	we	will	go	into	detail	only	about	the	specifics	of	the	API
endpoints.	Refer	to	Chapter	2,	Building	the	Web	Layer	with	Spring	Web	MVC	for	Spring
MVC	configuration	and	Chapter	3,	Accessing	Data	with	Spring	for	details	about	Spring
Data	JPA.	Set	up	and	configure	the	project	with	the	following	steps:

1.	 Create	a	Spring	MVC	application	with	a	dependency	on	Spring	Data	JPA	and	the
database	of	your	choice.

2.	 Enable	JPA	repositories,	specifying	the	base	packages.	For	JavaConfig,	annotate	like
this:

@EnableJpaRepositories(basePackages	=	"com.taskify.dao")

3.	 Configure	Spring	Data	JPA	artifacts	such	as	DataSource,	JdbcTemplate,
TransactionManager,	and	EntityManager	with	the	flavor	of	your	choice.

Defining	the	model	definitions	–	User	and	Task
The	application	has	the	following	two	models	as	domain	objects:

Now	we	need	to	realize	these	as	Java	classes,	annotated	as	JPA	entities,	so	that	we	can
persist	them	to	a	database,	as	follows:
User.java

package	com.taskify.domain;

import	java.util.Date;

...

@Entity

@Table(name	=	"TBL_USER",	uniqueConstraints	=	@UniqueConstraint(name	=	

"UK_USER_USERNAME",	columnNames	=	{"USER_NAME"	}))

public	class	User	{

		@Id

		@GeneratedValue

		private	Long	id;

		@Column(name	=	"NAME",	length	=	200)

		private	String	name;

		@Column(name	=	"USER_NAME",	length	=	25)

		private	String	userName;

		@Column(name	=	"PASSWORD",	length	=	20)

		private	String	password;

		@Column(name	=	"DOB")

		@Temporal(TemporalType.TIMESTAMP)

		private	Date	dateOfBirth;

		...

		//Getters	and	setters	go	here..

}

Task.java

package	com.taskify.domain;

import	java.util.Date;

...

@Entity

@Table(name	=	"tbl_task")

public	class	Task	{

		@Id

		@GeneratedValue

		private	Long	id;

		@Column(name	=	"NAME",	length	=	500)

		private	String	name;

		@Column(name	=	"PRIORITY")

		private	int	priority;

		@Column(name	=	"STATUS")

		private	String	status;

		@ManyToOne(optional	=	true)

		@JoinColumn(name	=	"CREATED_USER_ID",	referencedColumnName	=	"ID")

		private	User	createdBy;

		@Column(name	=	"CREATED_DATE")

		@Temporal(TemporalType.TIMESTAMP)

		private	Date	createdDate;

		@ManyToOne(optional	=	true)

		@JoinColumn(name	=	"ASSIGNEE_USER_ID",	referencedColumnName	=	"ID")

		private	User	assignee;

		@Column(name	=	"COMPLETED_DATE")

		@Temporal(TemporalType.TIMESTAMP)

		private	Date	completedDate;

		@Column(name	=	"COMMENTS")

		private	String	comments;

		...

		//Getters	and	setters	go	here..

}

Once	the	JPA	entities	are	ready,	create	the	DAOs	for	both	User	and	Task—UserDAO	and
TaskDAO—annotated	with	@Repository.	As	the	best	approach	and	for	proper	application
layering,	create	the	corresponding	@Service	beans	too.	Since	we	already	covered	the	JPA
@Repository	and	@Service	classes	in	the	previous	chapters,	the	code	for	these	beans	is
not	listed	here.	You	can	find	the	exact	code	in	the	code	bundle	provided	with	this	book.

Building	API	endpoints	for	the	Taskify	app
The	purpose	of	the	API	server	is	to	expose	API	endpoints	for	the	consumption	of	clients,
including	the	Taskify	Ember	frontend	app.	Let’s	build	these	web	services	in	the	REST
model,	with	JSON	data	format	support.

In	this	section,	we	will	list	two	classes	annotated	with	@RestController:	UserController
and	TaskController.	The	handler	methods	support	asynchronous,	non-blocking	IO	so
that	they	are	more	scalable	and	faster.	Handler	methods	are	designed	in	the	REST	model.
The	HTTP	methods	GET,	POST,	PUT,	and	DELETE	are	mapped	against	the	Create,	Read,
Update,	and	Delete	(CRUD)	operations.

UserController.java
UserController	exposes	endpoints	for	CRUD	operations	on	the	User	entity.	You	can	see
the	endpoints	of	UserController	accepting	and	producing	JSON	data	appropriately	in	its
code,	which	is	as	follows:

package	com.taskify.web.controller;

import	java.util.List;

...

/**

	*	Handles	requests	for	user	related	pages.

	*/

@RestController

@RequestMapping("/api/v1/user")

@CrossOrigin

public	class	UserController	{

		private	static	final	Logger	=	

LoggerFactory.getLogger(UserController.class);

		@Autowired

		private	UserService;

		@RequestMapping(method	=	RequestMethod.GET)

		@ResponseBody

		public	Callable<List<User>>	listAllUsers()	{

				return	new	Callable<List<User>>()	{

						@Override

						public	List<User>	call()	throws	Exception	{

								return	userService.findAllUsers();

						}

				};

		}

		@RequestMapping(method	=	RequestMethod.POST,	consumes	=	

MediaType.APPLICATION_JSON_VALUE,	produces	=	

MediaType.APPLICATION_JSON_VALUE)

		@ResponseBody

		public	Callable<User>	createNewUser(@RequestBody	CreateUserRequest	

request)	{

				logger.info(">>>>>>>>	Creating	User,	request	-	"	+	request);

				return	new	Callable<User>()	{

						@Override

						public	User	call()	throws	Exception	{

								return	userService.createNewUser(request.getUser());

						}

				};

		}

		@RequestMapping(path	=	"/{id}",	method	=	RequestMethod.PUT,	consumes	=	

MediaType.APPLICATION_JSON_VALUE,	produces	=	

MediaType.APPLICATION_JSON_VALUE)

		@ResponseBody

		public	Callable<User>	updateUser(@PathVariable("id")	Long	id,	

@RequestBody	UpdateUserRequest	request)	{

				logger.info(">>>>>>>>	updateUser,	request	-	"	+	request);

				return	new	Callable<User>()	{

						@Override

						public	User	call()	throws	Exception	{

								User	existingUser	=	userService.findById(id);

								existingUser.setName(request.getUser().getName());

								existingUser.setPassword(request.getUser().getPassword());

								existingUser.setUserName(request.getUser().getUserName());

								userService.updateUser(existingUser);

								return	existingUser;

						}

				};

		}

		@RequestMapping(path	=	"/{id}",	method	=	RequestMethod.GET)

		public	Callable<User>	getUser(@PathVariable("id")	Long	id)	{

				return	new	Callable<User>()	{

						@Override

						public	User	call()	throws	Exception	{

								return	userService.findById(id);

						}

				};

		}

		@RequestMapping(path	=	"/{id}",	method	=	RequestMethod.DELETE)

		@ResponseStatus(value	=	HttpStatus.NO_CONTENT)

		public	Callable<Void>	deleteUser(@PathVariable("id")	Long	id)	{

				return	new	Callable<Void>()	{

						@Override

						public	Void	call()	throws	Exception	{

								userService.deleteUser(userService.findById(id));

								return	null;

						}

				};

		}

}

TaskController.java
TaskController	maps	request	endpoints	for	CRUD	operations	around	the	Task	entity.	Its
code	is	as	follows:

package	com.taskify.web.controller;

import	java.util.List;

...

@RestController

@RequestMapping("/api/v1/task")

@CrossOrigin

public	class	TaskController	{

		private	static	final	Logger	=	

LoggerFactory.getLogger(TaskController.class);

		@Autowired

		private	UserService;

		@Autowired

		private	TaskService;

		private	static	final	int[]	priorities	=	new	int[]	{	1,	2,	3,	4,	5,	6,	7,	

8,	9,	10	};

		@RequestMapping(method	=	RequestMethod.GET)

		@ResponseBody

		public	Callable<List<Task>>	listAllTask()	{

				return	new	Callable<List<Task>>()	{

						@Override

						public	List<Task>	call()	throws	Exception	{

								return	taskService.findAllTasks();

						}

				};

		}

		@RequestMapping(method	=	RequestMethod.POST,	consumes	=	

MediaType.APPLICATION_JSON_VALUE,	produces	=	

MediaType.APPLICATION_JSON_VALUE)

		@ResponseBody

		public	Callable<Task>	createNewTask(@RequestBody	CreateTaskRequest	

request)	{

				logger.info(">>>>>>>>	Creating	Task,	request	-	"	+	request);

				return	new	Callable<Task>()	{

						@Override

						public	Task	call()	throws	Exception	{

								return	taskService.createTask(request.getTask());

						}

				};

		}

		@RequestMapping(path	=	"/{id}",	method	=	RequestMethod.PUT,	consumes	=	

MediaType.APPLICATION_JSON_VALUE,	produces	=	

MediaType.APPLICATION_JSON_VALUE)

		@ResponseBody

		public	Callable<Task>	updateTask(@PathVariable("id")	Long	id,	

@RequestBody	UpdateTaskRequest	request)	{

				logger.info(">>>>>>>>	updateTask,	request	-	"	+	request);

				return	new	Callable<Task>()	{

						@Override

						public	Task	call()	throws	Exception	{

								Task	existingTask	=	taskService.findTaskById(id);

								existingTask.setName(request.getTask().getName());

								existingTask.setPriority(request.getTask().getPriority());

								existingTask.setStatus(request.getTask().getStatus());

								existingTask.setCreatedBy(userService.findById(

request.getTask().getCreatedBy().getId()));

								if(request.getTask().getAssignee()	!=	null	&&

											request.getTask().getAssignee().getId()	!=	null)	{

													existingTask.setAssignee(userService.findById(

													request.getTask().getAssignee().getId()));

								}	else	{

										existingTask.setAssignee(null);

								}

								taskService.updateTask(existingTask);

								return	existingTask;

						}

				};

		}

		@RequestMapping(path	=	"/{id}",	method	=	RequestMethod.GET)

		public	Callable<Task>	getTask(@PathVariable("id")	Long	id)	{

				return	new	Callable<Task>()	{

						@Override

						public	Task	call()	throws	Exception	{

								return	taskService.findTaskById(id);

						}

				};

		}

		@RequestMapping(path	=	"/{id}",	method	=	RequestMethod.DELETE)

		@ResponseStatus(value	=	HttpStatus.NO_CONTENT)

		public	Callable<Void>	deleteTask(@PathVariable("id")	Long	id)	{

				return	new	Callable<Void>()	{

						@Override

						public	Void	call()	throws	Exception	{

								taskService.deleteTask(id);

								return	null;

						}

				};

		}

}

We	have	built	all	the	necessary	artifacts	for	the	API	server.	You	can	package	the
application	and	deploy	it.	You	should	be	able	to	access	the	UserController	handlers	at
http://<app-context-root>/api/v1/user	and	the	TaskController	handlers	at
http://<app-context-root>/api/v1/task/.	Now	let’s	go	build	the	frontend.

Building	the	Taskify	Ember	app
Let’s	get	back	to	Ember	development	to	build	our	SPA.	Follow	these	steps.	We	will
occasionally	refer	to	previous	sections	of	this	chapter,	and	detail	the	specifics	here.

Setting	up	Taskify	as	an	Ember	CLI	project
Let’s	generate	the	project	and	set	up	all	the	artifacts.	Follow	these	steps:

1.	 Create	a	new	Ember	project	using	Ember	CLI	from	the	command	line:

ember	new	taskify

2.	 Install	broccoli-merge-trees	and	broccoli-static-compiler	for	a	richer	Broccoli
configuration.	Issue	the	following	commands	from	the	command	line:

npm	install	--save-dev	broccoli-merge-trees

npm	install	--save-dev	broccoli-static-compiler

3.	 Install	Bootstrap	with	Bower	from	the	command	line:

bower	install	bootstrap

4.	 Configure	Broccoli	to	include	bootstrap.js,	CSS,	and	fonts	in	the	ember-cli-
build.js	file:

		var	mergeTrees	=	require('broccoli-merge-trees');

		var	pickFiles	=	require('broccoli-static-compiler');

		var	extraAssets	=	pickFiles('bower_components/bootstrap/dist/fonts',{	

srcDir:	'/',	files:	['**/*'],	destDir:	'/fonts'	});

		app.import('bower_components/bootstrap/dist/css/bootstrap.css');

		app.import('bower_components/bootstrap/dist/js/bootstrap.js');

		return	mergeTrees([app.toTree(),	extraAssets]);

5.	 In	the	application,	we	will	be	using	a	third-party	Ember	add-on	called	ember-
bootstrap-datetimepicker.	Let’s	install	it	into	the	project:

ember	install	ember-bootstrap-datetimepicker

6.	 Build	npm	and	bower	dependencies:

npm	install

bower	install

7.	 Start	the	Ember	server	using	the	ember	serve	command,	and	make	sure	your
application	is	accessible	at	http://localhost:4200/.

8.	 Set	the	POD	directory	inside	/config/environment.js:

		var	ENV	=	{

				modulePrefix:	'ember-webapp-forspring',

				podModulePrefix:	'ember-webapp-forspring/modules',

				...

		}

Now	we	can	start	generating	the	required	Ember	artifacts	in	this	POD	directory.

Setting	up	Ember	Data
We	need	two	models:	User	and	Task.	Let’s	generate	them	first	with	the	following	code.
For	models,	we	do	not	use	POD:

ember	generate	model	user

ember	generate	model	task

Find	the	generated	models	under	the	/app/models/	folder.	Open	them	and	set	the
attributes	and	relationships:
User.js

import	DS	from	'ember-data';

export	default	DS.Model.extend({

		name:	DS.attr('string'),

		userName:	DS.attr('string'),

		password:	DS.attr('string'),

		dateOfBirth:	DS.attr('date')

});

Task.js

import	DS	from	'ember-data';

export	default	DS.Model.extend({

		name:	DS.attr('string'),

		priority:	DS.attr('number'),

		status:	DS.attr('string'),

		createdBy:	DS.belongsTo('user'),

		createdDate:	DS.attr('date'),

		assignee:	DS.belongsTo('user'),

		completedDate:	DS.attr('date'),

		comments:	DS.attr('string'),

});

Let’s	generate	an	(Ember	Data)	application	adapter	that	has	some	global	properties
common	to	all	adapters:

ember	generate	adapter	application

Open	the	generated	/app/adapters/application.js	file,	and	add	two	attributes,	host
and	namespace,	with	the	right	values	as	shown	in	the	following	code.	After	this,	adapters
for	all	models	will	take	these	attributes	unless	overridden	individually:

import	Ember	from	'ember';

import	DS	from	'ember-data';

export	default	DS.RESTAdapter.extend({

		host:	'http://<apiserver-context-root>',

		namespace:	'api/v1'

});

We	need	to	override	the	default	serializers,	as	Ember	Data	expects	the	ID	of	the	dependent
objects	for	sideloading,	where	the	API	server	sends	out	nested	objects	embedded	within.

So,	generate	both	serializers	from	the	command	line	and	then	update	the	content
appropriately:

ember	generate	serializer	user

ember	generate	serializer	task

Update	the	generated	/app/serializers/user.js	file	with	the	following	content:

import	DS	from	'ember-data';

export	default	DS.RESTSerializer.extend(DS.EmbeddedRecordsMixin,	{

				attrs:	{

								profileImage:	{embedded:	'always'},

				},

});

Update	the	generated	/app/serializers/task.js	file	with	the	following	content:

import	DS	from	'ember-data';

export	default	DS.RESTSerializer.extend(DS.EmbeddedRecordsMixin,	{

				attrs:	{

								createdBy:	{embedded:	'always'},

								assignee:	{embedded:	'always'},

				},

});

Configuring	application	routes
Routes	represent	application	states.	They	need	to	be	registered	with	the	router	of	the
application	in	order	to	enable	navigation.	Our	application	has	three	primary	routes:	index,
user,	and	task.	Let’s	generate	them	in	the	pod	directory.	Do	it	from	the	command	line:

ember	generate	route	index	--pod

ember	generate	route	user	--pod

ember	generate	route	task	--pod

Take	a	look	at	router.js	now;	you	will	see	these	new	routes	registered	there.	Also,	the
route.js	and	template.hbs	files	generated	for	each	of	these	under	the	POD	directories
will	be	present.

Building	the	home	screen
Now,	let’s	set	up	the	index	template	to	show	counts	for	the	total	number	of	tasks	and	the
number	of	open	tasks	in	the	system.	Open	the	/app/modules/index/template.js	file	and
update	it	with	this	content:

<div	class="container">

		<h1>Welcome	to	Taskify!</h1>

		<hr	/>

		<P>There	are	{{model.openTasks.length}}	open

				{{#link-to	"task"}}tasks{{/link-to}}	out	of	total

				{{model.tasks.length}}	in	the	system</P>

</div>

The	preceding	template	binds	the	model	attributes	using	Handlebars	and	expects	the
model	to	be	loaded	with	proper	data.	Let’s	go	build	the	model	in	the	route.js	file:

import	Ember	from	'ember';

export	default	Ember.Route.extend({

		model:	function()	{

				var	_model	=	Ember.Object.extend({

						tasks:	null,

						openTasks:	Ember.computed("tasks",	function()	{

								var	_tasks	=	this.get("tasks");

								return	Ember.isEmpty(_tasks)	?	Ember.A([]):	

_tasks.filterBy("status",	"Open");

						}),

				}).create();

				this.store.findAll('task').then(function(_tasks)	{

				_model.set("tasks",	_tasks);

				return	_model;

		});

				return	_model;

});

In	the	preceding	code,	the	model	hook	first	loads	data	from	the	server	using	DS.Store
(Ember	Data),	constructs	the	model	object	with	attributes,	including	computed	properties,
and	then	returns.	The	home	screen	will	look	like	the	following	image	(ignore	the	headers
for	now):

Building	the	user	screen
Now,	let’s	build	the	user	screen	for	listing	all	the	users	in	the	system.	Let’s	build	the	model
inside	the	route’s	model	hook	first.	Add	this	method	inside
/app/modules/user/route.js:

model:	function()	{

		return	this.store.findAll('user');

},

You	can	see	how	beautifully	Ember	and	Ember	Data	work	together	to	simplify	such	an
otherwise	complex	task	of	fetching,	transforming,	and	deserializing	data	into	model
instances	and	finally	making	it	available	for	the	consumption	of	the	template	and
controller,	asynchronously,	without	blocking	the	screen.

Now	let’s	display	this	data	on	a	screen.	Update	the	/app/modules/user/template.hbs
file	with	the	following	content:

<div	class="container">

		<h1>List	of	users</h1><hr	/>

		<p	class="text-right">

				<a	{{action	'createNewUser'}}	class="btn	btn-primary"	

role="button">Create	New	User</p>

		<table	class="table	table-hover">

				<thead><tr>

						<th>ID</th>

						<th>User	name</th>

						<th>Name</th>

						<th>Date	Of	Birth</th>

						<th>Edit</th>

						<th>Delete</th>

				</tr></thead>

		<tbody>

		{{#each	model	as	|user|}}

		<tr>

				<td><a	{{action	'showUser'	user	}}>{{user.id}}</td>

				<td>{{user.userName}}</td>

				<td>{{user.name}}</td>

				<td>{{format-date	user.dateOfBirth	format='MMM	DD,	YYYY'}}</td>

				<td><button	type="button"	class="btn	btn-default"	aria-label="Edit	

user"	{{action	'editUser'	user}}>

								

</button></td>

				<td><button	type="button"	class="btn	btn-default"	aria-label="Delete	

user"	{{action	'deleteUser'	user}}>

								

</button></td>

		</tr>

		{{/each}}

		</tbody>

		</table>

</div>

Now	you	can	see	the	user	route	at	http://localhost:4200/user,	which	looks	like	this:

Building	a	custom	helper
In	the	template.hbs	file,	you	may	notice	a	custom	helper:

{{format-date	user.dateOfBirth	format='MMM	DD,	YYYY'}}

Let’s	go	build	it;	you	should	have	already	got	an	error	since	this	helper	hasn’t	been	defined
yet.	From	the	command	line,	generate	it	using	the	following	command:

ember	generate	helper	format-date

Update	the	generated	/app/helpers/format-date.js	file	with	the	following	script:

import	Ember	from	'ember';

export	function	formatDate(params,	hash)	{

		if(!Ember.isEmpty(hash.format))	{

				return	moment(new	Date(params)).format(hash.format);

		}

		return	params;

}

export	default	Ember.Helper.helper(formatDate);

Now	look	at	your	browser;	the	user	list	should	render	properly.

Adding	action	handlers
Inside	the	/app/modules/user/template.hbs	file,	there	are	four	action	invocations:
createNewUser,	showUser,	editUser,	and	deleteUser.	All	these	methods	accept	a	user
variable	as	a	parameter.	Let’s	add	these	actions	inside	/app/modules/user/route.js	first:

actions:	{

		createNewUser:	function()	{

				this.controller.set("_editingUser",	null);

				this.controller.set("editingUser",	Ember.Object.create({

						name:	null,

						userName:	null,

						password:	null,

						dateOfBirth:	new	Date()

				}));

		Ember.$("#userEditModal").modal("show");

		},

		showUser:	function(_user)	{

				this.controller.set("_editingUser",	_user);

				this.controller.set("editingUser",	Ember.Object.create(

				_user.getProperties("id",	"name",	"userName",	"password",	

"dateOfBirth",	"profileImage")));

				Ember.$("#userViewModal").modal("show");

		},

		editUser:	function(_user)	{

				this.actions.closeViewModal.call(this);

				this.controller.set("_editingUser",	_user);

				this.controller.set("editingUser",	Ember.Object.create(

				_user.getProperties("id",	"name",	"userName",	"password",	

"dateOfBirth",	"profileImage")));

				Ember.$("#userEditModal").modal("show");

		},

		deleteUser:	function(_user)	{

				if(confirm("Delete	User,	"	+	_user.get("name")	+	"	?"))	{

						var	_this	=	this.controller;

						_user.destroyRecord().then(function()	{

								_this.set("editingUser",	null);

								_this.set("_editingUser",	null);

								_this.set("model",	_this.store.findAll('user'));

						});

				}

		}

}

Building	a	custom	component	–	modal	window
In	the	preceding	code	listing,	both	the	createNewUser	and	editUser	methods	use
userViewModal	using	jQuery.	This	is	a	Bootstrap	modal	window	built	as	a	custom	Ember
component.	In	fact,	there	are	four	components	working	together	in	a	nested	fashion:
{{modal-window}},	{{modal-header}},	{modal-body}},	and	{{modal-footer}}.

Let’s	generate	the	artifacts	from	a	commandline	first:

ember	generate	component	modal-window	--pod

ember	generate	component	modal-header	--pod

ember	generate	component	modal-body	--pod

ember	generate	component	modal-footer	--pod

The	component.js	and	template.hbs	files	should	be	generated	under	the
/app/modules/components/<component-name>/	directory.	Now	let’s	update	the	.js	and
.hbs	files	to	make	it	a	true	modal	window:
modal-window/template.hbs

<div	class="modal-dialog"	role="document">

<div	class="modal-content">{{yield}}</div>

</div>

modal-window/component.js

import	Ember	from	'ember';

export	default	Ember.Component.extend({

		classNames:	["modal",	"fade"],

		attributeBindings:	['label:aria-label',	'tabindex',	'labelId:aria-

labelledby'],	ariaRole:	"dialog",	tabindex:	-1,	labelId:	

Ember.computed('id',	function()	{

				if(Ember.isEmpty(this.get("id")))	{

						this.set("id",	this.get("parentView.elementId")	+	"_Modal");

				}

		return	this.get('id')	+	"Label";

		})

});

modal-header/template.hbs

{{yield}}

modal-header/component.js

import	Ember	from	'ember';

export	default	Ember.Component.extend({

		classNames:	["modal-header"],

});

modal-body/template.hbs

{{yield}}

modal-body/component.js

import	Ember	from	'ember';

export	default	Ember.Component.extend({

		classNames:	["modal-body"],

});

modal-footer/template.hbs

{{yield}}

modal-footer/component.js

import	Ember	from	'ember';

export	default	Ember.Component.extend({

		classNames:	["modal-footer"],

});

Building	userEditModal	using	{{modal-window}}
The	four	modal	related	components	have	been	built;	it’s	time	to	add	userEditModal	into
the	user/template.js	file.	Add	the	following	code	or	userEditModal	into	the
user/template.js	file:

{{#modal-window	id="userEditModal"}}

		{{#modal-header}}

		<button	type="button"	class="close"	{{action	"closeEditModal"}}	aria-

label="Close">×</button>

		<h4	class="modal-title"	id=labelId>{{modalTitle}}</h4>

		{{/modal-header}}

		{{#modal-body}}

		<form>	<div	class="form-group">

		<label	for="txtName">Full	Name:</label>

		{{input	class="form-control"	id="txtName"	placeholder="Full	Name"	

value=editingUser.name}}	</div>

		<div	class="form-group">	<label	for="txtUserName">Username:</label>

		{{input	class="form-control"	id="txtUserName"	placeholder="User	Name"	

value=editingUser.userName}}</div>

		<div	class="form-group">	<label	for="txtPassword">Password:</label>

		{{input	type="password"	class="form-control"	id="txtPassword"	

placeholder="Your	secret	password"	value=editingUser.password}}</div>

		<div	class="form-group"><label	for="calDob">Date	of	Birth:</label>

		{{bs-datetimepicker	id="calDob"	date=editingUser.dateOfBirth

							updateDate=(action	(mut	editingUser.dateOfBirth))

							forceDateOutput=true}}	</div>	</form>

		{{/modal-body}}

		{{#modal-footer}}

		<a	{{action	"saveUser"}}	class="btn	btn-success">Save

		<a	{{action	"closeEditModal"}}	class="btn	btn-primary">Cancel

		<a	{{action	'deleteUser'	_editingUser}}	class="btn	btn-danger">	Delete	

		{{/modal-footer}}

{{/modal-window}}

The	preceding	code	listing	integrates	the	user	edit	form	with	{{modal-body}},	with	the
form	title	inside	{{modal-header}},	action	buttons	inside	{{modal-footer}},	and	all	of
this	inside	{{modal-window}}	with	the	ID	userEditModal.	Just	click	the	Edit	button	of	a
user	row;	you	will	see	this	nice	modal	window	pop	up	in	front	of	you:

The	Save	button	of	userEditModal	invokes	the	saveUser	action	method,	the	Cancel
button	invokes	the	closeEditModal	action,	and	the	Delete	button	invokes	deleteUser.
Let’s	add	them	inside	the	actions	hash	of	user/route.js,	next	to	deleteUser:

...

closeEditModal:	function()	{

		Ember.$("#userEditModal").modal("hide");

		this.controller.set("editingUser",	null);

		this.controller.set("_editingUser",	null);

},

closeViewModal:	function()	{

		Ember.$("#userViewModal").modal("hide");

		this.controller.set("editingUser",	null);

		this.controller.set("_editingUser",	null);

},

saveUser:	function()	{

		if(this.controller.get("_editingUser")	===	null)	{

		this.controller.set("_editingUser",this.store.createRecord("user",

				this.controller.get("editingUser").getProperties("id",	"name",	

"userName",	"password",	"dateOfBirth")));

		}	else	{

				this.controller.get("_editingUser").setProperties(

									this.controller.get("editingUser").getProperties("name",	

"userName",	"password",	"dateOfBirth"));

		}

		this.controller.get("_editingUser").save();

		this.actions.closeEditModal.call(this);

}

Similarly,	user/template.js	has	userViewModal,	which	just	displays	the	user	data	in
read-only	format.	Now,	you	can	easily	derive	it	from	userEditModal;	hence,	we’re	not
listing	it	here.

Building	the	task	screen
The	task	screen	follows	the	same	pattern	as	the	user	screen.	This	section	describes	only
the	portions	logically	different	from	the	user	screen	and	assumes	that	you	will	start
developing	the	task	screen	from	the	user	screen	and	incorporate	the	changes	described
here.	Also,	you	can	see	the	complete	code	from	the	project	files	attached	to	this	chapter	of
the	book.

The	task	screen	has	some	extra	state-specific	data	besides	the	model	data	(the	list	of
tasks).	For	maintaining	that	data	while	the	task	screen	is	active,	we	will	create	a	controller:

ember	generate	controller	task	--pod

The	relationship	between	Task	and	User	is	that	a	task	is	created	by	a	user	and	assigned	to
another	user.	So,	on	the	edit	task	(or	create	new	task)	screen,	a	list	of	users	should	be
shown	in	a	selection	box	so	that	one	can	be	selected	from	the	list.	For	that,	we	need	to	load
the	list	of	users	from	DS.store	to	a	variable	inside	the	controller.	Here	is	the	controller
method	that	loads	the	user	list:

loadUsers:	function()	{

		this.set("allUsers",	this.store.findAll('user'));

}.on("init"),

This	method	will	get	fired	on	initialization	of	the	controller,	courtesy	of	the	.on("init")
construct.	The	template	code	extract	that	renders	the	user	list	in	an	HTML	selection	is
here:

<div	class="form-group">

		<label	for="calDob">Created	By:</label>

		<select	onchange={{action	"changeCreatedBy"	value="target.value"}}	

class="form-control">

		{{#each	allUsers	as	|user|}}

				<option	value={{user.id}}	selected={{eq	editingTask.createdBy.id	

user.id}}>{{user.name}}</option>

		{{/each}}

		</select>

</div>

The	action	method,	changeCreatedBy,	is	listed	here:

changeCreatedBy:	function(_userId)	{

		this.get("editingTask").set("createdBy",	

this.get("allUsers").findBy("id",	_userId));

},

Similarly,	task	priorities	are	also	a	list	of	integers	from	1	to	10.	The	code	to	load	them	is
here	(this	goes	inside	the	controller):

taskPriorities:	[],

		loadTaskPriorities:	function()	{

		for(var	_idx=1;	_idx<11;	_idx++)	{

				this.taskPriorities.pushObject(_idx);

		}

}.on("init"),

Code	for	the	priority	selection	box	is	as	follows:

<div	class="form-group">

		<label	for="selectPriority">Priority:</label>

		<select	onchange={{action	(mut	editingTask.priority)	

value="target.value"}}	class="form-control">

		{{#each	taskPriorities	as	|priority|}}

			<option	value={{priority}}	selected={{eq	editingTask.priority	

priority}}>{{priority}}</option>

		{{/each}}

		</select>

</div>

As	a	further	step,	you	may	add	security	to	both	ends	of	the	application.	You	may
personalize	tasks	for	the	logged-in	user.	Ember	also	supports	WebSockets.	Tasks	can	be
pushed	to	the	client	as	they	are	assigned	to	the	logged-in	user	by	another	user	somewhere
else.	For	simplicity,	those	advanced	features	are	not	covered	in	this	chapter.	However,	with
the	knowledge	you	have	gained	in	this	and	the	previous	chapters,	you	are	already	at	a
comfortable	stage	to	implement	end-to-end	security	and	real-time	updates	using
WebSockets	inside	Taskify.

Summary
This	chapter	introduced	the	concept	of	single-page	applications	and	implemented	a
Taskify	frontend	as	an	SPA,	connecting	to	the	Spring-based	API	server	on	the	backend.
We	got	a	fair	understanding	of	Ember.js	and	its	tools	as	we	built	our	frontend.	Spring	and
Ember	have	together	simplified	the	building	of	an	otherwise	complex	rich	web	application
of	this	type.	The	use	of	Ember	is	just	an	illustration	of	how	Spring	can	power	the	backend
of	modern	SPAs.	Spring	powers	SPAs	built	on	other	frameworks,	such	as	Angular,	React,
and	Backbone,	created	by	teams	across	the	globe.

So	far,	we	have	successfully	covered	the	most	important	features	of	Spring	Framework.
This	foundation	enables	you	to	venture	into	more	advanced	features	of	Spring,	packaged
as	Spring	portfolio	projects.	Projects	such	as	Spring	Integration,	Spring	AMQP,	Spring
Cloud,	and	Spring	Web	Services	solve	the	more	complex	problems	of	enterprise
computing.	With	the	knowledge	you	have	gained	from	this	book,	you	can	now	design
powerful	solutions	using	Spring	Framework	and	its	subprojects.

Chapter	7.	Integrating	with	Other	Web
Frameworks
The	flexibility	offered	by	Spring	Framework	to	pick	third-party	products	is	one	of	the	core
value	propositions	of	Spring	and	Spring	supports	integration	with	third-party	presentation
frameworks.	While	Spring’s	presentation	layer	framework—Spring	MVC,	brings	the
maximum	extent	of	flexibility	and	efficiency	to	the	development	of	web	applications,
Spring	lets	you	integrate	most	popular	presentation	frameworks.

Spring	can	be	integrated	with	far	too	many	of	Java’s	web	frameworks	to	be	included	in
this	chapter,	and	only	the	most	popular	ones,	JSF	and	Struts,	will	be	explained.

Spring’s	JSF	integration
A	JSF	web	application	can	be	easily	integrated	with	Spring	by	loading	a	Spring	context
file	within	web.xml	(through	a	context	loader	listener).	Since	JSF	1.2,	Spring’s
SpringBeanFacesELResolver	object	reads	Spring	beans	as	JSF	managed	beans.	JSF	only
deals	with	the	presentation	tier	and	has	a	controller	named	FacesServlet.	All	we	need	to
do	is	register	FacesServlet	in	the	application	deployment	descriptor	or	web.xml	(in	this
section,	we	use	JavaConfig	to	register	it)	and	map	any	request	with	the	desired	extension
(.xhtml	here)	to	go	through	FacesServlet.

First,	we	should	include	the	JSF	API	and	its	implementation	in	the	project	dependencies:

<properties>

		<spring-framework-version>4.1.6.RELEASE</spring-framework-version>

		<mojarra-version>2.2.12</mojarra-version>

</properties>

		...

<dependency>

		<groupId>com.sun.faces</groupId>

		<artifactId>jsf-api</artifactId>

		<version>${mojarra-version}</version>

</dependency>

<dependency>

		<groupId>com.sun.faces</groupId>

		<artifactId>jsf-impl</artifactId>

		<version>${mojarra-version}</version>

</dependency>

...

The	dispatcher	Servlet	initializer	is	the	location	to	register	FacesServlet.	Notice	that	we
set	a	mapping	request	to	FacesServlet	here.	Since	we	use	JavaConfig	to	register	settings,
we	register	FacesServlet	in	the	AnnotationConfigDispchServletInit	class,	as	follows:

@Configuration

@Order(2)

public	class	AnnotationConfigDispchServletInit	extends	

AbstractAnnotationConfigDispatcherServletInitializer	{

		@Override

		protected	Class<?>[]	getRootConfigClasses()	{

				return	new	Class<?>[]	{	AppConfig.class	};

		}

		@Override

		protected	Class<?>[]	getServletConfigClasses()	{

				return	null;

		}

		@Override

		protected	String[]	getServletMappings()	{

				return	new	String[]	{	"*.xhtml"	};

		}

		@Override

		protected	Filter[]	getServletFilters()	{

				return	new	Filter[]	{	new	CharacterEncodingFilter()	};

		}

		@Override

		public	void	onStartup(ServletContext	servletContext)	throws	

ServletException	{

				//	Use	JSF	view	templates	saved	as	*.xhtml,	for	use	with	//	Facelets

				servletContext.setInitParameter("javax.faces.DEFAULT_SUFFIX",	

".xhtml");

				//	Enable	special	Facelets	debug	output	during	development

				servletContext.setInitParameter("javax.faces.PROJECT_STAGE",	

"Development");

				//	Causes	Facelets	to	refresh	templates	during	development

				servletContext.setInitParameter("javax.faces.FACELETS_REFRESH_PERIOD",	

"1");

				servletContext.setInitParameter("facelets.DEVELOPMENT",	"true");

				servletContext.setInitParameter("javax.faces.STATE_SAVING_METHOD",	

"server");

				servletContext.setInitParameter(

						"javax.faces.PARTIAL_STATE_SAVING_METHOD",	"true");

						

servletContext.addListener(com.sun.faces.config.ConfigureListener.class);

				ServletRegistration.Dynamic	facesServlet	=	

servletContext.addServlet("Faces	Servlet",	FacesServlet.class);

				facesServlet.setLoadOnStartup(1);

				facesServlet.addMapping("*.xhtml");

				//	Let	the	DispatcherServlet	be	registered

				super.onStartup(servletContext);

		}

}

Note
We	must	set	FacesServlet	to	start	up	on	load	prior	to	the	others	(notice
facesServlet.setLoadOnStartup).

Another	important	setting	is	configuring	the	listener	to	read	the	faces-config	XML	file.
By	default,	it	looks	for	faces-config.xml	under	the	WEB-INF	folder.	By	setting
org.springframework.web.jsf.el.SpringBeanFacesELResolver	as	ELResolver,	we
access	Spring	POJOs	as	JSF	beans.	By	registering
DelegatingPhaseListenerMulticaster,	any	Spring’s	bean	that	implements	the
PhaseListener	interface,	JSF’s	phase	events	will	be	broadcasted	to	corresponding
implemented	methods	of	PhaseListener	in	the	Spring’s	bean.

Here	is	the	faces-config.xml	file:

<?xml	version="1.0"	encoding="UTF-8"?>

<faces-config	xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee/web-

facesconfig_2_2.xsd"

version="2.2">

		<application>

				<el-

resolver>org.springframework.web.jsf.el.SpringBeanFacesELResolver</el-

resolver>

		</application>

		<lifecycle>

				<phase-

listener>org.springframework.web.jsf.DelegatingPhaseListenerMulticaster</ph

ase-listener>

		</lifecycle>

</faces-config>

In	JSF,	we	can	define	beans	with	a	session,	request,	or	application	scope	and	the	bean
values	retained	within	the	specific	scope.	Setting	the	eager	flag	to	false	implies	lazy
initialization,	which	creates	beans	when	the	first	request	arrives,	whereas	true	implies
creating	the	beans	on	startup.	The	code	for	the	OrderBean	class	is:

@ManagedBean(name	=	"orderBean",	eager	=	true)

@RequestScoped

@Component

public	class	OrderBean	{

		private	String	orderName;

		private	Integer	orderId;

		@Autowired

		public	OrderServiceorder	Service;

		public	String	placeAnOrder(){

				orderName=orderService.placeAnOrder(orderId);

				return	"confirmation";

		}

		

		public	String	getOrderName()	{

				return	orderName;

		}

		public	void	setOrderName(String	orderName)	{

				this.orderName	=	orderName;

		}

		public	Integer	getOrderId()	{

				return	orderId;

		}

		public	void	setOrderId(Integer	orderId)	{

				this.orderId	=	orderId;

		}

}

Also,	these	beans	are	available	in	the	presentation	layer	to	interact	with	the	backend.	On
the	first	screen	(order.xhtml),	we	call	the	bean’s	method	(placeAnOrder):

<html	lang="en"

xmlns="http://www.w3.org/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html">

		<h:body>

		<h3>input:	JSF	2	and	Spring	Integration</h3>

				<h:form	id="orderForm">

						<h:outputLabel	value="Enter	order	id:"	/>

						<h:inputText	value="#{orderBean.orderId}"	/>	

						<h:commandButton	value="Submit"	action="#{orderBean.placeAnOrder}"/>

				</h:form>

		</h:body>

</html>

The	method	returns	a	confirmation	as	a	string	and	specify	navigation	in	the	action
attribute	means	the	next	page	is	confirmation.xhtml,	which	looks	like	this:

<html	lang="en"

xmlns="http://www.w3.org/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html">

		<h:body>

		<h3>Confirmation	of	an	order</h3>

		Product	Name:	#{orderBean.orderName}

		</h:body>

</html>

Spring’s	Struts	integration
Spring	MVC	relies	on	DispatcherServlet,	which	sends	requests	to	controllers	that	are
configurable	mapping	handlers	with	view	and	theme	resolution.	In	Struts,	the	controller’s
name	is	Action.	While	Action	instances	will	be	instantiated	for	every	request	in	Struts	2
to	tackle	the	thread	safety	issue,	Spring	MVC	creates	controllers	once,	and	each
controller’s	instance	serves	all	requests.

To	enable	Spring	integration	with	Struts	2,	Struts	provides	struts2-spring-plugin.	In
Struts	2.1,	Struts	introduced	the	convention	plugin	(struts2-convention-plugin),	which
simplified	the	creation	of	Action	classes	(by	annotation)	without	any	configuration	file
(struts.xml).	The	plugin	expects	a	set	of	naming	conventions	for	the	Action	class,
package,	and	view	naming	that	will	be	explained	in	this	section.

To	integrate	Struts	2	with	Spring,	you	need	to	add	these	dependencies:

<dependency>

		<groupId>org.apache.struts</groupId>

		<artifactId>struts2-core</artifactId>

		<version>2.3.20</version>

</dependency>

<dependency>

		<groupId>org.apache.struts</groupId>

		<artifactId>struts2-spring-plugin</artifactId>

		<version>2.3.20</version>

</dependency>

<dependency>

		<groupId>org.apache.struts</groupId>

		<artifactId>struts2-convention-plugin</artifactId>

		<version>2.3.20</version>

</dependency>

The	struts2-convention-plugin	plugin	searches	for	packages	with	the	strings	“struts”,
“struts2”,	“action”,	or	“actions”,	and	detects	Action	classes	either	whose	names	end	with
Action	(*Action)	or	who	implement	the	interface	com.opensymphony.xwork2.Action	(or
extend	its	subclass	com.opensymphony.xwork2.ActionSupport).	The	code	for	the
ViewOrderAction	class	is	as	follows:

package	com.springessentialsbook.chapter7.struts;

...

@Action("/order")

@ResultPath("/WEB-INF/pages")

@Result(name	=	"success",	location	=	"orderEntryForm.jsp")

public	class	ViewOrderAction	extends	ActionSupport	{

		@Override

		public	String	execute()	throws	Exception	{

				return	super.execute();

		}

}

@Action	maps	/order	(in	the	request	URL)	to	this	action	class	and	@ResultPath	specifies
where	views	(JSP	files)	exist.	@Result	specifies	navigation	to	the	next	page	up	to	the

string	value	of	the	execute()	method.	We	created	ViewOrderAction	to	be	able	to	navigate
to	a	new	page	and	to	perform	an	action	(business	logic)	when	submitting	a	form	within	a
view	(orderEntryForm.jsp):

package	com.springessentialsbook.chapter7.struts;

…...

@Action("/doOrder")

@ResultPath("/WEB-INF/pages")

@Results({

		@Result(name	=	"success",	location	=	"orderProceed.jsp"),

		@Result(name	=	"error",	location	=	"failedOrder.jsp")

})

public	class	DoOrderAction	extends	ActionSupport	{

		@Autowired

		private	OrderService	orderService;

		private	OrderVO	order;

		public	void	setOrder(OrderVO	order)	{

				this.order	=	order;

		}

		

		public	OrderVO	getOrder()	{

				return	order;

		}

		@Override

		public	String	execute()	throws	Exception	{

				if	(orderService.isValidOrder(order.getOrderId()))	{

						order.setOrderName(orderService.placeAnOrder(order.getOrderId()));

						return	SUCCESS;

				}

				return	ERROR;

		}

Also,	here	is	the	JSP	code	that	calls	the	Action	class.	Notice	the	form’s	doOrder	action,
which	calls	the	DoOrderAction	class	(using	@Action("doOrder")).

<%@	page	language="java"	contentType="text/html;	charset=UTF-8"

pageEncoding="UTF-8"%>

<%@	taglib	prefix="s"	uri="/struts-tags"	%>

<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	HTML	4.01	Transitional//EN"	

"http://www.w3.org/TR/html4/loose.dtd">

<html>

		<head>

				<meta	http-equiv="Content-Type"	content="text/html;	charset=UTF-8">

		</head>

		<body>

				<div	align="center">

						<h1>Spring	and	Struts	Integration</h1>

						<h2>Place	an	order</h2>

						<s:form	action="doOrder"	method="post">

								<s:textfield	label="OrderId"	name="order.orderId"	/>

								<s:submit	value="Order"	/>

						</s:form>

				</div>

		</body>

</html>

As	you	can	see,	we	used	OrderVO,	whose	code	is	as	follows,	as	the	data	model	in	the	view.
Any	changes	to	this	object	in	the	JSP	code	or	action	class	will	be	carried	forward	to	the
next	page:

public	class	OrderVO	{

		private	String	orderName;

		private	String	orderId;

		public	String	getOrderName()	{

				return	orderName;

		}

		public	void	setOrderName(String	orderName)	{

				this.orderName	=	orderName;

		}

		public	String	getOrderId()	{

				return	orderId;

		}

		public	void	setOrderId(String	orderId)	{

				this.orderId	=	orderId;

		}

In	the	DoOrderAction	action	class,	in	the	method	execution,	we	implement	the	business
logic	and	return	the	string	value	of	the	method	specified	in	the	navigation	logic	in	the
presentation	layer.	Here,	the	action	class	either	goes	to	orderProceed.jsp	(if	it	is	a	valid
order)	or	failedOrder.jsp	(in	the	case	of	a	failure).	Here	is	the	orderProceed.jsp	page,	to
which	a	success	order	will	be	forwarded:

<%@	taglib	prefix="s"	uri="/struts-tags"	%>

<html>

		<head>

				<meta	http-equiv="Content-Type"	content="text/html;	charset=UTF-8">

		</head>

		<body>

				<div	align="center">

						<h1>Order	confirmation</h1>

						<s:label	label="OrderId"	name="order.orderId"	/>,	<s:label	

label="OrderName"	name="order.orderName"	/>	

						has	been	successfully	placed.

				</div>

		</body>

</html>

Summary
In	this	chapter,	we	explained	how	to	integrate	Spring	with	two	famous	presentation
technologies:	JSF	and	Struts.

You	can	get	more	info	about	Spring’s	integration	with	web	frameworks	here:

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/web-
integration.html

To	know	more	about	Spring’s	Struts	plugin,	visit	this	link:

http://struts.apache.org/docs/spring-plugin.html

You	can	get	more	details	about	naming	conventions	in	the	Struts	convention	plugin	here:

https://struts.apache.org/docs/convention-plugin.html

Nowadays,	big	companies	are	shifting	toward	single-page	applications	in	the	presentation
layer.	To	learn	about	this	topic,	read	Chapter	6,	Building	a	Single-Page	Spring
Application.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/web-integration.html
http://struts.apache.org/docs/spring-plugin.html
https://struts.apache.org/docs/convention-plugin.html

Index
A

@AspectJ	annotation
declaring	/	Declaring	an	@Aspect	annotation
pointcuts	/	Pointcuts
Advices	/	Advices

@AspectJ	annotation	based	AOP
about	/	@AspectJ	annotation-based	AOP

ACID	(Atomic,	Consistent,	Isolated,	Durable)
about	/	Spring	Transaction	support

Advices,	@AspectJ	annotation
about	/	Advices
annotations	/	Advices
@Around	Advice	/	The	@Around	Advice
Advice	parameters,	accessing	/	Accessing	Advice	parameters

AngularJS
about	/	SPA	frameworks

annotations
defining	/	Auditing	with	Spring	Data
@CreatedBy	/	Auditing	with	Spring	Data
@CreatedDate	/	Auditing	with	Spring	Data
@LastModifiedBy	/	Auditing	with	Spring	Data
@LastModifiedDate	/	Auditing	with	Spring	Data

API	endpoints
building,	for	Taskify	app	/	Building	API	endpoints	for	the	Taskify	app
UserController.java	/	UserController.java
TaskController.java	/	TaskController.java

API	server	app
building	/	Building	the	API	server	app
project,	setting	up	/	Setting	up	and	configuring	the	project
User	and	Task,	defining	/	Defining	the	model	definitions	–	User	and	Task

Aspect	Oriented	Programing	(AOP)
about	/	Aspect	Oriented	Programming
static	AOP	/	Static	and	dynamic	AOP
dynamic	AOP	/	Static	and	dynamic	AOP
concepts	/	AOP	concepts	and	terminology
terminology	/	AOP	concepts	and	terminology
Spring	AOP	/	Spring	AOP	–	definition	and	configuration	styles
XML	schema	based	AOP	/	XML	schema-based	AOP
@AspectJ	annotation	based	AOP	/	@AspectJ	annotation-based	AOP

asynchronous	request	processing
in	Spring	MVC	/	Asynchronous	request	processing	in	Spring	MVC

authentication
about	/	Authentication

authorization
about	/	Authorization

B
bean	definition	profiles

working	with	/	Working	with	bean	definition	profiles
bean	dependencies

injecting	/	Injecting	bean	dependencies
constructor-based	dependency	injection	/	Constructor-based	Dependency
Injection
setter-based	dependency	injection	/	Setter-based	Dependency	Injection

BeanFactory	interface
about	/	The	Spring	IoC	container

bean	life	cycles
hooking	/	Hooking	to	bean	life	cycles
InitializingBean,	implementing	/	Implementing	InitializingBean	and
DisposableBean
DisposableBean,	implementing	/	Implementing	InitializingBean	and
DisposableBean
@PostConstruct,	annotating	on	@Components	/	Annotating	@PostConstruct
and	@PreDestroy	on	@Components
@PreDestroy,	annotating	on	@Components	/	Annotating	@PostConstruct	and
@PreDestroy	on	@Components
init-method	and	destroy-method	attributes	/	The	init-method	and	destroy-method
attributes	of	<bean/>

beans
about	/	The	Spring	IoC	container,	Beans	in	detail
definition	/	Bean	definition
instantiating	/	Instantiating	beans
instantiating,	with	constructors	/	With	constructors
instantiating,	with	static	factory-method	/	With	a	static	factory-method
instantiating,	with	instance	factory-method	/	With	an	instance	factory-method
cleaner	bean	definitions,	with	namespace	shortcuts	/	Cleaner	bean	definitions
with	namespace	shortcuts
list,	wiring	as	dependency	/	Wiring	a	List	as	a	dependency
map,	wiring	as	dependency	/	Wiring	a	Map	as	a	dependency
dependencies,	autowiring	/	Autowiring	dependencies
scoping	/	Bean	scoping

Broker	channel	/	STOMP	over	WebSocket	and	the	fallback	option	in	Spring	4
BSON	(Binary	JSON)	format

about	/	Spring	Data	MongoDB

C
@ComponentScan	annotation	/	Creating	a	simple	WebSocket	application
@Configuration	annotation	/	Creating	a	simple	WebSocket	application
component	stereotype	annotations

@Component	/	Component	stereotype	annotations
@Service	/	Component	stereotype	annotations
@Repository	/	Component	stereotype	annotations
@Controller	/	Component	stereotype	annotations
@RestController	/	Component	stereotype	annotations

configuration	metadata,	Dependency	Injection
about	/	Configuration	metadata
XML-based	configuration	metadata	/	XML-based	configuration	metadata
annotation-based	configuration	metadata	/	Annotation-based	configuration
metadata
XML-based,	versus	annotation-based	configuration	/	XML-based	versus
annotation-based	configuration
component	stereotype	annotations	/	Component	stereotype	annotations
Java-based	configuration	metadata	/	Java-based	configuration	metadata
JSR	330	standard	annotations	/	JSR	330	standard	annotations

constructor-based	DI
about	/	Constructor-based	or	setter-based	DI	–	which	is	better?

container-level	default	init	and	destroy	methods
about	/	Container-level	default-init-method	and	default-destroy-method

container-managed	transactions	(CMT)
about	/	Relevance	of	Spring	Transaction

controllers
about	/	Controllers	in	detail
request	URLs,	mapping	with	@RequestMapping	/	Mapping	request	URLs	with
@RequestMapping
URI	template	patterns,	with	@PathVariable	annotation	/	URI	template	patterns
with	the	@PathVariable	annotation
parameters,	binding	with	@RequestParam	annotation	/	Binding	parameters	with
the	@RequestParam	annotation
request	handler	method	arguments	/	Request	handler	method	arguments
request	handler	method	return	types	/	Request	handler	method	return	types
model	attributes,	setting	/	Setting	Model	attributes
RESTful	services,	building	for	JSON	and	XML	media	/	Building	RESTful
services	for	JSON	and	XML	media
RESTful	service,	building	with	RestController	/	Building	a	RESTful	service
with	RestController

cross-site	request	forgery	(CSRF)	attack
about	/	Authentication

custom	scope

creating	/	Creating	a	custom	scope

D
DAO	support

about	/	DAO	support	and	@Repository	annotation
data	access	objects	(DAOs)	/	XML-based	configuration	metadata
DataSource

configuring	/	Configuring	DataSource
reference	/	Configuring	DataSource

declarative	transaction	management
about	/	Declarative	transaction	management
proxy	mode	/	Transactional	modes	–	proxy	and	AspectJ
AspectJ	mode	/	Transactional	modes	–	proxy	and	AspectJ
transactional	behavior,	defining	/	Defining	transactional	behavior
rollback	rules,	setting	/	Setting	rollback	rules

Dependency	Injection	(DI)	/	The	Spring	Framework	modules
about	/	Dependency	Injection
Spring	IoC	container	/	The	Spring	IoC	container
configuration	metadata	/	Configuration	metadata

Dependency	Injection,	with	scoped	beans
about	/	Dependency	Injection	with	scoped	beans

development	environment
setting	up	/	Setting	up	the	development	environment

DispatcherServlet
about	/	DispatcherServlet	explained
WebApplicationContext,	using	/	WebApplicationContext	–	ApplicationContext
for	the	Web
supporting	beans	/	Beans	supporting	DispatcherServlet	and	their	roles
beans	supporting	/	Beans	supporting	DispatcherServlet	and	their	roles

domain	objects	and	entities
about	/	Domain	objects	and	entities
Query	resolution	methods	/	Query	resolution	methods
@Query	annotation,	using	/	Using	the	@Query	annotation
Spring	Data	web	support	extensions	/	Spring	Data	web	support	extensions
auditing,	with	Spring	Data	/	Auditing	with	Spring	Data

E
@EnableAutoConfiguration	annotation	/	Creating	a	simple	WebSocket	application
embedded	databases

using	/	Using	embedded	databases
Ember.js

about	/	SPA	frameworks,	Introducing	Ember.js
Ember	application

anatomy	/	The	anatomy	of	an	Ember	application
router	/	Routers
routes	or	route	handlers	/	Routes	or	route	handlers
templates	/	Templates
components	/	Components
models	/	Models
controllers	/	Controllers
input	helpers	/	Input	helpers
custom	helpers	/	Custom	helpers
initializers	/	Initializers
services	/	Services

Ember	CLI
about	/	Introducing	Ember.js,	Working	with	Ember	CLI
working	with	/	Working	with	Ember	CLI
features	/	Working	with	Ember	CLI
setting	up	/	Setting	up	Ember	CLI
commands	/	Getting	started	with	Ember	CLI	commands
project	structure	/	The	Ember	project	structure
POD	structure	/	Working	with	the	POD	structure

Ember	CLI	commands
about	/	Getting	started	with	Ember	CLI	commands
ember	/	Getting	started	with	Ember	CLI	commands
ember	new	<appname>	/	Getting	started	with	Ember	CLI	commands
ember	init	/	Getting	started	with	Ember	CLI	commands
ember	build	/	Getting	started	with	Ember	CLI	commands
ember	server	(or	serve)	/	Getting	started	with	Ember	CLI	commands
ember	generate	<generatortype>	<name>	<options>	/	Getting	started	with
Ember	CLI	commands
ember	destroy	<generatortype>	<name>	<options>	/	Getting	started	with	Ember
CLI	commands
ember	test	/	Getting	started	with	Ember	CLI	commands
ember	install	<addon-name>	/	Getting	started	with	Ember	CLI	commands

Ember	Data
about	/	Introducing	Ember.js
data,	persisting	with	/	Persisting	data	with	Ember	Data
DS.Model	/	Persisting	data	with	Ember	Data

DS.Store	/	Persisting	data	with	Ember	Data
DS.Adapter	/	Persisting	data	with	Ember	Data
DS.Serializer	/	Persisting	data	with	Ember	Data
architecture	/	Ember	Data	architecture
models,	building	/	Defining	models
model	relationships,	defining	/	Defining	model	relationships

Ember	development	stack
about	/	Introducing	Ember.js

Ember	Inspector
about	/	Introducing	Ember.js

Ember	object	model
about	/	Understanding	the	Ember	object	model
types	(classes),	declaring	/	Declaring	types	(classes)	and	instances
instances,	declaring	/	Declaring	types	(classes)	and	instances
properties,	accessing	/	Accessing	and	mutating	properties
properties,	mutating	/	Accessing	and	mutating	properties
computed	properties	/	Computed	properties
property	observers	/	Property	observers
collections,	working	with	/	Working	with	collections
Ember.Array	/	Working	with	collections
Ember.ArrayProxy	/	Working	with	collections
Ember.MutableArray	/	Working	with	collections
Ember.Enumerable	/	Working	with	collections
Ember.NativeArray	/	Working	with	collections

enterprise	integration	(EAI)
about	/	Spring	subprojects

Enterprise	Java	Beans	(EJB)
about	/	Relevance	of	Spring	Transaction

entities,	OAuth2
resource	owner	/	The	OAuth2	Authorization	Framework
client	or	third-party	application	/	The	OAuth2	Authorization	Framework
authorization	server	/	The	OAuth2	Authorization	Framework
resource	server	/	The	OAuth2	Authorization	Framework

exceptions
handling,	in	Spring	Data	layer	/	Handling	exceptions	in	the	Spring	Data	layer

F
fallback	option

using	/	STOMP	over	WebSocket	and	the	fallback	option	in	Spring	4
Fastboot

about	/	Introducing	Ember.js
file	uploads

handling	/	Handling	file	uploads

I
IDE	(Integrated	Development	Environment)

about	/	Spring	Tool	Suite	(STS)
Inversion	of	Control	(IoC)	container	/	The	Spring	Framework	modules

J
Java	Server	Pages	(JSP)

about	/	Resolving	JSP	views
Java	Server	Pages	Tag	Library	(JSTL)

about	/	Resolving	JSP	views
JDBC	operations

with	Sql*	classes	/	JDBC	operations	with	Sql*	classes
components	/	JDBC	operations	with	Sql*	classes

JdbcTemplate
methods	/	JdbcTemplate
callback	interfaces	/	JdbcTemplate
NamedParameterJdbcTemplate	/	NamedParameterJdbcTemplate

JPA	(Java	Persistence	Architecture)
about	/	Spring	Data	JPA

JTA	(Java	Transaction	API)
about	/	Relevance	of	Spring	Transaction

L
Liquid	Fire

about	/	Introducing	Ember.js

M
Message	Driven	Beans	(MDB)

about	/	Relevance	of	Spring	Transaction
Model-View-Controller	(MVC)	architectural	pattern

about	/	Introducing	Ember.js
Model-View-Controller	pattern

about	/	The	Model-View-Controller	pattern
Model	/	The	Model-View-Controller	pattern
View	/	The	Model-View-Controller	pattern
Controller	/	The	Model-View-Controller	pattern

N
Node.js

URL	/	Setting	up	Ember	CLI

O
OAuth2	Authorization	Framework

about	/	The	OAuth2	Authorization	Framework
entities	/	The	OAuth2	Authorization	Framework

Object	Oriented	Programming	(OOP)
about	/	Aspect	Oriented	Programming

one	thread	per	HTTP	connection	strategy	/	Asynchronous	request	processing	in
Spring	MVC

P
Plain	Old	Java	Objects	(POJOs)

about	/	Domain	objects	and	entities
POD	structure

working	with	/	Working	with	the	POD	structure
pointcut	designators	(PCDs)

about	/	Pointcut	designators
pointcuts,	@AspectJ	annotation

about	/	Pointcuts
designators	/	Pointcut	designators
examples	/	Pointcut	examples

POJO	(Plain	Old	Java	Objects)	/	Design	concepts	behind	Spring	Framework
properties

injecting,	into	Spring	environment	/	Injecting	properties	into	the	Spring
environment

PropertyPlaceholderConfigurer
about	/	Externalizing	properties	with	PropertyPlaceholderConfigurer
properties,	externalizing	with	/	Externalizing	properties	with
PropertyPlaceholderConfigurer

Q
query	lookup	strategies

defining	/	Query	resolution	methods

R
@Repository	annotation

about	/	DAO	support	and	@Repository	annotation
ReactJS

about	/	SPA	frameworks
REpresentational	State	Transfer	(REST)

about	/	Building	RESTful	services	for	JSON	and	XML	media
Request	channel	/	STOMP	over	WebSocket	and	the	fallback	option	in	Spring	4
resources

handling	/	Handling	resources
Response	channel	/	STOMP	over	WebSocket	and	the	fallback	option	in	Spring	4
routes

handling	/	Handling	routes

S
Service	classes	/	XML-based	configuration	metadata
setter-based	DI

about	/	Constructor-based	or	setter-based	DI	–	which	is	better?
SimpleJdbc	classes	/	SimpleJdbc	classes
simple	WebSocket	application

creating	/	Creating	a	simple	WebSocket	application
single-page	application	(SPA)

motivations	/	The	motivations	behind	SPAs
about	/	SPAs	explained
architectural	benefits	/	The	architectural	benefits	of	SPAs

SPA	frameworks
about	/	SPA	frameworks
AngularJS	/	SPA	frameworks
ReactJS	/	SPA	frameworks
Ember.js	/	SPA	frameworks

SpEL	(Spring	Expression	Language)
about	/	Query	resolution	methods

SpEL	API
about	/	The	SpEL	API
interfaces	and	classes	/	The	SpEL	API

Spring
testing	with	/	Testing	with	Spring

Spring’s	JSF	integration
about	/	Spring’s	JSF	integration

Spring’s	Struts	integration
about	/	Spring’s	Struts	integration

spring-messaging	module
about	/	STOMP	over	WebSocket	and	the	fallback	option	in	Spring	4

Spring	AOP
definition	/	Spring	AOP	–	definition	and	configuration	styles
configuration	styles	/	Spring	AOP	–	definition	and	configuration	styles

Spring	application
about	/	Your	first	Spring	application
Inversion	of	Control	(IoC)	/	Inversion	of	Control	explained

Spring	Data
about	/	Spring	Data
subprojects,	defining	/	Spring	Data
Commons	/	Spring	Data	Commons
repository	specification	/	Spring	Data	repository	specification
MongoDB	/	Spring	Data	MongoDB
domain	objects	and	entities	/	Domain	objects	and	entities
Spring	Transaction	support	/	Spring	Transaction	support

Spring	Data	Commons
defining	/	Spring	Data	Commons

Spring	Data	layer
exceptions,	handling	/	Handling	exceptions	in	the	Spring	Data	layer

Spring	Data	MongoDB
about	/	Spring	Data	MongoDB
enabling	/	Enabling	Spring	Data	MongoDB
MongoRepository	/	MongoRepository

Spring	Data	repository	specification
about	/	Spring	Data	repository	specification
Spring	Data	JPA	/	Spring	Data	JPA
Spring	Data	JPA,	enabling	/	Enabling	Spring	Data	JPA
JpaRepository	/	JpaRepository

Spring	Expression	Language
about	/	Spring	Expression	Language
features	/	SpEL	features
annotation	support	/	SpEL	annotation	support

Spring	forms
composing,	in	JSP	/	Composing	a	form	in	JSP
validating	/	Validating	forms

Spring	form	tag	libraries
about	/	Spring	and	Spring	form	tag	libraries

Spring	Framework
design	concepts	/	Design	concepts	behind	Spring	Framework

Spring	Framework	modules
about	/	The	Spring	Framework	modules

Spring	IoC	container
about	/	The	Spring	IoC	container

Spring	JDBC
approaches	/	Spring	JDBC	abstraction

Spring	JDBC	abstraction
about	/	Spring	JDBC	abstraction
JdbcTemplate	/	JdbcTemplate
SimpleJdbc	classes	/	SimpleJdbc	classes

Spring	landscape
about	/	The	Spring	landscape
Spring	Framework	modules	/	The	Spring	Framework	modules
Spring	Tool	Suite	(STS)	/	Spring	Tool	Suite	(STS)
Spring	subprojects	/	Spring	subprojects

Spring	MVC
features	/	Features	of	Spring	MVC
architecture	/	The	architecture	and	components	of	Spring	MVC
components	/	The	architecture	and	components	of	Spring	MVC
asynchronous	request	processing	/	Asynchronous	request	processing	in	Spring

MVC
Spring	MVC	application

creating	/	Your	first	Spring	MVC	application
setting	up	/	Setting	up	a	Spring	MVC	application
project	structure	/	The	project	structure	of	a	Spring	MVC	application
web.xml	file	/	The	web.xml	file	–	Springifying	the	web	app
web	app,	springifying	/	The	web.xml	file	–	Springifying	the	web	app
ApplicationContext	files	/	ApplicationContext	files	in	a	Spring	MVC	application
HomeController	/	HomeController	–	@Controller	for	the	home	screen
home.jsp	file	/	The	home.jsp	file	–	the	landing	screen
incoming	requests,	handling	/	Handling	incoming	requests

Spring	subprojects
about	/	Spring	subprojects
URL	/	Spring	subprojects

Spring	Tool	Suite	(STS)
about	/	Spring	Tool	Suite	(STS),	Your	first	Spring	MVC	application
URL	/	Spring	Tool	Suite	(STS)

Spring	Transaction
defining	/	Relevance	of	Spring	Transaction,	Spring	Transaction	fundamentals
declarative	transaction	management	/	Declarative	transaction	management
@Transactional	annotation,	using	/	Using	the	@Transactional	annotation
programmatic	transaction	management	/	Programmatic	transaction	management

Sql*	classes
JDBC	operations,	defining	with	/	JDBC	operations	with	Sql*	classes

STOMP	over	WebSocket
about	/	STOMP	over	WebSocket	and	the	fallback	option	in	Spring	4

supporting	beans,	DispatcherServlet
HandlerMapping	/	Beans	supporting	DispatcherServlet	and	their	roles
HandlerAdapter	/	Beans	supporting	DispatcherServlet	and	their	roles
HandlerExceptionResolver	/	Beans	supporting	DispatcherServlet	and	their	roles
ViewResolver	/	Beans	supporting	DispatcherServlet	and	their	roles
LocaleResolver	/	Beans	supporting	DispatcherServlet	and	their	roles
LocaleContextResolver	/	Beans	supporting	DispatcherServlet	and	their	roles
ThemeResolver	/	Beans	supporting	DispatcherServlet	and	their	roles
MultipartResolver	/	Beans	supporting	DispatcherServlet	and	their	roles
FlashMapManager	/	Beans	supporting	DispatcherServlet	and	their	roles

T
@Transactional	annotation

using	/	Using	the	@Transactional	annotation
transaction	management,	enabling	for	/	Enabling	transaction	management	for
@Transactional

Taskify	application
building	/	Building	a	Taskify	application

Taskify	Ember	app
building	/	Building	the	Taskify	Ember	app
Taskify,	setting	up	as	Ember	CLI	project	/	Setting	up	Taskify	as	an	Ember	CLI
project
Ember	Data,	setting	up	/	Setting	up	Ember	Data
application	routes,	configuring	/	Configuring	application	routes
home	screen,	building	/	Building	the	home	screen
user	screen,	building	/	Building	the	user	screen
custom	helper,	building	/	Building	a	custom	helper
action	handlers,	adding	/	Adding	action	handlers
custom	component,	building	/	Building	a	custom	component	–	modal	window
userEditModal,	building	with{{modal-window}}	/	Building	userEditModal
using	{{modal-window}}
task	screen,	building	/	Building	the	task	screen

Template	Method
about	/	JdbcTemplate

terminology,	Aspect	Oriented	Programing	(AOP)
aspect	/	AOP	concepts	and	terminology
join	point	/	AOP	concepts	and	terminology
advice	/	AOP	concepts	and	terminology
pointcut	/	AOP	concepts	and	terminology
target	object	/	AOP	concepts	and	terminology
weaving	/	AOP	concepts	and	terminology
introduction	/	AOP	concepts	and	terminology

test-driven	development	(TDD)	/	Testing	with	Spring
testing	framework

about	/	Introducing	Ember.js
testing	support,	Spring

mock	objects	/	Mock	objects
unit	and	integration	testing	utilities	/	Unit	and	integration	testing	utilities

Thymeleaf
about	/	Resolving	Thymeleaf	views
views,	resolving	/	Resolving	Thymeleaf	views

transaction
about	/	Spring	Transaction	support

transaction	attributes

defining	/	Spring	Transaction	fundamentals

U
UI	behavior

handling,	components	used	/	Handling	UI	behavior	using	components
ToggleButton	component,	building	step	by	step	/	Building	a	ToggleButton
component	step	by	step

UI	templates,	building	with	Handlebars
about	/	Building	UI	templates	using	Handlebars
Handlebars	helpers	/	Handlebars	helpers
data	binding,	with	input	helpers	/	Data	binding	with	input	helpers
control	flow	helpers,	using	in	Handlebars	/	Using	control	flow	helpers	in
Handlebars
event	helpers,	using	/	Using	event	helpers

Unified	Expression	Language	(UEL)	/	Spring	Expression	Language

V
view	resolvers

AbstractCachingViewResolver	/	Resolving	views
XmlViewResolver	/	Resolving	views
ResourceBundleViewResolver	/	Resolving	views
UrlBasedViewResolver	/	Resolving	views
InternalResourceViewResolver	/	Resolving	views
VelocityViewResolver	/	Resolving	views
FreeMarkerViewResolver	/	Resolving	views
JasperReportsViewResolver	/	Resolving	views
TilesViewResolver	/	Resolving	views

views
working	with	/	Working	with	views
resolving	/	Resolving	views
JSP	views,	resolving	/	Resolving	JSP	views
model	attributes,	binding	in	JSP	pages	/	Binding	Model	attributes	in	JSP	pages
using	JSTL

view	technologies,	Spring	MVC	/	More	view	technologies

W
WebSocket	application

message,	broadcasting	to	single	user	/	Broadcasting	a	message	to	a	single	user	in
a	WebSocket	application

X
XML	schema	based	AOP

about	/	XML	schema-based	AOP

	Spring Essentials
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Getting Started with Spring Core
	The Spring landscape
	The Spring Framework modules
	Spring Tool Suite (STS)
	Spring subprojects
	Design concepts behind Spring Framework
	Setting up the development environment
	Your first Spring application
	Inversion of Control explained
	Dependency Injection
	The Spring IoC container
	Configuration metadata
	XML-based configuration metadata
	Annotation-based configuration metadata
	XML-based versus annotation-based configuration
	Component stereotype annotations
	Java-based configuration metadata
	JSR 330 standard annotations
	Beans in detail
	Bean definition
	Instantiating beans
	With constructors
	With a static factory-method
	With an instance factory-method
	Injecting bean dependencies
	Constructor-based Dependency Injection
	Setter-based Dependency Injection
	Constructor-based or setter-based DI – which is better?
	Cleaner bean definitions with namespace shortcuts
	Wiring a List as a dependency
	Wiring a Map as a dependency
	Autowiring dependencies
	Bean scoping
	Dependency Injection with scoped beans
	Creating a custom scope
	Hooking to bean life cycles
	Implementing InitializingBean and DisposableBean
	Annotating @PostConstruct and @PreDestroy on @Components
	The init-method and destroy-method attributes of <bean/>
	Container-level default-init-method and default-destroy-method
	Working with bean definition profiles
	Injecting properties into the Spring environment
	Externalizing properties with PropertyPlaceholderConfigurer
	Handling resources
	Spring Expression Language
	SpEL features
	SpEL annotation support
	The SpEL API
	Aspect Oriented Programming
	Static and dynamic AOP
	AOP concepts and terminology
	Spring AOP – definition and configuration styles
	XML schema-based AOP
	@AspectJ annotation-based AOP
	Declaring an @Aspect annotation
	Pointcuts
	Pointcut designators
	Pointcut examples
	Advices
	The @Around Advice
	Accessing Advice parameters
	Testing with Spring
	Mock objects
	Unit and integration testing utilities
	Summary
	2. Building the Web Layer with Spring Web MVC
	Features of Spring MVC
	The Model-View-Controller pattern
	Your first Spring MVC application
	Setting up a Spring MVC application
	The project structure of a Spring MVC application
	The web.xml file – Springifying the web app
	ApplicationContext files in a Spring MVC application
	HomeController – @Controller for the home screen
	The home.jsp file – the landing screen
	Handling incoming requests
	The architecture and components of Spring MVC
	DispatcherServlet explained
	WebApplicationContext – ApplicationContext for the Web
	Beans supporting DispatcherServlet and their roles
	Controllers in detail
	Mapping request URLs with @RequestMapping
	URI template patterns with the @PathVariable annotation
	Binding parameters with the @RequestParam annotation
	Request handler method arguments
	Request handler method return types
	Setting Model attributes
	Building RESTful services for JSON and XML media
	Building a RESTful service with RestController
	Asynchronous request processing in Spring MVC
	Working with views
	Resolving views
	Resolving JSP views
	Binding Model attributes in JSP pages using JSTL
	Spring and Spring form tag libraries
	Composing a form in JSP
	Validating forms
	Handling file uploads
	Resolving Thymeleaf views
	More view technologies
	Summary
	3. Accessing Data with Spring
	Configuring DataSource
	Using embedded databases
	Handling exceptions in the Spring Data layer
	DAO support and @Repository annotation
	Spring JDBC abstraction
	JdbcTemplate
	NamedParameterJdbcTemplate
	SimpleJdbc classes
	JDBC operations with Sql* classes
	Spring Data
	Spring Data Commons
	Spring Data repository specification
	Spring Data JPA
	Enabling Spring Data JPA
	JpaRepository
	Spring Data MongoDB
	Enabling Spring Data MongoDB
	MongoRepository
	Domain objects and entities
	Query resolution methods
	Using the @Query annotation
	Spring Data web support extensions
	Auditing with Spring Data
	Spring Transaction support
	Relevance of Spring Transaction
	Spring Transaction fundamentals
	Declarative transaction management
	Transactional modes – proxy and AspectJ
	Defining transactional behavior
	Setting rollback rules
	Using the @Transactional annotation
	Enabling transaction management for @Transactional
	Programmatic transaction management
	Summary
	4. Understanding WebSocket
	Creating a simple WebSocket application
	STOMP over WebSocket and the fallback option in Spring 4
	Broadcasting a message to a single user in a WebSocket application
	Summary
	5. Securing Your Applications
	Authentication
	Authorization
	The OAuth2 Authorization Framework
	Summary
	6. Building a Single-Page Spring Application
	The motivations behind SPAs
	SPAs explained
	The architectural benefits of SPAs
	SPA frameworks
	Introducing Ember.js
	The anatomy of an Ember application
	Routers
	Routes or route handlers
	Templates
	Components
	Models
	Controllers
	Input helpers
	Custom helpers
	Initializers
	Services
	Working with Ember CLI
	Setting up Ember CLI
	Getting started with Ember CLI commands
	The Ember project structure
	Working with the POD structure
	Understanding the Ember object model
	Declaring types (classes) and instances
	Accessing and mutating properties
	Computed properties
	Property observers
	Working with collections
	Building UI templates using Handlebars
	Handlebars helpers
	Data binding with input helpers
	Using control flow helpers in Handlebars
	Using event helpers
	Handling routes
	Handling UI behavior using components
	Building a ToggleButton component step by step
	Persisting data with Ember Data
	Ember Data architecture
	Defining models
	Defining model relationships
	Building a Taskify application
	Building the API server app
	Setting up and configuring the project
	Defining the model definitions – User and Task
	Building API endpoints for the Taskify app
	UserController.java
	TaskController.java
	Building the Taskify Ember app
	Setting up Taskify as an Ember CLI project
	Setting up Ember Data
	Configuring application routes
	Building the home screen
	Building the user screen
	Building a custom helper
	Adding action handlers
	Building a custom component – modal window
	Building userEditModal using {{modal-window}}
	Building the task screen
	Summary
	7. Integrating with Other Web Frameworks
	Spring's JSF integration
	Spring's Struts integration
	Summary
	Index

