www.it-ebooks.info

Konstantinos Kapelonis
Luke Daley

/ll MANNING

http://www.it-ebooks.info/

Java Testing with Spock

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Java lesting with

www.it-ebooks.info

Spock

KONSTANTINOS KAPELONIS

MANNING
SHELTER ISLAND

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

/I/I Manning Publications Co. Development editors: Susan Conant
20 Baldwin Road Dan Maharry
PO Box 761 Technical development editor: Keith Conant
Shelter Island, NY 11964 Copyeditor: Sharon Wilkey
Proofreaders: Melody Dolab
Toma Mulligan

Technical proofreader: Francesco Bianchi
Typesetter: Marija Tudor
Cover designer: Marija Tudor

ISBN: 9781617292538
Printed in the United States of America
12345678910 —-EBM - 21 20 19 18 17 16

www.it-ebooks.info

www.manning.com
http://www.it-ebooks.info/

To Maria, for enduring my endless writing sessions

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

brief contents

PART 1 FOUNDATIONS AND BRIEF TOUR OF SPOCK ..cceeevereerencess 1

1 = Introducing the Spock testing framework 3
2 = Groovy knowledge for Spock testing 31
3 = Atour of Spock functionality 62
PART 2 STRUCTURING SPOCK TESTS ...cceeveeeeeeeeennnnnnnnnnsnnnnnnnnes 89

4 = Writing unit tests with Spock 91
5 « Parameterized tests 127
6 = Mocking and stubbing 157

PART 3 SPOCK IN THE ENTERPRISE ...oecveereeeccescescesccnscescssonse 191

7 = Integration and functional testing with Spock 193
8 = Spock features for enterprise testing 224

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

contents

Sforeword xv

preface xvii

acknowledgments xix

about this book xxi

about the cover illustration xxiv

PART 1 FOUNDATIONS AND BRIEF TOUR OF SPOCK 1

1 Introducing the Spock testing framework 3
1.1 Whatis Spock? 4

Mocking and stubbing 5 = Behavior-driven development 5
Spock’s design features 5 = Spock’s coding features 6

1.2 The need for a testing framework 8

Spock as an enterprise-ready test framework 9 = Common ways
to handle enterprise complexity 13

1.3 Spock: the groovier testing framework 15
Asserts vs. Assertions 15 = Agnostic testing of Java and

Groovy 15 = Taking advantage of Groovy tricks in Spock tests 16

1.4 Getting an overview of Spock’s main features 16

Enterprise testing 17 = Data-driven tests 17
Mocking and stubbing 17

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

1.5 Afirstlook at Spock in action 18

A simple test with JUnit 18 = A simple test with Spock 19
Inspecting failed tests with Spock 20

1.6 Spock’s position in the Java ecosystem 23

Making Spock Groovy 24 = Adding Spock tests to existing
projects that have JUnit tests 25 = Spock adoption path in a
Java project 26

1.7 Comparing Spock and JUnit 27

Writing concise code with Groovy syntax 27 = Mocking and
stubbing with no external library 27 = Using English sentences
in Spock tests and reports 28

1.8 Summary 30

2 Groovy knowledge for Spock testing 31
2.1 What you need to know about Groovy 32

Groovy as a companion to Java 34 = Accessing Java classes in
a Groovy script 37 = Declaring variables and methods in
Groovy 38 = Writing less code with Groovy 40

2.2 Groovy Power assert as a replacement for JUnit asserts 41

Understanding how Groovy handles asserts 41 = Using Groovy
assertions in Spock tests 44

2.3 Groovy features useful to Spock tests 46

Using map-based constructors 46 = Using maps and lists in
Groovy 47 = Interpolating text with Groovy strings 50

2.4 Reading a test dataset from an external source 51

Reading a text file 51 = Reading an XML file 52
Reading a [SON file 53

2.5 Advanced Groovy features useful to testing 54

Using Groovy closures 55 = Creating test input with
ObjectGraphBuilders 56 = Creating test input with
Expando 58

2.6 Summary 61

3 A tour of Spock functionality 62

3.1 Introducing the behavior-testing paradigm 63

The setup-stimulate-assert structure of [Unit 65 = The given-
when-then flow of Spock 67

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

3.2 Handling tests with multiple input sets 70

Existing approaches to multiple test-input parameters 72
Tabular data input with Spock 74

3.3 Isolating the class under test 76

The case of mocking/stubbing 76 = Stubbing fake objects with
Spock 79 = Mocking collaborators

interactions of mocked objects
in parameterized tests 86

80 = Examining
83 = Combining mocks and stubs

3.4 Summary 87

PART 2 STRUCTURING SPOCK TESTS cceeececccrccescosscencees 89

4 Writing unit tests with Spock 91

4.1 Understanding Spock from the ground up 91

A simple test scenario 92 = The given: block 94 = The setup:
block 95 = The when: block 96 = The then: block 98

The and: block 99 = The expect: block 103 = The cleanup:
block 104

4.2 Converting requirements to Spock tests 105

Explaining the feature examined in a Spock test 105
Manrking the class under test inside a Spock test 106
Describing the Spock unit test as a whole 107
Revising our view of a Spock test 108

4.3 Exploring the lifecycle of a Spock test 109

Setup and cleanup of a feature 109 = Setup and cleanup of a
specification 110 = Long-lived objects with the @Shared
annotation 112 = Use of the old() method 113

4.4 Writing readable Spock tests 115

Structuring Spock tests 115 = Ensuring that Spock lests are

self-documenting 116 = Modifying failure output 117
Using Hamcrest matchers 119 = Grouping test code
Sfurther 122

4.5 Summary 125

5 Parameterized tests 127

5.1 Detecting the need for parameterized tests 128

What are parameterized tests? 130

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

5.2 Using the where: block 131

Using data tables in the where: block 133 = Understanding
limitations of data tables 134 = Performing easy maintenance

of data tables 135 = Exploring the lifecycle of the where:

block 137 = Using the @Unroll annotation for reporting
individual test runs 139 = Documenting parameterized

tests 141 = Using expressions and statements in data tables 143

5.3 Using data pipes for calculating input/output
parameters 144

Dynamically generated parameters 145 = Parameters that stay
constant 147 = Parameters that depend on other
parameters 147

5.4 Using dedicated data generators 148

Writing a custom data generator 150 = Using multivalued
data iterators 152

5.5 Working with third-party data generators 155
5.6 Summary 156

6 Mocking and stubbing 157
6.1 Using fake collaborators 158

Using fake collaborators to isolate a class in unit tests 158
Faking classes in Spock: mocks and stubs 159 = Knowing when
to use mocks and stubs 160 = Exploring a sample application
for an electronic shop system 161

6.2 Controlling input to the class under test with stubs 163

Basic stubbing of return values 163 = Matching arguments
leniently when a stubbed method is called 166 = Using sequential
stubs with different responses for each method call 167 = Throwing
exceptions when a stubbed method is called 168 = Using dynamic
stubs that check arguments when responding 169 = Returning
stubs from the responses of other stubs 172

6.3 Mocks: verifying values returned from the class under test 173

All capabilities of stubs exist in mocks as well 174 = Simple
mocking—examining whether a method was called 174
Verifying order of interactions 176 = Verifying number of
method calls of the mocked class 177 = Verifying
noninteractions for multiple mocked classes 179 = Verifying
types of arguments when a mocked method is called 181
Verifying arguments of method calls from mocked classes 182

6.4 Putting it all together: credit card charging in two steps 184

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xiii

6.5 Architecture considerations for effective mocking/
stubbing 188

Designing testable code that allows painless mocking 188
Understanding lenient vs. strict mocks 188

6.6 Summary 189

PART 3 SPOCK IN THE ENTERPRISE ..cccoeeeeceescecnccesceese 191

7 Integration and functional testing with Spock 193
7.1 Unit tests vs. integration tests vs. functional tests 194

Characteristics of the test categories 195 = The testing
pyramid 197 = Spock support for integration and functional
testing 198 = Sowrce code organization of the examples 199

7.2 Integration testing with Spock 199

Testing a Spring application 199 = Narrowing down the
Spring context inside Spock tests 202 = Directly accessing the
database with Groovy SQL 204 = Integration lesting with other
containers (Java EE and Guice) 206

7.3 Functional testing of REST services with Spock 207

Working with a simple REST service 207 = Testing REST
services by using Java libraries 208 = Using the @Stepwise
annotation to run tests in order 209 = Testing REST services
using Groovy RESTClient 211

7.4 Functional testing of web applications with Spock 212

Browser automation with Geb 212 = The example web
application 213 = Spock and Geb: a match made in
heaven 214 = Using Geb to interact with a web page 216

7.5 Running Spock tests as part of a build process 218

Splitting unit, integration, and functional tests 218
Getting code coverage from Spock tests 221

7.6 Summary 222

8 Spock features for enterprise testing 224
8.1 Using additional Spock features for enterprise tests 225

Testing the (non)existence of exceptions: thrown() and
notThrown() 225 = Mapping Spock tests to your issue-tracking
system: @Issue 227 = Failing tests that don't finish on time:
@Timeout 228 = Ignoring certain Spock tests 230
Automatic cleaning of resowrces: @AutoCleanup 234

www.it-ebooks.info

http://www.it-ebooks.info/

Xiv CONTENTS

8.2 Handling large Spock tests 235

Using helper methods to improve code readability 236
Reusing assertions in the then: block 239 = Reusing
interactions in the then: block 243

8.3 Creating partial mocks with spies 245

A sample application with special requirements 245 = Spies
with Spock 247 = The need for spies shows a problematic code
base 248 = Replacement of spies with mock 248

8.4 Summary 250

appendix A Installing Spock 251
appendix B External Spock extensions and related tools 263

index 275

www.it-ebooks.info

http://www.it-ebooks.info/

Joreword

I've been fortunate enough to have used Spock for the majority of my career as a JVM
developer. It’s now an implied and inseparable part of my process for making soft-
ware. By talking to developers around the world at conferences and on mailing lists
and the like, I know I am not alone in this regard.

My journey with Spock started shortly after I was thrust onto the JVM, coming from
a Perl and Ruby background. “Big E” Enterprise Java held no allure for me, and I was
desperate to find tools that would allow me to maintain the nimble and empowering
spirit of the tools that I was used to. In Spock I found a tool that far outshined any-
thing that I had previously come across.

My own formative ideas at the time about testing were elegantly expressed in a supe-
rior manner in Spock, by its founder Peter Niederwieser. I then supported Peter in
Spock’s development and helped spread the word of what testing can, and should, be.

Spock’s key tenet is that you don’t write tests for yourself; you write them for the
future you—or for the future developer who will work with the test next. So this is
about more than just readability.

Readability as the primary goal takes you down a road of expressing tests in a con-
torted “natural” language and using barbaric regular expressions based on token
extractions in order to turn it into something executable. Here, I'm referring to the
testing tool “Cucumber” and its imitators. Such tools are perfectly fine and justified in
certain contexts, but these aren’t the contexts I find myself working in, at least not
most of the time. The tests that I write are for myself and other software developers;
we know how to communicate in code. What's more, we have techniques, tools and
traditions for crafting and evolving this communication.

XV

www.it-ebooks.info

http://www.it-ebooks.info/

xvi

FOREWORD

Spock gives us the platform we need for writing highly expressive and intention-
revealing tests in code, and embracing these techniques, tools, and traditions. The effi-
ciency of authoring and evolving tests is just as important as readability, and this
doesn't necessarily come for free with “readable” tests.

This book is an important resource for anyone wanting to test better, particularly
those coming from a strong Java background (though there’s also plenty for long-time
Spock aficionados). Using Spock to test a Java codebase is a no-brainer. Spock tests are
written in Groovy, which seamlessly interoperates with Java. When used in this con-
text, it can be thought of as a more pragmatic version of Java that offers many conve-
niences that are particularly appealing at test time. Spock also makes strategic use of
its reduced syntax, type-flexibility, and advanced features such as compile time trans-
forms to be more convenient and expressive than what is possible with Java.

Konstantinos has done a great job of clearly articulating the value proposition in
using Spock, in particular for Java developers. The book goes beyond a mere explora-
tion of Spock’s API and feature set to include general testing practices and real-world
application. Even if for some bizarre reason you aren't as thrilled as I am about writing
Spock tests by the end of the book, you'll still come out a better tester.

LUKE DALEY
SPOCK FOUNDING CONTRIBUTOR

www.it-ebooks.info

http://www.it-ebooks.info/

preface

The first time Spock came onto my programming radar (which is always on, looking
for interesting news in the Java ecosystem) I have to admit it didn’t get the attention it
deserved. I briefly read its web page and originally thought that it was the equivalent
of JUnit but for the Groovy programming language instead of Java. Since I mainly
write Java code professionally, a Groovy testing framework wasn’t of much interest to
me at that time. I moved along to the next news item of my RSS reader. Big mistake!

Groovy was already very high up on my list of “things that I needed to evaluate”
and I kept researching it. I was especially interested in how it connects to Java and the
ways it augments your existing Java code base. I learned that Groovy code compiles to
the same bytecode as Java, that it also runs on the JVM, and that adding Groovy to a
Java code base is as simple as adding the Groovy jar in the Java classpath.

Then it dawned on me: if Java and Groovy code are so close together, can I use
Spock (which is the Groovy testing tool) to test Java code? And could I use JUnit to test
Groovy code? Coming from a programming background with big Java codebases, I
was of course very interested in the first question.

I searched the internet for answers, and all the articles I found (at the time) only
explained how to test Groovy code with Spock, but not Java. So I started experiment-
ing with Spock to find the answer to my question. This led me to discover the expres-
sive syntax of Spock—the ability to use full sentences for method names, its clear
structuring of tests, its built-in support for mocks, and all the other goodies that you
will discover in this book.

Spock combines such killer features as context-aware error reporting with back-
ward compatibility for existing JUnit tools, making its adoption almost effortless. If

xvii

www.it-ebooks.info

http://www.it-ebooks.info/

Xviil PREFACE

you thought that your unit tests were complex and cumbersome, then Spock will help
you rediscover the joys of unit testing! Welcome to the world of Spock and accompany
us on our journey through this book to learn more about its awesomeness!

www.it-ebooks.info

http://www.it-ebooks.info/

acknowledgments

Writing a book is a collective effort. In the world of programming, where technologies
come and go at a frenetic pace, it would be unrealistic to expect to write a book with-
out a lot of external help, as this would make the book obsolete the moment it was
published.

First, I would like to thank my development editors at Manning, Susan Conant and
Dan Maharry. They taught me how to write a book and to develop content that is tech-
nically sound but also interesting and entertaining to the reader. They are the two
people who spent a lot of time with me, explaining what it takes to write a good book
and guiding me from the first draft until the final printed book.

Creating a book entails a lot of tasks other than writing the body of the text.
Thankfully, I didn’t have to concern myself with most of these tasks because a huge
army of Manning personnel was there for me. I owe a lot to Kevin Sullivan, Mary Pier-
gies, Janet Vail, Candace Gillhoolley, Aleksandar Dragosavljevic, Keith Conant, Fran-
cesco Bianchi, Sharon Wilkey, Melody Dolab, Toma Mulligan, and Gordan Salinovic
for allowing me to focus on writing while they took care of layout, graphics, technical
reviewing, proofreading, and marketing.

The following reviewers read the manuscript at various stages of its development
and provided invaluable feedback: Adam Wynne, Annyce Davis, Chris Davis, David
Pardo, Helen Scott, Laurence Giglio, Mario-Leander Reimer, Michael Bateman,
Mikael Dautrey, Paul Grebenc, Robert Kietly, Ronald Tischliar, Steve Rogers, William
Wheeler, and Zorodzayi Mukuya. Thanks also to all the MEAP readers who posted
comments and corrections in the Author Online forum.

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTS

This book is the result of a direct collision of two equally important events. The
first was the fact that Zeroturnaround allowed me to write a blog post on Spock back
in 2013. I thank them because they gave me complete freedom on what to write about,
even though Spock was not directly related to their business. The second event was
that Michael Stephens of Manning noticed this Spock article and proposed to make a
full book out of it. I thank him because he believed in me, even though I had never
written a book before in my life.

I am grateful to my colleagues Ioannis Cherouvim, Alex Papadakis, and Zisis Ponti-
kas for reviewing early drafts of the manuscript. Their comments were crucial as they
were my first real readers. And special thanks go to Luke Daley who graciously offered
to write the forward to my book.

Last, but not least, I would like to thank Peter Niederwieser for creating Spock in
the first place! I believe that Spock has a bright future and that this book will help to
strengthen its position in the Java ecosystem.

www.it-ebooks.info

http://www.it-ebooks.info/

about this book

The central topic of this book is, of course, the Spock testing framework. A secondary
theme is the employment of proven test practices and the ability to test all aspects of a
Java application. Even though this book is introductory as far as Spock is concerned,
there are certain assumptions I have made while writing it. When I think about my
ideal reader, I assume that you are a seasoned Java developer. By seasoned I mean that
you know your way around Java code and have mastered the basics: you have written
JUnit tests and understand their purpose and use, and you want to learn new things
and improve your craft.

If you do not fit this description, then there are several books available both for
Java and testing in general that you need to read first. Especially for testing I can rec-
ommend JUnit in Action, Second Edition by Petar Tahchiev, et al. (Manning 2010),
Effective Unit Testing by Lasse Koskela (Manning 2013), and BDD in Action by John Fer-
guson Smart (Manning 2014).

You may have also used Mockito or a similar framework for your unit tests. While
this knowledge is helpful, it is not strictly required to take full advantage of this book
as I do introduce these concepts (mocks/stubs/spies) and explain how Spock imple-
ments them.

Finally, I do not assume that you know Groovy. This is an important driving factor
for the organization of the book—a Spock book for Groovy developers would be very
different. I will introduce important Groovy traits as needed, but only those that are
relevant to Spock testing.

If you are interested in Groovy (the programming language itself), a good place to
start would be Groovy in Action, Second Edition by Dierk Koenig, et al. (Manning 2015).

www.it-ebooks.info

http://www.it-ebooks.info/

xxii

ABOUT THIS BOOK

Roadmap

There are eight chapters and two appendixes in this book.

Chapter 1 starts with a description of testing frameworks in general. We look at the
objectives of Spock, its major features against the competition both in theory and with
code examples. We also look at the relation of Java and Groovy and how you can grad-
ually adopt Spock in an existing Java project.

Chapter 2 is devoted to teaching Groovy to Java developers. Because Spock tests
are written in Groovy it is essential to learn the Groovy basics. Groovy is a full pro-
gramming language on its own, but this chapter only focuses on knowledge needed
for Spock tests. We see how compact and concise Groovy code can be (compared to
Java) and how Groovy handles assert statements. Finally we look at some common
Groovy utilities that may prove useful in unit tests

Chapter 3 is a tour of the major Spock features. We will see the basic structure of
Spock unit tests, how Spock revolutionizes the way parameterized tests are handled,
and some brief use of mocking/stubbing. A series of almost-real-world examples is
used that will hopefully be different from examples you have seen in other tutorials.

Chapter 4 is probably the most important chapter in the book. It contains a
detailed explanation of all Spock building blocks and how they can be connected
together to create an expressive unit test. We also look at setup and cleanup methods
for Spock tests along with some useful annotations that can be used for extra docu-
mentation of a unit test.

Chapter 5 explains parameterized tests. One of the great strengths of Spock is its
expressive syntax with regard to parameterized tests. Input and output parameters can
be described in a tabular format, making the syntax of parameterized tests much
more pleasant. Spock also supports custom data readers that can be used for even
more control of the parameters passed to a unit test.

Chapter 6 is all about mocking stubbing. Spock comes supercharged with a mocking
facility allowing you to examine production code in a completely controlled environ-
ment. We start with some basic example of stubs, move on to mocks, and also talk about
some advanced cases of mocking. If you have never used mocking before, this chapter
also contains a bit of theory on what mocks are and where you should use them.

Chapter 7 examines integration and functional tests with Spock. The running
theme here is that you can mostly reuse all your Java techniques and libraries that you
already have in your JUnit tests. It is impossible to cover all frameworks, and therefore
most examples are centered around the popular Spring library. We will cover func-
tional testing of web pages and REST services in this chapter as well.

Chapter 8 is the final chapter, and it explains some extra features of Spock useful
to enterprise applications. You will learn about refactoring large tests, using documen-
tation annotations, and automatically ignoring tests using smart conditions. The chap-
ter closes with a lesson on Spock spies, both in theory and practice.

Finally the appendixes explain how to install Spock and describe Spock extensions
and tools.

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK xxiii

Code conventions and downloads

The code in the book is presented in a fixed-width font like this to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing.

The source code for the examples in the book is available from GitHub at http://
github.com/kkapelon/java-testing-with-spock. All listings in the book are inside the
Git repository and include extra bonus listings as well as solutions to exercises men-
tioned in the book. For brevity’s sake, the text will at times point you to the full source
code in GitHub, as it would have been impractical to include the entire source code in
the body of the book. To implement the code, you will only need Java and the Maven
build tool. Specific instructions on how to run the code and how to include Spock in
your own applications are included in appendix A.

The code is open to anyone who would like to add contributions—if you have a
suggestion on how to improve the code, you can open an issue or create a pull request
via the web interface of GitHub. We look forward to your suggestions!

Author online

Purchase of Java Testing with Spock includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/books/java-testing-
with-spock. This page provides information on how to get on the forum once you are
registered, what kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray!

The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s web site as long as the book is in print.

About the author

Konstantinos Kapelonis is a software engineer with more than 10 years of program-
ming experience ranging from writing bare metal C for the PlayStation 3 to Scheme
code that mimics human reasoning. He works daily with Java and has a soft spot for
code quality and build pipelines.

www.it-ebooks.info

http://www.manning.com/books/java-testing-with-spock
http://www.manning.com/books/java-testing-with-spock
http://github.com/kkapelon/java-testing-with-spock
http://github.com/kkapelon/java-testing-with-spock
http://www.it-ebooks.info/

about the cover illustration

The figure on the cover of Java Testing with Spockis captioned “Habit of an Ambian Arab
in 1581.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Dif-
ferent Nations, Ancient and Modern (four volumes), London, published between 1757 and
1772. The title page states that these are hand-colored copperplate engravings, height-
ened with gum arabic. Thomas Jefferys (1719-1771) was called “Geographer to King
George III.” He was an English cartographer who was the leading map supplier of his
day. He engraved and printed maps for government and other official bodies and pro-
duced a wide range of commercial maps and atlases, especially of North America. His
work as a map maker sparked an interest in local dress customs of the lands he surveyed
and mapped, which are brilliantly displayed in this collection.

Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the late 18th century and collections such as this one were popular, introducing
both the tourist as well as the armchair traveler to the inhabitants of other countries.
The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and
individuality of the world’s nations some 200 years ago. Dress codes have changed since
then and the diversity by region and country, so rich at the time, has faded away. It is
now often hard to tell the inhabitant of one continent from another. Perhaps, trying to
view it optimistically, we have traded a cultural and visual diversity for a more varied per-
sonal life. Or a more varied and interesting intellectual and technical life.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Jeftreys’ pictures.

XXiv

www.it-ebooks.info

http://www.it-ebooks.info/

Part 1

Foundations and

brief tour of Spock

S,bock is a test framework that uses the Groovy programming language. The
first part of the book expands on this by making sure that we (you, the reader,
and me, the author) are on the same page.

To make sure that we are on the same page in the most gradual way, I first
define a testing framework (and why it’s needed) and introduce a subset of the
Groovy syntax needed for writing Spock unit tests. I know that you're eager to
see Spock tests (and write your own), but some features of Spock will impress
you only if you’ve first learned a bit about the goals of a test framework and the
shortcomings of current test frameworks (for example, JUnit).

Don’t think, however, that this part of the book is theory only. Even at this
early stage, this brief tour of Spock highlights includes full code listings and
some out-of-the-ordinary examples.

Chapter 1 is a bird’s-eye view of Spock, explaining its position in the Java eco-
system, the roles it plays in the testing process, and a brief comparison with
JUnit. Feel free to skip this chapter if you're a seasoned Java developer and have
already written a lot of JUnit tests.

Chapter 2 is a crash course in the Groovy programming language for Java
developers. I promised that I don’t assume any Groovy knowledge on your part,
and this chapter keeps that promise. In it, I specifically focus only on Groovy fea-
tures that are useful to Spock tests. By the end of this chapter, you’ll be fully
primed for reading and writing the Spock Groovy syntax. If you're interested in
learning the whole Groovy package (for writing production code and not just

www.it-ebooks.info

http://www.it-ebooks.info/

Foundations and brief tour of Spock

unit tests), you can think of this chapter as a stepping stone to full Groovy nirvana. If
you already know your way around Groovy code (and are familiar with closures and
expandos), you can safely skip this chapter.

Chapter 3 demonstrates the three major facets of Spock (core testing, parameter-
ized tests, and mocking/stubbing). These are presented via a series of testing scenar-
ios for which the Java production code is already available and you’re tasked with the
unit tests. All the examples present that same functionality in both Spock and JUnit/
Mockito so that you can draw your own conclusions on the readability and clarity of
the test code. Chapter 3 acts as a hub for the rest of the book, as you can see which
facet of Spock interests you for your own application.

Let’s start your Spock journey together!

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the Spock
testing framework

This chapter covers

Introducing Spock
Bird’s-eye view of the testing process
Using Groovy to test Java

Understanding Spock’s place in the testing
world

We live in the computer revolution. We’ve reached the point where computers are
so commonplace that most of us carry a pocket-sized one all the time: a mobile
phone. Mobile phones can now perform real-time face recognition, something
that used to require a mainframe or computer cluster. At the same time, access to
cheap and “always-on” internet services has created a communication layer that
surrounds us.

As we enjoy the benefits of computerized services in our daily lives, our expecta-
tions are also changing. We expect information to be always available. Errors and
unexpected behavior in a favorite software service leave us frustrated. E-commerce
is on the rise, and all brands fight for customer loyalty as we turn to the internet for
our shopping needs. Once I ordered a single chair from a well-known furniture

www.it-ebooks.info

http://www.it-ebooks.info/

11

CHAPTER 1 Introducing the Spock testing framework

company, and my credit card was charged three times the amount shown on the prod-
uct page because of a computer error. Naturally, I never bought anything from that
online shop again.

These high expectations of error-free software create even more pressure on devel-
opers if the “user” of the software is an organization, another company, or even a gov-
ernment agency. Software errors can result in loss of time/money/brand loyalty and,
more important, loss of trust in the software.

If you’re a software developer at any level, you know that writing programming
code is only half of software creation. Testing the programming code is also essential
in order to verify its correctness. Software problems (more commonly known as bugs)
have a detrimental effect on the reliability of an application. A continuous goal of soft-
ware development is the detection of bugs before the software is shipped or deployed
to production.

A bug/issue that reaches production code can have a profound effect, depending
on the type of software. For example, if your software is a mobile application for track-
ing daily intake of calories, you can sleep easily each night knowing that any issues
found by users will only inconvenience them, and in the worst case they’ll delete your
application from their mobile phones (if they get really angry about the problems).
But if, for example, you’re writing software that manages hotel reservations, conse-
quences are more serious. Critical issues will result in customer anger, brand damage
for the hotel, and probable future financial losses.

On the extreme end of the spectrum, consider the severity of consequences for
issues with the following:

= Software that controls hospital equipment
= Software that runs on a nuclear reactor
= Software that tracks enemy ballistic missiles and retaliates with its own defensive

missiles (my favorite example)

How will you sleep at night if you’re not sure these applications are thoroughly tested
before reaching production status?

What is Spock?

This book is about Spock, a comprehensive
testing framework for Java (and Groovy)

Enterprise testing
. (JUnit)
code that can help you automate the boring,

repetitive, and manual process of testing a
software application. Spock is comprehen-
sive because it’s a union of existing Java test-
ing libraries, as shown in figure 1.1.

Behavior-driven
testing
(JBehave)

Can mock
and stub
(Mockito)

Figure 1.1 Spock among existing Java testing tools

www.it-ebooks.info

http://www.it-ebooks.info/

111

112

1.1.3

What is Spock? 5

As the figure shows, Spock is a superset of the de facto testing framework for Java:
JUnit (http://junit.org/). Spock also comes with built-in capabilities for features that
normally require additional libraries. At its core, Spock is a testing framework capable
of handling the full lifecycle of a software application.

Spock was initially created in 2008 by Peter Niederwieser, a software engineer with
Gradleware.! Inspired by existing test tools such as jMock (www.jmock.org) and RSpec
(http://rspec.info/), Spock is used by several libraries within the open-source commu-
nity, including Apache Tapestry (https://github.com/apache/tapestry-5) and Mon-
goDB (https://github.com/mongodb/mongo-java-driver), and by several commercial
companies (for instance, Netflix). A second Spock committer is Luke Daley (also with
Gradleware), creator of the popular Geb functional testing framework (www.gebish
.org) demonstrated in chapter 7. Spock, a new entry in the test framework arena, chal-
lenges the undisputed king—JUnit—armed with a bunch of fresh ideas against the
legacy techniques of the past. Spock tests are written in Groovy, but they can test
either Groovy or Java code.

Mocking and stubbing

The most basic unit tests (called logic tests by some) are those that focus on the logic of
a single Java class. To test a single class in a controlled environment and isolate it from
the other classes it depends on (collaborators), Spock comes with built-in support for
“faking” external object communication. This capability, known as mocking and stub-
bing, isn’t inside vanilla JUnit; you need external libraries—for example, Mockito
(https://github.com/mockito/mockito) or jMock (http://www,jmock.org/)—to
achieve this isolation of a Java class.

Behavior-driven development

Spock also embraces the paradigm of behavior-driven development (BDD), a development
process that attempts to unify implementation, testing, and business people inside a
software organization, by introducing a central way of documenting requirements and
validating software functionality against those requirements, in a clear and repeatable
manner. Spock combines these facets into a single convenient package offering a
holistic approach to software testing.

Spock’s design features
Spock has the following characteristics.

ENTERPRISE-READY
Spock can be easily integrated with the popular build systems, Maven (https://
maven.apache.org/) and Gradle (https://gradle.org/). Spock runs as part of a build

1

The same company behind Gradle, a build system in Groovy (a replacement for Maven).

www.it-ebooks.info

http://junit.org/
http://rspec.info/
https://github.com/apache/tapestry-5
https://github.com/mongodb/mongo-java-driver
www.gebish.org
www.gebish.org
https://github.com/mockito/mockito
http://www.jmock.org/
https://maven.apache.org/
https://maven.apache.org/
https://gradle.org/
http://www.it-ebooks.info/

114

CHAPTER 1 Introducing the Spock testing framework

process and produces reports of automated test runs. Spock can be used to test back-
end code, web pages, HTTP services, and more.

COMPREHENSIVE

Spock is a one-stop shop when it comes to testing. It has built-in capabilities for mock-
ing and stubbing (creating fake objects), allowing you to decide on the breadth of the
testing context. Spock can test a single class, a code module, or a whole application
context with ease. You can perform end-to-end testing with Spock (covered in chapter
7) or isolate one class/method for your testing needs without any external libraries
(described in chapter 6).

FAMILIAR/COMPATIBLE

Spock runs on top of the JUnit runner, which already enjoys mature support among
tools and development environments. You run your Spock tests in the same way as
your JUnit tests. You can even mix the two in the same project and get reports on test
failures or code coverage in a similar way to JUnit. Run your tests in parallel or in a
serial way; Spock doesn’t care because it’s fully compatible with existing JUnit tools.

INSPIRED

Spock is relatively new and doesn’t carry any legacy burden. It’s designed from scratch
but at the same time it takes the best features of existing testing libraries (and tries to
avoid their disadvantages). For example, Spock embraces the given-when-then struc-
ture of JBehave (http://jbehave.org/) but also discards the cumbersome record/
replay code of older mocking frameworks.

Spock’s coding features
Spock’s coding features are as follows.

CONCISE
Spock uses the Groovy syntax, which is already concise and mixes its simplified syntax
on top. No more tests that hide the substance with boilerplate code!

READABLE

Spock follows a close-to-English flow of statements that can be readable even by non-
technical people (for example, business analysts). Collaboration among analysis, devel-
opment, and testing people can be greatly simplified with Spock tests. If you always
wanted to name your test methods by using full English sentences, now you can!

METICULOUS

When things go wrong, Spock gives as much detail as possible on the inner workings
of the code at the time of failure. In some cases, this is more than enough for a devel-
oper to understand the problem without resorting to the time-consuming debugging
process.

EXTENSIBLE
Spock allows you to write your own extensions to cater to your specific needs. Several
of its “core” features are extensions (or started as extensions).

www.it-ebooks.info

http://jbehave.org/
http://www.it-ebooks.info/

What is Spock? 7

Listing 1.1 provides a sample test in Spock that illustrates several of these key cod-
ing features. The example shows a billing system that emails invoices to customers
only if they have provided an email address.

How to use the code listings

You can find almost all code listings of this book at https://github.com/kkapelon/
java-testing-with-spock. For brevity, the book sometimes points you to the source code
(especially for long Java listings). | use the Eclipse integrated development environ-
ment (IDE) in my day-to-day work, as shown in the screenshots throughout the book.
You can find specific instructions for installing Spock and using it via Maven, Gradle,
Eclipse, and IntelliJ in appendix A.

Don’t be alarmed by unknown keywords at this point. Even if you know absolutely no
Groovy at all, you should be able to understand the scenario in question by the pres-
ence of full English sentences. The following chapters explain all details of the syntax.
All of chapter 2 is devoted to Groovy and how it differs from Java.

Listing 1.1 Sample Spock test

class InvoiceMailingSpec extends spock.lang.Specification{ Full English
{

sentences describe

The Spock
spedELaﬁoncan def "electronic invoices to active email addresses" () what the test does.
be executed by a given: "an invoice, a customer, a mail server and a printer"

JUnit runner. PrinterService printerService = Mock (PrinterService) ‘ Integrated mocking of
EmailService emailService = Mock (EmailService) collaborator classes
Customer customer = new Customer ()
FinalInvoiceStep finalInvoiceStep = new
FinalInvoiceStep (printerService, emailService)
Invoice invoice = new Invoice()

Given-when-then
declarative style
of BDD

customer.hasEmail ("acme@example.com")

when: "customer is normal and has an email inbox"
finalInvoiceStep.handleInvoice (invoice, customer)

then: "invoice should not be printed. Only an
email should be sent"
Verifying interactions 0 * printerService.printInvoice (invoice)
of mocked objects 1 * emailService.sendInvoice (invoice, "acme@example.com")

}
}
As you can see, the Spock test has a clear given-when-then flow denoted with labels
(the BDD style of tests), and each label comes fully documented with an English sen-
tence. Apart from the def keyword and the * symbol in the last two statements, almost
all code is Java-like. Note that the spock.lang.Specification class is runnable by

JUnit, meaning that this class can act as a JUnit test as far as build tools are concerned.
Upcoming chapters cover these and several other features of Spock.

www.it-ebooks.info

https://github.com/kkapelon/java-testing-with-spock
https://github.com/kkapelon/java-testing-with-spock
http://www.it-ebooks.info/

1.2

CHAPTER 1 Introducing the Spock testing framework

Testing is a highly controversial subject among software developers, and often the
discussion focuses on testing tools and the number of tests that are needed in an
application. Heated discussions always arise on what needs to be tested in a large
application and whether tests help with deadlines. Some developers (hopefully, a
minority) even think that all tests are a waste of time, or that their code doesn’t need
unit tests. If you think that testing is hard, or you believe that you don’t have enough
time to write tests, this book will show you that Spock uses a concise and self-docu-
menting syntax for writing test cases.

If, on the other hand, you’ve already embraced sound testing practices in your
development process, I'll show you how the Spock paradigm compares to established
tools such as JUnit and TestNG (http://testng.org/).

Before getting into the details of using Spock, let’s explore why you need a test
framework in the first place. After all, you already test your code manually as part of
every coding session, when you make sure that what you coded does what you
intended.

The need for a testing framework

The first level of testing comes from you. When you implement a new feature, you
make a small code change and then run the application to see whether the required
functionality is ready. Compiling and running your code is a daily task that happens
many times a day as you progress toward the required functionality.

Some features, such as “add a button here that sorts this table of the report,” are
trivial enough that they can be implemented and tested in one run. But more-com-
plex features, such as “we need to change the policy of approving/rejecting a loan,”
will need several changes and runs of the application until the feature is marked as
complete.

You can see this manual code-run-verify cycle in figure 1.2.

Run application

Developer

These tasks are boring
and repetitive in a manual
testing cycle. They should
be faster.

Start new
feature

—| Code change

Feature not

done yet See effects

Figure 1.2 Testing software

manually becomes more

Feature cumbersome as the application
done code base grows.

www.it-ebooks.info

http://testng.org/
http://www.it-ebooks.info/

121

The need for a testing framework 9

Manual testing is enough for small software projects. A quick prototype, a side project,
or a weekend coding session can be tested manually by a single person. In order for
the cycle to work effectively, a single loop must be quick enough for the developer to
see the results of the code change. In an ideal case, a single code change should be
verified in seconds. If running the whole application and reaching the point where
the new feature is found requires several minutes, developer productivity suffers.

Writing software is a creative process that requires getting into the “zone.” Having
constant interruptions with lengthy intervals between each code change is a guaran-
teed way to disrupt the developer’s thinking about the code structure (not to mention
loss of time/money while waiting for the test to finish).

As the programming code grows past a certain point, this manual cycle gets length-
ier, with more time spent running and testing the application than writing code. Soon
the run-verify time dominates the “developing” time. Another problem is the time it
takes to redeploy software with the new changes. Small software projects can be
deployed in seconds, but larger code bases (think bank software) may need several
minutes for a complete deployment, further slowing the manual testing cycle.

Spock as an enterprise-ready test framework

Spock is marketed as an enterprise-ready test framework, so it’s best to explain the
need for automated testing in the context of enterprise software—software designed
to solve the problems of a large business enterprise. Let’s look at an example that
reveals why a test framework is essential for large enterprise applications.

Imagine you’ve been hired as a software developer for a multinational company
that sells sports equipment in an online shop. Most processes of the company depend
on a monolithic system that handles all daily operations.

You’re one of several developers responsible for this central application that has all
the characteristics of typical enterprise in-house software:

= The code base is large (more than 200,000 lines of code).

= The development team is 5-20 people.

= No developer knows all code parts of the application.

= The application has already run in production for several years.

= New features are constantly requested by project stakeholders.

= Some code has been written by developers who have left the software
department.

The last point is the one that bothers you most. Several areas of the application have
nonexistent documentation, and no one to ask for advice.

DEALING WITH NEW REQUIREMENTS IN AN ENTERPRISE APPLICATION

You’re told by your boss that because the snow season is approaching, all ski-related
materials will get a 25% discount for a limited time period that must also be configu-
rable. The time period might be a day, a week, or any other arbitrary time period.

www.it-ebooks.info

http://www.it-ebooks.info/

10

CHAPTER 1 Introducing the Spock testing framework

Your approach is as follows:

1 Implement the feature.

2 Check the functionality by logging manually into the e-shop and verifying that
the ski products have the additional discount during checkout.

3 Change the date of the system to simulate a day after the offer has ended.

4 Log in to the e-shop again and verity that the discount no longer applies.

You might be happy with your implementation and send the code change to the pro-
duction environment, thinking you’ve covered all possible cases, as shown in figure 1.3.

Code change

Ski season discount

17

Scenarios tested

manually in 30 minutes

Ski products with
active discount

Ski products with
expired discount

Figure 1.3 Scenarios
tested after a simple
code change

Non-ski products
are not affected.

UNDERSTANDING ENTERPRISE COMPLEXITY: OF MODULES AND MEN

The next morning, your boss frantically tells you to revert the change because the
company is losing money! He explains that the e-shop has several VIP customers who
always get a 10% percent discount on all products. This VIP discount should never be
applied with other existing discounts. Because you didn’t know that, VIPs are now get-
ting a total discount of 35%, far below the profit margin of the company. You revert
the change and note that for any subsequent change, you have to remember to test

for VIP customers as well.

This is a direct result of a large
code base with several modules
affecting more than one user-visible
feature, or a single user-visible fea-
ture being affected by more than
one code module. In a large enter-
prise project, some modules affect

(typical

examples are core modules for secu-

all user-visible features

rity and persistence). This asymmet-
ric relationship is illustrated in
figure 1.4.

Code modules

Features affected

VIP users

Daily deal

Seasonal offer

Discount coupons

Product categories

Figure 1.4 A single change in one place has an
unwanted effect in another place.

www.it-ebooks.info

http://www.it-ebooks.info/

The need for a testing framework 11

With the change reverted, you learn more about the business requirements of dis-
counts. The final discount of a product is affected by the following:

= Types of customers (first time, normal, silver, VIP)

= Three coupon code types (personal, seasonal, special)
= Ad hoc limited-time offers

= Standard seasonal discounts

= Time of products in the warehouse

= 30+ categories of sports equipment of the company

The next time you tamper with the discount code module, you’ll have to manually test
more than 100 cases of all the possible combinations. Testing all of them manually
would require at least four hours of boring, repetitive work, as shown in figure 1.5.

This enterprise example should make it clear that the complexity of software makes
the manual testing cycle slow. Adding a new feature becomes a time-consuming process
because each code change must be examined for side effects in all other cases.

Another issue similar to module interaction is the human factor: in a big applica-
tion, communication between domain experts, developers, testers, system administra-
tors, and so on isn’t always free of misunderstandings and conflicting requirements.
Extensive documentation, clear communication channels, and an open policy regard-
ing information availability can mitigate the problems but can’t completely eliminate
them.

Scenarios tested
manually in 30 minutes

Ski products with
|
active discount
Code change
Ski season discount > SKi Produ.cts with
expired discount
Non-ski products
Scenarios missed are not affected.

during manual testing

il Ski products i

i withVIPuserand !

i active discount i
il Ski products i
i with active discount i
i and voucher i

Ski products i
with silver customer |
discount and voucher |

i' Ski products ‘i
i on limited offer : Fi 15 S .
i with active discount | igure o ome scenarlos_

L / were missed by manual testing.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 Introducing the Spock testing framework

Single code module

X

(Order Value Size) (Order Value Size)

163 | $500 Small 321 $350 Large
321 | $350 | Large 189 | $240 | Medium
189 | $240 | Medium 163 | $500 Small

“Please sort table
by product count.”

“Please sort table by
money value of order.”

Figure 1.6 Similar features that
Sales Inventory affect the same code module can
manager manager cause conflicts.

As an example, a sales manager in the e-shop decides that he wants to see all tables in
the back-office application sorted by the value of the order, while at the same time an
inventory manager wants to sort the same tables by order size. Two separate develop-
ers could be tasked with these cases without knowing that the requirements are con-

flicting, as shown in figure 1.6.

This enterprise example illustrates firsthand the problems of every large software

code base:

= Manually testing every possible combination of data input after a code change

is difficult and even impossible in some cases.

= It’s hard to predict which parts of the application will be affected by a single
code change. Developers are afraid to change existing code, fearing they might

break existing functionality.

= Code changes for a new feature can enable previous bugs that have already

been fixed to resurface (regressions).

= Understanding all system requirements from the existing code isn’t easy. Read-

ing the code provides information only on what happens and not on why it hap-

pens.

= Redeploying the application to see the effects of a code change could be a

lengthy process on its own and could slow development time even further.

Now you know the major problems faced by a software development team working on

a big enterprise project. Next, let’s look at various approaches to tackling these

problems.

www.it-ebooks.info

http://www.it-ebooks.info/

122

The need for a testing framework 13

Common ways to handle enterprise complexity

All software companies suffer from these problems and deal with them in one of the
following three ways or their variations (I've seen them all in real life):

= Developers manually test everything after each code change.
= Big code changes are avoided for fear of unforeseen bugs.
= Alayered testing approach is introduced that includes automated testing.

Let’s look at each of these solutions in turn.

PERFORMING MINDLESS MANUAL TESTING

In the first case (which is possible with only small- to middle-sized software projects),
developers aren’t entirely sure what’s broken after a code change. Therefore, they
manually test all parts of the application after they implement a new feature or fix an
issue. This approach wastes a lot of time/money because developers suffer from the
repetitive nature of testing (which is a natural candidate for automation).

In addition, as the project grows, testing everything by hand becomes much more
difficult. Either the development progress comes to a crawl, as most developers deal
with testing instead of adding new features, or (the most common case) developers
add features and test only parts of the application that they think might be affected.
The result is that bugs enter production code and developers become firefighters;
each passing day is a big crisis as the customer discovers missing functionality.

AVOIDING BIG CODE CHANGES

In the second case, the “solution” is to never perform big code changes at all. This
paradigm is often embraced by large organizations with big chunks of legacy code (for
example, banks). Management realizes that new code changes may introduce bugs
that are unacceptable. On the other hand, manual testing of the code is next to
impossible because of the depth and breadth of all user scenarios (for example, you
can’t possibly test all systems of a bank in a logical time frame by hand).

The whole code base is declared sacred. Changing or rewriting code is strictly for-
bidden by upper management. Developers are allowed to add only small features to
the existing infrastructure, without touching the existing code. Local gurus inspect
each code change extensively before it enters production status. Code reuse isn’t pos-
sible. A lot of code duplication is present, because each new feature can’t modify exist-
ing code. Either you already have what you need to implement your feature, or you’re
out of luck and need to implement it from scratch.

If you're a developer working in situations that belong to these first two cases
(manual testing and the big code base that nobody touches), I feel for you! I've been
there myself.

DELEGATING TO AN AUTOMATED TESTING FRAMEWORK

There’s a third approach, and that’s the one you should strive for. In the third case, an
automated test framework is in place that runs after every code change. The frame-
work is tireless, meticulous, and precise. It runs in the background (or on demand)
and checks several user features whenever a change takes place. In a well-managed

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 Introducing the Spock testing framework

Change on Test
discount module framework runs

1. First-time customer scenario OK
2. Normal customer scenario OK
3. Silver customer scenario OK

l 4. VIP scenario Failed 4\
Revised change on Test Unwanted
discount module framework runs change detected

1. First-time customer scenario OK
2. Normal customer scenario OK
3. Silver customer scenario OK

4. VIP scenario OK

Feature done
Figure 1.7 Detecting unwanted changes with a test framework

software creation process, the testing framework runs automatically after every devel-

oper commit as part of a build pipeline (for example, with the Jenkins build server,
available for free at http://jenkins-ci.org/). Results from this automatic run can influ-
ence further steps. A common policy is that code modules with failed test results
should never be deployed to a production environment.

The test framework acts as an early warning system against unwanted code effects.
To illustrate the previous example, if you had a test framework in place, you’d get an
automated report after any change, as shown in figure 1.7.

A test framework has the following characteristics.
It reduces

= Feedback time needed to verify the effects of code changes
= Boring, repetitive tasks

It ensures
= Confidence when a new feature is implemented, a bug is fixed, or code is

refactored
= The detection of conflicting requirements

It provides

= Documentation for code and an explanation of the reasons behind the current
state

Code can be refactored, removed, and updated with ease, because the test framework
continuously reports unwanted side effects. Developers are free to devote most of
their time to coding new features and fixing existing (known) bugs. Features quickly
come into production code, and the customer receives a software package known to
be stable and solid for all scenarios supported by the test framework. An initial time
investment is required for the testing framework, but after it’s in place, the gains

www.it-ebooks.info

http://jenkins-ci.org/
http://www.it-ebooks.info/

1.3

1.3.1

1.3.2

Spock: the groovier testing framework 15

outperform the time it takes to write the test scripts. Catching code regressions and
severe bugs before they enter the production environment is much cheaper than
allowing them to reach the final users.

A test framework also has other benefits not instantly visible with regard to code
quality. The process of making programming code testable enforces several con-
straints on encapsulation and extensibility that can be easily neglected if the code isn’t
created with tests in mind. Techniques for making your code testable are covered in
chapter 8. But the most important benefit of a test framework is the high developer
confidence when performing a deep code change.

Let’s dig into how Spock, as a testing framework specializing in enterprise applica-
tions, can help you refactor code with such confidence.

Spock: the groovier testing framework

When I first came upon Spock, I thought that it would be the JUnit alternative to the
Groovy programming language. After all, once a programming language reaches a
critical mass, somebody ports the standard testing model, known as xUnit (https://
en.wikipedia.org/wiki/XUnit), to the respective runtime environment. xUnit frame-
works already exist for all popular programming languages.

But Spock is not the xUnit of Groovy! It resembles higher-level testing frameworks,
such as RSpec and Cucumber (https://github.com/cucumber/cucumberjvm), that
follow the concepts of BDD, instead of the basic setup-stimulate-assert style of xUnit.
BDD attempts (among other things) to create a one-to-one mapping between business
requirements and unit tests.

Asserts vs. Assertions

If you're familiar with JUnit, one of the first things you’ll notice with Spock is the com-
plete lack of assert statements. Asserts are used in unit tests in order to verify the test.
You define the expected result, and JUnit automatically fails the test if the expected
output doesn’t match the actual one.

Assert statements are still there if you need them, but the preferred way is to use
Spock assertions instead, a feature so powerful that it has been backported to Groovy
itself. You’ll learn more in chapter 2 about Power asserts and how they can help you
pinpoint the causes of a failing test.

Agnostic testing of Java and Groovy

Another unique advantage
of Spock is the ability to
agnostically test both Java
and Groovy code, as shown

(Java and/or Groovy code)

in figure 1.8.

Figure 1.8 Spock can test (Spock Groovy test) Test failed
both Java and Groovy code.

www.it-ebooks.info

https://en.wikipedia.org/wiki/XUnit
https://en.wikipedia.org/wiki/XUnit
https://github.com/cucumber/cucumber-jvm
http://www.it-ebooks.info/

16

133

14

CHAPTER 1 Introducing the Spock testing framework

Groovy is a dynamic language that runs in the same Java Virtual Machine (JVM) as
Java. Java supporters are proud of the JVM, and some believe that the value of the JVM
as a runtime environment is even higher than Java the language. Spock is one exam-
ple of the power the JVM has to accommodate code from different programming lan-
guages.

Spock can test any class that runs on the JVM, regardless of the original source
code (Java or Groovy). It’s possible with Spock to test either a Java class or a Groovy
class in the exact same way. Spock doesn’t care about the origin of the class, as long as
it’s JVM-compatible. You can even verify both Java and Groovy code in the same Spock
test if your project is a mix of the two.

Taking advantage of Groovy tricks in Spock tests

Finally, you need to know that Groovy is a dynamic language that behaves differently
than Java in some important aspects (such as the declaration of variables), as you’ll
learn in chapter 2. This means that several “tricks” you learn with Spock are in reality
a mix of both Groovy and Spock magic, because Spock can extend Groovy syntax in
ways that would be difficult with Java (if not impossible). And yes, unlike Java, in
Groovy a library/framework can change the syntax of the code as well. Spock is one
such library, as you’ll learn in chapter 4.

As you become more familiar with Spock and Groovy, the magic behind the cur-
tain will start to appear, and you might even be tempted to use Groovy outside Spock
tests as well!

AST transformations: changing the structure of the Groovy language

Several tricks of Groovy magic come from the powerful meta-programming facilities
offered during runtime that can change classes and methods in ways impossible with
vanilla Java. At the same time, Groovy also supports compile-time macros (abstract
syntax tree, or AST, transformations in Groovy parlance). If you’re familiar with macros
in other programming languages, you should be aware of the power they bring to code
transformations. By using AST transformations, a programmer can add/change sev-
eral syntactic features of Groovy code, modifying the syntax in forms that were difficult
or impossible in Java.

Spock takes advantage of these compile and runtime code-transformation features
offered by Groovy in order to create a pseudo-DSL (domain specific language) specif-
ically for unit tests. All the gory details of Spock syntax are explained in chapter 4.

Getting an overview of Spock’s main features

Before starting with the details of Spock code, let’s take a bird’s-eye view of its major
features and how they implement the good qualities of a testing framework, as already
explained.

www.it-ebooks.info

http://www.it-ebooks.info/

14.1

14.2

143

Getting an overview of Spock’s main features 17

Enterprise testing

A test framework geared toward a big enterprise application has certain requirements
in order to handle the complexity and possible configurations that come with enter-
prise software. Such a test framework must easily adapt to the existing ecosystem of
build tools, coverage metrics, quality dashboards, and other automation facilities.

Rather than reinventing the wheel, Spock bases its tests on the existing JUnit run-
ner. The runner is responsible for executing JUnit tests and presenting their results to
the console or other tools (for example, the IDE). Spock reuses the JUnit runner to
get for free all the mature support of external tools already created by Junit:

= Do you want to see code coverage reports with Spock?
= Do you want to run your tests in parallel?
= Do you want to divide your tests into long running and short running?

The answer to all these questions is “Yes, you do, as you did before with JUnit.” More
details about these topics are presented in chapter 7.

Data-driven tests

A common target for unit tests is to handle input data for the system in development.
It’s impossible to know all potential uses for your application in advance, let alone the
ways people are going to use and misuse your application.

Usually a number of unit tests are dedicated to possible inputs of the system in a
gradual way. The test starts with a known set of allowed or disallowed input, and as
bugs are encountered, the test is enriched with more cases. Common examples
include a test that checks whether a username is valid or which date formats are
accepted in a web service.

These tests suffer from a lot of code duplication if code is handled carelessly. The
test is always the same (for example, Is the username valid?), and only the input
changes. Whereas JUnit has some facilities for this type of test (parameterized test),
Spock takes a different turn, and offers a special DSL that allows you to embed data
tables in Groovy source code. Data-driven tests are covered in chapter 5.

Mocking and stubbing

For all its strengths, object-oriented software suffers from an important flaw. The fact
that two objects work correctly individually doesn’t imply that both objects will also
work correctly when connected to each other. The reverse is also true: side effects
from an object chain may hide or mask problems that happen in an individual class.

A direct result of these facts is that testing software usually needs to cover two lev-
els at once: the integration level, where tests examine the system as a whole (integra-
tion tests), and the class level, where tests examine each individual class (unit tests or
logic tests).

To examine the microscopic level of a single class and isolate it from the macro-
scopic level of the system, a controlled running environment is needed. A developer

www.it-ebooks.info

http://www.it-ebooks.info/

18 CHAPTER 1 Introducing the Spock testing framework

has to focus on a single class, and the rest of the system is assumed to be “correct.”
Attempting to test a single class inside the real system is difficult, because for any bugs
encountered, it’s not immediately clear whether they happen because of the class
under test or the environment.

For this reason, a mocking framework is needed that “fakes” the rest of the system
and leaves only the class under test to be “real.” The class is then tested in isolation
because even though it “thinks” that it’s inside a real system, in reality all other collab-
orating classes (collaborators) are simple puppets with preprogrammed input and
output.”

In the JUnit world, an external library is needed for mocking. Numerous libraries
exist, with both strengths and weaknesses—for example, Mockito, jMock, EasyMock
(http://easymock.org/) and PowerMock (www.powermock.org/). Spock comes with
its own builtin mocking framework, as you’ll see in chapter 6. Combined with the
power of Groovy meta-programming (as described in chapter 2), Spock is a compre-
hensive DSL that provides all the puzzle pieces needed for testing.

Now that we’ve covered the theory and you know the foundations of a solid testing
process and how Spock can test classes written in Java, it’s time to delve into code!

1.5 A first look at Spock in action

The following examples should whet your appetite, so don’t stress over the strange syn-
tax or any unknown keywords. I cover Spock syntax throughout the rest of the book.

1.5.1 A simple test with JUnit

When introducing a new library/language/framework, everybody expects a “hello
world” example. This section shows what Spock looks like in a minimal, but fully func-
tional example.

The following listing presents the Java class you’ll test. For comparison, a possible
JUnit test is first shown, as JUnit is the de facto testing framework for Java, still undis-
puted after more than a decade.

Listing 1.2 Java class under test and JUnit test

public class Adder { . . A trivial class that will be tested
public int add(int a, int b) { (a.k.a. class under test)
return a+b;
1

} Test case for the
public class AdderTest { class in question
@Test
Initialization of public void simpleTest () { JUnit assert statement
class under test Adder adder = new Adder () ; that compares 2 and
assertEquals ("1l + 1 is 2", 2 ,adder.add(1, 1)) the result of add(l,l)

21 always enjoyed this evil aspect of testing—my own puppet theater, where the protagonist can’t see behind
the scenes.

www.it-ebooks.info

http://easymock.org/
www.powermock.org/
http://www.it-ebooks.info/

A first look at Spock in action 19

@Test A second scenario for

statements that public void orderTest () { the class under test
compareSwith Adder adder = new Adder () ;
adding 2and3 assertEquals ("Order does not matter ",5,adder.add(2, 3));
assertEquals ("Order does not matter ",5,adder.add(3, 2));

Two assert

You introduce two test methods, one that tests the core functionality of your Adder
class, and one that tests the order of arguments in your add method.

Running this JUnit test

in the EClipSC develop- Finished after 0,011 seconds

ment environment (right- Runs: B2 @ Erors: [@ Fodures: Kb

click the .java file and + 6 Fom.manninq.spockﬁdderTut [Runner: JUnit 4] (0,000 s) = Failure Trace
choose Run As > JUnit Test % :::1:5;:0(32005]:]

from the menu) gives the

results shown in figure 1.9. Figure 1.9 Running a JUnit test in Eclipse

1.5.2 A simple test with Spock

The next listing shows the same test in Groovy/Spock. Again, this test examines the
correctness of the Java class Adder that creates the sum of two numbers.

Listing 1.3 Spock test for the Adder Java class

A Groovy method with a

class AdderSpec extends spock.lang.Specification{ huma!l-readable name that

All Spock tests extend def "Adding two numbers to return the sum" () { contains a test scenario
the Specification class. when: "a new Adder class is created" T

def adder = new Adder(); A “when” block

T Initialization of Java that sets the scene
A “then” block that will ’—’ then: "1 plus 1 is 2" class under test
hold verification code adder.add (1, 1) == 2 T
A Groovy assert
Another ’—P def "Order of numbers does not matter" () statement

test scenario when: "a new Adder class is created"

def adder = new Adder () ;

then: "2 plus 3 is 5"

adder.add (2, 3) == 5

and: "3 plus 2 is also 5" An “and” block that

adder.add (3, 2) == 5

accompanies the “then” block

If you’ve never seen Groovy code before, this Spock segment may seem strange. The
code has mixed lines of things you know (for example, the first line with the extends

www.it-ebooks.info

http://www.it-ebooks.info/

20

1.5.3

CHAPTER 1 Introducing the Spock testing framework

Finished after 0,36 seconds
Runs: 2/2 8 Errors: 0 B Failures: 0
4 ET] com ing.spock.chapterl.AdderSpec [Runner: JUnit4) (0,020 5) = Failure Trace

| Adding two numbers to return the sum (0,070 5)

- Figure 1.10 Runnin,
gi=| Order of numbers does not matter (0,000 5) gure 0 u ga

Spock test in Eclipse

keyword) and things completely alien to you (for example, the def keyword). Details
on Groovy syntax are explained in chapter 2.

On the other hand, if you’re already familiar with BDD, you’ll already grasp the
when/then pattern of feature testing.

The upcoming chapters explain Spock syntax in detail. For example, the def key-
word (which stands for define) is how you declare things in Groovy without explicitly
specifying their type (which is a strict requirement in Java). The Spock blocks (when:,
then:, and:) are covered in chapter 4.

How do you run this test? You run it in the same way as a JUnit test! Again, right-
click the Groovy class and choose Run As > JUnit Test from the pop-up menu. The
result in Eclipse is shown in figure 1.10.

Other than the most descriptive method names, there’s little difference between
the JUnit and Spock results in this trivial example. Although I use Eclipse here, Spock
tests can run on all environments/tools that already support JUnit tests (for example,
Intelli] IDEA).

TAKEAWAYS FROM THESE CODE EXAMPLES
Here’s what you need to take away from this code sample:

= The almost English-like flow of the code. You can easily see what’s being tested,
even if you’re a business analyst or don’t know Groovy.

= The lack of any assert statements. Spock has a declarative syntax, which explains
what you consider correct behavior.

= The fact that Spock tests can be run like JUnit tests.

Let’s move on to one of the killer features of Spock (handling failed tests).

Inspecting failed tests with Spock

One of the big highlights of Spock code is the lack of assert statements compared to
JUnit. In the previous section, you saw what happens when all tests pass and the happy
green bar is shown in Eclipse. But how does Spock cope with test failures?
To demonstrate its advantages over JUnit, you’ll add another (trivial) Java class that
you want to test:
public class Multiplier {
public int multiply(int a, int b)

{
}

return a * b;

www.it-ebooks.info

http://www.it-ebooks.info/

A first look at Spock in action 21

For this class, you'll also write the respective JUnit test, as shown in the following list-
ing. But as an additional twist (for demonstration purposes), you want to test this class
not only by itself, but also in relation to the Adder class shown in the previous section.

Listing 1.4 A JUnit test for two Java classes

public class MultiplierTest
@Test
public void simpleMultiplicationTest () {

Multiplier multi = new Multiplier();

A test scenario assertEquals ("3 times 7 is 21",21,multi.multiply (3, 7));
that will examine }
two Java classes @Test Creati f th
H reation o e
at the same time public void combinedOperationsTest () {

first Java class

Adder adder = new Adder();

Creation of the Multiplier multi = new Multiplier(); Verification of a
second Java class mathematical result coming

assertEquals ("4 times (2 plus 3) is 20", from both Java classes

20, multi.multiply (4, adder.add(2, 3)));
assertEquals (" (2 plus 3) times 4 is also 20",
20, multi.multiply(adder.add (2, 3),4));

}

Running this unit test results in a green bar because both tests pass. Now for the equiv-
alent Spock test, shown in the next listing.

Listing 1.5 Spock test for two Java classes

class MultiplierSpec extends spock.lang.Specification{
def "Multiply two numbers and return the result" () (
when: "a new Multiplier class is created"
def multi = new Multiplier();

then: "3 times 7 is 21" A test scenario that will
multi.multiply (3, 7) == 21 examine two Java classes
} at the same time
def "Combine both multiplication and addition" () {
when: "a new Multiplier and Adder classes are created"
Creation of the —» def adder = new Adder () ;
first Java class def multi = new Multiplier () Creation of the
second Java class
Verification of a —» then: "4 times (2 plus 3) is 20"
mathematical result multi.multiply (4, adder.add(2, 3)) == 20
coming from both
Java classes and: "(2 plus 3) times 4 is also 20"
multi.multiply (adder.add (2, 3),4) == 20

www.it-ebooks.info

http://www.it-ebooks.info/

22 CHAPTER 1 Introducing the Spock testing framework

Again, running this test will pass with flying colors. You might start to believe that we
gain nothing from using Spock instead of JUnit. But wait!

Let’s introduce an artificial bug in your code to see how JUnit and Spock deal with
failure. To mimic a real-world bug, you’ll introduce it in the Multiplier class, but
only for a special case (see the following listing).

Listing 1.6 Introducing an artificial bug in the Java class under test

public class Multiplier ({
public int multiply(int a, int b) {

A dummy bug that if(a == 4) | . .
happens only if the return 5 * b; //multiply an extra time.
first argument is 4 }

return a *b;

}

Now run the JUnit test and see what happens (figure 1.11).
You have a test failure. But do you notice anything strange here? Because the bug
you introduced is subtle, JUnit says this to you:

= Addition by itself works fine.
= Multiplication by itself works fine.
= When both of them run together, we have problem.

But where is the problem? Is the bug on the addition code or the multiplication? We
can’t say just by looking at the test result (OK, OK, the math might give you a hint in
this trivial example).

You need to insert a debugger in the unit test to find out what happened. This is
an extra step that takes a lot of time because re-creating the same context environ-
ment can be a lengthy process.

SPOCK KNOWS ALL THE DETAILS WHEN A TEST FAILS
Spock comes to the rescue! If you run the same bug against Spock, you get the mes-
sage shown in figure 1.12.

Spock comes with a super-charged error message that not only says you have a fail-
ure, but also calculates intermediate results!

= Failure Trace =
JEjava.lang.AssertiﬂnErrﬂr: 4 times (2 plus 3) is 2@ expected:<20> but was:<25>

= at com.manning.spock.MultiplierTest.combinedOperationsTest(MultiplierTest.java:22)

Figure 1.11 Failure of JUnit test in Eclipse

www.it-ebooks.info

http://www.it-ebooks.info/

1.6

Spock’s position in the Java ecosystem 23

= Failure Trace

Y0 condition not satisfied:

multi.multiply(4, adder.add(2, 3)) == 28

| [[| [

| 25 | 5 false

| com.manning.spock.Adder@691abe79
com.manning. spock.Multiplien@38d9e447

Figure 1.12 Failure of a Spock test in Eclipse

As you can see, it’s clear from the test that the addition works correctly (2 + 3 is indeed
5) and that the bug is in the multiplication code (4 x 5 doesn’t equal 25).

Armed with this knowledge, you can go directly to the Multiplier code and find
the bug. This is one of the killer features of Spock, and may be enough to entice you
to rewrite all your JUnit tests in Spock. But a complete rewrite isn’t necessary, as both
Spock and JUnit tests can coexist in the same code base, which you’ll explore next.

Spock’s position in the Java ecosystem

The de facto testing framework in a Java project is JUnit, but 7estNG is another testing
framework for Java that’s similar. At one point, TestNG had several extra features that
JUnit lacks, resulting in a lot of developers switching over to TestNG (especially for big
enterprise projects). But JUnit quickly closed the gap, and TestNG failed to gain a
majority in the mindset of Java developers. The throne of JUnit is still undisputed. I've
seen junior Java developers who think that JUnit and unit testing are the exact same
thing. In reality, JUnit is one of the many ways that unit tests can be implemented.

Unit tests in both JUnit and TestNG are written in Java as well. Traditionally, this has
been seen as an advantage by Java developers because they use the same program-
ming language in both production code and testing code. Java is a verbose language
(at least by today’s standards) with a lot of boilerplate code, several constraints (for
example, all code must be part of a class, even static methods), and a heavy syntax
requiring everything to be explicitly defined. Newer editions of Java (after version 7)
attempt to rectify this issue with mixed success, never reaching the newer “convention-
over-configuration” paradigm of other programming languages.

It doesn’t have to be this way, though. There’s no technical reason to constrain
unit tests so that they’re in the same programming language as the development code.
In fact, production and testing code have completely different requirements. The big-
gest difference is that testing code runs by definition before the application is deployed
in production. A good engineer uses the best tool for the job. You can think of Spock
as a special domain language created exclusively for testing purposes.

www.it-ebooks.info

http://www.it-ebooks.info/

24

l1.6.1

CHAPTER 1 Introducing the Spock testing framework

Compilation and running of unit tests is a common task for the developer or the
build server inside a software company. Runtime and compile-time errors in unit tests
are detected at the same time. Java goes to great lengths to detect several errors dur-
ing compile time instead of runtime. This effort is wasted in unit tests because these
two phases usually run one after the other during the software development lifecycle.
The developer still pays the price for the verbosity of Java, even for unit tests. There
must be a better way.

Groovy comes to the rescue!

Making Spock Groovy

Groovy is a dynamic programming language (similar to Python or Ruby), which
means it gives the programmer power to defer several checks until runtime. This
might seem like a disadvantage, but this feature is exactly what unit tests should
exploit. Groovy also has a much nicer syntax than Java because several programming
aspects have carefully selected defaults if you don’t explicitly define them (convention
over configuration).

As an example, if you omit the visibility modifier of a class in Java, the class is auto-
matically package private, which ironically is the least used modifier in Java code.
Groovy does the logical thing: if you omit the visibility modifier of a class, the class is
assumed to be public, which is what you want most times.

The times that I've had to create JUnit tests with package private visibility in my
programming career: zero! For all these years, I've “paid” the price of declaring all my
unit tests (and I guess you have, as well) as public, without ever thinking, “There
must be a better way!” Groovy has embraced the convention-over-configuration con-
cept, and this paradigm is evident in Spock code as well.

Testing Groovy code with JUnit

The topic of this book is how to test Java code with the Spock framework (which is
written in Groovy). The reverse is also possible with JUnit:
= You can write a normal JUnit test in Java, where the class under test is imple-
mented in Groovy.
= You can also write the JUnit test in Groovy to test Groovy or Java code.
= Finally, Groovy supports a GroovyTestCase class, which extends the standard
TestCase from JUnit.

Because this is a book about Spock, | don’t cover these combinations. See Making
Java Groovy by Ken Kousen (Manning, 2013) if you're interested in any of these cases.

With Spock, you can gain the best of both worlds. You can keep the tried-and-true Java
code in your core modules, and at the same time, you gain the developer productivity
of Groovy in the testing code without sacrificing anything in return. Production code
is written with verbose and fail-safe Java code, whereas unit tests are written in the

www.it-ebooks.info

http://www.it-ebooks.info/

1.6.2

Spock’s position in the Java ecosystem 25

friendlier and lighter Groovy syntax that cuts down on unneeded modifiers and pro-
vides a much more compact code footprint. And the best part is that you keep your
existing JUnit tests!

Adding Spock tests to existing projects that have JUnit tests

Every new technology faces a big obstacle in its path to adoption: resistance to change.
Tradition, inertia, and the projected cost of switching to another technology instead
of the mature existing solution are always major factors that affect any proposal for
improvement when a better solution comes along.

As an example, Gradle is a build system, also written in Groovy, which is in many
ways more flexible than the de facto build system of Java (Maven). Using two build sys-
tems in a big enterprise project is unrealistic. Gradle has to face the entrenched
Maven supporters and convince them that the switch offers compelling advantages.

Spock doesn’t suffer from this problem. You can integrate Spock today in your Java
project without rewriting or removing a single line of code or configuration. This is a
huge win for Spock because it allows a gradual adoption; both old JUnit tests and
newer Spock tests can coexist peacefully. It’s perfectly possible to implement a gradual
Spock adoption strategy in your organization by implementing new tests in Spock dur-
ing a trial period without losing anything if you decide to keep implementing JUnit
tests as well.

The standard Maven directory structure is flexible in accommodating multiple
programming languages. Groovy source code is usually placed in the src/test/groovy
folder so that the Groovy compiler plugin can find it. All your Spock tests can go into
this directory without affecting your existing JUnit tests located in src/test/java (or
other directories), as shown in figure 1.13.

4 [y src

Java production code 4 (3 main
Y T

= resources

Spock tests 4 [test
T

4 [com
4 [Z manning
4 [spock
4 (o7 chapterl
I+ [y invoice
[d AdderSpec.groovy
[4l} BetterSpec.groovy

[d MultiplierSpec.groovy

JUnit tests
T Gam >

4 [com
4 [Z manning
4 [spock
4 (o7 chapterl
[AdderTestjava Figure 1.13 Spock tests
[4 BadTestjava in a Maven project with
[g} MultiplierTest java existing JUnit tests

www.it-ebooks.info

http://www.it-ebooks.info/

26 CHAPTER 1 Introducing the Spock testing framework

For more details on how to set up your IDE for Spock testing, see appendix A.

With the Spock tests in place, the next question you might have is how to run
them. You’ll be happy to know that Spock comes with a test runner called Spuinik
(from Spock and JUnit) that runs on top of the existing JUnit runner, thus keeping
full backward compatibility.

You can run any Spock test as you run any JUnit test:

= From your development environment
= From the command line
= From Maven/Gradle or any other build system that supports JUnit tests

= From an automated script or build server environment (as explained in
chapter 7)

The Spock Web Console

You can also run Spock tests without installing anything at all, with the Spock Web
Console. If you visit https://meetspock.appspot.com/, you can play with the Spock
syntax and get a feel for how easy it is to write Spock tests by using only your browser.
The Spock Web Console is based on the excellent Groovy Web Console (https://

groovyconsole.appspot.com/) that offers a Groovy playground on the web, ready for
you to explore from the comfort of your web browser.

1.6.3 Spock adoption path in a Java project

Because Spock is compatible with JUnit runners, it can be introduced gradually in an
existing Java code base. Assuming you start with a 100% Java project, as shown at the
top left of figure 1.14, Spock can run alongside JUnit tests in the same code base.

It’s possible to rewrite all tests in Spock if that’s what you want. Spock can work as a
superset of JUnit, as you’ll see in chapter 3. That situation is shown in the third
scenario, depicted at the far right of figure 1.14.

1. Pure Java 2. Spock/JUnit 3. Spock only
- . .

Figure 1.14 Gradual invasion of Spock tests in an existing Java project with JUnit tests

www.it-ebooks.info

https://meetspock.appspot.com/
https://groovyconsole.appspot.com/
https://groovyconsole.appspot.com/
http://www.it-ebooks.info/

1.7

1.7.1

1.7.2

Comparing Spock and JUnit 27

For this book, I assume that you have no prior experience with Groovy. Chapter 2 is
fully devoted to Groovy features, and I'll also be careful to explain which new syntax is
a feature of Spock and which is a feature of Groovy.

Comparing Spock and JUnit

Comparing JUnit and Spock in a single section is difficult because both tools have a
different philosophy when it comes to testing. JUnit is a Spartan library that provides
the absolutely necessary thing you need to test and leaves additional functionality
(such as mocking and stubbing) to external libraries.

Spock takes a holistic approach, providing a superset of the capabilities of JUnit,
while at the same time reusing its mature integration with tools and development
environments. Spock can do everything that JUnit does and more, keeping backward
compatibility as far as test runners are concerned.

What follows is a brief tour of some Spock highlights. Chapter 3 compares similar
functionality between Spock and JUnit. If you’re not familiar with JUnit, feel free to
skip the comparisons and follow the Spock examples.

Writing concise code with Groovy syntax

Spock is written in Groovy, which is less verbose than Java. Spock tests are more con-
cise than the respective JUnit tests. This advantage isn’t specific to Spock itself.
Any other Groovy testing framework would probably share this trait. But at the
moment, only Spock exists in the Groovy world. Figure 1.15 shows this advantage in a
visual way.

Using Java tools Using Java and Spock

: . : Tests in Spock
Tests in JUnit/Mockito Figure 1.15 Amount of code in an
application with JUnit and Spock tests

Less code is easier to read, easier to debug, and easier to maintain in the long run.
Chapter 3 goes into more detail about how Groovy supports less-verbose code than
Java.

Mocking and stubbing with no external library

JUnit doesn’t support mocking and stubbing on its own. Several Java frameworks fill
this position. The main reason that I became interested in Spock in the first place is

www.it-ebooks.info

http://www.it-ebooks.info/

28

1.7.3

CHAPTER 1 Introducing the Spock testing framework

Status quo Spock for everything
| Cucumber/JBehave |
| EasyMock/JMock/Mockito | Spock

Growth of
testing needs

Figure 1.16 Spock is a superset of JUnit.

that it comes “batteries included,” with mocking and stubbing supported out of the
box. As figure 1.16 shows, it does even more than that.

I’ll let this example explain:

David goes into a software company and starts working on an existing Java code
base. He’s already familiar with JUnit (the de facto testing framework for Java). While
working on the project, he needs to write some unit tests that need to run in a specific
order. JUnit doesn’t support this, so David also includes TestNG in the project.

Later he realizes that he needs to use mocking for some special features of the soft-
ware (for example, the credit card billing module), so he spends time researching all
the available Java libraries (there are many). He chooses Mockito and integrates it
into the code base.

Months pass, and David learns all about behavior-driven development in his local
dev meeting. He gets excited! Again he researches the tools and selects JBehave for
his project in order to accomplish BDD.

Meanwhile, Jane is a junior developer who knows only vanilla Java. She joins the
same company and gets overwhelmed the first day because she has to learn three or
four separate tools just to understand all the testing code.

In an alternate universe, David starts working with Spock as soon as he joins the
company. Spock has everything he needs for all testing aspects of the application. He
never needs to add another library or spend time researching stuff as the project
grows.

Jane joins the same company in this alternate universe. She asks David for hints on
the testing code, and he replies, “Learn Spock and you’ll understand all testing code.”
Jane is happy because she can focus on a single library instead of three.

You’ll learn more about stubbing/mocking/spying in chapter 6. The semantics of
Spock syntax are covered in chapter 4.

Using English sentences in Spock tests and reports

The next listing presents a questionable JUnit test (I see these all the time). It contains
cryptic method names that don’t describe what’s being tested.

www.it-ebooks.info

http://www.it-ebooks.info/

Comparing Spock and JUnit 29

Listing 1.7 A JUnit test with method names unrelated to business value

public class ClientTest {

@Test
public void scenariol() { <«
CreditCardBilling billing = new CreditCardBilling() ;
Nontechnical Client client client = new Client () ; i
people can’t billing.chargeClient (client,150) ; A test n,]ethOd with
understand the test. assertTrue ("expect bonus",client.hasBonus()) ; a generic name

}

@Test

public void scenario2() { <«

CreditCardBilling billing = new CreditCardBilling() ;
Client client client = new Client () ;
billing.chargeClient (client,150) ;
client.rejectsCharge() ;

assertFalse ("expect no bonus",client.hasBonus()) ;

Only programmers can understand this code. Also, if the second test breaks, a project
manager (PM) will see the report and know that “scenario2” is broken. This report has
no value for the PM, because he doesn’t know what scenario2 does without looking at
the code.

Spock supports an English-like flow. The next listing presents the same example in
Spock.

Listing 1.8 A Spock test with methods that explain the business requirements

class BetterSpec extends spock.lang.Specification{

def "Client should have a bonus if he spends more than 100 dollars" () ({
when: "a client buys something with value at least 100" <4+—
def client = new Client () ;
def billing = new CreditCardBilling() ;
billing.chargeClient (client,150) ; Business
description
—> then: "Client should have the bonus option active" of test
client.hasBonus () == true
}
def "Client loses bonus if he does not accept the transaction" () {
Human-readable when: "a client buys something and later changes mind" <+—
test result def client = new Client();

def billing = new CreditCardBilling() ;
billing.chargeClient (client,150) ;
client.rejectsCharge() ;

—> then: "Client should have the bonus option inactive"
client.hasBonus () == false

www.it-ebooks.info

http://www.it-ebooks.info/

30

1.8

CHAPTER 1 Introducing the Spock testing framework

Even if you’re not a programmer, you can read the English text in the code (the sen-
tences inside quotation marks) and understand the following:

The client should get a bonus if he spends more than 100 dollars.

When a client buys something with a value of at least 100, then the client should
have the bonus option active.

The client loses the bonus if he doesn’t accept the transaction.

When a client buys something and later changes his mind, then the client
should have the bonus option inactive.

This is readable. A business analyst could read the test and ask questions about other
cases. (What happens if the client spends $99.99? What happens if he changes his
mind the next day rather than immediately?)

If the second test breaks, the PM will see in the report a red bar with the title “Cli-
ent loses bonus if he doesn’t accept the transaction.” He instantly knows the severity of

the problem (perhaps he decides to ship this version if he considers it noncritical).

For more information on Spock reporting and how Spock can be used as part of
an enterprise delivery process, see chapter 7.

Summary

Spock is an alternative test framework written in the Groovy programming lan-
guage.

A test framework automates the boring and repetitive process of manual test-
ing, which is essential for any large application code base.

Although Spock is written in Groovy, it can test both Java and Groovy code.
Spock has built-in support for mocking and stubbing without an external
library.

Spock follows the given-when-then code flow commonly associated with the
BDD paradigm.

Both Groovy and Java build and run on the JVM. A large enterprise build can
run both JUnit and Spock tests at the same time.

Spock uses the JUnit runner infrastructure and therefore is compatible with all
existing Java infrastructure. For example, code coverage with Spock is possible
in the same way as JUnit.

One of the killer features of Spock is the detail it gives when a test fails. JUnit
mentions the expected and actual value, whereas Spock records the surround-
ing running environment, mentioning the intermediate results and allowing
the developer to pinpoint the problem with greater ease than JUnit.

Spock can pave the way for full Groovy migration into a Java project if that’s
what you want. Otherwise, it’s possible to keep your existing JUnit tests in place
and use Spock only in new code.

Spock tests have the ability to include full English sentences in their code struc-
tures, allowing for easy documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

Groovy knowledge for
Spock testing

This chapter covers

Understanding the connection between Java and
Groovy

Learning Groovy conventions

Comparing JUnit asserts and Groovy power
asserts

Using Groovy utilities for common testing needs
Obtaining test data with Groovy

Learning a new programming language is usually a daunting task. You must study a
new syntax, new concepts, and new libraries all at once to be productive. If you've
spent too many years with a single language, several concepts are so entrenched
that having to “unlearn” them poses a big barrier to any alternative (even if it’s
objectively better). With Groovy, this isn’t the case because Groovy is a cousin lan-
guage to Java. Much of your current knowledge can be reused and extended
instead of thrown away.

This chapter gives you a crash course in the essentials of Groovy. It’s important
to know your way around Groovy code before writing Spock tests. I've seen several

31

www.it-ebooks.info

http://www.it-ebooks.info/

32

2.1

CHAPTER 2 Groovy knowledge for Spock testing

Java developers who jump into Spock, but write the same JUnit-like tests as they
did before.

Because the subject of this book is the Spock testing framework (and by extension
other relevant testing topics), all Groovy capabilities listed are those relevant to unit
tests only. Groovy has many more features aimed at writing production code (and not
unit test code). Explaining all of Groovy’s concepts is impossible in a single chapter;
extensive books already exist on vanilla Groovy that you should consult if you decide
to use it outside Spock unit tests.

Apart from Groovy in Action by Dierk Konig and Paul King (Manning, 2015), which
is the major source for all things Groovy, I also recommend Making Java Groovy by Ken
Kousen (Manning, 2013), which emphasizes the augmenting role of Groovy com-
pared to Java.

What you need to know about Groovy

If you already know Java, you have knowledge in three distinct areas:

= The syntax/keywords of the Java language

= The Java Development Kit (JDK) that contains many helpful collections and

utilities

= The Java runtime (Java Virtual Machine)

It would be a mistake to think that learning Groovy is like learning a new program-
ming language from scratch. Groovy was designed as a companion to Java.

Groovy offers the productivity boost of a dynamic language (think Python or
Ruby) because it doesn’t have as many restrictions as Java. But at the same time, it runs
in the familiar JVM and can take advantage of all Java libraries. It completely removes
some bulky features of Java and always attempts to minimize boilerplate code by pro-
viding only the gist of what you’re doing.

Java is mature as a platform, but as a language, it lags behind in some areas (for
example, concurrent facilities or, until recently, functional constructs) that usually are
filled by external frameworks. Groovy closes this gap and provides a modern language
aimed at productive code sessions in a stable and mature ecosystem of libraries.

Groovy syntax is a superset of Java syntax. Almost all Java code (with some minor
exceptions) is valid Groovy code as well. The Groovy Development Kit, or GDK
(www.groovy-lang.org/gdk.html), is an enhanced version of the JDK. And most impor-
tant of all, Groovy runs on the JVM exactly like Java does!

For those reasons, your journey into the magic world of Groovy should be a pleas-
ant adventure in a different yet familiar land. If Java isn’t the only language you speak
and you have some experience with other dynamic languages such as Python or Ruby,
picking up the basics of Groovy will be an even easier matter.

In a nutshell, Groovy

= Is a dynamic language (Java is static)
= Isastrongly typed language (same as Java)

www.it-ebooks.info

http://www.groovy-lang.org/gdk.html
http://www.it-ebooks.info/

What you need to know about Groovy 33

Is object-oriented (same as Java)

Comes with the GDK (Java has the JDK)

Runs on the JVM (same as Java)

Favors concise code (Java is considered verbose compared to Groovy)
Offers its own libraries (for example, web and object relational frameworks)
Can use any existing Java library as-is (Java can also call Groovy code)

Has closures (Java 8 has lambda expressions)

Supports duck typing' (Java has strict inheritance)

You’ll explore the most important concepts in the next sections and see side-by-side

Java and Groovy code where appropriate. I spent a lot of time thinking about which of

the Groovy features to showcase in this chapter. I decided to split Groovy features into
four categories—essential, useful, advanced, and everything else:

Sections 2.1 and 2.2 contain knowledge that I consider essential for Spock tests.
Sections 2.3 and 2.4 contain Groovy features that you’ll find usefulin your every-
day contact with Spock but aren’t otherwise essential.

Section 2.5 contains some advanced Groovy features that you may need in your
Spock tests in about 20%? of cases.

Finally, the rest of Groovy features were left out of this book (even if some of
them are essential for writing production code and not unit tests). I invite you
to look at the official Groovy web page for more details that I haven’t included

here (and there are a lot).

What is the biggest difficulty while learning Groovy as a Java programmer?

If Java is the only language you know, then the biggest barrier (in my opinion) to learning
Groovy is Groovy’s dynamic nature. Java provides a direct mapping between a source
file and a class. If you know the source code, you know everything there is to know
about a class.

In Groovy, a class/object can change during runtime in ways that are impossible in
Java. For example, it’s possible to add new methods to a Groovy object (that weren’t
in its source code), delegate existing methods to other objects, or even create com-
pletely new classes during runtime out of thin air. If you thought that Java introspection
was a fancy trick, Groovy has a complete repertoire of magic tricks that will leave your
head spinning with all the possibilities.

Fortunately, these Groovy features aren’t essential for unit tests, so you don’t need
to be overwhelmed with too much information while you’re learning Spock. If you decide
to use Groovy in production code and not just Spock tests, some of its capabilities
will certainly amaze you if you’ve never worked with a dynamic language before.

! You can learn more about duck typing on Wikipedia at http://en.wikipedia.org/wiki/Duck_typing.
2 This number is not scientific in any way.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Duck_typing
http://www.it-ebooks.info/

34 CHAPTER 2 Groovy knowledge for Spock testing

2.1.1 Groovy as a companion to Java

Your first contact with Groovy is probably with the new syntax. Sometimes when I look
at Groovy code, I think the syntax is a subset of Java, because Groovy does away with
many redundant Java features. Other times I think that Groovy syntax is a superset of
Java because it adds capabilities into existing well-known Java structures.

The fact is that Groovy code is more expressive. I promised in the previous chapter
that writing your unit tests in Groovy would result in less code than Java. Now it’s time
to look at this promise.

How to use the code listings

You can find almost all this book’s code listings at https://github.com/kkapelon/java-
testing-with-spock. For brevity, the book sometimes points you to the source code
(especially for long listings).

| use the Eclipse IDE in my day-to-day work, as shown in the screenshots throughout
the book. You can find specific instructions for installing Spock (including the optional
Groovy installation) and the Eclipse IDE (plus some information on alternative IDES)
in appendix A.

Let’s start with the Groovy basics: automatic creation of getters and setters as well as
default visibility modifiers, as shown in the next listing.

Listing 2.1 Groovy class conventions

class Person { Contents of file

Fields are String firstName Person.groovy
private, no String lastName
4 .
semicolons. int age
) Contents of file
class GettersSettersDemo { GettersSettersDemo.groovy
: public static void main(String[] args) .
Ma';:;:::‘:: { Creating a class
Java-like Person person = new Person() just like Java
manner person.setFirstName ("Lyta")

Using the automatically

person.setLastName ("Alexander") generated setter

Using the automatically System.out.println("Person first name is
generated getter "+person.getFirstName ())
System.out .println("Person last name 1s "+person.getLastName ())

}

As you can see in this listing,

= (lasses are public by default.
= Fields are private by default.

www.it-ebooks.info

https://github.com/kkapelon/java-testing-with-spock
https://github.com/kkapelon/java-testing-with-spock
http://www.it-ebooks.info/

What you need to know about Groovy 35

Getters and setters are automatically created during runtime and thus don’t
need to be included in the class declarations.

Semicolons are optional and should only be used in case of multiple statements
in the same line.?

These are some of the basic conventions that allow Groovy to cut back on the amount
of boilerplate. The biggest gain comes from the removal of getters and setters. You’re
free to define a getter/setter if you need to implement it in a different way than the
default. Even though the Person.groovy class is written in idiomatic Groovy, the
GettersSettersDemo is still Java-like.

You can reduce even further the amount of code by using the Groovy way of field
accessing, as shown in the following listing.

Listing 2.2 Groovy field conventions

class GettersSettersDemo2 {

public static void main(String[] args) This still calls
{ person.setFirstName()
Person person = new Person () behind the scenes.
person.firstName = "Marcus"
This still calls L person.lastName = "Cole" All Groovy objects
person.getFirstName() inherit the printin
behind the scenes. println("Person first name is "+person.firstName) method that outputs

println("Person last name is "+person.lastName) messages to console.

}

As seen in this listing, Groovy not only supports the autogeneration of getters and set-
ters, but also allows using only the name of the field instead of the method. The getter
or the setter is implicitly called according to the surrounding context. Finally, as a short-
cut to System.out .println, Groovy makes available the print1ln method to any object.

You’re not finished yet. You can further refine the code by completely removing
the main method and employing Groovy strings to finally reach the state of idiomatic
Groovy shown in the next listing.

Listing 2.3 A complete Groovy script

class Person f{ < The Person class is defined in the

String firstName file GettersSettersDemo3.groovy.
String lastName

int age
String rank

}

Person person = new Person()

All code outside the class
is the “main” method.

person.firstName = "Susan "

* T'm personally against writing multiple statements in the same line.

www.it-ebooks.info

http://www.it-ebooks.info/

36 CHAPTER 2 Groovy knowledge for Spock testing

person.lastName = "Ivanova"

Parentheses person.rank = "Commander " .
are optional The § character performs string

for nonvoid println "Person first name is $person.firstName" interpolation as JSP/JSTL does.

methods. println "Person last name is Sperson.lastName"

println "Person rank is $person.rank"

In Groovy, the class name isn’t required to match the name of the source file. The
main method is also optional. All code that’s in the top level of the file is treated as a
Groovy script. You can completely discard the helper class and use a single Groovy file
that holds both the declaration of the class and its usage.

The last piece of the puzzle is the way println is structured. Here I use the inter-
polation capability of Groovy. The property after the $ is evaluated and inserted
directly into the string (which is a Groovy string, as you'll see later in this chapter).
Note that this capability is possible on all strings, not only for those that are printed to
the console. Also Groovy makes parentheses optional when calling a method with at
least one argument.

At this point, you should already see the benefits of Groovy as far as the amount of
code is concerned. The following listing shows a complete Spock test that showcases
all Groovy features explained so far. It’s a trivial test that will verify a custom string rep-
resentation of the Person class.

Listing 2.4 A Spock test using concise Groovy code

class PersonSpec extends spock.lang.Specification{

def "Testing getters and setters"() ({
when: "a person has both first name and last name"
SimplePerson person = new SimplePerson ()
Assigning person.firstName = "Susan"
values to fields person.lastName = "Ivanova"

then: "its title should be surname, name"
person.createTitle() == "Ivanova, Susan" <4—— Spock assertion

}

class SimplePerson { Class defined in the

String firstName same file as Spock test
String lastName

String createTitle () <4—— Method that will be tested

{
}

return "$lastName, $firstName" <4—— String interpolation

}

Here you define a single Groovy class that contains the Spock test and the class under
test for demonstration purposes. The method that’s tested uses string interpolation:
the fields are replaced with their value inside the resulting text.

www.it-ebooks.info

http://www.it-ebooks.info/

212

What you need to know about Groovy 37

In this Spock test, both the class under test and the unit test itself are written in
Groovy. In the next section, you’ll see how Spock tests that are written in Groovy can
test Java code.

Accessing Java classes in a Groovy script

In the previous section, you got a small taste of how easy it is to write Groovy code

compared to the Java verbose approach. The comparison focused on the syntax of the

language. This section compares the way these languages interact during runtime.
Groovy comes with its own com-

piler (called groovyc) that reads
source Groovy files and creates Java
bytecode. That’s all you need to

(Java source code)

. Combil Compil

know in order to understand how emple ompfe
Groovy works with Java. As figure 2.1
shows, Groovy source code is con- (Class (bytecode)) (Class (bytecode)]
verted to the same bytecode already
used by]ava files. Java virtual machine

Then the bytecode is loaded in
the JVM exactly like any other Java Figure 2.1 Both Java and Groovy compile in Java
class. The JVM doesn’t care about bytecode.

the original source of a class. It runs
each Java or Groovy class in the same way, offering them both the same capabilities
and services.

This is an important point to remember. Even though as a developer you may feel
that Groovy is much more flexible than Java or that Groovy does too many things
behind the scenes, it all boils down to the same bytecode of the same JVM. There isn’t
a “Groovy virtual machine.” The Groovy runtime is a single Java archive (JAR) file.
Adding Groovy capabilities into an existing Java project is as simple as adding the
Groovy JAR into the classpath. Normally, your build system takes care of this inclusion,
making the process of running both Groovy and Java code in the same project an
effortless task.

After all is said and done, creating and accessing Java objects in Groovy code is
exactly the same as in Java code.* The following listing shows a Spock test (in Groovy);
the class under test is written with Java.

Listing 2.5 Creating and using a Java class from Groovy

publlc‘class Ml}ltaryPerson { Class under
private String firstName; test is Java code
private String lastName;
private String rank;

* It’s also possible to access Groovy code from Java code, but this isn’t needed for Spock testing.

www.it-ebooks.info

http://www.it-ebooks.info/

38 CHAPTER 2 Groovy knowledge for Spock testing

public String createTitle () Java method that

{) will be tested
return lastName+", "+firstName +" ("+rank+")";

public String getFirstName () {
return firstName;

...more getters and setters here..

}

Spock test
in Groovy class MilitaryPersonSpec extends spock.lang.Specification({
def "Testing getters and setters of a Java class" () {
CreaQnga]avachss when: "a person has both first, last name and rank"
in Groovy code MilitaryPerson person = new MilitaryPerson/()
erson.firstName = "Susan" . .

p * Accessing Java fields using
person.lastName = "Ivanova"

Groovy conventions

n "y .
Java way for person.setRank ("Commander") ;

accessing fields is
also still available. then: "its title should be surname, name (rank)"

person.createTitle () == "Ivanova, Susan (Commander)"

Calling a Java method
} in Groovy code

That’s the beauty of Java and Groovy integration. Everything works as expected:

= Groovy code can create Java classes with the new keyword.
= Groovy code can call Java methods.

= Groovy classes can extend Java classes.

= Groovy classes can implement Java interfaces.

It doesn’t get any easier than this!

2.1.3 Declaring variables and methods in Groovy

One of the first questions every Java developer asks when seeing a Spock test is about
the use of the def keyword. This keyword is one of the central concepts of Groovy that
characterize it as dynamically typed.® You can find all the details in the Groovy specifi-
cation if you feel adventurous, but for the purpose of writing Spock tests, the meaning
of def is “I won’t declare a type here; please do it automatically for me.”

Thus in Groovy the following listing is possible.

Listing 2.6 Groovy optional typing in variables

Java String firstName = "Susan" .

def lastName = "Ivanova' <—— Groovy optional typin fullName is

way of vy op ping I .
declaring def fullName = "$firstName $lastName" also a string.

println fullName

® Or optionally typed, because Groovy still supports the Java way of explicit types.

www.it-ebooks.info

http://www.it-ebooks.info/

What you need to know about Groovy 39

As shown in this listing, Groovy supports the usual Java way of declaring things. It also
adds its own way, with the type of the object inferred by the context. An alternative way
to run Groovy files is using the command line and the groovy executable. The listing
results in this output:

> groovy DefDemo.groovy
Susan Ivanova

Is def like Object?

When you’re learning Groovy, it's easy to think that def is an alias for Object. Even
though it might seem to work that way, it doesn’t, and you can find some big differences
with Java if you use def in the wrong way in production code. A suggestion that many
Groovy developers embrace is to always declare the type of a variable if you know
how it will be used. The same suggestion is true for Spock tests, too.

It’s interesting to note that the def keyword can also be applied in methods, as shown
in the following listing. This can trim the size of Spock test methods even further
(after omitting the visibility modifier).

Listing 2.7 Groovy optional typing in methods

def createName (String firstName,String lastName)

{
}

Using def for

return type
return "$lastName, $firstName" P

def createMilitaryName (def firstName,def lastName, def rank)

i Using def for
) arguments as well
return "$lastName, S$firstName (Srank)"
def fullName = createName "Susan","Ivanova' <4“—
println fullName Parentheses are optional if at
least one argument is used.
def militaryName = createMilitaryName "Susan", "Ivanova", "Commander" <

println militaryName

This listing outputs the following:

> groovy DefDemo2.groovy
Ivanova, Susan
Ivanova, Susan (Commander)

Remember that Groovy also supports the Java syntax, so mixing both styles of typing is
easy. You can gradually convert to Groovy syntax when you feel comfortable with this
notation. Now that you know how the def keyword works, you can see in the following
listing how it applies to Spock tests.

www.it-ebooks.info

http://www.it-ebooks.info/

40 CHAPTER 2 Groovy knowledge for Spock testing

Listing 2.8 Using dynamic typing in Spock methods

class DefDemoSpec extends spock.lang.Specification{

public void trivialSuml () { Java way of

hen: "number i ne" .
when umber is one declaring methods

still using int number =1;

semicolons
then: "number plus number is two"

number + number ==2;

!
Groovy way of
def trivialSum2() { method declaration

Semicolons when: "number is one"
optional int number = 1

then: "number plus number is two"
number + number ==

}

Full string for
def "Testing a trivial sum" () method name
when: "number is one"

def number =1

Optional typing
of Groovy

then: "number plus number is two"
number + number ==

As shown in this listing, the def keyword is part of standard Groovy. It’s also possible to
use full strings for method names. The final result is the Spock DSL for unit tests (and
not a standard Groovy feature). I've written the same unit test in three possible ways.
Even though the syntax is different, they run in exactly the same way as far as Spock is
concerned.

2.1.4 Writing less code with Groovy

Groovy still has many tricks under its belt for reducing Java code. For example, the
return keyword is also optional. The last evaluated statement in a method is the result
of the method in that case. In a similar manner, the def keyword in arguments is also
optional. The example from listing 2.7 can be further simplified by using these two
rules.

Groovy syntax is indeed a refreshing experience when you come from the Java
world. Several things that Java considers essential are simply discarded by Groovy, free-
ing the programmer from boilerplate code that can be automatically created or
understood by the runtime.

While learning Spock, you’ll find several ways to reduce the amount of code, but
this doesn’t need to happen right away. My proposal is to follow a gradual learning
curve, as shown in figure 2.2.

www.it-ebooks.info

http://www.it-ebooks.info/

2.2

221

Groovy Power assert as a replacement for JUnit asserts 41

/(Idiomatic Groovy)
/»(Concise Groovy)
/(Java-like Groovy)

(-) Figure 2.2 Suggested path for better Spock tests

You already know Java. Your first Spock tests should focus on understanding Spock
concepts, so continuing to write “Java-like” Groovy is fine. Once you understand how
Spock works, you can apply the shortcuts Groovy offers (as illustrated in the previous
sections) to reduce the amount of code and simplify your Spock tests. When you’re
confident using Spock, you can apply core Groovy techniques (for example, closures)
to write idiomatic Groovy and get completely out of the Java mindset.

A common mistake of Java programmers is writing Spock tests using example code
without understanding which feature is Spock-specific and which is offered by Groovy.
This can make your Spock journey harder than it should be, so don’t fall into that
trap. Make sure that you know how Spock works before applying cool Groovy tricks
that dazzle you.

You’ve seen the basic syntax of Groovy and use of the def keyword. Now it’s time to
explore Spock asserts.

Groovy Power assert as a replacement for JUnit asserts

With the def mystery solved, the second striking feature of Spock tests is the lack of
assert statements for evaluating results. All JUnit tests end with one or more assert
statements® that define the expected result of the computation. If the expected result
doesn’t match the actual one, the test will fail. JUnit comes with an extensive API for
assert statements, and it’s considered a good practice to create your own extensions,
dealing with the business domain of your application.

I mentioned in the previous chapter that unlike JUnit, Spock doesn’t have assert
methods. In this section, you’ll see how Spock deals with assertions and how they can
help you in case of test failures. I'll also continue with the general theme of this chap-
ter: reducing the amount of code needed when using Groovy instead of Java.

Understanding how Groovy handles asserts

In theory, Groovy asserts function in a similar way to Java asserts. They expect a Bool-
ean variable (or an expression that evaluates to a Boolean), evaluate it, and if it’s true,

% Not having an assert (or verify) statement is a huge antipattern, because the test never fails.

www.it-ebooks.info

http://www.it-ebooks.info/

42

CHAPTER 2 Groovy knowledge for Spock testing

the assertion passes successfully. Spock runs assertions in the same way. If all assertions

pass, the unit test succeeds.

In

practice, however, Java is very strict regarding true/false. Only Boolean vari-

ables can be tested for assertions. Groovy takes a more relaxed’ approach to this,
allowing all objects to be treated as Booleans.

Groovy treats all objects® as true unless

The object is an empty string.

The object is a null reference.

The object is the zero number.

The object is an empty collection (map, list, array, and so on).
The object is the false Boolean (obviously).

The object is a regex matcher that fails.

The following listing shows some examples, with Groovy assertions demonstrating the
rules of Groovy true/false.

Listing 2.9 Groovy can convert everything to a Boolean

assert true
assert !false

assert true || false Boolean variables
assert true && !false work like Java.

String firstName = "Susan"

assert firstName <+——

def lastName = "Ivanova' A nonempty string is true.

assert lastName <

String empty = ""

assert

lempty <4—— An empty string is false.

Person person = new Person/()

assert

person; <4—— Avalid reference is true.

Person nullReference = null

assert !nullReference; <4—— A null reference is false.

int answerToEverything = 42 <—— A nonzero number is true.
assert answerToEverything

int zero=0 <—— A zero number is false.

assert !zero

Object[] array= new Object[3]; <—— A nonempty collection is true.
assert array

7 Or error-prone, if you wish. Some of the old C traps are now possible with Groovy as well (but not all).
8 Closures are also “true.”

www.it-ebooks.info

http://www.it-ebooks.info/

Groovy Power assert as a replacement for JUnit asserts 43

. Object [] emptyArray= new Object [0]; <—— An empty collection is false.
Creation of assert !emptyArray
regular
expression Pattern myRegex = ~/needle/
assert myRegex.matcher ("needle in haystack") Regex is true if it
assert ImyRegex.matcher ("Wrong haystack") matches at least once.
println "Script has finished because all asserts pass"
If you run the preceding example, all asserts evaluate to true, and the final line is
printed in the console.
GROOVY TRUTH
The way Groovy handles true/false statements (called Groovy truth in Groovy par-
lance) can be used in Spock to trim the assert statement into a shorter form instead of
converting it explicitly to Boolean variables.
Fun with Groovy truth
This is valid Groovy code: boolean flag = -45. Even though this line doesn’t even
compile in Java, in Groovy the number —45 is a nonzero number, and therefore the
variable flag is now true.
The next listing presents a Spock example with both approaches, using both an
explicit Boolean evaluation (Java) and automatic “casting” to true/false (Groovy).
The class under test is a trivial string tokenizer that counts word occurrences.
Listing 2.10 Groovy truth used in Spock tests
class GroovyTruthSpec extends spock.lang.Specification{
def "demo for Groovy truth"() ({ .CIass under test
when: "a line of text is processed" is a Java class.
. WordDetector wordDetector = new WordDetector() ;
Calling a Java wordDetector.parseText ("Understanding is a three edged sword:
method your side, their side, and the truth");
then: "word frequency should be correct"
wordDetector.wordsFound () > 0 Using Java-like asserts with
Any nonempty wordDetector.duplicatesFound () .size() > 0 explicit conversion to Boolean
collection is
automatically wordDetector.wordsFound () Any positive number is
seen as true. wordDetector.duplicatesFound () Yy P

automatically seen as true.
}

As an exercise, locate examples in chapter 1 that don’t use Groovy truth rules in the
assert statements and rewrite them now that you know that Groovy can convert every-
thing to a Boolean variable.’

9 Groovy strings also get an additional toBoolean () method that treats only true, v, and 1 as true.

www.it-ebooks.info

http://www.it-ebooks.info/

44 CHAPTER 2 Groovy knowledge for Spock testing

2.2.2 Using Groovy assertions in Spock tests

In the previous section, you saw how to use Groovy truth to simplify your assert state-
ments. I admit that this is another feature that looks mainly like sugarcoating, and you
might not be impressed by the amount of code reduced. This is understandable, but
the advantage of Groovy assertions isn’t the application of Groovy truth rules.

The killer feature of Groovy (and therefore Spock) is the information it gives when
an assert fails. You’ve seen some hints of this in chapter 1, using assertions that expect
numbers (code listings 1.2 and 1.3). In complex expressions, Groovy shows all inter-
mediate results. Figure 2.3 shows the Eclipse JUnit window in both cases, but you get
similar output if you run your unit tests in the command line or any other compatible
tool with JUnit.

JUnit asset

/

Hava.lang.AssertionError: Expected same result expected:<52> but was:<Slx
at com.manning.spock.chapter2.NormalAssert.numbers(NormalAssert.java:16)

Failure Trace

.=
[l =)

Assertion fTailed:

assert (4 * 15) - (24 / 3) == (2 * 38) - 9

68 52 8 false @8 51

{

Groovy assert

Figure 2.3 Groovy assert shows much more information than a JUnit assert.

The magic of this feature is that it works with all objects and not just primitives.
Groovy has no such distinction: everything is an object as far as Groovy is concerned.

What == means in Groovy

In Groovy, the == operator isn’t testing identity like Java. It calls the equals () method
of the object. Identity in Groovy is handled by the is keyword. Thus
objectl.is (object2) is the Groovy way of testing identity. You should be aware of
this difference if you use objects in both sides of the assert statement. (If you perform
only simple assertions with scalar values—as you should—then this difference
doesn’t matter.)

www.it-ebooks.info

http://www.it-ebooks.info/

Groovy Power assert as a replacement for JUnit asserts 45

JUnit asset

Failure Trace /

java.lang.AssertionError: Expected same result expected:<[Vorlon, Shadows, Minbari]> but was:<[Vorlon, Shadows]:
at com.manning.spock.chapter2.NormalAssert. lists(NormalAssert. java:33)

=) 1
.=

Caught: Assertion failed:

assert all.subList(@, all.indexOf("Humans"))

|1 | |
| | 3 |

= firstOnes

| [Vorlon, Shadows]
| | | false

| | [Vorlon, Shadows, Minbari, Humans, Drazi]

| [Vorlon, Shadows, Minbari]

[

Vorlon, Shadows, Minbari, Humans, Drazi]

Figure 2.4 Groovy assert with

Groovy assert lists compared to JUnit assert

Figure 2.4 is a more complex example of a failed Groovy assert with lists. Again notice

how Groovy shows all intermediate operations, whereas JUnit reports only the final
result.

A Groovy Power assert works for your own objects as well, as shown in figure 2.5.

This Spock feature is crucial for continuous delivery environments. As a developer,
you can understand exactly what goes wrong when a test fails. A well-configured build
server keeps all the results from unit tests and provides reports for the failed ones.

JUnit asset

= Failure Trace

JE java.lang.AssertionError: Expected same result expected:<2: but was:<5:

= at com.manning.spock.chapter2.NormalAssert.methods({NormalAssert.java:42)

Caught: Assertion failed:

assert wordDetector.feedText(text).duplicatesFound().size() =
| | | | | |
| | | [are, They] 2 false
| | They are alone. They are a dying race.

| com.manning.spock.chapter2.WordDetectorfiss2eed3b
com.manning.spock.chapter2.WordDetector@s52eed43b

=5

Figure 2.5 Groovy assert with the

Groovy assert Java class shown in listing 2.10

www.it-ebooks.info

http://www.it-ebooks.info/

46 CHAPTER 2 Groovy knowledge for Spock testing

Because Groovy (and by extension Spock) shows you the running context, you can, in
several cases, fix the bug right away instead of spending time with a debugger in order
to reproduce it. For enterprise environments in which running an integration test is a
lengthy process, this extra context for failing tests is a time-saver that can easily per-
suade any Java developer to switch from JUnit.

I’ll show you how to further enhance the output of Groovy Power asserts in chapter
4. For now, I'll continue with some useful Groovy features that have helped me in sev-
eral Spock tests.

2.3 Groovy features useful to Spock tests

Now you have all the essential knowledge needed in order to write your own Spock
assertions. The rest of this chapter continues with the theme of reducing unit test
code size with the expressiveness provided by Groovy compared to Java. All the follow-
ing techniques are optional, and you can still use normal Java code in your Spock tests
if your organization needs a more gradual change. Each application is different, so it’s
hard to predict all the ways that Groovy can help you with unit tests. The following
selection is my personal preference.

2.3.1 Using map-based constructors

If there’s one feature of Groovy that I adore, it’s object creation. Most unit tests create
new classes either as test data or as services or helper classes used by the class under
test. In a large Java application, a lot of statements are wasted creating such objects.
The next listing presents a Java example of testing a class that takes as its argument a
list of persons.

Listing 2.11 JUnit test with multiple object creation statements

Employee trainee = new Employee() ;
trainee.setAge (22) ;
trainee.setFirstName ("Alice") ;
trainee.setLastName ("Olson") ;
trainee.setInTraining (true) ;

Java object that will be
used as test input

Filling of fields one by one

Second Java object

Employee seasoned = new Employee () ; for test input
seasoned.setAge (45) ;

seasoned.setFirstName ("Alex") ; Filling of different
seasoned.setMiddleName ("Jones") ; fields one by one

seasoned.setLastName ("Corwin") ;

List<Employee> people = Arrays.asList (trainee, seasoned) ;
proy peop v Class under

Department department = new Department () ; test

department .assign (people) ; <— Test data is used.
[...rest of test]

Java needs more than 10 statements to create the two objects that will be used for test
input. This boilerplate code is too noisy when compared with the code that tests the
Department class.

www.it-ebooks.info

http://www.it-ebooks.info/

Groovy features useful to Spock tests 47

EASY OBJECT CREATION WITH GROOVY CONSTRUCTORS
This is a well-known problem for Java developers. Sometimes special constructors are
created for business domain objects to allow for easy testing. I consider this an antipat-
tern. This technique not only shifts verbosity from unit tests to core code, but also has
its own shortcomings in the case of multiple constructors. In the preceding example,
the Employee class would be polluted with at least two constructors (one that sets the
trainee flag and one that ignores it).

Groovy comes to the rescue! Map-based constructors are autogenerated for your
Java objects, allowing your Spock tests to initialize any number of fields as well, as
shown in the following listing.

Listing 2.12 Spock test with map-based constructors

when: Java object created with
Employee trainee = new specific field values
Employee (age:22, firstName:"Alice", lastName: "Olson", inTraining:true)

Another Java Employee seasoned = new
object with Employee (middleName: "Jones", lastName: "Corwin",age:45, firstName: "Alex")
different field
values List<Employee> people = Arrays.asList (trainee, seasoned)
Department department = new Department () <4—— Class under test
department .assign (people) <4—— Test data is used.

[...rest of test]

Without changing a single line of Java code in the Employee class file, I've used the
map-based constructors, whereby each field is identified by name and the respective
value is appended after the semicolon character. Notice that the order of the fields
and the set of the fields are completely arbitrary. With this technique,'” you can create
a Java object with all possible combinations of its fields in any order that you like!

2.3.2 Using maps and lists in Groovy

The syntax shown in the previous section isn’t specific to constructors. This is the
Groovy way of initializing a map. You can use it for creating a map in a single state-
ment. The following listing presents an example.

Listing 2.13 Groovy versus Java maps

Map<String, Integer> wordCounts = new HashMap<>() ;
wordCounts.put ("Hello",1) ;

Groovy can wordCounts.put ("Java",1) ; Manually filling a
create and wordCounts.put ("World",2) ; map (Java way)
initialize
a map. Map<String, Integer> wordCounts2 = ["Hello":1,"Groovy":1, "World":2]

19" Groovy supports even-more-concise constructors. They sacrifice clarity, so I refrain from showing them here.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating
a list with
data in
Groovy

48

CHAPTER 2 Groovy knowledge for Spock testing

You can create any kind of map like these, even those with keys and values that are
classes on their own. For Groovy, it makes no difference (see the following listing).

Listing 2.14 Groovy maps with nonscalar keys and values

Employee personl = new

Address address2

Employee (firstName:"Alice", lastName: "Olson",age:30) <+
Employee person2 = new Creating a]ava
Employee (firstName:"Jones", lastName: "Corwin",age:45) <4— object by using
map-based
Address addressl = new Address (street:"Marley",number:25) <«— constructors
<+

new Address (street:"Barnam",number:7)

Map<Employee,Address> staffAddresses = new HashMap<>() ;
staffAddresses.put (personl, addressl) ;

staffAddresses.put (person2, address2) ; Fllllng amap manua“y (the Java waY)

Map<Employee,Address> staffAddresses2 = Creating and initializing
[(personl) :addressl, (person2) :address2] a map (the Groovy way)

As shown in listing 2.13, when classes are used for the keys of the map, you need to use
extra parentheses. If you don’t, the classes are assumed to be strings. Also, this concise
Groovy syntax creates by default a LinkedHashMap.

In a similar way to maps, Groovy supports a concise syntax for lists. If you’ve ever
wondered why it’s so easy to create an array in Java in a single statement but not a list,
you’ll be happy to discover that Groovy has you covered. The following listing shows
the comparison between Groovy and Java lists.

Listing 2.15 Groovy versus Java lists

Creating a list

List<String> races = Arrays.asList ("Drazi", "Minbari", "Humans") with data in Java
List<Strings> races2 = ["Drazi", "Minbari", "Humans"] The == .operator tests
equality in Groovy and not
assert races —— races? identity. This assert passes.
String[] racesArray = ["Drazi", "Minbari", "Humans"] .
- . .) Creating an array
String[] racesArrayJava = { "Drazi", "Minbari", "Humans" }

with data in Groovy

This is valid Java,
but invalid Groovy.

Because the syntax of arrays and lists is similar in Groovy, you might find yourself
using arrays less and less as you gain experience with Groovy. Notice that the usual way
of declaring arrays in Java is one of the few cases where valid Java is invalid Groovy. If
you try to create an array in Groovy by using the Java notation, you’ll get an error,
because Groovy uses the same syntax for closures, as you’ll see later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Java class
under test

Java way
of getting
an element

Groovy way
of adding
elements

Java way
of inserting
into map

L,

Groovy features useful to Spock tests 49

Using the knowledge you’ve gained from the preceding sections, you can com-
pletely rewrite the JUnit test from listing 2.11, as the following listing shows.

Listing 2.16 Creating Groovy lists and maps in test code

List<Employee> people = [

.) Groovy initialization of
new Employee (age:22,firstName:"Alice", lastName:"Olson",

a list, using map-based

inTraining:true), constructor objects

new Employee (middleName:"Jones", lastName: "Corwin", age:45,
firstName:"Alex")

]

Department department = new Department ()
department .assign (people) <«—— Use of test data
[...rest of test]

By following Groovy conventions, I've replaced 11 Java statements with 1. The unit test
is much more readable because it’s clearly split as far as test data creation and test data
usage are concerned.

ACCESSING LISTS IN GROOVY BY USING ARRAY INDEX NOTATION
So far, I've demonstrated only how maps and lists are initialized. Let’s see how Groovy
improves their usage as well, as shown in the next listing.

Listing 2.17 Using Groovy lists

List<String> humanShips = ["Condor", "Explorer"] . .

. Shi (0) == "Condor" Creating a list
assert human %ps.get == ondor with two elements
assert humanShips[0] == "Condor"

Groovy way of

) . accessing a list
humanShips.add ("Hyperion")

humanShips << "Nova" << "Olympus" .
Java way of adding

assert humanShips[3] == "Nova"

assert humanShips[4] == "Olympus" a new element
humanShips[3] = "Omega" Groovy way of
assert humanShips[3] == "Omega" vy way

replacing an element

Notice how writing and reading to a list uses the same syntax, and only the context
defines the exact operation. Again, this syntax is optional, and you’re free to use the
Java way of doing things even in Spock tests.

Groovy offers the same array-like syntax for maps as well, as shown in the following
listing.

Listing 2.18 Using Groovy maps

Map<String, String> personRoles = [:]
personRoles.put ("Suzan Ivanova","Lt. Commander")
personRoles ["Stephen Franklin"]= "Doctor"

Creating an empty
map in Groovy
Groovy way of
inserting into map

www.it-ebooks.info

http://www.it-ebooks.info/

50 CHAPTER 2 Groovy knowledge for Spock testing

assert personRoles.get ("Suzan Ivanova") == "Lt. Commander" Java way of
" in" — n .
Groovyway assert personRoles["Stephen Franklin"] == "Doctor accessing map
of accessing
personRoles ["Suzan Ivanova'"]= "Commander"
map Groovy way of
assert personRoles["Suzan Ivanova"] == "Commander"

replacing element

Lists and maps are one of the many areas where Groovy augments existing Java collec-
tions. Groovy comes with its own GDK that sits on top of the existing JDK. You should
spend some time exploring the GDK according to your own unit tests and discovering
more ways to reduce your existing Java code.

So far, you've seen how Groovy enhances classes, fields, and collections. Let’s see
how Groovy strings compare to Java strings.

2.3.3 Interpolating text with Groovy strings

I demonstrated Groovy strings (GStrings) at the beginning of this chapter by taking a
single Java class and converting it to idiomatic Groovy in a gradual way. At the most
basic level, Groovy strings allow for quick text templates of object properties, but they
also can handle full expressions, as shown in the following listing.

Listing 2.19 Using Groovy strings

SimpleDepartment sales =

new SimpleDepartment (name:"Sales",location:"block C")
SimpleEmployee employee =

new SimpleEmployee (fullName:"Andrew Collins",age:37,department:sales)

Creating Java objects with
map-based constructors

System.out.println("Age is "+employee.getAge()) <+—
—®» println "Age is S$employee.age"
Groovy Java way of
acc‘g:sy.:f System.out.println ("Department location accessing fields
ﬁédf is at "+employee.getDepartment () .getLocation()) <+
println "Department location is at S$Semployee.department.location"
Using {} —» println "Person is adult ${employee.age > 18}" Escaping the
for full println "Amount in dollars is \$300" § character
. 3 1 3 1
expressions println 'Person is adult ${employee.age > 18} Disabling evaluation

altogether with single quotes
When run, this code prints the following:

>groovy GroovyStrings.groovy

Age 1is 37

Age 1is 37

Department location is at block C
Department location is at block C
Person is adult true

Amount in dollars is $300

Person is adult ${employee.age > 18}

Groovy string interpolation is certainly powerful, but for unit tests, their multiline
capability is more interesting. Similar to other scripting languages, Groovy allows you
to split a big string with newlines, as shown in the next listing.

www.it-ebooks.info

http://www.it-ebooks.info/

Creation of a
multiline string

24

24.1

Reading a test dataset from an external source 51

Listing 2.20 Using Groovy multiline strings

def "Another demo for Groovy multiline strings" () {
when: "a paragraph is processed"
String input = '''I want you to know you were right. I didn't want \
to admit that. Just pride I guess. You get my age, you \
get kinda set in your ways. It had to be \
(44’ done. Don't blame yourself for what happened later.'''

WordDetector wordDetector = new WordDetector () ;

wordDetector.parseText (input) ;
Using the multiline string

then: "word count should be correct"
wordDetector.wordsFound () == 34

}

This is a great feature for unit tests that require text input of three to four lines that
can be embedded directly on the source file. Multiline strings also support text inter-
polation if you use double quotes instead of single, but inside unit tests, it’s clearer if
they’re pure text (without text interpolation). For more lines of text, I also advise
using a separate text file, as demonstrated in the next section.

Reading a test dataset from an external source

One of the challenges I face when creating a new unit test (especially in test-driven
development, as the test is created before the implementation code) is finding correct
test input. For basic unit tests in which only a single class is tested, you might get away
with trivial data created on the spot.

For integration tests, however, which test multiple code modules, your selection of
test data needs more thought. Once you have enough tests for the happy paths of your
code, it’s time to examine all corner cases and strange scenarios. Creating effective
test data is a separate skill of its own, but a good source of such data can be found on
an existing running system. Often, test data can also be obtained from issues reported
by the users of the software. These types of data are as real as they get, so they’re excel-
lent candidates for your unit tests.

Unfortunately, useful test data is often trapped in the transport medium (for
example, XML files) that must be processed before they can be used directly in a unit
test. Groovy comes with excellent facilities for extracting test data from external files,
and you should take advantage of these techniques in your Spock tests. Using the Java
approach will also work, but again in a much more verbose way.

Reading a text file

Reading a text file in Java usually requires a basic understanding of buffered readers or
any other Java file API that was added with each new Java version.!' Groovy does away
with all the unneeded craft and allows you to read a file in the simplest way possible:

String testInput = new File("src/test/resources/quotes.txt") .text

""" Or coming from an external library such as Apache Commons.

www.it-ebooks.info

http://www.it-ebooks.info/

52

Reading the
whole text file

24.2

CHAPTER 2 Groovy knowledge for Spock testing

A normal file is opened. Groovy adds the .getText () method that reads its text. You
could also specify the encoding if it’s not the default. This simplicity is handy because
it can be used straight in a Spock test. The following listing shows an example.

Listing 2.21 Reading test data from a file in a Spock test

def "demo for reading a text file" () {
when: "a paragraph is processed"
WordDetector wordDetector = new WordDetector () ;
String inputText = new File("src/test/resources/quotes.txt") .text
(44» wordDetector.parseText (inputText) ;

then: "word frequency should be correct™"
wordDetector.wordsFound () == 78

def "demo for reading a text file line by line" () ({
when: "a paragraph is processed"
List<String> inputText = new
File("src/test/resources/quotes.txt") .readLines ()
WordDetector wordDetector = new WordDetector () ;
for (String line:inputText)

{
}

Reading a file
line by line

wordDetector.feedText (1line)

then: "word count should be correct"
wordDetector.wordsFound () == 78

Notice the expressive code. It has no boilerplate for autoclosing streams or anything
like that. I'll show you more examples of file reading in chapter 5, where Groovy code
is both shorter and easier to understand than the Java way. In chapter 5, I'll show you
data-driven Spock tests in which the same test is evaluated for multiple (similar) sets of
input test data.

Reading an XML file

XML is the lingua franca of large enterprise applications. One of the original market-
ing points of Java was the handling of XML files. Business web services usually produce
some sort of XML dialect, and several custom file formats are XML files under the
hood. As with Java, Groovy supports several ways, but explaining them all is outside
the scope of this chapter.

This section demonstrates the XmlSlurper way of reading XML files with Groovy.
You can use this technique either when you want to read test data from an XML file, or
when your Java class writes XML and you want to quickly verify its correctness.'?

12" For more-complex XML verification cases, you can also use a dedicated XML diff library such as XMLUnit.

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing
an XML

property

243

Reading a test dataset from an external source 53

Let’s assume that your XML file is the following:

<staff>
<department name="sales">
<employee>
<firstNames>Orlando</firstName>
<lastName>Boren</lastName>
<age>24</age>
</employee>
<employee>
<firstNames>Diana</firstName>
<lastName>Colgan</lastName>
<age>28</age>
</employee>
</department >
</staff>

The next listing provides the respective Groovy code.

Listing 2.22 Reading XML in Groovy

def xmlRoot = new Creating the .

XmlSlurper () .parse ('src/main/resources/employee-data.xml') XmlSlurper object
t 1Root .d t t.si ==1 .

assert xmlRoot department ;1ze()__" Lean Chechngthenumber

assert xmlRoot.department.@name == S? es of children XML nodes

assert xmlRoot.department.employee.size() ==2

asseri xmigoot.Zepartment.empioyeeEg].firi;Name_ij;Orla?don 4“‘AumsﬁngXMLcmnent

assert xmlRoot.department.employee .lastName =="Boren of the first child

assert xmlRoot.department.employee[0] .age ==24

assert xmlRoot.department.employee[l] .lastName =="Colgan"
assert xmlRoot.department.employee[l] .age ==28

]
]

assert xmlRoot.department.employee[l] .firstName =="Diana" <—
} of the second child

Here you can see the expressive Groovy power in all its glory. Reading the XML file is a
single line. Then you use an XPath-like expression to retrieve XML content. I won’t
even bother to write the Java code for the same example. XML reading (and writing)
in Java has always contained boilerplate code, which is taken for granted by Java devel-
opers. Groovy discards all this and keeps only the substance.

Reading a JSON file

Groovy reads JavaScript Object Notation (JSON) in a similar way to how it reads XML.
XML might be dominant in legacy enterprise applications, but newer web services
tend to use JSON. Groovy covers them both with ease.

Let’s assume that your JSON file is the following:

{

"staffr: |
"department": {
"name": "sales",
"employee": [

www.it-ebooks.info

Accessing XML content

http://www.it-ebooks.info/

54

Accessing
Json field

Checking
the size of
JSon array

Accessing
second
element of
the array

2.5

by

CHAPTER 2 Groovy knowledge for Spock testing

"firstName": "Orlando",
"lastName": "Boren',
l|agel| : l|24l|
"firstName": "Diana",
"lastName": "Colgan",
l|agel| B l|28l|

The next listing presents the respective Groovy code (almost the same as the XML one).

Listing 2.23 Reading JSON in Groovy

def jsonRoot =
new JsonSlurper () .parse (new

File('src/main/resources/employee-data.json'))

staff.
staff.
staff.
staff.
staff.

assert
assert

jsonRoot.
jsonRoot .
jsonRoot .
jsonRoot.
jsonRoot .
jsonRoot .
jsonRoot .
jsonRoot .

department.
department.
department.
department.
department.
staff.department.
staff.department.
staff.department.

assert
assert
assert
assert
assert
assert

Creating the
JsonSlurper object

name =="sales"

employee.size () ==2

employee [0] . firstName =="Orlando" Accessing
employee [0] .lastName =="Boren" first element
employee [0] .age =="24" of the array
employee[1] .firstName =="Diana"

employee[1] .lastName =="Colgan"

employee[1l] .age =="28"

With Groovy, obtaining test data from JSON is easy. The syntax is even simpler than

XML in some ways.

Advanced Groovy features useful to testing

I hope that this chapter serves as a gentle introduction to Groovy, and that if you were
scared by the syntax of Spock tests in chapter 1, you’re now more confident about how
things work. In several ways, Groovy simplifies Java code by leaving only the gist and

discarding the bloat.

Explaining all the things Groovy can do in a single chapter is impossible. Groovy

has several advanced constructs for core programming that blow away any Java code

you’ve already seen. This last section presents some advanced concepts that you might

use in your Spock tests.

Don’t be alarmed if the code shown is more complex than the previous examples.

You can skip this part and come back again when you have more experience with
Groovy and become comfortable with Spock tests. That being said, the following tech-
niques are in no way essential to Spock tests. They have their uses at times, but you

should always make sure that your unit tests aren’t overengineered.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Groovy features useful to testing 55

Don’t fall into the trap of using cool Groovy tricks in Spock tests to impress your
Java friends! Keep Spock tests simple and understandable.

2.5.1 Using Groovy closures

The official Groovy book (Groovy in Action) assigns a whole chapter to explain closures,
so I'm not going to try to do the same in these paragraphs. You might already know clo-
sures from other programming languages.' If not, spend some time researching them
because they’re universally helpful (even outside the context of Groovy).

Closures are in many ways similar to methods. Unlike Java methods, they can be
passed around as arguments to other methods or become partially evaluated instead
of called directly. Java 8 also comes with lambda expressions, which serve as a stepping
stone to functional programming concepts. If you've already worked with Java 8,
Groovy closures will come naturally to you.

Closures in Groovy are denoted by the -> character and are contained in {}. The
following listing presents some examples.

Listing 2.24 Groovy closures

Closure simple = { int x -> return x * 2}

. A closure with full Groovy

Using the assert simple(3) notation that doubles its
closure as) . integer argument
a method def simpler = { x -> x * 2} Same closure with

assert simpler(3) == 6

concise Groovy. Return

is optional as well.
def twoArguments = { x

' A closure with
assert twoArguments (3,5

two arguments

Closures are the Swiss army knife of Groovy. They’re used almost everywhere, and it’s hard to
deal with Groovy code without stumbling upon them. Prior to Java 8, they were one of the main
advantages of Groovy over Java, and even after Java 8, they still offer great value and simplicity.
Closures are so powerful in Groovy that you can use them directly to implement interfaces or as
exit points in switch statements.

The Groovy GDK augments the existing JDK with several new methods that accept
closures for arguments. For example, a handy Groovy method for unit testing is the
every () method available in collections. Assume that you have a Java class that gets a
list of image names from a text file and returns only those that end in a specific file
extension. Closures can be employed in the Groovy assert, as shown in the next listing.

Listing 2.25 Using Groovy closures in Spock tests

Java class when: "only jpeg files are selected from a list of filenames"
under test FileExtensionFilter myFilter = new FileExtensionFilter ()

Creation of def "Testing Jpeg files" () {

3 You may have seen function pointers, function references, higher-order methods, and code blocks in other
languages. They’re not, strictly speaking, the same thing as closures, but the main concepts are similar.

www.it-ebooks.info

http://www.it-ebooks.info/

56

List that

will be passed
to class
under test

Using a
closure to test
each element
of the list

252

CHAPTER 2 Groovy knowledge for Spock testing

myFilter.addvValidExtension ("jpeg") Setup file extensions
myFilter.addvValidExtension ("jpg") that will be accepted
List<Strings> testInput = ["imagel.jpg","image2.png", "image3.jpeg",

—» "image4.gif", "image5.jpg", "image6.tiff"]

List<String> result = myFilter.filterFileNames (testInput) 4—‘ Result of method

call is another list.

then: "result should not contain other types"
result.every{ filename -> filename.endsWith("jpeg") ||

—> filename.endsWith("jpg") }

}
In this Spock test, the assertion is a single line because all elements of the list are
checked one by one automatically by the closure. The closure takes as an argument a
string and returns true if the string ends in jpg (using both three- and four-letter
notations).

Other methods useful to unit tests (apart from every () shown in the preceding
listing) are as follows:

= any (closure) —Returns true if at least one element satisfies closure

= find(closure)—Finds the first element that satisfies closure

= findAll (closure)—Finds all elements that satisfy closure
You should consult the Groovy official documentation (www.groovy-lang.org/
gdk.html) for more details.
Creating test input with ObjectGraphBuilders

One of the arguments against unit tests (and integration tests, in particular) is the
effort required to come up with “real” test data. In a complex business application, the
data that’s moved around is rarely a single object. Usually it’s a collection of objects, a
tree structure, a graph, or any other complex structure.

This makes writing integration tests a lengthy process because about 80% of the
code can be consumed by creating the test input for the class under test. Test input
code generation is one of the first candidates for code reuse inside unit tests. In suffi-
ciently large enterprise projects, test input generation might need a separate code
module of its own, outside the production code.

Groovy to the rescue! Groovy comes with a set of builders that allow you to create
test data by using a fancy DSL. Instead of creating the data manually, you declare the
final result. As an example, assume that your domain contains the classes in the fol-
lowing listing.

Listing 2.26 Domain classes in Java

public class AssetInventory {

private List<Ship> ships = new ArrayList<s>(); 47 Lists are already

[...getters and setters here...] initialized

www.it-ebooks.info

http://www.groovy-lang.org/gdk.html
http://www.groovy-lang.org/gdk.html
http://www.it-ebooks.info/

Advanced Groovy features useful to testing 57

public class Ship {
private String name;
private List<CrewMember> crewMembers = new ArrayList<s>();
private String destination;
private List<Cargo> cargos= new ArrayList<>();
[...getters and setters here...]

}

public class CrewMember {
private String firstName;
private String lastName;
private int age;
[...getters and setters here...]
}
public class Cargo {
private String type;
private CargoOrder cargoOrder; 444} Name of fields is the

private float tons; same as class name.
[...getters and setters here...]

}

public class CargoOrder ({
private String buyer;
private String city;
private BigDecimal price;

[...getters and setters here...]

}

This is a typical business domain. If you look closely enough, you'll see that it follows
certain rules:

= Fach child field has the same name of the class (CargoOrder cargoOrder).
= Each list is already initialized.
= FEach list field has the plural name of its class (Ship > ships).

Because of these rules, it’s possible to create a deep hierarchy of this domain by using
an ObjectGraphBuilder, as shown in the next listing.

Listing 2.27 Using a Groovy builder for quick object creation

Creating ObjectGraphBuilder builder = new ObjectGraphBuilder ()
the builder builder.classNameResolver = "com.manning.spock.chapter2.assets" Instructing the
builder of that
Using the AssetInventory shipRegistry = builder.assetInventory () { domain Java package
builder for ship (name: "Sea Spirit", destination:"Chiba") ({
thetopJevd crewMember (firstName: "Michael", lastName:"Curiel",age:43)
owect crewMember (firstName:"Sean", lastName:"Parker",age:28)
crewMember (firstName:"Lillian ", lastName:"Zimmerman",age:32)
cargo (type:"Cotton", tons:5.4)
Children node cargoOrder (buyer: "Rei , Map-based
automatically created Hosokawa",city:"Yokohama",price:34000) constructors
and attached to parent }

cargo (type:"Olive 0il", tons:3.0) {
cargoOrder (buyer: "Hirokumi
Kasaya",city:"Kobe",price:27000)

www.it-ebooks.info

http://www.it-ebooks.info/

58

253

CHAPTER 2 Groovy knowledge for Spock testing

}

ship (name: "Calypso I", destination:"Bristol") {
crewMember (firstName: "Eric", lastName:"Folkes",age:35)
crewMember (firstName: "Louis", lastName:"Lessard",age:22)

cargo (type:"Oranges", tons:2.4) {
cargoOrder (buyer: "Gregory
Schmidt", city:"Manchester",price:62000)

ship (name: "Desert Glory", destination:"Los Angeles")

crewMember (firstName:"Michelle", lastName:"Kindred",age:38)
crewMember (firstName: "Kathy", lastName:"Parker",age:21)
cargo (type:"Timber", tons:4.8) {
cargoOrder (buyer: "Carolyn
Cox",city:"Sacramento",price:18000)

}

assert shipRegistry.ships.size == 3

assert shipRegistry.ships[0] .name == "Sea Spirit"

assert shipRegistry.ships[1l].crewMembers.size ==

assert shipRegistry.ships[1l].crewMembers[0] .firstName == "Eric"
assert shipRegistry.ships[2].cargos[0].type=="Timber"

assert shipRegistry.ships([2].cargos[0].cargoOrder.city=="Sacramento"

This creates a ship registry with three ships, seven people, and four cargo orders, all in
about 30 lines of Groovy code. Creating the same tree with Java code would need
more than 120 lines of code (for brevity, you can find the code in the source of this
book). In this case, Groovy reduces code lines by 75%.

The other important point is the visual overview of the tree structure. Because the
ObjectGraphBuilder offers a declarative DSL for the object creation, you can get an
overview of the tree structure by looking at the code.

If your domain classes don’t follow the preceding rules, you can either change
them (easiest) or inject the ObjectBuilder with custom resolvers to override default
behavior. Consult the official Groovy documentation for examples with custom resolv-
ers. By default, the ObjectGraphBuilder will treat as plural (for collections) the class
name plus s (ship becomes ships). It also supports special cases with words that end in y
(daisy becomes daisies, army becomes armies, and so forth).

Creating test input with Expando

Spock includes comprehensive mocking and stubbing capabilities, as you’ll see in
chapter 6. For simple cases, you can also get away with using vanilla Groovy. Groovy
shines when it comes to dynamic object creation.

As a final example of Groovy power, I'll demonstrate how Groovy can create
objects on the spot. Assume that you have an interface of this DAO:

public interface AddressDao {
Address load(Long id) ;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Groovy features useful to testing 59

You also have a business service that uses this DAO as follows:

public class Stamper {
private final AddressDao addressDao;

public Stamper (AddressDao addressDao)

{
}

this.addressDao = addressDao;

public boolean isValid(Long addressID)

{

Address address = addressDao.load (addressID) ;
return address.getStreet () != null &&
address.getPostCode () != null;

This business service checks Address objects (a POJO) and considers them valid if they
have both a street and a postal code. You want to write a Spock test for this service. Of
course, you could mock the AddressDao, as you’ll see in chapter 6. But with Groovy,
you can dynamically create an object that mimics this service, as shown in the follow-
ing listing.

Listing 2.28 Using Expando to mock interfaces

def "Testing invalid address detection" () { .
when: "an address does not have a postcode" Creating the
Address address = new Address (country:"Greece",number:23) test data
. _ Creating the load
Creating the def dummyAddressDao = new Expando () th dgd call
empty Groovy dummyAddressDao.load = { return address} method dynamically

dynamic object
Stamper stamper = new Stamper (dummyAddressDao as AddressDao)

then: "this address is rejected"

. . Using the Groo
Tricking the class \ tstamper.isvalid(1) dynamic olfject in pla‘c'z

under test to use of the Java interface
the Expando—

the arsument is def "Testing invalid and valid address detection" ()
ﬁrehvant when: "two different addresses are checked"
’ Address invalidAddress = new Address (country:"Greece",number:23) Covers
Address validAddress = new Address (country:"Greece", both cases
number:23, street:"Argous", postCode:"4534")
Call class def dummyAddressDao = new Expando ()
under test— dummyAdc,iressE)ao’ load = { id -> return Using the closure argument
argument id==2?validAddress:invalidAddress} to return either test input
is used in
Expando Stamper stamper = new Stamper (dummyAddressDao as AddressDao)
closure.

then: "Only the address with street and postcode is accepted"
Istamper.isvValid (1)
stamper.isvalid(2)

www.it-ebooks.info

http://www.it-ebooks.info/

60

Creating field
that will hold
next number

Using the
Expando in
the place of
an iterator

CHAPTER 2 Groovy knowledge for Spock testing

The magic line here is the one with the as keyword. This keyword performs casting in
Groovy but in a much more powerful way than Java. The Expando class has no com-
mon inheritance with the AddressDao, yet it can still work as one because of duck typ-
ing (both objects have a 1load() method, and that’s enough for Groovy).

Although this is a common use of Expando classes, they have several other uses that
you might find interesting. The combination of duck typing and dynamic object cre-
ation will certainly amaze you.'* The next listing presents another example where I use
an Expando for integer generation (which could be used as test data in a Spock test).

Listing 2.29 Using a Groovy Expando as test-data generator

Creating empty Groovy

Expando smartIterator = new Expando () dynamic object

smartIterator.counter = 0; Creating field that will
hold max value returned

ol

smartIterator.limit = 4;

smartIterator.hasNext = { return counter < limit} Imitation of iterator
smartIterator.next = {return counter++} interface method
smartIterator.restartFrom = {from—>counter = from}

Adding custom
method not defined
in iterator interface

for (Integer number:smartIterator as Iterator<Integers)

{
}

println "Reset smart iterator" Calling the custom method to
smartIterator.restartFrom(2)# change the state of the iterator

println "Next number is S$number"

Using the Expando
after resetting it

{
}

for (Integer number:smartIterator as Iterator<Integers) <

println "Next number is S$number"

When you run this code, you’ll get the following:

>groovy ExpandoDemo.groovy
Next number is 0

Next number is 1

Next number is 2

Next number is 3

Reset smart iterator

Next number is 2

Next number is 3

After the iterator is restarted, you can use it again as usual, even though the previous
run reached the limit of numbers generated. Notice also that you don’t implement in
the Expando class the remove () method defined by the iterator Java interface. The
code doesn’t use it, so the Expando object doesn’t need to declare it. But because of

" Just don’t get carried away. Expando overuse is not a healthy habit.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary 61

duck typing, this Expando still passes as an iterator even though it implements only two
out of three required methods.

2.6 Summary

Groovy is a language that also runs in the JVM.

Groovy source is compiled into Java bytecode.

Using Java classes from Groovy code happens with the new keyword exactly like
Java.

Groovy is mostly compatible with Java syntax.

In Groovy, classes are public by default, and fields are private by default.
Groovy autogenerates getters and setters.

In Groovy, semicolons and the return keyword are optional.

Groovy supports optional typing: you can declare the type of a variable (as in
Java) or use the def keyword to leave it to the runtime.

Groovy treats all objects as true unless the object is an empty string, an empty
collection, 0, null, or false.

Spock uses Groovy assertions instead of JUnit assert calls.

Groovy allows you to create objects by using maps of fields/values inside the
constructor.

Groovy strings employ automatic templating, similar to JSTL.

Groovy comes with extensive utilities that read XML and JSON files.

Groovy supports closures that can be used to reduce the code lines in assert
statements.

An ObjectGraphBuilder can be used to quickly create a tree-like structure of
your business domain.

You can use Expando to dynamically create Groovy objects during runtime.

www.it-ebooks.info

http://www.it-ebooks.info/

A tour of Spock

Junctionality

This chapter covers

Understanding the given-when-then Spock
syntax

Testing datasets with data-driven tests
Introducing mocks/stubs with Spock
Examining mock behavior

With the Groovy basics out of the way, you're now ready to focus on Spock syntax
and see how it combines several aspects of unit testing in a single and cohesive
package.

Different applications come with different testing needs, and it’s hard to predict
what parts of Spock will be more useful to you beforehand. This chapter covers a bit
of all major Spock capabilities to give you a bird's-eye view of how Spock works. I
won’tfocus on all the details yet because these are explained in the coming chapters.

The purpose of this chapter is to act as a central hub for the whole book. You
can read this chapter and then, according to your needs, decide which of the com-
ing chapters is of special interest to you. If, for example, in your current application
you have tests with lots of test data that spans multiple input variables, you can skip
straight to the chapter that deals with data-driven tests (chapter 5).

62

www.it-ebooks.info

http://www.it-ebooks.info/

3.1

Introducing the behavior-testing paradigm 63

The following sections briefly touch on these three aspects of Spock:

= Core testing of Java code (more details in chapter 4)
= Parameterized tests (more details in chapter 5)
= Isolation of the class under test (more details in chapter 6)

To illustrate these concepts, a series of increasingly complex, semi-real scenarios are
used, because some Spock features aren’t evident with trivial unit tests. For each sce-
nario, I'll also compare the Spock unit test with a JUnit test (if applicable).

Introducing the behavior-testing paradigm

Let’s start with a full example of software testing. Imagine you work as a developer for
a software company that creates programs for fire-control systems, as shown in
figure 3.1.

The processing unit is connected to multiple fire sensors and polls them continu-
ously for abnormal readings. When a fire is discovered, the alarm sounds. If the fire
starts spreading and another detector is triggered, the fire brigade is automatically
called. Here are the complete requirements of the system:

= If all sensors report nothing strange, the system is OK and no action is needed.

= If one sensor is triggered, the alarm sounds (but this might be a false positive
because of a careless smoker who couldn’t resist a cigarette).

= If more than one sensor is triggered, the fire brigade is called (because the fire
has spread to more than one room).

Your colleague has already implemented this system, and you’re tasked with unit test-
ing. The skeleton of the Java implementation is shown in listing 3.1.

Fire sensor

Alarm

A
VN

i

Processing unit

Fire brigade

Figure 3.1 A fire-monitoring system controlling multiple detectors

www.it-ebooks.info

http://www.it-ebooks.info/

64 CHAPTER 3 A tour of Spock functionality

How to use the code listings

You can find almost all code listings for this book at https://github.com/kkapelon/
java-testing-with-spock.

For brevity, the book sometimes points you to the source code (especially for long
listings). | tend to use the Eclipse IDE in my day-to-day work. If you didn’t already install
Spock and Eclipse in chapter 2, you can find installation instructions in appendix A.

This fire sensor is regularly injected with the data from the fire sensors, and at any
given time, the sensor can be queried for the status of the alarm.

Listing 3.1 A fire-control system in Java

public class FireEarlyWarning { 47 The main class that
implements monitoring
Method called public void feedData (int triggeredFireSensors)
every second by
sensor software

[...implementation here...] 4—‘ Redacted for brevity—see
source code for full code

}

public WarningStatus getCurrentStatus () Status report

{ getter method
[...implementation here...]
}

}

Contents of status

public class WarningStatus { report (status class)

If true. the public boolean isAlarmActive() {
alarm sou’nds. [...implementation here...]
}

If true, the fire

public boolean isFireDepartmentNotified() { brigade is called.

[...implementation here...]
}

The application uses two classes:

= The polling class has all the intelligence and contains a getter that returns a sta-
tus class with the present condition of the system.
= The status class is a simple object that holds the details.!

' This is only the heart of the system. Code for contacting the fire brigade or triggering the alarm is outside the

scope of this example.

www.it-ebooks.info

https://github.com/kkapelon/java-testing-with-spock
https://github.com/kkapelon/java-testing-with-spock
http://www.it-ebooks.info/

3.11

Setup needed
for the test

Examine results
of the event.

Introducing the behavior-testing paradigm 65

Your colleague has finished the implementation code, and has even written a JUnit
test? as a starting point for the test suite you're supposed to finish. You now have the
full requirements of the system and the implementation code, and you're ready to
start unit testing.

The setup-stimulate-assert structure of JUnit

You decide to look first at the existing JUnit test your colleague already wrote. The
code is shown in the following listing.

Listing 3.2 A JUnit test for the fire-control system

@Test .
public void fireAlarmScenario() ({ 4—‘ JUnit test case
FireEarlyWarning fireEarlyWarning = new FireEarlyWarning() ;
int triggeredSensors = 1;
. . . A Create an event.
fireEarlyWarning. feedData (triggeredSensors) ;
WarningStatus status = fireEarlyWarning.getCurrentStatus() ;

assertTrue ("Alarm sounds", status.isAlarmActivel()) ;
assertFalse ("No notifications", status.isFireDepartmentNotified());

This unit test covers the case of a single sensor detecting fire. According to the
requirements, the alarm should sound, but the fire department isn’t contacted yet. If
you closely examine the code, you’ll discover a hidden structure between the lines. All
good JUnit tests have three code segments:

1 In the setup phase, the class under test and all collaborators are created. All ini-
tialization stuff goes here.

2 In the stimulus phase, the class under test is tampered with, triggered, or other-
wise passed a message/action. This phase should be as brief as possible.

3 The assert phase contains only read-only code (code with no side effects), in
which the expected behavior of the system is compared with the actual one.

Notice that this structure is émplied with JUnit. It’s never enforced by the framework and
might not be clearly visible in complex unit tests. Your colleague is a seasoned devel-
oper and has clearly marked the three phases by using the empty lines in listing 3.2:

= The setup phase creates the FireEarlyWarning class and sets the number of
triggered sensors that will be evaluated (the first two statements in listing 3.2).

= The stimulus phase passes the triggered sensors to the fire monitor and also
asks it for the current status (the middle two statements in listing 3.2).

= The assert phase verifies the results of the test (the last two statements).

2 Following the test-driven development (TDD) principles of writing a unit test for a feature before the feature
implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 3 A tour of Spock functionality

This is good advice to follow, but not all developers follow this technique. (It’s also
possible to demarcate the phases with comments.)

Because JUnit doesn’t clearly distinguish between the setup-stimulate-assert phases,
it’s up to the developer to decide on the structure of the unit test. Understanding the
structure of a JUnit test isn’t always easy when more-complex testing is performed. For
comparison, the following listing shows a real-world result.’

Listing 3.3 JUnit test with complex structure (real example)

private static final String MASTER NAME = "mymaster";
private static HostAndPort sentinel = new HostAndPort ("localhost",26379) ;

@Test
public void sentinelSet ()
Jedis j = new Jedis(sentinel.getHost (), sentinel.getPort());

try {

Map<String, String> parameterMap = new HashMap<String,
String> () ;

parameterMap.put ("down-after-milliseconds",

String.valueOf (1234)) ;

parameterMap.put ("parallel-syncs", String.valueOf (3));

parameterMap.put ("quorum", String.valueOf (2));

j.sentinelSet (MASTER NAME, parameterMap) ;

List<Map<String, String>> masters = j.sentinelMasters() ;
for (Map<String, String> master : masters) {
if (master.get ("name").equals (MASTER NAME)) {
assertEquals (1234, Integer.parselnt (master
.get ("down-after-milliseconds"))) ;
assertEquals (3,
Integer.parselnt (master.get ("parallel-
syncs"))) ;
assertEquals (2,
Integer.parselnt (master.get ("quorum"))) ;

}

parameterMap.put ("quorum", String.valueOf (1)) ;
j.sentinelSet (MASTER NAME, parameterMap) ;

} finally {
j.close();

}

After looking at the code, how long did it take you to understand its structure? Can
you easily understand which class is under test? Are the boundaries of the three

* This unit test is from the jedis library found on GitHub. I mean no disrespect to the authors of this code, and
I congratulate them for offering their code to the public. The rest of the tests from jedis are well-written.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the behavior-testing paradigm 67

phases really clear? Imagine that this unit test has failed, and you have to fix it imme-
diately. Can you guess what has gone wrong simply by looking at the code?

Another problem with the lack of clear structure of a JUnit test is that a developer
can easily mix the phases in the wrong4 order, or even write multiple tests into one.
Returning to the fire-control system in listing 3.2, the next listing shows a bad unit test
that tests two things at once. The code is shown as an antipattern. Please don’t do this
in your unit tests!

Listing 3.4 A JUnit test that tests two things—don’t do this

@Test
ublic void sensorsAreTriggered()
P . . R {)) Setup phase
FireEarlyWarning fireEarlyWarning = new FireEarlyWarning() ;

WarningStatus status = fireEarlyWarning.getCurrentStatus() ;

Stimulus {4‘4b fireEarlyWarning.feedData (1) ;

phase

Another stimulus
phase—this is
bad practice.

3.1.2

: . First assert phase
assertTrue ("Alarm sounds", status.isAlarmActivel()); 4——J P
assertFalse ("No notifications", status.isFireDepartmentNotified()) ;
fireEarlyWarning.feedData (2) ;

WarningStatus status2 = fireEarlyWarning.getCurrentStatus() ;
assertTrue ("Alarm sounds", status2.isAlarmActive()) ; Second assert
assertTrue ("Fire Department is notified", phase

status2.isFireDepartmentNotified()) ;

This unit test asserts two different cases. If it breaks and the build server reports the
result, you don’t know which of the two scenarios has the problem.

Another common antipattern I see all too often is JUnit tests with no assert state-
ments at all! JUnit is powerful, but as you can see, it has its shortcomings. How would
Spock handle this fire-control system?

The given-when-then flow of Spock

Unlike JUnit, Spock has a clear test structure that’s denoted with labels (blocks in
Spock terminology), as you'll see in chapter 4, which covers the lifecycle of a Spock
test. Looking back at the requirements of the fire-control system, you’ll see that they
can have a one-to-one mapping with Spock tests. Here are the requirements again:

= If all sensors report nothing strange, the system is OK and no action is needed.

= If one sensor is triggered, the alarm sounds (but this might be a false positive
because of a careless smoker who couldn’t resist a cigarette).

= If more than one sensor is triggered, the fire brigade is called (because the fire
has spread to more than one room).

4 Because “everything that can go wrong, will go wrong,” you can imagine that I've seen too many antipatterns
of JUnit tests that happen because of the lack of a clear structure.

www.it-ebooks.info

http://www.it-ebooks.info/

68

Setup
phase

CHAPTER 3 A tour of Spock functionality

Spock can directly encode these sentences by using full English text inside the source
test of the code, as shown in the following listing.

Listing 3.5 The full Spock test for the fire-control system

class FireSensorSpec extends spock.lang.Specification{

def

-

def

def

Clear explanation of

"If all sensors are inactive everything is ok" () ({ what this test does

given: "that all fire sensors are off"
FireEarlyWarning fireEarlyWarning = new FireEarlyWarning()
int triggeredSensors = 0

. Stimulus phase
when: "we ask the status of fire control" 4——J P
fireEarlyWarning.feedData (triggeredSensors)
WarningStatus status = fireEarlyWarning.getCurrentStatus()
then: "no alarm/notification should be triggered"

: Assert phase
!'status.alarmActive

I'status.fireDepartmentNotified

"If one sensor is active the alarm should sound as a precaution" () {
given: "that only one fire sensor is active"

FireEarlyWarning fireEarlyWarning = new FireEarlyWarning/()

int triggeredSensors = 1

when: "we ask the status of fire control"
fireEarlyWarning. feedData (triggeredSensors)
WarningStatus status = fireEarlyWarning.getCurrentStatus ()

then: "only the alarm should be triggered"
status.alarmActive
!status.fireDepartmentNotified

"If more than one sensor is active then we have a fire" () {
given: "that two fire sensors are active"

FireEarlyWarning fireEarlyWarning = new FireEarlyWarning/()
int triggeredSensors = 2

when: "we ask the status of fire control"
fireEarlyWarning.feedData (triggeredSensors)
WarningStatus status = fireEarlyWarning.getCurrentStatus ()

then: "alarm is triggered and the fire department is notified"
status.alarmActive
status.fireDepartmentNotified

Spock follows a given-when-then structure that’s enforced via labels inside the code.

Each unit test can be described using plain English sentences, and even the labels can
be described with text descriptions.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the behavior-testing paradigm 69

: FireSensorSpec

&b ||If all sensors are inactive everything is ok 0.008
&b || If one sensor is active the alarm should sound as a precaution 0.001
b] If more than one sensor is active then we have a fire 0.001

Figure 3.2 Surefire report with Spock test description

This enforced structure pushes the developer to think before writing the test, and also
acts as a guide on where each statement goes. The beauty of the English descriptions
(unlike JUnit comments) is that they’re used directly by reporting tools. A screenshot
of a Maven Surefire report is shown in figure 3.2 with absolutely no modifications
(Spock uses the JUnit runner under the hood). This report can be created by running
mvn surefire-report:report on the command line.

The first column shows the result of the test (a green tick means that the test
passes), the second column contains the description of the test picked up from the
source code, and the third column presents the execution time of each test (really
small values are ignored). More-specialized tools can drill down in the labels of the
blocks as well, as shown in figure 3.3. The example shown is from Spock reports
(https://github.com/renatoathaydes/spock-reports).

Summary:
Created on Sun Oct 11 11:40:21 EEST 2015 by Kostis
Executed features Failures Errors Skipped Success rate
3 0 0 0 100,0%
Features:
« |fall rs are inacti ing i

« |f one sensor is active the alarm should sound as a precaution
« If more than one sensor is active then we have a fir

If all sensors are inactive everything is ok

Given: that all fire sensors are off

When: we ask the status of fire control

Then: no alarm/notification should be triggered

If one sensor is active the alarm should sound as a precaution
Given: that only one fire sensor is active

When: we ask the status of fire control

Then: only the alarm should be triggered

If more than one sensor is active then we have a fire

Given: that two fire sensors are active

When: we ask the status of fire control Figure 3.3 Spock report
Then: alarmis triggered and the fire department is notified with all English sentences
of the test

www.it-ebooks.info

https://github.com/renatoathaydes/spock-reports
http://www.it-ebooks.info/

70 CHAPTER 3 A tour of Spock functionality

Spock isn’t a full BDD tool,” but it certainly pushes you in that direction. With careful
planning, your Spock tests can act as living business documentation.

You’ve now seen how Spock handles basic testing. Let’s see a more complex testing
scenario, where the number of input and output variables is much larger.

3.2 Handling tests with multiple input sets
With the fire-control system in place, you're tasked with a more complex testing
assignment. This time, the application under test is a monitor system for a nuclear
reactor. It functions in a similar way to the fire monitor, but with more input sensors.
The system® is shown in figure 3.4.
The components of the system are as follows:

= Multiple fire sensors (input)

= Three radiation sensors in critical points (input)
= Current pressure (input)

= An alarm (output)

Evacuation timer
f ——

DE:DD

Alarm [

v

Pressure

Shutdown command ‘
Processing unit

)

Figure 3.4 A monitor system for a nuclear reactor

5 See JBehave (http://jbehave.org/) or Cucumber JVM (http://cukes.info/) to see how business analysts, tes-
ters, and developers can define the test scenarios of an enterprise application.

% This system is imaginary. I'm in no way an expert on nuclear reactors. The benefits of the example will
become evident in the mocking/stubbing section of the chapter.

www.it-ebooks.info

http://jbehave.org/
http://cukes.info/
http://www.it-ebooks.info/

= An evacuation command (output)

Handling tests with multiple input sets

71

= A notification to a human operator that the reactor should shut down (output)

The system is already implemented according to all safety requirements needed for

nuclear reactors. It reads sensor data at regular intervals and depending on the read-
ings, it can alert or suggest corrective actions. Here are some of the requirements:

= If pressure goes above 150 bars, the alarm sounds.

= If two or more fire alarms are triggered, the alarm sounds and the operator is
notified that a shutdown is needed (as a precautionary measure).

= Ifaradiation leak is detected (100+ rads from any sensor), the alarm sounds, an

announcementis made that the reactor should be evacuated within the next min-
ute, and a notification is sent to the human operator that a shutdown is needed.

You speak with the technical experts of the nuclear reactor, and you jointly decide that
a minimum of 12 test scenarios will be examined, as shown in table 3.1.

Table 3.1 Scenarios that need testing for the nuclear reactor

Sample inputs

Expected outputs

Current Fire Radiation Audible A shutdown is Evacuation within
pressure sensors sensors alarm needed X minutes

150 0 0,0,0 No No No

150 1 0,0,0 Yes No No

150 3 0,0,0 Yes Yes No

150 0 110.4,0.3, 0.0 Yes Yes 1 minute

150 0 45.3,10.3, 47.7 No No No

155 0 0,0,0 Yes No No

170 0 0,0,0 Yes Yes 3 minutes

180 0 110.4 ,0.3, 0.0 Yes Yes 1 minute

500 0 110.4 ,300, 0.0 Yes Yes 1 minute

30 0 110.4,1000, 0.0 Yes Yes 1 minute
155 4 0,0,0 Yes Yes No
170 1 45.3 ,10.f, 47.7 Yes Yes 3 minutes

The scenarios outlined in this table are a classic example of parameterized tests. The test

logic is always the same (take these three inputs and expect these three outputs), and

the test code needs to handle different sets of variables for only this single test logic.
In this example, we have 12 scenarios with 6 variables, but you can easily imagine
cases with much larger test data. The naive way to handle testing for the nuclear reactor

www.it-ebooks.info

http://www.it-ebooks.info/

72

3.21

Inputs
become
class fields.

CHAPTER 3 A tour of Spock functionality

would be to write 12 individual tests. That would be problematic, not only because of
code duplication, but also because of future maintenance. If a new variable is added in
the system (for example, a new sensor), you’d have to change all 12 tests at once.

A better approach is needed, preferably one that decouples the test code (which
should be written once) from the sets of test data and expected output (which should
be written for all scenarios). This kind of testing needs a framework with explicit sup-
port for parameterized tests.

Spock comes with built-in support for parameterized tests with a friendly DSL” syn-
tax specifically tailored to handle multiple inputs and outputs. But before I show you
this expressive DSL, allow me to digress a bit into the current state of parameterized
testing as supported in JUnit (and the alternative approaches).

Many developers consider parameterized testing a challenging and complicated
process. The truth is that the limitations of JUnit make parameterized testing a chal-
lenge, and developers suffer because of inertia and their resistance to changing their
testing framework.

Existing approaches to multiple test-input parameters

The requirements for the nuclearreactor monitor are clear, the software is already
implemented, and you’re ready to testit. What'’s the solution if you follow the status quo?

The recent versions of JUnit advertise support for parameterized tests. The official
way of implementing a parameterized test with JUnit is shown in the following listing.
The listing assumes that —1 in evacuation minutes means that no evacuation is needed.

Listing 3.6 Testing the nuclear reactor scenarios with JUnit

@RunWith (Parameterized.class) Specialized runner needed
public class NuclearReactorTest { for parameterized tests is
private final int triggeredFireSensors; created with @RunWith.
private final List<Float> radiationDataReadings;

private final int pressure;

private final boolean expectedAlarmStatus;
private final boolean expectedShutdownCommand;
private final int expectedMinutesToEvacuate;

Outputs become
class fields.

public NuclearReactorTest (int pressure, int triggeredFireSensors,
List<Float> radiationDataReadings, boolean expectedAlarmStatus,
boolean expectedShutdownCommand, int expectedMinutesToEvacuate) {

Special constructor this.triggeredFireSensors = triggeredFireSensors;
with all inputs this.radiationDataReadings = radiationDataReadings;
and outputs this.pressure = pressure;

this.expectedAlarmStatus = expectedAlarmStatus;
this.expectedShutdownCommand = expectedShutdownCommand;
this.expectedMinutesToEvacuate = expectedMinutesToEvacuate;

7 A DSL is a programming language targeted at a specific problem as opposed to a general programming lan-
guage like Java. See http://en.wikipedia.org/wiki/Domain-specific_language.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Domain-specific_language
http://www.it-ebooks.info/

Two-dimensional
array with
test data

@Test
public void nuclearReactorScenario() { use parameters

Handling tests with multiple input sets 73

Unit test that will

NuclearReactorMonitor nuclearReactorMonitor = new
NuclearReactorMonitor () ;

nuclearReactorMonitor.feedFireSensorData (triggeredFireSensors) ;
nuclearReactorMonitor.feedRadiationSensorData (radiationDataReadings) ;
nuclearReactorMonitor.feedPressureInBar (pressure) ;

NuclearReactorStatus status = nuclearReactorMonitor.getCurrentStatus() ;

assertEquals ("Expected no alarm", expectedAlarmStatus,

status.isAlarmActive()) ;

assertEquals ("No notifications", expectedShutdownCommand,

status.isShutDownNeeded ()) ;

assertEquals ("No notifications", expectedMinutesToEvacuate,
status.getEvacuationMinutes()) ;

}

@Parameters
public static Collection<Object[]> datal()

Source of
test data

{

return Arrays.asList (new Object[][]

{ 150, 0, new ArrayList<Floats>(),
{ 150, 1, new ArrayList<Floats>(),
{ 150, 3, new ArrayList<Float>(),
{ 150, 0, Arrays.asList(110.4£f, 0.

{ 150, 0, Arrays.asList(45.3f, 10.

false, false, -1 },

true, false, -1 },

true, true, -1 },

3f, 0.0f), true,
true, 1 },

3f, 47.7f), false,
false, -1 },

{ 155, 0, Arrays.asList(0.0f, 0.0f, 0.0f), true, false,

{ 170, 0, Arrays.asList(0.0f, 0.0f, 0.0f), true, true,

{ 180, 0, Arrays.asList(110.4f, O.

-1 }/
3},

3f, 0.0f), true,
true, 1 },

{ 500, 0, Arrays.asList(110.4f, 300f, 0.0f), true,

true, 1 },

{ 30, 0, Arrays.asList(110.4f, 1000f, 0.0f), true,

true, 1 },

{ 155, 4, Arrays.asList(0.0f, 0.0f, 0.0f), true, true,

{ 170, 1, Arrays.asList(45.3f, 10.

-1 }’
3f, 47.7f), true,
true, 3 }, });

If you look at this code and feel it’s too verbose, you’re right! This listing is a true tes-
tament to the limitations of JUnit. To accomplish parameterized testing, the following

constraints specific to JUnit need to be satisfied:

= The test class must be polluted with fields that represent inputs.
= The test class must be polluted with fields that represent outputs.

www.it-ebooks.info

http://www.it-ebooks.info/

74

3.2.2

CHAPTER 3 A tour of Spock functionality

= A special constructor is needed for all inputs and outputs.
= Testdata comes into a two-dimensional object array (which is converted to a list).

Notice also that because of these limitations, it’s impossible to add a second parame-
terized test in the same class. JUnit is so strict that it forces you to have a single class for
each test when multiple parameters are involved. If you have a Java class that needs
more than one parameterized test and you use JUnit, you're out of luck.®

The problems with JUnit parameterized tests are so well known that several inde-
pendent efforts have emerged to improve this aspect of unit testing. At the time of
writing, at least three external projects’ offer their own syntax on top of JUnit for a
friendlier and less cluttered code.

Parameterized tests are also an area where TestNG (http://testng.org) has been
advertised as a better replacement for JUnit. TestNG does away with all JUnit limita-
tions and comes with extra annotations (@DataProvider) that truly decouple test data
and test logic.

Despite these external efforts, Spock comes with an even better syntax for parame-
ters (Groovy magic again!). In addition, having all these improved efforts external to
JUnit further supports my argument that Spock is a “batteries-included” framework
providing everything you need for testing in a single package.

Tabular data input with Spock

You've seen the hideous code of JUnit when multiple parameters are involved. You
might have also seen some improvements with TestNG or extra JUnit add-ons. All
these solutions attempt to capture the values of the parameters by using Java code or
annotations.

Spock takes a step back and focuses directly on the original test scenarios. Return-
ing to the nuclear-monitoring system, remember that what you want to test are the
scenarios listed in table 3.1 (written in a human-readable format).

Spock allows you to do the unthinkable. You can directly embed this table as-is
inside your Groovy code, as shown in the next listing. Again I assume that -1 in evacu-
ation minutes means that no evacuation is needed.

Listing 3.7 Testing the nuclear reactor scenarios with Spock

class NuclearReactorSpec extends spock.lang.Specification{

Human-readable

given: "a nuclear reactor and sensor data" test description

NuclearReactorMonitor nuclearReactorMonitor =new
NuclearReactorMonitor ()

def "Complete test of all nuclear scenarios" () { 47

8 There are ways to overcome this limitation, but I consider them hacks that make the situation even more com-
plicated.

9 https://code.google.com/p/fuzztester/wiki/FuzzTester; https://github.com/Pragmatists/junitparams;
https://github.com/piotrturski/zohhak.

www.it-ebooks.info

https://code.google.com/p/fuzztester/wiki/FuzzTester
https://github.com/Pragmatists/junitparams
https://github.com/piotrturski/zohhak
http://testng.org
http://www.it-ebooks.info/

Handling tests with multiple input sets 75

when: "we examine the sensor data"
nuclearReactorMonitor.feedFireSensorData (fireSensors)
nuclearReactorMonitor.feedRadiationSensorData (radiation)
nuclearReactorMonitor.feedPressureInBar (pressure)

NuclearReactorStatus status = nuclearReactorMonitor.getCurrentStatus ()

Usage of
test inputs

then: "we act according to safety requirements"

U f test status.alarmActive == alarm
sagi::t S:S status.shutDownNeeded == shutDown
P status.evacuationMinutes == evacuation Source of
parameters
where: "possible nuclear incidents are:"
Definition of pressure | fireSensors | radiation || alarm | shutDown | evacuation
inputs and 150 | o | 11 || false | false | -1
outputs 150 | 1 | 0 || true | false | -1
150 | 3 | 11 || true | true | -1
150 | o] [110.4f ,0.3f, 0.0f] || true | true | 1
150 | o] [45.3f ,10.3f, 47.7f£]|| false | false | -1 Tabular
155 | o] [0.0f ,0.0f, 0.0f] || true | false | -1 representation
170 | o] [0.0f ,0.0f, 0.0f] || true | true | 3 of all scenarios
180 | o] [110.4f ,0.3f, 0.0f] || true | true | 1
500 | o] [110.4f ,300f, 0.0f] || true | true | 1
30 | o][110.4f ,1000f, 0.0f] || true | true | 1
155 | 4] [0.0f ,0.0f, 0.0f] || true | true | -1
170 | 1| [45.3f ,10.3f, 47.7£]1|| true | true | 3

}

Spock takes a different approach to parameters. Powered by Groovy capabilities, it
offers a descriptive DSL for tabular data. The key point of this unit test is the where:
label (in addition to the usual given-then-when labels) that holds a definition of all
inputs/outputs used in the other blocks.

In the where: block of this Spock test, I copied verbatim the scenarios of the
nuclear-reactor monitor from the table. The || notation is used to split the inputs
from outputs. Reading this table is possible even by nontechnical people. Your busi-
ness analyst can look at this table and quickly locate missing scenarios.

Adding a new scenario is easy:

= You can append a new line at the end of the table with a new scenario, and the
test will pick the new scenario upon the next run.

= The parameters are strictly contained inside the test method, unlike JUnit. The
test class has no need for special constructors or fields. A single Spock class can
hold an unlimited number of parameterized tests, each with its own tabular data.

The icing on the cake is the amount of code. The JUnit test has 82 lines of Java code,
whereas the Spock test has 38 lines. In this example, I gained 50% code reduction by
using Spock, and kept the same functionality as before (keeping my promise from
chapter 1 that Spock tests will reduce the amount of test code in your application).

www.it-ebooks.info

http://www.it-ebooks.info/

76

3.3

3.3.1

CHAPTER 3 A tour of Spock functionality

Chapter 5 shows several other tricks for Spock parameterized tests, so feel free to
jump there directly if your enterprise application is plagued by similar JUnit boiler-
plate code.

We’ll close our Spock tour with its mocking/stubbing capabilities.

Isolating the class under test

JUnit doesn’t support mocking (faking external object communication) out of the box.
Therefore, I usually employ Mockito'” when I need to fake objects in my JUnit tests.

If you’ve never used mocking in your unit tests, fear not, because this book covers
both theory and practice (with Spock). I strongly believe that mocking is one of the
pillars of well-written unit tests and I'm always puzzled when I see developers who
neglect or loathe mocks and stubs.

The literature on mocking hasn’t reached a single agreement on naming the core
concepts. Multiple terms exist, such as these:

= Mocks/stubs
= Test doubles

= Fake collaborators

All these usually mean the same thing: dummy objects that are injected in the class
under test, replacing the real implementations.

= A stubis a fake class that comes with preprogrammed return values. It’s injected
in the class under test so that you have absolute control of what’s being tested
as input.

= A mockis a fake'! class that can be examined after the test is finished for its inter-
actions with the class under test (for example, you can ask it whether a method
was called or how many times it was called).

Things sometimes get more complicated because a mock can also function as a stub if
that’s needed.'? The rest of this book uses the mock/stub naming convention because
Spock closely follows this pattern. The next examples show both.

The case of mocking/stubbing

After finishing with the nuclear-reactor monitor module, you're tasked with testing
the temperature sensors of the same reactor. Figure 3.5 gives an overview of the
system.

19 Many mock frameworks are available for Java, but Mockito is the easiest and most logical in my opinion. Some
of its ideas have also found their way into Spock itself. See https://github.com/mockito/mockito.

! Don’t sweat the naming rules. In my day job, I name all these classes as mocks and get on with my life.

12 The two hardest problems in computer science are naming things and cache invalidation.

www.it-ebooks.info

https://github.com/mockito/mockito
http://www.it-ebooks.info/

Isolating the class under test 77

Even though at first glance this temperature Alarm
monitor is similar to the previous system, it
has two big differences: 54

= The system under test—the tempera-
Temperature

ture monitor—doesn’t directly com- ,
monitor

municate with the temperature
sensors. It obtains the readings from
another Java system, the temperature
reader (implemented by a different
software company than yours).

Temperature
reader

= The requirements for the tempera-

ture monitor indicate that the alarm
should sound if the difference in tem-
perature readings (either up or
down) is greater than 20 degrees.

Temperature

Figure 3.5 A monitor that gets sensors

temperatures via another system

You need to write unit tests for the temperature monitor. The implementation code to
be tested is shown in the next listing.

Listing 3.8 Java classes for the temperature monitor and reader

public class TemperatureReadings { 47 Simple class that

contains temperatures
private long sensorlData;

private long sensor2Data; Current
private long sensor3Data; temperature

[...getters and setters here]

}
Interface implemented
public interface TemperatureReader { by the reader software

Method called —» TemperatureReadings getCurrentReadings() ;
by the class }
under test Thz class
public class TemperatureMonitor { under test
Injected field
private final TemperatureReader reader; of reader
Previous —» private TemperatureReadings lastReadings;
temperature private TemperatureReadings currentReadings; Latest temperature
readings readings

www.it-ebooks.info

http://www.it-ebooks.info/

78

CHAPTER 3 A tour of Spock functionality

public TemperatureMonitor (final TemperatureReader reader)

{

Constructor ’—> this.reader = reader;
injection / J Method that
public boolean isTemperatureNormal () needs unit tests
{
[...implementation here that compares readings...]

} Called automatically
public void readSensor () at regular intervals
{

Communication with lastReadings = currentReadings;

temperature reader currentReadings = reader.getCurrentReadings () ;

}

The specifications are based on temperature readings. Unlike the previous example
that used fixed values (for example, if pressure is more than 150, do this), here you
have to test consecutive readings (that is, take an action only if temperature is higher
compared to the previous reading).

Reading the specifications, it’s obvious you need a way to “trick” the class under
test to read temperature readings of your choosing. Unfortunately, the temperature
monitor has no way of directly obtaining input. Instead, it calls another Java API from
the reader software.'” How can you “trick” the TemperatureMonitor class to read dif-
ferent types of temperatures?

SOLUTIONS FOR FAKING INPUT FROM COLLABORATING CLASSES

A good start would be to contact the software company that writes the temperature-
reader software and ask for a debug version of the module, which can be controlled to
give any temperature you choose, instead of reading the real hardware sensors. This
scenario might sound ideal, but in practice it’s difficult to achieve, either for political
reasons (the company won’t provide what you ask) or technical reasons (the debug
version has bugs of its own).

Another approach would be to write your own dummy implementation of
TemperatureReader that does what you want. I've seen this technique too many times
in enterprise projects, and I consider it an antipattern. This introduces a new class
that’s used exclusively for unit tests and must be kept in sync with the specifications.
As soon as the specifications change (which happens a lot in enterprise projects), you
must hunt down all those dummy classes and upgrade them accordingly to keep the
stability of unit tests.

The recommended approach is to use the built-in mocking capabilities of Spock.
Spock allows you to create a replacement class (or interface implementation) on the

3 Notice that in this case I used constructor injection, but setter injection could also work.

www.it-ebooks.info

http://www.it-ebooks.info/

Isolating the class under test 79

spot and direct it to do your bidding while the class under test still thinks it’s talking to
areal object.

3.3.2 Stubbing fake objects with Spock
To create a unit test for the temperature-monitoring system, you can do the following:

1 Create an implementation of the TemperatureReader interface.

2 Instruct this smart implementation to return fictional readings for the first call.

3 Instruct this smart implementation to return other fictional readings for the
second call.

4 Connect the class under test with this smart implementation.

5 Run the test, and see what the class under test does.

In Spock parlance, this “smart implementation” is called a stub, which means a fake
class with canned responses. The following listing shows stubbing in action, as previ-
ously outlined.

Listing 3.9 Stubbing with Spock

class CoolantSensorSpec extends spock.lang.Specification({

def "If current temperature difference is within limits everything is

ok" () {
given: "that temperature readings are within limits"
TemperatureReadings prev = new <+
P gs prev Premade
TemperatureReadings (sensorlData:20,
temperature
sensor2Data:40, sensor3Data:80) readmgs
TemperatureReadings current = new <+
Dummy interface TemperatureReadings (sensorlData:30,
implementation sensor2Data:45,sensor3Data:73) ; Instructing the
TemperatureReader reader = Stub (TemperatureReader) dummy interface
to return premade
Class under test reader.getCurrentReadings () >>> [prev, current] <« readings
is injected with
dummy interface TemperatureMonitor monitor = new TemperatureMonitor (reader)
when: "we ask the status of temperature control"
Class under test calls monitor.readSensor ()
dummy interface monitor.readSensor ()
then: "everything should be ok" Assertion after two

monitor.isTemperatureNormal () subsequent calls

def "If current temperature difference is more than 20 degrees the
alarm should sound" () {
given: "that temperature readings are not within limits"
TemperatureReadings prev = new
TemperatureReadings (sensorlData:20,
sensor2Data:40,sensor3Data:80)
TemperatureReadings current = new

www.it-ebooks.info

http://www.it-ebooks.info/

80

3.3.3

CHAPTER 3 A tour of Spock functionality

TemperatureReadings (sensorlData:30,
sensor2Data:10,sensor3Data:73) ;
TemperatureReader reader = Stub (TemperatureReader)
reader.getCurrentReadings () >>> [prev,current]
TemperatureMonitor monitor = new TemperatureMonitor (reader)

when: "we ask the status of temperature control"
monitor.readSensor ()
monitor.readSensor ()

then: "the alarm should sound"
Imonitor.isTemperatureNormal ()

The magic line is the Stub () call, shown here:
TemperatureReader reader = Stub (TemperatureReader)

Spock, behind the scenes, creates a dummy implementation of this interface. By
default the implementation does nothing, so it must be instructed how to react, which
is done with the second important line, the >>> operator:

reader.getCurrentReadings () >>> [prev, current]

This line indicates the following:

= The first time the getCurrentReadings() method is called on the dummy
interface, return the instance named prev.
= The second time, return the object named current.

The >>> operator is normally called an unsigned shift operator'* in Java, but Spock over-
loads it (Groovy supports operator overloading) to provide canned answers to a stub.
Now the dummy interface is complete. The class under test is injected with the Spock
stub, and calls it without understanding that all its responses are preprogrammed. As
far as the class under test is concerned, the Spock stub is a real implementation.

The final result: you’ve implemented the unit test for the temperature reader com-
plying with the given requirements, even though the class under test never communi-
cates with the temperature sensors themselves.

Mocking collaborators

For simplicity, all the systems in these examples so far only recommend the suggested
action (for example, the alarm should sound). They assume that another external sys-
tem polls the various monitors presented and then takes the action.

In the real world, systems are rarely this simple. Faking the input data is only half
the effort needed to write effective unit tests. The other half is faking the output

14 http://docs.oracle.com/javase/ tutorial /java/nutsandbolts/op3.html.

www.it-ebooks.info

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/op3.html
http://www.it-ebooks.info/

Isolating the class under test 81

Temperature
monitor

Alarm

Aty
Zi

Temperature Reactor
reader control

Automatic
shutdown

Temperature
sensors

Figure 3.6 A full system with input and output and side effects

parameters. In this case, you need to use mocking in the mix as well. To see how this
works, look at the extended temperature-monitor system shown in figure 3.6.

Assume that for this scenario, business analysis has decided that the temperature
control of the reactor is mission critical and must be completely automatic. Instead of
sounding an alarm and contacting a human operator, the system under test is fully
autonomous, and will shut down the reactor on its own if the temperature difference
is higher than 50 degrees. The alarm still sounds if the temperature difference is
higher than 20 degrees, but the reactor doesn’t shut down in this case, allowing for
corrective actions by other systems.

Shutting down the reactor and sounding the alarm happens via an external Java
library (over which you have no control) that’s offered as a simple API. The system
under testis now injected with this external API as well, as shown in the following listing.

Listing 3.10 Java classes for the temperature monitor, reader, and reactor control

public class TemperatureReadings { 47 Simple class that

contains temperatures
private long sensorlData;

private long sensor2Data;
private long sensor3Data;

Current
temperature

[...getters and setters here]

www.it-ebooks.info

http://www.it-ebooks.info/

82

Method called
by the class
under test

CHAPTER 3 A tour of Spock functionality

public interface TemperatureReader {
TemperatureReadings getCurrentReadings () ;

public class ReactorControl Class with
public void activateAlarm() side effects

}

public class ImprovedTemperatureMonitor {

{
}

[...implementation here...]

public void shutdownReactor ()

{
}

[...implementation here...]

private TemperatureReadings lastReadings;
private TemperatureReadings currentReadings;

private final ReactorControl reactorControl; <+

Interface implemented by
the reader software

, Class under test

private final TemperatureReader reader; <4+—

Injected field of reader
and reactor control

public ImprovedTemperatureMonitor (final TemperatureReader reader, final

ReactorControl reactorControl)

this.reactorControl = reactorControl;
this.reader = reader;

private boolean isTemperatureDiffMoreThan (long degrees)

{
}

[...implementation here that compares readings...

public void readSensor ()

lastReadings = currentReadings;
currentReadings = reader.getCurrentReadings () ;

[...sanity checks...]

if (isTemperatureDiffMoreThan (20))

{
}
if (isTemperatureDiffMoreThan (50))

{
}

reactorControl.activateAlarm() ; <4—

reactorControl.shutdownReactor () ; <

www.it-ebooks.info

Class under test calls
method with side effects

http://www.it-ebooks.info/

3.34

Isolating the class under test 83

Again, you're tasked with the unit tests for this system. By using Spock stubs as demon-
strated in the previous section, you already know how to handle the temperature
reader. This time, however, you can’t easily verify the reaction of the class under test,
ImprovedTemperatureMonitor, because there’s nothing you can assert.

The class doesn’t have any method that returns its status. Instead it internally calls
the Java API for the external library that handles the reactor. How can you test this?

OPTIONS FOR UNIT TESTING THIS MORE-COMPLEX SYSTEM
As before, you have three options:

1 You can ask the company that produces the Java API of the reactor control to
provide a “debug” version that doesn’t shut down the reactor, but instead prints
a warning or a log statement.

2 You can create your own implementation of ReactorControl and use that to
create your unit test. This is the same antipattern as stubs, because it adds extra
complexity and an unneeded maintenance burden to sync this fake object
whenever the Java API of the external library changes. Also notice that
ReactorControl is a concrete class and not an interface, so additional refactor-
ing effort is required before you even consider this route.

3 You can use mocks. This is the recommended approach.

Let’s see how Spock handles this testing scenario.

Examining interactions of mocked objects

As it does for stubbing, Spock also offers built-in mocking support. A mock is another
fake collaborator of the class under test. Spock allows you to examine mock objects for
their interactions after the test is finished. You pass it as a dependency, and the class
under test calls its methods without understanding that you intercept all those calls
behind the scenes. As far as the class under test is concerned, it still communicates
with a real class.

Unlike stubs, mocks can fake input/output, and can be examined after the test is
complete. When the class under test calls your mock, the test framework (Spock in
this case) notes the characteristics of this call (such as number of times it was called or
even the arguments that were passed for this call). You can examine these characteris-
tics and decide if they are what you expect.

In the temperature-monitor scenario, you saw how the temperature reader is
stubbed. The reactor control is also mocked, as shown in the next listing.

Listing 3.11 Mocking and stubbing with Spock

def "If current temperature difference is more than 20 degrees the alarm
sounds" () {
given: "that temperature readings are not within limits"
TemperatureReadings prev = new TemperatureReadings (sensorlData:20,
sensor2Data:40, sensor3Data:80)
TemperatureReadings current = new TemperatureReadings (sensorlData:30,
sensor2Data:10, sensor3Data:73) ;

www.it-ebooks.info

http://www.it-ebooks.info/

84 CHAPTER 3 A tour of Spock functionality

TemperatureReader reader = Stub (TemperatureReader) Creaﬁngastub
. for an interface

reader.getCurrentReadings () >>> [prev, current]
ReactorControl control = Mock (ReactorControl) Creaﬁngalnock
ImprovedTemperatureMonitor monitor = new for a concrete class

Class under ImprovedTemperatureMonitor (reader, control)

test is injected
with mock when: "we ask the status of temperature control"
and stub. monitor.readSensor () Mock methods are called

monitor.readSensor () behind the scenes.

then: "the alarm should sound"
0 * control.shutdownReactor ()

1 * control.activateAlarm() ‘ Verification of mock calls

def "If current temperature difference is more than 50 degrees the reactor
shuts down" () {

given: "that temperature readings are not within limits"

TemperatureReadings prev = new TemperatureReadings (sensorlData:20,
sensor2Data:40, sensor3Data:80)

TemperatureReadings current = new TemperatureReadings (sensorlData:30,
sensor2Data:10, sensor3Data:160) ;

TemperatureReader reader = Stub(TemperatureReader)

reader.getCurrentReadings () >>> [prev, current]

ReactorControl control = Mock (ReactorControl)
ImprovedTemperatureMonitor monitor = new
ImprovedTemperatureMonitor (reader, control)

when: "we ask the status of temperature control"
monitor.readSensor ()
monitor.readSensor ()

then: "the alarm should sound and the reactor should shut down"
1 * control.shutdownReactor ()
1 * control.activateAlarm()

The code is similar to listing 3.9, but this time the class under test is injected with two
fake objects (a stub and a mock). The mock line is as follows:

ReactorControl control = Mock (ReactorControl)

Spock automatically creates a dummy class that has the exact signature of the
ReactorControl class. All methods by default do nothing (so there’s no need to do
anything special if that’s enough for your test).

You let the class under test run its way, and at the end of the test, instead of testing
Spock assertions, you examine the interactions of the mock you created:

0 * control.shutdownReactor ()
1 * control.activateAlarm()

www.it-ebooks.info

http://www.it-ebooks.info/

Isolating the class under test 85

= The first line says, “After this test is finished, I expect that the number of times
the shutdownReactor () method was called is zero.”

= The second line says, “After this test is finished, I expect that the number of
times the activateAlarm() method was called is one.”

This is equivalent to the business requirements that dictate what would happen
depending on different temperature variations.

Using both mocks and stubs, you’ve seen how it’s possible to write a full test for the
temperature system without shutting down the reactor each time your unit test runs.
The reactor scenario might be extreme, but in your programming career, you may
already have seen Java modules with side effects that are difficult or impossible to test
without the use of mocking. Common examples are as follows:

= Charging a credit card

= Sending a bill to a client via email

= Printing a report

= Booking a flight with an external system

Any Java API that has severe side effects is a natural candidate for mocking. I've only
scratched the surface of what’s possible with Spock mocks. In chapter 6, you’ll see
many more advanced examples that also demonstrate how to capture the arguments
of mocked calls and use them for further assertions, or even how a stub can respond
differently according to the argument passed.

Mocking with Mockito

For comparison, I've included in the GitHub source code the same test with JUnit/
Mockito in case you want to compare it with listing 3.11 and draw your own conclu-
sions. Mockito was one of the inspirations for Spock, and you might find some simi-
larities in the syntax. Mockito is a great mocking framework, and much thought has
been spent on its API. It sometimes has a strange syntax in more-complex examples
(because it’s still limited by Java conventions). Ultimately, however, it's Java’s ver-
bosity that determines the expressiveness of a unit test, regardless of Mockito’s
capabilities.

For example, if you need to create a lot of mocks that return Java maps, you have to
create them manually and add their elements one by one before instructing Mockito
to use them. Within Spock tests, you can create maps in single statements (even in
the same line that stubbing happens), as you’'ve seen in Chapter 2.

Also, if you need a parameterized test with mocks (as I'll show in the next section),
you have to combine at least three libraries (JUnit plus Mockito plus JUnitParams) to
achieve the required result.

www.it-ebooks.info

http://www.it-ebooks.info/

86

3.3.5

Input temperature
with parameters

Creation of
dummy
interface

Class under
test is injected
with mock
and stub

CHAPTER 3 A tour of Spock functionality

Combining mocks and stubs in parameterized tests

As a grand finale of this Spock tour, I'll show you how to easily combine parameter-
ized tests with mocking/stubbing in Spock. I'll again use the temperature scenario
introduced in listing 3.10. Remember the requirements of this system:

= If the temperature difference is larger than 20 degrees (higher or lower), the
alarm sounds.

= If the temperature difference is larger than 50 degrees (higher or lower), the
alarm sounds and the reactor shuts down automatically.

We have four cases as far as temperature is concerned, and three temperature sensors.
Therefore, a full coverage of all cases requires at least 12 unit tests. Spock can com-
bine parameterized tests with mocks/stubs, as shown in the following listing.

Listing 3.12 Mocking/stubbing in a Spock parameterized test

def "Testing of all 3 sensors with temperatures that rise and fall" () ({
"various temperature readings"
TemperatureReadings prev =
new TemperatureReadings (sensorlData:previousTemp [0],
sensor2Data:previousTemp[1], sensor3Data:previousTemp[2])
TemperatureReadings current =
new TemperatureReadings (sensorlData:currentTemp[0],
sensor2Data:currentTemp [1], sensor3Data:currentTemp[2]) ;

given:

—®» TemperatureReader reader = Stub (TemperatureReader) .
Instrumenting return
reader.getCurrentReadings () >>> [prev, current] value of interface
ReactorControl controll= Mock(?eactorControl) Mocking of
—» ImprovedTemperatureMonitor monitor = new concrete class
ImprovedTemperatureMonitor (reader, control)
when: "we ask the status of temperature control"

monitor.readSensor ()
monitor.readSensor ()

Class under test calls stub
and mock behind the scenes

o

"the alarm should sound and the reactor should shut down if
needed"

shutDown * control.shutdownReactor ()

alarm * control.activateAlarm()

then:

Verification of mock
using parameters

where: "possible temperatures are:"

previousTemp | currentTemp || alarm | shutDown All parameter variations
[20, 30, 40]| [25, 15, 43.2] I o |o 47 and expected results
[20, 30, 40]] [13.3, 37.8, 39.2] |] o | o

[20, 30, 40]]| [50, 15, 43.2] || 1 | o

[20, 30, 40]| [-20, 15, 43.2] || 1] o

[20, 30, 40]| [100, 15, 43.2] [1 |1

[20, 30, 40]| [-80, 15, 43.2] [1|1

[20, 30, 40]| [20, 55, 43.2]] 1]o

[20, 30, 401| [20, 8 , 43.2] [1 | o

[20, 30, 40]| [21, 100, 43.2] [| 1 |1

www.it-ebooks.info

http://www.it-ebooks.info/

3.4

This

Summary 87

[20, 30, 40]| [22, -40, 43.2] | 1 |1
(20, 30, 40]| [20, 35, 76] [1 | o
[20, 30, 40]] [20, 31 ,13.2] I 1 | o
[20, 30, 401| [21, 33, 97] [101
[20, 30, 40]| [22, 39, -22] || 1 |1

code combines everything you’ve learned in this chapter. It showcases the

following:

The expressiveness of Spock tests (clear separation of test phases)
The easy tabular format of parameters (matching business requirements)
The ability to fake both input and output of the class under test

As an exercise, try replicating this functionality using Java and JUnit in fewer lines of
code (statements). As I promised you at the beginning of the book, Spock is a cohe-

sive

testing framework that contains everything you need for your unit tests, all

wrapped in friendly and concise Groovy syntax.

Summary

Spock tests have a clear structure with explicit given-when-then blocks.

Spock tests can be named with full English sentences.

JUnit reporting tools are compatible with Spock tests.

Spock tests allow for parameterized tests with the where: block.

Parameters in Spock tests can be written directly in a tabular format (complete
with header).

Unlike JUnit, Spock can have an unlimited number of parameterized tests in
the same class.

A stub is a fake class that can be programmed with custom behavior.

A mock is a fake class that can be examined (after the test is finished) for its
interactions with the class under test (which methods were called, what the
arguments were, and so forth).

Spock can stub classes/interfaces and instrument them to return whatever you
want.

The triple-right-shift/unsigned shift (>>>) operator allows a stub to return dif-
ferent results each time it’s called.

Spock can mock classes/interfaces and automatically record all invocations.
Spock can verify the number of times a method of a mock was called.
Combining stubs, mocks, and multiple parameters in the same Spock test is easy.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part 2

Structuring Spock tests

Tlis part contains the principal Spock knowledge. With the foundations out
of the way, you're ready to see the Spock syntax in all its glory, particularly the
different parts of a Spock unit test and how they can be combined for various
cases.

Chapter 4—the central chapter of the whole book—shows the individual
parts of a Spock unit test (which are called blocks), their purpose, significance,
and expected structure. This chapter also explains the lifecycle of a Spock test,
the documentation annotations, and the facilities offered by Spock that affect
the readability of a unit test. Make sure that you’ve mastered the topics of this
chapter before moving on to the rest of the book.

Chapter 5 focuses on parameterized tests. Paramelerized lests are unit tests that
always test the same scenario with different input and output parameters.
Depending on your application, you may have one or two parameterized tests
(among your vanilla unit tests), or you may be overwhelmed with parameterized
tests of multiple parameter combinations. Parameterized tests in Spock are a
breath of fresh air compared to existing solutions, as Spock allows you to directly
embed into source code the business description of input/output parameters.

Chapter 6 focuses on the mocking capabilities of Spock. Unlike other test
frameworks, Spock has built-in support for creating mocks without the need of
an external library. The way it sets up mocks and instructs them on their
expected behavior is one of the huge changes that set it apart from its competi-
tors. If you've already worked with Mockito, you’ll truly appreciate the simplicity
of Spock mocking. Again, depending on your application, you may need mock-
ing in a few special cases or in all your unit tests.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

4.1

Writing unat
tests with Spock

This chapter covers
= Working with Spock blocks

Understanding the lifecycle of a test
Improving readability of Spock tests
Using reusable JUnit features

All the Spock tests you’ve seen so far have been presented to you as a finished unit
test, with no explanation of how to reach that particular code structure. You're
probably eager to create your own Spock tests from scratch. In this chapter, you’ll
see all the building blocks that compose a Spock test and how they fit together (var-
ious combinations are possible).

You’ll also learn about the lifecycle of a Spock test and how to interact with its
various phases. Finally, you’ll see some tricks for handling lengthy Spock tests and
making them more readable (a common issue in large enterprise projects).

Understanding Spock from the ground up

At the lowest level, a Spock test method is highly characterized by its individual
blocks. This term is used for the code labels inside a test method. You’ve already

91

www.it-ebooks.info

http://www.it-ebooks.info/

92 CHAPTER 4 Writing unit tests with Spock

seen the given-when-then blocks multiple times in the previous chapters, as shown in
the following listing.

Listing 4.1 Spock blocks inside a test method

def "Adding two and three results in 5" () ({ 4—‘ Spock test
given: "the integers two and three" method
int a = 3
int b = 2 The given: block
and its description

when: "they are added"

The when:
block and its int result = a + b
description
then: "the result is five" The then: block
result == 5 and its description

}

Apart from the given-when-then blocks, Spock offers several other blocks that express
different test semantics. The full list is shown in table 4.1.

Table 4.1 Available Spock blocks

Spock block Description Expected usage
given: Creates initial conditions 85%

setup: An alternative name for given: 0% (I use given:)
when: Triggers the action that will be tested | 99%

then: Examines results of test 99%

and: Cleaner expression of other blocks 60%

expect: Simpler version of then: 20%

where: Parameterized tests 40%

cleanup: Releases resources 5%

The last column shows the percentage of your unit tests that should contain each
block. This number isn’t scientific, and is based only on my experience. Depending
on your application, your numbers will be different, but you can get an overall indica-
tion of the importance of each block.

4.1.1 A simple test scenario

I hope you enjoyed the nuclear reactor example of the previous chapter. In this chap-
ter, you'll get down to earth with a more common' system that needs testing. The Java

! ...and more boring. I know some of you were waiting for the software that tracks trajectories of nuclear missiles

in order to launch countermeasures (as teased in chapter 1). Sorry to disappoint you.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Spock from the ground up 93

Products
Buyer

-c Basket
!E!EEEIE!

Figure 4.1 Buying products in an electronic shop

Checkout

system you’ll test is an electronic shop that sells computer products via a website,
which I guess is more familiar to you than the internals of a nuclear reactor. You can
see an overview of the system in figure 4.1.

I’ll show you most Spock blocks by testing the base scenario, in which a user adds
one or more products in an electronic basket. The basket keeps the total weight (for
shipping purposes) and the price of all products selected by the user. The class under
test is that electronic basket. The collaborator class is the product, as shown in the fol-
lowing listing.

Listing 4.2 Java skeleton for an electronic basket

public class Product { 47 All products sold are

private String name; defined with this class.
private int price;

private int weight;
[...getters and setters here]

}

public class Basket ({

Triggered by the Ul when
the user selects a product

{
}

public void addProduct (Product product) <+
addProduct (product, 1) ;

public void addProduct (Product product, int times)

{

}

Needed for shipping
public int getCurrentWeight () calculations

{
}

[...code redacted for brevityl

[...code redacted for brevityl

www.it-ebooks.info

http://www.it-ebooks.info/

94

4.1.2

unit test.

CHAPTER 4 Writing unit tests with Spock

g{yubllc int getProductTypesCount () Needed for
sale analytics

}

[...code redacted for brevity]

Notice that this code is used only for illustration purposes. A production-ready e-shop
would be much different. Now let’s see all Spock blocks that you can use in your unit
tests.

The given: block

You've already seen the given: block multiple times in previous chapters of the book.
The given: block should contain all initialization code that’s needed to prepare your
unit test. The following listing shows a unit test that deals with the weight of the basket
after a product is selected by the user.

Listing 4.3 The given-when-then triad

def "A basket with one product has equal weight" () {

Product tv = new Product (name:"bravia",price:1200,weight:18)

Prepare the [> given: "an empty basket and a TV"

Basket basket = new Basket ()

Trigger the action

when: "user wants to buy the TV"
that will be tested.

basket .addProduct (tv)

then: "basket weight is equal to the TV"
basket.currentWeight == tv.weight

}

Examine the results.

The given: block sets up the scene for the test, as shown in figure 4.2. Its function is
to get everything ready just before the method(s) that will be tested is/are called.
Sometimes it’s tempting to place this initialization code in the when: block instead,
and completely skip the given: block. Although you can have Spock tests without a
given: block, I consider this a bad practice? because it makes the test less readable.

given: when: then:
An empty basket User wants Basket weight
andaTV aTVv equals TV weight
Figure 4.2 The given:
given: block prepares a test. block prepares a test.

2 An exception to this rule is a simple test with just the expect : block. That’s why I have 85% in expected
usage of the given: block.

www.it-ebooks.info

http://www.it-ebooks.info/

4.1.3

Prepare the
unit test.

Understanding Spock from the ground up 95

Rewrite credit card billing example with a given: block

As a quick exercise, look at listing 1.8 in chapter 1 (the example with credit card billing)
and rewrite it correctly, by properly constructing a given: block. Some examples in
chapter 2 are also missing the given: block. Try to find them and think how you should
write them correctly.

Unfortunately, in large enterprise projects, the code contained in the given: block
can easily get out of hand. Complex tests require a lot of setup code, and often you’ll
find yourself in front of a huge given: block that’s hard to read and understand.
You’ll see some techniques for managing that initialization code in a more manage-
able manner later in this chapter and also in chapter 8.

The setup: block

The setup: block is an alias for the given: block. It functions in exactly the same way.
The following listing contains the same unit test for the basket weight.

Listing 4.4 Using the setup alias

def "A basket with one product has equal weight (alternative)" ()

Product tv = new Product (name:"bravia",price:1200,weight:18)
Basket basket = new Basket ()

V setup: "an empty basket and a TV"

when: "user wants to buy the TV" Trigger the action
basket .addProduct (tv) that will be tested.
then: "basket weight is equal to the TV" ﬁ E ine th It
basket.currentWeight == tv.weight xamine the resufts.

Using setup: or given: is a semantic choice and makes absolutely no difference to
the underlying code or how the Spock test will run. Choosing between setup: and
given: for the initialization code is a purely personal preference (see figure 4.3).

given:
setup: when: then:

An empty basket User wants Basket weight
anda TV aTVv equals TV weight

given: blocks function exactly the
same as setup: blocks. They both Figure 4.3 The given: and setup: blocks
prepare a test. do exactly the same thing in Spock tests.

www.it-ebooks.info

http://www.it-ebooks.info/

96

4.1.4

CHAPTER 4 Writing unit tests with Spock

I tend to use the given: block, because I believe that the sentence flow is better
(given-when-then). Also, the setup: block might be confusing with some of the life-
cycle methods that you'll see later in this chapter.

The when: block

The when: block is arguably the most important part of a Spock test. It contains the
code that sets things in motion by triggering actions in your class under test or its col-
laborators (figure 4.4). Its code should be as short as possible, so that anybody can eas-
ily understand what’s being tested.

User wants a TV
and a camera

given: when: then:
20 kg 18 kg 2 kg
Il | I (|

e E N E-o

Figure 4.4 The when: block triggers the test and should be as simple as possible.

When I read an existing Spock test, I sometimes find myself focusing directly on the
when: block, in order to understand the meaning of the test (bypassing completely
the given: block).

The importance of the when: block

Every time you finish writing a Spock test, your first impulse should be to check the
contents of the when: block. It should be as simple as possible. If you find that it
contains too much code or triggers too many actions, consider refactoring its contents.

Put yourself in the shoes of the next developer who comes along and sees your Spock
test. How long will it take to understand the actions performed by the when: block?

In listing 4.4, the when: block is a single statement, so it’s easy to understand what’s
being tested. Even though the e-shop example is basic, the same concept should apply
to your when: blocks. The contents should be one “action.” This action doesn’t have

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Spock from the ground up 97

to be a single statement, but it must capture a single concept in your unit test. To
explain this idea better, the following listing shows a bad use of a when: block.

Listing 4.5 A nontrivial when : block—don’t do this

def "Test index assign" () {
setup:
List<String> list = ["IDCODIGO", "descripcion", "field 1",
"FAMILIA", "MARCA"]

ArticuloSunglassDescriptor.reset ()

when: 7 when: block with no text description

Integer ix = 0 and unclear trigger code
for (String tag in list) {

for (ArticuloSunglassDescriptor descriptor in

ArticuloSunglassDescriptor.values()) {
if (descriptor.equals(tag))
descriptor.index = ix
break
}
}
ix++
}
then:
ArticuloSunglassDescriptor.family.index == 3

}

The code comes from a Spock test I found in the wild.> How long does it take you to
understand what this Spock test does? Is it easy to read the contents of the when: block?

What’s the class under test here? Notice also that all three blocks (setup-when-
then) have no text description (another practice that I find controversial). This makes
understanding the test even harder.

You’ll see some techniques for refactoring when: blocks later in this chapter. For
now, keep in mind that the code inside the when: block should be short and sweet, as
seen in the following listing.

Listing 4.6 Descriptive when: blocks

def "A basket with two products weights as their sum" () {
given: "an empty basket, a TV and a camera"
Product tv = new Product (name:"bravia",price:1200,weight:18)

¥ Again I mean no disrespect to the author of the code. If you're reading this, I thank you for providing a real
Spock test available on the internet for my example.

www.it-ebooks.info

http://www.it-ebooks.info/

98

4.1.5

CHAPTER 4 Writing unit tests with Spock

Product camera = new Product (name:"panasonic",price:350,weight:2)
Basket basket = new Basket ()

. n n
when: "user wants to buy the TV and the camera when: block with
basket.addProduct (tv) text description and
basket .addProduct (camera) deartﬁggercode

then: "basket weight is equal to both camera and tv"
basket.currentWeight == (tv.weight + camera.weight)

}

Even though the when: block s two statements here, they both express the same concept
(adding a product to a basket). Understanding the when: block in this example is easy.

The then: block

The then: block is the last part of the given-when-then trinity. It contains one or more
Groovy assertions (you’ve seen them in chapter 2) to verify the correct behavior of
your class under test, as shown in figure 4.5.

The basket’s weight is the same as the
sum of the products’ weights.

given: when: then:

20 kg 18kg 2kg

—< | | —O

Il | Il |

% - === -- ;

Figure 4.5 The then: block verifies the behavior of the class under test.

Again, you’re not limited to a single statement, but all assertions should examine the
same thing. If you have unrelated assertions that test different things, your Spock test
should break up into smaller ones.

Note also that Spock has an automatic safeguard against Groovy asserts that aren’t
really asserts (a common mistake). Assume that I wrote my Spock test like the follow-
ing listing.

Listing 4.7 Invalid then: block

def "A basket with two products weights as their sum" () {
given: "an empty basket, a TV and a camera"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)

www.it-ebooks.info

http://www.it-ebooks.info/

4.1.6

and: block
creates the
collaborators.

Understanding Spock from the ground up 99

Basket basket = new Basket ()

when: "user wants to buy the TV and the camera"
basket .addProduct (tv)

basket .addProduct (camera)

Mistake! It should be

then: "basket weight is equal to both camera and tv" !
== instead of =.

basket.currentWeight = (tv.weight + camera.weight)

Running this test prints the following:

>mvn test

> BasketWeightSpec.groovy: 45: Expected a condition, but found an
assignment. Did you intend to write '==' ? @ line 45, column 3.
[ERROR] Dbasket.currentWeight = (tv.weight + camera.weight)

This is a nice touch of Spock, and although it’s not bulletproof, it provides effective
feedback when you start writing your first Spock tests.

The and: block

The and: block is a strange one indeed. It might seem like syntactic sugar at first sight
because it has no meaning on its own and just extends other blocks, but it’s important
as far as semantics are concerned. It allows you to split all other Spock blocks into dis-
tinctive parts, as shown in the next listing, making the code more understandable.

Listing 4.8 Using and: to split the given: block

def "A basket with three products weights as their sum" ()
given: "an empty basket" given: block deals only
Basket basket = new Basket () with the class under test.

and: "several products"

Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)
Product hifi = new Product (name:"jvc",price:600,weight:5)

when: "user wants to buy the TV and the camera and the hifin"
basket .addProduct tv

basket .addProduct camera

basket.addProduct hifi

then: "basket weight is equal to all product weight"
basket.currentWeight == (tv.weight + camera.weight + hifi.weight)

Here you use the and: block to distinguish between the class under test (the Basket
class) and the collaborators (the products), as illustrated in figure 4.6. In larger Spock
tests, this is helpful because, as I said already, the initialization code can quickly grow
in size in a large enterprise application.

www.it-ebooks.info

http://www.it-ebooks.info/

100 CHAPTER 4 Writing unit tests with Spock
given: and: when: then:

4 N (N (N (25 kg 18kg 2kg 5kg)
oo ol[=1o
O =op OF o

©) O,
- BEB m =F e ,
=B = = =~ JeapeH
_ J J J W

An empty basket

ATV, a camera, a hifi

This and: block extends the given: block,
to effectively distinguish between the
class being tested (basket) and its
collaborators (the products).

Figure 4.6 The and: block allows you to include collaborator classes in a test.

It’s also possible to split the when: block, as shown in the following listing.

Listing 4.9 Using and: to split the when: block

def "A basket with three products weights as their sum (alternate)" () ({

given:
Basket

"an empty basket, a TV,a camera and a hifi"
basket = new Basket ()

Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)
Product hifi = new Product (name:"jvc",price:600,weight:5)

when:
basket

and: "
basket

and: "
basket

then:
basket

"user wants to buy the TV.." 444} Original
.addProduct tv when: block
..the camera.." <+—
.addProduct camera Extension of

when: block
..and the wifin" <

.addProduct hifi

"basket weight is equal to all product weight"
.currentWeight == (tv.weight + camera.weight + hifi.weight)

This example might be trivial, but it also showcases the capability to have more than
one and: block. It’s up to you to decide how many you need. In the case of the when:
block, always keep in mind the rule outlined in the previous section: if your and:

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Spock from the ground up 101

given: when: and: and: then:

25kg 18kg 2kg 5kg
— — oo S
@ EEE :—;;—1 I‘-;;—‘I r-.:;.-‘l :—;;\.‘: — @ EEE

The user wants to buy the TV, and the camera, and the hifi.

You can have multiple and: blocks. These and: blocks
split up the when: blocks into related triggers.

Figure 4.7 You can concatenate multiple and: blocks to a when: block.

blocks that come after when: perform unrelated triggers, you need to simplify the
when: block. Figure 4.7 demonstrates this scenario.

The most controversial usage of the and: block occurs when it comes after a then:
block, as shown in the next listing.

Listing 4.10 Using and: as an extension to a then: block

def "A basket with three products has correct weight and count
(controversial) " () {
given: "an empty basket, a TV,a camera and a hifi"
Basket basket = new Basket ()
Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)
Product hifi = new Product (name:"jvc",price:600,weight:5)

when: "user wants to buy the TV and the camera and the hifi"
basket.addProduct tv

basket .addProduct camera

basket.addProduct hifi

Original then: then: "the basket weight is equal to all product weights"
block basket.currentWeight == (tv.weight + camera.weight + hifi.weight)
and: "it contains 3 products" Extension of
basket .productTypesCount == 3 then: block

www.it-ebooks.info

http://www.it-ebooks.info/

102 CHAPTER 4 Writing unit tests with Spock
given: when: then: and:
25kg 18kg 2kg 5kg
L= L=
olElo omlo
© ©
[> [~
== ==
=S =g

L]=Be8

gLl

Products

...and the basket has
three products.

The basket weight is the same as
the sum of products’ weights...

Figure 4.8 Using an and: block with a then: block is possible but controversial. You could be testing two

unrelated things.

In this example, I use the and: block to additionally verify the number of products
inside the basket, as illustrated in figure 4.8.

Whether this check is related to the weight of the basket is under discussion. Obvi-
ously, if the number of products inside the basket is wrong, its weight will be wrong as
well; therefore, you could say that they should be tested together.

Another approach is to decide that the basket weight and number of products are
two separate things that need their own respective tests, as shown in figure 4.9.

One then: block evaluates
the number of products.

)

given: when then:
N
O[] © O[O 1
S20%e o
— —
- ; EEE - - 3
) Products
given: when: then:
h 20 kg 18kg 2kg 5kg
ol om0
Oo[H|o L5 o|mo L5
— —

Another test evaluates
weights in a then: block.

Figure 4.9 Instead of using an and: block with a then: block, consider writing two separate tests.

www.it-ebooks.info

http://www.it-ebooks.info/

4.1.7

Understanding Spock from the ground up 103

There’s no hard rule on what’s correct and what’s expect :

wrong here. It’s up to you to decide when to use an
and: block after a then: block. Keep in mind the
golden rule of unit tests: they should check one
thing.* My advice is to avoid using and: blocks after 0 kg
then: blocks, unless you're sure of the meaning of
the Spock test. The and: blocks are easy to abuse if

you’re not careful.

Figure 4.10 An expect: block

The expect: block can replace given:, when:, and
then: blocks.
The expect: block is a jack-of-all-trades in Spock

tests. It can be used in many semantic ways, and
depending on the situation, it might improve or worsen the expressiveness of a
Spock test.

At its most basic role, the expect: block combines the meaning of given-when-
then. Like the then: block, it can contain assertions and will fail the Spock test if any
of them don’t pass. It can be used for simple tests that need no initialization code (fig-
ure 4.10), and their trigger can be tested right away, as shown in the following listing.

Listing 4.11 Trivial tests with the expect: block

def "An empty basket has no weight" () ({
expect: "zero weight when nothing is added" Only the expect:
new Basket () .currentWeight == block is present.

}

More preferably, the expect: block should replace only the when: and then: blocks,
as shown in figure 4.11.

given: expect:

7

== Okg

More realistically, an expect:
block replaces just the when: Figure 4.11 An expect: usually
and then: blocks. replaces a when: and a then: block.

* Alternatively, a unit test should fail for a single reason.

www.it-ebooks.info

http://www.it-ebooks.info/

104

4.1.8

CHAPTER 4 Writing unit tests with Spock

This is my preferred use of the expect: block, as shown in the following listing.

Listing 4.12 expect: block replaces when: and then:

def "An empty basket has no weight (alternative)" () {
given: "an empty basket™"

Basket basket = new Basket ()

expect: block performs

expect: "that the weight is 0" the assertion of the test

basket.currentWeight == 0

-

Because the expect: block accepts Groovy assertions, it can be used in other creative
ways that distinguish it from the then: block that typically ends a Spock test. The fol-
lowing listing shows a given-expect-when-then test (as seen in the excellent presenta-
tion “Idiomatic Spock”5 found at https://github.com/robfletcher/idiomatic-spock).

Listing 4.13 Using expect: for preconditions

def "A basket with two products weights as their sum (precondition)" () ({
given: "an empty basket, a TV and a camera"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)
Basket basket = new Basket ()

expect:"that not?lng should be inside" expect: block performs
basket.currentWeight == intermediate assertions
basket .productTypesCount == 0

when: "user wants to buy the TV and the camera"
basket.addProduct tv
basket .addProduct camera

then: block examines
then: "basket weight is equal to both camera and tv" 444Jtheﬁnd|@suk
basket.currentWeight == (tv.weight + camera.weight)

-

In this example, you use the expect: block to verify the initial state of the basket
before adding any product. This way, the test fails faster if a problem with the basket
occurs.

The cleanup: block

The cleanup: block should be seen as the “finally” code segment of a Spock test. The
code it contains will always run at the end of the Spock test, regardless of the result
(even if the test fails). The following listing shows an example of this.

® The presentation is by Robert Fletcher, but the specific example of expect : is by Luke Daley (co-author of
the Spock framework and creator of Geb, which you’ll see in chapter 7).

www.it-ebooks.info

https://github.com/robfletcher/idiomatic-spock
http://www.it-ebooks.info/

then: block
examines the
final result.

4.2

4.2.1

Converting requirements to Spock tests 105

Listing 4.14 Using cleanup: to release resources even if test fails

def "A basket with one product has equal weight" ()
given: "an empty basket and a TV"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Basket basket = new Basket ()

when: "user wants to buy the TV"
basket .addProduct (tv)

then: "basket weight is equal to the TV"
basket.currentWeight == tv.weight

cleanup: block will always
cleanup: "refresh basket resources" run, even if then: fails.

basket.clearAllProducts ()
}

Assume for a moment that the implementation of the basket also keeps temporary
files for the current contents for reliability purposes (or sends analytics to another
class—you get the idea). The basket comes with a clearAllProducts () method that
empties the basket and releases the resources (deletes temporary files) it holds. By
placing this method in the cleanup: block, you ensure that this method always runs,
even if the code stops at the then: block because of failure.

The cleanup: block concludes all possible Spock blocks. Continuing with the bot-
tom-up approach, let’s see where these blocks go in your source code.

The where: block is shown in chapter 5

If you’ve been paying close attention, you must have noticed that | haven’t said any-
thing about the where: block. The where: block is used exclusively for parameterized
tests. There are so many things to discuss about parameterized Spock testing that
it has its own chapter. Chapter 5 covers parameterized tests and the possible forms
of the where: block, so keep reading to get the full picture on all Spock blocks.

Converting requirements to Spock tests

Spock blocks embody the low-level mechanics of unit tests. You should also pay equal
attention to the methods and classes that contain them. In large enterprise projects,
organization and naming of unit tests play a crucial role in easy maintenance and
effortless refactoring.

Spock also offers metadata that you can use to annotate your tests for extra clarity.
The advantage that this metadata has over normal Java comments is that it can be
extracted by reporting tools.

Explaining the feature examined in a Spock test

A unique characteristic of Spock test methods is the capability to name them by using
full English sentences. This is a huge advantage for Spock tests because it makes read-
ing tests so much easier (even for nontechnical colleagues).

www.it-ebooks.info

http://www.it-ebooks.info/

106

4.2.2

CHAPTER 4 Writing unit tests with Spock

I've used this technique since the first chapter and consider it a groundbreaking fea-
ture of Spock, compared to the status quo. The following listing provides an example.

Listing 4.15 Test method describes exactly what is being tested

def "A basket with one product has equal weight" () .
. P d g { Full English text
given: "an empty basket and a TV"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Basket basket = new Basket ()

when: "user wants to buy the TV"
basket .addProduct (tv)

then: "basket weight is equal to the TV"
basket.currentWeight == tv.weight

It’s your job to make sure that this text is understandable (even out of context). Ide-
ally, it should match the specifications given by business analysts. If you don’t have
detailed specifications (and you should), the method name should describe what’s
being tested in a nontechnical way.

The names of Spock methods will appear in test results and coverage reports, so
always assume that somebody will read this text without having direct access to the
code of the implementation.

Marking the class under test inside a Spock test

In most unit tests, initialization code prepares multiple classes and input data. The
class that will be tested and evaluated has more importance than its collaborators,
which are the classes that communicate with it, but not under test (either because
they have their own tests or because they’re assumed to be correct).

To distinguish this special class, Spock offers the @Subject annotation, as shown is
the next listing. In this example, the class under test is the Basket class.

Listing 4.16 Marking the class under test

def "A basket with two products weights as their sum (better)" () {
given: "an empty basket™"
@Subject
Basket basket = new Basket ()

The subject of this test
is the Basket class.

and: "several products"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)

when: "user wants to buy the TV and the camera and the hifin"
basket .addProduct tv
basket .addProduct camera

then: "basket weight is equal to all product weight"
basket.currentWeight == (tv.weight + camera.weight)

www.it-ebooks.info

http://www.it-ebooks.info/

4.2.3

Description
in full English
sentence

-

Converting requirements to Spock tests 107

In this simple example, it might be easy to understand that the Basket class is the one
being tested (especially by looking at the when: and then: blocks), but in larger unit
tests, the class under test might not be obvious.

At the time of writing, there’s no reporting tool that takes into account the @Sub-
ject annotation, but you should use it anyway to improve readability by other pro-
grammers. In current reporting tools, you can’t see which class is under test and
you’re forced to look at the source code to identify it. Hopefully, this limitation will be
amended soon by newer versions of test reporting tools.

Describing the Spock unit test as a whole

You now have multiple test methods (features in Spock terminology) and want to
group them in a Groovy class. This class is a specification, as you can see in the following
listing.

Listing 4.17 Writing a Spock specification

@Title ("Unit test for basket weight")

class BasketWeightSpec extends spock.lang.Specification{ 441 Groovy class extends

Specification.
[...test methods here redacted for brevity...]

}

The class that contains all the test methods is a Groovy class that must extend
spock.lang.Specification. This makes it a Spock test. The name of the class can be
anything, butit’s good practice to end the name in Spec (for example, BasketWeight -
Spec). You can pick any ending you want, as long as it’s the same on all your Spock
tests, because it makes it easier for the build system (e.g., Maven) to detect Spock tests.

For technical reasons, Spock can’t allow you to name the class with full English text
like the test methods. To remedy this limitation, it instead offers the @Title annota-
tion, which you can use to give a human-readable explanation of the features that
make up this specification.

Naming .groovy files using the expected Java convention

Unlike Java, Groovy doesn’t require the name of the class and the name of the file
on the disk to be the same. You can place the BasketWeightSpec class in a file called
MyBasketWeightUnitTest.groovy if that’s what you want. For simplicity, | still urge you
to use the Java convention because it makes navigating Spock tests much easier.
Therefore, the BasketWeightSpec class should be placed in a file named Basket-
WeightedSpec.groovy.

As an extra bonus, Spock also offers the @Narrative annotation, which can provide
even more text that describes what the test does, as shown in the following listing.

www.it-ebooks.info

http://www.it-ebooks.info/

108 CHAPTER 4 Writing unit tests with Spock

Listing 4.18 Writing a full Spock specification

@Narrative (""" A empty basket starts with no Longer
Groovy

weight. Adding products to the basket description
increases its weight. The weight is of unit test
then used for billing during shipping calculations. multiline
Single-line L Electronic goods have always zero weight. string
description iy
of test @Title ("Unit test for basket weight")

@Subject (Basket) Information on the
class BasketWeightDetailedSpec extends spock.lang.Specification({

class under test for
[...test methods here redacted for brevity...] all test methods
}

This listing uses a Groovy multiline string that allows you to insert as many lines of text
as you want (a feature that your business analysts might love). In Groovy, multiline
strings need triple quotes.

Listing 4.18 also shows the application of the @Subject annotation on the whole
class. If you find that all your test methods focus on the same class (which is the usual
case), you can apply the @Subject annotation at the top of the Spock test instead of
placing it multiple times in the test methods. The class under test is then used as an
argument (no need to add the .class extension).

Notice that for brevity I omit the @Title and @Narrative annotations (and usually
@Subject as well) in this book’s examples. You should always attempt to include them
in your Spock tests. I tend to look at @Title and @Subject asa compulsory requirement
for a Spock test. @Narrative is good to have, but not essential for all kinds of tests.

4.2.4 Revising our view of a Spock test

Because I started explaining Spock elements by using a bottom-up approach, now that
we’ve reached the top, let’s see how to revise all parts of a Spock test, as shown in

figure 4.12.
~ A Spock specification is a
“—.__ Groovy class that contains
one or more features (e.g.,
BasketWeightDetailedSpec).
given: > when: | then:

<
\ A feature is a

test method.

18kg 18 kg
(Y S s B N Each feature (test method)
Q = - Q has Spock blocks; for example,

!

- the basic given:, when:, and
then: blocks to test basket
/ and product weights.

Figure 4.12 Blocks inside features (test methods) inside Specification (Groovy class)

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the lifecycle of a Spock test 109

A Spock test is a Groovy class that extends spock.lang.Specification. It should be
marked with the @Title annotation to explain its purpose.

The Spock test contains one or more test methods (features in Spock terminology)
that examine various aspects of the class under test. Test methods can be named directly
with full English sentences. The class under test should be marked with the @Subject
annotation, either in each test method individually or at the top of the specification.

Finally, each Spock feature (test method) is characterized by the Spock blocks it
contains. The most basic structure is the given-when-then blocks that prepare the test,
trigger the tested action, and examine the results.

This diagram is useful for our next topic: the lifecycle of a Spock specification.

4.3 Exploring the lifecycle of a Spock test

When you create a unit test to examine the behavior of a specific class, you’ll find
yourself writing the same code over and over again in the given: block. This makes
sense because several test methods have the same initial state and only a different trig-
ger (the when: block). Instead of copying and pasting this behavior (and thus violating
the DRY® principle), Spock offers you several facilities to extract common precondi-
tions and post-conditions of tests in their own methods.

4.3.1 Setup and cleanup of a feature

In the Spock test that examines your imaginary electronic basket, I’'ve duplicated the
code that creates products multiple times. This code can be extracted as shown in the
following listing.

Listing 4.19 Extracting common initialization code

class CommonSetupSpec extends spock.lang.Specification{

Product tv Common classes

Product camera are placed as fields. This method runs
automatically before

def setup() { each test method.

Initialization code tv = new Product (name:"bravia",price:1200,weight:18)
is written once. camera = new Product (name:"panasonic",price:350,weight:2)

def "A basket with one product weights as that product"() { <—
[...code redacted for brevity purposes...] Test methods
} run after
initialization
def "A basket with two products weights as their sum" () < code.

[...code redacted for brevity purposes...]

5 This acronym stands for don’t repeat yourself. See https://en.wikipedia.org/wiki/Don’t_repeat_yourself for
more information.

www.it-ebooks.info

https://en.wikipedia.org/wiki/Don’t_repeat_yourself
http://www.it-ebooks.info/

110 CHAPTER 4 Writing unit tests with Spock

Spock will detect a special method called setup () and will run it automatically before
each test method. In a similar manner, Spock offers a cleanup () method that will run
after each test method finishes. A full example is shown in the following listing.

Listing 4.20 Extracting common pre/post conditions

@Subject (Basket)
class CommonCleanupSpec extends spock.lang.Specification({

Product twv
Common classes

are placed as fields.

Product camera
Basket basket

This method def setup() {
will run tv = new Product (name:"bravia",price:1200,weight:18)
automatically camera = new Product (name:"panasonic",price:350,weight:2)
before each basket = new Basket ()
test method. 1

def "A basket with one product weights as that product" ()
when: "user wants to buy the TV"
basket.addProduct tv

then: "basket weight is equal to all product weight"
basket.currentWeight == tv.weight

}

def "A basket with two products weights as their sum" () {
when: "user wants to buy the TV and the camera"
basket.addProduct tv
basket.addProduct camera

then: "basket weight is equal to all product weight"

basket.currentWeight == (tv.weight + camera.weight)
}
def cleanup () This method will run automatically
{ after each test method.

basket.clearAllProducts ()

}

As with the cleanup: block, the cleanup () method will always run, regardless of the
result of the test. The cleanup () method will even run if an exception is thrown in a
test method.

4.3.2 Setup and cleanup of a specification

The code you place inside the setup () and cleanup () methods will run once for each
test method. If, for example, your Spock test contains seven test methods, the setup/
cleanup code will run seven times as well. This is a good thing because it makes each
test method independent. You can run only a subset of test methods, knowing they’ll
be correctly initialized and cleaned afterward.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the lifecycle of a Spock test 111

But sometimes you want initialization code to run only once before all test methods.
This is the usual case when you have expensive objects that will slow down the test if they
run multiple times. A typical case is a database connection that you use for integration
tests, but any long-lived expensive object is a good candidate for running only once.

Spock supports this case as well, as shown in the following listing.

Listing 4.21 All Spock lifecycle methods

class LifecycleSpec extends spock.lang.Specification(

def setupSpec() Initialization for
} println "Will run only once" expensive objects

def setup() { < Common code

println "Will run before EACH feature" for all tests

def "first feature being tested" () { <+

expect: "trivial test"

println "first feature runs"

2 == 1 +1 Test methods
}
def "second feature being tested" () ({ <+

expect: "trivial test"
println "second feature runs"
5 == 3 +2

J Common cleanup

def cleanup() { code for all tests

println "Will run once after EACH feature"

def cleanupSpec() { Finalization of
println "Will run once at the end" expensive objects

1
If you run this unit test, it will print the following:

Will run only once

Will run before EACH feature
first feature runs

Will run once after EACH feature
Will run before EACH feature
second feature runs

Will run once after EACH feature
Will run once at the end

Compatibility with JUnit lifecycle methods

If you’re familiar with JUnit, you’ll notice that the Spock lifecycle methods work exactly
like the annotations @Before, @After, @BeforeClass, and @AfterClass. Spock hon-
ors these annotations as well, if for some reason you want to continue to use them.

www.it-ebooks.info

http://www.it-ebooks.info/

112

4.3.3

CHAPTER 4 Writing unit tests with Spock

Because setupSpec () and cleanupSpec () are destined to hold only long-lived objects
that span all the test methods, Spock allows code in these methods to access only static
fields (not recommended) and objects marked as @Shared, as you'll see in the next
section.

Long-lived objects with the @Shared annotation

You can indicate to Spock which objects you want to survive across all test methods by
using the @Shared annotation. As an example, assume that you augment your elec-
tronic basket with a credit card processor:

public class CreditCardProcessor {

public void newDayStarted ()

{
}
public void charge (int price)

{
}

[...code redacted for brevity..]

[...code redacted for brevity..]

public int getCurrentRevenue ()

{
}

[...code redacted for brevity..]

public void shutDown ()

{
}

[...code redacted for brevity..]

CreditCardProcessor is an expensive object. It connects to a bank back end and
allows your basket to charge credit cards. Even though the bank has provided dummy
credit card numbers for testing purposes, the initialization of the connection is slow. It
would be unrealistic to have each test method connect to the bank again. The follow-
ing listing shows the solution to this problem.

Listing 4.22 Using the @Shared annotation

class SharedSpec extends spock.lang.Specification{

@Shared Will be created
CreditCardProcessor creditCardProcessor; only once
BillableBasket basket Will be created

multiple times
def setupSpec() {

creditCardProcessor = new CreditCardProcessor () 4“\Expenﬁvwﬂow

initialization

}

www.it-ebooks.info

http://www.it-ebooks.info/

Shared object
can be used
normally.

4.3.4

Exploring the lifecycle of a Spock test 113

def setup() {

basket = new BillableBasket () 47 Fast/cheap

creditCardProcessor.newbDayStarted () initialization

basket.setCreditCardProcessor (creditCardProcessor)

}

def "user buys a single product" () {
given: "an empty basket and a TV"
Product tv = new Product (name:"bravia",price:1200,weight:18)

and: "user wants to buy the TV"
basket .addProduct (tv)

when: "user checks out"
basket .checkout ()

then: "revenue is the same as the price of TV"
creditCardProcessor.currentRevenue == tv.price

}

def "user buys two products" () {
given: "an empty basket and a camera"
Product camera = new
Product (name: "panasonic",price:350,weight:2)

and: "user wants to two cameras"
basket .addProduct (camera, 2)

when: "user checks out"
basket .checkout ()

then: "revenue is the same as the price of both products"
creditCardProcessor.currentRevenue == 2 * camera.price

}

def cleanup () {
basket.clearAllProducts () Will run

} multiple times
def cleanupSpec () {

creditCardProcessor.shutDown () Will run
1 only once

Here you mark the expensive credit card processor with the @Shared annotation. This
ensures that Spock creates it only once. On the other hand, the electronic basket itself
is lightweight, and therefore it’s created multiple times (once for each test method).
Notice also that the credit card processor is closed down once at the end of the test.

Use of the old() method

The old() method of Spock is a cool trick, but I've yet to find a real example that
makes it worthwhile. I mention it here for completeness, and because if you don’t

www.it-ebooks.info

http://www.it-ebooks.info/

114

Product is
added in
given: block.

Checking
the difference
in weight

.
.

CHAPTER 4 Writing unit tests with Spock

know how it works, you might think it breaks the Spock lifecycle principles. You use it
when you want your test to capture the difference from the previous state instead of
the absolute value, as shown in the following listing.

Listing 4.23 Asserting with the o1d () method

def "Adding a second product to the basket increases its weight" () {
given: "an empty basket™"
Basket basket = new Basket ()

and: "a tv is already added to the basket™"
Product tv = new Product (name:"bravia",price:1200,weight:18)
basket .addProduct (tv)

when: "user gets a camera too"
Product camera = new Product (name:"panasonic",price:350,weight:2)
basket .addProduct (camera)

then:
basket.currentWeight ==

"basket weight is updated accordingly"

old (basket.currentWeight) + camera.weight

}

Here you have a unit test that checks the weight of the basket after a second product is
added. You could check for absolute values in the then: block (assert that the basket
weight is the sum of two products), but instead you use the old () method and say to
Spock, “I expect the weight to be the same as before the when: block, plus the weight
of the camera.” Figure 4.13 illustrates this.

The difference in expression is subtle, and if you find the old() method confus-
ing, there’s no need to use it at all.

old (basket.currentWeight)

given: and: when: then:l

then: block uses
old() to evaluate
weights using the
basket weight prior
to the when: block.

then:
20 kg 18kg 2kg
— then: block evaluates
—] [} el

+—__ absolute values of
product weights in
the basket.

Figure 4.13 The old () method allows you to access values set before the when: block in a test.

www.it-ebooks.info

Second product is
added in when: block.

http://www.it-ebooks.info/

4.4

4.4.1

Writing readable Spock tests 115

Writing readable Spock tests

Despite all the cool facilities offered by Groovy, your ultimate target when writing
Spock tests should be readability. Especially in large enterprise applications, the ease
of refactoring is greatly affected by the quality of existing unit tests. Because unit tests
also act as a live specification of the system, understanding Spock tests is crucial in
cases requiring you to read a unit test to deduce the expected behavior of the code.

Knowing the basic techniques (for example, the Spock blocks) is only the first step
to writing concise and understandable unit tests. The second step is to use the basic
techniques effectively, avoiding the temptation of “sprinkling” unit test code with
Groovy tricks that add no real purpose to the test other than showing off.’

Structuring Spock tests

You saw all the Spock blocks at the beginning of the chapter. The given-when-then
cycle should be your mantra when you start writing your first Spock unit tests. You
might quickly discover that Spock doesn’t have many restrictions in regard to the
number and sequence of blocks inside a test method. But just because you can mix
and match Spock blocks doesn’t mean that you should.

As an example, it’s possible to have multiple when-then blocks in a single test
method, as shown in the following listing.

Listing 4.24 Multiple when-then blocks

def "Adding products to a basket increases its weight" () {
given: "an empty basket"
Basket basket = new Basket ()

and: "a two products"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)

when: "user gets the camera" <+—
basket .addProduct (camera) First pair of
when-then

then: "basket weight is updated accordingly" <+
basket.currentWeight == camera.weight
when: "user gets the tv too" <+ .

Second pair of when-
basket .addProduct (tv) .

then will be executed

in sequence.
then: "basket weight is updated accordingly" <+ 9
basket.currentWeight == camera.weight + tv.weight

7 If you really want to show off one-liners, Groovy is not for you. Learn Perl.

www.it-ebooks.info

http://www.it-ebooks.info/

116

44.2

Blocks without
descriptions

CHAPTER 4 Writing unit tests with Spock

This pattern must be used with care. It can be used correctly as a way to test a
sequence of events (as demonstrated in this listing). If used incorrectly, it might also
mean that your test is testing two things and should be broken.

Use common sense when you structure Spock tests. If writing descriptions next to
Spock blocks is becoming harder and harder, it might mean that your test is doing
complex things.

Ensuring that Spock tests are self-documenting

I've already shown you the @Subject and @Title annotations and explained that the
only reason they’re not included in all examples is to save space.

What I've always included, however, are the descriptions that follow each Spock
block. Even though in Spock these are optional, and a unit test will run without them,
you should consider them essential and always include them in your unit tests. Take a
look at the following listing for a real-world antipattern of this technique.

Listing 4.25 Missing block descriptions—don’t do this

def "Test toRegExp (Productos3.txt)" () { Unclear test
—p setup: method name
String filePattern = 'PROD{MES}{DIA} 11.TXT'

String regexp = FileFilterUtil.toRegExpLowerCase(filePattern)
Pattern pattern = Pattern.compile (regexp)

—P» expect:
StringUtils.trimToEmpty (filename) .toLowerCase () .matches (pattern) ==
match
L p where:
filename << ['PROD.05-12.11.TXT', 'prod.03-21.11.txt"',
'PROD051211.TXT', 'prod0512_ 11.txt']

match << [false, false, false, true]

This test lacks any kind of human-readable text. It’s impossible to understand what
this test does without reading the code. It’s also impossible to read it if you're a non-
technical person. In this example, it’s a pity that the name of the test method isn’t a
plain English sentence (a feature offered natively by Spock). You could improve this
test by changing the block labels as follows:

setup: "given a naming pattern for product files"

expect: "that the file name matches regardless of spaces and capitalization"
where: "some possible file names are"

Always include in your Spock tests at least the block descriptions and make sure that
the test method name is human-readable.

www.it-ebooks.info

http://www.it-ebooks.info/

4.4.3

Checks the
weight of three
products

Writing readable Spock tests 117

Modifying failure output

Readability shouldn’t be constrained to successful unit tests. Even more important is
the readability of failed tests. In a large application with legacy code and a suite of exist-
ing unit tests, a single change can break unit tests that you didn’t even know existed.

You learned how Groovy asserts work in chapter 2 and how Spock gives you much
more information when a test fails. Although Spock automatically analyzes simple types
and collections, you have to provide more hints when you assert your own classes. As an
example, the following listing adds one of the products in the basket twice.

Listing 4.26 Adding a product twice in the basket

def "Adding products to a basket increases its weight" () {
given: "an empty basket"
ProblematicBasket basket = new ProblematicBasket ()

and: "two different products"
Product laptop = new Product (name:"toshiba",price:1200,weight:5)
Product camera = new Product (name:"panasonic",price:350,weight:2)

when: "user gets a laptop and two cameras"

basket .addProduct (camera, 2) 4“}Twocamenw

basket .addProduct (laptop) are inserted.
then: "basket weight is updated accordingly"
basket.currentWeight == (2 * camera.weight) + laptop.weight

I’'ve introduced a bug in the Basket class. When the test fails, you get the output
shown in figure 4.14.

Because Basket.java is a class unknown to Spock, it can’t give you detailed infor-
mation about what went wrong. According to this result, the total weight of the basket

8 Failures: 1 |

= Failure Trace

JEv!:ond:ii:icm not satistied:

basket.currentileight == (2 * camera.weight) + laptop.weight
| [| [l | I I
| 7 false 4 | 2 9| 5
com.manning. spock.chapterd. Productibcd23277
g-spo p
| com.manning.spock.chapterd. Product@zl3ecas?
com.manning.spock.chapter4.ProblematicBasket@2951@877

Figure 4.14 Failed Spock test with custom class

www.it-ebooks.info

http://www.it-ebooks.info/

118 CHAPTER 4 Writing unit tests with Spock

is now 7 kilograms, even though all products weigh 9 kg. To debug this unit test, you’d
have to run it in a debugger and find the source of the mistake in the Basket class.

To help Spock do its magic, you can override the toString() method in your
objects, because this is what Spock runs on failed tests. The following listing exposes
the internal implementation of the basket in the toString () method.

Listing 4.27 Helping failure rendering in the toString () method

public class ProblematicBasket {

protected Map<Product, Integer> contents = new HashMap<>() ; Key is product; value
il

is how many times

[... rest of code is redacted for brevity purposes...] it’s in the basket.
Custom
implementation @0override
of toString() public String toString()
{
StringBuilder builder = new StringBuilder ("[");
for (Entry<Product, Integer> entry:contents.entrySet())
{
Prints number of builder.append(entry.getValue()) ;
times each product builder.append (" x ") ;
is in the basket builder.append (entry.getKey () .getName ()) ; 4f‘w Prints product
builder.append (", "); name

}

builder.setLength(builder.length() -2);

return builder.append ("]").toString() ;

Now when the test fails, you get the output shown in figure 4.15.

= Failure Trace

J0 condition not satisfied:

basket.currentWeight == (2 * camera.weight) + laptop.weight

7 false 4 | 2 9 | 5
| com.manning.spock.chapterd.Productibca23277

|
|
|
| com.manning.spock.chapterd.Product@al3ecds?
[1 x panasenic, 1 % toshiba]

Camera was not added twice.

Figure 4.15 Spock failed test with custom toString () method

www.it-ebooks.info

http://www.it-ebooks.info/

Writing readable Spock tests 119

Seeing this result makes it much easier to understand what’s gone wrong. Just by
looking at the test result, you can see that even though you added two cameras in the
basket, it kept only one. The bug you inserted is exactly at this place (it always adds
one product in the basket, regardless of what the user said).

This kind of detail is a lifesaver when multiple tests break and it’s hard to under-
stand whether the test needs fixing or the production code you changed is against
specifications. In a large enterprise application, a single code change can easily break
hundreds of existing unit tests. It’s critical to understand which tests broke because
your change is wrong, and which tests broke because they’re based on old business
needs that are made obsolete by your change. In the former case, you must revise your
code change (so that tests pass), whereas in the latter case, you need to update the
failing unit tests themselves so that they express the new requirement.

The beauty of this Spock feature is that toString () is usually already implemented
in domain objects for easy logging and reporting. You may be lucky enough to get this
functionality for free without any changes in your Java code.

After you finish writing a Spock test, check whether you need to implement cus-
tom toString () methods for the classes that are used in the final assertions.

4.4.4 Using Hamcrest matchers

Hamcrest matchers® are a third-party library commonly used in JUnit assert state-
ments. They offer a pseudo-language that allows for expressiveness in what’s being
evaluated. You might have seen them already in JUnit tests.

Spock supports Hamcrest matchers natively, as shown in the following listing.

Listing 4.28 Spock support for Hamcrest matchers

def "trivial test with Hamcrest" () {
given: "a list of products"
List<String> products= ["camera", "laptop","hifi"] . .
Creation of a list
expect: "camera should be one of them"
products hasItem("camera") Checks that any item
of the list is “camera”

Chains two
Hamcrest and: "hotdog is not one of them"
matchers products not (hasItem("hotdog")
}

The hasItem() matcher accepts a list and returns true if any element matches the
argument. Normally, that check would require a loop in Java, so this matcher is more
brief and concise.

One of the important features of Hamcrest matchers is that they can be chained
together to create more-complicated expressions. Listing 4.27 also uses the not ()

8 Hamcrest is an anagram of the word matchers.

www.it-ebooks.info

http://www.it-ebooks.info/

120

CHAPTER 4 Writing unit tests with Spock

You can use and: to
chain Hamcrest matchers.

given: expect: and:

= [J B \Elaaa B8 | &2

A list of products Has camera? Check! Hold the hot dog please.

[P PR

\

Hamcrest matchers
are supported natively.

Figure 4.16 Hamcrest matchers can be used natively within Spock tests.

matcher, which takes an existing matcher and reverses its meaning. Figure 4.16
illustrates this test. You can find more information about other Hamcrest matchers
(and how to create your own) on the official web page at http://hamcrest.org/.

Spock also supports an alternative syntax for Hamcrest matchers that makes the
flow of reading a specification more natural, as shown in the next listing.

Listing 4.29 Alternative Spock support for Hamcrest matchers

def "trivial test with Hamcrest (alt)"() {
given: "an empty list"
List<String> products= new ArrayList<String> ()

when: "it is filled with products"
products.add("laptop")
products.add ("camera")
products.add ("hifi")

then: "camera should be one of them" expect() is useful
expect (products, hasItem("camera")) for then: blocks.

and: "hotdog is not one of them" that() is useful for and:
that (products, not (hasItem("hotdog"))) and expect: Spock blocks.

The test is exactly the same as listing 4.28, but reads better because the matcher lines
are coupled with the Spock blocks. The assertions are close to human text: “expect
products has item (named) camera, and that products (does) not have item (named)
hotdog” (see figure 4.17).

www.it-ebooks.info

http://hamcrest.org/
http://www.it-ebooks.info/

given:

Writing readable Spock tests 121

when: then: and:

X

= || & D |H | D s |22

An empty
list

List is filled with products (the list has a camera) (doesn’t have a hot dog)

Hamcrest matcher
syntax reads naturally.

Figure 4.17 Hamcrest matchers have an alternate near-English syntax that makes them easier to read.

Iterates over
list and checks
all names of
products

The expect () and that () methods are Spock syntactic sugar and have no effect on
how the test runs.

Compatibility with JUnit

As you’ve seen, Spock allows you to reuse several existing JUnit facilities. I've already
mentioned that JUnit lifecycle annotations (@Before, @After, and So on) are recog-
nized by Spock. Now you’ve seen that integration with Hamcrest matchers is also sup-
ported. Spock even supports JUnit rules out of the box. The transition to Spock is
easy because it doesn’t force you to discard your existing knowledge. If your team
has invested heavily in custom matchers or rules, you can use them in your Spock
tests, too.

Hamcrest matchers have their uses, and they can be powerful if you create your own
for your domain classes. But often they can be replaced with Groovy code, and more
specifically with Groovy closures. The following listing shows the same trivial example
without Hamcrest matchers.

Listing 4.30 Using Groovy closures in Spock assertions

def "trivial test with Groovy closure" () {
given: "a list of products"
List<String> products= ["camera", "laptop", "hifi"]
Iterates over list
expect: "camera should be one of them" 4\?ndpasesﬁany
products.any{ productName -> productName == "camera"} is named camera

and: "hotdog is not one of them"
products.every{ productName -> productName != "hotdog"}

I consider Groovy closures more powerful because they can be created on the spot for
each unit test to match exactly what’s being tested. But if you have existing Hamcrest

www.it-ebooks.info

http://www.it-ebooks.info/

122

4.4.5

CHAPTER 4 Writing unit tests with Spock

matchers from your JUnit tests, using them in Spock tests is easy, as shown in listings
4.28 and 4.29.

As a general rule, if a Hamcrest matcher already covers what you want, use it
(hasItem() in the preceding example). If using Hamcrest matchers makes your
example complex to read, use closures.

Grouping test code further

I mentioned at the beginning of the chapter that one of the first problems you
encounter in large enterprise projects is the length of unit tests. With Spock blocks,
you already have a basic structure in place because the setup-trigger-evaluate cycles
are clearly marked. Even then, you’ll find several times that your then: and given:
blocks contain too many things, making the test difficult to read.

To better illustrate this problem, you’ll add to the running example a class that
represents the warehouse of the e-shop, as shown in the following listing.

Listing 4.31 An imaginary warehouse

public class WarehouseInventory {
public void preload(Product product, int times) 4“‘Loadsthe

[...code redacted for brevity...]
}

public void subtract (String productName, Integer times) { Called by the basket
during checkout

warehouse

[...code redacted for brevity...]

Provides

inventory status

public int availableOfProduct (String productName) {
[...code redacted for brevity...]

public boolean isEmpty () { Returns true if
[...code redacted for brevity...] no product exists

}

public int getBoxesMovedToday () { Keeps track
[...code redacted for brevity...] of sales

You’ll also augment the electronic basket with more (imaginary) methods that define
its behavior, as shown in the following listing.

Listing 4.32 An enterprisy basket

public class EnterprisyBasket extends Basket{

public void enableAutoRefresh () {
[...code redacted for brevity...]
}

Classic enterprise code

www.it-ebooks.info

http://www.it-ebooks.info/

Setter
injection
methods

Object
creation

Writing readable Spock tests 123

public void setNumberOfCaches (int number) { <+
[...code redacted for brevity...]

public void setCustomerResolver (DefaultCustomerResolver
defaultCustomerResolver) {

[...code redacted for brevity...] Classic
} enterprise
code
public void setWarehouselInventory (WarehouseInventory
warehouseInventory) {
[...code redacted for brevity...]
}
public void setLanguage (String language) { <
[...code redacted for brevity...]
}
public void checkout () { Removes products
[...code redacted for brevity...] from inventory

Now assume that you want to write a unit test for the warehouse to verify that it works
correctly when a customer checks out. The Spock test is shown in the next listing.

Listing 4.33 Assertions and setup on the same object

def "Buying products reduces the inventory availability" () {
given: "an inventory with products"
Product laptop = new Product (name:"toshiba",price:1200,weight:5)
Product camera = new Product (name:"panasonic",price:350,weight:2)
Product hifi = new Product (name:"jvc",price:600,weight:5)
WarehouseInventory warehouseInventory = new WarehouseInventory ()
warehouseInventory.preload (laptop, 3)
warehouseInventory.preload (camera, 5)
warehouseInventory.preload (hifi, 2)

and: "an empty basket" Object
EnterprisyBasket basket = new EnterprisyBasket () parameters
basket.setWarehouseInventory (warehouseInventory)
basket.setCustomerResolver (new DefaultCustomerResolver())
basket.setLanguage ("english")

basket .setNumberOfCaches (3)

basket.enableAutoRefresh ()

when: "user gets a laptop and two cameras"
basket .addProduct (camera, 2)
basket.addProduct (laptop)

and: "user completes the transaction"
basket.checkout ()

www.it-ebooks.info

http://www.it-ebooks.info/

124 CHAPTER 4 Writing unit tests with Spock

then: "warehouse is updated accordingly"
!warehouseInventory.isEmpty ()

warehouseInventory.getBoxesMovedToday () == 3 .
warehouselInventory.availableOfProduct ("toshiba") == 2 Asywnonsop
warehouselInventory.availableOfProduct ("panasonic") == 3 the same object
warehouseInventory.availableOfProduct ("jve") == 2

You’ve already split the given: and when: blocks with and: blocks in order to make
the test more readable. But it can be improved even more in two areas:

= The final assertions test multiple things, but all on the same object.
= The given: block of the test has too many statements, which can be roughly

split into two kinds: statements that create objects, and statements that set prop-
erties on existing objects.

In most cases (involving large Spock tests), extra properties are secondary to the object
creation. You can make several changes to the test, as shown in the following listing.

Listing 4.34 Grouping similar code with Groovy and Spock

def "Buying products reduces the inventory availability (alt)" () {

given: "an inventory with products"
Product laptop = new Product (name:"toshiba",price:1200,weight:5)
Product camera = new Product (name:"panasonic",price:350,weight:2)
Product hifi = new Product (name:"jvc",price:600,weight:5)
WarehouseInventory warehouseInventory = new WarehouseInventory ()
warehouseInventory.with{

preload laptop,3

Groupobkct preload camera,5
setup with preload hifi,?2
Groovy }
object.with

and: "an empty basket"

EnterprisyBasket basket = new EnterprisyBasket ()

basket.with {
setWarehouseInventory (warehouseInventory) Remove
setCustomerResolver (new DefaultCustomerResolver ()) pm@nﬂwses
setLanguage "english"
setNumberOfCaches 3
enableAutoRefresh ()

when: "user gets a laptop and two cameras"
basket.with {

addProduct camera, 2

addProduct laptop

and: "user completes the transaction"
basket .checkout ()

www.it-ebooks.info

http://www.it-ebooks.info/

4.5

Summary 125

then: "warehouse is updated accordingly"

with (warehouseInventory) { Group assertions with
{ Spock Specification.with

1isEmpty ()

getBoxesMovedToday () == 3
availableOfProduct ("toshiba") == 2
availableOfProduct ("panasonic") == 3
availableOfProduct ("jvec") == 2

First, you can group all assertions by using the Spock with () construct. This feature is
specific to Spock and allows you to show that multiple assertions affect a single object.
It’s much clearer now that you deal specifically with the warehouse inventory at the
end of this test.

The Spock with() construct is inspired from the Groovy with() construct that
works on any Groovy code (even outside Spock tests). I've used this feature in the
given: and when: blocks to group all setup code that affects a single object. Now it’s
clearer which code is creating new objects and which code is setting parameters on
existing objects (indentation also helps).

Notice that the two with() constructs may share the same name but are unre-
lated. One is a Groovy feature, and the other is a Spock feature that works only in
Spock asserts.

As an added bonus, I've also used the Groovy convention demonstrated in chapter
2, where you can remove parentheses in method calls with at least one argument. This
makes the test a little more like DSL. It’s not much, but it certainly helps with readabil-
ity. I'll show more ways to deal with large Spock tests in chapter 8.

Summary

= Spock contains several blocks/labels to mark the phases inside a unit test. They
help readability of the test and in some cases enforce the code structure.
(Spock will reject assignments when an assertion was expected.)

= The given: block creates the scene for the test, the when: block triggers the
tested action, and the then: block examines the result. The given-then-when
structure is the suggested structure for Spock tests.

= The and: block can be used on any other block as a semantic extension.

= The expect: block is a combination of then: and when: and can be used for
trivial tests or as an intermediate precondition in longer tests.

= The cleanup: block will always run at the end of a Spock test regardless of the
test result. It’s used to release resources.

= Spock test methods can have full sentences as names. You should always exploit
this feature to better describe what your method does.

= The @Subject annotation should be used to mark the class under test. You can
use it individually in each test method, or at the class level if all test methods
focus on a single class.

www.it-ebooks.info

http://www.it-ebooks.info/

126

CHAPTER 4 Whriting unit tests with Spock

The @Title annotation should be used to explain with full English text what
your Spock test does.

The @Narrative annotation can be used for a longer description of a Spock test.
Spock methods setup () and cleanup () run before and after each test method.
They run as many times as test methods exist.

Spock methods setupSpec () and cleanupSpec () run once before all test meth-
ods and once after they’re finished.

Spock supports and understands JUnit annotations such as @Before, @After,
@BeforeClass, and @AfterClass.

The @Shared annotation marks long-lived objects that span all test methods.
The setupSpec () and cleanupSpec () methods work only with objects that are
either static or marked with the @Shared annotation.

The old () method can be used in specific cases to capture the relative change
of the class state instead of comparing absolute values before and after the trig-
gered action.

A Spock test can have multiple then: blocks, which are executed in the order
they’re mentioned.

All Spock blocks should have an English description next to them for readability.
Spock calls the Java toString() method automatically on any involved class
when a test fails. Overriding this method allows you to define what will be
shown on failed tests.

Spock natively supports Hamcrest matchers with three alternative syntax
variations.

Spock natively supports JUnit rules out of the box.

The Groovy object.with construct can be used to group object parameteriza-
tion inside Spock tests.

The Spock Specification.with construct can be used to group assertions to a
single object.

www.it-ebooks.info

http://www.it-ebooks.info/

Parameterized tests

This chapter covers

Definition of parameterized tests

Using the where: block

Understanding data tables and data pipes
Writing custom data providers

The previous chapter presented all the Spock blocks that you can use in a unit test,
except for one. I left out the where: block on purpose because it deserves a chapter
of its own. The where: block is used for parameterized tests. Parameterized tests are
unit tests that share the same test logic (for example, when the temperature goes
up, the reactor must shut down), but need to run on different parameters (for
example, with low temperature and then with high temperature) in order to
account for all cases.

This chapter covers both some theory on when to use parameterized tests and
facilities Spock offers for parameterized testing. You might already have seen
parameterized tests with JUnit, so feel free to skip the first section and start reading
at section 5.2 for the specific Spock features if you’re already familiar with the con-
cept of parameterized testing.

127

www.it-ebooks.info

http://www.it-ebooks.info/

128

5.1

CHAPTER 5 Parameterized tests

Spock is flexible when it comes to parameterized tests. If offers a complete portfo-
lio of techniques adaptable to your situation, no matter the complexity of your test
data. The most basic format of parameterized tests (data tables) was already demon-
strated in chapter 3. This chapter also explains data pipes (the underlying mechanism
of data tables) and shows how to write custom data providers with Spock, which is the
most flexible solution (but needs more programming effort).

All these Spock techniques have their own advantages and disadvantages with
regards to readability and flexibility of unit tests, so it’s important to understand the
trade-offs between them. Understanding when to use each one is one of the running
themes of this chapter.

Detecting the need for parameterized tests

Experienced developers usually can understand the need for a parameterized test
right away. But even if you’re just starting with unit tests, an easy rule of thumb can
show you the need for a parameterized test. Every time you start a new unit test by
copying-pasting an existing one, ask yourself, “Is this test that much different from the
previous one?” If you find yourself duplicating unit tests and then changing only one
or two variables to create a similar scenario, take a step back and think about whether
a parameterized test would be more useful. Parameterized tests will help you keep the
test code DRY.!

Duplicating unit test code isn’t a healthy habit

Anytime you copy-paste a unit test, you're creating code duplication, because you
haven’t thought about reusable code segments. Like production code, test code
should be treated with the same “respect.” Refactoring unit tests to allow them to
share code via composition instead of performing a blind copy-paste should be one
of your first priorities when adding new unit tests into an existing suite. More details
are presented in chapter 8.

Assume, for example, that you have a single class that takes an image filename and
returns true if the picture has an extension that’s considered valid for the application:

public class ImageNameValidator {
public boolean isValidImageExtension (String fileName)

{
}

[...redacted for brevity...]

' This acronym stands for don’t repeat yourself. See https://en.wikipedia.org/wiki/Don’t_repeat_yourself for
more information.

www.it-ebooks.info

https://en.wikipedia.org/wiki/Don’t_repeat_yourself
http://www.it-ebooks.info/

Each test
differs in
output data.

—» validator.isValidImageExtension (pictureFile)

—» validator.isValidImageExtension (pictureFile)

Detecting the need for parameterized tests 129

A first naive approach would be to write a single Spock test for every image extension
that needs to be examined. This approach is shown in the following listing (and it
clearly suffers from code duplication).

Listing 5.1 Duplicate tests—don’t do this

def "vValid images are JPG" () {
given: "an image extension checker and a jpg file"
ImageNameValidator validator = new ImageNameValidator ()
String pictureFile = "scenery.jpg" <+—

expect: "that the filename is wvalid"

—

def "Valid images are JPEG" () ({
given: "an image extension checker and a jpeg file"
ImageNameValidator validator = new ImageNameValidator () Each test
String pictureFile = "house.jpeg" <4— differs in

input data.
expect: "that the filename is wvalid"

—

def "Tiff are invalid" ()
given: "an image extension checker and a tiff file"
ImageNameValidator validator = new ImageNameValidator ()
String pictureFile = "sky.tiff" <+

expect: "that the filename is invalid"

—» !validator.isValidImageExtension (pictureFile)

}

The original requirement is to accept JPG files only, and a single unit test is written.
The customer reports that the application doesn’t work on Linux because .jpeg files
are used. Application code is updated, and another test method is added (by copying
the existing one).

Then a business analyst requests an explicit test for notsupporting TIFF files. You can
see where this is going. In large enterprise applications, multiple developers might
work on the same feature as time progresses. If each developer is blindly adding a new
unit test by copy-paste (either because of alack of time or lack of experience), the result
is a Spock test, as shown in listing 5.1, that smells of code duplication from afar.

Notice that each test method by itself in listing 5.1 is well structured. Each is docu-
mented, it tests one thing, the trigger action is small, and so on. The problem stems
from the collection of those test methods that need further refactoring, as they all
have the exact same business logic.

www.it-ebooks.info

http://www.it-ebooks.info/

130

511

Common test
logic for all
scenarios that
use pictureFile
and validPicture

First line of
block is always
the names of
parameters

CHAPTER 5 Parameterized tests

What are parameterized tests?

An example of a parameterized test for this class in Spock is shown in the following
listing. With a single unit test, this listing not only replaces all three tests of listing 5.1
but also adds two more cases.

Listing 5.2 Simple Spock parameterized test

def "Valid images are PNG and JPEG files" () {
given: "an image extension checker"
ImageNameValidator validator = new ImageNameValidator () 47 Class under test

expect: "that only valid filenames are accepted"
“¥» validator.isValidImageExtension (pictureFile) == validPicture
where: "sample image names are"

where: block contains

—» pictureFile || validPicture parameters for
"scenery.jpg" || true multiple scenarios.
"house.jpeg" || true Input and expected
"car.png" || true output for each
"sky.tiff" || false scenario in each line
"dance bunny.gif" || false

The test method examines multiple scenarios in which the test logic is always the same
(validate a filename) and only the input (jpg) and output (valid/not valid) variables
change each time. The test code is fixed, whereas the test input and output data come
in the form of parameters (and thus you have a parameterized test).

The idea is better illustrated in figure 5.1.

Input Output

X Figure 5.1 Parameterized
tests share the same test
logic for different input/
1 ! ! ! output datasets.
Different sets ...use the same test logic:
of input/output... Is the image extension valid?

www.it-ebooks.info

https://github.com/Codearte/jfairy
https://github.com/Codearte/jfairy
http://www.it-ebooks.info/

Using the where: block 131

The test code is shared among all parameters. Instead of duplicating this common
code for each scenario, you centralize it on a single test method. Then each scenario
comes with its own scenario parameters that define the expected result for each input.
Output 1 is expected when the test scenario is triggered with input 1, output 2 is
expected if input 2 is used, and so on.

5.2 Using the where: block

The where: block, introduced in chapter 3, is responsible for holding all input and
output parameters for a parameterized test. It can be combined with all other blocks
shown in chapter 4, but it has to be the last block inside a Spock test, as illustrated in
figure 5.2. Only an and: block might follow a where: block (and that would be rare).

given: when: then: where:
b
o
b
: H
‘m i i ‘/
i
() 5 T
(.
‘ : 1 X Enorese
— B
N '
Input is Output is a result
pictureFile object for each input

ﬁ o /> Valid

Jpeg

Error 002

o= X

tiff \ Error
< : info

X Error 999 —

.gif

Figure 5.2 A where: clause must be the last block in a Spock test. It contains the differing values for
parameterized tests.

www.it-ebooks.info

http://www.it-ebooks.info/

132

where: block
is last block
in the test.

Input and output
scenarios in each
consequent line

CHAPTER 5 Parameterized tests

The simpler given-expect-when structure was shown in listing 5.2. This works for trivial
and relatively simple tests. The more usual way (and the recommended way for larger
parameterized tests) is the given-when-then-where structure shown in the following
listing.

Listing 5.3 The given-when-then-where structure

def "Valid images are PNG and JPEG files (enterprise version)" () {
given: "an image extension checker"
ImageNameValidator validator = new ImageNameValidator ()

when: "an image is checked" Input parameter
ImageExtensionCheck imageExtensionCheck = gPKﬂWGF"e)BIHEd
validator.examineImageExtension (pictureFile) in the when: block.

then: "expect that only valid filenames are accepted"

imageExtensionCheck.result == validPicture

imageExtensionCheck.errorCode == error Output p.arameters are

. . s A checked in the then: block.

imageExtensionCheck.errorDescription == description

where: "sample image names are"

pictureFile || validPicture | error | description

"scenery.jpg" || true | o | o

"house.jpeg" || true | e | e

"car.png" || true | o | o

"sky.tiff" || false | "ERROR002" | "Tiff files are not
supported"

"dance bunny.gif" || false | "ERROR999" | "Unsupported file

type n

Here I've modified the ImageNameValidator class to return a simple Java object
named ImageExtensionCheck that groups the result of the check along with an error
code and a human-readable description. The when: block creates this result object,
and the then: block compares its contents against the parameterized variables in the
where: block.

Notice that the where: block is the last one in the Spock test. If you have other
blocks after the where: block, Spock will refuse to run the test.

Now that you know the basic use of the where: block, it’s time to focus on its con-
tents. So far, all the examples you’ve seen have used data tables. This is one of the pos-
sible variations. Spock supports the following:

= Data tables—This is the declarative style. Easy to write but doesn’t cope with
complex tests. Readable by business analysts.

= Data tables with programmatic expressions as values—A bit more flexible than data
tables but with some loss in readability.

= Data pipes with fully dynamic input and outputs—Flexible but not as readable as
data tables.

www.it-ebooks.info

http://www.it-ebooks.info/

5.21

Using the where: block 133

= Custom data iterators—Your nuclear option when all else fails. They can be used
for any extreme corner case of data generation. Unreadable by nontechnical
people.

You’ll examine the details of all these techniques in turn in the rest of the chapter.

Using data tables in the where: block

We’ve now established given: expect : where:

that the where: block ! First Second Sum

must be the last block in a P 1 2
T3 2 5

Spock test. In all examples +2 .25 :

, 3 io82 16 98
you’ve seen so far, the _° - _3 0
where: block contains a Lo 0 0
data table, as illustrated in !
figure 5.3. Figure 5.3 The where: block often contains a data table with

This data table holds defined input columns and a desired result column.

multiple test cases in
which each line is a scenario and each column is an input or output variable for that
scenario. The next listing shows this format.

Listing 5.4 Using data tables in Spock

def "Trivial adder test" () {
given: "an adder"
Adder adder = new Adder () Relationship between
output and input
expect: "that it calculates the sum of two numbers" parameters: sum is based
adder.add (first, second) ==sum on first and second.
where: "some scenarios are"
first } second } } sum Names of parameters—
1 1 2
; | 2 I s Scenarios that will be first and second are
tested contain values input and sum is output.
82 | 16 || 98
for first and second
3 | -3 Il o
| o I o and expected sum.

The data table contains a header that names each parameter. You have to make sure
that the names you give to parameters don’t clash with existing variables in the source
code (either in local scope or global scope).

You’ll notice that the data table is split with either single (|) or dual (| |) pipe sym-
bols. The single pipe denotes a column, and the double pipe shows where the input
parameters stop and the output parameters start. Usually, only one column in a data
table uses dual pipes.

In the simple example of listing 5.4, the output parameter is obvious. In more com-
plex examples, such as listing 5.3 or the examples with the nuclear reactor in chapter

www.it-ebooks.info

http://www.it-ebooks.info/

134 CHAPTER 5 Parameterized tests

3, the dual pipe is much more helpful. Keep in mind that the dual pipe symbol is used
strictly for readability and doesn’t affect the way Spock uses the data table. You can omit
it if you think that it’s not needed (my recommendation is to always include it).

If you’re a seasoned Java developer, you should have noticed something strange in
listing 5.4.% The types of the parameters are never declared. The data table contains
the name and values of parameters but not their type!

Remember that Groovy (as explained in chapter 2) is an optionally typed lan-
guage. In the case of data tables, Spock can understand the type of input and output
parameters by the context of the unit test.

But it’s possible to explicitly define the types of the parameters by using them as
arguments in the test method, as shown in the next listing.

Listing 5.5 Using data tables in Spock with typed parameters

def "Trivial adder test (alt)"(int first, int second, int sum) {
given: "an adder"
Adder adder = new Adder() Declaring the types
of parameters (all
expect: "that it calculates the sum of two numbers" integers in this case)
Using the ’—b adder.add (first, second) ==sum
parameters
as before where: "some scenarios are"
first [second || sum Declaring the values
1 | 1 [l 2 of parameters (all
3 | 2 [l 5 integers in this case)
82 | 16 || 98
3 | -3 || o
0 | o || o

}

Here I've included all parameters as arguments in the test method. This makes their
type clear and can also help your IDE (Eclipse) to understand the nature of the test
parameters.

You should decide on your own whether you need to declare the types of the
parameters. For brevity, I don’t declare them in any of the chapter examples. Just
make sure that all developers on your team agree on the same decision.

5.2.2 Understanding limitations of data tables

I've already stressed that the where: block must be the last block in a Spock test (and
only an and: block can follow it as a rare exception). I've also shown how to declare
the types of parameters (in listing 5.5) when they’re not clear either to your IDE or
even to Spock in some extreme cases.

Another corner case with Spock data tables is that they must have at least two col-
umns. If you’re writing a test that has only one parameter, you must use a “filler” for a
second column, as shown in the next listing.

? And also in listings 5.3 and 5.2, if you've been paying attention.

www.it-ebooks.info

http://www.it-ebooks.info/

5.23

Using the where: block 135

Listing 5.6 Data tables with one column

def "Tiff, gif, raw,mov and bmp are invalid extensions" () {
given: "an image extension checker"
ImageNameValidator validator = new ImageNameValidator ()

expect: "that only valid filenames are accepted"

lvalidator.isValidImageExtension (pictureFile) Output parameter is

always false for this test.

"sky.tiff"
"dance_bunny.gif"

_ result of the test.

where: "sample image names are" AHimagesareinvaHd
pictureFile [_—
"screenshot .bmp" [l Underscore acts
"IMG3434.raw" [l — as dummy filler
"christmas.mov" [l _ for the Boolean
|
|

}

Perhaps some of these limitations will be lifted in future versions of Spock, but for the
time being, you have to live with them. The advantages of Spock data tables still out-
perform these minor inconveniences.

Performing easy maintenance of data tables

The ultimate goal of a parameterized test is easy maintenance. Maintenance is
affected by several factors, such as the size of the test, its readability, and of course, its
comments. Unfortunately, test code doesn’t always get the same attention as produc-
tion code, resulting in tests that are hard to read and understand.

The big advantage of Spock and the way it exploits data tables in parameterized
tests is that it forces you to gather all input and output variables in a single place. Not
only that, but unlike other solutions for parameterized tests (examples were shown
with JUnit in chapter 3), data tables include both the names and the values of test
parameters.

Adding a new scenario is literally a single line change. Adding a new output or
input parameter is as easy as adding a new column. Figure 5.4 provides a visual over-
view of how this might work for listing 5.3.

pictureFile wvalidPicture error description
(scenary.jpg is valid)
[T [T [T
(house.jpeg is valid) +
[I [I [T New
(car.png is valid) variable
[T [T [T
C sky.tiff is invalid D
o Figure 5.4 Adding a new test scenario
) means adding a new line in the where:
+ New scenario N
block. Adding a new parameter means
(dance_bunny.gif is invalid) adding a new column in the where: block.

www.it-ebooks.info

http://www.it-ebooks.info/

136

CHAPTER 5 Parameterized tests

The ease of maintenance of Spock data tables is so addicting that once you integrate
data tables in your complex tests, you’ll understand that the only reason parameter-
ized tests are considered difficult and boring is because of inefficient test tools.

The beauty of this format is that data tables can be used for any parameterized test,
no matter the complexity involved. If you can isolate the input and output variables, the
Spock test is a simple process of writing down the requirements in the source code. In
some enterprise projects I’ve worked on, extracting the input/output parameters from
the specifications was a more time-consuming job than writing the unit test itself.

The extensibility of a Spock data table is best illustrated with a semi-real example,
as shown in the next listing.

Listing 5.7 Capturing business needs in data tables

def "Discount estimation for the eshop" () ({
[...rest of code redacted for brevity..] Six parameters
affect final discount
where: "some of the possible scenarios are"
price | isVip | points | order | discount | special || finalDiscount
50 | false | © | so0 | 0 | false || o
100 | false | © | 300 | 0 | false || 10
500 | false | © | o | 0 | true || so
50 | true | © | s0 | 0 | false || 15
50 | true | © | 50 | 25 | false || 25 Business scenarios,
50 | true | O | 50 | 5 | false || 15 one for each line,
50 | true | 0 | 50 | 5 | true |l 50 which are readable
50 | false | © | 100 | o | false [| o0 by business analysis
50 | false | © | 75 | 10 | false || 10
50 | false | 5000 | s0 | 0 | false [| 75
50 | false | 3000 | 50 | 0 | false [| o
50 | true | 8000 | 50 | 3 | false || 75

}

The unit test code isn’t important. The data table contains the business requirements
from the e-shop example that was mentioned in chapter 1. A user selects multiple
products by adding them to an electronic basket. The basket then calculates the final
discount of each product, which depends on the following:

= The price of the product

= The discount of the product

= Whether the customer has bonus/loyalty points

= The status of the customer (for example, silver, gold, platinum)
= The price of the total order (the rest of the products)

= Any special deals that are active

The production code of the e-shop may comprise multiple Java classes with deep hier-
archies and complex setups. With Spock, you can directly map the business needs in a
single data table.

Now imagine that you’ve finished writing this Spock test, and it passes correctly.
You can show that data table to your business analyst and ask whether all cases are

www.it-ebooks.info

http://www.it-ebooks.info/

5.24

Using the where: block 137

covered. If another scenario is needed, you can add it on the spot, run the test again,
and verify the correctness of the system.

In another situation, your business analyst might not be sure about the current
implementation status of the system® and might ask what happens in a specific sce-
nario that’s not yet covered by the unit test. To answer the question, you don’t even
need to look at the production code. Again, you add a new line/scenario in the Spock
data table, run the unit test on the spot, and if it passes, you can answer that the
requested feature is already implemented.

In less common situations, a new business requirement (or refactoring process)
might add another input variable into the system. For example, in the preceding e-shop
scenario, the business decides that coupon codes will be given away that further affect
the discount of a product. Rather than hunting down multiple unit test methods (as in
the naive approach of listing 5.2), you can add a new column in the data table and have
all test cases covered in one step.

Even though Spock offers several forms of the where: block that will be shown in
the rest of the chapter, I like the data table format for its readability and extensibility.

Exploring the lifecycle of the where: block

It’s important to understand that the where: block in a parameterized test “spawns”
multiple test runs (as many of its lines). A single test method that contains a where:
block with three scenarios will be run by Spock as three individual methods, as shown
in Figure 5.5. All scenarios of the where: block are tested individually, so any change
in state (either in the class under test or its collaborators) will reset in the next run.

given: when: then: where:
4 4 i First Second | | Sum |
A R
+ — == E i i i
2+3 3 5 L3 2 o 5 |
_ N i3 3 b0
‘] 1
1 1 2 setup () T 1+ —>+1—==2 cleanup ()
L L 1=}
3
3 2 5 < setup () @ - 3+2 —>+E==5 cleanup ()
3
3 _3 0 setup () @ — 3+3 —>+§==0 cleanup ()
&

I\ One where: block spawns three test runs.

Figure 5.5 Spock will treat and run each scenatrio in the where: block of a parameterized
test as if it were a separate test method.

* A common case in legacy projects.

www.it-ebooks.info

http://www.it-ebooks.info/

138

The when:
and then:
blocks are
executed
once for each
scenario.

CHAPTER 5 Parameterized tests

To illustrate this individuality of data tables, look at the following listing.

Listing 5.8 Lifecycle of parameterized tests

class LifecycleDataSpec extends spock.lang.Specification({

}

def

—» def setup() {

println "Setup prepares next run"

given: "an adder"
Adder adder = new Adder ()
println "Given: block runs"

"Trivial adder test"() 47 Single test method

runs multiple times.

when: "the add method is called for two numbers"

int result = adder.add(first,second)
println "When: block runs for first = $first and second =
Ssecond"

then: "the result should be the sum of them"
result == sum
println "Then: block is evaluated for sum = Ssum"

where: "some scenarios are" Data table with three
first |second || sum scenarios, centralized input
1 | 1 [l 2 and output parameters

3 | 2] 5

3 | -3] o

def cleanup ()

{
}

println "Cleanup releases resources of last run\n"

Because this unit test has three scenarios in the where: block, the given-when-then
blocks will be executed three times as well. Also, all lifecycle methods explained in
chapter 4 are fully honored by parameterized tests. Both setup () and cleanup () will

be run as many times as the scenarios of the where: block.
If you run the unit test shown in listing 5.8, you’ll get the following output:

Setup prepares next run

Given: block runs

When: block runs for first = 1 and second = 1
Then: block is evaluated for sum = 2

Cleanup releases resources of last run

Setup prepares next run

Given: block runs

When: block runs for first = 3 and second = 2

www.it-ebooks.info

http://www.it-ebooks.info/

5.2.5

Using the where: block 139

Then: block is evaluated for sum = 5
Cleanup releases resources of last run

Setup prepares next run

Given: block runs

When: block runs for first = 3 and second = -3
Then: block is evaluated for sum = 0

Cleanup releases resources of last run

It should be clear that each scenario of the where: block acts as if it were a test
method on its own. This enforces the isolation of all test scenarios, which is what
you’d expect in a well-written unit test.

Using the @Unroll annotation for reporting individual test runs

In the previous section, you saw the behavior of Spock in parameterized tests when
the when: block contains multiple scenarios. Spock correctly treats each scenario as an
independent run.

Unfortunately, for compatibility reasons,* Spock still presents to the testing envi-
ronment the collection of parameterized scenarios as a single test. For example, in
Eclipse the parameterized test of listing 5.8 produces the output shown in figure 5.6.

PR wE T

Finished after 0,471 seconds)
Runs: 11 B Errors: 0 8 Failures: 0 /™

4 |pi-) com.manning.spock.chapter5.tables.LifecycleDataSpec [Runner: JUnit 4] (0,060 s) = Failure Trace ~a| cf
g Trivial adder test (0,060 5)

Figure 5.6 By default, parameterized tests with multiple scenarios are shown as one test in Eclipse.
The trivial adder test is shown only once, even though the source code defines three scenarios.

This behavior might not be a big issue when all your tests succeed. You still gain the
advantage of using a full sentence as the name of the test in the same way as with non-
parameterized Spock tests.

Now assume that out of the three scenarios in listing 5.8, the second scenario is a
failure (whereas the other two scenarios pass correctly). For illustration purposes, I
modify the data table as follows:

where: "some scenarios are"
first | second || sum
1 | 1 I 2
3 | 2 Il 7
3 | -3 Il o

* With older IDEs and tools that aren’t smart when it comes to JUnit runners.

www.it-ebooks.info

http://www.it-ebooks.info/

140 CHAPTER 5 Parameterized tests

Finished after 0,55 seconds
Runs: 1/1 8 Errors: 0 8 Failures: 1

g Trivial adder test [Runner: JUnit 4] (0,210 s) = Failure Trace
) condition not satisfied:

result ==sum

| Il
7 | 5
false

Figure 5.7 When one scenario out of many fails, it’s not clear which is the failed one. You
have to look at the failure trace, note the parameters, and go back to the source code to
find the problematic line in the where: block.

The second scenario is obviously wrong, because 3 plus 2 isn’t equal to 7. The other
two scenarios are still correct. Running the modified unit test in Eclipse shows the out-
put in figure 5.7.

Eclipse still shows the parameterized test in a single run. You can see that the test
has failed, but you don’t know which of the scenarios is the problematic one. You have
to look at the failure trace to understand what’s gone wrong.

This isn’t helpful when your unit test contains a lot of scenarios, as in the example
in listing 5.8. Being able to detect the failed scenario(s) as fast as possible is crucial.

To accommodate this issue, Spock offers the @Unroll annotation, which makes
multiple parameterized scenarios appear as multiple test runs. The annotation can be
added on the Groovy class (Spock specification) or on the test method itself, as shown
in the next listing. In the former case, its effect will be applied to all test methods.

Listing 5.9 Unrolling parameterized scenarios

@Unroll o Marking the test method so
def "Trivial adder test"() { that multiple scenarios
given: "an adder" appear as multiple runs

Adder adder = new Adder()

when: "the add method is called for two numbers"
int result = adder.add(first,second)

then: "the result should be the sum of them"

result ==sum

where: "some scenarios are"

first | second || sum

1 | 1 [l 2 . .

; | 2 Il s Sce'nanos that will appear as separate
3 | -3 Il o unit tests, one for each line

www.it-ebooks.info

http://www.it-ebooks.info/

5.2.6

Using the where: block 141

a? BB @ 2
Finished after 0,493 seconds

Runs: 3/1 8 Enrors: 0 8 Failures: 0 |
: Trivial adder test [Runn = Failure Trace

4 1_] Unrooted Tests [Funne
th) Trivial adder test[0]
) Trivial adder test{1]
g) Trivial adder test[2]

Figure 5.8 By marking a parameterized test with @Unroll, Eclipse now shows each
run as an individual test.

With the @Unroll annotation active, running this unit test in Eclipse “unrolls” the test
scenarios and presents them to the test runner as individual tests, as shown in figure 5.8.

The @Unroll annotation is even more useful when a test has failed, because you
can see exactly which run was the problem. In large enterprise projects with parame-
terized tests that might contain a lot of scenarios, the @Unroll annotation becomes an
essential tool if you want to quickly locate which scenarios have failed. Figure 5.9
shows the same failure as before, but this time you can clearly see which scenario has
failed.

G T a"RE AR
Finished after 0,612 seconds

Runs: 3/1 8 Errors: 0 8 Failures: 1 I

[E] Trivial adder test [Runner: JUnit 4] = Failure Trace
4 @) Unrooted Tests [Runner: JUnit 4] (0,021 5) ')0 condition not satisfied:
gf'j Trivial adder test[0] (0,021 5)
@) Trivial adder test[1] (0,181 5) result ==sum
gk Trivial adder test[2] (0,000 5) | I
7 | s
false

Figure 5.9 Locating failed scenarios with @Unroll is far easier than without it. The
failed scenario is shown instantly as a failed test.

Remember that you still get the individual failure state for each scenario if you click it.
Also note that the @Unroll annotation can be placed on the class level (the whole
Spock specification) and will apply to all test methods inside the class.

Documenting parameterized tests

Asyou’ve seen in the previous section, the @Unroll annotation is handy when it comes
to parameterized tests because it forces all test scenarios in a single test method to be

www.it-ebooks.info

http://www.it-ebooks.info/

142 CHAPTER 5 Parameterized tests

reported as individual test runs. If you think that this feature isn’t groundbreaking
and should be the default, I agree with you.”?

But Spock has another trick. With a little more effort, you can format the name
shown for each scenario. The most logical things to include are the test parameters, as
shown in the following listing.

Listing 5.10 Printing parameters of each scenario

@Unroll ("Adder test #first, #second and #sum (alt2)") Using parameter names

def "Trivial adder test (alt2)"() { with @Unroll so they’re
given: "an adder" shown in the final run—
Adder adder = new Adder () alternative syntax

when: "the add method is called for two numbers"
int result = adder.add(first,second)

then: "the result should be the sum of them"

result ==sum

where: "some scenarios are"

first |second || sum Parameters that will
1 |1 [l 2 be interpolated in

3 | 2 [l s the test description
3 | -3 || o

The @Unroll annotation accepts a string argument, in which you can put any English
sentence. Variables marked with # will be replaced® with their current values when
each scenario runs. The final result of this evaluation will override the name of the
unit test, as shown in figure 5.10.

g G| @

Finished after 0,45 seconds

Runs: 3/1 B Errors: 0 B Failures: 0 _
| Trivial adder test (alt2) [Runner JUnit 4]| Source code

a F_;| Unrooted Tests [Runner: JUnit 4] (0,070 s)
!E' Testing the Adderforl + 1 = 2 (0,070 5)

where: "some scenarios are”

first |second || sum
tE] Testing the Adderfor3 + 2 = 5 (0,000 5) 1 | 1] 2
E’JE'—_| Testing the Adderfor3 + -3 =0 (0,000 5] 3 | 2 || 5

3 | -3 Il e

Figure 5.10 The parameter values for each scenario can be printed as part of the test name.

® After all, JUnit does this as well.

5 The reasons that the # symbol is used instead of $ are purely technical and aren’t relevant unless you're inter-
ested in Groovy and Spock internals.

www.it-ebooks.info

http://www.it-ebooks.info/

5.2.7

Enumeration
can be used as
a parameter.

An ObjectFactory
that creates
dynamic
parameters

Using the where: block 143

I consider this feature one of the big highlights of Spock. I challenge you to find a test
framework that accomplishes this visibility of test parameters with a simple technique.
If you're feeling lazy, you can even embed the parameters directly in the test method

name,’ as shown in the following listing.

Listing 5.11 Parameter rendering on the test method

@Unroll

def "Testing the Adder for #first + #second = #sum "{
given: "an adder"
Adder adder = new Adder ()

Parameters inside the
method name instead of
using the unroll string

[...rest of code is same as listing 5.10...]

}

The result in Eclipse is the same as with listing 5.10, so pick any approach you like
(but as always, if you work in a team, agree beforehand on the best practice).

Using expressions and statements in data tables

All the data tables I’'ve shown you so far contain scalar values. Nothing is stopping you
from using custom classes, collections, object factories, or any other Groovy expres-
sion that results in something that can be used as an input or output parameter. Take
alook at the next listing (created strictly for demonstration purposes).

Listing 5.12 Custom expressions in data tables

@Unroll

def "Testing the Adder for #first + #second = #sum " () {
given: "an adder"
Adder adder = new Adder ()

Full statement is
expect: "that it calculates the sum of two numbers" useddu@cdy?s
adder.add (first, second) ==sum a parameter in

data table.
where: "some scenarios are"
first | second || sum
2+3 | 10-2 || new
Integer (13) .intValue () <
MyInteger.FIVE.getNumber ()
| MyInteger.NINE.getNumber () || 14
IntegerFactory.createFrom("two") | (7-2)%*2 [l 12
[1,2,3].get (1) | 3 |
IntegerFactory.createFrom("five")
new Integer (5).intValue () | new String("cat").size() |
MyInteger.EIGHT.getNumber ()
["hello", "world"] .size () | 5 |

IntegerFactory.createFrom("seven")

7 Take that, TestNG !

www.it-ebooks.info

http://www.it-ebooks.info/

144 CHAPTER 5 Parameterized tests

The MyInteger class is a simple enumera- &) Testing the Adder for 5 + 8 = 13 (0,050)

tion that contains the first 10 integers. gi| Testing the Adder for 5+ 9 = 14 (0,000 <)

The IntegerFactory class is a trivial fac- £ Testing the Adder for2+10 =12 (0,000 <)

¢F] Testing the Adderfor2+ 3 =5 (0,0005)

. . EF'_J Testing the Adderfor5+ 3 =8 (0,001 %)
details of the code aren’t important; what gE] Testing the Adderfor2 + 5= 7 (0,000 5)

you need to take away from this example

is the flexibility of data tables. If you run Figure 5.11 Spock will evaluate all
expressions and statements so that they can be

. . used as standard parameters. All statements
thing and present you with the final result, from listing 5.12 finally resolve to integers.

tory that converts strings to integers. The

this example, Spock will evaluate every-

as shown in figure 5.11.

I try to avoid this technique because I think it damages the readability of the test. I
prefer to keep values in data tables simple. Using too many expressions in your data
tables is a sign that you need to convert the tabular data into data pipes, as explained
in the next section.

5.3 Using data pipes for calculating input/output
parameters

Data tables should be your bread and butter when writing Spock parameterized tests.
They shine when all input and output parameters are known in advance and thus can
be embedded directly in the source code.

But sometimes the test parameters are computed on the spot or come from an
external source (typically a file, as you’ll see later in this chapter). For those cases,
using data pipes is a better option. Data pipes are a lower-level construct of Spock
parameterized tests that can be used when you want to dynamically create/read test
parameters.®

As a first example, let’s rewrite the first data table code of listing 5.1, using data
pipes this time. The result is shown in the next listing.

Listing 5.13 Trivial example of data pipes

def "Valid images are PNG and JPEG files only" () ({

given: "an image extension checker™" R?I.atlortlshldp
ImageNameValidator validator = new ImageNameValidator () o mp:ut?::lt
parameters

expect: "that only valid filenames are accepted"

validator.isValidImageExtension (pictureFile) == validPicture
All values of
input parameter where: "sample image names are"
are inside a pictureFile << ["scenery.jpg", "house.jpeg", "car.png ", "sky.tiff"
collection. ,"dance bunny.gif"]
validPicture << [true, true, false, false, false]

All values of output
parameter are
inside a collection.

8 Data tables can be seen as an abstraction over data pipes.

www.it-ebooks.info

http://www.it-ebooks.info/

53.1

This will expand

Using data pipes for calculating input/output parameters 145

The code accomplishes the same thing as listing 5.1. But this time the tabular format
is “rotated” 90 degrees. Each line of the where: block contains a parameter, and the
scenarios of the test are the imaginary columns. The key point here is the use of the
left-shift operator symbol (<<). In the context of the where: block, it means, “For the
first scenario, pick the first value in the list for the input and output parameter; for the
second scenario, pick the second value in the list, and so on.”

In this example, I pass both input and output parameters in a list. But the left-shift
operator can work on several other things, such as iterables, iterations, enumerations,
other collections, and even strings. You’ll examine the most common cases in the next
sections.

Dynamically generated parameters

If you compared listing 5.13 to listing 5.2, you’d be right to say that there’s no real
advantage to using data pipes. That’s because in that particular scenario, all parame-
ters are known in advance and can be embedded directly in their full form. The
power of data pipes becomes evident with computed data.

In the next listing, let’s consider a different example, in which using a data table
would be impractical because of the sheer size of input and output parameters.

Listing 5.14 Using Groovy ranges as data generators

def "Multiplying #first and #second is always a negative number" ()
given: "a calculator"
Calculator calc = new Calculator()

expect: "that multiplying a positive and negative number is also
negative"
calc.multiply (first,second) < 0

No output parameter

to 60 positive where: "some scenarios are"
numbers. first << (20..80) This will .expand to
second << (-65..-5) 60 negative numbers.
The (M..N) notation is a Groovy range. It’s similar to a list that will contain all values,
starting from M and ending in N. Thus the (20..80) notation indicates a range of all
integers from 20 to 80. Groovy
expands the ranges and Spock
picks each value in turn, result- Finished after 0,468 seconds
ing in a parameterized test with B Errors: 0 B Failures: 0
60 scenarios. You can see the] Multiplying 72 and -13 is always a negative number (0,000 <)
. . oy e #] Multiplying 72 and -12 is always a negative number (0,000 <)
scenarios m detall lfyou run the E Multiplying 74 and -11 is always a negative number (0,000 5)
unlt test. as ShOWn in ﬂ ure 5 12 2] Multiplying 75 and -10 is always a negative number (0,000 5)
’ g ' ' #] Multiplying 72 and -12 is always a negative number (0,000 <)
E Multiplying 77 and -8 is always a negative number (0,000 =)
. R R 2l Multiplying 78 and -7 is always a negative number (0,000 =)
Flgure 5.12 Us"‘g ranges to aUtomatlca"y 2] Multiplying 79 and -6 is always a negative number (0,000 <)

generate 60 scenarios instead of £E] Multiplying 80 and -5 is always a negative number (0,000 <)
creating a data table with 60 lines.

www.it-ebooks.info

http://www.it-ebooks.info/

146

CHAPTER 5 Parameterized tests

Creating a data table with 120 values would make the unit test unreadable. By using
data pipes and Groovy ranges, you've created 60 scenarios on the spot, while the
source code only contains two statements (the ranges).

For a more realistic example, assume that you want to write an additional unit test
for the Imagevalidator class that ensures that all JPEG images are considered valid
regardless of capitalization (anywhere in the name or the extension). Again, embed-
ding all possible combinations in a data table would be time-consuming and error-

prone.

You can calculate several possible variations with some Groovy magic, as shown in

the following listing.

Listing 5.15 Using Groovy combinations

@Unroll ("Checking image name #pictureFile")

def "All kinds of JPEG file are accepted"() {

given: "an image extension checker"

ImageNameValidator validator = new ImageNameValidator ()

expect: "that all jpeg filenames are accepted regardless of case"
validator.isValidImageExtension (pictureFile)

“combinations ()"
creates a collection

where: "sample image names are" ..
join() creates a pictureFile << of all variations.
string from each GroovyCollections.combinations ([["sample.", "Sample.", "SAMPLE."],
variation. rvgv, a1, ['p', 'P'],['e'",'E', "], ['g",'G"']])*.join()

}

Finished after 0,484 seconds

B Errors: 0 B Failures: 0 _

| Checking image name SAMPLE.JpEG (0,016 <)
E Checking image name sample jPEG (0,000 <)
| Checking image name SamplejPEG (0,000 <]
E Checking image name SAMPLEJPEG (0,000 5)
| Checking image name sampleJPEG (0,000 <)
E Checking image name SampleJPEG (0,000 5)
el Checking image name SAMPLE.JPEG (0,000 5)
E Checking image name samplejpG (0,000 =)
el Checking image name SamplejpG (0,000 5)

IE] Flanrlinn immams mamn CARADI C i /0 AON -

Figure 5.13 Creating 72 unit test runs from a single Groovy
statement

The where: block contains a sin-
gle statement. If you run the unit
test, you’ll see that this statement
creates 72 scenarios (from 3 x 2 x
2 x 3 x 2 strings), as shown in fig-
ure 5.13.

The code works as follows: The
combinations () method takes the
variations of the word sample, the
letters J, P, E, and G, and creates a
new collection that contains all
possible variations as collections

themselves. The input parameter is a string. To convert each individual collection to a
string, I call the join () method, which automatically creates a single string from a col-
lection of strings. Because I want to do this with all collections, I use the star-dot
Groovy operator (*.), which applies the join () method to all of them.

If your head is spinning at this point, don’t worry! It took me a while to write this
statement, and as you gain more Groovy expertise, you’ll be able to write Groovy

www.it-ebooks.info

http://www.it-ebooks.info/

5.3.2

This parameter is
always the same
for each scenario.

5.3.3

This parameter
depends on another
one; “second” is the

first with minus sign.

Using data pipes for calculating input/output parameters 147

one-liners as well. The example is supposed to impress you, but don’t be distracted by
the core lesson here, which is the flexibility of Spock data pipes.

Parameters that stay constant

In all examples of parameterized tests I’ve shown you so far, the parameters are differ-
ent for each scenario. But at times, one or more parameters are constant. Spock
allows you to use direct assignments if you want to indicate that a parameter is the
same for each scenario. Instead of the leftshift operator, you use the standard assign-
ment operator, as shown in the following listing.

Listing 5.16 Constant parameters in Spock tests

def "Multipling #first and #second is always a negative number" () {
given: "a calculator"
Calculator calc = new Calculator()

expect: "that multiplying a positive and negative number results in a
negative number"
calc.multiply (first,second) < 0

where: "some scenarios are" This parameter is different
first << [20,34,44,67] for each scenario.
second = -1

}

The scenarios used for listing 5.16 are [20, -1], then [34, -1], [44, -1], and
finally [67,-1]. I admit that the example isn’t enticing. I needed to show it to you as a
stepping stone to the true use of the assignment operator in the where: block—
derived variables.

Parameters that depend on other parameters

You’ve seen how the assignment operator is used for constant variables in listing 5.16.
What’s not evident from the listing is that you can also refer to other variables in the
definition of a variable.

In the next listing, the second parameter of the test is based on the first.

Listing 5.17 Derived parameters in Spock tests

def "Multipling #first and #second is always a negative number (alt)" () {
given: "a calculator"
Calculator calc = new Calculator()

expect: "that multiplying a positive and negative number results in a
negative number"
calc.multiply (first,second) < 0

where: "some scenarios are" This parameter is explicitly
first << [20,34,44,67] defined; “first” is an integer.

second = first * -1

www.it-ebooks.info

http://www.it-ebooks.info/

148

5.4

CHAPTER 5 Parameterized tests

Runs: 4/1 B Errors: 0 B Failures: 0

|E] Multipling #first and #second is always a negative number (alt) [Runner: JUnit 4]
4 #i] Unrooted Tests [Runner: JUnit 4] (0,060 5) Figure 5.14 Derived values
¢=] Multipling 20 and -20 is always a negative number (alt) (0,060 <) are recalculated for each test
gkl Multipling 34 and -34 is always a negative number (alt) (0,000 5 run. Here the second parameter
¢] Multipling 44 and -4 is always a negative number (alt) (0,000 5) is always the negative
gkl Multipling 67 and -67 is always a negative number (alt) (0,000 5) ys th & i
representation of the first one.

Running this test shows how the second parameter is recalculated for each scenario
according to the value of the first, as shown in figure 5.14.

This technique allows you to have variables that are dynamically generated based
on the context of the current scenario.

Using dedicated data generators

All the previous examples of data pipes use lists (Groovy ranges also act as lists) to
hold the parameters for each test iteration. Grouping parameters in a list is the more
readable option in my opinion, but Spock can also iterate on the following:

= Strings (each iteration will fetch a character).
= Maps (each iteration will pick a key).

= Enumerations.

= Arrays.

= RegEx matchers.

= Jterators.

= Jterables.

This list isn’t exhaustive. Everything that Groovy can iterate on can be used as a data
generator. Chapter 2 even includes a Groovy Expando as an example of an iterator.
Iterables and iterators are interfaces, which means that you can implement your own
classes for the greatest control of how Spock uses parameters. Even though custom
implementations can handle complex transformations of test data when required, I
consider them a last-resort solution because they’re not always as readable as simpler
data tables. The solutions offered by Spock are compared in figure 5.15.

Custom iterators
[Data pipes with lists J
Flexibility Readability Figure 5.15 All solutions shown for

Data tables with expressions parameterized Spock tests. Data
tables are limited, but readable by
even nontechnical people. All other

[Data tables J techniques sacrifice readability for

more expressive power.

www.it-ebooks.info

http://www.it-ebooks.info/

Using dedicated data generators 149

given: expect: where:
\/ i | hello.jpg i
T ! | another.jpeg !
I | modern0034.JPEG | !
- i city.pn i . i .
@ ol lo? \/ ! ¥:Png ! Figure 5.16 Using a text file
A png : : as a data source for a
: : arameterized test
N p

Groovy reads the lines from a text file
and passes them on to Spock. Spock
uses each line to create a scenario.

If you need to create a custom iterator for obtaining business data, you should always
ask yourself whether the transformation of the data belongs in the business class that
you’re trying to test, or whether it’s part of the iterator.

Before trying custom iterators, you should spend some time determining whether
you can use existing classes in your application that already return data in the format
that you expect. As an example, assume you have a text file that holds image names
that your program can accept, as shown in figure 5.16.

The content of the file validlmageNames.txt is as follows:

hello.jpg
another. jpeg
modern0034 .JPEG
city.Png

city 004.PnG
landscape.JPG

To read this file, you don’t need a custom iterator. The Groovy File class already con-
tains a readLines () method that returns a list of all lines in a file. The respective
Spock test is shown in the following listing.

Listing 5.18 Using existing data generators

@Unroll ("Checking image name #pictureFile")
def "Valid images are PNG and JPEG files" ()
given: "an image extension checker"
ImageNameValidator validator = new ImageNameValidator ()

expect: "that all filenames are accepted"
validator.isValidImageExtension (pictureFile)

where: "sample image names are"

pictureFile << new
Gets a list of all File("src/test/resources/validImageNames.txt")
lines of the file .readLines ()

}

www.it-ebooks.info

http://www.it-ebooks.info/

150 CHAPTER 5 Parameterized tests

Runs: 6/1 B Errors: 0 B Failures: 0

|E| com.manning.spock.chapter5.pipes.FileReadingSpec [Runner: JUnit 4]
4 gjt] Unrooted Tests [Runner: JUnit 4] (0,070 s)
¢ Checking image name hello.jpg (0,070 5)
#:] Checking image name another,jpeg (0,000 <)
t£] Checking image name modern0034.JPEG (0,000 5)
¢ Checking image name city.Png (0,000 s)
t£] Checking image name city_004.PnG (0,000 s)
E Checking image name landscape.JPG (0,000 s)

Figure 5.17 Reading test values from a file by using Groovy code

Here Groovy opens the file, reads its lines in a list, and passes them to Spock. Spock
fetches the lines one by one to create all the scenarios of the test. Running the test
produces the output shown in figure 5.17.

Before resorting to custom iterators, always see whether you can obtain data with
your existing application code or GDK/JDK facilities.” Always keep in mind the excel-
lent facilities of Groovy for XML and JSON reading (these were covered in chapter 2).

5.4.1 Writing a custom data generator

You show the unit test with the valid image names to your business analyst in order to
explain what’s supported by the system. The analyst is impressed, and as a new task,
you get the following file named invalidlmageNames.txt:

#Found by QA

starsystem.tiff
galaxy.tif

#Reported by client

bunny04.gif
looper.GIF
dolly take.mov
afar.xpm

The file can’t be used as is in a unit test. It contains comments that start with the #
sign, it has empty lines, and it even has tabs in front of some image names.

You want to write a Spock test that checks this file and confirms the rejection of the
image names (they’re all invalid). It’s obvious that the Groovy File class can’t help
you in this case; the file has to be processed before it’s used in the Spock test.'’

9 Or even classes from Guava, Apache commons, CSV reading libraries, and so on.
10 1n this simple example, you could clear the file contents manually. In a larger file, this isn’t practical or even
possible.

www.it-ebooks.info

http://www.it-ebooks.info/

Instruct Spock
to read strings
from the
custom class.

Using dedicated data generators 151

To solve this new challenge, you should first create a custom data iterator, as shown
in the next listing.

Listing 5.19 Java iterator that processes invalidimageNames.txt

Class will return

public class InvalidNamesGen implements Iterator<Strings{
strings (lines).

private List<String> invalidNames;
private int counter =0;

public InvalidNamesGen() {
invalidNames = new ArrayList<>();
parse () ;

1

private void parse() {

[...code that reads the file and discards
empty lines, tabs and comments not shown for brevity...]

}

@Override

public boolean hasNext () _ { . . Generate values while lines
return counter < invalidNames.size(); are present in the file.

}

@Override

public String next () { Get the next line
String result = invalidNames.get (counter) ; from the file.
counter++;

return result;

}

@Override

public void remove () { No need to implement
} this for this example
p

There’s nothing Spock-specific about this class on its own. It’s a standard Java iterator
that reads the file and can be used to obtain string values. You can use this iterator
directly in Spock, as shown in the next listing.

Listing 5.20 Using Java iterators in Spock

@Unroll ("Checking image name #pictureFile")
def "valid images are PNG and JPEG files" ()
given: "an image extension checker"
ImageNameValidator validator = new ImageNameValidator ()

expect: "that all filenames are rejected"
lvalidator.isValidImageExtension (pictureFile) This time you expect

invalid images.
where: "sample image names are"

pictureFile << new InvalidNamesGen ()

www.it-ebooks.info

http://www.it-ebooks.info/

152

54.2

CHAPTER 5 Parameterized tests

Finished after 0,472 seconds

Runs: 6/1 B Errors: 0 B Failures: 0

com.manning.spock.chapter5.custom.DatalteratorsSpec [Runner: JUnit 4]
4] Unrooted Tests [Runner: JUnit 4] (0,062 <)
£k Checking image name starsystem.tiff (0,062 <)
] Checking image name galaxy.tif (0,000)
] Checking image name bunny04.gif (0,000 5)

£k Checking image name looper.GIF (0,000 <) !:igure 5:18 Using a :'ava
) Checking image name dolly_take.mov (0,000 5) iterator in a Spock unit
¢] Checking image name afarxpm (0,000 5) test allows for more fine-

grained file reading.

If you run this test, you’ll see that the file is correctly cleaned up and processed, as
shown in figure 5.18. Empty lines, comments, and tabs are completely ignored, and
only the image names are used in each test scenario.

Happy with the result, you show the new test to your business analyst (thinking that
you're finished). Apparently, you must face one last challenge.

Writing custom data generators in Groovy

In this section and the next, | use Java to implement a custom data generator because
| assume that you’re more familiar with Java. It’s possible to write data generators in
Groovy. This would be the preferred method when you know your way around Groovy,
because you can include the generator inside the same source file as the Spock test
(instead of having two separate files, one in Java for the iterator and one in Groovy
for the Spock test).

Using multivalued data iterators

Your business analyst examines the two Spock tests (the one for valid images, and the
one for invalid images) and decides that two files aren’t needed. The analyst combines
the two files into one, called imageNames.txt, with the following content:

#Found by QA
starsystem.tiff fail
galaxy.tif fail

desktop.png pass
europe.jpg pass
modern0034.JPEG pass
city.Png pass

city 004.PnG pass

#Reported by client
bunny04.gif fail
looper.GIF fail
dolly take.mov fail
afar.xpm fail

www.it-ebooks.info

http://www.it-ebooks.info/

Using dedicated data generators 153

This file is similar to the other two, with one important difference. It contains the
word pass/fail in the same line as the image name.'' At first glance, it seems that you
need to write a test similar to listing 5.13, but using two custom iterators, as follows:

where: "sample image names are"
pictureFile << new CustomIteratorl()
validPicture << new CustomIterator2 ()

The first iterator is responsible for reading the image names as before, and the second
iterator reads the pass/fail flag and converts it to a Boolean. This solution would cer-
tainly work, but having two custom iterators isn’t practical. They would both share sim-
ilar code (both need to ignore empty lines), and keeping them in sync if the file
format changed would be a big challenge.

Hopefully, with Spock tests you don’t need extra custom iterators for each parame-
ter. Spock supports multivalue iterators (powered by Groovy multivalued assign-
ments'?), so you can obtain all your input/output parameters from a single iterator.
For illustration purposes, our example uses a custom iterator to fetch two variables,
but the same technique can work with any number of parameters. The iterator is
shown in the next listing.

Listing 5.21 Java multivalued iterator

public class MultiVarReader implements Iterator<Object []>{ 444} Class will return

. . . . multiple values.
private List<String> fileNames;

private List<Booleans> validFlag;
private int counter =0;

public MultiVarReader () {
fileNames = new ArrayList<>();
validFlag = new ArrayList<>();
parse () ;

}

private void parse() {
[...code that reads the file and discards
empty lines, tabs and comments not shown for brevity...]

}

@Override
public boolean hasNext () { Generate values while
return counter< fileNames.size() ; lines are present.

}

@Override

public Object[] next () { . First parameter is the file, and second
Object[] result = new Object[2]; parameter is the pass/fail result.

' In reality, this file would be a large XLS file with multiple columns that contained both important and unre-
lated data.

2 You can find more details about Groovy multivalue assignments at htttp://www.groovy-lang.org/semantics
.html#_multiple_assignment.

www.it-ebooks.info

htttp://www.groovy-lang.org/semantics.html#_multiple_assignment
htttp://www.groovy-lang.org/semantics.html#_multiple_assignment
http://www.it-ebooks.info/

154

The iterator
reads both
parameters

at once.

CHAPTER 5 Parameterized tests

result [0] = fileNames.get (counter) ;
result [1] = validFlag.get (counter) ;
counter++;

return result;

}

@Override

public void remove () { No need to
} implement this

}

Here the defined iterator returns two objects. The first object is the image name, and
the second object is a Boolean that’s true if the image should be considered valid,
and false if the image name should be rejected. Notice again that there’s nothing
Spock-specific about this class. It’s a normal Java class.

The Spock test that uses this multivalue iterator is shown in the following listing.

Listing 5.22 Using multivalued iterators in Spock

@Unroll ("Checking image name #pictureFile with result=#result")
def "Valid images are PNG and JPEG files only 2" () {

given: "an image extension checker"

ImageNameValidator validator = new ImageNameValidator ()

expect: "that all filenames are categorized correctly"
validator.isValidImageExtension (pictureFile) == result Result is now an

, output parameter.
where: "sample image names are"

[pictureFile, result] << new MultiVarReader ()

}

In the Spock test, the left-shift operator is used as before, but this time the left side is a
list of parameters instead of a single parameter. Spock reads the respective values from
the data generator and places them in the parameters in the order they’re mentioned.
The first value that comes out of the data generator is placed in the first parameter
(the image name, in this case), and the second value from the generator (the Boolean
flag, in this case) is placed in the second parameter. Running the test produces the
output in figure 5.19.

Runs: 1171 B Errors: 0 B Fail

4 Ea Unrooted Tests [Runner: JUnit 4] (0,000 s)
] Checking image name starsystem.tiff with t=false (0,000 s)
£] Checking image name galaxy.tif with result=false (0,000 <)
£] Checking image name desktop.png with t=true (0,000 s)
gF.J Checking image name europe.jpg with result=true (0,000 5)
gi] Checking image name modern0034.JPEG with result=true (0,000 5)
H:J Checking image name city.Png with result=true (0,000 5)

gi] Checking image name city_004.PnG with result=true (0,000 5) Figure 5.19 Multivalued iterators.
g Checking image name bunny04.gif with result=false (0,000 <) For each test run, Spock reads both
=) Checking image name looper.GIF with result=false (0,000 s) the input (image filename) and the

EF—J Checking image name dolly_take.mov with result=false (0,000 s)

-] i output parameter (result of validity)
] Checking image name afar.xpm with result=false (0,000 s)

from the data file.

www.it-ebooks.info

http://www.it-ebooks.info/

Two parameters
will be used in
this Spock test

pictureFile
and result.

5.5

This

Working with third-party data generators 155

capability of the left-shift operator to handle multivalues isn’t restricted to data

generators (although that’s where it’s most useful). You can perform multivalue

parameter assignments by using plain data pipes, as shown in the following listing.

Listing 5.23 Using multivalued assignments in Spock

@Unr
def

The

oll ("Checking harcoded image name #pictureFile with #result")
"Walid images are PNG and JPEG files only" () {

given: "an image extension checker"

ImageNameValidator validator = new ImageNameValidator ()

expect: "that all filenames are categorized correctly"

validator.isValidImageExtension (pictureFile) == result

where: "sample image names are"

[pictureFile, result] << [["sample.jpg",truel, | Multivalue assignment: the first parameter
["bunny.gif", falsel] is pictureFile, and the second is result.

right side of the assignment contains a list of all scenarios (which are lists). For

each scenario, Spock again picks the first element and places it in the first variable of
the left list. The second element from the scenario is placed in the second parameter,

and

SO on.

Working with third-party data generators
With the current breadth of Java/Groovy input libraries that handle text, JSON, XML,

CSsv,

and other structured data, writing custom iterators that can handle your specific

business case is easy.

I
data
they

f you've already invested in JUnit tools that generate random data or construct
according to your needs, adapting them for your Spock tests should be easy. If
already implement the iterator interface, you can use them directly, or you can

wrap them in your own data generator.

If your application is using a lot of data generators, you might also find the Spock

genesis library (https://github.com/Bijnagte/spock-genesis) useful. It can be thought

of as a meta-generator library because it allows you to do the following:

Lazily create input data

Compose existing generators into new ones

Filter existing generators using predicates/closures
Randomize or order the output for other generators

Always remember that your data generators can be written in both Java and Groovy. If

you find a library in Java that suits your needs, you can integrate it directly in Spock.

A perfect example of this approach is the jFairy data generator library (https://
github.com/Codearte/jfairy). The library is written in Java, but it can easily be used in
Spock. Its own unit tests are implemented in Spock.

www.it-ebooks.info

https://github.com/Codearte/jfairy
https://github.com/Codearte/jfairy
https://github.com/Bijnagte/spock-genesis
http://www.it-ebooks.info/

156

CHAPTER 5 Parameterized tests

5.6 Summary

Parameterized tests are tests that share the same test logic but have multiple
input and output parameters.

Spock supports parameterized tests via the where: block, which defines the
individual scenarios.

The simplest use of the where: block is with data tables; you directly embed all
parameters inside the source code.

Data tables are readable because they collect in a single place the names and
values of all parameters.

Each scenario in the where: block has its own lifecycle. A parameterized test
with Nscenarios will spawn N runs.

The @unroll annotation can be used to report individual runs of each scenario
in its own test.

In conjunction with the @Unroll annotation, it’s possible to change the name of
each test method to include the input and output parameters. This makes
reporting clear, and pinpointing a failed test is easy.

You can use statements and Groovy expressions in data tables. You should be
careful not to harm the readability of the test.

A more advanced form of parameterized tests is data pipes. These allow the
automatic calculation of input/output parameters when embedding them
directly in the source code isn’t practical (either because of their size or their
complexity).

Data pipes can get data from a collection, Groovy ranges, strings, and even reg-
ular expression matchers. Anything that’s iterable in Groovy can be used as a
data generator.

Test parameters can depend on other test parameters. In addition, defining a
test parameter as a constant is easy.

Existing libraries/classes can be easily wrapped in a data generator or used
directly as an iterator.

Spock can assign multiple variables at once for each scenario. This is also possi-
ble in plain Groovy. Data generators aren’t limited to generating data for a sin-
gle value. Multivalued data generators can be used to handle all input/output
parameters of a scenario in a single step.

Data generators can be implemented in both Java and/or Groovy.

www.it-ebooks.info

http://www.it-ebooks.info/

Mocking and stubbing

This chapter covers

= A quick introduction to fake collaborators
= [nstructing Spock stubs with canned responses
= Verifying interactions with Spock mocks

= Verifying arguments or return values of the
class under test

This chapter starts with a quick reminder of the theory behind mocks and stubs
(the terminology used by Spock). If you’ve never used them before in your unit
tests, feel free to consult other external sources to complete your knowledge.! You
may have already seen them as test doubles or fake collaborators, so if you know the the-
ory, you can skip ahead to section 6.2 in order to see the implementation of Spock
for fake objects.

Fake collaborators are a way to isolate a single class with your exact input and
output specification so that you can examine it under a well-controlled environ-
ment. I briefly hinted about the mocking/stubbing capabilities of Spock in chapter

! A good start is the book Effective Unit Testing by Lasse Koskela (Manning, 2013)—chapter 3 in particular.

157

www.it-ebooks.info

http://www.it-ebooks.info/

158

6.1

6.1.1

CHAPTER 6 Mocking and stubbing

3 and promised to show you much more when the time comes (now!). Unlike JUnit,
Spock has native support for mocks, and there’s no need to add an external library to
use this technique. The syntax for mocking and stubbing is much simpler than other
mocking frameworks.

Using fake collaborators

Let’s say you have a Java class in your application that shuts down a nuclear reactor
when radiation levels from a sensor pass a critical threshold. You want to write a unit
test for that class. It wouldn’t be realistic to bombard the real sensor with radiation just
to see your unit test work. It’s also not realistic to shut down the nuclear reactor when-
ever the unit test runs.

For a more run-of-the-mill example, assume that your Java class sends a reminder
email to a customer whenever an invoice isn’t settled on time. Re-creating a delayed
payment in the unit test would be difficult, and sending a real email each time the
unit test runs would also be unrealistic.

For cases like this, you need to employ fake collaborators in your unit test. You
need to fake the way your class gets the current sensor values as well as the communi-
cation with the nuclear reactor, and you also need to fake the delayed payment and
the email server. A fake collaboratoris a special class that replaces a real class in order to
make its behavior deterministic (preprogrammed). No technical limitation ties fake
classes to unit tests. But unit tests are much more flexible if they employ the power of
fake classes (which is the running theme of this chapter).

A visual way to describe a fake object is shown in figure 6.1. The core of each circle
is a class, and the arcs around it are its methods.?

Using fake collaborators to isolate a class in unit tests

If a bug shows up in a real system (or in an integration test), it’s not immediately clear
which class or classes are responsible for it. In a unit test that contains only a real class
(as in figure 6.1), you can preprogram its collaborators with “correct” and “expected”
answers. Thus, it’s easy to focus the unit test on how this single class works and make
sure that it contains no bugs (at least on its own).

These fake collaborators aren’t real classes because

= They implement only the methods needed for the unit test and nothing else.

= When they make requests to the real class, the request parameters are prepro-
grammed and known in advance.

= When they answer requests from the real class, their answers are also prepro-
grammed.

The point to remember is that only the programmer knows the existence of the fake
classes. From the point of view of the real class, everything is running normally. The
real class thinks that it runs on a live system (because the fake classes still implement

2 See https://docs.oracle.com/javase/tutorial /java/concepts/object.html for this drawing style.

www.it-ebooks.info

https://code.google.com/p/powermock/wiki/PowerMockRule
https://code.google.com/p/powermock/wiki/PowerMockRule
https://docs.oracle.com/javase/tutorial/java/concepts/object.html
http://www.it-ebooks.info/

6.1.2

Using fake collaborators 159

Real system
Real Real e
sensor class reactor
-+ -
Unit test

Fake Real Fake
sen ss ctor

Figure 6.1 By using fake classes, you can define your own sensor values
and replace the real nuclear reactor with a fake one. You can safely mimic
any possible situation you want without affecting the real hardware.

the agreed-upon interfaces) without understanding that the whole stage is a single
unit test.

For the rest of this chapter, I use the terms stub and mock for this type of fake class
because this is the terminology used by Spock.

Faking classes in Spock: mocks and stubs

Mocks and stubs are a further subdivision of fake objects. Here are the definitions I
first introduced in chapter 3:

= A stubis a fake class that comes with preprogrammed return values. It’s injected
into the class under test so that you have absolute control over what’s being
tested as input. In figure 6.1, the fake sensor is a stub so that you can re-create
any radiation levels you want.

= A mock is a fake class that can be examined after the test is finished for its inter-
actions with the class under test (for example, you can ask it whether a method
was called or how many times it was called). In figure 6.1, the fake reactor class
is a mock so that you can ask whether its shutdown () method was called after
the unit test has ended.

In practice, because mocks can also be stubbed, you can think of them as a superset of
stubs (which cannot be used for verification of interactions). In theory, you could
write all your Spock tests using only mocks. For readability, it’s best to decide in
advance which type of fake object you’re creating.

www.it-ebooks.info

http://www.it-ebooks.info/

160 CHAPTER 6 Mocking and stubbing

Unit testing and filmmaking analogy

If you still have trouble understanding the difference between mocks and stubs, imag-
ine that instead of a programmer, you're a film director. You want to shoot a scene
(create a unit test). First you set up the actors, camera, and sound that will create
the illusion of the scene (you prepare stubs and mocks). You let the camera roll (run
the unit test) and check the camera screen for the result (examine the test result).
Stubs are your sound technician, your lighting experts, and your camera man. You
give them instructions before each scene, as you preprogram your stubs. They're es-
sential for filming your scene, as stubs are essential for the correct functionality of
your class under test. But they don’t appear in the recorded scene, as stubs are never
used for test verification.

Mocks are your actors. You also give them a script before the scene for their dialogue,
in the same way that you prepare your mocks (for their interaction with the class under
test). After filming is finished, you check their onscreen performance as you check
the interactions of your mocks.

Under dire circumstances, you can force an actor to hold the boom microphone or the
camera (use a mock in place of a stub), but you can never create an actor out of a
technician on the spot (you can’t use a stub for interaction verification).

6.1.3 Knowing when to use mocks and stubs

Knowing how to mock classes isn’t enough for effective unit tests. You also need to
know which classes to mock out of all the collaborators. In a large enterprise project,
your class under test might interface with several other classes. You should ask yourself
which classes need mocking and which classes can use their real implementation.’

I've seen both sides of the spectrum. Some developers don’t use mocking at all,
making all unit tests run as integration tests. I've also seen excessive mocking of classes
that don’t need it. The former situation isn’t desirable because all tests will be slow
and complex. The latter situation has its own problems as well. Upgrading badly
designed mocked tests is difficult when the production code changes because of
unforeseen business requirements.

As a general rule of thumb, you should mock/stub all collaborator classes that do
the following:

= Make the unit test nondeterministic.

= Have severe side effects.

= Make the test depend on the computation environment.

= Make the test slow.

= Need to exhibit strange behavior typically not found on a real system.

The first case is obvious. If you're writing a unit test for a game that uses electronic
dice, you can’t possibly use the real dice class in your unit test. Instead, you mock it to
make it return a particular number that fits your scenario.

% And which should be spies in some rare cases. Spies are explained in chapter 8.

www.it-ebooks.info

http://www.it-ebooks.info/

Using fake collaborators 161

The second case was demonstrated in chapter 3. If you have code that charges
credit cards, prints documents, launches missiles, or shuts down nuclear reactors, you
must mock it so that nothing bad happens when a unit test runs.

The third case is about creating reliable tests that always have the same behavior
when they run either on the build server or a development workstation. Code that
reads environment variables, reads external setting files, or asks for user input should
be mocked with the variables used in that specific scenario.

In large enterprise projects, tests can be slow. A common speed-up technique is to
mock out code that reads files, communicates with a database, or contacts an external
network service. This makes the test CPU-bound instead of 1/O-bound so tests run at
the maximum capacity of the processor.

Finally, you need to stub objects when you want to create a specific behavior that’s
hard to reproduce with the real class. Common cases are emulating a full hard disk or
a complete failure in the network.

The corollary of the preceding list is that if you have a collaborator class that
doesn’t depend on external services or the environment, doesn’t perform I/0 opera-
tions, and is fast in its responses, then you can use it as is in a unit test (with its real
implementation).

The class under test is always a real class

I’'m always baffled by questions in Stack Overflow and other forums and mailing lists
indicating that people have difficulties with mocking because they try to mock the class
under test instead of its collaborators. Some advanced unit tests need this (I'll show
you spies in chapter 8), but this technique is only for extreme corner cases of legacy
code. In vanilla unit tests, the class under test is always a real class. Mocks are used
for its collaborators only. Even then, not all collaborators need to be mocked.

6.1.4 Exploring a sample application for an electronic shop system

The running example for this chapter is an expanded version of the e-shop system that
you saw in chapter 4. Figure 6.2 shows a high-level overview of the system under test.

Buyer Products
Basket Checkout
—_—
Check
availability Charge
o<1

=

Figure 6.2 An extended e-shop that has I') .
.) nventory Credit
an inventory and charges credit cards card

www.it-ebooks.info

http://www.it-ebooks.info/

162 CHAPTER 6 Mocking and stubbing

In this e-shop, the client can browse product pages and add them to an electronic bas-
ket as before. But when the client checks out, two additional actions are performed.
First, the inventory is checked to verify that the products are indeed ready for dis-
patching. Second, the credit card of the client is charged using an external preexist-
ing service (which is the responsibility of another company).

The Java skeleton for this e-shop is shown in the following listing, and it’s similar to
the one introduced in chapter 4.

Listing 6.1 Java skeleton code for the e-shop

public class Product { Simple holder class
private String name; foraproduct

private int price;
private int weight;
[...getters and setters..]

} Contains stocked products—
public class WarehouseInventory { we’ll stub this

public int isProductAvailable (String productName)

{

[...code redacted for brevity..]

Checks whether }
a product is
stocked public boolean isProductAvailable (String productName, int count)

{

[...code redacted for brevity..]

) Quick check of

public boolean isEmpty () product availability

{
}

[...code redacted for brevity..]

) c
lass under test
public class Basket <
public void addProduct (Product product) { Triggered
addProduct (product, 1) ; from the Ul
}
public void addProduct (Product product, int times) {
[...code redacted for brevity..]
}
public int getProductTypesCount () {
[...code redacted for brevity..]
Setter J
injection public void setWarehouselInventory (WarehouseInventory
warehouseInventory)
[...code redacted for brevity..]
}
public boolean canShipCompletely () { Method that needs
[...code redacted for brevity..] to be tested

www.it-ebooks.info

http://www.it-ebooks.info/

6.2

6.2.1

Controlling input to the class under test with stubs 163

Just by looking at figure 6.2, you can already guess which class you’ll stub and which
class you’ll mock. The inventory class will be stubbed (so you can define the stock lev-
els of various products, regardless of the real warehouse), and the credit card system
will be mocked (so you don’t charge real credit cards when a unit test runs).

I’ll use this sample application throughout the chapter for increasingly complex
examples of Spock unit tests that contain mocks and stubs.

Controlling input to the class under test with stubs

Now that you know the theory behind mocks and stubs and the system that you’ll test,
you’re ready to see how to use them in your Spock tests. Let’s start with stubs, which
are simpler. You stub all collaborator classes that are used by your class under test but
aren’t otherwise tested. Either they have their own unit tests or they’re external librar-
ies and frameworks that are assumed to work correctly.

In general, your class under test makes requests to your stubs. You need to tell
Spock what to do when any of the stubbed methods are called. By default, Spock won’t
complain if a method is called that wasn’t explicitly stubbed.

Therefore, creating a stub is a two-step process:

1 Showing Spock which class won’t use its real implementation and instead will
be stubbed

2 Declaring what will happen when any of the stubbed methods are called by the
class under test (what the return values will be)

Basic stubbing of return values

The first thing you want to test is the canShipCompletely () method of the basket
from listing 6.1. This method returns true when all products selected by the customer
are available in the warehouse, and false in any other case. You’ll stub the warehouse
inventory so that you can emulate both cases: the product is in stock and the product
isn’t currently available.

The warehouse inventory is a concrete class that’s used by the basket class during
checkout. Imagine that this class is part of an external system that you don’t have any
control over. You don’t want your unit tests to be based on the real inventory of this
e-shop. You need a way to trick the inventory to contain what you want for each busi-
ness scenario that you test. The following listing shows an example of stubbing the
warehouse inventory.

Listing 6.2 Creating a simple stub with Spock

def "If warehouse is empty nothing can be shipped" () {
given: "a basket and a TV"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Basket basket = new Basket ()

and:"an empty warehouse" Creates
WarehouseInventory inventory = Stub (WarehouseInventory) Spock stub

www.it-ebooks.info

http://www.it-ebooks.info/

164

Injects the
stub into
the class

under test

Instructing

the warehouse
to respond
with false

CHAPTER 6 Mocking and stubbing

Instructs the stub to return

basket.setWarehouseInventory (inventory) true when isEmpty() is called

inventory.isEmpty () >> true <

when: "user checks out the tv"
basket .addProduct tv

then: "order cannot be shipped" Ca"fthestub
!basket.canShipCompletely () behind the scenes

The most important lines from listing 6.2 are the following:

WarehouseInventory inventory = Stub (WarehouseInventory)
inventory.isEmpty () >> true

The first line creates a Spock stub that looks and “acts” as the class WarehouseInven-
tory, but all methods that are called on this stub are intercepted automatically by
Spock and never reach the real implementation.

The second line uses the right-shift operator. This special Spock operator (remem-
ber that Groovy allows for operator overloading, unlike Java) hardwires the isEmpty ()
method to return true regardless of the real implementation of the original class.
When the basket is asked to respond about the shipping status of the order it calls
(behind the scenes), the stubbed method gets a negative result from the inventory.

To stub a method for specific arguments, you can use the rightshift operator
directly on the method call you want to emulate, as shown in the next listing.

Listing 6.3 Stubbing specific arguments

def "If warehouse has the product on stock everything is fine" () {
given: "a basket and a TV"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Basket basket = new Basket ()

and:"a warehouse with enough stock" Creating a
WarehouseInventory inventory = Stub(WarehouselInventory) Spock stub
inventory.isProductAvailable ("bravia",1l) >> true

inventory.isEmpty () >> false

basket .setWarehouseInventory (inventory) Instructing the stub to

return true when specific
when: "user checks out the tv" arguments are used

basket.addProduct tv

then: "order can be shipped right away"
basket.canShipCompletely ()

Here you change the inventory to emulate the happy scenario in which the product
exists in the warehouse. It’s also possible to differentiate method calls according to
their arguments and stub them with different return results. This is demonstrated in
the following listing.

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling input to the class under test with stubs 165

Listing 6.4 Argument-based stub differentiation

def "If warehouse does not have all products, order cannot be shipped" () {
given: "a basket, a TV and a camera"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)
Basket basket = new Basket ()

and:"a warehouse with partial availability"
WarehouseInventory inventory = Stub (WarehouselInventory)

inventory.isProductAvailable ("bravia",1) >> true Different stub results
inventory.isProductAvailable ("panasonic",1) >> false depending on the argument
inventory.isEmpty () >> false

basket.setWarehouseInventory (inventory)

when: "user checks out both products"
basket.addProduct tv
basket.addProduct camera

then: "order cannot be shipped right away"
!basket.canShipCompletely ()

Finally, you can group all stubbing instructions in a single code block in a similar way
to the with() method shown in chapter 4. The following code listing behaves in
exactly the same way as listing 6.4; only the syntax differs. You should decide for your-
self which of the two you prefer.

Listing 6.5 Grouping all stubbed methods

def "If warehouse does not have all products, order cannot be shipped
(alt) " () |
given: "a basket, a TV and a camera"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)
Basket basket = new Basket ()

and:"a warehouse with partial availability"

WarehouseInventory inventory = Stub (WarehouseInventory)
isProductAvailable ("bravia",1l) >> true
isProductAvailable ("panasonic",1l) >> false
isEmpty () >> false

Compact way of
stubbing methods

}

basket .warehouseInventory = inventory 4“}5eﬁeriﬂecﬁon
using Groovy style

when: "user checks out both products"

basket.addProduct tv

basket.addProduct camera

then: "order cannot be shipped right away"
Ibasket.canShipCompletely ()

www.it-ebooks.info

http://www.it-ebooks.info/

166 CHAPTER 6 Mocking and stubbing

Notice that in all the preceding code listings, the real code of warehouse inventory
never runs. The Spock unit tests shown can run on their own, regardless of the status
of the real inventory. As long as the signature of the warehouse class stays the same
(that is, the method definitions), these unit tests will continue to run correctly, even if
new methods are added to the original class. Now you know how you can stub classes
in Spock!

6.2.2 Matching arguments leniently when a stubbed method is called

The previous section showed how to stub methods by using the exact arguments you
expect to be called. This works for trivial tests, but for bigger tests, this precision isn’t
always needed. For example, if I wanted to create a unit test that involved 10 different
products, I’d have to stub 10 different calls for the same method.

Spock offers a more practical solution in the form of argument matchers when you
don’t want so much detail. The character Spock uses is the underscore (_), and in
general it plays the role of “I don’t care what goes in here,” depending on the context
(as you'll see throughout this chapter). The following listing shows the use of the
underscore as an argument matcher.

Listing 6.6 Using argument matchers in stubs

def "If warehouse has both products everything is fine" ()
given: "a basket, a TV and a camera"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)
Basket basket = new Basket ()

and:"a warehouse with enough stock"
WarehouseInventory inventory = Stub (WarehouseInventory)
inventory.isProductAvailable(, 1) >> true

— Stubbing a method call
basket .setWarehouseInventory (inventory) regardless of the value

of an argument
when: "user checks out the tv and the camera"

basket.addProduct tv
basket.addProduct camera

then: "order can be shipped right away"
basket.canShipCompletely ()

Here I've stubbed the inventory method only once, and I know that it can be called
for all products I ask for, regardless of their names.* I've chosen this approach because
in this particular test I'm not interested in examining the correctness of the ware-
house (the focus of the test is still the basket class).

4 Unlike Mockito, Spock supports partial matching of arguments, where some have specific values and some
don’t. Mockito requires that all arguments use matchers if any matcher is used at all.

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling input to the class under test with stubs 167

It’s also possible to use matchers for all arguments of a method, resulting in power-
ful stubbing combinations. The following listing shows an example.

Listing 6.7 Ignoring all arguments of a stubbed method when returning a response

def "If warehouse is fully stocked stock everything is fine" () ({
given: "a basket, a TV and a camera"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)
Basket basket = new Basket ()

and:"a warehouse with limitless stock"
WarehouselInventory inventory = Stub (WarehouselInventory)

inventory.isProductAvailable(,) >> true Stubbing a method for
basket.setWarehouseInventory (inventory) all its possible arguments

when: "user checks out multiple products"
basket.addProduct tv,33 Both these calls
basket .addProduct camera, 12 will be matched.

then: "order can be shipped right away"
basket.canShipCompletely ()

Here I've instructed my warehouse to answer that the product is always in stock,
regardless of the product. I don’t care if the class under test asks for a TV or a camera;
it will always be in stock.

Stubbing a method regardless of its arguments is a powerful technique that can be
helpful in large unit tests in which the stub is a secondary dependency that’s outside
the focus of the test. Dispatchers, delegates, facades, decorators, and other design pat-
terns are perfect candidates for this kind of stubbing, as often they get in the way of
the class under test.

6.2.3 Using sequential stubs with different responses for each method call

Listing 6.5 showed how to differentiate the stub response based on the argument.
This is one dimension of different responses. The other dimension is to stub different
responses depending on the number of times a method is called.

This is accomplished with the unsigned right-shift operator (>>>), which was intro-
duced in chapter 3. An example is shown in the next listing.

Listing 6.8 Stubbing subsequent method calls

def "Inventory is always checked in the last possible moment" () {
given: "a basket and a TV"
Product tv = new Product (name:"bravia",price:1200,weight:18)

Basket basket = new Basket () First call will return

true, and second

.n 1 1 n .
and:"a warehouse with fluctuating stock levels will return false.

WarehouseInventory inventory = Stub (WarehouseInventory)
inventory.isProductAvailable("bravia",) >>> true >> false

www.it-ebooks.info

http://www.it-ebooks.info/

168 CHAPTER 6 Mocking and stubbing

inventory.isEmpty () >>> [false, true]

) Spock can also iterate
basket.setWarehouseInventory (inventory)

on a collection for

ordered responses.
when: "user checks out the tv"

basket .addProduct tv

then: "order can be shipped right away"

basket.canShipCompletely () The inventory stub is

called for the first time
when: "user wants another TV" behind the scenes.

basket.addProduct tv
The inventory

ﬁubisc%"ed then: "order can no longer be shipped"
a second time. Ibasket .canShipCompletely ()

The unsigned shift operator signifies to Spock that the expression following it will be
used as a response for each subsequent call of the exact same method. Multiple
answers can be chained together by using the normal shift operator, >>. In this listing
this happens with the isProductAvailableMethod (). The first time it will return true
and the second time it will return false to a query for a TV.

An alternative syntax (and the one I prefer) is to use a collection after the
unsigned shift operator. Each item of the collection will be used in turn as a response
when the stubbed method is called. As with parameterized tests, remember that
Groovy has a more general idea of “iterable” things than Java, so you don’t have to use
a list as shown in listing 6.8.

6.2.4 Throwing exceptions when a stubbed method is called

I'said in the introduction of this chapter that stubs are essential if you want to emulate
a hard-to-reproduce situation or a corner case that doesn’t typically happen with pro-
duction code. For large-scale applications, when the code that handles error condi-
tions can easily outweigh the code for happy-path scenarios, it’s essential to create unit
tests that trigger those error conditions.

In the most common case, the error conditions come in the form of Java excep-
tions. These can be easily emulated, as shown in the following listing.

Listing 6.9 Instructing stubs to throw exceptions

def "A problematic inventory means nothing can be shipped" () {
given: "a basket and a TV"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Basket basket = new Basket ()

and:"a warehouse with serious issues"

WarehouseInventory inventory = Stub (WarehouseInventory)

inventory.isProductAvailable("bravia",) >> { throw new Stubkinﬁruagﬁto
RuntimeException ("critical error") } throw an exception

basket .setWarehouseInventory (inventory)

www.it-ebooks.info

http://www.it-ebooks.info/

6.2.5

Controlling input to the class under test with stubs 169

when: "user checks out the tv"
basket.addProduct tv

then: "order cannot be shipped" Ensures that the basket class
Ibasket .canShipCompletely () can recover from the exception

The basket class calls the warehouse class, and if anything goes wrong (even if an
exception is thrown), the canShipCompletely () method recovers by returning false
(while leaving the basket class in a valid state). To verify this capability of the basket
class, you need to instruct the warehouse to throw an exception when the stubbed
method is called.

You still use the rightshift operator (>>) for stubbing, but instead of returning a
standard value as in the previous examples, you can place any Java code inside the
brackets (which in reality is a Groovy closure, as you know if you paid attention in
chapter 2).

Inside the brackets, you can put any code with Java statements, so a useful capabil-
ity is to throw an exception. The beauty of Spock® is that throwing exceptions isn’t
something extraordinary that requires special syntax. Instead, you’re offered a
generic way to do anything when a stubbed method is called, and throwing an excep-
tion is one possibility of many.

The great power of using Groovy closures in Spock stubs is revealed fully in the
next section.

Closures—the Swiss army knife of Groovy

| briefly talked about closures in chapter 2. In their simplest form, you can think of
them as anonymous Java functions with greater flexibility. If you've already worked
with Java 8 and lambda expressions, Groovy closures will be familiar.

Using dynamic stubs that check arguments when responding

The previous section showed how to throw an exception in a stub by using a Groovy
closure. I consider Groovy closures a powerful feature, even in the presence of Java 8,
because the way Groovy closures are used in Spock is refreshing. In other mocking
frameworks, such as Mockito, you need to learn separate syntax semantics for argu-
ment catchers, exception throwing, and dynamic responses. In Spock, all these are
unified under Groovy closures.

Before I show any code, I'll repeat the suggestion in chapter 2. If you don’t feel
comfortable with Groovy closures (or Java 8 lambda expressions), feel free to skip this
section and come back later. Closures can also be used with mocks, as you’ll see later
in this chapter.

5 Thanks to Groovy's way of handling all exceptions as unchecked.

www.it-ebooks.info

http://www.it-ebooks.info/

170

Stubbing
a Java
interface

CHAPTER 6 Mocking and stubbing

To make this example more interesting, I'll add another dependency to the basket
class. This time, it will be an interface (instead of a concrete class), as shown here:

public interface ShippingCalculator {
int findShippingCostFor (Product product, int times);
}

This interface is responsible for shipping charges. It accepts a product and the num-
ber of times it was added in the basket, and returns the shipping costs (in whatever
currency the esshop uses). The basket class is also augmented with a findTotalCost ()
method that calls the shipping calculator behind the scenes in order to add shipping
charges to the product value. You want to test this new method of the basket class.

As a business scenario, you choose a simple shipping strategy. For each product,
you add 10 dollars to the final cost for each time it’s added to the basket, regardless of
product type.® A naive way of stubbing the shipping calculator would be the following:

ShippingCalculator shippingCalculator = Stub (ShippingCalculator)
shippingCalculator.findShippingCostFor (tv, 2) >> 20
shippingCalculator.findShippingCostFor (camera, 2) >> 20
shippingCalculator.findShippingCostFor (hifi, 1) >> 10
shippingCalculator.findShippingCostFor (laptop, 3) >> 30

Here you instruct the shipping module with specific responses according to the argu-
ments of the called method. This code isn’t readable and clearly suffers from verbos-
ity. Writing unit tests for a large number of products will also be difficult (imagine a
unit test that adds 100 products from an external source).

With the power of closures, Spock allows you to capture a simple pricing strategy
with a single line of code! The following listing demonstrates this technique and
shows that Spock can stub both interfaces and concrete classes in an agnostic way.

Listing 6.10 Stubs that respond according to arguments

def "Basket handles shipping charges according to product count" () {
given: "a basket and several products"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)
Product hifi = new Product (name:"jvc",price:600,weight:5)
Product laptop = new Product (name:"toshiba",price:800,weight:10)
Basket basket = new Basket ()

and: "a fully stocked warehouse" Stubbing a
WarehouseInventory inventory = Stub (WarehouseInventory) concrete class
inventory.isProductAvailable (,) >> true

basket.setWarehouseInventory (inventory)

and: "a shipping calculator that charges 10 dollars for each product"
ShippingCalculator shippingCalculator = Stub (ShippingCalculator)

% Not really sustainable for a true shop, but it’s sufficient for illustration purposes.

www.it-ebooks.info

http://www.it-ebooks.info/

Using a Groovy
closure for a

Controlling input to the class under test with stubs 171

shippingCalculator.findShippingCostFor(,) >> { Product product, int
count -> 10 * count}
basket.setShippingCalculator (shippingCalculator)

dynamic response

Verifying that
shipping charges
are included

Stubbing
a Java
interface

when: "user checks out several products in different quantities"
basket.addProduct tv, 2

basket.addProduct camera, 2 Ad&ngdﬂhrmﬁ
basket.addProduct hifi quantities to the basket
basket .addProduct laptop, 3

then: "cost is correctly calculated"
basket.findTotalCost () == 2 * tv.price + 2 * camera.price + hifi.price
+ 3 * laptop.price + basket.getProductCount () * 10

Using the Groovy closure, you’ve instrumented the shipping calculator stub with your
selected pricing strategy in a single line of code. With that one line, the shipping cal-
culator can respond to 1, 2, or 100 products added to the basket. Its behavior is no
longer statically defined, but it can understand its arguments.

For an even smarter stub, assume that the e-shop also sells downloadable goods. For
these, the shipping cost should obviously be zero. Again, a naive way to cater to this case
would be to instruct your stub with specific products to return 0—for example:

shippingCalculator.findShippingCostFor (ebook,) >> 0

Doing this wouldn’t be scalable because if a unit test examines 10 different download-
able goods, you’ll have to manually stub the response 10 times. Remember that the
interface for the shipping calculator also gives you access to the product, as well as the
number of times it was added to the basket. Therefore, you can modify the Groovy clo-
sure to look at both arguments, as shown in the next listing.

Listing 6.11 A smart stub that looks at both its arguments

def "Downloadable goods do not have shipping cost" () {
given: "a basket and several products"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)
Product hifi = new Product (name:"jvc",price:600,weight:5)
Product laptop = new Product (name:"toshiba",price:800,weight:10)
Product ebook = new Product (name:"learning exposure",price:30,weight:0)
Product suite = new Product (name:"adobe essentials",price:200,weight:0)
Basket basket = new Basket ()

and: "a fully stocked warehouse"

WarehouselInventory inventory = Stub (WarehouselInventory)
inventory.isProductAvailable(_ , _) >> true
basket.setWarehouseInventory (inventory)

and: "a shipping calculator that charges 10 dollars for each physical
product"
ShippingCalculator shippingCalculator = Stub (ShippingCalculator)

www.it-ebooks.info

http://www.it-ebooks.info/

172

60 is shipping
charges for
the physical
goods only.

6.2.6

CHAPTER 6 Mocking and stubbing

shippingCalculator.findShippingCostFor(,) >> { Product product, int
count -> product.weight==0 ? 0 :10 * count}
basket.setShippingCalculator (shippingCalculator) Groovy closure
that uses both
when: "user checks out several products in different quantities™" arguments

basket .addProduct tv,2
basket .addProduct camera,?2
basket.addProduct hifi
basket .addProduct laptop
basket.addProduct ebook
basket .addProduct suite,3

then: "cost is correctly calculated"
basket.findTotalCost () == 2 * tv.price + 2 * camera.price + hifi.price
+ laptop.price + ebook.price + 3 * suite.price+ 60

With a single Groovy code line, you’ve managed to instruct the shipping calculator to
use a different behavior for downloadable and physical products. If the product has
zero weight, shipping costs are free. In any other case, the standard charge of 10 dol-
lars/euros is returned.

Using Groovy closures for argument matching is a technique that can be easily
abused. Use it only when it adds to the scalability and readability of your Spock test. In
simple tests, you might get away with direct stubbing of all argument combinations if
their number is manageable.

Returning stubs from the responses of other stubs

Before leaving stubs and diving into mocks, it’s worth demonstrating that Spock sup-
ports recursive stubbing. By this, I mean that it’s possible to have stubs return stubs as
responses, which themselves return stubs, and so on, until you get to values.

In well-designed code (which correctly uses dependency injection), this technique
is not usually needed. It becomes handy for legacy code and incorrectly designed
enterprise code bases. To mimic legacy code, let’s assume that this is your basket class:

public class EnterprisyBasket

public EnterprisyBasket (ServiceLocator serviceLocator)

{

setWarehouseInventory (serviceLocator.getWarehouseInventory()) ;

}

[...rest of implementation here...]

}

Here the basket class isn’t injected directly with its dependencies but instead gets a
ServiceLocator object that acts as an intermediary to the services needed. Here’s its
code:

public interface ServiceLocator ({
WarehouseInventory getWarehouseInventory() ;
[... other services here...]

www.it-ebooks.info

http://www.it-ebooks.info/

Instructing a
stub to return
another stub

Using the
parent stub
in the class

under test

6.3

Mocks: verifying values returned from the class under test 173

Spock can easily deal with this situation, as shown in the next listing.

Listing 6.12 Stubbing responses with other stubs

def "If warehouse is empty nothing can be shipped" () {
given: "a TV"
Product tv = new Product (name:"bravia",price:1200,weight:18)

Stub that will be
and:"an empty warehouse" used by the class
WarehouseInventory inventory = Stub (WarehouseInventory) under test

inventory.isEmpty () >> true
ServiceLocator serviceLocator = Stub(ServiceLocator) 444}Stubmngof

servicelLocator.getWarehouseInventory() >> inventory intermediary class

and: "a basket"
EnterprisyBasket basket = new EnterprisyBasket (serviceLocator)

when: "user checks out the tv"
basket .addProduct tv

then: "order cannot be shipped"
Ibasket.canShipCompletely ()

This listing uses only two levels of stubs, but it’s possible to use more if your legacy
code requires it.

Mocks: verifying values returned from the class
under test

Stubs are great when your class under test already has methods that allow you to
understand whether everything works as expected (such as the canShipCompletely ()
method of the basket class). But most of the time, the only way to understand what
happened during the unit test is to have a “log” of what methods were called along
with their arguments and their responses.

Mocks are the answer to this need. By mocking a collaborator of the class under
test, you not only can preprogram it with canned responses, but also can query it
(after the unit test has finished) about all its interactions.

Spock has a huge range of options when it comes to mocks

Spock supports many features when it comes to mocking. Some are more useful than
others, some apply only to extreme cases, and some are so confusing that | avoid
them on purpose. This chapter shows the features | find useful (I've left out about
10% of Spock features). You can always consult the official Spock website as a ref-
erence.

www.it-ebooks.info

http://www.it-ebooks.info/

174

6.3.1

Inject the mock
into the class
under test.

6.3.2

CHAPTER 6 Mocking and stubbing

All capabilities of stubs exist in mocks as well

The first thing to get out of the way is that mocks are a superset of stubs. All code list-
ings I've shown you so far will work even if you use a mock. As an example, here’s list-
ing 6.2 written with a mock this time. Apart from a single line, the rest of the code is
exactly the same.

Listing 6.13 Stubbing mocks

def "If warehouse is empty nothing can be shipped" () {
given: "a basket and a TV"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Basket basket = new Basket ()

Create a mock
and:"an empty warehouse"
WarehouseInventory inventory = Mock (WarehouseInventory)

inventory.isEmpty () >> true
basket .setWarehouseInventory (inventory)

Instruct the mock to
return true when
isEmpty() is called.

when: "user checks out the tv"

basket .addProduct tv
This method calls

then: "order cannot be shipped" the mock behind
Ibasket .canShipCompletely () the scenes.

In Spock, you use stubs when you want to denote that the fake class you’re going to
use will come with only preprogrammed behavior and its interactions won’t be veri-
fied. Of the two listings, the semantically correct is 6.2 (with the stub) because the
warehouse inventory is never queried at the end of the unit test for its interactions
with the basket class.

Spock enforces this convention, so although mocks will work in the place of stubs,
the opposite doesn’t apply. Attempting to use a stub in place of a mock will throw an
error when Spock runs the unit test.

Simple mocking—examining whether a method was called

Let’s add another collaborator class in the electronic basket example. In the following
listing, you’ll add the capability to charge credit cards.

Listing 6.14 Java skeleton for credit card charging

public . class Cusl;tomer { Simple object
private String name; for customer

private boolean vip = false;
private String creditCard; Credit card
\ [...getters and setters here...] number
public enum CreditCardResult {
Possible results from
OK, INVALID CARD, NOT ENOUGH FUNDS; charging a credit card

www.it-ebooks.info

http://www.it-ebooks.info/

Charging
method

Setter
injection

Creating a
mock from an
interface

This method
calls the
mock behind
the scenes.

Mocks: verifying values returned from the class under test 175

}

public interface CreditCardProcessor { 4ﬁ4wlnteﬂaceproﬁded

)) by an external system
CreditCardResult sale(int amount, Customer customer) ; Y Y

void shutdown () ; Must be called
after each charge

}

public class BillableBasket extends Basket(

private CreditCardProcessor creditCardProcessor;

{——b public void setCreditCardProcessor (CreditCardProcessor

creditCardProcessor) {
this.creditCardProcessor = creditCardProcessor;

}

public void checkout (Customer customer) 4“}1Vggerscredk

card injection

{
}

[...code redacted..]

The credit card system is implemented by an external library (imagine that you don’t
even have the source code). Reading its API documentation, you see a big warning: its
developers explain that the shutdown () method must be called whenever a credit
card charge happens.’

Your job is to write a unit test that verifies the call of this method by the basket class
without charging a credit card. You could get away with a stub if the credit card pro-
cessor had a method named shutdownWasCalled()! But it doesn’t.

You can use a mock instead of a pure stub, as shown in the following listing.

Listing 6.15 Verification of a mocked method

def "credit card connection is always closed down" () {
given: "a basket, a customer and a TV"
Product tv = new Product (name:"bravia",price:1200,weight:18)
BillableBasket basket = new BillableBasket ()
Customer customer = new
Customer (name: "John",vip:false, creditCard:"testCard")

and: "a credit card service"
CreditCardProcessor creditCardSevice = Mock (CreditCardProcessor)
basket.setCreditCardProcessor (creditCardSevice)

T Injecting the mock into

when: "user checks out the tv" the class under test

basket.addProduct tv
basket .checkout (customer)

then: "connection is always closed at the end"

1 * creditCardSevice.shutdown () 4—‘ Verifying called

method

—

7 Otherwise, the world will explode.

www.it-ebooks.info

http://www.it-ebooks.info/

176

6.3.3

CHAPTER 6 Mocking and stubbing

The important code line of this listing is the last one. Unlike all previous Spock tests, it
doesn’t contain a standard assert statement (checked according to Groovy truth). This
line is special Spock syntax and comes in this format:

N * mockObject.method (arguments)

When Spock sees this line, it makes the test pass only if that method on the mock has
been called N times with the arguments provided (which can also be argument match-
ers, as with stubs).

The last line in the listing means, “After this test is finished, I expect that the num-
ber of times the shutdown () method was called is once.” The test will pass if this sen-
tence is true and will fail in any other case.

Assume that with that unit test in place, a developer introduces a bug in the basket
class that calls the shutdown () method two times. Spock will instantly fail the test with
the error message shown in figure 6.3.

Runs: 111 B Errors: 0 B Failures: 1 —

g/ credit card connection is always closed down [Rur = Failure Trace

1 Too many inveocations for:
1 * creditCardSevice.shutdown() (2 invocations)

Matching invocations (ordered by last occurrence):

2 * creditCardSevice.shutdown() <-- this triggered the error

Figure 6.3 Spock fails the test when the mocked method is called twice.

Spock knows the exact invocations of all mocks because during the test, it has
replaced the classes with its own proxies that record everything.

Verifying order of interactions

With the mock for the credit card processor in place, you can ensure that the credit
card service is shut down after the transaction (and without charging a real credit
card). But listing 6.13 misses the sequence of calls. How do you know that the shut -
down () method is called at the end, and not before the credit card charge step (which
would be an obvious bug)? Listing 6.13 doesn’t cover this scenario.

Your first impulse, to check the order of calls that happen with the credit card ser-
vice, would be to write something like this:

then: "credit card is charged and CC service is closed down"

1 * creditCardSevice.sale (1200, customer)
1 * creditCardSevice.shutdown ()

www.it-ebooks.info

http://www.it-ebooks.info/

Mocks: verifying values returned from the class under test 177

This won’t work as expected. Spock doesn’t pay any attention to the order of verifica-
tions inside a specific then: block. The preceding unit test will always pass, regardless
of the exact sequence of events (if both of them are correct on their own).

The correct unit test needs to exploit the fact that multiple then: blocks are
checked in order by Spock,® as shown in the following listing.

Listing 6.16 Verification of a specific order of mocked methods

def "credit card connection is closed down in the end" () ({
given: "a basket, a customer and a TV"
Product tv = new Product (name:"bravia",price:1200,weight:18)
BillableBasket basket = new BillableBasket ()
Customer customer = new
Customer (name:"John",vip:false, creditCard:"testCard")

Creation of a
mock from and: "a credit card service"

an interface CreditCardProcessor creditCardSevice = Mock (CreditCardProcessor
basket.setCreditCardProcessor (creditCardSevice)

when: "user checks out the tv"
basket.addProduct tv
basket .checkout (customer)

then: "credit card is charged and" First this verification
1 * creditCardSevice.sale(,) will be checked

then: "the credit card service is closed down" This will only be checked if
1 * creditCardSevice.shutdown () the first verification passes.

Notice that in this test, you want to focus on the order of events and nothing else, so
you’ve used unconditional argument matchers for the arguments of the sale()
method because you don’t care about them in this test. (Usually, there should be
another unit test focusing on them.)

6.3.4 Verifying number of method calls of the mocked class

If you already have significant experience with other mocking frameworks,” you should
have noticed something strange in listings 6.13 and 6.14. In listing 6.14, you’re clearly
noting to Spock that you expect the sale () method to be called. But listing 6.13 men-
tions nothing about the sale () method. How does the test in listing 6.13 pass?

It turns out that mocks and stubs created by Spock are lenient by default. The test
will fail only if the behavior of the mocks is contained in the then: block against your
explicitinstructions. Calling a method of a mock that was never mentioned has no neg-
ative effect. Not calling a stubbed/mocked method also doesn’t affect the unit test.

8 This was also shown in chapter 4.
? And have been paying close attention to the code listings.

www.it-ebooks.info

http://www.it-ebooks.info/

178

CHAPTER 6 Mocking and stubbing

When you call a mocked method that doesn’t have explicit stubbing instructions,
Spock will return default values (false for Boolean variables, 0 for numbers, and null
for objects). If you want to make sure that a method isn’t called in a mock, you have to
declare it in the then: block as well. Pay close attention to the last statement of the fol-
lowing code listing.

Listing 6.17 Explicit declaration of interactions

def "Warehouse is queried for each product" () {
given: "a basket, a TV and a camera"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)
Basket basket = new Basket ()

Creating a and: "a warehouse with limitless stock"
mock/stub WarehouseInventory inventory = Mock (WarehouselInventory)

Stubbing
a mocked
method

basket .setWarehouseInventory (inventory)

when: "user checks out both products"
basket.addProduct tv
basket .addProduct camera

boolean readyToShip = basket.canShipCompletely () <+
Mocks are only checks
then: "order can be shipped" in the when: block.
readyToShip <«
2 * inventory.isProductAvailable(_,) >> true
0 * inventory.preload(_,) ‘T Verifying that a method
} was never called

There are three important points to notice in listing 6.17 that relate to the three lines
in the then: block.

Starting from the bottom, you want to make sure that the basket only queries the
warehouse, but never tampers with the stock levels. Therefore, the code explicitly
states that you expect zero invocations for the method that fills the inventory.

The middle line verifies that the method of product availability is called twice
(because the test deals with two products). Because you want the basket to think that
the warehouse is full, you also stub the method to return true both times. Thus the

code in this line is both a mock expectation and a predefined stubbed response: '

2 * inventory.isProductAvailable(_ ,) >> true

This line says to Spock, “After this test is finished, I expect that the method
isProductAvailable () was called twice. I don’t care about the arguments. But when
it’s called, please return true to the class that called it.”

The last thing to notice is that unlike previous code listings, the canShip-
Completely () method is called in the when: block, and only its result is checked in

10 Thisisa big difference from Mockito. In Mockito, you can separately stub a mock and verify itin another state-
ment. In Spock, you do both things at the same time.

www.it-ebooks.info

http://www.it-ebooks.info/

6.3.5

Setting
expectations
for all other

methods of
the class

Mocks: verifying values returned from the class under test 179

the then: block. The reason for this is that Spock records the interactions of mocks in
the when: block (which should always contain the trigger code). When using mocks
(or stubs), the then: block must contain only verifications.

Verifying noninteractions for multiple mocked classes

Now you know how to verify individual methods for any number of invocations. But
sometimes you want to cast a wider net, and control invocations at the class level
instead of the method level. The underscore character is flexible regarding its posi-
tion inside a verification statement. Consider the following listing.

Listing 6.18 Verifying interactions for all methods of a class

def "Warehouse is queried for each product - strict"() ({
given: "a basket, a TV and a camera"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)
Basket basket = new Basket ()

and: "a warehouse with limitless stock"
WarehouseInventory inventory = Mock (WarehouseInventory)
basket .setWarehouseInventory (inventory)

when: "user checks out both products"

basket .addProduct tv

basket .addProduct camera

boolean readyToShip = basket.canShipCompletely ()

then: "order can be shipped"

readyToShip
2 * inventory.isProductAvailable(_,) >> true Setting expectations
1 * inventory.isEmpty () >> false for specific methods

0 * inventory.

Here you’ve written a strict unit test because it assumes that regardless of the number
of methods that exist in the inventory class, the basket class should call only
isProductAvailable () and isEmpty () and nothing else. Therefore, the last verifica-
tion line uses the underscore as a method matcher:

0 * inventory._

This line means, “I expect zero invocations for all other methods of the inventory
class.” Be careful when using this technique because it means that you know exactly
the interface between the class under test and the mock. If a new method is added in
the mock (in the production code) that’s used by the class under test, this Spock test
will instantly fail.

If you have multiple mocks, you can write even stricter tests by placing the under-
score as a class name, as shown in the next listing.

www.it-ebooks.info

http://www.it-ebooks.info/

180

Underscore
matches
number of
invocations.

CHAPTER 6 Mocking and stubbing

Listing 6.19 Verifying noninteractions for all mocks

def "Only warehouse is queried when checking shipping status" () {
given: "a basket, a TV and a camera"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)
Basket basket = new Basket ()

and: "a warehouse with limitless stock"

WarehouseInventory inventory = Mock (WarehouseInventory)

basket .setWarehouseInventory (inventory)

ShippingCalculator shippingCalculator = Mock (ShippingCalculator)
basket.setShippingCalculator (shippingCalculator)

when: "user checks out both products"
basket.addProduct tv

basket.addProduct camera

boolean readyToShip = basket.canShipCompletely ()

then: "order can be shipped"

readyToShip Underscore matches
2 * inventory.isProductAvailable(_,) >> true arguments.
__* inventory.isEmpty() >> false
0 *_ Underscore matches
} mocked classes.

In this code listing, the basket class is injected with two mocks (one for shipping costs
and one for the inventory). After running the test, you want to verify that only two spe-
cific methods were called on the inventory and that nothing was called for the ship-
ping cost service. Instead of manually declaring all other methods with zero
cardinality one by one, you use the underscore character in the class part of the verifi-
cation. In Spock, the line

Qo *

means, “I expect zero invocations for all other methods of all other classes when the
test runs.” Also notice that you don’t care how many times the isEmpty () method is
called, and you use the underscore operator in the cardinality:

__* inventory.isEmpty() >> false

This line means, “I expect the isEmpty () method to be called any number of times,
and when it does, it should return false.”

The many faces of the underscore character

As you may have noticed by now, the underscore character is a special matcher for
Spock tests. In the basic form of a mock verification, N * class.method (argument),
the underscore can be used to match arguments (listings 6.16, 6.17), methods (listing
6.18), classes, and even the cardinality N (listing 6.19). For all these cases, you don’t
care about the respective part of the verification.

www.it-ebooks.info

http://www.it-ebooks.info/

6.3.6

Mocks: verifying values returned from the class under test 181

Verifying types of arguments when a mocked method is called

I’'ve shown how to verify specific arguments in mock invocations and how to say to
Spock that you don’t care about arguments (the underscore character). But between
these two extremes, you can verify several other attributes of arguments. One of the
most useful verifications is to make sure that the argument passed isn’t null. This can
be described naturally in Spock, as shown in the next listing.

Listing 6.20 Verifying that arguments aren’t null when a mocked method is called

def "Warehouse is queried for each product - null " ()
given: "a basket, a TV and a camera"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)
Basket basket = new Basket ()

and: "a warehouse with limitless stock"

WarehouselInventory inventory = Mock (WarehouseInventory) Creating a
basket .setWarehouseInventory (inventory) Spock mock
when: "user checks out both products"

basket .addProduct tv

basket.addProduct camera

boolean readyToShip = basket.canShipCompletely ()

then: "order can be shipped"

readyToShip Verifying that the first
2 * inventory.isProductAvailable(!null ,1) >> true argument isn’t null

In this listing, you want to make sure that whatever argument is passed to the inven-
tory isn’t null (because the arguments should be names of products). For the second
argument, where you know exactly what will be used, you directly put in the value:

2 * inventory.isProductAvailable(!null ,1) >> true

This line means, “I expect that the method isProductAvailable () will be called
twice. The first argument can be anything apart from null, and the second argument
will always be 1. When that happens, the method will return true.”

In unit tests with complex class hierarchies, you can verify the type of arguments as
well. The following listing illustrates this (for this trivial example, verifying the type of
arguments is probably overkill).

Listing 6.21 Verifying the type of arguments

def "Warehouse is queried for each product - type " () {
given: "a basket, a TV and a camera"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)
Basket basket = new Basket ()

www.it-ebooks.info

http://www.it-ebooks.info/

182

6.3.7

Creating a
Spock mock

CHAPTER 6 Mocking and stubbing

and: "a warehouse with limitless stock"
WarehouseInventory inventory = Mock (WarehouseInventory) Creating a
basket.setWarehouseInventory (inventory) Spock mock

when: "user checks out both products"
basket.addProduct tv
basket .addProduct camera Verifying that the first

boolean readyToShip = basket.canShipCompletely () argument is always a

string and the second

then: "order can be shipped" .
always an integer

readyToShip
2 * inventory.isProductAvailable(as String , as Integer) >> true

Again you use the magic underscore character, this time combined with the as key-
word. Notice that a null argument will also fail the verification so the as/underscore
combination includes the null check.

Verifying arguments of method calls from mocked classes

Using the underscore character as an argument in your mock verifications means that
you don’t care about the argument at all. But what happens if your unit test is focused
on the arguments and you do care?

In that case, my advice is to declare exactly what you expect. You’ve already seen
that with scalar values, you use them directly as arguments. The same thing happens
with full objects, as shown in the next listing.

Listing 6.22 Verifying exact arguments of a mocked method

def "vip status is correctly passed to credit card - simple" ()
given: "a basket, a customer and a TV"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)
BillableBasket basket = new BillableBasket ()
Customer customer = new
Customer (name: "John",vip:false,creditCard: "testCard")

and: "a credit card service"
CreditCardProcessor creditCardSevice = Mock (CreditCardProcessor)
basket.setCreditCardProcessor (creditCardSevice)

when: "user checks out two products"
basket.addProduct tv
basket.addProduct camera

basket .checkout (customer) .
Verifying that the second

argument is equal to a

then: "credit card is charged" ! ! !
specific object instance

1 * creditCardSevice.sale (1550, customer)

As you can see in this listing, there’s no special syntax for objects:

1 * creditCardSevice.sale (1550, customer)

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a
Spock mock

Creation of a
Spock mock

Mocks: verifying values returned from the class under test 183

This line means, “When the test ends, I expect the sale () method to be called exactly
once. Its first argument should be the number 1500, and its second argument should
be the customer instance.”

If you want to verify part of an object instance and not the whole instance, you can
use Groovy closures in a similar way to stubs (as was shown in listing 6.8). The same
syntax applies to mocks, as the following listing shows.

Listing 6.23 Verifying part of an object instance used as a mock argument

def "vip status is correctly passed to credit card - vip" () {
given: "a basket, a customer and a TV"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)
BillableBasket basket = new BillableBasket ()
Customer customer = new
Customer (name: "John",vip:false,creditCard: "testCard")

and: "a credit card service"
CreditCardProcessor creditCardSevice = Mock (CreditCardProcessor)
basket.setCreditCardProcessor (creditCardSevice)

when: "user checks out two products"
basket.addProduct tv
basket.addProduct camera
basket.checkout (customer)

Verifying that the second
has a field called vip with
the value false

then: "credit card is charged"
1 * creditCardSevice.sale (1550, { client -> client.vip == false})

The last verification line in this listing checks only the vip field of the customer
object. The other two fields (name and creditCard) can be anything, and the test will
still pass. With the power of Groovy closures, you can check a mocked argument

against any expression you can think of.

Listing 6.24 Using full Groovy closures for argument verification

def "vip status is correctly passed to credit card - full"() {
given: "a basket, a customer and a TV"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)
BillableBasket basket = new BillableBasket ()

Customer customer = new
Customer (name:"John",vip:false,creditCard: "testCard")

and: "a credit card service"
CreditCardProcessor creditCardSevice = Mock (CreditCardProcessor)

basket.setCreditCardProcessor (creditCardSevice)

when: "user checks out two products"
basket.addProduct tv

www.it-ebooks.info

http://www.it-ebooks.info/

184

Custom
expression for
both mocked
arguments

6.4

CHAPTER 6 Mocking and stubbing

basket.addProduct camera
basket .checkout (customer)

then: "credit card is charged"
1 * creditCardSevice.sale ({amount -> amount ==
basket.findOrderPrice ()}, { client -> client.vip == false})

}

This listing uses two closures, one for each argument of the sale() method. As
before, the second closure checks a single field of an object (the vip field from the
customer class). The first closure makes its own calculation with a completely external
method, the findOrderPrice() :

1 * creditCardSevice.sale ({amount -> amount ==
basket.findOrderPrice ()}, { client -> client.vip == false})

The whole line means, “When this unit test is complete, I expect the sale method to
be called exactly once. It should have two arguments. The first argument should be
equal to the result of basket.findOrderPrice (). The second argument should be an
object instance with a vip field. The value of the vip field should be false.”

If any facts of this sentence don’t stand, the Spock test will fail. All of them must be
correct for a successful test.

Putting it all together: credit card charging in two steps

All the examples shown so far illustrate various features of mocks and stubs. I'll close
this chapter with a bigger example that combines most of the techniques shown so far
and is closer to what you’d write in a production application.

If you look back at listing 6.14, you’ll see that the basket class also contains the
fullcCheckout () method. This method does the following:

1 Checks the credit card of the customer. If the card is invalid or doesn’t have
enough funds, the method stops there.

2 If the credit card is OK, the price for the products is reserved from the credit
card. (This is called an authorization event in credit card terminology.)

3 The inventory is checked. If the products are in stock and can be shipped, the
amount from the card that was previously reserved is now transferred to the
account of the e-shop. (This is called a capturing eventin credit card terminology.)

Card does not No charge In listing 6.12, you can see

Customer checks have money E these two methods (for authori-

out products

zation and capturing) in the
credit card processor class. Fig-
ure 6.4 is a diagram of what you

Credit card
is checked

Products want to test.
are in stock
Card has EE———
money :
Invento Qredlt card Figure 6.4 Business requirements for
y is charged . .
is checked credit card charging

www.it-ebooks.info

http://www.it-ebooks.info/

Create a
Spock mock.

Mock the
credit card
to be invalid.

Putting it all together: credit card charging in two steps 185

As a starting point, the first scenario that you'll test is the case where the card doesn’t
have enough money. The Spock test is shown in the next listing.

Listing 6.25 Using mocks and stubs in the same test

def "card has no funds" () {
given: "a basket, a customer and some products"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)
BillableBasket basket = new BillableBasket ()
Customer customer = new
Customer (name:"John",vip:false,creditCard: "testCard")

and: "a credit card service"
CreditCardProcessor creditCardSevice = Mock (CreditCardProcessor)
basket.setCreditCardProcessor (creditCardSevice)

and: "a fully stocked warehouse"
WarehouseInventory inventory = Stub(WarehouselInventory) {

isProductAvailable(_,) >> true Stubthelnvmwory

. to be full.
isEmpty () >> false

}

basket.setWarehouseInventory (inventory)

when: "user checks out two products"

basket .addProduct tv

basket .addProduct camera Tnggerthg

boolean charged = basket.fullCheckout (customer) tested action.

then: "nothing is charged if credit card does not have enough money"
1 * creditCardSevice.authorize (1550, customer) >>
CreditCardResult.NOT_ENOUGH_FUNDS

Icharged Verify that nothing
O *
_ was charged.

The resulting code doesn’t have any surprises. Because you directly mock the credit
card processor to assume that the card doesn’t have enough money, the charging pro-
cess stops.

Things get more interesting if you want to write a unit test for the full scenario,
where the card has money. The complicated part here is the two-step process between
the authorize and capture steps. The reason for this is that the response from the first
is a special token (assume that in this example it’s a single string). Then when the bas-
ket calls the capture step, it must pass the same token to the credit card processor.
This way, the credit card processor can link the two events together and distinguish
multiple capture events.

www.it-ebooks.info

http://www.it-ebooks.info/

186 CHAPTER 6 Mocking and stubbing

)
1. Authorize (amount, customer)
OK - token: 45f89khg
2. Capture - token: 05/02/2015-45f89khg
OK
Figure 6.5 Two steps of charging a
N credit card with the same token

To further complicate things, assume also that the credit card processor wants the cur-
rent date prepended to the token for logistical reasons. Figure 6.5 shows a sample
conversation between the basket class and the credit card processor.

The respective unit test is shown next.

Listing 6.26 Verifying a sequence of events with interconnected method calls

def "happy path for credit card sale" () {
given: "a basket, a customer and some products"
Product tv = new Product (name:"bravia",price:1200,weight:18)
Product camera = new Product (name:"panasonic",price:350,weight:2)
BillableBasket basket = new BillableBasket ()
Customer customer = new
Customer (name:"John",vip:false,creditCard: "testCard")

Mock the
credit card and: "a credit card that has enough funds"
service. CreditCardProcessor creditCardSevice = Mock (CreditCardProcessor)

basket.setCreditCardProcessor (creditCardSevice)
CreditCardResult sampleResult = CreditCardResult.OK

sampleResult.setToken ("sample") ; 47 Create a sample

credit card token.
Mock the and: "a warehouse"

warehouse. WarehouseInventory inventory = Mock (WarehouseInventory)
basket.setWarehouseInventory (inventory)

when: "user checks out two products"
basket.addProduct tv

basket .addProduct camera Tﬁggerthe
boolean charged = basket.fullCheckout (customer) tested action.
Pass the sample
token to the then: "credit card is checked"
basket class. 1 * creditCardSevice.authorize (1550, customer) >> sampleResult

www.it-ebooks.info

http://www.it-ebooks.info/

Putting it all together: credit card charging in two steps 187

then: "inventory is checked"

Group with (inventory) {
interactions 2 * isProducthAvailable(inull , 1) >> true Verify that the inventory
using with() _ * isEmpty() >> false is queried twice (once
1 for each product).
Verify that the
previous token is then: "credit card is charged"
reused by the 1 * creditCardSevice.capture ({myToken -> myToken.endsWith ("sample")},
basket class. customer) >> CreditCardResult.OK
charged ‘T Verify that the credit
o 4—‘ Ensure that no other method card was charged.
} from mocks was called.

This listing demonstrates several key points. First, this time the warehouse inventory is
a mock instead of a stub because you want to verify the correct calling of its methods.
You also want to verify that it gets non-null arguments.

Mocks and stubs support the with () Spock method that was introduced in chapter
4. You've used it to group the two interactions of the warehouse inventory.

To verify that the basket class honors the token given back by the credit card pro-
cessor, you create your own dummy token (named sample) and pass it to the basket
when the authorization step happens. You can then verify that the token handed to
the capture event is the same. Because the basket also prepends the token with the
date (which is obviously different each time the test runs), you have to use the ends-
With() method in the Groovy closure that matches the token.

Mocks and stubs are relevant only to the scenario being tested

If you look at listing 6.25, you’ll see that the warehouse is a stub. But in listing 6.26,
it’s a mock. It’s therefore possible to create stubs of a specific class in one unit test,
and mocks of the same class in another unit test, depending on your business needs.
Also, it’s possible to have Spock tests that use only stubs, tests that use only mocks,
and tests that use both depending on the case (as you’ll see if you look back at the
examples of this chapter). Use whatever you need according to the situation.

And there you have it! You've tested two credit card scenarios without charging a real
credit card and without calling the real credit card service, which might be slow to ini-
tialize. As an exercise,!! feel free to create more unit tests to cover these scenarios:

= The card becomes invalid between the authorize and capture steps.
= The authorize step succeeds, but the inventory doesn’t have the products in

stock.

A possible solution can be found in the source code of the book at GitHub.

www.it-ebooks.info

http://www.it-ebooks.info/

188

6.5

6.5.1

6.5.2

CHAPTER 6 Mocking and stubbing

Architecture considerations for effective mocking/stubbing

This chapter closes with some theory that isn’t strictly specific to Spock, but is essential
to effective unit tests that contain mocks and stubs.

Designing testable code that allows painless mocking

If after reading the examples in this chapter, you get the feeling that I was always lucky
that collaborator classes were so easily mocked and stubbed, you’re half correct. One
of the prerequisites of easy mocking is to have written your source code in a testable
manner. By that I mean

= Code that’s injected with its dependencies (inversion of control)
= No static classes/global state

= No static fields

= No singletons

= No complex constructors

= No service locators and hidden dependencies

Spock (and any other testing framework, for that matter) can’t help you if the produc-
tion code isn’t in a usable state. It helps to follow the test-driven-development para-
digm when you create Spock tests.

Also note that for Java production code, Spock can’t mock static methods and/or
private methods on its own. This is done by design.'? Even though this might seem
like a limitation, you should see it as a motivation for writing testable code. For more
information, consult 7est Driven by Lasse Koskela (Manning, 2007). The book talks
about JUnit, but the advice it gives on testable Java code also applies to Spock.

If you really, really want to mock static/private methods, you need to use a frame-
work such as PowerMock (https://code.google.com/p/powermock/). You might
already have experience with it because Mockito also doesn’t support mocking of pri-
vate methods and needs PowerMock for this purpose. I don’t like the PowerMock solu-
tion (it uses a custom class loader and bytecode manipulation) and would use it only as
a last resort. Spock can be used together' with PowerMock via the PowerMockRule
JUnit rule (https://code.google.com/p/powermock/wiki/PowerMockRule).

Understanding lenient vs. strict mocks

The underscore character is powerful in Spock, and as you’ve seen, it can be used on
a wide range of elements, from single arguments to full classes. But as with all things
in software engineering, a trade-off exists between strict tests (which explicitly specify
all interactions and arguments) and lenient tests (which rely heavily on the under-
score character and the default stubbing behavior of Spock).

12 Mockito also does not support mocking of static/private methods.
13 See https://github.com/kriegaex/Spock_PowerMock for an example.

www.it-ebooks.info

https://github.com/kriegaex/Spock_PowerMock
https://code.google.com/p/powermock/
https://code.google.com/p/powermock/wiki/PowerMockRule
http://www.it-ebooks.info/

6.6

Summary 189

Strict tests catch subtle bugs, but in the long run are hard to maintain, because
even the slightest change in external interfaces or business requirements will make
them break. Even adding a single method to a class that’s used in a mock will instantly
break any test that uses the 0 * _line as a last statement.

On the other hand, lenient tests won’t break often, but may miss some hard-to-
reproduce bugs that occur because of corner cases and strange combinations of
arguments.

My advice is to use strict tests for the mission-critical parts of your application and
lenient tests for everything else. Following the Pareto principle, about 20% of your
tests should be strict and the rest (80%) should be lenient. As always, this suggestion
should only be a starting point for your own application and business needs.

Summary

= Fake classes can be used in unit tests instead of real classes. They’re needed in
several cases, such as when the real implementations are slow or have severe
side effects.

= Spock supports two kinds of fake classes: mocks and stubs. Stubs are fake classes
with preprogrammed behavior. Mocks are fake classes with preprogrammed
behavior that can also be queried at the end of the test for their interactions.

= Spock can mock/stub both Java interfaces and concrete Java classes.

= Canned responses in stubs are programmed with the right-shift operator: >>.

= Preprogrammed responses can be differentiated according to the argument
method or the number of times a method was called.

= The unsigned right-shift operator (>>>) can be used to stub sequential calls of
the same method with the same arguments.

= The underscore character acts as a universal matcher in Spock when you don’t
care about the exact content of a call. It can be used to match arguments, meth-
ods, classes, or even the number of times a method was called.

= By using Groovy closures, a stub can be instructed to throw exceptions, run cus-
tom statements, or perform any other side effects.

= Groovy closures can also be used in stubs to create dynamic responses accord-
ing to the argument passed to the stubbed method.

= It’s possible to mix the underscore operator, fixed arguments, and Groovy clo-
sures in the same stubbed method call.

= Stubs/mocks can return other stubs/mocks. Recursive stub creation is possible
if legacy production code requires it.

= In Spock, mocks are a superset of stubs, but for readability, you should use
mocks only when you want to verify the interaction with the class under test. For
fake objects that are used only for their responses, you should use stubs.

www.it-ebooks.info

http://www.it-ebooks.info/

190

CHAPTER 6 Mocking and stubbing

By default, the order of mock verifications inside a then: block doesn’t matter.
You should use multiple then: blocks if you care about the order of verifica-
tions. Each then: block will be evaluated in turn.

It’s possible to verify the number of times a method was called. Using zero as
cardinality means that you expect that a method was never called. Using the
underscore character means that you don’t care how many times it was called.
You can verify arguments of a mocked method to ensure that they weren’t null,
or that they had a specific type.

You can use Groovy closures as argument catchers to perform further valida-
tions on specific arguments of mocked methods.

As with JUnit/Mockito, Spock is more easily applied to Java code that’s
designed to be testable in the first place.

With Java classes, Spock can’t mock private methods and static methods/
objects. You should refactor your Java code first before writing Spock tests, or
use PowerMock if you’re desperate.

Care must be exercised with the underscore character. It can result in lenient
tests that let subtle bugs slip through.

www.it-ebooks.info

http://www.it-ebooks.info/

Part 3

Spock in the Enterprise

Tle last part of the book examines Spock in the context of a large enter-
prise application. Enterprise applications sometimes have unique requirements
in terms of their complexity and the breadth of features they must offer. Spock is
ready for the Enterprise, as it comes with several features that come in handy in
large and complicated unit tests.

Chapter 7 examines the use of Spock in the full testing lifecycle of an enter-
prise application. Spock can cover trivial plain unit tests, larger integration tests,
and even functional tests. Several examples (mostly with Spring) show that
Spock allows you to reuse your favorite Java testing tools with zero additional
effort. At the same time, Spock can employ Groovy testing libraries, which may
be more appropriate in your specific application.

Chapter 8 builds upon the knowledge of all previous chapters by describing
corner cases that need special attention in your Enterprise Spock tests. It
describes several additional Spock annotations that enable/disable the running
of a test in a static or dynamic way and then shows you how to refactor large
Spock tests with helper methods. The chapter finishes with a demonstration of
Spock spies, a feature that I explicitly advise you not to use.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Integration and functional
testing with Spock

This chapter covers

= Understanding the categories of unit tests in an
enterprise application

= Writing integration tests for the Spring framework
= Testing REST endpoints with Spock

= Performing web-based tests with Spock and Geb
= Using Spock as part of the build process

At this point in the book, you probably want to start writing Spock tests for your
own application. If you’re a single developer or your application is fairly small and
self-contained (for example, a standalone utility), then the previous chapters have
covered the most important Spock features you’ll need. If, on the other hand,
you're part of a bigger team that works in large enterprise applications with an
existing build infrastructure (automatic builds, test environments, code quality,
and so on), you might be wondering how Spock fits the existing paradigm and
practices already used in your organization.

In this chapter, you’ll see how Spock can be used for the full testing lifecycle of
an enterprise application thatincludes multiple layers of testing procedures running

193

www.it-ebooks.info

http://www.it-ebooks.info/

194

7.1

CHAPTER 7 Integration and functional testing with Spock

either automatically (after each code change) or on demand as part of a release. Spock
is suitable for both integration tests (which cover multiple classes/modules and don’t
focus on a single class) and functional tests (which cover end-to-end functionality and
view the whole system as a single entity instead of individual classes). Like the previous
chapter, this one briefly covers the theory behind these types of tests.

Last but not least, a popular requirement for enterprise testing is examining web
applications. You’ll see how Spock can be wused in conjunction with Geb
(www.gebish.org), another Groovy library that makes web testing easy.

Unit tests vs. integration tests vs. functional tests

Let’s start with a brief review of the types of tests useful to an enterprise application.
This knowledge isn’t specific to Spock, so if you already know the theory,' feel free to
skip ahead to the Spock implementation.

Each time you want to create a new unit test, you have to decide on its scope. An
automated test can focus on a single class, multiple classes, a single module, or even
the whole system. The breadth of the tested area will affect several factors of your unit
test, from the time it takes to complete (the more you’re trying to test, the bigger the
unit test execution) to the readability and effort it takes to write it (a unit test that
needs to set up several modules needs more preparation).

At one end of the spectrum, you have “pure” unit tests that focus on a single class.
These are easy to write, run quickly, and depend only on the production code. At the
opposite end are functional tests (also called acceptance tests) that examine the system
as a whole, emulating user behavior and even interacting with the graphical user
interface (GUI). A functional test sends a request to the system and expects a response
without any other knowledge of the inner workings of the system.

In the middle of these extremes, tests can examine either a code module or a code
service. These are the integration tests (because they examine how individually tested
classes integrate into modules). Figure 7.1 shows the scope examined by these catego-
ries of tests.

The example in this figure is the e-shop application mentioned multiple times in
the previous chapters. The image shows the following test types:

= Unit tests always examine a single class. All other classes are mocked/stubbed so
that they don’t interfere with the result of the test. A unit test, for example,
would verify that the basket class correctly calculates the weight of products it
contains.

= Integration tests focus on multiple classes. Mocks/stubs are rarely used, as you're
interested in both the code and the way communication happens between mod-
ules. An integration test, for example, would verify the communication between
the warehouse inventory (which is backed by a database) and the products

1

For more information, see Test Driven by Lasse Koskela (Manning, 2007).

www.it-ebooks.info

http://www.it-ebooks.info/

711

Unit tests vs. integration tests vs. functional tests 195

Functional test

Integration test Unit test

% Database

Figure 7.1 Unit tests focus on a single class, integration tests cover multiple modules, and
functional tests cover end-to-end testing from the web interface to the database.

contained in the basket. When the customer attempts to check out, the basket
will show which products are in stock and which aren’t (after querying the
inventory, which queries the database).

Functional tests assume that the whole system is a black box. They test end-to-end
interactions starting from the user interface (or the network API), and pass
through the whole system. Functional testing usually requires a clone or dupli-
cate of the real system. A functional test, for example, would be an automated
test that opens a browser on its own, selects products by emulating the clicking
of buttons on the web pages, checks out, enters a credit card, and expects to
“see” onscreen a tracking number of the order shipped.

The distinction between these three categories isn’t always clear. After all, concepts
such as module may mean different things to different people. Don’t get consumed by
terminology.

Characteristics of the test categories

A well-tested application needs tests from all three categories. I sometimes imagine
that a well-designed software product is like a well-designed car. If you’re a car manu-
facturer, you need to test the individual screws, bolts, and frames of a car (unit tests);

www.it-ebooks.info

http://www.it-ebooks.info/

196 CHAPTER 7 Integration and functional testing with Spock

test how these are assembled (integration tests); and in the end, perform tests on the
final product by driving it in a controlled environment? (functional tests).

It would be unrealistic to release a car without making sure that all screws are cor-
rectly assembled, and it would also be foolish to release a car without testing it as a
whole on the road. I'm still puzzled when I see software organizations that either have
only functional tests or only integration tests, and at the same time don’t understand
why more bugs than expected are found in production.

The challenge of these three categories of tests is that they have different require-
ments and need different accommodations in the software lifecycle of a project.
Table 7.1 briefly outlines the differences among them.

Table 7.1 Test categories in an enterprise application must be handled differently.

Unit test Integration test Functional test
Scope of test A single Java A single module or multi-| The whole system
class ple classes

Focus of test Correctness of Class communication, End-to-end user experience

Java class transactions, logging,
security, and more
Result depends on Java code Java code, filesystem, Java code, filesystem, net-
network, DB, other work, DB, other systems,
systems GUI, API endpoints
Stability Very stable May break from environ- | Very brittle (a trivial GUI

ment changes change may break it)

Failed test means A regression Either a regression or an

environment change

A regression, an environ-
ment change, a GUI change

Effort required to set up Minimal Medium (may need High (needs a running rep-
external systems) lica system)
Effort required to fix Minimal Medium (multiple Medium/high (bug can be in

classes may have bugs) | any layer of the application)

Tools required A test framework | Test framework, a con-

tainer, a DB, and exter-

Specialized and sometimes
proprietary external tools, a

nal services staging system
Mocking/stubbing Used when Rarely used if ever Rarely used if ever
needed
Time to run a single test | Milliseconds Seconds Seconds or minutes
Time to run all tests of Five minutes Can be hours Can be hours
that type max

2 Or perform crash tests with dummies, which is much more fun.

www.it-ebooks.info

http://www.it-ebooks.info/

Unit tests vs. integration tests vs. functional tests 197

Table 7.1 Test categories in an enterprise application must be handled differently.

Unit test Integration test Functional test
Tests are run After every com- | Automatically at various | Automatically/manually
mit automatically | scheduled intervals before a release
People involved Developers Developers, architects Developers, architects, tes-
ters, analysts, customer

Table 7.1 is intended as a rough guide and is geared toward large enterprise projects.”
Your project might be different, but the general principles still apply. You can write
pure unit tests with Spock with no additional external library. But if you need to write
a test that launches a web browser and starts pressing buttons in an automated man-
ner, Spock isn’t enough on its own.

7.1.2 The testing pyramid

So far, all tests you’ve seen in the previous chapters are mainly unit tests (pure tests).
You might be wondering why I devoted three whole chapters (chapters 4, 5, and 6) for
basic unit tests and left only a single chapter for both integration and functional tests.
The reason is that although all three cate-

gories of tests are essential, pure unit tests (Functional tests—10%)

have a larger weight. This is best illustrated by
a testing pyramid® that shows the percentage L Integration tests—20% J
of tests from each category that compose your

whole testing suite, as shown in figure 7.2.

Pure unit tests are your first line of
defense. They're the foundation that other
tests build upon. It makes no sense to start cre- Unit tests—70%
ating complex integration tests if you’re not
sure about the quality of the individual Java
classes that compose them.

A J

Only after you have enough unit tests can
Figure 7.2 Breakdown of total test count
for each test category in a large enterprise
application: the testing pyramid

you start writing integration tests. Integration
tests should be focused on testing things that
pure unit tests can’t detect. Typical examples
are transactions, security, and other cross-cut-
ting concerns in your application. Integration tests are often used to ensure correct
functionality between the prior code base and new modules added to a project.

3 Think of a code base of 500K lines of code, a team of 20 people, a dedicated QA department, requirements
that resemble a small book when printed—you get the picture.

* See “Just Say No to More End-to-End Tests” by Mike Wacker on the Google Testing Blog for more details
(http://googletesting.blogspot.co.uk/2015/04/just-say-no-to-more-end-to-end-tests.html) .

www.it-ebooks.info

http://googletesting.blogspot.co.uk/2015/04/just-say-no-to-more-end-to-end-tests.html
http://www.it-ebooks.info/

198 CHAPTER 7 Integration and functional testing with Spock

Finally, when you’re happy with the number of integration tests, it’s time to create
functional tests. These view the whole system as a black box and should be used as a
way to catch serious runtime or graphical errors that slip through the rest of the tests.

Common pitfalls with the pyramid of unit tests

If you look back at the pyramid, you can imagine that any other shape is an antipattern.
A project that has no unit tests is clearly missing the foundations of the pyramid.? A
project that has too many functional tests is also problematic (the pyramid will fall
under its own weight).

@ For more information on the test pyramid, see http://martinfowler.com/bliki/TestPyramid.html.

7.1.3 Spock support for integration and functional testing

Unfortunately, unlike pure unit tests (which can be covered using just Spock), integra-
tion tests require a different infrastructure depending on the Java framework you use.
Given the number of Java frameworks present, covering all possible cases would be
difficult.

This section covers integration testing with Spock and Spring (https://spring.io/)
and gives you pointers for Java EE® and Guice (https://github.com/google/guice). I
chose Spring because of its popularity at the time of this writing. This section also
shows how to test back-end applications that use REST services (powered by HTTP/
JSON). I assume that your application has a web interface and explain that you can use
Spock and Geb together to automate the web browser for effective functional tests.
Finally, I complete the puzzle by covering Maven configuration and some advice on
the build server setup.

If you’re writing an exotic Java application that doesn’t match this profile, I apolo-
gize in advance. You need to do some research on your own. Either a Spock extension
already exists for what you need or you can use Spock’s compatibility with JUnit and
attempt to use a tool from the JUnit world.

The selection of examples in this chapter is indicative of Spock capabilities

Covering integration testing for all kinds of Java applications in a single chapter would
be impossible. I’d need a series of books for that. | know that everybody has a favorite
testing tool or way to do integration testing, and | can’t cover them all. This chapter
covers mainly Spring applications because they seem to be more popular and Spock
has built-in support for them. But I'll give you helpful pointers on what to do if your
application isn’t based on Spring. The main theme of the chapter is that in Spock you

5 Java EE can be tested with the help of Arquillian. See http://arquillian.org/.

www.it-ebooks.info

http://arquillian.org/
http://martinfowler.com/bliki/TestPyramid.html
https://spring.io/
https://github.com/google/guice
http://www.it-ebooks.info/

7.14

7.2

7.2.1

Integration testing with Spock 199

(continued)

can use your favorite Java testing libraries and learn new tricks with Groovy-based test-
ing utilities. The testing tools | show here are my personal selection. | tried to find
simple examples that anybody can understand. All the examples are contrived. If you
wantto learn more about integration testing for Java applications in general, you should
consult books that focus on the specific technology of your application.

Source code organization of the examples

Unlike other Chapter_s’ 4 % chapter] [java-testing-with-spock master] REST testing

the source code for this /

chapter is organized into —

three distinct projects, as < Ly web-uireample Integration testing
. [#} README.md

shown in figure 7.3.

Each project is a mini Web testing
application on its own. Figure 7.3 Source code contains three projects
Showing all source files
in the book as code list-
ings would be unmanageable. Instead, I focus on only important classes, so feel free to
consult the GitHub code at https://github.com/kkapelon/java-testing-with-spock/
tree/master/chapter7 while reading the book. The projects were created strictly for
illustration purposes, so take notice of the Spock tests instead of the “production” code.
Integration testing with Spock
In chapter 6, you saw various techniques used to mock collaborator classes so that only
the class under test affects the outcome of the tests. In some cases, however, you don’t
want to mock collaborators but want to test multiple real classes together.

An integration test spans multiple Java classes (instead of just one) and examines
the communication among them. Common scenarios that need integration tests are
database mappings, security constraints, communication with external systems, and
any other cases where testing is focused on a module rather than a single class.
Testing a Spring application)

To start, you’ll look at a stand- | L&) Warehouse Management (D
alone application powered by Double dick a cell 1o start editing
a Swing user interface that Product Name Price Weight Stock level
A product o 0 0
manages the warehouse Asus Laptop 5% o
inventory of an eshop (see |ffaRl 1200 10 3
WCHA 00 0
figure 7.4). 11 Saree 0 0
Nikon camera S
Siemens fridge |1000 20 11
Figure 7.4 A simple database [New Product I l Delete product]
application with a Swing user interface J\)

www.it-ebooks.info

https://github.com/kkapelon/java-testing-with-spock/tree/master/chapter7
https://github.com/kkapelon/java-testing-with-spock/tree/master/chapter7
http://www.it-ebooks.info/

200

Wiring a Spring
bean as in
normal
production code

Reads back again
from the database

CHAPTER 7 Integration and functional testing with Spock

The application is based on the Spring -l R

framework and saves all its data in a JPA/
Hibernate database, which in this case is an

MainWindow ProductLoader

HSQLDB® file. The design of the applica- !
tion is straightforward. In the middle is the
Spring dependency injection container,

\
\

and all other classes revolve around it, as DataSource EntityManager

shown in figure 7.5.

The Spring context that binds all other
classes is an XML file defined in src/main/

resources/spring-context.xml. You want to ;ﬁgtfsi
write a Spock test that examines the Hiber-
nate mappings for the Product class. To Figure 7.5 The Spring context initializes all

achieve that, you need to test the whole Java classes.
chain of database loading and saving. The
following classes should be tested:

The ProductLoader class, which is the DAO
= The JPA entity manager that manages database mappings
= The Datasource that provides access to the real database.

The good news is that Spock already contains a Spring extension that instantly recog-

nizes the @ContextConfiguration’

as shown in the following listing.

Listing 7.1 Access Spring context from a Spock test

@ContextConfiguration(locations = "classpath:spring-context.xml")
class RealDatabaseSpec extends spock.lang.Specification{

@Autowired Marking the test with the Spring
ProductLoader productLoader ContextConfiguration annotation
@Sgl ("clear-db.sql") Spring facility to
def "Testing hibernate mapping of product class" () { initialize a database

given: "the creation of a new product"
productLoader.createDefaultProduct () <+

when: "we read back that product"

then: "it should be present in the db"

allProducts.size() == <4
and: "it should start with zero quantity" Verifies database read
allProducts[0] .getStock () ==0 <

% See the HyperSQL website at http://hsqldb.org/ for more information on HSQLDB.
" And the @SpringApplicationConfiguration annotation from Spring Boot.

www.it-ebooks.info

Saves something
to the database

V List<Product> allProducts = productLoader.getAllProducts() ;

annotation provided by the Spring test facilities,

http://hsqldb.org/
http://www.it-ebooks.info/

Integration testing with Spock 201

In this listing, you can see that all testing facilities and annotations are already offered
by Spring. Spock automatically understands that this file uses a Spring context and
allows you to obtain and use Spring beans (in this case, ProductLoader) as in normal
Java code.

The important line here is the @ContextConfiguration annotation because it’s
used by Spock to understand that this is a Spring-based integration test. Notice also that
you use the Spring @Sql annotation, which allows you to run an SQL file before the test
runs. This is already offered by Spring and works as expected in the Spock test.

The resulting test is an integration test, because the real database is initialized, and
a product is saved on it and then read back. Nothing is mocked here, so if your data-
base is slow, this test will also run slowly.

Options for Spring testing
The Spring framework contains a gazillion options when it comes to testing. Explaining
them all is outside the scope of this book. You should consult the official Spring doc-

umentation (https://spring.io/docs). This chapter presents some techniques that
prove that Spock and Spring play well together.

A nice facility offered by Spring is the automatic rollback of database changes during a
unit test, as shown in the following listing. This is an effective way to keep your unit
tests completely independent from one another. Activating this behavior is (unsurpris-
ingly) done by using standard Spring facilities that apply automatically, even in the
case of a Spock test.

Listing 7.2 Rolling back database changes automatically

@ContextConfiguration (locations = "classpath:spring-context.xml")
@Transactional Making this test
class RealDatabaseSpec extends spock.lang.Specification{ honor transactions
@Autowired
ProductLoader productLoader
@Rollback Database changes
@sqgl ("clear-db.sql") will be reverted once
def "Testing hibernate mapping of product class" () { the test finishes.

[...code redacted for brevity...]

}
}

The test code in this listing is exactly the same as in listing 7.1. I have only added two
extra Spring annotations. The @Transactional annotation notifies Spring that this test
will use database transactions. The @Rollback annotation instructs Spring to revert® all
database changes performed inside the Spock feature method after the test finishes.

8 The default behavior by Spring is to revert all transactions. I show the @Rollback annotation for emphasis
only.

www.it-ebooks.info

https://spring.io/docs
http://www.it-ebooks.info/

202

7.2.2

CHAPTER 7 Integration and functional testing with Spock

Even if your Spock test deletes or changes data in the database, these changes
won’t be persisted at the end of the test suite. Again, this capability is offered by
Spring, and Spock is completely oblivious to it.

In summary, Spock support for Spring tests is as easy as marking a test with the
Spring test annotations. If you’ve written JUnit tests by using SpringJUnit4Class-
Runner, you'll feel right at home.

Narrowing down the Spring context inside Spock tests

If you’ve written Spring integration tests before, you should have noticed two serious
flaws of the Spock tests shown in listings 7.1 and 7.2. Both tests use the same Spring
context as the production code. The two flaws are as follows:

1 Tests use the same database as production code. This isn’t desirable and some-
times not even possible because of security constraints.

2 The Spring context initializes all Java classes even though not all of them are
used in the Spock test.

For example, in the Swing application, the Spock test also creates the Swing class for
the GUI even though you never test the GUL The Spock tests shown in listings 7.1 and
7.2 might not run easily in a headless machine (and build servers are typically head-
less machines).

The recommended way to solve these issues is to use a different Spring context for
the tests. The production context contains all classes of the application, and the test
context contains a reduced set of the classes tested. A second XML file is created, as
shown in figure 7.6.

With the reduced context, you're free to redefine the beans that are active during
the Spock test. Two common techniques are replacing the real database with a memory-
based one and removing beans that aren’t needed for the test. If you look at the con-
tents of the reduced-text context file, you’ll see that I've removed the GUI class and
replaced the file-based datasource with an in-memory H2 DB’ with the following line:

<jdbc:embedded-database id="dataSource" type="H2"/>

4 o src
4 7 main
4 [resources

b [META-INF / Real context
¥} spring-context.aml
4 [test

4 [resources
b [y com

‘\ Figure 7.6 Creating a second

Test context Spring context just for tests

9 You can find more information about the H2 database at www.h2database.com/html/main.html.

www.it-ebooks.info

www.h2database.com/html/main.html
http://www.it-ebooks.info/

Integration testing with Spock 203

J/ ProductLoader

Test
Spring
context

DataSource EntityManager

H2 in-memory m Figure 7.7 Spring context for tests uses an
database in-memory database and no GUI classes.

The in-memory database is much faster than a real database, but it works for only
small datasets (you can’t easily use it as a clone of a real database). Because unit tests
use specific datasets (small in size) and also need to run fast, an in-memory database is
a good candidate for DB testing.

The context for the Spock test is now simplified, as shown in figure 7.7.

To run the test, you inform Spring of the alternative context file. Spock automati-
cally picks up the change, as shown in the following listing.

Listing 7.3 Using a reduced Spring context for unit testing

@ContextConfiguration(locations = "classpath:reduced-test-context.xml")
@Transactional
class DummyDatabaseSpec extends spock.lang.Specification({ Defining an
alternative
@Autowired

Spring context
ProductLoader productLoader

def "Testing hibernate mapping of product class - mem db" () {
given: "the creation of a new product"

Data is written to an Tb productLoader.createDefaultProduct ()

in-memory database.
Y when: "we read back that product"

List<Product> allProducts = productLoader.getAllProducts() ;

then: "it should be present in the db"
allProducts.size() ==

Data is fetched from
an in-memory
database, making

and: "it should start with zero quantity"
d Y the test fast.

allProducts[0] .stock ==0

}

You can find the reduced Spring context at GitHub.!” Because this test runs with an
in-memory database, it’s much faster than the original test shown in listing 7.2. Also

19 https://github.com/kkapelon/java-testing-with-spock/blob/master/chapter7/spring-standalone-swing /
src/test/resources/reduced-test-context.xml

www.it-ebooks.info

https://github.com/kkapelon/java-testing-with-spock/blob/master/chapter7/spring-standalone-swing/src/test/resources/reduced-test-context.xml
https://github.com/kkapelon/java-testing-with-spock/blob/master/chapter7/spring-standalone-swing/src/test/resources/reduced-test-context.xml
http://www.it-ebooks.info/

204 CHAPTER 7 Integration and functional testing with Spock

you removed the GUI class from the context, so this unit test can run in any Unix/
Linux system in a shell environment (the typical case for build servers).

You need to examine your own application and decide what you’ll discard/replace
in the test context. A good starting point is to remove all beans that aren’t used in
your tests.

7.2.3 Directly accessing the database with Groovy SQL

At this point, you’ve seen that a Spock test has access to Spring beans without any spe-
cial configuration,'! and that you can use common Spring features as testing aids.

The additional advantage of Spock tests is that you also have all Groovy tools and
libraries at your disposal. I introduced you to some essential Groovy facilities back in
chapter 2, but you should spend some extra time exploring the full Groovy documen-
tation to see what’s available to help you while writing Spock tests for your applica-
tion needs.

A handy Groovy feature not mentioned in chapter 2 (because it’s mainly a nice-to-
have feature) is the Groovy SQL interface.'” The Groovy SQL class is a thin abstraction
over JDBC that allows you to access a database in a convenient way. You can think of it
as a Spring JDBC template on steroids.

Let’s assume that you want to verify that the DAO of the e-shop brings back all
products in alphabetical order. You can initialize your database by using Groovy SQL,
as shown in the next listing.

Listing 7.4 Using Groovy SQL to prepare the DB in a Spock test

@ContextConfiguration(locations = "classpath:reduced-test-context.xml")
class DummyDatabaseGroovySglWriteSpec extends spock.lang.Specification{
@Autowired
DataSource dataSource Getting the underlying
datasource from Spring

@Autowired
ProductLoader productLoader

def "Testing ordering of products" ()
given: "the creation of 3 new products" Groovy SQL creation over
Sgl sqgl = new Sql (dataSource) an existing datasource
Clears the DB L——P sgl.execute ("DELETE FROM PRODUCT")

sgl.execute ("INSERT INTO PRODUCT (id,name,price, weight, stock)
VALUES (1, 'samsung',400,1,45);")

sqgl.execute ("INSERT INTO PRODUCT (id,name,price, weight, stock)
VALUES (2, 'bravia',1200,3,2);")

sqgl.execute ("INSERT INTO PRODUCT (id,name,price, weight, stock)
VALUES (3, 'canon',500,5,23);")

Inserts data directly
on the database

' JUnit tests need the special Spring]Unit4ClassRunner in order to access Spring beans.

12 The takeaway of this section is that you can easily use Groovy libraries to do what you want. Groovy SQL is used
as an example. Details of the Groovy SQL interface are provided at http://docs.groovy-lang.org/latest/html/
api/groovy/sql/Sql.html.

www.it-ebooks.info

http://docs.groovy-lang.org/latest/html/api/groovy/sql/Sql.html
http://docs.groovy-lang.org/latest/html/api/groovy/sql/Sql.html
http://www.it-ebooks.info/

Integration testing with Spock 205

when: "we read back the products"
List<Product> allProducts = productLoader.getAllProducts() ;

then: "they should be ordered by name"

allProducts.size() == 3

allProducts[0] .name =="bravia"

allProducts[1] .name =="canon"

allProducts[2] .name =="samsung"

cleanup: "remove inserted data" Clean up so that other
Always a good sql.execute ("DELETE FROM PRODUCT") tests are unaffected.

practice

Defines a
parameterized
SQL statement

sqgl.close ()

The Groovy SQL interface is a powerful feature. It supports all SQL statements you’d
expect (schema creations/data writing/data querying), and explaining all its capabili-
ties is beyond the scope of this book. It can be used both in production code and in
Spock tests.

I tend to use it when I want to do something strange on the DB (perhaps re-create
an error condition) that’s normally not possible via the DAOs of the application. Be
careful when using it in your Spock tests, because as you've seen in listing 7.4, it gets
direct access to the database, so it acts outside the caches of JPA/Hibernate.

Despite these shortcomings, it’s a natural Groovy way to access the DB, and you’ll
find its code compact and comfortable. The last example can be further improved by
extracting the common SQL statement in its own string, as shown in the next listing.

Listing 7.5 Using Groovy SQL to prepare the DB in a Spock test—improved

def "Testing ordering of products - improved" () {

given: "the creation of 3 new products" Creat.es.Groovy SQL over
Sgl sgl = new Sql (dataSource) an existing data source
sqgl.execute ("DELETE FROM PRODUCT")
String insertProduct = "INSERT INTO PRODUCT (id,name,price,

weight, stock) VALUES (?, ?2,?,?2,?);"
sqgl.execute (insertProduct, [1, 'samsung',400,1,45])
sgl.execute(insertProduct,[2, 'bravia?,1200,3,2]) Runs the same SQL statement

i with different parameters
sqgl.execute (insertProduct, [3, 'canon',6500,5,23])

when: "we read back the products"
List<Product> allProducts = productLoader.getAllProducts() ;

then: "they should be ordered by name"
allProducts.size() ==

allProducts[0] .name =="bravia"
allProducts[1l] .name =="canon"
allProducts[2] .name =="samsung"

cleanup: "remove inserted data"
sqgl.execute ("DELETE FROM PRODUCT")
sgl.close()

www.it-ebooks.info

http://www.it-ebooks.info/

206

724

Creates a Spring
context from
an XML file

CHAPTER 7 Integration and functional testing with Spock

A final note regarding Groovy SQL is that if you use it in multiple test methods, it’s
best to make it a @Shared field so that it’s created only once. Otherwise, performance
of your unit tests will suffer.

Integration testing with other containers (Java EE and Guice)

The example application in the previous paragraph was based on the Spring con-
tainer because the Spring framework is mature and popular among Java developers. If
you’re not using Spring, chances are that your application is based on Java EE. In that
case, the respective facilities offered by Spring in integration tests can be replicated by
using Arquillian, a test framework for Java EE applications that acts as a testing con-
tainer and allows access to EJBs, CDI injection,l?’ and other enterprise services.

Arquillian (http://arquillian.org/) natively supports JUnit tests, but for Spock
tests, you need the Spock-Arquillian extension (https://github.com/arquillian/
arquillian-testrunner-spock). The extension has its own repository and a different life-
cycle than Spock releases. It works by creating a special runner that brings the Arquil-
lian facilities inside the Spock test.

Apart from Spring, the core Spock distribution also includes support for the Guice
dependency injection framework (https://github.com/google/guice). In a similar
manner, it allows you to access Guice services/beans inside the Spock test.

If the dependency injection framework you use is something else (other than
Spring, Guice, and Java CDI), and there isn’t a Spock extension for that by the time
you’re reading this book, you have two choices:

= Manually initialize and inject your services in the Spock setupSpec () method.'
= Find a way to initialize the DI container programmatically inside the Spock test.

The first option isn’t practical because you have to write a lot of boilerplate code that’s
usually not needed, going against the mentality of writing Spock tests in the first place
(compact and readable tests).

The second way depends on the capabilities of the container you use and whether
it supports declarative or programmatic configuration. As an example, assume that
the Spock-Spring extension didn’t exist. The Spring container can be still created pro-
grammatically, as shown in the next listing.

Listing 7.6 Manual Spring context creation

class ManualInjectionSpec extends spock.lang.Specification{

given: "a product DAO"
ApplicationContext ctx = new
ClassPathXmlApplicationContext ("reduced-test-context.xml") ;
ProductLoader productLoader =

ctx.getBean (ProductLoader.class) <4

L_» def "Testing hibernate mapping of product class - mem db" () {

Manually initializes

a Spring bean

¥ The Java spec for dependency injection.
" You can find the code in ManuallnjectionSpec in GitHub (the second test method).

www.it-ebooks.info

http://arquillian.org/
https://github.com/arquillian/arquillian-testrunner-spock
https://github.com/arquillian/arquillian-testrunner-spock
https://github.com/google/guice
http://www.it-ebooks.info/

Uses the Spring
bean as before

7.3

7.3.1

Functional testing of REST services with Spock 207

when: "we read products from the DB"
(—b» List<Product> allProducts = productLoader.getAllProducts () ;

then: "the db is empty"
allProducts.size() == 0

This Spock test still has access to the Spring context because it creates one manually.
Notice the lack of any extra annotations in this listing. If your dependency injection
framework supports programmatic initialization, you can still write Spock integration
tests without needing a special extension.

Functional testing of REST services with Spock

Moving up in the testing pyramid, you leave integration tests behind and reach func-
tional tests. Functional tests, depicted in figure 7.8, view the whole system as a black
box (in contrast with integration tests that deal with internal modules).

JSON

Sample request

Live system
(replica of production) JSON

Actual response
Test fails if these
are different.

Expected response

Figure 7.8 A functional test sends a request and expects a certain response.

For non-interactive systems (those with no user-visible component), functional testing
involves the testing of the services they provide to the outside world. In practice, this
usually means testing the HTTP/REST endpoints of the back-end modules.

REST services use JSON or XML for the transport format. These examples use J[SON.

Working with a simple REST service

A REST service is based on HTTP and a predefined message format (typically JSON or
XML) and is implementation-agnostic. Even though the application in this example is
a Spring-based one, it doesn’t matter to Spock. The application doesn’t even have to
be a Java one. You can use Spock if you want to test the REST service of a Python or
Ruby application.

The example application is the REST API for the warehouse management example,
as already discussed in the previous sections. Table 7.2 provides an overview of the
endpoint and operations it supports (all responses are in JSON format).

www.it-ebooks.info

http://www.it-ebooks.info/

208 CHAPTER 7 Integration and functional testing with Spock

Table 7.2 HTTP endpoints of example application

Endpoint GET POST PUT DELETE

/status Returns a success mes- - -
sage (“up and running”)

/products Lists all products Creates a - Deletes all
default product products
/products/{id} Returns a specific product | - - -
/products/{id}/name | - - Renames a -
product

Like all applications shown so far, this back-end application was created for illustra-
tion purposes. The application uses Spring MVC for the implementation, but this is
completely irrelevant as far as functional tests are concerned. It could be imple-
mented in any other framework or even programming language, as long as it accepts
JSON messages over HTTP endpoints.

7.3.2 Testing REST services by using Java libraries

Writing a Spock test for REST services is straightforward. You can use any REST client
library that you're already familiar with. Many are available in the Java world, and at
least for Spock tests, you should choose the one that you feel is more readable and
compact.'

As a starting example, I've selected the Spring RestTemplate.'® The first test checks
the /status endpoint (which returns a single string and not JSON), as shown in the
next listing.

Listing 7.7 Testing REST services with Spock and Spring RestTemplate

def "Simple status checker" () {
when: "a rest call is performed to the status Page"<__lCrﬂuesaSpﬁngRESTcﬁent
RestTemplate restTemplate = new RestTemplate ()
String status = restTemplate.getForObject ("http://localhost:8080/rest-

Performs a GET service-example/status", String.class)
call on the /
status endpoint then: "the correct message is expected"
status == "Up and Running" Examines the response
} of the REST call

The takeaway from this trivial example is that because of Groovy/Java compatibility,
you can use any Java REST client library you already use in your JUnit tests. Spock can
use it without any extra modifications. It’s that simple!

15 Such as RESTEasy (http://resteasy,jboss.org/), Jersey (https://jerseyjavanet/), or Restlet (http://restlet
.com/).
16 See a tutorial on calling REST services from Spring at https://spring.io/guides/gs/consuming-rest/.

www.it-ebooks.info

http://resteasy.jboss.org/
https://jersey.java.net/
http://restlet.com/
http://restlet.com/
https://spring.io/guides/gs/consuming-rest/
http://www.it-ebooks.info/

Functional testing of REST services with Spock 209

7.3.3 Using the @Stepwise annotation to run tests in order

Now you’re ready to create additional tests for the business endpoints of your applica-
tion. The next listing provides the whole Spock specification.

Listing 7.8 Running multiple test methods in order

@Stepwise

Ensures that all methods
class SpringRestSpec extends Specification {

run in the order shown

in the source file
def "Simple status checker" () ({

when: "a rest call is performed to the status page"

RestTemplate restTemplate = new RestTemplate ()

String status =

restTemplate.getForObject ("http://localhost:8080/rest-service-
example/status", String.class)

then: "the correct message is expected"

status == "Up and Running"
1
def "Cleaning all products" () ({
given: "a rest call is performed that deletes everything"
Performs a DELETE RestTemplate restTemplate = new RestTemplate ()
call on the / restTemplate.delete ("http://localhost:8080/rest-service-
products endpoint example/products")

when: "a product list is requested"
Performs a GET List<Product> products =
call on the / restTemplate.getForObject ("http://localhost:8080/rest-
products endpoint service-example/products", List.class)

then: "it should be empty"
products.size() == 0

def "Creating a product" ()
given: "a rest template"
RestTemplate restTemplate = new RestTemplate ()

when: "a new product is created"
Performs a POST Product product =

CM|°nthF/ restTemplate.postForObject ("http://localhost:8080/rest-
products endpoint service-example/products", "unused", Product.class)

and: "product list is requested again"
List<Product> products =
restTemplate.getForObject ("http://localhost:8080/rest-

service-example/products", List.class)
then: "it should have default values"
with (product) Examines the
{ JSON response
name == "A product"
stock ==

www.it-ebooks.info

http://www.it-ebooks.info/

210 CHAPTER 7 Integration and functional testing with Spock

price == 0
weight == 0

}

and: "product list should contain it"
products.size() == 1

This listing includes test methods for the /products endpoint. The code should be
familiar if you’ve ever worked with the Spring RestTemplate. There’s nothing Spock-
specific inside the test methods. All code segments are Java statements that would
work the same way in a JUnit test.

You should pay special attention, however, to the @tepwise annotation at the top
of the class. This Spock annotation comes in handy and does two things:

= It makes sure that Spock will run all test methods in the order they’re defined
in the Specification class.
= During runtime, if any test method fails, those that come after it will be skipped.

The purpose of the @Stepwise annotation is to save you time when you have many
functional tests. Although in theory all functional tests are independent, in practice
this is rarely the case. For example, if the first test method fails (the one that checks
the /status endpoint), the test environment is probably down, so there’s no point in
running any more tests.

The @Stepwise annotation saves you time because you’re informed right away when
something fails and can understand what the problem is more easily than when all tests
fail. Figure 7.9 shows the runtime result with and without the @Stepwise annotation.

' Problems @ Javadoc [, Declaration Search &) Console & Progress B‘ﬁJUnit
Finished after 2,811 seconds

Runs: 3/3 (2 skipped) B Errors: 1 B Failures: 0

4 EE com.manning.spock.SpringRestSpec [Runner: JUnit 4] (2,131 5]
$'—_| Simple status checker (2,110)

With @Stepwise S
annotation \ &_| Cleaning all products (0,000 5

E Creating a product (0,000 5]

| Problems @ Javadoc |, Declaration Search 5] Console & Progress giu JUnit

Finished after 4,04 seconds

Runs 3/3 B Errors: 3 B Failures: 0

4 EE com.manning.spock.SpringRestSpec [Runner: JUnit 4] (3,650 5]
E Simple status checker (1,480 s)

ri=| Cleaning all products (1,020 <
$'—_| Creating a product (1,130 <)

Without @Stepwise
annotation \

Figure 7.9 The @Stepwise annotation skips subsequent test methods after a failure.

www.it-ebooks.info

http://www.it-ebooks.info/

Functional testing of REST services with Spock 211

With the @Stepwise annotation enabled, you can see in two seconds that the test envi-
ronment is down, instead of waiting four seconds for all tests to run (and fail). In a
real enterprise project with hundreds of functional tests that may take several minutes
(or even hours), the @Stepwise annotation is a lifesaver, as it drastically cuts the time
of developer feedback after a failed build. With the @Stepwise annotation, you also
get a clear indication if a bug failed because another precondition (contained in a
previous test method) also failed.

7.3.4 Testing REST services using Groovy RESTClient
As with integration tests, the advantage of using Spock is that you’re not constrained
to Java libraries; you can also use Groovy utilities. As an example, an alternative REST
client can be used instead of the Spring RestTemplate.!”
The following listing presents the same test as in listing 7.8, this time using the
Groovy RESTClient.
Listing 7.9 Using Groovy RESTClient in a Spock test
@Stepwise Makes sure that all
class GroovyRestClientSpec extends Specification { methods run in order
@Shared
def client = new RESTClient ("http://localhost:8080/rest-service-
Creates a » example/")
REST clien
ST client def "Simple status checker" () ({
when: "a rest call is performed to the status page"
def response = client.get(path : "status") Performs a GET
. call on the /status
then: "the correct message is expected" .
. endpoint
with (response)
Examines the L’ {
text response data.text == "Up and Running"
status == 200 Examines HTTP
} error code
}
def "Cleaning all products" () ({
given: "a rest call is performed that deletes everything"
Performs a client.delete(path : "products")
DELETE call on) ,
when: "a product list is requested"
the /products dor 1 no.w g .
endpoint ef response = client.get (path : "products")

then: "it should be empty"
with (response)
{
data.isEmpty ()
status == 200

17 A Groovy library for consuming REST services is found at https://github.com/jgritman/httpbuilder/wiki/
RESTClient.

www.it-ebooks.info

https://github.com/jgritman/httpbuilder/wiki/RESTClient
https://github.com/jgritman/httpbuilder/wiki/RESTClient
http://www.it-ebooks.info/

212 CHAPTER 7 Integration and functional testing with Spock

}

def "Creating a product" () {
when: "a new product is created" Pe”°"nsaPOSTca"Pn
def response = client.post (path : "products") the /products endpoint

and: "product list is requested again"
def listResponse = client.get(path : "products")

then: "it should have default values"
with (response)

{

data.name == "A product"
data.stock ==
data.price ==
status == 200

}

and: "product list should contain it"
listResponse.data.size() == 1

As you can see, the code is mostly the same. For each method call, you also check the
HTTP error code, as it’s easy to verify with the RESTClient. As an exercise, feel free to
write a functional test for the other endpoints of the application (the calls for renaming
an existing product). The Groovy RESTClient has many more facilities, not shown in list-
ing 7.9, that might be helpful in your own application should you choose to use it.

7.4 Functional testing of web applications with Spock

The previous section covered functional tests for back-end Java applications that
aren’t interactive. This section shows you how to test front-end applications that sport
a web interface accessible via the browser.

For these kinds of tests, you need a way to control the browser and replicate the
actions (for example, fill forms or click buttons) that a human user typically performs.
Spock doesn’t have built-in support for this and instead collaborates with Geb, the
Groovy browser automation library.

7.4.1 Browser automation with Geb

Geb is a library that provides a Groovy abstraction on top of the popular Selenium/
WebDriver'® framework for automating a browser. If you’ve worked with Selenium, you
already know what Geb does. What Geb brings to the table is excellent integration'

'8 You can learn more about the Selenium suite of tools at www.seleniumhq.org/.
19 Geb is written by Luke Daley, who is also a Spock committer.

www.it-ebooks.info

www.seleniumhq.org/
http://www.it-ebooks.info/

Functional testing of web applications with Spock 213

with Spock and a jQuery-like language® for accessing web page content. If you already
know jQuery (or any other similar CSS selector syntax), Geb will be familiar to you.

As a quick example, if you want to examine the text for the h2 header in a web
page, Geb allows you to write the following:

$("h2") .text ()
If you want to click the button with an ID myButton, Geb offers you this:
$ ("#myButton") .click ()

With Geb, you reuse your knowledge of jQuery. If you're not familiar with jQuery, you
need to examine its documentation, and especially the part for CSS selectors, in order
to fully use Geb.

7.4.2 The example web application

The application you’ll test with Spock and Geb is a simple web interface over the ware-
house manager you've seen in the previous examples. Figure 7.10 shows a sample
screen from this application.

Java Testing with Spock - Sample code

Web Ul Example application
Technology
Current page: Adding a new product

Options New Product details
« Listall products Please fill in the following properties
» Add a product Name: A product

Llnks Price: 0
« Book Add this product
« Spock Framework
« Geb web testing

Copyright © 2015, Kostis Kapelonis Figure 7.10 Web interface that will

be used for Spock tests

The code uses Spring MVC, but in a similar manner to the REST tests, the implementa-
tion technology doesn’t matter. Geb interacts with only the final web page and doesn't
care about the underlying technology. You could write Spock/Geb tests for a PHP
application, using the same CSS selectors.

% You can learn more about jQuery at https://jquery.com/ .

www.it-ebooks.info

https://jquery.com/
http://www.it-ebooks.info/

214

74.3

Orders the test
browser to load
a specific URL

CHAPTER 7 Integration and functional testing with Spock

),-"- éSpuckaebWebexample)! ! 7! -

[C' | [3 localhost:8080/web-ui-example/index.html

Q D | Elements | Network Sources Timeline Profiles Resources Audits »

Java Testin

code ¥ <hitml xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en-GB">

pock/Geb Web example</titles
<T== 4 p-egquiv="Cont pe" content="application/xhtml+xml; char

Web Ul Exampl . : ,
<meta http-equiv="Content- e" content="text/html; charset=utf-3">

Technolog <link rel="stylesheet" type="text/css" href="style.css" media="screen">
¢1ink rel="stylesheet" type="text/css" href="tables.css" media="screen":
</head>

CETTELEE BRI

P <div id="header”>..</div>

P <div class="colmask leftmenu"»..</div

Options Fu > ¢<div id="footer">..</div>
</body>
an onems

e Listall

Figure 7.11 Expected result for title page is the string ""Spock/Geb Web example"

Spock and Geb: a match made in heaven

Let's start with a simple example of Spock and Geb together. As a first test, you’ll verify
the title of the first page of the application. Figure 7.11 shows the expected result.
The next listing provides the Geb specification that tests this.

Listing 7.10 Using Geb and Spock together

class HomePageSpec extends GebSpec { 4—‘ Spock specification class that

makes Geb facilities available
def "Trivial Geb test for homepage" ()

when: "I go to homepage"
Browser.drive {

go "http://localhost:8080/web-ui-example/index.html"
1

then: "First page should load"

title == "Spock/Geb Web example" Tests the title of
the application

The most important thing to notice in listing 7.10 is that the test class extends the
GebsSpec class and not the Spock Specification, as shown in all examples so far. This
is essential so that Geb methods and objects are available inside the Spock methods.

After this is done, you use the Browser object to load the first page of the applica-
tion. Finally, you examine the title object. This object is an implicit one offered by
Geb and always represents the HTML title of the current HTML page. It doesn’t follow
the jQuery pattern because it’s not part of the content of the page.

www.it-ebooks.info

http://www.it-ebooks.info/

Examines the
content of the
element with the
"active" CSS class

Functional testing of web applications with Spock

Will this test launch a browser?

Remember that Geb is an abstraction over Selenium/WebDriver, so it supports what-
ever browser implementations are already there. In the source code of the book, the
default browser is Firefox, so if you run this test, a new Firefox instance will be launched
on your computer and you’ll see it react automatically to the test definitions. You can
use other browsers or even browser emulators (such as Phantom.js, http://phantom
js.org/) as other options. Consult the Geb documentation on how to achieve this.

215

To see the jQuery syntax of Geb, let's modify the test to look at the page content in
addition to the page title. You'll test an HTML header (h1) and also make sure that the
first tab of the user interface is selected. Figure 7.12 shows the expected result.

j [Spock/Geb Web example % ! ! ; -

&«

C' [} localhost:8080/web-ui-example/index.html

Java Testin

code ¥ <html xmlns="http://www.w3.0org/1999/xhtml" xml:lang="en-GB">

Web Ul Exampli| v io="neades

L S Cl Technolog

Q [|| Elements | Network Sources Timeline Profiles Resources Audits

» <head>..</head>
¥ <body>

= apy T

o s <a r're-F="indax.h(m1“>Ldelccme<,’a>
</1ix
- ¥
OptlonS Fu Technology
</1i> .
o T an s Figure 7.12 I-I_TML
P <p id="lay dims">..
products This <,;i.;1>d Tt cor!t_ent that will be
« Adda tis P <div class="colmask leftmenu"b..</dive Ve"ﬂed by the Geb teSt-
product P <div id="footer">.</div> B -
crez| </bodys You’ll verify the hl
. func| </ntml> element and the “active”
Links box.
CSS class.

The updated Spock test verifies the title as before and reads the page content to
make sure that the expected text is present on the page (see the following listing).

Listing 7.11 Using Geb to access page content

def "Trivial Geb test for homepage -header check" () ({

when: "I go to homepage"
Browser.drive {
go "http://localhost:8080/web-ui-example/index.html"

}

Examines the
then: "First page should load" J title of the page
title == "Spock/Geb Web example"
S ("hl") .text () == "Java Testing with Spock - Sample code"
S(".active") .text () == "Welcome" 47

www.it-ebooks.info

Launches the
first page of the
application in
the browser

Examines the content
of the hl element

http://phantomjs.org/
http://phantomjs.org/
http://www.it-ebooks.info/

216 CHAPTER 7 Integration and functional testing with Spock

This listing demonstrates the jQuery-like style of Geb for accessing page content. The
last two lines in the then: block will be examined by Geb against the HTML content
found in the browser. The test will fail if the HTML content differs from the expected
one.

7.4.4 Using Geb to interact with a web page

For a more useful example than simple page loading, let’s see how to emulate user
actions on a web page. The sample application contains a form, shown in figure 7.13,
that allows the user to create a new product. An HTML form is used to define the name
of the product and its price. After the user submits the form, a success message appears.
You’ll create a test that navigates to the form page, inputs the name of the product,
submits the form, and verifies the success message (not shown in figure 7.13). The
code is shown in the next listing.

P ¢head>..</head>

A F P <div id="header">..</div>
nple app"catlon ¥ «<div class="colmask leftmenu™:

1ology
1g a new product

¢<p>Please fill in the following properties:</p»

New Product details ames -
Please fill in the following properties: ¢input size="30C name="productlizme” v

product™>»
. pre/pr
Namde: A product D > <psilos
_— <input id="createProductButtoq” type="submit"
Price: l:l value="Add this product™>

</fform>»

Llue="A

‘ Add this product ’ <!-- Column 1 end --3>
T </divy

¥ <div class="col2">
<!-- Column 2 start -->
<h2>0ptions</h2>

Figure 7.13 Details of an HTML form. You’'ll fill the input fields and submit it programmatically.

Listing 7.12 Using Geb to submit HTML forms

@Stepwise

class AddProductGebSpec extends GebSpec This Spock test has
Ensures that access to Geb facilities
test methods def "Navigation to page"() { by extending GebSpec.
will run in when: "I go to the new product page"
order Browser.drive {

go "http://localhost:8080/web-ui-example/add-
product.html® ‘_‘ Navigates to the page
. } with the HTML form
Verifies that
browser is in then: "the form should load"
correct page $(".coll").$("h2") .text () == "New Product details"
1

www.it-ebooks.info

http://www.it-ebooks.info/

Functional testing of web applications with Spock 217

def "Creation of new product" () {
Enters text into when: "I fill in product details"
an input field $ ("input [name='productName'] ") .value ("Bravia TV")
S ("#createProductButton") .click () Activates the
Verifies the L 47 form button
success message then: "I should see a success message"
shown on page $(".ok").text () == "You added new product named: Bravia TV."

}

This listing has several important points. First, you use the @Stepwise annotation
again. The reason for this is that the test contains two methods. The first one navigates
to the HTML form page, and the second submits the form. If the first fails for some
reason (for example, the application isn’t up), there’s no point in running the second
method. The @Stepwise annotation ensures that the form won’t be submitted if its
page can’t be found.

Second, in order to verify the formed page, you use an HTML element chain:

S(".coll").S$("h2") .text () == "New Product detailg"

This line means, “Locate an element with the CSS class coll and then search for a
child that is a header of level 2. This header should contain the text New product
details.”

Next, the form is submitted with the following two lines:

$ ("input [name="'productName'] ") .value ("Bravia TV")
S ("#createProductButton") .click ()

The first line means, “Locate an HTML element of type input that has a name attribute
with value productName. Then fill in the text Bravia TV.” The second line says, “Find
an element with ID createProductButton. Then click it (assuming thatit’s a button).”

Running the test launches the Firefox browser on your computer, and you’ll see it
perform these actions in real time. The final line in the then: block locates an ele-
ment with CSS class ok and checks its text (in the example application, it’s a span
HTML element).

I hope that this example gives you an idea of the capabilities of Geb. I've barely
scratched the surface of all the possible use cases. Check the official Geb documenta-
tion (http://www.gebish.org/manual/current/) for more details. Make sure not to
miss the Page Objects pattern?' for reducing? duplicated code among tests and the
ability to get screenshots® while a test runs. The previous tests shown are contrived
examples so that you get a feel for Geb’s capabilities. In a real application, you’d orga-
nize all your Spock tests around pages to make them resilient to GUI changes.

I http://docs.seleniumhq.org/docs/06_test_design_considerations.jsp#page-object-design-pattern
2 www.gebish.org/pages
http://www.gebish.org/manual/current/

www.it-ebooks.info

http://docs.seleniumhq.org/docs/06_test_design_considerations.jsp#page-object-design-pattern
www.gebish.org/pages
http://www.gebish.org/manual/current/
http://www.gebish.org/manual/current/
http://www.it-ebooks.info/

218

7.5

7.5.1

CHAPTER 7 Integration and functional testing with Spock

As an exercise, write Geb tests for the page of the application that lists existing prod-
ucts. Write a test that also fills in the price field of the form and then goes to the inven-
tory page and verifies that the product is correctly inserted with the correct price.

As another exercise, modify your Geb tests to use Page objects instead of exposing
HTML elements inside them.

Running Spock tests as part of a build process

So far, I’ve silently assumed that whenever I show you a Spock test, you run it manually
and visually check the results in the IDE or the command-line shell. Although this is
true for your day-to-day development schedule, a well-designed enterprise application
employs a build server that automatically checks out code at various time intervals,
compiles it, runs unit tests, and creates reports in a completely automated manner.

If you’re not familiar with build servers, explaining them is outside of the scope of
this book. As a suggestion, start by downloading Jenkins (https://jenkins-ci.org/) and
then read both the theory** and practice® behind a sound build process.

For the rest of the chapter, I assume that you already have a build server in place
for running JUnit tests and mention only what you need to do for Spock (spoiler:
almost nothing, as Spock is JUnit-compatible).

Splitting unit, integration, and functional tests

If you look back at table 7.1, which lists the characteristics of unit, integration, and
functional tests, it should be clear that they have different requirements.

For starters, functional (and sometimes integration) tests require a running rep-
lica of the system that’s tested. Therefore, you know that functional tests must be
treated differently than the rest of the tests.

Another big difference is the speed of tests. Unit tests (which depend only on Java
code) are fast and give quick feedback. Integration and functional tests are much
slower (especially when external systems and real databases are involved).

The speed of unit tests means that they can be executed automatically after every
developer commit for quick feedback. Functional tests, on the other hand, may run
less frequently (for example, once a day) and also require the setup of a test environ-
ment exclusive to them (which typically replicates the production environment).

These best practices aren’t specific to Spock. They also apply to JUnit or TestNG. I
mention them here so that before complaining that “Geb tests are really slow,”
you should understand that Geb tests must run in a different manner than simpler
Spock tests.

See “Continuous Delivery” by Jez Humble and David Farley on the Martin Fowler website (http://martin
fowler.com/books/continuousDelivery.html).

% See Jenkins: The Definitive Guide by John Ferguson Smart (O’Reilly, 2011), www.wakaleo.com/books/jenkins-
the-definitive-guide.

www.it-ebooks.info

http://martinfowler.com/books/continuousDelivery.html
http://martinfowler.com/books/continuousDelivery.html
www.wakaleo.com/books/jenkins-the-definitive-guide
www.wakaleo.com/books/jenkins-the-definitive-guide
https://jenkins-ci.org/
http://www.it-ebooks.info/

Running Spock tests as part of a build process 219

Java code is compiled

Spock tests are compiled

Unit tests run (fast)
phases

pre-integration-test Tomcat starts—application deployed

integration-test) REST/web functional tests run (slow)

post-integration-test Tomcat stops—application shuts down

YR YaRYaR

verify) Functional tests are examined

Figure 7.14 Tomcat is launched before functional tests and shuts down afterward.

In the sample code of the book, I use Maven and have chosen to launch the Tomcat
application server before the functional tests run. Figure 7.14 shows the Maven life-
cycle? for the examples of this chapter.

With this approach, you have a split between slow and fast tests. Running mvn test
runs only the fast unit tests, and running mvn verify also runs the slow functional
tests (after launching a Tomcat instance). This lifecycle is accomplished by using the
Maven Failsafe plugin (https://maven.apache.org/surefire/maven-failsafe-plugin/)
and the Tomcat plugin (http://tomcat.apache.org/maven-plugin.html), as shown in

the following listing.

Listing 7.13 Running Spock functional tests on a Tomcat instance

[...rest of pom.xml....]
<builds>
<pluginss>
[...rest of build plugins....]
<plugin>
<grouplds>org.apache.maven.plugins</groupIds>
<artifactIdsmaven-failsafe-plugin</artifactIds>
<version>2.18</version>
<executions>
<executions>
<goals>
<goalsintegration-test</goals> Instructs Failsafe plugin
<goal>verify</goal> to run Spock tests in
</goals> integration-test phase
</execution>
</executions>

% You can learn more about the Maven lifecycle at the Apache Maven Project website (https://
maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html).

www.it-ebooks.info

https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://maven.apache.org/surefire/maven-failsafe-plugin/
http://tomcat.apache.org/maven-plugin.html
http://www.it-ebooks.info/

220

CHAPTER 7 Integration and functional testing with Spock

<configurations>
<useFile>false</useFile>
<includes>

<includes>**/*Spec.java</include>

</includes>
</configurations>

</plugin>

<grouplds>org.apache.tomcat .maven</groupIld>

Naming convention for
Spock tests that will run
as integration-test phase

<artifactIds>tomcat7-maven-plugin</artifactIds>

<versions>2.2</versions>
<executionss>

<execution>

<id>tomcat-run</id>

<goals>

<goals>run-war-only</goal>

</goals>

<phase>pre-integration-test</phase>

<configurations

<forkstrue</forks>
</configurations>

</executions>

<execution>
<id>tomcat-shutdown</id>
<goals>
<goals>shutdown</goal>
</goals>

<phases>post-integration-test</phases>

</executions>
</executions>

</plugins>
</plugins>

ble for provisioning?/

271 hear they're called “devops” these days.

www.it-ebooks.info

Starts Tomcat before
Spock tests run

Stops Tomcat after
Spock tests run

This technique works for small- to medium-size applications. For large-scale enterprise
applications that need specialized test environments, you need to adapt your build sys-
tem according to your business requirements in cooperation with the team responsi-

Running both Spock and JUnit tests in the same Java project

If it isn't clear by now, the Maven plugins (Surefire and Failsafe) will run both JUnit
and Spock tests in a similar manner. No special configuration is needed if you have
both kinds of tests. You can mix and match, and many configurations are possible.
For example, you could have JUnit tests run as pure unit tests and use Spock only
for web tests (with Geb). Consult the Maven documentation for the respective plugins
and appendix A of this book for more information on the subject.

http://www.it-ebooks.info/

Running Spock tests as part of a build process 221

[Standalone Swing/Spring Project

Standalone Swing/Spring Project

Element ¢ Missed | + Cov.+ Missed Branches ¢ Cov.+ Misseds Cxty+
com manning. spock warehouse gui 59% 0% 14 23
& mannin k_wareh e 4% = 0% 10 20
com manning spock warehouse = 0% na 4 4
Total 239 of 473 49% 140f 14 0% 28 47

Figure 7.15 Code coverage by Spock tests

7.5.2 Getting code coverage from Spock tests

For some strange reason, when I introduce Spock to Java developers, even after I
explain that it uses the JUnit runner, the first question they ask is how to obtain code
coverage statistics with Spock.

The answer to this question is, “In the same way that you get coverage reports® for
JUnit.” There’s nothing special about it. Figure 7.15 shows a sample JaCoCo report
(www.eclemma.org/jacoco/) that was generated by Spock tests.

There’s nothing Spock-specific about this report. I obtained it by adding JaCoCo
in my pom.xml file and executing the jacoco:report goal with Maven as I would for
Junit, as shown in the following listing.

Listing 7.14 Using JaCoCo with Spock

[...rest of build plugins here...]
<plugins>
<groupld>org.jacoco</grouplds>
<artifactId>jacoco-maven-plugin</artifactIds>
<version>0.7.4.201502262128</version>
<executions>
<executions>
<idsprepare-agent</id>
<goals>
<goals>prepare-agent</goals>
</goals>
</executions>
</executions>
</plugin>
[...rest of pom.xml here...]

The same principle applies to any other tools that you have around JUnit. If they work
fine with JUnit, they’ll probably work with Spock as well. For a full-blown, code-quality
reporting tool, you should also look at SonarQube (www.sonarqube.org) if you aren’t
already using it.

28 Common coverage tools are Cobertura (http://cobertura.github.io/cobertura/) and Clover (www.atlassian
.com/software/clover/).

www.it-ebooks.info

www.eclemma.org/jacoco/
http://cobertura.github.io/cobertura/
www.atlassian.com/software/clover/
www.atlassian.com/software/clover/
http://www.it-ebooks.info/

222

CHAPTER 7 Integration and functional testing with Spock

Unit Tests

Coverage 37.0%

Line coverage 40.0% Condition coverage 0.0
Lines to cover 25 = Conditions to cover

Uncovered lines 15 = Uncovered conditions

[I
L .

2 @Repository
13 public class ProductlLoader {
4 @PersistenceContext

8 public Product createDefaultProduct() {

19 Product product = new Product();

20 product.setName("A product”):

21 product. setPrice(8);

22 product. setstock(0);
Droduct:.setwe'igntie,]'.

Z
24
25 em.persist(product);
26 return producj:

2 }

3

0 public void save(Product product) {
n :an1t1zeProauc;:praductJ1

32 em.persist(product);

3 em. flush(); Figure 7.16 Code coverage from
- SonarQube after Spock tests run

Using Spock with SonarQube requires exactly zero extra configuration (apart from
the standard instructions®). An example of SonarQube results from a Spock test is
shown in listing 7.16.

I hope that the level of compatibility between JUnit-enabled tools and Spock tests is
clear to you now.

7.6 Summary

Unit tests focus on a single class. Integration tests focus on a module. Func-
tional tests focus on the whole application.

Unit/integration/functional tests have different characteristics and constraints.
They should be handled differently.

According to the testing pyramid, as a rule of thumb, 70% of total tests should
be pure unit tests, 20% should be slower integration tests, and 10% should be
even slower functional tests.

Spock supports both integration and functional tests (as well as pure unit tests,
as already shown in the previous chapters).

Spock will automatically load a Spring context if the Specification class is
annotated with the Spring ContextConfiguration annotation.

2 An excellent resource is SonarQube in Action by G. Ann Campbell and Patroklos P. Papapetrou (Manning,
2013), www.manning.com/papapetrou/.

www.it-ebooks.info

www.manning.com/papapetrou/
http://www.it-ebooks.info/

Summary 223

Inside a Spring-enabled Spock test, all normal test facilities from Spring are
available (including transactions).

A good practice is using a separate Spring context just for tests. It shouldn’t
contain classes unrelated to testing and it should replace slow services and data-
bases with mocked ones or in-memory implementations, respectively.

Groovy SQL can be used to directly access the database as an alternative to exist-
ing Java solutions.

Spock supports Guice tests via a built-in extension. Spock also supports Arquil-
lian tests via an external extension.

Spock can test REST services by using the existing Java client REST libraries.

An alternative to Java REST client libraries is the Groovy RESTClient library.

The Stepwise annotation can be used in Spock tests with multiple test methods
to ensure correct ordering of the method.

All methods that come after a failed one will be skipped by Spock, allowing for
faster developer feedback if the Stepwise annotation is used.

Geb is a browser automation library that uses WebDriver/Selenium and offers a
jQuery-like syntax for accessing page content.

Spock and Geb can work together to create web-related functional tests.

Geb facilities are possible if a test extends the GebSpec class instead of the stan-
dard Spock Specification.

Geb can direct the browser, fill in forms, click buttons, and generally mimic a
human user interacting with a browser.

Spock unit/integration/functional tests should be handled differently inside
the build process, mainly because of different time constraints.

You can use the Maven failsafe and Tomcat plugins to run Spock functional
tests with a live application.

Running both JUnit and Spock tests is possible without any special configuration.
Getting coverage reports from Spock tests is exactly the same as getting cover-
age reports from JUnit (using JaCoCo).

Spock is compatible with the SonarQube quality dashboard out of the box.

www.it-ebooks.info

http://www.it-ebooks.info/

Spock features for

enterprise testing

This chapter covers

Using Spock annotations that are helpful in
enterprise testing

Refactoring large Spock tests
Testing legacy code with spy objects

One of the good qualities of a flexible software tool is the ability to adapt to any
software situation, especially the corner cases that appear in large enterprise proj-
ects. Enterprise projects often come in large code bases (think millions of code
lines), have an endless stream of requirements, and more often than not contain
legacy modules that can’t be changed for political or technical reasons.

Chapter 1 showed that Spock is a holistic testing solution that will cover your
needs regardless of the size of the application and whether you work solo or as part
of'a large team. A bigger code base always amounts to extra complexity on all fronts
(compilation, documentation, and delivery), and it’s good to know that Spock has
you covered even when your needs are off the beaten path.

This last chapter of the book shows you extra Spock features that are geared
toward large enterprise projects. These techniques are in no way essential for
Spock testing, as they solve specific problems that you might not encounter in your

224

www.it-ebooks.info

http://www.it-ebooks.info/

Using additional Spock features for enterprise tests 225

current project. Before employing any of the advice in this chapter, make sure that
you indeed suffer from the specific problem being discussed. More importantly, the
last section explains spy objects, a feature that I strongly advise you not to use, unless
this is your last resort.

This chapter has three distinct parts, listed here in roughly the order I expect you
to use them in your Spock tests:

1 Using Spock annotations for time-outs, exceptions, conditional test running,
and so on

2 Refactoring of large then: blocks that contain assertions or interactions

3 Using spies as partial mocks (continuing fake objects from chapter 6)

Spies are a controversial feature (not just with Spock'), so make sure that you under-
stand the implications of using them in your unit tests (and what that means for your
Java production code). Use of spies implies that your Java code suffers from design
problems, as you'll see in the last section.

8.1 Using additional Spock features for enterprise tests

Chapter 4 covered all Spock blocks in detail as well as the general structure of a Spock
test. Spock offers several complementary features in the form of annotations that fur-
ther enhance the expressiveness of your tests.

The Spock tests demonstrated here are based on the e-shop example introduced
in chapter 6. They revolve around placing products in an electronic basket and paying
via credit card.

8.1.1 Testing the (non)existence of exceptions: thrown() and notThrown()

In all Spock tests that I've shown you so far, the expected result is either a set of asser-
tions or the verification of object interactions. But in some cases, the “expected” result
is throwing an exception. If you're developing a library framework, for example, you
have to decide what exceptions will be thrown to the calling code and verify this deci-
sion with a Spock test. The next listing demonstrates the capturing of an exception.

Listing 8.1 Expecting an exception in a Spock test

def "Error conditions for unknown products" () {
given: "a warehouse"
WarehouseInventory inventory = new WarehouseInventory ()

when: "warehouse is queried for the wrong product"
inventory.isProductAvailable ("productThatDoesNotExist", 1)

This test will pass only if
then: "an exception should be thrown" lllegalAr.gumentExceptlon is
thrown (IllegalArgumentException) thrown in the when: block.

' Mockito’s official documentation also has a huge warning against the usage of spies.

www.it-ebooks.info

http://www.it-ebooks.info/

226

The test will
pass only if

the exception
contains a
specific message.

CHAPTER 8 Spock features for enterprise testing

B Failures: 1

= Failure Trace

’jExpected exception of type 'java.lang.IllegalArgumentException’, but no exception was thrown
= at org.spockframework.lang.SpecInternals.checkExceptionThrown(SpecInternals.java:79)

at org.spockframework.lang.SpecInternals.thrownImpl{SpecInternals.java:66)

at com.manning.spock.chapters.extras.ExceptionControlSpec.Error conditions for unknown products

Figure 8.1 The test will fail if an exception isn’t thrown in the when: block.

Here you design the Warehouse class so that it throws an exception when it can’t find
the name of a product. When this test runs, you explicitly tell Spock that the when:
block will throw an exception. The test will fail if an exception isn’t thrown, as shown
in figure 8.1.

In this case, you use an existing exception as offered by Java, but the same syntax
works with any kind of exception. (You could create a custom exception class called
ProductNotFoundException instead.)

It’s also possible to “capture” the exception thrown and perform further assertions
in order to make the test stricter. The following listing provides an example of a mes-

sage of an exception that’s checked.

Listing 8.2 Detailed examination of an expected exception

def "Error conditions for unknown products - better" () ({
given: "a warehouse"
WarehouseInventory inventory = new WarehouselInventory ()

when: "warehouse is queried for the wrong product"
inventory.isProductAvailable ("productThatDoesNotExist", 1)

then: "an exception should be thrown" Keeps the exception

IllegalArgumentException e = thrown/() thrown in the e variable
e.getMessage () == "Unknown product productThatDoesNotExist"

This listing further enhances the code of listing 8.1 by checking both the type of the
exception and its message. Here you examine the built-in message property that’s pres-
entin all Java exceptions, but again, you could examine any property of a custom-made
exception instead (the last statement in listing 8.2 is a standard Groovy assertion).

Finally, it’s possible to define in a Spock test that you don’t expect an exception for
an operation in the when: block, as the following listing shows. I admit that the seman-
tics of this syntax are subtle, but the capability is there if you need it.

www.it-ebooks.info

http://www.it-ebooks.info/

812

Using additional Spock features for enterprise tests 227

Listing 8.3 Explicit declaration that an exception shouldn’t happen

def "Negative quantity is the same as 0" () {
given: "a warehouse"
WarehouselInventory inventory = new WarehouseInventory ()
and: "a product"
Product tv = new Product (name:"bravia",price:1200,weight:18)

when: "warehouse is loaded with a negative value"
inventory.preload(tv, -5)
Clarifies the intention of

then: "the stock is empty for that product" tefﬁngnorma[operaﬁon
notThrown (IllegalArgumentException) without exception
linventory.isProductAvailable (tv.getName (), 1)

I believe that the notThrown () syntax is intended as a hint to the human reader of the
test and not so much to the test framework itself.

Mapping Spock tests to your issue-tracking system: @lIssue

In chapter 4, you saw the @Subject, @Title, and @Narrative annotations that serve as
metadata for the Spock test. These annotations are particularly useful to nontechnical
readers of the tests (for example, business analysts) and will show their value when
reporting tools use them for extra documentation.

Any nontrivial enterprise application has a product backlog or issue tracker that
serves as a central database of current bugs and future features. Spock comes with an
@Issue annotation that allows you to mark a test method that solves a specific issue
with the code, as shown in the following listing.

Listing 8.4 Marking a test method with the issue it solves

@Issue ("JIRA-561") This test method

def "Error conditions for unknown products" () { verifies the fix
given: "a warehouse" that happened for
WarehouseInventory inventory = new WarehouseInventory () HRAisueSéL

when: "warehouse is queried for the wrong product"
inventory.isProductAvailable ("productThatDoesNotExist", 1)

then: "an exception should be thrown"
thrown (IllegalArgumentException)

Notice that the annotation has a strictly informational role. At least at the time of writ-
ing, no automatic connection to any external system exists (in this example, to JIRA,
available at www.atlassian.com/software/jira). In fact, the value inside the annotation
is regarded as free text by Spock. The next listing shows another example using a full
URL of a Redmine tracker (www.redmine.org).

www.it-ebooks.info

www.atlassian.com/software/jira
www.redmine.org
http://www.it-ebooks.info/

228 CHAPTER 8 Spock features for enterprise testing

Listing 8.5 Using the URL of an issue solved by a Spock test

@Issue ("http://redmine.example.com/issues/2554") This test method verifies
def "Error conditions for unknown products - better" () ({ the fix that happened
given: "a warehouse" for Redmine issue 2554.

WarehouseInventory inventory = new WarehouselInventory ()
when: "warehouse is queried for the wrong product"
inventory.isProductAvailable ("productThatDoesNotExist", 1)

then: "an exception should be thrown"
IllegalArgumentException e = thrown ()
e.getMessage () == "Uknown product productThatDoesNotExist"

Finally, a common scenario is having multiple issue reports that stem from the same
problem. Spock has you covered, and you can use multiple issues, as shown in the fol-
lowing listing.

Listing 8.6 Marking a Spock test with multiple issues

@Issue (["JIRA-453", "JIRA-678", "JIRA-3485"]) This test method
def "Negative quantity is the same as 0" () ({ verifies the fix for
given: "a warehouse" three duplicate bugs.

WarehouseInventory inventory = new WarehouselInventory ()

and: "a product"
Product tv = new Product (name:"bravia",price:1200,weight:18)

when: "warehouse is loaded with a negative value™"
inventory.preload(tv, -5)

then: "the stock is empty for that product"
notThrown (IllegalArgumentException)
linventory.isProductAvailable (tv.getName (), 1)

The @Issue annotation is also handy when you practice test-driven development, as
you can use it to mark Spock tests for product features before writing the production
code.

8.1.3 Failing tests that don’t finish on time: @Timeout

Chapter 7 covered integration and functional tests and how they differ from pure
unit tests. A common characteristic of integration tests is their slow execution time
because of real databases, web services, and external systems that are often used as
part of the test.

Getting quick feedback from a failed unit test should be one of your primary goals
when writing integration tests. The external systems used in integration tests can
affect the execution time in a nondeterministic way, as their response time is affected
by their current load or other environmental reasons.

www.it-ebooks.info

http://www.it-ebooks.info/

The Credit-
CardProcessor
class is an
external service.

Using additional Spock features for enterprise tests 229

Spock comes with an @Timeout annotation that unconditionally fails a test if its
execution time passes the given threshold. The following listing shows an example.

Listing 8.7 Declaring a test time-out

@Timeout (?) This test should finish
def "credit card charge happy path"() { within five seconds.

given: "a basket, a customer and a TV"
Product tv = new Product (name:"bravia",price:1200,weight:18)
BillableBasket basket = new BillableBasket ()
Customer customer = new
Customer (name: "John",vip:false,creditCard: "testCard")

and: "a credit card service"
CreditCardProcessor creditCardSevice = new CreditCardProcessor ()
basket.setCreditCardProcessor (creditCardSevice)

when: "user checks out the tv"
basket .addProduct tv
boolean success = basket.checkout (customer)

This is a lengthy
operation that contacts

then: "credit card is charged" . .
the credit card service.

success

The reasoning behind the @Timeout annotation is that it helps you quickly isolate
environmental problems in your integration tests. If a service is down, there’s no point
in waiting for the full time-out of your Java code (which could be 30 minutes, for
example) before moving to the next unit test.

Using the @Timeout annotation, you can set your own bounds on the “expected”
runtime of an integration test and have Spock automatically enforce it. The default
unit is seconds, as shown in the previous listing, but you can override it with your own
setting, as shown in the next listing.

Listing 8.8 Declaring a test time-out—custom unit

def "credit card charge happy path - alt "() {
given: "a basket, a customer and a TV"
Product tv = new Product (name:"bravia",price:1200,weight:18)
BillableBasket basket = new BillableBasket ()
Customer customer = new
Customer (name:"John",vip:false,creditCard: "testCard")

@Timeout (value = 5000, unit = TimeUnit.MILLISECONDS) Treats the defined
value as milliseconds

and: "a credit card service"
CreditCardProcessor creditCardSevice = new CreditCardProcessor ()
basket.setCreditCardProcessor (creditCardSevice)

when: "user checks out the tv"
basket .addProduct tv
boolean success = basket.checkout (customer)

then: "credit card is charged"
success

www.it-ebooks.info

http://www.it-ebooks.info/

230 CHAPTER 8 Spock features for enterprise testing

The importance of the @Timeout annotation is evident in the case of multiple long
tests that take a long time to finish. I've seen build jobs that typically take minutes but
because of a misconfiguration can take hours if time-outs aren’t used correctly.

8.1.4 Ignoring certain Spock tests

A large enterprise application can have thousands of unit tests. In an ideal world, all
of them would be active at any given time. In real life, this is rarely the case.

Test environments that get migrated, features that wait to be implemented, and
business requirements that aren’t yet frozen are common reasons that force some
tests to be skipped. Fortunately, Spock offers several ways to skip one or more tests
deliberately so your tests don’t fail while these restructurings and developments are
taking place.

IGNORING A SINGLE TEST: @IGNORE
Spock allows you to knowingly skip one or more tests and even provides you with the
ability to give a reason for skipping that test (see the next listing).

Listing 8.9 Ignoring a single test

@Ignore ("Until credit card server is migrated")
def "credit card charge happy path" () { e
given: "a basket, a customer and a TV"
Product tv = new Product (name:"bravia",price:1200,weight:18)
BillableBasket basket = new BillableBasket ()
Customer customer = new
Customer (name: "John",vip:false,creditCard: "testCard")

This test will be skipped
when Spock runs it.

and: "a credit card service"
CreditCardProcessor creditCardSevice = new CreditCardProcessor ()
basket.setCreditCardProcessor (creditCardSevice)

when: "user checks out the tv"
basket.addProduct tv
boolean success = basket.checkout (customer)

then: "credit card is charged"
success

The primary purpose of skipping a test is so that the rest of your test suite is run suc-
cessfully by your build server. An ignored test should always be a temporary situation
because you’re vulnerable to code changes that would normally expose a bug verified
by that test.

The human-readable description inside the @Ignore annotation should give a hint
about why this test is ignored (the value is free text, as far as Spock is concerned).
More often than not, the original developer who marks a test as ignored doesn’t
always remove the @Ignore annotation, so it’s essential to document inside the source
code the reason why the test was skipped in the first place.

www.it-ebooks.info

http://www.it-ebooks.info/

Using additional Spock features for enterprise tests 231

You can place @Ignore on a single test method or on a whole class if you want all its
test methods to be skipped.

IGNORING ALL BUT ONE TEST: @IGNOREREST

If you’re also lucky, and you want to ignore all but one test in a Spock specification,
you can use the @IgnoreRest annotation. Assume that you have a set of integration
tests that contact a credit card external service in a staging environment (it doesn’t
actually charge cards). The service is down for maintenance. To keep your tests run-
ning, you could ignore tests selectively, as shown in the following listing.

Listing 8.10 Ignoring all tests except one

class KeepOneSpec extends spock.lang.Specification({

def "credit card charge - integration test" () { This test uses the real
[...code redacted for brevity...] credit card service—it
. . will be skipped.
Marking this test } PP
as the only one
that will run @IgnoreRest
def "credit card charge with mock" () { This test uses only
[...code redacted for brevity...] mocks and thus
} can run normally
def "credit card charge no charge - integration test" () {
[...code redacted for brevity...]
} This test uses the real
credit card service—it
will be skipped.

Running the Spock test shown in this listing produces the output in figure 8.2.
Again, I admit that this Spock annotation is specialized, and you might never need
to use it.

IGNORING SPOCK TESTS ACCORDING TO THE RUNTIME ENVIRONMENT: @IGNOREIF PART 1
The @Ignore annotations shown in the previous paragraph are completely static. A
test is either skipped or not, and that decision is made during compile time.

Finished after 0,407 seconds

Runs: 3/3 (2 skipped) B Errors: 0 B Failures: 0 -

4 |H] com.manning.spock.chapterd. extras.KeepOneSpec [Runner: JUnit 4] (0,120 s)|
& | credit card charge - integration test (0,000 <)
dE'—_| redit card charge with mock (0,120 <)
&l redit card charge no charge - integration test (0,000 s)

Figure 8.2 Only the test marked with @ gnoreRest runs.

www.it-ebooks.info

http://www.it-ebooks.info/

232 CHAPTER 8 Spock features for enterprise testing

Spock offers a set of smarter @Ignore annotations that allow you to skip tests dynami-
cally (by examining the runtime environment). As a first step, Spock allows a test to
query the following:

= The current environment variables

= The JVM system properties

= The operating system

Spock then decides whether the test will run, depending on that result. An example of
skipping tests is shown in the next listing.

Listing 8.11 Skipping Spock tests according to the environment

class SimpleConditionalSpec extends spock.lang.Specification{

eIgnorelf ({ jvm.javas }) This test will be
def "credit card charge happy path" () { skipped on Java 9.

[...code redacted for brevity...]

}

@Ignorelf ({ os.windows }) This test will be skipped
def "credit card charge happy path - alt" () { if run on Windows.

[...code redacted for brevity...]

}

@Ignorelf ({ env.containsKey ("SKIP_SPOCK_TESTS") }) This test will be

def "credit card charge happy path - alt 2" () { skipped if the property
[...code redacted for brevity...] SKIP SPOCK TESTS

} is defined.

Running this listing on my Windows system with JDK 7 and no extra JVM properties
produces the output shown in figure 8.3.

Finished after 0,162 seconds

Runs: 3/3 (1 skipped) B Errors: 0 B Failures: 0 -

4 |T_;| com.manning.spock.chapterd.extras.SimpleConditional Spec [Runner: JUnit 4] (0,082 5)|
| \eredit card charge happy path (0,080 =)

redit card charge happy path - alt (0,000 s)

redit card charge happy path - alt 2 (0,001 <)

Figure 8.3 A test is skipped because the current OS is Windows.

www.it-ebooks.info

http://www.it-ebooks.info/

Using additional Spock features for enterprise tests 233

I'won’t list all possible options supported by Spock. You can find the full details in its
source code.? Ignoring tests depending on environment variables enables you to split
your tests into separate categories/groups, which is a well-known technique. As an
example, you could create “fast” and “slow” tests and set up your build server with two
jobs for different feedback lifecycles.

IGNORING CERTAIN SPOCK TESTS WITH PRECONDITIONS: @IGNOREIF PART 2
To obtain the maximum possible flexibility from @IgnoreIf annotations, you need to
define your own custom conditions. You can do this easily in Spock because the
@IgnoreIf annotation accepts a full closure. The closure will be evaluated and the test
will be skipped if the result is false.

The following listing shows a smarter Spock test that runs only if the CreditCard-
Service is up and running.

Listing 8.12 Skipping a Spock test based on a dynamic precondition

@IgnoreIf ({ !mew CreditCardProcessor().online() }) This test will run only
def "credit card charge happy path - alt" () { if the method online()

given: "a basket, a customer and a TV" of the credit card
Product tv = new Product (name:"bravia",price:1200,weight:18) service returns true.
BillableBasket basket = new BillableBasket ()

Customer customer = new

The Credit- Customer (name: "John",vip:false, creditCard: "testCard")
CardProcessor
class is an and: "a credit card service"

external service. CreditCardProcessor creditCardSevice = new CreditCardProcessor ()

basket.setCreditCardProcessor (creditCardSevice)

when: "user checks out the tv"
basket .addProduct tv

boolean success = basket.checkout (customer) 4—‘ This operation contacts

the credit card service.
then: "credit card is charged"

success

This listing assumes that the Java class representing the external credit card system has
a built-in method called online () that performs a “ping” on the remote host. Spock
runs this method, and if it gets a negative result, it skips the test (there’s no point in
running it if the service is down).

The contents of the closure passed as an argument in the @IgnoreIf annotation
can be any custom code you write. If, for example, the builtin online() method
wasn’t present, you could create your own Java (or Groovy) class that performs an
HTTP request (or something appropriate) to the external system and have that inside
the closure.

2 https://github.com/spockframework/spock/tree/master/spock-core/src/main/java/spock/util/
environment

www.it-ebooks.info

https://github.com/spockframework/spock/tree/master/spock-core/src/main/java/spock/util/environment
https://github.com/spockframework/spock/tree/master/spock-core/src/main/java/spock/util/environment
http://www.it-ebooks.info/

234

The Credit-
CardProcessor
class is an
external service.

8.1.5

CHAPTER 8 Spock features for enterprise testing

REVERSING THE BOOLEAN CONDITION OF IGNOREIF: @REQUIRES

If for some reason you find yourself always reverting the condition inside the
@IgnoreIf annotation (as seen in listing 8.12, for example), you can instead use the
@Requires annotation, as the following listing shows.

Listing 8.13 Requires is the opposite of IgnoreIf

@Requires ({ new CreditCardProcessor().online() }) This test will run only
def "credit card charge happy path" () { if the method online()
given: "a basket, a customer and a TV" of the credit card

Product tv = new Product (name:"bravia",price:1200,weight:18) service returns true.

BillableBasket basket = new BillableBasket ()
Customer customer = new
Customer (name:"John",vip:false,creditCard: "testCard")

and: "a credit card service"
CreditCardProcessor creditCardSevice = new CreditCardProcessor ()
basket.setCreditCardProcessor (creditCardSevice)

when: "user checks out the tv"
basket.addProduct tv

boolean success = basket.checkout (customer) 4—W TMsopmmﬁoncmwads

the credit card service.
then: "credit card is charged"

success

The @Requires annotation has the same semantics as @ gnoreIf but with the reverse
behavior. The test will be skipped by Spock if the code inside the closure does not eval-
uate to true. The option to use one or the other annotation comes as a personal pref-
erence.

Automatic cleaning of resources: @AutoCleanup

Chapter 4 showed you the cleanup: block as a way to release resources (for example,
database connections) at the end of a Spock test regardless of its result. An alternative
way to achieve the same thing is by using the @AutoCleanup annotation, as shown in
the following listing.

Listing 8.14 Releasing resources with AutoCleanup

@AutoCleanup ("shutdown") <
private CreditCardProcessor creditCardSevice = new CreditCardProcessor ()

def "credit card connection is closed down in the end" () ({ TheshutdownO
given: "a basket, a customer and a TV" method of the
Product tv = new Product (name:"bravia",price:1200,weight:18) credit card service
BillableBasket basket = new BillableBasket () will be called at the
Customer customer = new end of the tests.

Customer (name:"John",vip:false,creditCard: "testCard")

www.it-ebooks.info

http://www.it-ebooks.info/

8.2

Handling large Spock tests 235

and: "a credit card service"
basket.setCreditCardProcessor (creditCardSevice)

when: "user checks out the tv"
basket.addProduct tv
boolean success = basket.checkout (customer)

then: "credit card is charged"
success

If you mark a resource with the @AutoCleanup annotation, Spock makes sure that the
close () method will be called on that resource at the end of the test (even if the test
fails). You can use the annotation on anything you consider a resource in your tests.
Database connections, file handles, and external services are good candidates for the
@AutoCleanup annotation.

You can override the method name that will be called by using it as an argument in
the annotation, as done in listing 8.11. In that example, the shutdown () method will
be called instead (Spock will call close () by default).

I prefer to use the cleanup: block and cleanup () /cleanupSpec () methods as
explained in chapter 4 (especially when multiple resources must be released), but if
you're a big fan of annotations, feel free to use @utoCleanup instead.” As you might
guess, @AutoCleanup works both with instance fields and objects marked with the
@Shared annotation shown in chapter 4.

This concludes the additional Spock annotations,* and we can now move to refac-
toring of big Spock tests.

Handling large Spock tests

The projects in most examples so far are trivial projects designed as a learning mate-
rial instead of production-quality applications. In the real world, enterprise projects
come with huge code bases that directly affect the size of unit tests.

Even in the case of pure unit tests (non-integration tests), preparing the class
under test and its collaborators is often a lengthy process with many statements and
boilerplate code that’s essential for the correct functionality of the Java code tested,
but otherwise unrelated to the business feature being tested.

I’'ve provided some hints for making clear the intention of Spock tests using
Groovy with () and Spock with () methods, as seen in chapter 4. In this section, you’ll
take this grouping of statements one step further by completely refactoring the
respective statements in their own methods.

® You can also ignore exceptions during cleanup if you use the annotation like @AutoCleanup (quiet =
true), but I don’t endorse this practice unless you know what you’re doing.
* Yes, I know that expecting exceptions does not happen via annotations. Thanks for catching it!

www.it-ebooks.info

http://www.it-ebooks.info/

236 CHAPTER 8 Spock features for enterprise testing

Approved

Customer

Loan request

—_— >

\ X Figure 8.4 A customerrequests
a loan from a bank. The bank
Rejected approves or rejects the loan.

The running example here is a loan-approval application, shown in figure 8.4.
The Java classes that take part in the system are as follows:

Customer.java

Loan.java

CreditCard.java

ContactDetails.java

BankAccount.java

You can find the full source code in the GitHub repository of the book,” but notice

that most classes are only skeletons designed to demonstrate specific techniques in
the Spock tests.

8.2.1 Using helper methods to improve code readability

Chapter 4 stressed the importance of the when: block and how critical it is to keep its
code short and understandable. But in big enterprise projects, long code segments
can appear in any Spock block, harming the readability of the test. As a starting exam-
ple, let’s see a unit test that has a long setup process, shown in the next listing.

Listing 8.15 A Spock test with long setup—don’t do this

def "a bank customer with 3 credit cards is never given a loan" () {
given: "a customer that wants to get a loan"
Customer customer = new Customer (name:"John Doe")

and: "his credit cards"
BankAccount accountl = new BankAccount ()
accountl.with {

setNumber ("234234")

setHolder ("John doe")

balance=30

A badly designed
and: block. It contains
too much code.

1
CreditCard cardl = new CreditCard("447978956666")
cardl.with({

setHolder ("John Doe")

5 https://github.com/kkapelon/java-testing-with-spock/tree /master/chapter8/src/main/java/com/
manning/spock/chapter8/loan

www.it-ebooks.info

https://github.com/kkapelon/java-testing-with-spock/tree/master/chapter8/src/main/java/com/manning/spock/chapter8/loan
https://github.com/kkapelon/java-testing-with-spock/tree/master/chapter8/src/main/java/com/manning/spock/chapter8/loan
http://www.it-ebooks.info/

Handling large Spock tests 237

assign(accountl)
1
customer.owns (cardl)
BankAccount account2 = new BankAccount ()
account2.with{
setNumber ("3435676")
setHolder ("John Doe")
balance=30

}

CreditCard card2 = new CreditCard("4443543354")
card2.with{

setHolder ("John Doe")

assign (account2)

}

customer.owns (card2)
BankAccount account3 = new BankAccount ()
account2.with{

setNumber ("45465")

setHolder ("John Doe")

balance=30

}

CreditCard card3 = new CreditCard("444455556666")
card3.with{

setHolder ("John Doe")

assign (account3)

}

customer.owns (card3)

Loan loan = new Loan() block. Code is short.

when:"a loan is requested" 4—‘ Awell-designed when:
customer.requests (loan)

A well-designed then:

then: "loan should not be approved" .
block. Code is short.

!loan.approved

At first glance, this unit test correctly follows the best practices outlined in chapter 4.
All the blocks have human-readable descriptions, the when: block clearly shows what’s
being tested (a loan request), and the final result is also clear (either the loan is
approved or it’s rejected).

The setup of the test, however, is a gigantic piece of code that’s neither clear nor
directly relevant to the business case tested. The description of the block talks about
credit cards but contains code that creates both credit cards and bank accounts
(because apparently a credit card requires a valid bank account in place).

Even with the use of the with () method for grouping several statements that act on
the same project, the setup code makes the test hard to read. It contains a lot of vari-
ables, and it’s not immediately clear whether they affect the test. For example, does it
matter that the account balance is $30 in each connected account? Does this affect the
approval of the loan? You can’t answer that question by reading the Spock test.

www.it-ebooks.info

http://www.it-ebooks.info/

238 CHAPTER 8 Spock features for enterprise testing

In such cases, a refactoring must take place so that the intention of the test
becomes clear and concise. Large amounts of code should be extracted to helper
methods, as shown in the next listing.

Listing 8.16 Spock test with helper methods

def "a bank customer with 3 credit cards is never given a loan -alt" () ({
given: "a customer that wants to get a loan"
Customer customer = new Customer (name:"John Doe")

and: "his credit cards"

customer.owns (createSampleCreditCard("447978956666", "John Doe")) Setupcode
customer.owns (createSampleCreditCard("4443543354", "John Doe")) is now short
customer.owns (createSampleCreditCard ("444455556666", "John Doe")) and clear

when:"a loan is requested"
Loan loan = new Loan ()
customer.requests (loan)

then: "loan should not be approved"
!loan.approved

1
Aheber private CreditCard createSampleCreditCard(String number, String holder)
method that {
deals with BankAccour}t account = new BankAccount () The fact that each credit card
credit card account .with{ needs a bank account is

setNumber ("45465") hidden in the helper method.
setHolder (holder)

balance=30

}

CreditCard card = new CreditCard (number)
card.with{

setHolder (holder)

assign (account)

} This helper method
return card creates a credit card.

Here you extract the common code into a helper method. The helper method has the
following positive effects:

= It reduces the amount of setup code.

= It clearly shows that the setup code is a set of sample credit cards.

= It hides the fact that a bank account is needed for creating a credit card (as this
is unrelated to the approval of a loan).

= It shows by its arguments that the holder of the credit card must be the same as
the customer who requests the loan.

The added advantage of helper methods is that you can share them across test meth-
ods or even across specifications (by creating an inheritance among Spock tests, for
example). You should therefore design them so they can be reused by multiple tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling large Spock tests 239

Depending on your business case, you can further refine the helper methods you
use to guide the reader of the test to what exactly is being tested. In a real-world proj-
ect, you might modify the Spock test as shown in the following listing.

Listing 8.17 Using arguments that imply their importance in the test

def "a bank customer with 3 credit cards is never given a loan -alt 2" () {
given: "a customer that wants to get a loan"
String customerName ="doesNotMatter" Enforces the same
Customer customer = new Customer (name:customerName) customer for the

loan and credit cards
and: "his credit cards"

Makes it clear that customer.owns (createSampleCreditCard ("anything", customerName))
credit card numbers are | customer.owns (createSampleCreditCard ("whatever", customerName)
unused in loan approval | customer.owns (createSampleCreditCard ("notImportant", customerName))

822

expect: "customer already has 3 cards"

customer.getCards () .size() == 3 4“‘Expﬁdﬂyveﬁﬁesthe

result of the setup
when:"a loan is requested"

Loan loan = new Loan/()
customer.requests (loan)

then: "therefore loan is not approved"
!loan.approved

This improved listing makes minor adjustments to the arguments of the helper
method. First, you use a single variable for the customer name. This guards against
any spelling mistakes so you can be sure that all credit cards are assigned to the same
customer (because as the description of the test says, the number of credit cards of the
customer is indeed examined for loan approval).

Second, you replace the credit card numbers with dummy strings. This helps the
reader of the test understand that the number of each credit card isn’t used in loan
approval.

As a final test, you add an expect: block (as demonstrated in chapter 4) that
strengthens the readability of the setup code.

After all these changes, you can compare listings 8.15 with 8.17. In the first case,
you have a huge amount of setup code that’s hard to read, whereas in the second case,
you can understand in seconds that the whole point of the setup code is to assign
credit cards to the customer.

Reusing assertions in the then: block

Helper methods should be used in all Spock blocks when you feel that the size of the
code gets out of hand. But because of technical limitations, the creation of helper
methods for the then: block requires special handling.

www.it-ebooks.info

http://www.it-ebooks.info/

240 CHAPTER 8 Spock features for enterprise testing

Again, as a starting example of a questionable design, let’s start with a big then:
block, as shown in the next listing.

Listing 8.18 Spock test with dubious then: block

def "Normal approval for a loan"() ({
given: "a bank customer"
Customer customer = new Customer (name:"John
Doe",city:"London",address:"10 Bakers",phone:"32434")

and: "his/her need to buy a house "
Loan loan = new Loan(years:5, amount:200.000)

when:"a loan is requested"
customer.requests (loan)

then: "loan is approved as is"
loan.approved

loan.amount == 200.000
loan.years == 5
loan.instalments == 60
loan.getContactDeta%ls().getPhone() == "32434" These examine
These checks | loan.getContactDetails () .getAddress() == "10 Bakers" the loan approval.
are secondary. | loan.getContactDetails () .getCity() == "London"
loan.getContactDetails () .getName () == "John Doe"

customer.activeLoans ==

Here the then: block contains multiple statements with different significance. First,
you have some important checks that confirm that the loan is indeed approved. Then
you have other checks that examine the details of the approved loan (and especially
the fact that they match the customer who requests it). Finally, it’s not clear whether
the numbers and strings that take part in the then: block are arbitrary or depend on
something else.®

As a first step to improve this test, you’ll split the then: block into two parts and
group similar statements, as shown in the following listing.

Listing 8.19 Improved Spock test with clear separation of checks

def "Normal approval for a loan - alt"() {
given: "a bank customer"
Customer customer = new Customer (name:"John
Doe",city:"London",address:"10 Bakers",phone:"32434")

and: "his/her need to buy a house "
int sampleTimeSpan=5 Makes clear the connection
int sampleAmount = 200.000 between expected results

% In this simple example, it’s obvious that the contact details of the loan are the same as the customer ones. In
a real-world unit test, this isn’t usually the case.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling large Spock tests 241

Loan loan = new Loan(years:sampleTimeSpan, amount:sampleAmount)

when:"a loan is requested"
customer.requests (loan)

then: "loan is approved as is" Grouping of primary
with(loan) loan checks

{
approved
amount == sampleAmount
years == sampleTimeSpan Makes clear the
installments == sampleTimeSpan * 12 expected result

}

customer.activeloans == 1

ar.ld: "contact details.are kept or record" Different block for
with(loan.contactDetails) secondary checks

{
getPhone () == "32434"
getAddress () == "10 Bakers"
getCity () == "London"
getName () == "John Doe"

The improved version of the test clearly splits the checks according to the business
case. You’ve replaced the number 60, which was previously a magic number, with the
full logic that installments are years times 12 (for monthly installments).

The code that checks loan details still has hardcoded values. You can further
improve the code by using helper methods, as shown in the next listing.

Listing 8.20 Using helper methods for assertions

def "Normal approval for a loan - improved" () {
given: "a bank customer"
Customer customer = new Customer (name:"John
Doe",city:"London",address:"10 Bakers",phone:"32434")

and: "his/her need to buy a house "

int sampleTimeSpan=5

int sampleAmount = 200.000

Loan loan = new Loan(years:sampleTimeSpan, amount:sampleAmount)

when:"a loan is requested"
customer.requests (loan)

then: "loan is approved as is"
loanApprovedAsRequested (customer, loan, sampleTimeSpan, sampleAmount)
Helper methods with
descriptive names and: "contact details are kept or record"
contactDetailsMatchCustomer (customer, loan)

www.it-ebooks.info

http://www.it-ebooks.info/

242

CHAPTER 8 Spock features for enterprise testing

private void loanApprovedAsRequested (Customer customer,Loan loan, int
originalYears, int originalAmount)

{

with(loan) with() method works as
{ expected in helper method.
approved
amount == originalAmount
loan.years == originalYears
loan.instalments == originalYears * 12
} J assert keyword is needed
assert customer.activeLoans == in helper method.

}

private void contactDetailsMatchCustomer (Customer customer,Loan loan)

{

with(loan.contactDetails)

{

phone == customer.phone a ion b
address == customer.address ear connection between
. . loan and customer who

clty == customer.city

requested it
name== customer.name

This listing refactors the two separate blocks into their own helper methods. The
important thing to note is the format of each helper method.

Your first impulse might be to design each helper method to return a Boolean if all
its assertions pass, and have Spock check the result of that single Boolean. This
doesn’t work as expected.

The recommended approach, as shown in listing 8.20, is to have helper methods
as void methods. Inside each helper method, you can put one of the following:

= A group of assertions with the Spock with () method
= A Groovy assert but with the assert keyword prepended

Notice this line:

assert customer.activeLoans ==

Because this statement exists in a helper method and not directly in a then: block, it
needs the assert keyword so Spock can understand that it’s an assertion. If you miss
the assert keyword, the statement will pass the test regardless of the result (which is a
bad thing).

This listing also refactors the second helper method to validate loan details against
its arguments instead of hardcoded values. This makes the helper method reusable in
other test methods where the customer could have other values.

Spend some time comparing listing 8.20 with the starting example of listing 8.18 to
see the gradual improvement in the clarity of the unit test.

www.it-ebooks.info

http://www.it-ebooks.info/

8.23

Primary checks
for the loan

Handling large Spock tests 243

Reusing interactions in the then: block

As you saw in the previous section, Spock needs some help to understand assertions in
helper methods. A similar case happens with mocks and interactions.
The following listing shows an alternative Spock test, in which the loan class is

mocked instead of using the real class.”

Listing 8.21 Spock tests with questionable then: block

def "Normal approval for a loan" () {
given: "a bank customer"
Customer customer = new Customer (name:"John
Doe",city:"London",address:"10 Bakers",phone:"32434")

and: "his/her need to buy a house "
Loan loan = Mock (Loan)

when:"a loan is requested"
customer.requests (loan)

then: "loan is approved as is"
1 * loan.setApproved (true)
loan.setAmount (_)

loan.setYears (_)
loan.getYears() >> 5 Stubbed methods
loan.getAmount () >> 200.000 needed for the correct

loan.getContactDetails () >> new ContactDetails() functioning of the test

* ok ok kK

The test in this listing contains multiple interaction checks in the then: block that
have a different business purpose. The Loan class is used in this case both as a mock
and as a stub. This fact is implied by the cardinalities in the interaction checks.

You can improve this test by making clear the business need behind each interac-

tion check, as seen in the next listing.

Listing 8.22 Explicity declaring helper methods with interactions

def "Normal approval for a loan - alt"() {
given: "a bank customer"
Customer customer = new Customer (name:"John

Doe",city:"London",address:"10 Bakers",phone:"32434")

and: "his/her need to buy a house "
Loan loan = Mock (Loan)

when:"a loan is requested"
customer.requests (loan)

7 1In this example, mocking the loan class is overkill. I mock it for illustration purposes only to show you helper
methods with mocks.

www.it-ebooks.info

http://www.it-ebooks.info/

244 CHAPTER 8 Spock features for enterprise testing

then: "loan request was indeed evaluated"

interaction ({ <+
loanDetailsWereExamined (loan) .
} Interaction blocks are
Helper methods needed for helper methods
named after the . . that contain mocks.
business check and: "loan was approved as is
interaction ({ <+

loanWasApprovedWithNoChanges (loan)

}
}

private void loanWasApprovedWithNoChanges (Loan loan)

{

* loan.setApproved (true)
* loan.setAmount (_)
*

loan.setYears()

o O

}

private void loanDetailsWereExamined (Loan loan)

_ * loan.getYears() >> 5
_ * loan.getAmount () >> 200.000
* loan.getContactDetails () >> new ContactDetails()

You’ve created two helper methods and added a then: block. The first helper method
holds the primary checks (the approval of the loan with its original values). The other
helper method is secondary, as it contains the stubbed methods of the loan object
(which are essential for the test but not as important as the approval/rejection status
of the loan).

The important thing to understand in this listing is that you wrap each helper
method in an interaction block:

interaction ({
loanDetailsWereExamined (loan)

This is needed so that Spock understands the special format of the N * class.method
(N) interaction check, as shown in chapter 6. Spock automatically understands this for-
mat in statements found directly under the then: block, but for helper methods you
need to explicitly tell Spock that statements inside the method are interaction checks.

Constructing a custom DSL for your testing needs

The Groovy language is perfect for creating your own domain-specific language (DSL)
that matches your business requirements. Rather than using simple helper methods,
you can take your Spock tests to the next level by creating a DSL that matches your
business vocabulary. Creating a DSL with Groovy is outside the scope of this book,
so feel free to consult chapter 19 of Groovy in Action, Second Edition, by Dierk Koenig
et al. (Manning Publications, 2015) for more information on this topic.

www.it-ebooks.info

http://www.it-ebooks.info/

8.3

83.1

Creating partial mocks with spies 245

Real object Fake Partial fake

Mock/ s . .
- Py Figure 8.5 A spy is a real
class in which only a subset

of methods are fake. The rest
are the real methods.

Creating partial mocks with spies

In this section you’ll see how to create partial mocks.® Chapter 6 explained how Spock
can create fake objects that are useful for testing and showed you mocks and stubs.
Spock supports a third type of “fake” object: spies.

Spies, shown in figure 8.5, work as partial mocks. They take over a Java object and
mock only some of its methods. Method calls can either by stubbed (like mocks) or
can pass through to the real object.

I purposely didn’t show you spies in chapter 6 because they’re a controversial tech-
nique that implies problematic Java code. They can be useful in a narrow set of cases.
Their primary use is in creating unit tests for badly designed production code that
can’t be refactored (a common scenario with legacy code).

A sample application with special requirements

Let's see an example that’s well-suited for writing a Spock test with spies instead of
mocks/stubs. Say you're tasked with the development of unit tests for an existing Java
application. The Java application in question is a security utility that gets video feed
from an external camera, and upon detecting intruders, deletes all files of the hard
drive (to hide incriminating evidence).

The application code is implemented by two Java classes. The first class is responsi-
ble for deleting the hard drive, and the second class implements the face-recognition
algorithms that decide whether the person in front of the camera is a friend or enemy,
as shown in the next listing.

Listing 8.23 Java code with questionable design

public class CameraFeed ({ 47 Gets frames from

video camera
[...code redacted for brevity...]

public void setCurrentFrame (Image image) {
[...code redacted for brevity...]
}

8 And why you shouldn’t use them!

www.it-ebooks.info

http://www.it-ebooks.info/

246 CHAPTER 8 Spock features for enterprise testing

public class HardDriveNuker Responsible for
hard disk deletion
Immediately public void deleteHardDriveNow () {
deletes the [...code redacted for brevity...]
hard drive } . .
} Contains complex image-

public class SmartHardDriveNuker extends HardDriveNuker recognition logic

public void activate (CameraFeed cameraFeed) { Calls deleteHardDriveNow()
[...code redacted for brevity...] behind the scenes
}

You should instantly see the flawed design of this Java code. Figure 8.6 provides an
overview.

The application doesn’t use dependency injection. Instead of splitting responsibil-
ities into separate entities, the application contains both the logic of deletion and the
face recognition in a single “object.”

You see this design flaw and start refactoring the application in order to write your
unit tests. Unfortunately, your boss says that the binary application is digitally signed,
and changing even the slightest thing in the source code will create an invalid signa-
ture.? Your boss adds that even if you successfully refactor the code, your department

SmartHardDriveNuker.java

Face detection CameraFeed
from video

camera

Deletes
hard drive

Figure 8.6 Hard drive deletion logic is hidden inside the face-recognition logic

9 My example is a bit extreme. Usually code can’t be changed for political reasons.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating partial mocks with spies 247

doesn’t have access to the digital certificate, so you couldn’t re-sign the binary after
your change.

You need to write a unit test with the source code as is. You're asked to examine
the effectiveness of the face-recognition software by using images of both kinds (those
that have a threat and those that don’t). This is one of the rare occasions that spies
can be employed for unit testing.

83.2 Spies with Spock

You need to write a unit test that examines the activate () method of the SmartHard-
DriveNuker class. You know that behind the scenes it calls the deleteHardDriveNow ()
method. It wouldn’t be realistic to delete your hard drive each time you write a unit
test that triggers the face-recognition logic. You need to find a way to mock the dan-
gerous method while the real method of the face-recognition logic is kept as is.

Spock supports the creation of spies, as shown in the next listing. A spy is a fake
object that automatically calls the real methods of a class unless they’re explicitly

mocked.
Listing 8.24 Creating a spy with Spock
def "automatic deletion of hard disk when agents are here" ()

given: "a camera feed"

CameraFeed cameraFeed = new CameraFeed ()
Creates a spy for the

and: "the auto-nuker program" SmartHardDriveNuker class

SmartHardDriveNuker nuker = Spy (SmartHardDriveNuker)

Mocks the nuker.deleteHardDriveNow () >> {println "Hard disk is cleared"}
dangerous
method—all when:"agents are knocking the door"
other methods cameraFeed.setCurrentFrame (ImageIO.read (getClass () .getResourceAsStream (
are real "agents.jpg")))
nuker.activate (cameraFeed) ; Real face-recognition
code runs

then: "all files of hard drive should be deleted"
1 * nuker.deleteHardDriveNow ()

} Examines the mocked method

Here you create a spy of your class under test. By default, after creation, all methods
are real and pass through to the real object.'” Then you specifically mock the method
that deletes the hard drive. But the method that employs the face-recognition logic is
still the real one.

When the activate () method is called, it runs its real code (so you can pass it dif-
ferent images and test the effectiveness of the face-recognition code). In the case of
an image that represents a “threat” and so triggers the hard drive deletion process,
you know that the mocked method will be called (and thus your hard drive is safe).

10 Creating a spy without mocking any method is the same as using the object itself—not very exciting.

www.it-ebooks.info

http://www.it-ebooks.info/

248

8.3.3

8.3.4

CHAPTER 8 Spock features for enterprise testing

This listing shows only one test, but in reality you’d need to write a parameterized
test with multiple images that examines the behavior of the face-recognition code.

The need for spies shows a problematic code base

Spies are used for legacy code primarily because of the bad quality of legacy code.!!
Well-designed code doesn’t ever need spies in the first place. Figure 8.7 shows a flow
diagram of using spies that you should keep in your head at all times. The diagram
isn’t specific to Spock. It applies to all testing frameworks (including Mockito).

You think you
need to use spies

Can
you refactor
your Java

code?
No

Your Java code
is not OOP

Refactor it?

Use mocks/stubs

You improved the @ Figure 8.7 Spies can always be replaced
design of your code! with mocks in well-designed code.

In the example of the security utility, a spy is essential because the Java code doesn’t
use dependency injection. This is just one of the code smells of badly designed code.
Java code that comes as a big ball of mud,'? breaks the SOLID principles,"® contains
God' objects, and generally suffers from big design flaws isn’t directly testable with
mocks/stubs, and spies are needed.

In those cases, you should resist the temptation to write a Spock test with spies and
instead refactor the code before writing your unit tests. You’ll find that in most cases
(if not all), spies aren’t needed after the refactoring is complete.

Replacement of spies with mock

You use spies with the security utility because you can’t refactor the Java code first, as
this would invalidate the digital signature of the binary. If that constraint didn’t hold,

' A universal fact: legacy code is always badly designed code.

12 https://en.wikipedia.org/wiki/Big_ball_of_mud

13 https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
" https://en.wikipedia.org/wiki/God_object

www.it-ebooks.info

https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
https://en.wikipedia.org/wiki/God_object
http://www.it-ebooks.info/

Creating partial mocks with spies 249

you’d instead modify the Java code to properly use dependency injection. An obvious
decoupling of dependencies is shown in the following listing.

Listing 8.25 Refactoring Java code to avoid spies

public class SmartHardDriveNuker . . .
No inheritance is used.
Code reuse via (4> private final HardDriveNuker hardDriveNuker;

composition
public SmartHardDriveNuker (final HardDriveNuker hardDriveNuker)

{
}

Gets hard drive nuker via

this.hardDriveNuker = hardDriveNuker;
constructor injection

public void activate (CameraFeed cameraFeed)
{
[...code redacted for brevity..]

hardDriveNuker.deleteHardDriveNow () ; 44“Ca"sthedangﬂnusnmthod

[...code redacted for brevity..] of the external dependency

Here you refactor your Java code to use composition instead of inheritance. You also
introduce the “dangerous” hard drive deletion code as an external dependency. After

this refactoring, you can rewrite your unit test by using a normal mock, as shown in
the next listing.

Listing 8.26 Using a mock instead of a spy

def "automatic deletion of hard disk when agents are here" ()
given: "a camera feed and a fake nuker"
CameraFeed cameraFeed = new CameraFeed()

HardDriveNuker nuker = Mock (HardDriveNuker) 4“‘Usesa|nock

instead of a spy
and: "the auto-nuker program"

Mock is passed (4,, SmartHardDriveNuker smartNuker = new SmartHardDriveNuker (nuker
as a dependency .
when:"agents are knocking the door"
cameraFeed.setCurrentFrame (ImageIO.read (getClass () .getResourceAsStream (
"agents.jpg")))

smartNuker.activate (cameraFeed) ; 47 Calls the mocked nuker

class behind the scenes
then: "all files of hard drive should be deleted"

1 * nuker.deleteHardDriveNow () 4—‘ Examines the interaction

of the mock
If you've read chapter 6, the code in listing 8.26 should be easy to understand.

Because you've refactored the Java code and hard drive deletion is now an external
dependency, you can mock that class and pass it the face-recognition code. This way,

www.it-ebooks.info

http://www.it-ebooks.info/

250

8.4

CHAPTER 8 Spock features for enterprise testing

your class under test—SmartHardDriveNuker—is a real one, and a mock is used for

the collaborator class: HardDriveNuker.

The end result is that no spies are used. What you need to take away from this sec-
tion of the book is that despite Spock support for spies, you should avoid using them,
and instead spend time improving the design of your code so that spies aren’t needed.

And with that knowledge about spies, we conclude this book! You can now put it
down and go write your own Spock tests!

Summary

You can create Spock tests that will pass if a certain exception is thrown.

You can explicitly define the type of exception and perform assertions on it to
refine the conditions for passing a test when an exception is thrown.

The @Issue annotation can be used for documentation (and possibly report-
ing) purposes on a Spock test. Use it to show which issue is verified by a Spock
test.

Spock supports the @Timeout annotation that will forcibly fail a test if it takes
too long.

You can ignore specific Spock tests. They will be skipped by the Spock runner.
You can automatically skip Spock tests according to the running environment.
Tests can be skipped under specific operating systems, JVM configuration, sys-
tem properties, environment variables, and any other custom code you can
implement yourself.

The @AutoCleanup annotation automatically releases resources at the end of a
Spock test, even if the test has failed. This is an alternative to the cleanup:
block and/or the cleanup () /cleanupSpec () methods.

All Spock blocks (the when: block in particular) should be short and concise.
Large code segments should be extracted into helper methods.

Helper methods for assertions need to use the assert keyword or the with ()
method (otherwise, Spock can’t understand that the code is Groovy assertions).
Helper methods for interactions should be wrapped in an interaction block
(otherwise, Spock can’t understand the special syntax used for interaction veri-
fication).

Spies in Spock offer the possibility of partial mocking. A spy can mock some
methods of an object while leaving the rest of the methods in the original
implementation.

Spies are an advanced feature that should be used mostly in legacy code that
can’t be refactored. Spy usage inside Spock tests should be minimal.

The presence of Spock spies usually indicates badly designed production code.
Refactoring the code should make spies redundant.

www.it-ebooks.info

http://www.it-ebooks.info/

Al

appendix A
Installing Spock

This appendix explains how to install and begin using Spock in your Java project
(even when you already have existing JUnit tests). It also covers installation of
Groovy support in popular development environments and how to best use the
source code for the book.

I assume you already have a Java project (that you want to write Spock tests for)
and so have the following available:

= Java development Kit (www.oracle.com/technetwork/java/javase /downloads
/index.html)

= Maven build system (http://maven.apache.org/) or Gradle build system
(https://gradle.org/)

= Your favorite Integrated Development Environment (for example, Eclipse)

Optional Groovy installation

First, let’s get a big misunderstanding out of the way. It’s perfectly possible to use
Spock in your Java project without installing Groovy itself. It’s nice to have the Groovy
tools available for quick tests and small scripts, but they’re by no means necessary.
To install Groovy, go to http://groovy-lang.org/download.html and follow the
instructions for your operating system. The easiest way is to download the zip file,
extract it in a directory of your choice, and set your PATH variable accordingly.
After installing Groovy, you should have the following commands available:
= groovyc—Groovy compiler. Apart from simple tests, you typically don’t use
this directly.
= groovy—Groovy runner. You can use this to run individual Groovy scripts.
= groovysh—Groovy shell. This is an interactive way to run Groovy statements.
= groovyconsole—Graphical Groovy console. This is the recommended way
to start your Groovy journey because it provides a friendly GUI application
you can use to evaluate Groovy statements.

251

www.it-ebooks.info

www.oracle.com/technetwork/java/javase/downloads/index.html
www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/
https://gradle.org/
http://groovy-lang.org/download.html
http://www.it-ebooks.info/

252

A2

A3

A3.1

ApPENDIX A Installing Spock

Choosing a Spock version

At the time of this writing, Spock has the following versions:

Spock 1.0-groovy2.4
Spock 1.0-groovy2.3
Spock 1.0-groovy2.0

All versions are available in Maven Central (http://search.maven.org/) and are pro-
duction-ready. The Groovy versions have little effect on Java projects. If you want to
add Spock to a Groovy project, choose the matching Groovy version. In the sample
code of this book, I chose the Spock version for Groovy 2.4 because it’s the latest at
the time of writing.

Master example for Maven, Ant, and Gradle

Your first stop regarding Spock installation should be the Spock-example GitHub
repository (https://github.com/spockframework/spock-example). This full project
with Spock tests contains build files for Gradle, Maven, and Ant (depending on your
build system, you may not need all of them). All my instructions for the next sections
are extracted from this project.

All code listings in this appendix are segments of the pom.xml file located in that
repository. I summarize the instructions for Maven and Gradle.' I assume that you
already have a Java project up and running and you want to add Spock tests.

Spock with Maven

If you use Maven, add the code in the following listing to your pom.xml file in the
Build > Plugins section.

Listing A.1 Adding Groovy support in Maven

<plugin>
<grouplds>org.codehaus.gmavenplus</groupId>
<artifactIdsgmavenplus-plugin</artifactId>
<version>1l.4</version>
<executions>
<execution>
<goals>
<goal>compile</goals>
<goal>testCompile</goals>
</goals>
</execution>
</executions>
</plugin>
<plugins>
<artifactIds>maven-surefire-plugin</artifactId>

' Antisn’t a build system. I’s a relic of the past and should die in flames. If you're starting a new Java project
with Ant, please bang your head against the wall now.

www.it-ebooks.info

https://github.com/spockframework/spock-example
http://search.maven.org/
http://www.it-ebooks.info/

A3.2

Master example for Maven, Ant, and Gradle 253

<version>2.6</version>
<configurations>
<useFile>false</useFile>
<includes>
<include>**/*Spec.java</include>
<includes>**/*Test.java</include>
</includes>
</configurations>
</plugin>

This sets up Groovy support in Maven and Surefire. In pom.xml, in the dependency
section, add the code shown in the next listing.

Listing A.2 Adding Spock dependencies in Maven

<dependency>
<groupId>org.spockframework</groupIds>
<artifactIdsspock-core</artifactIds>
<version>1l.0-groovy-2.4</version>
<scope>test</scope>

</dependency>

<dependency> <!-- enables mocking of classes

(in addition to interfaces) -->

<groupld>cglib</groupId>
<artifactId>cglib-nodep</artifactId>
<versions>3.1l</version>
<scope>test</scope>

</dependency>

<dependency> <!-- enables mocking of classes without default

constructor (together with CGLIB) -->

<groupId>org.objenesis</grouplds>
<artifactId>objenesis</artifactIds>
<version>2.1</version>
<scope>test</scope>

</dependency>

That’s it. Now you can build Spock tests via Maven. Running mvn test from the same
directory where the pom file exists should correctly detect and run your Spock tests
(assuming they all have names that end in *Spec, as I show in the book).

Spock with Gradle

If you use Gradle in your Java project, things are even simpler. Groovy compilation is
already taken care of, and you only need the Spock dependencies in your build.gradle
file, as shown in the next listing.

Listing A.3 Gradle settings for Spock

dependencies {

[....other dependencies here...]
// mandatory dependencies for using Spock

www.it-ebooks.info

http://www.it-ebooks.info/

254

A3.3

A4

A4.1

ApPENDIX A Installing Spock

compile "org.codehaus.groovy:groovy-all:2.4.1"
testCompile "org.spockframework:spock-core:1.0-groovy-2.4"

// optional dependencies for using Spock

testRuntime "cglib:cglib-nodep:3.1" // allows mocking of classes
(in addition to interfaces)
testRuntime "org.objenesis:objenesis:2.1" // allows mocking of classes

without default constructor (together with CGLIB)

}

In addition, make sure that you already use Maven Central, as the following listing
shows.

Listing A.4 Gradle settings for Spock repository

repositories {
// Spock releases are available from Maven Central
mavenCentral ()

}

Now you’re ready to use Spock from the command line. Running gradle test from
the same directory that holds the build.gradle file will run all Spock tests.

Spock in an enterprise environment

If you want to use Spock inside a company that has a binary repository like Nexus
(www.sonatype.org/nexus/) or Artifactory (www.jfrog.com/open-source/), you
should consult their documentation on how to use them as a proxy for Maven Cen-
tral. Talk with the administrator of these repositories for guidance on company poli-
cies regarding external library usage.

Let’s see how IDEs handle Spock support.

Spock tests in your IDE

Because Spock tests are in Groovy, the support of Spock in your IDE will be as good as
the existing support for Groovy. As explained previously, you don’t need to install
Groovy support in your IDE in order to run Spock tests. It’s a nice-to-have feature
because of its syntax highlighting and autocomplete facilities. The only thing specific
to Spock is the test output result that should be set up to use a fixed-width font so that
failure messages show up properly. For more information, see http://www.groovy-
lang.org/ides.html. I use Eclipse, but Groovy is supported on most major environ-
ments.

Spock in Eclipse

To gain Groovy support in Eclipse, install either the vanilla Groovy plugin or the full-
featured Groovy/Grails plugin. Both can be found in the Eclipse marketplace, as
shown in figure A.1. The Eclipse marketplace is accessible from the Help > Market-
place menu.

www.it-ebooks.info

http://www.sonatype.org/nexus/
http://www.jfrog.com/open-source/
http://www.groovy-lang.org/ides.html
http://www.groovy-lang.org/ides.html
http://www.it-ebooks.info/

Spock tests in your IDE 255

| Search | Recent | Popular | Installed|) January01/27

|

Groovy-Eclipse for Juno 2.7.1

Groovy-Eclipse is the Eclipse-based tooling for the Groovy programming
language. Groovy-Eclipse provides full IDE support for Groovy including
editing support,... more info

by VMware, Inc., EPL

groovy. grails

Installs: 31,0K (01 last month)

Groovy/Grails Tool Suite (GGTS) for Eclipse Indigo (3.7)
3.6.3.RELEASE

The GromfGrarls Tool Suite™ (GGTS) provides the best Eclipse-powered
di t for building Groovy and Grails applications. GGTS
prwtdﬁ support... more info

by Pivotal, EPL
groovy grails ggts

Installs: 517K (11 last month)

Groovy/Grails Tool Suite (GGTS) for Eclipse Juno (3.8 +
4.2) 3.6.3.RELEASE
The GromfGrarls Tool Suite™ (GGTS) provides the best Eclipse-powered
t for building Groovy and Grails applications. GGTS
prwrdﬁ support... more info
by Pivotal, EPL L

Figure A.1 Eclipse plugins for Groovy

Once you do that, Groovy/Spock files will gain syntax highlighting and autocomplete
support, as shown in figure A.2.
You can still use the Maven/Gradle commands to compile and run Spock tests.

def "If current temperature difference is more than 2@ degrees t
given: "that temperature readings are not within limits"
TemperatureReadings prev = new TemperatureReadings(sensoriDa
TemperatureReadings current = new TemperatureReadings(sensor
TemperatureReader reader = Stub(TemperatureReader)

reader.getCurrentReadings() »>>> [prev,current]
TemperatureMonitor monitor = new TemperatureMonitor(reader)
when: “we ask the status of temperature control”

monitor.r ()
monitor

@ find() : Object - DefaultGroovyMethods (Category: Defaul =
then: 4| @ find(Closure closure) : Object - DefaultGroovyMethods (C
!monitor | @ findAll() : Collection - DefaultGroovyMethods (Category:

} @ findAll(Closure closure) : Collection - DefaultGroovyMeth

@ findIndexOf(Closure closure) : int - DefaultGroovyMethod =

@ findindexOf(int startindex, Closure closure) : int - Default(

@ findIndexValues(Closure closure) : List - DefaultGroovyMe Figure A.2 Groovy

@ findindexValues(Number startindex, Closure closure) : List support in Eclipse

www.it-ebooks.info

http://www.it-ebooks.info/

256

APPENDIX A Installing Spock

T ——

Eclipse Marketplace

Select solutions to install. Press Finish to proceed with installation.
Press the information button to see a detailed overview and a link to more information.

Search | Recent | Popular | 1

lled| |, March03/26

(%

Find: | spock

.". more info

Q 47 | (Al Markets

~ | (Al Categories

v) (o)

by Jspresso.org, GPL
test Tests fitness spock greenpepper

@ Installs: 2,54K (238 last month)

Spock Plugin 2.10.0

. . Jspresso Spock is a straight plugin dedicated to the Spock tests framework Here
y are the feature included : Syntax highlighting Keywords completion Junit tracing...

Figure A.3 Jspresso Spock plugin (optional)

There’s also a plugin dedicated to Spock, but upon installing it, I haven't noticed any
additional functionality (it also depends on the Groovy plugin, so it isn’t a true alter-
native). You can find it in the Eclipse marketplace, as shown in figure A.3.

A4.2

Spock in the IntelliJ IDE

Groovy support in Intelli] IDEA is built in, so there’s no need to download an external
plugin. You need only to enable it, as shown in figure A.4.

When the Groovy plugin is enabled, you gain syntax highlighting and autocom-
plete in Groovy files, as shown in figure A.5.

Plugins

@ | &5 & & show: |Allplugins v

g e
[] 4% Geronimo Integration

[4% Gherkin

[## Git Integration

¥ £% GitHub

[#% GlassFish Integration

[## Google App Engine Integration
[4% Gradle

O £# Grails

[## Groovy

[#7 GuiceyIDEA

[#% GWT support

[#% HamL

[4% Heroku integration

[#% hadidea

[R

Figure A.4 Enabling Groovy support in IntelliJ

Bundled Pron
Bundled
Bundled
Bundled
Bundled
Bundled
Bundled
Bundled
Bundled
Bundled
Bundled
Bundled
Bundled
Bundled

S

def "Order of numbers does not matter”()
when: "a new Adder class is created"
def adder = new Adder():

then: "2 plus 3 is 5"
adder.pdd(2, 3) == §

Iil'b every (Closure closure) via
A s find () via DefaultGro
%m| & find (Closure closure)

El'b findAll {) via Default

im & f£indAll (Closure closure) v D

[ml & findIndexOf (Closure closure) via

LEI'h findIndexOf (int startIndex, Closu

Iml % FindTrdavUalnae (Flaanra ~laanral

www.it-ebooks.info

Figure A.5 Groovy support in IntelliJ IDEA

http://www.it-ebooks.info/

A4.3

A5

How to use the source code of this book 257

N o D =%=)

@D & li |Category: Al ¥ |8 spock |
Name Downloads Rats Date

This plugin provides support for the 3
specification framework.

® Adds syntax highlighting to s}

® Provides inspections for label ordering

o AFTIE spec template and a collection
of live templates for feature methods
contributed by @fpape

® Code generation assistance in specs
for setup, cleanup, and adding a test
method contributed by @fpape

Change Notes

Compatibility fix for Intelli) 14 EAP.
Vendor

Matt Cholick

Version

Figure A.6 IntelliJ plugin for Spock

Again, as with Eclipse, you can still use the command-line Maven/Gradle commands
to compile and run Spock tests. A dedicated Spock plugin for Intelli] IDEA adds extra
optional goodies, such as syntax highlighting for Spock labels (see figure A.6).

Again, this is something that’s nice to have, but is not otherwise essential for run-
ning Spock tests.

Spock in NetBeans

I haven’t tried NetBeans with Groovy, but it also supports Groovy. See https://
netbeans.org/features/groovy/ for more details.

How to use the source code of this book

All the source code is located at https://github.com/kkapelon/java-testing-with-
spock. Each chapter is an independent Maven project. You can check out any chapter
by itself and run the command mvn test (ormvn verify) to run all Spock/JUnit tests.
You need an active internet connection so that all dependencies are downloaded. You
can obtain the code in multiple ways:

= Ifyou’re not familiar with Git and/or GitHub, you can download all the code as
a zip file from https://github.com/kkapelon/java-testing-with-spock/archive/
master.zip.

= If you're familiar with Git, you can also clone the https://github.com/
kkapelon/java-testing-with-spock.git repository by using your favorite Git client.

= If you already have a GitHub account and know how GitHub works, you can
directly fork the repository or download it locally with the GitHub client.

Feel free to import any chapter into your favorite IDE (as a Maven project) to examine
the code more thoroughly. All code listings of the book are shown in the GitHub

www.it-ebooks.info

https://netbeans.org/features/groovy/
https://netbeans.org/features/groovy/
https://github.com/kkapelon/java-testing-with-spock/archive/master.zip
https://github.com/kkapelon/java-testing-with-spock/archive/master.zip
https://github.com/kkapelon/java-testing-with-spock
https://github.com/kkapelon/java-testing-with-spock
https://github.com/kkapelon/java-testing-with-spock.git
https://github.com/kkapelon/java-testing-with-spock.git
http://www.it-ebooks.info/

258

A.6

APPENDIX A Installing Spock

© LISUIIY U INUGULI Y G GG Uy 1 GG UGYE LIG00 UIe 1991
» Listing 1.7 A JUnit test where method names are unrelated to business value
« Listing 1.8 A Spock test where methods explain the business requirements

Chapter 2

« Listing 2.1 Groovy class conventions

Listing 2.1 Groovy class conventions

Listing 2.2 Groovy field conventions

Listing 2.3 A complete Groovy script

Listing 2.4 A Spock test using concise Groovy code
Listing 2.5 Creating and using a Java class from Groovy
Listing 2.5 Creating and using a Java class from Groovy
Listing 2.6 Groovy optional typing in variables

Listing 2.7 Groovy optional typing in methods

.

Figure A.7 Code listings with links in the home page of the GitHub repository

repository; figure A.7 shows an example. You can click any of them, and you’ll be
transferred directly to the respective source file.

I’'ve set up continuous integration on the GitHub page. Seeing the current status
of the code at the front page is easy.

How to use the chapter code in Eclipse

Here I provide step-by-step instructions on how to import a chapter in Eclipse and run

a Spock test. This section refers to chapter 1, but all chapters work in the same way.
Check out the source code and place it somewhere on your local filesystem.? Then,

from Eclipse, choose File > Import and select a Maven project, as shown in figure A.8.

& import e 4 —

Select \
Import Existing Maven Projects @

Select an import source:
(L o fiter ted

4 (= Maven

! L, Check out Maven Projects from SCM
L, Existing Maven Projects
(3, Install or deploy an artifact to a Maven repository
%, Materialize Maven Projects from SCM

(= Plug-in Development

(= Remote Systems

(= Run/Debug
(= Tasks Figure A.8 Importing as a

= Team Maven project

- - -

2 Your Eclipse workspace is a good place as it will make things easier.

www.it-ebooks.info

http://www.it-ebooks.info/

How to use the chapter code in Eclipse

{8] Import Maven Projects o

By

Maven Projects
Select Maven projects

Root Directory: C:\Users\Kostis\workspace'java-testing-with-spockichapterl
Projects:
[[#] 7/pomaml com.manning.spockichapterl:l 0sjar

[7] Add project(s) to working set
[chapterl

» Advanced

4 E

{1

Select Tree

Deselect Tree

@ T S

l

Cancel

Figure A.9 Locating the pom file

259

Navigate to the folder that contains the chapter code and click the Finish button in

the dialog box that appears, as shown in figure A.9.

Eclipse will attempt to find connectors for the Gmaven-plus plugin and will fail
because this plugin is fairly new (see figure A.10). Choose to ignore this (it won’t
affect your build in any way). When you work with cutting-edge technology like Spock,

your IDE can’t keep up with you!

] import Maven Projects L |
Setup Maven plugin connectors
Discover and map Eclipse plugins to Maven plugin goal executions.
Maven Build Action
» B g plus-plugin:1.4:compile (1 errors) Resolve Later
| » @ gmavenplus-plugin:l 4:testCompile (1 errors) Resolve Later

Please see Help for more information.

License

www.it-ebooks.info

2errors | Resolve Al Later | | Auto Select
/| Description
: Ne marketplace entries found to handle g plus-plugin:1.4 pilein Eclipse. «

Figure A.10 Ignoring
Eclipse warnings

http://www.it-ebooks.info/

260 APPENDIX A Installing Spock
= . I =
Properties for chapterl
type filter text Java Build Path & -
& Resource
Builders (% Source | (= Projects | mi Libraries | % Order and Export|
Coverage Source folders on build path:
Git -
hapterl - older.
Java Build Path a (B chapt Jsre/main/java Add Foldern.
b Java Code Style '@ souns l-.:; = ﬁ] Link Source...
& Java Compiler ————
b Java Editor [
. Edit...
Javadoc Location Selm the source folder: L
v Maven 4 [chaptenl Remove
Project Facets b [idea
Project References v [T] & .settings
Refactoring History + E& s
Run/Debug Settings [& main
» Task Repository » [l & java
Task Tags |l = resources
o Validation o [test
WikiText > W& groovy
» [l & java
il (= resources
b [C] &> target

Figure A.11 Ensuring that Eclipse handles src/test/groovy correctly

Next, make sure that the src/test/groovy directory is handled as a source directory, as

shown in figure A.11:

= Right-click the project in Eclipse and select Properties (the last item on the

menu). In the dialog box that appears, click Java Build Path.
= Click the Add Folder button.
= If the test/groovy directory isn’t already included, check it yourself.

To build the project, you can run mvn test from the command line. Alternatively, in
Eclipse, you can choose “Maven test” from the project right-click menu, as shown in

figure A.12.

Then you can individu-
ally run any Spock test
exactly as you would run a
JUnit test (by right-clicking
it), as shown in figure A.13.

sy s
Run As
Coverage As
Validate
Team

Run As

Coverage As

Team

Compare With

Replace With

Restore from Local History...
Jspresso

Maven

Configure

Al dAsEAE

Figure A.12 Running the Maven build

* | 35 1Runon Server
¥ | Ju 2)Unit Test

Run Configurations...

Alt-Shift-X, R
AltShiftsX, T

Figure A.13 Running a Spock test in Eclipse

www.it-ebooks.info

1 Java Applet

2 Java Application

3 JUnit Test

4 Maven build

5 Maven build...

6 Maven clean

7 Maven generate-sources
8 Maven install

9 Maven test

http://www.it-ebooks.info/

A7

How to use the chapter code in Intelli] IDEA 261

The results of the test appear in
the JUnit console, as shown in fig-
ure A.14.

How to use the chapter
code in IntelliJ IDEA

As with Eclipse, this section pro-
vides instructions on how to use
chapter 1 in Intelli] IDEA. Repeat
the process for each chapter. In
the opening screen of Intelli]
IDEA, choose to import a new
project and mnavigate to the
source code in your filesystem, as
shown in figure A.15.

You’re presented with a series
of wizard screens. Accept the
defaults. Make sure the project is
imported as a Maven project, as
shown in figure A.16.

Figure A.15

Importing a project
in Intelli) IDEA

&l Pro.. @ Jav.. (@ Dec.. 4’ Sea.. B Co.. gPro... gulUnit i3 [mm Co

Finished after 0,38 seconds

4 fi) com.manning.spock.chapterl AdderSpec [Runner: JUnit 4] (0,050 s)
ﬂ Adding two numbers to return the sum (0,050 5)
gi| Order of numbers does not matter (0,000 5)

Runs: 2/2 B Errors: 0 B Failures: 0

Figure A.14 Results of a Spock test

I Select e or vy Pt
Select directory with existing sources,

Edlipse project (.project) or dasspath (.dasspath) file,
Maven project file (pom.xml).

LG QX O
[C:\Users\l(u»stis\wurlupace\}cva-tming-with-spock\chaptzrl 4
#— L] .metadata
[1 Apache-Httpd-conf-Reader
(4~ [filtered- checkbox-jtree
i~ [geb-example-maven
[«
c

Hide path

- [ggug-spock-examples
+— [idiomatic-spock
= [java-testing-with-spock

chapterl
[.settings
[src
(] target
@ .classpath

&wt&m[\Users\Kostis\workspace\java-testing-with-sp

k\chapterl

[Search for projects recursively

ot oemst [(Grectoy s]

[Keep project flesin: |

[+ Emport Maven projects automaticaly]

[[] Create module groups for multi-module Maven projects
[#] Keep source and test folders on remport

[Exclude buld drectory (%PROJECT_ROOT %h/target)
[Use Maven guiput drectories

[#] Create Inteli) IDEA modules for aggregator projects (with ‘pom’ packaging)

Generated sources folders: | Detect automatically

)

Phase to be used for folders upd

Mote that al test-* phases firstly g te and compie:

mmmemumofmmﬂmhm&mmummﬁhtmm

Automatically download: [Sources] Documentation

Dependency types: Ijal, test-jar, maven-plugin, ejb, ejb-client, jboss-har, jboss-sar, war, ear, bund|

Comma d list of d

¥ types that

Soorked Figure A.16 Importing

as a Maven project

www.it-ebooks.info

http://www.it-ebooks.info/

262

A8

APPENDIX A Installing Spock

After the import is finished, find the Maven
Goals window (located at the top right) and
double-click the “test” goal as shown in fig-
ure A.17. This builds the whole project. As
an alternative, you can run the command
mvn test from the same folder that con-
tains the pom.xml file of the chapter.

As with Eclipse, you need to mark the
src/test/groovy folder as a source folder.
Right-click the folder and choose Mark
Directory As > Test Sources Root, as shown
in figure A.18.

|

Maven Projects

O &(+|(P RS =B ?

= s Examples of Chapter 1

|~ & clean
[& validate
[— & compile
[— & test

[— & package
[— & verify
[— & install
— & site

— & deploy
= [Plugins

1
@ 4% clean (ora.apache.maven.oluains:maven-clean

Figure A.17 Maven goals inside IntelliJ IDEA

Local History 3 5 5o =
urces Root

[Test Sources Root
3 Resources Root
Crl+Alt+F12 3 Test Resources Root
Ctrl+D | P Excluded

:{ G Synchronize ‘groovy’
i Show in Explorer
File Path
Compare Directory with...

Mark Directory As

[C% Generated Sources Root

® Creste Gist... |

Figure A.18 Instructing Intelli) to

un % 6: TODO

handle Spock folders

Finally, you can run any Spock test as you run JUnit (via the right-click menu), as

shown in figure A.19.

The results appear in the JUnit console. See figure A.20.

Make Module ‘chapterl’
Compile ‘AdderSpec.groovy’

b

Ctrl+Shift«F9

[@] Save ‘AdderSpec’ b s
Ctrl+Shift+F10

| W Run 'AdderSpec’
#% Debug ‘AdderSpec’
¥% Run 'AdderSpec’ with Coverage

Local History >

Figure A.19 Running a Spock test inside IntelliJ

Other resources

Many other resources are available:

Run [i AdderSpec
> v llz=|r %
P e AdderSpec (com.manning.spock.chapterl) |

@ Adding two numbers to return the sum
@8 Order of numbers does not matter

4

Figure A.20 Results of a Spock test

= Spock web page: http://spockframework.org/

= Spock mailing list: https://groups.google.com/forum/#!forum/spockframe

work

= Spock documentation:http://docs.spockframework.org

= Spock at Stack Overflow: http://stackoverflow.com/questions/tagged/spock
= Spock at GitHub: https://github.com/spockframework

www.it-ebooks.info

http://docs.spockframework.org
http://spockframework.org/
https://groups.google.com/forum/#!forum/spockframework
https://groups.google.com/forum/#!forum/spockframework
http://stackoverflow.com/questions/tagged/spock
https://github.com/spockframework
http://www.it-ebooks.info/

B.1

appendix B
External Spock extensions
and related tools

The official Spock source code found at https://github.com/spockframework/
spock contains the core framework, along with extensions for Spring, Guice, Tapes-
try, and Unitils. Because of the extensible nature of Spock, several other extensions
are available outside this repository created by the community.

This appendix presents several Spock extensions created by external contribu-
tors that may help your unit tests. Additionally, it covers several other unit-testing
projects that play well with Spock or even have explicit support for it.

It’s your responsibility to examine each of these projects and evaluate them for
your needs. With the recent release of version 1.0 of Spock, more people will be
writing extensions. The number of available Spock extensions will have grown by
the time you’re reading this book.

Detailed Spock reporting

As already mentioned, the Spock test runner is compatible with the JUnit runner,
so all JUnit reporting tools will work normally for Spock tests as well.

To fully exploit Spock capabilities, you can also use Spock Reports (https://
github.com/renatoathaydes/spock-reports). This project can create test reports
with all the finer details of Spock tests. It renders the text of block descriptions and
supports the documentation annotations (such as @Title), as shown in figure B.1.

The project can be run either with Maven or Gradle, so regardless of your build
system, you can easily create these reports with minimal effort. At the time of writ-
ing, the binaries are not yet released to Maven central, so you need to add an exter-
nal repository to your pom file.

263

www.it-ebooks.info

https://github.com/allure-framework/allure-spock-adaptor
https://github.com/spockframework/spock
https://github.com/spockframework/spock
https://github.com/renatoathaydes/spock-reports
https://github.com/renatoathaydes/spock-reports
http://www.it-ebooks.info/

264 AppPenDIX B External Spock extensions and related tools

Summary:

Created on Fri Aug 21 21:21:30 EEST 2015 by Kostis

Executed features Failures Errors Skipped Su
2 0 0 0 100
. Temperature check for the nuclear reactor
@Title Spock /
annotation Features:

« |f current temperature difference is within limits everything is ok
= |f current temperature difference is more than 20 degrees the alarm

If current temperature difference is within limits everything is ok

that temperature readings are within limits

we ask the status of temperature control

everything should be ok

If current temperature difference is more than 20 degrees the al:
Given:
When:
Then:

that temperature readings are not within limits

we ask the status of temperature control
the alarm should sound

Figure B.1 Spock reports that show given-when-then labels and Spock annotations

B.2 Gradle-style Spock reports
Another project dedicated to Spock reporting is Damage Control, found at https://
github.com/damage-control/report. Again, it focuses on creating detailed Spock
reports. The output is similar to the Gradle style for test reports, shown in figure B.2.
You can use damage-control reports either with Maven or Gradle. The library is
already in Maven Central, so using it in your own projects is easy.

Damage Control Report
14 6 3 0.34999996s 57%
features failures skipped duration successiul

Specifications

Specification Features Failures Skipped Duration Result
AllGreenFeaturesTest 2 0] 0.507s passed
errors.CleanupErmorTest 2 2 0 0.024s failed
emors.SetupFailureTest 2 2] 0.023s failed
failed MultipleFeaturesTest 2 1 0 0.135s failed
junit.SampleJUnitTest 2 1 0 0.02s failed
skipped ClassLevellgnoreTest 1 0 1 0.005s skipped
skipped.MethodLevellgnoreTest 1 0 1 0.009s skipped
skipped.OnlyOneFeaturelanoredTest 2 0 1 0.017s passed

13081

Figure B.2 Damage-control example report

www.it-ebooks.info

https://github.com/damage-control/report
https://github.com/damage-control/report
http://www.it-ebooks.info/

B.3

Mass creation of
Person objects with all
parameters of each domain

B.4

Spock-Arquillian test runner 265

Spock Genesis

Spock Genesis (https://github.com/Bijnagte /spock-genesis) is a meta data-generator
library for parameterized Spock tests. I briefly mentioned it at the end of chapter 5. At
its core, Spock Genesis can be used as a data source for Spock tests. The following list-
ing is an example directly from Spock Genesis’ own samples.

Listing B.1 Creating test data with Spock Genesis

static class Person { 47 A Person class that

int id will be tested
String name

String title
Date birthDate
char gender

def 'complex pogo' () {

expect:
person instanceof Person
person.gender in ['M', 'F', 'T', 'U'].collect { it as char }
person.id > 199
person.id < 10001
person.birthDate >= Date.parse('MM/dd/yyyy', '01/01/1940')
person.birthDate <= new Date()

where:
person << Gen.type (Person,
id: Gen.integer(200..10000),
name: Gen.string(~/[A-Z] [a-z]l+([A-Z] [a-z]+)?/),
birthDate: Gen.date (Date.parse('MM/dd/yyyy"',
(

Parameters for '01/01/1940'), new Date()),
created objects title: Gen.these('', null).then(Gen.any('Dr.', 'Mr.',
'Ms.', 'Mrs.')),
gender: Gen.character ('MFTU')
) .take (3)

}

Spock Genesis can work as an abstraction over existing data generators, as it can also
do the following:

= Compose existing generators into new ones

= Filter existing generators using predicates/closures

= Randomize or order the output for other generators

You’ll find Spock Genesis particularly useful if you're creating a scientific application

in Java and want to cover a large amount of data variations in your unit tests.

Spock-Arquillian test runner

As mentioned in chapter 7, Spock only includes support for Spring and Guice in its
core distribution, as far as containers are concerned. Spock-Arquillian (https://
github.com/arquillian/arquillian-testrunner-spock) is a community extension that

www.it-ebooks.info

https://github.com/Bijnagte/spock-genesis
https://github.com/arquillian/arquillian-testrunner-spock
https://github.com/arquillian/arquillian-testrunner-spock
http://www.it-ebooks.info/

266

AppPenDIX B External Spock extensions and related tools

allows Spock tests to bootstrap the Arquillian (http://arquillian.org/) test container.
Arquillian is commonly used for integration testing of Java EE applications. The next
listing is an example from the Spock-Arquillian website.

Listing B.2 Using Spock and Arquillian together

@Deployment

def static JavaArchive "create deployment" () { #::ﬁ?ﬂﬁhn
return ShrinkWrap.create (JavaArchive.class) <+ 9
.addClasses (AccountService.class, Account.class,
SecureAccountService.class)
.addAsManifestResource (EmptyAsset.INSTANCE, "beans.xml");
}
@Inject

Standard CDI injection

AccountService service

def "transferring between accounts should result in account withdrawal and

Spock deposit" () {
parameterized when:
test service.transfer (from, to, amount)
then:
from.balance == fromBalance
to.balance == toBalance
where:
from << [new Account (100), new Account (10)]
to << [new Account (50), new Account (90)]
amount << [50, 10]
fromBalance << [50 0]
toBalance << [100, 100]
}
Notice that the class containing the Arquillian code must be annotated with the @Run-
With(ArquillianSputnik) annotation in order to successfully run the code shown in
the listing.
B.5 Using PowerMock with Spock
Chapter 6 briefly discusses PowerMock (https://github.com/jayway/powermock) as a
way to mock static/private methods, a capability that Spock doesn’t have on its own.

I consider the use of PowerMock an antipattern. You should use it only as a last
resort in your unit tests and only when it’s impossible to refactor the Java code under
tests. If you end up using PowerMock with Spock, you should look at the Spock-Power-
Mock project (https://github.com/kriegaex/Spock_PowerMock) that combines the
two. The following listing shows an example taken from the project web page.

Listing B.3 Using Spock and PowerMock together
@PrepareForTest ([Person.class]) 4*4W .
PowerMo‘:k class PersonTest extends Specification { PowerMock annotation
]Unﬁrde @Rule PowerMockRule rule = new PowerMockRule () ;

www.it-ebooks.info

http://arquillian.org/
https://github.com/jayway/powermock
https://github.com/kriegaex/Spock_PowerMock
http://www.it-ebooks.info/

Spock assertions
on the private/stat

B.6

At this point the

mock has been injected
in the class under

test automatically.

Spock InjectMocks extension 267

private static Person person = new Person("Kriegisch", "Alexander", new
Date (1971 - 1900, 5 - 1, 8))

Class under test that’s

def "Person properties"() { both private and static
expect:
person.getLastName () == "Kriegisch"
person.getFirstName () == "Alexander"
person.getDateOfBirth() .getYear() == 71

Spock is backward-compatible with JUnit rules and therefore gets its PowerMock sup-
port indirectly by the PowerMock JUnit rule (which allows PowerMock usage inside
the code of a unit test).

Spock InjectMocks extension

In a complex unit test in which the class under test is using many other mocks (imag-
ine an EJB class that uses other EJBs), it might be tedious to inject all mocks one by
one using the respective setters.

The Spock Collaborators extension (https://github.com/marcingrzejszczak/
spock-subjects-collaborators-extension) can be used to automatically inject these
dependencies (in a similar manner to Spring automatic injection') by type. Both con-
structor and setter injection are supported.

Using the extension is as simple as annotating the class under test with @Subject
(which is different from the annotation already supported by Spock), and the mocks
to be injected with the @Collaborator annotation. After the Spock test runs, you'll
know that all classes marked with the latter annotation will be injected into the class
marked with the former. You should have exactly one class marked with @Subject, and
one or more classes marked with @Collaborator in each Spock specification.

Here’s the example shown on its web page.

Listing B.4 Automatic injection of mocks

@Collaborator This is a Spock mock that
SomeOtherClass someOtherClass = Mock () needs to be injected.

@Subject This annotation comes
SomeClass systemUnderTest from the extension.
def "should inject collaborator into subject" () {
given:
someOtherClass.someMethod () >> "I am a mock" Collaborator mock is like
any other Spock mock.
when:

String firstResult = systemUnderTest.someOtherClass.someMethod ()

! The Spock extension is inspired by the Mockito @InjectMocks annotation.

www.it-ebooks.info

https://github.com/marcingrzejszczak/spock-subjects-collaborators-extension
https://github.com/marcingrzejszczak/spock-subjects-collaborators-extension
http://www.it-ebooks.info/

268

B.7

AppPenDIX B External Spock extensions and related tools

then:
firstResult == "I am a mock"
systemUnderTest .someOtherClass == someOtherClass

}

If you want to use this extension, make sure that the @Subject annotation is imported
with com.blogspot . toomuchcoding. spock.subjcollabs.Subject instead of the stan-
dard spock.lang.Subject that’s used by core Spock for documentation purposes, as
described in chapter 4.

The code can be found in Maven central and is therefore easy to use in your own
Java project.

Spock Retry extension

In an ideal world, all your integration/functional tests would run in a deterministic way.
In reality, this isn’t always possible. Slow external systems, database bottlenecks, network
load, and other undesirable factors can sometimes affect the result of a test (especially
if you’ve marked it with the @Timeout annotation) in a semirandom manner.

I’ve worked on projects where a failed build doesn’t mean that the code is broken,
but that the network is congested (and rebuilding the code will make all tests pass). For
those cases, you can save yourself some time by using the Spock Retry extension
(https://github.com/anotherchrisberry/spock-retry). It offers you a special annota-
tion that gives a second chance to your Spock test if it fails, as shown in the next listing.

Listing B.5 Fail a test only if it fails twice

class ExampleSpec extends Specification ({

@RetryOnFailure

def "a brittle Spock test" () ({
[...implementation of Spock test here...]

}

Will try to run twice
before failing

}

The annotation can also be used on the class level so that all feature methods gain this
capability. By default, the test will be retried twice. You can change this value in the
annotation itself, as the following listing shows.

Listing B.6 Fail all tests after three tries

@RetryOnFailure (times=3) Gives three chances
class ExampleSpec extends Specification { to a failed test

def "a brittle Spock test" () ({
[...implementation of Spock test here...]

}

def "another brittle Spock test"() {
[...implementation of Spock test here...]
}

—

www.it-ebooks.info

https://github.com/anotherchrisberry/spock-retry
http://www.it-ebooks.info/

B.8

Spock dbUnit extension 269

At the time of writing, this Spock extension isn’t yet in Maven Central, so you must
either build it yourself or find another repository that contains it.

Spock dbUnit extension

Chapter 7 shows how to use the Groovy SQL package to preload your database with
test data needed for the Spock test. If you like this approach, you can take it a step fur-
ther with the Spock dbUnit extension (https://github.com/janbols/spock-dbunit).

The extension is based on the well-known DbUnit library (http://dbunit.source
forge.net/), initially developed for JUnit, that can initialize a database to a known
state, reading data from XML files. The Spock dbUnit extension allows you to use
Groovy code instead of XML files, as shown in the following listing.

Listing B.7 Fail all tests after three tries

class MyDbUnitTest extends Specification{

This data source is
DataSource dataSource used for data writing.

@DbUnit .
This method runs
Insert data on def content =
the USER table.) { before the Spock test.

Injected @Rutowired A Spring context

by Spring

Inserts data into
the User table

User (id: 1, name: 'John', createdOn: ' [NOW]')

}

Data on the DB is saved via a data source, which can be created by hand, or—even bet-
ter—injected by Spring test, as shown in the next listing.

Listing B.8 Using dbUnit Spock with Spring

@ContextConfiguration(locations="'classpath:/spring/context.xml")
class DatasourceFromSpringTest extends Specification(

DataSource dataSource that contains a

data source

def content = { before the test.

(4, User (id: 1, name: 'John')
1

def setup () { , Creates the initial schema

new Sgl (dataSource) .execute ("CREATE TABLE User (id
INT PRIMARY KEY, name VARCHAR (255))")

@DbUnit < This method will run

def cleanup() {
new Sgl (dataSource) .execute ("drop table User")

DB is preloaded with

def "test" () { data at this point.
when:
def result = new Sqgl (dataSource) .firstRow("select * from User
where name = 'John'")

www.it-ebooks.info

https://github.com/janbols/spock-dbunit
http://dbunit.sourceforge.net/
http://dbunit.sourceforge.net/
http://www.it-ebooks.info/

270

B.9

Locates the
button on
the screen

B.10

AppPenDIX B External Spock extensions and related tools

then:
result.id == 1

At the time of writing, this Spock extension is only in JCenter (https://bintray.com/
bintray/jcenter), not Maven Central, so you must either build it yourself or configure
JCenter in your pom.xml.

Spock Android extension

Android Java is not 100% compatible with desktop Java. Vanilla Spock can’t run

unmodified on Android because the mocking libraries it uses don’t work on Android.
The Spock Android extension (https://github.com/pieces029/android-spock)

not only fixes this problem but also allows you to inject Android objects (such as activ-

ities) in your Spock tests. Here’s an example taken from the extension website.

Listing B.9 Using Spock with Android

class MainActivitySpec extends Specification

@UseActivity (MainActivity) Injects an Android screen
def activity that contains a button
def "test activity setup" () ({

expect:

activity != null

activity instanceof MainActivity

}

def "test layout" ()
given:
(b- def button = activity.findvViewById(R.id.main button) as Button

when:
def buttonText = button.getText ()

Verifies the text
of the button

then:
buttonText == "Test"

The code can be found in Maven Central and is easy to use in your own Java project.

Spock Gherkin extension

If you're already familiar with BDD,? you should have noticed by now that Spock isn’t a
full BDD tool, as it caters mostly to developers. To allow business analysts and testers to

2 Consult BDD in Action by John Ferguson Smart (Manning, 2014) for more information (www.manning.com/
books/bdd-in-action).

www.it-ebooks.info

https://bintray.com/bintray/jcenter
https://bintray.com/bintray/jcenter
https://github.com/pieces029/android-spock
www.manning.com/books/bdd-in-action
www.manning.com/books/bdd-in-action
http://www.it-ebooks.info/

Spock support in Serenity 271

create Spock tests, it’s easier to use the Gherkin® language (https://github.com/
cucumber/cucumber/wiki/Gherkin) as an intermediate format for describing what
needs to be tested.

The Spock Pease extension (http://pease.github.io/) automatically converts Gher-
kin descriptions to Spock tests, making the cooperation between business analysts and
developers much easier. Here’s an example of Gherkin:

Feature: Addition
Scenario: Add two numbers
Given I have entered 50 into the calculator
And I have entered 70 into the calculator
When I press add
Then the result should be 120 on the screen

This description can be converted automatically to the Spock test shown in the follow-
ing listing.

Listing B.10 Generated Spock test from Gherkin

class Addition extends spock.lang.Specification {
void "add two numbers" () {
def calc = new Calculator()

given: "I have entered 50 into the calculator"
calc.push("50" as double)

and: "I have entered 70 into the calculator"
calc.push("70" as double)

when: "I press add"
calc.add()

then: "the result should be 120 on the screen"
calc.result == "120" as double

Unfortunately, the project has been dormant since 2011, so it might need updating
for the Spock 1.0 release.

B.11 Spock support in Serenity

Serenity (https://github.com/serenity-bdd) is a BDD tool that, among other things,
provides a dashboard with test results. Unlike other reporting tools that focus on unit
tests, Serenity focuses on features, making the dashboard readable even to nontechni-
cal people (see figure B.3).

3 Used by cucumber (https://github.com/cucumber/cucumberjvm).

www.it-ebooks.info

https://github.com/cucumber/cucumber-jvm
https://github.com/cucumber/cucumber/wiki/Gherkin
https://github.com/cucumber/cucumber/wiki/Gherkin
http://pease.github.io/
https://github.com/serenity-bdd
http://www.it-ebooks.info/

272 AppPenDIX B External Spock extensions and related tools

Test Results: All Tests

4 test scenarios
3 passed , 1 pending , 0 failed, 0 errors, 0 ignored, 0 skipped [CSV]

Test Count Weighted Tests

Total number of tests that pass, fail, or are pending.
Test Result Summary
Test Type Total Pass Fail Pending Ignored
Automated 4 3(75%) 0(0%) 1(25%) 0 (0%)
Manual 0 0 (0%) 0(0%) O (0%) 0 (0%)
Total 4 3(75%) 0(0%) 1(25%) O (0%)
Related Tags
Features
Search 100% I
Shopping Cart o]
Stories
When Putting Items In The Shopping Cart 0% []
When Searching By Keyword 100% G

MiPassing | Pending ignored
IMFailing Ml Ervors

- Stable |Duration

o b % (seconds) *
(=] Should be able to filter by item type 4 + 18.44
& Should be able to view details about a searched item 4 i 9,95
& Should see a list of items related to the specified keyword 3 & 8.81
B Should update shipping price for di inati 0 & 0.07

Showing 1 to 4 of 4 entries

Figure B.3 The Serenity dashboard

The combination of Spock tests and Serenity is a perfect match, as Spock describes its
tests in full English text and complements Serenity well.

Originally, Serenity supported JUnit, but Spock support was added as well. For
more information on Serenity, you should read BDD in Action by John Ferguson Smart
(Manning, 2014).

B.12 Spock support in Allure

Allure (http://allure.qatools.ru/) is another test dashboard for a different program-
ming language. It’s created by the testing team of Yandex.* Allure isn’t constrained to
Java, but instead supports several test frameworks for PHP, C#, JavaScript, Python,
Ruby, and so on. Figure B.4 shows the Allure dashboard.

* Yandex is the largest search engine in Russia (www.yandex.com).

www.it-ebooks.info

http://allure.qatools.ru/
www.yandex.com
http://www.it-ebooks.info/

Lt
', Allure

f

Overview
Defacts
xUnit
Beohaviors
Graph

Timeline

Spock support in Allure

Allure sample test pack

id: 2a54c4d7-7d79-4615-b80d-fc1107016a1

81) 1786 1
Report started at Thu May 29 14:16:55 MSK 2014
Report finished at Thu May 28 14:17:16 MSK 2014
Browser Firefox
Test stand http//yandex.ru

Figure B.4 Allure dashboard

Generated in: 45 264ms Data size: 1.3 MB

273

Version: 1.4.0AC8 Provide Feedback -

Top defects view ai

Product defects (status: failed)

[E] AssertionError: Expected 9 less than 8
[E] AssertionError: Expected 8 less than 8
[0 AssertionError: Expected 10 less than 8
[AssertionEror:

n AssertionEmor: Text on current page should be comect
Expected: element text is "Yandex" but: <[[PhantomJSDriver:
phantomjs on MAC (65afe8c0-e71a-11e3-ad11-Odef6efSbebf)] ->
css selector: title]> text is **

[} AssertionEror: This test should be failed

n AssertionEmor: Expected: *[\n\"name\": \"test\",\n\"value\": \"ok
valueh\"\n}* but: was *[\n*name\": *test\" \n*value\": \"bad
value\"\n}*

[} AssertionEror: 5 is not 2 + 2 Expected: is <4> but: was <S>

Allure now contains support for Spock (https://github.com/allure-framework/
allure-spock-adaptor), so you can think of it as an additional reporting tool for your
Spock tests.

www.it-ebooks.info

https://github.com/allure-framework/allure-spock-adaptor
https://github.com/allure-framework/allure-spock-adaptor
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

mdex

Symbols

_ (underscore) 166, 180
-> character 55

; (semicolon) 35

*. (star-dot operator) 146
<< operator 145

== operator 44

>> (shift operator) 168
>>> operator 80, 167

| (pipe symbol) 133

|| notation 75

A

abstract syntax tree. See AST

acceptance tests 194

activate() method 247

@After annotation 111

@AfterClass annotation 111

agnostic testing of Java and Groovy 15-16

Allure 272-273

and: block 99, 103

Android extension 270

any() method 56

Apache Tapestry 5

arguments, method
dynamic stubs that check arguments 169-172
matching for stubbed methods 166-167
verifying for methods of mocked classes 182—

184

verifying for mocked methods 181-182

Arquillian 206, 265-266

Artifactory 254

assert phase 65

asserts vs. assertions 15

AST (abstract syntax tree) transformations 16
authorization event 184
@AutoCleanup annotation 234-235

BDD 5

@Before annotation 111

@BeforeClass annotation 111

book source code in 258, 261-262

Boolean values 42

browser automation 212-213

bugs, defined 4

builds, running tests as part of build process
code coverage 221-223
splitting unit, integration, and functional

tests 218-220

Cc

capturing event 184
casting 60
classes
controlling input using stubs
matching arguments for stubbed
methods 166-167
returning stubs from responses of other
stubs 172-173
sequential stubs with different responses for
each call 167-168
stubbing return values 163-166
throwing exceptions when calling stubbed
method 168-169
using dynamic stubs that check
arguments 169-172

275

www.it-ebooks.info

http://www.it-ebooks.info/

276

classes (continued)
verifying values returned using mocks
checking whether method was called 174-176
stub capabilities and mocks 174
verifying arguments of method calls 182-184
verifying noninteractions for multiple
mocked classes 179-180
verifying number of method calls 177-179
verifying order of interactions 176-177
verifying types of arguments for mocked
methods 181-182

cleanup: block 104-105

cleanup() method 110, 138

closures 55-56

code duplication 128

code reduction using 40-41

coding features 6, 8

collaboration 6

@Collaborator annotation 267

compile-time macros 16

concise code 27

@ContextConfiguration annotation 200-201

credit card processing example 184-187

Cucumber 15

D

Damage Control 264
data generators
creating custom 150-152
overview 148-150
third-party 155-156
using multivalued data iterators 152-155
data pipes
dynamically generated parameters 147
parameters that are constant 147
parameters that depend on other
parameters 147-148
data tables
limitations of 134-135
maintenance of 135-137
using expressions and statements in 143-144
data-driven tests 17
dbUnit extension 269-270
declaring in Groovy 38, 40
def keyword 20, 38-39
design features of Spock 5-6
documentation 262
DRY principle 109, 128
DSL (domain-specific language) 16, 244
dynamic programming languages 24, 33

INDEX

E

e-shop example application 161-163
EasyMock 18
Eclipse 254, 256
endsWith () method 187
English-like flow of Spock 28, 30
enterprise tests 17
automatic cleanup of resources 234-235
failing tests on timeout 228-230
ignoring tests
@Ignore annotation 230-231
@Ignorelf annotation 231-233
@IgnoreRest annotation 231
@Requires annotation 234
large tests
reusing assertions in then: block 239-242
reusing interactions in then: block 243-244
using helper methods to improve
readability 236-239
mapping tests to issue-tracking system 227-228
partial mocks using spies
overview 245-248
replacing spies with mock 248-250
showing problematic code base using 248
testing for exceptions 225-227
enterprise-ready test framework, Spock as 9-12
equals() method 44
every() method 55
exceptions, throwing when calling stubbed
method 168-169
Expando, creating test input with 58-61
expect: block 103-104

F

Failsafe plugin 219-220
fake collaborators
defined 157
e-shop example application 161-163
isolating class in unit tests 158-159
mocks and stubs 159-160
overview 158
when to use 160-161
fake objects in Spock 79-80
features
defined 109
setup and cleanup of 109-110
find() method 56
findAll() method 56
functional testing
of REST services
overview 207-208
using @Stepwise annotation 209-211

www.it-ebooks.info

http://www.it-ebooks.info/

using Groovy RESTClient 211-212
using Java libraries 208
of web applications
browser automation with Geb 212-213
example application 213
interacting with web page 216-218
using Geb with Spock 214-216
unit tests and integration tests vs.
overview 194-197
Spock support 198
testing pyramid 197-198
functional tests, defined 195

G

GDK (Groovy Development Kit) 32
Geb 5
browser automation with 212-213
using with Spock 214-216
Gherkin extension 270-271
GitHub 262
given-when-then flow 67-70
given: block 94-95
Gradle 25, 253
gradual adoption of Spock in projects 26-27
graphical user interface. See GUI
Groovy 251
Groovy Development Kit. See GDK
Groovy SQL 204-206
groovyc compiler 37
grouping test code 122, 126
GStrings 50
GUI (graphical user interface) 194
Guice support 206-207

H

Hamcrest matchers 119-122
hasltem () matcher 119

INDEX 277

unit tests and functional tests vs.
overview 194-197
Spock support 198
testing pyramid 197-198
using Groovy SQL 204-206
Intelli] IDE 256-257
isEmpty() method 164
@Issue annotation 227-228

J

Java EE support 206-207
Java Virtual Machine. See JVM 16
JBehave 6
JCenter 270
JDK (Java Development Kit) 32
Jenkins 14, 218
jFairy data generator library 155
jMock 5, 18
join() method 146
JSON file, reading 53-54
JUnit 18-19
compatibility with 121
mocks and 158
setup-stimulate-assert flow of 65-67
JVM (Java Virtual Machine) 16

L

large tests
reusing interactions in then 243-244
using helper methods to improve
readability 236-239
left-shift operator 145
lenient vs. strict mocks 188-190
LinkedHashMap 48
lists 47, 50
long-lived objects, with @Shared annotation
112-113

IDE (integrated development environment) 7
@Ignore annotation 230-231
@Ignorelf annotation 231-233
@IgnoreRest annotation 231
inspecting failed tests 20, 23
installing Spock 251-254
integrated development environment. See IDE
integration testing
defined 194
Java EE and Guice support 206-207
Spring context and 202-204
testing Spring applications 199-202

mailing list 262
map-based constructors 46-47
maps 47, 50
marking class being tested 106-107
Maven 5, 252-253
Maven Failsafe 219
mocked objects interaction 83, 85
mocking 5, 17-18
architecture considerations
designing testable code 188
lenient vs. strict mocks 188-190
credit card processing example 184-187

www.it-ebooks.info

http://www.it-ebooks.info/

278 INDEX

mocking (continued) overview 144

fake collaborators parameters that are constant 147
e-shop example application 161-163 parameters that depend on other
isolating class in unit tests 158-159 parameters 147-148
mocks and stubs 159-160 documenting 141-143
overview 158 example of 130-131
when to use 160-161 overview 127-128

verifying values returned from classes why needed 128-130
checking whether method was called 174-176 Phantom.js 215
stub capabilities and mocks 174 pipe symbol (]) 133
verifying arguments of method calls 182-184 PowerMock 18, 188, 266-267
verifying noninteractions for multiple println method 35

mocked classes 179-180

verifying number of method calls 177-179 R

verifying order of interactions 176-177
verifying types of arguments for mocked

methods 181-189 ranges, in Groovy 145

reading

without external library 27-28
Mockito 18, 76, 85 {221}111216515—35_254
mocks XML file 52-53

defined 76, 159
filmmaking analogy for 160
partial mocks using spies
overview 245-248 .
. oo overview 207-208
repla_c ing spies with mock 248-250 using @Stepwise annotation 209-211
showing problematic code base using 248 using Groovy RESTClient 211-212

Mo?golDB d5 data i 159-155 using Java libraries 208
multivalued data iterators — Retry extension 268-269

return keyword 40

recursive stubbing 172
@Requires annotation 234
REST services, functional testing of

N reusing
. . assertions in then: block 239-242
@Narrative annotation 107 interactions in then: block 243-244
NetBeans 257 reusing interactions in then: block 243-244
Nexus 254 right-shift operator 167
not() matcher 120 @Rollback annotation 201
notThrown () method 225-227 RSpec 5, 15
0 s
ObjectGraphBuilders, creating test input with selfdocumenting tests 116
56-58 Serenity 271-272
old() method 113-114 setup and cleanup
online() method 233 of features 109-110
output parameters 80, 83 of specifications 110-112
setup phase 65
P setup-stimulate-assert flow of 65, 67
setup: block 95-96
parameterized tests 71 setup() method 110, 138
data generators @Shared annotation 112-113
creating custom 150-152 shift operator 168
overview 148-150 SOLID principles 248
third-party 155-156 spies, partial mocks using
using multivalued data iterators 152-155 overview 245-248
data pipes replacing spies with mock 248-250
dynamically generated parameters 145-147 showing problematic code base using 248

www.it-ebooks.info

http://www.it-ebooks.info/

Spock Collaborators extension 267-268
Spock Genesis 155, 265
Spock Reports 263
Spock versions 252
Spock Web Console 26
Spring applications
integration testing of 199-202
Spring context 202-204
Sputnik test runner 26
@Sql annotation 201
Stack Overflow 262
star-dot operator (*.) 146
status classes 64
@Stepwise annotation 209-211
stimulus phase 65
strict vs. lenient mocks 188-190
strings 50-51
stubbing
architecture considerations
designing testable code 188
lenient vs. strict mocks 188-190
controlling input to classes
matching arguments for stubbed
methods 166-167
returning stubs from responses of other
stubs 172-173

sequential stubs with different responses for

each call 167-168
stubbing return values 163-166

throwing exceptions when calling stubbed

method 168-169
using dynamic stubs that check
arguments 169-172
credit card processing example 184-187
fake collaborators
e-shop example application 161-163
isolating class in unit tests 158-159
mocks and stubs 159-160
overview 158
when to use 160-161
recursive 172
stubs
defined 76, 79, 159
filmmaking analogy for 160
@Subject annotation 106-109
Surefire plugin 220

T

tabular data input with Spock 74, 76
test doubles 157

TestNG 8, 23, 74

text file, reading 51-52

then: block 98-99, 177-178

INDEX

reusing assertions in 239-242

reusing interactions in 243-244
thrown () method 225-227
@Timeout annotation 228-230
@Title annotation 107
toString () method 118-119
@Transactional annotation 201
true/false statements 41, 43

U

279

underscore (_) 166, 180
unit tests
defined 194
duplicating vs. refactoring 128
integration tests and functional tests vs.
overview 194-197
Spock support 198
testing pyramid 197-198
@Unroll annotation 141
unsigned rightshift operator 167
unsigned shift operator 80

\"

visibility modifiers 34

w

web applications, functional testing of
browser automation with Geb 212-213
example application 213
interacting with web page 216-218
using Geb with Spock 214-216

when: block 96-98, 100

where: block 105
@Unroll annotation 141
lifecycle of 137-139
limitations of data tables 134-135
maintenance of data tables 135-137
overview 131,133
using data tables in 133-134
using expressions and statements in data

tables 143-144
with() method 125, 187, 235
writing specifications 107-108

X

XML file, reading 52-53
XML, reading external dataset from 52-54
XmlSlurper 52

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED MANNING TITLES

Gradle in Action
by Benjamin Muschko

ISBN: 9781617291302
480 pages, $44.99
February 2014

Java 8 in Action

Lambdas, streams, and functional-style

programming

by Raoul-Gabriel Urma, Mario Fusco,
and Alan Mycroft

ISBN: 9781617291999

424 pages, $49.99
August 2014

The Art of Unait Testing, Second Edition

with examples in C#
by Roy Osherove

ISBN: 9781617290893
296 pages, $44.99
November 2013

Groovy in Action, Second Edition

by Dierk Konig, Paul King, Guillaume
Laforge, Hamlet D'Arcy, Cédric
Champeau, Erik Pragt, and Jon Skeet

ISBN: 9781935182443
912 pages, $59.99
June 2015

For ordering information go to www.manning.com

www.it-ebooks.info

https://www.manning.com/books/groovy-in-action-second-edition
https://www.manning.com/books/the-art-of-unit-testing-second-edition
https://www.manning.com/books/java-8-in-action
https://www.manning.com/books/gradle-in-action
https://www.manning.com/books/groovy-in-action-second-edition
https://www.manning.com/books/the-art-of-unit-testing-second-edition
https://www.manning.com/books/java-8-in-action
https://www.manning.com/books/gradle-in-action
http://www.it-ebooks.info/

JAVA

JAVATESTING WITH SPOCK

Konstantinos Kapelonis

pock combines the features of tools like JUnit, Mockito,
S and JBehave into a single powerful Java testing library.

With Spock, you use Groovy to write more readable and
concise tests. Spock enables seamless integration testing, and
with the intuitive Geb library, you can even handle functional
testing of web applications.

Java Testing with Spock teaches you how to use Spock for a
wide range of testing use cases in Java. You'll start with a quick
overview of Spock and work through writing unit tests using
the Groovy language. You'll discover best practices for test de-
sign as you learn to write mocks, implement integration tests,
use SpocK’s built-in BDD testing tools, and do functional web
testing using Geb. Readers new to Groovy will appreciate

the succinct language tutorial in chapter 2 that gives you just
enough Groovy to use Spock effectively.

What's Inside
* Testing with Spock from the ground up

* Write mocks without an external library
* BDD tests your business analyst can read

¢ Just enough Groovy to use Spock

Written for Java developers. Knowledge of Groovy and JUnit
is helpful but not required.

Konstantinos Kapelonis is a software engineer who works with
Java daily.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/java-testing-with-spock

$44.99 / Can $51.99 [INCLUDING eBOOK]

www.it-ebooks.info

¢¢Goes beyond mere
exploration of Spock’s API
and feature set to include

general testing practices and
real-world application.??

—From the Foreword by
Luke Daley
Spock founding contributor

¢¢An awesome guide to one
of the most useful test
frameworks for Java.??

—Christopher W. H. Davis, Nike

¢¢Discover the power of Spock
and Groovy, step-by-step.??
—David Pardo, Amaron

¢¢Does an excellent job of
exploring features of Spock
that are seldom, if ever,
mentioned in other online
resources. If you care about
producing quality tests, then
this book is for you!??

—Annyce Davis

The Washington Post

Qeee ©
SEE INS

ISBN L3: 978-1L-b1729-253-8

ISBN 10: 1-bk1729-253-2
ol781617 53

http://www.it-ebooks.info/

	Java Testing with Spock
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions and downloads
	Author online
	About the author

	about the cover illustration
	Part 1 Foundations and brief tour of Spock
	1 Introducing the Spock testing framework
	1.1 What is Spock?
	1.1.1 Mocking and stubbing
	1.1.2 Behavior-driven development
	1.1.3 Spock’s design features
	1.1.4 Spock’s coding features

	1.2 The need for a testing framework
	1.2.1 Spock as an enterprise-ready test framework
	1.2.2 Common ways to handle enterprise complexity

	1.3 Spock: the groovier testing framework
	1.3.1 Asserts vs. Assertions
	1.3.2 Agnostic testing of Java and Groovy
	1.3.3 Taking advantage of Groovy tricks in Spock tests

	1.4 Getting an overview of Spock’s main features
	1.4.1 Enterprise testing
	1.4.2 Data-driven tests
	1.4.3 Mocking and stubbing

	1.5 A first look at Spock in action
	1.5.1 A simple test with JUnit
	1.5.2 A simple test with Spock
	1.5.3 Inspecting failed tests with Spock

	1.6 Spock’s position in the Java ecosystem
	1.6.1 Making Spock Groovy
	1.6.2 Adding Spock tests to existing projects that have JUnit tests
	1.6.3 Spock adoption path in a Java project

	1.7 Comparing Spock and JUnit
	1.7.1 Writing concise code with Groovy syntax
	1.7.2 Mocking and stubbing with no external library
	1.7.3 Using English sentences in Spock tests and reports

	1.8 Summary

	2 Groovy knowledge for Spock testing
	2.1 What you need to know about Groovy
	2.1.1 Groovy as a companion to Java
	2.1.2 Accessing Java classes in a Groovy script
	2.1.3 Declaring variables and methods in Groovy
	2.1.4 Writing less code with Groovy

	2.2 Groovy Power assert as a replacement for JUnit asserts
	2.2.1 Understanding how Groovy handles asserts
	2.2.2 Using Groovy assertions in Spock tests

	2.3 Groovy features useful to Spock tests
	2.3.1 Using map-based constructors
	2.3.2 Using maps and lists in Groovy
	2.3.3 Interpolating text with Groovy strings

	2.4 Reading a test dataset from an external source
	2.4.1 Reading a text file
	2.4.2 Reading an XML file
	2.4.3 Reading a JSON file

	2.5 Advanced Groovy features useful to testing
	2.5.1 Using Groovy closures
	2.5.2 Creating test input with ObjectGraphBuilders
	2.5.3 Creating test input with Expando

	2.6 Summary

	3 A tour of Spock functionality
	3.1 Introducing the behavior-testing paradigm
	3.1.1 The setup-stimulate-assert structure of JUnit
	3.1.2 The given-when-then flow of Spock

	3.2 Handling tests with multiple input sets
	3.2.1 Existing approaches to multiple test-input parameters
	3.2.2 Tabular data input with Spock

	3.3 Isolating the class under test
	3.3.1 The case of mocking/stubbing
	3.3.2 Stubbing fake objects with Spock
	3.3.3 Mocking collaborators
	3.3.4 Examining interactions of mocked objects
	3.3.5 Combining mocks and stubs in parameterized tests

	3.4 Summary

	Part 2 Structuring Spock tests
	4 Writing unit tests with Spock
	4.1 Understanding Spock from the ground up
	4.1.1 A simple test scenario
	4.1.2 The given: block
	4.1.3 The setup: block
	4.1.4 The when: block
	4.1.5 The then: block
	4.1.6 The and: block
	4.1.7 The expect: block
	4.1.8 The cleanup: block

	4.2 Converting requirements to Spock tests
	4.2.1 Explaining the feature examined in a Spock test
	4.2.2 Marking the class under test inside a Spock test
	4.2.3 Describing the Spock unit test as a whole
	4.2.4 Revising our view of a Spock test

	4.3 Exploring the lifecycle of a Spock test
	4.3.1 Setup and cleanup of a feature
	4.3.2 Setup and cleanup of a specification
	4.3.3 Long-lived objects with the @Shared annotation
	4.3.4 Use of the old() method

	4.4 Writing readable Spock tests
	4.4.1 Structuring Spock tests
	4.4.2 Ensuring that Spock tests are self-documenting
	4.4.3 Modifying failure output
	4.4.4 Using Hamcrest matchers
	4.4.5 Grouping test code further

	4.5 Summary

	5 Parameterized tests
	5.1 Detecting the need for parameterized tests
	5.1.1 What are parameterized tests?

	5.2 Using the where: block
	5.2.1 Using data tables in the where: block
	5.2.2 Understanding limitations of data tables
	5.2.3 Performing easy maintenance of data tables
	5.2.4 Exploring the lifecycle of the where: block
	5.2.5 Using the @Unroll annotation for reporting individual test runs
	5.2.6 Documenting parameterized tests
	5.2.7 Using expressions and statements in data tables

	5.3 Using data pipes for calculating input/output parameters
	5.3.1 Dynamically generated parameters
	5.3.2 Parameters that stay constant
	5.3.3 Parameters that depend on other parameters

	5.4 Using dedicated data generators
	5.4.1 Writing a custom data generator
	5.4.2 Using multivalued data iterators

	5.5 Working with third-party data generators
	5.6 Summary

	6 Mocking and stubbing
	6.1 Using fake collaborators
	6.1.1 Using fake collaborators to isolate a class in unit tests
	6.1.2 Faking classes in Spock: mocks and stubs
	6.1.3 Knowing when to use mocks and stubs
	6.1.4 Exploring a sample application for an electronic shop system

	6.2 Controlling input to the class under test with stubs
	6.2.1 Basic stubbing of return values
	6.2.2 Matching arguments leniently when a stubbed method is called
	6.2.3 Using sequential stubs with different responses for each method call
	6.2.4 Throwing exceptions when a stubbed method is called
	6.2.5 Using dynamic stubs that check arguments when responding
	6.2.6 Returning stubs from the responses of other stubs

	6.3 Mocks: verifying values returned from the class under test
	6.3.1 All capabilities of stubs exist in mocks as well
	6.3.2 Simple mocking—examining whether a method was called
	6.3.3 Verifying order of interactions
	6.3.4 Verifying number of method calls of the mocked class
	6.3.5 Verifying noninteractions for multiple mocked classes
	6.3.6 Verifying types of arguments when a mocked method is called
	6.3.7 Verifying arguments of method calls from mocked classes

	6.4 Putting it all together: credit card charging in two steps
	6.5 Architecture considerations for effective mocking/stubbing
	6.5.1 Designing testable code that allows painless mocking
	6.5.2 Understanding lenient vs. strict mocks

	6.6 Summary

	Structuring Spock tests

	Part 3 Spock in the Enterprise
	7 Integration and functional testing with Spock
	7.1 Unit tests vs. integration tests vs. functional tests
	7.1.1 Characteristics of the test categories
	7.1.2 The testing pyramid
	7.1.3 Spock support for integration and functional testing
	7.1.4 Source code organization of the examples

	7.2 Integration testing with Spock
	7.2.1 Testing a Spring application
	7.2.2 Narrowing down the Spring context inside Spock tests
	7.2.3 Directly accessing the database with Groovy SQL
	7.2.4 Integration testing with other containers (Java EE and Guice)

	7.3 Functional testing of REST services with Spock
	7.3.1 Working with a simple REST service
	7.3.2 Testing REST services by using Java libraries
	7.3.3 Using the @Stepwise annotation to run tests in order
	7.3.4 Testing REST services using Groovy RESTClient

	7.4 Functional testing of web applications with Spock
	7.4.1 Browser automation with Geb
	7.4.2 The example web application
	7.4.3 Spock and Geb: a match made in heaven
	7.4.4 Using Geb to interact with a web page

	7.5 Running Spock tests as part of a build process
	7.5.1 Splitting unit, integration, and functional tests
	7.5.2 Getting code coverage from Spock tests

	7.6 Summary

	8 Spock features for enterprise testing
	8.1 Using additional Spock features for enterprise tests
	8.1.1 Testing the (non)existence of exceptions: thrown() and notThrown()
	8.1.2 Mapping Spock tests to your issue-tracking system: @Issue
	8.1.3 Failing tests that don’t finish on time: @Timeout
	8.1.4 Ignoring certain Spock tests
	8.1.5 Automatic cleaning of resources: @AutoCleanup

	8.2 Handling large Spock tests
	8.2.1 Using helper methods to improve code readability
	8.2.2 Reusing assertions in the then: block
	8.2.3 Reusing interactions in the then: block

	8.3 Creating partial mocks with spies
	8.3.1 A sample application with special requirements
	8.3.2 Spies with Spock
	8.3.3 The need for spies shows a problematic code base
	8.3.4 Replacement of spies with mock

	8.4 Summary

	appendix A Installing Spock
	A.1 Optional Groovy installation
	A.2 Choosing a Spock version
	A.3 Master example for Maven, Ant, and Gradle
	A.3.1 Spock with Maven
	A.3.2 Spock with Gradle
	A.3.3 Spock in an enterprise environment

	A.4 Spock tests in your IDE
	A.4.1 Spock in Eclipse
	A.4.2 Spock in the IntelliJ IDE
	A.4.3 Spock in NetBeans

	A.5 How to use the source code of this book
	A.6 How to use the chapter code in Eclipse
	A.7 How to use the chapter code in IntelliJ IDEA
	A.8 Other resources

	appendix B External Spock extensions and related tools
	B.1 Detailed Spock reporting
	B.2 Gradle-style Spock reports
	B.3 Spock Genesis
	B.4 Spock-Arquillian test runner
	B.5 Using PowerMock with Spock
	B.6 Spock InjectMocks extension
	B.7 Spock Retry extension
	B.8 Spock dbUnit extension
	B.9 Spock Android extension
	B.10 Spock Gherkin extension
	B.11 Spock support in Serenity
	B.12 Spock support in Allure

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Java Testing with Spock-back

