Storm Real-time
Processing Cookbook

Efficiently process unbounded streams of data in real time

community experience disfilled

Quinton Anderson [] open source

PUBLISHING

Storm Real-time
Processing Cookbook

Efficiently process unbounded streams of data in real time

Quinton Anderson

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

Storm Real-time Processing Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013
Production Reference: 1190813

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78216-442-5
www . packtpub.com

Cover Image by Suresh Mogre (suresh.mogre. 99@gmail . com)

Credits

Author
Quinton Anderson

Reviewers
Maarten Ectors

Alexey Kachayev

Paco Nathan

Acquisition Editor
Usha lyer

Lead Technical Editor
Madhuja Chaudhari

Technical Editors
Hardik B. Soni

Dennis John

Copy Editors
Mradula Hegde

Alfida Paiva
Laxmi Subramanian
Aditya Nair

Sayanee Mukherjee

Project Coordinator
Navu Dhillon

Proofreaders
Stephen Copestake

Clyde Jenkins

Indexer
Mariammal Chettiyar

Graphics
Abhinash Sahu

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

About the Author

Quinton Anderson is a software engineer with a background and focus on real-time
computational systems. His career has been split between building real-time communication
systems for defense systems and building enterprise applications within financial services
and banking. Quinton does not align himself with any particular technology or programming
language, but rather prefers to focus on sound engineering and polyglot development. He is
passionate about open source, and is an active member of the Storm community; he has also
enjoyed delivering various Storm-based solutions.

Quinton's next area of focus is machine learning; specifically, Deep Belief networks, as
they pertain to robotics. Please follow his blog entries on Computational Theory, general IT
concepts, and Deep Belief networks for more information.

You can find more information on Quinton via his LinkedIn profile (http://au.linkedin.
com/pub/quinton-anderson/37/422/11b/) or more importantly, view and contribute to
the source code available at his GitHub (https://github.com/quintona) and Bitbucket
(https://bitbucket.org/ganderson) accounts.

I would like to thank the Storm community for their efforts in building a truly
awesome platform for the open source community; a special mention, of
course, to the core author of Storm, Nathan Marz.

I would like to thank my wife and children for putting up with my long
working hours spent on this book and other related projects. Your effort
in making up for my absence is greatly appreciated, and | love you all very
dearly. | would also like to thank all those who participated in the review
process of this book.

About the Reviewers

Maarten Ectors is an executive who is an expert in cloud computing, big data, and
disruptive innovations. Maarten's strengths are his combination of deep technical and
business skKills as well as strategic insights.

Currently, Maarten is responsible for the cloud strategy at Canonical—the company

behind Ubuntu—where he is changing the future of cloud, big data, and other disruptive
innovations. Previously, Maarten had his own company and was defining and executing the
cloud strategy of a global mobile company. Maarten worked for Nokia Siemens Networks
in several roles. He was heading cloud and disruptive innovation, founded Startups@NSN,
was responsible for implementing offshoring in Europe, and so on. Earlier, he worked as
the Director of professional services for Telcordia (now Ericsson) and as a Senior Project

/ Product Manager for a dotcom. Maarten started his career at Accenture, where he

was active in Java developments, portals, mobile applications, content management,
ecommerce, security, project management, and so on.

I would like to thank my family for always being there for me. Especially my
wonderful wife, Esther, and my great kids.

Alexey Kachayev began his development career in a small team creating an open source
CMS for social networks. For over 2 years, he had been working as a Software Engineer at
CloudMade, developing geo-relative technology for enterprise clients in Python and Scala.
Currently, Alexey is the CTO at Attendify and is focused on development of a distributed
applications platform in Erlang. He is an active speaker at conferences and an open source
contributor (working on projects in Python, Clojure, and Haskell).

His area of professional interests include distributed systems and algorithms, types theory,
and functional language compilers.

I would like to thank Nathan Marz and the Storm project contributors team
for developing such a great technology and spreading great ideas.

Paco Nathan is the Chief Scientist at Mesosphere in San Francisco. He is a recognized
expert in Hadoop, R, Data Science, and Cloud Computing, and has led innovative data teams
building large-scale apps for the past decade. Paco is an evangelist for the Mesos and
Cascading open source projects. He is also the author of Enterprise Data Workflows with
Cascading, O'Reilly. He has a blog about Data Science at http://liber118.com/pxn/.

www.packtpub.com

Support files, eBooks, discount offers and more

You might want to visit www . packtpub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . packtpub.comand as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@epacktpub.com for more details.

At www . packtpub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[B]PACKT

http://PacktLib.packtpub.com

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

» Fully searchable across every book published by Packt
» Copy and paste, print and bookmark content

» On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . packtpub . com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Table of Contents

Preface 1
Chapter 1: Setting Up Your Development Environment 7
Introduction 7
Setting up your development environment 8
Distributed version control 10
Creating a "Hello World" topology 13
Creating a Storm cluster - provisioning the machines 21
Creating a Storm cluster - provisioning Storm 28
Deriving basic click statistics 33
Unit testing a bolt 43
Implementing an integration test 46
Deploying to the cluster 49
Chapter 2: Log Stream Processing 51
Introduction 51
Creating a log agent 52
Creating the log spout 54
Rule-based analysis of the log stream 60
Indexing and persisting the log data 64
Counting and persisting log statistics 68
Creating an integration test for the log stream cluster 71
Creating a log analytics dashboard 75
Chapter 3: Calculating Term Importance with Trident 89
Introduction 89
Creating a URL stream using a Twitter filter 90
Deriving a clean stream of terms from the documents 95

Calculating the relative importance of each term 101

Table of Contents

Chapter 4: Distributed Remote Procedure Calls 105
Introduction 105
Using DRPC to complete the required processing 106
Integration testing of a Trident topology 111
Implementing a rolling window topology 117
Simulating time in integration testing 120

Chapter 5: Polyglot Topology 123
Introduction 123
Implementing the multilang protocol in Qt 124
Implementing the SplitSentence bolt in Qt 129
Implementing the count bolt in Ruby 132
Defining the word count topology in Clojure 134

Chapter 6: Integrating Storm and Hadoop 139
Introduction 139
Implementing TF-IDF in Hadoop 142
Persisting documents from Storm 148
Integrating the batch and real-time views 150

Chapter 7: Real-time Machine Learning 155
Introduction 155
Implementing a transactional topology 158
Creating a Random Forest classification model using R 164
Operational classification of transactional streams
using Random Forest 175
Creating an association rules model in R 181
Creating a recommendation engine 184
Real-time online machine learning 190

Chapter 8: Continuous Delivery 197
Introduction 197
Setting up a Cl server 198
Setting up system environments 200
Defining a delivery pipeline 202
Implementing automated acceptance testing 206

Chapter 9: Storm on AWS 215
Introduction 215
Deploying Storm on AWS using Pallet 216
Setting up a Virtual Private Cloud 221
Deploying Storm into Virtual Private Cloud using Vagrant 229

Index 233

Preface

Open source has changed the software landscape in many fundamental ways. There are many
arguments that can be made for and against using open source in any given situation, largely
in terms of support, risk, and total cost of ownership. Open source is more popular in certain
settings than others, such as research institutions versus large institutional financial service
providers. Within the emerging areas of web service providers, content provision, and social
networking, open source is dominating the landscape. This is true for many reasons, cost
being a large one among them. These solutions that need to grow to "Web scale" have been
classified as "Big Data" solutions, for want of a better term. These solutions serve millions

of requests per second with extreme levels of availability, all the while providing customized
experiences for customers across a wide range of services.

Designing systems at this scale requires us to think about problems differently, architect
solutions differently, and learn where to accept complexity and where to avoid it. As an
industry, we have come to grips with designing batch systems that scale. Large-scale
computing clusters following MapReduce, Bulk Synchronous Parallel, and other computational
paradigms are widely implemented and well understood. The surge of innovation has been
driven and enabled by open source, leaving even the top software vendors struggling to
integrate Hadoop into their technology stack, never mind trying to implement some level of
competition to it.

Customers, however, have grown an insatiable desire for more. More data, more services,
more value, more convenience, and they want it now and at lower cost. As the sheer volume
of data increases, the demand for real-time response time increases too. The next phase of
computational platforms has arrived, and it is focused on real time, at scale. It represents
many unique challenges, and is both theoretically and practically challenging.

Preface

This cookbook will help you master a platform, the Storm processor. The Storm processor

is an open source, real-time computational platform written by Nathan Marz at Backtype, a
social analytics company. It was later purchased by Twitter and released as open source. It
has since thrived in an ever-expanding open source community of users, contributors, and
success stories within production sites. At the time of writing this preface, the project was
enjoying more than 6,000 stars on GitHub, 3,000 Twitter followers, has been benchmarked at
over a million transactions per second per node, and has almost 80 reference customers with
production instances of Storm.

These are extremely impressive figures. Moreover, you will find by the end of this book that it
is also extremely enjoyable to deliver systems based on Storm, using whichever language is
congruent with your way of thinking and delivering solutions.

This book is designed to teach you Storm with a series of practical examples. These examples
are grounded in real-world use cases, and introduce various concepts as the book unfolds.
Furthermore, the book is designed to promote DevOps practice around the Storm technology,
enabling the reader to develop Storm solutions and deliver them reliably into production,
where they create value.

An introduction to the Storm processor

A common criticism of open source projects is their lack of documentation. Storm does not
suffer from this particular issue; the documentation for the project is excellent, well-written,
and well-supplemented by the vibrant user community. This cookbook does not seek to
duplicate this documentation but rather supplement it, driven largely by examples with
conceptual and theoretical discussion where required. It is highly recommended that the
reader take the time to read the Storm introductory documentation before proceeding to
Chapter 1, Setting Up Your Development Environment, specifically the following pages of the
Storm wiki:

» https://github.com/nathanmarz/storm/wiki/Rationale

» https://github.com/nathanmarz/storm/wiki/Concepts

» https://github.com/nathanmarz/storm/wiki/Understanding-the-
parallelism-of-a-Storm-topology

What this book covers

Chapter 1, Setting Up Your Development Environment, will demonstrate the process of
setting up a local development environment for Storm; this includes all required tooling and
suggested development workflows.

Chapter 2, Log Stream Processing, will lead the reader through the process of creating a log
stream processing solution, complete with a base statistics dashboard and log-searching
capability.

—21

Preface

Chapter 3, Calculating Term Importance with Trident, will introduce the reader to Trident,
a data-flow abstraction that works on top of Storm to enable highly productive enterprise
data pipelines.

Chapter 4, Distributed Remote Procedure Calls, will teach the user how to implement
distributed remote procedure calls.

Chapter 5, Polyglot Topology, will guide the reader to develop a Polyglot technology and add
new technologies to the list of already supported technologies.

Chapter 6, Integrating Storm with Hadoop, will guide the user through the process of
integrating Storm with Hadoop, thus creating a complete Lambda architecture.

Chapter 7, Real-time Machine Learning, will provide the reader with a very basic introduction
to machine learning as a topic, and provides various approaches to implementing it in real-
time projects based on Storm.

Chapter 8, Continuous Delivery, will demonstrate how to set up a Continuous Delivery pipeline
and deliver a Storm cluster reliably into an environment.

Chapter 9, Storm on AWS, will guide the user through various approaches to automated
provisioning of a Storm cluster into the Amazon Computing Cloud.

What you need for this book

This book assumes a base environment of Ubuntu or Debian. The first chapter will guide the
reader through the process of setting up the remaining required tooling. If the reader does not
use Ubuntu as a developer operating system, any *Nix-based system is preferred, as all the
recipes assume the existence of a bash command interface.

Who this book is for

Storm Real-time Processing Cookbook is ideal for developers who would like to learn real-time
processing or would like to learn how to use Storm for real-time processing. It's assumed

that you are a Java developer. Clojure, C++, and Ruby experience would be useful but is not
essential. It would also be useful to have some experience with Hadoop or similar technologies.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "You must
then create your first spout by creating a new class named HelloWorldSpout, which
extends from BaseRichSpout and is located in the storm. cookbook package."

(3 |-

Preface

A block of code is set as follows:

<repositories>

<repositorys>
<id>github-releases</id>

<urls>http://oss.sonatype.org/content/repositories
/github-releases/</urls>

</repositorys>

<repository>
<id>clojars.org</id>
<urlshttp://clojars.org/repo</urls>
</repositorys>

<repository>
<id>twitterdj</id>
<urlshttp://twitter4j.org/maven2</urls>
</repositorys>
</repositories>

Any command-line input or output is written as follows:

mkdir FirstGitProject

cd FirstGitProject

git init

New terms and important words are shown in bold. Words that you see on the screen, in

menus or dialog boxes for example, appear in the text like this: "Uncheck the Use default
location checkbox."

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub. com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Open source versions of the code are maintained by the author at his Bitbucket account:
https://bitbucket.org/ganderson.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http: //www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

Setting Up
Your Development
Environment

In this chapter we will cover:

» Setting up your development environment

» Distributed version control

» Creating a "Hello World" topology

» Creating a Storm cluster - provisioning the machines
» Creating a Storm cluster - provisioning Storm

» Deriving basic click statistics

» Unit testing a bolt

» Implementing an integration test

» Deploying to the cluster

Introduction

This chapter provides a very basic and practical introduction to the Storm processor. This will
cover everything, from setting up your development environment to basic operational concerns
in deploying your topologies and basic quality practices such as unit and integration testing of
your Storm topology. Upon completion of this chapter, you will be able to build, test, and deliver
basic Storm topologies.

Setting Up Your Development Environment

This book does not provide a theoretical introduction to the Storm processor and its primitives
and architecture. The author assumes that the readers have orientated themselves through
online resources such as the Storm wiki.

\ Delivery of systems is only achieved once a system is delivering a business
~ value in a production environment consistently and reliably. In order to
Q achieve this, quality and operational concerns must always be taken into
account while developing your Storm topologies.

Setting up your development environment

A development environment consists of all the tools and systems that are required in order to
start building Storm topologies. The focus of this book is on individual delivery of Storm with
a focus on the technology; however, it must be noted that the development environment for a
software development team, be it centralized or distributed, would require much more tooling
and processes to be effective and is considered outside the scope of this book.

The following classes of tools and processes are required in order to effectively set up
the development environment, not only from an on-going perspective, but also in terms of
implementing the recipes in this book:

» SDK(s)

» Version control

» Build environment

» System provisioning tooling
» Cluster provisioning tooling

The provisioning and installation recipes in this book are based on Ubuntu; they are,
however, quite portable to other Linux distributions. If you have any issues working with
another distribution using these instructions, please seek support from the Storm mailing
listat https://groups.google.com/forum/#! forum/storm-user.

\ Environmental variables are the enemy of maintainable and available
~ systems. Developing on one environment type and deploying on another
Q is a very risky example of such a variable. Developing on your target type
should be done whenever possible.

How to do it...

1. Download the latest J2SE 6 SDK from Oracle's website (http://www.oracle.com/
technetwork/java/javase/downloads/index.html) and install it as follows:

chmod 775 jdk-6u35-linux-x64.bin

—e1]

Chapter 1

yes | jdk-6u35-linux-x64.bin

mv jdkl1.6.0 35 /opt

In -s /opt/jdkl.6.0 35/bin/java /usr/bin
In -s /opt/jdkl.6.0 35/bin/javac /usr/bin
JAVA HOME=/opt/jdk1l.6.0 35

export JAVA HOME

PATH=$PATH: $JAVA HOME/bin

export PATH

2. The version control system, Git, must then be installed:
sudo apt-get install git

3. The installation should then be followed by Maven, the build system:
sudo apt-get install mvn

4. Puppet, Vagrant, and VirtualBox must then be installed in order to provide application
and environment provisioning;:

sudo apt-get install virtualbox puppet vagrant
5. Finally, you need to install an IDE:

sudo apt-get install eclipse

There is currently a debate around which fork of the Java SDK is to be used
since Sun was acquired by Oracle. While the author understood the need for
OpenlDK, the recipes in this book have been tested using the Oracle JDK. In
T~ general, there is no difference between OpenJDK and Oracle JDK, apart from
the Oracle JDK being more stable but lagging behind in terms of features.

The JDK is obviously required for any Java development to take place. GIT is an open source
distributed version control system that has received wide adoption in recent years. A brief
introduction to GIT will be presented shortly.

Maven is a widely used build system that prefers convention over configuration. Maven
includes many useful features including the Project Object Model (POM), which allows us to
manage our libraries, dependencies, and versions in an effective manner. Maven is backed
by many binary repositories on the Internet that allow us to transparently maintain binary
dependencies correctly and package our topologies for deployment.

Setting Up Your Development Environment

Within the growing arena of DevOps and Continuous Delivery, the Puppet system is widely
used to provide declarative server provisioning of Linux and other operating systems

and applications. Puppet provides us with the ability to program the state of our servers
and deployment environments. This is important because our server's state can then be
maintained within a version control system such as GIT and manual changes to servers
can be safely removed. This provides many advantages, including deterministic Mean Time
to Recovery (MTTR) and audit trail, which, in general, means making systems more stable.
This is also an important step on the path towards continuous delivery.

Vagrant is a very useful tool within development environments. It allows the automation of
provisioning of VirtualBox virtual machines. Within the context of the Storm processor, this is
important, given that it is a cluster-based technology. In order to test a cluster, you must either
build an actual cluster of machines or provision many virtual machines. Vagrant allows us to
do this locally in a deterministic and declarative way.

A virtual machine is an extremely useful abstraction within the IT
infrastructure, operations, and development. However, it must be noted
_ that, while reduced performance is expected and acceptable within locally
a hosted VMs, their usability at all times depends entirely on the availability
s of RAM. The processing power is not a key concern, especially with most
modern processors being extremely underutilized, although this is not
necessarily the case once your topologies are working; it is recommended
that you ensure your computer has at least 8 GB of RAM.

Distributed version control

Traditional version control systems are centralized. Each client contains a checkout of the
files at their current version, depending on what branch the client is using. All previous
versions are stored on the server. This has worked well, in such a way that it allows teams to
collaborate closely and know to some degree what other members of the team are doing.

Centralized servers have some distinct downfalls that have led to the rise of distributed
control systems. Firstly, the centralized server represents a single point of failure; if the server
goes down or becomes unavailable for any reason, it becomes difficult for developers to work
using their existing workflows. Secondly, if the data on the server is corrupt or lost for any
reason, the history of the code base is lost.

Open source projects have been a large driver of distributed version controls, for both reasons,
but mostly because of the collaboration models that distribution enables. Developers can
follow a disciplined set of workflows on their local environments and then distribute these
changes to one or many remote repositories when it is convenient to do so, in both a flat and
hierarchical manner.

]

Chapter 1

The obvious additional advantage is that there naturally exist many backups of the repository
because each client has a complete mirror of the repository; therefore, if any client or server
dies, it can simply be replicated back, once it has been restored.

How to do it...

Git is used in this book as the distributed version control system. In order to create a
repository, you need to either clone or initialize a repository. For a new project that you
create, the repository should be initialized.

1.

First, let's create our project directory, as follows:

mkdir FirstGitProject

cd FirstGitProject

git init

In order to test if the workflow is working, we need some files in our repository.

touch README. txt
vim README. txt

Using vim, or any other text editor, simply add some descriptive text and press the
Insert key. Once you have finished typing, simply hit the Esc key and then a colon,
followed by wgq; hit the Enter key.

Before you commit, review the status of the repository.
git status

This should give you an output that looks similar to the following:

On branch master
Initial commit

Untracked files:
README. txt

Git requires that you add all files and folders manually; you can do it as follows:
git add README.txt

Then commit the file using the following;:

git commit -a

This will open a vim editor and allow you to add your comments.
1
~ You can specify the commit message directly while
issuing the command, using the -m flag.

s

Setting Up Your Development Environment

Without pushing this repository to a remote host, you will essentially be placing it under the
same risk as that of a centralized host. It is therefore important to push the repository to a
remote host. Both www.github.comand www.bitbucket .org are good options for
free-hosted Git services, providing that you aren't pushing your corporate intellectual property
there for public consumption. This book uses bitbucket .org. In order to push your repository
to this remote host, simply navigate there in your browser and sign up for an account.

Once the registration process is complete, create a new repository using the menu system.

9 Bitbucket Dashboard Repositories ~

i Recently viewed

\L/ hello-worid
O bva
0o

& ganderson K & panderson / helio-world

*) ganderson / mrs
Overview Source Ct % ganderson / Storm Book
© qanderson / vagrant_oracle_only

The hello world example for the Recently updated
) qanderson / hello-world

-
i =) ganderson / Storm Book
Recent Activity £
ty © ganderson / vagrant_oracle_only

Quinton Anders _
o 22 minutes ago ganderson / mrs
0@2b3ed - Got tt Create repository

Import repository
n Quinton Andersurry LSO win

Enter the following values in order to create the repository:

Create a new repository
Name" | FirstGitProject

Description

Access level | This is a private repository

Repository type (&) Git

) Mercurial
Project management | Issue tracking
0 Wiki
Language |Java s

Chapter 1

Once the repository is created, you need to add the remote repository to your local repository
and push the changes to the remote repository.

git remote add origin https://[user]@bitbucket.org/[user]/
firstgitproject.git

git push origin master

You must replace [user] in the preceding command with your registered username.

sl
‘Q Cloning of a repository will be covered in later recipes, as will

some standard version control workflows.

Creating a "Hello World"” topology

The "Hello World" topology, as with all "Hello World" applications, is of no real use to anyone,
except to illustrate some really basic concepts. The "Hello World" topology will show how to
create a Storm project including a simple spout and bolt, build it, and execute it in the local
cluster mode.

How to do it...

1. Create a new project folder and initialize your Git repository.
mkdir HelloWorld
cd HelloWorld
git init

2. We must then create the Maven project file as follows:

vim pom.xml

3. Using vim, or any other text editor, you need to create the basic XML tags and project
metadata for the "Hello World" project.
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>storm.cookbook</groupIds>
<artifactIds>hello-world</artifactIds>

Setting Up Your Development Environment

<version>0.0.1-SNAPSHOT</version>
<packagings>jar</packaging>

<name>hello-world</names
<url>https://bitbucket.org/ [user] /hello-world</url>

<propertiess
<project.build.sourceEncoding>UTF-8</project.build.

sourceEncoding>

</properties>

</project>

4. We then need to declare which Maven repositories we need to fetch our dependencies
from. Add the following to the pom.xml file within the project tags:

<repositoriess>

<repositorys
<id>github-releases</id>
<url>http://oss.sonatype.org/content/repositories
/github-releases/</urls>
</repository>

<repositorys
<id>clojars.org</id>
<urlshttp://clojars.org/repo</urls>
</repository>

<repositorys
<id>twitter4j</id>
<url>http://twitter4j.org/maven2</urls>
</repository>
</repositories>

\ You can override these repositories using your .m2 and settings.xml

~ files, the details of which are outside the scope of this book; however, this is
extremely useful within development teams where dependency management
is the key.

5. We then need to declare our dependencies by adding them within the project tags:

<dependencies>
<dependencys>
<groupId>junit</groupld>
<artifactId>junit</artifactId>

Chapter 1

<version>3.8.1l</versions>
<scope>test</scope>
</dependency>

<dependencys>
<groupIds>storm</groupIld>
<artifactIdsstorm</artifactIds>
<version>0.8.1l</versions>
<!-- keep storm out of the jar-with-dependencies -->
<scope>provided</scope>

</dependency>

<dependencys>
<groupId>com.googlecode. json-simple</groupIld>
<artifactId>json-simple</artifactId>
<versions>1l.l</version>

</dependency>

</dependencies>

Finally we need to add the build plugin definitions for Maven:

<builds>
<pluginss>
<!l--
bind the maven-assembly-plugin to the package phase
this will create a jar file without the Storm
dependencies suitable for deployment to a cluster.
-=>
<plugins>
<artifactId>maven-assembly-plugin</artifactIds>
<configurations>
<descriptorRefss>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<archives>
<manifest>
<mainClass></mainClass>
</manifest>
</archive>
</configurations>
<executionss>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</executions>
</executions>
</plugin>

]

Setting Up Your Development Environment

<plugins>
<groupId>com.theoryinpractise</groupIds>
<artifactId>clojure-maven-plugin</artifactIds>
<version>1.3.8</versions>
<extensions>true</extensions>
<configurations>
<sourceDirectoriess
<sourceDirectory>src/clj</sourceDirectory>
</sourceDirectoriess>
</configurations>
<executionss>
<execution>
<id>compile</id>
<phase>compile</phase>
<goals>
<goal>compile</goals>
</goals>
</executions>
<execution>
<id>test</id>
<phase>test</phase>
<goals>
<goal>test</goals>
</goals>
</executions>
</executions>

</plugin>
<plugins>
<grouplds>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactIds>
<configurations>
<sources>l.6</sources
<target>1l.6</target>
</configurations>
</plugin>
</plugins>
</build>

7. With the POM file complete, save it using the Esc + : + wg + Enter key sequence and
complete the required folder structure for the Maven project:
mkdir src
cd src
mkdir test
mkdir main
cd main

mkdir java

Chapter 1

8. Then return to the project root folder and generate the Eclipse project files using
the following;:

mvn eclipse:eclipse

M The Eclipse project files are a generated artifact, much as a
Q .class file, and should not be included in your Git checkins,
especially since they contain client-machine-specific paths.

9. You must now start your Eclipse environment and import the generated project files
into the workspace:

o O -
Select
E‘:.n]
Create new projects from an archive file or directory.

Select an import source;

| type filter text).

¥ (= General
[T, Archive File

= Existing Projects into Workspace
CI‘ File System
L Preferences
P (= Android
P (= CVS
P = Git
B (= Install
P (= Java EE
P = Maven
P (= Plug-in Development
P = Run/Debug
P (= Tasks
P (= Team
P = XML

@ < Back [Nea> | | cancel | Finish

[}

Setting Up Your Development Environment

10.

11.

12.

13.

14.

You must then create your first spout by creating a new class named
HelloWorldSpout, which extends from BaseRichSpout and is located
in the storm. cookbook package. Eclipse will generate a default spouts
method for you. The spout will simply generate tuples based on random
probability. Create the following member variables and construct the object:

private SpoutOutputCollector collector;
private int referenceRandom;
private static final int MAX RANDOM = 10;
public HelloWorldSpout () {
final Random rand = new Random() ;
referenceRandom = rand.nextInt (MAX RANDOM) ;

}

After construction, the Storm cluster will open the spout; provide the following
implementation for the open method:

public void open (Map conf, TopologyContext context,
SpoutOutputCollector collector) {
this.collector = collector;

}

The Storm cluster will repeatedly call the nextTuple method, which will do all the
work of the spout. Provide the following implementation for the method:

Utils.sleep(100) ;
final Random rand = new Random() ;
int instanceRandom = rand.nextInt (MAX RANDOM) ;
if (instanceRandom == referenceRandom) {
collector.emit (new Values ("Hello World")) ;
} else {
collector.emit (new Values ("Other Random Word")) ;

}

Finally, you need to tell the Storm cluster which fields this spout emits within the
declareOutputFields method:

declarer.declare (new Fields ("sentence")) ;

Once you have resolved all the required imports for the class, you need to create
HelloWorldBolt. This class will consume the produced tuples and implement the
required counting logic. Create the new class within the storm. cookbook package;
it should extend the BaseRichBolt class. Declare a private member variable and
provide the following implementation for the execute method, which does the work
for this bolt:

Chapter 1

String test = input.getStringByField("sentence") ;
if ("Hello World".equals (test)) {
myCount++;
System.out.println("Found a Hello World! My Count is now: "

+ Integer.toString (myCount)) ;

15. Finally, you need to bring the elements together and declare the Storm topology.

16.

Create a main class named HelloWorldTopology within the same package and
provide the following main implementation:

TopologyBuilder builder = new TopologyBuilder () ;

builder.setSpout ("randomHelloWorld", new

HelloWorldSpout (), 10);
builder.setBolt ("HelloWorldBolt", new
HelloWorldBolt (), 2)

.shuffleGrouping ("randomHelloWorld") ;

Config conf = new Config() ;
conf.setDebug (true) ;

if (args!=null && args.length > 0) {
conf .setNumWorkers (3) ;

StormSubmitter.submitTopology (args[0], conf,
builder.createTopology()) ;
} else {

LocalCluster cluster = new LocalCluster() ;
cluster.submitTopology ("test", conf,

builder.createTopology()) ;
Utils.sleep(10000) ;
cluster.killTopology ("test") ;
cluster.shutdown () ;

}

This will essentially set up the topology and submit it to either a local or remote Storm
cluster, depending on the arguments passed to the main method.

After you have resolved the compiler issues, you can execute the cluster by issuing
the following command from the project's root folder:

mvn compile exec:java -Dexec.classpathScope=compile -Dexec.
mainClass=storm.cookbook.HelloWorldTopology

[}

Setting Up Your Development Environment

The following diagram describes the "Hello World" topology:

The spout essentially emits a stream containing one of the following two sentences:

» Other Random Word
» Hello World

Based on random probability, it works by generating a random number upon construction
and then generates subsequent random numbers to test against the original member's
variable value. When it matches, Hello World is emitted; during the remaining executions,
the other random words are emitted.

The bolt simply matches and counts the instances of Hello World. In the current
implementation, you will notice sequential increments being printed from the bolt.
In order to scale this bolt, you simply need to increase the parallelism hint for the
topology by updating the following line:

builder.setBolt ("HelloWorldBolt", new HelloWorldBolt (), 3)
.shuffleGrouping ("randomHelloWorld") ;

The key parameter here is parallism hint, which you can adjust upwards. If you execute
the cluster again, you will then notice three separate counts that are printed independently
and interweaved with each other.

You can scale a cluster after deployment by updating these hints
using the Storm GUI or CLI; however, you can't change the topology

N\‘ structure without recompiling and redeploying the JAR. For the
command-line option, please see the CLI documentation on the wiki
available at the following link:

https://github.com/nathanmarz/storm/wiki/
Command-line-client

Chapter 1

It is important to ensure that your project dependencies are declared correctly within your POM.
The Storm JARs must be declared with the provided scope; if not, they would be packaged into
your JAR; this would result in duplicate class files on the classpath within a deployed node of
the cluster. Note that Storm checks for this classpath duplication; it will fail to start if you have
included Storm into your distribution.

Downloading the example code

You can download the example code files for all Packt books you have
M purchased from your account at http: //www.packtpub. com. If you
Q purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Open source versions of the code are maintained by the author at his
Bitbucket account at https://bitbucket.org/ganderson.

Creating a Storm cluster - provisioning the

machines

Testing the cluster in the local mode is useful for debugging and verifying the basic functional
logic of the cluster. It doesn't, however, give you a realistic view as to the operation of the cluster.
Moreover, any development effort is only complete once the system is running in a production
environment. This is a key consideration for any developer and is the cornerstone of the entire
DevOps movement; regardless of the methodology, however, you must be able to reliably deploy
your code into an environment. This recipe demonstrates how to create and provision an entire
cluster directly from version control. There are many key principles in doing this:

» The state of any given server must be known at all times. It isn't acceptable that
people can log into a server and make changes to its settings or files without strict
version control being in place.

» Servers should be fundamentally immutable, with the state in some kind of separate
volume. This allows deterministic recovery times of a server.

» If something causes problems in the delivery process, do it more often. In software
development and IT operations, this applies heavily to disaster recovery and
integration. Both tasks can only be performed often if they are automated.

» This book assumes that your destination production environment is a cluster
(based on Amazon Web Services (AWS) EC2), which enables automatic scaling.
Elastic auto-scaling is only possible where provisioning is automated.

The deployment of Storm topologies to an AWS cluster is the subject for a later chapter;
however, the fundamentals will be presented in this recipe in a development environment.

s

Setting Up Your Development Environment

How to do it...

Let's start by creating a new project as follows:

1.

3.

1
‘Q environments, as this cluster is not highly available. The purpose of this

Create a new project named vagrant -storm-cluster with the following
data structure:

vagrant-storm-cluster

data
manifest
modules
scripts

Using your favorite editor, create a file in the project root called Vvagrantfile. Inside
the file, you must create the file header and the configuration for the virtual machines
that we want to create. We need at least one nimbus node, two supervisor nodes,
and a zookeeper node:

-*- mode: ruby -*-
vi: set ft=ruby

boxes = [

{ :name => :nimbus, :ip => '192.168.33.100', :cpus =>2, :Memory
=> 512 },

{ :name => :supervisorl, :ip => '192.168.33.101', :cpus
=>4, :memory => 1024 },

{ :name => :supervisor2, :ip => '192.168.33.102', :cpus
=>4, :memory => 1024 },

{ :name => :zookeeperl, :ip => '192.168.33.201', :cpus

=>1, :memory => 512 }

Note that the use of a single zookeeper node is only for development

cluster is to test your topology logic in a realistic setting and identify
stability issues.

You must then create the virtual machine provisioning for each machine, specialized
by the previous configuration at execution time. The first set of properties defines the
hardware, networking, and operating system:

boxes.each do |opts|

config.vm.define opts[:name] do |config]|
config.vm.box = "ubuntul2"
config.vm.box url =

Chapter 1

"http://dl.dropbox.com/u/1537815/preciseé4 .box"
config.vm.network :hostonly, opts[:ip]

config.vm.host name = "storm.%s" % opts[:name].to_ s
config.vm.share folder "v-data", "/vagrant_data",
", /data", :transient => false
config.vm.customize ["modifyvm", :id, "--memory",
opts [:memory]]
config.vm.customize ["modifyvm", :id, "--cpus",

opts[:cpus]] if opts[:cpus]

The provisioning of the application is then configured using a combination of the bash
and Puppet scripts:

config.vm.provision :shell, :inline => "cp -fv /vagrant data/hosts
/etc/hosts™
config.vm.provision :shell, :inline => "apt-get update"

Check if the jdk has been provided
if File.exist?("./data/jdk-6u35-1linux-x64.bin") then
config.vm.provision :puppet do |puppet |

puppet .manifests path = "manifests"
puppet .manifest file = "jdk.pp"

end

end

config.vm.provision :puppet do |puppet |

puppet .manifests path = "manifests"
puppet .manifest file = "provisioningInit.pp"
end

Ask puppet to do the provisioning now.
config.vm.provision :shell, :inline => "puppet apply
/tmp/storm-puppet/manifests/site.pp --verbose --
modulepath=/tmp/storm-puppet/modules/ --debug"

end
end
end

The Vagrant file simply defines the hypervisor-level configuration and provisioning; the
remaining provisioning is done through Puppet and is defined at two levels. The first
level makes the base Ubuntu installation ready for application provisioning. The second
level contains the actual application provisioning. In order to create the first level of
provisioning, you need to create the JDK provisioning bash script and the provisioning
initialization Puppet script.

s

Setting Up Your Development Environment

5. Inthe scripts folder of the project, create the installJdk. sh file and populate it
with the following code:

#!/bin/sh

echo "Installing JDK!"

chmod 775 /vagrant data/jdk-6u35-linux-x64.bin
cd /root

yes | /vagrant data/jdk-6u35-linux-x64.bin
/bin/mv /root/jdkl.6.0_ 35 /opt

/bin/rm -rv /usr/bin/java

/bin/rm -rv /usr/bin/javac

/bin/ln -s /opt/jdkl.6.0_35/bin/java /usr/bin
/bin/ln -s /opt/jdkl.6.0 35/bin/javac /usr/bin
JAVA HOME=/opt/jdkl.6.0_35

export JAVA HOME

PATH=$PATH: $JAVA HOME/bin

export PATH

This will simply be invoked by the Puppet script in a declarative manner.

6. Inthemanifest folder create a file called jdk . pp:

$JDK_VERSION = "1.6.0_35"
package {"openjdk":
ensure => absent,

}

exec { "installJdk":
command => "installJddk.sh",
path => "/vagrant/scripts",
logoutput => true,
creates => "/opt/jdks{JDK VERSION}",

}

7. Inthe manifest folder, create the provisioningInit.pp file and define the
required packages and static variable values:

SCLONE_URL = "https://bitbucket.org/ganderson/storm-puppet.git"
SCHECKOUT DIR="/tmp/storm-puppet"

package {git:ensure=> [latest,installed]}
package {puppet:ensure=> [latest,installed]}
package {ruby:ensure=> [latest,installed]}
package {rubygems:ensure=> [latest,installed]}
package {unzip:ensure=> [latest,installed]}

exec { "install hiera":
command => "gem install hiera hiera-puppet",
path => "/usr/bin",
require => Package['rubygems'],

=

Chapter 1

For more information on Hiera, please see the Puppet documentation page
s athttp://docs.puppetlabs.com/hiera/1/index.html.

8. You must then clone the repository, which contains the second level of provisioning:

exec { "clone storm-puppet":
command => "git clone ${CLONE URL}",
cwd => "/tmp",
path => "/usr/bin",
creates => "${CHECKOUT DIR}",
require => Package['git'],

}

9. You must now configure a Puppet plugin called Hiera, which is used to externalize
properties from the provisioning scripts in a hierarchical manner:
exec {"/bin/ln -s /var/lib/gems/1.8/gems/hiera-puppet-1.0.0/ /tmp/
storm-puppet/modules/hiera-puppet":
creates => "/tmp/storm-puppet/modules/hiera-puppet",
require => [Exec['clone storm-
puppet'],Exec['install hiera']]

#install hiera and the storm configuration
file { "/etc/puppet/hiera.yaml":
source => "/vagrant data/hiera.yaml",
replace => true,
require => Package['puppet']

file { "/etc/puppet/hieradata":
ensure => directory,
require => Package['puppet']

file {"/etc/puppet/hieradata/storm.yaml":
source => "${CHECKOUT DIR}/modules/storm.yaml",
replace => true,
require => [Exec['clone storm-puppet'],Filel['/etc/puppet/
hieradata']]

=]

Setting Up Your Development Environment

10. Finally, you need to populate the data folder. Create the Hiera base configuration file,
hiera.yaml:
:hierarchy:
- %{operatingsystem}
- storm
:backends:
- yaml
:yaml:
:datadir: '/etc/puppet/hieradata’

11. The final datafile required is the host's file, which act as the DNS in our local cluster:

127.0.0.1 localhost
192.168.33.100 storm.nimbus
192.168.33.101 storm.supervisorl
192.168.33.102 storm.supervisor2
192.168.33.103 storm.supervisor3
192.168.33.104 storm.supervisor4
192.168.33.105 storm.supervisors
192.168.33.201 storm.zookeeperl
192.168.33.202 storm.zookeeper2
192.168.33.203 storm.zookeepers3
192.168.33.204 storm.zookeeper4

1
‘\Q The host's file is not required in properly configured environments; however,

it works nicely in our local "host only" development network.

The project is now complete, in that it will provision the correct virtual machines and
install the base required packages; however, we need to create the Application layer
provisioning, which is contained in a separate repository.

12. Initialize your Git repository for this project and push it to bitbucket . org.

Provisioning is performed on three distinct layers:

Application

Guest

Hypervisor

Chapter 1

This recipe only works in the bottom two layers, with the Application layer presented in the next
recipe. A key reason for the separation is that you will typically create different provisioning

at these layers depending on the Hypervisor you are using for deployment. Once the VMs are
provisioned, however, the application stack provisioning should be consistent through all your
environments. This is key, in that it allows us to test our deployments hundreds of times before
we get to production, and ensure that they are in a repeatable and version-controlled state.

In the development environment, VirtualBox is the Hypervisor with Vagrant and Puppet providing
the provisioning. Vagrant works by specializing a base image of a VirtualBox. This base image
represents a version-controlled artifact. For each box defined in our Vagrant file, the following
parameters are specified:

» The base box

» The network settings

» Shared folders

» Memory and CPU settings for the VM

This base provisioning does not include any of the baseline controls you
M would expect in a production environment, such as security, access controls,
Q housekeeping, and monitoring. You must provision these before proceeding
beyond your development environment. You can find these kinds of recipes on
Puppet Forge (http://forge.puppetlabs.com/).

Provisioning agents are then invoked to perform the remaining heavy lifting:

config.vm.provision :shell, :inline => "cp -fv /vagrant data/hosts /etc/
hosts™"

The preceding command installs the host's file that gives the resolution of our cluster name:
config.vm.provision :shell, :inline => "apt-get update"

This updates all the packages in the apt -get cache within the Ubuntu installation.
Vagrant then proceeds to install the JDK and the base provisioning. Finally it invokes
the application provisioning.

The base VM image could contain the entire base provisioning already,
* thus making this portion of the provisioning unrequired. However, it is
important to understand the process of creating an appropriate base
e image and also to balance the amount of specialization in the base
images you control; otherwise, they will proliferate.

Setting Up Your Development Environment

Creating a Storm cluster - provisioning

Storm

Once you have a base set of virtual machines that are ready for application provisioning, you
need to install and configure the appropriate packages on each node.

How to do it...

1. Create a new project named storm-puppet with the following folder structure:

storm-puppet

manifests
modules
‘— storm
manifests
templates

2. The entry point into the Puppet execution on the provisioned node is site. pp.
Create it in the manifests folder:

node 'storm.nimbus'
Scluster = 'storml'
include storm::nimbus
include storm::ui

}

node /storm.supervisor[1-9]/ {
Scluster = 'storml'
include storm::supervisor

}

node /storm.zookeeper[1-9]/
include storm: :zoo

}

3. Next, you need to define the storm module. A module exists in the modules folder
and has its own manifests and template folder structure, much as with the
structure found at the root level of the Puppet project. Within the storm module,
create the required manifests (modules/storm/manifests), starting with the
init.pp file:

Chapter 1

class storm {
include storm::install
include storm::config

}

The installation of the Storm application is the same on each storm node; only
the configurations are adjusted where required, via templating. Next create the
install.pp file, which will download the required binaries and install them:

class storm::install ({

$BASE URL="https://bitbucket.org/ganderson/storm-deb-
packaging/downloads/"

$ZMQ FILE="libzmg0 2.1.7 amd64.deb"

$JZMQ_FILE="libjzmg 2.1.7 amd64.deb"

$STORM FILE="storm 0.8.1 all.deb"

package { "wget": ensure => latest }

call fetch for each file
exec { "wget storm":

command => "/usr/bin/wget ${BASE URL}${STORM FILE}" }
exec {"wget zmg":

command => "/usr/bin/wget ${BASE URL}${ZMQ FILE}" }
exec { "wget jzmg":

command => "/usr/bin/wget ${BASE URL}${JzZMQ FILE}" }

#call package for each file
package { "libzmgO":
provider => dpkg,
ensure => installed,
source => "${zZMQ FILE}",
require => Exec['wget zmg']
}
#call package for each file
package { "libjzmg":
provider => dpkg,
ensure => installed,
source => "${JZMQ FILE}",
require => [Exec['wget jzmg'],Package['libzmg0']]
}
#call package for each file
package { "storm":
provider => dpkg,
ensure => installed,
source => "${STORM FILE}",
require => [Exec['wget storm'], Package['libjzmg']]

s

Setting Up Your Development Environment

The install manifest here assumes the existence of package,
M Debian packages, for Ubuntu. These were built using scripts and can
Q be tweaked based on your requirements. The binaries and creation

scripts can be found at https://bitbucket.org/ganderson/
storm-deb-packaging.

The installation consists of the following packages:

o Storm

o ZeroMQ: http://www.zeromqg.org/
o Java-ZeroMQ

The configuration of each node is done through the template-based generation of the
configuration files. In the storm manifests, create config. pp:

class storm::config {
require storm::install
include storm: :params
file { '/etc/storm/storm.yaml':
require => Package['storm'],
content => template('storm/storm.yaml.erb'),

owner => 'root',
group => 'root',
mode => '0644"'

!
file { '/etc/default/storm':
require => Package['storm'],
content => template ('storm/default.erb'),

owner => 'root',
group => 'root',
mode => '0644"'

}
}

All the storm parameters are defined using Hiera, with the Hiera configuration
invoked from params . pp in the storm manifests:
class storm::params {
#_ STORM DEFAULTS _#
$java_library path = hiera array('java library path',
['"/usr/local/lib', '/opt/local/lib', '/usr/lib'l])

For the complete file, please refer to the Git repository at https://

M Due to the sheer number of properties, the file has been concatenated.
CZE bitbucket.org/ganderson/storm-puppet/src.

Chapter 1

7. Each class of node is then specified; here we will specify the nimbus class:

class storm::nimbus {
require storm::install
include storm::config
include storm: :params

Install nimbus /etc/default
storm: :service { 'nimbus':
start => 'yes',
jvm _memory => $storm::params::nimbus_mem

}
}

Specify the supervisor class:

class storm::supervisor {
require storm::install
include storm::config
include storm: :params

Install supervisor /etc/default
storm: :service { 'supervisor':
start => 'yes',
jvm memory => $storm::params::supervisor mem

}
}

Specify the ui class:

class storm::ui {
require storm::install
include storm::config
include storm: :params
Install ui /etc/default
storm: :service { 'ui':
start => 'yes',
jvm _memory => $storm::params::ui_mem

}
}

And finally, specify the zoo class (for a zookeeper node):

class storm::zoo {
package {['zookeeper', 'zookeeper-bin', 'zookeeperd']:
ensure => latest,
}
}

Es

Setting Up Your Development Environment

8. Once all the files have been created, initialize the Git repository and push it to
bitbucket.org.

9. In order to actually run the provisioning, navigate to the vagrant -storm-cluster
folder and run the following command:

vagrant up
10. If you would like to ssh into any of the nodes, simply specify the following command:
vagrant ssh nimbus

Replace nimbus with your required node name.

There are various patterns that can be applied when using Puppet. The simplest one is

using a distributed model, whereby nodes provision themselves as opposed to a centralized
model using Puppet Master. In the distributed model, updating server configuration simply
requires that you update your provisioning manifests and push them to your central Git
repository. The various nodes will then pull and apply this configuration. This can either be
achieved through cron jobs, triggers, or through the use of a Continuous Delivery tool such as
Jenkins, Bamboo, or Go. Provisioning in the development environment is explicitly invoked by
Vagrant through the following command:

config.vm.provision :shell, :inline => "puppet apply /tmp/storm-puppet/
manifests/site.pp --verbose --modulepath=/tmp/storm-puppet/modules/
- -debug"

The manifest is then applied declaratively by the Puppet. Puppet is declarative, in that

each language element specifies the desired state together with methods for getting there.
This means that, when the system is already in the required state, that particular provisioning
step will be skipped, together with the adverse effects of duplicate provisioning.

The storm-puppet project is therefore cloned onto the node and then the manifest is applied
locally. Each node only applies provisioning for itself, based on the hostname specified in the
site.pp manifest, for example:

node 'storm.nimbus'
$cluster = 'storml'
include storm::nimbus
include storm::ui

=

Chapter 1

In this case, the nimbus node will include the Hiera configurations for clusteri, and the
installation for the nimbus and ui nodes will be performed. Any combination of classes
can be included in the node definition, thus allowing the complete environment to be
succinctly defined.

Deriving basic click statistics

The click topology is designed to gather basic website-usage statistics, specifically:

» The number of visitors
» The number of unique visitors
» The number of visitors for a given country
» The number of visitors for a given city
» The percentage of visitors for each city in a given country
The system assumes a limited possible visitor population and prefers server-side client keys

as opposed to client-side cookies. The topology derives the geographic information from the IP
address and a public IP resolution service.

The click topology also uses Redis to store click events being sent into the topology,
specifically as a persistent queue, and it also leverages Redis in order to persistently
recall the previous visitors to the site.

[For more information on Redis, please visit Redis.io.]
Getting ready

Before you proceed, you must install Redis (Version 2.6 or greater):

wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz

cd redis-stable

make

sudo cp redis-server /usr/local/bin/

sudo cp redis-cli /usr/local/bin/

Then start the Redis server.

s

Setting Up Your Development Environment

How to do it...

1. Create a new Java project named click-topology, and create the pom.xml file
and folder structure as per the "Hello World" topology project.

2. Inthe pom.xml file, update the project name and references, and then add the
following dependencies to the <dependencies> tag:

<dependency>
<groupld>junit</groupIld>
<artifactId>junit</artifactId>
<versions>4.1ll</versions
<scope>test</scope>
</dependency>
<dependencys>
<grouplds>org.jmock</grouplds>
<artifactId>jmock-junit4</artifactIds>
<version>2.5.1</versions>
<scope>test</scope>
</dependency>
<dependencys>
<groupIlds>org.jmock</grouplds>
<artifactId>jmock-legacy</artifactIds>
<version>2.5.1</versions>
<scope>test</scope>
</dependency>
<dependency>
<groupld>redis.clients</groupIds>
<artifactId>jedis</artifactId>
<version>2.1.0</versions>
</dependency>

3. Take a special note of the scope definitions of JUnit and JMock so as to not include
them in your final deployable JAR.

4. Inthe source/main/java folder, create the ClickTopology main class in the
package storm.cookbook package. This class defines the topology and provides
the mechanisms to launch the topology into a cluster or in a local mode. Create the
class as follows:

public ClickTopology ()
builder.setSpout ("clickSpout", new ClickSpout (), 10);

//First layer of bolts
builder.setBolt ("repeatsBolt", new RepeatVisitBolt (), 10)
.shuffleGrouping("clickSpout") ;

S E

builder.setBolt ("geographyBolt", new GeographyBolt (new
HttpIPResolver()), 10)
.shuffleGrouping("clickSpout") ;

//second layer of bolts, commutative in nature

builder.setBolt ("totalStats", new VisitStatsBolt(),
1) .globalGrouping ("repeatsBolt") ;

builder.setBolt ("geoStats", new GeoStatsBolt (),
10) .fieldsGrouping ("geographyBolt", new

Fields (storm.cookbook.Fields.COUNTRY)) ;
conf .put (Conf .REDIS PORT KEY, DEFAULT JEDIS PORT) ;
}
public void runLocal (int runTime) {

conf.setDebug (true) ;

conf .put (Conf .REDIS_HOST KEY, "localhost");

cluster = new LocalCluster() ;

cluster.submitTopology ("test", conf,
builder.createTopology()) ;

if (runTime > 0)
Utils.sleep (runTime) ;
shutDownLocal () ;

public void shutDownLocal () {
if (cluster != null) {
cluster.killTopology ("test") ;
cluster.shutdown () ;

public void runCluster (String name, String redisHost)
throws AlreadyAliveException,

InvalidTopologyException {
conf .setNumWorkers (20) ;
conf .put (Conf .REDIS HOST KEY, redisHost);
StormSubmitter.submitTopology (name, conf,
builder.createTopology()) ;

Chapter 1

s

Setting Up Your Development Environment

5. This is followed by the main method, which is guided by the number of arguments
passed at runtime:

public static void main(String[] args) throws Exception
ClickTopology topology = new ClickTopology () ;

if (args!=null && args.length > 1) {
topology.runCluster (args [0], args[1l]);
} else {
if (args!=null && args.length == 1)
System.out.println("Running in local mode,
redis ip missing for cluster run");
topology.runLocal (10000) ;

}

6. The topology assumes that the web server pushes messages onto a Redis queue.
You must create a spout to inject these into the Storm cluster as a stream. In the
storm.cookbook package, create the ClickSpout class, which connects to
Redis when it is opened by the cluster:

public class ClickSpout extends BaseRichSpout {

public static Logger LOG =
Logger .getLogger (ClickSpout.class) ;

private Jedis jedis;

private String host;

private int port;

private SpoutOutputCollector collector;

@Override
public void declareOutputFields (OutputFieldsDeclarer
outputFieldsDeclarer) {
outputFieldsDeclarer.declare (new
Fields (storm.cookbook.Fields.IP,
storm.cookbook.Fields.URL,
storm.cookbook.Fields.CLIENT KEY)) ;

@Override
public void open(Map conf, TopologyContext
topologyContext, SpoutOutputCollector

Chapter 1

spoutOutputCollector) {
host = conf.get (Conf.REDIS HOST KEY) .toString() ;
port = Integer.valueOf (conf
.get (Conf .REDIS_ PORT_KEY) .toString()) ;
this.collector = spoutOutputCollector;
connectToRedis () ;

private void connectToRedis()
jedis = new Jedis (host, port);

}

7. The cluster will then poll the spout for new tuples through the nextTuple method:

public void nextTuple()
String content = jedis.rpop("count") ;
if (content==null || "nil".equals (content)) {
try { Thread.sleep(300); }
catch (InterruptedException e) {}
} else {
JSONObject obj=(JSONObject) JSONValue.parse (content) ;
String ip = obj.get (storm.cookbook.Fields.IP) .toString() ;
String url = obj.get (storm.cookbook.Fields.URL) .toString() ;

String clientKey = obj.get (storm.cookbook.Fields.CLIENT KEY)
.toString() ;
collector.emit (new Values (ip,url,clientKey)) ;

}
}

8. Next, we need to create the bolts that will enrich the basic data through the database
or remote API lookups. Let us start with the repeat visit bolt. This bolt will check the
client's ID against previous visit records and emit the enriched tuple with a flag set
for unique visits. Create the RepeatVisitBolt class, providing the open and Redis
connection logic:

public class RepeatVisitBolt extends BaseRichBolt {
private OutputCollector collector;
private Jedis jedis;
private String host;

private int port;

@Override

Eis

Setting Up Your Development Environment

public void prepare (Map conf,
TopologyContext topologyContext, OutputCollector
outputCollector) {
this.collector = outputCollector;
host = conf.get (Conf.REDIS HOST KEY) .toString() ;
port = Integer.valueOf (conf.
get (Conf .REDIS_PORT KEY) .toString());
connectToRedis () ;

private void connectToRedis()
jedis = new Jedis (host, port);
jedis.connect () ;

}

9. Inthe execute method, the tuple from the ClickSpout class is provided by the
cluster. The bolt needs to look up the previous visit flags from Redis, based on the
fields in the tuple, and emit the enriched tuple:

public void execute (Tuple tuple) {
String ip = tuple.getStringByField(storm.cookbook.Fields.IP) ;

String clientKey = tuple.getStringByField (storm.cookbook.Fields
.CLIENT KEY) ;

tuple.getStringByField (storm.cookbook.Fields.URL) ;
String key = url + ":" + clientKey;

String url

String value = jedis.get (key) ;
if (value == null) {
jedis.set (key, "visited");
collector.emit (new Values (clientKey, url,
Boolean.TRUE.toString())) ;
} else {
collector.emit (new Values (clientKey, url,
Boolean.FALSE.toString())) ;

}

10. Next, the geographic enrichment bolt must be created. This bolt will emit an enriched
tuple by looking up the country and city of the client's IP address through a remote
API call. The GeographyBolt class delegates the actual call to an injected IP
resolver in order to increase the testability of the class. In the storm. cookbook
package, create the GeographyBolt class, extending from the BaseRichBolt
interface, and implement the execute method:

NED

Chapter 1

public void execute (Tuple tuple) {
String ip = tuple.getStringByField (storm
.cookbook.Fields.IP) ;
JSONObject json = resolver.resolvelIP (ip) ;

String city = (String) json.get (storm
.cookbook.Fields.CITY) ;
String country = (String) json.get (storm

.cookbook.Fields.COUNTRY NAME) ;
collector.emit (new Values (country, city));

}

11. Provide a resolver by implementing the resolver, Ht tpIPResolver, and injecting it
into GeographyBolt at design time:

public class HttpIPResolver implements IPResolver, Serializable
static String url =
"http://api.hostip.info/get json.php";
@Override
public JSONObject resolveIP(String ip) {
URL geoUrl = null;
BufferedReader in = null;
try {
geoUrl = new URL(url + "?ip=" + ip);
URLConnection connection = geoUrl.openConnection() ;
in = new BufferedReader (new InputStreamReader (
connection.getInputStream())) ;
JSONObject json = (JSONObject) JSONValue.parse (in) ;
in.close() ;
return json;
} catch (IOException e) {
e.printStackTrace() ;

}

finally {
if (in !'= null) {
try {

in.close() ;
} catch (IOException e) {}

}

return null;

s

Setting Up Your Development Environment

12. Next, we need to derive the geographic stats. The GeoStatsBolt class simply
receives the enriched tuple from GeographicBolt and maintains an in-memory
structure of the data. It also emits the updated counts to any interested party.

The GeoStatsBolt class is designed such that the total population of the countries
can be split between many bolts; however, all cities within each country must arrive
at the same bolt. The topology, therefore, splits streams into the bolt on this basis:

builder.setBolt ("geoStats", new GeoStatsBolt (),
10) .fieldsGrouping ("geographyBolt", new
Fields (storm.cookbook.Fields.COUNTRY)) ;

13. Creating the GeoStatsBolt class, provide the implementation for the
execute method:

public void execute (Tuple tuple)
String country = tuple.getStringByField (storm.cookbook.
Fields.COUNTRY) ;
String city = tuple.getStringByField(Fields.CITY) ;
if (!stats.containsKey (country)) {
stats.put (country, new CountryStats (country)) ;
}
stats.get (country) .cityFound (city) ;
collector.emit (new Values (country,
stats.get (country) .getCountryTotal (), city,
stats.get (country) .getCityTotal (city))) ;

}

14. The bulk of logic is contained in the inner-model class that maintains an in-memory
model of the city and country:

private class CountryStats
private int countryTotal = 0;
private static final int COUNT_ INDEX = O;
private static final int PERCENTAGE INDEX = 1;
private String countryName;
public CountryStats (String countryName) {
this.countryName = countryName;
}
private Map<String, List<Integer>> cityStats = new
HashMap<String, List<Integer>>();
public void cityFound(String cityName)
countryTotal++;
if (cityStats.containsKey (cityName)) {
cityStats.get (cityName) .set (COUNT INDEX,
cityStats.get (cityName)

Chapter 1

.get (COUNT_INDEX) .intValue() + 1);

} else {
List<Integer> list = new
LinkedList<Integers> () ;
//add some dummy data
list.add (1) ;
list.add(o0) ;

cityStats.put (cityName, list);

}

double percent = (double)cityStats.get (cityName)
.get (COUNT_INDEX) / (double)countryTotal;
cityStats.get (cityName) .set (PERCENTAGE INDEX,
(int) percent) ;

}
public int getCountryTotal () {return countryTotal;}
public int getCityTotal (String cityName) {

return cityStats.get (cityName)

.get (COUNT_INDEX) .intValue () ;

}

15. Finally, the VvisitorStatsBolt method provides the final counting functionality for
visitors and unique visits, based on the enriched stream from the RepeatVisitBolt
class. This bolt needs to receive all the count information in order to maintain a single
in-memory count, which is reflected in the topology definition:

builder.setBolt ("totalStats", new VisitStatsBolt (), 1).globalGroup
ing ("repeatsBolt") ;

16. In order to implement the VisitorStatsBolt class, create the class and
define two member-level integers, total and uniqueCount; then implement
the execute method:

public void execute (Tuple tuple) {
boolean unique = Boolean.parseBoolean (tuple
.getStringByField (storm.cookbook.Fields.UNIQUE)) ;
total++;
if (unique)uniqueCount++;
collector.emit (new Values (total,uniqueCount)) ;

}

@l

Setting Up Your Development Environment

The following diagram illustrates the click topology:

. Repeats .

7 Bolt

VisitStats
Bolt

GeoStats
Bolt
GeoStats
Bolt

The spout emits the click events from the web server into the topology, through a shuffle
grouping, to both the geography and repeat bolts. This ensures that the load is evenly
distributed around the cluster, especially for these slow or highly latent processes.

M It is important to understand the commutative versus associative nature of
Q your data model, together with any other concerns that are in your streams
and inherent models before designing your topology.

It is important to understand the parallelism of Storm while setting up the topology structure.
There is an excellent summary of this on the wiki (https://github.com/nathanmarz/
storm/wiki/Understanding-the-parallelism-of-a-Storm-topology). The key
points to take into account are:

» The number of worker processes for the topology (TOPOLOGY WORKERS).

» The number of executors (threads) per component of the topology. This is set using the
parallelism hint. Note that this sets only the initial value (number of threads); this can
be increased at runtime using topology rebalancing (through the Ul or CLI). You can limit
the number of executors using the Config#setMaxTaskParallelism() method.

» The number of tasks is set by default to 1 per executor. You can adjust this value
when you declare a component, using the ComponentConfigurationDeclarer#
setNumTasks () method.

Chapter 1

These are the key elements to consider when sizing your cluster. The cluster will try distributing
work to worker processes, each containing many executors that may be executing one or more
tasks. The number of executors per worker is therefore a function of the number of executors
over the number of workers. A good example of this can be seen in the previously mentioned
wiki page.

Using these numbers, you can size your cluster in terms of nodes and cores per node, where
ideally you should have one core per thread (executor) in the cluster.

Unit testing a bolt

Unit testing is an essential part of any delivery; the logic contained in the bolts must also be
unit tested.

Getting ready

Unit testing often involves a process called mocking that allows you to use dynamically
generated fake instances of objects as dependencies in order to ensure that a particular class
is tested on a unit basis. This book illustrates unit testing using JUnit 4 and JMock. Please take
the time to read up on JMock's recipes online at http://jmock.org/cookbook . html.

How to do it...

1. Inthe src/test/java folder, create the storm. cookbook package and create
the StormTestCase class. This class is a simple abstraction of some of the
initialization code:

public class StormTestCase

protected Mockery context = new Mockery() {{
setImposteriser (ClassImposteriser.INSTANCE) ;

1hi

protected Tuple getTuple () {
final Tuple tuple = context.mock (Tuple.class) ;
return tuple;

}
2. Then create the TestRepeatVisitBolt class that extends from StormTestCase,
and mark it with the parameterized runner annotation:

@RunWith (value = Parameterized.class)
public class TestRepeatVisitBold extends StormTestCase {

Setting Up Your Development Environment

3. The test case logic of the class is contained in a single execute method:

public void testExecute ()
jedis
RepeatVisitBolt bolt

new Jedis("localhost",6379);
= new RepeatVisitBolt() ;

Map config

config.put ("redis-host",
config.put ("redis-port",
final OutputCollector collector

bolt.prepare (config,

assertEquals (true,

new HashMap () ;

"localhost") ;
"6379") ;

context .mock (OutputCollector.class) ;

final Tuple tuple =

null,

getTuple () ;

collector) ;

bolt.isConnected()) ;

context .checking (new Expectations () {{

oneOf (tuple) .getStringByField (Fields

IP) ;will (returnvValue (ip)) ;

oneOf (tuple) .getStringByField (Fields

.CLIENT KEY) ;will (returnValue (clientKey)) ;
oneOf (tuple) .getStringByField (Fields

.URL) ;will (returnvValue (url)) ;

oneOf (collector) .emit (new Values

i

(clientKey,

url,

bolt.execute (tuple) ;
context.assertIsSatisfied() ;

if (jedis

}

= null)

jedis.disconnect () ;

4. Next, the parameters must be defined:

@Parameterized.Parameters
public static Collection<Object[]> data() {
= new Object[] []

Object [] []
"192.
"192.
"192.
"192.

{
{
{
{

return

}

data
168.
168.
168.
168.

33
33
33
33

.100",
.100",
.101",
.102",

"Client1l",
"Client1l",
"Client2",
"Client3",

Arrays.asList (data) ;

expected)) ;

{

"myintranet.com", "false"
"myintranet.com", "false"
"myintranetl.com", "true"

"myintranet2.com", false"}

}
}
}
}

’

’

’

7

Chapter 1

5. The base provisioning of the values must be done before the tests using Redis:

@BeforeClass
public static void setupJedis () {
Jedis jedis = new Jedis("localhost",6379);
jedis.flushDB() ;
Iterator<Object[]> it = data() .iterator() ;
while (it.hasNext ()) {
Object [] values = it.next();
if (values[3] .equals ("false")) {
String key = values[2] + ":" + values[1l];
jedis.set (key, "visited");//unique, meaning
it must exist

M It is always useful to leave data in the stack after the test
Q completes in order to review and debug, clearing again only
on the next run.

Firstly, the unit test works by defining a set of test data. This allows us to test many different
cases without unnecessary abstractions or duplication. Before the tests execute, the static data
is populated into the Redis DB, thus allowing the tests to run deterministically. The test method
is then executed once per line of parameterized data; many different cases are verified.

JMock provides mock instances of the collector and the tuples to be emitted by the bolt.
The expected behavior is then defined in terms of these mocked objects and their interactions:

context.checking (new Expectations () {{

oneOf (tuple) .getStringByField (Fields.IP) ;will (returnValue (ip)) ;

oneOf (tuple) .getStringByField (Fields.CLIENT KEY) ;will (returnvalue (
clientKey)) ;

oneOf (tuple) .getStringByField (Fields.URL) ;will (returnValue (url)) ;

oneOf (collector) .emit (new Values (clientKey, url, expected));

P

Although these are separate lines of code, within the bounds of the expectations they should be
read declaratively. | expect the get StringField method of the tuple to be called exactly once
with the value ip, and the mock object must then return a value to the class being tested.

=]

Setting Up Your Development Environment

This mechanism provides a clean way to exercise the bolt.

\ There are many different kinds of unit tests; often it becomes necessary to

~ test against a DB in such a manner; if you can help it, rather mock out all
dependencies of the class and implement a true unit test. This would be
possible with the geography bolt due to the resolver abstraction.

Implementing an integration test

Integration testing can mean many different things depending on the situation and audience.
For the purposes of this book, integration testing is a means of testing the topology from
end-to-end, with defined input and output points within a local cluster. This allows for a
full-functional verification of the functionality before deploying it to an actual cluster.

How to do it...

1. Create the IntegrationTestTopology class in the src/test/java folder in the
storm.cookbook package. Set up a local topology by adding in a testing utility bolt:
@BeforeClass

public static void setup() {

//We want all output tuples coming to the mock for
// testing purposes

topology.getBuilder () .setBolt ("testBolt", testBolt, 1)
.globalGrouping ("geoStats")
.globalGrouping ("totalStats") ;

// run in local mode, but we will shut the cluster down
// when we are finished

topology.runLocal (0) ;
//jedis required for input and output of the cluster
jedis = new Jedis("localhost",

Integer.parselnt (ClickTopology.DEFAULT JEDIS PORT)) ;
jedis.connect () ;

jedis.flushDB() ;

//give it some time to startup before running the tests.
Utils.sleep(5000) ;

2. Then, define the expected parameters as a set of arrays arranged in pairs:
@Parameterized.Parameters
public static Collection<Object[]> data() {

Object []1[] data = new Object[]1[] { {new Object[]{
"165.228.250.178", "internal.com", "Clientl"}, //input

=)

Chapter 1

3.

new Object[]{ "AUSTRALIA", new Long(l), "SYDNEY", new Long(1l),
new Long(l), new Long(l) } },//expectations
{new Object[]{ "165.228.250.178", "internal.com",
"Clientl"}, //input
new Object[]{ "AUSTRALIA", new Long(2), "SYDNEY", new
Long(2), new Long(2), new Long(1l) } },
{new Object[]{ "4.17.136.0", "internal.com",

"Clientl"}, //input, same client,
different location

new Object[]{ "UNITED STATES", new Long(l), "DERRY,
NH", new Long(l), new Long(3), new
Long (1) } },

{new Object[]{ "4.17.136.0", "internal.com",

"Client2"}, //input, same client,
different location
new Object[]{ "UNITED STATES", new Long(2), "DERRY,
NH", new Long(2), new Long(4), new
Long(2) } }};//expectations
return Arrays.asList (data) ;
}
Object [] input;
Object [] expected;
public IntegrationTestTopology (Object[] input,Object[]
expected) {
this.input = input;
this.expected = expected;

}

The test logic can then be based on these parameters:

@Test
public void inputOutputClusterTest () {
JSONObject content = new JSONObject () ;
content.put ("ip" ,input[0]) ;
content.put ("url" ,input[1]);
content.put ("clientKey" ,input[2]) ;

jedis.rpush("count", content.toJSONString()) ;
Utils.sleep(3000);

int count = 0;
String data = jedis.rpop("TestTuple") ;

while (data != null) {
JSONArray values = (JSONArray)
JSONValue.parse (data) ;

if (values.get (0) .toString () .contains ("geoStats")) {
count++;

@1

Setting Up Your Development Environment

assertEquals (expected[0],

values.get (1) .toString() .toUpperCase()) ;
assertEquals (expected[1l], values.get(2));

assertEquals (expected[2],

values.get (3) .toString() . toUpperCase ())

))
assertEquals (expected[3], values.get(4));

} else if (values.get (0).toString() .
contains ("totalStats")) {

count++;
assertEquals (expected[4], values.get(1l));
assertEquals (expected[5], values.get(2));

}

data = jedis.rpop ("TestTuple") ;

}

assertEquals (2, count);

}

The integration test works by creating a local cluster and then injecting input values into the
cluster through Redis, in the same way as a real web server would for the given design. It then
adds a specific testing bolt to the end of the topology that receives all the output tuples and
tests these against the expected values.

Once the TestBolt value is submitted to the cluster, it is no longer accessible from the test;
therefore, the outputs can only be accessed through persistence. TestBolt persists received
tuples to Redis, where the test case can read and validate them. The logic within TestBolt is
as follows:

public void execute (Tuple input) {
List objects = input.getValues() ;
objects.add (0, input.getSourceComponent()) ;
jedis.rpush("TestTuple", JSONArray.todJSONString(objects)) ;

}
This is then read by the test and validated against the expected values:

String data = jedis.rpop("TestTuple") ;

while (data != null) {
JSONArray values = (JSONArray) JSONValue.parse (data) ;

=

Chapter 1

if (values.get (0) .toString() .contains ("geoStats")) {
count++;

assertEquals (expected[0], values.get(

)

)

1)
.toString() .toUpperCase()) ;
assertEquals (expected[1l], values.get(2));
assertEquals (expected[2], values.get(3)
.toString() .toUpperCase()) ;

assertEquals (expected[3], values.get(4));
} else if (values.get (0).toString() .contains ("totalStats"))
{
count++;

assertEquals (expected[4], values.get(1l));

assertEquals (expected[5], values.get(2));

}

data = jedis.rpop("TestTuple") ;

}

assertEquals (2, count);

}

Deploying to the cluster

The final step in the development process is to functionally test the topology in a cluster
before promoting it to the next environment.

How to do it...

1.

First you need to configure the Storm client on your host development machine by
creating the . storm folder in your user home directory. Create storm.yaml in this
folder with the following content:

storm.local.dir: "/mnt/storm"
nimbus.host: "192.168.33.100"

Package your topology using the following command within the project's root:

mvn package

This will produce a completely packaged JAR in the target folder of the project. You can
deploy this to the cluster using the storm client command:

storm jar jarName.jar [TopologyName] [Args]

@]

Setting Up Your Development Environment

The storm command-line client provides you with all the tools you need to control the
cluster's functionality. Part of this is the ability to deploy packaged topologies. For more
information on the storm CLI, please review the detailed documentation on the wiki at
https://github.com/nathanmarz/storm/wiki/Command-line-client.

SNED

Log Stream Processing

In this chapter we will cover:

» Creating a log agent

» Creating the log spout

» Rule-based analysis of the log stream

» Indexing and persisting the log data

» Counting and persisting log statistics

» Creating an integration test for the log stream cluster

» Creating a log analytics dashboard

Introduction

This chapter will present an implementation recipe for an enterprise log storage and a search
and analysis solution based on the Storm processor. Log data processing isn't necessarily a
problem that needs solving again; it is, however, a good analogy.

Stream processing is a key architectural concern in the modern enterprise; however,
streams of data are often semi-structured at best. By presenting an approach to enterprise
log processing, this chapter is designed to provide the reader with all the key elements to
achieve this level of capability on any kind of data. Log data is also extremely convenient

in an academic setting given its sheer abundance. A key success factor for any stream
processing or analytics effort is a deep understanding of the actual data and sourcing
data can often be difficult.

It is, therefore, important that the reader considers how the architectural blueprint could be
applied to other forms of data within the enterprise.

Log Stream Processing

The following diagram illustrates all the elements that we will develop in this chapter:

Storm Topology
Log File)
[_/ Indexer » Elastic Search » Kubana
Redis List Spout »{Log Rules
Logstash _\ —— —
Agent Counter » Cassandra »Dashboard

You will learn how to create a log agent that can be distributed across all the nodes in your
environment. You will also learn to collect these log entries centrally using Storm and Redis,
and then analyze, index, and count the logs, such that we will be able to search them later
and display base statistics for them.

Creating a log agent

Modern enterprise architectures consist of a huge number of solutions, each comprising many
nodes. Some MapReduce clusters contain hundreds of nodes. Each node contains an array of
applications and services, both at the operating system and Application layers. These services
and applications generate varying volumes of log data. There is an increasing recognition of the
importance of log data within the enterprise community for the following reasons:

» Itis a key source of information for any IT operations team to maintain available
systems

» Itis key to finding and resolving problems, both in the production and systems
testing phases

» ltisincreasingly becoming a source of business value, where valuable business data
is trapped in this semi-structured data, including:
o Risk and compliance data
o Business operational data
o Web analytics
o Security
o Financial forecasts
In order to leverage valuable log data, it must be sourced from these nodes and delivered

securely and easily to a centralized log service for storage, indexing, and analysis. This recipe
demonstrates how to achieve this through an open source log agent called logstash.

=

Chapter 2

There are many good commercial and open source log solutions available.
This chapter uses portions of logstash; further logstash recipes can be found

<:l athttp://cookbook.logstash.net/ and http://logstash.net/

docs/1.1.13/tutorials/getting-started-centralized.A
good commercial equivalent is Splunk (http://www.splunk.com/).

How to do it...

1.

To start, the logs on your local node will be streamed into the topology. Start by
downloading and configuring logstash as follows:

wget https://logstash.objects.dreamhost.com/release/logstash-
1.1.7-monolithic.jar

Then, using your favorite text editor, create a file called shipper.conf containing
the following;:
input {
file {
type => "syslog"

Wildcards work here :)
path => ["/var/log/messages", "/var/log/system.*", "/var/
log/*.log" 1]

output {
Output events to stdout for debugging. Feel free to remove
this output if you don't need it.
stdout { }

redis {
host => "localhost"
data type => "list"
key => "rawLogs"
}
}

After starting a local instance of Redis, you can start this logging agent by issuing the
following command:

java -jar logstash-1.1l.7-monolithic.jar -f shipper.conf

Log Stream Processing

logstash implements a very simple model of input-filter-output with an ever-expanding list of
plugins for any of these three elements. The preceding configuration file (shipper . conf)
configures at least one input and output.

The file input plugin will tail files based on filenames or wildcards in the specified paths. Many
file inputs can be configured, each with a different type. The log type is important for later
processing and categorization. As we have not configured any filters in this configuration file,
the raw log will be passed to the output plugin. The output plugin is the Redis plugin that will
output the log to the Redis instance on localhost to a list called rawLogs.

M logstash can easily be included in the baseline provisioning of each node
Q provisioned on your infrastructure, including key exchange for secure log
delivery via any transport mechanism you are comfortable with.

Creating the log spout

The log topology will read all logs through the Redis channel that is fed by logstash; these
logs will be emitted into the topology through the spout described in this recipe. As this is
a new topology, we must first create the new topology project.

How to do it...

Start by creating the project directory and the standard Maven folder structure
(http://maven.apache.org/guides/introduction/introduction-to-the-
standard-directory-layout.html).

1. Create the POM as per the Creating a "Hello World" topology recipe in Chapter 1,
Setting Up Your Development Environment, updating the <artifactIds> and
<name> tag values and including the following dependencies:

<dependency>
<groupld>junit</groupIds>
<artifactId>junit</artifactId>
<version>4.1ll</version>
<scope>test</scope>

</dependency>

<dependency>
<grouplds>org.slf4j</grouplds>
<artifactId>slf4j-log4jl2</artifactId>
<version>1.6.1l</versions>

</dependency>

<dependency>

<groupIds>org.jmock</groupId>
<artifactId>jmock-legacy</artifactIds>
<version>2.5.1</versions>
<scope>test</scope>

</dependency>

<dependencys>
<grouplds>storm</groupIld>
<artifactIdsstorm</artifactIds>
<version>0.8.1l</version>

<!-- keep storm out of the jar-with-dependencies
<scope>provided</scope>
<exclusionss>
<exclusion>
<artifactId>slf4j-api</artifactIds>
<groupldsorg.slf4j</groupIlds>
</exclusion>

</exclusions>

</dependency>

<dependencys>
<groupId>com.googlecode.json-simple</groupId>
<artifactId>json-simple</artifactIds>
<versions>1l.l</versions>

</dependency>

<dependencys>
<groupld>redis.clients</groupId>
<artifactId>jedis</artifactIds>
<version>2.1.0</version>

</dependency>

<dependencys>
<groupId>commons-httpclient</groupIds>
<artifactId>commons-httpclient</artifactIds>
<version>3.l</version>

</dependency>

<dependencys>
<groupIds>org.jmock</groupId>
<artifactId>jmock-junité4</artifactIds>
<version>2.5.1</versions>
<scope>test</scope>

</dependency>

<dependencys>
<groupId>com.github.ptgoetz</groupIds>
<artifactIdsstorm-cassandra</artifactIds
<version>0.3.1-SNAPSHOT</version>

</dependency>

Chapter 2

s

Log Stream Processing

<dependencys>
<groupIds>org.elasticsearch</groupIld>
<artifactIdselasticsearch</artifactIds>
<version>0.20.2</version>

</dependency>

<dependencys>
<groupldsorg.drools</groupIld>
<artifactIds>drools-core</artifactIds>
<version>5.5.0.Final</version>

</dependency>

<dependencys>
<groupldsorg.drools</groupIld>
<artifactId>drools-compiler</artifactIds>
<version>5.5.0.Final</version>

</dependency>

</dependencies>

2. Import the project into Eclipse after generating the Eclipse project files as follows:

mvn eclipse:eclipse

3. Tuples in the log topology will carry a log domain object that encapsulates the data
and parsing logic for a single log record or an entry in a logfile. In the created project,
create this domain object:

public class LogEntry
public static Logger LOG = Logger.getLogger (LogEntry.class) ;
private String source;
private String type;
private List<String> tags = new ArrayList<Strings>();
private Map<String, String> fields = new HashMap<String,
String> () ;
private Date timestamp;
private String sourceHost;
private String sourcePath;
private String message = "";
private boolean filter = false;
private NotificationDetails notifyAbout = null;

private static String[] FORMATS = new Stringl]{"yyyy-MM-
dd'T'HH:mm:ss.SSS",

"vyyy.MM.dd G 'at' HH:mm:ss z",
"vyyyy.MMMMM.dd GGG hh:mm aaa",
"EEE, d MMM yyyy HH:mm:ss Z",
"yyMMAdHHmMmssZ" } ;

5]

Chapter 2

@SuppressWarnings ("unchecked")
public LogEntry (JSONObject json) {
source = (String)json.get ("@source") ;

timestamp =
parseDate ((String) json.get ("@timestamp")) ;

sourceHost = (String)json.get ("@source host") ;
sourcePath = (String)json.get ("@source path");
message = (String)json.get ("@message");

type = (String)json.get ("@type") ;

JSONArray array = (JSONArray)json.get ("@tags") ;
tags.addAll (array) ;

JSONObject fields = (JSONObject)json.get ("@efields");
fields.putAll (fields) ;

}

public Date parseDate (String value) {

SimpleDateFormat format = new
SimpleDateFormat (FORMATS [1]) ;

for(int i = 0; i < FORMATS.length; i++){

Date temp;

try {
temp = format.parse(value) ;
if (temp != null)

return temp;
} catch (ParseException e) {}
}
LOG.error ("Could not parse timestamp for log");
return null;

}

@SuppressWarnings ("unchecked")

public JSONObject toJSON () {
JSONObject json = new JSONObject () ;
json.put ("@source", source) ;

json.put ("@timestamp",DateFormat
.getDateInstance () . format (timestamp)) ;

json.put ("@source host", sourceHost) ;
json.put ("@source path", sourcePath) ;

7}

Log Stream Processing

json.put ("@message",message) ;

json.put ("@type", type) ;

JSONArray temp = new JSONArray () ;
temp.addAll (tags) ;

json.put ("@tags", temp) ;

JSONObject fieldTemp = new JSONObject () ;
fieldTemp.putAll (fields) ;

json.put ("@fields", fieldTemp) ;

return json;

M The getter, setter, and equals methods have been excluded
Q from this code snippet; however, they must be implemented in order.
The equals method is vital for unit testing purposes.

4. Then create the Logspout class that extends the BaseRichSpout interface
and implements the same pattern as described in Chapter 1, Setting Up Your
Development Environment, declaring a single field as follows:

outputFieldsDeclarer.declare (new Fields (FieldNames.LOG ENTRY)) ;
And then emitting the received log entries into the topology as follows:

public void nextTuple()
String content = jedis.rpop (LOG CHANNEL) ;
if (content==null || "nil".equals(content)) {
//sleep to prevent starving other threads
try { Thread.sleep(300); }
catch (InterruptedException e) {}
} else {
JSONObject obj=(JSONObject)
JSONValue.parse (content) ;
LogEntry entry = new LogEntry (obj) ;
collector.emit (new Values (entry)) ;

Literals should be avoided in the code as far as possible; tuples allow

~ for effective runtime coupling; however, peppering code with field name
Q literals for elements that are effectively coupled prior to runtime doesn't

add any value. Hence the usage of static field name definitions.

NED

Chapter 2

The Redis spout implementation is already familiar; the key logic implemented in this recipe
is the parsing logic within the domain object of the LogEntry class. logstash submits log
lines as separate JSON values into the Redis channel. These JSON values are in the following
format:

{

"@source":"file://PATH",

"etags": [],

"efields":{},
"@timestamp":"yyyy-MM-ddThh:mm:ss.SSS",
"@source host":"hostname",

"@source path":"path",
"@message":"Syslog log line contents",
"etype":"syslog"

}

The JSON format provides for two key structures, namely the JSON object and the JSON array.
The JSON website (www . json.org) provides a concise definition of each and has also been
provided here for the sake of convenience. An object is an unordered set of name/value
pairs. An object begins with { (left brace) and ends with } (right brace). Each name is followed
by : (colon) and the name/value pairs are separated by , (comma).

object J 1
l—@ ‘ string H value ’ @—'

ON®)

An array is an ordered collection of values. An array begins with [(left bracket) and ends with
1 (right bracket). The values are separated by , (comma).

array J 1
o vl o

N

A value can be a string in double quotes; a number; true, false, or null; an object; or an array.
These structures can be nested.

s

Log Stream Processing

The constructor of the LogEntry object takes JSONObject as the only parameter and
initializes its internal values based on the contained values. The LogEntry object is also able
to convert itself into a JSONObject through the toJgsSON () method, which will become useful
later. LogEntry makes heavy use of the com.googlecode. json-simple library in order
to achieve the first level of parsing from string to a workable structure.

Although the structure is well-defined, the date-time format can vary. The parseDate ()
method, therefore, provides a best-effort approach to parse the date. A static list of supported
date-time formats is defined as the FORMATS class member variable.

Rule-based analysis of the log stream

Any reasonable log management system needs to be able to achieve the following:

» Filter logs that aren't important, and therefore should not be counted or stored.
These often include log entries at the INFO or DEBUG levels (yes, these exist in
production systems).

» Analyze the log entry further and extract as much meaning and new fields
as possible.

» Enhance/update the log entry prior to storage.
» Send notifications on when certain logs are received.
» Correlate log events to derive new meaning.

» Deal with changes in the log's structure and formatting.

This recipe integrates the JBoss Library and Drools into a bolt to make these goals easily
achievable in a declarative and clear manner. Drools is an open source implementation
of a forward-chaining rules engine that is able to infer new values and execute the

logic based on matching logic. You can find more details on the Drools project at
http://www.jboss.org/drools/.

How to do it...

1. Within Eclipse, create a class called LogRulesBolt, which extends BaseRichBolt,
within the storm. cookbook . 1log package. As with the LogSpout class, the
LogRulesBolt class will emit a single value containing a LogEntry instance.

declarer.declare (new Fields (FieldNames.LOG ENTRY)) ;

2. Add a private member-level variable ksession of the
StatelessKnowledgeSession class and initialize it within the bolt's
prepare method.

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.
newKnowledgeBuilder () ;

&)

Chapter 2

kbuilder.add(ResourceFactory.newClassPathResource (
"/Syslog.drl", getClass()), ResourceType.DRL) ;
if (kbuilder.hasErrors())
LOG.error (kbuilder.getErrors () .toString());

}

KnowledgeBase kbase = KnowledgeBaseFactory.
newKnowledgeBase () ;

kbase.addKnowledgePackages (kbuilder.getKnowledgePackages ()
) ;

ksession = kbase.newStatelessKnowledgeSession() ;

The initialization of this knowledge session includes only a single set of
rules for the syslog logs. It is recommended that rules management
be extracted out into Drools Guvnor, or similar, and rules resources be
retrieved via an agent. This is outside the scope of this book but more
details are available at the following link:

http://www.jboss.org/drools/drools-guvnor.html

In the bolt's execute method, you need to pass the LogEntry object from the tuple
into the knowledge session.

LogEntry entry = (LogEntry)input.getValueByField (FieldNames.LOG
ENTRY) ;

if (entry == null) {
LOG.fatal ("Received null or incorrect value from
tuple");
return;
}
ksession.execute(entry);
if (lentry.isFilter()) {
collector.emit (new Values (entry)) ;

}

You next need to create the rules resource file; this can simply be done with a

text editor or using the Eclipse plugin available from the update site (http://
download.jboss.org/drools/release/5.5.0.Final/org.drools.
updatesite/). The rules resource file should be placed at the root of the classpath;
create the file named Syslog.drl in src/main/resources and add this folder to
the build path within Eclipse by right-clicking on the folder and going to Build Path |
Use as source folder.

Add the following content to the rules resource:

package storm.cookbook.log.rules

import storm.cookbook.log.model.LogEntry;

Log Stream Processing

import java.util.regex.Matcher
import java.util.regex.Pattern

rule "Host Correction"

when

1: LogEntry(sourceHost == "localhost")
then

1.setSourceHost ("localhost .example.com") ;

end

rule "Filter By Type"
when
1: LogEntry(type != "syslog")
then
l.setFilter (true) ;
end

rule "Extract Fields"
salience 100//run later

when
1: LogEntry(filter != true)
then
String logEntryPattern = " ([\\d.l+) (\\S+) (\\S+) \\

COON\w: /T \\s AN =-1A\\N{4 D) \\T A" C+2)\ (\\d{3}) (\\a+)
AT CCNTTH N A" NI\
Matcher matcher = Pattern.compile(logEntryPattern) .
matcher (1.getMessage ()) ;
if (matcher.find()) {
l.addField(" pid",matcher.group (1)) ;
l.addField (" src",matcher.group(2)) ;

end

Drools supports two types of knowledge sessions, namely stateful and stateless. For this use
case, a stateless session is all that is required.

Stateful sessions are always to be used with caution as they can lead
M to performance problems. They essentially maintain facts in memory
Q between session executions. There are use cases where this is vital;
however, the nature of a forward-chaining rete engine is that it will degrade
in performance exponentially as facts are added to its knowledge base.

&

Chapter 2

A knowledge session is used to evaluate facts against a known set of rules. This is set up
within the prepare method of the bolt, with the rules provided at that point. Within the
execution of the bolt, LogEntry is extracted from the tuple and passed into the knowledge
session through the following call:

ksession.execute(entry);

The knowledge session will act as an entry during execution and we can expect it to be
potentially different once the call has completed. Contained within the LogEntry object is a
control field called £ilter. If a rule sets this to true, the log entry is to be dropped; this is
implemented by checking prior to emitting a tuple containing the entry after the rules execution.

if (lentry.isFilter()) {
collector.emit (new Values (entry)) ;

}

Within the rules resource file, there are three rules currently defined.

» Host Correction
» Filter By Type

» Extract Fields

These rules are implemented for demonstration purposes only and aren't necessarily viable
production rules. The Host Correction rule tries to correct the host name value such that
it is fully qualified. The autonomy of a rule is that, when a matching criterion is met, the result
is displayed. The when clause of this rule will match against the LogEntry instance whose
sourceHost field is localhost.

1: LogEntry (sourceHost == "localhost")

This clause also assigns any matching instance to a local variable 1 within the scope of

this rule. The functionality specified in the then clause is simply plain old Java, which is
added into the current classpath after compilation at runtime. These rules imply making
the localhost value fully qualified.

1.setSourceHost ("localhost .example.com") ;

The Filter By Type rule will set the filter to true for all entries whose type doesn't
match syslog.

The Extract Fields rule is more interesting. Firstly, because it includes a salience
value, which ensures it is evaluated last. This ensures that it never extracts fields from
filtered logs. It then uses regular expression matching to extract more fields and structure
from the logfile. While regular expressions are outside the scope of this book, they are
widely understood and well documented.

(&5}

Log Stream Processing
For completeness's sake, here are some more useful examples of expressions for log entries:

» Match the date: ((?<=>)) \w+\x20\d+
» Match the time: ((?<=\d\x20)) \d+:\d+:\d+
» MatchanIPaddress: ((?<=1[,1)) (\d{1,3}.\d{1,3}.\d{1,3}.\a{1,3})

» Match the protocol: ((?<=[\d{1,3}\.\d{z,3}\.\d{1,3}\.\d{1,3}1\s))+\
af{1,3}\.\d{z,3}\.\a{1,3}\.\a{1,3}

Further reading on regular expressions can be found at Wikipedia:
http://en.wikipedia.org/wiki/Regular expression

These extra fields can then be added to the fields or tags and used later for analysis or search
and grouping.

Drools also includes a module called Drools Fusion that essentially
supports Complex Event Processing (CEP). It is often referred to as an
emerging enterprise approach, which may be true, but practically it simply

5\‘ means that the rules engine understands temporal concerns. Using
temporal operators, it can correlate events over time and derive new
knowledge or trigger actions. These temporal operators are supported
based on the bolt implementation in this recipe. For more information,
browse to the following link:

http://www.jboss.org/drools/drools-fusion.html

Indexing and persisting the log data

Log data needs to be stored for some defined period of time in order to be useful; it also
needs to be searchable. In order to achieve this, the recipe integrates with an open source
product call Elastic Search, which is a general-use, clustered search engine with a RESTful
APl (http://www.elasticsearch.org/).

How to do it...

1. Create a new BaseRichBolt class called IndexerBolt and declare the org.
elasticsearch.client.Client client as a private member variable. You must
initialize it as follows within the prepare method:

if ((Boolean) stormConf.get (backtype.storm.Config.TOPOLOGY DEBUG) ==

true) {
node = NodeBuilder.nodeBuilder () .local (true) .node () ;
} else {
String clusterName = (String) stormConf.get (Conf.ELASTIC

CLUSTER NAME) ;

Chapter 2

if (clusterName == null)
clusterName = Conf.DEFAULT ELASTIC CLUSTER;

node = NodeBuilder.nodeBuilder() .
clusterName (clusterName) .node () ;

}

client = node.client();

The LogEntry object can then be indexed during the execute method of the bolt:
LogEntry entry = (LogEntry)input.getValueByField (FieldNames.LOG
ENTRY) ;
if (entry == null) {
LOG.fatal ("Received null or incorrect value from
tuple");
return;
}
String toBeIndexed = entry.todSON () .toJSONString() ;

IndexResponse response = client.prepareIndex (INDEX
NAME, INDEX TYPE)

.setSource (toBeIndexed)
.execute () .actionGet () ;
if (response == null)
LOG.error ("Failed to index Tuple: " +
input.toString()) ;
else(
if (response.getId() == null)
LOG.error ("Failed to index Tuple: " +
input.toString()) ;
else{

LOG.debug ("Indexing success on Tuple: " +
input.toString()) ;
collector.emit (new Values (entry, response.getId())) ;

}

The unit test of this bolt is not obvious; it is therefore worthwhile to give some
explanation here. Create a new JUnit 4 unit test in your test source folder under the
storm.cookbook.log package. Add a private inner class called StoringMatcher
as follows:

private static class StoringMatcher extends BaseMatcher<Values> {

private final List<Values> objects = new
ArrayList<Values> () ;

@Override
public boolean matches (Object item) {
if (item instanceof Values) ({
objects.add ((Values) item);

]

Log Stream Processing

return true;

}

return false;

}

@Override
public void describeTo (Description description) {
description.appendText ("any integer");

}

public Values getLastValue()
return objects.remove (0) ;

}

4. Then implement the actual test method as follows:

@Test
public void testIndexing() throws IOException
//Config, ensure we are in debug mode
Map config = new HashMap() ;
config.put (backtype.storm.Config.TOPOLOGY DEBUG, true);

Node node = NodeBuilder.nodeBuilder ()
.local (true) .node () ;

Client client = node.client () ;

final OutputCollector collector =
context.mock (OutputCollector.class) ;

IndexerBolt bolt = new IndexerBolt() ;
bolt.prepare (config, null, collector);

final LogEntry entry = getEntry();

final Tuple tuple = getTuple();
final StoringMatcher matcher = new StoringMatcher () ;
context.checking (new Expectations () {{
oneOf (tuple) .getValueByField (FieldNames.LOG ENTRY) ;will
(returnvalue (entry)) ;
oneOf (collector) .emit (with (matcher)) ;

P

bolt.execute (tuple) ;
context.assertIsSatisfied() ;

//get the ID for the index
String id = (String) matcher.getLastValue () .get (1) ;

(&)

Chapter 2

//Check that the indexing working

GetResponse response =
client.prepareGet (IndexerBolt.INDEX NAME
, IndexerBolt .INDEX TYPE,id)

.execute ()
.actionGet () ;
assertTrue (response.exists()) ;

}

Elastic Search provides a complete client API for Java (given that it is implemented in Java),
making integration with it quite trivial. The prepare method of the bolt will create a cluster
node in either the local or clustered mode. The cluster mode will join an existing cluster based
on the name provided with a local storage node being created on the current node; this
prevents the double-hop latency of a write over a different transport.

M Elastic Search is a large complex system in its own right; it is recommended
Q that you read the provided documentation in order to understand the
operational and provisioning concerns.

When Storm is in the debug mode, the Elastic Search node will run an embedded cluster, with
many nodes (if requested) being executed within the same JVM. This is obviously useful for
unit testing purposes. This is all enabled in the prepare method of the bolt.

if ((Boolean) stormConf.get (backtype.storm.Config.TOPOLOGY DEBUG) ==
true) {
node = NodeBuilder.nodeBuilder () .local (true) .node() ;
} else {

When a tuple is received, the LogEnt ry object is extracted and the JSON contents of
LogEntry are sent to Elastic Search.

String toBeIndexed = entry.todSON () .toJSONString() ;

IndexResponse response =
client.prepareIndex (INDEX NAME, INDEX TYPE)

.setSource (toBeIndexed)
.execute () .actionGet () ;

The ID of the log within the Elastic Search cluster is then extracted from the response and
emitted with the LogEntry objects to downstream bolts. In this particular recipe, we will only
use this value for unit testing; however, downstream bolts could easily be added to persist this
value against some log statistics that would be extremely useful within a user interface for
drilldown purposes.

collector.emit (new Values (entry, response.getId())) ;

&7}

Log Stream Processing

The unit test for this particular bolt is quite tricky. This is because, in a typical unit test, we
know what the expected outcome is before we run the test. In this case, we don't know the ID
until we have received the response from the Elastic Search cluster. This makes expressing
expectations difficult, especially if we want to validate the log in the search engine. To achieve
this, we make use of a custom matcher for JMock. The key method in the custom matcher is
the matches method.

public boolean matches (Object item) {
if (item instanceof Values)
objects.add ((Values) item);
return true;

}

return false;

}

This method simply ensures that an instance of Values is returned but it also holds onto the
value for later evaluation. This allows us to set the following set of expectations:

context.checking (new Expectations () {{
oneOf (tuple) .getValueByField (FieldNames
.LOG_ENTRY) ;will (returnValue (entry)) ;
oneOf (collector) .emit (with (matcher)) ;

Ph
And then retrieve the record ID and validate it against the embedded Elastic Search cluster.

String id = (String) matcher.getLastValue() .get (1) ;
GetResponse response = client.prepareGet (IndexerBolt
.INDEX_NAME,IndexerBolt.INDEX_TYPE,id)
.execute ()
.actionGet () ;
assertTrue (response.exists()) ;

If you would like to be able to search the logfiles in the cluster, download
and install the excellent log search front engine, Kibana, from kibana.
S org. This recipe has maintained the JSON log structure from logstash and
Q Kibana is designed as the frontend for logstash on Elastic Search; it will work
seamlessly with this recipe. It also uses the Twitter Bootstrap GUI framework,
meaning that you can integrate it with the analytics dashboard quite easily.

Counting and persisting log statistics

There are many statistics that can be gathered for log streams; for the purposes of this recipe
and to illustrate the concept, only a single-time series will be dealt with (log volume per minute);
however, this should fully illustrate the design and approach for implementing other analyses.

&)

Chapter 2

How to do it...

1.

Download and install the storm-cassandra contrib project into your
Maven repository:

git clone https://github.com/quintona/storm-cassandra
cd storm-cassandra

mvn clean install

Create a new BaseRichBolt class called VolumeCount ingBolt in the storm.
cookbook . log package. The bolt must declare three output fields:

public void declareOutputFields (OutputFieldsDeclarer declarer) {

declarer.declare (new Fields (FIELD ROW_KEY,
FIELD COLUMN, FIELD INCREMENT)) ;

}

Then implement a static utility method to derive the minute representation of the
log's time:
public static Long getMinuteForTime (Date time) {

Calendar ¢ = Calendar.getInstance() ;

c.setTime (time) ;

c.set (Calendar.SECOND, 0) ;

c.set (Calendar .MILLISECOND, O0);

return c.getTimeInMillis() ;

}

Implement the execute method (yes, it is that short):

LogEntry entry = (LogEntry) input.getValueByField (FieldNames.LOG
ENTRY) ;

collector.emit (new Values (getMinuteForTime (entry.
getTimestamp ()), entry.getSource(),1lL));

Finally, create the LogTopology class as per the pattern presented in Chapter 1,
Setting Up Your Development Environment, and create the topology as follows:

builder.setSpout ("logSpout", new LogSpout (), 10);

builder.setBolt ("logRules", new LogRulesBolt(), 10).
shuffleGrouping("logSpout") ;

builder.setBolt ("indexer", new IndexerBolt (), 10).
shuffleGrouping("logRules") ;
(

builder.setBolt ("counter", new VolumeCountingBolt (), 10).
shuffleGrouping("logRules") ;

CassandraCounterBatchingBolt logPersistenceBolt = new
CassandraCounterBatchingBolt (
Conf .COUNT_CF_NAME, VolumeCountingBolt.FIELD ROW KEY,

[}

Log Stream Processing

VolumeCountingBolt.FIELD INCREMENT) ;

logPersistenceBolt.setAckStrategy
(AckStrategy.ACK ON RECEIVE) ;

builder.setBolt ("countPersistor",
logPersistenceBolt, 10).shuffleGrouping("counter") ;

conf.put(Conf.REDIS_PORT_KEY, Conf.DEFAULT_JEDIS_PORT);
conf .put (CassandraBolt .CASSANDRA KEYSPACE, Conf.LOGGING KEYSPACE) ;

This implementation looks surprisingly simple, and it is. It makes use of the storm-
cassandra project (a type of storm-contrib) to abstract all the persistence complexity
away. The storm-cassandra project integrates Storm and Cassandra by providing a generic
and configurable backtype.storm.Bolt implementation that writes the StormTuple
objects to a Cassandra column family.

Cassandra is a column family database (http://cassandra.apache.org/). Cassandra's
column family data model offers the convenience of column indexes with the performance of
log-structured updates, strong support for materialized view, and powerful built-in caching.

A recent addition to the Cassandra functionality is that of counter columns, which are
essentially persistent columns, within a given column family, that can be incremented safely
from anywhere in the cluster.

The storm-cassandra project provides two styles of persistence, firstly for standard
Cassandra column families and secondly for counter-based columns. We will focus on the
second type, as it is appropriate for our use case; you can read about the other style on the
project's README file but it is essentially the same.

An instance of the CassandraCounterBatchingBolt class does all the work for us. It
expects to be told which column family to use, which tuple field to use for the row key and
which tuple field to use for the increment amount. It will then increment columns by that
amount based on the remaining fields in the tuple.

Consider the following constructor:

CassandraCounterBatchingBolt logPersistenceBolt = new CassandraCounter
BatchingBolt ("columnFamily", "RowKeyField", "IncrementAmountField");

And the following tuple as input:
{rowKey: 12345, IncrementAmount: 1L, IncrementColumn: 'SomeCounter'}

This will increment the SomeCounter counter column by 1L in the columnFamily
column family.

[

Chapter 2

A key mind shift for any developer with a relational database background is data modeling

in a column family database. Column family databases, as part of the big data family of
databases, promote the use of highly denormalized data models. This approach removes
table relationships and their locking concerns and enables massive-scale parallel read and
write processing on the database. This promotes data duplication; however, given the cost of
commodity disks, this is seen as a small sacrifice in order to meet the scaling objectives of
today. The mind shift is to think of data models in terms of the queries that we will perform on
the dataset, rather than modeling real-world entities into concise normalized structures. The
query we are trying to answer with this data model is essentially this: select all total count for
all logfiles for a given point in time.

This approach allows us to easily derive this data by emitting a tuple to count that total; we can
easily emit a tuple to answer any other question, and examples could include the following:

» What do my volume trends look like across any given time period, be it day, month,
or year?
» What are the most popular stems within my logfiles?

Column families can contain more than counts, design any denormalized
s . .
~ structure, and emit a tuple to represent a set of columns for that row; if
the row already exists, the columns will simply be added or updated. This
can become extremely powerful.

Creating an integration test for the log

stream cluster

Integration testing is obviously a vital task in the delivery process. There are many types of
integration testing. Unit integration testing involves integration testing a topology, typically as
part of the continuous integration build cycle, and should be seen as complementary to the
necessary functional style of integration testing of a deployed cluster. The integration test
presented here is essentially the same as that of the integration test presented in Chapter 1,
Setting Up Your Development Environment; however, it is sufficiently complex to warrant an
explanation here.

How to do it...

Start by creating the unit test.

1. Using Eclipse, create a JUnit 4 test case called IntegrationTestTopology under
the unit testing source folder of your project in the storm. cookbook . 1og package.
Add a setup method that should be invoked before the class:

@BeforeClass
public static void setup() throws Exception ({

7}

Log Stream Processing

setupCassandra () ;
setupElasticSearch() ;
setupTopology () ;

}

2. Then create each of the associated setup methods; first set up an embedded
version of Cassandra:

private static void setupCassandra() throws Exception
cassandra = new EmbeddedCassandra(9171) ;
cassandra.start () ;
//Allow some time for it to start
Thread.sleep(3000) ;

AstyanaxContext<Cluster> clusterContext = new
AstyanaxContext .Builder ()
.forCluster ("ClusterName")
.withAstyanaxConfiguration (
new AstyanaxConfigurationImpl ()
.setDiscoveryType (NodeDiscoveryType .NONE))
.withConnectionPoolConfiguration (
new ConnectionPoolConfigurationImpl ("MyConnectio
nPool™")
.setMaxConnsPerHost (1) .setSeeds (
"localhost:9171"))
.withConnectionPoolMonitor (new
CountingConnectionPoolMonitor ())
.buildCluster (ThriftFamilyFactory.getInstance()) ;

clusterContext.start () ;
Cluster cluster = clusterContext.getEntity();
KeyspaceDefinition ksDef = cluster.makeKeyspaceDefinition() ;

Map<String, String> stratOptions = new HashMap<String,
Strings () ;
stratOptions.put ("replication factor", "1");
ksDef . setName (Conf . LOGGING KEYSPACE)
.setStrategyClass ("SimpleStrategy")
.setStrategyOptions (stratOptions)
.addColumnFamily (
cluster.makeColumnFamilyDefinition() .
setName (Conf .COUNT_CF_NAME)
.setComparatorType ("UTF8Type")
.setKeyValidationClass ("UTF8Type")
.setDefaultValidationClass ("CounterColumnT

ype"));

=

Chapter 2

cluster.addKeyspace (ksDef) ;

}

Then set up a local, embedded instance of Elastic Search:

private static void setupElasticSearch() throws Exception
Node node = NodeBuilder.nodeBuilder () .local (true) .node() ;
client = node.client() ;
//allow time for the node to be available
Thread.sleep(5000) ;

}

Finally, set up the actual topology to be tested:

private static void setupTopology () {

// We want all output tuples coming to the mock for

// testing purposes

topology.getBuilder () .setBolt ("testBolt", testBolt, 1)
.globalGrouping ("indexer") ;

// run in local mode, but we will shut the cluster

// down when we are finished

topology.runLocal (0) ;

// jedis required for input and output of the cluster

jedis = new Jedis("localhost",
Integer.parselnt (Conf .DEFAULT JEDIS PORT)) ;

jedis.connect () ;

jedis.flushDB() ;

// give it some time to startup before running the

// tests.

Utils.sleep(5000) ;

}

This will set up the fixtures we require in order to test our topology; we also need to
shut these down gracefully at the end of the test, so add the AfterClass method
for the test suite:

@AfterClass
public static void shutDown () {
topology.shutDownLocal () ;
jedis.disconnect () ;
client.close() ;
cassandra.stop() ;

(75}

Log Stream Processing

6. Finish off by implementing the actual test case:
@Test
public void inputOutputClusterTest () throws Exception
String testData = UnitTestUtils.readFile("/testDatal.json") ;
jedis.rpush("log", testData);
LogEntry entry = UnitTestUtils.getEntry();

long minute = VolumeCountingBolt.getMinuteForTime (entry.
getTimestamp ()) ;

Utils.sleep(6000) ;
String id = jedis.rpop (REDIS_ CHANNEL) ;
assertNotNull (id) ;
// Check that the indexing working
GetResponse response = client
.prepareGet (IndexerBolt.INDEX NAME,
IndexerBolt.INDEX TYPE, id) .execute() .actionGet () ;
assertTrue (response.exists()) ;
// now check that count has been updated in cassandra
AstyanaxContext<Keyspace> astyContext = new AstyanaxContext
.Builder ()
.forCluster ("ClusterName")
.forKeyspace (Conf . LOGGING KEYSPACE)
.withAstyanaxConfiguration (
new AstyanaxConfigurationImpl ()
.setDiscoveryType (NodeDiscoveryType.NONE))
.withConnectionPoolConfiguration (
new ConnectionPoolConfigurationImpl (
"MyConnectionPool")
.setMaxConnsPerHost (1) .setSeeds (
"localhost:9171"))
.withConnectionPoolMonitor (
new CountingConnectionPoolMonitor ())
.buildKeyspace (ThriftFamilyFactory.getInstance()) ;
astyContext.start () ;
Keyspace ks = astyContext.getEntity();
Column<String> result = ks.prepareQuery (
new ColumnFamily<String, Strings(

Conf .COUNT_CF_NAME, StringSerializer.get(),
StringSerializer.get()))

7

Chapter 2

.getKey (Long.toString (minute)) .getColumn (entry.
getSource ())

.execute () .getResult () ;
assertEquals (1L, result.getLongValue()) ;

}

This test case works by creating embedded instances of the required clusters for this topology,
namely Cassandra and Elastic Search. As with the previous integration test, it then
injects test data into the input channel and allows the log entry to flow through the topology,
after which it validates the entry in the search engine and validates that the counter has
incremented appropriately.

u This test will take longer to run than a standard unit test and therefore
~ should not be included in your standard Maven build. The test should,
Q however, be used as part of your local development workflow and
validated further on a continuous integration server.

Creating a log analytics dashboard

The log analytics dashboard is a web application that presents aggregated data to the user,
typically in a graphical manner. For achieving this, we must take cognizance of the following
user interface design principles:

» Laser focus: This only shows what is required, creates a focal point based on what
the user is trying to achieve, and doesn't detract from it with unnecessary clutter

» Minimalistic: This only incorporates required graphical features based on the
usability concerns

» Responsive: This is a design approach that ensures that the display is clear and
consistent regardless of the device it is viewed on, be it a PC or a tablet

» Standards based: This means that you shouldn't use any vendor-specific technologies
that would preclude the viewing of the dashboard on devices such as the iPad

(7]

Log Stream Processing

The dashboard in this recipe will present a single dynamic graph of the log volume by minute
per logfile. The following screenshot illustrates the relative expanded view output:

Log Dashboard
<) @ localhost:8050 c | (33 Google Q) (#] (B (= -

© Disable = & Cookies + J¢ CSS + i Forms + i Images + § Information + @ Miscellaneous = * Outline v & Resize + # Tools * ¢> View Source = {lf Options v x v

files/ | {Users/a...dAreaChartheml % [+

Log Dashboard

Ostacked OStream @Expanded @ localnost: varflog/apache2/accesslog localhost: varflogisys.log

10:55:00 105550 10:56:40 10:57:30 10:59:10 11:00:00 11:01:40

Static Timeseries

This graph shows a static view of the log volumes of a
given time period by day

Toggle Updates

n el aned bl b Ouiintan Anck

The following screenshot illustrates the detail inspection support output:

@ Firefox File Edit View History Bookmarks Tools Window Help T\11 &5 + £ B & Z ¢ (=F (Charged) Fri 11:11 AM Quinton Anderson Q
800 Log Dashboard W
@)ry localhost 8080 & | (38~ Google Q) (a) (=1
© Disable ~ & Cookies v J¢ €55 v)i Forms v [Images + § Information ~ R Miscellaneous + ° Outline v & Resize v ¥ Tools = ¢3 View Source = il Options ~ v X
(=] Log Dashboard x

@Stacked OStream OExpanded @ ocalhost localhost: fvarll !

' localhost: var/log/apache2/access.log }

65.00 on 11:10:00

0.00!
00:00 11:00:50 110140 110230 110320 110410 110500 110550 11:06:40 190730 110820 110%10 1111000
Time

Static Timeseries

This graph shows a static view of the log volumes of a
given time period by day

Toggle Updates

o Gegad bt by Oulnion Ao

7@

Chapter 2

How to do it...

1.

Create a new project called 1og-web using the standard Maven archetype
command:

mvn archetype:generate -DgroupId=storm.cookbook -DartifactId=log-
web -DarchetypeArtifactId=maven-archetype-webapp

This will generate a standard project structure and Maven POM file for you.

Open the pom.xml file and remove the default dependencies, replacing them with
the following dependencies:

<dependencys>
<groupId>junit</groupIld>
<artifactId>junit</artifactId>
<version>4.8.1l</versions>
<scope>test</scope>
</dependency>
<dependency>
<groupIds>org.hectorclient</groupIds>
<artifactIds>hector-core</artifactIds>
<version>1l.1-2</versions>
</dependency>
<dependencys>
<groupIds>org.slf4j</groupld>
<artifactId>slf4j-log4jl2</artifactIds>
<version>l.6.1l</versions>
</dependency>
<dependency>
<groupld>com.sun.jersey</groupIld>
<artifactId>jersey-server</artifactIds>
<version>1l.16</version>
</dependency>
<dependency>
<groupld>com.sun.jersey</groupIld>
<artifactId>jersey-grizzly2</artifactIds>
<version>1l.16</version>
</dependency>
<dependency>
<groupld>com.sun.jersey</groupIld>
<artifactId>jersey-servlet</artifactId>
<version>1l.16</version>
</dependency>
<dependency>
<groupld>com.sun.jersey</groupIld>

(77}

Log Stream Processing

<artifactId>jersey-json</artifactIds>
<version>1l.16</version>
</dependency>
<dependency>
<groupld>com.sun.jersey.contribs</groupIds>
<artifactId>jersey-multipart</artifactIds>
<version>1l.16</versions>
</dependency>
<dependencys>
<groupld>org.jmock</groupIds>
<artifactId>jmock-junité4</artifactIds>
<versions>2.5.1l</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>com.googlecode.json-simple</groupIld>
<artifactId>json-simple</artifactIds>
<versions>l.l</version>
</dependency>

3. Then add the following build plugins to the build section of the POM:
<pluginss>
<plugins>
<groupld>org.mortbay.jetty</groupId>
<artifactId>jetty-maven-plugin</artifactId>
</plugin>
<plugins>
<groupld>org.codehaus.mojo</groupIld>
<artifactIdsexec-maven-plugin</artifactId>
<executionss>
<executions>
<goals>
<goals>java</goals>
</goals>
</executions>
</executions>
</plugin>
<plugins>
<artifactId>maven-compiler-plugin</artifactId>
<versions>2.3</versions>
<configurations
<sources>l.6</sources
<target>1l.6</target>
<optimizes>true</optimizes>

@

Chapter 2

<showDeprecation>true</showDeprecation>
<showWarnings>true</showWarningss>
</configurations>
</plugin>
<plugins>
<groupld>org.codehaus.mojo</groupIld>
<artifactIds>cassandra-maven-plugin</artifactIds>
</plugin>
</plugins>

4. Then import the project into Eclipse using the mvn eclipse:eclipse command
and the Eclipse project import process.

5. The excellent Twitter Bootstrap GUI library will be used in the creation of the user
interface. Start by downloading this into a separate location on your drive and
expanding it.
wget http://twitter.github.com/bootstrap/assets/bootstrap.zip

unzip boostrap.zip

6. The bootstrap gives us a rapid start by providing many practical examples; we will
simply copy one and adapt it:

cp bootstrap/docs/examples/hero.html log-web/src/main/webapp/
index.html

cp bootstrap/docs/about log-web/src/main/webapp/about.html
cp boostrap/docs/assets log-web/src/main/webapp/
cp boostrap/docs/assets log-web/src/main/webapp/

cp boostrap/docs/templates log-web/src/main/webapp/

M The Twitter Bootstrap is really quite an excellent departure point for any
Q web-based GUI; it is highly recommended that you read the self-contained
documentation in the downloaded package.

7. While there is much HTML to update, we will focus on the important elements: the
central content and graph. Update the index.html file, replacing the existing <div
class="container"> tag and its contents with the following:

<div class="container"s>
<div class="hero-unit">
<div id="chart">
<svg style="height: 300px;"></svg>
</div>
</div>
<div class="row">

<div class="span4">

(7]

Log Stream Processing

10.

11.

12.

<h2> Timeseries</h2>
<p>This graph shows a view of the log volumes
of a given time period by day</p>
<button id="updateToggleButton" type="button"
class="btn btn-primary">Toggle Updates</button>
</div>
</div>
</div>

For the graph, we will use the excellent data-visualization library, D3 (http://d3js.
org/), and some preconfigured models based on D3, called NVD3 (http://nvd3.
org/), by adding their compiled JavaScript into our webapp's assets folder:

wget https://github.com/novus/nvd3/zipball/master

unzip novus-nvd3-4el2985.zip

cp novus-nvd3-4el2985/nv.d3.js log-web/src/main/webapp/assets/js/
cp novus-nvd3-4el12985/1ib/d3.v2.js log-web/src/main/webapp/assets/
js/

cp novus-nvd3-4el2985/src/nv.d3.css log-web/src/main/webapp/
assets/css/

Next, we include these into the HTML file and write the client-side JavaScript to
retrieve the data and update the graph.

Add the following script includes at the bottom of the HTML file, after the other
<scripts> tags:

<script src="assets/js/d3.v2.js"></script>
<script src="assets/js/nv.d3.js"></script>

And the CSS imports in the html header:

<link type="text/css" rel="stylesheet" href="assets/css/nv.d3.
css'">

Then add our custom JavaScript into a <script></script> tag below the other
script imports, towards the bottom of the file:

var chart;
var continueUpdates = true;
nv.addGraph (function ()
chart = nv.models.stackedAreaChart ()
.x(function(d) { return d[0] })
.y (function(d) { return d[1] })
.clipEdge (true) ;

chart .xAxis
.tickFormat (function(d) { return d3.time.
format ('%X') (new Date(d)) })

(&)

Chapter 2

.axisLabel ('Time')
.showMaxMin (false) ;

chart.yAxis
.axisLabel ('Volume')
.tickFormat (d3.format (', .2f")) ;

d3.select ('#chart svg')
.datum(getdata())
.transition() .duration (500)
.call (chart) ;

nv.utils.windowResize (chart.update) ;

chart.dispatch.on('stateChange', function (e) {
nv.log('New State:', JSON.stringify(e));

3N

return chart;

3N

function update()
fetch() ;
if (continueUpdates)
setTimeout (update, 60000) ;

}

update () ;

$ (document) .ready (function ()
$ ('#updateToggleButton') .bind('click', function () {
if (continueUpdates) ({

continueUpdates = false;
} else {

continueUpdates = true;

update () ;

3N
3N

13. And then add the code to fetch the data from the server:
var alreadyFetched = {};

function getUrl () {
var today = new Date() ;
today.setSeconds (0) ;

s

Log Stream Processing

today.setMilliseconds (0) ;

var timestamp = today.valueOf () ;

var dataurl = "http://localhost:8080/services/LogCount/
TotalsForMinute/" + timestamp + "/";

return dataurl;

}

function fetch() {
// find the URL in the link right next to us

var dataurl = getUrl();

// then fetch the data with jQuery
function onDataReceived(series)
// append to the existing data

for(var i = 0; 1 < series.length; i++){
if (alreadyFetched[series[i] .FileName] == null) {
alreadyFetched[series[i] .FileName] = {

FileName: series[i] .FileName,
values: [{
Minute: series[i] .Minute,
Total: series[i] .Total
3]
i
} else {
alreadyFetched[series[i] .FileName] .values.push ({
Minute: series[i] .Minute,
Total: series[i] .Total
1)
if (alreadyFetched[series[i] .FileName] .values.
length > 30){
alreadyFetched[series[i] .FileName] .values.

pop () ;

}

//update the graph

d3.select ('#chart svg')
.datum (getdata())
.transition() .duration (500)
.call (chart) ;

}

function onError (request, status, error){
console.log("Received Error from AJAX: " +
request .responseText) ;

[

Chapter 2

14.

15.

}

$.ajax ({
url:dataurl,
type: 'GET',

dataType: 'json',
crossDomain: true,
xhrFields: {
withCredentials: true
I
success:onDataReceived,
error:onError
13K
}

function getdata () {
var series = [];
var keys = [];
for (key in alreadyFetched) ({
keys.push (key) ;
}
for(var i = 0; 1 < keys.length; i++){
var newValues = [];
for(var j = 0; j < alreadyFetched[keys[i]] .values.
length;j++) {
newValues.push ([alreadyFetched [keys[i]] .values[j].
Minute, alreadyFetched[keys[i]] .values[j].Totall);

}
series.push ({
key:alreadyFetched[keys[i]] .FileName,
values:newValues
1)
}

return series;

}
This completes the client-side part of the implementation. In order to expose the data
to the client layer, we need to expose services to retrieve the data.

Start by creating a utility class called CassandraUtils in the storm. cookbook.
services.resources package and add the following content:

public class CassandraUtils

public static Cluster cluster;
public static Keyspace keyspace;

&)

Log Stream Processing

protected static Properties properties;

public static boolean initCassandra () {
properties = new Properties();
try {

properties.load(Main.class
.getResourceAsStream (" /cassandra.properties")) ;

} catch (IOException ioe) {
ioce.printStackTrace() ;

}

cluster = HFactory.getOrCreateCluster (properties.
getProperty ("cluster.name",

"DefaultCluster"), properties.getProperty
("cluster.hosts", "127.0.0.1:9160")) ;
ConfigurableConsistencyLevel ccl = new

ConfigurableConsistencyLevel () ;

ccl.setDefaultReadConsistencyLevel
(HConsistencyLevel .ONE) ;

String keyspaceName = properties.getProperty (
"logging.keyspace", "Logging") ;

keyspace = HFactory.createKeyspace (
keyspaceName, cluster, ccl);

return (cluster.describeKeyspace (
keyspaceName) != null);

}

16. Then create the LogCount class in the same package, which essentially exposes a
RESTful lookup service:

@Path ("/LogCount")
public class LogCount

@GET

@Path ("/TotalsForMinute/{timestamp}")

@Produces ("application/json")

public String getMinuteTotals (@PathParam("timestamp") String

timestamp) {
SliceCounterQuery<String, String> query =
HFactory.createCounterSliceQuery (

CassandraUtils.keyspace,
StringSerializer.get (),
StringSerializer.get());

=

Chapter 2

query.setColumnFamily ("LogVolumeByMinute") ;
query.setKey (timestamp) ;
query.setRange ("", "", false, 100);

QueryResult<CounterSlice<String>> result = query.execute() ;

Iterator<HCounterColumn<String>> it =
result.get () .getColumns () .iterator () ;

JSONArray content = new JSONArray () ;

while (it.hasNext()) {
HCounterColumn<String> column = it.next () ;
JSONObject fileObject = new JSONObject () ;
fileObject.put ("FileName", column.getName ()) ;
fileObject.put ("Total", column.getValue());
fileObject.put ("Minute", Long.parselong (timestamp)) ;
content.add (fileObject) ;

}

return content.toJSONString() ;

}

17. Finally, you expose the service by creating the LogServices class:

@ApplicationPath("/")
public class LogServices extends Application {

public LogServices () {
CassandraUtils.initCassandra () ;
}
@Override
public Set<Class<?>> getClasses()
final Set<Class<?>> classes = new HashSet<Class<?>>() ;
// register root resource
classes.add (LogCount.class) ;
return classes;

}

18. Then configure the web . xm1 file:

<web-app>
<display-name>Log-Web</display-name>
<servlets>
<servlet-name>
storm.cookbook.services.LogServices</servlet-name>
<servlet-class>

&1

Log Stream Processing

com.sun.jersey.spi.container.servlet.ServletContainer
</servlet-classs>
<init-params>
<param-name>javax.ws.rs.Application</param-name>
<param-value>
storm.cookbook.services.LogServices
</param-value>
</init-param>
<load-on-startup>1l</load-on-startup>
</servlets>
<servlet-mapping>
<servlet-name>
storm.cookbook.services.LogServices</servlet-name>
<url-pattern>/services/*</url-pattern>
</servlet-mapping>
</web-app>

19. You can now run your project using the following command from the root of your web-
log project:

mvn jetty:run

Your dashboard will then be available at localhost:8080.

At a high level, the dashboard works by periodically querying the server for counts for a given
time. It maintains an in-memory structure on the client side to hold the results of these
queries and then feeds the consolidated two-dimensional array into the graph class. Take a
look at the HTML,; the following code defines where the graph will be displayed:

<div id="chart">
<svg style="height: 300px;"></svg>
</divs>

The chart is defined by the following:

nv.addGraph (function ()
chart = nv.models.stackedAreaChart ()
.x(function(d) { return d[0] })
.y (function(d) { return d[1] })
.clipEdge (true) ;

chart.xAxis

.tickFormat (function(d) { return
d3.time.format ('$X') (new Date(d)) })

~[ee]

Chapter 2

.axisLabel ('Time')
.showMaxMin (false) ;

chart.yAxis
.axisLabel ('Volume')
.tickFormat (d3.format (', .2f")) ;

d3.select ('#chart svg')
.datum(getdata())
.transition() .duration (500)
.call (chart) ;

nv.utils.windowResize (chart.update) ;

chart.dispatch.on('stateChange', function (e) {
nv.log('New State:', JSON.stringify(e));

3N

return chart;

3N

The in-memory structure is essentially simply a two-dimensional array of values and so it is
important to map these onto the x and y axes on the graph, which is done through the following:

chart = nv.models.stackedAreaChart ()
.x(function(d) { return d[0] })
.y (function(d) { return d[1] })
.clipEdge (true) ;

Data is fetched through the fetch () method, which issues an Ajax asynchronus request
to the server. Once the response is received, it is added to the in-memory structure in

the onDataReceived (series) method. Finally, the getdata () method maps the log
structure into a two-dimension array to be displayed by the graph.

On the server side, the service is exposed via Jersey. It is the open source, production-
quality, JSR 311 Reference Implementation for building RESTful web services. Services are
defined using annotations. For this recipe, only the single service is defined by the following
annotations to the LogCount class:

@Path (" /LogCount")
public class LogCount

@GET
@Path ("/TotalsForMinute/{timestamp}")
@Produces ("application/json")

public String getMinuteTotals (@PathParam("timestamp") String
timestamp) {

7}

Log Stream Processing

This service will then essentially be available from 1localhost:8080/services/
LogCount/TotalForMinutes/ [timestamp]. The value passed into the timestamp
variable will be used in performing the lookup against Cassandra. The results of the query are
then mapped onto a JSON object and returned to the caller:

Iterator<HCounterColumn<String>> it = result.get () .getColumns() .
iterator() ;

JSONArray content = new JSONArray () ;

while (it.hasNext()) {
HCounterColumn<String> column = it.next();
JSONObject fileObject = new JSONObject () ;
fileObject.put ("FileName", column.getName ()) ;
fileObject.put ("Total", column.getValue());
fileObject.put ("Minute", Long.parselLong(timestamp)) ;
content.add (fileObject) ;

}

return content.todSONString() ;

u It is usually quite difficult to bring up the entire topology and set of clusters in
~ order to simply test the web application; a convenient main class is provided
Q in the supporting material that populates the column family with random
data, allowing for easy testing of the web application in isolation

(e

Calculating Term
Importance with Trident

In this chapter we will cover:

» Creating a URL stream using a Twitter filter
» Deriving a clean stream of terms from the documents

» Calculating the relative importance of each term

Introduction

This chapter will present the implementation of a very well-known data processing algorithm,
Term Frequency-Inverse Document Frequency (TF-IDF), using Storm's Trident API. TF-IDF is
a numerical statistic that reflects how important a word is to a document within a collection
of documents. This is often a key concern in search engines but is also an important starting
point in sentiment mining, as the trend of the important words within textual content can be
an extremely useful predictor or an analytical tool.

TF-IDF drives many search engines, such as Apache Lucence. If you want
M the details of how it is used in this context, please read the documentation
Q forthe Similarity class in Apache Lucence at http://lucene.
apache.org/core/2 9 4/api/all/org/apache/lucene/
search/Similarity.html.

Calculating Term Importance with Trident

According to the Storm project wiki (https://github.com/nathanmarz/storm/wiki/
Trident-tutorial), Trident is a new high-level abstraction for doing real-time computing
on top of Storm. It allows you to seamlessly intermix high throughput (millions of messages
per second) and stateful stream processing with low-latency-distributed querying. If you're
familiar with high-level batch processing tools such as Pig or Cascading, the concepts of
Trident will be very familiar: Trident has joins, aggregations, grouping, functions, and filters.
In addition to these, Trident adds primitives for doing stateful, incremental processing on top
of any database or persistence store. Trident has consistent, exactly-once semantics; so it is
easy to reason about Trident topologies.

Within the Big Data architecture, such as Lambda, Trident then becomes a key component
providing the real-time portion of the data stream, which is then augmented with a historical
batch of data to form a complete dataset. We will also see how DRPC easily enables such
architecture in a later chapter. For some background on the Lambda architecture, please see
this blog post at the following link:

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

Creating a URL stream using a Twitter filter

There are many approaches to sourcing input documents for the TF-IDF implementation. This
recipe will present an approach using Twitter.

Twitter provides a stream API that allows you to receive a sample of the total tweets within
Twitter. The approach of using a sample is more than sufficient for most applications, as more
data may not improve your results, especially in any meaningful way relative to the costs
involved. For this reason, this is the only way Twitter allows you to consume the data without
special agreements in place.

Tweet status streams can be filtered using the Twitter streaming API, so that only a subset of
the population is sampled and delivered in a stream. This enables one to listen for tweets for
a particular topic. Furthermore, tweets often have links attached to them, which is where the
bulk of the information is held given the small character limit on the tweet itself.

The approach for this recipe is therefore to subscribe to a Twitter stream using a filter and
then extract the URLs contained within the tweets and emit them into the topology. These
links will later be used to download the content of the documents to which they refer and
calculate the TF-IDF value for each term within the document content.

How to do it...

Start by creating the project directory and standard Maven folder structure (http://
maven.apache.org/guides/introduction/introduction-to-the-standard-
directory-layout.html).

5]

Chapter 3

1. Create the POM as per the Creating a "Hello World" topology recipe in Chapter 1,

Setting Up Your Development Environment, updating the <artifactIds> and
<name> tag values to t£idf -topology, and include the following dependencies:

<groupld> <artifactld> <version> <scope>
org.slf4j slf4aj- 1.6.1

log4jl2
org.jmock jmock-legacy 2.5.1 test
storm storm 0.9.0-wiplé provided
org.twitter4j twitterdj- [3.0,)

core
org.twitter4j twitterdj- [3.0,)

sStream
com.googlecode. json-simple 1.1
json-simple
org.jmock jmock-junit4 2.5.1 test
redis.clients jedis 2.1.0
org.apache.tika tika-parsers 1.2
org.apache. lucene- 3.6.2
lucene analyzers
org.apache. lucene- 3.6.2
lucene spellchecker
edu.washington. morpha- 1.0.4
cs.knowitall stemmer
trident- trident- 0.0.1-wip2
cassandra cassandra

Import the project into Eclipse after generating the Eclipse project files:

mvn eclipse:eclipse

Create a new spout called TwitterSpout that extends from BaseRichSpout,

and add the following member-level variables:

LinkedBlockingQueue<Status> queue

TwitterStream twitterStream;

String[] trackTerms;

long maxQueueDepth;

SpoutOutputCollector collector;

null;

i

Calculating Term Importance with Trident

4. Inthe open method of the spout, initialize the blocking queue and create a Twitter
stream listener:

queue = new LinkedBlockingQueue<Status>(1000) ;
StatusListener listener = new StatusListener ()
{

@Override
public void onStatus (Status status) {
if (queue.size () < maxQueueDepth) {

LOG.trace ("TWEET Received: " + status);
queue.offer (status) ;
} else {

LOG.error ("Queue is now full, the following
message is dropped: "+status);

}
}

5. Then create the Twitter stream and filter, as follows:

twitterStream = new TwitterStreamFactory () .getInstance() ;
twitterStream.addListener (listener) ;
FilterQuery filter = new FilterQuery() ;
filter.count (0) ;
filter.track (trackTerms) ;
twitterStream.filter (filter) ;

6. You then need to emit the tweet into the topology.

public void nextTuple() {
Status ret = queue.poll();
if (ret == null) {
try { Thread.sleep(50); }
catch (InterruptedException e) {}
} else {
collector.emit (new Values (ret));

}
}

7. Next, you must create a bolt to publish the tuple persistently to another topology
within the same cluster. Create a BaseRichBolt class called PublishURLBolt
that doesn't declare any fields, and provide the following execute method:

public void execute (Tuple input) {
Status ret = (Status) input.getValue(0);
URLEntity[] urls = ret.getURLEntities();
for(int i = 0; i < urls.length;i++){
jedis.rpush("url", urls[i] .getURL() .trim());

Chapter 3

8. Finally, you will need to read the URL into a stream in the Trident topology. To do this,
create another spout called TweetURLSpout:

@Override
public void declareOutputFields (OutputFieldsDeclarer
outputFieldsDeclarer) {
outputFieldsDeclarer.declare (new Fields ("url"));

}

@Override
public void open (Map conf, TopologyContext
topologyContext, SpoutOutputCollector
spoutOutputCollector) {
host = conf.get (Conf.REDIS_HOST KEY) .toString();
port = Integer.valueOf (conf.get (Conf
.REDIS_PORT_KEY) .toString()) ;
this.collector = spoutOutputCollector;
connectToRedis () ;

}

private void connectToRedis()
jedis = new Jedis (host, port);
}

@Override
public void nextTuple() {
String url = jedis.rpop("url") ;
if (url==null)
try { Thread.sleep(50); }
catch (InterruptedException e) {}
} else {
collector.emit (new Values (url)) ;
}

}

The cluster will execute two separate topologies. The first topology will simply receive data
from the Twitter API and publish it to a queue; the other topology will be the actual Trident
topology that does all the heavy lifting. This separation by persistent queue is not only
important from a best-practice perspective, but it also ensures that the production and
consumption of data are completely decoupled. These are important reasons from the
maintenance and stability perspective; the direct functional reason for the separation is the
ability to implement exactly-once semantics that require a transactional spout, which we will
cover in a later chapter.

Calculating Term Importance with Trident

The Twitter stream is received by using the Twitter4) library (http://twitter4j.org/)

that takes care of everything for you, including listening appropriately for raw data from Twitter.
An event listener must be provided to it in order to handle newly received tweets from the API.
Because the listening process is executed in a separate thread, the listener posts them to a
thread-safe queue:

queue.offer (status) ;

The tweet is then removed from the queue as part of the nextTuple () method of the spout
and emitted into the topology:

Status ret = queue.poll();

The creation of the Twitter filter is the key for this approach. We are trying to discover the most
important terms for a given topic; therefore, we need to set up an appropriate filter so that we
only receive relevant tweets, as far as possible. The Twitter APl documents the filter usage in
great detail and it is important to understand this in order to construct an appropriate filter;
this is available at the following link:

https://dev.twitter.com/docs/streaming-apis/parameters#track
The Twitter API is exposed via Twitter4]J in the following calls within the open method:

FilterQuery filter = new FilterQuery() ;
filter.count (0) ;
filter.track (trackTerms) ;
twitterStream.filter (filter) ;

\ There are lock-free mechanisms to achieve the coordination between these
~ threads. If your performance requirements call for it, take a look at the
Q disruptor as an alternative for you (http://lmax-exchange.github.
com/disruptor/).

There's more...

Testing the topology against an active Twitter stream is quite difficult because of the rate of
unknown data being used as part of debugging and testing processes. It is therefore important
to have a testing spout to inject URLs into the Trident topology. The Trident API ships with

a testing utility to achieve this. Simply provide this spout to the Trident stream as an input
parameter as opposed to TweetURLSpout:

FixedBatchSpout testSpout = new FixedBatchSpout (
new Fields ("url"), 1,
new Values ("http://t.co/hP5PM6fm") ,
new Values ("http://t.co/xSFteG23")) ;
testSpout.setCycle (true) ;

=

Chapter 3

This will essentially inject a known set of URLs into the topology in a cycle, giving us a stable,
predictable testing environment. This can be removed when we deploy to an actual cluster.

Finally, while you can use your username and password to access Twitter, this isn't advised.
Rather, you should register your application by following the Twitter dev guides at https://
dev.twitter.com/docs. Once you have done this, create a properties file within your
resources folder with the following content:

oauth.consumerKey=XXX
oauth.consumerSecret=XXX
oauth.accessToken=XXXX
oauth.accessTokenSecret=XXXX

Deriving a clean stream of terms from the

documents

This recipe consumes the URL stream, downloading the document content and deriving
a clean stream of terms that are suitable for later analysis. A clean term is defined as a
word that:

» Is not a stop word

» Is avalid dictionary word

» Is notanumberor URL

» Isalemma
A lemma is the canonical form of a word; for example, run, runs, ran, and running are forms
of the same lexeme with "run" as the lemma. Lexeme, in this context, refers to the set of

all the forms that have the same meaning, and lemma refers to the particular form that is
chosen by convention to represent the lexeme.

The lemma is important for this recipe because it enables us to group terms that have the
same meaning. Where their frequency of occurrence is important, this grouping is important.

A lemma is similar to a stem; however, a stem is often not a valid dictionary
s
~ word because it is derived algorithmically. Therefore, a lemma is preferred for
this recipe, given that the imperative is "understanding" and not "searching"
the order.

[55]-

Calculating Term Importance with Trident

How to do it...

First we need to fetch the document content based on the URL:

1. Create a class named DocumentFetchFunction, that extends from storm.
trident.operation.BaseFunction, and provide the following implementation
for the execute method:

String url = tuple.getStringByField("url") ;
try {
Parser parser = new AutoDetectParser() ;
Metadata metadata = new Metadata() ;
ParseContext parseContext = new ParseContext () ;
URL urlObject = new URL(url) ;

ContentHandler handler = new BodyContentHandler (10 *
1024 * 1024);

parser.parse ((InputStream) urlObject.getContent (),
handler, metadata, parseContext) ;
String[] mimeDetails = metadata.get ("Content-Type")
.split(";");
if ((mimeDetails.length > 0)
&& (mimeTypes.contains (mimeDetails[0]))) {
collector.emit (new Values (handler.toString(),
url.trim(), "twitter"));

}

} catch (Exception e) ({

}

2. Next we need to tokenize the document, create another class that extends
from BaseFunction and call it Document Tokenizer. Provide the following
execute implementation:

String documentContents = tuple.getStringByField(TfidfTopologyFiel
ds .DOCUMENT) ;
TokenStream ts = null;
try {
ts = new StopFilter(Version.LUCENE 30,
new StandardTokenizer (Version.LUCENE 30,
new StringReader (documentContents)),
StopAnalyzer.ENGLISH STOP_ WORDS SET
) ;
CharTermAttribute termAtt =
ts.getAttribute (CharTermAttribute.class) ;
while (ts.incrementToken()) {

String lemma = MorphaStemmer.stemToken (
termAtt.toString()) ;

lemma = lemma.trim().replaceAll ("\n","")

Chapter 3

.replaceAll (" \r", "");
collector.emit (new Values (lemma)) ;

}

ts.close() ;
} catch (IOException e) {
LOG.error (e.toString()) ;

}

finally {
if (ts != null){

try {
ts.close() ;

} catch (IOException e) {}

}

We then need to filter out all the invalid terms that may be emitted by this function.
To do this, we need to implement another class that extends BaseFunction called
TermFilter. The execute method of this function will simply call a checking
function to optionally emit the received tuple. The checking function isKeep ()
should perform the following validations:

if (stem == null)

return false;

if (stem.equals(""))
return false;

if (filterTerms.contains (stem))
return false;

//we don't want integers

try(
Integer.parselnt (stem) ;
return false;

}catch (Exception e) {}

//or floating point numbers

try(
Double.parseDouble (stem) ;
return false;

}catch (Exception e) {}

try {
return spellchecker.exist (stem) ;

} catch (Exception e) {
LOG.error (e.toString()) ;
return false;

o7}

Calculating Term Importance with Trident

4. The dictionary needs to be initialized during the prepare method for this function:

public void prepare (Map conf, TridentOperationContext context) {
super.prepare (conf, context);
File dir = new File(System.getProperty ("user.home") +
"/dictionaries") ;
Directory directory;
try {
directory = FSDirectory.open(dir) ;
spellchecker = new SpellChecker (directory) ;
StandardAnalyzer analyzer = new
StandardAnalyzer (Version.LUCENE 36) ;
IndexWriterConfig config = new
IndexWriterConfig (Version.LUCENE 36, analyzer);
URL dictionaryFile = TermFilter.class.getResource ("
/dictionaries/fulldictionary00.txt") ;
spellchecker.indexDictionary (new
PlainTextDictionary (new File(
dictionaryFile.toURI())), config, true);
} catch (Exception e) {
LOG.error (e.toString()) ;
throw new RuntimeException (e) ;
}
}

5. Download the dictionary file from http://dl.dropbox.com/u/7215751/
JavaCodeGeeks/LuceneSuggestionsTutorial/fulldictionary00.zip
and place itin the src/main/resources/dictionaries folder of your project
structure.

6. Finally, you need to create the actual topology, or at least partially for the moment.
Create a class named TermTopology that provides a main (String[] args)
method and creates a local mode cluster:

Config conf = new Config() ;
conf . setMaxSpoutPending (20) ;
conf.put (Conf.REDIS_HOST_KEY, "localhost");
conf .put (Conf. REDIS PORT KEY, Conf. DEFAULT_JEDIS_PORT) ;

if (args.length == 0) {
LocalDRPC drpc = new LocalDRPC() ;
LocalCluster cluster = new LocalCluster() ;
cluster.submitTopology ("tfidf", conf,
buildTopology (drpc)) ;
Thread.sleep(60000) ;

}
7. Then build the appropriate portion of the topology:

public static StormTopology buildTopology (LocalDRPC drpc) {
TridentTopology topology = new TridentTopology () ;

5]

Chapter 3

FixedBatchSpout testSpout = new FixedBatchSpout (
new Fields ("url"), 1,
new Values ("http://t.co/hP5PM6fm") ,
new Values ("http://t.co/xSFteG23")) ;
testSpout.setCycle(true) ;

Stream documentStream = topology
.newStream ("tweetSpout", testSpout)
.parallelismHint (20)
.each (new Fields ("url"),
new DocumentFetchFunction (mimeTypes),
new Fields ("document", "documentId", "source")) ;

Stream termStream = documentStream
.parallelismHint (20) .each(new Fields ("document"),
new DocumentTokenizer (), new Fields ("dirtyTerm"))
.each(new Fields ("dirtyTerm"), new TermFilter(),
new Fields("term")) .project (new
Fields ("term", "documentId", "source")) ;

Trident's API provides for various types of operations. Functions are partition-local in nature,
meaning that they are applied to each batch independently. A function takes in a set of input
fields and emits zero or more tuples as output. The fields of the output tuple are appended to
the original input tuple in the stream. If a function emits no tuples, the original input tuple is
filtered out. Otherwise, the input tuple is duplicated for each output tuple.

The document fetch function takes a URL as input, fetches the document, and emits the
document content, meaning that the resulting tuple will contain both the document content
and the URL. If there are any problems fetching the document, it won't emit anything, thus
acting as a natural filter.

The fetch function makes use of the Apache Tika library (http://tika.apache.org/)to
fetch and extract the contents of the document:

Parser parser = new AutoDetectParser() ;
Metadata metadata = new Metadata() ;
ParseContext parseContext = new ParseContext () ;
URL urlObject = new URL(url) ;

ContentHandler handler = new BodyContentHandler (10 * 1024 *
1024) ;

parser.parse ((InputStream) urlObject.getContent (), handler,
metadata, parseContext) ;

s

Calculating Term Importance with Trident

And it then filters based on MIME type to ensure we only get the document types that we are
looking for:

String[] mimeDetails = metadata.get ("Content-Type") .split(";");
if ((mimeDetails.length > 0)

&& (mimeTypes.contains (mimeDetails[0])))
collector.emit (new Values (handler.toString(), url.trim(),
"twitter")) ;

}

The tokenize function does a little bit more than purely tokenizing the document. It makes use
of the Apache Lucene's analyzer library (http://lucene.apache.org/) to tokenize and
filter out the stop words as it proceeds further:

ts = new StopFilter(
Version.LUCENE 30,
new StandardTokenizer (Version.LUCENE_30, new
StringReader (documentContents)),
StopAnalyzer.ENGLISH_ STOP_WORDS_SET
)

It then makes use of the Morpha Stemmer library (http://www.informatics.sussex.
ac.uk/research/groups/nlp/carroll/morph.html) to derive the word stem,
or rather lemma, of each term. These values are then emitted as follows:

CharTermAttribute termAtt = ts.getAttribute (CharTermAttribute.class) ;

while (ts.incrementToken())
String lemma = MorphaStemmer.stemToken (termAtt.toString()) ;
lemma = lemma.trim().replaceAll ("\n", "").replaceAll("\r", "")

collector.emit (new Values (lemma)) ;

}

The document filter doesn't simply emit tuples that don't meet a set of criteria; among them
is a dictionary lookup.

Importantly, the Trident API starts by defining a stream on the topology and linking in the
document fetch function through the each function:

Stream documentStream = topology
.newStream ("tweetSpout", testSpout)
.parallelismHint (20)
.each (new Fields ("url"),
new DocumentFetchFunction (mimeTypes),
new Fields ("document", "documentId", "source"));

100

Chapter 3

It then defines a term stream that tokenizes the documents on the document stream,
filters the terms, and projects out the required fields:

Stream termStream = documentStream
.parallelismHint (20)
.each (new Fields ("document"), new DocumentTokenizer (),
new Fields ("dirtyTerm"))
.each(new Fields ("dirtyTerm"), new TermFilter (),
new Fields("term"))
.project (new Fields ("term", "documentId", "source")) ;

The projection essentially drops the fields from the tuples that aren't listed. This is important
because we don't want to send the document content redundantly and unnecessarily around
the network.

Calculating the relative importance of

each term

The true power of Trident is demonstrated in this recipe, with many of the abstractions
used in order to calculate the TF-IDF value. Before the recipe is presented, it is important
to understand the simple math behind TF-IDF. We will need the following components to
calculate the TF-IDF:

» tf (t,d): This component specifies the term frequency, that is, the number of
times a given term (t) appears in a given document (d)

» df (t): This component specifies the document frequency, that is, how frequently
a given term (t) appears across all documents

» D: This component specifies the document count, that is, the total number
of documents

There are many ways to calculate the term frequency; for this recipe, we will use the raw
frequency, that is, the number of times a term appears in the document. Based on this
assumption, the formula for TF-IDF is:

D

tf(f,d)* log Tf(l‘)

Calculating Term Importance with Trident

How to do it...

1. Add the following API calls to the topology definition in the TermTopology class:

102

TridentState dfState = termStream.groupBy (
new Fields("term")) .persistentAggregate (
getStateFactory ("df"),
new Count (), new Fields("df"));

TridentState dState = termStream.groupBy (
new Fields ("source")) .persistentAggregate (
getStateFactory ("d"), new Count (),
new Fields("d"));

topology.newDRPCStream ("dQuery",drpc)

.each(new Fields("args"), new Split(),
new Fields ("source")) .stateQuery(dState,
new Fields ("source"), new MapGet (),

new Fields("d term", "currentD")) ;

topology.newDRPCStream ("dfQuery", drpc)

.each(new Fields("args"), new Split(),
new Fields ("term")) .stateQuery(dfState,
new Fields("term"), new MapGet (),

new Fields ("currentDf")) ;

Stream tfidfStream = termStream.groupBy (

new Fields ("documentId", "term"))
.aggregate (new Count (), new Fields("tf"))
.each (new Fields ("term", "documentId", "tf"),

new TfidfExpression(), new Fields("tfidf"));

And then implement the TfidfExpression class by extending the BaseFunction
interface and providing the execute method:

try {
String result = execute("dQuery", "twitter");

double d = Double.parseDouble (result) ;
result = execute ("dfQuery",
tuple.getStringByField ("term")) ;

double df = Double.parseDouble (result) ;

double tf = (double) tuple.getLongByField("tf");

double tfidf = tf * Math.log(d / (1.0 + df));

LOG.debug ("Emitting new TFIDF (term,Document) : ("
+ tuple.getStringByField("term") + ", "

Chapter 3

+ tuple.getStringByField ("documentId") + ") = " +
tfidf) ;
collector.emit (new Values (tfidf));
} catch (Exception e) {
LOG.error (e) ;

}

It is important at this point to understand the flow of data across the entire topology, as

illustrated by the following diagram:
GroupBy
Source }—b Count

GroupBy Count
Terms

GroupBy
Terms,
Document

Fetch
Document

Tokenize Filter
Document Terms

TF-IDF
Expression

Count

The initial data flow is that of a single stream; however, after the terms have been filtered, it
branches off into three separate flows. Both D and df (t) are functions that are calculated
across batches and over time, they are in a sense long-living concerns, while t £ (t, d) is only
applicable for the given batch.

The value for D is derived by grouping documents by some static property. In this case, the
concept of source was introduced and, for the purposes of this recipe, will only have the
value twitter. This property is important so that we can use a grouping around the state,
which will allow us to easily re-use the map state that ships with Trident without having to
define some custom state implementation. These API calls will effectively group around the
static property and count all the documents:

TridentState dState = documentStream.groupBy (new Fields ("source"))
.persistentAggregate (getStateFactory("d"), new Count (), new
Fields ("d")) ;

The same logic is applied to df (t), except that we group around the term. For both D and
daf (t), we make use of the persistentAggregate method and a map state, Cassandra in
this case, to ensure that we maintain the state across batch boundaries.

Calculating Term Importance with Trident

Finally, we group and aggregate around the term and document to get the term frequency,
which is a nonpersistent aggregate. The terms document ID and frequency are then
passed to the expression that does a lookup of the other values using a DRPC query:

private String execute (String function, String args) throws
TException, DRPCExecutionException(
if (client != null)
return client.execute (function, args);

}

The queries are defined within the topology and simply executed, as shown in the preceding
code snippet:

topology.newDRPCStream ("dQuery",drpc)
.each(new Fields("args"),

new Split (), new Fields ("source"))
.stateQuery (dState, new Fields ("source"), new MapGet (),
new Fields("d term", "currentD")) ;

topology.newDRPCStream ("dfQuery", drpc)

.each(new Fields("args"), new Split (),
new Fields("term")) .stateQuery(dfState,
new Fields("term"), new MapGet (), new

Fields ("currentDf")) ;

Each query takes a set of arguments and passes them as a key to the MapGet query function.
This simply does a lookup against a key and in our case will only ever return a single result
because of the groupings applied before each persistentAggregate.

It is important to have the schema defined correctly before executing your topology; this can be
achieved by creating a text file called dropAndCreateSchema . txt with the following content:

drop keyspace trident test;
create keyspace trident test
with strategy options = [{replication factor:1}]
and placement strategy =
'org.apache.cassandra.locator.SimpleStrategy';

use trident test;

create column family tfid
with comparator = AsciiType
and default validation class = 'UTF8Type'
and key validation class = 'UTF8Type';

You can then apply this schema by executing the following command:

cassandra-cli --host localhost < dropAndCreateSchema.txt

104

Distributed Remote
Procedure Calls

In this chapter we will cover:

» Using DRPC to complete the required processing
» Integration testing of a Trident topology

» Implementing a rolling window topology

» Simulating time in integration testing

Introduction

This chapter builds on the concepts introduced in Chapter 3, Calculating Term Importance
with Trident, by providing the next steps towards a fully fledged enterprise-ready TF-IDF
implementation. In this chapter we will investigate the usage of distributed remote procedure
calls (DRPC) to complete a portion of the required processing in order to give us a point-in-
time view of the TF-IDF value for a given term and document, as Chapter 3, Calculating Term
Importance with Trident, focused on a purely streamed delivery of the TF-IDF values. We will
then explore the usefulness of DRPC in terms of integration testing of a Trident topology.
Trident has many useful stateful abstractions that we will need to properly exercise in our
integration testing. Finally we will implement a rolling window addition to the TF-IDF algorithm,
which will allow us to position our topology as a speed layer for a larger Lambda architecture.

A theoretical basis for DRPC and Trident API is required for this chapter; please take some
time to read the Storm project documentation on these topics at the following links:
» https://github.com/nathanmarz/storm/wiki/Distributed-RPC
» https://github.com/nathanmarz/storm/wiki/Trident-API-Overview
» https://github.com/nathanmarz/storm/wiki/Trident-state

Distributed Remote Procedure Calls

Lambda architecture is a term coined by Nathan Marz; it was first introduced in his blog
entry on How to beat the CAP theorem. It provides an elegant combination of both batch
and real-time data systems that are scalable and truly fault-tolerant.

. A full understanding of the theoretical basis and approach is recommended;
> it is available at the following link:
CZE http://nathanmarz.com/blog/how-to-beat-the-cap-
theorem.html

Using DRPC to complete the required

processing

A classic design consideration within data systems is choosing an appropriate balance
between precomputation and on-the-fly computation. Precomputation is often preferable;
however, it isn't always possible. Either because the amount of potential data is far too large
in practical terms, or because the final result is dependent on a point-in-time perspective of
the data that is not possible to precompute.

In the previous chapter, we emitted a constant stream of TF-IDF values based on the documents
received from Twitter and the Internet. The TF-IDF value is perfectly correct at the time when

it is emitted; however, as time passes the value that was emitted is potentially invalidated
because it is coupled to a global state that is affected by new tuples that arrive after the value
was computed. In some applications this is the desired result; however, in other applications

we need to know what the current value is at this point in time, not at some previous point in
time. In this case, we need to compute as much state as is possible as a part of normal stream
processing, and defer the remaining computation until the time of the query. This is a use case
for which DRPC is ideally suited.

Trident provides a rich set of abstractions for querying sources of state and processing the
resulting tuples using the same power that is inherent in any stream processing. Our ability to
defer portions of the processing to a later time enables us to deal with use cases where state
is only valid in the context of "now".

How to do it...

1. Create a new branch of your source using the following command:
git branch chap4
git checkout chap4

106

Chapter 4

2. Create a new class named SplitAndProjectToFields, which extends from

BaseFunction:
public void execute (TridentTuple tuple, TridentCollector
collector) ({

Values vals = new Values();

for (String word: tuple.getString(0).split(" ")) {

if (word.length() > 0) {
vals.add (word) ;

}

collector.emit (vals) ;

}

3. Once this is complete, edit the TermTopology class, and add the following method:

private static void addTFIDFQueryStream(TridentState
tfState, TridentState dfState,
TridentState dState, TridentTopology topology,
LocalDRPC drpc)
topology.newDRPCStream("tfidfQuery", drpc)
.each(new Fields("args"),
new SplitAndProjectToFields(),
new Fields ("documentId", "term"))

.each(new Fields (), new StaticSourceFunction(),
new Fields ("source")) .stateQuery (tfState,

new Fields ("documentId", "term"),

new MapGet (), new Fields("tf"))

.stateQuery (dfState,new Fields("term"),

new MapGet (), new Fields("df"))
.stateQuery (dState,new Fields ("source"),
new MapGet (), new Fields("d"))

.each(new Fields ("term", "documentId", "tf","d","df"),
new TfidfExpression(), new Fields("tfidf"))
.each(new Fields ("tfidf"), new FilterNull())
.project (new Fields ("documentId", "term", "tfidf"));

Distributed Remote Procedure Calls

4. Then update your buildTopology method by removing the final stream definition
and adding the DRPC creation:

public static TridentTopology buildTopology (ITridentSpout spout,
LocalDRPC drpc)
TridentTopology topology = new TridentTopology () ;

Stream documentStream = getUrlStream(topology, spout)
.each (new Fields ("url"),
new DocumentFetchFunction (mimeTypes),
new Fields ("document", "documentId", "source"));

Stream termStream = documentStream
.parallelismHint (20)each(new Fields ("document"),
new DocumentTokenizer (), new Fields ("dirtyTerm"))
.each(new Fields ("dirtyTerm"), new TermFilter (),
new Fields("term"))
.project (new Fields ("term", "documentId", "source")) ;

TridentState dfState = termStream.groupBy (
new Fields("term")) .persistentAggregate
(getStateFactory ("df"), new Count (),
new Fields("df"));

TridentState dState = documentStream.groupBy (
new Fields ("source")) .persistentAggregate (

getStateFactory("d"), new Count(), new Fields("d"));

TridentState tfState = termStream.groupBy (

new Fields ("documentId", "term"))
.persistentAggregate (getStateFactory ("tf"),
new Count (), new Fields("tf"));

addTFIDFQueryStream(tfState, dfState, dState, topology,
drpc) ;

return topology;

At a high level, all we are doing as part of the stream processing is persisting computed values
for d, df (term), and tf (document, term), but we don't calculate the final TF-IDF value.
We defer this calculation until the time the value is requested.

108

Chapter 4

The states are computed by the following Trident calls:

TridentState dfState = termStream.groupBy (new Fields ("term"))
.persistentAggregate (getStateFactory ("df"), new Count (),
new Fields ("df"));

TridentState dState = documentStream.groupBy (
new Fields ("source")) .persistentAggregate (
getStateFactory("d"), new Count (), new Fields("d"));

TridentState tfState = termStream.groupBy (
new Fields ("documentId", "term")) .persistentAggregate (
getStateFactory ("tf"), new Count (), new Fields("tf"));

It is important to note the GroupBy definitions for each case. The d value is grouped by a static
value for the source of the stream, which gives us a global count across batch boundaries.

The df value is grouped by the term, which will effectively give us a count of the number of
documents that contain the term, again across batch boundaries.

Finally, the t £ value is stored by the document and term that gives us a count of the term on a
per document basis.

With these elements calculated, we can defer the calculation to a later point in time. This is
enabled through DRPC:

private static void addTFIDFQueryStream(TridentState tfState,
TridentState dfState,
TridentState dState,
TridentTopology topology, LocalDRPC drpc)
topology.newDRPCStream ("tfidfQuery", drpc)

.each(new Fields("args"), new SplitAndProjectToFields(),
new Fields ("documentId", "term"))

.each(new Fields (), new StaticSourceFunction(),
new Fields ("source"))

.stateQuery (tfState, new Fields("documentId", "term"),
new MapGet (), new Fields("tf"))

.stateQuery (dfState,new Fields("term"),
new MapGet (), new Fields("df"))
.stateQuery (dState,new Fields ("source"),
new MapGet (), new Fields("d"))
.each(new Fields("term", "documentId","tf","d","df"),
new TfidfExpression(), new Fields("tfidf"))
.each(new Fields ("tfidf"), new FilterNull())
.project (new Fields ("documentId", "term","tfidf"));

Distributed Remote Procedure Calls

Let's just unpack that a bit. The first function splits out the arguments that will be passed to
the DRPC call from a client.

.each(new Fields ("args"), new SplitAndProjectToFields (), new
Fields ("documentId", "term"))

The arguments will be passed to the DRPC call in the form drpc.execute ("tfidfQuery",
"doc01 area").The arguments, doc01 and area, should then be placed into a single
tuple in the fields document I1d and term. In order to achieve this, we can't simply apply

a split function to the arguments, as this would generate many tuples. Instead we use the
SplitAndProjectToFields function that we defined earlier:

public void execute (TridentTuple tuple, TridentCollector collector) {
Values vals = new Values();
for (String word: tuple.getString(0).split(" ")) {
if (word.length() > 0) {
vals.add (word) ;
}
}

collector.emit (vals) ;

}

This function splits the input text based on " " (space) and then projects the values out to
consecutive fields within the same tuple. Next we use a state query to add the value for t £ to
the tuple, based on values that were passed as arguments:

.stateQuery (tfState, new Fields ("documentId", "term"), new MapGet (),
new Fields("tf"))

After this query is complete, the tuple would contain three fields: document1d, term, and tf,
where t £ is the value that we computed earlier.

Next we look up the value for df:

.stateQuery (dfState,new Fields("term"), new MapGet (), new
Fields ("df"))

After this query is complete, the tuple will also contain a field for df. Finally we look up the
value for d and add it to the tuple:

.stateQuery (dState,new Fields ("source"), new MapGet (), new
Fields ("d"))

Chapter 4

Then we pass all the fields to the expression function that we created in Chapter 3,
Calculating Term Importance with Trident, and project just the final fields:

Fields ("term", "documentId", "tf","d","df"), new TfidfExpression(), new
Fields ("tfidf"))
.each (new Fields ("tfidf"), new FilterNull ())

.project (new Fields("documentId", "term", "tfidf"));

Because we defined the stream using newDRPCStream, the output of the stream will be
returned to the calling DRPC client.

There's more...

If you would like to test this quickly, update your main method to periodically call the DRPC
query you have just created. Take note of how the values evolve over time:

LocalDRPC drpc = new LocalDRPC() ;
LocalCluster cluster = new LocalCluster();
conf .setDebug(true) ;
TridentTopology topology = buildTopology (null, drpc);
cluster.submitTopology ("tfidf", conf, topology.build()) ;
for(int i=0; 1<100; i++) {
System.out.println ("DRPC RESULT: " +
drpc.execute ("tfidfQuery", "doc0l area"));
Thread.sleep(1000) ;

}

Integration testing of a Trident topology

In previous chapters, we have implemented integration tests by hooking into the defined
topology and providing testing bolts that allow us to exercise the topology as a black box. This
was achieved using the Java API. While this is possible with Trident, it becomes increasingly
less elegant, especially in light of the fact that there are rich testing APIs based on Clojure.

In this recipe, we will convert our pure Java project into a Polyglot project in which the Java
and Clojure code coexist comfortably. We will then implement a full integration test of the TF-
IDF topology using the Clojure testing API.

It is assumed that the reader is familiar with Clojure and functional
R programming techniques. If this is not the case, please refer to any
~ of the excellent online resources; however, it must be noted that
Q one doesn't have to be proficient at Clojure in order to implement
the integration tests. Given their simplicity and elegance, the task of
integration testing is possible with very little Clojure exposure.

Distributed Remote Procedure Calls

How to do it...

1. Start by deleting your project from Eclipse using the Eclipse GUI and then clear the
Eclipse project files:

mvn eclipse:clean

2. Once this is complete you can delete your Maven POM file. Next create a new file
called project.clj in the root of the project:

(defproject tfidf-topology "0.0.1-SNAPSHOT"
:source-paths ["src/clj"]
:java-source-paths ["src/jvm" "test/jvm"]
:test-paths ["test/clj"]
:javac-options ["-target" "1.6" "-source" "1l.6"]
:resources-path "multilang"
:aot :all
:repositories {
"twitter4j" "http://twitter4j.org/maven2"

:dependencies [
[org.twitterd4j/twitterdj-core "3.0.3"]
[org.twitter4j/twitterdj-stream "3.0.3"]
[trident-cassandra "0.0.1l-wip2"]
l[org.slf4j/slf4j-1log4jl2 "1.6.1"]
[com.googlecode.json-simple/json-simple "1.1"]
[redis.clients/jedis "2.1.0"]
[org.apache.tika/tika-parsers "1.2"]
[org.apache.lucene/lucene-analyzers "3.6.2"]
[org.apache.lucene/lucene-spellchecker "3.6.2"]
[edu.washington.cs.knowitall/morpha-stemmer "1.0.4"]
[trident-cassandra/trident-cassandra "0.0.1-wipl"]
[commons-collections/commons-collections "3.2.1"]]

:profiles {:dev {:dependencies [[storm "0.8.2"]
[org.clojure/clojure "1.4.0"]
[junit/junit "4.11"]
[org.jmock/jmock-legacy "2.5.1"]
[org.mockito/mockito-all "1.8.4"]
[org.easytesting/fest-assert-core "2.0M8"]
[net.sf.opencsv/opencsv "2.3"]
[org.testng/testng "6.1.1"11}}

Chapter 4

3. Next, you will need to refactor your folder structure to make room for the Clojure

source files:
1. Create two new folders: src/jvmand src/clj.
2. Move the contents from src/main/java to src/jvm.
3. Create three more folders: test/java/, test/clj,and multilang.
4. Move src/main/resource to multilang.
5. Delete src/main.
In order to enable your normal development workflow, you need to install lein and
the Eclipse plugin. First download the lein script from https://github.com/

technomancy/leiningen and add it to your path (http://askubuntu.com/
questions/60218/how-to-add-a-directory-to-my-path).

Next, navigate to Help | Install New Software | Add http://ccw.cgrand.net/
updatesite/ in the Eclipse menu, complete the installation, and allow Eclipse to restart.

In order to import the lein project into Eclipse, you need to follow this procedure:
1. Inthe project explorer go to New | Project....

Navigate to General | Project.

For the project name enter t£idf-topology.

Uncheck the Use default location checkbox.

Browse to the location of your project and select Finish.

o o s~ wDd

Right-click on the project in the project explorer and then select Configure |
Convert to leiningen.

Your project should now be fully available and working in Eclipse.

M If you want to change your project dependencies, simply
Q right-click on your project in Eclipse and go to leiningen
| Reset project configuration.

Next you need to add some more DRPC queries to the topology to enable our testing.
Add the following methods to TermTopology:
public static void addDQueryStream(TridentState state,
TridentTopology topology, LocalDRPC drpc) {

topology.newDRPCStream ("dQuery", drpc)

.each(new Fields("args"), new Split (), new
Fields ("source"))

.stateQuery (state, new Fields("source"), new
MapGet () ,new Fields ("d"))

.each(new Fields("d"), new FilterNull())

.project (new Fields("source","d")) ;

Distributed Remote Procedure Calls

}

private static void addDFQueryStream (
TridentState dfState, TridentTopology topology,
LocalDRPC drpc) {
topology.newDRPCStream ("dfQuery", drpc)
.each(new Fields("args"), new Split(),
new Fields("term"))
.stateQuery (dfState, new Fields("term"),
new MapGet (), new Fields("df"))
.each (new Fields ("df"), new FilterNull())
.project (new Fields ("term", "df"));

}

8. And update buildTopology to include these methods at the appropriate time:

TridentState dfState = termStream.groupBy(new Fields ("term"))
.persistentAggregate (getStateFactory ("df"), new Count (),
new Fields("df"));

addDFQueryStream (dfState, topology, drpc);

TridentState dState = documentStream.groupBy
(new Fields ("source"))
.persistentAggregate (getStateFactory ("d"),
new Count (), new Fields("d"));
addDQueryStream(dState, topology, drpc);

9. Finally you need to implement the integration test in Clojure. Add a file called
TermTopology.clj tothe test/cl folder:

(defn with-topology-debug* [cluster topo body-fn]

(t/submit-local-topology (:nimbus cluster) "tester"
{TOPOLOGY-DEBUG true} (.build topo))

(body-£fn)
(.killTopologyWithOpts (:nimbus cluster) "tester" (doto
(KillOptions.) (.set wait secs 0)))

)

(defmacro with-topology-debug [[cluster topo] & bodyl]
' (with-topology-debug* ~cluster ~topo (fn [] ~@body)))

(deftest test-tfidf
(bootstrap-db)
(t/with-local-cluster [cluster]
(with-drpc [drpc]
(letlocals

114

Chapter 4

(bind feeder (feeder-spout ["url"]))
(bind topo (TermTopology/buildTopology feeder drpc))
(with-topology-debug [cluster topol]
(feed feeder [["doc01l"] ["doc02"] ["doc03"]
["doc04"] ["docO05"]])

(is (= [["twitter" 5]] (exec-drpc drpc "dQuery"
"twitter")))
(is (= [["area" 3]] (exec-drpc drpc "dfQuery"
"area")))
(is (= [["docO1l" "area" 0.44628710262841953]]

(exec-drpc drpc "tfidfQuery" "docO0l area"))))))))

Leiningen is for automating Clojure projects without setting your hair on fire. It is essentially
a Clojure equivalent of maven. It has many similar concepts, including dependency
management. In fact, lein (short name) deploys to maven repositories and consumes
dependencies from maven repositories. The important properties to take note of are:

» source-paths: This defines the folders containing Clojure source

» Jjava-source-paths: This defines the Java source folders, both main
and testing folders

» test-paths: This defines the Clojure testing folder
» javac-options: This specifies your Java compiler options

» repositories: This property lists external repositories to source dependencies
from, over, and above the standard repos of clojars and Maven central

» dependencies: This property lists your dependencies; note the dependency
syntax is [groupID/artefactID "version"]

» profiles: This allows you to specify any property only applicable to the
development time

In designing the integration test, the properties that we would like to assert are the values

for 4, df, and t£-idf. We have provided DRPC queries for all of the values and therefore
the integration test will treat the topology as a black box, injecting values into a spout

and verifying the results using DRPC queries. Let's explore the integration test in detail to
understand its functionality. Everything in Clojure is a list, typically following a form where the
function name is the first entry in the list. Because functions are first-class citizens in Clojure,
this is also true for defining a function (achieved by calling a function). This function is called
before the tests are run in order to clear out the Cassandra database so that we can start the
test with a known state.

(defn bootstrap-db []
(sh "cassandra-cli" "-f" "dropAndCreateSchema.txt")

)

Distributed Remote Procedure Calls

Next, we need to declare our test, start a cluster, and initialize the DRPC server to test
the topology:

(deftest test-tfidf
(bootstrap-db)
(t/with-local-cluster [cluster]
(with-drpc [drpc]

with- [functionality] is a convention-based macro within the Storm testing API,
which simply initializes some element and performs the functionality based on it. t /with-
local-cluster, for example, is defined as follows:

(defmacro with-local-cluster [[cluster-sym & args] & body]
'(let [~cluster-sym (mk-local-storm-cluster ~@args)]
(try
~@body
(catch Throwable t#
(log-error t# "Error in cluster")
(throw t#)
)
(finally
(kill-local-storm-cluster ~cluster-sym)))

))

As you can see, the macro makes it simple to create a cluster and then execute your
functionality using it; your functionality is the body passed as an argument. The naming
convention simply makes tests syntactically pleasing. Next we need to create the topology
and a way to inject tuples into the topology:

(letlocals
(bind feeder (feeder-spout ["url"]))
(bind topo (TermTopology/buildTopology feeder drpc))

feeder is a testing spout that we pass to the buildTopology method, which we can then
use to inject tuples into the topology. Clojure's Java interop defines various syntactical idioms
for calling Java constructs. TermTopology/buildTopology calls out the buildTopology
method and passes the created spout and drpc server. Next we can feed tuples into the
topology and then verify the results:

(with-topology-debug [cluster topo]

(feed feeder [["doc01l"] ["doc02"] ["doc03"] ["doc04"] ["docO5"]])

(is (= [["twitter" 5]] (exec-drpc drpc "dQuery" "twitter")))

(is (= [["area" 3]] (exec-drpc drpc "dfQuery" "area")))

(is (= [["docOl" "area" 0.44628710262841953]] (exec-drpc drpc
"tfidfQuery" "docO0l area")))

with-topology-debug is a macro that submits the topology to the local cluster, with
{TOPOLOGY-DEBUG true}.

116

Chapter 4

There's more...

To run the tests, you can either use the command-line REPL that can be launched using lein:

lein repl

Or you can launch the REPL in Eclipse, using the Ctrl + Alt + S shortcut key. Once the REPL
has been launched and is in the correct namespace (this happens automatically when using
Eclipse shortcut), simply call the function:

(run-tests)
sl When you change any Java code you will need to restart the REPL to force

Q it to pick them up. The command-line REPL requires that you first compile
the Java source using lein javac.

Implementing a rolling window topology

In many temporal applications, it is important to be able answer the question of "What
happened in the last X amount of time?" This is commonly referred to as a sliding window:

o|.|slals]s]7]2]1]s].]

33

. |elal3]|s|7]2]1]s].]
27
L
t2|,__|6|4J3|3|7|2|1 5]... |
21

However, while working with Storm as the Speed layer of the Lambda architecture, it is
required that we implement a rolling time window whereby we can segment time in a fixed
manner. These fixed-time boundaries allow us to easily merge the Batch and Speed layers
and provide a complete and seamless answer.

Distributed Remote Procedure Calls

The following diagram illustrates a rolling window:

Window Start

T0 X X X X ‘ ‘ ‘ ’

T1XXXX‘X‘X‘ ‘ ’

T2XXXX‘X‘X‘X‘X’

In Chapter 6, Integrating Storm and Hadoop, we will explore combining the results of the
rolling windows with precomputed data views from the batch layer using DRPC. It must also
be noted that a favorable property of the topology is that rolled windows are not immediately
overwritten or discarded. This allows for a more robust implementation whereby batch
processing failures can be tolerated within the speed layer.

. The time boundary would not be required if you delayed more processing
~ until a point in time and performed the processing using DRPC only. This
Q would mean all aggregations are created at that point in time and then

discarded, which is typically not practical.

How to do it...

In Chapter 3, Calculating Term Importance with Trident, we used the master branch of the
trident-cassandra project as the state implementation to persist to Cassandra.

1. In order to implement the rolling time window, we will need to use a fork of this state
implementation. Start by cloning, building, and installing it into our local Maven repo:

git clone https://github.com/quintona/trident-cassandra.git
cd trident-cassandra

lein install

Chapter 4

2. Then update your project dependencies to include this new version by changing the
following code line:

[trident-cassandra/trident-cassandra "0.0.1-wipl"]

To the following line:

[trident-cassandra/trident-cassandra "0.0.1l-bucketwipl"]

3. Ensure that you have updated your project dependencies in Eclipse using the process
described earlier and then create a new class called TimeBasedRowStrategy:
public class TimeBasedRowStrategy implements RowKeyStrategy,
Serializable {

private static final long serialVersionUID =
6981400531506165681L;
@Override
public <T> String getRowKey (List<List<Object>> keys, Options<Ts>
options) {
return options.rowKey + StateUtils.formatHour (new Date()) ;

}

4. And implement the StateUtils. formatHour static method:

public static String formatHour (Date date) {
return new SimpleDateFormat ("yyyyMMddHH") . format (date) ;

}
5. Finally, replace the getStateFactory method in TermTopology with the following:

private static StateFactory getStateFactory (String rowKey) {

CassandraBucketState.BucketOptions options = new
CassandraBucketState.BucketOptions () ;

options.keyspace = "trident test";

options.columnFamily = "tfid";

options.rowKey = rowKey;

options.keyStrategy = new TimeBasedRowStrategy () ;

return CassandraBucketState.nonTransactional ("localhost",
options) ;

Distributed Remote Procedure Calls

The standard implementation of the map state through the trident -cassandra state
implementation assumes a set rowKey per row in your column family. There is therefore a
relationship between the map state at the Trident level and a single row within the column
family at a Cassandra level. The fork of the state implementation adds a bucket capability.
Essentially this means that you can dynamically specify the row key that will be used for the
state at runtime, using a row key strategy that you provide. Logically this gives us the ability
to partition our state without introducing an extra layer of complexity in our topology logic.
The strategy implementation in this case will logically partition our state based on hours, by
returning a concatenated combination of both the static row key and a representation of the
current hour.

public <T> String getRowKey (List<List<Object>> keys, Options<T>
options) {
return options.rowKey + StateUtils.formatHour (new Date()) ;

}

Therefore, at the Trident level, all state updates are partitioned by this hour. So, as the value
for d is incremented, it is only incremented for this hour; the same is true of the values for df.

Note that any time partition could have been selected. It can easily be changed to using daily
slots by introducing a formatDay method based on the current time.

u This functionality enables the goal of keeping the values for previous
~ time windows; however, this also implies that separate a housekeeping
Q functionality must be put in place to clean out windows that are no longer
required because they have been taken into account in the Batch layer.

Simulating time in integration testing

A vital property of any automated test is that it is consistent and repeatable. In other words, it
must either fail or succeed consistently. This can make testing temporal applications difficult
because of the fact that time is always different between test runs. In order to create stable
tests, it is important to simulate the time within the cluster so that the integration tests

can advance the time by specific amounts and explicitly test all the boundary conditions.

The trident testing API fully enables such a test scenario; this recipe will explore the minor
changes required to be made to the topology under test and the actual integration tests.

120

Chapter 4

How to do it...

1.

First you need to enable your topology for simulated time. Change the getRowKey
string in the TimeBasedRowStrategy method to the following:

public <T> String getRowKey (List<List<Object>> keys, Options<T>
options) {
return options.rowKey + StateUtils.formatHour (new Date (Time
.currentTimeMillis())) ;

}

And then update the integration test as follows:

(deftest test-tfidf
(bootstrap-db)
(t/with-simulated-time-local-cluster [cluster]
(with-drpc [drpc]
(letlocals
(bind feeder (feeder-spout ["url"]))
(bind topo (TermTopology/buildTopology feeder

drpc))
(with-topology-debug [cluster topo]

(feed feeder [["docO0l1l"] ["doc02"] ["doc03"]
["doc04"] ["docO5"]])

(is (= [["twitter" 5]] (exec-drpc drpc
"dQuery" "twitter")))

(is (= [["area" 3]] (exec-drpc drpc "dfQuery"
"area")))

(is (= [["docO0l" "area" 0.44628710262841953]]

(exec-drpc drpc "tfidfQuery" "docO0l area")))

(t/advance-time-secs! 5400)

(feed feeder [["docO01l"] ["doc02"] ["docO3"]
["doc04"] ["docO05"]])

(is (= [["twitter" 5]] (exec-drpc drpc
"dQuery" "twitter")))

(is (= [["area" 3]] (exec-drpc drpc "dfQuery"
"area")))

(is (= [["docOl1l" "area" 0.44628710262841953]]

(exec-drpc drpc "tfidfQuery" "docO0l area"))))))))

Distributed Remote Procedure Calls

Storm ships with some utility classes to enable the simulated time within the cluster. To take
advantage of this, you simply have to use Time.currentTimeMillis () from backtype.
storm.utils.Time, instead of using the system time method calls. Within your integration
test, we are using the local cluster with the simulated time instead of the actual time. The
nature of the test is also different now. In order to test the time bucket, we will perform the
following steps:

1. Start attime 0 and inject a series of tuples.
Verify the resulting values for 4, df, and t£-idf.

Move the time forward by more than an hour.

Inject another set of tuples.

ok w0

Verify that the resulting values for 4, df, and tf£-1idf are not related in any way.

To expand on this, if the bucket functionality wasn't in place and this test was run, the
resulting value for d would be 5 at the first DRPC execution and then 10 at the second DRPC
execution. However, with the bucket functionality in place, the value for d should be 5 in both
cases due to the state being entirely partitioned at the Cassandra level.

122

Polyglot Topology

In this chapter, we will cover:

» Implementing the multilang protocol in Qt
» Implementing the SplitSentence bolt in Qt
» Implementing the count bolt in Ruby

» Defining the word count topology in Clojure

Introduction

We break away briefly from the TF-IDF thread to explore the polyglot capabilities of Storm.
Polyglot development is becoming increasingly important, particularly in the open source
world where mashups present a rapid path to delivery, regardless of the underlying
technology. There is an increasing number of JVM-based languages that maintain binary-
level compatibility with Java, such as Scala. In these cases, the Polyglot project is simply

a composition of JAR files with appropriate levels of modularity. In the cases where the
underlying execution environment isn't common, other approaches are required. There are
many use cases, over and above convenient re-use, such as high-performance computing,
where native implementations provide for greater levels of optimization or leverage of low-
level hardware capabilities, such as the rich functionality of GPUs, in most modern PCs.

There are many approaches to integrating systems developed in incompatible languages,
including messaging, sockets, and Apache Thrift. As a real-time system, Storm is shipped with
a very lean multi-language protocol, with implementations for Ruby and Python. This protocol
is described fully on the Storm wiki at https://github.com/nathanmarz/storm/wiki/
Multilang-protocol. This chapter presents a Polyglot topology that, while not being very
useful, does fully present the power of Storm in delivering a multi-language-based system,
including the construction of a multilang adaptor. The example used is the canonical word
count topology where the topology will be defined in Clojure and the bolts will be implemented
in C++ and Ruby.

Polyglot Topology

Implementing the multilang protocol in Qt

The multilang protocol is extremely trivial in nature. It consists of JSON-based exchanges over
STDIN and STDOUT. All exchanges are delimited via a single line containing the word end,
which isn't JSON-encoded. In this recipe, we will only implement the bolt adaptor; however,
adding the spout functionality is trivial from this base.

The bolt can receive new tuple messages that contain an ID, some component metadata, and
the actual tuple as a JSON value containing a JSON array of values. The bolt then sends ack,
fail, emit, or log messages back via STDOUT.

Qt is an open source C++ framework, originally developed by Trolltech as a cross-platform GUI
framework. Qt has enjoyed impressive longevity in the open source communities, providing

a wide range of cross-platform C++ capability. This functionality extends far beyond GUI
concerns into base container classes and Threads; it even augments the C++ language

with some missing elements, such as reflection and reference counting-based memory
management. It is, therefore, a convenient framework to partner with Java where required as
it supports all the operating systems that Java does.

It must be noted that C++ doesn't automatically equate to better-performing
g code. The JVM's JIT compiler does an impressive job and as a result Java
code will outperform the C++ code that is written in an "average" manner in
T~ many cases. The XML DOM parsers were a good example of this for many
years where the C++-implemented code had simply been ported from Java.

Getting ready

In order to get ready for this recipe, we simply need to install the Qt SDK; you can easily do
this using apt-get.

sudo apt-get install gt-sdk

How to do it...

We are going to implement the logic to comply with the Storm multilang protocol using Qt.
In order to do this, we will start by creating a new Qt project.

1. Create a folder for the C++ project and create a Qt Project file.
mkdir splitsentence-cpp-bolt

cd splitsentence-cpp-bolt

vim splitsentence-cpp-bolt.pro

Chapter 5

2. The .profile is the Qt makefile or the project file. Add the following content to it:

TEMPLATE = app
TARGET = splitsentence-cpp-bolt

Input
HEADERS += \
gtuple.h \

gbasicbolt.h
SOURCES += main.cpp \
gbasicbolt.cpp

3. You must then create a tuple header file named gtuple.h.

class QTuple

{

private:
QString id;
QString component;
QString stream;
int task;
QJdsonValue* value;

Vi

Note that the code does not use C++ 11 features, such as delegate
constructors; this would be an obvious improvement if you have
tad already chosen to upgrade.

4. Next, you must define the QBasicBolt class starting with the header file definition.
class QBasicBolt : public QObject

{

virtual void process (QTuple *tuple) = 0;
void start();

private:
QQueue<QJsonValue*> pending taskids;
QQueue<QJsonValue*> pending commands;

protected:
virtual QString readLine() ;
virtual void sendMsgToParent (QdsonValue &v) ;
QTuple* readTuple() ;
QJsonValue *emitTuple (QTuple *tuple) ;

Vi

Polyglot Topology

Please note that the readLine and sendMsgToParent methods have
both been marked as virtual. This was done to make this class more
testable where a unit test could mock out these functions and perform an
in-process black box test of the class. These methods represent the input
and output points of the class.

5. Next, you must provide the class implementation.

126

void QBasicBolt::start ()

{

QPair<QJsonValue*, QJsonValue*> conf context =

InitComponent () ;

}

initialize (conf context.first, conf context.second);
run () ;

void QBasicBolt::runf()

{

}

while (true) {

QTuple* tuple = readTuple();

if (tuple != NULL)

{
anchor tuple = tuple;
ack (tuple->getId()) ;
process (tuple) ;
delete tuple;

} else

{

QThread: :sleep(50) ;

void QBasicBolt::sendMsgToParent (QdsonValue &v)

{

QJsonDocument *doc;
if (v.isArray ()){

doc = new QJsonDocument (v.toArray()) ;
} else {

doc = new QJsonDocument (v.toObject ()) ;
}
std::cout << doc->toJdson() .constDataf() ;
std::cout << "end" << std::endl;
delete doc;

Chapter 5

QString QBasicBolt::readLine ()
{
bool readLine = false;
std::string temp;
getline(std::cin, temp) .good() ;
QString line = QString::fromStdString(temp) ;
if (readLine && (line != "end"))
line = line + "\n";
return line;

QTuple* QBasicBolt::readTuple ()
{
QJsonValue* msg = readCommand () ;
if (msg == NULL)
return NULL;
if (msg->isObject ()){
QJsonObject obj = msg->toObject () ;
return new QTuple (obj["id"].toString(), obj["comp"]
.toString (), obj["stream"].toString(),
(int)obj ["task"] .toDouble (), obj
.value ("tuple")) ;

}

return NULL;

void QBasicBolt::emitBolt (QTuple *tuple,

const QString &stream, int task)

QJsonObject obj;

obj.insert (QString ("command") ,QString("emit")) ;

if (!stream.isEmpty())
obj.insert (QString ("stream") , stream) ;

if (task != -1)
obj.insert (QString("task") ,b task);
obj.insert (QString ("tuple"), *tuple->getValue());

QJsonValue v (obj) ;
sendMsgToParent (v) ;

Polyglot Topology

This class provides the implementation of the multilang protocol. It abstracts this complexity
away from the implementing subclass, thereby allowing it to simply implement the executable
method with the appropriate bolt logic. A compiled executable will be invoked by the
ShellBolt class that ships with Storm. The Shel1Bolt class will act as a parent for the
duration of the execution, exchanging commands and tuples with the concrete instance of the
QBasicBolt class. The shellBolt class essentially delegates the logic to this externally
provided bolt. The details of ShellBolt are presented in the next recipe; for the moment, it
is sufficient to understand that a Java class will start the process and exchange messages via
STDIN and STDOUT with the concrete instance of QBasicBolt.

The bolt starts by initializing and placing a PID file, which will be used for process
management.

void QBasicBolt::start ()
QPair<QJsonValue*, QJsonValue*> conf context = InitComponent () ;
initialize (conf context.first, conf context.second);
run() ;

}
It then enters into a permanent loop of consuming tuples and generating responses.

void QBasicBolt::runf()
{
while (true) {
QTuple* tuple = readTuple();
if (tuple != NULL)
{
anchor tuple = tuple;
ack (tuple->getId());
process (tuple) ;
delete tuple;
} else

{

QThread: :sleep(50) ;

}

The tuples received are first acknowledged and then processed. Note that the process
method is defined as a pure virtual function and must be provided by the concrete instance.
The class also provides convenience methods to be able to emit tuples, logs, and failures.

128

Chapter 5

Care must be taken to generate the appropriate JSON elements of the
s . . . e
~ tuple by the concrete instance in accordance with the specification on
wiki; however, if inappropriate messages are generated, the topology
will fail rapidly as it should.

Implementing the SplitSentence bolt in Qt

The SplitSentence bolt is embarrassingly simple, which is important for canonical
examples. Remember that the point is to focus on the creation of the multilang adaptor.
The bolt simply reads the sentence from the tuple, tokenizes the sentence based on
spaces, and emits each word.

How to do it...

1. Create the concrete implementation of QBasicBolt named SplitSentence
starting with the header.

#ifndef SPLITSENTENCE H
#define SPLITSENTENCE H

#include <QObjects>
#include "gbasicbolt.h"

class SplitSentence : public QBasicBolt

{

Q OBJECT
public:
explicit SplitSentence (QObject *parent = 0);

void initialize (QJdsonValue* conf, QJsonValue* context) { }
void process (QTuple *tuple) ;

signals:
public slots:
bi

#endif // SPLITSENTENCE H

Polyglot Topology

2. Next, provide the implementation of the process method:

void SplitSentence: :process (QTuple *tuple)

{
QJsonArray val = tuple->getValue()->toArray() ;
QString s = val.at(0).toString() ;
QStringList tokens = s.split(" ");

for (QStringList::Iterator i1 = tokens.begin(); i != tokens
.end(); ++1)

QJsonValue value(*i) ;
QTuple* t = new QTuple(value) ;
QJsonValue* result = emitTuple(t);

if (result != NULL)
delete result;
delete t;

}

3. Afterwards, you need to make the bolt executable. This is done by completing the
implementation of the main method in the main. cpp file.

int main(int argc, char *argvl([])
{
QCoreApplication app(argc, argv);
SplitSentence b;
b.start () ;
return 0;

}

4. Then, update the .pro file to reflect the following changes:

TEMPLATE = app
TARGET = splitsentence-cpp-bolt

Input
HEADERS += \
gtuple.h \

gbasicbolt.h \
splitsentence.h
SOURCES += main.cpp \
gbasicbolt.cpp \
splitsentence.cpp

5. Finally, the build process involves generating a platform-specific makefile and then
building the executable. Perform the following commands within the project folder:

gmake

make

130

Chapter 5

The bolt simply extracts the sentence from the tuple, splits it, and then emits those words as
separate tuples. There are a few things to note for those who are familiar with the Java API.

Firstly, the values are passed into the process method as a JSON value within the method.
Secondly, at this level, we don't have any idea of the field names of the fields; therefore, you
need to access each value in the input tuple based on the value index within the array. Finally,
the value that you emit must also be a JSON array, otherwise the bolt's parent will fail to
process the command.

For those with a Java background, the code will be legible. A few points to consider while
making changes and experimenting are as follows:

» C++ separates out the definition of the class from its implementation. This allows the
implementation to be included in many places and is still correctly addressed with
the help of the details in the header. You can provide implementations inside the
header file; however, you must remember that the implementation will be included
in every library that it is included in, resulting in potential conflicts and bloated
footprints.

» The macro definitions at the start and end of the header files are vital to prevent the
compiler from seeing the header as a duplicate definition each time it is included.

» Memory must be managed. Prefer values on the stack, pass by reference, and,
when allocating onto the stack, ensure that you have a delete instruction to free the
memory or that it is appropriately parented.

In order to expose the Qt-based bolt to the topology, we need to provide the Java-based
parent bolt. To achieve this, you further need to create a project called polyglot -count -
topology. Within the src/jvm/storm/cookbook, create the following class:

package storm.cookbook;
import java.util.Map;

import backtype.storm.task.ShellBolt;

import backtype.storm.topology.IRichBolt;

import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Fields;

public class QtSplitSentence extends ShellBolt implements IRichBolt

private static final long serialVersionUID = -2503812433333011106L;

Polyglot Topology

public QtSplitSentence() {
super ("splitsentence-cpp-bolt") ;

@Override
public void declareOutputFields (OutputFieldsDeclarer declarer) {
declarer.declare (new Fields ("word")) ;

@Override
public Map<String, Object> getComponentConfiguration()
return null;

}

The parent simply declares the fields and defines the command to be run. The final step is to
create a folder named resources within the polyglot-count -topology project under
multilang and place the compiled executable file in it.

In a production situation, you would need to ensure the Storm nodes
M are appropriately provisioned with Qt binaries; otherwise, the compiled
Q executable will fail to run when the topology is deployed onto the
cluster. The provisioning scripts provided in Chapter 1, Setting Up your
Development Environment, would be a good starting point for this.

Implementing the count bolt in Ruby

The Ruby bolt is also very simple given that Storm ships with an implementation of the
multilang adaptor for Ruby.

How to do it...

1. Inthe resources folder under multilang, create a Ruby file called count . rb with
the following content:

require "./storm"

class CountBolt < Storm::Bolt
attr accessor :counts
def initialize
@counts = Hash.new
end

132

Chapter 5

def process (tup)
word = String(tup.values[0])
counts[:word] = counts[:word] .to i + 1.to i

emit ([word,

end
end

CountBolt.new.run

counts[:word] .to_s])

Copy the Storm multilang adaptor in the same folder. The adaptor can be copied from
the Storm start project (http://github.com/nathanmarz/storm-starter.
git). It can be found under multilang/resources/. Finally, you need to create
the Java parent for this bolt under src/jvm/storm/cookbook.

package storm.cookbook;

import java.util.Map;

import
import
import
import

public

backtype.
backtype.
backtype.
backtype.

storm
storm
storm
storm

.task.ShellBolt;
.topology.IRichBolt;
.topology.OutputFieldsDeclarer;
.tuple.Fields;

class RubyCount extends ShellBolt implements IRichBolt {

private static final long serialVersionUID =

public RubyCount ()

-5880076377355349028L;

{

super ("ruby", "count.rb") ;

@Override
public void declareOutputFields (OutputFieldsDeclarer declarer)

{

declarer.declare (new Fields ("word", "count"));

@Override
public Map<String, Object> getComponentConfiguration() {

return null;

Polyglot Topology

The Ruby bolt extends the Storm bolt and implements the process method. A member-level
hash map holds the counts for each word. This map is incremented and the new total is
emitted as each word is received.

Take note of the number of parameters passed to the parent constructor in the parent bolt.

1
> As with the Qt example, you must ensure that the appropriate version of
Ruby is provisioned on your nodes or this will fail.

Defining the word count topology in Clojure

To close off, we need to define the topology using Clojure. Remember that the point of this
topology is to drive home the polyglot nature of Storm. You can deliver multi-technology real-
time topologies and you must select the appropriate method. The bolts described earlier in
this chapter used the minimal multilang protocol. There are various other ways, including
Thrift, the Clojure's Java interop, and, in the case of Qt, you could have easily used the Qt
Jambi project. The selection of the appropriate method depends on many factors within your
environment. Use the right tool for the right job.

How to do it...

1. Create the Lein project file within the polyglot-count -topology project folder,
and name the file project.clj.

(defproject polyglot-count-topology "0.0.1-SNAPSHOT"

:source-paths ["src/clj"]

:java-source-paths ["src/jvm" "test/jvm"]

:test-paths ["test/clj"]

:javac-options ["-target" "l.6" "-source" "1l.6"]

:resource-paths ["multilang"]

:main storm.cookbook.count-topology

raot :all

:min-lein-version "2.0.0"

:dependencies [[org.slf4j/slf4j-log4jl2 "1.6.1"]
[org.clojure/clojure "1.4.0"]
[commons-collections/commons-collections "3.2.1"]
[storm-starter "0.0.1-SNAPSHOT"]]

Chapter 5

:profiles {:dev {:dependencies [[storm "0.8.2"]
[junit/junit "4.11"]
[org.testng/testng "6.1.1"11}}

)

Within the src/clj/storm/cookbook folder, create the Clojure topology named
count topology.clj.

(ns storm.cookbook.count-topology
(:import (backtype.storm StormSubmitter LocalCluster)
(storm.cookbook QtSplitSentence RubyCount))
(:use [backtype.storm clojure configl)

)

(defspout sentence-spout ["sentence"]
[conf context collector]
(let [sentences ["a little brown dog"

"the man petted the dog"
"four score and seven years ago"

"an apple a day keeps the doctor away"]]
(spout

(nextTuple []
(Thread/sleep 100)

(emit-spout! collector [(rand-nth sentences)])
)

(ack [id]
))))

(defn mk-topology I[]

(topology

{m1im (spout-spec sentence-spout) }

{"3" (bolt-spec {"1" :shuffle}
(QtSplitSentence.)
:p 1)

4" (bolt-spec {"3" ["word"]}

(RubyCount.)
:p l)}))

(defn run-local! []
(let [cluster (LocalCluster.)]

(.submitTopology cluster "word-count" {TOPOLOGY-DEBUG true}
(mk-topology))

Polyglot Topology

(Thread/sleep 10000)
(.shutdown cluster)

))

(defn submit-topology! [name]
(StormSubmitter/submitTopology
name
{TOPOLOGY-DEBUG true

TOPOLOGY-WORKERS 3}
(mk-topology)))

(defn -main
([1
(run-locall))
([name]
(submit-topology! name)))

We define a spout for testing purposes that emits the sentences:

(defspout sentence-spout ["sentence"]
[conf context collector]
(let [sentences ["a little brown dog"
"the man petted the dog"
"four score and seven years ago"
"an apple a day keeps the doctor away"]]
(spout
(nextTuple []
(Thread/sleep 100)
(emit-spout! collector [(rand-nth sentences)])
)
(ack [id]
))))

We then define the topology:

(topology

{m1m (spout-spec sentence-spout) }

{"3" (bolt-spec {"1" :shuffle}
(QtSplitSentence.)
:p 1)

"4 (bolt-spec {"3" ["word"]}
(RubyCount.)
:p l)}))

136

Chapter 5

The body of the function adds elements to the topology, starting with the spout, and then
adds the two bolts, which we have defined earlier in the chapter. Note that we simply create
instances of the bolts that are the Java parents of the underlying bolt implementation, using
the Clojure's Java interop notation for creating a new instance of the class RubyCount.

You can now execute the topology. At the command line, execute the following commands:
lein deps

lein javac

lein compile

lein repl

Once the REPL has launched, execute the run-local! function and the topology will launch
and execute. You can use this command to package the deployable JAR file for you.

lein uberjar

Integrating Storm
and Hadoop

In this chapter, we will cover:

» Implementing TF-IDF in Hadoop
» Persisting documents from Storm

» Integrating the batch and real-time views

Introduction

In Chapter 4, Distributed Remote Procedure Calls, we implemented the Speed layer for a
Lambda architecture instance using Storm. In this chapter, we will implement the Batch and
Service layers to complete the architecture.

There are some key concepts underlying this big data architecture:

» Immutable state
» Abstraction and composition

» Constrain complexity

Immutable state is the key, in that it provides true fault-tolerance for the architecture. If a
failure is experienced at any level, we can always rebuild the data from the original immutable
data. This is in contrast to many existing data systems, where the paradigm is to act on
mutable data. This approach may seem simple and logical; however, it exposes the system to
a particular kind of risk in which the state is lost or corrupted. It also constrains the system, in
that you can only work with the current view of the data; it isn't possible to derive new views
of the data. When the architecture is based on a fundamentally immutable state, it becomes
both flexible and fault-tolerant.

Integrating Storm and Hadoop

Abstractions allow us to remove complexity in some cases, and in others they can introduce
complexity. It is important to achieve an appropriate set of abstractions that increase our
productivity and remove complexity, but at an appropriate cost. It must be noted that all
abstractions leak, meaning that when failures occur at a lower abstraction, they will affect
the higher-level abstractions. It is therefore often important to be able to make changes
within the various layers and understand more than one layer of abstraction. The designs we
choose to implement our abstractions must therefore not prevent us from reasoning about
or working at the lower levels of abstraction when required. Open source projects are often
good at this, because of the obvious access to the code of the lower level abstractions, but
even with source code available, it is easy to convolute the abstraction to the extent that

it becomes a risk. In a big data solution, we have to work at higher levels of abstraction

in order to be productive and deal with the massive complexity, so we need to choose our
abstractions carefully. In the case of Storm, Trident represents an appropriate abstraction for
dealing with the data-processing complexity, but the lower level Storm API on which Trident is
based isn't hidden from us. We are therefore able to easily reason about Trident based on an
understanding of lower-level abstractions within Storm.

Another key issue to consider when dealing with complexity and productivity is composition.
Composition within a given layer of abstraction allows us to quickly build out a solution that
is well tested and easy to reason about. Composition is fundamentally decoupled, while
abstraction contains some inherent coupling to the lower-level abstractions—something that
we need to be aware of.

Finally, a big data solution needs to constrain complexity. Complexity always equates to risk
and cost in the long run, both from a development perspective and from an operational
perspective. Real-time solutions will always be more complex than batch-based systems; they
also lack some of the qualities we require in terms of performance. Nathan Marz's Lambda
architecture attempts to address this by combining the qualities of each type of system to
constrain complexity and deliver a truly fault-tolerant architecture.

In Chapter 3, Calculating Term Importance with Trident, and Chapter 4, Distributed Remote
Procedure Calls, we implemented a real-time TF-IDF data flow using Trident. We divided this
flow into preprocessing and "at time" phases, using streams and DRPC streams respectively.
We also introduced time windows that allowed us to segment the preprocessed data. In this
chapter, we complete the entire architecture by implementing the Batch and Service layers.

The Service layer is simply a store of a view of the data. In this case, we will store this view

in Cassandra, as it is a convenient place to access the state alongside Trident's state. The
preprocessed view is identical to the preprocessed view created by Trident, counted elements
of the TF-IDF formula (D, DF, and TF), but in the batch case, the dataset is much larger, as it
includes the entire history.

140

Chapter 6

The Batch layer is implemented in Hadoop using MapReduce to calculate the preprocessed
view of the data. MapReduce is extremely powerful, but like the lower-level Storm API, is
potentially too low-level for the problem at hand for the following reasons:

» We need to describe the problem as a data pipeline; MapReduce isn't congruent with
such a way of thinking

» Productivity

We would like to think of a data pipeline in terms of streams of data, tuples within the stream
and predicates acting on those tuples. This allows us to easily describe a solution to a data
processing problem, but it also promotes composability, in that predicates are fundamentally
composable, but pipelines themselves can also be composed to form larger, more complex
pipelines. Cascading provides such an abstraction for MapReduce in the same way as Trident
does for Storm.

With these tools, approaches, and considerations in place, we can now complete our real-
time big data architecture. There are a number of elements from Chapter 3, Calculating Term
Importance with Trident, and Chapter 4, Distributed Remote Procedure Calls, that we will
update, and a number of elements that we will add. The following figure illustrates the final
architecture, where the elements in light grey will be updated from the existing recipe, and the
elements in dark grey will be added in this chapter:

Trident

Storm

A

Cassandra

i

Cascalog

Hadoop Map Reduce

A

HDFS

Integrating Storm and Hadoop

Implementing TF-IDF in Hadoop

TF-IDF is a well-known problem in the MapReduce communities; it is well-documented and
implemented, and it is interesting in that it is sufficiently complex to be useful and instructive
at the same time. Cascading has a series of tutorials on TF-IDF at http://www.cascading.
org/2012/07/31/cascading-for-the-impatient-part-5/, which documents this
implementation well. For this recipe, we shall use a Clojure Domain Specific Language (DSL)
called Cascalog that is implemented on top of Cascading. Cascalog has been chosen because
it provides a set of abstractions that are very semantically similar to the Trident APl and are
very terse while still remaining very readable and easy to understand.

Getting ready

Before you begin, please ensure that you have installed Hadoop by following the instructions
athttp://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-
linux-single-node-cluster/.

How to do it...

1. Start by creating the project using the 1ein command:

lein new tfidf-cascalog

2. Next, you need to edit the project . cl7 file to include the dependencies:

(defproject tfidf-cascalog "0.1l.0-SNAPSHOT"
:dependencies [[org.clojure/clojure "1.4.0"]
[cascalog "1.10.1"]
[org.apache.cassandra/cassandra-all "1.1.5"]
[clojurewerkz/cassaforte "1.0.0-betall-SNAPSHOT"]
[quintona/cascading-cassandra "0.0.7-SNAPSHOT"]
[clj-time "0.5.0"]
[cascading.avro/avro-scheme "2.2-SNAPSHOT"]
[cascalog-more-taps "0.3.0"]
[org.apache.httpcomponents/httpclient "4.2.3"]]
:profiles { :dev {:dependencies [[org.apache.hadoop/hadoop-core
"0.20.2-dev"]
[lein-midje "3.0.1"]
[cascalog/midje-cascalog
"1.10.1"11}})

It is always a good idea to validate your dependencies; to do this, execute lein

deps and review any errors. In this particular case, cascading-cassandra has not
been deployed to clojars, and so you will receive an error message. Simply download
the source from https://github.com/quintona/cascading-cassandra and
install it into your local repository using Maven.

142

Chapter 6

3. ltis also good practice to understand your dependency tree. This is important
to not only prevent duplicate classpath issues, but also to understand what
licenses you are subject to. To do this, simply run 1ein pom, followed by mvn
dependency: tree. You can then review the tree for conflicts. In this particular
case, you will notice that there are two conflicting versions of Avro. You can fix
this by adding the appropriate exclusions:

[org.apache.cassandra/cassandra-all "1.1.5"
:exclusions [org.apache.cassandra.deps/avrol]

4. We then need to create the Clojure-based Cascade queries that will process the
document data. We first need to create the query that will create the "D" view of
the data; that is, the D portion of the TF-IDF function. This is achieved by defining
a Cascalog function that will output a key and a value, which is composed of a set
of predicates:

(defn D [src]
(let [src (select-fields src ["?doc-id"])]
(<- [?key ?d-str]
(src ?doc-id)
(c/distinct-count ?doc-id :> ?n-docs)
(str "twitter" :> ?key)
(

str ?n-docs :> ?d-str))))

You can define this and any of the following functions in the REPL, or
M add them to core. clj in your project. If you want to use the REPL,
Q simply use 1ein repl from within the project folder. The required
namespace (the use statement), require, and import definitions
can be found in the source code bundle.

5. We then need to add similar functions to calculate the TF and DF values:

(defn DF [src]
(<- [?key ?df-count-str]
(src ?doc-id ?time ?df-word)
(c/distinct-count ?doc-id ?df-word :> ?df-count)
(str ?df-word :> ?key)
(str ?df-count :> ?df-count-str)))
(defn TF [src]
(<- [?key ?tf-count-str]
src ?doc-id ?time ?tf-word)
c/count ?tf-count)
str ?doc-id ?tf-word :> ?key)

str ?tf-count :> ?tf-count-str)))

(
(
(
(

Integrating Storm and Hadoop

6.

This Batch layer is only interested in calculating views for all the data leading up to,
but not including, the current hour. This is because the data for the current hour will
be provided by Trident when it merges this batch view with the view it has calculated.
In order to achieve this, we need to filter out all the records that are within the current
hour. The following function makes that possible:

(deffilterop timing-correct? [doc-time]
(let [now (local-now)
interval (in-minutes (interval (from-long doc-time) now))]
(if (< interval 60) false true))

Each of the preceding query definitions require a clean stream of words. The text
contained in the source documents isn't clean. It still contains stop words. In order
to filter these and emit a clean set of words for these queries, we can compose a
function that splits the text into words and filters them based on a list of stop words
and the time function defined previously:

(defn etl-docs-gen [rain stop]
(<- [?doc-id ?time ?word]
(rain ?doc-id ?time ?line)
(split ?line :> ?word-dirty)
((c/comp s/trim s/lower-case) ?word-dirty :> ?word)
(stop ?word :> false)
(timing-correct? ?time)))

We will be storing the outputs from our queries to Cassandra, which requires us to
define a set of taps for these views:

(defn create-tap [rowkey cassandra-ip]
(let [keyspace storm keyspace

column-family "tfidfbatch"

scheme (CassandraScheme. cassandra-ip
"9160"
keyspace
column-family
rowkey

{

"cassandra.inputPartitioner" "org.apache.cassandra.dht.
RandomPartitioner" "cassandra.outputPartitioner" "org.apache.
cassandra.dht.RandomPartitioner"})

tap (CassandraTap. scheme)]

tap))

(defn create-d-tap [cassandra-ip]
(create-tap "d"cassandra-ip))

(defn create-df-tap [cassandra-ip]

Chapter 6

(create-tap "df" cassandra-ip))

(defn create-tf-tap [cassandra-ip]
(create-tap "tf" cassandra-ip))

W The way this schema is created means that it will use a static row key and
~ persist name-value pairs from the tuples as column : value within that
Q row. This is congruent with the approach used by the Trident Cassandra
adaptor. This is a convenient approach, as it will make our lives easier later.

9. We can complete the implementation by a providing a function that ties everything
together and executes the queries:

(defn execute [in stop cassandra-ip]
(cc/connect! cassandra-ip)
(sch/set-keyspace storm keyspace)
(let [input (tap/hfs-tap (AvroScheme. (load-schema)) in)
stop (hfs-delimited stop :skip-header? true)
src (etl-docs-gen input stop)]
(?- (create-d-tap cassandra-ip)
D src))
(?- (create-df-tap cassandra-ip)
DF src))
create-tf-tap cassandra-ip)

TF src))))

(2-

10. Next, we need to get some data to test with. | have created some test data, which is
available at https://bitbucket.org/ganderson/tfidf-cascalog. Simply

download the project and copy the contents of src/data to the data folder in your
project structure.

11. We can now test this entire implementation. To do this, we need to insert the data
into Hadoop:

hadoop fs -copyFromLocal ./data/document.avro data/document.avro

hadoop fs -copyFromLocal ./data/en.stop data/en.stop
12. Then launch the execution from the REPL:

=> (execute "data/document"™ "data/en.stop" "127.0.0.1")

There are many excellent guides on the Cascalog wiki (https://github.com/nathanmarz/

cascalog/wiki), but for completeness's sake, the nature of a Cascalog query will be
explained here. Before that, however, a revision of Cascading pipelines is required.

Integrating Storm and Hadoop

The following is quoted from the Cascading documentation (http://docs.cascading.
org/cascading/2.1/userguide/htmlsingle/):

Pipe assemblies define what work should be done against tuple streams, which

are read from tap sources and written to tap sinks. The work performed on the
data stream may include actions such as filtering, transforming, organizing, and
calculating. Pipe assemblies may use multiple sources and multiple sinks, and may
define splits, merges, and joins to manipulate the tuple streams.

This concept is embodied in Cascalog through the definition of queries. A query takes a

set of inputs and applies a list of predicates across the fields in each tuple of the input
stream. Queries are composed through the application of many predicates. Queries can

also be composed to form larger, more complex queries. In either event, these queries are
reduced down into a Cascading pipeline. Cascalog therefore provides an extremely terse and
powerful abstraction on top of Cascading; moreover, it enables an excellent development
workflow through the REPL. Queries can be easily composed and executed against smaller
representative datasets within the REPL, providing the idiomatic APl and development
workflow that makes Clojure beautiful.

If we unpack the query we defined for TF, we will find the following code:

(defn DF [src]
(<- [?key ?df-count-str]
(src ?doc-id ?time ?df-word)
(c¢/distinct-count ?doc-id ?df-word :> ?df-count)
(str ?df-word :> ?key)
(str ?df-count :> ?df-count-str)))
The <- macro defines a query, but does not execute it. The initial vector, [?key ?df-
count-str], defines the output fields, which is followed by a list of predicate functions. Each
predicate can be one of the following three types:

» Generators: A source of data where the underlying source is either a tap or another
query.

» Operations: Implicit relations that take in input variables defined elsewhere and
either act as a function that binds new variables or a filter. Operations typically act
within the scope of a single tuple.

» Aggregators: Functions that act across tuples to create aggregate representations of
data. For example, count and sum.

The : > keyword is used to separate input variables from output variables. If no : > keyword is
specified, the variables are considered as input variables for operations and output variables
for generators and aggregators.

146

Chapter 6

The (src ?doc-id ?time ?df-word) predicate function names the first three values
within the input tuple, whose names are applicable within the query scope. Therefore, if the
tuple ("docl" 123324 "This")arrives in this query, the variables would effectively bind
as follows:

» ?doc-id: "docl"
> ?time: 123324
» ?2df-word: "This"

Each predicate within the scope of the query can use any bound value or add new bound
variables to the scope of the query. The final set of bound values that are emitted is defined
by the output vector.

We defined three queries, each calculating a portion of the value required for the TF-IDF
algorithm. These are fed from two single taps, which are files stored in the Hadoop filesystem.
The document file is stored using Apache Avro, which provides a high-performance and dynamic
serialization layer. Avro takes a record definition and enables serialization/deserialization based
on it. The record structure, in this case, is for a document and is defined as follows:

{"namespace": "storm.cookbook",

"type": "record",

"name": "Document",

"fields": [
{"name": "docid", "type": "string"},
{"name": "time", "type": "long"},
{"name": "line", "type": "string"}

]
}

Both the stop words and documents are fed through an ETL function that emits a clean set of
words that have been filtered. The words are derived by splitting the 1ine field using a regular
expression:

(defmapcatop split [line]
(s/split line #"[\I\I\\\(\),.)\sl+"))

The ETL function is also a query, which serves as a source for our downstream queries, and
defines the [?doc-id ?time ?word] output fields.

The output tap, or sink, is based on the Cassandra scheme. A query defines predicate logic,
not the source and destination of data. The sink ensures that the outputs of our queries are
sent to Cassandra. The ? - macro executes a query, and it is only at execution time that a
query is bound to its source and destination, again allowing for extreme levels of composition.
The following, therefore, executes the TF query and outputs to Cassandra:

(?- (create-tf-tap cassandra-ip)
(TF src))

Integrating Storm and Hadoop

There's more...

The Avro test data was created using the test data from the Cascading tutorial at http://
www.cascading.org/2012/07/31/cascading-for-the-impatient-part-5/.
Within this tutorial is the rain. txt tab-separated data file. A new column was created called
time that holds the Unix epoc time in milliseconds. The updated text file was then processed
using some basic Java code that leverages Avro:

Schema schema = Schema.parse (SandboxMain.class.getResourceAsStream("/
document .avsc")) ;
File file = new File("document.avro") ;

DatumWriter<GenericRecord> datumWriter = new GenericDatumWriter<
GenericRecords> (schema) ;

DataFileWriter<GenericRecord> dataFileWriter =
new DataFileWriter<GenericRecords (datumWriter) ;
dataFileWriter.create (schema, file);
BufferedReader reader = new BufferedReader (new
InputStreamReader (SandboxMain.class.getResourceAsStream (
"/rain.txt"))) ;

String line = null;

try {
while ((line = reader.readLine()) != null) {

String[] tokens = line.split("\t");

GenericRecord docEntry = new
GenericData.Record (schema) ;

docEntry.put ("docid", tokens[0]);
docEntry.put ("time", Long.parselong(tokens[1]));
docEntry.put ("line", tokens[2]);
dataFileWriter.append (docEntry) ;
}
} catch (IOException e) {
e.printStackTrace () ;

}

dataFileWriter.close () ;

Persisting documents from Storm

In the previous recipe, we looked at deriving precomputed views of our data taking some
immutable data as the source. In that recipe, we used statically created data. In an
operational system, we need Storm to store the immutable data into Hadoop so that it
can be used in any preprocessing that is required.

148

Chapter 6

How to do it...

As each tuple is processed in Storm, we must generate an Avro record based on the document
record definition and append it to the data file within the Hadoop filesystem.

We must create a Trident function that takes each document tuple and stores the associated
Avro record.

1. Within the t£idf -topology project created in Chapter 3, Calculating Term
Importance with Trident, inside the storm. cookbook.tfidf . function
package, create a new class hamed PersistDocumentFunction that extends
BaseFunction. Within the prepare function, initialize the Avro schema and
document writer:

public void prepare (Map conf, TridentOperationContext context) {
try {
String path = (String) conf.get ("DOCUMENT_ PATH") ;
schema = Schema.parse (PersistDocumentFunction.class
.getResourceAsStream (" /document.avsc")) ;
File file = new File(path);
DatumWriter<GenericRecord> datumWriter = new GenericDatum
Writer<GenericRecords (schema) ;
dataFileWriter = new DataFileWriter<GenericRecords (
datumWriter) ;
if(file.exists())
dataFileWriter.appendTo (file) ;
else
dataFileWriter.create (schema, file);
} catch (IOException e) {
throw new RuntimeException (e) ;

}

2. As each tuple is received, coerce it into an Avro record and add it to the file:
public void execute (TridentTuple tuple, TridentCollector
collector) ({

GenericRecord docEntry = new GenericData.Record (schema) ;
docEntry.put ("docid", tuple.getStringByField ("documentId")) ;
docEntry.put ("time", Time.currentTimeMillis()) ;
docEntry.put ("line", tuple.getStringByField ("document")) ;
try {

dataFileWriter.append (docEntry) ;

dataFileWriter.flush() ;
} catch (IOException e) {

Integrating Storm and Hadoop

LOG.error ("Error writing to document record: " + e);
throw new RuntimeException (e) ;

}

3. Next, edit the TermTopology.build topology and add the function to the
document stream:

documentStream.each (new Fields ("documentId", "document"),
new PersistDocumentFunction (), new Fields()) ;

4. Finally, include the document path into the topology configuration:
conf .put ("DOCUMENT_ PATH", "document.avro") ;

There are various logical streams within the topology, and certainly the input for the topology
is not in the appropriate state for the recipes in this chapter containing only URLs. We
therefore need to select the correct stream from which to consume tuples, coerce these into
Avro records, and serialize them into a file.

The previous recipe will then periodically consume this file. Within the context of the topology
definition, include the following code:

Stream documentStream = getUrlStream(topology, spout)
.each (new Fields ("url"),
new DocumentFetchFunction (mimeTypes),
new Fields ("document", "documentId", "source")) ;

documentStream.each (new Fields ("documentId", "document"),
new PersistDocumentFunction (), new Fields()) ;

The function should consume tuples from the document stream whose tuples are populated
with already fetched documents.

Integrating the batch and real-time views

The final step to complete the big data architecture is largely complete already and is
surprisingly simple, as is the case with all good functional style designs.

150

Chapter 6

How to do it...

This recipe involves simply extending the existing TF-IDF DRPC query that we defined in
Chapter 4, Distributed Remote Procedure Calls. We need three new state sources that
represents the D, DF, and TF values computed in the Batch layer. We will combine the values
from these states with the existing state before performing the final TF-IDF calculation.

1. Start from the inside out by creating the combination function called
BatchCombiner within the storm. cookbook.tfidf. function package and
implement the logic to combine two versions of the same state. One version should
be from the current hour, and the other from all the data prior to the current hour:

public void execute (TridentTuple tuple, TridentCollector
collector) ({

try {

double d rt = (double) tuple.getLongByField("d rt");
double df rt = (double) tuple.getLongByField("df rt");
double tf rt = (double) tuple.getLongByField("tf rt");

double d batch = (double) tuple.getLongByField("d batch");
double df batch = (double) tuple.getLongByField("df batch");
double tf batch = (double) tuple.getLongByField("tf batch");

collector.emit (new Values (tf rt + tf batch, d rt +
d batch, df rt + df batch));
} catch (Exception e) ({

}
}

2. Add the state to the topology by adding these calls to the addTFIDFQueryStream
function:

TridentState batchDfState = topology.newStaticState (
getBatchStateFactory ("df")) ;

TridentState batchDState = topology.newStaticState (
getBatchStateFactory ("d")) ;

TridentState batchTfState = topology.newStaticState (
getBatchStateFactory ("tf")) ;

3. This is supported by the static utility function:

private static StateFactory getBatchStateFactory(String rowKey) {
CassandraState.Options options = new CassandraState.

Options () ;
options.keyspace = "storm";
options.columnFamily = "tfidfbatch";

Integrating Storm and Hadoop

options.rowKey = rowKey;
return CassandraState.nonTransactional ("localhost",
options) ;

}

Within a cluster deployment of Cassandra, simply replace the word
o localhost with a list of seed node IP addresses. Seed nodes are
~ simply Cassandra nodes, which, when appropriately configured,
Q will know about their peers in the cluster. For more information on
Cassandra, please see the online documentation at http://wiki.
apache.org/cassandra/GettingStarted

4. Finally, edit the existing DRPC query to reflect the added state and combiner function:

topology.newDRPCStream("tfidfQuery", drpc)
.each(new Fields("args"),
new SplitAndProjectToFields(),
new Fields ("documentId", "term"))
.each (new Fields(),
new StaticSourceFunction ("twitter"),
new Fields ("source")) .stateQuery (tfState,
new Fields ("documentId", "term"),
new MapGet (), new Fields("tf rt"))
.stateQuery (dfState,new Fields("term"),
new MapGet (), new Fields("df rt"))
.stateQuery (dState,new Fields ("source"),
new MapGet (), new Fields("d rt"))
.stateQuery (batchTfState,
new Fields ("documentId", "term"),
new MapGet (), new Fields("tf batch"))
.stateQuery (batchDfState,new Fields ("term"),
new MapGet (), new Fields("df batch"))
.stateQuery (batchDState,new Fields ("source"),
new MapGet (), new Fields("d batch"))
.each(new Fields("tf rt","df rt",
"d rt","tf batch","df batch","d batch"), new
BatchCombiner (), new Fields("tf","d","df"))
.each (new Fields ("term", "documentId","tf","d",

"df"), new TfidfExpression(),
new Fields ("tfidf"))
.each (new Fields ("tfidf"), new FilterNull())

.project (new Fields ("documentId",
"term", "tfidf")) ;

152

Chapter 6

We have covered a huge amount of ground to get to this point. We have implemented an
entire real-time, big data architecture that is fault-tolerant, scalable, and reliable using purely
open source technologies. It is therefore useful at this point to recap the journey we have
taken to the point, ending back where we are now:

» We learned how to implement a Trident topology and define a stream data pipeline.
This data pipeline defines predicates that not only act on tuples but also on
persistent, mutable states.

» Using this pipeline, we implemented the TF-IDF algorithm.

» We separated out the preprocessing stage of the data pipeline from the "at time"
stage of the pipeline. We achieved this by implementing a portion of the pipeline in a
DRPC stream that is only invoked at "at time".

» We then added the concept of time windows to the topology. This allowed us to
segment the state into time-window buckets. We chose hours as a convenient
segmentation.

» We learned how to test a time-dependent topology using the Clojure testing API.

» Then, in this chapter, we implemented the immutable state and the batch
computation.

» Finally, we combined the batch-computed view with the mutable state to provide a
complete solution.

The following flow diagram illustrates the entire process:

o DRPC
Fetch Serialize Process Query
Documents Records Streams

Calculate
TF-IDF

Mutable
State

Batch View|

*Cassandra

Compute
Views

| Immutable
Records

Integrating Storm and Hadoop

With the high-level picture in place, the final DRPC query stream becomes easier to
understand. The stream effectively implements the following steps:

>

>

>

.each(SplitAndProjectToFields): This splits the input arguments from the
query and projects them out into separate fields in the tuple

.each (StaticSourceFunction): This adds a static value to the stream, which
will be required later

.stateQuery (tfState): This queries the state of the t £ value for the current
hour based on the document ID and term and outputs t£ rt

.stateQuery (dState): This queries the state of the d value for the current hour
based on the static source value and outputs d_rt

.stateQuery (dfState): This queries the state of the df value for the current
hour based on the term and outputs df rt

.stateQuery (tfBatchState): This queries the state of the t £ value for all
previous hours based on the document ID and term and outputs t£ batch

.stateQuery (dBatchState): This queries the state of the d value for all previous
hours based on the static source value and outputs d_batch

.stateQuery (dfBatchState): This queries the state of the df value for all
previous hours based on the term and outputs df_batch

.each (BatchCombiner): This combines the separate _rt and _batch fields into
a single set of values

.each (TfidfExpression): This calculates the TF-IDF final value
.project: This projects just the fields we require in the output

A key to understanding this is that in each stage in this process, the tuple is simply receiving
new values and each function is simply adding new named values to the tuple. The state
queries are doing the same based on existing fields within the tuple. Finally, we end up with a
very "wide" tuple that we trim down before returning the final result.

Real-time Machine
Learning

In this chapter, we will cover:

» Implementing a transactional topology

» Creating a Random Forest classification model using R

» Operational classification of transactional streams using Random Forest
» Creating an association rules model in R

» Creating a recommendation engine

» Real-time online machine learning

Introduction

We have explored how Storm fits into a Big Data architecture as the real-time layer. A key use
case for Big Data solutions involves the enabling of data science. We have seen some basic
data science already through the implementation of some basic analysis of term frequencies,
both in real time and batch. When analyzing data, there are both operational and insights
components to the process. The operational component is the one we have explored already
in great detail using Storm—the ability to process data streams and identify important terms.
Insights involve aggregated views of large datasets such that they provide some higher-level
insight, and is typically an offline activity. It answers the following questions:

» Which market segment is the most effective?
» How can | engage more effectively with my customer?

» What is my current financial position?

Real-time Machine Learning

Insights are, therefore, associated with traditional Management Information Systems (MIS);
however, systems that deliver insights are changing with the proliferation of Big Data technology.

Both operationally and in terms of insights, we have only explored data analysis and data
science in terms of a single temporal dimension—the past. This chapter concerns itself with
the future. Increasingly, business is dependent on knowing what to expect before it happens.
This branch of data science is known by many names: machine learning, predictive analytics,
and artificial intelligence. Within this text, the terms machine learning and predictive analytics
will be used interchangeably. There are many use cases for machine learning, and some of
them are as follows:

» Product recommendation

» Customer churn prediction

» Fraud detection and prevention
» Credit and risk management

» Governance and control

Within predictive analytics, one still needs to distinguish between operational analytics and
insights. This chapter will largely focus on the operational aspects, given that Storm is a platform
ideally suited for this purpose; however, areas where insights are involved will also be identified.

A final classification that is important at this stage is the high-level families of predictive
models and algorithms. At a high level, two families exist, namely supervised and
unsupervised. The distinction between these two refers to the way in which the model is
trained or built. Which can either be done through training data that contains both features
and known target values; or the models can be built without targets, leaving the discovery of
any targets purely to the algorithm.

This distinction deserves more explanation; however, it must be noted that this book does
not aim to present a complete overview of machine learning, rather simply introduce how

to implement such techniques using Storm. With that goal in mind, some concepts will be
explained to a reasonable level of detail, some will be grossly over simplified, and some will
be ignored entirely. Machine learning is an extremely large and complex area, and it is highly
recommended that the reader explores the topic in greater detail using one of the many
online resources available to them.

Returning to supervised learning, we shall start with some terminology. For a given dataset,
specifically, for each datum within a dataset, there exist certain classes of fields:

» Features: This class refers to properties of the datum, which typically are the
properties that of interest and hopefully contain some inherent predictive ability
when viewed with the correct lens.

» Labels: This class refers to some known outcome that is relative to the given set
of features.

156

Chapter 7

» Identifier: This class refers to a field that can identify the particular datum within
the dataset.

For a better understanding of these terms, those with any relational database experience,

can think about these classes in terms of a single table with rows and columns. These terms
describe the types of columns one would expect in a dataset that are to be used for training a
supervised learning algorithm. Therefore, while building a model, each datum is a row in that
table. By way of an example, suppose that you had an audit dataset with the following columns:

» ID

» Age

» Employment status

» Education

» Marital status

» Occupation

» Income

» Gender

» Risk classification
Age, Employment status, Education, Marital status, Occupation, Income, and Gender are the
features of this dataset. ID would be the identifier and the Risk classification column would
be the target field (often referred to as the label). By including the target field, we are asking

an algorithm to find some relationships within the features that will result in a given outcome.
The algorithm is therefore said to be supervised.

When no target is given, the algorithm is said to be unsupervised in nature, in that, it needs
to find relationships in the data without this guiding data. Random Forest is an example of a
supervised model, whereas K-Means is an example of an unsupervised model.

The fundamental assumption built into machine learning is that things that occurred in the
past will happen in similar ways in the future. Various machine learning algorithms attempt

to extract the underlying concepts inherent in the featured set of data, and then use these
concepts in predicting future events of a similar kind. Of course, this assumption is invalidated
entirely through novel data; however, the vast majority of data isn't novel.

This chapter demonstrates the implementation of such techniques on Storm, and the
concepts that have been introduced extremely briefly here will be explained further as and
when appropriate.

There are three approaches to implementing machine learning within Storm. We will explore
all the three (Storm-Pattern, Storm-R, and Trident-ML) approaches, but first, let's lay a basis for
achieving exactly-once semantics.

Real-time Machine Learning

Implementing a transactional topology

In the previous chapters, we have concerned ourselves with data that was not "transactional"
in nature, not in the way we typically think of things such as financial transactions. As a result,
one can potentially tolerate system failure because there is no direct monetary implication to
each transaction that may be affected by any failure cases, especially given that transactional
schematics come with a cost, both in performance and storage. The recipes in this chapter
deal with scoring transactions that require transactional schematics, and it is therefore
relevant to understand how to achieve exactly-once schematics with Storm at this stage.

The transactional schematics of Storm, like most aspects of Storm, are
M excellently documented on the project's wiki. The transactional logic is
Q presented here as a matter of convenience and completeness, but the
reader is encouraged to read the source of this information at https://
github.com/nathanmarz/storm/wiki/Trident-state.

Trident's support for exactly-once schematics requires specific implementations of spouts
and state. When failures occur, tuples will be replayed. This brings up a problem when doing
state updates (or anything with side effects)—you have no idea if you've ever successfully
updated the state based on this tuple before. The state, therefore, needs to be fundamentally
idempotent. In order to achieve this, you use the following properties of Storm:

» Tuples are processed as small batches.
» Each batch of tuples is given a unique ID called the transaction ID (txid). If the batch
is replayed, it is given the exact same txid.

» State updates are ordered among batches; that is, the state updates for batch 2
won't be applied until the state updates for batch 1 have succeeded.

Given these properties, and storing a little extra state, it is possible to ensure that state
updates are truly idempotent in the face of failures and retries.

The key to implementing these properties is the spout. The spout must follow a specific set
of rules:

» Batches for a given txid are always the same. Replays of batches for a txid will extract
the same set of tuples as the first time that batch was emitted for that txid.

» There's no overlap between the batches of tuples (tuples are in one batch or another,
never multiple).
» Everytupleisin a batch.

Finally, the transaction ID is stored atomically with the value in the underlying Trident state.
Using this transaction ID, Trident is can detect if a given update is a duplicate of a previous
update involving this batch and can decide whether to skip or apply this update. The logic of
including the transaction ID is handled entirely by Trident and its state implementations and
works regardless of the underlying persistence.

158

Chapter 7

Getting ready

Before we get started, we need to install a message broker that more readily supports
the transactional logic inherent in Storm's Trident, specifically Apache Kafka. Kafka is
a distributed publish-subscribe messaging system. According to the Kafka website
(http://kafka.apache.org/), itis designed to support the following:

» Persistent messaging with O(1) disk structures that provide constant time
performance even with many TB of stored messages.

» High-throughput is supported; even with very modest hardware, Kafka can support
hundreds of thousands of messages per second.

» Explicit support for partitioning messages over Kafka servers and distributing
consumption over a cluster of consumer machines while maintaining per-partition
ordering semantics.

In order to install Kafka, download the source packages from the website for Version 0.7.2.
Once the download is complete, install Scala Build Tool (sbt), then unpack and build the
Kafka server by executing the following command:

sudo apt-get install sbt

tar xzf kafka-0.7.2-incubating-src.tgz

cd kafka-0.7.2-incubating-src

./sbt update

./sbt package

The default installation of Kafka sets the number of partitions to 1, which isn't a practical

value. So, start by editing the server.properties file under config and setting the value
of num.partitions to 2.

With Kafka installed, open up three separate terminal instances within the kafka directory.
Within the first terminal, execute the following command:

bin/zookeeper-server-start.sh config/zookeeper.properties
Then, from within the second terminal, execute the following command:
bin/kafka-server-start.sh config/server.properties

You now have a functioning Kafka server. Note that your Zookeeper and Kafka instance are
executing in separate terminals. Your third terminal will be used to interact with Kafka topics.
To test your installation, let's publish some messages. In the third terminal instance, execute
the following command:

bin/kafka-console-producer.sh --zookeeper localhost:2181 --topic test

Real-time Machine Learning

Once the initialization sequence is complete, you will be able to type text; each line you type
will publish that text to the "test" topic. Enter a few lines and then escape the application

by using Ctrl + C. Finally, verify that the messages can be read; to do this, type the following
command into the terminal:

bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic test
--from-beginning

This application should display all of your previously created messages. You can use Ctrl + C
to quit this application, but note that we will be shortly using this subscriber utility for testing.

How to do it...

We will now implement an extremely basic transactional topology. This will illustrate how
transactional semantics are achieved in Storm. In order to fully illustrate this, we will create
the topology and test and understand the resulting state, but we will also create some forced
errors in order to check whether the failure and recovery cases are working. This will give you
a clear understanding of how the transactional elements hang together and where to start
debugging should you encounter errors.

1. Start by creating a Storm project that includes the following dependencies in
the POM file:

<dependency>
<grouplds>storm</groupId>
<artifactIds>storm-kafka</artifactId>
<version>0.9.0-wipl6a-scala292</version>
<exclusionss>
<exclusion>
<artifactIds>storm</artifactIds>
<grouplds>storm</groupId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<grouplds>org.slf4j</groupld>
<artifactId>slf4j-log4jl2</artifactId>
<version>1.6.1l</versions>
</dependency>
<dependency>
<groupld>trident-cassandra</groupIds>
<artifactIds>trident-cassandra</artifactIds>
<version>0.0.1l-bucketwipl</version>
<exclusionss>
<exclusion>
<artifactIds>storm</artifactIds>

160

Chapter 7

<grouplds>storm</groupIld>
</exclusions>
</exclusions>
</dependency>

Import your project into Eclipse, create a new main class hamed
TransactionalTopology, and then create the basic main method
implementation:

Config conf = new Config() ;
conf.setDebug (true) ;

conf.setMaxTaskParallelism(3) ;

LocalCluster cluster = new LocalCluster() ;
cluster.submitTopology ("transactional-topology",
conf ,makeTopology () .build()) ;

Thread.sleep(100000) ;
cluster.shutdown () ;

Then, define a really simple topology in the makeTopology () method:
TridentTopology topology = new TridentTopology () ;

TridentKafkaConfig spoutConfig = new TridentKafkaConfig(
StaticHosts.fromHostString (
Arrays.asList (new Stringl[]
"localhost" }), 2), "test");

topology.newStream("kafka", new TransactionalTridentKafkaSpout (
spoutConfig))
.each(new Fields ("bytes"), new DebugBytes (), new
Fields ("text"))
.groupBy (new Fields ("text"))
.persistentAggregate (getBatchStateFactory ("test")

, new
Count (), new Fields ("count")) ;

return topology;

In order to complete the topology definition, you must implement the DebugBytes
Trident function. Trident ships with a built-in Debug function, but here we need

a specialized equivalent that prints out the message contents and generates
periodic errors. To implement this, simply maintain a member-level count and throw
exceptions based on modulus tests within the execute method:

count++;
if (count % 2 == 0){
throw new RuntimeException ("Testing") ;

Real-time Machine Learning

162

}
String text = new String(tuple.getBinary(0)) ;
System.out.println(name + text);
collector.emit (new Values (text)) ;

This is the complete implementation. So, we can simply expect the topology to print our
messages, group them by content, and store a count against content in a Cassandra
column family. Before we test the topology, you need to create the Cassandra column
family; execute the following commands in the Cassandra-cli to do so:

create keyspace test
with strategy options = [{replication factor:1}]

and placement strategy = 'org.apache.cassandra.locator.
SimpleStrategy':;

use test;

create column family transactional
with comparator = AsciiType
and default validation class = 'UTF8Type'
and key validation class = 'UTF8Type';

You can now test the topology by starting it directly from Eclipse by navigating to Run
As | Java Application. Once the topology is initialized, switch back to your third Kafka
terminal and run the following command to start the message producer:

bin/kafka-console-producer.sh --zookeeper localhost:2181 --topic
test

Using this interface, publish a single message. Then, take note of the Storm logs,
which should be clear. Also take note of the value in the Cassandra column family,
which you can do by the following Cassandra-cli instructions:

use test;

list transactional;

Note that the value stored in Cassandra contains more than just your intended count
of 1.

Now, switch back to the terminal and enter a second message. At this point, your
topology should throw an exception and terminate. Validate that this has occurred,
and also validate that the stored count is still 1.

You have effectively simulated a failure during transaction processing. The expected
behavior now is that you can start up the topology again, the message should now be
processed, and the count in Cassandra should be updated to 2. To test this, simply
run the topology again in local mode from Eclipse.

Chapter 7

9. When you execute this , you will notice that the message does not get replayed into
the topology, and the count remains at 1 until you publish a third message. This
means that the message was effectively lost as a result of the failure case. This is
obviously what we are trying to prevent; in order to fix the issue, add the following
lines of code to your main method:
conf .put (Config.STORM ZOOKEEPER SERVERS, Arrays.asList (new
String[]{"127.0.0.1"})); B
conf.put (Config.STORM_ZOOKEEPER_PORT, 2181) ;

(

conf .put (Config.STORM ZOOKEEPER ROOT, "/storm");

10. You can now re-run the same test, you will find that after the failure, the topology
does replay the message and the count is updated as expected.

We saw many elements coming together in order to provide the exactly-once semantics that
we finally withessed during our tests. Let's unpack each element at play.

Firstly, the Kafka spout, which is a prebuilt module from the storm-contrib project, already
implements the required set of logic to be a transactional compliant spout. We configured the
spout using the following lines of code:

TridentKafkaConfig spoutConfig = new TridentKafkaConfig(
StaticHosts.fromHostString (
Arrays.asList (new String[] {
localhost" }), 2), "test");

This configuration tells Kafka where to find the Kafka nodes. In this case, we only have a
single node on localhost; however, in a larger deployment, we would supply a list of actual
Kafka nodes. We also specify the number of partitions and the name of the topic to subscribe
to. We then create an instance of a transactional spout as the spout for the only stream in

our topology. This is all that is required to implement a transactional Kafka spout. Many other
transactional spouts exist within the storm-contrib project; however, if your broker isn't
currently supported, using the existing storm-contrib code as a starting point would be the
best approach to implementing a new spout.

Secondly, we have seen the transactional state in the Cassandra-backed Trident state. Trident
adds some transaction IS state to the state element in the underlying data store on our
behalf. It then also uses this state to safely replay the message and update the state. In

order to use the transactional state, ensure that you create your Cassandra state using the
transactional utility method.

Real-time Machine Learning

Finally, we managed to create failure cases, which weren't dealt with correctly without adding
some additional configurations for the topology. The properties in question effectively tell
Storm where to find a running Zookeeper instance:

conf .put (Config.STORM ZOOKEEPER SERVERS, Arrays.asList(new Stringl[]
{r127.0.0.1"}));

conf.put (Config.STORM_ZOOKEEPER_PORT, 2181) ;

conf .put (Config.STORM ZOOKEEPER ROOT, "/storm");

This fixes the problem, because Storm stores an additional bit of state in Zookeeper,
which allows Storm to enforce strong ordering between batches. This is key, Trident allows
for parallel processing of batches; however, they always commit in order. This capability

is enabled by maintaining a batch-tracking state inside zookeeper. Within a standard
deployment, there is no need to tell Storm where to find Zookeeper; however, in the local
mode, there is no Zookeeper instance running, thus the requirement for this configuration.

Creating a Random Forest classification

model using R

As mentioned in the introduction to the chapter, three approaches to machine learning within
Storm will be presented. It is important to understand when to use each approach. This choice
starts by understanding what machine learning approach and algorithm you would like to use:
online or batch-based. Remember that, for machine learning, online and batch refers to the
way in which the model is trained. This distinction does not imply any particular underlying
engineering approach to achieve either the batch or online modes. A batch model can be built
in a real-time software platform, and conversely, an online model can be built as part of a
batch software process. It is important to understand this distinction between the engineering
aspect and the machine learning aspect.

If you would like to explore this concept in more depth, please read the following overview of
neural networks in which the distinction is explored in more detail: http://www.webpages.
ttu.edu/dleverin/neural network/neural networks.html.

Once you have chosen your algorithm approach, you can use the following guidelines to
choose the correct approach within Storm:

» Storm-Pattern: Pattern is a port of the Cascading/Pattern project. It aims to support
the operational deployment of all of the most common models, imported via PMML.
This is the preferred approach when batch training a model. The model can then be
used to score a stream of data. It is preferred because of the following reasons:

o Itachieves the highest performance through native scoring implementations

o PMML is a well-supported standard for exchanging models, and you can
build your model using a wide range of solutions, from R to SAS and anything
in between.

164

Chapter 7

Storm-R: The R integration is useful when a given model isn't yet supported by Storm-

>
Pattern but is supported by R (R supports a massive range of models). The model can
then be operationalized into Storm using the Storm-R integration with very little effort.
However, this method isn't preferred because of the performance characteristics of R
and the coupling to R as a technology. In many environments R isn't used at all.

» Trident-ML: This is an excellent implementation of many of the most common

algorithms that support online learning. This is the approach to use if you are needing
to implement an online learning mode.

With this framework in place, we can proceed to the first use case, which is batch-building a
model and exporting it to be operationalized later using Storm-Pattern.

Getting ready

To get started, you need to download the latest version of R from http://www.r-project.
org/. It is also recommended that you download RStudio, which is an excellent open source
Integrated Development Environment (IDE) for R from http://www.rstudio.com/. Once
you have installed R and RStudio, open R Studio and you should be presented with a view
similar to the following screenshot:

® RStudio File Edit Code View Plots Session Project Build Tools Window Help M4 ;| £ B & = ¢ (= (Charged) Fri8:19 AM_ Quinton Anderson Q
800 RStudio 7
LAl 24 & project: (None) +
| Expenses | Distributions =[] Workspace History ==
al 200 observations of 3 variables | < [J | [&ToConsole “@ToSource @ &
Income_norm Income_tail Income_bimodal help(density)
1 s1863.87 68256.86 38957.81 install.packages("ggobi")
2 40320.75 48853.52 41515.44 install.packages("ggobi")
3 42006.60 53487.27 3958516 Llibrary("ggobi”)
4 39730.18 65152.47 3887057 help(im)
5 a2409.29 6130750 39546.28 demoCplot)
& a347.75 29990.55 33453.85 x < seq(9,120, length-120)
7 37317.81 48501.71 40045.85 X
8 w32 9040.81 3967685 ¥ <= dnorm(x,mean=50)
9 44918.34 45215.7@ 39710.92 Y
10 45680.42 45929.73 42899.93 plot(x,y)
Console (71| Files Plots Packages Help ==
XA g
R wversion 2.15.3 (2013-03-01) -- "Security Blanket" R:Kernel Density Estimation v

Copyright (C) 2013 The R Foundation for Statistical Computing
ISBN 3-000051-07-0
Platform: x86_64-apple-darwing.8.0/x86_64 (64-bit)

density {stats} R Documentation

R is free software and comes with ABSOLUTELY NO WARRANTY. Kernel DenSﬂy Estimation
You are welcome to redistribute it under certain conditions. .
Type "license()' or 'licence(3" for distribution details. Description

The (S3) generic function dens: ty computes kel density estimates. Its
default method does so with the given kemel and bandwidth for univariate

Natural language support but running in an English locale
observations.

R is a collaborative project with many contributors.

Type ‘contributors()’ for more information and
‘citation()’ on how to cite R or R packages in publications.

Type 'demo()' for some demos, help()* for on-line help, or
‘help.start()’ for an HTML browser interface to help.

Type 'a()’ to quit R.

[Morkspace loaded from ~/.RData]

Usage

density(x, ...)
Default S3 method:
density(x, bw = "nrd0"

weights =
give.Rkern

Arguments

the data from which the estimate is to be computed.

the smoothing bandwidth to be used. The kemels are scaled such
that this is the standard deviation of the smoothing kernel. g\lcte
Fhie Aifiars frmem the rafaranna hanks Al haimu and frm Q-

Real-time Machine Learning

While a comprehensive overview of R is well outside of the scope of this book, a quick
overview is relevant and useful. The RStudio environment consists of the following four areas:

» Data view, docked to the top-left corner, allows you to view datasets within the
workspace.

» The history, docked to the top-right corner, allows you to view all your previous
commands. This dock position also contains all the variables that are currently stored
in the workspace and available as variables within the REPL.

» The REPL is docked to the bottom-left corner and is the main work area where you
will input code and receive feedback.

» Finally, the bottom-right dock location contains a help view and the plots that we have
generated as part of the any statistical analysis that we perform within the REPL.

R has many useful functions to help the user, such as help ([function name]), which will
display comprehensive help for the specified command. You can also search the R archives
and packages for particular terms or functions by simply typing ?? [Search Criterial.

For this recipe, we are going to require two R packages, namely pmml and randomForest. In
order to install them, enter the following commands in the REPL:
install.packages ("pmml")

install.packages ("randomForest")
RStudio will prompt you to choose a mirror and then install the required packages.

Finally, you will need the dataset, which you can download from: https://bitbucket.org/
ganderson/rf-topology/raw/acle5ff8117ae773be4c29c8c5b63f17c51a6654/
orders.tsv.

How to do it...

Using the randomForest package, we will now build a Random Forest model and then
export it using PMML.

1. Start by loading the required libraries. In the REPL, enter the following commands:

library (pmml)

library (randomForest)

2. Then, load the required data as follows:
dat folder <- '.!'

data <- read.table(file="orders.tsv", sep="\t", quote="",
na.strings="NULL", header=TRUE, encoding="UTF8")

dim(data)
head(data)

166

Chapter 7

Next, you need to split the data into training and testing datasets as described in the
followingcommand line:

set.seed(71)
split_ratio <- 2/10
split <- round(dim(data) [1] * split ratio)

data tests <- datall:split,]
dim(data_tests)
print (table(data tests[,"label"]))

data_train <- datal(split + 1):dim(data) [1],]
i <- colnames(data train) == "order id"

j <- 1l:length(i)

data train <- data trainl[,-j[il]

dim(data_train)

You then need to train the Random Forest model as described here:
f <- as.formula("as.factor(label) ~ .")

fit <- randomForest(f, data train, ntree=500)

You can then test the model by entering the following commands and inspecting the
resulting confusion matrix:

print (fit$importance)

print (fit)

predicted <- predict(fit, data)
data$predict <- predicted
confuse <- table(pred = predicted, true = datal,1])

print (confuse)

The confusion matrix allows you to inspect the performance of the model against the
Out Of Bag (00B) data.

Finally, export the model using PMML as follows:

saveXML (pmml (fit) , file="random forest.xml", sep="/")

Real-time Machine Learning

The following diagram illustrates the basic process involved in building a model:

Acquire Data

Explore Data

Cleanse and
Manipulate

Identify
Features and
Labels

v
Split Data into

Training and
Testing Sets

Yy
Train the
Model using
the training
data

Test the Model

A 4

Operationalize

{

168

Chapter 7

The key element to understand is that the process of model building is highly iterative and
interactive. RStudio is a powerful tool to help you with this process. The code that you entered
will build you an excellent model based on a prebuilt and clean dataset that was prepared

for training purposes. When applied to real-world datasets, the process is always far more
incremental and difficult, often including many other statistical techniques in order to analyze
and manipulate the data. Furthermore, depending on the size of the dataset, you may need
to apply other approaches to test the model effectively. Again, these topics are all subjects of
entire books in their own right, and they are mentioned here in order to draw your attention to
them; further reading is required if you would like to build models effectively in the real world.

The Random Forest is an extremely useful tool, especially for those starting out in machine
learning. It is an ensemble method that can be used for either regression or classification
tasks. Random Forest works by growing a multitude of decision trees, and a variation between
the trees is introduced by projecting the training data into a randomly chosen subspace before
fitting each tree. Essentially, each tree is trained on a bootstrapped sample of the original
dataset, and each time a leaf is split, only a randomly chosen subset of the dimensions are
considered for splitting. This ensures that the key underlying concepts that are inherent in the
data are chosen, making for far more accurate OOB test results than a standard decision tree.

A Random Forest actually goes far beyond what | have described here; however, for
our purposes, this will suffice, as all the complexity has been abstracted away within the
R packages.

Good analysis is underpinned by an excellent understanding of the data; the exploring phase
is essential, and you should spend much time getting to know your dataset. Let's take a quick
look at our particular dataset. In RStudio, execute the following commands:

orders <- read.delim("~/workspace/rf-topology/orders.tsv")

View (orders)

contents (orders)

summary (orders)

These commands should give you three critical outputs to help you to start understanding the
data. Firstly, you will get a view of the data in a table to the top-left of the display. Secondly,
you will get a summary of the fields in the dataset and their types, and it should look
something like the following command line:

Data frame:orders 1000 observations and 12 variables Maximum # NAs:0

Levels Storage

label integer
v0 double
vl double
v2 double

Real-time Machine Learning

v3 double
vé double
v5 double
v6 double
v7 double
v8 double
v9 double

order id 1000 integer

|order id|f46£652b,f4702b0f, £4702d99,£47030e8,£47034dc, £47037e8,£4703a35,
£4703c6e,£4703e9e,£4704049,£4704300,£470453a]|

| | £4704773,£470497a,£4704b£fd, £4704e0c,£4705017, £4705214,£470541c,
£470560f,£4705817,£4705ale,£4705cle, £4705elc |

Our dataset has 12 fields, a label, an order ID, and the remaining 10 fields (v0 to v9, all of
type double). The output also tells us that we have 1000 observations or rows. The contents
function also discovers that the order ID is a discrete set of values and tries to list them for us;
the terminology within R refers to these discrete values as levels. In this example, the Levels
output isn't particularly useful, but there are many cases where it is. For this example, looking
at the data values in the data explorer and contents output, we can be quite certain that
fields v0 to v9 are our features, and we have a label and an identifier, which appears to be
some portion of a UUID or similar concept.

Finally, you will get a summary of the dataset at a field level that should look similar to the
following screenshot:

170

Chapter 7

label ve vl v2
Min. 10,800 Min. :=1.988 Min. »=1.56@ Min. 1=1.55@
15t Qu.:@.000 1st Qu.: 8.6908 1st Qu.: B8.72@ 1st Qu.: @.69@
Median :@.0280 Median : 1.278 Median : 1.29@ Median : 1.28@
Mean 18.209 Mean : 1.868B Mean 1.117 Mean 1.891
3rd Qu.:0.000 3rd Qu.: 1.55@ 3rd Qu.: 1.57@ 3rd Qu.: 1.560@
Max. 11,0800 Max. 1 2.458 Max. r 2.36@ Max. v 2.448
v3 vd w3 vb
Min. 1=2.30@0 Min. :-1.66@ Min. 1=2.880 Min. 1=2.130
1st Qu.: @.6680 1st Qu.: @.630 1st Qu.: 8.68@ 1st Qu.: @.718@
Median : 1.28@ Median : 1.27@ Median : 1.2808 Median : 1.28@
Mean o l1.e72 Mean : 1.853 Mean 1 1.875 Mean 1.184
3rd Qu.: 1,560 3rd Qu.: 1.5580 3rd Qu.: 1.55@ 3rd Qu.: 1.57@
Max. 1 2.230 Max. 1 2.200 Max. 1 2.2580 Max. p 2,220
w7 va va order_id
Min. 1=1.498 Min. :-1.988 Min. :-1.588 f46f652b: 1
1st Qu.: @.780@ 1st Qu.: @.71@ 1st Qu.: @.78@ T4782bBf: 1
Median : 1.275 Median : 1.288 Median : 1.27@ T4792d99: 1
Mean 1 1.874 Mean : 1.887 Mean : 1.883 T47@30e8: 1
3rd Qu.: 1.56@0 3rd Qu.: 1.548 3rd Qu.: 1.568@ f47@34dc: 1
Max. 1 2.3380 Max. T 2.238 Max. 1 2,228 f47937e8: 1
(Other) :994

The importance of these outputs is that you can start to understand the type of data that you
have within your feature fields: the range, median, and mean of each.

With this clearer understanding of the data in hand, you may practically need to filter, enrich,
or clean the data as required.

In this recipe, a dataset was provided that did not require such cleansing; therefore, you
moved directly on to building the model. The steps between getting the data and building the
model involved segmenting the data into training set and testing set are given as follows:
set.seed(71)

split ratio <- 2/10

split <- round(dim(data) [1] * split ratio)
data tests <- datall:split,]

dim(data tests)

print (table(data tests[,"label"]))

data train <- datal(split + 1):dim(data) [1],]
i <- colnames(data train) == "order id"
j <- l:length(i)

data train <- data train[,-j[il]]

dim(data_ train)

Real-time Machine Learning

This step is vital in order to evaluate the model. You can't validate the model using data that it
has already "seen", so segmenting the original dataset allows us to keep a portion of the data
aside for evaluating the model later, which can be achieved through the following commands:

predicted <- predict(fit, data)
data$predict <- predicted
confuse <- table(pred = predicted, true = datal,1])

print (confuse)

There's more...

The Predictive Model Markup Language (PMML) is an XML-based markup language
developed by the Data Mining Group (DMG) to provide a way for applications to define models
related to predictive analytics and data mining, and to share those models between PMML-
compliant applications.

The PMML standard creates an excellent way to decouple the system that generates the
model from the system that provides the operational scoring. This is architecturally significant
because systems such as R, SAS, and Weka are excellent at performing analytics, but are not
well-suited to use in operational settings. Furthermore, scoring is often required within the
context of a larger operational system, and therefore coupling analytical functionality will lead
to a brittle and unsustainable architecture. To expand on this, consider that predictive scoring
is often performed as part of some larger business process. Let's take a classic example of
credit scoring. Credit scoring involves a base set of rules that have been defined manually
and a set of models that are able to predict the likely outcome of the engagement with a given
individual. Not only will the predictive models exist within a larger set of scoring mechanisms,
such as rules, but all the scoring mechanisms will exist within the larger operational process
of loan origination.

These operational systems can take many forms, from traditional ERP to more modern
solutions, such as the ones based on Storm, which are dealing with web-scale operational
process. The key is decoupling the iterative, analytical, and manual task of analytics from the
low-latency, high-throughput, and highly available concerns of an operational solution. Within
this context, PMML is extremely valuable.

In order to understand the model a little deeper, let's explore the content of PMML briefly.
You can view the content of the model by opening the random_forest .xml file, which you
generated as part of this recipe. What you will see is a model divided into many segments,
and many "sub models". Each model is a tree structure of nodes, which are able to segment
the feature space in a hierarchical manner until a leaf node is able to finally score the output
for a given tree. Let's look at one example as shown in the following code snippet:

<Segment id="11">
<True/>

172

Chapter 7

<TreeModel modelName="randomForest Model"
functionName="classification" algorithmName="randomForest" splitCharac
teristic="binarySplit">
<MiningSchemas>
<MiningField name="label" usageType="predicted"/>
<MiningField name="v0" usageType="active"/>
<MiningField name="v1" usageType="active"/>
<MiningField name="v2" usageType="active"/>
<MiningField name="v3" usageType="active"/>
<MiningField name="v4" usageType="active"/>
<MiningField name="v5" usageType="active"/>
<MiningField name="v6" usageType="active"/>
<MiningField name="v7" usageType="active"/>
<MiningField name="v8" usageType="active"/>
<MiningField name="v9" usageType="active"/>

</MiningSchemas>
<Node id="1">
<True/>

<Node id="2">
<SimplePredicate field="v0" operator="lessOrEqual"
value="1.025"/>
<Node id="4">
<SimplePredicate field="v3" operator="lessOrEqual"
value="0.15"/>
<Node id="8" score="0">
<SimplePredicate field="v5" operator="lessOrEqual"
value="0.76"/>
</Node>
<Node id="9">
<SimplePredicate field="v5" operator="greaterThan"
value="0.76"/>
<Node id="14" score="0">
<SimplePredicate field="v0" operator="lessOrEqual"
value="0.305"/>
</Node>
<Node id="15" score="1">
<SimplePredicate field="vO0" operator="greaterThan"
value="0.305"/>
</Node>
</Node>
</Node>
<Node id="5">
<SimplePredicate field="v3" operator="greaterThan"
value="0.15"/>

Real-time Machine Learning

<Node id="10">
<SimplePredicate field="v5" operator="lessOrEqual"
value="0.19"/>
<Node id="16" score="0">
<SimplePredicate field="v4" operator="lessOrEqual"
value="0.48"/>
</Node>
<Node id="17">
<SimplePredicate field="v4" operator="greaterThan"
value="0.48"/>
<Node id="22">
<SimplePredicate field="v4" operator="lessOrEqual"
value="1.04"/>
<Node id="26" score="0">
<SimplePredicate field="v1l" operator="lessOrEqual"
value="-0.435"/>
</Node>
<Node id="27" score="1">
<SimplePredicate field="v1l" operator="greaterThan"
value="-0.435"/>
</Node>
</Node>
<Node id="23" score="0">
<SimplePredicate field="v4" operator="greaterThan"
value="1.04"/>
</Node>
</Node>
</Node>

You will notice that the model specifies the algorithm and the type in terms of classification

or regression. In this case, we have a Random Forest for classification. There is then a large
set of nested Node elements. Each node has an ID and a predicate. The leaf nodes have a
score. The predicate operators specify the operation to be performed by the scoring algorithm
while it traverses the tree with a given set of input fields. Predicates can be simple Boolean
operators (=, <, >, and so on) or compound predicates that combine many simple predicates
using binary operators.

You may appreciate at this point, that this structure is extremely simple. The complexity is in
the generation of the model. From this generated model, the scoring implementation should
be comparatively simple.

174

Chapter 7

Operational classification of transactional

streams using Random Forest

Now that you have a built classification model, we need to implement an operational topology
that leverages this model in order to perform classification as part of a larger operational

data pipeline. | would like to draw a distinction between an operational data pipeline and

an operational process. | will talk about operational process as an architecture concern that
involves potentially many system layers. These may include ERP, CRM, core processing engine,
and so on. An operational process is, therefore, positioned at the solution architecture level,
and, as stated in the previous recipe, it typically won't include an analytics platform, such as
R. A data pipeline is applicable at Trident's level of abstraction. Trident, in effect, allows you to
define a streaming data pipeline. It abstracts away that state and planning in order to achieve
this pipeline at scale and in parallel.

This recipe will therefore present operational scoring using a classification model as part of a
Trident data pipeline that may exist within a larger operational process at the solution level.

The recipe illustrates this by implementing an order management topology. A stream of order
data will flow into the order management topology, be unpacked, scored, and then finally
enriched with distribution management information before being published. The ultimate
destination being some kind of logistics management system will handle the logistics of
delivering the order. The purpose is to show how scoring can be linked into a data flow that
includes more than simply scoring.

Getting ready

To begin with, ensure that you have installed Kafka as per the instructions in the
Implementing a transactional topology recipe within this chapter. Furthermore, ensure that
Python is installed on your machine. This can be achieved using apt -get.

If you had any trouble building the Random Forest model, you can use the pre-built instance
of the model from the code package associated with this chapter.

Please note that the testing scripts for the topology are contained in the supporting code for
the chapter and are written in Python. The script that generates orders, generates JSON array
order objects and places them on the appropriate Kafka topic.

How to do it...

1. Startby creating a Maven project called rf -topology and add the following
dependencies:
<dependencys>

<groupld>com.github.quintona</groupId>
<artifactId>trident-kafka-push</artifactId>

Real-time Machine Learning

<version>1.0-SNAPSHOT</version>
<exclusionss>
<exclusion>
<artifactIdsstorm</artifactIds>
<grouplds>storm</groupIld>
</exclusion>
</exclusions>
</dependency>
<dependencys>
<groupld>com.googlecode.json-simple</grouplds>
<artifactId>json-simple</artifactIds>
<version>1.1l</version>
</dependency>
<dependency>
<grouplds>storm</groupIld>
<artifactId>storm-kafka</artifactId>
<version>0.9.0-wipl6b-scala292</version>
<exclusionss>
<exclusion>
<artifactIdsstorm</artifactIds>
<grouplds>storm</groupIld>
</exclusion>
</exclusions>
</dependency>
<dependencys>
<groupld>com.github.quintona</groupId>
<artifactId>storm-pattern</artifactIds>
<version>0.0.3-SNAPSHOT</version>
<exclusionss>
<exclusion>
<artifactIdsstorm</artifactIds>
<groupld>storm</groupIld>
</exclusions>
</exclusions>
</dependency>

2. Next, create the OrderManagementTopology main class and implement a
standard Storm main-method idiom. Next, you must create a function that will coerce
the data into the correct format from the Kafka spout. This is done by converting the
byte array into a string and parsing into a JSON array. The fields must also be parsed
and typed correctly in the output tuple as follows:

public static class CoerceInFunction extends BaseFunction {

@Override
public void execute (TridentTuple tuple, TridentCollector
colector) {

176

Chapter 7

String text = new String(tuple.getBinary(0)) ;
JSONArray array = (JSONArray) JSONValue.parse (text) ;
List<Object> values = new ArrayList<Objects>(array.size());
String id = (String) array.get(array.size() - 1);
array.remove (array.size() - 1);
for (Object obj : array) {

values.add (Double.parseDouble ((String) obj)) ;

}

values.add (id) ;

if (array.size() > 0){
collector.emit (new Values (values.toArray()));

}

As part of the flow of this topology, you will need to publish the content out to

another Kafka topic. To achieve this, we will use a Trident module that leverages a
partition persist. KafkaStateUpdater expects us to use the contents of a single
configurable field to publish to the Kafka topic; therefore, our downstream tuple must
be coerced into a single JSON array that can be published to downstream systems, as
shown in the following lines of code:

public static class CoerceOutFunction extends BaseFunction
@Override
public void execute (TridentTuple tuple, TridentCollector
collector) {
JSONObject obj = new JSONObject () ;
obj.put ("order-id", tuple.getStringByField("order-id")) ;
obj.put ("dispatch-to", tuple.getStringByField(
"dispatch-to"));

collector.emit (new Values (obj.toJSONString())) ;
}

}

Finally, you need to define the topology as follows:

topology.newStream("kafka",
new TransactionalTridentKafkaSpout (spoutConfig))

.each(new Fields ("bytes"), new
CoerceInFunction() ,new Fields(allFields))

.each (new Fields (valueNames), new
ClassifierFunction("/usr/local/random_ forest
.xml"), new Fields("prediction"))

.each(new Fields ("prediction"),
new Debug ("Prediction"))

Real-time Machine Learning

.each (new Fields ("prediction"),

new EnrichFunction(), new Fields(
"dispatch-to"))
.each(new Fields ("order-id", "dispatch-to"),

new CoerceOutFunction () ,new
Fields ("message"))

.partitionPersist (KafkaState.transactional (
"order-output", new KafkaState.Options()),
new Fields ("message"), new
KafkaStateUpdater ("message"),
new Fields ("message")) ;

The following diagram clarifies the data pipeline of this topology:

Typed Tuple Iassiﬂcatiorrb{ Enrich }—»

Coerce Out

JSON Bytes
JSON Bytes
) >
Kafka Topic Reference Kafka Topic
Data

Complete your topology by providing the Kafka configuration as per the Implementing a
transactional topology recipe using the orders topic. Then run your topology in the local mode.

You can test it using the sendOrders . py Python script as described here:

python sendOrders.py 1000 10

The script takes two arguments, the number of orders to generate and
M the number of features to add to each order. You can use any value for
Q the first argument, but the topology expects exactly 10 features as it
currently stands. If you want to adjust the number of features, you will
need to change your topology.

The focus here is on the classifier function. The function itself is quite simple; it takes
a string during construction and uses it to initialize a classifier at preparation time. When a
tuple is received within the function, it simply delegates to the classifier as follows:

public void execute(TridentTuple tuple, TridentCollector collector) {
String label = classifier.classifyTuple (tuple) ;

178

Chapter 7

collector.emit (new Values (label)) ;

}

The classifier function builds an underlying model by parsing the XML node structure and
building an in-memory Directed Acyclic Graph (DAG) of the node and predicate hierarchy.
With a complete graph, all that is required at classification/scoring time is to walk the graph,
apply each predicate, and receive a final output value. In the case of a Random Forest, the
outputs must be further ranked, because it is a forest of trees and executed as follows:

public String classifyTuple (TridentTuple values) throws
PatternException {

Boolean[] pred eval = context.evalPredicates(schema, values);
String label = null;

Integer winning vote = 0;

votes.clear () ;

// tally the vote for each tree in the forest

for (Model model : segments) {
label = ((TreeModel) model) .tree.traverse (pred eval) ;

if (!votes.containsKey(label))
winning vote = 1;
else
winning vote = votes.get(label) + 1;

votes.put (label, winning vote);
}
// determine the winning label
for (String key : votes.keySet()) {
if (votes.get (key) > winning vote) {
label = key;
winning vote = votes.get (key) ;

return label;

}

Another piece of topology worth the explanation is the Kafka Push partition persist, and is
executed as follows:

.partitionPersist (KafkaState.transactional ("order-output",
new KafkaState.Options()), new Fields("message"),
new KafkaStateUpdater ("message"), new Fields ("message"));

Real-time Machine Learning

A partition persist operation is typically reserved for database-like backers, not message
queues. In this case, it is important to publish using a partition persist in order to support the
transactional semantics. One can't simply publish from within a Trident function if they intend
to support transactional semantics. KafkaState ensures that messages are only published
to Kafka once the transaction commits as described here:

public void beginCommit (Long txid)
if (messages.size() > 0)
throw new RuntimeException("Kafka State is invalid, the
previous transaction didn't flush");

}

public void enqueue (String message) {
if (transactional)
messages.add (message) ;
else
sendMessage (message) ;

private void sendMessage (String message) {
ProducerData<String, String> data = new ProducerData<String,
Strings> (topic, message) ;
producer.send (data) ;

@Override
public void commit (Long txid)
String message = messages.poll();
while (message != null) {
sendMessage (message) ;
message = messages.poll() ;

For more details of the Kafka Push partition persist, please review
~ the code in KafkaState at https://github.com/quintona/
C:l trident-kafka-push/blob/master/src/main/java/com/
github/quintona/KafkaState.java

180

Chapter 7

There's more...

You may ask yourself how the model is able to make sense of randomly generated data? The
answer is that the model can't make sense of randomly generated data. There has to be an
inherent relationship/concept/abstraction in the data that the model can find in order for the
model to predict any more accurately than a coin toss. It is therefore important to create some
relationship within the numbers that are generated from the testing script. The provided script
is, therefore, an interesting starting point for learning purposes. The script works by defining

a set of distributions that are segmented according to a set of probabilities. For each row, a
random value is used to choose the appropriate segment. Each segment in turn generates

a value based on a Gaussian distribution with set mean and standard deviation values per
segment. This approach leaves something tangible for the model to find and predict against,
while still having enough variability to be interesting. The code snippet is described as follows:

CUSTOMER_SEGMENTS = (

[0.2, ["0", random.gauss, 0.25, 0.75, "%0.2f"]1],
[0.8, ["0", random.gauss, 1.5, 0.25, "$0.2f"]],
[0.9, ["1", random.gauss, 0.6, 0.2, "%0.2f"]1],
[1.0, ["1", random.gauss, 0.75, 0.2, "%$0.2f"]]

def gen row (segments, num col) :
coin flip = random.random()

for prob, rand var in segments:
if coin flip <= prob:

(label, dist, mean, sigma, format) = rand var
order id = str(uuid.uuidl()) .split("-") [0]
return map (lambda x: format % dist(mean, sigma), range (
0, num col)) + [order id]
e Note that this script is tested with Python 2.7, and some changes
Q may be required if you use Python 3 and above.

Creating an association rules model in R

At present, the Storm Pattern Project supports the following set of models:

» Random Forest

» Linear Regression

» Hierarchical Clustering and K-means clustering
» Logistic Regression

Real-time Machine Learning

While these models cover an extremely wide range of use cases, there are many more
algorithms that aren't represented. It is obviously desirable, for various reasons, to have a
native implementation of the model within Storm, and the community is working towards
supporting a wider base; however, it must be noted that it is unlikely that the Storm
community will build out machine learning support at the same speed as the R community,
given the sheer size difference of focus from that community. As a result, when there is an
algorithm that you need to use that isn't support by Storm-Pattern, making use of R becomes
a viable option (or you could build it and contribute it back to the community).

| realize that | elaborated somewhat in the previous recipe as to analytical systems not polluting
the operational architecture; this approach appears to contradict this, but in fact it doesn't. This
deserves some clarification. R is, in many ways, like a Unix system; it is highly modular. As a
result, you can choose to use as much or as little as you like from the community of packages
and capabilities. If you think about Ubuntu, you can run it without any X-Windows system, purely
at the command line, which makes it highly versatile in many environments. R shares this
quality. Mixing a full R environment into an operational system may not be the correct approach;
however, allowing Storm Bolts to manage the vanilla and slave R instances across a Storm
cluster allows R to simply augment the Storm functionality rather than represent another
architecturally significant component or layer from a functional perspective.

A popular use case for machine learning is a recommendation engine. People who choose
these options, often chose this option, so you should too. There are various ways to achieve
this, and a popular approach is to use association rules. R has an excellent implementation of
association rules in the arules package. This recipe seeks to demonstrate how to build a set
of association rules that we will use later to build a recommendation engine in Storm using
the model we have created.

Getting ready

In order to implement this recipe, you need to have the arules package installed. Start by
installing it using the following command from within RStudio:

install.packages ("arules")

How to do it...

1. For this example, we are going to use a dataset that is packaged with R. Load the
arules package and load the Groceries dataset:

library("arules")

data ("Groceries")

2. We now need to explore the data and get an idea of what we are dealing with.
Execute the summary (Groceries) command, and you should receive an output
similar to the following screenshot:

182

Chapter 7

transactions as itemMatrix in sparse format with
9835 rows (elements/itemsets/transactions) and
169 columns (items) and a density of @.926@09146

most frequent items:

whole milk other wvegetables rolls/buns
2513 1983 18089
soda yogurt (0ther)
1715 1372 34855

element (itemset/transaction) length distribution:
sizes

1 2 3 4 5 6 7 a 9 18 11
2159 1643 1299 1885 B55 645 545 438 350 246 182

12 13 14 15 16 17 18 19 28 21 22 23 24 26
117 78 77 55 48 29 14 14 9 11 4] 1 1

Min. 1st Qu. Median Mean 3rd Qu. Max.
l.p60 2.000 3.900 4.429 6.000 32.000

includes extended item information - examples:

labels lewvel2 levell
1 frankfurter sausage meet and sausage
2 sausage sausage meet and sausage

3 liver loaf sausage meet and sausage

The data essentially consists of tab-separated lists of items, where each row
represents a list of items that were purchased together. It is easy to imagine how
such a dataset could be constructed in something like a grocery store.

We can now build some rules as follows:

rules <- apriori(Groceries, parameter = list(supp = 0.001, conf =
0.8))

print (rules)

print (summary (rules))

It is often useful to see the rules with the highest lift for validation purposes execute;
this is shown in the following command:

rules high lift <- head(sort(rules, by="1ift"), 4)
inspect (rules high 1ift)

Real-time Machine Learning

5.

The output should look similar to the following image:

Lhs rhs support confidence lift
1 {liquor,

red/blush wine} => {bottled beer} ©9.001931876 @.9847619 11.235269
2 {citrus fruit,

other wvegetables,

soda,

fruit/vegetable juice} => {root vegetables} ©.801016777 @.9092989 B.342400
3 {tropical fruit,

other wvegetables,

whole milk,

yogurt,

oil} => {root vegetables} @.8@1016777 ©.9092009 B.340400
4 {citrus fruit,

grapes,

fruit/vegetable juice} == {tropical fruit} @.@8@1118454 @.8461538 B£8.063879

What this tells us is that when 1iquor and red are selected together, the customer
will likely choose beer, so you should recommend that to him to increase the
chances of that sale. Now that we have a model, we just need to save it as follows:

saveXML (pmml (rules), file=paste(dat folder, "groc.arules.xml",
sep= ll/ ll))

Association rules are based on two concepts:

>

The support of an item set is the proportion of the overall transactions that contain
the particular item set

The confidence is probably that a set of items on the LHS will result in the given item
on the RHS of the rule

The algorithm, in this case being Apriori, uses these concepts to derive and rank the rules it
finds in the transactional data. The 1ift value ranks the results of the rule against a random
choice model. The 1ift measure gives us confidence that the prediction will give us much
better results than simply randomly choosing another product to recommend.

Creating a recommendation engine

A recommendation engine makes intelligent guesses as to what a customer may want to

buy based on previous lists of products, which has been made famous by leaders such as
Amazon. These lists may be from a current selection within the context of the current session.
The list of products may be from previous purchases by the particular customer, and it may
even simply be the products that the customer has viewed within a given session. Whichever
approach you choose, the training data and scoring data during operational phases must
follow the same principles.

184

Chapter 7

In this recipe, we will use the association rules model from the previous recipe to create
a recommendation engine. The concept behind the engine is that lists are supplied as
asynchronous inputs and recommendations are forwarded as asynchronous outputs
where applicable.

Al

There are product combinations that aren't strongly supported by the model;
in these cases, no recommendation is emitted. If you need a recommendation

-~
Q for every single input, you could choose to emit a random recommendation

when there is no strongly supported recommendation, or you could choose to
improve your model through better and generally larger training datasets.

How to do it...

1. Start by creating a Maven project called arules-topology and add the following

dependencies:

<dependency>

<groupId>com.github.quintona</groupId>
<artifactId>trident-kafka-push</artifactIds>
<version>1.0-SNAPSHOT</version>

</dependency>

<dependency>
<grouplds>storm</groupId>
<artifactIdsstorm-kafka</artifactIds>
<version>0.9.0-wipléb-scala292</version>

</dependency>

<dependency>
<groupld>com.github.quintona</groupId>
<artifactIds>storm-r</artifactIds>
<version>0.0.1-SNAPSHOT</version>

</dependency>

Next, create a main topology class called RecommendationTopology using the
idiomatic Storm main method. For this recipe, we will be receiving the product list as
a JSON array on a Kafka topic. We will therefore need to coerce the byte array input
into a tuple containing two separate values, one being the transaction ID and the
other being the list of products, as shown in the following lines of code:

public static class CoerceInFunction extends BaseFunction {

@Override
public void execute (TridentTuple tuple, TridentCollector
collector) {
String text = new String(tuple.getBinary(0)) ;
JSONArray array = (JSONArray) JSONValue.parse (text) ;

Real-time Machine Learning

List<String> values = new ArraylList<Strings (array.
size()-1);
String id = (String) array.get(0);
array.remove (0) ;
for (Object obj : array)
values.add((String)obj) ;
}
if (array.size() > 0){
collector.emit (new Values (id, wvalues)) ;

}

3. We will also need to publish the output message using the Kafka partition persist.
The recommendation and transaction ID need to be coerced into a single value
consisting of a JSON array as follows:

public static class CoerceOutFunction extends BaseFunction {
@Override
public void execute (TridentTuple tuple, TridentCollector
collector)
JSONObject obj = new JSONObject () ;
obj.put ("transaction-id", tuple
.getStringByField ("transaction-id")) ;
obj.put ("recommendation", tuple.getStringByField (
"recommendation")) ;
collector.emit (new Values (obj.toJSONString())) ;

}

4. We then need to define the topology as described here:

topology.newStream("kafka",
new TransactionalTridentKafkaSpout (spoutConfig))
.each(new Fields ("bytes"), new
CoerceInFunction() ,new Fields(
"transaction-id", "current-list"))

.each(new Fields ("current-1list"), new
ListRFunction (Arrays.asList (new Stringl[]
"arules" }), "recommend")

.withNamedInitCode ("recommend") ,
new Fields ("recommendation"))

.each(new Fields ("transaction-id",
"recommendation"),
new CoerceOutFunction(),
new Fields ("message"))
.partitionPersist (KafkaState
.transactional ("recommendation-output",

186

Chapter 7

new KafkaState.Options()),
new Fields ("message"),

new KafkaStateUpdater ("message"),
new Fields());

The Storm-R project's standard function supports only a known input array size. This
works for most use cases; however, for the association case, the input size will vary
for each tuple. It is therefore necessary to override the execute function to cater for
this particular case as shown here:

public static class ListRFunction extends RFunction

public ListRFunction (List<String> libraries, String
functionName) {
super (libraries, functionName) ;

@Override
public void execute (TridentTuple tuple, TridentCollector
collector)
List<String> items = (List<String>) tuple.get(0);
JSONArray functionInput = new JSONArray () ;
functionInput.addAll (items) ;
JSONArray result = performFunction (functionInput) ;
if (result != null)
collector.emit (coerceResponce (result)) ;

}

These elements are all that is required to create the recommendation engine. You
can now start your topology in local mode from Eclipse. In order to test it, a test
script is provided with the chapter code bundle named sendSelection.py. This
takes a single parameter, which is the number of transactions, to publish onto the
queue as follows:

python sendSelection.py 1000
You can view the output recommendations by issuing the following command from
the Kafka command line:

bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic
recommendation-output --from-beginning

Real-time Machine Learning

At the fundamental level, Storm-R works in a very similar way to the multilang approach that
we investigated in detail in Chapter 5, Polyglot Topology. For each instance of the function,
it creates an R process that it interacts with via Studio. However, Storm-R cuts much of the
complexity and overhead out because it doesn't make use of a generalized protocol; it is
specific to R. This makes it much faster and simpler.

The key assumption behind Storm-R is that a single R function will be called from the Storm
function and will pass a vector as input. The R function will return a vector as output. This
assumption nicely aligns the function interface with the concept of a tuple. The Storm-R
module further simplifies the R implementation by auto-generating some code to take care of
the marshaling and unmarshaling of the vector across the interface.

As with a standard Trident function, any lengthy functions should execute during the
preparation phase of the Storm function. The Storm-R function expects to be initialized with a
function name and a list of R libraries to load during the preparation phase. It can also take
an R script that should be executed during the preparation phase.

The R function that is to be called needs to be available within the R session. This means
that the R function needs to be supplied in a prebuilt package, or it can be defined in the
initialization script. In this recipe, we are using a function that is defined in the initialization
script, but specifically we are using a prepackaged initialization script that ships with Storm-R.

Let's unpack the R function definition within the topology with the following code snippet:

.each(new Fields("current-list"), new ListRFunction (Arrays.asList (new
String[] { "arules" }), "recommend")
.withNamedInitCode ("recommend"), new Fields ("recommendation"))

Firstly, the constructor receives a list of libraries to load into R; in this case, just the arules
package. The constructor also receives a function name called recommend. This is the

R function that will receive a vector input and must return a vector output. Secondly, the
withNamedInitCode method is called and the name recommend is supplied. What this
function does is look up a script on the classpath by appending . R to the name supplied.
Therefore, in this case, a script named /recommend.R is present at the root of the classpath.
This means that you can supply any script there, but in this case, we will use the one that
Storm-R brings to the classpath. There is also an overloaded method that allows you to supply
the script's contents as a string.

Let's take a look at the contents of the recommend script as shown here:

data("Groceries")
rules <- apriori(Groceries, parameter = list(supp = 0.001, conf = 0.8)

recommend <- function(list) {

188

Chapter 7

rules.found <- subset(rules, subset = lhs %ain% list & 1lift > 1.3)

as (rhs(rules.found), "list")
}

You will notice some things from the previous recipe. Essentially, this script is loading the
dataset and building the rules from it. It is then defining a function called recommend that
takes a vector as input and uses it to search the rules for any found matches where the lift is
greater than 1.3 and the LHS is the supplied input list. It then converts the RHS of the found
rules into a vector and returns.

M There are three ways to match using the subset function: Any, A11, or
Q Partial. This example uses A11 (%ain%); however, you could choose a
less script-matching criteria such as Any ($in%) or Partial (%pin%).

The net effect is that at the time of Trident function preparation, the library will be loaded,
and this function will be defined, making it available for all subsequent calls in the session. All
subsequent calls will originate from the execute method and contain the values from tuple.

In this recipe, we overrode the execute method of RFunction. The reason, as stated, is that
the standard implementation expects a fixed set of values in the tuple. This becomes more
apparent when you compare the implementations. The execute method from RFunction
consists of the following code:

JSONArray functionInput = coerceTuple (tuple) ;
JSONArray result = performFunction (functionInput) ;
if (result != null)
collector.emit (coerceResponce (result)) ;

Whereas the overridden version consists of the following code:

List<String> items = (List<String>) tuple.get(0);
JSONArray functionInput = new JSONArray () ;
functionInput.addAll (items) ;
JSONArray result = performFunction (functionInput) ;
if (result != null)
collector.emit (coerceResponce (result)) ;

As you can see, the difference is subtle but important. The first instance uses the values of
the tuple as the input to the R function. The second instance uses the content of one of the
values of the tuple, which is an array itself. In this way, we can support any length of products.

Real-time Machine Learning

There's more...

The test script is built with a complete list of all possible products. For each message it
publishes, it simply creates a random number of products, between 2 and 5, and populates
them randomly from the total population of products:

products = [""...""]
def get values():
vals = []
for 1 in range(0,random.randint (2,5)) :
rn = random.randint (0, len (products)-1)
candidate = products[rn]
while vals.count (candidate) == 1:
rn = random.randint (0, len (products) -1)
candidate = products([rn]
vals.append (candidate)
return vals

def gen row() :
row = get values()
row.insert (0, str (uuid.uuidl ()) .split ("-") [0])
return row

Real-time online machine learning

The process of performing predictive analytics is largely iterative and interactive in nature;
however, in all the previous examples, there is a definite distinction between the learning
phase and the scoring phase within the life of the model. In the case of online learning
algorithms, this line gets blurred. An online learning algorithm learns continuously through
streams of updated training data. Algorithms are therefore said to be either batch-based or
online. Note that, in either case, the algorithm can be real-time; however, in the batch-based
model, a model is built in some offline batch process and is deployed into Storm for the
purposes of real-time scoring. In the online case, the algorithm both learns and scores as it
sees new data and is also deployed into Storm as the real-time processing engine.

This recipe implements an online Regression Perceptron. What this name simply means
is that the algorithm learns in an online manner and the predictions are non-discreet. The
perceptron therefore predicts continuous values, not discreet classifications.

o For more information on classification and regression, please read the

~ Wikipedia pages on both topics at http://en.wikipedia.org/wiki/

CZE Statistical classificationandhttp://en.wikipedia.
org/wiki/Regression _analysis.

190

Chapter 7

How to do it...

1.

Create a new Storm topology Maven project called online-ml-topology with the
following dependencies:

<dependencys>
<groupId>com.github.pmerienne</groupIld>
<artifactIdstrident-ml</artifactIds>
<version>0.0.3-SNAPSHOT</version>
</dependency>
<dependencys>
<groupld>com.github.quintona</groupIld>
<artifactId>trident-kafka-push</artifactId>
<versions>1l.0-SNAPSHOT</version>
</dependency>

Using Eclipse, create the OnlineTopology main class, and implement the idiomatic
Storm main method. For this topology, we will have two input streams, one for the
training data and one for the data to be scored. In order to deal with the training data,
we need to coerce the input JSON message into doubles as follows:

public static class CoerceInSample extends BaseFunction
@Override

public void execute (TridentTuple tuple, TridentCollector
collector)

String text = new String(tuple.getBinary(0)) ;

JSONArray array = (JSONArray) JSONValue.parse (text) ;
Double[] values = new Double[array.size()];
for(int i = 0; i < array.size(); i++){

values[i] = ((Number)array.get(i)) .doubleValue() ;
}
if (array.size() > 0){

collector.emit (new Values (values)) ;

}

The scoring input stream is very similar; however, it also contains a transaction ID,
which we need to deal with, and type validity, which is important, as shown here:

public static class CoerceInTransaction extends BaseFunction
@Override

public void execute (TridentTuple tuple, TridentCollector
collector)

String text = new String(tuple.getBinary(0)) ;
JSONArray array = (JSONArray) JSONValue.parse (text) ;
String id = (String)array.remove (array.size() - 1);

Real-time Machine Learning

List<Object> values = new ArrayList<Object>(
array.size());
for(int i = 0; i < array.size(); i++){
values.add (((Number)array.get (i)) .doublevValue()) ;
}
values.add (id) ;
if (array.size() > 0){
collector.emit (new Values (values.toArray()));

}

4. As with previous recipes, you will need to coerce the output into a single JSON
message so that it can be published to Kafka as follows:

public static class CoerceOutFunction extends BaseFunction
@Override
public void execute (TridentTuple tuple, TridentCollector
collector)
JSONObject obj = new JSONObject () ;
obj.put ("transaction-id", tuple
.getStringByField ("transaction-id")) ;
obj.put ("prediction", tuple.getDoubleByField (
"prediction")) ;
collector.emit (new Values (obj.toJSONString())) ;

}
5. Finally, you will need to define the spouts and topology, as described in the following
code snippet:

TridentState perceptronModel = topology.newStream("labeleddata",
new TransactionalTridentKafkaSpout (trainingSpoutConfig))

.each(new Fields ("bytes"), new CoercelInSample (),
new Fields("f1","f2","£f3","f4", "label"))
.each (new Fields("label", "f1","f2", "f3","f4m"),

new InstanceCreator<Double> (),
new Fields ("instance"))

.partitionPersist (new MemoryMapState.Factory (),
new Fields ("instance"),

new RegressionUpdater ("perceptron",
new PerceptronRegressor())) ;

topology.newStream("transactions",

new TransactionalTridentKafkaSpout (
scoringSpoutConfig))

192

Chapter 7

.each(new Fields ("bytes"),
new CoercelInTransaction (), new Fields (
nfln, mf2n, "f3m,"f4" , "transaction-id"))
.each(new Fields("f1","f2", "f3","f4"),
new InstanceCreator<Doubles> (false),
new Fields ("instance"))

.stateQuery (perceptronModel,
new Fields ("instance"),
new RegressionQuery ("perceptron"),
new Fields ("prediction"))

.each(new Fields ("transaction-id", "prediction"),

new CoerceOutFunction(),
new Fields ("message"))

.partitionPersist (KafkaState
.transactional ("prediction-output",

new KafkaState.Options()),
new Fields ("message"),

new KafkaStateUpdater ("message"),
new Fields());

6. At this point you can run the topology in local mode; in order to test it, you will need to
run the supplied scripts as follows:

python sendLabeledData.py 1000
python sendTransactions.py 1000

7. Both scripts take the number of records as input arguments. You can view the scored
transactional data by using the following command:

bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic
prediction-output --from-beginning

This approach works by maintaining some shared state, specifically the weights within the
perceptron. One stream of data updates these weights, and the second stream reads them
as part of the scoring process.

Let's unpack how the model is trained in the online mode, as shown in the following lines
of code:

TridentState perceptronModel = topology.newStream("labeleddata",
new TransactionalTridentKafkaSpout (trainingSpoutConfig))
.each(new Fields ("bytes"), new CoerceInSample(),
new Fields("f1","f2m","f3","f4", "label"))
.each (new Fields("label", "f1","f2", "f3","f4m"),
new InstanceCreator<Double> (),
new Fields ("instance"))

Real-time Machine Learning

.partitionPersist (new MemoryMapState.Factory (),
new Fields ("instance"),
new RegressionUpdater ("perceptron",
new PerceptronRegressor())) ;

Firstly, the data is coerced into the correct format and converted into an instance. Take note
that the order of the fields differs between the spout and the label instance creator. The
instance creator expects the label in the first value, but the input message contains the label
in the last field. This is dealt with easily, because Trident effectively projects the value. The
instance is then used to update the regression model as part of a partition persist of state
where the state is backed into a memory map.

M The state could easily have been backed by Memcached or Cassandra or
Q any other persistence mechanism that you choose as is the case with any
other state in Trident.

The regression model itself is updated and then saved as part of the update functionality
within the partition persist step as shown here:

Instance<Double> instance;
for (TridentTuple tuple : tuples)
instance = (Instance<Double>) tuple.get(0);
regressor.update (instance.label, instance.features);
}
state.multiPut (KeysUtil.toKeys (this.classifierName),
Arrays.asList (regressor)) ;

The underlying PerceptronRegressor Simply updates its weights based on the supplied
labeled data and its error function.

With an updated model in memory, the model can simply be used for scoring. A second
stream deals with this as follows:

TransactionalTridentKafkaSpout (scoringSpoutConfig))
.each (new Fields ("bytes"), new CoercelInTransaction(),
new Fields("f1","f2","f3","f4", "transaction-id"))
.each(new Fields("f1","f2", "f3","f4"),
new InstanceCreator<Double> (false),
new Fields ("instance"))
.stateQuery (perceptronModel, new Fields ("instance"),
new RegressionQuery ("perceptron"),
new Fields ("prediction"))
.each(new Fields ("transaction-id", "prediction"),
new CoerceOutFunction(),new Fields ("message"))
.partitionPersist (KafkaState.transactional (
"prediction-output", new KafkaState.Options()),
new Fields ("message"),
new KafkaStateUpdater ("message"), new Fields()) ;

Chapter 7

In this case, the input is also coerced into an instance, but this time the instance is used to
query the state. The query will retrieve the regression model and then use it to predict new
values, as shown in the following code snippet:

Double label;
Instance<Double> instance;
for (TridentTuple tuple : tuples)
instance = (Instance<Double>) tuple.get(0);
label = regressor.predict (instance.features) ;
labels.add (label) ;

}

In this way, the model is learning in an online mode as it "sees" new data. This updated view is
made available to the scoring stream because of the inherent power in the state management
model of Trident.

Continuous Delivery

In this chapter we will cover:

» Setting up a Cl server
» Setting up system environments
» Defining a delivery pipeline

» Implementing automated acceptance testing

Introduction

Continuous Delivery is a term coined by Martin Fowler in his book by the same name. | won't
try to duplicate his work here, but as an extremely brief introduction, Continuous Delivery is

a natural extension of Continuous Integration. The base concept behind Continuous Delivery

is that IT risks are best dealt with by failing small and failing often. The longer it takes you to
integrate a system, the larger the risk will be. So rather integrate often; this way you experience
the "pain" of integration in small bite-size chunks. Off the back of this concept, Continuous
Integration was born, enabled with many excellent tool suites. Continuous Delivery extends the
concept by recognizing that the process of operational deployment is also extremely risky and
reaches a point where many IT projects fail. The longer you take to perform a deployment, the
greater the risk. So rather experience the "pain" of deployment as early as possible in small bite
size chunks. As with Continuous Integration, a key focus then becomes speed and automation.
If we are going to integrate often, it needs to involve as little effort as possible and be regressive
in nature, meaning that we don't redo the same tasks repetitively.

The other key recognition from Continuous Delivery is that we as IT professionals have only
delivered once we have delivered something into a production environment and it is adding
value to the business and users it serves. Until that point, we only represent a cost.

Continuous Delivery

With these thoughts in mind, we will explore how to implement Continuous Delivery on Storm-
based systems. In this chapter, we will set up Jenkins as our Continuous Integration server;
that along with some configuration, will also act as a Continuous Delivery server. We will then
set up our environment tooling, establish a reliable build, deploy, and accept test cycle.

In the next chapter, we will learn how to deploy Storm into the AWS cloud, at which point we
will complete the delivery process.

Setting up a Cl server

Jenkins is one of the most widely used open Cl servers (http://jenkins-ci.org/).
Jenkins is a fork of the Hudson Cl, which occurred in 2010 as a result of disputes between
the community and Oracle over project control issues. Since the project split, there has been
a growing support base for Jenkins. Evaluating tool choices is often difficult, and you must
obviously evaluate various options before choosing the correct tool for your situation. Jenkins
is chosen here because it is one of the leading open source options and is known to be widely
used and supported.

Getting ready

We will install Jenkins into a Vagrant-based VirtualBox. This will allow you to build and test
your environment in a portable way, and push it to various cloud providers later.

How to do it...

1. Create a new project folder and initialize the Vagrant configuration file:
mkdir vagrant-jenkins
cd vagrant-jenkins
vagrant init
2. This will generate a Vagrant file for you. You can review the comments in the file, then

update the file to reflect the following properties, which will create a 64-bit Ubuntu
precise instance with a Puppet-based provisioning script:

Vagrant .configure ("2") do |config]

config.vm.box = "precise64"
config.vm.box url = "http://files.vagrantup.com/preciseé4.box"
config.vm.network :private network, ip: "192.168.33.11"
config.vm.synced folder "./data", "/vagrant data"
config.vm.provider :virtualbox do |vDb|

vb.customize ["modifyvm", :id, "--memory", "1024"]
end

config.vm.provision :puppet
end

198

Chapter 8

M You may need to adjust your network settings depending on your
Q situation. Please review the Vagrant documentation at http://docs.
vagrantup.com/v2/networking/index.html for further details.

3. You must then create the Jenkins Puppet provisioning script. To do this, create two
folders within the project called manifests and data. Within manifests, add a file
called default . pp that adds the Jenkins package repository to the list of sources
and installs Jenkins:

S$key url = "http://pkg.jenkins-ci.org/debian/jenkins-ci.org.key"
Srepo _url = "deb http://pkg.jenkins-ci.org/debian binary/"
Sapt_sources = "/etc/apt/sources.list"

exec { "install jenkins key":

command => "wget -gq -0 - ${key url} | apt-key

add -; echo '${repo url}' >> ${apt_ sources}",
onlyif => "grep -Fvxqg '${repo url}'

${apt_sources}",
path => ["/bin", "/usr/bin"],

exec { "jenkins-apt-update":
command => "/usr/bin/aptitude -y update",
require => Exec["install jenkins key"],

package { "jenkins":

ensure => present,
provider => "aptitude",
require => Exec["jenkins-apt-update"],

service { "jenkins":

enable => true,

ensure => running,

hasrestart => true,

hasstatus => true,

require => Package["jenkins"],

}
4. You can now bring up the Jenkins instance:

vagrant up

Continuous Delivery

This recipe is surprisingly simple. We have a base Vagrant configuration that brings up a single
node, based on a precise64 base box. Within this box, we simply install Jenkins using the
Ubuntu packages. Because the packages aren't in the default universe, we have to add them
and the associated keys first:

exec { "install jenkins key":

command => "wget -q -0 - ${key url} | apt-key add -;

echo '${repo url}' >> ${apt sources}",
onlyif => "grep -Fvxqg '${repo url}' s${apt sources}",
path => ["/bin", "/usr/bin"],

}

The package is then installed, and the service is brought up using the standard package and
service types.

Setting up system environments

Automating all your environments is critical, but the first step in this process is to understand
how to establish a stable environment from scratch for your particular solution. Once this
process has been validated, it is then easy to automate and add into the pipeline. In this
recipe, we will manually establish a complete environment for Jenkins.

Getting ready

We will use the Random Forest topology from Chapter 7, Real-time Machine Learning, as the
project that will be managed by our Jenkins Cl. In order to build and deploy this project, there
are a number of things that must be installed into our CI:

» Oracle JDK

» SBT

» Apache Kafka

» Start by downloading the Oracle JDK from http://www.oracle.com/
technetwork/java/javase/downloads/index.html and placing it in the
data folder.

How to do it...

1. Connect to your Ubuntu instance using Vagrant SSH. Then, issue the following
commands to clear the existing open;jdk, and install the Oracle JDK:

sudo apt-get purge openjdk-*

sudo mkdir -p /usr/local/java

200

Chapter 8

sudo cp -r /vagrant data/jdk-7u2l-linux-x64.gz /usr/local/java
cd /usr/local/java

sudo tar xvzf jdk-7u2l-linux-x64.gz

You must now edit /etc/profile and add the following code to it:

JAVA HOME=/usr/local/java/jdkl.7.0_21
PATH=$PATH:$HOME/bin:$JAVA_HOME/bin
JRE_HOME=/usr/local/java/jdkl.7.0_21/jre
PATH=$PATH:$HOME/bin:$JRE_HOME/bin

export JAVA HOME

export JRE_HOME

export PATH

You now need to update all the Java references across the system:

sudo update-alternatives --install "/usr/bin/java" "java" "/usr/
local/java/jdk1l.7.0 21/jre/bin/java™ 1

sudo update-alternatives --install "/usr/bin/javac" "javac" "/usr/
local/java/jdk1l.7.0 21/bin/javac" 1

sudo update-alternatives --set java /usr/local/java/jdkl.7.0 21/
jre/bin/java

sudo update-alternatives --set javac /usr/local/java/jdk1l.7.0 21/
bin/javac

/etc/profile

In order to install Kafka, start by downloading the source packages from https://
www .apache.org/dyn/closer.cgi/incubator/kafka/kafka-0.7.2-
incubating/kafka-0.7.2-incubating-src.tgz. Once the download is
complete, install Scala Build Tool (SBT), and then unpack and build the Kafka server:

cd ~

wget http://mirror.ventraip.net.au/apache/incubator/kafka/kafka-
0.7.2-incubating/kafka-0.7.2-incubating-src.tgz

wget http://apt.typesafe.com/repo-deb-build-0002.deb
sudo dpkg -i repo-deb-build-0002.deb

sudo apt-get update

sudo apt-get install sbt

tar xzf kafka-0.7.2-incudbating-src.tgz

cd kafka-0.7.2-incubating-src

./sbt update

./sbt package

201

Continuous Delivery

5. Finally, you need to check whether your build is working on the Cl server before
attempting the build in the Jenkins software:

cd ~

wget https://raw.github.com/technomancy/leiningen/stable/bin/lein
sudo mv lein /usr/bin

sudo chmod +x /usr/bin/lein

git clone git://github.com/nathanmarz/storm-contrib.git

git clone https://bitbucket.org/ganderson/rf-topology.git

cd storm-contrib/storm-kafka

lein javac

lein install

d ../rf-topology

mvn clean package

Q You can replace the previous clone command with a URL to your repository.

This is a really simple process, and a familiar one to you. The key here is that you validate
your build and release process within your Cl, which is different from your local development
environment.

You will notice that | have checked out the storm-contrib module in order to build
storm-kafka. This is because this module isn't deployed into any binary repository

at present. | would suggest that you clone and deploy your own version of the contrib
modules if binary version control is important to you or your organization.

Defining a delivery pipeline

The delivery pipeline not only ensures what is released is stable and controlled, but also
enables this to be done rapidly. A pipeline can potentially enable every source commit to be a
release candidate. The pipeline needs to be built out in distinct steps, each removing different
kinds of risks from the delivery process. The following is an example of a build pipeline:

Build and Unit Local
ui Tant ni Acceptance De Io ment Acceptance Release
es Testing ploy Testing

202

Chapter 8

You will need to define a pipeline that is appropriate to your technology and organizational
process.

The first step is the traditional Cl step. This ensures that the code base is built and is unit
tested. It is important to keep the build and unit test process to a very short time, thus
allowing developers to receive rapid feedback on their changes. It is also necessary to
perform a more complete test of the code base in a deployed or semi-deployed form. This
can be divided into integration tests and acceptance tests; whatever approach you take for
this, the acceptance tests will generally be far longer running than the unit tests. For this
reason, the acceptance tests should be undertaken out of the developer's workflow and run
only after the build and unit tests have passed.

Once the acceptance tests have passed, you can deliver the system into the QA environment
for further automated and manual testing in a representative environment. In this chapter,
we will build the pipeline up until the deployment step, which is the subject of Chapter 9,
Storm on AWS.

M There are many other test types that you should include in your pipeline.
Q These include load and soak testing. It is important to understand the
change in your system's performance over time.

How to do it...

1. Based on the previous recipes, you now have a working instance of Jenkins. Open it
in your browser at http:// [IP] : 8080, and you should be presented with a blank
Jenkins install, as shown in the following screenshot:

m

Jenkins ENABLE AUTO REFRESH

[#add description

= New Job Welcome to Jenkins! Please create new jobs to get started.
‘ People

”:; Build History
Manage Jenkins

& Manage Jenkins

Build Queue

Mo builds in the gueue.

Build Executor Status
#* Status
1 Idle
2 Idle

E Help us localize this page Page generated: Jun 7, 2013 12:48:49 AM REST API Jenkins ver. 1.517

203

Continuous Delivery

2. The first step is to install all the required plugins. Navigate to the Manage Plugins
screen through the Manage Jenkins link in the main menu and install the following
plugins. Then allow Jenkins to restart:

o Build Pipeline Plugin
o Git Plugin
o Dashboard View
3. Next, you must configure the first step in the build pipeline. Create a new Jenkins
project called rf-topology-build and capture the following settings for the project:

o In Source Code Management (Git) change Repository URL to https://
bitbucket.org/ganderson/rf-topology.git (oryour URL) and
Branch to master

o In Build Triggers change Poll SCM to * /5 * * * *

o In Build change Root POM to pom.xml and Goals and options to clean
package

4. Save the project, and then kick off the first build by manually scheduling the build
from the Jenkins home screen. You will then be presented with a progress bar:

4 Manage Jenkins Lcon:
Build Queue

Mo builds in the queue.

Build Executor Status
Status
1 Idle

2 Building rF—tn%nIan #11 |

¥ Help us localize this page

5. By clicking on the progress bar, the actual console output of the build will be displayed.

204

Chapter 8

The Cl simply polls the Git repo for changes, and when changes are detected, it kicks off a
build using the goals specified in the project configuration. All artifacts and logs are then
saved by the CI for later analysis. Jenkins will also keep track of the build progress for you
over time:

Build Time Trend

=@
g
=

Id 1 Duration
37 sec

e
id
=

31 sec

24 sec

28 sec

1 min 35 sec
6 min 48 sec
& ms

8 ms

17 ms

mins

5 sec

[<N <N ~N 2y =Y <N <N Y Y Y

[[[P PR R |RO|R (R
BREE R R R

15 sec

If you have a private repository, you will need to configure the deployment keys for your
repository. In order to achieve this, you need to generate an SSH key from the appropriate
user on the Cl server:

sudo su jenkins

ssh-keygen
Then, ensure that you have an SSH agent running and add your key:

ssh-agent /bin/bash
ssh-add ~/.ssh/id rsa

You must then add your key to the repository; in order to get the key, just issue the following
command, and then copy the output:

cat ~/.ssh/id rsa.pub

205

Continuous Delivery

If your repository is hosted on Bitbucket, you must use the following screen and paste the key:

Add Deployment Key

Label | Default public key

Key" | ssh-rsa
AAAAB3NzaC1yc2DEDEADAQABAAABAQDDOYWNOIKLA1/hwo3A500iG527Hm
G1Q7PshAV554IV4TpXFtadirXlruil/Sr+5dbPgD3iUowPYwDnWoXco4LWBarvDu
Y5aalEETFelxDsrFyHWQEIhjgKiOvgvGCE4UwS//aQYonnUKgLLenGaynirFBVSNL
wd4S2+17r3azk1IBNBaYV T aPiDKWAIEADEAMNAf4KT CvHRIZPsCGNVInE20VaLi
XM+Nsiyg3YxjSSA7UQb22kc@B/RE3Cpar i+ Tiurys4OfWe ADF ADFAWAVZDLUVK]Y
K7dqYZOb2eFElappR4|gYx5aE4P6We53IbjmOUGHIKvI/DOgF UE1V|Rhavs TsgWx
Wj manthony@localhost

Don't have a key yet?
Read our help docs for creating keys.

Already have a key?
Copy your key to your clipboard with: pbcopy < ~/.ssh/id_rsa.pub

Add key | Cancel

Once this is complete, you will need to update the URL for Git within your Jenkins project to
use the SSH protocol. The new URL will be of the form gitebitbucket.org:ganderson/
rf-topology.git.

Implementing automated acceptance

testing

The automated acceptance test involves exercising a wide range of use cases across a wide
range of test cases to achieve acceptable levels of test coverage at a system level. There

are many technologijes that can be used for such a process; however, often you need to
implement quite complex logic, so using a traditional programming language and libraries is
often a valid way to approach the problem. In this recipe, we will implement acceptance tests
for the Random Forest topology and have them execute as part of the build pipeline.

Getting ready

You will be adding to your existing rf - topology implementation for this recipe; however, if
you haven't completed the recipe from Chapter 7, Real-time Machine Learning, simply clone
the instance from https://bitbucket.org/ganderson/rf-topology.git.

206

Chapter 8

How to do it...

1.

The acceptance test will be implemented as a unit test that only executes in a particular
build phase. To start with, create a unit test in the rf - topology project. The first thing
we need to do is define test data. The following is a sample of a single test case:

private static Map<String, Object[]> testData = new
HashMap<String, Object[]>();

static {
testData.put ("d2ele3dl", new Object[] ({
"Hub2",
new double[] { 0.93, 0.84, 0.63, 0.79, 0.96,
0.71, 0.69, 0.68, 0.89, 0.77 } });

The test data essentially consists of an order ID, an expected output value (Hub2 in
this case), and an array of inputs. Obviously, a single set of test data isn't valid for
acceptance testing, so you must define a much larger set of test cases.

The test case will essentially undergo two phases: a warm-up phase and the actual
test phase. The warm-up phase simply validates that everything is working correctly
before injecting extra data into the scenario. Within each phase, we will send orders
into the deployed topology, and then validate the outputs.

In order to send to a deployed topology, we must publish to the Kafka topic that will
enable communications to that topology:

kafkaHost = System.getProperty ("zk.host", "192.168.33.10");
Properties props = new Properties() ;
props.put ("zk.connect", kafkaHost + ":" +

Integer.toString(2181)) ;
props.put ("serializer.class",
"kafka.serializer.StringEncoder") ;

props.put ("zk.connectiontimeout.ms", "1000000") ;
props.put ("groupid", "default group");
props.put ("auto.commit", "true");

ProducerConfig config = new ProducerConfig(props) ;
producer = new Producer<String, Strings>(config);

SimpleConsumer consumer = new
SimpleConsumer (kafkaHost, 9092, 10000, 1024000) ;

//warm up message

double[] inputs = (doublel])
testData.values () .iterator () .next () [1];

String input = createlnput (inputs, "testOrder");

ProducerData<String, String> data = new
ProducerData<String, String>("orders", input) ;

producer.send (data) ;

207

Continuous Delivery

3. We then need to read from the output topic:
FetchRequest fetchRequest = new FetchRequest ("order-output", O,
offset, 1000000) ;
ByteBufferMessageSet messages = consumer.fetch(fetchRequest) ;
int warmUpAttempts = 0;
boolean warm = false;
while (!warm) {
Thread.sleep(2000) ;
for (MessageAndOffset msg : messages) {
offset = msg.offset();
warm = true;
}
warmUpAttempts++;
if (warmUpAttempts > 20)
fail ("Too many tries trying to warm up") ;

}

4. We then need to publish the complete test dataset:

for (String orderId : testData.keySet()) ({
inputs = (double[]) testData.get (orderId) [1];
input = createlInput (inputs, orderId) ;
data = new ProducerData<String,
Strings> ("orders", input);
producer.send (data) ;

}

5. We then need to read all the outputs and validate them:

int count = 0;
int tested = 0;
int errorCount = 0;
while ((count < 10) && (tested < 100)) {
fetchRequest = new FetchRequest ("order-output", O,
offset, 1000000) ;
messages = consumer.fetch (fetchRequest) ;
for (MessageAndOffset msg : messages) {
String test = new String(Utils.toByteArray
(msg.message () .payload())) ;
offset = msg.offset();
JSONObject output = (JSONObject) JSONValue
.parse (test) ;

if (output != null) {

208

Chapter 8

String tempDispatchTo = (String)
output.get ("dispatch-to") ;
String tempOrderId = (String)
output.get ("order-id") ;
Object[] rhs = testData.get (tempOrderId) ;
if (rhs != null) {
String expected = (String) rhs[0];
tested++;
if (!expected.equals (tempDispatchTo))
errorCount++;

}

Thread.sleep(1000) ;

count++;

assertEquals (100, tested);
assertTrue (errorCount < 3);

In order to validate the outputs, we need to remember that we won't get exact results
from the predictive model, so we have to accept some level of error in the output.

The final change in the rf -topology project is to add the Maven configurations. We
obviously don't want this long running test to execute with each build, so we need to
configure the surefire plugin to exclude the test:
<plugins>
<grouplds>org.apache.maven.plugins</groupId>
<artifactIds>maven-surefire-plugin</artifactIds>
<version>2.14.1l</versions>
<configurations
<excludes>
<exclude>**/AcceptanceTest.java</exclude>
</excludes>
</configurations>
</plugin>

Then, configure the failsafe plugin to execute the test for us:
<plugins>
<grouplds>org.apache.maven.plugins</groupId>
<artifactId>maven-failsafe-plugin</artifactIds>
<version>2.14.1l</versions>
<configurations
<includes>

209

Continuous Delivery

<include>**/AcceptanceTest.java</include>

</includes>

</configurations>

<executions>

<execution>

<id>integration-test</id>
<goals>

<goal>integration-test</goals>
</goals>

</executions>

8. With the test in place, we need to add it to the build pipeline. Back in Jenkins, add
a project to Jenkins called rf-topology-local-acceptance, with the following
configuration properties:

Q

In Source Code Management (Git), change Repository URL to
https:// bitbucket.org/ganderson/rf-topology.git
(or your URL) and Branch to master

In Build Triggers, set Build after other projects are built to rf-topology-
build

In Pre Steps, set Command to cd /var/lib/jenkins/jobs/rf-
topology-acceptance/workspace && /var/lib/jenkins/jobs/
rf-topology-acceptance/workspace/pre-test.sh

In Build, set Root POM to pom.xml and Goals and options to clean
integration-test

In Post Steps, set Command to pkill -9 -f storm.cookbook.
OrderManagementTopology

9. You can then save the project and manually schedule a build in order to test
your configuration.

The following diagram illustrates the process that is being undertaken within the context

of the pipeline:

Chapter 8

Local
Acceptance
Testing

Build and Unit

Test

A

.| Launch Kafka

Clear Topics > and Topology

\ 4

Warm Up Test

Read and

< Validate |« Publish Data
Outputs

Shut down
Topology

Y

Details of each step is as follows:

» Clear Topics: It is important to have a clear set of topics, so that if you have failures,
you have a single set of data to analyze. If there is other data existing in the topics, it
will make analysis and debugging difficult.

» Launch Kafka and the Topology: Launch Kafka and the rf-topology in local
mode. This is achieved through scripting and Maven goals.

» Warm Up Test: Perform the warm-up portion of the test.

» Publish Data: All the data is then published to the topic.

» Read and Validate Outputs: All the outputs are then read off the output topic and
validated against the expected values.

» In order to perform these steps within Jenkins, we have a prestep and a poststep. In
the prestep we specified the following command:

(cd /var/lib/jenkins/jobs/rf-topology-acceptance/workspace && /var/lib/
jenkins/jobs/rf-topology-acceptance/workspace/pre-test.sh)

Continuous Delivery

The preceding command essentially ensures that a bash script is executed in the correct
directory. The content of the script performs the tasks to clear the topics, to start up Kafka
and the topology, using Maven:

#!/bin/sh

cwd=$ (pwd)
KAFKA HOME=/home/vagrant/kafka-0.7.2-incubating-src

#get a local build going

mvn clean package

#ensure we don't have any zookeeper, kafka or topology instances running
pkill -9 -f storm.cookbook.OrderManagementTopology

pkill -9 -f kafka

pkill -9 -f zookeeper

sleep 5

#iremove all previous logs
rm -rfv /tmp/zookeeper

rm -rfv /tmp/kafka

#launch zookeeper and kafka

cd $ KAFKA HOME

bin/zookeeper-server-start.sh config/zookeeper.properties &
sleep 15

bin/kafka-server-start.sh config/server.properties &

sleep 5

cd $cwd

mvn exec:java -Dexec.classpathScope=compile -Dexec.mainClass=storm.
cookbook.OrderManagementTopology &

#allow some time for the topology to start

sleep 20

The tests are then executed via the integration-tests goal from Maven.

Chapter 8

You can now create the pipeline view in order to see the pipeline in Jenkins. To do this, simply
click on the + link on the main page and select Build Pipeline View. You will then have a view
similar to the following on your main page under the Views tab:

@ login | sign up

Build Pipeline: Random Forest Pipeline

i = O v
Rin Hetey Cmegue AkiSm Dees Manage

[ripatiness] ey #12 f-topology-ac...
‘No parameters L 13un 7, 2013 3:41:24 AM
5 » S min 43 50t
o 2]

Help us localize this page

Page generated: Jun 7, 2013 5:28:25 AM REST API Jenkins ver. 1.516

This view is derived from the relationships between the Jenkins projects, specified by the
"Triggered By" relationship between the projects.

Obviously, generating all the test data manually isn't practical. There are two possible
approaches to solve this problem. One would be to generate data and place it into a file that
the test reads; the other would be to embed the data into the test. This is the approach listed
previously. A Python script generated the code. The script is very similar to the one that was
used to do functional testing in Chapter 7, Real-time Machine Learning, except that the line
coercing generates Java code instead of CSV rows:

CUSTOMER_SEGMENTS = (

[0.2, ["O0", random.gauss, 0.25, 0.75, "%0.2f"]],
[0.8, ["O", random.gauss, 1.5, 0.25, "%0.2f"]1],
[0.9, ["1", random.gauss, 0.6, 0.2, "%0.2f"]1],
[1.0, ["1", random.gauss, 0.75, 0.2, "%0.2f"]]

def gen row (segments, num col) :
coin flip = random.random()

for prob, rand var in segments:
if coin flip <= prob:
(label, dist, mean, sigma, format) = rand var
order id = str(uuid.uuidl()) .split("-") [0]
return map (lambda x: format % dist(mean, sigma),
range (0, num col)) + [label]

Continuous Delivery

def print row (segments, num col):
stdout.write ("testData.put (\"")
order_id = str(uuid.uuidl()) .split("-") [0]
stdout.write(order id)
stdout.write("\", new Object[]{")
values = gen row(segments, num col)
= "0O":
stdout .write("\"Hubl\"")
else:
stdout .write("\"Hub2\"")
stdout.write(", new double[] { ")

if values[len(values)-1] =

for x in range (0, len(values)-1):
stdout.write(str(values[x]))
if x < (len(values)-2):
stdout .write(",")
stdout.write("}});\n")

if name == ' main ':
for i in range (0, 100):
print_row (CUSTOMER_SEGMENTS , 10)

This script has been tested using Python 2.7; simply execute it and use the output as the test
data within your test case.

214

Storm on AWS

In this chapter we will cover:

» Deploying Storm on AWS using Pallet
» Setting up a Virtual Private Cloud

» Deploying Storm into Virtual Private Cloud using Vagrant

Introduction

Software is ultimately an academic exercise unless it adds value in a production environment.
In this chapter, we will explore how to deliver Storm solutions into the Amazon Web Services'
Elastic Compute Cloud (AWS EC2). This isn't the only cloud hosting provider you might want
to use, there are many good Platform as a Service (PaaS) providers, and many of them

are excellent and also have high levels of automation and availability. The choice of AWS

for the book is simply because it is extremely cheap and easy to get started, which is ideal

for learning, but it also allows you to go from the basic deployments all the way through to
complete Virtual Private Cloud (VPC), complete with multiple isolated subnets, firewalls, and
appropriate IPSEC. These are all important concepts in an enterprise delivery, which you can
learn quickly using AWS EC2 and VPC as presented in this chapter; however, the concepts and
the tools are by no means tied to AWS.

You will learn to deploy Storm using the community-recommended method of Pallet Ops,
which is a Clojure-based cloud infrastructure automation framework. You will also learn

to extend your original development environment scripts from Chapter 1, Setting Up Your
Development Environment, all the way through to production, based on Vagrant and Puppet
provisioning. None of these frameworks are tied in any way to AWS. Pallet is designed to
work with any cloud provider supported by jclouds, which are over 20 at the time of writing
this book and counting. Vagrant supports multiple providers from Version 1.1 onwards. It
currently supports VirtualBox, AWS, and VMware, with new providers being released from the
community each day.

Storm on AWS

The point therefore, is to learn the tools and concepts that will equip you to deploy Storm
effectively and securely into any production environment you are faced with. As an added
bonus, you will get an introduction to build a secure production environment from scratch, on
AWS, which you may simply choose to use for your particular implementation.

Deploying Storm on AWS using Pallet

The Storm deploy module is recommended by the community for the deployment of Storm
clusters on AWS. It is available at https://github.com/nathanmarz/storm-deploy,
and like Storm itself, was built by Nathan Marz. And like the Storm project, it has really
excellent documentation. Because of this fact, this recipe is heavily based on the content of
that wiki.

Storm deploy is based on Pallet. Pallet is a node provisioning, configuration and
administration tool written in Clojure. It is designed to simplify small to midsize deployments.
At this stage, it is useful to quickly introduce and position Pallet quickly within the context of
infrastructure deployments, Storm, and the other chapters of this book.

Pallet has the following few properties that are worth mentioning:

» It has no inherent dependencies that must be installed on the nodes being managed.
This makes it highly portable, supporting just about any image out there.

» Pallet has no central server. It can simply be run whenever required from anywhere.

» Everything is in version control.

These properties are quite important. The provisioning, presented in Chapter 1, Setting Up
Your Development Environment, exhibits similar qualities. At this point, it is therefore useful
to ask and answer the question: Why present two competing provisioning frameworks? The
following elements answer this question:

» Pallet is the community-recommended method for deployment to AWS.

» Vagrant originally provided portable development environments only. However, it has
matured into a technology that can be leveraged throughout the delivery process and
lifecycle. It is therefore extremely attractive, especially if one intends to implement
DevOps or continuous delivery to some extent. Vagrant allows the deployment
process to be established early in your development environments, and then to be
repeatedly verified through various environments with little or no change. It must be
noted that this is possible with Pallet too, but Vagrant is far more simple to use.

» Many organizations have standardized on particular technologies, one of the reasons
being to leverage the skills and training spend. In the DevOps communities, Puppet
and Chef are more widely used than Pallet. Moreover, your organization may already
have a collection of recipes or modules they would prefer to extend instead of
introducing another technology within the operations space, given that variables in
that space are not a good thing.

Chapter 9

>

In keeping with the theme of the book, various approaches are presented for a given
problem in the hope that this will not only reach a wider audience, but also help to
reinforce the understanding of the underlying concepts.

In Chapter 1, Setting Up Your Development Environment, you were introduced to the concept
of provisioning concerns in three distinct layers. | will present the concept here again for
convenience of being able to contrast the positioning of Pallet and Vagrant/Puppet:

Application

Guest

Hypervisor

In the interests of clarity, Vagrant provides the functionality to provision at the hypervisor layer
and enables the Guest and Application provisioning through Puppet, Chef, and shell scripts.
Pallet, on the other hand, covers all three layers.

Over and above these differences, Pallet and the recipes presented here and in Chapter 1,
Setting Up Your Development Environment, attempt to achieve the following things:

>

>

>

>

Automate as far as possible

Minimize or remove guest dependencies to maximize image coverage
Implement distributed provisioning

Keep everything in version control

Getting ready

In order to proceed with this recipe, you need a valid AWS account. Perform the following steps:

1.

o o~ wDd

Navigate to http://aws.amazon.com/ in your browser.

Click on the Sign Up button, which will take you to the sign-in page.

Select the 1 am a new user option and enter your e-mail address.

Complete the account form.

Complete your payment information.

Complete the registration process by entering your identification verification information.

217

Storm on AWS

Once you have signed up, you need to create a set of credentials to be used:

1. Navigate to https://console.aws.amazon.com in your browser.
Log in and then select IAM from the main menu.

Select users from the menu bar to the left.

Click on the Create new user button at the top of the page.

Enter a username and click on Create.

o o M~ wDd

You will then be presented with a dialog box, as shown in the following screenshot:

l| Create User Cancel [X

Your 1 User(s) have been created successfully.
This is the last time these User security credentials will be available for download.

I You can manage and recreate these credentials any time. I
» Show User Security Credentials

Download Credentials Close Window

Ensure that you download the credentials at this point and place them somewhere safe. You
won't get another opportunity to download them.

How to do it...

1. Start by cloning the storm-deploy project and resolving the dependencies on your
local machine:

git clone https://github.com/nathanmarz/storm-deploy.git
cd storm-deploy

lein deps

2. Create a file named config.clj under ~/.pallet/ with the following content,
specialized for your case:

(defpallet
:services
{
:default
:blobstore-provider "aws-s3"
:provider "aws-ec2"
:environment {:user {:username "storm" ; this must
be "storm"
:private-key-path "$YOUR
PRIVATE KEY PATHS"

Chapter 9

:public-key-path "$YOUR PUBLIC
KEY PATHS"}
:aws-user-id "$YOUR USER ID$"}
:identity "$YOUR AWS ACCESS_KEYS"
:credential "$YOUR AWS ACCESS KEY SECRETS"
:jclouds.regions "$YOUR AWS REGIONS"

}
1)

The details of each field are as follows:

o private-key-path: Your private key path. If you don't have a private
key yet, you can generate it using the : ssh-keygen command. This will
generate a private and public key at ~/ .ssh/id_rsa.

o public-key-path: This is the path to your private key, which should be :
~/.ssh/id_rsa.pub.

o aws-user-1id: You can find this on your account management page. It's a
numeric number with hyphens in it.

o identity: Your AWS access key contained in your user creation download.

0o credential: Your AWS access key secret contained in your user creation
download.

0 jclouds.regions: The region that you will be using for the deployment.
For example, : us-east-1.

M For more information on getting started with AWS, please visit their
Q documentation at http://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/EC2 GetStarted.html.

Next, you must configure your cluster properties. You can do this by editing conf /
clusters.yaml. You can change the number of zookeeper nodes or supervisor
nodes by editing zookeeper. count Or supervisor.count, respectively. You

can launch spot instances for supervisor nodes by setting a value for supervisor.
spot.price.

Once these configurations are in place, you can simply run the following command in
order to launch your cluster:

lein deploy-storm --start --name mycluster --release {release
version}

Storm on AWS

The - -name parameter names your cluster so that you can attach to it or stop it later. If you
omit - -name, it will default to dev. The - -release parameter indicates which release of
Storm to install. If you omit - -release, it will install Storm from the master branch. You
should rather specify a specific stable release.

The deploy sets up Zookeeper, sets up Nimbus, launches the Storm Ul on port 8080 on
Nimbus, launches a DRPC server on port 3772 on Nimbus, sets up the Supervisors, sets
configurations appropriately, sets the appropriate permissions for the security groups, and
attaches your machine to the cluster.

. Running this deploy will create multiple EC2 nodes on AWS. As a result,
~ AWS will start charging your account for the time that these nodes execute.
Q Make sure that you have estimated and understood the costs involved
before you get an unexpected bill.

There's more...

Storm deploy automatically attaches your machine to the cluster so that you can manage it
through the start and stop commands for the cluster. Attaching to a cluster configures your
Storm client to talk to that particular cluster as well as authorizes your computer to view the
Storm Ul.

To attach to a cluster, run the following command:
lein deploy-storm --attach --name mycluster
Attaching does the following;:

» Writes the location of Nimbus in ~/ . storm/storm.yaml so that the Storm client
knows which cluster to talk to

» Authorizes your computer to access the Nimbus daemon's Thrift port (which is used
for submitting topologies)

» Authorizes your computer to access the Storm Ul on port 8080 on Nimbus
» Authorizes your computer to access Ganglia on port 80 on Nimbus

220

Chapter 9

M Note that these instructions can be found on the Storm deploy wiki
C:E (https://github.com/nathanmarz/storm-deploy), and
are placed here for your convenience.

The Storm deploy installs both the Storm Ul and Ganglia. Ganglia is a scalable distributed
monitoring system for high-performance computing systems, such as clusters and grids. In
order to get the IPs for your cluster, simply execute the following command:

lein deploy-storm --ips --name mycluster

Setting up a Virtual Private Cloud

According to Amazon, a Virtual Private Cloud is defined as follows:

Amazon Virtual Private Cloud (Amazon VPC) lets you provision a logically isolated
section of the Amazon Web Services (AWS) Cloud where you can launch AWS
resources in a virtual network that you define. You have complete control over your
virtual networking environment, including selection of your own IP address range,
creation of subnets, and configuration of route tables and network gateways.

This is an exceptionally powerful feature of the AWS cloud service offering, It essentially
allows you to set up an enterprise strength set of environments, from development through to
production, which are secure, isolated, and securely connected to your own internal networks.
Network-level isolation is essential for the long-term security of a production system.

A typical enterprise solution will comprise of multiple layers of network, each with varying
levels of access, representing layers of added security in order to protect the most vital
portions of a system. There are many possible reference architectures, each appropriate for a
given solution. In order to illustrate the nature of the isolated networks within the context of an
enterprise solution, we need to have a solution that consists of a traditional web application,
which feeds events through to the Storm cluster asynchronously for processing.

221

Storm on AWS

A potential deployment architecture could be as follows:

Amazon
Route 53
~rd) 3
Elastic Load
Balancer
~
i
1
1
1
1
1
7
J
N N
Elastic Load
e Balancer _ _ . _ . _ _.-._._.
’
1
i
i E{%{}: .
1
: Auto Cassandra
! J Cluster
%
N
Relational HDFS Batch Layer
Database Cluster
L Database-Private Subnet) ___Analysis-Private Subnet /
L VPC)

What you will notice in this picture is that the various functions of the solution are isolated at
the Network level. A public-facing subnet makes the web servers available via load balancing
and Elastic IP addresses. The application servers are isolated into their own subnet, with
appropriate firewall rules, ensuring that the inward connections are only from specified

IPs and ports within the web subnet. These connections are also only established through
appropriate cryptographic relationships between the Web and application servers. This
ensures that no services are incorrectly exposed from the application server.

222

Chapter 9

Moving down the stack, a similar approach is applied to the database, which is typically a
cluster too.

Asynchronous events are published from the application server to the analysis stack, via
messaging, in this case Kafka. These events are then consumed and processed by Storm
and are saved into HDFS as immutable events, directly from Kafka or from Storm itself,
depending on the structure of the topology.

The exact layout of the networks is not the purpose of this recipe or chapter. One always
needs to define an appropriate functional, conceptual, and deployment architecture for their
given set of requirements. The purpose of this recipe is to show how to set up a VPC with a
public and private subnet. In the next chapter, you will learn to deploy a Storm cluster into
the private subnet. Using this experience, you will then be equipped to design and implement
a deployment architecture as complex as the one illustrated previously. This will ensure

that you can position Storm as a key element within your production environments, even in
environments where regulatory constraints exist.

The environment that we will create in the next two recipes is best described by the
following diagram:

A N
Instance Instance
NAT Nimbus Zookeeper
,_
Instance Instance
T
VPN Supervisorl Supervisor2
Gateway
Public - 10.200.0.0/24/ Private - 10.200.1.0./24
_ . J

223

Storm on AWS

How to do it...

1. You will implement this recipe using the AWS console, so to start, log in to the console
and select VPC from the dropdown of services. You should be presented with a
screen similar to the following;:

NF Services v Quinton_Anderson @ quintona ~ Sydney v Help v

VPG Your Virtual Private Clouds = AWS Service Health =

All VPCs -

4 [start VPC Wizard Launch EC2 Instances Current Status Details
VPG Deshboard - . @ Amazon VRC (Asia Pacfic - Sydney) Service s operating normally
You are using the following Amazon VPC resources in the Asia Pacific (Sydney)
region: & Amazon EC2 (APAC - Sydney) Service is operating normally

=) VIRTUAL PRIVATE

Slouns > View complete service health details
Your VG n 1VPC @ 1 Internet Gateway

Sm;r " s %, 2 Subnets & 2 Route Tables Related Links -

ubnets

Fouts Tabl 77 1 Network ACL @ 3 ElasticIPs
. Tu ° taG E:' 1§ 1 Customer Gateway (& 2 Security Groups > VPC Documentation

nternet Gateways ~ >

v % 1 Virtual Private Gateway i@ 7 Running Instances All VPC Resources
DHGP Options Sets £ VPN Comnect > Forums
Elastic IPs - onnection > Report an Issue
<

=) SECURITY
Network AGLs Your VPN Connections =
Security Groups

VPN Connections Customer Gateway VPC ID Details

= VPN CONNECTIONS @ vpn-2598ae38 54.252.181.143 Detached
Customer Gateways & Acg VPN Connetion > View details
Virtual Private
Gateways
VPN Gonnections

2. Start by clicking on the Start VPC Wizard button and selecting the VPC with Public
and Private Subnets option. This will create two subnets for you, together with a
preconfigured EC2-based NAT instance. The NAT instance will allow your nodes within
the private subnet to access the Internet.

1
‘Q Nodes that aren't associated with an Elastic IP won't be able to access

the Internet without a well-configured NAT instance in place.

3. Next, you will be presented with a screen similar to the following, which allows you to
specify the network IP CIDR blocks and other settings for your VPC:

Chapter 9

Create an Amazon Virtual Private Cloud Cancel [

VPC with Public and Private Subnets

Please review the information below, then click Create VPC.
One VPC with an Internet Gateway
IP CIDR block: 10.0.0.0/16
DNS Hostnames: Enabled Edit VPC IP CIDR Block
Two Subnets
Public Subnet: 10.0.0.0/24

Availability Zone: No Preference Edit Public Subnet
Private Subnet: 10.0.1.0/24
Availability Zone: No Preference Edit Private Subnet

Additional subnets can be added after the VPC has been created.

One NAT Instance with an Elastic IP Address

Instance Type: ml.small Edit NAT Instance Type
Key Pair Name: CRM_DEV Edit Key Pair

Mote: Instance rates apply. View rates.

Hardware Tenancy
Tenancy: Default

< Back Create VPC

Edit Hardware Tenancy

4. At this point, you need to carefully choose your IP addresses. You will also need to
specify the key pair that will gain you access to administer your NAT instance.

W While the defaults are good values, you must be careful not to use the
~ same blocks as the local network. If you will use the same IP blocks, you
Q are likely to experience route configuration issues and conflicts. These

sorts of issues are notoriously difficult to debug, so rather avoid them.

5. Update the IP blocks such that the public subnetis 10.200.0.0/24 and the private
subnetis 10.200.1.0/24, and then create the VPC.

Congratulations, you have created your first AWS VPC with a pubic and private subnet.
You can now review the subnets and the NAT instance that has been created. You can
verify the NAT instance by identifying it in the EC2 instance list and connecting to it:

T} Services v Edit -~

EC2 Dashboard Launch Instance Actions «
Events 4
Tags Viewing: | All Instances + || All Instance Types
- [MName % Instance AMI ID Root Device Type State Status Checks Al

Instances - .

ERP_EHPS gt i-Tebe1bd3 ami-6a8f1f50 ebs mi.xlarge () stopped n
Spot Requests =

NAT . B80f9b ebs m1.small i) runnin 2/2 checks pi n
Reserved Instances Instance Management . @ . 9 @

VPN Connect 18158 ebs t1.micro) running @ 212 checks pi n

225

Storm on AWS

In order to access and provision into the private network, we need to set up an
IPSEC-based VPN access to the private network. We do this because we don't want
to allocate Elastic IPs to our Storm nodes; there is no good reason for anyone on the
Internet to have the ability to connect to our Storm nodes.

6. We will use OpenVPN for this purpose. From within the EC2 instance list screen, click
on the Launch Instance button, select the classic wizard, and then enter OpenVPN
Access Server under the Community AMis tab. Select the displayed AMI and create
the instance, ensuring that it is added to the public subnet that you have just created
(10.200.0.0/24). As part of the creation of the instance, create a new security
group and open the following ports:

o TCP, 22 from 0.0.0.0/0
a TCP, 443 from 0.0.0.0/0
o TCP, 943 from 0.0.0.0/0
o UDP, 1194 from 0.0.0.0/0
sl . L .
~ Always assign good descriptive names to your instances after
creation; this will make your life much easier in future steps.

7. Next, you need to provide an Elastic IP to the OpenVPN instance. Select Elastic IPs
from the menu on the left-hand side, and then allocate a new address. Once it is
allocated, associate it with the newly created OpenVPN instance. Take note of the IP
address, because you will need it soon.

8. Next, verify your security group and change the source/destination check on the
node. Your security group settings should look like the following:

= NAT j -D4a1c539 ami-a1980f9b ebs m1.small @ running @ 2/2 checks pi none basic default QuintonMacBed
;\T:‘ZIE Tasis @ VPN Gateway jhcaad:?ﬁ ami-63118159 ebs t1.micro @ running @ 2/2 checks pi none . basic VPN QuintonMacBed
Test &l i-d8aBeceb amiMea7ale | hs thmicro | { gaeyrity Groups associated with VPN Gateway (i-caadc9f7)
= empty i i-76abcfdb ami-07e676ad instance store m1.small Ports Protocol Source VPN
\S/:‘::s:;s ‘“::n:im “,m: i-9ed2b6a3 ami-07e676ad instancestore | mi.medium 42423 t:s gggzjﬁ ::
= @ EC2 Instance: VPN Gateway (i-caadc9f7) @ i"; :Z‘; g:g:g:g;g :
Security Groups. 54.252.186.124
Elastic IPs T .
Placement Groups Description || Status Checks | Monitoring || Tags
Load Balancers AMI: OpenVPN Access Server 1.8.5 (ami-63118159)
Key Pairs Zone: ap-southeast-2a securny sroups: VPN VIEW Tuies
Network Interfaces Type: t1.micro State: running

9. And you can disable the source/destination check for the instance from the instance

226

context menu:

Chapter 9

10.

11.

12.

13.

CRM 7 EHP2 fat iHf915ec2 ami-dee17|
ER Instance Management BaBf 1
MNA Connect a1880
Get System Log
EI 4 Create Image (EBS AMI} I
Te Add/Edit Tags Ddead
Change Security Groups 07667
BT | Change Source / Dest Check &
em Launch More Like This 87e67|

Next, you need to set up the OpenVPN software on the instance. Connect to the
instance using SSH. The exact command can be found from the context menu
under Connect.

When connected for the first time, the console will prompt you for setup answers for
OpenVPN. Accept all the default values, except the user credential store, which you
should not make local unless you have another means of authentication available.

Once the setup process is complete, you will be presented with a standard bash
console as the root user. You must now assign a password to the OpenVPN user:
passwd openvpn

Once this is complete, you can exit the console and open the following link in your
browser: https:// [ElasticIP] :943/admin/.

Log in with the user openvpn and the password that you just chose. Once you have
accepted the terms and conditions, navigate to the Server Network Settings:

VPN

Server Network Settings

Warning: Changing the Hostname, Protocol or Port Number after VPN clients are deployed
will cause the existing clients to be unusable (until a new client configuration or VPN installer
is downloaded from the Client Web Server)

Hostname or IP Address: 10.0.0.99

Interface and IP Address
Listen on all interfaces
@ eth0: 10.0.0.99
Protocol
TCF
UDFE

227

Storm on AWS

14. Change the value of Hostname or IP address to the Elastic IP address for this instance:

Server Network Settings

VPN Server
Warning: Changing the Hostname, Protocol or Port Number after VPN clients are deployed
will cause the existing clients to be unusable (until a new client configuration or VPN installer
is downloaded from the Client Web Server)

Hostname or IP Address: 107.23.79.220

Interface and IP Address
Listen on all interfaces

@ eth0: 10.0.0.99

15. Ensure that you save the settings, select the VPN settings, and add both subnets to
the routing section:

Routing
Should VPN clients have access to private subnets
Tools (non-public networks on the server side)?
' No
(*) Yes, using NAT

) Yes, using routing (advanced)

Specify the private subnets to which all clients should
be given access (as ‘network/ netmask_bits', one per
line):

10.200.0.0/24
10.200.1.0/24

16. Ensure that you save the settings and then select the button to update the
running server:

t VPN Access Server

Status Settings Changed
The active profile 'Default’ has been modified and saved.

Press the button below to propagate the changes to the running serve

[Update Running Server |

Configuration

VPN Settings

228

Chapter 9

You now have a functioning VPN server. Next, you need to install the client and
connect. But before you do that, we need to test the access to the private subnet.
In order to do this, we need an instance in the subnet.

17. Create a micro test node in that subnet using a standard Ubuntu image from the
EC2 instance list using the wizard. Ensure that you don't assign it an Elastic IP, and
try to connect to the instance via SSH from your machine. It should fail.

18. We can now make the VPN client connection and test again. To do this, navigate in
your browser to the VPN server client interface at https:// [ElasticIP] :943/.
Log in using the openvpn user and follow the onscreen prompts to download the
client software and connect.

19. You should now be able to connect to the private IP of the testing node via SSH from
your local machine. Finally, you need to validate that the testing node has Internet
access. You can do this simply by performing a ping operation:

ping www.google.com

Deploying Storm into Virtual Private Cloud

using Vagrant

In Chapter 1, Setting Up Your Development Environment, we explored portal development
using Vagrant; we even deployed a full Storm cluster into a local set of virtual machines. This
gave us a realistic way of testing the deployment and interactions of a cluster. It is however
very limited, in that all virtual machines are hosted on your local developer system.

In IT operations, it is important to reduce the number of variables and the number of things
that need to be changed or configured in a system in order to promote it through different
environments. For that reason, it is wise to standardize an operating system's databases and
tool chains across environments, and have the developer's environments mimic all the other
environments as closely as possible. Vagrant provides an excellent way of achieving this.
Using Vagrant, you can develop a complete environment on your local machine, as we learned
in Chapter 1, Setting Up Your Development Environment, and then use the same scripts

to promote the deployment into the next environment, provided it is based on a supported
Vagrant provider. This is an extremely powerful workflow process for a development team.

It enables developers to automate deployments and test them repeatedly throughout the
development process, thus greatly reducing the effort and risk of promoting the code through
test and into production.

In this final recipe, we will learn how to add the AWS provider configuration to our cluster
deployment scripts from Chapter 1, Setting Up Your Development Environment, and then
deploy a full Storm cluster into the private subnet we created in the previous recipe.

229

Storm on AWS

Getting ready

Before you begin this recipe, ensure that you have a valid key pair that you can use for the
deployment process. Ensure that you have the name handy and know the path of the .pem
file that you downloaded previously. If you don't have a key pair, simply select Key Pairs from
the EC2 services area in the AWS console, and then click on Create Key Pair.

How to do it...

1.

230

To start with, we need to install the Vagrant AWS provider plugin and add the required
Vagrant box. We do this simply from the command line using the following command:

vagrant plugin install vagrant-aws

vagrant box add dummy https://github.com/mitchellh/vagrant-aws/
raw/master/dummy.box

Next, we need to add the AWS settings to the Vagrant file for our cluster. Edit the
Vagrant file within your vagrant - storm-cluster project from the first chapter.
There are numerous changes that we need to make to the file, so let's go through
them one by one. Right at the top of the file, we specified all the properties for each
machine in the virtual cluster. We need to update this to include some properties we
need for AWS, essentially adding the instance type:

boxes = [

{ :name => :nimbus, :ip => '10.200.1.100', :cpus =>2, :memory =>
512, :instance => 'ml.small' },

{ :name => :supervisorl, :ip => '10.200.1.101', :cpus =>4,
:memory => 1024, :instance => 'ml.medium' },

{ :name => :supervisor2, :ip => '10.200.1.102', :cpus =>4,
:memory => 1024, :instance => 'ml.medium' },

{ :name => :zookeeperl, :ip => '10.200.1.201', :cpus =>1,
:memory => 1024, :instance => 'ml.small' },

]

Next, we need to define the region and AMI that we are going to use (remember to
replace the region as appropriate, together with the related AMI):

AWS_REGION = ENV['AWS_REGION'] || "ap-southeast-2"
N

AWS_AMI = ENV['AWS AMI'] "ami-97e675ad"
M The AMI was chosen out of a list of standard Ubuntu AMIs from the
<:Z§ Ubuntu AMI Locator at http://cloud-images.ubuntu.com/
locator/ec2/.

Chapter 9

4. Next, we need to add the AWS configurations required:

config.vm.provider :aws do |aws, override|

config.vm.provision :shell, :inline => "hostname storm.%s" %

config.vm.box = "dummy"
aws.access_key id = "identity"
aws.secret_access_key = "credential"
aws.keypair name = "KeyPairName"
aws.region = AWS_REGION
aws.ami = AWS_AMI
aws.private ip address = opts[:ip]
aws.subnet_id = "subnet-xxxx"
override.ssh.username = "ubuntu"

override.ssh.private key path = xxx.pem"
aws.instance type = opts[:instance]
end

°

opts[:name] .to_s

Replace the following values with the appropriate values for your situation:

[m]

[m]

identity: Your AWS access key, contained in your user creation download.

credential: Your AWS access key secret, contained in your user
creation download.

KeyPairName: The name of the key pair that you will use in the
deployments.

subnet -xxxx: The ID of the private subnet. This can be obtained from the
VPC console, under Subnets. Ensure that this is the ID of the private subnet.

xxx . pem: The fully-qualified path to the . pemn file of the key pair
generated by AWS previously. This file must correspond to the key
pair name provided previously.

5. Finally, there is a fundamental difference between VirtualBox boxes and Vagrant
boxes for the AWS provider. In the case of the AWS provider, we will use an actual
AMI, which is not necessarily geared for Vagrant. In the case of the previous AMI, it
isn't; it is a vanilla Ubuntu AMI. In the case of the VirtualBox images, they are built
with Vagrant in mind, which means that they have certain dependencies already in
place. In this case, the only dependency that the AMI is missing is the installation of
Puppet, which we need for the provisioning. This can be rectified through a simple
command-line provisioning step:

config.vm.provision :shell, :inline => "apt-get --yes --force-yes
install puppet"

231

Storm on AWS

6. With all these additions to the Vagrant file, we can simply update the Vagrant up
command slightly in order to provision the cluster onto AWS:

vagrant up --provider=aws

\ Once this command has completed successfully, you can simply
~ issue Vagrant commands as you normally would. As an optimization,
Q you could choose to move the data files into an S3 bucket, instead
of having them synchronized from the local data folder.

7. Note that this is only slightly different from the local deployment:
vagrant up

Once the provisioning is complete, you will have a complete Storm cluster, which is accessible
only within the private subnet via VPN.

232

Symbols
:> keyword 146

A

abstraction 140
addTFIDFQueryStream function 151
AfterClass method 73
Aggregators 146
Amazon Web Services. See AWS
Amazon Web Services Elastic Compute Cloud
(AWS EC2) 215
Apache Avro 147
Apache Lucene
about 89
URL 100
Apache Tika
URL 99
archetype command 77
array 59
association rules model
concepts 184
creating, in R 181-184
audit dataset
example 157
automated acceptance testing
implementing 206-214
automated acceptance tests 206
AWS
about 21, 215
Storm, deploying on 216-220

Bamboo 32
BaseRichBolt class 18, 60, 64, 69, 92

Index

BaseRichBolt interface 38
BatchCombiner function 151
Batch layer 141
batch model 164
batch view

integrating 150-154
bolt

Unit testing 43-45
buildTopology method 108,116

C

Cascading
about 90
URL 142
Cascalog 142
Cascalog wiki
URL 145
Cassandra
about 70, 194
URL 70
URL, for documentation 152
Cl 197
Cl server
about 198
Jenkins 198
classifier function 178
clean stream of terms
deriving, from documents 95-101
clean term 95
ClickSpout class 36
click topology
designing 33-43
ClickTopology class 34
Clojure
about 111
word count topology, defining in 134-137

clone command 202 documents

cluster clean stream of terms, deriving from 95-101
topology, testing in 49 persisting, from Storm 148-150
column family database 71 Domain Specific Language (DSL) 142
Complex Event Processing (CEP) 64 Drools
components about 60
used, for calculating TF-IDF 101 knowledge session 62
composition 140 URL 60
constrain complexity 140 Drools Fusion
Continuous Delivery 10, 197 about 64
Continuous Integration. See Cl URL 64
count bolt Drools Guvnor
implementing, in Ruby 132-134 URL 61
credit scoring 172 DRPC
about 105
D reference link 105
used, for completing stream
D3 processing 106-111
about 80 DRPC query stream
URL 80 process, implementing 154
data
publishing 211 E
Data Mining Group (DMG) 172
data science 155 Elastic IP 226
dataset Elastic Search
class 156 about 64, 67
Features class 156 URL 64
Identifier class 157 environmental variables 8
Labels class 156 equals method 58
declareOutputFields method 18 ETL function 147
delivery pipeline execute method 18, 38, 44, 61, 65, 69, 92,
defining 202-206 96, 97, 102, 161
dependencies property 115 Extract Fields rule 63
development environment
setting up 8-10 F

development environment, setting
processes, requisites 8 Features class 156
tools, requisites 8 fetch() method 87
Dev0ps 10 filter 63
Directed Acyclic Graph (DAG) 179 Filter By Type rule 63
distributed remote procedure calls. See DRPCc formatDay method 120
distributed version control

about 10-13 G

Git 11 , Ganglia 221
doctokenize function 100 Generators 146
document fetch function 99

. GeographyBolt class 38
DocumentFetchFunction class 96 GeoStatsBolt class 40

234

getdata() method 87
getStateFactory method 119
getStringField method 45
getter method 58

Git 9,11

Go 32

H

Hadoop

TF-IDF, implementing in 142-148
Hello World topology

creating 13-21
Hiera

about 25

reference link 25
Host Correction rule 63
Hypervisor 27

Identifier class 157
immutable state 139
init.pp file 28
insights component 155
installation
Kafka 159
Redis 33
Integrated Development Environment
(IDE) 165
integration testing
about 46, 71, 111
creating, for log stream cluster 71-75
implementing 46-48
time, simulating in 120-122
IntegrationTestTopology class 46
isKeep() function 97

J

J2SE 6 SDK

downloading 8
Java API 111
javac-options property 115
java-source-paths property 115
JBoss Library 60
Jenkins 32

about 198

setting up 198-200
system environment, setting 200, 202
URL 198
Jersey 87
JMock
about 45
URL 43
used, for Unit testing 43
JSON
URL 59
JSON object 88
JUnit 4
used, for Unit testing 43

K

Kafka
about 159, 223
installing 159
launching 211
URL 159
URL, for downloading 201
Kibana
about 68
URL 68
knowledge session, Drools
about 63
stateful session 62
stateless session 62

L

Labels class 156

Lambda
about 90

Lambda architecture
about 106, 139
abstraction 140
Batch layer 141
composition 140
constrain complexity 140
immutable state 139
key concepts 139
reference link 90
Service layer 140

laser focus 75

lein command 142

235

Leiningen, properties
about 115
dependencies 115
javac-options 115
java-source-paths 115
profiles 115
repositories 115
source-paths 115
test-paths 115

lemma 95

log agent
creating 52-54

log analytics dashboard
about 75
creating 75-88

LogCount class 84, 87

log data
about 51
importance 52
indexing 64-68
persisting 64-68

LogEntry class 59

LogEntry object 61, 65

log management system
accomplishment 60

LogRulesBolt class 60

LogServices class 85

log spout
creating 54-59

Logspout class 58-60

logstash 52

log statistics
counting 68-71
persisting 68-71

log stream
rule-based analysis 60-64

log stream cluster
integration test, creating for 71-75

LogTopology class 69

M
machine learning
about 156

batch model 164
implementing 157
online model 164

236

makeTopology() method 161

Management Information Systems (MIS) 156

MapReduce
about 141
limitations 141
matches method 68
Maven 9
Mean Time to Recovery (MTTR) 10
Memcached 194
minimalistic 75
mocking 43
Morpha Stemmer library
URL 100
multilang protocol
about 124
implementing, in Qt 124-128

neural networks

reference link 164
nextTuple() method 18, 37, 94
nimbus class 31
NVD3

about 80

URL 80

0

object 59
online model 164
OpenJDK 9
open method 18, 92, 94
operational component 155
operational data pipeline 175
operational process 175
Operations 146
Oracle JDK

about 9

URL, for downloading 200
Out Of Bag (00B) 167
output

reading 211

validating 211

P

Pallet
properties 216

used, for deploying Storm on AWS 216-220
Pallet Ops 215
Pig 90
Platform as a Service (PaaS) 215
Polyglot topology 123
pom.xml file 34
predicate
about 146
Aggregators 146
Generators 146
Operations 146
types 146
predictive analytics 156, 190
Predictive Model Markup Language (PMML)
172
prepare method 60, 63, 64, 67, 98
process method 128-131
profiles property 115
Project Object Model (POM) 9
provisioning
concerns 216
Puppet 10
Puppet Forge
URL 27
Puppet Master 32
Python 2.7 214

Q

QBasicBolt class 125, 128
Qt
about 124
multilang protocol, implementing in 124-128
SplitSentence bolt, implementing in 129-132
query 146

R
about 172
association rules model, creating in 181-184
URL, for downloading 165
used, for creating Random Forest classifica-
tion model 164-174
Random Forest
about 169
used, for operational classification 175-181

Random Forest classification model
creating, R used 164-174
rawLogs 54
readLine method 126
real-time online machine learning 190-194
real-time view
integrating 150-154
recommendation engine
about 184
creating 184-189
Redis
about 33
installing 33
URL 33
Regression Perceptron 190
regular expression
about 63
examples 64
reference link 64
RepeatVisitBolt class 37
repositories property 115
repository
creating 11
responsive 75
rolling window topology
implementing 117-120
RStudio
about 165, 166
URL 165
Ruby
count bolt, implementing in 132-134
Ruby bolt 132
RubyCount class 137
rule-based analysis, log stream 60-64
rules resource file
Extract Fields rule 63
Filter By Type rule 63
Host Correction rule 63
rules 63

S

SAS 172

Scala 123

Scala Build Tool (SBT) 159, 201
seed node 152
sendMsgToParent method 126

231

Service layer 140
setter method 58
setup method 72
ShellBolt class 128
source-paths property 115
SplitSentence bolt
about 129
implementing, in Qt 129-132
spout
about 158
set of rules 158
standards based 75
stateful session 62
stateless session 62
Storm
guidelines 164
deploying into VPC, Vagrant used 229-231
deploying on AWS, Pallet used 216-220
documents, persisting from 148-150
machine learning, implementing 157
properties 158
provisioning 28-32
Storm cluster
creating 21-32
Storm JAR 21
Storm-Pattern 164
Storm Pattern Project 182
Linear Regression model 182
Logistic Regression 182
models 181
Random Forest model 182
Storm processor 7
Storm-R 165
StormTestCase class 43
Storm topology
building 8
Storm wiki 8
stream processing
about 51
completing, DRPC used 106-111
supervisor class 31
system environment
setting, for Jenkins 200-202

T

Term Frequency-Inverse Document Frequency.

See TF-IDF

238

TermTopology class 102 107
test data 45
test-paths property 115
TestRepeatVisitBolt class 43
TF-IDF
about 89, 142
calculating 101-104
calculating, components used 101
implementing, in Hadoop 142-148
TfidfExpression class 102
time
simulating, in integration testing 120-122
time bucket
testing 122
timestamp variable 88
topics
clearing 211
topology
launching 211
testing, in cluster 49
transactional schematics 158
transactional streams
operational classification, Random Forest
used 175-181
transactional topology
implementing 158-163
transaction ID (txid) 158
Trident 90
Trident API
reference link 105
Trident-ML 165
Trident topology
integration testing 111-116
Twitter4) library
about 94
URL 94
Twitter Bootstrap 79
Twitter dev
URL 95
Twitter filter
used, for creating URL stream 90-94

U

Ubuntu 8
ui class 31
unit integration testing 71

Unit testing

about 43-45

JMock, used 43

JUnit 4, used 43
URL stream

creating, Twitter filter used 90-94
user interface design

principles 75

Vv

Vagrant
about 10
used, for deploying Storm into VPC 229-231
value 59
version control systems 10
VirtualBox 27
virtual machine
about 10
provisioning 21-27
virtual machine, provisioning
Application layer 27

Guest layer 27

Hypervisor 27

layers 26
Virtual Private Cloud. See VPC
VisitorStatsBolt method 41
VPC

about 215, 221

setting up 221-229

Storm, deploying into 229-231

w

warm up test
performing 211

Weka 172

word count topology
defining, in Clojure 134-137

y 4

zoo class 31

239

open source

community experience distilled

PUBLISHING

Thank you for buying
Storm Real-time Processing Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www . packtpub . com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home

to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should

be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

SignalR: Real-time
Application Development
ISBN: 978-1-78216-424-1 Paperback: 124 pages

Utilize real-time functionality in your .Net applications
with ease

1. Develop real-time applications across numerous
platforms

SignalR: Real-time 2. Create scalable applications that are ready for
Application Development cloud deployment

3. Utilize the full potential of SignalR

Instant PhpStorm Starter

ISBN: 978-1-84969-394-3 Paperback: 86 pages
Learn professional PHP development with PhpStorm

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Learn PHPStorm from scratch, from downloading
to installation with no prior knowledge required

3. Enter, modify, and inspect the source code with as
much automation as possible

4. Simple, full of easy-to-follow procedures and
Wiodzimierz Gajda intuitive illustrations, this book will set you
speedily on the right track

Please check www.packtpub.com for information on our titles

open source

community experience distilled

PUBLISHING

Real-time Web Application

Development with Vert.x
ISBN: 978-1-78216-795-2 Paperback: 117 pages

An intuitive guide to building applications for the real-
time web with the vert.x platform

1. Get started with developing applications for the
real-time web
Real-time Web Application

Development with Vert.x 2. From concept to deployment, learn the full

development workflow of a real-time web
application

= 3. Utilize the Java skills you already have while

PACKT ;
- stepping up to the next level

Socket.10O Real-time Web

Application Development
ISBN: 978-1-78216-078-6 Paperback: 140 pages

Build modern real-time web applications powered by
Socket.lO

1. Understand the usage of various socket.io
features like rooms, namespaces, and sessions

Socket.IO Real-time Web 2. Secure the socket.io communication

Application Development
3. Deploy and scale your socket.io and Node.js

applications in production

4. A practical guide that quickly gets you up and
running with socket.io

Please check www.packtpub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.packtpub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up
Your Development Environment
	Introduction
	Setting up your development environment
	Distributed version control
	Creating a "Hello World" topology
	Creating a Storm cluster – provisioning the machines
	Creating a Storm cluster – provisioning Storm
	Deriving basic click statistics
	Unit testing a bolt
	Implementing an integration test
	Deploying to the cluster

	Chapter 2: Log Stream Processing
	Introduction
	Creating a log agent
	Creating the log spout
	Rule-based analysis of the log stream
	Indexing and persisting the log data
	Counting and persisting log statistics
	Creating an integration test for the log stream cluster
	Creating a log analytics dashboard

	Chapter 3: Calculating Term Importance with Trident
	Introduction
	Creating a URL stream using a Twitter filter
	Deriving a clean stream of terms from the documents
	Calculating the relative importance of each term

	Chapter 4: Distributed Remote Procedure Calls
	Introduction
	Using DRPC to complete the required processing
	Integration testing of a Trident topology
	Implementing a rolling window topology
	Simulating time in integration testing

	Chapter 5: Polyglot Topology
	Introduction
	Implementing the multilang protocol in Qt
	Implementing the SplitSentence bolt in Qt
	Implementing the count bolt in Ruby
	Defining the word count topology in Clojure

	Chapter 6: Integrating Storm
and Hadoop
	Introduction
	Implementing TF-IDF in Hadoop
	Persisting documents from Storm
	Integrating the batch and real-time views

	Chapter 7: Real-time Machine Learning
	Introduction
	Implementing a transactional topology
	Creating a Random Forest classification model using R
	Operational classification of transactional streams using Random Forest
	Creating an association rules model in R
	Creating a recommendation engine
	Real-time online machine learning

	Chapter 8: Continuous Delivery
	Introduction
	Setting up a CI server
	Setting up system environments
	Defining a delivery pipeline
	Implementing automated acceptance testing

	Chapter 9: Storm on AWS
	Introduction
	Deploying Storm on AWS using Pallet
	Setting up a Virtual Private Cloud
	Deploying Storm into Virtual Private Cloud using Vagrant

	Index

