Test-Driven Java
Development

Invoke TDD principles for end-to-end application development
with Java

Test-Driven Java Development

Invoke TDD principles for end-to-end application
development with Java

Viktor Farcic

Alex Garcia

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Test-Driven Java Development

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1240815

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-742-9

www . packtpub.com

www.packtpub.com

Credits

Authors
Viktor Farcic

Alex Garcia

Reviewers
Muhammad Ali

Jeff Deskins
Alvaro Garcia

Esko Luontola

Commissioning Editor
Julian Ursell

Acquisition Editor
Reshma Raman

Content Development Editor
Divij Kotian

Technical Editors
Manali Gonsalves

Naveenkumar Jain

Copy Editors
Trishya Hajare

Janbal Dharmaraj

Project Coordinator
Neha Bhatnagar

Proofreader
Safis Editing

Indexer
Priya Sane

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

https://epic.packtpub.com/index.php?module=Contacts&action=DetailView&record=4f9553f3-6a9f-d2a0-cd88-5530aa267ac6

About the Authors

Viktor Farcic is a software architect. He has coded using a plethora of languages,
starting with Pascal (yes, he is old), Basic (before it got the Visual prefix), ASP
(before it got the .Net suffix) and moving on to C, C++, Perl, Python, ASP.Net, Visual
Basic, C#, JavaScript, and so on. He has never worked with Fortran. His current
favorites are Scala and JavaScript, even though he works extensively on Java. While
writing this book, he got sidetracked and fell in love with Polymer and GoLang.

His big passions are test-driven development (TDD), behavior-driven development
(BDD), Continuous Integration, Delivery, and Deployment (CI/CD).

He often speaks at community gatherings and conferences and helps different
organizations with his coaching and training sessions. He enjoys constant change
and loves working with teams eager to enhance their software craftsmanship skills.

He loves sharing his experiences on his blog, http: //TechnologyConversations.com.

I would like to thank a lot of people who have supported me during
the writing of this book. The people at Everis and Defie (companies
I worked with earlier) provided all the support and encouragement
I needed. The technical reviewers, Alvaro Garcia, Esko Luontola,
Jeff Deskins, and Muhammad Ali, did a great job by constantly
challenging my views, my assumptions, and the quality of the code
featured throughout the examples. Alvaro provided even more help
by writing the Legacy Code chapter. His experience and expertise

in the subject were an invaluable help. The Packt Publishing team
was very forthcoming, professional, and always available to provide
guidance and support. Finally, I'd like to give a special thanks to my
daughter, Sara, and wife, Eva. With weekdays at my job and nights
and weekends dedicated to this book, they had to endure months
without the support and love they deserve. This book is dedicated to
"my girls".

http://TechnologyConversations.com

Alex Garcia started coding in C++ but later moved to Java. He is also interested in
Groovy, Scala, and JavaScript. He has been working as a system administrator and
also as a programmer and consultant.

He states that in the software industry, the final product quality is the key to success.
He truly believes that delivering bad code always means unsatisfied customers.
He is a big fan of Agile practices.

He is always interested in learning new languages, paradigms, and frameworks.
When the computer is turned off, he likes to walk around sunny Barcelona and
likes to practice sports.

I did enjoy writing this book and I want to thank those people

who made this possible. First of all, thanks to the staff at Packt
Publishing for giving me this opportunity and the guidance along
this difficult journey. Thanks to the technical reviewers, Alvaro
Garcia, Esko Luontola, Jeff Deskins, and Muhammad Alj, for the tips
and corrections; they added great value with their comments. Thank
you, Viktor Farcic, for sharing this experience with me. It has been a
pleasure to be your mate during this adventure. And finally, special
thanks to my parents, my brother, and my girlfriend for being there
whenever I need them. This book is dedicated with love to all

of them.

About the Reviewers

Muhammad Ali is a software development expert with extensive experience

in telecommunications and the air and rail transport industries. He holds a master's
degree in the distributed systems course of the year 2006 from the Royal Institute

of technology (KTH), Stockholm, Sweden, and holds a bachelor's honors degree in
computer science from the University of Engineering & Technology Lahore, Pakistan.

He has a passion for software design and development, cloud and big data
test-driven development, and system integration. He has built enterprise
applications using the open source stack for top-tier software vendors and large
government and private organizations worldwide. Ali has settled in Stockholm,
Sweden, and has been providing services to various IT companies within
Sweden and outside Europe.

I would like to thank my parents; my beloved wife; Sana Ali, and my
adorable kids, Hassan and Haniya, for making my life wonderful.

Jeff Deskins has been building commercial websites since 1995. He loves
to turn ideas into working solutions. Lately, he has been building most of his
web applications in the cloud and is continuously learning best practices for
high-performance sites.

Prior to his Internet development career, he worked for 13 years as a television
news photographer. He continues to provide Internet solutions for different
television stations through his website, www.tvstats. com.

I would like to thank my wife for her support and patience through
the many hours of me sitting behind my laptop learning new
technologies. Love you the most!

www.tvstats.com

Alvaro Garcia is a software developer who firmly believes in the eXtreme
Programming methodology. He's embarked on a lifelong learning process and is
now in a symbiotic exchange process with the Barcelona Software Craftsmanship
meet-up, where he is a co-organizer.

Alvaro has been working in the IT industry for product companies, consulting
firms, and on his own since 2005. He occasionally blogs at http://alvarogarcia7.
github.io.

He enjoys reading and reviewing technology books and providing feedback to the
author whenever possible to create the best experience for the final reader.

Esko Luontola has been programming since the beginning of the 21st century.

In 2007, he was bitten by the TDD bug and has been test-infected ever since. Today,
he has tens of projects under his belt using TDD and helps others get started with
it; some of his freely available learning material includes the TDD Tetris Tutorial
exercise and the Let's Code screencasts. He is also fluent in concurrency, distributed
systems, and the deep ends of the JVM platform. In recent years, his interests have
included Continuous Delivery, DevOps, and microservices.

Currently, Esko is working as a software consultant at Nitor Creations. He is the
developer of multiple open source projects such as Retrolambda for back porting
Java 8 code to Java 5-7 and the Jumi Test Runner in order to run tests faster and
more flexibly than JUnit.

http://alvarogarcia7.github.io
http://alvarogarcia7.github.io

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.

com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at servicee@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

[@ PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content
* On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

Table of Contents

Preface iX
Chapter 1: Why Should | Care for Test-driven Development? 1
Why TDD? 2
Understanding TDD 3
Red-green-refactor 3
Speed is the key 5

It's not about testing 5
Testing 5
The black-box testing 6
The white-box testing 6
The difference between quality checking and quality assurance 7
Better tests 8
Mocking 8
Executable documentation 9
No debugging 1"
Summary 12
Chapter 2: Tools, Frameworks, and Environments 13
Git 14
Virtual machines 14
Vagrant 14
Docker 17
Build tools 18
The integrated development environment 20
The IDEA demo project 20
Unit testing frameworks 22
JUnit 23

TestNG 25

[il

Table of Contents

Hamcrest and AssertJ 27
Hamcrest 27
AssertJ 29

Code coverage tools 29
JaCoCo 30

Mocking frameworks 31
Mockito 34
EasyMock 35
Extra power for mocks 37

User interface testing 38
Web testing frameworks 38
Selenium 38
Selenide 40

The behavior-driven development 41
JBehave 42
Cucumber 44

Summary 46

Chapter 3: Red-Green-Refactor — from Failure through
Success until Perfection 47

Setting up the environment with Gradle and JUnit 48
Setting up Gradle/Java project in Intellid IDEA 48

The red-green-refactor process 51
Write a test 51
Run all the tests and confirm that the last one is failing 52
Write the implementation code 52
Run all the tests 52
Refactor 53
Repeat 53

The Tic-Tac-Toe game requirements 53

Developing Tic-Tac-Toe 54
Requirement 1 54

Test 57
Implementation 58
Test 58
Implementation 59
Test 59
Implementation 60
Refactoring 60
Requirement 2 61
Test 62
Implementation 62
Test 63

Lii]

Table of Contents

Implementation 63
Test 63
Requirement 3 64
Test 64
Implementation 65
Test 65
Implementation 65
Refactoring 66
Test 67
Implementation 67
Test 68
Implementation 68
Test 69
Implementation 69
Refactoring 70
Requirement 4 70
Test 71
Implementation 71
Refactoring 72
Code coverage 73
More exercises 74
Summary 75
Chapter 4: Unit Testing — Focusing on What You Do and
Not on What Has Been Done 77
Unit testing 78
What is unit testing? 78
Why unit testing? 79
Code refactoring 79
Why not use unit tests exclusively? 79
Unit testing with TDD 81
TestNG 82
The @Test annotation 82
The @BeforeSuite, @BeforeTest, @BeforeGroups, @AfterGroups,
@AfterTest, and @AfterSuite annotations 83
The @BeforeClass and @AfterClass annotations 83
The @BeforeMethod and @AfterMethod annotations 84
The @Test(enable = false) annotation argument 84
The @Test(expectedExceptions = SomeClass.class) annotation argument 84
TestNG vs JUnit summary 84
Remote controlled ship requirements 85
Developing the remote-controlled ship 85
Project setup 86
Helper classes 88

[iii]

Table of Contents

Requirement 1 89
Specification 90
Specification implementation 90
Refactoring 91

Requirement 2 91
Specification 92
Specification implementation 94
Specification 94
Specification implementation 94

Requirement 3 94
Specification 95
Specification implementation 95
Specification 95
Specification implementation 95

Requirement 4 96
Specification 96
Specification implementation 96
Specification 98
Specification implementation 98

Requirement 5 99
Specification 99
Specification implementation 100
Refactoring 100
Specification 102
Specification implementation 102

Requirement 6 103

Summary 104
Chapter 5: Design — If It's Not Testable, It's Not Designed Well 105
Why should we care about design? 106

Design principles 106
You Ain't Gonna Need It 106
Don't Repeat Yourself 106
Keep It Simple, Stupid 107
Occam's Razor 107
SOLID 107

Connect4 108

Requirements 108

Test the last implementation of Connect4 109

Requirement 1 110

Requirement 2 111

Requirement 3 112

Requirement 4 113

Requirement 5 114

Requirement 6 115

[iv]

Table of Contents

Requirement 7 116
Requirement 8 117
The TDD implementation of Connect4 118
Hamcrest 118
Requirement 1 119
Tests 119
Code 120
Requirement 2 120
Tests 120
Code 122
Requirement 3 123
Tests 123
Code 123
Requirement 4 124
Tests 124
Code 125
Requirement 5 126
Tests 126
Code 127
Requirement 6 127
Tests 127
Code 127
Requirement 7 128
Tests 128
Code 129
Requirement 8 129
Tests 129
Code 130
Summary 132
Chapter 6: Mocking — Removing External Dependencies 133
Mocking 134
Why mocks? 135
Terminology 135
Mock objects 136
Mockito 137
The Tic-Tac-Toe v2 requirements 137
Developing Tic-Tac-Toe v2 138
Requirement 1 138
Specification and specification implementation 139
Specification 139
Specification implementation 140
Specification 140

Implementation
Refactoring

141
141

[v]

Table of Contents

Specification 142
Specification implementation 145
Specification 147
Specification implementation 147
Refactoring 147
Specification 148
Specification implementation 149
Specification 149
Specification implementation 150
Specification 150
Specification implementation 150
Specification 150
Specification implementation 151
Requirement 2 151
Specification 151
Specification implementation 152
Specification refactoring 152
Specification 153
Specification implementation 154
Specification 155
Specification implementation 156
Specification 156
Specification implementation 157
Exercises 157
Integration tests 158
Tests separation 158
The integration test 159
Summary 162
Chapter 7: BDD — Working Together with the Whole Team 163
Different specifications 164
Documentation 164
Documentation for coders 165
Documentation for non-coders 166
Behavior-driven development 167
Narrative 167
Scenarios 169
The Books Store BDD story 170
JBehave 174
JBehave runner 174
Pending steps 176
Selenium and Selenide 178
JBehave steps 179
Final validation 186
Summary 188

[vil

Table of Contents

Chapter 8: Refactoring Legacy Code — Making it Young Again 189
Legacy code 190
Legacy code example 190
Other ways to recognize legacy code 194
A lack of dependency injection 195
The legacy code change algorithm 196
Applying the legacy code change algorithm 196
The Kata exercise 201
Legacy Kata 201
Description 201
Technical comments 202
Adding a new feature 202
Black-box or spike testing 202
Preliminary investigation 203
How to find candidates for refactoring 205
Introducing the new feature 206
Applying the legacy code algorithm 207
Writing end-to-end test cases 207
Automating the test cases 210
Injecting the BookRepository dependency 213
Extract and override call 213
Adding a new feature 216
Removing the primitive obsession with status as Int 218
Summary 222
Chapter 9: Feature Toggles — Deploying Partially Done
Features to Production 223
Continuous Integration, Delivery, and Deployment 224
Feature Toggles 226
A Feature Toggle example 227
Implementing the Fibonacci service 231
Working with the template engine 235
Summary 239
Chapter 10: Putting It All Together 241
TDD in a nutshell 241
Best practices 242
Naming conventions 243
Processes 245
Development practices 247
Tools 251
This is just the beginning 252
This does not have to be the end 252

[vii]

Preface

Test-driven development has been around for a while and many people have still not
adopted it. The reason behind this is that TDD is difficult to master. Even though

the theory is very easy to grasp, it takes a lot of practice to become really proficient
with it.

Authors of this book have been practicing TDD for years and will try to pass on
their experience to you. They are developers and believe that the best way to learn
some coding practice is through code and constant practice. This book follows the
same philosophy. We'll explain all the TDD concepts through exercises. This will
be a journey through the TDD best practices applied to Java development. At the
end of it, you will earn a TDD black belt and have one more tool in your software
craftsmanship tool belt.

What this book covers

Chapter 1, Why Should I Care for Test-driven Development?, spells out our goal of
becoming a Java developer with a TDD black belt. In order to know where we're
going, we'll have to discuss and find answers to some questions that will define
our voyage.

Chapter 2, Tools, Frameworks, and Environments, will compare and set up all the tools,
frameworks and environments that will be used throughout this book. Each of them
will be accompanied with code that demonstrates their strengths and weaknesses.

Chapter 3, Red-Green-Refactor — from Failure through Success until Perfection, will help

us develop a Tic-Tac-Toe game using the red-green-refactor technique, which is the
pillar of TDD. We'll write a test and see it fail; we'll write a code that implements that
test, run all the tests and see them succeed, and finally, we'll refactor the code and try
to make it better.

[ix]

Preface

Chapter 4, Unit Testing — Focusing on What You Do and Not on What Has Been Done,
shows that to demonstrate the power of TDD applied to unit testing, we'll need
to develop a Remote Controlled Ship. We'll learn what unit testing really is, how
it differs from functional and integration tests, and how it can be combined with
test-driven development.

Chapter 5, Design — If It's Not Testable, It's Not Designed Well, will help us develop a
Connect4 game without any tests and try to write tests at the end. This will give us
insights into the difficulties we are facing when applications are not developed in a
way that they can be tested easily.

Chapter 6, Mocking — Removing External Dependencies, shows how TDD is about speed.
We want to quickly demonstrate some idea/concept. We'll continue developing our
Tic-Tac-Toe game by adding MongoDB as our data storage. None of our tests will
actually use MongoDB since all communications to it will be mocked.

Chapter 7, BDD - Working Together with the Whole Team, discusses developing a Book
Store application by using the BDD approach. We'll define the acceptance criteria in
the BDD format, carry out the implementation of each feature separately, confirm
that it is working correctly by running BDD scenarios, and if required, refactor the
code to accomplish the desired level of quality.

Chapter 8, Refactoring Legacy Code — Making it Young Again, will help us refactor an
existing application. The process will start with creation of test coverage for the
existing code and from there on we'll be able to start refactoring until both the
tests and the code meet our expectations.

Chapter 9, Feature Toggles — Deploying Partially Done Features to Production, will
show us how to develop a Fibonacci calculator and use feature toggles to hide
functionalities that are not fully finished or that, for business reasons, should not
yet be available to our users.

Chapter 10, Putting It All Together, will walk you through all the TDD best practices in
detail and refresh the knowledge and experience you gained throughout this book.

What you need for this book

The exercises in this book require readers to have a 64 bit computer. Installation
instructions for all required software is provided throughout the book.

[x]

Preface

Who this book is for

If you're an experienced Java developer and want to implement more effective
methods of programming systems and applications, then this book is for you.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

public class Friendships {
private final Map<String, List<Strings>> friendships = new
HashMap<> () ;

public void makeFriends (String personl, String person2)
addFriend (personl, person2) ;
addFriend (person2, personl) ;

}
Any command-line input or output is written as follows:

$> vagrant plugin install vagrant-cachier
$> git clone thttps://bitbucket.org/vfarcic/tdd-java-ch02-example-
vagrant.git

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Once we type our search query, we should find and click the Go button."

%ii‘ Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

[xi]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub. com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

[xii]

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[xiii]

Why Should | Care for
Test-driven Development?

This book is written by developers for developers. As such, most of the learning

will be through code. Each chapter will present one or more TDD practices and

we'll try to master them by solving katas. In karate, kata is an exercise where you
repeat a form many times, making little improvements in each. Following the same
philosophy, we'll be making small, but significant improvements from one chapter to
the next. You'll learn how to design and code better, reduce time-to-market, produce
always up-to-date documentation, obtain high code coverage through quality tests,
and write clean code that works.

Every journey has a start and this one is no exception. Our destination is a Java
developer with the test-driven development (TDD) black-belt.

In order to know where we're going, we'll have to discuss, and find answers, to
some questions that will define our voyage. What is TDD? Is it a testing technique,
or something else? What are the benefits of applying TDD?

The goal of this chapter is to obtain an overview of TDD, to understand what it is
and to grasp the benefits it provides for its practitioners.

The following topics will be covered in this chapter:

* Understanding TDD

* Whatis TDD?

* Testing

* Mocking

* Executable documentation

* No debugging

[11]

Why Should I Care for Test-driven Development?

Why TDD?

You might be working in an agile or waterfall environment. Maybe you have
well-defined procedures that were battle-tested through years of hard work, or
maybe you just started your own start-up. No matter what the situation was, you
likely faced at least one, if not more, of the following pains, problems, or causes for
unsuccessful delivery:

* Part of your team is kept out of the loop during the creation of requirements,
specifications, or user stories

* Most, if not all, of your tests are manual, or you don't have tests at all
* Even though you have automated tests, they do not detect real problems

e Automated tests are written and executed when it's too late for them to
provide a real value to the project

* There is always something more urgent than dedicating time to testing

* Teams are split between testing, development, and functional analysis
departments, and they are often out of sync

* Aninability to refactor the code because of the fear that something will
be broken

* The maintenance cost is too high

* The time-to-market is too big

* Clients do not feel that what was delivered is what they asked for

* Documentation is never up to date

* You're afraid to deploy to production because the result is unknown

* You're often not able to deploy to production because regression tests take
too long to run

* Team is spending too much time trying to figure out what some method
or a class does

Test-driven development does not magically solve all of these problems. Instead,

it puts us on the way towards the solution. There is no silver bullet, but if there is
one development practice that can make a difference on so many levels, that practice
is TDD.

Test-driven development speeds up the time-to-market, enables easier refactoring,
helps to create better design, and fosters looser coupling.

On top of the direct benefits, TDD is a prerequisite for many other practices
(continuous delivery being one of them). Better design, well-written code, faster
time-to-market, up-to-date documentation, and solid test coverage, are some of
the results you will accomplish by applying TDD.

[2]

Chapter 1

It's not an easy thing to master TDD. Even after learning all the theory and going
through best practices and anti-patterns, the journey is only just beginning. TDD
requires time and a lot of practice. It's a long trip that does not stop with this book.
As a matter a fact, it never truly ends. There are always new ways to become more
proficient and faster. However, even though the cost is high, the benefits are even
higher. People who spent enough time with TDD claim that there is no other way
to develop a software. We are one of them and we're sure that you will be too.

We are strong believers that the best way to learn some coding technique is by coding.
You won't be able to finish this book by reading it in a metro on the way to work. It's
not a book that one can read in bed. You'll have to get your hands dirty and code.

In this chapter, we'll go through basics; starting from the next, you'll be learning by
reading, writing, and running code. We'd like to say that by the time you're finished
with this book, you'll be an experienced TDD programmer, but this is not true. By
the end of this book, you'll be comfortable with TDD and you'll have a strong base
in both theory and practice. The rest is up to you and the experience you'll be
building by applying it in your day-to-day job.

Understanding TDD

At this time, you are probably saying to yourself "OK, I understand that TDD will
give me some benefits, but what exactly is test-driven development?" TDD is a
simple procedure of writing tests before the actual implementation. It's an inversion
of a traditional approach where testing is performed after the code is written.

Red-green-refactor

Test-driven development is a process that relies on the repetition of a very short
development cycle. It is based on the test-first concept of extreme programming
(XP) that encourages simple design with a high level of confidence. The procedure
that drives this cycle is called red-green-refactor.

The procedure itself is simple and it consists of a few steps that are repeated over
and over again:

Write a test.

Run all tests.

Write the implementation code.
Run all tests.

Refactor.

AR N

Run all tests.

[31]

Why Should I Care for Test-driven Development?

Since a test is written before the actual implementation, it is supposed to fail. If it
doesn't, the test is wrong. It describes something that already exists or it was written
incorrectly. Being in the green state while writing tests is a sign of a false positive.
Tests like these should be removed or refactored.

While writing tests, we are in the red state. When the implementation of a
L= testis finished, all tests should pass and then we will be in the green state.

If the last test failed, implementation is wrong and should be corrected. Either the
test we just finished is incorrect or the implementation of that test did not meet
the specification we had set. If any but the last test failed, we broke something and
changes should be reverted.

When this happens, the natural reaction is to spend as much time as needed to fix
the code so that all tests are passing. However, this is wrong. If a fix is not done in a
matter of minutes, the best thing to do is to revert the changes. After all, everything
worked not long ago. Implementation that broke something is obviously wrong,

so why not go back to where we started and think again about the correct way to
implement the test? That way, we wasted minutes on a wrong implementation
instead of wasting much more time to correct something that was not done right in
the first place. Existing test coverage (excluding the implementation of the last test)
should be sacred. We change the existing code through intentional refactoring, not
as a way to fix recently written code.

1
‘\Q Do not make the implementation of the last test final, but provide just

enough code for this test to pass.

Write the code in any way you want, but do it fast. Once everything is green, we
have confidence that there is a safety net in the form of tests. From this moment on,
we can proceed to refactor the code. This means that we are making the code better
and more optimum without introducing new features. While refactoring is in place,
all tests should be passing all the time.

If, while refactoring, one of the tests failed, refactor broke an existing functionality
and, as before, changes should be reverted. Not only that at this stage we are not
changing any features, but we are also not introducing any new tests. All we're doing
is making the code better while continuously running all tests to make sure that
nothing got broken. At the same time, we're proving code correctness and cutting
down on future maintenance costs.

Once refactoring is finished, the process is repeated. It's an endless loop of a very
short cycle.

[4]

Chapter 1

Speed is the key

Imagine a game of ping pong (or table tennis). The game is very fast; sometimes it is
hard to even follow the ball when professionals play the game. TDD is very similar.
TDD veterans tend not to spend more than a minute on either side of the table (test and
implementation). Write a short test and run all tests (ping), write the implementation
and run all tests (pong), write another test (ping), write implementation of that test
(pong), refactor and confirm that all tests are passing (score), and then repeat— ping,
pong, ping, pong, ping, pong, score, serve again. Do not try to make the perfect code.
Instead, try to keep the ball rolling until you think that the time is right to

score (refactor).

1
‘Q Time between switching from tests to implementation (and vice versa)

should be measured in minutes (if not seconds).

It's not about testing

T in TDD is often misunderstood. Test-driven development is the way we approach
the design. It is the way to force us to think about the implementation and to what
the code needs to do before writing it. It is the way to focus on requirements and
implementation of just one thing at a time — organize your thoughts and better
structure the code. This does not mean that tests resulting from TDD are useless —it
is far from that. They are very useful and they allow us to develop with great speed
without being afraid that something will be broken. This is especially true when
refactoring takes place. Being able to reorganize the code while having the confidence
that no functionality is broken is a huge boost to the quality.

1
‘\Q The main objective of test-driven development is testable code design

with tests as a very useful side product.

Testing

Even though the main objective of test-driven development is the approach to code
design, tests are still a very important aspect of TDD and we should have a clear
understanding of two major groups of techniques as follows:

* Black-box testing

* White-box testing

[51]

Why Should I Care for Test-driven Development?

The black-box testing

Black-box testing (also known as functional testing) treats software under test as

a black-box without knowing its internals. Tests use software interfaces and try to
ensure that they work as expected. As long as functionality of interfaces remains
unchanged, tests should pass even if internals are changed. Tester is aware of

what the program should do, but does not have the knowledge of how it does it.
Black-box testing is most commonly used type of testing in traditional organizations
that have testers as a separate department, especially when they are not proficient in
coding and have difficulties understanding it. This technique provides an external
perspective on the software under test.

Some of the advantages of black-box testing are as follows:

* Efficient for large segments of code
* Code access, understanding the code, and ability to code are not required

* Separation between user's and developer's perspectives
Some of the disadvantages of black-box testing are as follows:

* Limited coverage, since only a fraction of test scenarios is performed
* Inefficient testing due to tester's lack of knowledge about software internals

* Blind coverage, since tester has limited knowledge about the application

If tests are driving the development, they are often done in the form of acceptance
criteria that is later used as a definition of what should be developed.

1
‘Q Automated black-box testing relies on some form of automation such

as behavior-driven development (BDD).

The white-box testing

White-box testing (also known as clear-box testing, glass-box testing, transparent-box
testing, and structural testing) looks inside the software that is being tested and uses
that knowledge as part of the testing process. If, for example, an exception should be
thrown under certain conditions, a test might want to reproduce those conditions.
White-box testing requires internal knowledge of the system and programming
skills. It provides an internal perspective on the software under test.

[6]

Chapter 1

Some of the advantages of white-box testing are as follows:

* Efficient in finding errors and problems

* Required knowledge of internals of the software under test is beneficial
for thorough testing

* Allows finding hidden errors

* Programmers introspection

* Helps optimizing the code

* Due to the required internal knowledge of the software, maximum
coverage is obtained

Some of the disadvantages of white-box testing are as follows:

* It might not find unimplemented or missing features
* Requires high-level knowledge of internals of the software under test
* Requires code access

* Tests are often tightly coupled to the implementation details of the
production code, causing unwanted test failures when the code is refactored.

White-box testing is almost always automated and, in most cases, has the form of
unit tests.

1
> When white-box testing is done before the implementation, it takes

the form of TDD.

The difference between quality checking and
quality assurance

The approach to testing can also be distinguished by looking at the objectives they
are trying to accomplish. Those objectives are often split between quality checking
(QC) and quality assurance (QA). While quality checking is focused on defects
identification, quality assurance tries to prevent them. QC is product-oriented and
intends to make sure that results are as expected. On the other hand, QA is more
focused on processes that assure that quality is built-in. It tries to make sure that
correct things are done in the correct way.

[71

Why Should I Care for Test-driven Development?

. While quality checking had a more important role in the past, with the

emergence of TDD, acceptance test-driven development (ATDD), and

— later on behavior-driven development (BDD), focus has been shifting
towards quality assurance.

Better tests

No matter whether one is using black-box, white-box, or both types of testing,
the order in which they are written is very important.

Requirements (specifications and user stories) are written before the code that
implements them. They come first so they define the code, not the other way around.
The same can be said for tests. If they are written after the code is done, in a certain
way, that code (and the functionalities it implements) is defining tests. Tests that are
defined by an already existing application are biased. They have a tendency to confirm
what code does, and not to test whether client's expectations are met, or that the code is
behaving as expected. With manual testing, that is less the case since it is often done by
a siloed QC department (even though it's often called QA). They tend to work on tests'
definition in isolation from developers. That in itself leads to bigger problems caused
by inevitably poor communication and the police syndrome where testers are not trying
to help the team to write applications with quality built-in, but to find faults at the end
of the process. The sooner we find problems, the cheaper it is to fix them.

Tests written in the TDD fashion (including its flavors such as ATDD and
BDD) are an attempt to develop applications with quality built-in from

"~ the very start. It's an attempt to avoid having problems in the first place.

Mocking

In order for tests to run fast and provide constant feedback, code needs to be
organized in such a way that the methods, functions, and classes can be easily
replaced with mocks and stubs. A common word for this type of replacements of
the actual code is test double. Speed of the execution can be severely affected with
external dependencies; for example, our code might need to communicate with the
database. By mocking external dependencies, we are able to increase that speed
drastically. Whole unit tests suite execution should be measured in minutes, if not
seconds. Designing the code in a way that it can be easily mocked and stubbed,
forces us to better structure that code by applying separation of concerns.

[8]

Chapter 1

More important than speed is the benefit of removal of external factors. Setting up
databases, web servers, external APIs, and other dependencies that our code might
need, is both time consuming and unreliable. In many cases, those dependencies
might not even be available. For example, we might need to create a code that
communicates with a database and have someone else create a schema. Without
mocks, we would need to wait until that schema is set.

With or without mocks, the code should be written in a way that we
can easily replace one dependency with another.

Executable documentation

Another very useful aspect of TDD (and well-structured tests in general) is
documentation. In most cases, it is much easier to find out what the code does by
looking at tests than the implementation itself. What is the purpose of some methods?
Look at the tests associated with it. What is the desired functionality of some part of
the application UI? Look at the tests associated with it. Documentation written in the
form of tests is one of the pillars of TDD and deserves further explanation.

The main problem with (traditional) software documentation is that it is not up to
date most of the time. As soon as some part of the code changes, the documentation
stops reflecting the actual situation. This statement applies to almost any type of
documentation, with requirements and test cases being the most affected.

The necessity to document code is often a sign that the code itself is not well written.
Moreover, no matter how hard we try, documentation inevitably gets outdated.

Developers shouldn't rely on system documentation because it is almost never up to
date. Besides, no documentation can provide as detailed and up-to-date description
of the code as the code itself.

Using code as documentation, does not exclude other types of documents. The

key is to avoid duplication. If details of the system can be obtained by reading the
code, other types of documentation can provide quick guidelines and a high-level
overview. Non-code documentation should answer questions such as what the
general purpose of the system is and what technologies are used by the system. In
many cases, a simple README is enough to provide the quick start that developers
need. Sections such as project description, environment setup, installation, and build
and packaging instructions are very helpful for newcomers. From there on, code is
the bible.

[o]

Why Should I Care for Test-driven Development?

Implementation code provides all needed details while test code acts as the
description of the intent behind the production code.

1
‘Q Tests are executable documentation with TDD being the most common

way to create and maintain it.

Assuming that some form of Continuous Integration (CI) is in use, if some part of
test-documentation is incorrect, it will fail and be fixed soon afterwards. CI solves the
problem of incorrect test-documentation, but it does not ensure that all functionality
is documented. For this reason (among many others), test-documentation should

be created in the TDD fashion. If all functionality is defined as tests before the
implementation code is written and execution of all tests is successful, then tests

act as a complete and up-to-date information that can be used by developers.

What should we do with the rest of the team? Testers, customers, managers, and
other non coders might not be able to obtain the necessary information from the
production and test code.

As we saw earlier, two most common types of testing are black-box and white-box
testing. This division is important since it also divides testers into those who do know
how to write or at least read code (white-box testing) and those who don't (black-box
testing). In some cases, testers can do both types. However, more often than not, they
do not know how to code so the documentation that is usable for developers is not
usable for them. If documentation needs to be decoupled from the code, unit tests are
not a good match. That is one of the reasons why BDD came in to being,.

BDD can provide documentation necessary for non-coders, while still
— maintaining the advantages of TDD and automation.

Customers need to be able to define new functionality of the system, as well as to be
able to get information about all the important aspects of the current system. That
documentation should not be too technical (code is not an option), but it still must be
always up to date. BDD narratives and scenarios are one of the best ways to provide
this type of documentation. Ability to act as acceptance criteria (written before the
code), be executed frequently (preferably on every commit), and be written in natural
language makes BDD stories not only always up to date, but usable by those who do
not want to inspect the code.

[10]

Chapter 1

Documentation is an integral part of the software. As with any other part of the code,
it needs to be tested often so that we're sure that it is accurate and up to date.

The only cost-effective way to have accurate and up-to-date information
is to have executable documentation that can be integrated into your
T continuous integration system.

TDD as a methodology is a good way to move towards this direction. On a low
level, unit tests are a best fit. On the other hand, BDD provides a good way to
work on a functional level while maintaining understanding accomplished using
natural language.

No debugging

We (authors of this book) almost never debug applications we're working on!

This statement might sound pompous, but it's true. We almost never debug because
there is rarely a reason to debug an application. When tests are written before the code
and the code coverage is high, we can have high confidence that the application works
as expected. This does not mean that applications written using TDD do not have
bugs —they do. All applications do. However, when that happens, it is easy to isolate
them by simply looking for the code that is not covered with tests.

Tests themselves might not include some cases. In that situation, the action is to
write additional tests.

With high code coverage, finding the cause of some bug is much faster

throu.gl'l tests than spending time debugging line by line until the
culprit is found.

[11]

Why Should I Care for Test-driven Development?

Summary

In this chapter, you got the general understanding of test-driven development

practice and insights into what TDD is and what it isn't. You learned that it is a

way to design the code through short and repeatable cycle called red-green-refactor.
Failure is an expected state that should not only be embraced, but enforced throughout
the TDD process. This cycle is so short that we move from one phase to another with
great speed.

While code design is the main objective, tests created throughout the TDD process
are a valuable asset that should be utilized and severely impact on our view of
traditional testing practices. We went through the most common of those practices
such as white-box and black-box testing, tried to put them into the TDD perspective,
and showed benefits that they can bring to each other.

You discovered that mocks are a very important tool that is often a must when
writing tests. Finally, we discussed how tests can and should be utilized as executable
documentation and how TDD can make debugging much less necessary.

Now that we are armed with theoretical knowledge, it is time to set up the
development environment and get an overview and comparison of different
testing frameworks and tools.

[12]

Tools, Frameworks,
and Environments

"We become what we behold. We shape our tools and then our tools shape us."

Marshall McLuhan

As every soldier knows his weapons, a programmer must be familiar with the
development ecosystem and those tools that make programming much easier.
Whether you are already using any of these tools at work or home, it is worth taking
a look at many of them and comparing the features, advantages, and disadvantages.
Let's do an overview of what we can find nowadays about the following topics and
construct a small project to get familiar with some of them.

We won't go into the details of those tools and frameworks since that will be done
later on in the following chapters. The goal is to get you up and running and provide
you with a short overview of what they do and how.

The following topics will be covered in this chapter:

Git

Virtual machines

Build tools

The integrated development environment
Unit testing frameworks

Code coverage tools

Mocking frameworks

User interface testing

Behavior-driven development

[13]

Tools, Frameworks, and Environments

Git

Git is the most popular revision control system. For that reason, all the code used
in this book is stored in Bitbucket (https://bitbucket.org/). If you don't have it

already, install Git. Distributions for all the popular operating systems can be found
at http://git-scm.com.

Many graphical interfaces are available for Git; some of them being Tortoise
(https://code.google.com/p/tortoisegit), Source Tree (https://www.
sourcetreeapp.com), and Tower (http://www.git-tower.com/).

Virtual machines

Even though they are outside the topic of this book, virtual machines are a powerful
tool and a first-class citizen in a good development environment. They provide
dynamic and easy-to-use resources in isolated systems so they can be used and
dropped at the time we need them. This helps developers to focus on their tasks
instead of wasting their time creating or installing required services from scratch.
This is the reason why virtual machines have found room in here. We want to take
advantage of them to keep you focused on the code.

In order to have the same environment no matter the OS you're using, we'll be
creating virtual machines with Vagrant and deploying required applications with
Docker. We chose Ubuntu as a base operating system in our examples, just because
it is a popular, commonly used Unix-like distribution. Most of these technologies are
platform-independent, but occasionally you won't be able to follow the instructions
found here because you might be using some other operating system. In that case,
your task is to find what the differences are between Ubuntu and your operating
system and act accordingly.

Vagrant

Vagrant is the tool we are going to use for creating the development environment
stack. It is an easy way to initialize ready-to-go virtual machines with minimum
effort using preconfigured boxes. All boxes and configurations are placed in one file,
called Vagrant file.

Here is an example of creating a simple Ubuntu box. We made an extra configuration
for installing MongoDB using Docker (the usage of Docker will be explained
shortly). We assume that you have VirtualBox (https://www.virtualbox.org) and
Vagrant (https://www.vagrantup.com) installed on your computer and that you
have Internet access.

[14]

https://bitbucket.org/
http://git-scm.com
https://code.google.com/p/tortoisegit
https://www.sourcetreeapp.com
https://www.sourcetreeapp.com
http://www.git-tower.com/
https://www.virtualbox.org
https://www.vagrantup.com

Chapter 2

In this particular case, we are creating an instance of Ubuntu 64-bits using the
Ubuntu box (ubuntu/trustyé64) and specifying that the VM should have 1 GB
of RAM:

config.vm.box = "ubuntu/trusty64"

config.vm.provider "virtualbox" do |vb|
vb.memory = "1024"
end

Further on, we're exposing MongoDB's default port in the Vagrant machine and
running it using Docker:

config.vm.network "forwarded port", guest: 27017, host: 27017
config.vm.provision "docker" do |d|

d.run "mongoDB", image: "mongo:2", args: "-p 27017:27017"
end

Finally, in order to speed up the Vagrant setup, we're caching some resources.
You should install the plugin called cachier. For further information, visit
https://github.com/fgrehm/vagrant-cachier

if Vagrant.has plugin? ("vagrant-cachier")
config.cache.scope = :box
end

Now it's time to see it working. It usually takes a few minutes to run it for the
first time because the base box and all the dependencies need to be downloaded
and installed:

$> vagrant plugin install vagrant-cachier
$> git clone thttps://bitbucket.org/vfarcic/tdd-java-ch02-example-vagrant.git
$> cd tdd-java-ch02-example-vagrant

$> vagrant up

[15]

https://github.com/fgrehm/vagrant-cachier

Tools, Frameworks, and Environments

When this command is run, you should see the following output:

==> default:
==> default:
==> default:

==> default:
==> default:
==> default:
==> default:
default:
==> default:
default:
default:
==> default:
==> default:
==> default:
default:
default:
default:
default:
default:
default:
default:
default:
default:
default:
default:
==> default:
==> default:
==» default:
default:
default:
==> default:
==> default:
default:
default:
==> default:
==> default:
==> default:

vfarcic@viktor:~/IdeaProjects/tdd-java-ch@2-example-vagrant$ vagrant up
Bringing machine 'default' up with 'wirtualbox' prowvider...

Importing base box 'ubuntu/trustyé4’...
Matching MAC address for NAT networking...
Checking if box 'ubuntu/trusty64' is up to date...

Setting the name of the VM: tdd-java-ch®2-example-vagrant_default_14353475199659_476040
Clearing any previously set forwarded ports...

Clearing any previously set network interfaces...

Preparing network interfaces based on configuration...
Adapter 1: nat

Forwarding ports...

27017 => 27017 (adapter 1)

22 == 2222 (adapter 1)

Running 'pre-boot’ VM customizations...

Booting VM...

Waiting for machine to boot. This may take a few minutes...
SSH address: 127.8.8.1:2222

55H username: vagrant

SSH auth method: private key

Warning: Connection timeout. Retrying...

Vagrant insecure key detected. Vagrant will automatically replace
this with a newly generated keypair for better security.

Inserting generated public key within guest...

Removing insecure key from the guest if its present...

Key inserted! Disconnecting and reconnecting using new SSH key...
Machine booted and ready!

Checking for guest additions in WM...

Mounting shared folders...

fvagrant == fhomefvfarcic/IdeaProjects/tdd-java-ch®2-example-vagrant
ftmp/vagrant-cache => fhome/vfarcic/.vagrant.d/cache/ubuntuftrustyssd
Configuring cache buckets...

Running provisioner: docker...

Installing Docker (latest) onto machine...

Configuring Docker to autestart containers...

Starting Docker contailners...

-- Container: mongoDB

Configuring cache buckets...

vfarcic@viktor:~/IdeaProjects/tdd-java-ch@2-example-vagrants ||

Be patient until the execution is finished. Once done, you'll have a new virtual
machine with Ubuntu. Docker and one MongoDB instance up and running.
The best part is that all this was accomplished with a single command.

To see the status of the currently running VM, we can use the status argument:

$> vagrant status

Current machine states:

default

running (virtualbox)

[16]

Chapter 2

Virtual machine can be accessed either through ssH or by using Vagrant commands
as in the following example:

$> vagrant ssh

Welcome to Ubuntu 14.04.2 LTS (GNU/Linux 3.13.0-46-generic x86 64)
* Documentation: https://help.ubuntu.com/
System information disabled due to load higher than 1.0

Get cloud support with Ubuntu Advantage Cloud Guest:

http://www.ubuntu.com/business/services/cloud

0 packages can be updated.

0 updates are security updates.

vagrant@vagrant-ubuntu-trusty-64:~$
Finally, to stop the virtual machine, exit from it and run the vagrant halt command:

$> exit
$> vagrant halt
==> default: Attempting graceful shutdown of VM.

$>
For the list of Vagrant boxes or further details about configuring
L Vagrant, visit https://www.vagrantup.com.
Docker

Once the environment is set, it is time to install the services and the software that
we need. This can be done using Docker, a simple and portable way to ship and run
many applications and services in isolated containers. We will use it to install the
required databases, web servers, and all the other applications required throughout
this book, in a virtual machine created using Vagrant. In fact, the Vagrant VM

that was previously created already has an example of getting up and running

an instance of MongoDB using Docker.

[17]

https://www.vagrantup.com

Tools, Frameworks, and Environments

Let's bring up the VM again (we stopped it previously with the vagrant halt
command) and also MongoDB:

$> vagrant up
$> vagrant ssh
vagrant@vagrant-ubuntu-trusty-64:~$ docker start mongoDB

vagrant@vagrant-ubuntu-trusty-64:~$ docker ps

CONTAINER ID IMAGE COMMAND CREATED
360£5340d5fc mongo: 2 "/entrypoint.sh mong 41 minutes ago
STATUS PORTS NAMES

Up 41 minutes 0.0.0.0:27017->27017/tcp mongoDB

vagrant@vagrant-ubuntu-trusty-64:~$ exit

With docker start, we started the container; with docker ps, we listed all the
running processes.

By using this kind of procedure, we are able to reproduce a full-stack environment
in the blink of an eye. You may be wondering if this is as awesome as it sounds. The
answer is yes, it is. Vagrant and Docker allow developers to focus on what they are
supposed to do and forget about complex installations and tricky configurations.
Furthermore, we made an extra effort to provide you with all necessary steps

and resources to reproduce and test all the code examples and demonstrations

in this book.

Build tools

With time, code tends to grow both in complexity and size. This occurs in

the software industry by its nature. All products evolve constantly and new
requirements are made and implemented across a product's life. Build tools offer

a way to make managing project life cycle's as straightforward as possible, by
following a few code conventions such as the organization of your code in a specific
way and usage of naming a convention for your classes or a determined project
structure formed by different folders and files.

Some of you might be familiar with Maven or Ant. They are a great couple of Swiss
army knives for handling projects, but we are here to learn so we decided to use
Gradle. Some of the advantages of Gradle are reduced boiler plate code, resulting in
a much shortdr file and a more readable configuration file. Among others, Google
uses it as its build tool. It is supported by Intelli] IDEA and is quite easy to learn and
work with. Most of the functionalities and tasks are obtained by adding plugins.

[18]

Chapter 2

Mastering Gradle is not the goal of this book. So, if you want to learn
more about this awesome tool, take a tour through its web page
(http://gradle.org/) and read about the plugins you can use and
- the options you can customize. For a comparison of different Java build
% tools, visit http://technologyconversations.com/2014/06/18/
~ build-tools/ orhttp://technologyconversations.
com/2014/06/18/build-tools/.

Before proceeding forward, make sure that Gradle is installed on
your system.

Let's analyze the relevant parts of a build.gradle file. It holds project information
in a concise way using Groovy as the descriptor language. This is our project's build
file, autogenerated with Intelli]:

apply plugin: 'java'
sourceCompatibility = 1.7
version = '1.0"'

A Java plugin is applied since it is a Java project. It brings common Java tasks such as
build, package, test, and so on. The source compatibility is set to JDK 7. The compiler
will complain if we try to use the Java syntax that is not supported by this version:

repositories ({
mavenCentral ()

}

Maven Central (http://search.maven.org/) holds all our project dependencies.
This section tells Gradle where to pull them from. The Maven Central repository is
enough for this project, but you can add your custom repositories, if any. Nexus and
ivy are also supported:

dependencies {
testCompile group: 'junit', name: 'junit', version: '4.12'

}

Last, but not least, this is how project dependencies are declared. Intelli] decided to
use JUnit as the testing framework.

Gradle tasks are easy to run. For example, to run tests from the command prompt,
we can simply execute the following:

gradle test

This can be accomplished from IDEA by running the test task from the Gradle Tool
Window that can be accessed from View | Tool Windows | Gradle.

[19]

http://gradle.org/
http://technologyconversations.com/2014/06/18/build-tools/
http://technologyconversations.com/2014/06/18/build-tools/
http://technologyconversations.com/2014/06/18/build-tools/
http://technologyconversations.com/2014/06/18/build-tools/
http://search.maven.org/

Tools, Frameworks, and Environments

The tests result is stored in the HTML files that are located in the build | reports |
tests directory.

The following is the test report generated by running gradle test against the
sample code:

Class com.packtpublishing.tddjava.ch02friendships.FriendshipsTest

all > com.packtpublishing.tddjava.ch02friendships > FriendshipsTest

3 0 0 0.016s 100%
tests failures ignored duration
successful

Tests
Test Duration Result
alexDoesNotHaveFriends 0.013s passed
joeHas5Friends 0.002s passed
joelsFriendWithEveryone 0.001s passed

The integrated development environment

As many tools and technologies will be covered, we recommend using Intelli] IDEA
as the tool for code development. The main reason is that this IDE works without
any tedious configuration. The Community Edition (Intelli] IDEA CE) comes

with a bunch of built-in features and plugins that make coding easy and efficient.

It automatically recommends plugins that can be installed depending on the

file extension. As Intelli] IDEA is the choice we made for this book, you will

find references and steps referring to its actions or menus. Readers should find

a proper way to emulate those steps if they are using other IDEs. Refer to
https://www.jetbrains.com/idea/ for instructions on how to download

and install Intelli] IDEA.

The IDEA demo project

Let's create the base layout of the demo project. This project will be throughout along
this chapter to illustrate all the topics that are covered. Java will be the programming
language and Gradle (http://gradle.org/) will be used to run different sets of
tasks such as building, testing, and so on.

[20]

https://www.jetbrains.com/idea/
http://gradle.org/

Chapter 2

Let us import into IDEA the repository that contains examples from this chapter:

1. Open Intelli] IDEA, select Check out from Version Control, and click on Git.

2. Typenttps://bitbucket.org/viarcic/tdd-java-ch02-example-junit.
git in the Git repository URL and click on Clone. Confirm for the rest of
the IDEA questions until a new project is created with code cloned from
the Git repository.

The imported project should look similar to the following image:

G- Project v| [N - ﬂ"‘
tdd-java-chi2-example-junit [projecl:JlJ
Jidea
SrC
rmain
java
com.packtpublishing.tddjay
o & FriendsCollection
© & Friendships
© & FriendshipsMongo
£'b Person
[java
com.packtpublishing.tddjay
2" % FriendshipsAssertJTes
&' % FriendshipsHamcrestT|
&' FriendshipsMongoAss
2" % FriendshipsMongoEas
&' FriendshipsTest
2'% PersonTest
¢ .gitignore
* build.gradle
=| LICENSE
Il projectJuUnit.iml
* settings.gradle
il External Libraries

jeck

1:Pro

ul

<] 7: Struckure

¥ 2: Favorites

Now that we have got the project set up, it's time to take a look at unit
testing frameworks.

[21]

https://bitbucket.org/vfarcic/tdd-java-ch02-example-junit.git
https://bitbucket.org/vfarcic/tdd-java-ch02-example-junit.git

Tools, Frameworks, and Environments

Unit testing frameworks

In this section, two of the most used Java frameworks for unit testing are shown
and briefly commented on. We will focus on their syntax and main features by
comparing a test class written using both JUnit and TestNG. Although there are
slight differences, both frameworks offer the most commonly-used functionalities,
and the main difference is how tests are executed and organized.

Let's start with a question. What is a test? How can we define it?

A test is a repeatable process or method that verifies the correct
@’@‘\ behavior of a tested target in a determined situation with a
’ determined input expecting a predefined output or interactions.

In the programming approach, there are several types of tests depending on their
scope: functional tests, acceptance tests, and unit tests. Further on, we will explore
each of those types of tests in more detail.

Unit testing is about testing small pieces of code. Let's see how to test a single Java
class. The class is quite simple, but enough for our interest:

public class Friendships {
private final Map<String, List<String>> friendships =
new HashMap<>() ;

public void makeFriends (String personl, String person2)
addFriend (personl, person2);
addFriend (person2, personl) ;

public List<String> getFriendsList (String person) {
if (!friendships.containsKey (person))
return Collections.emptyList () ;

}

return friendships.get (person) ;

public boolean areFriends (String personl, String person2) {
return friendships.containsKey (personl) &&
friendships.get (personl) .contains (person2) ;

[22]

Chapter 2

private void addFriend(String person, String friend) {
if (!friendships.containsKey (person)) {
friendships.put (person, new ArrayList<String>()) ;
}
List<String> friends = friendships.get (person) ;
if (!friends.contains (friend)) ({
friends.add(friend) ;

JUnit

JUnit (http://junit.org/) is a simple and easy-to-learn framework for writing
and running tests. Each test is mapped as a method, and each method should
represent a specific known scenario in which a part of our code will be executed.
The code verification is made by comparing the expected output or behavior with
the actual output.

The following is the test class written with JUnit. There are some scenarios missing,
but for now we are interested in showing what tests look like. We will focus on better
ways to test our code and on best practices later in this book.

Tests classes usually consist of three stages; set up, tests and tear down. Let's start
with methods that set up data needed for tests. A setup can be performed on a class
or method level:

Friendships friendships;
@BeforeClass

public static void beforeClass() {
// This method will be executed once on initialization time

@Before

public void before() {
friendships = new Friendships() ;
friendships.makeFriends ("Joe", "Audrey") ;
friendships.makeFriends ("Joe", "Peter");
friendships.makeFriends ("Joe", "Michael");
friendships.makeFriends ("Joe", "Britney");
friendships.makeFriends ("Joe", "Paul");

[23]

http://junit.org/

Tools, Frameworks, and Environments

The eBeforeClass annotation specifies a method that will be run once before any of
the test methods in the class. It is a useful way to do some general setup that will be
used by most (if not all) tests.

The @Before annotation specifies a method that will be run before each test
method. We can use it to set up test data without worrying that the tests that
are run afterwards will change the state of that data. In the example above,
we're instantiating the Friendships class and adding five sample entries to the
Frienships list. No matter what changes will be performed by each individual
test, this data will be recreated over and over until all the tests are performed.

Common examples of usage of those two annotations is setting up of database
data, creation of files needed for tests, and so on. Later on, we'll see how external
dependencies can and should be avoided using mocks. Nevertheless, functional
or integration tests might still need those dependencies and the @Before and
@BeforeClass annotations are a good way to set them up.

Once data is set up, we can proceed with the actual tests:

@Test
public void alexDoesNotHaveFriends () {

Assert.assertTrue ("Alex does not have friends",
friendships.getFriendsList ("Alex") .isEmpty()) ;

@Test
public void joeHasS5Friends () {
Assert.assertEquals ("Joe has 5 friends", 5,
friendships.getFriendsList ("Joe") .size());
}
@Test
public void joelsFriendWithEveryone()

List<String> friendsOfJoe =
Arrays.asList ("Audrey", "Peter", "Michael", "Britney", "Paul");

Assert.assertTrue (friendships.getFriendsList ("Joe")
.containsAll (friendsOfJoe)) ;

}

In this example, we are using a few of the many different types of asserts. We're
confirming that Alex does not have any friends, while Joe is a very popular guy
with five friends (Audrey, Peter, Michael, Britney, and Paul).

[24]

Chapter 2

Finally, once the tests are finished, we might need to perform some clean up:

@AfterClass
public static void afterClass() {
// This method will be executed once when all test are executed

@After
public void after() {
// This method will be executed once after each test execution

}

In our example, in the Friendships class, we have no need to clean up anything.

If there were such a need, those two annotations would provide that feature.

They work in a similar fashion to the @Before and @BeforeClass annotations.
@AftercClass is run once all tests are finished. The eafter annotation is executed
after each test. This runs each test method as a separate class instance. As long

as we are avoiding global variables and external resources such as databases and
APIs, each test is isolated from the others. Whatever was done in one, does not affect
the rest.

The complete source code can be found in the FriendshipsTest class in the
https://github.com/TechnologyConversations/tdd-java-ch02-example-

junit.git or https://bitbucket.org/vfarcic/tdd-java-ch02-example-
junit.git repositories.

TestNG

In TestNG (http://testng.org/doc/index.html), tests are organized in classes,
just as in the case of JUnit.

The following Gradle configuration (build.gradle) is required in order to run
TestNG tests:

dependencies {
testCompile group: 'org.testng', name: 'testng', version: '6.8.21'

test.useTestNG () {

// Optionally you can filter which tests are executed using
// exclude/include filters

//excludeGroups 'complex'

}

[25]

https://github.com/TechnologyConversations/tdd-java-ch02-example-junit.git
https://github.com/TechnologyConversations/tdd-java-ch02-example-junit.git
https://bitbucket.org/vfarcic/tdd-java-ch02-example-junit.git
https://bitbucket.org/vfarcic/tdd-java-ch02-example-junit.git
http://testng.org/doc/index.html

Tools, Frameworks, and Environments

Unlike JUnit, TestNG requires additional Gradle configuration that tells it to use
TestNG to run tests.

The following test class is written with TestNG and is a reflection of what we did
earlier with JUnit. Repeated imports and other boring parts are omitted with the
intention of focusing on the relevant parts:

@BeforeClass
public static void beforeClass() {
// This method will be executed once on initialization time

@BeforeMethod
public void before() {
friendships = new Friendships() ;

friendships.makeFriends ("Joe", "Audrey") ;
friendships.makeFriends ("Joe", "Peter");
friendships.makeFriends ("Joe", "Michael");
friendships.makeFriends ("Joe", "Britney");
friendships.makeFriends ("Joe", "Paul");

}

You probably already noticed the similarities between JUnit and TestNG. Both are
using annotations to specify what the purposes of certain methods are. Besides
different names (@Beforeclass vs @BeforeMethod), there is no difference between
the two. However, unlike Junit, TestNG reuses the same test class instance for all test
methods. This means that the test methods are not isolated by default, so more care
is needed in the before and after methods.

Asserts are very similar as well:

public void alexDoesNotHaveFriends () {
Assert.assertTrue (friendships.getFriendsList ("Alex") .isEmpty (),
"Alex does not have friends");
}
public void joeHasSFriends()
Asert.assertEquals (friendships.getFriendsList ("Joe") .size (),
5, "Joe has 5 friends");
}
public void joelsFriendWithEveryone ()
List<String> friendsOfJoe =
Arrays.asList ("Audrey", "Peter", "Michael", "Britney", "Paul");
Assert.assertTrue (friendships.getFriendsList ("Joe")
.containsAll (friendsOfJoe)) ;

[26]

Chapter 2

The only notable difference when compared with Junit is the order of the assert
variables. While JUnit assert's order of arguments is optional message, expected
values, and actual values, TestNG's order is actual value, expected value and
optional message. Besides the difference in the order of arguments we're passing to
the assert methods, there are almost no differences between JUnit and TestNG.

You might have noticed that @Test is missing. TestNG allows us to set it on the class
level and thus convert all public methods into tests.

The @After annotations are also very similar. The only notable difference is
the TestNG @AfterMethod annotations that acts in the same way as the JUnit
@After annotation.

As you can see, the syntax is pretty similar. Tests are organized in to classes and
test verifications are made using assertions. That is not to say that there are no
more important differences between those two frameworks; we'll see some of
them throughout this book. I invite you to explore JUnit (http://junit.org/)
and TestNG (http://testng.org/) by yourself.

The complete source code with the examples above can be found at
https://bitbucket.org/vfarcic/tdd-java-ch02-example-testng.git.

The assertions we have written until now are using only the testing frameworks.
However, there are some test utilities that can help us make them nicer and
more readable.

Hamcrest and AssertJ

In the previous section, we gave an overview of what a unit test is and how it can

be written using two of the most commonly used Java frameworks. Since tests are
an important part of our projects, why not improve the way we write them? Some
cool projects emerged, aiming to empower the semantic of tests by changing the way
assertions are made. As a result, tests are more concise and easier to understand.

Hamcrest

Hamcrest adds a lot of methods called matchers. Each matcher is designed to
perform a comparison operation. It is extensible enough to support custom matchers
created by yourself. Furthermore, JUnit supports Hamcrest natively since its core

is included in the JUnit distribution. You can start using Hamcrest effortlessly.
However, we want to use the full-featured project so we will add a test dependency
to Gradle's file:

testCompile 'org.hamcrest:hamcrest-all:1.3"

[27]

http://junit.org/
http://testng.org/
https://bitbucket.org/vfarcic/tdd-java-ch02-example-testng.git

Tools, Frameworks, and Environments

Let us compare one assert from JUnit with the equivalent one from Hamcrest:

* The JUnit assert:

List<String> friendsOfJoe =

Arrays.asList ("Audrey", "Peter", "Michael", "Britney", "Paul");
Assert.assertTrue(friendships.getFriendsList ("Joe")
.containsAll (friendsOfJoe)

)i
¢ The Hamcrest assert:

assertThat (
friendships.getFriendsList ("Joe"),

containsInAnyOrder ("Audrey", "Peter",
"Michael", "Britney", "Paul")

) ;

As you can see, Hamcrest is a bit more expressive. It has a much bigger range of
asserts that allows us to avoid some boilerplate code and, at the same time, makes
code easier to read and has more expressive code.

Here's another example:
* JUnit assert:
Assert.assertEquals (5, friendships.getFriendsList ("Joe") .size());
* Hamcrest assert:

assertThat (friendships.getFriendsList ("Joe"), hasSize(5));

You'll notice two differences. The first is that, unlike JUnit, Hamcrest works almost
always with direct objects. While in the case of JUnit, we needed to get the integer
size and compare it with the expected number (5); Hamcrest has a bigger range of
asserts so we can simply use one of them (hassize) together with the actual object
(List). Another difference is that Hamcrest has the inverse order with actual value
being the first argument (like TestNG).

Those two examples are not enough to show the full potential offered by Hamcrest.
Later on in this book, there will be more examples and explanations of Hamcrest.
Visit https://code.google.com/p/hamcrest/ or http://hamcrest.org/ and
explore its syntax.

The complete source code can be found in the FriendshipsHamcrestTest class in
the https://github.com/TechnologyConversations/tdd-java-ch02-example-
junit.git or https://bitbucket.org/vfarcic/tdd-java-ch02-example-
junit.git repositories.

[28]

https://code.google.com/p/hamcrest/
http://hamcrest.org/
https://github.com/TechnologyConversations/tdd-java-ch02-example-junit.git
https://github.com/TechnologyConversations/tdd-java-ch02-example-junit.git
https://bitbucket.org/vfarcic/tdd-java-ch02-example-junit.git
https://bitbucket.org/vfarcic/tdd-java-ch02-example-junit.git

Chapter 2

AssertJ

Assert] works in a similar way to Hamcrest. A major difference is that Assert]
assertions can be concatenated.

To work with Assert], the dependency must be added to Gradle's dependencies:

testCompile 'org.assertj:assertj-core:2.0.0"'

Let's compare JUnit asserts with Assert]:

Assert.assertEquals (5, friendships.getFriendsList ("Joe") .size());
List<String> friendsOfJoe =

Arrays.asList ("Audrey", "Peter", "Michael", "Britney", "Paul");
Assert.assertTrue(friendships.getFriendsList ("Joe")

.containsAll (friendsOfJoe)

)i
The same two asserts can be concatenated to a single one in Assert]:

assertThat (friendships.getFriendsList ("Joe"))
.hasSize (5)
.containsOnly ("Audrey", "Peter", "Michael", "Britney",
"Paul") ;

This was a nice improvement. There was no need to have two separate asserts, nor
there was a need to create a new list with expected values. Moreover, Assert] is more
readable and easier to understand.

The complete source code can be found in the FriendshipsAssertdTest class in
the https://github.com/TechnologyConversations/tdd-java-ch02-example-
junit.git or https://bitbucket.org/vfarcic/tdd-java-ch02-example-
junit.git repositories.

Now that we have tests up and running, we might want to see what is the code
coverage is generated with our tests.

Code coverage tools

The fact that we wrote tests does not mean that they are good, nor that they cover
enough code. As soon as we start writing and running tests, the natural reaction is
to start asking questions that were not available before. What parts of our code are
properly tested? What are the cases that our tests did not take into account? Are
we testing enough? These and other similar questions can be answered with code
coverage tools. They can be used to identify the blocks or lines of code that were
not covered by our tests; they can also calculate the percentage of code covered and
provide other interesting metrics.

[29]

https://github.com/TechnologyConversations/tdd-java-ch02-example-junit.git
https://github.com/TechnologyConversations/tdd-java-ch02-example-junit.git
https://bitbucket.org/vfarcic/tdd-java-ch02-example-junit.git
https://bitbucket.org/vfarcic/tdd-java-ch02-example-junit.git

Tools, Frameworks, and Environments

They are powerful tools used to obtain metrics and show relations between tests and
implementation code. However, as with any other tool, their purpose needs to be
clear. They do not provide information about quality, but only about which parts of
our code have been tested.

Code coverage shows whether the code lines are reached during
% test execution, but it is not a guarantee of good testing practices
T because test quality is not included on these metrics.

Let's take a look at one of the most popular tools used to calculate code coverage.

JaCoCo

Java Code Coverage (JaCoCo) is a well-known tool for measuring test coverage.
To use it in our project, we need to add a few lines to our Gradle configuration file,
that is, build.gradle:

1. Add the Gradle plugin for JaCoCo:
apply plugin: 'jacoco'

2. To see the JaCoCo results, run the following from your command prompt:

gradle test jacocoTestReport

3. The same Gradle tasks can be run from the Gradle Tasks IDEA
Tool Window.

4. The end result is stored in the build | reports | jacoco | test | html
directory. It's an HTML file that can be opened in any browser:

Friendships

Element Missed Instructions + Cow.© Missed Branches Cov.~ Missed+ Cxty~ Missed~ Lines~ Missed~ Methods
@ areFriends(String, String) o S 0% 3 3 1 1 1 1
© addFriend(String, String), 100% 75% 1 3 0 4 0 1
@ geltFriendsList{String) e 100% == 100% 0 2 0 2 0 1
@ makeFriends(String, String) =222 100% nfa a 1 a 3 a 1
@ Friendships() [100% nfa Q 1 Q 2 Q 1
Total 17 of 75 77% 50f10 50% 4 10 1 12 1 5

Further chapters of this book will explore Code Coverage in more detail. Until then,
go tohttp://www.eclemma.org/jacoco/ for more information.

[30]

http://www.eclemma.org/jacoco/

Chapter 2

Mocking frameworks

Our project looks cool, but it's too simple and it is far from being a real project. It still
doesn't use external resources. A database is required by Java projects so we'll try to
introduce it, as well.

What is the common way to test code that uses external resources or third-party
libraries? Mocks are the answer. A mock object, or simply a mock, is a simulated
object that can be used to replace real ones. They are very useful when objects that
depend on external resources are deprived of them.

In fact, you don't need a database at all while you are developing the application.
Instead, you can use mocks to speed up development and testing and use a real
database connection only at runtime. Instead of spending time setting up a database
and preparing test data, we can focus on writing classes and think about them later
on during integration time.

For demonstration purposes, we'll introduce two new classes. The person class and
the FriendCollection class that are designed to represent persons and database
object mapping. Persistence will be done with MongoDB (https://www.mongodb.
org/).

Our sample will have two classes. Person will represent database object data;
FriendCollection will be our data access layer. The code is, hopefully,
self-explanatory.

Let's create and use the Person class:

public class Person
@Id
private String name;

private List<String> friends;
public Person() { }
public Person(String name)

this.name = name;
friends = new ArrayList<>();

public List<String> getFriends() {
return friends;

}

[31]

https://www.mongodb.org/
https://www.mongodb.org/

Tools, Frameworks, and Environments

public void addFriend(String friend) {
if (!friends.contains (friend)) friends.add(friend) ;

}
Let's create and use the FriendsCollection class:

public class FriendsCollection {
private MongoCollection friends;

public FriendsCollection() ({
try {
DB db = new MongoClient () .getDB("friendships") ;
friends = new Jongo (db) .getCollection("friends") ;
} catch (UnknownHostException e)
throw new RuntimeException (e.getMessage()) ;

public Person findByName (String name)
return friends.findOne("{_id: #}", name) .as (Person.class) ;

public void save (Person p) ({
friends.save (p) ;

}

In addition, some new dependencies have been introduced so the Gradle
dependencies block needs to be modified, as well. The first one is the MongoDB
driver, which is required to connect to the database. The second is Jongo, a small
project that makes accessing Mongo collections pretty straightforward.

The Gradle dependencies for mongodb and jongo are as follows:

dependencies {
compile 'org.mongodb:mongo-java-driver:2.13.2"
compile 'org.jongo:jongo:1.1'

[32]

Chapter 2

We are using a database so the Friendships class should also be modified.
We should change a map to FriendsCollection and modify the rest of the
code to use it. The end result is the following;:

public class FriendshipsMongo
private FriendsCollection friends;

public FriendshipsMongo () {
friends = new FriendsCollection() ;

public List<String> getFriendsList (String person) {
Person p = friends.findByName (person) ;
if (p == null) return Collections.emptyList () ;
return p.getFriends () ;

public void makeFriends (String personl, String person2)
addFriend (personl, person2) ;
addFriend (person2, personl) ;

public boolean areFriends (String personl, String person2) {
Person p = friends.findByName (personl) ;
return p != null && p.getFriends () .contains (person2) ;

private void addFriend(String person, String friend) {
Person p = friends.findByName (person) ;
if (p == null) p = new Person(person);
p.addFriend (friend) ;
friends.save (p) ;

}

The complete source code can be found in the FriendsCollection and
FriendshipsMongo classes in the https://bitbucket.org/vfarcic/tdd-java-
ch02-example-junit.git repository.

Now that we have our Friendships class working with MongoDB, let's take a look
at one possible way to test it by using mocks.

[33]

https://bitbucket.org/vfarcic/tdd-java-ch02-example-junit.git
https://bitbucket.org/vfarcic/tdd-java-ch02-example-junit.git

Tools, Frameworks, and Environments

Mockito

Mockito is a Java framework that allows easy creation of the test double.

The Gradle dependency is the following;:

dependencies {
testCompile group: 'org.mockito', name: 'mockito-all', version: 'l.+'

}

Mockito runs through the JUnit runner. It creates all the required mocks for us and
injects them into the class with tests. There are two basic approaches; instantiating
mocks by ourselves and injecting them as class dependencies via a class constructor
or using a set of annotations. In the next example, we are going to see how is it done
using annotations.

In order for a class to use Mockito annotations, it needs to be run with
MockitoJdUnitRunner. Using the runner simplifies the process because
you just simply add annotations to objects to be created:

@RunWith (MockitoJUnitRunner.class)
public class FriendshipsTest {

In your test class, the tested class should be annotated with @InjectMocks. This tells
Mockito which class to inject mocks into:

@InjectMocks
FriendshipsMongo friendships;

From then on, we can specify which specific methods or objects inside the class,
in this case FriendshipsMongo, will be substituted with mocks:

@Mock
FriendsCollection friends;

In this example, FriendsCollection inside the FriendshipsMongo class will
be mocked.

Now, we can specify what should be returned when friends is invoked:

Person joe = new Person("Joe");
doReturn (joe) .when (friends) . findByName ("Joe") ;
assertThat (friends.findByName ("Joe")) .isEqualTo (joe) ;

[34]

Chapter 2

In this example, we're telling Mockito to return the joe object whenever friends.
findByName ("joe") is invoked. Later on, we're verifying with assertThat that this
assumption is correct.

Let's try to do the same test as we did previously in the class that was without
MongoDB:

@Test

public void joeHasS5Friends () {
List<String> expected =

Arrays.asList ("Audrey", "Peter", "Michael", "Britney", "Paul");
Person joe = spy(new Person("Joe")) ;

doReturn (joe) .when (friends) . findByName ("Joe") ;
doReturn (expected) .when (joe) .getFriends () ;

assertThat (friendships.getFriendsList ("Joe"))
.hasSize (5)
.containsOnly ("Audrey", "Peter", "Michael", "Britney", "Paul");

}

A lot of things happened in this small test. First, we're specifying that joe is

a spy. In Mockito, spies are real objects that use real methods unless specified
otherwise. Then, we're telling Mockito to return joe when the friends method
calls getFriends. This combination allows us to return the expected list when the
getFriends method is invoked. Finally, we're asserting that the getFriendsList
returns the expected list of names.

The complete source code can be found in the FriendshipsMongoAssertJdTest class
in the https://bitbucket.org/vfarcic/tdd-java-ch02-example-junit.git
repository.

We'll use Mockito later on; throughout this book, you'll get your chance to become
more familiar with it and mocking in general. More information about Mockito can
be found at http://mockito.org/.

EasyMock

EasyMock is an alternative mocking framework. It is very similar to Mockito.
However, the main difference is that EasyMock does not create spy objects but
mocks. Other differences are syntactical.

[35]

https://bitbucket.org/vfarcic/tdd-java-ch02-example-junit.git
http://mockito.org/

Tools, Frameworks, and Environments

Let's see an example of EasyMock. We'll use the same set of test cases as those that
were used for Mockito examples:

@RunWith (EasyMockRunner.class)
public class FriendshipsTest
@TestSubject
FriendshipsMongo friendships = new FriendshipsMongo () ;
@Mock (type = MockType.NICE)
FriendsCollection friends;

Essentially, the runner does the same as the Mockito runner:

@TestSubject
FriendshipsMongo friendships = new FriendshipsMongo () ;

@Mock (type = MockType.NICE)
FriendsCollection friends;

The @TestSubject annotation is similar to Mockito's @InjectMocks, while the
@Mock annotation denotes an object to be mocked in a similar fashion to Mockito's
@Mock. Furthermore, the type nice tells the mock to return empty.

Let's compare one of the asserts we did with Mockito:

@Test
public void mockingWorksAsExpected() {
Person joe = new Person("Joe") ;
expect (friends.findByName ("Joe")) .andReturn (joe) ;
replay (friends) ;
assertThat (friends.findByName ("Joe")) .isEqualTo (joe) ;

}

Besides small differences in syntax, the only disadvantage of EasyMock is that the
additional instruction replay was needed. It tells the framework that the previously
specified expectation should be applied. The rest is almost the same. We're specifying
that friends. findByName should return the joe object, applying that expectation
and, finally, asserting whether the actual result is as expected.

In the EasyMock version, the second test method that we used with Mockito is
the following;:

@Test
public void joeHasSFriends()
List<String> expected =
Arrays.asList ("Audrey", "Peter", "Michael", "Britney", "Paul");
Person joe = createMock (Person.class) ;

[36]

Chapter 2

expect (friends.findByName ("Joe")) .andReturn (joe) ;
expect (joe.getFriends ()) .andReturn (expected) ;
replay (friends) ;

replay (joe) ;

assertThat (friendships.getFriendsList ("Joe"))
.hasSize (5)

.containsOnly ("Audrey", "Peter", "Michael", "Britney",
n Paul n) ;

}

Again, there are almost no differences when compared to Mockito, except that
EasyMock does not have spies. Depending on the context, that might be an
important difference.

Even though both frameworks are similar, there are small details that makes us
choose Mockito as a framework, which will be used throughout this book.

Visit http://easymock.org/ for more information about this
i asserts library.

The complete source code can be found in the FriendshipsMongoEasyMockTest
class in the https://bitbucket.org/vfarcic/tdd-java-ch02-example-junit.
git or https://github.com/TechnologyConversations/tdd-java-ch02-
example-junit.git repositories.

Extra power for mocks

Both projects introduced above do not cover all types of methods or fields.
Depending on the applied modifiers such static or final, a class, method, or field can
be out of range for Mockito or EasyMock. In such as cases, we can use PowerMock
to extend the mocking framework. This way, we can mock objects that can only be
mocked in a tricky manner. However, one should be cautious with PowerMock since
the necessity to use many of the features it provides is usually a sign of poor design.
If you're working on a legacy code, PowerMock might be a good choice. Otherwise,
try to design your code in a way that PowerMock is not needed. We'll show you how
to do that later on.

For more information, visit https://code.google.com/p/powermock/.

[37]

http://easymock.org/
https://bitbucket.org/vfarcic/tdd-java-ch02-example-junit.git
https://bitbucket.org/vfarcic/tdd-java-ch02-example-junit.git
https://github.com/TechnologyConversations/tdd-java-ch02-example-junit.git
https://github.com/TechnologyConversations/tdd-java-ch02-example-junit.git
https://code.google.com/p/powermock/

Tools, Frameworks, and Environments

User interface testing

Even though unit testing can and should cover the major part of the application,
there is still a need to work on functional and acceptance tests. Unlike unit tests, they
provide higher-level verifications, and are usually performed at entry points, and
rely heavily on user interface. At the end, we are creating applications that are, in
most cases, used by humans, so being confident of our application's behavior is very
important. This comfort status can be achieved by testing what the application is
expected to do, from the point of view of real users.

Here, we'll try to provide an overview of functional and acceptance testing through
a user interface. We'll use the Web as an example, even though there are many
other types of user interfaces such as desktop applications, smart phone interfaces,
and so on.

Web testing frameworks

The application classes and data sources have been tested throughout this chapter,
but there is still something missing; the most common user entry point—the Web.
Most enterprise applications such as intranets or corporate sites are accessed using
the browser. For this reason, testing Web provides a significant value, helping us to
make sure that it is doing what it is expected to do.

Furthermore, companies are investing a lot of time performing long and heavy
manual tests every time the application changes. This is a big waste of time since a
lot of those tests can be automatized and executed without supervision, using tools
such as Selenium or Selenide.

Selenium

Selenium is a great tool for Web testing. It uses a browser to run verifications and
it can handle all the popular browsers such as Firefox, Safari, and Chrome. It also
supports headless browsers to test web pages with much greater speed and less
resources consumption.

There is a SeleniumIDE plugin that can be used to create tests by recording actions
performed by the user. Currently, it is only supported by Firefox. Sadly, even though
tests generated this way provide very fast results, they tend to be very brittle and
cause problems in the long run, especially when some part of a page changes. For
this reason, we'll stick with the code written without the help from that plugin.

[38]

Chapter 2

The simplest way to execute Selenium is to run it through JunitRunner.
All Selenium tests start by initializing webDriver, the class used for
communication with browsers:

1. Let's start by adding the Gradle dependency:

dependencies {
testCompile 'org.seleniumhg.selenium:selenium- java:2.45.0'

}

2. Asanexample, we'll create a test that searches Wikipedia. We'll use a Firefox
driver as our browser of choice:

WebDriver driver = new FirefoxDriver () ;

WebDriver is an interface that can be instantiated with one of the many drivers
provided by Selenium:

1. To open an URL, the instruction would be following:
driver.get

("http://en.wikipedia.org/wiki/Main Page") ;

2. Once the page is opened, we can search for an input element by its name and
then type some text:

WebElement query =
driver.findElement (By.name ("search")) ;

query.sendKeys ("Test-driven development") ;

3. Once we type our search query, we should find and click the Go button:

WebElement goButton =
driver.findElement (By.name ("go")) ;
goButton.click() ;

4. Once we reach our destination, it is time to validate that, in this case,
the page title is correct:

assertThat (driver.getTitle (),
startsWith ("Test-driven development")) ;

5. Finally, the driver should be closed once we're finished using it:
driver.quit () ;

That's it. We have a small but valuable test that verifies a single use case. While
there is much more to be said about Selenium, hopefully, this has provided you
with enough information to realize the potential behind it.

[39]

Tools, Frameworks, and Environments

Visit http://www.seleniumhqg.org/ for further information
A and more complex use of WebDriver.

The complete source code can be found in the seleniumTest class in the
https://bitbucket.org/vfarcic/tdd-java-ch02-example-web.git repository.

While Selenium is the most commonly used framework to work with browsers, it is
still very low level and requires a lot of tweaking. Selenide was born out of the idea
that Selenium would be much more useful if there wasa higher level library that

could implement some of the common patterns and solve the often repeated needs.

Selenide

What we have seen about Selenium is very cool. It brings the opportunity to probe
that our application is doing things well, but sometimes it is a bit tricky to configure
and use. Selenide is a project based on Selenium that offers a good syntax for
writing tests and makes them more readable. It hides the usage of WebDriver

and configurations from you, while still maintaining a high level of customization:

1. Like all the other libraries we have used until now, the first step is to add the
Gradle dependency:

dependencies {
testCompile 'com.codeborne:selenide:2.17'

}

2. Let's see how we can write the previous Selenium test using Selenide
instead. The syntax might be familiar to for those who know JQuery
(https://jquery.com/):

public class SelenideTest
@Test

public void wikipediaSearchFeature() throws
InterruptedException {

// Opening Wikipedia page
open("http://en.wikipedia.org/wiki/Main Page") ;

// Searching TDD

$ (By.name ("search")) .setValue ("Test-driven" +
" development") ;

// Clicking search button
$ (By.name ("go")) .click() ;

[40]

http://www.seleniumhq.org/
https://bitbucket.org/vfarcic/tdd-java-ch02-example-web.git
https://jquery.com/

Chapter 2

// Checks

assertThat (title(), startsWith("Test-driven" +
" development")) ;

}

This was a more expressive way to write a test. On top of a more fluent syntax, there
are some things that happen behind this code and would require additional lines

of Selenium. For example, a click action will wait until an element in question is
available, and will fail only if the predefined period of time expired. Selenium, on
the other hand, would fail immediately. In today's world, with many elements being
loaded dynamically through JavaScript, we cannot expect everything to appear at
once. Hence, this Selenide feature proves to be useful and saves us from repetitive
boilerplate code. There are many other benefits Selenide brings to the table. Due to
the benefits that Selenide provides when compared with Selenium, it will be our
framework of choice throughout this book. Furthermore, there is a whole chapter
dedicated to Web testing using this framework. Visit http://selenide.org/ for
more information on ways to use Web drivers in your tests.

No matter whether tests were written with one framework or the another, the effect
is the same. When tests are run, a Firefox browser window will emerge and execute
all steps defined in the test sequentially. Unless a headless browser was chosen as
your driver of choice, you will be able to see what is going on throughout the test.
If something goes wrong, a failure trace is available. On top of that, we can take
browser screenshots at any point. For example, it is a common practice to record
the situation at the time of a failure.

The complete source code can be found in the SelenideTest class in the
https://bitbucket.org/vfarcic/tdd-java-ch02-example-web.git repository.

Armed with a basic knowledge of Web testing frameworks, it is time to take a short
look at BDD.

The behavior-driven development

Behavior-driven development (BDD) is an agile process designed to keep the
focus on a stakeholder value throughout the whole project. The premise of BDD

is that the requirement has to be written in a way that everyone —be they business
representative, analyst, developer, tester, manager, and so on—understands it. The
key is to have a unique set of artefacts that are understood and used by everyone—a
collection of user stories. Stories are written by the whole team and used as both
requirements and executable test cases. It is a way to perform TDD with a clarity
that cannot be accomplished with unit testing. It is a way to describe and test
functionality in (almost) natural language and make it runnable and repeatable.

[41]

http://selenide.org/
https://bitbucket.org/vfarcic/tdd-java-ch02-example-web.git

Tools, Frameworks, and Environments

A story is composed of scenarios. Each scenario represents a concise behavioral
use case and is written in natural language using steps. Steps are a sequence of the
preconditions, events, and outcomes of a scenario. Each step must start with the
words Given, When, or Then. Given is for preconditions, When is for actions,

and Then is for performing validations.

This was only a brief introduction. There is a whole chapter, Chapter 7,
BDD - Working Together with the Whole Team, dedicated to this topic. Now,
it is time to introduce JBehave and Cucumber as two of the many available
frameworks for writing and executing stories.

JBehave

JBehave is a Java BDD framework used for writing acceptance tests that are able to
be executed and automated. The steps used in stories are bound to Java code through
several annotations provided by the framework:

1. First of all, add JBehave to Gradle dependencies:

dependencies {

testCompile 'org.jbehave:jbehave-core:3.9.5"

2. Let's go through a few example steps:
@Given ("I go to Wikipedia homepage")
public void goToWikiPage ()
open("http://en.wikipedia.org/wiki/Main Page") ;

}

3. This is the given type of step. It represents a precondition that needs to be
fulfilled for some actions to be performed successfully. In this particular case,
it will open a Wikipedia page. Now that we have our precondition specified,
it is time to define some actions:

@When ("I enter the value $value on a field named " +
"SfieldName")
public void enterValueOnFieldByName (String value,
String fieldName) {
$ (By.name (fieldName)) . setValue (value) ;
}
@When ("I click the button S$buttonName")
public void clickButonByName (String buttonName) {
$ (By .name (buttonName)) .click () ;

}

[42]

Chapter 2

4. Asyou can see, actions are defined with the When annotation. In our case,
we can use those steps to set some value to a field or click on a specific
button. Once actions are performed, we can deal with validations. Note
that steps can be more flexible by introducing parameters:

@Then ("the page title contains S$title")
public void pageTitlels (String title) {
assertThat (title (), containsString(title));

}

Validations are declared using the Then annotation. In this example, we are
validating the page title as expected.

These steps can be found in the Wwebsteps class in the https://bitbucket.org/
vfarcic/tdd—java—chOZ—example—web.gitreposﬁory.

Once we have defined our steps, it is time to use them. The following story combines
those steps in order to validate a desired behavior:

Scenario: TDD search on wikipedia

It starts with naming the scenario. The name should be as concise as possible, but
enough to identify the user case unequivocally; it is for informative purposes only:

Given I go to Wikipedia homepage

When I enter the value Test-driven development on a field named search
When I click the button go

Then the page title contains Test-driven development

As you can see, we are using the same steps text that we defined earlier. The code
related to those steps will be executed in a sequential order. If any of them, the
execution is halted and the scenario itself is considered failed.

Even though we defined our steps ahead of stories, it can be done the other way
around with a story being defined first and the steps following. In that case, the
status of a scenario would be pending, meaning that the required steps are missing.

This story can be found in the wikipediaSearch.story file in the https://
bitbucket.org/vfarcic/tdd-java-ch02-example-web.git repository.

To run this story, execute the following;:

$> gradle testJBehave

[43]

https://bitbucket.org/vfarcic/tdd-java-ch02-example-web.git
https://bitbucket.org/vfarcic/tdd-java-ch02-example-web.git
https://bitbucket.org/vfarcic/tdd-java-ch02-example-web.git
https://bitbucket.org/vfarcic/tdd-java-ch02-example-web.git

Tools, Frameworks, and Environments

While the story is running, we can see that actions are taking place in the browser.
Once it is finished, a report with the results of an execution is generated. It can be
found in build/reports/jbehave.

bdd/jbehave/stories/wikipediaSearch.story

Scenario: Wikipedia search

Given | go to Wikipedia homepage

When | enter the value Test-driven development on a field named search
When | click the button go

Then the page title contains Test-driven development

JBehave story execution report

For brevity, we excluded the build.gradle code to run JBehave stories.
The completed source code can be found in the https://bitbucket.org/vEarcic/
tdd-java-ch02-example-web.git repository.

For further information on JBehave and its benefits,
e visit http://jbehave.org/.

Cucumber

Cucumber was originally a Ruby BDD framework. These days it supports several
languages including Java. It provides functionality that is very similar to JBehave.

Let's see the same examples written in Cucumber.

The same as any other dependency we have used until now, Cucumber needs to be
added to build.gradle before we can start using it:

dependencies {

testCompile 'info.cukes:cucumber-java:1.2.2'
testCompile 'info.cukes:cucumber-junit:1.2.2"'

[44]

https://bitbucket.org/vfarcic/tdd-java-ch02-example-web.git
https://bitbucket.org/vfarcic/tdd-java-ch02-example-web.git
http://jbehave.org/

Chapter 2

We will create the same steps as we did with JBehave, using the Cucumber way:

@Given ("I go to Wikipedia homepages$")
public void goToWikiPage() {
open("http://en.wikipedia.org/wiki/Main Page") ;

@When ("*I enter the value (.*) on a field named (.*)s")

public void enterValueOnFieldByName (String value,
String fieldName) {

S (By.name (fieldName)) .setValue (value) ;

@When ("*I click the button (.*)$")
public void clickButonByName (String buttonName) {
$ (By .name (buttonName)) .click() ;

@Then ("“the page title contains (.*)$")
public void pageTitlels(String title) {
assertThat (title(), containsString(title)) ;

}

The only noticeable difference between these two frameworks is the way Cucumber
defines steps text. It uses regular expressions to match variables types, unlike
JBehave that deduces them from a method signature.

The steps code can be found in the WwebSteps class in the https://bitbucket.org/
vfarcic/tdd—java—chOZ—example—web.gitreposﬁory:

Let's see how the story looks when written using the Cucumber syntax:

Feature: Wikipedia Search

Scenario: TDD search on wikipedia
Given I go to Wikipedia homepage
When I enter the value Test-driven development on a field named search
When I click the button go
Then the page title contains Test-driven development

Note that there are almost no differences. This story can be found in the
wikipediaSearch. feature file in the https://bitbucket .org/vfarcic/tdd-
java-ch02-example-web.git repository.

[45]

https://bitbucket.org/vfarcic/tdd-java-ch02-example-web.git
https://bitbucket.org/vfarcic/tdd-java-ch02-example-web.git
https://bitbucket.org/vfarcic/tdd-java-ch02-example-web.git
https://bitbucket.org/vfarcic/tdd-java-ch02-example-web.git

Tools, Frameworks, and Environments

As you might have guessed, to run a Cucumber story, all you need to do is run the
following Gradle task:

$> gradle testCucumber

The result reports are located in the build/reports/cucumber-report directory.
This is the report for the above story.

¥ Feature: Wikipedia Search
¥ Scenario: TDD search on wikipedia
Given I go to Wikipedia homepage
When I enter the value Test-driven development on a field named search
When I click the button go
Then the page title contains Test-driven development

Cucumber story execution report

The full code example can be found in the https://bitbucket.org/vfarcic/tdd-
java-ch02-example-web.git repository.

For a list of languages supported by Cucumber or for any
S other details, visit https://cukes.info/.

Since both JBehave and Cucumber offer a similar set of features, we decided to use
JBehave throughout the rest of this book. There is a whole chapter dedicated to BDD
and JBehave.

Summary

In this chapter, we took a break from TDD and introduced many tools and
frameworks that will be used for code demonstrations in the rest of the chapters.
We set up everything from version control, virtual machines, building tools, and
IDE, until we reached frameworks that are commonly used as today's testing tools.

We are big proponents of the open source movement. Following this spirit, we made
a special effort to select free tools and frameworks in every category.

Now that we have set up all the tools that we will need, it is time to go deeper into
TDD, starting with the red-green-refactor procedure —TDD's cornerstone.

[46]

https://bitbucket.org/vfarcic/tdd-java-ch02-example-web.git
https://bitbucket.org/vfarcic/tdd-java-ch02-example-web.git
https://cukes.info/

Red-Green-Refactor — from
Failure through Success until
Perfection

" Knowing is not enough; we must apply. Willing is not enough; we must do."
- Bruce Lee

The red-green-refactor technique is the basis of TDD. It is a game of ping pong in
which we are switching between tests and implementation code at great speed.
We'll fail, then we'll succeed and, finally, we'll improve.

We'll develop a Tic-Tac-Toe game by going through each requirement one at a time.
We'll write a test and see if it fails. Then, we'll write a code that implements that
test, run all the tests, and see them succeed. Finally, we'll refactor the code and try to
make it better. This process will be repeated many times until all the requirements
are successfully implemented.

We'll start by setting up the environment with Gradle and JUnit. Then, we'll go a
bit deeper into the red-green-refactor process. Once we're ready with the setup and
theory, we'll go through the high-level requirements of the application.

With everything set, we'll dive right into the code —one requirement at a time. Once
everything is done, we'll take a look at the code coverage and decide whether it is
acceptable or more tests need to be added.

[47]

Red-Green-Refactor - from Failure through Success until Perfection

The following topics will be covered in this chapter:

* Setting up the environment with Gradle and JUnit
* The red-green-refactor process

* Tic-Tac-Toe requirements

* Developing Tic-Tac-Toe

* Code coverage

¢ More exercises

Setting up the environment with Gradle
and JUnit

You are probably familiar with the setup of Java projects. However, you might not
have worked with Intelli] IDEA before or you might have used Maven instead of
Gradle. In order to make sure that you can follow the exercise, we'll quickly go
through the setup.

Setting up Gradle/Java project in IntelliJ IDEA

The main purpose of this book is to teach TDD, so we will not go into detail about
Gradle and Intelli] IDEA. Both are used as an example. All exercises in this book can
be done with different choices for IDE and build tools. You can, for example, use
Maven and Eclipse instead. For most, it might be easier to follow the same guidelines
as those presented throughout the book, but the choice is yours.

The following steps will create a new Gradle project in Intelli] IDEA:

1. Open Intelli] IDEA. Click on Create New Project and select Gradle from the
left-hand side menu. Then, click on Next.

2. If you are using IDEA 14 and higher, you will be asked for an Artifact ID.
Type tdd-java-ch03-tic-tac-toe and click on Next twice. Type tdd-java-ch03-
tic-tac-toe as the project name. Then, click on the Finish button.

[48]

Chapter 3

0 New Project

[1 Use auto-import

[Create directories for empty content roots automatically

© Use default gradle wrapper (recommended)

(O Use customizable gradle wrapper @ Gredle wrapper customization in seript, works with Gradle 1.7 or later
(O Use local gradle distribution

Gradle home: ‘ ‘D

Gradle JVM: ‘ 2 1.8 (java version "1.8.0_45", path: /usr/libfjvm/java-8-oracle) n

Previous | m Cancel | Help ‘

In the New Project dialog, we can observe that IDEA has already created the build.
gradle file. Open it and you'll see that it already contains the JUnit dependency.
Since this is our framework of choice in this chapter, there is no additional
configuration that we should do. By default, build.gradle is set to use Java 1.5

as a source compatibility setting. You can change it to any version you prefer. The
examples in this chapter will not use any of the Java features that came after version
5, but that doesn't mean that you cannot solve the exercise using, for example, JDK 8.

Our build.gradle file should look like the following:
apply plugin: 'java'
version = '1.0'
repositories ({

mavenCentral ()~
!

dependencies {
testCompile group: 'junit', name: 'junit',
version: '4.11'

[49]

Red-Green-Refactor - from Failure through Success until Perfection

Now, all that's left is to create packages that we'll use for tests and the
implementation. From the Project dialog, right click to bring the context menu and
select New | Directory. Type src/test/java/com/packtpublishing/tddjava/
cho3tictactoe and click on the OK button to create the tests package. Repeat
the same steps with the src/main/java/com/packtpublishing/tddjava/
cho3tictactoe directory to create the implementation package.

Finally, we need to the make test and implementation classes. Create the
TicTacToeSpec class inside the com.packtpublishing.tddjava.ch03tictactoe
package in the src/test/java directory. This class will contain all our tests.
Repeat the same for the TicTacToe class in the src/main/java directory.

Your Project structure should be similar to the one presented in the
screenshot below:

A
P
b

[Project - 2]
tdd-java-ch03-tic-tac-toe
.gradle
idea
build
src
main
java
com
packtpublishing
tddjava
chi3tictactoe
@ TicTacToe.java
Lest
java
com
packtpublishing
tddjava
cho3tictactoe
@ TicTacToeSpec.
4 gitignore
& build.gradle
& settings.gradle
I tdd-java-chO3-tic-tac-toe.iml
il External Libraries

The source code can be found in the 00-setup branch of the tdd-java-ch03-
tic-tac-toe Git repository at https://bitbucket.org/vfarcic/tdd-java-ch03-
tic-tac-toe/branch/00-setup.

[50]

https://bitbucket.org/vfarcic/tdd-java-ch03-tic-tac-toe/branch/00-setup
https://bitbucket.org/vfarcic/tdd-java-ch03-tic-tac-toe/branch/00-setup

Chapter 3

Always separate tests from the implementation code.

The benefits are as follows: this avoids accidentally packaging tests
together with production binaries; many build tools expect tests to be in a
certain source directory.

implementation code should be located in src/main/java and the

test code in src/test/java. In bigger projects, the number of source
directories can increase, but the separation between implementation and
tests should remain.

~Q A common practice is to have at least two source directories. The

Build tools such as Maven and Gradle expect source directories'
separation, as well as naming conventions.

That's it. We're set to start working on our Tic-Tac-Toe application using JUnit as

the testing framework of choice and Gradle for compilation, dependencies, testing,
and other tasks. In Chapter 1, Why Should I Care for Test-driven Development?, you first
encountered the red-green-refactor procedure. Since it is the cornerstone of TDD and
is the main objective of the exercise in this chapter, it might be a good idea to go into
a bit more detail before we start the development.

The red-green-refactor process

The red-green-refactor process is the most important part of TDD. It is the main
pillar, without which no other aspect of TDD will work.

The name comes from the states our code is within the cycle. When in red state,

code does not work; when in the green state, everything is working as expected, but
not necessarily in the best possible way. Refactor is the phase when we know that
features are well covered with tests and thus gives us the confidence to change it and
make it better.

Write a test

Every new feature starts with a test. The main objective of this test is to focus

on requirements and code design before writing the code. A test is a form of an
executable documentation and can be used later on to get an understanding of what
the code does or what are the intentions behind it.

[51]

Red-Green-Refactor - from Failure through Success until Perfection

At this point, we are in the red state since the execution of tests fails. There is a
discrepancy between what tests expect from the code and what the implementation
code actually does. To be more specific, there is no code that fulfils the expectation
of the last test; we did not write it yet. It is possible that at this stage all the tests are
actually passing, but that's the sign of a problem.

Run all the tests and confirm that the last one
is failing

Confirming that the last test is failing, confirms that the test would not, mistakenly,
pass without the introduction of a new code. If the test is passing, then the feature
already exists or the test is producing a false positive. If that's the case and the test

actually always passes independently of implementation, it is, in itself, worthless
and should be removed.

A test must not only fail, but must fail for the expected reason.

In this phase, we are still in the red stage. Tests were run and the last one failed.

Write the implementation code

The purpose of this phase is to write code that will make the last test pass. Do not try
to make it perfect, nor try to spend too much time with it. If it's not well written or is
not optimum, that is still okay. It'll become better later on. What we're really trying
to do is to create a safety net in the form of tests that are confirmed to pass. Do not
try to introduce any functionality that was not described in the last test. To do that,
we are required to go back to the first step and start with a new test. However, we
should not write new tests until all the existing ones are passing.

In this phase, we are still in the red stage. While the code that was written would
probably pass all the tests, that assumption is not yet confirmed.

Run all the tests

It is very important that all the tests are run and not only the last test that

was written. The code that we just wrote might have made the last test pass

while breaking something else. Running all the tests confirms not only that the
implementation of the last test is correct, but also that it did not break the integrity
of the application as a whole. This slow execution of the whole test suite is a sign of
poorly written tests or having too much coupling in the code. Coupling prevents the
easy isolation of external dependencies; thus, increasing the time required for the
execution of tests.

[52]

Chapter 3

In this phase, we are in the green state. All the tests are passing and the application
behaves as we expect it to behave.

Refactor

While all the previous steps are mandatory, this one is optional. Even though

refactoring is rarely done at the end of each cycle, sooner or later it will be desired,
if not mandatory. Not every implementation of a test requires refactoring. There is
no rule that tells you when to refactor and when not to. The best time is as soon as
one gets a feeling that the code can be rewritten in a better or more optimum way.

What constitutes a candidate for refactoring? This is a hard question to answer since
it can have many answers: it's hard to understand code, the illogical location of a
piece of code, duplication, names that do not clearly state a purpose, long methods,
classes that do too many things, and so on. The list can go on and on. No matter
what the reasons are, the most important rule is that refactoring cannot change any
existing functionality.

Repeat

Once all the steps (with refactor being optional) are finished, we repeat them. At
first glance, the whole process might seem too long or too complicated, but it is not.
Experienced TDD practitioners write one to ten lines of code before switching to the
next step. The whole cycle should last anything between a couple of seconds and no
more than a few minutes. If it takes more than that, the scope of a test is too big and
should be split into smaller chunks. Be fast, fail fast, correct, and repeat.

With this knowledge in mind, let us go through the requirements of the application
we're about to develop using the red-green-refactor process.

The Tic-Tac-Toe game requirements

Tic-Tac-Toe is most often played by young children. The rules of the game are
fairly simple.

Tic-tac-toe is a paper-and-pencil game for two players, X and O,
who take turns marking the spaces in a 3x3 grid. The player who
succeeds in placing three respective marks in a horizontal, vertical,
L or diagonal row, wins the game.

For more information about the game, please visit Wikipedia
(http://en.wikipedia.org/wiki/Tic-tac-toe).

[53]

http://en.wikipedia.org/wiki/Tic-tac-toe

Red-Green-Refactor - from Failure through Success until Perfection

More detailed requirements will be presented later on.

The exercise consists of a creation of a single test that corresponds to one of the
requirements. The test is followed by the code that fulfills the expectations of that
test. Finally, if needed, code is refactored. The same procedure should be repeated
with more tests related to the same requirement. Once we're satisfied with tests and
the implementation of that requirement, we'll move to the next one until they're

all done.

In real-world situations, you wouldn't get such detailed requirements, but dive right
into tests that would act as both requirements and validation. However, until you get
comfortable with TDD, we'll have to define requirements in separation from tests.

Even though all the tests and the implementation are provided below, try to read
only one requirement at a time and write test(s) and implementation code yourself.
Once done, compare your solution with the one from this book and move to the next
requirement. There is no one and only one solution —yours might be better than the
ones presented here.

Developing Tic-Tac-Toe

Are you ready to code? Let's start with the first requirement.

Requirement 1

We should start by defining the boundaries and what constitutes an invalid
placement of a piece.

[% A piece can be placed on any empty space of a 3x3 board.]

We can split this requirement into three tests:
* When a piece is placed anywhere outside the X axis, then RuntimeException
is thrown.

* When a piece is placed anywhere outside the Y axis, then RuntimeException
is thrown.

* When a piece is placed on an occupied space, then RuntimeException is
thrown.

[54]

Chapter 3

As you can see, the tests related to this first requirement are all about validations of
the input argument. There is nothing in the requirements that says what should be
done with those pieces.

Before we proceed with the first test, a brief explanation of how to test exceptions
with JUnit is in order.

Starting from the release 4.7, JUnit introduced a feature called Rule. It can be used
to do many different things (more information can be found at https://github.
com/junit-team/junit/wiki/Rules), but in our case we're interested in the
ExpectedException rule:

public class FooTest {
@Rule
public ExpectedException exception =
ExpectedException.none () ;

@Test

public void whenDoFooThenThrowRuntimeException () {
Foo foo = new Foo() ;
exception.expect (RuntimeException.class) ;
foo.doFoo () ;

}
}

In this example, we defined that the ExpectedException is a rule. Later on, in the
doFooThrowsRuntimeException test, we're specifying that we are expecting the
RuntimeException to be thrown after the Foo class is instantiated. If it is thrown
before, the test will fail. If the exception is thrown after, the test is successful.

@Before can be used to annotate a method that should be run before each test. It is a
very useful feature with which we can, for example, instantiate a class used in tests
or perform some other types of actions that should be run before each test:

private Foo foo;

@Before
public final void before() {
foo = new Fool() ;

}

In this example, the Foo class will be instantiated before each test. This way, we can
avoid having repetitive code that would instantiate Foo inside each test method.

[55]

https://github.com/junit-team/junit/wiki/Rules
https://github.com/junit-team/junit/wiki/Rules

Red-Green-Refactor - from Failure through Success until Perfection

Each test should be annotated with @Test. This tells JunitRunner which methods
constitute tests. Each of them will be run in a random order so make sure that each
test is self-sufficient and does not depend on the state that might be created by
other tests:

@Test
public void whenSomethingThenResultIsSomethingElse()
// This is a test method

}

With this knowledge, you should be able to write your first test and follow it with
the implementation. Once done, compare it with the solution provided below.

Use descriptive names for test methods
One of the benefits is that it helps to understand the objective of tests.

Using method names that describe tests is beneficial when trying to figure
out why some tests failed or when the coverage should be increased with

more tests. It should be clear what conditions are set before the test, what

actions are performed, and what the expected outcome is.

M There are many different ways to name test methods. My preferred
method is to name them using the given/when/then syntax used
Q in BDD scenarios. Given describes (pre)conditions, When describes
actions, and Then describes the expected outcome. If a test does not
have preconditions (usually set using the @Before and @BeforeClass
annotations), Given can be skipped.

Do NOT rely only on comments to provide information about test
objectives. Comments do not appear when tests are executed from
your favorite IDE, nor do they appear in reports generated by the CI or
build tools.

Besides writing tests, you'll need to run them as well. Since we are using Gradle,
they can be run from the command prompt:

$ gradle test

Intelli] IDEA provides a very good Gradle tasks model that can be reached by
clicking on View | Tool Windows | Gradle. It lists all the tasks that can be run
with Gradle (test being one of them).

The choice is yours —you can run tests in any way you see fit, as long as you run all
of them.

[56]

Chapter 3

Test

We should start by checking whether a piece is placed within the boundaries of the

3x3 board:

package com.packtpublishing.tddjava.chO3tictactoe;

import
import
import
import

public

org.junit.Before;

org.junit.Rule;

org.junit.Test;
org.junit.rules.ExpectedException;

class TicTacToeSpec {

@Rule

public ExpectedException exception =
ExpectedException.none () ;

private TicTacToe ticTacToe;

@Before
public final void before() {

}

ticTacToe = new TicTacToe () ;

@Test
public void whenXOutsideBoardThenRuntimeException ()

{

exception.expect (RuntimeException.class) ;
ticTacToe.play (5, 2);

When a piece is placed anywhere outside the X axis, then
i

RuntimeException is thrown.

In this test, we are defining that Runt imeException is expected when the
ticTacToe.play (5, 2) method isinvoked. It's a very short and easy test, and
making it pass should be easy as well. All we have to do is create the play method
and make sure that it throws Runt imeException when X argument is smaller than

1 or bigger than 3 (the board is 3x3). You should run this test three times. The first
time, it should fail because the play method doesn't exist. Once it is added, it should
fail because Runt imeException is not thrown. The third time, it should be successful
because the code that corresponds with this test is fully implemented.

[57]

Red-Green-Refactor - from Failure through Success until Perfection

Implementation

Now that we have a clear definition of when an Exception should be thrown,
the implementation should be straightforward:

package com.packtpublishing.tddjava.chO3tictactoe;
public class TicTacToe {

public void play(int x, int y) {
if (x <1 || x> 3) {
throw
new RuntimeException ("X is outside board") ;

}

As you can see, this code does not contain anything else, but the bare minimum
required for the test to pass.

_ Some TDD practitioners tend to take minimum as a literal meaning.
% They would have the play method with only the throw new
Ao RuntimeException () ; line. I tend to translate minimum to as little
as possible within reason.

We're not adding numbers, nor are we returning anything. It's all about doing
small changes very fast (remember the game of ping pong?). For now, we're doing
red-green steps. There's not much we can do to improve this code so we're skipping
the refactoring.

Let's move onto the next test.

Test

This test is almost the same as the previous one. This time we should validate
the Y axis:

@Test

public void whenYOutsideBoardThenRuntimeException()
exception.expect (RuntimeException.class) ;
ticTacToe.play (2, 5);

[58]

Chapter 3

RuntimeException is thrown.

[When a piece is placed anywhere outside the Y axis, then]
VS

Implementation

The implementation of this specification is almost the same as the previous one.
All we have to do is throw an Exception if Y does not fall within the defined range:

public void play(int x, int y) {

if (x <1 |] x> 3) {

throw

new RuntimeException ("X is outside board") ;
} else if (y < 1 || v > 3) {

throw

new RuntimeException ("X is outside board") ;

}

In order for the last test to pass, we had to add the else clause that checks
whether Y is inside the board.

Let's do the last test for this requirement.

Test

Now that we know that pieces are placed within the board's boundaries, we should
make sure that they can be placed only on unoccupied spaces:

@Test

public void whenOccupiedThenRuntimeException()
ticTacToe.play (2, 1);
exception.expect (RuntimeException.class) ;
ticTacToe.play (2, 1);

RuntimeException is thrown.

[When a piece is placed on an occupied space, then]
Ko

That's it; this was our last test. Once the implementation is finished, we can consider
the first requirement as done.

[59]

Red-Green-Refactor - from Failure through Success until Perfection

Implementation

To implement the last test, we should store the location of the placed pieces in
an array. Every time a new piece is placed, we should verify that the place is not
occupied, or else throw an exception:

private Character[][] board = {{'\o', '\o', '\o'},
{*\or, '\o', \or}, {'\o', '"\o', '\o'}};

public void play(int x, int y) {

if (x <1 || x> 3) {

throw

new RuntimeException ("X is outside board") ;
} else if (y <1 || v > 3) {

throw

new RuntimeException("Y is outside board") ;

}

if (board[x - 1]1[y - 1] != '\0o") {

throw

new RuntimeException ("Box is occupied") ;
} else {

board([x - 1] [y - 1] = 'X';

}
}

We're checking whether a place that was played is occupied and, if it is not, we're
changing the array entry value from empty (\0) to occupied (X). Keep in mind that
we're still not storing who played (X or O).

Refactoring

While the code that we did by now fulfills the requirements set by the tests, it
looks a bit confusing. If someone read it, it would not be clear as to what the play
method does. We should refactor it by moving the code into separate methods.
The refactored code will look like the following:

public void play(int x, int y) {
checkAxis (x) ;
checkaxis (y) ;
setBox (x, Vy);

}

private void checkAxis (int axis) {
if (axis < 1 || axis > 3) {
throw
new RuntimeException ("X is outside board") ;

[60]

Chapter 3

private void setBox(int x, int y) {
if (board[x - 11[y - 11 != '\0o') {
throw
new RuntimeException ("Box is occupied") ;
} else {
board[x - 1] [y - 1] = 'X';
}
}

With this refactoring, we did not change the functionality of the play method.

It behaves exactly the same as it behaved before, but the new code is a bit more
readable. Since we had tests that covered all the existing functionality, there was
no fear that we might do something wrong. As long as all tests are passing all the
time and refactoring did not introduce any new behavior, it is safe to do changes
to the code.

The source code can be found in the 01-exceptions branch of the tdd-java-cho3-
tic-tac-toe Git repository at https://bitbucket.org/vfarcic/tdd-java-cho03-
tic-tac-toe/branch/0l1-exceptions.

Requirement 2

Now it's time to work on the specification of which player is about to play his turn.

[There should be a way to find out which player should play next.]

We can split this requirement into three tests:

* The first turn should be played by played x
* If the last turn was played by X, then the next turn should be played by o
* If the last turn was played by 0, then the next turn should be played by x

Until this moment, we haven't used any of the JUnit's asserts. To use them, we need
to import the static methods from the org. junit.Assert class:

import static org.junit.Assert.*;

In their essence, methods inside the Assert class are very simple. Most of them start
with assert. For example, assertEquals compares two objects: assertNotEquals
verifies that two objects are not the same and assertArrayEquals verifies that two
arrays are the same. Each of those asserts has many overloaded variations so that
almost any type of Java objects can be used.

[61]

https://bitbucket.org/vfarcic/tdd-java-ch03-tic-tac-toe/branch/01-exceptions
https://bitbucket.org/vfarcic/tdd-java-ch03-tic-tac-toe/branch/01-exceptions

Red-Green-Refactor - from Failure through Success until Perfection

In our case, we'll need to compare two characters. The first is the one we're expecting
and the second one is the actual character retrieved from the nextPlayer method.

Now it's time to write those tests and the implementation.

Write the test before writing the implementation code

The benefits of doing this are as follows: it ensures that testable
code is written and ensures that every line of code gets tests
\l written for it.

X By writing or modifying the test first, the developer is focused
on requirements before starting to work on a code. This is
the main difference when compared to writing tests after the
implementation is done. An additional benefit is that with tests
first, we are avoiding the danger that the tests work as quality
checking instead of quality assurance.

Test

The player X has the first turn:

@Test
public void givenFirstTurnWhenNextPlayerThenX () {
assertEquals ('X', ticTacToe.nextPlayer());

}

[The first turn should be played by player X.]

This test should be self-explanatory. We are expecting the next Player method

to return x. If you try to run this, you'll see that the code does not even compile.
That's because the nextPlayer method does not even exist. Our job is to write the
nextPlayer method and make sure that it returns the correct value.

Implementation

There's no real need to check whether it really is the player's first turn or not. As it
stands, this test can be fulfilled by always returning x. Later tests will force us to
refine this code:

public char nextPlayer() {
return 'X';

}

[62]

Chapter 3

Test

Now, we should make sure that players are changing. After X is finished, it should be
0's turn, then again X, and so on:

@Test
public void givenLastTurnWasXWhenNextPlayerThenoO ()
{

ticTacToe.play(1l, 1);

assertEquals ('0O', ticTacToe.nextPlayer()) ;

}

If the last turn was played by X, then the next turn should
e— be played by O.

Implementation

In order to track who should play next, we need to store who played last:

private char lastPlayer = '\0';

public void play(int x, int y) {
checkAxis (x) ;
checkAxis (y) ;
setBox (x, V) ;

lastPlayer nextPlayer () ;

}

public char nextPlayer() {
if (lastPlayer == 'X') {
return 'QO';
!

return 'X';

}

You are probably starting to get the hang of it. Tests are small and easy to write.
With enough experience, it should take a minute, if not seconds, to write a test
and as much time or less to write the implementation.

Test

Finally, we can check whether x's turn comes after o played.

If the last turn was played by O, then the next turn should
= be played by X.

[63]

Red-Green-Refactor - from Failure through Success until Perfection

There's nothing to do to fulfill this test and, therefore, the test is useless and should
be discarded. If you write this test, you'll discover that it is a false positive; it would
pass without changing the implementation — try it out. Write this test and if it is
successful without writing any implementation code, discard it.

The source code can be found in the 02-next -player branch of the tdd-java-cho3-
tic-tac-toe Git repository at https://bitbucket.org/vfarcic/tdd-java-cho03-
tic-tac-toe/branch/02-next-player.

Requirement 3

It's time to work on winning the rules of the game. This is the part where, when
compared with the previous code, work becomes a bit more tedious. We should
check all the possible winning combinations and, if one of them is fulfilled, declare
a winner.

A player wins by being the first to connect a line of friendly
s pieces from one side or corner of the board to the other.

To check whether a line of friendly pieces is connected, we should verify horizontal,
vertical, and diagonal lines.

Test

Let's start by defining the default response of the play method:

@Test
public void whenPlayThenNoWinner ()

{

String actual = ticTacToe.play(1l,1);
assertEquals ("No winner", actual);

}

[If no winning condition is fulfilled, then there is no winner.]

[64]

https://bitbucket.org/vfarcic/tdd-java-ch03-tic-tac-toe/branch/02-next-player
https://bitbucket.org/vfarcic/tdd-java-ch03-tic-tac-toe/branch/02-next-player

Chapter 3

Implementation

The default return values are always easiest to implement and this one is
no exception:

public String play(int x, int y) {
checkAxis (x) ;
checkAxis (y) ;
setBox (x, VY);
lastPlayer = nextPlayer();
return "No winner";

Test

Now that we have declared what the default response is (no winner), it's time to start
working on different winning conditions:

@Test
public void whenPlayAndWholeHorizontalLineThenWinner ()
ticTacToe.play (1, 1); // X
ticTacToe.play (1, 2); // O
ticTacToe.play (2, 1); // X
(2, 2); // ©
String actual = ticTacToe.play(3, 1); // X

ticTacToe.play

assertEquals ("X is the winner", actual);

}

The player wins when the whole horizontal line is occupied by
" his pieces.

Implementation

To fulfill this test, we need to check whether any horizontal line is filled by the same
mark as the current player. Until this moment, we didn't care what was put to the
board array. Now, we need to introduce not only which board boxes are empty,

but also which player played them:

public String play(int x, int y) {
checkAxis (x) ;
checkAxis (y) ;
lastPlayer = nextPlayer() ;

[65]

Red-Green-Refactor - from Failure through Success until Perfection

setBox (x, y, lastPlayer);
for (int index = 0; index < 3; index++) {
if (board[0] [index] == lastPlayer &&
board[1l] [index] == lastPlayer &&
board[2] [index] == lastPlayer) {
return lastPlayer + " is the winner";

}

return "No winner";

}

private void setBox(int x, int y, char lastPlayer)

if (board[x - 11[y - 11 != '\0o') {

throw

new RuntimeException ("Box is occupied") ;
} else {

board[x - 1] [y - 1] = lastPlayer;

}

Refactoring

The preceding code satisfies the tests, but is not necessarily the final version. It
served its purpose of getting code coverage as fast as possible. Now, since we have
tests that guarantee the integrity of the expected behavior, we can refactor the code:

private static final int SIZE = 3;
public String play(int x, int y) {

checkAxis (x) ;
checkAxis (y) ;
lastPlayer = nextPlayer () ;
setBox (x, y, lastPlayer);
if (isWin()) {
return lastPlayer + " is the winner";

}

return "No winner";

}

private boolean isWin()
for (int 1 = 0; i < SIZE; i++) {
if (board[0] [i] + board[1l] [i] + board[2] [i]
== (lastPlayer * SIZE)) ({
return true;
}
}

return false;

[66]

Chapter 3

This refactored solution looks better. The play method keeps being short and easy
to understand. Winning logic is moved to a separate method. Not only have we
kept the play method's purpose clear, but this separation also allows us to grow
the winning condition's code in separation from the rest.

Test

We should also check whether there is a win by filling the vertical line:

@Test
public void whenPlayAndWholeVerticallLineThenWinner () {

}

ticTacToe.play (2, 1); // X

ticTacToe.play (1, 1); // O
ticTacToe.play (3, 1); // X
ticTacToe.play (1, 2); // O
ticTacToe.play (2, 2); // X

String actual = ticTacToe.play(l, 3); // O
assertEquals ("0 is the winner", actual);

[The player wins when the whole vertical line is occupied by his pieces.]

Implementation

This implementation should be similar to the previous one. We already have
horizontal verification and now we need to do the same vertically:

private boolean isWin() {

int playerTotal = lastPlayer * 3;
for (int i = 0; i < SIZE; i++)

if (board[0] [i] + board[1l] [i] + board([2] [i]
== playerTotal) ({

return true;
} else if (playerTotal ==)

return true;

return false;

}

[67]

Red-Green-Refactor - from Failure through Success until Perfection

Test

Now that horizontal and vertical lines are covered, we should move our attention to
diagonal combinations:

@Test

public void whenPlayAndTopBottomDiagonallLineThenWinner ()
ticTacToe.play (1, 1); // X
ticTacToe.play (1, 2); // O
ticTacToe.play (2, 2); // X

(1, 3); // 0

String actual = ticTacToe.play(3, 3); // O

ticTacToe.play

assertEquals ("X is the winner", actual);

The player wins when the whole diagonal line from the top-left
e— to bottom-right is occupied by his pieces.

Implementation

Since there is only one line that can constitute with a requirement, we can check it
directly without any loops:

private boolean isWin() {
int playerTotal = lastPlayer * 3;
for (int i = 0; i < SIZE; i++)
if (board[0] [1] + board[1l] [i] + board[2] [i]
playerTotal)
return true;
} else if (playerTotal ==)

return true;

if ((board[0] [0] + board[1l] [1] + board[2] [2])
== playerTotal) {

return true;

}

return false;

[68]

Chapter 3

Test

Finally, there is the last possible winning condition to tackle:

@Test

public void whenPlayAndBottomTopDiagonalLineThenWinner () {
ticTacToe.play (1, 3); // X
ticTacToe.play (1, 1); // O
ticTacToe.play (2, 2); // X
ticTacToe.play (1, 2); // O
String actual = ticTacToe.play (3, 1); // O
assertEquals ("X is the winner", actual);

The player wins when the whole diagonal line from the
= bottom-left to top-right is occupied by his pieces

Implementation

The implementation of this test should be almost the same as the previous one:

private boolean isWin() {
int playerTotal = lastPlayer * 3;
for (int i = 0; i < SIZE; i++) {
if (board[0] [1] + board[1l] [i] + board[2] [i]
playerTotal)
return true;
} else if (playerTotal ==)

return true;

}
if ((board[0] [0] + board[1l] [1] + board[2] [2])
== playerTotal) ({
return true;
} else if (playerTotal == (board[0][2] + board[1] [1] +
board[2] [0])) {
return true;

}

return false;

[69]

Red-Green-Refactor - from Failure through Success until Perfection

Refactoring

The way we're handling possible diagonal wins, the calculation doesn't look right.
Maybe the reutilization of the existing loop would make more sense:

private boolean isWin()
int playerTotal = lastPlayer * 3;
"\0"';
char diagonal?2 "\0"';
for (int i = 0; i < SIZE; i++) {
diagonall += board[i] [i];
diagonal2 += board[i] [SIZE - 1 - 11];
if (board[0] [i] + board[1] [i] + board[2] [i]) ==
playerTotal) {

char diagonall

return true;
} else if (playerTotal ==) {
return true;

}

}

if (diagonall == playerTotal || diagonal2 == playerTotal) ({
return true;

}

return false;

}

The source code can be found in the 03 -wins branch of the tdd-java-cho03-tic-
tac-toe Git repository at https://bitbucket.org/vfarcic/tdd-java-ch03-tic-
tac-toe/branch/03-wins.

Now, let's go through the last requirement.

Requirement 4

The only thing missing is how to tackle the draw result.

[The result is a draw when all the boxes are filled.]

[70]

https://bitbucket.org/vfarcic/tdd-java-ch03-tic-tac-toe/branch/03-wins
https://bitbucket.org/vfarcic/tdd-java-ch03-tic-tac-toe/branch/03-wins

Chapter 3

Test

We can test the draw result by filling all the board's boxes:

@Test
public void whenAllBoxesAreFilledThenDraw () {
ticTacToe.play(1l, 1);
ticTacToe.play(1l, 2);
ticTacToe.play(1l, 3);
ticTacToe.play(2, 1);
ticTacToe.play (2, 3);
ticTacToe.play (2, 2);
ticTacToe.play (3, 1);
ticTacToe.play (3, 3);

assertEquals ("The result is draw",

Implementation

2);
actual) ;

Checking whether it's a draw is fairly straightforward. All we have to do is check
whether all the board's boxes are filled. We can do that by iterating through the

board array:

public String play(int x,
checkAxis (x) ;
checkAxis (y) ;

int y) {

lastPlayer nextPlayer () ;
setBox (x, y, lastPlayer) ;
if (isWin()) {

return lastPlayer + "
} else if (isDraw()) {

return "The result is draw";
} else {

return "No winner";

}
}

is the winner";

private boolean isDraw() {
for (int x = 0; x < SIZE; x++) ({
for (int y = 0; y < SIZE; y++) {

if (boardl[x] [y]

return false;

"\o")

}
}

return true;

{

[71]

Red-Green-Refactor - from Failure through Success until Perfection

Refactoring

Even though the iswin method is not the scope of the last test, it can still be
refactored even more. For one, we don't need to check all the combinations,
but only those related to the position of the last piece played. The final version
could look like the following;:

private boolean isWin(int x, int y) {
int playerTotal = lastPlayer * 3;
char horizontal, vertical, diagonall, diagonal2;
horizontal = vertical = diagonall = diagonal2 = '\0';
for (int i = 0; i < SIZE; i++) {
horizontal += board[i] [y - 11;
vertical += board[x - 1] [i];
diagonall += board[i] [i];
diagonal2 += board[i] [SIZE - 1 - 1];

}

if (horizontal == playerTotal
|| vertical == playerTotal
|| diagonall == playerTotal
|| diagonal2 == playerTotal) {

return true;

}

return false;

}

Refactoring can be done on any part of the code at any time, as long as all the tests
are successful. While it's often easiest and fastest to refactor the code that was just
written, going back to something that was written the other day, previous month,
or even years ago, is more than welcome. The best moment to refactor something is
when someone sees an opportunity to make it better. It doesn't matter who wrote it
or when; making the code better is always a good thing to do.

The source code can be found in the 04 -draw branch of the tdd-java-cho03-tic-
tac-toe Git repository at https://bitbucket.org/vfarcic/tdd-java-ch03-tic-
tac-toe/branch/04-draw.

[72]

https://bitbucket.org/vfarcic/tdd-java-ch03-tic-tac-toe/branch/04-draw
https://bitbucket.org/vfarcic/tdd-java-ch03-tic-tac-toe/branch/04-draw

Chapter 3

Code coverage

We did not use code coverage tools throughout this exercise. The reason is that we
wanted you to be focused on the red-green-refactor model. You wrote a test, saw it
fail, wrote the implementation code, saw that all the tests were executed successfully,
refactored the code whenever you saw an opportunity to make it better, and then
you repeated the process. Did our tests cover all cases? That's something that code
coverage tools such as JaCoCo can answer. Should you use those tools? Probably,
only in the beginning. Let me clarify that. When you are starting with TDD, you will
probably miss some tests or implement more than what the tests defined. In those
cases, using code coverage is a good way to learn from your own mistakes. Later
on, the more experienced you become with TDD, the less of a need you'll have for
such tools. You'll write tests and just enough of the code to make them pass. Your
coverage will be high with or without tools such as JaCoCo. There will be a small
amount of code not covered by tests because you'll make a conscious decision about
what is not worth testing.

Tools such as JaCoCo were designed mostly as a way to verify that the tests written
after the implementation code are providing enough coverage. With TDD, we are
taking a different approach with the inverted order (tests before the implementation).

Still, we suggest you use JaCoCo as a learning tool and decide for yourself whether
to use it in the future.

To enable JaCoCo within Gradle, add the following to the build.gradle:
apply plugin: 'jacoco'

From now on, Gradle will collect JaCoCo metrics every time we run tests. Those
metrics can be transformed into a nice report using the jacocoTestReport Gradle
target. Let's run our tests again and see what the code coverage is:

$ gradle clean test jacocoTestReport

[73]

Red-Green-Refactor - from Failure through Success until Perfection

The end result is the report located in the build/reports/jacoco/test/html
directory. Results will vary depending on the solution you made for this exercise.

My results say that there is a 100 percent of instructions coverage and 96 percent of

branches coverage; 4 percent is missing because there was no test case where the
player played on a box 0 or negative. The implementation of that case is there, but
there is no specific test that covers it. Overall, this is a pretty good coverage.

B1dd-'ava-chD3—tic-tac—toe >3 com.packtpublishing.tddjava.chO3tictactoe > (3 TicTacToe

TicTacToe

10
3

@ [sWin(int. int O 1000 T 100% 0
@ TicTacToe()] 100% nfa
@ play(int, int) 100% 100%
@ setBox(int, int, char) 100% 100%
@ isDraw(100% 100%
@ checkAxis(int) 100% 75%
@ nextPlayer() 100% 100%
Total of 272 100% 96%

o =0 o oo
MW MW e o
oo oo oooo
W oW @

oo oo oo oo

o H
=
=
o
]

21

Element Missed Instructions+ Cov.= Missed Branches Cov.~ Missed+ Cxty~ Missed~ Lines- Missed~ Methods

B R N

JaCoCo will be added in the source code. This is found in the 05-jacoco branch
of the tdd-java-cho3-tic-tac-toe Git repository at https://bitbucket.org/
vfarcic/tdd-java-ch03-tic-tac-toe/branch/05-jacoco.

More exercises

We just developed one (most commonly used) variation of the Tic-Tac-Toe game.
As an additional exercise, pick one or more variations from Wikipedia (http://
en.wikipedia.org/wiki/Tic-tac-toe) and implement it using the red-green-
refactor procedure. When finished, implement a kind of Al that would play O's
turns. Since Tic-Tac-Toe usually leads to a draw, Al can be considered finished
when it successfully reaches a draw for any combination of X's moves.

While working on those exercises, remember to be fast and play ping pong.
Also, most of all, remember to use the red-green-refactor procedure.

[74]

https://bitbucket.org/vfarcic/tdd-java-ch03-tic-tac-toe/branch/05-jacoco
https://bitbucket.org/vfarcic/tdd-java-ch03-tic-tac-toe/branch/05-jacoco
http://en.wikipedia.org/wiki/Tic-tac-toe
http://en.wikipedia.org/wiki/Tic-tac-toe

Chapter 3

Summary

We managed to finish the Tic-Tac-Toe game using the red-green-refactor process.
The examples themselves were simple and you probably didn't have a problem
following them.

The objective of this chapter was not to dive into something complicated
(that comes later), but to get into the habit of using short a and repetitive
cycle called red-green-refactor.

We learned that the easiest way to develop something is by splitting it into very
small chunks. Design was emerging from tests instead of using a big up-front
approach. No line of the implementation code was written without writing a test
first and seeing it fail. By confirming that the last test fails, we are confirming that it
is valid (it's easy to make a mistake and write a test that is always successful) and the
feature we are about to implement does not exist. After the test failed, we wrote the
implementation of that test. While writing the implementation, we tried to make it a
minimal one with the objective to make the test pass, not to make the solution final.
We were repeating this process until we felt that there was a need to refactor the
code. Refactoring did not introduce any new functionality (we did not change

what the application does), but made the code more optimum and easier to read
and maintain.

In the next chapter, we'll elaborate in more detail about what constitutes a unit
within the context of TDD and how to approach the creation of tests based on
those units.

[75]

Unit Testing — Focusing on
What You Do and Not on
What Has Been Done

"To create something exceptional, your mindset must be relentlessly focused on the
smallest detail."

- Giorgio Armani

As promised, each chapter will explore a different Java testing framework and this
one is no exception. We'll use TestNG to build our specifications.

In the previous chapter, we practiced the red-green-refactor procedure. We used
unit tests without going deeper into how unit testing works in the context of TDD.
We'll build on the knowledge from the last chapter and go into more detail by
trying to explain what unit tests really are and how they fit in to the TDD
approach to build software.

The goal of this chapter is to learn how to focus on the unit we're currently working
on and how to ignore or isolate those that were done before.

Once we're comfortable with TestNG and unit testing, we'll dive right into the
requirements of our next application and start coding.

[77]

Unit Testing - Focusing on What You Do and Not on What Has Been Done

The following topics will be covered in this chapter:

* Unit testing

* Unit testing with TDD

* TestNG

* Remote-controlled ship requirements

* Developing the remote-controlled ship

* Summary

Unit testing

Frequent manual testing is too impractical to any but the smallest systems. The only
way around this is the usage of automated tests. They are the only effective method
to reduce the time and cost of building, deploying, and maintaining applications. In
order to effectively manage applications, it is of the utmost importance that both the
implementation and test code are as simple as possible. Simplicity is one of the core
Extreme Programming (XP) values (http://www.extremeprogramming.org/rules/
simple.html) and the key to TDD and programming in general. It is most often
accomplished through division into small units. In Java, units are methods. Being
the smallest, feedback loop they provide is the fastest so we spend most of our time
thinking and working on them. As a counterpart to implementation methods, unit
tests should constitute by far the biggest percentage of all tests.

What is unit testing?

Unit testing (UT) is a practice that forces us to test small, individual and isolated
units of code. They are usually methods even though in some cases classes or even
whole applications can be considered units, as well. In order to write UT, code
under tests needs to be isolated from the rest of the application. Preferably, that
isolation is already ingrained in the code or it can be accomplished with the usage

of mocks (more on mocks will be covered in Chapter 6, Mocking - Removing External
Dependencies). If unit tests of a particular method cross the boundaries of that unit,
then they become integration tests. As such, it becomes less clear what is under tests.
In case of a failure, the scope of a problem suddenly increases and finding the cause
becomes more tedious.

[78]

http://www.extremeprogramming.org/rules/simple.html
http://www.extremeprogramming.org/rules/simple.html

Chapter 4

Why unit testing?

A common question, especially within organizations that rely heavily on manual
testing, is why should we use unit instead of functional and integration testing? This
question in itself is flawed. Unit testing does not replace other types of testing.
Instead, unit testing reduces the scope of other types of tests. By its nature, unit tests
are easier and faster to write than any other type of tests, thus, reducing the cost and
time-to-market. Due to the reduced time to write and run them, they tend to detect
problems much sooner. The faster we detect problems, the cheaper it is to fix them.
A bug that was detected minutes after it was created is much easier to fix than if that
same bug was found days, weeks, or even months after it was made.

Code refactoring

Code refactoring is the process of changing the structure of an existing code without
changing its external behavior. The purpose of refactoring is to improve an existing
code. This improvement can be for many different reasons. We might want to make
the code more readable, less complex, easier to maintain, cheaper to extend, and so
on. No matter what the reason for refactoring is, the ultimate goal is always to make
it better in one way or another. The effect of this goal is a reduction in technical

debt; a reduction in pending work that needs to be done due to suboptimal design,
architecture, or coding.

Typically, we approach refactoring by applying a set of small changes without
modifying intended behavior. Reducing the scope of refactoring changes, allows us
to continuously confirm that those changes did not break any existing functionality.
The only way to effectively obtain this confirmation is through the usage of
automated tests.

One of the great benefits of unit tests is that they are the best refactoring enablers.
Refactoring is too risky when there are no automated tests to confirm that the
application still behaves as expected. While any type of tests can be used to provide
code coverage required for refactoring, in most cases only unit tests can provide the
required level of details.

Why not use unit tests exclusively?

At this moment, you might be wondering whether unit testing could provide a
solution for all your testing needs. Unfortunately, that is not the case. While unit tests
usually cover the biggest percentage of your testing needs, functional and integration
tests should be an integral part of your testing toolbox.

[79]

Unit Testing - Focusing on What You Do and Not on What Has Been Done

We'll cover other types of tests in more detail in later chapters. For now, a few
important distinctions between them are as follows:

Unit tests try to verify small units of functionality. In the Java world, those
units are methods. All external dependencies such as invocations of other
classes and methods or database calls should be done in memory with

the usage of mocks, stubs, spies, fakes, and dummies. Gerard Meszaros
coined a more general term "test doubles" that envelops all those

(http ://en.wikipedia. org/wiki/Test_double).

Unit tests are simple, easy to write, and fast to run. They are usually the
biggest percentage of a testing suite.

Functional and acceptance tests have a job to verify that the application
we're building works as expected, as a whole. While those two differ in
their purpose, both share a similar goal. Unlike unit tests that are verifying
the internal quality of the code, functional and acceptance tests are trying

to ensure that the system is working correctly from the customer's or user's
point of view. Those tests are usually smaller in number when compared
with unit tests due to the cost and effort needed to both write and run them.

Integration tests intend to verify that separate units, modules, applications,
or even whole systems are properly integrated with each other. You

might have a frontend application that uses backend APIs that, in turn,
communicate with a database. The job of integration tests would be to
verify that all three of those separate components of the system are indeed
integrated and can communicate with each other. Since we already know
that all the units are working and all functional and acceptance tests are
passed, integration tests are usually the smallest of all three as their job is
only to confirm that all the pieces are working well together.

[80]

http://en.wikipedia.org/wiki/Test_double

Chapter 4

The testing pyramid states that you should have many more unit tests than higher
level tests (UI tests, integration tests, and so on). Why is that? Unit tests are much
cheaper to write, faster to run, and, at the same time, provide much bigger coverage.
Take, for example, registration functionality. We should test what happens when

a username is empty, when a password is empty, when a username or password

is not in the correct format, when the user already exists, and so on. Only for this
single functionality there can be tens, if not hundreds of tests. Writing and running
all those tests from the Ul can be very expensive (time-consuming to write and slow
to run). On the other hand, unit testing a method that does this validation is easy,
fast to write, and fast to run. If all those cases are covered with unit tests, we could
be satisfied with a single integration test that checks whether our Ul is calling the
correct method on the backend. If it is, details are irrelevant from an integration
point of view since we know that all cases are already covered on the unit level.

Unit testing with TDD

What is the difference in the way we write unit tests in the context of TDD? The
major differentiator is in when. While traditionally unit tests are written after the
implementation code is done, in TDD we write tests before — the order of things is
inverted. Without TDD, the purpose of unit tests is to validate an existing code. TDD
teaches us that unit tests should drive our development and design. They should
define the behavior of the smallest possible unit. They are micro requirements
pending to be developed. A test tells you what to do next and when you're done
doing it. Depending on the type of tests (unit, functional, integration, and so on),

the scope of what should be done next differs. In the case of TDD with unit tests,
this scope is the smallest possible, meaning a method or, more often, a part of it.
Moreover, with TDD driven with unit tests, we are forced to comply to some design
principles such as KISS (keep it simple stupid). By writing simple tests with a very
small scope, the implementation of those tests tends to be simple as well. By forcing
tests not to use external dependencies, we are forcing the implementation code to
have separation of concerns well designed. There are many other examples of how
TDD helps us to write better code. Those same benefits cannot be accomplished with
unit testing alone. Without TDD, unit tests are forced to work with an existing code
and have no influence on the design.

To summarize, the main goal of unit testing without TDD is the validation of
the existing code. Unit testing written in advance using test-driven development
procedure has the main objective specification and design with validation being
a side product. This side product is often of a higher quality than when tests are
written after the implementation.

[81]

Unit Testing - Focusing on What You Do and Not on What Has Been Done

TDD forces us to think through our requirements and design, write clean code that
works, create executable requirements, and refactor safely and often. On top of all
that, we end up with high test code coverage that is used to regression test all our
code whenever some change is introduced. Unit testing without TDD gives us only
tests and, often, with doubtful quality.

TestNG

JUnit and TestNG are two major Java testing frameworks. You already wrote tests
with JUnit in the previous chapter and, hopefully, got a good understanding of
how it works. How about TestNG? It was born out of a desire to make JUnit better.
Indeed, it contains some functionalities that JUnit doesn't have.

The following subchapters summarize some of the differences between the two
of them. We'll try not only to provide an explanation of differences, but also their
evaluation in the context of unit testing with TDD.

The @Test annotation

Both JUnit and TestNG use the @Test annotation to specify which method is
considered to be a test. Unlike JUnit, which requires every method to be annotated
with @Test, TestNG allows us to use this annotation on a class level, as well. When
used in this way, all public methods are considered tests unless specified otherwise:

@Test
public class DirectionSpec

public void whenGetFromShortNameNThenReturnDirectionN () {
Direction direction = Direction.getFromShortName ('N') ;
assertEquals (direction, Direction.NORTH) ;

}

public void whenGetFromShortNameWThenReturnDirectionW () {
Direction direction = Direction.getFromShortName ('W') ;
assertEquals (direction, Direction.WEST) ;

}

In this example, we put the @Test annotation above the DirectionSpec class.
As a result, both the whenGet FromShortNameNThenReturnDirectionN and
whenGet FromShortNameWThenReturnDirect ionWw methods are considered tests.
If that code was written using JUnit, both the methods would need to have the
@Test annotation.

[82]

Chapter 4

The @BeforeSuite, @BeforeTest,
@BeforeGroups, @AfterGroups, @AfterTest,
and @AfterSuite annotations

Those four annotations do not have their equivalents in JUnit. TestNG can group
tests into suites, using XML configuration. Methods annotated with @Beforesuite
and eAftersSuite are run before and after all the tests in the specified suite have
run. Similarly, the @BeforeTest and @AfterTest annotated methods are run before
any test method belonging to the test classes has run. Finally, TestNG tests can be
organized into groups. The @BeforeGroups and @AfterGroups annotations allows
us to run methods before the first test and after the last test, in specified groups,

is run.

While those annotations can be very useful when tests are written after the
implementation code, they do not provide much usage in the context of TDD. Unlike
traditional testing, which is often planned and written as a separate project, TDD
teaches us to write one test at a time and keep everything simple. Most importantly,
unit tests are supposed to run fast so there is no need to group them into suites or
groups. When tests are fast, running anything less than everything is a waste. If,

for example, all tests are run in less than 15 seconds, there is no need to run only a
part of them. On the other hand, when tests are slow, it is often a sign that external
dependencies are not isolated. No matter what the reason is behind slow tests, the
solution is not to run only a part of them, but to fix the problem.

Moreover, functional and integration tests do tend to be slower and require us to
have some kind of separation. However, it is better to separate them in, for example,
build.gradle so that each type of test is run as a separate task.

The @BeforeClass and @AfterClass
annotations

These annotations have the same function in both JUnit and TestNG. Annotated
methods will be run before the first test and after the last test, in a current class,
are run. The only difference is that TestNG does not require those methods to be
static. The reason behind this can be found in the different approaches those two
frameworks take when running test methods. JUnit isolates each test into its own
instance of the test class, forcing us to have those methods defined as static and,
therefore, reusable across all test runs. TestNG, on the other hand, executes all test
methods in the context of a single test class instance eliminating the need for those
methods to be static.

[83]

Unit Testing - Focusing on What You Do and Not on What Has Been Done

The @BeforeMethod and @AfterMethod
annotations

The eBefore and @After annotations are equivalent to JUnit. Annotated methods
are run before and after each test method.

The @Test(enable = false) annotation

argument

Both JUnit and TestNG can disable tests. While JUnit uses a separate @Ignore
annotation, TestNG uses the @Test annotation Boolean argument enable.
Functionally, both work in the same way and the difference is only in the
way we write them.

The @Test(expectedExceptions = SomeClass.

class) annotation argument

This is the case where JUnit has the advantage. While both provide the same way
to specify the expected exception (in the case of JUnit, argument is called simply
expected), JUnit introduces rules that are a more elegant way to test exceptions
(we already worked with them in Chapter 2, Tools, Frameworks, and Environment).

TestNG vs JUnit summary

There are many other differences between those two frameworks. For brevity,
we did not cover all of them in this book. Consult their documentation for
further information.

More information about JUnit and TestNG can be found at
i http://junit.org/ and http://testng.org/.

TestNG provides more features and is more advanced than JUnit. We'll work with
TestNG throughout this chapter, and you'll get to know it better. One thing that
you'll notice is that we won't use any of those advanced features. The reason is

that, with TDD, we rarely need them when working with unit tests. Functional and
Integration tests are of a different kind and would serve as a better demonstration of
TestNG's superiority. However, there are tools that are more suited for those types of
tests, as you'll see in the following chapters.

[84]

http://junit.org/
http://testng.org/

Chapter 4

Which one should you use? I'll leave that choice up to you. By the time you finish
this chapter, you'll have hands-on knowledge of both JUnit and TestNG.

Remote controlled ship requirements

We'll work on a variation of a well-known kata called Mars Rover, originally
published in Dallas Hack Club (http://dallashackclub.com/rover).

Imagine that a naval ship is placed somewhere on Earth's seas. Since this is the 21st
century, we can control that ship remotely.

Our job will be to create a program that can move the ship
= around the seas.

Since this is a TDD book and the subject of this chapter is unit tests, we'll develop
an application using a test-driven development approach with focus on unit tests.
In the previous chapter, you learned the theory and had practical experience with
the red-green-refactor procedure. We'll build on top of that and try to learn how to
effectively employ unit testing. Specifically, we'll try to concentrate on a unit we're
developing and learn how to isolate and ignore dependencies that a unit might use.
Not only that, but we'll try to concentrate on one requirement at a time. For this
reason, you were presented only with high-level requirements; we should be able
to move the remote-controlled ship, located somewhere on the planet, around.

To make things easier, all the supporting classes are already made and tested. This
will allow us to concentrate on the main task at hand and, at the same time, keep this
exercise concise.

Developing the remote-controlled ship

Let's start by importing the existing Git repository.

[85]

http://dallashackclub.com/rover

Unit Testing - Focusing on What You Do and Not on What Has Been Done

Project setup
Let's start setting up the project:

1. Open Intelli] IDEA. If an existing project is already opened, select
File | Close Project.

You will be presented with a screen similar to the following:

B Welcome to IntelliJ IDEA

tdd-java-ch03-tic-tac-toe

projectJUnit ' '

IntelliJ IDEA
Version 14.1.3

(%3]

fs-file

3% Create New Project

ansible
o Import Project
~fldeaProjectsfansible

Fm-poc [Open

¥ Check out from Version Control +
GitHub
CWs

deaProjects/fs-gateway

Reqist
Sy Mercurial

fs-gateway

Configure ~ GetHelp »

2. To import the project from the Git repository, click on Check out from

Version Control and select Git. Type https://bitbucket.org/vfarcic/

tdd-java-ch04-ship.git in to the Git Repository URL field and click

on Clone:

3 Clone Repository

Parent Directory: |/home/vFarcic/\deaProjects

Git Repository URL: Ihttps://bitbucket‘org/vFarcic/tdd—java—chm—ship.git| n | Test |

L]

Directory Mame: | tdd-java-cho4-ship |

m Cancel_‘ Help |

3. Answer Yes when asked whether you would like to open the project.

Next you will be presented with the Import Project from Gradle dialog.

Click on OK:

[86]

https://bitbucket.org/vfarcic/tdd-java-ch04-ship.git
https://bitbucket.org/vfarcic/tdd-java-ch04-ship.git

Chapter 4

= Import Project from Gradle

Gradle project: |/hame/\.rFarcic/ldeaProjectsftdd—ja\.ra—chﬂ4—ship/settings.gradle ||]

[J Use auto-import

[J Create directories for empty content roots automatically

(O Use default gradle wrapper (not configured For the current project)
(O Use customizable gradle wrapper @ Gradle wrapper customization in script, works with Gradle 1.7 or later

© Use local gradle distribution

Gradle home: | Jusr/lib/gradle/default |D
Gradle Jvm: | [21.8 (javaversion "1.8.0_45", path: Jusr/lib/jvm/java-8-oracle) n
Project format: |.idea (directory based) n

¢ Global Gradle settings

4. IDEA will need to spend some time downloading the dependencies specified
in the buld.gradle file. Once that is done, you'll see that some classes and
corresponding tests are already created:

B Project v| D+ | -
[z tdd-java-cho4-ship (~/|d=zProjects/td
B idea
Esrc
3 main
[java

3 com.packtpublishing.tddjay
£ s Direction
£'s Location
c & Planet
£'s Point
£ % Ship

[java
[com.packtpublishing.tddjay
&' DirectionSpec
&"% LocationSpec
&' % PlanetSpec
2'% PointSpec
2'% ShipSpec
4 .gitignore
& build.gradle
M| README.md
* settings.gradle
il External Libraries

[87]

Unit Testing - Focusing on What You Do and Not on What Has Been Done

Helper classes

Imagine that a colleague of yours started working on this project. He's a good
programmer and a TDD practitioner, and you trust his abilities to have a good test
code coverage. In other words, you can rely on his work. However, that colleague
did not finish the application before he left for his vacations and it's up to you to
continue where he stopped. He created all the helper classes: Direction, Location,
Planet, and Point. You'll notice that the corresponding test classes are there as well.
They have the same name as the class they're testing with the Spec suffix (that is,
DirectionSpec). The reason for using this suffix is to make clear that tests are not
intended only to validate the code, but also to serve as executable specification.

On top of the helper classes, you'll find the ship (implementation) and shipspec
(specifications/ tests) classes. We'll spend most of our time in those two classes.
We'll write tests in ShipSpec and then we'll write the implementation code in the
Ship class (just as we did before).

Since we already learned that tests are not only used as a way to validate the code,
but also as executable documentation, from this moment on, we'll use the phrase
specification or spec instead of test.

Every time we finish writing a specification or the code that implements it, we'll
run gradle test either from the command prompt or by using the Gradle projects
IDEA Tool Window:

Gradle projecks
G+ - @ T hB
& tdd-java-ch04-ship
& Tasks
& build
@ build setup
@ documentation
@ help
@ other
@ verification
i check
& clean

il Dependencies

With project setup, we're ready to dive into the first requirement.

[88]

Chapter 4

Requirement 1

We need to know what the current location of the ship is in order to be able to move
it. Moreover, we should also know which direction it is facing: north, south, east,
or west. Therefore, the first requirement is the following;:

You are given the initial starting point (x, y) of a ship and the
L direction (N, S, E, or W) it is facing.

Before we start working on this requirement, let's go through helper classes
that can be used. The Point class holds the x and y coordinates. It has the
following constructor:

public Point (int x, int y) {
this.x = x;
this.y = y;

}
Similarly, we have the Direction enum class with the following values:

public enum Direction {
NORTH (0, 'N),

EAST(1, 'E'"),
SOUTH (2, 'S'),
WEST (3, 'W'),
NONE (4, 'X');

}

Finally, there is the Location class that requires both of those classes to be passed as
constructor arguments:

public Location (Point point, Direction direction) {
this.point = point;
this.direction = direction;

}

Knowing this, it should be fairly easy to write a test for this first requirement.
We should work in the same way as we did in the previous chapter.

Try to write specs by yourself. When done, compare it with the solution in this book.
Repeat the same process with the code that implements specs. Try to write it by
yourself and, once done, compare it with the solution we're proposing.

[89]

Unit Testing - Focusing on What You Do and Not on What Has Been Done

Specification
The specification for this requirement can be the following;

@Test
public class ShipSpec

public void whenInstantiatedThenLocationIsSet () {
Location location = new Location(
new Point (21, 13), Direction.NORTH) ;
Ship ship = new Ship(location);
assertEquals (ship.getLocation(), location) ;

}

This was an easy one. We're just checking whether the Location object we're passing
as the ship constructor is stored and can be accessed through the 1ocation getter.

. The @Test annotation
\

~ When TestNG has the @Test annotation set on the class level, there
is no need to specify which methods should be used as tests. In this
case, all public methods are considered to be TestNG tests.

Specification implementation

The implementation of this specification should be fairly easy. All we need to do is
set the constructor argument to the location variable:

public class Ship {

private final Location location;
public Location getLocation () {
return location;

public Ship(Location location) {
this.location = location;

}

The full source can be found in the req01-location branch of the tdd-java-ch04-ship

repository (https ://bitbucket.org/vfarcic/tdd-java-ch04-ship/branch/
reqg0l-location).

[90]

https://bitbucket.org/vfarcic/tdd-java-ch04-ship/branch/req01-location
https://bitbucket.org/vfarcic/tdd-java-ch04-ship/branch/req01-location

Chapter 4

Refactoring

We know that we'll need to instantiate Ship for every spec, so we might as well
refactor the specification class by adding the @Be foreMethod annotation. The code
can be the following:

@Test
public class ShipSpec {

private Ship ship;
private Location location;

@BeforeMethod
public void beforeTest () {
Location location = new Location(
new Point (21, 13), Direction.NORTH) ;
ship = new Ship(location) ;

public void whenInstantiatedThenLocationIsSet () {
// Location location = new Location (
// new Point (21, 13), Direction.NORTH) ;
// Ship ship = new Ship(location);
assertEquals (ship.getLocation(), location) ;

}

No new behavior has been introduced. We just moved part of the code to the @
BeforeMethod annotation in order to avoid duplication, which would be produced
by the rest of the specifications that we are about to write. Now, every time a test is
run, the ship object will be instantiated with location as the argument.

Requirement 2

Now that we know where our ship is, let's try to move it. To begin with, we should
be able to go both forward and backward.

Implement commands that move the ship forward and
“e— backward (f and b).

[91]

Unit Testing - Focusing on What You Do and Not on What Has Been Done

The Location helper class already has the forward and backward methods that
implement this functionality:

public boolean forward() {

}

Specification
What should happen when, for example, we are facing north and we move the ship

forward? Its location on the y axis should decrease. Another example would be that
when the ship is facing east, it should increase its x axis location by one.

The first reaction can be to write specifications similar to the following two:

public void givenNorthWhenMoveForwardThenYDecreases ()
ship.moveForward () ;
assertEquals (ship.getLocation () .getPoint () .getY (), 12);

public void givenEastWhenMoveForwardThenXIncreases ()
ship.getLocation() .setDirection(Direction.EAST) ;
ship.moveForward () ;
assertEquals (ship.getLocation () .getPoint () .getX (), 22);

}

We should create at least two more specifications related to cases where a ship is
facing south and west.

However, this is not how unit tests should be written. Most people new to UT

fall into the trap of specifying the end result that requires the knowledge of the
inner workings of methods, classes, and libraries used by the method that is being
specified. This approach is problematic on many levels.

When including external code in the unit that is being specified, we should take

into account, at least in our case, the fact that the external code is already tested. We
know that it is working since we're running all the tests every time any change to the
code is done.

[92]

Chapter 4

Rerun all the tests every time the implementation code changes.

This ensures that there is no unexpected side-effect caused by
code changes.

Every time any part of the implementation code changes, all tests
~ should be run. Ideally, tests are fast to execute and can be run by a
Q developer locally. Once code is submitted to the version control, all

tests should be run again to ensure that there was no problem due

to code merges. This is especially important when more than one

developer is working on the code. Continuous Integration tools such

as Jenkins, Hudson, Travind, Bamboo and Go-CD should be used to

pull the code from the repository, compile it, and run tests.

Another problem with this approach is that if an external code changes, there will

be many more specifications to change. Ideally, we should be forced to change only
specifications directly related to the unit that will be modified. Searching for all other
places where that unit is called from might be very time-consuming and error prone.

A much easier, faster, and better way to write specification for this requirement
would be the following:

public void whenMoveForwardThenForward () {
Location expected = location.copy() ;
expected. forward () ;
ship.moveForward () ;
assertEquals (ship.getLocation (), expected) ;

}

Since Location already has the forward method, all we'd need to do is to make sure
that the proper invocation of that method is performed. We created a new Location
object called expected, invoked the forward method, and compared that object with
the location of the ship after its moveForward method is called.

Note that specifications are not only used to validate the code, but are also used as
executable documentation and, most importantly, as a way to think and design. This
second attempt specifies more clearly what the intent is behind it. We should create
a moveForward method inside the ship class and make sure that the 1ocation.
forward is called.

[93]

Unit Testing - Focusing on What You Do and Not on What Has Been Done

Specification implementation

With such a small and clearly defined specification, it should be fairly easy to write
the code that implements it:

public boolean moveForward() ({
return location.forward() ;

}

Specification
Now that we have a forward movement specified and implemented, the backward
movement should almost be the same:

public void whenMoveBackwardThenBackward () {
Location expected = location.copy();
expected.backward () ;
ship.moveBackward() ;
assertEquals (ship.getLocation (), expected) ;

Specification implementation

Just like the specification, the backward movement implementation is just as easy:

public boolean moveBackward()
return location.backward() ;

}

The full source code for this requirement can be found in the req02-forward-
backward branch of the tdd-java-cho04-ship repository (https://bitbucket.
org/vfarcic/tdd-java-ch04-ship/branch/req02- forward—backward).

Requirement 3

Moving the ship only back and forth, wont, get us far. We should be able to stir by
moving it left and right as well.

[% Implement commands that turn the ship left and right (1 and r).]

After implementing the previous requirement, this one should be very easy since it

can follow the same logic. The Location helper class already contains the turnLeft
and turnRight methods that perform exactly what is required by this requirement.
All we need to do is integrate them into the ship class.

[94]

https://bitbucket.org/vfarcic/tdd-java-ch04-ship/branch/req02-forward-backward
https://bitbucket.org/vfarcic/tdd-java-ch04-ship/branch/req02-forward-backward

Chapter 4

Specification
Using the same guidelines as those we have used so far, the specification for turning
left can be the following:

public void whenTurnLeftThenLeft ()
Location expected = location.copy();
expected. turnLeft () ;
ship.turnLeft () ;
assertEquals (ship.getLocation (), expected) ;

Specification implementation

You probably did not have a problem writing the code to pass the
previous specification:

public void turnLeft() {
location.turnLeft () ;

}

Specification
Turning right should be almost the same as turning left:

public void whenTurnRightThenRight ()
Location expected = location.copy() ;
expected.turnRight () ;
ship.turnRight () ;
assertEquals (ship.getLocation (), expected) ;

Specification implementation

Finally, let's finish this requirement by implementing the specification for
turning right:

public void turnRight ()
location.turnRight () ;

}

The full source for this requirement can be found in the reqo3-left-right branch
of the tdd-java-cho04-ship repository (https://bitbucket.org/vfarcic/tdd-
java-ch04-ship/branch/req03-left-right).

[95]

https://bitbucket.org/vfarcic/tdd-java-ch04-ship/branch/req03-left-right
https://bitbucket.org/vfarcic/tdd-java-ch04-ship/branch/req03-left-right

Unit Testing - Focusing on What You Do and Not on What Has Been Done

Requirement 4

Everything we have done so far was fairly easy since there were helper classes that
provided all the functionality. This exercise was to learn how to stop attempting to
test the end outcome and focus on a unit we're working on. We are building trust;
we had to trust the code done by others (the helper classes). Starting from this
requirement, you'll have to trust the code you wrote by yourself. We'll continue in
the same fashion. We'll write specification, run tests, and see them fail; we'll write
implementation, run tests, and see them succeed; finally, we'll refactor if we think the
code can be improved. Continue thinking how to test a unit (method) without going
deeper into methods or classes that the unit will be invoking.

Now that we have individual commands (forward, backward, left, and right)
implemented, it's time to tie it all together. We should create a method that will
allow us to pass any number of commands as a single string. Each command should
be a character with f meaning forward, b being backward, 1 for turning left, and r for
turning right.

The ship can receive a string with commands (1r£b is equivalent
i to left, right, forward, and backward).

Specification

Let's start with the command argument, that only has the £ (forward) character:

public void whenReceiveCommandsFThenForward () {
Location expected = location.copy() ;
expected. forward () ;
ship.receiveCommands ("f") ;
assertEquals (ship.getLocation (), expected) ;

}

This specification is almost the same as the whenMoveForwardThenForward
specification except that, this time, we're invoking the ship.receiveCommands ("f")
method.

Specification implementation

We already spoke about the importance of writing the simplest possible code that
passes the specification.

[96]

Chapter 4

Write the simplest code to pass the test. This ensures a
cleaner and clearer design and avoids unnecessary features

M The idea is that the simpler the implementation, the better and
easier it is to maintain the product. The idea adheres to the
Q KISS principle. It states that most systems work best if they are
kept simple rather than made complex; therefore, simplicity
should be a key goal in design and unnecessary complexity
should be avoided.

This is a good opportunity to apply this rule. You might be inclined to write a piece
ofcode similar to the following;:

public void receiveCommands (String commands) {
if (commands.charAt (0) == 'f') {
moveForward () ;

}

In this example code, we are verifying whether the first character is £ and, if it is,
invoking the moveForward method. There are many other variations that we can
do. However, if we stick to the simplicity principle, a better solution would be
the following:

public void receiveCommands (String command) {
moveForward () ;

}

This is the simplest and shortest possible code that will make the specification pass.
Later on, we might end up with something closer to the first version of the code; we
might use some kind of a loop or come up with some other solution when things
become more complicated. As for now, we are concentrating on one specification

at a time and trying to make things simple. We are attempting to clear our mind by
focusing only on the task at hand.

For brevity, the rest of the combinations (b, 1, and r) are not presented below
(continue to implement them by yourself). Instead, we'll jump to the last
specification for this requirement.

[97]

Unit Testing - Focusing on What You Do and Not on What Has Been Done

Specification

Now that we are able to process one command (whatever that the command is),
it is time to add the option to send a string of commands. The specification can
be the following:

public void whenReceiveCommandsThenAllAreExecuted () {
Location expected = location.copy() ;
expected.turnRight () ;
expected. forward () ;
expected. turnLeft () ;
expected.backward() ;
ship.receiveCommands ("rflb") ;
assertEquals (ship.getLocation (), expected) ;

}

This is a bit longer, but is still not an overly complicated specification. We're passing
commands rflb (right, forward, left, and backward) and expecting that the Location
changes accordingly. As before, we're not verifying the end result (seeing whether
the if coordinates have changed), but checking whether we are invoking the correct
calls to helper methods.

Specification implementation

The end result can be the following:

public void receiveCommands (String commands) {
for (char command : commands.toCharArray()) {
switch (command) {
case 'f':
moveForward () ;
break;
case 'b':
moveBackward () ;
break;
case 'l':
turnLeft () ;
break;
case 'r':
turnRight () ;
break;

[98]

Chapter 4

If you tried to write specifications and the implementation by yourself and if you
followed the simplicity rule, you probably had to refactor your code a couple of
times in order to get to the final solution. Simplicity is the key and refactoring is
often a welcome necessity. When refactoring, remember that all specifications must
be passing all the time.

Refactor only after all the tests have passed.
Benefits: refactoring is safe
1
<~ If all the implementation code that can be affected has tests and if

they are all passing, it is relatively safe to refactor. In most cases,
there is no need for new tests; small modifications to existing tests
should be enough. The expected outcome of refactoring is to have
all the tests passing both before and after the code is modified.

The full source for this requirement can be found in the req04 - commands branch
of the tdd-java-cho4-ship repository (https://bitbucket.org/vfarcic/tdd-
java-chO4-ship/branch/req04- commands).

Requirement 5

Earth is a sphere as any other planet. When Earth is presented as a map, reaching
one edge, wraps us to another, for example, when we move east and reach the
furthest point in the Pacific Ocean, we are wrapped to the west side of the map and
we continue moving towards America. Furthermore, to make the movement easier,
we can define the map as a grid. That grid should have length and height expressed
as an X and Y axis. That grid should have maximum length (X) and height (Y).

[Implement wrapping from one edge of the grid to another.]

Specification

The first thing we can do is pass the Planet object with the maximum x and v axis
coordinates to the Ship constructor. Fortunately, pPlanet is one more of the helper
classes that are already made (and tested). All we need to do is instantiate it and pass
it to the ship constructor:

public void whenInstantiatedThenPlanetIsStored()
Point max = new Point (50, 50);
Planet planet = new Planet (max) ;

[99]

https://bitbucket.org/vfarcic/tdd-java-ch04-ship/branch/req04-commands
https://bitbucket.org/vfarcic/tdd-java-ch04-ship/branch/req04-commands

Unit Testing - Focusing on What You Do and Not on What Has Been Done

ship = new Ship(location, planet) ;
assertEquals (ship.getPlanet (), planet);

}

We're defining the size of the planet as 50x50 and passing that to the pPlanet class. In
turn, that class is afterwards passed to the ship constructor. You might have noticed
that the constructor needs an extra argument. In the current code, our constructor
requires only Location. To implement this specification, it should accept Planet,

as well.

How would you implement this specification without breaking any of the
existing specifications?

Specification implementation

Let's take a bottom-up approach. An assert requires us to have a planet getter:

private Planet planet;

public Planet getPlanet () {
return planet;

}

Next, the constructor should accept Planet as a second argument and assign it to the
previously added planet variable. The first attempt might be to add it to the existing
constructor, but that would break many existing specifications that are using a single
argument constructor. This leaves us with only one option: a second constructor:

public Ship(Location location) {
this.location = location;
}

public Ship(Location location, Planet planet)
this.location = location;
this.planet = planet;

}

Run all the specifications and confirm that are all successful.

Refactoring

Our specifications forced us to create the second constructor since changing the
original one would break the existing tests. However, now that everything is green,
we can do some refactoring and get rid of the single argument constructor. The
specification class already has the beforeTest method that is run before each test.
We can move everything, but the assert itself to this method:

public class ShipSpec {

[100]

Chapter 4

private Planet planet;

@BeforeMethod
public void beforeTest () {
Point max = new Point (50, 50);
location = new Location (new Point (21, 13), Direction.NORTH) ;
planet = new Planet (max) ;
// ship = new Ship(location) ;
ship = new Ship(location, planet) ;

}

public void whenInstantiatedThenPlanetIsStored() {

// Point max = new Point (50, 50);

// Planet planet = new Planet (max) ;

// ship = new Ship(location, planet) ;
assertEquals (ship.getPlanet (), planet) ;

}

With this change, we effectively removed the usage of the Ship single
argument constructor. By running all specifications, we should confirm
that this change worked.

Now, with a single argument constructor that is not in use any more, we can remove
it from the implementation class, as well:

public class Ship {

// public Ship(Location location) {

// this.location = location;
// }

public Ship(Location location, Planet planet)
this.location = location;
this.planet = planet;

}
By using this approach, all specifications were green all the time. Refactoring did not

change any existing functionality, nothing got broken, and the whole process was
done fast.

Now, let's move into wrapping itself.

[101]

Unit Testing - Focusing on What You Do and Not on What Has Been Done

Specification

Like in other cases, the helper classes already provide all the functionality that
we need. So far, we used the Location. forward method without arguments. To
implement wrapping, there is the overloaded Location. forward (Point max)
method that will wrap the location when we reach the end of the grid. With the
previous specification, we made sure that Planet is passed to the ship class and
that it contains Point max. Our job is to make sure that max is used when moving
forward. The specification can be the following:

/* The name of this method has been shortened due to line's length
restrictions. The aim of this test is to check the behavior of
ship when it is told to overpass the right boundary.
*/
public void overpassEastBoundary () {
location.setDirection (Direction.EAST) ;
location.getPoint () .setX (planet.getMax () .getX()) ;
ship.receiveCommands ("f") ;
assertEquals (location.getX (), 1);

Specification implementation

By now, you should be getting used to focusing on one unit at a time and to trust
that those that were done before are working as expected. This implementation
should be no different. We just need to make sure that the maximum coordinates
are used when the location. forward method is called:

public boolean moveForward()
// return location.forward() ;
return location.forward(planet.getMax()) ;

}

The same specification and implementation should be done for the backward
method. For brevity, it is excluded from this book, but it can be found in the
source code.

The full source for this requirement can be found in the req05-wrap branch of the
tdd—java—ch04—shipreposﬁory(https://bitbucket.org/vfarcic/tdd—java—
ch04-ship/branch/req05-wrap).

[102]

https://bitbucket.org/vfarcic/tdd-java-ch04-ship/branch/req05-wrap
https://bitbucket.org/vfarcic/tdd-java-ch04-ship/branch/req05-wrap

Chapter 4

Requirement 6

We're almost done. This is the last requirement.

Even though most of the Earth is covered in water (approximately 70 percent),
there are continents and islands that can be considered as obstacles for our remotely
controlled ship. We should have a way to detect whether our next move would hit
one of those obstacles. If such a thing happens, the move should be aborted and the
ship should stay on the current position and report the obstacle.

Implement surface detection before each move to a new position.
If a command encounters a surface, the ship aborts the move, stays
’ on the current position, and reports the obstacle.

The specifications and the implementation of this requirement are very similar to
those we did previously, and we'll leave that to you.

Here are a few tips that can be useful:

* The planet object has the constructor that accepts a list of obstacles.
Each obstacle is an instance of the Point class.

* The Location.foward and Location.backward methods have overloaded
versions that accept a list of obstacles. They return true if a move was
successful and false if it failed. Use this Boolean to construct a status report
required for the Ship.receiveCommands method.

* The receiveCommands method should return a string with the status of
each command. 0 can represent OK and x can be for a failure to move
(OOXO = OK, OK, Failure, OK).

The full source for this requirement can be found in the reqo6-obstacles branch
of the tdd-java-cho4-ship repository (https://bitbucket.org/vfarcic/tdd-
java-chO4-ship/branch/req06 —obstacles).

[103]

https://bitbucket.org/vfarcic/tdd-java-ch04-ship/branch/req06-obstacles
https://bitbucket.org/vfarcic/tdd-java-ch04-ship/branch/req06-obstacles

Unit Testing - Focusing on What You Do and Not on What Has Been Done

Summary

In his chapter, we used TestNG as our testing framework of choice. There wasn't
much difference when compared to JUnit, simply because we didn't use any of the
more advanced features of TestNG (for example, data providers, factories, and so
on). With TDD, it is questionable whether we'll ever have a need for those features.

Visit http://testng.org/, explore it, and decide for yourself which framework best
suits your needs.

The main objective of this chapter was to learn how to focus on one unit at a time.
We already had a lot of helper classes and we tried our best to ignore their internal
workings. In many cases, we did not write specifications that verified that the end
result was correct, but we checked whether the method we were working on invoked
the correct method from those helper classes. In the real world, you will be working
on projects together with other team members, and it is important to learn how to
focus on your tasks and trust that what others do works as expected. The same can
be said for third-party libraries. It would be too expensive to test all inner processes
that can happen when we invoke them. There are other types of tests that will try to
cover those possibilities. When working with unit tests, the focus should only be on
the unit we're currently working on.

Now that you have a better grasp of how to effectively use unit tests in the context
of TDD, it is time to dive into some other advantages that test-driven development
provides. Specifically, we'll explore how to better design our applications.

[104]

http://testng.org/

Design — If It's Not Testable,
It's Not Designed Well

"Simplicity is the ultimate sophistication."
Leonardo da Vinci

In the past, the software industry was focused on developing software at high speed,
with nothing in mind but cost and time. Quality was a secondary goal, with the fake
feeling that customers were not interested in it.

Nowadays, with the increasing connectivity of all kinds of platforms and devices,
quality becomes a first-class citizen in customers' requirements. Good applications
offer a good service with a reasonable response-time, without being affected by a
multitude of concurrent requests from many users.

Good applications in terms of quality are those that have been well designed.
A good design means scalability, security, maintainability, and many other
desired attributes.

In this chapter, we will explore how TDD leads developers to good design and best
practices by implementing the same application using both the traditional and
TDD approaches.

The following topics will be covered in this chapter:

* Why should we care about design?

* Design considerations

* The traditional development process
* The TDD approach

* Hamcrest

[105]

Design - If It's Not Testable, It's Not Designed Well

Why should we care about design?

In the coding world, whether you are an expert or a beginner, there are some
scenarios where code seems to be weird. You can't avoid a feeling that something

is wrong with the code when reading it. You even occasionally wonder why the
previous programmer implemented a specific method or a class in such a bad
manner. This is because the same functionality can be implemented in a vast number
of different ways, each of them being unique. With this big number of possibilities,
which is the best one? The answer is that all of them are valid as they all achieve the
goal. However, it is true that some considerations should be taken into account while
finding better solutions. This is where design becomes important.

Design principles
The TDD philosophy encourages programmers to follow some principles and good
practices that make code cleaner and more readable. As a result, our code becomes
easy to understand and safe to modify in the future. Let's take a look at some of the
basic software design principles.

You Ain't Gonna Need It

YAGNI is the acronym for the You Ain't Gonna Need It principle. It aims to erase
all unnecessary code and focuses on the current functionalities, not the future
ones. The less code you have, the less code you're going to maintain and the less
probability that bugs are introduced.

For more information on YAGN], visit Martin Fowler's article available at
http://martinfowler.com/bliki/Yagni.html.

Don't Repeat Yourself

The idea behind the Don't Repeat Yourself (DRY) principle is to reuse the code you
previously wrote instead of repeating it. The benefits are less code to maintain and
the use of code that you know that already works, which is a great thing. It helps you
to discover new abstraction levels inside your code.

For additional information, visit http://en.wikipedia.org/wiki/Don%27t
repeat yourself.

[106]

http://martinfowler.com/bliki/Yagni.html
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Chapter 5

Keep It Simple, Stupid
This principle has the confusing acronym of KISS and states that things perform

their function better if they are kept simple rather than complicated. It was coined
by Kelly Johnson.

To read about the story behind this principle, visit http://en.wikipedia.org/
wiki/KISS principle.

Occam's Razor

Although Occam's Razor is not a software engineering principle but a philosophical
one, it is still applicable to what we do, and is very similar to the previous principle
with the main derived statement being as follows:

"When you have two competing solutions to the same problem, the simpler one is
the better."

William of Ockham

For more information on Occam's razor, visit http://en.wikipedia.org/wiki/
Occam%27s_razor.

SOLID

The word SOLID is an acronym invented by Robert C. Martin for the five basic
principles of object-oriented programming. By following these five principles, a
developer is more likely to create a great, durable, and maintainable application:

* Single Responsibility Principle: A class should have only a single reason
to change.

* Open-Closed Principle: A class should be open for extension and closed for
modification. This is attributed to Bertrand Meyer.

* Liskov Substitution Principle: This was created by Barbara Liskov, and she
says a class should be replaceable by others that extend that class.

* Interface Segregation Principle: A few specific interfaces are preferable than
one general-purpose interface.

* Dependency Inversion Principle: A class should depend on abstraction
instead of implementation. This means that class dependencies must be
focused on what is done and forget about how it is done.

[107]

http://en.wikipedia.org/wiki/KISS_principle
http://en.wikipedia.org/wiki/KISS_principle
http://en.wikipedia.org/wiki/Occam%27s_razor
http://en.wikipedia.org/wiki/Occam%27s_razor

Design - If It's Not Testable, It's Not Designed Well

For further information on SOLID or other related principles, visit
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod.

The first four principles are part of the core of TDD thinking, since they aim to
simplify the code we write. The last one is focused on classes construction and
dependency relationships in the application assembly process.

All of these principles are applicable and desirable in both test and non-test
driven development, because, apart from other benefits, they make our code
more maintainable. The proper practical application of them is worth a whole
book by itself. While we won't have time to go deep into it, we encourage you to
investigate further.

In this chapter, we will see how TDD induces developers to put some of these
principles in to practice effortlessly. We will implement a small but yet fully
functional version of the famous game Connect4 with both TDD and non-TDD
approach. Note that repetitive parts, such as Gradle project creation and so on,
are omitted, as they are not considered relevant for the purpose of this chapter.

Connect4

Connect4 is a popular, very easy-to-play board game. The rules are limited
and simple.

Connect4 is a two-player connection game, in which the players first
choose a color and then take turns dropping colored discs from the top
into a seven-column, six-row, vertically suspended grid. The pieces fall
straight down, occupying the next available space within the column. The
% objective of the game is to connect four of one's own discs of the same
~"color next to each other vertically, horizontally, or diagonally, before your
opponent connects four of theirs.

For further information on the game, visit Wikipedia
(http://en.wikipedia.org/wiki/Connect Four).

Requirements

In order to code the two implementations of Connect4, the game rules are
transcribed below in the form of requirements. These requirements are the
starting point for both the developments. We will go through the code with
some explanations and compare both implementations at the end:

1. The board is composed of seven columns and six rows, all positions
are emptys.

[108]

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://en.wikipedia.org/wiki/Connect_Four

Chapter 5

2. Players introduce discs on the top of the columns. The introduced disc drops
down the board if the column is empty. Future discs introduced in the same
column will stack over the previous ones.

3. Itisatwo-person game, so there is one color for each player. One player uses
red ('R') and the other one uses green ('G'). Players alternate turns, inserting
one disc every time.

4. We want feedback when either an event or an error occurs within the game.
The output shows the status of the board after every move.

5. When no more discs can be inserted, the game finishes, and it is considered
a draw.

6. If a player inserts a disc and connects more than three discs of his color in a
straight vertical line, then that player wins.

The same happens in a horizontal line direction.

The same happens in a diagonal line direction.

Test the last implementation of Connect4

This is the traditional approach, focusing on problem-solving code rather than tests.
Some people and companies forget about the value of automated testing. and rely on
users in what are called user acceptance tests.

This kind of user acceptance test consists of recreating real-world scenarios in a
controlled environment, ideally identical to production. Some users perform a lot of
different tasks to verify the correctness of the application. If any of these actions fail,
then the code is not accepted as it is breaking some functionality or it is not working
as expected.

Moreover, a great number of these companies also use unit testing as a way

to perform early regression checks. These unit tests are programmed after the
development process and they try to cover as much code as possible. Last of all,
code coverage analysis is executed to get a trace of what is actually covered by
those unit tests; the bigger the code coverage, the better the quality delivered.

Let's implement the Connect4 game using this approach. The relevant code for
each of the identified requirements is presented below. This code isn't written
incrementally, so some code snippets might contain a few code lines nonrelated
to the mentioned requirement.

[109]

Design - If It's Not Testable, It's Not Designed Well

Requirement 1

Let us start with the first requirement.

The board is composed of seven horizontal and six vertical
e empty positions.

The implementation of this requirement is pretty straightforward. We just need
the representation of an empty position and the data structure to hold the game.
Note that the colors used by players are also defined:

public class Connect4
public enum Color {
RED('R'), GREEN('G'), EMPTY(' ');
private final char wvalue;
Color (char value) { this.value = value; }
@Override

public String toString() {
return String.valueOf (value) ;

public static final int COLUMNS = 7;

public static final int ROWS = 6;

private Color[] [] board = new Color [COLUMNS] [ROWS] ;
public Connect4 ()

for (Color[] column : board) ({
Arrays.fill (column, Color.EMPTY) ;

[110]

Chapter 5

Requirement 2

The second requirement starts drawing the logic of the game.

Players introduce discs on the top of the columns. The introduced

% disc drops down the board if the column is empty. Future discs
= introduced in the same column will stack over the previous ones.

In this part, board bounds become relevant. We need to mark what positions are
already taken, using Color.RED to indicate them. Finally, the first private method
is created. It is a helper method that calculates the number of discs introduced in a

given column:

public void putDisc (int column)
if (column > 0 && column <= COLUMNS) {
int numOfDiscs =
getNumberOfDiscsInColumn (column - 1) ;
if (numOfDiscs < ROWS)
board[column - 1] [numOfDiscs] =
Color.RED;

private int getNumberOfDiscsInColumn (int column)
if (column >= 0 && column < COLUMNS) {

int row;
for (row = 0; row < ROWS; row++) {
if (Color.EMPTY == board[column] [row]) ({

return row;

}

return row;

}

return -1;

[111]

Design - If It's Not Testable, It's Not Designed Well

Requirement 3

More game logic is introduced with this requirement.

It is a two-person game, so there is one colour for each player. One
@'@‘\ player uses red ('R') and the other one uses green ('G'). Players

’ alternate turns, inserting one disc every time.

We need to save the current player in order to determine which player is playing
this turn. We also need a function to switch the players in order to recreate the logic
of turns. Some lines of code become relevant in the putDisc function. Specifically,
the board position assignment is made using the current player, and it is switched
afterevery move, as the game rules say:

private Color currentPlayer = Color.RED;

private void switchPlayer() {
if (Color.RED == currentPlayer)
currentPlayer = Color.GREEN;
} else {
currentPlayer = Color.RED;

public void putDisc(int column)
if (column > 0 && column <= COLUMNS) {

int numOfDiscs =
getNumberOfDiscsInColumn (column - 1) ;
if (numOfDiscs < ROWS)

board[column - 1] [numOfDiscs] =

currentPlayer;
switchPlayer () ;

[112]

Chapter 5

Requirement 4
A few outputs should be added in order to let the players know the current status of
the game.

% We want a feedback when either an event or an error occurs within
= the game. The output shows the status of the board after every move.

No output channel is specified. To make it easier, we decided to use the system
standard output to print an event when it occurs. A few lines have been added on
every action to let the user know about the status of the game:

private static final String DELIMITER = "|";

private void switchPlayer() {
if (Color.RED == currentPlayer) ({

currentPlayer = Color.GREEN;
} else {
currentPlayer = Color.RED;
System.out.println ("Current turn: " +
currentPlayer) ;

public void printBoard() {
for (int row = ROWS - 1; row >= 0; --row) ({
StringJoiner stringJoiner =
new StringJoiner (DELIMITER,
DELIMITER,
DELIMITER) ;
for (int col = 0; col < COLUMNS; ++col)
stringJoiner
.add (board[col] [row] .toString()) ;
}
System.out.println (
stringJoiner.toString()) ;

public void putDisc(int column) {
if (column > 0 && column <= COLUMNS) ({

[113]

Design - If It's Not Testable, It's Not Designed Well

int numOfDiscs =
getNumberOfDiscsInColumn (column - 1) ;
if (numOfDiscs < ROWS)
board[column - 1] [numOfDiscs] =
currentPlayer;
printBoard () ;
switchPlayer () ;
} else {
System.out.println (numOfDiscs) ;
System.out.println("There's no room " +
"for a new disc in this column") ;
printBoard () ;
}
} else {
System.out.println ("Column out of bounds") ;
printBoard () ;

Requirement 5

The first game has a finished condition.

% When no more discs can be inserted, the game finishes and
i it is considered a draw.

The following code shows one of the possible implementations:

public boolean isFinished() {

int numOfDiscs = 0;

for (int col = 0; col < COLUMNS; ++col)
numOfDiscs +=
getNumberOfDiscsInColumn (col) ;

}

if (numOfDiscs >= COLUMNS * ROWS)
System.out.println("It's a draw");
return true;

}

return false;

[114]

Chapter 5

Requirement 6

The first win condition.

If a player inserts a disc and connects more than three discs of his
= colour in a straight vertical line, then that player wins.

The checkwinCondition private method implements this rule by scanning whether
or not the last move is a winning one:

private Color winner;
public static final int DISCS_FOR _WIN = 4;
public void putDisc(int column) {

if (numOfDiscs < ROWS)
board[column - 1] [numOfDiscs] =
currentPlayer;
printBoard() ;
checkWinCondition(column - 1,
numOfDiscs) ;
switchPlayer () ;

private void checkWinCondition (int col, int row) {
Pattern winPattern =
Pattern.compile(".*" + currentPlayer +
"{" + DISCS FOR WIN + "}.*");

// Vertical check

StringJoiner stringJoiner =
new StringJoiner ("") ;

for (int auxRow = 0; auxRow < ROWS; ++auxRow) {
stringJoiner
.add (board[col] [auxRow] .toString()) ;

if (winPattern.matcher (stringJoiner.toString())
.matches ()) {
winner = currentPlayer;

[115]

Design - If It's Not Testable, It's Not Designed Well

System.out.println (currentPlayer +
" wins™") ;

public boolean isFinished() {

if (winner != null) return true;

Requirement 7

This is the same win condition, but in a different direction.

If a player inserts a disc and connects more than three discs of his
= color in a straight horizontal line, then that player wins.

A few lines to implement this rule are as follows:

private void checkWinCondition (int col, int row) {

// Horizontal check

stringJoiner = new StringJoiner("");
for (int column = 0; column < COLUMNS;
++column) {
stringJoiner

.add (board [column] [row] .toString()) ;

}

if (winPattern.matcher (stringJoiner.toString())
.matches ()) {

winner = currentPlayer;

System.out.println (currentPlayer +
" wins") ;

return;

[116]

Chapter 5

Requirement 8

The last requirement is the last win condition. It is pretty similar to the last two;
in this case, in diagonal direction.

If a player inserts a disc and connects more than three discs of his
i color in a straight diagonal line, then that player wins.

This is a possible implementation for this last requirement. The code is very similar
to the other win conditions because the same statement must be fulfilled:

private void checkWinCondition (int col, int row) {

// Diagonal checks
int startOffset = Math.min(col, row) ;
int column = col - startOffset,

auxRow = row - startOffset;
stringJoiner = new StringJoiner ("");
do {

stringJoiner

.add (board [column++] [auxRow++] .toString ()) ;

} while (column < COLUMNS && auxRow < ROWS) ;

if (winPattern.matcher (stringJoiner.toString())
.matches ()) {
winner = currentPlayer;
System.out.println (currentPlayer +
" wins") ;

return;

startOffset = Math.min(col, ROWS - 1 - row) ;
startOffset;
auxRow = row + startOffset;

column = col

stringJoiner = new StringJoiner("");
do {
stringJoiner
.add (board [column++] [auxRow--] .toString()) ;
} while (column < COLUMNS && auxRow >= 0);

if (winPattern.matcher (stringJoiner.toString())
.matches ()) {

[117]

Design - If It's Not Testable, It's Not Designed Well

winner = currentPlayer;
System.out.println(currentPlayer +
n wins");

What we have got is a class with one constructor, three public methods, and three
private methods. The logic of the application is distributed among all methods.
The biggest flaw here is that this class is very difficult to maintain. The crucial
methods, such as checkWinCondition, are not-trivial with potential for bug
entries in future modifications.

If you want to take a look at the full code, you can find it in the
https://bitbucket.org/vfarcic/tdd-java-ch05-design.git repository.

We made this small example to demonstrate the common problems with this
approach. Topics such as the SOLID principle requires a bigger project to become
more illustrative.

In large projects with hundreds of classes, the problems bring hours wasted in a sort
of surgical development. Developers spend major part of their time investigating
tricky code and understanding how it works, instead of creating new features.

The TDD implementation of Connect4

At this time, we know how TDD works: writing tests before, implementation after
tests, and refactoring later on. We are going to pass through that process and only
show the final result for each requirement. It is left to you to figure out the iterative
red-green-refactor process. Let's make this more interesting, if possible, by using a
Hamcrest framework in our tests.

Hamcrest

As described in Chapter 2, Tools, Frameworks, and Environment, Hamcrest improves
our tests readability. It turns assertions more semantic and comprehensive at the
time that complexity is reduced by using matchers. When a test fails, the error
shown becomes more expressive by interpreting the matchers used in the assertion.
A message could also be added by the developer.

The Hamcrest library is full of different matchers for different object types and
collections. Let's start coding and get a taste of it.

[118]

https://bitbucket.org/vfarcic/tdd-java-ch05-design.git

Chapter 5

Requirement 1

We will start with the first requirement.

The board is composed by seven horizontal and six vertical
e empty positions.

There is no big challenge with this requirement. The board bounds are specified,
but there's no described behavior in it; just the consideration of an empty board
when the game starts. That means zero discs when the game begins. However, this
requirement must be taken into account later on.

Tests

This is how the test class looks for this requirement. There's a method to initialize
the tested class in order to use a completely fresh object in each test. There's also the
first test to verify that there's no disc when we start the game, meaning that all board
positions are empty:

public class Connect4TDDSpec {
private Connect4TDD tested;

@Before
public void beforeEachTest ()
tested = new Connect4TDD() ;

}

@Test
public void whenTheGameIsStartedTheBoardIsEmpty ()
assertThat (tested.getNumberOfDiscs (), is(0));

}

[119]

Design - If It's Not Testable, It's Not Designed Well

Code

This is the TDD implementation of the previous specification. Observe the simplicity
of the given solution for this first requirement; a simple method returning the result
in a single line:

public class Connect4TDD {

public int getNumberOfDiscs () {
return 0;

}

Requirement 2

This is the implementation of the second requirement.

Players introduce discs on the top of the columns. An introduced disc
%“ drops down the board if the column is empty. Future discs introduced
’ in the same column will stack over the previous ones.

* We can split this requirement into the following tests:

* When a disc is inserted into an empty column, its position is 0

* When a second disc is inserted into the same column, its position is 1

e When a disc is inserted into the board, the total number of discs increases

* When a disc is put outside the boundaries, a Runtime Exception is thrown
e When a disc is inserted in to a column and there's no room available for it,

then a Runtime Exception isthrown

Also, these other tests are derived from the first requirement. They are related to the
board limits or board behaviour.

Tests
The Java implementation of the afore mentioned tests is as follows:
@Test
public void
whenDiscOutsideBoardThenRuntimeException ()
int column = -1;

exception.expect (RuntimeException.class) ;
exception.expectMessage ("Invalid column " +

[120]

Chapter 5

column) ;
tested.putDiscInColumn (column) ;

@Test
public void
whenFirstDiscInsertedInColumnThenPositionIsZero()
int column = 1;
assertThat (tested.putDiscInColumn (column) ,
is(0));

@Test

public void

whenSecondDiscInsertedInColumnThenPositionIsOne ()
int column = 1;
tested.putDiscInColumn (column) ;
assertThat (tested.putDiscInColumn (column) ,
is(1));

@Test

public void

whenDiscInsertedThenNumberOfDiscsIncreases () {
int column = 1;
tested.putDiscInColumn (column) ;

assertThat (tested.getNumberOfDiscs (), is(1));
@Test
public void
whenNoMoreRoomInColumnThenRuntimeException () {

int column = 1;
int maxDiscsInColumn = 6; // the number of rows
for (int times = 0;

times < maxDiscsInColumn;

++times) {

tested.putDiscInColumn (column) ;
}
exception.expect (RuntimeException.class) ;
exception

.expectMessage ("No more room in column " +

column) ;

tested.putDiscInColumn (column) ;

[121]

Design - If It's Not Testable, It's Not Designed Well

Code

This is the necessary code to satisfy the tests:

private static final int ROWS = 6;
private static final int COLUMNS = 7;
private static final String EMPTY = " ";

private Stringl[] [] board =
new String[ROWS] [COLUMNS] ;

public Connect4TDD()
for (String[] row : board)
Arrays.fill (row, EMPTY) ;

public int getNumberOfDiscs () {
return IntStream.range (0, COLUMNS)
.map (this: :getNumberOfDiscsInColumn) .sum() ;

private int getNumberOfDiscsInColumn (int column) {
return (int) IntStream.range (0, ROWS)
.filter (row -> !EMPTY
.equals (board[row] [column]))
.count () ;

public int putDiscInColumn (int column) {
checkColumn (column) ;
int row = getNumberOfDiscsInColumn (column) ;
checkPositionToInsert (row, column) ;
board[row] [column] = "X";
return row;

private void checkColumn (int column) {
if (column < 0 || column >= COLUMNS)
throw new RuntimeException (
"Tnvalid column " + column) ;

private void

[122]

Chapter 5

checkPositionToInsert (int row, int column) {
if (row == ROWS)
throw new RuntimeException (
"No more room in column " + column) ;

Requirement 3

The third requirement specifies the game logic.

It is a two-person game, so there is one colour for each player.
One player uses red ('R') and the other one uses green ('G').
Players alternate turns, inserting one disc every time.

Tests

These tests cover the verification of the new functionality. For the sake of simplicity,
the red player will always start the game:

@Test

public void

whenFirstPlayerPlaysThenDiscColorIsRed () {
assertThat (tested.getCurrentPlayer (), is("R"));

@Test
public void
whenSecondPlayerPlaysThenDiscColorIsRed ()

int column = 1;

tested.putDiscInColumn (column) ;

assertThat (tested.getCurrentPlayer (), is("G"));

Code

A couple of methods need to be created to cover this functionality.
The switchPlayer method is called before returning the row in the
putDiscInColumn method:

private static final String RED = "R";

private static final String GREEN = "G";

[123]

Design - If It's Not Testable, It's Not Designed Well

private String currentPlayer = RED;

public Connect4TDD()
for (Stringl[] row : board)
Arrays.fill (row, EMPTY) ;

public String getCurrentPlayer() {
return currentPlayer;

private void switchPlayer() {
if (RED.equals (currentPlayer))

currentPlayer = GREEN;

else currentPlayer = RED;

public int putDiscInColumn (int column)

switchPlayer () ;
return row;

Requirement 4
Next, we should let the player know the status of the game.

We want feedback when either an event or an error occurs within the
— game. The output shows the status of the board on every move.

Tests

As we are throwing exceptions when an error occurs, this is already covered, so we
only need to implement these two tests. Furthermore, for the sake of testability, we
need to introduce a parameter within the constructor. By introducing this parameter,
the output becomes easier to test:

private OutputStream output;
@Before

public void beforeEachTest ()
output = new ByteArrayOutputStream() ;

[124]

Chapter 5

tested = new Connect4TDD (
new PrintStream(output)) ;

@Test
public void
whenAskedForCurrentPlayerTheOutputNotice ()
tested.getCurrentPlayer () ;
assertThat (output.toString(),
containsString("Player R turn")) ;

@Test
public void
whenADiscIsIntroducedTheBoardIsPrinted ()
int column = 1;
tested.putDiscInColumn (column) ;
assertThat (output.toString(),
containsString("| [R| | | | | |™));

Code

One possible implementation is to pass the above tests. As you can see, the class
constructor now has one parameter. This parameter is used in several methods to
print the event or action description:

private static final String DELIMITER = "|";

public Connect4TDD (PrintStream out) {
outputChannel = out;
for (String[] row : board)
Arrays.fill (row, EMPTY) ;

public String getCurrentPlayer() {
outputChannel .printf ("Player %s turn%n",
currentPlayer) ;
return currentPlayer;

private void printBoard() {

for (int row = ROWS - 1; row >= 0; row--)

StringJoiner stringJoiner =

{

[125]

Design - If It's Not Testable, It's Not Designed Well

new StringJoiner (DELIMITER,
DELIMITER,
DELIMITER) ;
Stream.of (board[row])
.forEachOrdered (stringJoiner: :add) ;
outputChannel
.println(stringJoiner.toString()) ;

public int putDiscInColumn (int column)

printBoard () ;
switchPlayer () ;
return row;

Requirement 5

This requirement tells the system whether the game is finished.

% When no more discs can be inserted, the game finishes and it is
s considered a draw.

Tests

There are two conditions to test. The first condition is that new games must be
unfinished; the second condition is that full board games must be finished:

@Test
public void whenTheGameStartsItIsNotFinished() {
assertFalse ("The game must not be finished",
tested.isFinished()) ;

@Test
public void
whenNoDiscCanBeIntroducedTheGamesIsFinished ()
for (int row = 0; row < 6; TYOw++)
for (int column = 0; column < 7; column++)

tested.putDiscInColumn (column) ;
assertTrue ("The game must be finished",
tested.isFinished()) ;

[126]

Chapter 5

Code

An easy and simple solution to these two tests is as follows:

public boolean isFinished() ({
return getNumberOfDiscs () == ROWS * COLUMNS;

Requirement 6

This is the first win condition requirement.

If a player inserts a disc and connects more than three discs of his
K= color in a straight vertical line, then that player wins.

Tests

In fact, this requires one single check. If the current inserted disc connects other three
discs in a vertical line, the current player wins the game:

@Test
public void
when4VerticalDiscsAreConnectedThenPlayerWins () {
for (int row = 0; row < 3; row++) {
tested.putDiscInColumn(1l); // R
tested.putDiscInColumn(2); // G
}
assertThat (tested.getWinner (),
isEmptyString()) ;
tested.putDiscInColumn(1l); // R
assertThat (tested.getWinner (), is("R"));

Code

There are a couple of changes to the putDiscInColumn method. Also, a new method
called checkwinner has been created:

private static final int DISCS TO WIN = 4;

private String winner = "";

[127]

Design - If It's Not Testable, It's Not Designed Well

private void checkWinner (int row, int column) {
if (winner.isEmpty())
String colour = board[row] [column] ;
Pattern winPattern =

Pattern.compile(".*" + colour + "{" +
DISCS_TO_WIN + "}.*");

String vertical = IntStream.range (0, ROWS)
.mapToObj (r -> board[r] [column])
.reduce (String: :concat) .get () ;

if (winPattern.matcher (vertical) .matches())

winner = colour;

Requirement 7

This is the second win condition, which is pretty similar to the previous one.

If a player inserts a disc and connects more than three discs of his color in
— a straight horizontal line, then that player wins.

Tests

This time, we are trying to win the game by inserting discs into adjacent columns:
@Test
public void
when4HorizontalDiscsAreConnectedThenPlayerWins () {

int column;

for (column = 0; column < 3; column++) {
tested.putDiscInColumn (column); // R
tested.putDiscInColumn (column); // G

}

assertThat (tested.getWinner (),
isEmptyString()) ;

tested.putDiscInColumn (column); // R

assertThat (tested.getWinner (), is("R"));

[128]

Chapter 5

Code

The code to pass this test is put into the checkWinners method:

if (winner.isEmpty()) {
String horizontal =
Stream
.of (board [row])
.reduce (String: :concat) .get () ;
if (winPattern.matcher (horizontal)
.matches())
winner = colour;

Requirement 8

The last requirement is the last win condition.

If a player inserts a disc and connects more than three discs of his
" colour in a straight diagonal line, then that player wins.

Tests

We need to perform valid game movements to achieve the condition. In this case,
we need to test both diagonals across the board: from top-right to bottom-left and
from bottom-right to top-left. The following tests use a list of columns to recreate a
full game to reproduce the scenario under test:

@Test
public void
when4DiagonallDiscsAreConnectedThenThatPlayerWins ()
{

int [] gameplay =

new int[] {1, 2, 2, 3, 4, 3, 3, 4, 4, 5, 4};
for (int column : gameplay) {
tested.putDiscInColumn (column) ;
}

assertThat (tested.getWinner (), is("R"));

}

@Test
public void
when4Diagonal2DiscsAreConnectedThenThatPlayerWins ()
{
int [] gameplay =
new int[] {3, 4, 2, 3, 2, 2, 1, 1, 1, 1};

[129]

Design - If It's Not Testable, It's Not Designed Well

for (int column : gameplay) {
tested.putDiscInColumn (column) ;
}

assertThat (tested.getWinner (), is("G"));

Code

Again, the checkWinner method needs to be modified, adding new
board verifications:

if (winner.isEmpty())
int startOffset = Math.min(column, row) ;
int myColumn = column - startOffset,
myRow = row - startOffset;
StringJoiner stringJoiner =
new StringJoiner ("") ;
do {
stringJoiner
.add (board [myRow++] [myColumn++]) ;
} while (myColumn < COLUMNS &&
myRow < ROWS) ;
if (winPattern
.matcher (stringJoiner.toString())
.matches ())
winner = currentPlayer;

if (winner.isEmpty())
int startOffset =
Math.min(column, ROWS - 1 - row) ;
int myColumn = column - startOffset,
myRow = row + startOffset;
StringJoiner stringJoiner =
new StringJoiner ("") ;
do {
stringJoiner
.add (board [myRow- -] [myColumn++]) ;
} while (myColumn < COLUMNS &&
myRow >= 0) ;
if (winPattern
.matcher (stringJoiner.toString())
.matches ())
winner = currentPlayer;

[130]

Chapter 5

Using TDD, we got a class with a constructor, five public methods, and six private
methods. In general, all methods look pretty simple and easy to understand. In
this approach, we also get a big method to check winner conditions: checkWinner.
The advantage is that this approach has useful tests to guarantee that future
modifications do not alter the behavior of the method. Code coverage wasn't

the goal, but we got a high percentage.

Additionally, for testing purposes, we refactored the constructor of the class to accept
the output channel as a parameter. If we need to modify the way the game status

is printed, it will be easier that way than replacing all the uses in the traditional
approach. Hence, it is more extensible.

In large projects, when you detect that a great number of tests must be created for a
single class, this enables you to split this class following the Single Responsibility
Principle. As the output printing was delegated to an external class passed in a
parameter in initialization, a more elegant solution would be to create a class with
high-level printing methods. This is just to keep the printing logic separated from the
game logic. These are examples of benefits of good design using TDD.

=% Connectd > fi} com.packtpublishing.tddjava.chOSconnect4 > & Gonnect4TDD

Connect4TDD

Element Missed Instructions+ Cov.© Missed Branches Cov.© Missed Cxty- Missed+ Lines® Missed+ Methods
@ checkWinner(int, int 100% 100% a 13 0 29 a
@ Connect4TDD(PrintStream) 100% 100%
@ printBoard| 100% 100%
@ putDiscInColumn(int] 100% nia
@ checkColumn(int) 100% 75%
@ checkPositionTolnsert{int, int 100% 100%
@ getCurrentPlayer, 100% nia
@ switchPlayer{ 100% 100%
© getNumberOfDisesinColumn(int) 100% nia
@ getNumberCfDiscs 100% nia
@ isFinished(} 100% 100%
@ getWinner(I 100% nfa
Total 0 of 356 100% 1of38 97%

(]
@

~-oocoocooooo0-=000
- N CAr SRRy
coocoo0oooo0oooo
- SN W AN W W o !
oo0o0o0oo0oo0o0o0o00o0o0
4 PR PR R B U (RS R I (PO PR T

[
@
o

The code of this approach is available at
https://bitbucket.org/vfarcic/tdd-java-ch05-design.git.

[131]

https://bitbucket.org/vfarcic/tdd-java-ch05-design.git

Design - If It's Not Testable, It's Not Designed Well

Summary

In this chapter, we briefly talked about software design and a few basic design
principles. We implemented a fully-functional version of the board game
Connect4 using two approaches: traditional and test-driven development.

We analyzed both solutions in terms of pros and cons, and used a Hamcrest
framework to empower our tests.

Finally, we concluded that good design and good practices can be performed by both
approaches, but TDD leads developers to the better way.

For further information about the topics that this chapter covers, refer to two
highly recommended books written by Robert C. Martin: Clean Code: A Handbook
of Agile Software Craftsmanship and Agile Software Development: Principles, Patterns,
and Practices.

[132]

Mocking — Removing
External Dependencies

"Talk is cheap. Show me the code."
- Linus Torvalds

TDD is about speed. We want to quickly demonstrate whether some idea, concept,
or implementation, is valid or not. Further on, we want to run all tests fast. A major
bottleneck to this speed is external dependencies. Setting up DB data required

by tests can be time-consuming. The execution of tests that verify code that uses
third-party API can be slow. Most importantly, writing tests that satisfy all external
dependencies can become too complicated to be worthwhile. Mocking both external
and internal dependencies helps us solve these problems.

We'll build on what we did in Chapter 3, Red-Green-Refactor - From Failure Through
Success Until Perfection. We'll extend Tic-Tac-Toe to use MongoDB as data storage.
None of our unit tests will actually use MongoDB since all communications will be
mocked. At the end, we'll create an integration test that will verify that our code and
MongoDB are indeed integrated.

The following topics will be covered in this chapter:

* Mocking

* Mockito

* Tic-Tac-Toe v2 requirements
* Developing Tic-Tac-Toe v2

* Integration tests

[133]

Mocking - Removing External Dependencies

Mocking

Everyone who did any of the applications more complicated than "Hello World,"
knows that Java code is full of dependencies. There can be classes and methods
written by other members of the team, third-party libraries, or external systems that
we communicate with. Even libraries found inside JDK are dependencies. We might
have a business layer that communicates with data access layer that, in turn, uses
database drivers to fetch data. When working with unit tests, we take dependencies
even further and often consider all public and protected methods (even those inside
the class we are working on) as dependencies that should be isolated.

When doing TDD on unit tests level, creating specifications that contemplate all
those dependencies can be so complex that the tests themselves would become
bottlenecks. Their development time can increase so much that the benefits gained
with TDD quickly become overshadowed by the ever-increasing cost. More
importantly, those same dependencies tend to create such complex tests that they
contain more bugs than the implementation itself.

The idea of unit testing (especially when tied to TDD) is to write specifications that
validate whether the code of a single unit works regardless of dependencies. When
dependencies are internal, they are already tested, and we know that they do what
we expect them to do. On the other hand, external dependencies require trust. We
must believe that they work correctly. Even if we don't, the task work of performing
deep testing of, let's say, the JDK java.nio classes is too big for most of us. Besides,
those potential problems will surface when we run functional and integration tests.

While focused on units, we must try to remove all dependencies that a unit might
use. Removal of those dependencies is accomplished through a combination of
design and mocking.

Using mocks
Benefits include reduced code dependency and faster tests execution.

Mocks are prerequisites for the fast execution of tests and the ability to

M concentrate on a single unit of functionality. By mocking dependencies
external to the method that is being tested, the developer is able to focus

Q on the task at hand without spending time setting them up. In a case of

bigger or multiple teams working together, those dependencies might
not even be developed. Also, execution of tests without mocks tends to be
slow. Good candidates for mocks are databases, other products, services,
and so on.

Before we go deeper into mocks, let us go through reasons why one would employ
them in the first place.

[134]

Chapter 6

Why mocks?

The following list represents some of the reasons why we employ mock objects:

* The object generates nondeterministic results. For example, java.util.
Date () provides a different result every time we instantiate it. We cannot test
that its result is as expected:

java.util.Date date = new java.util.Date() ;

date.getTime(); // What is
the result this method returns?

* The object does not yet exist. For example, we might create an interface and
test against it. The object that implements that interface might not have been
written at the time we test code that uses that interface.

* The object is slow and requires time to process. The most common example
would be databases. We might have a code that retrieves all records and
generates a report. This operation can last minutes, hours, or, in some cases,
even days.

The above mentioned reasons for mock objects apply to any type of testing.
However, in the case of unit tests and, especially, in the context of TDD, there is one
more reason, perhaps more important than others. Mocking allows us to isolate all
dependencies used by a the method we are currently working on. This empowers
us to concentrate on a single unit and ignore the inner workings of the code that the
unit invokes.

Terminology

Terminology can be a bit confusing, especially since different people use different
names for the same thing. To make things even more complicated, mocking
frameworks tend not to be consistent when naming their methods.

Before we proceed, let us briefly go through terminology.
Test doubles is a generic name for all of the following types:

* Dummy object's purpose is to act as a substitute for a real method argument

* Test Stub can be used to replace a real object with a test-specific object that
feeds the desired indirect inputs into the system under test

* Test spy captures the indirect output calls made to another component by the
system under test (SUT) for later verification by the test

[135]

Mocking - Removing External Dependencies

* Mock Object replaces an object the system under test (SUT) depends on, with
a test-specific object that verifies that it is being used correctly by the SUT

* Fake object replaces a component that the system under test (SUT) depends
on with a much lighter-weight implementation

If you are confused, it might help you to know that you are not the only one.

Things are even more complicated than this, since there is no clear agreement, nor

a naming standard, between frameworks or authors. Terminology is confusing and
inconsistent, and the terms mentioned above are by no means accepted by everyone.

To simplify things, throughout this book we'll use the same naming used by Mockito
(our framework of choice). This way, methods that you'll be using will correspond
with the terminology that you'll be reading further on. We'll continue using mocking
as a general term for what others might call test doubles. Furthermore, we'll use a
mock or spy term to refer to Mockito methods.

Mock objects

Mock objects simulate the behavior of real (often complex) objects. They allow us

to create an object that will replace the real one used in the implementation code.

A mocked object will expect a defined method with defined arguments to return the
expected result. It knows in advance what is supposed to happen and how we expect
it to react.

Let's take a look at one simple example:

TicTacToeCollection collection =
mock (TicTacToeCollection.class) ;

assertThat (collection.drop()) .isFalse() ;
doReturn (true) .when (collection) .drop() ;

assertThat (collection.drop()) .isTrue() ;

First, we defined collection to be a mock of TicTacToeCollection. At this
moment, all methods from this mocked object are fake and, in the case of Mockito,
return default values. This is confirmed in the second line, where we assert that the
drop method returns false. Further on, we specify that our mocked object collection
should return true when the drop method is invoked. Finally, we assert that the
drop method returns true.

[136]

Chapter 6

We created a mock object that returns default values and, for one of its methods,
defined what should be the return value. At no point was a real object used.

Later on, we'll work with spies that have this logic inverted; an object uses real
methods unless specified otherwise. We'll see and learn more about mocking soon
when we start extending our Tic-Tac-Toe application. Right now, we'll take a look at
one of the Java mocking frameworks called Mockito.

Mockito

Mockito is a mocking framework with a clean and simple API. Tests produced
with Mockito are readable, easy-to-write, and intuitive. It contains three major
static methods:

* mock (): This is used to create mocks. Optionally, we can specify how those
mocks behave with when () and given ().

* spy (): This can be used for partial mocking. Spied objects invoke real
methods unless we specify otherwise. As which mock (), behavior can be
set for every public or protected method (excluding static). The major
difference is that mock () creates a fake of the whole object, while spy ()
uses the real object.

* verify(): Thisis used to check whether methods were called with given
arguments. It is a form of assert.

We'll go deeper into Mockito once we start coding our Tic-Tac-Toe v2 application.
First, however , let us quickly go through a new set of requirements.

The Tic-Tac-Toe v2 requirements

The requirements of our Tic-Tac-Toe v2 application are simple. We should add a
persistent storage so that players can continue playing the game at some later time.
We'll use MongoDB for this purpose.

[Add MongoDB persistent storage to the application.]

[137]

Mocking - Removing External Dependencies

Developing Tic-Tac-Toe v2

We'll continue where we left off with Tic-Tac-Toe in Chapter 3, Red-Green-Refactor:
From Failure Through Success until Perfection. The complete source code of the
application developed so far can be found at https://bitbucket.org/vfarcic/
tdd-java-ch06-tic-tac-toe-mongo.git. Use the VCS | Checkout from Version
Control | Git option from the Intelli] IDEA to clone the code. As with any other
project, the first thing we need to do is add the dependencies to build.gradle:

dependencies {
compile 'org.jongo:jongo:1.1'
compile 'org.mongodb:mongo-java-driver:2.+'
testCompile 'junit:junit:4.11"'
testCompile 'org.mockito:mockito-all:1.+'

}

Importing the MongoDB driver should be self-explanatory. Jongo is a very helpful
set of utility methods that make working with Java code in a way much more similar
to the Mongo query language. For the testing part, we'll continue using JUnit with an
addition of Mockito mocks, spies, and validations.

You'll notice that we won't install MongoDB until the very end. With Mockito,
we will not need it, since all our Mongo dependencies will be mocked.

Once dependencies are specified, remember to refresh them in the IDEA Gradle
projects dialogue.

The source code can be found in the 00-prerequisites branch of the tdd-java-
ch06-tic-tac-toe-mongo Git repository (https://bitbucket.org/viarcic/tdd-
java-ch06-tic-tac-toe-mongo/branch/00-prerequisites).

Now that we have prerequisites set, let's start working on the first requirement.

Requirement 1

We should be able to save each move to the DB. Since we already have all the game
logic implemented, this should be trivial to do. Nonetheless, this will be a very good
example of mock usage.

Implement an option to save a single move with the turn number,
L the X and Y axis positions, and the player (X or O).

[138]

https://bitbucket.org/vfarcic/tdd-java-ch06-tic-tac-toe-mongo.git
https://bitbucket.org/vfarcic/tdd-java-ch06-tic-tac-toe-mongo.git
https://bitbucket.org/vfarcic/tdd-java-ch06-tic-tac-toe-mongo/branch/00-prerequisites
https://bitbucket.org/vfarcic/tdd-java-ch06-tic-tac-toe-mongo/branch/00-prerequisites

Chapter 6

Specification and specification implementation

We should start by defining the Java bean that will represent our data storage
schema. There's nothing special about it, so we'll skip this part with only one note.

Do not spend too much time defining specifications for Java boilerplate code. Our
implementation of the bean contains overwritten equals and hashCode. Both are
generated automatically by IDEA and do not provide a real value, except to satisfy
the need to compare two objects of the same type (we'll use that comparison later on
in specifications). TDD is supposed to help us design better and write better code.
Writing 15-20 specifications in order to define boilerplate code that could be written
automatically by IDE (as is the case with the equals method), does not help us meet
these objectives. Mastering TDD means not only learning how to write specifications,
but also when it's not worth it.

That being said, consult the source code to see the bean specification and
implementation in it's entirety.

The source code can be found in the 01-bean branch of the tdd-java-cho6-
tic-tac-toe-mongo Git repository (https://bitbucket.org/vfarcic/tdd-
java-ch06-tic-tac-toe-mongo/branch/01-bean). Classes in particular are
TicTacToeBeanSpec and TicTacToeBean.

Now let's go to a more interesting part (but still without mocks, spies, and
validations). Let's write specifications related to saving data to MongoDB.

For this requirement, we'll create two new classes inside the com.packtpublishing.
tddjava.chO3tictactoe.mongopackage:TicTacToeCollectionSpec(hﬁﬁdesrc/
test/java) and TicTacToeCollection (inside src/main/java).

Specification
We should specify what the name of the DB that we'll use will be:

@Test
public void
whenInstantiatedThenMongoHasDbNameTicTacToe () {
TicTacToeCollection collection =
new TicTacToeCollection() ;
assertEquals (
"tic-tac-toe",
collection.getMongoCollection ()
.getDBCollection() .getDB() .getName ()) ;

[139]

https://bitbucket.org/vfarcic/tdd-java-ch06-tic-tac-toe-mongo/branch/01-bean
https://bitbucket.org/vfarcic/tdd-java-ch06-tic-tac-toe-mongo/branch/01-bean

Mocking - Removing External Dependencies

We are instantiating a new TicTacToeCollection class and verifying that the DB
name is what we expect.

Specification implementation

The implementation is very straightforward, as follows:

private MongoCollection mongoCollection;
protected MongoCollection getMongoCollection() {
return mongoCollection;
}
public TicTacToeCollection()
throws UnknownHostException {
DB db = new MongoClient () .getDB("tic-tac-toe") ;
mongoCollection =
new Jongo (db) .getCollection ("bla") ;

}

When instantiating the TicTacToeCollection class, we're creating a new
MongoCollection with the specified DB name (tic-tac-toe) and assigning
it to the local variable.

Bear with us. There's only one more specification left until we get to the interesting
part where we'll use mocks and spies.

Specification
In the previous implementation, we used bla as the name of the collection because

Jongo forced us to put some string. Let's create a specification that will define the
name of the Mongo collection that we'll use:

@Test
public void
whenInstantiatedThenMongoCollectionHasNameGame () {
TicTacToeCollection collection = new
TicTacToeCollection() ;
assertEquals (
"game",
collection.getMongoCollection ()
.getName ()) ;

}

This specification is almost identical to the previous one and probably
self-explanatory.

[140]

Chapter 6

Implementation

All we have to do to implement this specification is change the string we used to set
the collection name:

public TicTacToeCollection ()
throws UnknownHostException {
DB db = new MongoClient () .getDB("tic-tac-toe") ;
mongoCollection =
new Jongo (db) .getCollection ("game") ;

Refactoring

You might have got the impression that refactoring is reserved only for the
implementation code. However, when we look the objectives behind refactoring
(more readable, optimal, and faster code), they apply as much to specifications as to
the implementation code.

The last two specifications have the instantiation of the TicTacToeCollection class
repeated. We can move it to a method annotated with eBefore. The effect will be the
same (the class will be instantiated before each method annotated with @Test is run)
and we'll remove the duplicated code. Since the same instantiation will be needed in
further specs, removing duplication will now provide even more benefits later on. At
the same time, we'll save ourselves from throwing UnknownHostException over and
over again:

TicTacToeCollection collection;
@Before

public void before() throws UnknownHostException {
collection = new TicTacToeCollection() ;

}

@Test

public void
whenInstantiatedThenMongoHasDbNameTicTacToe () {
// throws UnknownHostException {

// TicTacToeCollection collection = new

// TicTacToeCollection() ;

assertEquals ("tic-tac-toe",
collection.getMongoCollection ()
.getDBCollection() .getDB()
.getName ()) ;

[141]

Mocking - Removing External Dependencies

@Test
public void whenInstantiatedThenMongoHasNameGame ()

{

// throws UnknownHostException {
// TicTacToeCollection collection = new
// TicTacToeCollection () ;

assertEquals ("game",
collection.getMongoCollection ()
.getName ()) ;

Use setup and teardown methods

Benefits: these allow preparation or setup and disposal or teardown code
to be executed before and after the class or each test method.

In many cases, some code needs to be executed before the test class or
each method in a class. For this purpose, JUnit has the @BeforeClass
and @Before annotations that should be used in the setup phase. The @
A BeforeClass executes the associated method before the class is loaded
~ (before the first test method is run). @Before executes the associated
Q method before each test is run. Both should be used when there are
certain preconditions required by tests. The most common example
is setting up test data in the (hopefully in-memory) database. On the
opposite end, are the @After and @AfterClass annotations that should
be used as the teardown phase. Their main purpose is to destroy the data
or state created during the setup phase or by tests themselves. Each test
should be independent from others. Moreover, no test should be affected
by the others. The teardown phase helps maintaining the system as if no
test was previously executed.

Now let's do some mocking, spying, and verifying!

Specification

We should create a method that saves data to MongoDB. After studying Jongo
documentation, we discovered that there is the MongoCollection.save method
that does exactly that. It accepts any object as a method argument and transforms
it (using Jackson) into JSON, which is natively used in MongoDB. The point is that
after playing around with Jongo, we decided to use and, more importantly, trust
this library.

[142]

Chapter 6

We can write Mongo specifications in two ways. One more traditional and
appropriate for End2End (E2E) or integration tests would be to bring up a MongoDB
instance, invoke the Jongo's save method, query the database, and confirm that

data has indeed been saved. It does not end here, as we would need to clean up

the database before each test in order to always guarantee that the same state is
unpolluted by the execution of previous tests. Finally, once all tests are finished
executing, we might want to stop the MongoDB instance and free server resources
for some other tasks.

As you might have guessed, there is quite a lot of work involved for a single test
written in this way. Also, it's not only about work that needs to be invested into
writing such tests. The execution time would be increased quite a lot. Running one
test that communicates with a DB does not take long. Running ten tests is usually
still fast. Running hundreds or thousands can take quite a lot of time. What happens
when it takes a lot of time to run all unit tests? People lose patience and start
dividing them into groups or give up on TDD all together. Dividing tests into groups
means that we lose confidence that nothing got broken, since we are continuously
testing only parts of it. Giving up on TDD... Well, that's not the objective we're trying
to accomplish. However, if it takes a lot of time to run tests, it's reasonable to expect
developers to not want to wait until they are finished running before they move

to the next specification, and that is the point when we stop doing TDD. What is

a reasonable amount of time to allow our unit tests to run? There is no one-fits-all
rule that defines this; however, as a rule of thumb, if the time is longer than 10-15
seconds, we should start worrying, and dedicate time to optimizing them.

Tests should run fast
Benefits: tests are used often

If it takes a lot of time to run tests, developers will stop using them or run

only a small subset related to the changes they are making. One benefit

~ of fast tests, besides fostering their usage, is fast feedback. The sooner the

Q problem is detected, the easier it is to fix it. Knowledge about the code

that produced the problem is still fresh. If a developer has already started
working on the next feature while waiting for the completion of the
execution of tests, he might decide to postpone fixing the problem until
that new feature is developed. On the other hand, if he drops his current
work to fix the bug, time is lost in context switching.

[143]

Mocking - Removing External Dependencies

If using live DB to run unit tests is not a good option, then what is the alternative?
Mocking and spying! In our example, we know which method of a third-party
library should be invoked. We also invested enough time to trust this library
(besides integration tests that will be performed later on). Once we know how

to use the library, we can limit our job to verifying that correct invocations of

that library have been made.

Let us give it a try.

First, we should modify our existing code and convert our instantiation of the
TicTacToeCollection into a spy:

import static org.mockito.Mockito.*;

@Before
public void before() throws UnknownHostException {
collection = spy(new TicTacToeCollection()) ;

}

Spying on a class is called partial mocking. When applied, the class will behave
exactly the same as it would it was instantiated normally. The major difference is that
we can apply partial mocking and substitute one or more methods with mocks. As a
general rule, we tend to use spies mostly on classes that we're working on. We want
to retain all the functionality of a class that we're writing specifications for, but with
an additional option to, when needed, mock a part of it.

Now, let us write the specification itself. It could be the following:

@Test
public void
whenSaveMoveThenInvokeMongoCollectionSave ()
TicTacToeBean bean =
new TicTacToeBean(3, 2, 1, 'Y');
MongoCollection mongoCollection =
mock (MongoCollection.class) ;
doReturn (mongoCollection) .when (collection)
.getMongoCollection() ;
collection.saveMove (bean) ;
verify (mongoCollection, times(1l)) .save (bean) ;

}

Static methods such as mock, doReturn, and verify are all from the
org.mockito.Mockito class.

[144]

Chapter 6

First, we're creating a new TicTacToeBean. There's nothing special there. Next, we
are creating a mock object out of the MongoCollection. Since we already established
that, when working on a unit level, we want to avoid direct communication with

the DB, mocking this dependency will provide this for us. It will convert a real

class into a mocked one. For the class using mongoCollection, it'll look like a real
one; however, behind the scenes, all its methods are shallow and do not actually

do anything. It's like overwriting that class and replacing all the methods with
empty ones:

MongoCollection mongoCollection =
mock (MongoCollection.class) ;

Next, we're telling that mocked mongoCollection should be returned whenever we
call the getMongoCollection method of the collection spied class. In other words,
we're telling our class to use a fake collection instead of the real one:

doReturn (mongoCollection) .when (collection)
.getMongoCollection() ;

Then, we're calling the method that we are working on:

collection.saveMove (bean) ;

Finally, we should verify that the correct invocation of the gongo library is
performed once:

verify (mongoCollection, times(1l)) .save (bean) ;

Let's try to implement this specification.

Specification implementation

In order to better understand the specification we just wrote, let us do only partial
implementation. We'll create an empty method, saveMove. This will allow our code
to compile without implementing the specification yet:

public void saveMove (TicTacToeBean bean) {

}
When we run our specifications (gradle test), the result is the following;:

Wanted but not invoked:
mongoCollection. save (

Turn: 3; X: 2; Y: 1; Player: Y
) ;

[145]

Mocking - Removing External Dependencies

Mockito tells us that, according to our specification, we expect the
mongoCollection.save method to be invoked, and that the expectation was

not fulfilled. Since the test is still failing, we need to go back and finish the
implementation. One of the biggest sins in TDD is to have a failing test and move
onto something else.

All tests should pass before a new test is written

Benefits: focus is maintained on a small unit of work, and implementation
code is (almost) always in a working condition.

It is sometimes tempting to write multiple tests before the actual

\ implementation. In other cases, developers ignore problems detected by

~ the existing tests and move towards new features. This should be avoided

Q whenever possible. In most cases, breaking this rule will only introduce
technical debt that will need to be paid with interest. One of the goals of
TDD is ensuring that the implementation code is (almost) always working
as expected. Some projects, due to pressures to reach the delivery date or
maintain the budget, break this rule and dedicate time to new features,
leaving the fixing of the code associated with failed tests for later. Those
projects usually end up postponing the inevitable.

Let's modify the implementation to, for example, the following:

public void saveMove (TicTacToeBean bean)
getMongoCollection () .save (null) ;
}

If we run our specifications again, the result is the following:

Argument (s) are different! Wanted:
mongoCollection. save (

Turn: 3; X: 2; Y: 1; Player: Y
)

This time we are invoking the expected method, but the arguments we are passing
to it are not what we hoped for. In the specification, we set the expectation to a
bean (new TicTacToeBean (3, 2, 1, 'Y'))and in the implementation, we passed
null. Not only that Mockito verifications can tell us whether a correct method was
invoked, but also whether arguments passed to that method are correct.

The correct implementation of the specification is the following:

public void saveMove (TicTacToeBean bean) {
getMongoCollection () .save (bean) ;

}

This time all specifications should pass, and we can, happily, proceed to the next one.

[146]

Chapter 6

Specification

Let us change the return type of our saveMove method to boolean:
@Test
public void whenSaveMoveThenReturnTrue () {

TicTacToeBean bean =
new TicTacToeBean(3, 2, 1, 'Y');
MongoCollection mongoCollection =
mock (MongoCollection.class) ;
doReturn (mongoCollection) .when (collection)
.getMongoCollection() ;
assertTrue (collection.saveMove (bean)) ;

Specification implementation

This implementation is very straightforward. We should change the method return
type. Remember that one of the rules of TDD is to use the simplest possible solution.
The simplest solution is to return true as in the following example:

public boolean saveMove (TicTacToeBean bean)
getMongoCollection () .save (bean) ;
return true;

Refactoring

You have probably noticed that the last two specifications have the first two lines
duplicated. We can refactor the specifications code by moving them to the method
annotated with eBefore:

TicTacToeCollection collection;
TicTacToeBean bean;
MongoCollection mongoCollection;

@Before

public void before() throws UnknownHostException {
collection = spy(new TicTacToeCollection()) ;
bean = new TicTacToeBean (3, 2, 1, 'Y');
mongoCollection = mock (MongoCollection.class) ;

@Test
public void

[147]

Mocking - Removing External Dependencies

whenSaveMoveThenInvokeMongoCollectionSave ()

// TicTacToeBean bean =

// new TicTacToeBean(3, 2, 1, 'Y');

// MongoCollection mongoCollection =

// mock (MongoCollection.class) ;
doReturn (mongoCollection) .when (collection)

.getMongoCollection() ;

collection.saveMove (bean) ;
verify (mongoCollection, times (1)) .save(bean) ;

}

@Test

public void whenSaveMoveThenReturnTrue () {

// TicTacToeBean bean =

// new TicTacToeBean(3, 2, 1, 'Y');

// MongoCollection mongoCollection =

// mock (MongoCollection.class) ;

doReturn (mongoCollection) .when (collection)
.getMongoCollection() ;
assertTrue (collection.saveMove (bean)) ;

Specification
Now let us contemplate the option that something might go wrong when using

MongoDB. When, for example, an exception is thrown, we might want to return
false from our saveMove method:

@Test
public void
givenExceptionWhenSaveMoveThenReturnFalse () {
doThrow (new MongoException ("Bla"))
.when (mongoCollection)
.save (any (TicTacToeBean.class)) ;
doReturn (mongoCollection) .when (collection)
.getMongoCollection() ;
assertFalse (collection.saveMove (bean)) ;

}

Here we introduce to another Mockito method: doThrow. It acts in a similar way
to doReturn and throws an Exception when conditions set in when are fulfilled.
The specification will throw the MongoException when the save method inside
the mongoCollection class is invoked. This allows us to assert that our saveMove
method returns £alse when an exception is thrown.

[148]

Chapter 6

Specification implementation

The implementation can be as simple as adding a try/catch block:

public boolean saveMove (TicTacToeBean bean) {
try {
getMongoCollection () .save (bean) ;
return true;
} catch (Exception e) {
return false;

}

Specification

This is a very simple application that, at least at this moment, can store only one
game session. Whenever a new instance is created, we should start over and remove
all data stored in the database. The easiest way to do this is to simply drop the
MongoDB collection. Jongo has the MongoCollection.drop () method that can

be used for that. We'll create a new method drop that will act in a similar way

to saveMove.

If you haven't worked with Mockito, MongoDB, and/ or Jongo, chances are you
were not able to do the exercises from this chapter by yourself and just decided to
follow the solutions we provided. If that's the case, this is the moment when you
might want to switch gears and try to write specifications and the implementation
by yourself.

We should verify that MongoCollection.drop () is invoked from our own
method drop () inside the TicTacToeCollection class. Try it by yourself before
looking at the following code. It should be almost the same as what we did with
the save method:

@Test
public void
whenDropThenInvokeMongoCollectionDrop () {
doReturn (mongoCollection) .when (collection)
.getMongoCollection() ;
collection.drop() ;
verify (mongoCollection) .drop() ;

[149]

Mocking - Removing External Dependencies

Specification implementation

Since this is a wrapper method, implementing this specification should be fairly easy:

public void drop() {
getMongoCollection () .drop () ;

}

Specification

We're almost done with this class. There are only two specifications left.

Let us make sure that in normal circumstances we return true:

@Test
public void whenDropThenReturnTrue () {
doReturn (mongoCollection) .when (collection)
.getMongoCollection() ;
assertTrue (collection.drop()) ;

Specification implementation

If things look too easy with TDD, then that is on purpose. We are splitting tasks into
such small entities that, in most cases, implementing a specification is a piece of cake.
This one is no exception:

public boolean drop() {
getMongoCollection () .drop () ;
return true;

Specification

Finally, let us make sure that the drop method returns false in case of an Exception:

@Test
public void
givenExceptionWhenDropThenReturnFalse () {
doThrow (new MongoException ("Bla"))
.when (mongoCollection)
.drop () ;
doReturn (mongoCollection) .when (collection)
.getMongoCollection() ;
assertFalse(collection.drop()) ;

[150]

Chapter 6

Specification implementation
Let us just add a try/catch block:

public boolean drop()

try {
getMongoCollection () .drop () ;
return true;

} catch (Exception e) {
return false;

}

}

With this implementation, we are finished with the TicTacToeCollection class that
acts as a layer between our main class and MongoDB.

The source code can be found in the 02-save-move branch of the tdd-java-cho6-
tic-tac-toe-mongo Git repository (https://bitbucket.org/viarcic/tdd-java-
ch06-tic-tac-toe-mongo/branch/02-save-move). The classes in particular are
TicTacToeCollectionSpec and TicTacToeCollection.

Requirement 2

Let us employ the TicTacToeCollection methods inside our main class TicTacToe.
Whenever a player plays a turn successfully, we should save it to the DB. Also,

we should drop the collection whenever a new class is instantiated so that a new
game does not overlap the old one. We could make it much more elaborate than
this; however, for the purpose of this chapter and learning how to use mocking,

this requirement should do for now.

Save each turn to the database and make sure that a new session
i cleans the old data.

Let's do some set up first.

Specification
Since all our methods that should be used to communicate with MongoDB are

in the TicTacToeCollection class, we should make sure that it is instantiated.
The specification could be the following;:

@Test
public void whenInstantiatedThenSetCollection() {
assertNotNull (
ticTacToe.getTicTacToeCollection()) ;

[151]

https://bitbucket.org/vfarcic/tdd-java-ch06-tic-tac-toe-mongo/branch/02-save-move
https://bitbucket.org/vfarcic/tdd-java-ch06-tic-tac-toe-mongo/branch/02-save-move

Mocking - Removing External Dependencies

The instantiation of TicTacToe is already done in the method annotated with
@Before. With this specification, we're making sure that the collection is
instantiated as well.

Specification implementation

There is nothing special about this implementation. We should simply overwrite the
default constructor and assign a new instance to the ticTacToeCollection variable.

To begin with, we should add a local variable and a getter for
TicTacToeCollection:

private TicTacToeCollection ticTacToeCollection;

protected TicTacToeCollection
getTicTacToeCollection() {
return ticTacToeCollection;

}

Now, all that's left is to instantiate a new collection and assign it to the variable when
the main class is instantiated:

public TicTacToe () throws UnknownHostException {
this (new TicTacToeCollection()) ;

}

protected TicTacToe
(TicTacToeCollection collection) {
ticTacToeCollection = collection;

}

We also created another way to instantiate the class by passing TicTacToeCollection
as an argument. This will come in handy inside specifications as an easy way to pass
mocked collection.

Now let us go back to the specifications class and make use of this new constructor.

Specification refactoring

To utilize a newly created TicTacToe constructor, we can do something like
the following:

private TicTacToeCollection collection;
@Before

public final void before ()
throws UnknownHostException {

[152]

Chapter 6

collection = mock (TicTacToeCollection.class) ;
// ticTacToe = new TicTacToe () ;
ticTacToe = new TicTacToe (collection) ;

}

Now all our specifications will use a mocked version of the TicTacToeCollection.
There are other ways to inject mocked dependencies (for example, with Spring);
however, when possible, we feel that simplicity trumps complicated frameworks.

Specification
Whenever we play a turn, it should be saved to the DB. The specification can be
the following:

@Test
public void whenPlayThenSaveMoveIsInvoked () {
TicTacToeBean move =
new TicTacToeBean(1l, 1, 3, 'X');
ticTacToe.play (move.getX (), move.getY()) ;
verify(collection) .saveMove (move) ;

}

By now, you should be familiar with Mockito, but let us go through the code
as a refresher:

1. First, we are instantiating a TicTacToeBean since it contains data that our
collections expect:

TicTacToeBean move = new TicTacToeBean(l, 1, 3, 'X');

2. Next, it is time to play an actual turn:

ticTacToe.play (move.getX (), move.getY());

3. Finally, we need to verify that the saveMove method is really invoked:

verify(collection, times(1l)) .saveMove (move) ;

As we did throughout this chapter, we isolated all external invocations and focused
only on the unit (play) that we're working on. Keep in mind that this isolation is
limited only to the public and protected methods. When it comes to the actual
implementation, we might choose to add the saveMove invocation to the play
public method or one of the private methods that we wrote as a result of the
refactoring we did earlier.

[153]

Mocking - Removing External Dependencies

Specification implementation

This specification poses a couple of challenges. First, where should we place the
invocation of the saveMove method? The setBox private method looks like a good
place. That's where we are doing validations of whether the turn is valid, and if it is,
we can call the saveMove method. However, that method expects a bean instead of
variables x, y, and lastPlayer that are being used right now, so we might want to
change the signature of the setBox method.

This is how the method looks now:

private void setBox (int x, int y, char lastPlayer)
{
if (board[x - 1][y - 1] != '\0') {
throw new RuntimeException (
"Box 1s occupied") ;
} else {
board([x - 1] [y - 1] = lastPlayer;
}
}

This is how it looks after the necessary changes are applied:

private void setBox (TicTacToeBean bean) {
if (board[bean.getX() - 1] [bean.getY() - 1]
1= "\o") |
throw new RuntimeException (
"Box 1s occupied") ;
} else {
board[bean.getX () - 1] [bean.getY() - 1] =
lastPlayer;
getTicTacToeCollection () .saveMove (bean) ;

}

The change of the setBox signature triggers a few other changes. Since it is invoked
from the play method, we'll need to instantiate the bean there:

public String play(int x, int y) {
checkAxis (x) ;
checkAxis (y) ;
lastPlayer = nextPlayer();

// setBox (x, y, lastPlayer) ;
setBox (new TicTacToeBean(l, x, y, lastPlayer));
if (isWin(x, y)) {
return lastPlayer + " is the winner";

[154]

Chapter 6

} else if (isDraw()) {
return RESULT_ DRAW;
} else {

return NO_WINNER;

}
}

You might have noticed that we used a constant value 1 as a turn. There is still no
specification that says otherwise, so we took a shortcut. We'll deal with it later.

All those changes were still very simple, and it took a reasonably short period
of time to implement them. If the changes were bigger, we might have chosen
a different path; make a simpler change and get to the final solution through
refactoring. Remember that the speed is the key. You don't want to get stuck
with the implementation that does not pass tests for a long time.

Specification
What happens if a move could not be saved? Our helper method saveMove returns

true or false depending on the MongoDB operation outcome. We might want to
throw an exception when it returns false.

First things first; we should change the implementation of the before method and
make sure that, by default, saveMove returns true:

@Before
public final void before ()
throws UnknownHostException {
collection = mock (TicTacToeCollection.class) ;
doReturn (true)
.when (collection)
.saveMove (any (TicTacToeBean.class)) ;
ticTacToe = new TicTacToe (collection) ;

}

Now that we stubbed the mocked collection with what we think is the default
behavior (return true when saveMove is invoked), we can proceed and write
the specification:

@Test
public void
whenPlayAndSaveReturnsFalseThenThrowException () {
doReturn (false) .when(collection) .
saveMove (any (TicTacToeBean.class)) ;
TicTacToeBean move =
new TicTacToeBean(1l, 1, 3, 'X');

[155]

Mocking - Removing External Dependencies

exception.expect (RuntimeException.class) ;
ticTacToe.play (move.getX (), move.getY());

}

We're using Mockito to return false when saveMove is invoked. Since, in
this case, we don't care about a specific invocation of saveMove, we used
any (TicTacToeBean.class) as the method argument. This is another one
of Mockito's static methods.

Once everything is set, we use a JUnit expectation in the same way as we did
before throughout the Chapter 3, Red-Green-Refactor - From Failure Through
Success until Perfection .

Specification implementation

Let's do a simple if and throw a RuntimeException when the result is not expected:

private void setBox (TicTacToeBean bean)
if (board[bean.getX() - 1] [bean.getY() - 1]
t= "\o") {
throw new RuntimeException (
"Box 1s occupied") ;

} else {
board[bean.getX () - 1] [bean.getY() - 1] =
lastPlayer;
// getTicTacToeCollection () .saveMove (bean) ;

if (!getTicTacToeCollection ()
.saveMove (bean)) {
throw new RuntimeException (
"Saving to DB failed");

Specification

Do you remember the turn that we hard coded to be always 1? Let's fix that behavior.

We can invoke the play method twice and verify that the turn changes from 1 to 2:

@Test
public void
whenPlayInvokedMultipleTimesThenTurnIncreases () {
TicTacToeBean movel =
new TicTacToeBean(1l, 1, 1, 'X');

[156]

Chapter 6

ticTacToe.play (movel.getX (), movel.getY()) ;
verify(collection, times (1)) .saveMove (movel) ;
TicTacToeBean move2 =

new TicTacToeBean(2, 1, 2, '0O');
ticTacToe.play (move2.getX (), move2.getY()) ;
verify(collection, times (1)) .saveMove (move2) ;

Specification implementation

As with almost everything else done in the TDD fashion, implementation is
fairly easy:

private int turn = 0;

public String play(int x, int y) {
checkAxis (x) ;
checkAxis (y) ;
lastPlayer = nextPlayer();
setBox (new TicTacToeBean (++turn, x, VY,
lastPlayer)) ;
if (isWin(x, y))
return lastPlayer + " is the winner";
} else if (isDraw()) {
return RESULT_ DRAW;
} else {
return NO_WINNER;

Exercises

A few more specifications and their implementations are still missing. We should
invoke the drop () method whenever our TicTacToe class is instantiated. We
should also make sure that Runt imeException is thrown when drop () returns false.
We'll leave those specifications and their implementations as an exercise for you.

The source code can be found in the 03 -mongo branch of the tdd-java-cho6-tic-
tac-toe-mongo Git repository (https://bitbucket.org/vfarcic/tdd-java-
ch06-tic-tac-toe-mongo/branch/03-mongo). The classes in particular

are TicTacToeSpec and TicTacToe.

[157]

https://bitbucket.org/vfarcic/tdd-java-ch06-tic-tac-toe-mongo/branch/03-mongo
https://bitbucket.org/vfarcic/tdd-java-ch06-tic-tac-toe-mongo/branch/03-mongo

Mocking - Removing External Dependencies

Integration tests

We did a lot of unit tests. We relied a lot on trust. Unit after unit was specified and
implemented. While working on specifications, we isolated everything but the units
we were working on, and verified that one invoked the other correctly. However,
the time has come to validate that all those units are truly able to communicate with
MongoDB. We might have made a mistake or, more importantly, we might not have
MongoDB up and running. It would be a disaster to discover that, for example, we
deployed our application, but forgot to bring up the DB, or that the configuration
(IP, port, and so on) is not set correctly.

The integration tests' objective is to validate, as you might have guessed, the
integration of separate components, applications, systems, and so on. If you
remember the testing pyramid, it states that unit tests are the easiest to write and
fastest to run, so we should keep other types of tests limited to things that UTs did
not cover.

We should isolate our integration tests in a way that they can be run occasionally
(before we push our code to repository, or as a part of our Continuous Integration
process) and keep unit test as a continuous feedback loop.

Tests separation

If we follow some kind of convention, it is fairly easy to separate tests in Gradle. We
can have our tests in different directories and distinct packages or, for example, with
different file suffixes. In this case, we choose the later. All our specification classes
are named with the spec suffix (that is, TicTacToeSpec). We can make a rule that all
integration tests have the Integ suffix.

With that in mind, let us modify our build.gradle file.

First, we'll tell Gradle that only classes ending with spec should be used by the
test task:

test {

include '**/*Spec.class'

}

Next, we can create a new task testInteg:

task testInteg(type: Test) ({
include '**/*Integ.class'

}

[158]

Chapter 6

With those two additions to the build.gradle, we continue having the test tasks
that we used heavily throughout the book; however, this time, limited only to
specifications (unit tests). In addition, all integration tests can be run by clicking the
testInteg task from the Gradle projects IDEA window or running the following
command from command prompt:

gradle testInteg

Let us write a simple integration test.

The integration test

We'll create a TicTacToeInteg class inside the com.packtpublishing.tddjava.
cho3tictactoe package in the src/test/java directory. Since we know that Jongo
throws an exception if it cannot connect to the database, a test class can be as simple
as the following;:

import org.junit.Test;
import java.net.UnknownHostException;
import static org.junit.Assert.*;

public class TicTacToelnteg

@Test
public void
givenMongoDbIsRunningWhenPlayThenNoException ()
throws UnknownHostException {
TicTacToe ticTacToe = new TicTacToe () ;
assertEquals (TicTacToe.NO WINNER,
ticTacToe.play (1, 1));

[159]

Mocking - Removing External Dependencies

The invocation of assertEquals is just as a precaution. The real objective of this
test is to make sure that no Exception is thrown. Since we did not start MongoDB
(unless you are very proactive and did it yourself, in which case you should stop it),
test should fail.

X = 0O vfarcic@viktor: ~fldeaProjects/tdd-java-ch06-tic-tac-toe-mongo

vfarcic@vikt eaProjects/tdd-java-che6-tic-tac-toe-mongo$ gradle testInteg
:compilelava ATE

:processResource [

:clas A

:compileTestJava UF

1proces stR

:testClass

:testInteg

com.packtpublishing. tddjava.che3tictactoe.TicTacToeInteg > givenMongoDbIsRunning
WhenPlayThenNoException

java.lang.RuntimeException at TicTacToelnteg.java:12

1 test completed, 1 failed
:testInteg FAILED

* What went wrong:
Execution failed for task ':testInteg'.

There were failing tests. See the report at: file:///home/vfarcic/IdeaProjects
Jtdd-java-ch86-tic-tac-toe-mongo/build/reports/tests/index.html

ST
Run with --stacktrace option to get the stack trace. Run with --info or --debug
option to get more log output.

Total time: 14.6 secs
vfarcic@viktor:~/IdeaProjects/tdd-java-che6-tic-tac-toe-mongo$ I

Now that we know that the integration test works, or in other words, that it indeed
fails when MongoDB is not up and running, let us try it again with the DB started.
To bring up MongoDB, we'll use Vagrant to create a virtual machine with Ubuntu
OS. MongoDB will be run as a docker.

Make sure that the 04-integration branch is checked out:

[160]

Chapter 6

Git Branches

From the command prompt, run the following command:
$ vagrant up

Be patient until VM is up and running (it might take a while when executed for the
first time, especially on a slower bandwidth). Once finished, rerun integration tests.

X = 0O vfarcic@viktor: ~fldeaProjects/tdd-java-ch06-tic-tac-toe-mongo
vfarcic@viktor:~/IdeaProjects/tdd-java-ch@6-tic-tac-toe-mongo$ gradle testInteg
:compilelava

BUILD SUCCESSFUL

[161]

Mocking - Removing External Dependencies

It worked, and now we're confident that we are indeed integrated with MongoDB.

This was a very simplistic integration test, and in the real world, we would do a bit
more than this single test. We could, for example, query the DB and confirm that
data was stored correctly. However, the purpose of this chapter was to learn both
how to mock and that we should not depend only on unit tests. The next chapter
will explore integration and functional tests in more depth.

The source code can be found in the 04 -integration branch of the tdd-java-choé-
tic-tac-toe-mongo Git repository (https://bitbucket.org/vfarcic/tdd-java-
ch06-tic-tac-toe-mongo/branch/04-integrat ion).

Summary

Mocking and spying techniques are used to isolate different parts of code or third-
party libraries. They are essential if we are to proceed with great speed, not only
while coding, but also while running tests. Tests without mocks are often too
complex to write and can be so slow that, with time, TDD tends to become close to
impossible. Slow tests mean that we won't be able to run all of them every time we
write a new specification. That in itself leads to deterioration in confidence we have
in the our tests, since only a part of them is run.

Mocking is not only useful as a way to isolate external dependencies, but also as a
way to isolate our own code from a unit we're working on.

In this chapter, we presented Mockito as, in our opinion, the framework with the
best balance between functionality and ease of use. We invite you to investigate
its documentation in more detail (http://mockito.org/), as well as other Java
frameworks dedicated to mocking. EasyMock (http://easymock.org/), J]Mock
(http://www.jmock.org/), and PowerMock (https://code.google.com/p/
powermock/) are few of the most popular.

[162]

https://bitbucket.org/vfarcic/tdd-java-ch06-tic-tac-toe-mongo/branch/04-integration
https://bitbucket.org/vfarcic/tdd-java-ch06-tic-tac-toe-mongo/branch/04-integration
http://mockito.org/
http://easymock.org/
http://www.jmock.org/
https://code.google.com/p/powermock/
https://code.google.com/p/powermock/

BDD — Working Together with
the Whole Team

"I'm not a great programmer; I'm just a good programmer with great habits."
- Kent Beck

Everything we did until now is related to techniques that can be applied only by
developers for developers. Customers, business representatives, and other parties
that are not capable of reading and understanding code were not involved in

the process.

TDD can be much more than what we did until now. We can define requirements,
discuss them with the client, and get agreement as to what should be developed.
We can use those same requirements and make them executable so that they drive
and validate our development. We can use ubiquitous language to write acceptance
criteria. All this, and more, is accomplished with a flavor of TDD called behavior-
driven development (BDD).

We'll develop a Books Store application using a BDD approach. We'll define
acceptance criteria in English, make the implementation of each feature separately,
confirm that it is working correctly by running BDD scenarios and, if required,
refactor the code to accomplish the desired level of quality. The process still follows
the red-green-refactor that is the essence of TDD. The major difference is the
definition level. While until this moment, we were mostly working at units level, this
time we'll move a bit higher and apply TDD through functional and integration tests.

Our frameworks of choice will be JBehave and Selenide.

[163]

BDD - Working Together with the Whole Team

The following topics will be covered in this chapter:

* The different specifications

* Behavior-driven development (BDD)
* The Books Store BDD story

* JBehave

Different specifications

We already mentioned that one of the benefits of TDD is executable documentation
that is always up to date. However, documentation obtained through unit tests is
often not enough. When working at such a low level, we get insights into details;
however, it is all too easy to miss the big picture. If, for example, you were to inspect
specifications that we created for the Tic-Tac-Toe game, you might easily miss the
point of the application. You would understand what each unit does and how it
interoperates with other units, but would have a hard time grasping the idea behind
it. To be precise, you would understand that unit X does Y and communicates with
Z; however, the functional documentation and the idea behind it would be, at best,
hard to find.

The same can be said for development. Before we start working on specifications

in the form of unit tests, we need to get a bigger picture. Throughout this book,

you were presented with requirements that we used for writing specifications that
resulted in their implementation. Those requirements were later on discarded; they
are nowhere to be seen. We did not put them to the repository, nor did we use them
to validate the result of our work.

Documentation

In many organizations that we worked with, the documentation was created for the
wrong reasons. The management tends to think that documentation is somehow
related to project success; that without a lot of (often short-lived) documentation,
the project will fail. Thus, we are asked to spend a lot of time planning, answering
questions, and filling in questionnaires that are often designed not to help the project
but to provide an illusion that everything is under control. Someone's existence is
often justified with documentation (the result of my work is this document). It also
serves as a reassurance that everything is going as planned (there is an Excel sheet
that states that we are on schedule). However, by far the most common reason for
the creation of documentation is a process that simply states that certain documents
need to be created. We might question the value of those documents; however, since
the process is sacred, they need to be produced.

[164]

Chapter 7

Not only that documentation might be created for the wrong reasons and might not
provide enough value, but, as is often the case, it might also do a lot of damage. If
we created the documentation, it is natural that we trust it. However, what happens
if that documentation is not up to date? The requirements are changing, bugs are
getting fixed, new functionalities are being developed, and some are being removed.
If given enough time, all traditional documentation becomes obsolete. The sheer
task of updating documentation with every change we make to the code is so big
and complex that, sooner or later, we must face the fact that static documents do not
reflect the reality. If we are putting our trust into something that is not accurate, our
development is based on wrong assumptions.

The only accurate documentation is our code. The code is what we develop, what we
deploy, and is the only source that truthfully represents our application. However,
code is not readable by everyone involved with the project. Besides coders, we might
work with managers, testers, business people, end users, and so on.

In search of a better way to define what would constitute better documentation,
let us explore a bit further who are the potential documentation consumers. For
the sake of simplicity, we'll divide them into coders (those capable of reading and
understanding code) and non-coders (everyone else).

Documentation for coders

Developers work with code and, since we established that code is the most accurate
documentation, there is no reason to not utilize it. If you want to understand what
some method does, take a look at the code of that method. Having doubt about what
some class does? Take a look at that class. Having trouble understanding a piece of
code? We have a problem! However, the problem is not that the documentation is
missing, but that the code itself is not written well.

Looking at the code to understand the code is still often not enough. Even though
you might understand what the code does, the purpose of that code might not be so
obvious. Why was it written in the first place?

That's where specifications come in. Not only are we using them to continuously
validate the code, but they also act as executable documentation. They are always up
to date because if they aren't, their execution will fail. At the same time, while code
itself should be written in a way that is easy to read and understand, specifications
provide a much easier and faster way to understand the reasons, logic, and
motivations that lead us to write some piece of implementation code.

[165]

BDD - Working Together with the Whole Team

Using code as documentation does not exclude other types. Quite the contrary, the
key is not to avoid using static documentation, but to avoid duplication. When code
provides the necessary details, use it before anything else. In most cases, this leaves
us with higher-level documentation such as an overview, the general purpose of
the system, the technologies used, the environment set-up, installation, building,
packaging and other types of data that tend to serve more like guidelines and
quick-start than detailed information. For those cases, a simple README in
markdown format (http://whatismarkdown.com/) tends to the best.

For all code-based documentation, test-driven development is the best .enabler.
Until now, we worked only with units (methods). We are yet to see how to apply
TDD on a higher level such as, for example, functional specifications. However,
before we get there, let's speak about other roles in the team.

Documentation for non-coders

Traditional testers tend to form groups completely separated from developers. This
separation leads to increased number of testers who are not familiar with code and
assume that their job is to be quality checkers. They are validators at the end of the
process and act as a kind of border police that decides what can be deployed and
what should be returned back. There is, on the other hand, an increasing number of
organizations that are employing testers as integral members of the team with the job
of ensuring that quality is built in. This latter group requires testers to be proficient
with code. For them, using code as documentation is quite natural. However, what
should we do with the first group? What should we do with testers who do not
understand the code? Also, it is not only (some) testers that fall into this group.
Managers, end-users, business representatives, and so on, are also included. The
world is full of people that cannot read and understand code.

We should look for a way to retain the advantages that the executable documentation
provides, but write it in a way that can be understood by everyone. Moreover, in the
TDD fashion, we should allow everyone to participate in the creation of executable
documentation from the very start. We should allow them to define requirements
that we'll use to develop applications and, at the same time, to validate the result

of that development. We need something that will define what we'll do on a higher
level, since low level is already covered with unit tests. To summarize, we need

a documentation that can serve as requirements, that can be executed, that can
validate our work, and that can be written and understood by everyone.

Say hello to behavior-driven development (BDD).

[166]

http://whatismarkdown.com/

Chapter 7

Behavior-driven development

BDD is an agile process designed to keep the focus on stakeholder value throughout
the whole project. It is a form of TDD. Specifications are defined in advance,

the implementation is done according to those specifications, and they are run
periodically to validate the outcome. Besides those similarities, there are a few
differences as well. Unlike in TDD, which is based on unit tests, BDD encourages us
to write multiple specifications (called scenarios) before starting the implementation
(coding). Even though there is no specific rule, BDD tends to levitate towards higher-
level functional requirements. While it can be employed at a unit level as well, the
real benefits are obtained when taking a higher approach that can be written and
understood by everyone. The audience is another difference: BDD tries to empower
everyone (coders, testers, managers, end users, business representatives, and so

on). While TDD, which is based on unit level, can be described as inside-out (we
begin with units and build up towards functionalities), BDD is often understood

as outside-in (we start with features and go inside towards units). Behavior-driven
development acts as an acceptance criteria on that acts as an indicator of readiness.
It tells us when something is finished and ready for production.

We start by defining functionalities (or behaviors), work on them by employing TDD
with unit tests and, once a complete behavior has finished, validate with BDD. One
BDD scenario can take hours or even days to finish. During all that time, we can
employ TDD and unit testing. Once we're done, we run BDD scenarios to do the final
validation. TDD is for coders and has a very fast cycle, while BDD is for everyone
and has a much slower turnout time. For each BDD scenario, we have many TDD
unit tests.

At this point, you might have gotten confused about what BDD really is, so let us go
back a bit. We'll start with the explanation of its format.

Narrative

A BDD story consists of one narrative followed by at least one scenario. A narrative
is only informative, and its main purpose is to provide just enough information that
should serve as a beginning of a communication between everyone involved (testers,
business representatives, developers, analysts, and so on). It is a short and simple
description of a feature told from the perspective of a person that requires it.

[167]

BDD - Working Together with the Whole Team

The goal of a narrative is to answer three basic questions:

1. What is the benefit or value of the feature that should be built (In order to)?
2. Who needs the feature that was requested (As a)?
3. What is the feature or goal that should be developed (I want to)?

Once we have those questions answered, we can start defining what we think would
be the best solution. That thinking process results in scenarios that provide a lower
level of details.

Until now, we were working at a very low level using unit tests as a driving force.
We were specifying what should be built from the coders' perspective. We assumed
that high-level requirements were defined earlier and that our job was to do the
code specific to one of them. Now, let us take a few steps back and start from the
beginning. Let us act, let's say, as a customer or a business representative. Someone
got this great idea and we are discussing it with the rest of the team. In short, we
want to build an online book store. It is only an idea and we're not even certain of
how it will develop, so we want to work on a Minimum Viable Product (MVP).
One of the roles that we want to explore is the one of a store administrator. This
person should be able to add new books and update or remove the existing ones.
All those actions should be doable, because we want this person to be able to manage
our book store collection in an efficient way. The narrative that we came up with for
this role is the following;:

In order to manage the book store collection efficiently
As a store administrator
I want to be able to add, update and remove books

Now we know what is the benefit (manage books), who needs it (administrator),

and finally what is the feature that should be developed (insert, update, and delete
operations). Keep in mind that this was not a detailed description of what should be
done. The narrative's purpose is to initiate a discussion that will result in one or more
scenarios.

Unlike TDD unit tests, narrative, and indeed the rest of the BDD story, can be written
by anyone. They do not require coding skills, nor do they have to go into too many
details. Depending on the organization, all narratives can be written by the same
person (a business representative, product owner, customer, and so on) or it might
be a collaborative effort by the whole team.

Now that we have a bit clearer idea regarding narratives, let us take a look
at scenarios.

[168]

Chapter 7

Scenarios

A narrative acts as a communication enabler and scenarios are the result of that
communication. They should describe interactions that the role (specified in the

As a section) has with the system. Unlike unit tests, which were written as code

by developers for developers, BDD scenarios should be defined in plain language
and with minimum technical details so that all those involved with the project
(developers, testers, designers, managers, customers, and so on) can have a common
understanding about behaviors (or features) that will be added to the system.

Scenarios act as the acceptance criteria of the narrative. Once all scenarios related

to the narrative are run successfully, the job can be considered done. Each scenario
is very similar to a unit test, with the main difference being the scope (one method
against a whole feature) and time it takes to implement it (a few seconds or minutes
against a few hours or even days). Similarly to unit tests, scenarios drive the
development. They are defined first.

Each scenario consists of a description and one or more steps that start with the
words Given, When, or Then. The description is short and only informative. It helps
us to understand at a glance what the scenario does. Steps, on the other hand, are
a sequence of preconditions, events, and expected outcomes of the scenario. They
help us define the behavior unambiguously and it's easy to translate them to
automated tests.

Throughout this chapter, we'll focus more on the technical aspects of BDD and the
ways they fit into the developers' mindset. For broader usage of BDD and much
deeper discussion, consult the book specification by Example: How Successful Teams
Deliver the Right Software by Gojko Adzic.

The Given step defines a context or preconditions that need to be fulfilled for the rest
of the scenario to be successful. Going back to the book's administration narrative,
one such precondition might be the following:

Given user is on the books screen

This is a very simple but pretty necessary precondition. Our website might have
many pages and we need to make sure that the user is on the correct screen before
we perform any action.

The When step defines an action or some kind of an event. In our narrative, we
defined that the administrator should be able to add, update, and remove books.
Let's see what should be an action related to, for example, the delete operation:

When user selects a book
When user clicks the deleteBook button

[169]

BDD - Working Together with the Whole Team

In this example, we multiplied actions defined with the When steps. First, we should
select a book and then we should click on the Delete the book button. In this case,
we used an ID (deleteBook) instead of text (Delete the book) to define the button
that should be clicked. In most cases, IDs are preferable because they provide
multiple benefits. They are unique (only one ID can exist on a given screen), they
provide clear instruction for developers (create an element with an ID deleteBook),
and they are not affected by other changes on the same screen. The text of an element
can easily change; if this happens, all scenarios that used it would fail as well. In

the case of websites, an alternative could be XPath. However, avoid it whenever
possible. It tends to fail with the smallest change to the HTML structure.

Similarly to unit tests, scenarios should be reliable and fail when a feature is not yet
developed or when there is a real problem. Otherwise, it is a natural reaction to start
ignoring specifications when they produce false negatives.

Finally, we should always end the scenario with some kind of verification.
We should specify the desired outcome of actions that were performed.
Following the same scenario, our Then step could be the following;:

Then book is removed

This outcome strikes a balance between providing just enough data without going
into design details. We could have, for example, mentioned the database or, even
more specifically, MongoDB. However, in many cases, that information is not
important from the behavioral point of view. We should simply confirm that the
book is removed from the catalog, no matter where it is stored.

Now that we are familiar with the BDD story format, let us write the Books Store
BDD story.

The Books Store BDD story

Before we start, clone the code that is available at https://bitbucket.org/
vfarcic/tdd-java-ch07-books-store. It is an empty project that we'll use
throughout this chapter. As with previous chapters, it contains branches for
each section in case you miss something.

We'll write one BDD story that will be in a pure text format, in plain English and
without any code. That way, all stakeholders can participate and get involved
independently of their coding proficiency. Later on, we'll see how to automate the
story we're writing.

[170]

https://bitbucket.org/vfarcic/tdd-java-ch07-books-store
https://bitbucket.org/vfarcic/tdd-java-ch07-books-store

Chapter 7

Let us start by creating a new file called administration. story inside the
stories directory:

file name:

il
2
=

)
(]
=
TR
]

administration.s

= | Terminal Sian (ol Event Log

We already have the narrative that we wrote earlier, so we'll build on top of that:

Narrative:
In order to manage the book store collection efficiently

As a store administrator
I want to be able to add, update and remove books

We'll be using JBehave format for writing stories. More details regarding JBehave are
coming soon. Until then, visit http: //jbehave.org/ for more info.

A narrative always starts with the Narrative line and is followed with the In order
to,As a,and I want to lines. We already discussed the meaning of each of them.

[171]

http://jbehave.org/

BDD - Working Together with the Whole Team

Now that we know the answers to why, who, and what, it is time to sit with the rest
of the team and discuss possible scenarios. We're still not talking about steps (Given,
When, and Then), but simply what would be the outlines or short descriptions of the
potential scenarios. The list could be the following:

Scenario: Book details form should have all fields
Scenario: User should be able to create a new book
Scenario: User should be able to display book details
Scenario: User should be able to update book details
Scenario: User should be able to delete a book

We're following the JBehave syntax by using scenario followed by a short
description. There is no reason to go into details at this stage. The purpose of

this stage is to serve as a quick brainstorming session. In this case, we came up
with those five scenarios. The first one should define fields of the form that we'll
use to administer books. The rest of the scenarios are trying to define different
administrative tasks. There's nothing truly creative about them. We're supposed to
develop an MVP of a very simple application. If it proves to be successful, we can
expand and truly employ our creativity. With the current objective, the application
will be simple and straightforward.

Now that we know what our scenarios are; in general termes, it is time to properly
define each of them. Let us start working on the first one:

Scenario: Book details form should have all fields

Given user is on the books screen
Then field bookId exists

Then field bookTitle exists

Then field bookAuthor exists

Then field bookDescription exists

This scenario does not contain any actions; there are no When steps. It can be
considered a sanity check. It tells developers what fields should be present in the
book form. Through those fields, we can decide what data schema we'll use. IDs are
descriptive enough so that we know what each field is about (one ID and three text
fields). Keep in mind that this scenario (and those that will follow) are pure texts
without any code. The main advantage is that anyone can write them, and we'll try
to keep it that way.

[172]

Chapter 7

Let's see what the second scenario should look like:

Scenario: User should be able to create a new book

Given user is on the books screen

When user clicks the button newBook
When user sets values to the book form
When user clicks the button saveBook
Then book is stored

This scenario is a bit better formed than the previous one. There is a clear
prerequisite (used should be on a certain screen); there are several actions
(click on the newBook button, fill in the form, and click on the saveBook

button); finally, there is the verification of the outcome (book is stored).

The rest of the scenarios are as follows (since they all work in a similar way,
we feel that there is no reason to explain each of them separately):

Scenario: User should be able to display book details

Given user is on the books screen
When user selects a book
Then book form contains all data

Scenario: User should be able to update book details

Given user is on the books screen

When user selects a book

When user sets values to the book form
Then book is stored

Scenario: User should be able to delete a book

Given user is on the books screen

When user selects a book

When user clicks the deleteBook button
Then book is removed

[173]

BDD - Working Together with the Whole Team

The only thing that might be worth noticing is that we are using the same steps
when appropriate (for example, When user selects a book). Since we'll soon try
to automate all those scenarios, having the same text for the same step will save us
some time from duplicating the code. It is important to strike the balance between
the freedom to express scenarios in the best possible way and the ease of automation.
There are a few more things that we can modify in our existing scenarios; however,
before we refactor them, let us introduce you to JBehave.

The source code can be found in the 00-story branch of the tdd-java-ch07-books-
store Git repository: https://bitbucket.org/vfarcic/tdd-java-ch07-books-
store/branch/00-story.

JBehave

There are two major components required for JBehave to run BDD stories: runners
and steps. A runner is a class that will parse the story, run all scenarios, and generate
a report. Steps are code methods that match steps written in scenarios. The project
already contains all Gradle dependencies so we can dive right into creating the
JBehave runner.

JBehave runner

JBehave is no exception to the rule that every type of test needs a runner. In the
previous chapters, we used JUnit and TestNG runners. While neither of those needed
any special configuration, JBehave is a bit more demanding and forces us to create a
class that will hold all the configuration required for running stories.

The following is the Runner code that we'll use throughout this chapter:

public class Runner extends JUnitStories

@Override
public Configuration configuration() {
return new MostUsefulConfiguration ()
.useStoryReporterBuilder (getReporter ())
.useStoryLoader (new LoadFromURL()) ;

@Override
protected List<String> storyPaths () {
String path = "stories/**/*.story";
return new StoryFinder () .findPaths(
CodeLocations

[174]

https://bitbucket.org/vfarcic/tdd-java-ch07-books-store/branch/00-story
https://bitbucket.org/vfarcic/tdd-java-ch07-books-store/branch/00-story

Chapter 7

.codeLocationFromPath ("")
.getFile(),
Collections
.singletonList (path),
new ArrayList<Strings (),
"file:™

@Override
public InjectableStepsFactory stepsFactory() {
return new InstanceStepsFactory (
configuration(),
new Steps ()

private StoryReporterBuilder getReporter() {
return new StoryReporterBuilder ()
.withPathResolver (
new FilePrintStreamFactory
.ResolveToSimpleName ()
)
.withDefaultFormats ()
.withFormats (Format.CONSOLE, Format.HTML) ;

}

It is a very uneventful code, so we'll comment only on a few important parts.
Overridden method storypaths has the location to our story files set to the
stories/**/*.story path. This is a standard Apache Ant (http://ant.apache.
org/) syntax that, when translated to plain language, means that any file ending
with . story inside the stories directory or any subdirectory (**) will be included.
Another important overridden method is stepsFactory, which is used to set classes
containing the steps definition (we'll work with them very soon). In this case, we

set it to the instance of a single class called Steps (the repository already contains an
empty class that we'll use later on).

The source code can be found in the 01-runner branch of the tdd-java-ch07-books-store
Git repository: https://bitbucket.org/viarcic/tdd-java-ch07-books-store/
branch/01-runner.

Now that we have our runner done, it is time to fire it up and see what the result is.

[175]

http://ant.apache.org/
http://ant.apache.org/
https://bitbucket.org/vfarcic/tdd-java-ch07-books-store/branch/01-runner
https://bitbucket.org/vfarcic/tdd-java-ch07-books-store/branch/01-runner

BDD - Working Together with the Whole Team

Pending steps

We can run our scenarios with the following Gradle command:

$ gradle clean test

Gradle runs only tasks that changed from the last execution. Since our source code
will not always change (we often modify only stories in text format), the clean task
is required to be run before the test so that the cache is removed.

JBehave creates a nice report for us and puts it into the target/jbehave/view
directory. Open the reports.html file in your favorite browser.

The initial page of the report displays a list of our stories (in our case, only
Administration) and two predefined ones called BeforeStories and AfterStories.
Their purpose is similar to the @BeforeClass and eafterclass JUnit annotated
methods. They are run before and after stories and can be useful for setting up and
tearing down data, servers, and so on.

This initial reports page shows that we have five scenarios and all of them are in the
Pending status. This is JBehave's way of telling us that they were neither successful
nor failed, but that there is code missing behind the steps we used.

Story Reports
Stories Scenarios
Name Excluded | Total Successful Pending Falled Excluded
Administration 0] 3 3 0 0
AfterStories 0 0 0 0 0 0
BeforeStories 0 0 0 0 0 0
3 0 5 5 5 1] 0

[176]

Chapter 7

The last column in each row contains a link that allows us to see details of each story.

Narrative:

In erder to manage the book store collection
As a store administrator
| want to be able to perform insert, update and delete operations

Scenario: Book details form should have all fields

Given user is on the books screen (PENDING)
Then field bookld exists (PENDING)

Then field bookTitle exists (PEMDING)

Then field bookAuthor exists (PENDING)
Then field bookDescription exists (PENDING)

@Given("user is on the books screen")

@Pending

public void givenUserIsOnTheBooksScreen() {
/{ PENDING

}

In our case, all the steps are marked as pending. JBehave even puts a suggestion of a
method that we need to create for each pending step.

To recapitulate, at this point, we wrote one story with five scenarios. Each of those
scenarios is equivalent to a specification that will be used both as a definition that
should be developed and to verify that the development was done correctly. Each
of those scenarios consists of several steps that define preconditions (Given), actions
(When), and the expected outcome (Then).

Now it is time to write the code behind our steps. However, before we start coding,
let us get introduced to Selenium and Selenide.

[177]

BDD - Working Together with the Whole Team

Selenium and Selenide

Selenium is a set of drivers that can be used to automate browsers. We can use them
to manipulate browsers and page elements by, for example, clicking on a button or a
link, filling up a form field, opening a specific URL, and so on. There are drivers for
almost any browser: Android, Chrome, FireFox, Internet Explorer, Safari, and many
more. Our favorite is Phantom]S, which is a headless browser that works without
any UL Running stories with it is faster than with traditional browsers, and we often
use it to get fast feedback on the readiness of web application. If it works as expected,
we can proceed and try it out in all the different browsers and versions that our
application is supposed to support.

More information about Selenium can be found at http://www.seleniumhqg.org/
with the list of supported drivers at http://www.seleniumhg.org/projects/
webdriver/.

While Selenium is great for automating browsers, it has its downsides, one of them
being that it is operating at a very low level. Clicking on a button, for example, is
easy and can be accomplished with a single line of code:

selenium.click ("myLink")

If the element with the ID myLink does not exist, Selenium will throw an exception
and the test will fail. While we want our tests to fail when the expected element

does not exist, in many cases it is not so simple. For example, our page might load
dynamically with that element appearing only after an asynchronous request to

the server got a response. For this reason, we might not only want to click on that
element but also wait until it is available, and fail only if a timeout is reached. While
this can be done with Selenium, it is tedious and error prone. Besides, why would we
do the work that is already done by others? Say hello to Selenide.

Selenide (http://selenide.org/) is a wrapper around Selenium WebDrivers with
a more concise API, support for Ajax, selectors that use JQuery style, and so on. We'll
use Selenide for all our Web steps and you'll get more familiar with it soon.

Now, let us write some code.

[178]

http://www.seleniumhq.org/
http://www.seleniumhq.org/projects/webdriver/
http://www.seleniumhq.org/projects/webdriver/
http://selenide.org/

Chapter 7

JBehave steps

Before we start writing steps, install the Phantom]S browser. The instructions for
your operating system can be found at http://phantomjs.org/download.html.

With Phantomds installed, it is time to specify a few Gradle dependencies:

dependencies {
testCompile 'junit:junit:4.+'
testCompile 'org.jbehave:jbehave-core:3.+'
testCompile 'com.codeborne:selenide:2.+'
testCompile 'com.codeborne:phantomjsdriver:1.+"'

}

You are already familiar with JUnit and jbehave-core, which was set up earlier.
Two new additions are Selenide and Phantom]S. Refresh Gradle dependencies
so that they are included in your IDEA project.

Now, it is time to add the Phantom]S WebDriver to our Steps class;

public class Steps ({
private WebDriver webDriver;

@BeforeStory
public void beforeStory() {
if (webDriver == null) {
webDriver = new PhantomJSDriver () ;
WebDriverRunner.setWebDriver (webDriver) ;
webDriver .manage () .window () .setSize (
new Dimension (1024, 768)
)

}

We're utilizing the @BeforeStory annotation to define the method that we're using
to do some basic setup. If a driver is not already specified, we're setting it up to

be PhantomJsDriver. Since this application will look different on smaller devices
(phones, tablets, and so on), it is important that we specify clearly what the size of
the screen is. In this case, we're setting it to be a reasonable desktop/laptop monitor
screen resolution of 1024 x 768.

[179]

http://phantomjs.org/download.html

BDD - Working Together with the Whole Team

With setup out of the way, let us code our first pending step. We can simply copy
and paste the first method gBehave suggested for us in the report:

@Given("user is on the books screen")
public void givenUserIsOnTheBooksScreen()
// PENDING

}

Imagine that our application will have a link that will open the books screen.
To do that, well need to perform two steps:

1. Open the Website home page.
2. Click on the books link in the menu.

We'll specify that this link will have the ID books. IDs are very important as they
allow us to easily locate an element on the page.

The steps we described above can be translated to the following code:

private String url = "http://localhost:9001";

@Given ("user is on the books screen")
public void givenUserIsOnTheBooksScreen () {
open (url) ;
$ ("#books") .click () ;

}

We're assuming that our application will run on the 9001 port on the localhost.
Therefore, we are first opening the home page URL and then clicking on the element
with the ID books.(selenide/JQuery syntax for specifying an ID is #).

If we run our runner again, we'd see that the first step failed and the rest is still in the
pending state. Now, we are in the red state of the red-green-refactor cycle.

Let us continue working on the rest of the steps used in the first scenario. The second
one can be the following;:

@Then ("field bookId exists")
public void thenFieldBookIdExists()
S ("#books") .shouldBe (visible) ;

}

[180]

Chapter 7

The third one is almost the same, so we can refactor the previous method and
convert an element ID into a variable:

@Then ("field $SelementId exists")
public void thenFieldExists (String elementId)
S("#" + elementId) .shouldBe(visible) ;

}

With this change, all the steps in the first scenario are done. If we run our tests again,
the result is the following:

Scenario: Book details form should have all fields

Given user is on the books screen (FAILED)

Element not found {#books} Expected: visible Screenshot:
file:/homefviarcic/ldeaProjectsfdd-java-chO7-books-
store/build/reportsftests/1430688921325.15.png Timeout: 4 5. Caused by:
NoSuchElementException: Error Message == "Unable to find element with css selector
#books"

Then field bookld exists (MNOT PERFORMED)

Then field bookTitle exists (NOT PERFORMED)

Then field bookAuthor exists (NOT PERFORMED)
Then field bookDescription exists (NOT PERFORMED)

The first step failed since we did not even start working on the implementation of
our Books Store application. Selenide has a nice feature, creating a screenshot of the
browser every time there is a failure. We can see the path in the report. The rest of
the steps are in the not performed state since the execution of the scenario stopped
on failure.

What should be done next depends on the structure of the team. If the same person
is working both on functional tests and the implementation, he could start working
on the implementation and write just enough code to make this scenario pass. In
many other situations, separate people are working on functional specification and
the implementation code. In that case, one could continue working on the missing
steps for the rest of the scenarios, while the other would start working on the
implementation. Since all scenarios are already written in a text form, a coder already
knows what should be done and the two can work in parallel. We'll take the former
route and write the code for the rest of the pending steps.

[181]

BDD - Working Together with the Whole Team

Let's go through the next scenario;

Scenario: User should be able to create a new book

Given user is on the books screen (FAILED)

Element not found {#books} Expected: visible Screenshot:
file:/homesviarcic/ldeaProjects/itdd-java-ch07-books-
store/build/reportsitests/1430690653894.32.png Timeout: 4 s. Caused by:
MoSuchElementException: Error Message == "Unable to find element with css selector
‘#books”

When user clicks the button newBook (NOT PERFORMED)

VWhen user sets values to the book form (PENDING)

When user clicks the button saveBook (NOT PERFORMED)

Then book is stored (PENDING)

We already have half of the steps done from the previous scenario, so there are only
two pending. After we click on the newBook button, we should set some values to
the form, click on the saveBook button, and verify that the book was stored correctly.
We can do the last part by checking whether it appeared in the list of available books.

The missing steps can be the following:

@When ("user sets values to the book form")
public void whenUserSetsValuesToTheBookForm () {
S ("#bookId") .setValue ("123") ;

S ("#bookTitle") .setValue ("BDD Assistant") ;
S ("#bookAuthor") .setValue ("Viktor Farcic");
S ("#bookDescription") .setValue (

"Open source BDD stories editor and runner"

}

@Then ("book is stored")
public void thenBookIsStored () {
S ("#book123") .shouldBe (present) ;

}

The second step assumes that each of the available books will have an ID in the
format book [ID].

[182]

Chapter 7

Let us take a look at the next scenario:

Scenario: User should be able to display book details

Given user is on the books screen (FAILED)

Element not found {#books} Expected: visible Screenshot:
file:homefviarcic/ldeaProjectsfdd-java-chO7-books-

store/buildreportsitests/ 1430691141869 .46.png Timeout: 4 5. Caused by:
MoSuchElementException: Error Message == "Unable to find element with css selector
‘#books"”

When user selects a book (PENDING)
Then book form contains all data (PENDING)

Like in the previous one, there are two steps pending to be developed. We need to
have a way to select a book and to verify that data in the form is correctly populated:

@When ("user selects a book")
public void whenUserSelectsABook () {
$ ("#bookl") .click () ;

}

@Then ("book form contains all data")
public void thenBookFormContainsAllData() {
$ ("#bookId") .shouldHave (value ("1")) ;
$ ("#bookTitle") .shouldHave (
value ("TDD for Java Developers")
)i
S ("#bookAuthor") .shouldHave (value ("Viktor Farcic")) ;
S ("#bookDescription") .shouldHave (value ("Cool book!")) ;

[183]

BDD - Working Together with the Whole Team

These two methods are interesting because they not only specify the expected
behavior (when a specific book link is clicked, then a form with its data is displayed),
but also expect certain data to be available for testing. When this scenario is run, a
book with an ID 1, title TDD for Java Developers, author Viktor Farcic, and
description Cool book! should already exist. We can choose to add that data to the
database or use a mock server that will serve the predefined values. No matter what
the choice of how to set test data is, we can finish with this scenario and jump into
the next one.

Scenario: User should be able to update book details

Given user is on the books screen (FAILED)

Element not found {#books} Expected: visible Screenshot:
filezshomesfviarcic/ldeaProjects/tdd-java-ch07-books-
store/build/reportstests/1430692088078.61.png Timeout: 4 5. Caused by:
MoSuchElementException: Error Message == 'Unable to find element with css selector
‘#books"

When user selects a book (NOT PERFORMED)
When user sets new values to the book form (PENDING)
Then book is updated (PENDING)

The implementation of the pending steps could be the following;:

@When ("user sets new values to the book form")
public void whenUserSetsNewValuesToTheBookForm() {
$ ("#bookTitle") .setValue (
"TDD for Java Developers revised"
)i
$ ("#bookAuthor") .setValue (
"Viktor Farcic and Alex Garcia"
)i
$ ("#bookDescription") .setValue ("Even better book!") ;
$ ("#saveBook") .click () ;

}

@Then ("book is updated")
public void thenBookIsUpdated() {
$ ("#book1l") . shouldHave (
text ("TDD for Java Developers revised")
)i
$ ("#bookl") .click() ;
$ ("#bookTitle") .shouldHave (

[184]

Chapter 7

value ("TDD for Java Developers revised")
)i
$ ("#bookAuthor") . shouldHave (
value ("Viktor Farcic and Alex Garcia")
)i
S ("#bookDescription") .shouldHave (
value ("Even better book!")
)i
}

Finally, there is only one scenario left:

Scenario: User should be able to delete a book

Given user is on the books screen (FAILED)

Element not found {#books} Expected: visible Screenshot:
file:homefviarcic/ldeaProjectsfdd-java-chO7-books-
store/buildireportsitests/1430692818420.77.png Timeout: 4 5. Caused by:
MoSuchElementException: Error Message == "Unable to find element with css selector
‘#books"”

When user selects a book (NOT PERFORMED)
When user clicks the button deleteBook (NOT PERFORMED)
Then book is removed (PENDING)

We can verify that a book is removed by verifying that it is not in the list of
available books:

@Then ("book is removed")
public void thenBookIsRemoved() {
S ("#bookl") .shouldNotBe (visible) ;

}

We're finished with the steps code. Now, the person who is developing the
application not only has requirements but also has a way to validate each behavior
(scenario). He can be moving through the red-green-refactor cycle one scenario

at a time.

The source code can be found in the 02-steps branch of the tdd-java-ch07-books-
store Git repository: https://bitbucket.org/vfarcic/tdd-java-ch07-books-
store/branch/02-steps.

[185]

https://bitbucket.org/vfarcic/tdd-java-ch07-books-store/branch/02-steps
https://bitbucket.org/vfarcic/tdd-java-ch07-books-store/branch/02-steps

BDD - Working Together with the Whole Team

Final validation

Let us imagine that a different person worked on the code that should fulfil the
requirements set by our scenarios. This person picked one scenario at the time,
developed the code, ran that scenario, and confirmed that his implementation was
correct. Once the implementation of all scenarios has been done, it is time to run the
whole story and do the final validation.

The application has been packed as a Docker file and we prepared a Vagrant virtual
machine that will run it.

Check out the branch at https://bitbucket.org/vfarcic/tdd-java-ch07-
books-store/branch/03-validation and run vagrant:

$ vagrant up

The output should be similar to the following;:

> default: Importing base box 'ubuntu/trustyé64'...
> default: Matching MAC address for NAT networking...
>

default: Checking if box 'ubuntu/trusty64' is up to date...

n
n
\"

default: Running provisioner: docker...
default: Installing Docker (latest) onto machine...
default: Configuring Docker to autostart containers...

default: Starting Docker containers...

=>
=> default: -- Container: books-fe

Once Vagrant is finished, we can see the application by opening
http://localhost:9001 in our browser of choice:

My Application = Books

ID

TDD for Java Developers

How to delete something e

Title 3 TDD for Java Developers

Author

Description

Cool book!
P
(=

Revert Delete

[186]

https://bitbucket.org/vfarcic/tdd-java-ch07-books-store/branch/03-validation
https://bitbucket.org/vfarcic/tdd-java-ch07-books-store/branch/03-validation

Chapter 7

Now, let us run our scenarios again;
$ gradle clean test

This time there were no failures and all scenarios ran successfully:

Narrative:

In order to manage the book store collection

As a store administrator
| want to be able to perform insert, update and delete operations

Scenario: Book details form should have all fields

Given user is on the books screen
Then field bookld exists

Then field bookTitle exists

Then field bookAuthor exists
Then field bookDescription exists

Scenario: User should be able to create a new book

Given user is on the books screen
When user clicks the button newBook
When user sets values to the book form
When user clicks the button saveBook
Then book is stored

Once all scenarios are passing, we meet the acceptance criteria and the application
can be delivered to production.

[187]

BDD - Working Together with the Whole Team

Summary

BDD, in its essence, is a flavor of TDD. It follows the same basic principle of writing
tests (scenarios) before the implementation code. It drives the development and
helps us better understand what should be done.

One of the major differences is the life cycle duration. While with TDD, which is
based on unit tests, we're moving from red to green very fast (in minutes if not
seconds); BDD often takes a higher-level approach that might require hours or days
until we get from the red to the green state. Another important difference is the
audience. While unit tests-based TDD is done by developers for developers, BDD
intends to involve everyone through its ubiquitous language.

While a whole book can be written on this subject, our intention was to give you just
enough information so that you can investigate BDD further.

Now it is time to take a look at legacy code and how to adapt it and make it more
test-driven development friendly.

[188]

Refactoring Legacy

Code — Making it Young Again

"Fear is the path to the dark side. Fear leads to anger. Anger leads to hate. Hate
leads to suffering."

- Yoda

TDD might not adjust straightaway to legacy code. You may have to fiddle a bit
with the steps to make it work. Understand that your TDD might change in this case.
That, somehow, you are no longer performing the TDD you were used. This chapter
will introduce you to the world of legacy code, taking as much as we can from TDD.

We'll start a fresh, with a legacy application that is currently in production.
We'll alter it in small ways without introducing defects or regressions and
we'll even have time to have an early lunch!

The following topics are covered in this chapter:

Legacy code

Dealing with legacy code
REST communication
Dependency injection

Tests at different levels: end to end, integration, and unit

[189]

Refactoring Legacy Code - Making it Young Again

Legacy code

Let's start with the definition of legacy code. While there are many authors with
different definitions such as lack of trust in your application or your tests, code
that is no longer supported, and so on, we like the one created by Michael Feathers
the most:

Legacy code is code without tests.

The reason for this definition is that it is objective: either there are or there
aren't tests.

--Michael Feathers

How to detect legacy code? Although legacy code usually frequents bad code,
Michael Feathers exposes some smells in his book Working Effectively with
Legacy Code by Dorling Kindersley (India) Pot. Ltd. (1993).

Code Smell

Smells are certain structures in the code that indicate violation of
fundamental design principles and negatively impact design quality.

incorrect and do not currently prevent the program from
functioning. Instead, they indicate weaknesses in design that may
be slowing down development or increasing the risk of bugs or
failures in the future.

~Q Code smells are usually not bugs — they are not technically

Source: http://en.wikipedia.org/wiki/Code smell.

One of the common smells for legacy code is: I can't test this code. It is accessing
outside resources, introducing other side-effects, using a new operator, and so on.
In general, good design is easy to test. Let's see some legacy code.

Legacy code example

Software concepts are often easiest to explain through code and this one is no
exception. We have seen and worked with the Tic-Tac-Toe application (see Chapter 3,
Red-Green-Refactor - from Failure through Success until Perfection). The following code
performs position validation:

public class TicTacToe {

public void validatePosition(int x, int y) {

[190]

http://en.wikipedia.org/wiki/Code_smell

Chapter 8

if (x <1 |] x> 3) {
throw new RuntimeException ("X is outside "
+ "board") ;
}
if (y <1 ||y >3 {
throw new RuntimeException("Y is outside "
+ "board") ;

}
The specification that corresponds with this code is as follows:

public class TicTacToeSpec {

@Rule

public ExpectedException exception =
ExpectedException.none () ;

private TicTacToe ticTacToe;

@Before
public final void before() ({
ticTacToe = new TicTacToe() ;

@Test
public void whenXOutsideBoardThenRuntimeException ()

{

exception.expect (RuntimeException.class) ;
ticTacToe.validatePosition (5, 2);

@Test
public void whenYOutsideBoardThenRuntimeException ()

{

exception.expect (RuntimeException.class) ;
ticTacToe.validatePosition (2, 5);

[191]

Refactoring Legacy Code - Making it Young Again

The JaCoCo report indicates that everything is covered (except the last line,
the method's closing bracket):

C) TicTacToe X el TicTacToeSpec X

] package com.packtpublishing.tddjava.ch@3tictactoe;

public class TicTacToe {

e public void validatePosition(int x, int y) {
if (x <1 || x>3){

throw new RuntimeException("X is outside board");

}
[if(y<1||y>3)A
throw new RuntimeException("Y is outside board");
}
& }
"}
806 Coverage
Coverage TicTacToeSpec - |
Y Coverage Summary for Package ‘com.packtpublishing.tddjava.chO...
Element Class, % Method, % Line, %
=
=2
T
B

As we believe we have good coverage, we can perform an automatic and safe
refactor (fragment):

public class TicTacToe {

public void validatePosition(int x, int y) {
if (isOutsideTheBoard(x)) {
throw new RuntimeException ("X is outside "
+ "board") ;
}
if (isOutsideTheBoard(y))
throw new RuntimeException("Y is outside "
+ "board") ;

[192]

Chapter 8

private boolean isOutsideTheBoard
(final int position) {
return position < 1 || position > 3;

}

This code should be ready, as the tests are successful and it has a very good
test coverage.

Maybe you have already realized as much, but there is a catch. The message in the
Runt imeException block is not checked for correctness; even the code coverage
shows it as "covered all the branches in that line".

What is coverage all about?

% Coverage is a measure used to describe the degree to which the source
/<~ code of a program is tested by a particular test suite. Source: http://
en.wikipedia.org/wiki/Code coverage

Let's imagine a single end-to-end test that covers an easy part of the code. This test
will get you a high coverage percentage, but not much security, as there are many
other parts that are still not covered.

We have already introduced legacy code in our codebase: the exception messages.
There might be nothing wrong with this as long as this is not an expected behavior:
no one should depend on exception messages, not programmers to debug their
programs, or logs, or even users. Those parts of the program that are not covered
by tests are likely to suffer regressions in the near future. This might be fine if you
accept the risk. Maybe the exception type and the line number are enough.

We have decided to remove the exception message, as it is not tested:

public class TicTacToe {

public void validatePosition(int x, int y) {
if (isOutsideTheBoard(x)) {
throw new RuntimeException("");
}
if (isOutsideTheBoard(y))
throw new RuntimeException("");

[193]

http://en.wikipedia.org/wiki/Code_coverage
http://en.wikipedia.org/wiki/Code_coverage

Refactoring Legacy Code - Making it Young Again

private boolean isOutsideTheBoard
(final int position) ({
return position < 1 || position > 3;

Other ways to recognize legacy code

You might be familiar with some of the following common signs of
legacy applications:
* A patch on top of a patch, just like a living Frankenstein application
* Known bugs
* Changes are expensive
* Fragile
 Difficult to understand
e QOld, outdated, static or, often, non-existent documentation
* Shotgun surgery
* Broken windows

Regarding the team that maintains it, these are some of the effects it produces
on them:

* Resignation: The people in charge of the software see a huge task in front
of them
* No one cares anymore: If you already have broken windows in your system,

it is easier to introduce new ones

As legacy code is usually more difficult than other kinds of software, you would
want your best people to work on it. However, we are often in a hurry imposed by
deadlines, with the idea of programming required functionalities as fast as possible
and ignoring the quality of the solution.

Therefore, to avoid wasting our talented developers in such a bad way, we expect a
non-legacy application to fulfill just the opposite. It should be:

* Easy to change

* Generalizable, configurable, and expansible

* Easy to deploy

* Robust

¢ No known defects or limitations

[194]

Chapter 8

* Easy to teach to others/to learn from others
* Extensive suite of tests

* Self-validating

* Able to use keyhole surgery

As we have outlined some of the properties of legacy and non-legacy code, it should
be easy to replace some qualities with others. Right? Stop shotgun surgery and use
keyhole surgery, a few more details and you are done. Isn't that right?

It is not as easy as it sounds. Luckily there are some tricks and rules that, when
applied, improve our code and the application comes closer to a non-legacy one.

A lack of dependency injection

This is one of the smells often detected in a legacy codebase. As there is no need to
test the classes in isolation, the collaborators are instantiated where they are needed,
putting the responsibility of creating collaborators and using them in the same class.

An example, using the new operator:

public class BirthdayGreetingService {
private final MessageSender messageSender;

public BirthdayGreetingService() {
messageSender = new EmailMessageSender () ;

}

public void greet (final Employee employee) {
messageSender.send (employee.getAddress (),
"Greetings on your birthday") ;

}
}

In the current state, the service BirthdayGreeting is not unit-testable. It has the
dependency to EmailMessageSender hardcoded in the constructor. It is not possible
to replace this dependency without modifying the code-base (except for injecting
objects using reflection or replacing objects on the new operator).

Modifying the codebase is always a source of possible regressions, so it should be
done with caution. Refactoring requires tests, except when it is not possible.

[195]

Refactoring Legacy Code - Making it Young Again

M The Legacy Code Dilemma

When we change code, we should have tests in place. To put tests in
place, we often have to change code.

The legacy code change algorithm

When you have to make a change in a legacy code base, here is an algorithm you
can use:

* Identify change points
* Find test points

* Break dependencies

* Write tests

* Make changes and refactor

Applying the legacy code change algorithm

In order to apply this algorithm, we usually start with a suite of tests and always
keep it green while refactoring. This is different from the normal cycle of TDD
because refactoring should not introduce any new feature (that is, it should not
write any new specifications).

In order to better explain the algorithm, imagine that we received the following
change request:

To greet my employees in a more informal way, I want to send them a tweet instead
of an email.

Identifying change points

The system is only able to send emails right now, so a change is necessary. Where? A
quick investigation shows that the strategy for sending the greeting is decided in the
constructor for the BirthdayGreetingService class following the strategy pattern
https://en.wikipedia.org/?title=Strategy pattern (fragment):

public class BirthdayGreetingService {

public BirthdayGreetingService() {
messageSender = new EmailMessageSender () ;
}
[...]
}

[196]

https://en.wikipedia.org/?title=Strategy_pattern (fragment)

Chapter 8

Finding test points

As the BirthdayGreetingService class does not have any collaborator injected
that could be used to attach additional responsibilities to the object, the only
option is to go outside this service class to test it. An option would be to change
the EmailMessageSender class for a mock or fake implementation, but this would
risk the implementation in that class.

Another option is to create an end-to-end test for this functionality:

public class EndToEndTest

@Test
public void email an _employee () {
final StringBuilder systemOutput =
injectSystemOutput () ;

final Employee john = new Employee (
new Email ("john@example.com")) ;

new BirthdayGreetingService () .greet (john) ;

assertThat (systemOutput.toString(),
equalTo ("Sent email to "
+ "'johneexample.com' with "
+ "the body 'Greetings on your "
+ "birthday'\n"));

}

// This code has been used with permission from
//GMaur's LegacyUtils:
// https://github.com/GMaur/legacyutils
private StringBuilder injectSystemOutput ()
final StringBuilder stringBuilder =
new StringBuilder () ;
final PrintStream outputPrintStream =
new PrintStream(
new OutputStream() {
@Override
public void write(final int b)
throws IOException {
stringBuilder.append((char) b) ;
}
1)
System.setOut (outputPrintStream) ;
return stringBuilder;
}
}

[197]

Refactoring Legacy Code - Making it Young Again

This code has been used with permission from https://github.com/GMaur/
legacyutils. This library helps you perform the technique of capturing the
System out (System.out).

The name of the file does not end in Specification (or Spec), such as TicTacToeSpec,
because this is not a specification. It is a test, to ensure the functionality remains
constant. The file has been named EndToEndTest because we try to cover as much
functionality as possible.

Breaking dependencies

After having created a test that guarantees the expected behavior does not change,
we will break the hardcoded dependency between BirthdayGreetingService and
EmailMessageSender. For this, we will use a technique called Extract and Override
Call, which is first explained in Michaels Feathers' book:

public class BirthdayGreetingService {

public BirthdayGreetingService() {
messageSender = getMessageSender() ;

}

private MessageSender getMessageSender () {
return new EmailMessageSender () ;

}

[...]

Rerun the tests and the single test we have is green. We need to make this method
protected or more open to be able to override it:

public class BirthdayGreetingService {

protected MessageSender getMessageSender ()
return new EmailMessageSender () ;

}

[...]

We create a fake in the test folder. Introducing fakes in code is a pattern that consists
of creating an object that could replace an existing one with the particularity that we
can control its behavior. This way, we can inject some customized fakes to achieve
what we need. More information is available at http://xunitpatterns.com/.

[198]

https://github.com/GMaur/legacyutils
https://github.com/GMaur/legacyutils
http://xunitpatterns.com/

Chapter 8

In this particular case, we should create a fake service that extends the original
service. The next step is to override complicated methods in order to bypass
irrelevant parts of code for testing purposes:

public class FakeBirthdayGreetingService
extends BirthdayGreetingService {

@Override
protected MessageSender getMessageSender ()
return new EmailMessageSender () ;

}

Now we can use the fake, instead of the BirthdayGreetingService class:

public class EndToEndTest

@Test
public void email an employee () {
final StringBuilder systemOutput =
injectSystemOutput () ;
final Employee john = new Employee (
new Email ("john@example.com")) ;

new FakeBirthdayGreetingService () .greet (john) ;

assertThat (systemOutput.toString(),
equalTo ("Sent email to "
+ "'john@example.com' with "
+ "the body 'Greetings on "
+ "your birthday'\n"));

}

The test is still green.

We can now apply another dependency-breaking technique "Parameterize
Constructor", explained in Feathers' paper http://www.objectmentor.com/
resources/articles/WorkingEffectivelyWithLegacyCode.pdf. The
production code may look like this:

public class BirthdayGreetingService {

public BirthdayGreetingService (final MessageSender
messageSender) {

[199]

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf
http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Refactoring Legacy Code - Making it Young Again

this.messageSender = messageSender;

}
[...]

}

Test code that corresponds to this implementation can be as follows:

public class EndToEndTest {

@Test
public void email an employee () {
final StringBuilder systemOutput =
injectSystemOutput () ;

final Employee john = new Employee (
new Email ("john@example.com")) ;

new BirthdayGreetingService (new
EmailMessageSender ()) .greet (john) ;

assertThat (systemOutput.toString(),
equalTo("Sent email to "
+ "'johne@example.com' with "
+ "the body 'Greetings on "
+ "your birthday'\n"));
}
[...]

We can also remove FakeBirthday, as it is no longer used.

Writing tests

While keeping the old end-to-end test, create an interaction to verify the integration
of BirthdayGreetingService and MessageSender

@Test
public void the service should ask the messageSender () {
final Email address =
new Email ("john@example.com") ;
final Employee john = new Employee (address) ;
final MessageSender messageSender =
mock (MessageSender.class) ;

new BirthdayGreetingService (messageSender)
.greet (john) ;

verify (messageSender) .send (address,
"Greetings on your birthday") ;

[200]

Chapter 8

At this point, a new TweetMessageSender can be written, thus completing the last
step of the algorithm.

The Kata exercise

The only way a programmer will be able to improve is through practice. Creating
programs of different types and using different technologies usually provide a
programmer with new insights into software construction. Based on this idea, a Kata
is an exercise that defines some requirements or fixed features to be implemented in
order to achieve some goals.

The programmer is asked to implement a possible solution and then compare it with
others trying to find the best. The key value of this exercise is not getting the fastest
implementation but discussing decisions taken while designing the solution. In most
cases, all programs created in Kata are dropped at the end.

The Kata exercise in this chapter is about a legacy system. This is a sufficiently
simple program to be processed in this chapter but also complex enough to pose
some difficulties.

Legacy Kata
You have been tasked to adopt a system that is already in production, a working

piece of software for a book library: the Alexandria project.

The project currently lacks documentation, and the old maintainer is no longer
available for discussion. So, should you accept this mission, it is going to be
entirely your responsibility, as there is no one else to rely on.

Description
We have been able to recover these specification snippets from the time the original

project was written:

* The Alexandria software should be able to store books and lend them to
users, who have the power to return them. The user can also query the
system for books, by author, book title, status, and ID.

* There is no time frame for returning the books.

* The books can also be censored as this is considered important for
business reasons.

* The software should not accept new users.

* The user should be told, at any moment, which is the server's time.

[201]

Refactoring Legacy Code - Making it Young Again

Technical comments

The Alexandria is a backend project written in Java, which communicates
information to the frontend using a REST API. For the purpose of this Kata exercise,
the persistence has been implemented as an in-memory object, using the Fake test
double explained in http://xunitpatterns.com/Fake%200bject .html.

The code is available at https://bitbucket.org/vfarcic/tdd-chapter-08/
commits/branch/legacy-code.

Adding a new feature

Until the point of adding a new feature, the legacy code might not be a disturbance
to the programmers' productivity. The codebase is in a state that is worse than
desired, but the production systems work without any inconveniences.

Now is the time when the problems start to appear. The Product Owner (PO) wants
to add a new feature.

For example, as a library manager, I want to know all the history for a given book so
that I can measure which books are more in demand than others.

Black-box or spike testing

As the old maintainer of the Alexandria project is no longer available for questions
and there is no documentation, the black-box testing is more difficult. Thus, we
decide to get to know the software better through investigation and then doing
some spikes that will leak internal knowledge to us about the system.

We will later use this knowledge to implement the new feature.

Black-box testing is a method of software testing that examines the
functionality of an application without peering into its internal structures
or workings. This type of test can be applied to virtually every level of
. software testing: unit, integration, system, and acceptance. It typically
& comprises most if not all higher-level testing, but can dominate unit
" testing as well.

Source: http://en.wikipedia.org/wiki/Black-box_testing.

More information on black-box testing can be found here: http://
agile.csc.ncsu.edu/SEMaterials/BlackBox.pdf

[202]

https://bitbucket.org/vfarcic/tdd-chapter-08/commits/branch/legacy-code
https://bitbucket.org/vfarcic/tdd-chapter-08/commits/branch/legacy-code
http://en.wikipedia.org/wiki/Black-box_testing
http://agile.csc.ncsu.edu/SEMaterials/BlackBox.pdf
http://agile.csc.ncsu.edu/SEMaterials/BlackBox.pdf
http://xunitpatterns.com/Fake%20Object.html

Chapter 8

Preliminary investigation

When we know the required feature, we will start looking at the Alexandria project:

* 15files
* maven-based (pom.xml)
e OQtests

Firstly, we want to confirm is that this project has never been tested, and the lack of a
test folder reveals so:

$ find src/test

find: src/test: No such file or directory

These are the folder contents for the Java part:

$ cd src/main/java/com/packtpublishing/tddjava/ch08/alexandria/
$ find .

./Book.java

./Books.java
./BooksEndpoint.java
./BooksRepository.java

. /CustomExceptionMapper.java
./MyApplication.java
./States.java

./User.java
./UserRepository.java

./Users.java

The rest:

$ c¢d src/main

$ find resources webapp
resources
resources/applicationContext.xml
webapp

webapp/WEB - INF
webapp/WEB-INF/web.xml

[203]

Refactoring Legacy Code - Making it Young Again

This seems to be a web project (indicated by the web.xm1 file), using Spring
(indicated by the applicationContext.xml). The dependencies in the
pom.xml show the following (fragment):

<dependencys>
<groupIds>org.springframework</groupIld>
<artifactId>spring-web</artifactIds>
<version>4.1.4.RELEASE</version>
</dependency>

Having Spring is already a good sign, as it can help with the dependency injection,
but a quick look showed that the context is not really being used. Maybe something
that was used in the past?

In the web . xm1 file, we can find this fragment:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd">

<module-name>alexandria</module-name>

<context-params>
<param-name>contextConfiglocation</param-name>
<param-value>classpath:applicationContext.xml</param-value>
</context-param>

<servlets>
<servlet-name>SpringApplication</servlet-name>
<servlet-class>
org.glassfish.jersey.servlet.ServletContainer</servlet-class>
<init-param>
<param-name>javax.ws.rs.Application</param-name>

<param-value>com.packtpublishing.tddjava.ch08.alexandria.
MyApplication</param-value>

</init-param>
<load-on-startup>1l</load-on-startup>
</servlet>

In this file:

* The context in applicationContext .xml will be loaded

* There is an application file (com.packtpublishing.tddjava.ch08.
alexandria.MyApplication) that will be executed inside a servlet

[204]

Chapter 8

The Myapplication file is as follows:

public class MyApplication extends ResourceConfig {

public MyApplication() {
register (RequestContextFilter.class) ;
register (BooksEndpoint.class) ;
register (JacksonJaxbJdsonProvider.class) ;
register (CustomExceptionMapper.class) ;

}

This configures the necessary classes for executing the endpoint BooksEndpoint

(fragment):

@Path ("books")
@Component
public class BooksEndpoint {

private BooksRepository books = new BooksRepository() ;

private UserRepository users = new UserRepository () ;

In this last snippet, we can find one of the first indicators that this is a legacy

codebase: both dependencies (books and users) are created inside the endpoint

and not injected. This makes unit testing more difficult.

We can start by writing down the element that will be used during refactoring;

we write the code for the dependency injection in BooksEndpoint.

How to find candidates for refactoring

There are different paradigms of programming (for example, functional, imperative,
and object-oriented) and styles (for example, compact, verbose, minimalistic, and
too-clever). Therefore, the candidates for refactoring are different from one person to

the other.

There is another way, as opposed to subjectively, of finding candidates for
refactoring: objectively. Research papers investigating ways of finding
these ways include:

Source: http://www.bth.se/fou/cuppsats.nsf/all/2e48c5bclc234d0ecl257¢c77

003ac842/$file/BTH2014SIVERLAND. pdf

[205]

http://www.bth.se/fou/cuppsats.nsf/all/2e48c5bc1c234d0ec1257c77003ac842/$file/BTH2014SIVERLAND.pdf
http://www.bth.se/fou/cuppsats.nsf/all/2e48c5bc1c234d0ec1257c77003ac842/$file/BTH2014SIVERLAND.pdf

Refactoring Legacy Code - Making it Young Again

Introducing the new feature

After getting to know the code more, it seems that the most important functional
change is to replace the current status (fragment):

@XmlRootElement
public class Book

private final String title;

private final String author;

private int status; //<- this attribute
private int id;

with a collection of them (fragment):

@XmlRootElement

public class Book {
private int[] statuses;
/...

This might seem to work (after changing all access to the field to the array,
for example), but this also prompts a functional requirement.

The Alexandria software should be able to store books and lend them to users
who have the power to return them. The user can also query the system for books,
by author, book title, status, and ID.

The Product Owner (PO) confirms that searching books via status has now changed:
now it also allows to search for any previous status.

This change is getting bigger and bigger. Whenever we feel that the time for
removing this legacy code has come, we start applying the legacy code algorithm.

We have also detected a primitive obsession and feature envy smell; storing the
status as int (primitive obsession) and then actuating on another object's state
(feature envy). We will add this to the following to-do list:

* Dependency injection in BooksEndpoint for books

* Change status for statuses

* Remove the primitive obsession for status (optional)

[206]

Chapter 8

Applying the legacy code algorithm

In this case, the whole middle-end works as a standalone, using in-memory
persistence. The same algorithm could be used if the persistence was saved into a
database, but we would require some extra code to clean and populate the database
between test runs.

We'll use DbUnit. More information can be found at http://dbunit.sourceforge.
net/.

Writing end-to-end test cases

The first step we've decided to take to ensure the behavior is maintained during the
a refactoring is to write end-to-end tests. In other applications that include frontend,
this could be using a higher-level tool such as Selenium/Selenide.

In our case, as the frontend is not subject to refactoring, the tool can be lower-level.
We have chosen to write HTTP requests for the purpose of end-to-end tests.

These requests should be automatic and testable, and should follow all existing rules
for automatic tests or specifications. As we were discovering the real application
behavior while writing these tests, we have decided to write a spike in a tool called
Postman. (The tool can be found here: https://chrome.google.com/webstore/
detail/postman-rest-client/fdmmgilgnpjigdojojpjoocoidkmcomem.

The product website is here: https: //www.getpostman.com/). This is also possible
with a tool called curl (http://curl.haxx.se/).

What is curl?
curl is a command-line tool and library for transferring data with URL
syntax, supporting [...] HTTP,HTTPS, [...],HTTP POST, HTTP

%!.;_ PUT, [...].
s

What's curl used for?

curl is used in command lines or scripts to transfer data.

Source: http://curl.haxx.se/.

To do this, we decide to execute the legacy software locally with the following line:

mvn clean jetty:run

[207]

http://dbunit.sourceforge.net/
http://dbunit.sourceforge.net/
https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm
https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm
https://www.getpostman.com/
http://curl.haxx.se/
http://curl.haxx.se/

Refactoring Legacy Code - Making it Young Again

This fires up a local jetty server that processes requests. The big benefit is that
deployment is done automatically and there is no need to package everything

and manually deploy to an application server (for example, JBoss AS, GlassFish,
Geronimo, and TomEE). This can greatly speed up the process of making changes
and seeing the effects, therefore decreasing the feedback lead time. Later on, we will
start the server programmatically from Java code.

We start looking for functionalities. As we discovered earlier that the BooksEndpoint
class contains the webservice endpoint definitions, this is a good place to start
looking for functionalities. They are listed below:

1.

A N

Add a new book.

List all the books.

Search for books by ID, by author, by title, and by status.
Prepare this book to be rented.

Rent this book.

Censor this book.

Uncensor the book.

We launch the server manually and start writing requests:

alexandria

[2:51) add book

all books
LLsl9) censor book 1

| get book by author

=3 get book id = 1

-GEI’ get book state does not exist

prepare book 1

et i rent book 1 by user

return book 1

L1 uncensor book 1

These tests seem good enough for a spike. One thing that we have realized is that
each response contains a timestamp, so this makes our automation more difficult:

[208]

Chapter 8

all books
http://localhost:8080/alexandria’/books
m Save Preview Add to collection
Body ALY ES 202 Accepted [R5 286 ms
Pretty Raw Preview L :;}- JSON XML
{
"empty": false,
"reguestTime™: "18:47:59.838",
"result™: [
"title”: "TDD in Java",
"author”: "Viktor Farcic & Alex Garcia”,
"status": 1,
"id": @
I
U : :
"title™: "TDD in Java",
"author”: "Viktor Farcic & Alex Garcia”,
"status": 1,
) "id": 1
I
o1
}

For the tests to have more value, they should be automated and exhaustive.
For the moment, they are not, so we consider them spikes. They will be
automated in the future.

Each and every single test that we perform is not automated. In this case,
the tests from the Postman interface are much faster to write than the
automated ones. Also, the experience is far more representative of what
production use would be like. The test client (thankfully, in this case)
could introduce some problems with the production one, and therefore
not return trusted results.

In this particular case, we have found that the Postman tests are a better
investment because, even after writing them, we will throw them away.
They give a very rapid feedback on the API and results. We also use
this tool for prototyping the REST APIs, as its tools are both effective
and useful.

The general idea here is: depending on whether you want to save those
tests for the future or not, use one tool or another. This also depends on
how often you want to execute them, and in which environment.

[209]

Refactoring Legacy Code - Making it Young Again

After writing down all the requests, these are the states that we have found in the
application, represented by a state diagram:

Rent
Available]J Rented

/ h Return

h

Prepare

Bought

Censor Uncensor

Censored

After these tests are ready and we start to understand the application, it is time to
automate the tests. After all, if they are not automated, we don't really feel confident
enough for refactoring.

Automating the test cases

We proceed to start the server programmatically. For this, we have decided to use
Grizzly (https://grizzly.java.net/), which allows us to start the server using
the configuration from Jersey's ResourceConfig (FQCN: org.glassfish.jersey.
server.ResourceConfig), as shown on the test BooksEndpointTest (fragment):

The code can be found at https://bitbucket.org/vfarcic/tdd-chapter-08/
commits/branch/refactor/inject-dependencies:

public class BooksEndpointTest
public static final URI FULL_PATH =
URI.create ("http://localhost:8080/alexandria") ;
private HttpServer server;

@Before
public void setUp() throws IOException (
ResourceConfig resourceConfig =
new MyApplication() ;
server = GrizzlyHttpServerFactory

[210]

https://grizzly.java.net/
https://bitbucket.org/vfarcic/tdd-chapter-08/commits/branch/refactor/inject-dependencies
https://bitbucket.org/vfarcic/tdd-chapter-08/commits/branch/refactor/inject-dependencies

Chapter 8

.createHttpServer (FULL PATH, resourceConfig);
server.start () ;

@After
public void tearDown () {
server.shutdownNow () ;

}

This prepares a local server in the address http://localhost:8080/alexandria. It
will only be available for a short period of time (while the tests run), so if you need to
manually access the server, whenever you want to pause the execution, insert a call
to the following method:

public void pauseTheServer () throws Exception
System.in.read() ;

}

When you want to stop the server, stop the execution or hit Enter in the
allocated console.

Now we can start the server programmatically, pause it (with the preceding
method), and execute the spike again. The results are the same, therefore the
refactor is successful.

We add the first automated test to the system:

The code can be found at https://bitbucket.org/vfarcic/tdd-chapter-08/
commits/branch/refactor/inject-dependencies

public class BooksEndpointTest

public static final String AUTHOR BOOK 1 =
"Viktor Farcic and Alex Garcia'";

public static final String TITLE BOOK 1 =
"TDD in Java'";

private final Map<String, String> TDD IN JAVA;

public BooksEndpointTest ()
TDD_IN JAVA = getBookProperties (TITLE BOOK 1,
AUTHOR_BOOK_1) ;

}

private Map<String, String> getBookProperties
(String title, String author)

[211]

https://bitbucket.org/vfarcic/tdd-chapter-08/commits/branch/refactor/inject-dependencies
https://bitbucket.org/vfarcic/tdd-chapter-08/commits/branch/refactor/inject-dependencies

Refactoring Legacy Code - Making it Young Again

Map<String, String> bookProperties =
new HashMap<>() ;

bookProperties.put ("title", title);

bookProperties.put ("author", author) ;

return bookProperties;

@Test

public void add_one book () throws IOException {
final Response booksl = addBook (TDD_IN JAVA) ;
assertBooksSize (booksl, is("1"));

private void assertBooksSize (Response response,
Matcher<Strings> matcher) {

response.then () .body (matcher) ;

private Response addBook
(Map<String, ?> bookProperties) {
return RestAssured
.given () .log() .path()
.contentType (ContentType . URLENC)
.parameters (bookProperties)
.post ("books") ;

}

For testing purposes, we're using a library called RestAssured (https://code.
google.com/p/rest-assured/) that allows for easier testing of REST and JSON.

To complete the automated test suite, we create these tests:

1. add one book ().
add_a_second book ().

get book details by id().
get several books in a row().

censor_a book ().

SRS N

cannot_retrieve a censored book().

The code is found in https://bitbucket .org/vfarcic/tdd-chapter-08/
commits/branch/refactor/inject-dependencies:

[212]

https://code.google.com/p/rest-assured/
https://code.google.com/p/rest-assured/
https://bitbucket.org/vfarcic/tdd-chapter-08/commits/branch/refactor/inject-dependencies
https://bitbucket.org/vfarcic/tdd-chapter-08/commits/branch/refactor/inject-dependencies

Chapter 8

Now that we have a suite that ensures that no regression is introduced, we take a
look at the following to-do list:

1. Dependency injection in BooksEndpoint for books.

2. Change status for statuses.

3. Remove the primitive obsession for status (optional).

We will tackle the dependency injection first.

Injecting the BookRepository dependency

The creation of the BookRepository dependency is in BooksEndpoint (fragment):

@Path ("books")
@Component
public class BooksEndpoint {

private BooksRepository books =
new BooksRepository() ;

Extract and override call

We will apply the already introduced refactoring technique "extract and override
call". For this, we create a failing specification, as shown here:

@Test
public void add one book () throws IOException {
addBook (TDD_IN JAVA) ;

Book tddInJava = new Book (TITLE BOOK 1,
AUTHOR BOOK_1,
States.fromvalue (1)) ;

verify (booksRepository) .add (tddInJdava) ;

}

To pass this red specification, also known as a failing specificiation, we will first
extract the dependency creation to a protected method in BookRepository class:

@Path ("books")
@Component
public class BooksEndpoint {

[213]

Refactoring Legacy Code - Making it Young Again

private BooksRepository books =
getBooksRepository () ;

protected BooksRepository
getBooksRepository ()
return new BooksRepository () ;

[...]

We copy the MyApplication launcher to this:

public class TestApplication
extends ResourceConfig ({

public TestApplication
(BooksEndpoint booksEndpoint) {
register (booksEndpoint) ;
register (RequestContextFilter.class) ;
register (JacksonJaxbdsonProvider.class) ;
register (CustomExceptionMapper.class) ;

public TestApplication() {
this (new BooksgEndpoint (
new BooksRepository()));

}

This allows us to inject any BooksEndpoint. In this case, in the test
BooksEndpointInteractionTest, we will override the dependency getter
with a mock. In this way, we can check that the necessary calls are being made
(fragment from BooksEndpointInteractionTest):

@Test
public void add one book () throws IOException {
addBook (TDD_IN_JAVA) ;
verify (booksRepository)
.add (new Book (TITLE_BOOK 1,
AUTHOR BOOK 1, 1));

[214]

Chapter 8

Run the tests; everything is green. Even though the specifications are successful, we
have introduced a piece of design only for test purposes, and the production code
is not executing this new launcher TestApplication but is still executing the old
MyApplication. To solve this this, we have to unify both launchers into one. This
can be solved with the refactor "Parametrize constructor", also explained in Roy
Osherove's book "The Art of Unit Testing" (http://artofunittesting.com).

Parameterizing a constructor

We can unify the launchers accepting a BooksEndpoint dependency: if we don't
specify it, it will register the dependency with the real instance of BooksRepository.
Otherwise, it will register the received one:

public class MyApplication
extends ResourceConfig {

public MyApplication() {
this (new BooksEndpoint (
new BooksRepository())) ;

public MyApplication
(BooksEndpoint booksEndpoint) {
register (booksEndpoint) ;
register (RequestContextFilter.class) ;
register (JacksonJaxbJdsonProvider.class) ;
register (CustomExceptionMapper.class) ;

}

In this case, we have opted for 'constructor chaining' to avoid repetition in the
constructors.

After doing this refactor, the BooksEndpointInteractionTest class is as follows,
in its final state:

public class BooksEndpointInteractionTest

public static final URI FULL_ PATH = URI.

create ("http://localhost:8080/alexandria") ;
private HttpServer server;
private BooksRepository booksRepository;

@Before
public void setUp() throws IOException {
booksRepository = mock (BooksRepository.class) ;

[215]

http://artofunittesting.com

Refactoring Legacy Code - Making it Young Again

BooksEndpoint booksEndpoint =
new BooksEndpoint (booksRepository) ;
ResourceConfig resourceConfig =
new MyApplication (booksEndpoint) ;
server = GrizzlyHttpServerFactory
.createHttpServer (FULL PATH, resourceConfig);
server.start () ;

}
The first test passed, so we can mark the dependency injection task as done.
The to-do list:

* Dependency injection in BooksEndpoint for books
* Change status for statuses

* Remove the primitive obsession for status (optional)

Adding a new feature

Once we have the necessary test environment in place, we can add the new feature.

As a library manager, I want to know all the history for a given book so that I can
measure which books are more in demand than others.

We will start with a red specification:

public class BooksSpec {

@Test
public void should search for any past state() {
Book bookl = new Book ("title", "author",

States.AVAILABLE) ;
bookl.censgor () ;

Books books = new Books () ;
books.add (book1l) ;

String available =
String.valueOf (States.AVAILABLE) ;
assertThat (
books.filterByState (available) .isEmpty (),
is(false)) ;

}

Run all the tests and see the last one fail.

[216]

Chapter 8

Implement the search on all states (fragment):

public class Book {
private ArraylList<Integer> status;

public Book (String title, String author, int status) {
this.title = title;
this.author = author;
this.status = new ArrayList<>();
this.status.add(status) ;

public int getStatus() {
return status.get (status.size()-1);

public void rent ()
status.add (States.RENTED) ;

public List<Integer> anyState() {
return status;

}
[...]

In this fragment, we have omitted the irrelevant parts: things that were not modified
or more modifier methods such as rent that have changed the implementation in the
same fashion:

public class Books ({
public Books filterByState (String state) {
Integer expectedState = Integer.valueOf (state);
return new Books (
new ConcurrentLinkedQueue<> (
books.stream/()
filter (x
-> x.anyState ()
.contains (expectedState))
.collect (toList())));

[217]

Refactoring Legacy Code - Making it Young Again

The outside methods, especially the serialization to JSON, are not affected as the
method getstatus still returns an int value.

We run all the tests and everything is green.
The to-do list:

* Dependency injection in BooksEndpoint for books
* Change status for statuses

* Remove the primitive obsession for status (optional)

Removing the primitive obsession with status
as Int

We have decided to also tackle the optional item in our to-do list.
The to-do list:

* Dependency injection in BooksEndpoint for books
* Change status for statuses

* Remove the primitive obsession for status (optional)

The Smell: Primitive Obsession involves using primitive data types
to represent domain ideas. For example, we use a string to represent
a message, an integer to represent an amount of money, or a Struct/

~ Dictionary/Hash to represent a specific object.

The source is: http://c2.com/cgi/wiki?PrimitiveObsession.

As this is a refactor step (that is, we are not introducing any new behavior into the
system), we don't need any new specification. We will proceed and try to always
stay green or leave it for as little time as possible.

We have converted the states from a java class with constants:

public class States {
public static final int BOUGHT = 1;
public static final int RENTED = 2;
public static final int AVAILABLE = 3;
public static final int CENSORED = 4;

[218]

http://c2.com/cgi/wiki?PrimitiveObsession

Chapter 8

to an enum:

enum States

}

BOUGHT (1),
RENTED (2)
AVAILABLE

7

(3),
CENSORED (4)
private final int value;
private States (int value)

this.value = value;

public int getValue() {
return value;

public static States fromValue (int value)
for (States states : values())
if (states.getValue()

return states;

}

throw new IllegalArgumentException (

"Value '" + value

+ "' could not be found in States");

}

Adapt the tests as follows:

public class BooksEndpointInteractionTest

@Test

public void add_one book () throws IOException {

addBook (TDD_IN JAVA) ;

verify (booksRepository) .add (
new Book (TITLE BOOK 1, AUTHOR BOOK 1,
States.BOUGHT)) ;

}
[...]

public class BooksTest

{

Refactoring Legacy Code - Making it Young Again

@Test
public void should search for any past state() {
Book bookl = new Book("title", "author",

States.AVAILABLE) ;
bookl.censor () ;

Books books = new Books () ;
books.add (book1l) ;

assertThat (books.filterByState (
String.valueOf (
States.AVAILABLE.getValue()))
.1sEmpty (), is(false));
}
[...]

Adapt the production code. The code snippet is as follows:

@XmlRootElement
public class Books {
public Books filterByState (String state) {
State expected =
States.fromValue (Integer.valueOf (state)) ;
return new Books (
new ConcurrentLinkedQueuex<> (
books.stream()
.filter(x -> x.anyState()
.contains (expected))
.collect (toList())));

}
[...]

Also the following:

@XmlRootElement
public class Book

private final String title;
private final String author;
@XmlTransient

private ArrayList<States> status;
private int id;

[220]

Chapter 8

public Book
(String title, String author, States status) {
this.title = title;
this.author = author;
this.status = new ArrayList<>();
this.status.add (status) ;

public States getStatus()
return status.get (status.size() - 1);

@XmlElement (name = "status")
public int getStatusAsInteger ()
return getStatus () .getValue() ;

public List<States> anyState() {
return status;

}
[...]

In this case, the serialization has been done using the annotation:

@XmlElement (name = "status")

This converts the result of the method into the field named status.

Also, the field status, now ArrayList<States>, is marked with @xm1Transient so
it is not serialized to JSON.

We execute all the tests and they are green, so we can now cross off the optional
element in our to-do list:

The to-do list:

Dependency injection in BooksEndpoint for books
Change status for statuses

Remove the primitive obsession for status (optional)

[221]

Refactoring Legacy Code - Making it Young Again

Summary

As you already know, inheriting a legacy codebase might be a daunting task.

We stated that legacy code is code without tests, so the first step in dealing with

it is to create tests to help you preserve the same functionality during the process.
Unfortunately, creating tests is not always as easy as it sounds. Many times, legacy
code is tightly coupled and presents other symptoms that show a poor design or at
least a lack of interest in the code's quality in the past. Worry not, you can perform
some of the tedious tasks step by step, as shown in http://martinfowler.com/
bliki/ParallelChange.html. Moreover, it is also well known that software
development is a learning process. Working code is a side-effect. Therefore, the
most important part is to learn more about the codebase, to be able to modify it with
security. Please visit http://www.slideshare.net/ziobrando/model-storming
for more information.

Finally, we encourage you to read Michael Feathers' book called Working Effectively
with Legacy Code. It has plenty of techniques for this kind of codebase and as a result
is very helpful in understanding the whole process.

[222]

http://martinfowler.com/bliki/ParallelChange.html
http://martinfowler.com/bliki/ParallelChange.html
http://www.slideshare.net/ziobrando/model-storming

Feature Toggles — Deploying
Partially Done Features
to Production

"Do not let circumstances control you. You change your circumstances."

- Jackie Chan

We have seen so far how TDD makes the development process easier and decreases
the amount of time spent on writing quality code. But, there's another particular
benefit to this. As code is being tested and its correctness is widely proven: we can go
a step further and assume that our code is production-ready once all tests are passed.

There are some software life cycle approaches based on this idea. Some eXtreme
Programming practices such as Continuous Integration, Continuous Delivery,
and Continuous Deployment will be introduced.

The following topics will be covered in this chapter:

* Continuous Integration, Delivery, and Deployment
* Testing the application in production

* Feature Toggles

[223]

Feature Toggles — Deploying Partially Done Features to Production

Continuous Integration, Delivery, and
Deployment

Test-driven development goes hand in hand with Continuous Integration (CI),
Delivery, or Deployment (CD). Differences aside, all three techniques have similar
goals. They are all trying to foster continuous verification of production readiness of
our code. In that aspect, they are very similar to TDD. They both promote very short
development cycles, continuous verification of the code we're producing, and the
intention to keep our application continuously in production-ready state.

The scope of this book does not permit us to go into the details of those techniques.
Indeed, a whole book could be written on this subject. We'll just briefly explain the
differences between the three. Practicing Continuous Integration means that our
code is at (almost) all times integrated with the rest of the system and if there is a
problem, it will surface quickly. If such a thing happens, the priority is to fix the
cause of that problem, meaning that any new development must take lower priority.
You might have noticed a similarity between this definition and the way TDD works.
The major difference is that with TDD, our primary focus is not the integration with
the rest of the system. The rest is the same. Both TDD and Continuous Integration
try to detect problems fast and treat fixing them as the highest priority, putting
everything else on hold. Continuous Integration does not have the whole pipeline
automated, and additional manual verifications are needed before the code is
deployed to production.

Continuous Delivery is very similar to Continuous Integration, except that the
former goes a bit further and has the whole pipeline automated except the actual
deployment to production. Every push to the repository that passed all verifications
is considered valid for deployment to production. However, the decision to deploy
is made manually. Someone needs to choose one of the builds and promote it to the
production environment. The choice is political or functional. It depends on what
and when we want our users to receive, even though each is production-ready.

"Continuous Delivery is a software development discipline where you build
software in such a way that the software can be released to production at any time."
- Martin Fowler

Finally, Continuous Deployment is accomplished when the decision about what
to deploy is automated as well. In this scenario, every commit that passed all
verifications is deployed to production —no exceptions.

[224]

Chapter 9

In order to continuously integrate or deliver our code to production, branches cannot
exist, or the time between creating them and integrating them with the mainline
must be very short (less than a day, preferably a few hours). If that is not the case, we
are not continuously verifying our code.

The true connection with TDD comes from the necessity to create validations before
the code is committed. If those verifications are not created in advance, code pushed
to the repository is not accompanied with tests and the process fails. Without tests,
there is no confidence in what we did. Without TDD, there are no tests to accompany
our implementation code. Alternatively, delay pushing commits to repository until
tests are created; but, in that case, there is no Continuous part of the process. Code is
sitting on someone's computer until someone else is finished with tests. Code that
sits somewhere is not continuously verified against the whole system.

To summarize, Continuous Integration, Delivery, or Deployment rely on tests to
accompany the integration code (thus, relying on TDD) and on the practice of not
using branches or having them very short-lived (merged to the mainline very often).
The problem is with the fact that some features cannot be developed that fast. No
matter how small our features are, in some cases, it might take days to develop
them. During all that time, we cannot push to repository because the process would
deliver them to production. Users do not want to see partial features. There is no
point having, for example, part of the login process delivered. If one were to see a
login page with a username, password, and login button, but the process behind
that button does not actually store that info and provides, let's say, an authentication
cookie, then at best we would have confused the users. In some other cases, one
feature cannot work without the other. Following the same example, even if a login
feature is fully developed without registration, it is pointless. One cannot be used
without the other.

Imagine playing a puzzle. We need to have a rough idea of the final picture, but we
are focused on one piece at the time. We pick a piece that we think is the easiest to
place and combine it with it's neighbors. Only when all of them are in place is the
picture complete and we are finished.

The same applies to TDD. We develop our code by being focused on small units. As
we progress, they start getting a shape and working with each other until they are
all integrated. While we're waiting for that to happen, even though all our tests are
passing and we are in a green state, the code is not ready for the end users.

The easiest way to solve those problems and not compromise on TDD and CI/CD is
to use Feature Toggles.

[225]

Feature Toggles — Deploying Partially Done Features to Production

Feature Toggles

You might have also heard about this as Feature Flipping or Feature Flags. No
matter which expression we use, they are all based on a mechanism that permits you
to turn on and off the features of your application. This is very useful when all code
is merged into one branch, and you must deal with partially finished (or integrated)
code. With this technique, unfinished features can be hidden so users cannot

access them.

Due to its nature, there are other possible uses for this functionality. As a circuit
breaker when something is wrong with a particular feature, providing graceful
degradation of the application, shutting down secondary features to preserve
hardware resources for business core operations, and so on. Feature Toggles, in some
cases, can go even further. We might use them to enable features only to certain users
based on, for example, geographic location or their role. Another useful usage is that
we can enable new features only for our testers. That way, end users would continue
to be oblivious of the existence of some new features, while testers would be able to
validate them on a production server.

Moreover, there are some aspects to remember when using Feature Toggle:

* Use toggles only until they are fully deployed and proven to work.
Otherwise, you might end up with spaghetti code full of if/else statements
containing old toggles that are not in use any more.

* Do not spend too much time testing toggles. It is, in most cases, enough to
confirm that the entry point into some new feature is not visible. That can be,
for example, a link to that new feature.

* Do not overuse toggles. Do not use them when there is no need for them. For
example, you might be developing a new screen that is accessible through
the link in the home page. If that link is added at the end, there might be no
need to have a toggle that hides it.

There are many good frameworks and libraries for application feature handling. Two
of them are the following:

* Togglz (http://www.togglz.org/)
* FF4J (http://££47 .0rg/)

These libraries offer a sophisticated way to manage features, even adding role-based
or rules-based feature access. In many cases you aren't going to need it, but these
capabilities bring us the possibility of testing a new feature in production without
opening it to all users. However, implementing by ourselves a custom basic solution
for feature toggling is quite simple, and we are going to go through an example to
illustrate this.

[226]

http://www.togglz.org/
http://ff4j.org/

Chapter 9

A Feature Toggle example

Here we go with our demo application. This time, we're going to build a simple and
small REST service to compute on demand a concrete Nth position of Fibonacci's
sequence. We will keep track of enabled/disabled features using a file. For
simplicity, we will use spring-boot as our framework of choice and Thymeleaf as

a template engine. This is also included in the spring-boot dependency. Find more
information about spring-boot and related projects at http: //projects.spring.
io/spring-boot/. Also, you can visit http://www.thymeleaf.org/ to read more
about the template engine.

This is how the build.gradle file looks like:

apply plugin: 'java'
apply plugin: 'application'

sourceCompatibility = 1.8
version = '1.0'
mainClassName = "com.packtpublishing.tddjava.ch09.Application"

repositories ({
mavenLocal ()
mavenCentral ()

dependencies {
compile group: 'org.springframework.boot',
name: 'spring-boot-starter-thymeleaf',
version: '1l.2.4.RELEASE'

testCompile group: 'junit',
name: 'junit',
version: '4.12'

}

Note that application plugin is present because we want to run the application
using the Gradle command run. Here is the application's main class:

@SpringBootApplication
public class Application (
public static void main(String[] args) {
SpringApplication.run (Application.class, args) ;

[227]

http://projects.spring.io/spring-boot/
http://projects.spring.io/spring-boot/
http://www.thymeleaf.org/

Feature Toggles — Deploying Partially Done Features to Production

We will create the properties file. This time, we are going to use YAML format, as it
is very comprehensive and concise. Add a file called application.yml in the src/
main/resources folder with the following content:

features:
fibonacci:
restEnabled: false

Spring offers a way to load this kind of property file automatically. Currently, there
are only two restrictions: the name must be application.yml and/or the file should
be included in the application's class path.

This is our implementation of the features config file:

@Configuration
@EnableConfigurationProperties
@ConfigurationProperties (prefix = "features.fibonacci")
public class FibonacciFeatureConfig

private boolean restEnabled;

public boolean isRestEnabled() {
return restEnabled;

public void setRestEnabled(boolean restEnabled) {
this.restEnabled = restEnabled;

}

This is the fibonacci service class. This time, the computation operation will always
return -1, just to simulate a partially done feature:

@Service ("fibonacci")
public class FibonacciService {

public int getNthNumber (int n)
return -1;

}

We also need a wrapper to hold the computed values;

public class FibonacciNumber {

private final int number, value;

public FibonacciNumber (int number, int value) {

[228]

Chapter 9

this.number = number;
this.value = value;

public int getNumber ()
return number;

public int getValue() {
return value;

}

This is the fibonacciRESTController class, responsible for handling the fibonacci
service queries:

@RestController
public class FibonacciRestController
@Autowired
FibonacciFeatureConfig fibonacciFeatureConfig;

@Autowired
@Qualifier ("fibonacci")
private FibonacciService fibonacciProvider;

@RequestMapping(value = "/fibonacci", method = GET)
public FibonacciNumber fibonacci (
@RequestParam (
value = "number",
defaultvalue = "0") int number) {
if (fibonacciFeatureConfig.isRestEnabled())
int fibonacciValue = fibonacciProvider

.getNthNumber (number) ;
return new FibonacciNumber (number, fibonacciVvalue) ;
} else throw new UnsupportedOperationException () ;

@ExceptionHandler (UnsupportedOperationException.class)
public void unsupportedException (HttpServletResponse response)
throws IOException {
response.sendError (
HttpStatus.SERVICE UNAVAILABLE.value(),
"This feature is currently unavailable™"

[229]

Feature Toggles — Deploying Partially Done Features to Production

}

@ExceptionHandler (Exception.class)
public void handleGenericException (
HttpServletResponse response,
Exception e) throws IOException
String msg = "There was an error processing " +
"your request: " + e.getMessage() ;
response.sendError (
HttpStatus.BAD REQUEST.value(),
msg

}

Note that the fibonacci method is checking whether the fibonacci service

should be enabled or disabled, throwing an UnsupportedOperationException for
convenience in the last case. There are also two error-handling functions; the first one
is for processing UnsupportedOperationException and the second is for generic
exceptions handling.

Now that all the components have been set, all we need to do is execute Gradle's
run command:

$> gradle run

The command will launch a process that will eventually set a server up on
the following address: http://localhost:8080. This can be observed in the
console output:

2015-06-19 03:44:54.157 INFO 3886 --- [main] o.s.w.s.handler.
SimpleUrlHandlerMapping : Mapped URL path [/webjars/**] onto

handler of type [class org.springframework.web.servlet.resource.
ResourceHttpRequestHandler]

2015-06-19 03:44:54.160 INFO 3886 --- [main]
o.s.w.s.handler.SimpleUrlHandlerMapping : Mapped URL path [/**]

onto handler of type [class org.springframework.web.servlet.resource.
ResourceHttpRequestHandler]

2015-06-19 03:44:54.319 INFO 3886 --- [main] o.s.w.s.handler.
SimpleUrlHandlerMapping : Mapped URL path [/**/favicon.ico] onto
handler of type [class org.springframework.web.servlet.resource.
ResourceHttpRequestHandler]

[230]

Chapter 9

2015-06-19 03:44:54.495 1INFO 3886 --- [main] o.s.j.e.a.Annota
tionMBeanExporter : Registering beans for JMX exposure on startup
2015-06-19 03:44:54.649 INFO 3886 --- [main] s.b.c.e.t.Tomcat
EmbeddedServletContainer : Tomcat started on port(s): 8080 (http)
2015-06-19 03:44:54.654 INFO 3886 --- [main] c.p.tddjava.
ch09.Application : Started Application in 6.916 seconds (JVM

running for 8.558)

> Building 75% > :run

Once the application has started, we can perform a query using a regular browser.
The URL of the query is http://localhost:8080/fibonacci?number=7.

This gives us the following output:

® ® _ localhost:8080/fibonacci’

“ C | [localhost:8080/fibonacci?number=7

Whitelabel Error Page

This application has no explicit mapping for /error, so you are seeing this as a fallback.

Sun Jun 28 22:12:18 CEST 2015
There was an unexpected error (type=Service Unavailable, status=3503).
This feature is currently unavailable

As you can see, the error received corresponds to the error sent by the REST API
when the feature is disabled. Otherwise, the return should be -1.

Implementing the Fibonacci service

Most of you might be familiar with Fibonacci's numbers. Here's a brief explanation
anyway for those who don't know what they are.

[231]

http://localhost:8080/fibonacci?number=7

Feature Toggles — Deploying Partially Done Features to Production

Fibonacci's sequence is an integer sequence resulting from the recurrence
f(n) = f(n-1) - f(n - 2). The sequence starts with being f(0) = 0 and f(1) = 1.
_ All other numbers are generated applying the recurrence as many times
% as needed until a value substitution can be performed using either 0 or 1
L known values.

Thatis: 0,1,1, 2, 3,5, 8,13, 21, 34, 55, 89, 144, ...

More info about Fibonacci's sequence can be found here: http://www.

wolframalpha.com/input/?i=fibonacci+sequence

As an extra functionality, we want to limit how long the value computation takes
so we impose a constraint on the input; our service will only compute Fibonacci's
numbers from 0 to 30 (both numbers included).

This is a possible implementation of class computing Fibonacci's numbers:

@Service ("fibonacci")
public class FibonacciService {
public static final int LIMIT = 30;

public int getNthNumber (int n) {
if (isOutOfLimits(n) ({
throw new IllegalArgumentException (

"Requested number must be a positive " +
number no bigger than " + LIMIT);
if (n == 0) return 0;
if (n == || n == 2) return 1;
int first, second = 1, result = 1;
do {
first = second;

second = result;
result = first + second;
--n;

} while (n > 2);

return result;

private boolean isOutOfLimits (int number) {
return number > LIMIT || number < 0;

[232]

http://www.wolframalpha.com/input/?i=fibonacci+sequence
http://www.wolframalpha.com/input/?i=fibonacci+sequence

Chapter 9

For the sake of the brevity, TDD red-green-refactor process is not explicitly explained
through the demonstration, but has been present through the development. Only the
final implementation with the final tests is presented:

public class FibonacciServiceTest
private FibonacciService tested;

private final String expectedExceptionMessage =
"Requested number " +

"must be a positive number no bigger than " +
FibonacciService.LIMIT;

@Rule
public ExpectedException exception = ExpectedException.none() ;

@Before
public void beforeTest () {
tested = new FibonacciService() ;

@Test

public void testO() {
int actual = tested.getNthNumber (0) ;
assertEquals (0, actual);

@Test

public void testl() {
int actual = tested.getNthNumber (1) ;
assertEquals (1, actual);

@Test

public void test7() {
int actual = tested.getNthNumber (7) ;
assertEquals (13, actual);

@Test

public void testNegative() {
exception.expect (IllegalArgumentException.class) ;
exception.expectMessage (is (expectedExceptionMessage)) ;
tested.getNthNumber (-1) ;

[233]

Feature Toggles — Deploying Partially Done Features to Production

@Test

public void testOutOfBounce()
exception.expect (IllegalArgumentException.class) ;
exception.expectMessage (is (expectedExceptionMessage)) ;
tested.getNthNumber (31) ;

}

Also, we can now turn on the fibonacci feature in the application.yml file,
perform some queries with the browser, and check how is it going:

features:
fibonacci:
restEnabled: true

Execute the Gradle's run command:
$>gradle run

Now we can fully test our REST API using the browser, with a number between 0
and 30.

® ® _ localhost:8080/fibonacci?

“ C | [localhost:8080/fibonacci?number=7

{"number":7, "value":13}

With a number bigger than 30, and lastly by introducing characters instead
of numbers:

® ©® iocalhost:8080/fbonacci”

€« C' | [localhost:8080/fibonacci?number=abc bdl)

Whitelabel Error Page

This application has no explicit mapping for /error, so you are seeing this as a fallback.

Fri Jun 19 04:08:01 CEST 2015
There was an unexpected error (type=Bad Request, status=400).
There was an error processing your request: Failed to convert value of type ‘java.lang.String' to required type 'int’; nested ption is java.lang NumberFor ion: For input string: "abc”|

[234]

Chapter 9

Working with the template engine

We are enabling and disabling the fibonacci feature, but there are many other cases
where the Feature Toggle can be very useful. One of them is hiding a web link that
links to an unfinished feature. This is an interesting use because we can test what we
released to production using its URL, but it will be hidden for the rest of users for as
long as we want.

To illustrate this behavior, we are going to create a simple web page using the
already mentioned Thymeleaf framework.

First of all, we add a new control flag:

features:
fibonacci:
restEnabled: true
webEnabled: true

Next, map this new flag in a configuration class:

private boolean webEnabled;
public boolean isWebEnabled()
return webEnabled;

public void setWebEnabled (boolean webEnabled) {
this.webEnabled = webEnabled;

}

We are going to create two templates. The first one is the home page. It contains
some links to different Fibonacci numbers computations. These links should be
visible only when the feature is enabled, so there's an optional block to simulate
this behavior:

< !DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">
<head lang="en">
<meta http-equiv="Content-Type"
content="text/html; charset=UTF-8" />
<title>HOME - Fibonacci</title>
</head>
<body>
<div th:if="${isWebEnabled}">
<p>List of links:</p>
<ul th:each="number : ${arrayOfInts}">

<a

[235]

Feature Toggles — Deploying Partially Done Features to Production

th:href="@{/web/fibonacci (number=${number}) }"
th:text="'Compute ' + ${number} + 'th fibonacci'">
</1li>

</div>
</body>
</html>

The second one just shows the value of the computed Fibonacci number and also a
link to go back to the home page:

<!DOCTYPE htmls>
<html xmlns:th="http://www.thymeleaf.org">
<head lang="en">
<meta http-equiv="Content-Type"
content="text/html; charset=UTF-8" />
<title>Fibonacci Example</title>
</head>
<body>
<p th:text="${number} + 'th number: ' + ${value}"></p>
<a th:href="e@{/}">back
</body>
</html>

In order to get both templates to work, they should be in a specific location.
Theyaresrc/main/resources/templates/home.htmlandsrc/main/resources/
templates/fibonacci.html, respectively.

Finally, the master piece, which is the controller that connects all this and makes
it work:

@Controller
public class FibonacciWebController {
@Autowired
FibonacciFeatureConfig fibonacciFeatureConfig;

@Autowired
@Qualifier ("fibonacci")
private FibonacciService fibonacciProvider;

@RequestMapping (value = "/", method = GET)
public String home (Model model) {
model .addAttribute (
"isWebEnabled",
fibonacciFeatureConfig.isWebEnabled ()
)
if (fibonacciFeatureConfig.isWebEnabled()) {
model .addAttribute (
"arrayOfInts",
Arrays.asList (5, 7, 8, 16)

[236]

Chapter 9

)i
1

return "home";

}

@RequestMapping (value ="/web/fibonacci", method = GET)
public String fibonacci (
@RequestParam(value = "number") Integer number,
Model model) {
if (number != null)
model .addAttribute ("number", number) ;
model .addAttribute (
"value",
fibonacciProvider.getNthNumber (number)) ;

}

return "fibonacci";

}

Note that this controller and the previous one seen in the REST API example share
some similarities. This is because both are constructed with the same framework and
use the same resources. However, there are slight differences between them; one is
annotated as eController instead of both being @RestController. This is because
the web controller is serving template pages with custom information, while the
REST API generates a JSON object response.

Let's see this working, again using the Gradle command:

$> gradle clean run

This is the generated home page:

. . ~ HOME - Fibonacci x
&« C [localhost:8080
List of links:

+ Click here to compute Sth fibonacci number

« Click here to compute 7th fibonacci number

+ Click here to compute 8th fibonacei number

+ Click here to compute 16th fibonacci number

[237]

Feature Toggles — Deploying Partially Done Features to Production

This is shown when visiting the Fibonacci's number link:

® ® _ Fiponacci Example x

€« C' [localhost:8080/web/fibonacci?Pnumber=7

Fibonacci 7th number is 13

back

But when we turn off the feature using the following code:

features:
fibonacci:
restEnabled: true
webEnabled: false

Relaunching the application, we browse to the home page and see that those
links are not shown anymore, but we can still access the page if we already
know the URL. If we manually write this URL http://localhost:8080/web/
fibonacci?number=15, we can still access the page with the response.

=

o o _ Fiponacci Example

“~ C | [localhost:8080/web/fibonacci?number=15

Fibonacci 15th number is 610

back

This practice is very useful, but it usually adds unnecessary complexity to your code.
Don't forget to refactor the code, deleting old toggles that you won't use anymore.

It will keep your code clean and readable. Also, a good point is getting this working
without restarting the application. There are many storage options that do not
require a restart, databases being the most popular.

[238]

Chapter 9

Summary

Feature Toggle is a nice way to hide and/or handle partially finished functionalities
in production environments. This may sound weird for those deploying code to
production on demand, but it is quite common to find this situation when practicing
Continuous Integration, Delivery, or Deployment.

We have introduced the technique and discussed the pros and cons of using it.
We also enumerated some of the typical cases where toggling features can be helpful.

There are many libraries that can help us to implement this technique, providing
a lot of capabilities such as using a web interface to handle features, storing
preferences in a database, or allowing access to concrete user profiles.

Finally, we have implemented two different approaches by ourselves: a
Feature Toggle with a very simple REST API, and using the Feature Toggle
in web applications.

[239]

10

Putting It All Together

If you always do what you always did, then you will always get what you
always got.

- Albert Einstein

We have gone through a lot of theory followed by even more practice. The entire
journey was like a speed train and we have hardly had an opportunity to repeat
what we learned. There was no time for rest.

The good news is that the time is now. We'll summarize everything we learned
and go through TDD best practices. Some of those have already been mentioned,
while others will be new.

TDD in a nutshell

Red-green-refactor is the pillar of TDD that wraps it into a short and repeatable cycle.

By short, we mean very short. The time dedicated to each phase is often counted

in minutes if not seconds. Write a test, see it fail, write just enough amount of
implementation code to make the last test pass, run all tests, and pass into the green
phase. Once the minimum code is written so that we have safety in the form of passing
tests, it is time to refactor the code until it is as good as we're hoping it to be. While in
this phase, tests should always pass. Neither new functionalities nor new tests can be
introduced while refactoring is in progress. Doing all this in such a short period of time
is often scary, or might sound impossible. We hope that, through the practices we did
together, your skills have improved as well as your confidence and speed.

While there is a word fest in TDD, it is not the main benefit nor objective. TDD is first
and foremost a concept of a better way to design our code. On top of that, we end up
with tests that should be used to continuously check that the application continues
working as expected.

[241]

Putting It All Together

The importance of speed was mentioned often. While part of this is accomplished by
us being ever more proficient in TDD, another contributor is test doubles (mocking,
stubbing, spying, and so on). With these, we can remove the need for external
dependencies such as databases, filesystems, third-party services, and so on.

What are the other benefits of TDD? Documentation is one of them. Since code itself
is the only accurate and always up-to-date representation of the applications we're
working on, specifications written using TDD (being code as well) is the first place
we should turn to when we need to better understand what some piece of code does.

How about design? You noticed how TDD produces code that is designed better.
Rather than defining design in advance, with TDD it tends to emerge as we progress
from one specification to another. At the same time, code that is easy to test is
well-designed code. Tests force us to apply some of the coding best practices.

We also learned that TDD does not need to be practiced only on small units
(methods). It can also be used at a much higher level where the focus is on a
feature or a behavior that can span multiple methods, classes, or even applications
and systems. One of the forms of TDD practiced at such a high level is behavior-
driven development (BDD). Unlike TDD, which is based on the unit tests that are
done by developers for developers, BDD can be used by almost everyone in your
organization. Since it tackles behaviors and it's written in natural (ubiquitous)
language, testers, managers, business representatives, and others can participate
in its creation and use it as a reference later on.

We defined legacy code as code without tests. We faced some of the challenges
legacy code puts in front of us and learned some of the techniques that can be
used to make it testable.

With all this in mind, let's go through the TDD best practices.

Best practices

Coding best practices are a set of informal rules that the software development
community has learned over time, which can help improve the quality of software.
While each application needs a level of creativity and originality (after all, we're
trying to build something new or better), coding practices help us avoid some of the
problems others faced before us. If you're just starting with TDD, it is a good idea to
apply some (if not all) of the best practices generated by others.

[242]

Chapter 10

For easier classification of test-driven development best practices, we divided them
into four categories:

* Naming conventions
* Processes
* Development practices

e Tools

As you'll see, not all of them are exclusive to TDD. Since a big part of test-driven
development consists of writing tests, many of the best practices presented in
the following sections apply to testing in general, while others are related to
general coding best practices. No matter the origin, all of them are useful when
practicing TDD.

Take the advice with a certain dose of skepticism. Being a great programmer is not
only about knowing how to code, but also about being able to decide which practice,
framework or style best suits the project and the team. Being agile is not about
following someone else's rules, but about knowing how to adapt to circumstances
and choose the best tools and practices that suit the team and the project.

Naming conventions

Naming conventions help to organize tests better, so that it is easier for developers
to find what they're looking for. Another benefit is that many tools expect that those
conventions are followed. There are many naming conventions in use, and those
presented here are just a drop in the ocean. The logic is that any naming convention
is better than none. Most important is that everyone on the team knows what
conventions are being used and are comfortable with them. Choosing more popular
conventions has the advantage that newcomers to the team can get up to speed fast
since they can leverage existing knowledge to find their way around.

\l Separate the implementation from the test code

Q Benefits: It avoids accidentally packaging tests together with production
binaries; many build tools expect tests to be in a certain source directory.

Common practice is to have at least two source directories. Implementation code
should be located in src/main/java and test code in src/test/java. In bigger
projects, the number of source directories can increase but the separation between
implementation and tests should remain as is.

[243]

Putting It All Together

Build tools such as Gradle and Maven expect source directories separation as well as
naming conventions.

You might have noticed that the build.gradle files that we used throughout
this book did not have explicitly specified what to test nor what classes to use to
create a . jar file. Gradle assumes that tests are in src/test/java and that the
implementation code that should be packaged into a jar file is in src/main/java.

|\l Place test classes in the same package as implementation

~

Benefits: Knowing that tests are in the same package as the code
helps finding code faster.

As stated in the previous practice, even though packages are the same, classes are in
the separate source directories.

All exercises throughout this book followed this convention.

N Name test classes in a similar fashion to the classes they test

Q Benefits: Knowing that tests have a similar name to the classes
they are testing helps in finding the classes faster.

One commonly used practice is to name tests the same as the implementation classes,
with the suffix Test. If, for example, the implementation class is TickTackToe,
the test class should be TickTackToeTest.

However, in all cases, with the exception of those we used throughout the refactoring
exercises, we prefer the suffix spec. It helps to make a clear distinction that test
methods are primarily created as a way to specify what will be developed. Testing is
a great subproduct of those specifications.

Al

~ Use descriptive names for test methods
Q Benefits: It helps in understanding the objective of tests.

Using method names that describe tests is beneficial when trying to figure out why
some tests failed or when the coverage should be increased with more tests. It should
be clear what conditions are set before the test, what actions are performed and what
is the expected outcome.

[244]

Chapter 10

There are many different ways to name test methods and our preferred method is
to name them using the Given/When/Then syntax used in the BDD scenarios. Given
describes (pre)conditions, When describes actions, and Then describes the expected
outcome. If some test does not have preconditions (usually set using @Before and
@BeforeClass annotations), Given can be skipped.

Let's take a look at one of the specifications we created for our TickTackToe application:

@Test
public void whenPlayAndWholeHorizontallLineThenWinner ()
ticTacToe.play (1, 1); // X
ticTacToe.play (1, 2); // O
ticTacToe.play(2, 1); // X
(2, 2); // ©
String actual = ticTacToe.play (3, 1); // X

ticTacToe.play

assertEquals ("X is the winner", actual);

}

Just by reading the name of the method, we can understand what it is about. When
we play and the whole horizontal line is populated, then we have a winner.

M Do not rely only on comments to provide information about the test
Q objective. Comments do not appear when tests are executed from your
favorite IDE nor do they appear in reports generated by CI or build tools.

Processes

TDD processes are the core set of practices. Successful implementation of TDD
depends on practices described in this section.

\l Write a test before writing the implementation code

Q Benefits: It ensures that testable code is written; ensures that every line of
code gets tests written for it.

By writing or modifying the test first, the developer is focused on requirements
before starting to work on the implementation code. This is the main difference
compared to writing tests after the implementation is done. The additional benefit
is that with the tests written first, we are avoiding the danger that the tests work as
quality checking instead of quality assurance. We're trying to ensure that quality is
built in as opposed to checking later whether we met quality objectives.

[245]

Putting It All Together

M Only write new code when the test is failing
Q Benefits: It confirms that the test does not work without the
implementation.

If tests are passing without the need to write or modify the implementation code,
then either the functionality is already implemented or the test is defective. If new
functionality is indeed missing, then the test always passes and is therefore useless.
Tests should fail for the expected reason. Even though there are no guarantees

that the test is verifying the right thing, with fail first and for the expected reason,
confidence that verification is correct should be high.

Al Rerun all tests every time the implementation code changes

Q Benefits: It ensures that there is no unexpected side effect caused by
code changes.

Every time any part of the implementation code changes, all tests should be run.
Ideally, tests are fast to execute and can be run by the developer locally. Once code
is submitted to version control, all tests should be run again to ensure that there
was no problem due to code merges. This is specially important when more than
one developer is working on the code. Continuous integration tools such as Jenkins
(http://jenkins-ci.org/), Hudson (http://hudson-ci.org/), Travis (https://
travis-ci.org/), and Bamboo (https://www.atlassian.com/software/bamboo)
should be used to pull the code from the repository, compile it, and run tests.

Ry All tests should pass before a new test is written

Benefits: The focus is maintained on a small unit of work; implementation
code is (almost) always in working condition.

It is sometimes tempting to write multiple tests before the actual implementation. In
other cases, developers ignore problems detected by existing tests and move towards
new features. This should be avoided whenever possible. In most cases, breaking
this rule will only introduce technical debt that will need to be paid with interest.
One of the goals of TDD is that the implementation code is (almost) always working
as expected. Some projects, due to pressures to reach the delivery date or maintain
the budget, break this rule and dedicate time to new features, leaving the task of
fixing the code associated with failed tests for later. These projects usually end up
postponing the inevitable.

[246]

http://jenkins-ci.org/
http://hudson-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://www.atlassian.com/software/bamboo

Chapter 10

a1

~ Refactor only after all tests are passing
Q Benefits: This type of refactoring is safe.

If all implementation code that can be affected has tests and they are all passing,
it is relatively safe to refactor. In most cases, there is no need for new tests. Small
modifications to existing tests should be enough. The expected outcome of

refactoring is to have all tests passing both before and after the code is modified.

Development practices

Practices listed in this section are focused on the best way to write tests.

\1 Write the simplest code to pass the test

~
Benefits: It ensures cleaner and clearer design; avoids unnecessary
features.

The idea is that the simpler the implementation, the better and easier it is to maintain
the product. The idea adheres to the keep it simple stupid (KISS) principle. This
states that most systems work best if they are kept simple rather than made complex;

therefore, simplicity should be a key goal in design, and unnecessary complexity
should be avoided.

~“Q Write assertions first, act later

Benefits: This clarifies the purpose of the requirements and tests early.

Once the assertion is written, the purpose of the test is clear and the developer can
concentrate on the code that will accomplish that assertion and, later on, on the
actual implementation.

1 e e . . .
~Q Minimize assertions in each test

Benefits: This avoids assertion roulette; allows execution of more asserts.

If multiple assertions are used within one test method, it might be hard to tell which
of them caused a test failure. This is especially common when tests are executed as
part of the continuous integration process. If the problem cannot be reproduced on a
developer's machine (as may be the case if the problem is caused by environmental
issues), fixing the problem may be difficult and time consuming.

[247]

Putting It All Together

When one assert fails, execution of that test method stops. If there are other asserts
in that method, they will not be run and information that can be used in debugging
is lost.

Last but not least, having multiple asserts creates confusion about the objective of
the test.

This practice does not mean that there should always be only one assert per test
method. If there are other asserts that test the same logical condition or unit of
functionality, they can be used within the same method.

Let's go through few examples:

@Test

public final void whenOneNumberIsUsedThenReturnValueIsThatSameNumber ()

{

Assert.assertEquals (3, StringCalculator.add("3"));

@Test
public final void whenTwoNumbersAreUsedThenReturnValueIsTheirSum () {
Assert.assertEquals (3+6, StringCalculator.add("3,6")) ;

}

The preceding code contains two specifications that clearly define what the objective
of those tests is. By reading the method names and looking at the assert, there should
be clarity on what is being tested. Consider the following for example:

@Test
public final void
whenNegativeNumbersAreUsedThenRuntimeExceptionIsThrown () {
RuntimeException exception = null;
try {
StringCalculator.add("3,-6,15,-18,46,33");
} catch (RuntimeException e) ({
exception = e;
}
Assert.assertNotNull ("Exception was not thrown", exception);
Assert.assertEquals ("Negatives not allowed: [-6, -18]",
exception.getMessage()) ;

[248]

Chapter 10

This specification has more than one assert, but they are testing the same logical

unit of functionality. The first assert is confirming that the exception exists, and the
second that its message is correct. When multiple asserts are used in one test method,
they should all contain messages that explain the failure. This way debugging

the failed assert is easier. In the case of one assert per test method, messages are
welcome, but not necessary since it should be clear from the method name what the
objective of the test is.

@Test

public final void whenAddIsUsedThenItWorks () {
Assert.assertEquals (0, StringCalculator.add(""));
Assert.assertEquals (3, StringCalculator.add("3"));
Assert.assertEquals (3+6, StringCalculator.add("3,6"));

Assert.assertEquals (3+6+15+18+46+33,
StringCalculator.add("3,6,15,18,46,33"));

Assert.assertEquals (3+6+15, StringCalculator.add("3,6nl5"));

Assert.assertEquals (3+6+15,
StringCalculator.add("//;n3;6;15")) ;

Assert.assertEquals (3+1000+6,
StringCalculator.add("3,1000,1001,6,1234"));

}

This test has many asserts. It is unclear what the functionality is, and if one of
them fails, it is unknown whether the rest would work or not. It might be hard to
understand the failure when this test is executed through some of the CI tools.

\1 Do not introduce dependencies between tests

~

Benefits: The tests work in any order independently, whether all or only a
subset is run

Each test should be independent from the others. Developers should be able to
execute any individual test, a set of tests, or all of them. Often, due to the test
runner's design, there is no guarantee that tests will be executed in any particular
order. If there are dependencies between tests, they might easily be broken with the
introduction of new ones.

3 Tests should run fast
Q Benefits: These tests are used often.

[249]

Putting It All Together

If it takes a lot of time to run tests, developers will stop using them or run only a
small subset related to the changes they are making. The benefit of fast tests, besides
fostering their usage, is quick feedback. The sooner the problem is detected, the
easier it is to fix it. Knowledge about the code that produced the problem is still
fresh. If the developer already started working on the next feature while waiting

for the completion of the execution of the tests, he might decide to postpone fixing
the problem until that new feature is developed. On the other hand, if he drops his
current work to fix the bug, time is lost in context switching.

Tests should be so quick that developers can run all of them after each change
without getting bored or frustrated.

~ Use test doubles
Q Benefits: This reduces code dependency and test execution will be faster.

Mocks are prerequisites for fast execution of tests and ability to concentrate on a
single unit of functionality. By mocking dependencies external to the method that is
being tested, the developer is able to focus on the task at hand without spending time
in setting them up. In the case of bigger teams, those dependencies might not even
be developed. Also, the execution of tests without mocks tends to be slow. Good
candidates for mocks are databases, other products, services, and so on.

\1 Use set-up and tear-down methods

Q Benefits: This allows set-up and tear-down code to be executed before
and after the class or each method.

In many cases, some code needs to be executed before the test class or before
each method in a class. For this purpose, JUnit has @BeforeClass and eBefore
annotations that should be used as the setup phase. @BeforeClass executes the
associated method before the class is loaded (before the first test method is run).
@Before executes the associated method before each test is run. Both should be
used when there are certain preconditions required by tests. The most common
example is setting up test data in the (hopefully in-memory) database.

At the opposite end are @after and @AfterClass annotations, which should be
used as the tear-down phase. Their main purpose is to destroy data or a state created
during the setup phase or by the tests themselves. As stated in one of the previous
practices, each test should be independent from the others. Moreover, no test should
be affected by the others. Tear-down phase helps to maintain the system as if no test
was previously executed.

[250]

Chapter 10

\ .
~Q Do not use base classes in tests

Benefits: It provides test clarity.

Developers often approach test code in the same way as implementation. One of the
common mistakes is to create base classes that are extended by tests. This practice
avoids code duplication at the expense of tests clarity. When possible, base classes
used for testing should be avoided or limited. Having to navigate from the test
class to its parent, parent of the parent, and so on in order to understand the logic
behind tests introduces often unnecessary confusion. Clarity in tests should be more
important than avoiding code duplication.

Tools

TDD, coding and testing in general, are heavily dependent on other tools and
processes. Some of the most important ones are as follows. Each of them is too
big a topic to be explored in this book, so they will be described only briefly.

~“Q Code coverage and Continuous integration (CI)

Benefits: It gives assurance that everything is tested

Code coverage practice and tools are very valuable in determining that all code,
branches, and complexity is tested. Some of the tools are JaCoCo (http://www.
eclemma.org/j acoco/), Clover (https ://www.atlassian.com/software/clover/
overview), and Cobertura (http://cobertura.github.io/cobertura/).

Continuous Integration (CI) tools are a must for all except the most trivial projects.
Some of the most used tools are Jenkins (http://jenkins-ci.org/), Hudson
(http://hudson-ci.org/), Travis (https://travis-ci.org/), and Bamboo
(https://www.atlassian.com/software/bamboo).

M Use TDD together with BDD

Benefits: Both developer unit tests and functional
customer facing tests are covered.

[251]

http://www.eclemma.org/jacoco/
http://www.eclemma.org/jacoco/
https://www.atlassian.com/software/clover/overview
https://www.atlassian.com/software/clover/overview
http://cobertura.github.io/cobertura/
http://jenkins-ci.org/
http://hudson-ci.org/
https://travis-ci.org/
https://www.atlassian.com/software/bamboo

Putting It All Together

While TDD with unit tests is a great practice, in many cases, it does not provide all
the testing that projects need. TDD is fast to develop, helps the design process, and
gives confidence through fast feedback. On the other hand, BDD is more suitable for
integration and functional testing, provides better process for requirement gathering
through narratives, and is a better way of communicating with clients through
scenarios. Both should be used, and together they provide a full process that involves
all stakeholders and team members. TDD (based on unit tests) and BDD should be
driving the development process. Our recommendation is to use TDD for high code
coverage and fast feedback, and BDD as automated acceptance tests. While TDD is
mostly oriented towards white-box, BDD often aims at black-box testing. Both TDD
and BDD are trying to focus on quality assurance instead of quality checking.

This is just the beginning

You might have expected that by the time you reached the end of this book, you'd
know everything about test-driven development. If that was the case, we're sorry
that we'll have to disappoint you. It takes a lot of time and practice to master any
craft, and TDD is no exception. Go on, apply what you have learned to your projects.
Share knowledge with your colleagues. Most importantly, practice, practice and
practice. As with Karate, only through continuous practice and repetition, can one
fully master test-driven development. We have been using it for a long time, and we
still often face new challenges and learn new ways to improve our craftsmanship.

This does not have to be the end

Writing this book was a long journey filled with many adventures. We hope you
enjoyed reading it as much as we enjoyed writing it.

We share our experience on a wide variety of subjects at our blog
http://technologyconversations.com.

[252]

http://technologyconversations.com

A

acceptance test-driven development
(ATDD) 8
Apache Ant
URL 175
Art of Unit Testing
URL 215
Assert]
about 29
defining 27

B

Bamboo
URL 246
BDD
about 163, 167
Cucumber 46
narrative 167, 168
scenarios 169, 170
best practices, TDD
defining 242, 243
development practices 247-250
naming conventions 243-245
processes 245, 246
tools 251
Bitbucket
URL 14
black-box testing
about 6,202
advantages 6
disadvantages 6
URL 202

Books Store BDD story
about 170-174
URL 170,171
branch
URL 186
build tools
defining 18, 19
URL 19

C

cachier
about 15
URL 15
Clover
URL 251
Cobertura
URL 251
code coverage tools
about 73
defining 29, 30
JaCoCo 30
URL 74
using 73,74
code refactoring 79
Code smell
about 190
URL 190

Index

Community Edition (Intelli] IDEA CE)

about 20
URL 20

complete source code
references 27

[253]

Connect4

about 108

implementing 109

requisites 108, 109

URL 108
Continuous Delivery (CD) 224, 225
Continuous Deployment (CD) 224, 225

Continuous Integration (CI) 10, 224, 225, 251

coverage
about 193
URL 193

Cucumber
about 46
URL 46

curl
about 207
URL 207

D

Dallas Hack Club
URL 85
DbUnit
URL 207
debugging
avoiding 11
design
need for 106
design principles
about 106
DRY 106
KISs 107
Occam's razor 107
SOLID 107, 108
YAGNI 106
distributions, Git
URL 14
Docker 17,18
documentation
executing 9,10
drivers
URL 178
DRY
about 106
URL 106

E

EasyMock 35, 36

End2End (E2E) 143

environment
setting up, with Gradle 48
setting up, with JUnit 48

extract and override call technique
constructor, parameterizing 215, 216
new feature, adding 216-218

Extreme Programming (XP) values
URL 78

F

Fake test double
URL 202
Feature Toggle
about 226
example 227-231
Fibonacci service, implementing 231-234
template engine, defining 235-238
using 226
Fibonacci sequence
URL 232
frameworks
EasyMock 35, 36
mocking 31-33
Mockito 34, 35
references 33
FriendshipsAssert] Test class
URL 29
FriendshipsHamcrestTest class
URL 28
FriendshipsMongoAssert] Test class
references 35
functional and acceptance tests 80

G

Git 14
Gradle
environment, setting up 48
URL 19
Gradle/Java project
setting up, in Intelli] IDEA 48-51
Grizzly
URL 210

[254]

H

Hamcrest
about 27,28
defining 27
URL 28

Hudson
URL 246

IDEA demo project 20,21
implementation, Connect4

requisites 110-118

URL 118
Integrated development environment 20
integration tests

about 80, 159-162

defining 158

test, separating 158, 159
Intelli] IDEA

Gradle/Java project, setting up 48-51

J

JaCoCo
about 30
URL 30, 251

Java build tools
references 19

JBehave
about 174
final validation 186, 187
JBehave runner 174, 175
Phantom]S browser, installing 179-185
running, with Gradle 176, 177
Selenide 178
Selenium 178
URL 171

Jenkins
URL 246

Jongo 32

JUnit
about 22-25
environment, setting up 48
references 25
URL 23

JUnit assert
comparing, with Hamcrest assert 28

K

Kata exercise
about 201
black-box testing 202
description 201
extract and override call technique 213, 214
legacy code algorithm, applying 207
legacy Kata 201
new feature, adding 202
preliminary investigation 204-206
primitive obsession, removing with

status as Int 218-221

spike testing 202
technical comments 202

keep it simple stupid (KISS)
about 107, 247
URL 107

L

legacy code
defining 190
example 190-193
lack, of dependency injection 195
legacy code change algorithm 196
recognizing 194, 195
legacy code algorithm
about 207
BookRepository dependency, injecting 213
end-to-end test cases, writing 207-210
test cases, automating 210-213
legacy code change algorithm
about 196
applying 196-200
break dependencies 198-200
change points, identifying 196
test points, finding 197, 198
tests, writing 200
legacyutils
URL 198

[255]

Maven Central

URL 19
methods, Mockito

mock() 137

spy() 137

verify() 137
Minimum Viable Product (MVP) 168
mocking 8,134
Mockito

about 34, 35

defining 137

URL 35
mock objects

defining 136, 137
mocks

using 134, 135
MongoDB

URL 31
MongoDB driver 32

N

narrative, BDD
goals 168

(0

Occam's razor
about 107
URL 107

P

Parameterize Constructor technique
URL 199
partial mocking 144
pattern
URL 199
Phantom]S browser
URL 179
ping pong game
defining 5
Postman
about 207
URL 207

preliminary investigation
candidates, finding for refactoring 205
new feature, defining 206

primitive obsession
URL 218

Product Owner (PO) 202, 206

Q

quality assurance (QA) 7
quality checking (QC) 7
query

URL 231

R

README, in markdown format
URL 166
red-green-refactor process
about 51
all tests, running 52
implementation code, writing 52
refactoring 53
repeat 53
test, writing 51, 52
remote controlled ship
developing 85
helper classes 88
project, setting up 86
requirements 85-103
RestAssured
URL 212
REST service 227
Rule
about 55
URL 55

S

Selenide
URL 178
Selenium
URL 178
setup method
using 142
Single Responsibility Principle
about 131
references 131

[256]

SOLID
about 107
Dependency Inversion Principle 107
Interface Segregation Principle 107
Liskov Substitution Principle 107
Open-Closed Principle 107
Single Responsibility Principle 107
URL 108

Source Tree
URL 14

specifications, TDD
defining 164
documentation 164, 165
documentation, for coders 165, 166
documentation, for non-coders 166

spring-boot and related projects
URL 227

strategy pattern
URL 196

system under test (SUT) 135

T

TDD
about 1,7,11, 133, 163, 252
benefits 2, 3, 242
defining 3, 5, 241, 242
red-green-refactor 3, 4
using 2,3
TDD implementation, Connect4
about 118
Hamcrest 118
requisites 119-131
teardown method
using 142
terminology
defining 135, 136
test doubles
URL 80
test-driven development. See TDD
testing
about 5
black-box testing 6
performing 8

quality checking and quality assurance,

comparing 7
white-box testing 6, 7

test methods
benefits 56

TestNG
@AfterClass annotation 83
@AfterGroups annotation 83
@AfterMethod annotation 84
@AfterSuite annotation 83
@AfterTest annotation 83
@BeforeClass annotation 83
@BeforeGroups annotation 83
@BeforeMethod annotation 84
@BeforeSuite annotation 83
@BeforeTest annotation 83
@Test annotation 82
@Test(enable = false) annotation

argument 84

@Test(expectedExceptions = SomeClass.

class) annotation argument 84
about 22, 25-27, 82
features 84
URL 25
versus JUnit 84
Thymeleaf
about 227
URL 227
Tic-Tac-Toe game
defining 53, 54
developing 54
references 50
requirements 53, 54
requisites 54-72
URL 53, 74
TicTacToelnteg class
creating 159-162
Tic-Tac-Toe v2
developing 138
requisites 137-157
URL 138
Togglz
URL 226
Tortoise
URL 14
Tower
URL 14
Travis
URL 246, 251

[257]

U W

unit testing white-box testing
about 78 advantages 7
benefits 79 disadvantages 7
defining 78
need for 79 Y
using 79-81
with TDD 81, 82 YAGNI

unit testing frameworks about 106
about 22 URL 106
JUnit 23-25

TestNG 25, 26
unit tests 80
user acceptance tests 109

Vv

Vagrant
about 14-17
URL 14,17
virtual machines
about 14
Docker 17,18
Vagrant 14-17

[258]

open source

community experience distilled

PUBLISHING

Thank you for buying
Test-Driven Java Development

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

open source

community experience distilled

PUBLISHING

Test-Driven Python
Development

Test-Driven Python Development
ISBN: 978-1-78398-792-4 Paperback: 264 pages

Develop high-quality and maintainable
Python applications using the principles of
test-driven development

1. Write robust and easily maintainable code
using the principles of test driven development.

2. Get solutions to real-world problems faced
by Python developers.

3. Go from a unit testing beginner to a master
through a series of step-by-step tutorials that
are easy to follow.

Scala for Java Developers

Scala for Java Developers
ISBN: 978-1-78328-363-7 Paperback: 282 pages

Build reactive, scalable applications and integrate
Java code with the power of Scala

1. Learn the syntax interactively to smoothly
transition to Scala by reusing your Java code.

2. Leverage the full power of modern web
programming by building scalable and
reactive applications.

3. Easy to follow instructions and real world
examples to help you integrate java code
and tackle big data challenges.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Java EE 7 First Look
ISBN: 978-1-84969-923-5 Paperback: 188 pages

Discover the new features of Java EE 7 and learn to
put them together to build a large-scale application

1. Explore changes brought in by the Java

"' L EE 7 platform.

2. Master the new specifications that have been
added in Java EE to develop applications
without any hassle.

Java EE 7 First Look

3. Quick guide on the new features introduced
in Java EE7.

Java EE 7 Developer Handbook
ISBN: 978-1-84968-794-2 Paperback: 634 pages

Develop professional applicaitons in Java EE 7 with
this essential reference guide

1. Learn about integration test development on
Java EE with Arquillian Framework and the

Gradle build system.
Java EE 7 Developer 2. Learn about containerless builds featuring the
Handbook P GlassFish 4.0 embedded application server.

3. Master Java EE 7 with this example-based,
up-to-date guide with descriptions
and explanations.

Pater A. Pilgrim

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Why Should I Care for
Test-driven Development?

	Why TDD?
	Understanding TDD
	Red-green-refactor
	Speed is the key
	It's not about testing

	Testing
	The black-box testing

	The white-box testing

	The difference between quality checking and quality assurance
	Better tests

	Mocking
	Executable documentation
	No debugging
	Summary

	Chapter 2
: Tools, Frameworks,
and Environments
	Git
	Virtual machines
	Vagrant
	Docker

	Build tools
	The integrated development environment
	The IDEA demo project

	Unit testing frameworks
	JUnit
	TestNG

	Hamcrest and AssertJ
	Hamcrest
	AssertJ

	Code coverage tools
	JaCoCo

	Mocking frameworks
	Mockito
	EasyMock
	Extra power for mocks

	User interface testing
	Web testing frameworks
	Selenium
	Selenide

	The behavior-driven development

	JBehave
	Cucumber

	Summary

	Chapter 3 : Red-Green-Refactor – from Failure through Success until Perfection

	Setting up the environment with Gradle and JUnit
	Setting up Gradle/Java project in IntelliJ IDEA

	The red-green-refactor process
	Write a test
	Run all the tests and confirm that the last one is failing
	Write the implementation code
	Run all the tests
	Refactor
	Repeat

	The Tic-Tac-Toe game requirements

	Developing Tic-Tac-Toe
	Requirement 1
	Test
	Implementation
	Test
	Implementation
	Test
	Implementation
	Refactoring

	Requirement 2
	Test
	Implementation
	Test
	Implementation
	Test

	Requirement 3
	Test
	Implementation
	Test
	Implementation
	Refactoring
	Test
	Implementation
	Test
	Implementation
	Test
	Implementation
	Refactoring

	Requirement 4
	Test
	Implementation
	Refactoring

	Code coverage
	More exercises
	Summary

	Chapter 4 : Unit Testing – Focusing on What You Do and Not on What Has Been Done

	Unit testing
	What is unit testing?
	Why unit testing?
	Code refactoring
	Why not use unit tests exclusively?

	Unit testing with TDD
	TestNG
	The @Test annotation
	The @BeforeSuite, @BeforeTest, @BeforeGroups, @AfterGroups, @AfterTest, and @AfterSuite annotations
	The @BeforeClass and @AfterClass annotations
	The @BeforeMethod and @AfterMethod annotations
	The @Test(enable = false) annotation argument
	The @Test(expectedExceptions = SomeClass.class) annotation argument
	TestNG vs JUnit summary

	Remote controlled ship requirements
	Developing the remote-controlled ship
	Project setup
	Helper classes
	Requirement 1
	Specification
	Specification implementation
	Refactoring

	Requirement 2
	Specification
	Specification implementation
	Specification
	Specification implementation

	Requirement 3
	Specification
	Specification implementation
	Specification
	Specification implementation

	Requirement 4
	Specification
	Specification implementation
	Specification
	Specification implementation

	Requirement 5
	Specification
	Specification implementation
	Refactoring
	Specification
	Specification implementation
	Requirement 6

	Summary

	Chapter 5
: Design – If It's Not Testable, It's Not Designed Well
	Why should we care about design?
	Design principles
	You Ain't Gonna Need It
	Don't Repeat Yourself
	Keep It Simple, Stupid
	Occam's Razor
	SOLID

	Connect4
	Requirements

	Test the last implementation of Connect4
	Requirement 1
	Requirement 2
	Requirement 3
	Requirement 4
	Requirement 5
	Requirement 6
	Requirement 7
	Requirement 8

	The TDD implementation of Connect4
	Hamcrest
	Requirement 1
	Tests
	Code

	Requirement 2
	Tests
	Code

	Requirement 3
	Tests
	Code

	Requirement 4
	Tests
	Code

	Requirement 5
	Tests
	Code

	Requirement 6
	Tests
	Code

	Requirement 7
	Tests
	Code

	Requirement 8
	Tests
	Code

	Summary

	Chapter 6 : Mocking – Removing External Dependencies
	Mocking
	Why mocks?
	Terminology
	Mock objects

	Mockito
	The Tic-Tac-Toe v2 requirements

	Developing Tic-Tac-Toe v2
	Requirement 1
	Specification and specification implementation
	Specification
	Specification implementation
	Specification
	Implementation
	Refactoring
	Specification
	Specification implementation
	Specification
	Specification implementation
	Refactoring
	Specification
	Specification implementation
	Specification
	Specification implementation
	Specification
	Specification implementation
	Specification
	Specification implementation

	Requirement 2
	Specification
	Specification implementation
	Specification refactoring
	Specification
	Specification implementation
	Specification
	Specification implementation
	Specification
	Specification implementation
	Exercises

	Integration tests
	Tests separation
	The integration test

	Summary

	Chapter 7 : BDD – Working Together with the Whole Team
	Different specifications
	Documentation
	Documentation for coders
	Documentation for non-coders

	Behavior-driven development
	Narrative
	Scenarios

	The Books Store BDD story
	JBehave
	JBehave runner
	Pending steps
	Selenium and Selenide
	JBehave steps
	Final validation

	Summary

	Chapter 8
: Refactoring Legacy
Code – Making it Young Again
	Legacy code
	Legacy code example
	Other ways to recognize legacy code
	A lack of dependency injection
	The legacy code change algorithm
	Applying the legacy code change algorithm

	The Kata exercise
	Legacy Kata
	Description
	Technical comments
	Adding a new feature
	Black-box or spike testing

	Preliminary investigation
	How to find candidates for refactoring
	Introducing the new feature

	Applying the legacy code algorithm
	Writing end-to-end test cases
	Automating the test cases
	Injecting the BookRepository dependency

	Extract and override call
	Adding a new feature

	Removing the primitive obsession with status as Int

	Summary

	Chapter 9
: Feature Toggles – Deploying Partially Done Features
to Production
	Continuous Integration, Delivery, and Deployment
	Feature Toggles
	A Feature Toggle example
	Implementing the Fibonacci service
	Working with the template engine

	Summary

	Chapter 10
: Putting It All Together
	TDD in a nutshell
	Best practices
	Naming conventions
	Processes
	Development practices
	Tools

	This is just the beginning
	This does not have to be the end

	Index

