. 2 “_._‘;
. w&«m}n ey ’ %

-
Rl e
b

s
at J

e

Mockito Essentials

A practical guide to get you up and running with unit testing
using Mockito

Mockito Essentials

A practical guide to get you up and running with unit
testing using Mockito

Sujoy Acharya

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Mockito Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2014

Production reference: 1171014

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-360-5
www . packtpub.com

Cover image by Asher Wishkerman (wishkerman@hotmail.com)

www.packtpub.com

Credits

Author
Sujoy Acharya

Reviewers
Christian Baranowski

Tim Perry

Gualtiero Testa

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
James Jones

Content Development Editor
Pooja Nair

Technical Editor
Humera Shaikh

Copy Editors
Dipti Kapadia

Shambhavi Pai

Project Coordinator
Leena Purkait

Proofreaders
Simran Bhogal

Cathy Cumberlidge

Indexers
Mariammal Chettiyar

Tejal Soni

Graphics
Sheetal Aute

Abhinash Sahu

Production Coordinator

Shantanu N. Zagade

Cover Work
Alwin Roy

About the Author

Sujoy Acharya works as a software architect with Siemens Technology and
Services Pvt. Ltd. (STS). He grew up in a joint family and pursued his graduation in
the field of Computer Science and Engineering. His hobbies are watching movies and
sitcoms, playing outdoor sports, and reading books.

Sujoy likes to research on upcoming technologies. His major contributions are in the
field of Java, J2EE, SOA, Ajax, GWT, and Spring Framework.

Sujoy has authored two books, Test-Driven Development with Mockito and Mastering
Unit Testing Using Mockito and JUnit, both by Packt Publishing.

Sujoy designs and develops healthcare software products. He has over 11 years
of industrial experience and has architected and implemented large-scale
enterprise solutions.

I'd especially like to thank my wife, Sunanda, for pushing me to man
up and finish the book, for her patience, and for her endless support
for the many hours she spent reviewing my draft and providing
valuable inputs.

I would also like to thank my mother and my late father for their
support, blessings, and encouragement.

To my 20-month-old kid, Abhigyan: I am sorry, I couldn't be around
you as much as we all wanted and had to get you away from the
laptop many times. I love you very much.

About the Reviewers

Christian Baranowski is a project manager and software architect with
SEITENBAU, a midsized (120 employees) web agency, software development
company, and IT service provider. SEITENBAU's core areas of expertise are web
development, deployment and customization of content management systems,

the development of enterprise and employee portals, as well as customer-specific
software development. Christian leads a team of developers, and he describes his
role at SEITENBAU as an agile developer and tester. He has blogged and spoken at a
wide variety of conferences on web development, OSGi, and testing. When he is not
working, you'll find him spending time with his wife, son, and daughter.

Tim Perry is a technical lead and the open source champion at Softwire

(a bespoke software development company in North London). By day, he is
guiding teams, building a variety of great software at every scale for his clients,
and pushing Softwire to engage with and give back to the wider software
development community. He works with a huge range of tools daily, from Java,
Spring, and JUnit to JavaScript web components and SQL analytics engines.

By night, he's a frequent technical speaker, and a prolific open source contributor to a
huge variety of projects, including JUnit, Mockito, Knockout, and Lodash, and some
of his own, such as loglevel and grunt-coveralls. Tim is feverishly keen on all things
related to automated testing, polyglot persistence, as well as good, old-fashioned,
high-quality software development.

I'd like to thank my wonderful girlfriend, Rachel, for her endless
patience and support and for genuinely appearing delighted when
I signed up for yet another side project.

Gualtiero Testa is a software analyst, architect, and developer involved in Java
enterprise-level web applications, mainly in the banking, health, and government
agencies' domain.

His main interests are Test-driven Development (TDD), testing tools and
methodologies, and everything related to code quality. He can be reached
through his blog at http://www.gualtierotesta.it/. He lives in Pavia, Italy.

I would like to thank my wife for her constant support,
encouragement, and patience.

http://www.gualtierotesta.it/

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www. PacktPub. com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[ﬂ] PACKT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print and bookmark content
* On demand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www. PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents

Preface 1
Chapter 1: Exploring Test Doubles 7
Working with unit tests 8
Understanding test doubles 10
Using dummy objects 1"
Working with stubs 15
Exploring a test spy 18
Getting started with mock objects 23
Implementing fake objects — simulators 26
Summary 33
Chapter 2: Socializing with Mockito 35
Exploring Mockito 36
Exploring unit test qualities 36
Realizing the significance of Mockito 37
Working with Mockito 39
Adding a Mockito dependency 39
Stubbing method calls 40
Throwing exceptions 47
Using argument matchers 48
Working with wildcard matchers 49
Working with a custom ArgumentMatcher class 50
Verifying method calls 54
Verifying zero and no-more interactions 56
Answering method calls 57
Understanding the Mockito architecture 60
Summary 64

Table of Contents

Chapter 3: Accelerating Mockito 65
Learning advanced Mockito features 66
Working with void methods 66
Throwing exceptions from void methods 72
Working with void method callbacks 75
Learning doCallRealMethod and doNothing 79
Exploring doReturn 79
Verifying arguments using ArgumentCaptor 81
Working with generic collection arguments 82
Working with variable arguments and arrays 83
Verifying an invocation order 84
Spying objects 85
Exploring Mockito annotations 87
Changing the default Mockito settings 89
Resetting mock objects 92
Working with inline stubbing 92
Determining mock details 93
Summary 94
Chapter 4: Behavior-driven Development with Mockito 95
Understanding the context of BDD 95
Exploring the top-down strategy 96
Exploring the bottom-up strategy 97
Finding the gaps 97
Exploring BDD 99
Exercising BDD with Mockito 100
The BDD syntax 102
Summary 102
Chapter 5: Unit Testing the Legacy Code with Mockito 103
Understanding the legacy code 103
Exploring testing impediments 104
Working with PowerMock 105
Stubbing static methods 108
Suppressing static blocks 109
Suppressing a superclass constructor 110
Suppressing our own constructor 112
Suppressing methods 113
Stubbing private methods 114
Stubbing final methods 115

Mocking final classes 116

Lii]

Table of Contents

Designing for testability with Mockito 118
Identifying constructor issues 119
Realizing initialization issues 122
Working with private methods 123
Working with final methods 126
Exploring static method issues 128
Working with final classes 130
Learning new concerns 132
Exploring static variables and blocks 134

Summary 135

Chapter 6: Developing SOA with Mockito 137

Exploring Service-oriented Architecture (SOA) 137

Working with web services 138
Exploring JAX-WS with Eclipse 139
Developing a RESTful web service 149
Building a RESTful web service with Spring Framework 152

Summary 160

Chapter 7: Unit Testing GWT Code with Mockito 161

Exploring Ajax and GWT 162

Learning the MVP pattern 164

Developing a GWT application using MVP 166

Unit testing the GWT code 187

Summary 192

Index 193

[iii]

Preface

We can acquire knowledge in different ways. On one side is theory, and on the
other side is the application of theory. Both are important and both make us better.
Theoretical knowledge can provide us with a deep understanding of the concept
through the experiences of others, but a practical application can give us a deep
understanding through the reality of life and the act of doing.

I was looking for a Mockito framework guide that could teach me the practical
application of the framework, but I didn't find any book or article. Then, I decided

to start writing a book that can focus on both the theoretical aspect and the practical
application, so that readers can get a deep understanding of the concepts through the
act of doing.

This book is an advanced-level guide that will help software developers to get
complete expertise in unit testing using Mockito as the mocking framework.
The focus of the book is to provide readers with comprehensive details on how
effectively Mockito can be used for mocking external dependencies in Java
application, web application, legacy code, GWT, and SOA.

Armed with the knowledge of advanced JUnit concepts and mocking framework
essentials, you will be pleasantly surprised at how quickly and easily you can write
high-quality, clean, readable, testable, maintainable, and extensible code.

What this book covers

Chapter 1, Exploring Test Doubles, covers the concept of automated unit tests, talks
about the characteristics of a good unit test, and explores the test's doubles. It
provides examples of dummy objects, fake objects, stubs, mock objects, and spies.

Preface

Chapter 2, Socializing with Mockito, focuses on getting the reader quickly started
with the Mockito overview, unit test qualities, and the significance of Mockito
in unit testing. It also explains and provides examples of stubbing, answering,
throwing exceptions, argument matchers, and method call verification.

The Mockito architecture is also uncovered.

Chapter 3, Accelerating Mockito, illustrates advanced Mockito framework topics, such
as working with void methods, throwing exceptions from void methods, writing
callbacks for void methods, returning values using doReturn, void method chaining,
calling original methods, Mockito annotations, verifying arguments using an
argument captor, verifying an invocation order, spying objects using spy, changing
default Mockito settings, resetting mock objects, inline stubbing, and mock details.

Chapter 4, Behavior-driven Development with Mockito, unfolds the BDD concepts,
BDD examples, and writing BDD style tests with Mockito.

Chapter 5, Unit Testing the Legacy Code with Mockito, explores legacy code, testing
impediments, design for testability, and unit testing the legacy code with Mockito
and PowerMock. By the end of this chapter, the reader will be able to write JUnit
tests for a legacy code with Mockito and PowerMock, refactor the legacy code to
make it unit testable, and design code to bypass the testing impediments.

Chapter 6, Developing SOA with Mockito, deals with web services, explores SOAP and
RESTful web services with examples, and helps us to write JUnit tests for the web
services with Mockito to mock out the web service framework dependencies.

Chapter 7, Unit Testing GWT Code with Mockito, provides an overview of Ajax/GWT,
explains the MVP pattern and loose coupling, and provides examples and strategies
to mock GWT widgets using Mockito.

What you need for this book

You will need the following software to be installed before running the examples in
this book:

* Java7 or higher: JDK 1.7 or higher can be downloaded from the Oracle site at
http://www.oracle.com/technetwork/java/javase/downloads/index.
html.

* Eclipse editor: The latest version of Eclipse is Luna (4.4.1). Luna can be
downloaded from http://www.eclipse.org/downloads/.

* Mockito: Mockito is required for the creation and verification of mock objects
and for stubbing. Mockito can be downloaded from https://code.google.
com/p/mockito/downloads/list

[2]

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
https://code.google.com/p/mockito/downloads/list
https://code.google.com/p/mockito/downloads/list

Preface

Who this book is for

This book is for advanced to novice level software testers/developers using Mockito
in the JUnit framework, with a reasonable knowledge level and understanding of
unit testing elements and applications.

It is ideal for developers who have some experience in Java application
development as well as some basic knowledge of JUnit testing, but it covers
the basic fundamentals of JUnit testing and the Mockito framework to get you
acquainted with these concepts before using them.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Tests should be readable and expressive; for example, a test that verifies unauthorized
access can be written as testUnauthorizedAccess () or rather when an

unauthorized user accesses the system then raises secuirty error()."

A block of code is set as follows:

@Test
public void currencyRoundsOff () throws Exception
assertNotNull (CurrencyFormatter.format (100.999)) ;
assertTrue (CurrencyFormatter.format (100.999) .contains ("$")) ;
assertEquals ("$101.00", CurrencyFormatter.format (100.999)) ;

}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

public class LocaleTest {

private Locale defaultLocale;

@Before

public void setUp()
defaultLocale = Locale.getDefault();
Locale.setDefault (Locale.GERMANY) ;

}

@After

public void restore()
Locale.setDefault (defaultLocale) ;

[31]

Preface

}

@Test
public void currencyRoundsOff () throws Exception {
assertEquals ("$101.00", CurrencyFormatter.format (100.999)) ;

}
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Go to
the Libraries tab in the project's build path."

Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub. com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to
have the files e-mailed directly to you.

[4]

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

Downloading the color images of this book

We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/36050S_Graphics.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit -errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub. com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[51]

https://www.packtpub.com/sites/default/files/downloads/3605OS_Graphics.pdf
https://www.packtpub.com/sites/default/files/downloads/3605OS_Graphics.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Exploring Test Doubles

"I never make stupid mistakes. Only very, very clever ones."
— John Peel

It is very difficult to find stupid mistakes, but it's even more daunting when you are
trying to figure out the clever ones. Debugging an application to know how to fix a
problem is very expensive and time-consuming. Automated unit tests provide an
extremely effective mechanism for catching regressions, especially when combined
with test-driven development; it creates a test safety net for the developers.

This chapter covers the concepts of unit testing, quality of unit tests, external
dependencies, and test doubles.

The Working with unit tests section introduces you to test automation and describes
the characteristics of a good unit test.

The Understanding test doubles section explores the concept of external dependency
and provides examples of test doubles. The following test doubles are explored:

* Dummy objects

* Stubs

* Spies

* Mock objects

* Fake objects

Exploring Test Doubles

Working with unit tests

A common understanding of unit testing is the testing of the smallest possible part of
software, such as a single method, a small set of related methods, or a class.

In reality, we do not test methods; we test a logical unit and its behavior instead.
Logical units can extend to a single method, to an entire class, or a collaboration
of multiple classes.

For example, a standard calculator program can have an add method for adding

two numbers. We can verify the add behavior by invoking the add method, or we
can design the calculator program to have a simple calculate API, which can take
two numbers and an operation (add, subtract, divide, and so on). Depending on the
operand type (integer, double, and so on), the calculator may delegate the calculation
to a collaborator class, such as a double calculator or a long calculator. We can still
unit test the add behavior, but multiple classes (units) are involved now.

A unit test verifies an assumption about the behavior of the system. Unit tests should
be automated to create a safety net so that the assumptions are verified continuously
and a quick feedback can be provided if anything goes wrong.

The following are the benefits of test automation:

* Behavior is continually verified: We refactor code (change the internal
structure of the code without affecting the behavior of the system) to improve
the code's quality, such as maintainability, readability, or extensibility.

We can refactor code with confidence if automated unit tests are running
and giving feedback.

* The side effects of code changes are detected immediately: This is useful
for a fragile, tightly-coupled system, where a change in one module breaks
another module.

* Saves time; no need for immediate regression testing: Suppose that you are
adding a scientific computational behavior to an existing calculator program
and modifying the code; after every piece of change, you do a regression
testing to verify the integrity of the system. Manual regression testing is
tedious and time-consuming, but if you have an automated unit test suite,
then you can delay the regression testing until the functionality is done. This
is because the automated suite will inform you at every stage if you break an
existing feature.

[8]

Chapter 1

A unit test should exhibit the following characteristics:

It should be automated, as explained in the preceding section.

It should have a fast test execution. To be precise, a test should not take more
than a few milliseconds to finish execution (they should be fast; the faster,
the better). A system can have thousands of unit tests. If they take time to
execute, then the overall test execution time will go up; as a result, no one
will be interested in running the tests. It will impact the feedback cycle.

A test should not depend on the result of another test or rather test
execution order. Unit test frameworks can execute tests in any order.

So, if a test depends on another test, then the test may fail any time and
provide wrong feedback. You want tests to be standalone so that you can
look at them and quickly see what they're actually testing, without having
to understand the rest of the test code.

A test should not depend on database access, file access, or any long
running task. Rather, an appropriate test double should isolate the
external dependencies.

A test result should be consistent and time-and-location transparent.
A test should not fail if it is executed at midnight, or it should not fail
if it is executed in a different time zone.

Tests should be meaningful. A class can have getter and setter methods;

you should not write tests for the getters and setters because they should be
tested in the process of other more meaningful tests. If they're not, then either
you're not testing the functionality or your getters and setters aren't being
used at all; so, they're pointless.

Tests are system documentation. Tests should be readable and expressive;
for example, a test that verifies the unauthorized access could be written
as testUnauthorizedAccess () or rather when an unauthorized user
accesses the system then raises secuirty error (). The latteris
more readable and expresses the intent of the test.

Tests should be short and tests should not be treated as second-class citizens. Code
is refactored to improve the quality; similarly, unit tests should be refactored
to improve the quality. A test class of 300 lines is not maintainable; we can
rather create new test classes, move the tests to the new classes, and create a
maintainable suite.

[o]

Exploring Test Doubles

As per the preceding best practices, a test should be executed as fast as possible.
Then what should you do if you need to test data access logic or file download code?
Simple, do not include the tests in an automated test suite. Consider such tests as
slow tests or integration tests. Otherwise, your continuous integration cycle will run
for hours. Slow tests should still be automated. However, they may not run all the
time, or rather they should be run out of the continuous integration feedback loop.

You cannot automate a unit test if your API class depends on slow external entities,
such as data access objects or JNDI lookup. Then, you need test doubles to isolate the
external dependencies and automate the unit test.

The next section covers test doubles.

Understanding test doubles

We all know about stunt doubles in movies. A stunt double or dummy is a trained
replacement used for dangerous action sequences in movies, such as a fight sequence
on the top of a burning train, jumping from an airplane, and so on, mainly fight
scenes. Stunt doubles are used to protect the real actors, are used when the actor is
not available, or when the actor has a contract to not get involved in stunts.

Similarly, sometimes it is not possible to unit test the code because of the
unavailability of the collaborator objects, or the cost of interaction and instantiation
of collaborators. For instance, when the code is dependent on database access, it is
not possible to unit test the code unless the database is available, or when a piece of
code needs to send information to a printer and the machine is not connected to a
LAN. The primary reason for using doubles is to isolate the unit you are testing
from the external dependencies.

Test doubles act as stunt doubles. They are a skilled replacement of the collaborator
objects and allow you to unit test code in isolation from the original collaborator.

Gerard Meszaros coined the term test doubles in his book xUNIT TEST PATTERNS,
Addison-Wesley — this book explores the various test doubles and sets the foundation
for Mockito.

[10]

Chapter 1

Test doubles can be created to impersonate collaborators and can be categorized into
the types, as shown in the following diagram:

] [
A\ i’ A i’ A4
[Dummyj [Stubj [Mockj [Fakej [Spy j

Using dummy objects
In movies, sometimes a double doesn't perform anything; they just appear on the
screen. One such instance would be standing in a crowded place where the real actor

cannot go, such as watching a soccer match or tennis match. It will be very risky for
the real actor to go to a full house, but the movie's script needs it.

Likewise, a dummy object is passed as a mandatory parameter object. A dummy
object is not directly used in the test or code under test, but it is required for the
creation of another object required in the code under test. Dummy objects are
analogous to null objects, but a dummy object is not used by the code under test.
Null objects (as in the pattern) are used in the code under test and are actively
interacted with, but they just produce zero behavior. If they weren't used, you'd just
use an actual null value. The following steps describe the usage of dummy objects:

In this book, we will write the code and JUnit tests in the Eclipse editor.
You can download Eclipse from the following URL:
v

https://www.eclopse.org/downloads

1. Launch Eclipse and create a workspace, \PacktPub\Mockito 36050S\;
we'll refer to it as <work_space> in the next steps/chapters.

2. We'll create an examination grade system. The program will analyze the
aggregate of all the subjects and determine the grade of a student. Create
a Java project named 36050S_TestDoubles. Add an enum Grades field to
represent a student's grades:

package com.packt.testdoubles.dummy;

public enum Grades ({
Excellent, VeryGood, Good, Average, Poor;

}

[11]

https://www.eclopse.org/downloads

Exploring Test Doubles

Downloading the example code

You can download the example code files for all Packt books you have
Al purchased from your account at http: //www. packtpub. com. If you
purchased this book elsewhere, you can visit http: //www.packtpub.
com/support and register to have the files e-mailed directly to you.

We'll use src as our source code's source folder and test as our test
code's source folder. All Java files for this example will be created under
the com. packt . testdoubles.dummy package.

3. Create a Student class to uniquely identify a student:
public class Student {

private final String roleNumber;
private final String name;

public Student (String roleNumber, String name) {
this.roleNumber = roleNumber;
this.name = name;

//setters are ignored

}

4. Create a Marks class to represent the marks of a student:

public class Marks {

private final Student student;
private final String subjectId;
private final BigDecimal marks;

public Marks (Student student, String subjectId,
BigDecimal marks)

this.student = student;
this.subjectId = subjectId;
this.marks = marks;

}

//getters methods go here

}

Note that the Marks constructor accepts a Student object to represent the
marks of a student. So, a Student object is needed to create a Marks object.

[12]

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

5. Create a Teacher class to generate a student's grades:

public class Teacher ({
public Grades generateGrade (List<Marks> marksList) {
BigDecimal aggregate = BigDecimal.ZERO;
for (Marks mark : marksList) {

aggregate = aggregate.add(mark.getMarks()) ;

BigDecimal percentage = calculatePercent (aggregate,
marksList.size()) ;

if (percentage.compareTo (new BigDecimal ("90.00")) > 0)
return Grades.Excellent;

if (percentage.compareTo (new BigDecimal ("75.00")) > 0) ({
return Grades.VeryGood;

if (percentage.compareTo (new BigDecimal ("60.00")) > 0) ({
return Grades.Good;

if (percentage.compareTo (new BigDecimal ("40.00")) > 0)
return Grades.Average;

return Grades.Poor;

private BigDecimal calculatePercent (BigDecimal aggregate,
int numberOfSubjects) {

BigDecimal percent = new BigDecimal (aggregate.
doubleValue () / numberOfSubjects) ;

return percent;

[13]

Exploring Test Doubles

6.

Create a DummyStudent class and extend the student class. This is
the dummy object. A dummy object will be the one that is not the
real implementation and provides zero functionality or values.
The DummyStudent class throws a runtime exception from all the
methods. The following is the body of the DummySstudent class:

public class DummyStudent extends Student {

protected DummyStudent () {
super (null, null);

public String getRoleNumber () {
throw new RuntimeException ("Dummy student") ;

public String getName () {
throw new RuntimeException ("Dummy student") ;

}

Note that the constructor passes NULL to the super constructor and throws a
runtime exception from the getRoleNumber () and getName () methods.

Create a JUnit test to verify our assumption that when a student gets more
than 75 percent (but less than 90 percent) in aggregate, then the teacher
generates the grade as VeryGood, creates a DummyStudent object, and passes
it as Student to the Marks constructor:

public class TeacherTest {

@Test public void when marks above seventy five percent
returns very good () {
DummyStudent dummyStudent = new DummyStudent();

Marks inEnglish = new Marks (dummyStudent, "EnglishoOo02",
new BigDecimal ("81.00")) ;

Marks inMath = new Marks (dummyStudent, "MathO005", new
BigDecimal ("97.00")) ;

Marks inHistory = new Marks (dummyStudent, "History007, new
BigDecimal ("79.00")) ;

[14]

Chapter 1

List<Marks> marks = Arrays.asList (inHistory, inMaths,
inEnglish) ;

Grades grade = new Teacher () .generateGrade (marks) ;
assertEquals (Grades.VeryGood, grade);

}
}

Note that a DummyStudent object is created and passed to all the three Marks
objects, as the Marks constructor needs a student object. This dummyStudent
object is not used in the Teacher class or test method, but it is necessary for
the Marks object. The dummyStudent object shown in the preceding example
is a dummy object.

Working with stubs

A stub delivers indirect inputs to the caller when the stub's methods are called. Stubs
are programmed only for the test scope. Stubs may record other information such as
how many times they are invoked and so on.

Unit testing a happy path is relatively easier than testing an alternate path. For
instance, suppose that you need to simulate a hardware failure or transaction
timeout scenario in your unit test, or you need to replicate a concurrent money
withdrawal for a joint account use case —these scenarios are not easy to imitate.
Stubs help us to simulate these conditions. Stubs can also be programmed to return a
hardcoded result; for example, a stubbed bank account object can return the account
balance as $100.00.

The following steps demonstrate stubbing;:

1. Launch Eclipse, open <work_space>, and go to the 36050S_TestDoubles
project.

2. Create a com.packt.testdoubles.stub package and add a
CreateStudentResponse class. This Plain Old Java Object (POJO)
contains a Student object and an error message:

public class CreateStudentResponse {
private final String errorMessage;
private final Student student;

public CreateStudentResponse (String errorMessage,
Student student) {

this.errorMessage = errorMessage;
this.student = student;

[15]

Exploring Test Doubles

public boolean isSuccess () {
return null == errorMessage;

public String getErrorMessage () {
return errorMessage;

}

public Student getStudent() {
return student;

}
}

3. Create a StudentDAO interface and add a create () method to persist a
student's information. The create () method returns the roll number
of the new student or throws an sQLException error. The following is
the interface definition:
public interface StudentDAO {

public String create(String name, String className)
throws SQLException;

}

4. Create an interface and implementation for the student's registration.
The following service interface accepts a student's name and a class
identifier and registers the student to a class. The create APl returns a
CreateStudentResponse. The response contains a Student object or an
error message:
public interface StudentService (

CreateStudentResponse create (String name, String
studentOfclass) ;

}
The following is the service implementation:

public class StudentServiceImpl implements StudentService {
private final StudentDAO studentDAO;

public StudentServiceImpl (StudentDAO studentDAO) {
this.studentDAO = studentDAO;

@Override public CreateStudentResponse create(String
name, String studentOfclass) {

CreateStudentResponse response = null;
try{

[16]

Chapter 1

String roleNum= studentDAO.create (name,
studentOfclass) ;

response = new CreateStudentResponse (null, new
Student (roleNum, name)) ;

}ecatch (SQLException e) {){
response = new CreateStudentResponse
("SQLException"+e.getMessage (), null);
}catch (Exception e) ({

response = new CreateStudentResponse (e.getMessage (),
null) ;
}

return response;

Note that the service implementation class delegates the Student
* object's creation task to the StudentDAO object. If anything
%»‘ goes wrong in the data access layer, then the DAO throws an
’ SQLException error. The implementation class catches the
exceptions and sets the error message to the response object.

How can you test the sQLException condition? Create a stub object

and throw an exception. Whenever the create method is invoked

on the stubbed DAO, the DAO throws an exception. The following
ConnectionTimedOutStudentDAOStub class implements the StudentDAO
interface and throws an SQLException error from the create () method:

package com.packt.testdoubles.stub;
import java.sqgl.SQLException;

public class ConnectionTimedOutStudentDAOStub implements
StudentDAO {

public String create(String name, String className)
throws SQLException {
throw new SQLException ("DB connection timed out") ;

}

This class should be created under the test source folder since the class is
only used in tests.

[17]

Exploring Test Doubles

6. Test the sQLException condition. Create a test class and pass the stubbed
DAO to the service implementation. The following is the test code snippet:

public class StudentServiceTest {
private StudentService studentService;

@Test
public void when_ connection_times_out_then the_student
_is not_saved() ({

studentService = new StudentServiceImpl (new
ConnectionTimedOutStudentDAOStub()) ;

String classNine = "IX";
String johnSmith = "john Smith";
CreateStudentResponse resp = studentService.

create (johnSmith, classNine) ;
assertFalse(resp.isSuccss());

}
}

The error condition is stubbed and passed into the service implementation
object. When the service implementation invokes the create () method on
the stubbed DAOQO, it throws an SQLException error.

Stubs are very handy to impersonate error conditions and external dependencies
(you can achieve the same thing with a mock; this is just one approach). Suppose
you need to test a code that looks up a JNDI resource and asks the resource to return
some value. You cannot look up a JNDI resource from a JUnit test; you can stub the
JNDI lookup code and return a stubbed object that will give you a hardcoded value.

Exploring a test spy

A spy secretly obtains the information of a rival or someone very important. As the
name suggests, a spy object spies on a real object. A spy is a variation of a stub, but
instead of only setting the expectation, a spy records the method calls made to the
collaborator. A spy can act as an indirect output of the unit under test and can also
act as an audit log.

We'll create a spy object and examine its behavior; the following are the steps to
create a spy object:

1. Launch Eclipse, open <work_spaces>, and go to the 36050S_TestDoubles
project.

[18]

Chapter 1

Create a com.packt . testdoubles. spy package and create a
StudentService class. This class will act as a course register service.
The following is the code for the studentservice class:

public class StudentService {

private Map<String, List<Student>> studentCouseMap = new
HashMap<> () ;

public void enrollToCourse (String courseName, Student

student) {
List<Student> list = studentCouseMap.get (courseName) ;
if (list == null) {

list = new ArrayList<>();

if (!list.contains(student)) ({
list.add (student) ;

}

studentCouseMap.put (courseName, list);

}

The studentService class contains a map of the course names and students.
The enrollToCourse method looks up the map; if no student is enrolled,
then it creates a collection of students, adds the student to the collection, and
puts the collection back in the map. If a student has previously enrolled for
the course, then the map already contains a Student collection. So, it just
adds the new student to the collection.students list.

The enrollToCourse method is a void method and doesn't return a
response. To verify that the enrol1ToCourse method was invoked with a
specific set of parameters, we can create a spy object. The service will write to
the spy log, and the spy will act as an indirect output for verification. Create
a spy object to register method invocations. The following code gives the
method invocation details:

class MethodInvocation {
private List<Object> params = new ArrayList<>();
private Object returnedvalue = null;

private String method;

public List<Object> getParams () {

[19]

Exploring Test Doubles

return params;

public MethodInvocation addParam(Object parm) {
getParams () .add (parm) ;
return this;

public Object getReturnedvalue() ({
return returnedValue;

public MethodInvocation setReturnedValue (Object
returnedvalue) {

this.returnedvalue = returnedValue;
return this;

public String getMethod() ({
return method;

public MethodInvocation setMethod (String method) {
this.method = method;
return this;

}

The MethodInvocation class represents a method invocation: the method
name, a parameter list, and a return value. Suppose a sum () method is
invoked with two numbers and the method returns the sum of two numbers,
then the MethodInvocation class will contain a method name as sum, a
parameter list that will include the two numbers, and a return value that

will contain the sum of the two numbers.

Note that the setter methods return
this (MethodInvocation). This coding approach is known as
" builder pattern. It helps to build an object in multiple steps. Java
% StringBuilder is an example of such a use:
StringBuilder builder = new StringBuilder () ;

builder.append("stepl") .append("step2")...

[20]

Chapter 1

The following is the spy object snippet. It has a registercall

method to log a method call instance. It has a map of strings and a
List<MethodInvocation> method. If a method is invoked 10 times, then
the map will contain the method name and a list of 10 MethodInvocation
objects. The spy object provides an invocation method that accepts a
method name and returns the method invocation count from the
invocationMap class:

public class StudentServiceSpy {
private Map<String, List<MethodInvocations>> invocationMap
= new HashMap<>() ;

void registerCall (MethodInvocation invocation) {

List<MethodInvocation> list = invocationMap.get
(invocation.getMethod ()) ;

if (list == null) {
list = new ArrayList<>();

}

if (!list.contains (invocation)) {
list.add (invocation) ;

invocationMap.put (invocation.getMethod (), list);

public int invocation (String methodName){
List<MethodInvocation> list = invocationMap.get
(methodName) ;
if (list == null) {
return 0;

return list.size();

public MethodInvocation arguments (String methodName, int
invocationIndex) {

List<MethodInvocation> list = invocationMap.get
(methodName) ;
if (list == null || (invocationIndex > list.size())) {

return null;

}

return list.get (invocationIndex-1) ;

[21]

Exploring Test Doubles

The registercall method takes a MethodInvocation object and puts it in
a map.

4. Modify the studentservice class to set a spy and log every method
invocation to the spy object:

private StudentServiceSpy spy;

public void setSpy (StudentServiceSpy spy) {
this.spy = spy;

}

public void enrollToCourse (String courseName, Student
student) {

MethodInvocation invocation = new MethodInvocation() ;

invocation.addParam(courseName) .addParam(student) .
setMethod ("enrollToCourse") ;

spy.registerCall (invocation) ;

List<Student> list = studentCouseMap.get (courseName) ;
if (list == null) {
list = new ArrayList<>();
}
if (!list.contains(student)) ({
list.add (student) ;

studentCouseMap.put (courseName, list);

}

5. Write a test to examine the method invocation and arguments. The following
JUnit test uses the spy object and verifies the method invocation:

public class StudentServiceTest {
StudentService service = new StudentService() ;
StudentServiceSpy spy = new StudentServiceSpy () ;

@Test
public void enrolls_students() throws Exception
//create student objects

Student bob = new Student ("001", "Robert Anthony");
Student roy = new Student ("002", "Roy Noon") ;
//set spy

service.setSpy (spy) ;

//enroll Bob and Roy
service.enrollToCourse ("english", bob) ;
service.enrollToCourse ("history", roy);

[22]

Chapter 1

//assert that the method was invoked twice
assertEquals (2, spy.invocation("enrollToCourse")) ;

//get the method arguments for the first call
List<Object> methodArguments = spy.arguments
("enrollToCourse", 1) .getParams() ;

//get the method arguments for the 2nd call
List<Object> methodArguments2 = spy.arguments
("enrollToCourse", 2).getParams/() ;

//verify that Bob was enrolled to English first
assertEquals ("english", methodArguments.get(0)) ;
assertEquals (bob, methodArguments.get (1)) ;

//verify that Roy was enrolled to history
assertEquals ("history", methodArguments2.get(0)) ;
assertEquals (roy, methodArguments2.get (1)) ;

Getting started with mock objects

A mock object is a combination of a spy and a stub. It acts as an indirect output

for a code under test, such as a spy, and can also stub methods to return values or
throw exceptions, like a stub. A mock object fails a test if an expected method is not
invoked or if the parameters of the method don't match.

The following steps demonstrate the test failure scenario:

1.

Launch Eclipse, open <work_space>, and go to the 36050S_TestDoubles
project.

Create a com.packt . testdoubles.mock package and a StudentService
class. This class will act as a course register service. The following is the code
for the studentService class

public class StudentService ({

private Map<String, List<Student>> studentCouseMap = new
HashMap<> () ;

public void enrollToCourse (String courseName, Student

student) {
List<Student> list = studentCouseMap.get (courseName) ;
if (list == null) {

list = new ArrayList<>();

[23]

Exploring Test Doubles

}

if (!list.contains(student)) ({
list.add (student) ;

}

studentCouseMap.put (courseName, list);

}
}

3. Copy the StudentServiceSpy class and rename it as
StudentServiceMockObject. Add a new method to verify

the method invocations:

public void verify(String methodName, int
numberOfInvocation) {
int actual = invocation (methodName) ;
if (actual != numberOfInvocation){
throw new IllegalStateException (methodName+" was
expected ["+numberOfInvocation+"] times but
actuallyactaully invoked["+actual+"] times");

}
}

4. Modify the studentservice code to set the mock object, as we did in the

spy example:
private StudentServiceMockObject mock;

public void setMock (StudentServiceMockObject mock) {
this.mock = mock;

}

public void enrollToCourse (String courseName, Student

student) {
MethodInvocation invocation = new MethodInvocation() ;

invocation.addParam(courseName) .addParam (student)
.setMethod ("enrollToCourse") ;

mock.registerCall (invocation) ;
..//existing code

}
5. Create a test to verify the method invocation:

public class StudentServiceTest {
StudentService service = new StudentService() ;
StudentServiceMockObject mockObject = new
StudentServiceMockObject () ;

@Test

[24]

Chapter 1

public void enrolls_students() throws Exception
//create 2 students
Student bob = new Student ("001", "Robert Anthony");
Student roy = new Student ("002", "Roy Noon") ;

//set mock/spy
service.setMock (mockObject) ;

//invoke method twice
service.enrollToCourse ("english", bob) ;
service.enrollToCourse ("history", roy);

//assert that the method was invoked twice
assertEquals (2,
mockObject.invocation ("enrollToCourse")) ;

//verify wrong information, that enrollToCourse was
//invoked once, but actually it is invoked twice

mockObject.verify("enrollToCourse", 1);

}

6. Run the test; it will fail, and you will get a verification error. The following
screenshot shows the JUnit failure output:

Finished after 0,049 seconds

Runs: 1f1 B Errors: 1 B Failures: 0

EEEI com.packt. testdoubles. mock. StudentServiceTest [Runner: JUnit 4] (0,003 s)

— ; i

U java.lang.IlegalstateException: enrolToCourse was expected [1] times but actaully invoked[2] times
at com.packt. testdoubles. modk. StudentServiceMockObiject. verify (StudentServiceMockObject. java: 26)
at com.packt. testdoubles. mock, StudentServiceTest.enrolls_students(StudentServiceTest. java: 31)

The Mockito framework provides an API for mocking objects. It uses proxy objects to
verify the invocation and stub calls.

[25]

Exploring Test Doubles

Implementing fake objects — simulators

A fake object is a test double with real logic (unlike stubs) and is much more
simplified or cheaper in some way. We do not mock or stub a unit that we test;
rather, the external dependencies of the unit are mocked or stubbed so that the
output of the dependent objects can be controlled or observed from the tests. The
fake object replaces the functionality of the real code that we want to test. Fakes are
also dependencies, and don't mock via subclassing (which is generally always a bad
idea; use composition instead). Fakes aren't just stubbed return values; they use some
real logic.

A classic example is to use a database stub that always returns a fixed value from
the DB, or a DB fake, which is an entirely in-memory nonpersistent database that's
otherwise fully functional.

What does this mean? Why should you test a behavior that is unreal? Fake objects
are extensively used in legacy code. The following are the reasons behind using a
fake object:

* The real object cannot be instantiated, such as when the constructor reads a
file, performs a JNDI lookup, and so on.

* The real object has slow methods; for example, a class might have a
calculate () method that needs to be unit tested, but the calculate ()
method calls a 1oad () method to retrieve data from the database. The
load () method needs a real database, and it takes time to retrieve data, so
we need to bypass the 1oad () method to unit test the calculate behavior.

Fake objects are working implementations. Mostly, the fake class extends the original
class, but it usually performs hacking, which makes it unsuitable for production.

The following steps demonstrate the utility of a fake object. We'll build a program
to persist a student's information into a database. A data access object class will
take a list of students and loop through the student's objects; if roleNumber is null,
then it will insert/ create a student, otherwise it will update the existing student's
information. We'll unit test the data access object's behavior:

1. Launch Eclipse, open <work_space>, and go to the 36050S_TestDoubles
project.

2. Create a com.packt.testdoubles. fake package and create a JdbcSupport
class. This class is responsible for database access, such as acquiring a
connection, building a statement object, querying the database, updating the
table, and so on. We'll hide the JDBC code and just expose a method for the
batch update. The following are the class details:

[26]

Chapter 1

public class JdbcSupport {
public int[] batchUpdate (String sqgl, List<Map<String,
Object>> params)
//original db access code is hidden
return null;

}

Check whether the batchUpdate method takes an SQL string and a list

of objects to be persisted. It returns an array of integers. Each array index
contains either o0 or 1. If the value returned is 1, it means that the database
update is successful, and 0 means there is no update. So, if we pass only
one Student object to update and if the update succeeds, then the array
will contain only one integer as 1; however, if it fails, then the array will
contain 0.

Create a studentDao interface for the Student data access. The following is
the interface snippet:

public interface StudentDao {
public void batchUpdate (List<Student> students) ;

}

Create an implementation of studentbDao. The following class represents the
StudentDao implementation:

public class StudentDaoImpl implements StudentDao {

public StudentDaoImpl ()

}

@Override
public void batchUpdate (List<Student> students)

List<Student> insertlList = new ArrayList<>();
List<Student> updatelList = new ArrayList<>();

for (Student student : students) {
if (student.getRoleNumber () == null) {
insertList.add (student) ;
} else {
updatelList.add (student) ;

}

int rowsInserted = 0;

[27]

Exploring Test Doubles

int rowsUpdated = 0;

if (!insertList.isEmpty()) {
List<Map<String, Object>> paramList = new
ArrayList<> () ;
for (Student std : insertList) ({
Map<String, Object> param = new HashMap<>() ;
param.put ("name", std.getName()) ;
paramList.add (param) ;

int[] rowCount = update("insert", paramList) ;
rowsInserted = sum(rowCount) ;

if (!lupdateList.isEmpty()) {

List<Map<String, Object>> paramList = new
ArrayList<> () ;

for (Student std : updateList) ({
Map<String, Object> param = new HashMap<>() ;
param.put ("roleId", std.getRoleNumber()) ;
param.put ("name", std.getName()) ;
paramList.add (param) ;

int[] rowCount = update ("update", paramList) ;
rowsUpdated = sum(rowCount) ;

if (students.size() != (rowsInserted + rowsUpdated)) ({
throw new IllegalStateException ("Database update error,
expected " + students.size() + " updates but
actual " + (rowsInserted + rowsUpdated)) ;

}

public int[] update (String sqgl, List<Map<String,
Object>> params)
return new JdbcSupport() .batchUpdate(sql, params) ;

private int sum(int[] rows)
int sum = 0;
for (int val : rows) {
sum += val;

[28]

Chapter 1

}

return sum;

}

The batchUpdate method creates two lists; one for the new students and

the other for the existing students. It loops through the student list and
populates the insertList and udpateList methods, depending on the
roleNumber attribute. If roleNumber is NULL, then this implies a new student.
It creates a SQL parameter map for each student and calls the JdbcSupprt
class, and finally, checks the database update count.

We need to unit test the batchUpdate behavior, but the update method
creates a new instance of JdbcSupport and calls the database. So, we cannot
directly unit test the batchUpdate () method; it will take forever to finish.
Our problem is the update () method; we'll separate the concern, extend

the studentDaoImpl class, and override the update () method. If we invoke
batchUpdate () on the new object, then it will route the update () method
call to the new overridden update () method.

Create a StudentDaoTest unit test and a TestableStudentDao subclass:

public class StudentDaoTest {
class TestableStudentDao extends StudentDaoImpl {
int[] wvaluesToReturn;
int[] update (String sgl, List<Map<String, Object>>
params) {
Integer count = sglCount.get (sqgl);
if (count == null) {
sqglCount.put (sgl, params.size());
}else{
sqglCount.put (sgl, count+params.size()) ;

}

if (valuesToReturn != null) ({
return valuesToReturn;

return valuesToReturn;

[29]

Exploring Test Doubles

Note that the update method doesn't make a database call; it returns a
hardcoded integer array instead. From the test, we can set the expected
behavior. Suppose we want to test a database update's fail behavior; here,
we need to create an integer array of index 1, set its value to 0, such as int []
val = {0}, and set this array to valuesToReturn.

6. The following example demonstrates the failure scenario:

public class StudentDaoTest {

private TestableStudentDao dao;
private Map<String, Integer> sglCount = null;
@Before
public void setup()
dao = new TestableStudentDao () ;
sqglCount = new HashMap<String, Integer>();

@Test (expected=IllegalStateException.class)

public void when row count does not match then rollbacks
_tarnsaction () {

List<Student> students = new ArrayList<>();

students.add (new Student (null, "Gautam Kohli")) ;

int[] expect update fails count = {0};
dao.valuesToReturn = expect update fails count;
dao.batchUpdate (students) ;

}

7. Check whether dao is instantiated with TestableStudentDao, then a new
student object is created, and the valuesToReturn attribute of the fake object
is set to {0}. In turn, the batchupdate method will call the update method
of TestableStudentDao, and this will return a database update count of o.
The batchUpdate () method will throw an exception for a count mismatch.

The following example demonstrates the new Student creation scenario:

@Test

public void when new student then creates_student () {
List<Student> students = new ArrayList<>();
students.add (new Student (null, "Gautam Kohli"));

int[] expect update success = {1};
dao.valuesToReturn = expect update success;

[30]

Chapter 1

dao.batchUpdate (students) ;

int actualInsertCount = sglCount.get ("insert") ;
int expectedInsertCount = 1;
assertEquals (expectedInsertCount, actualInsertCount) ;

}

Note that the valuesToReturn array is set to {1} and the Student object is
created with a null roleNumber attribute.

The following example demonstrates the student information
update scenario:

@Test

public void when existing student then updates_
student successfully () {

List<Student> students = new ArrayList<s>();
students.add (new Student("001", "Mark Leo")) ;
int[] expect update success = {1};
dao.valuesToReturn = expect update success;

dao.batchUpdate (students) ;

int actualUpdateCount = sglCount.get ("update") ;
int expectedUpdate = 1;

assertEquals (expectedUpdate, actualUpdateCount) ;

}

Note that the valuesToReturn array is set to {1} and the Student object is
created with a roleNumber attribute.

The following example unit tests the create and update scenarios together.
We will pass two students: one to update and one to create. So, update
should return {1, 1} for the existing students and {1} for the new student.

We cannot set this conditional value to the valuesToReturn array. We need
to change the update method's logic to conditionally return the count, but we
cannot break the existing tests. So, we'll check whether the valuesToReturn
array is not null and then return valuesToReturn; otherwise, we will apply
our new logic.

The following code snippet represents the conditional count logic:

class TestableStudentDao extends StudentDaoImpl {
int[] wvaluesToReturn;
int[] update(String sqgl, List<Map<String, Object>>
params) {

Integer count = sqglCount.get (sqgl);

[31]

Exploring Test Doubles

if (count == null) {

sqglCount.put (sgl, params.size());
}else{

sqglCount.put (sgl, count+params.size()) ;

if (valuesToReturn != null) ({
return valuesToReturn;

int[] val = new int[params.size()];
for (int i = 0; i < params.size(); i++) {
vall[il = 1;

return val;

}

When valuesToReturn is null, the update method creates an array of the
params size and sets it as 1 for each index. So, when the update will be called
with two students, the update method will return {1,1}.

The following test creates a student list of three students, two existing
students with roleNumbers and one new student.

@Test

public void when new and existing students then creates
_and updates students () { - - -
List<Student> students = new ArrayList<>();
students.add (new Student ("001", "Mark Joffe"));
students.add (new Student (null, "John Villare"));
students.add (new Student ("002", "Maria Rubinho"));

dao.batchUpdate (students) ;

[32]

Chapter 1

The following screenshot shows the output of the JUnit execution:

[% Package Explorer o Type Hierarchy gu JUnit 33 = 8

H 3 - -
m® &BE | @ L=
Finished after 0.041 seconds

Runs: 4/4 B Errors: 0 B Failures: 0

com.packt. fak D [Runner: JUnit 4])

EE] when_new_and_existing_students_then_creates_and_updates_students (0.000 =)
EE!] when_row_count_does_not_match_then_rollbacks_tarnsaction (0.000 =)

el when_new_student_then_creates_student (0.001s)

“gE| when_existing_student_then_updates_student (0,002 s)

Note that it took 0.041 seconds to execute four tests. This is interesting
because it's something that you wouldn't easily get if you were using a
real database.

Summary

This chapter covered the concept of automated unit tests, the characteristics of a
good unit test, and explored tests doubles. It provided the examples of dummy
objects, fake objects, stubs, mock objects, and spies.

By now, you will be able to identify the different test doubles and write unit tests
using test doubles.

The next chapter, Socializing with Mockito, will focus on getting the reader quickly
started with the Mockito framework.

[33]

Socializing with Mockito

"The significant problems that exist in the world today cannot be solved by the level
of thinking that created them."

— Albert Einstein

This chapter distills the Mockito framework to its main core and provides technical
examples. No previous knowledge of Mocking is necessary.

The following topics are covered in this chapter:

* Exploring Mockito
* Working with Mockito
* Understanding the Mockito architecture

The Exploring Mockito section covers the unit test qualities and significance of
Mockito in unit testing.

The Working with Mockito section explicates the Mockito framework and covers the
following topics:

* Stubbing method calls

* Verifying method invocation

* Matching arguments

* Answering method calls

The Understanding the Mockito architecture section explains the internal architecture
of Mockito.

Socializing with Mockito

Exploring Mockito

Mockito is an open source mocking framework for Java. Mockito comes under the
MIT license. The MIT license says that anybody can use the software free of charge
and can use, copy, modify, merge, publish, distribute, and sell the software.

In Chapter 1, Exploring Test Doubles, we read about test doubles, spies, stubs, and
mock objects. Test doubles replicate the external dependencies so that the code
under test can interact with its external dependencies and allow you to isolate code
from its dependencies to test them on a standalone basis. Mockito streamlines the
creation and management of external dependencies and allows mock object creation,
verification, stubbing, and spying on real objects. To learn more about Mockito, visit
the following links:

* https://github.com/mockito/mockito

® https://github.com/mockito/mockito/wiki

Exploring unit test qualities

Writing clean, readable, and maintainable unit test cases (JUnit, TestNG) is an
art; just like writing clean code. A well-written unit test can prevent maintenance
nightmare and acts as a form of system documentation, but if not used carefully,
it may produce meaningless boilerplate test cases.

Unit tests should adhere to a number of principles for readability, flexibility, and
maintainability. This section elucidates the principles that we'll follow throughout
this journey. The following are the principles:

* Should be reliable: A unit test should fail if, and only if, the production code
is broken. If your test starts failing for some other reason, for example, if the
database server is down or Internet connection is not available, it implies that
your code is broken. However, in reality, your test is failing because of an
external resource that is not a part of your code.

* Unit tests should be automated: The following are the benefits of
test automation:

° Assumptions are continually verified: We refactor code (change
the internal structure of the code without affecting the output of
the system) to improve code quality in terms of maintainability,
readability, or extensibility. We can refactor code with confidence if
automated unit tests are running and giving feedback. We should not
refactor code without proper test coverage.

[36]

https://github.com/mockito/mockito
https://github.com/mockito/mockito/wiki

Chapter 2

° Side effects are detected immediately: This is useful for a fragile,
tightly-coupled system when a change in one module breaks
another module.

° Saves time with no need for immediate manual regression testing:
If you are adding a scientific computation behavior to an existing
calculator program and modifying the code, you need to do a
regression to verify the integrity of the system after every piece of
change. Regression testing is tedious and time consuming, but if
you have an automated unit test suite, you can delay the regression
testing until the functionality is done. This is because the automated
suite will inform you at every stage if you break an existing feature.

* Tests should be executed extremely fast: This is because the tests can
provide quick feedback. A test should not take more than a second to finish
the execution. Your application can have thousands of tests. If they take
hours to finish, every change you commit will have to wait for an hour to
get the feedback, which is not acceptable.

* Trouble-free setup and run: Test setup should be simple. Unit tests
should not require a DB connection or an Internet connection or delete
a temp directory.

Mockito provides APIs to mock out the external dependencies and achieve the
qualities mentioned here.

Realizing the significance of Mockito

Automated tests are a safety net. They run and notify if the system is broken so
that the offending code can be fixed very quickly. If a test suite runs for an hour,
the purpose of quick feedback is compromised.

Consider a development environment where every line of code changes (commits
to the source control, for example, Git, SVN, or Rational ClearCase), triggers an
automated test suite, and takes hours to complete. A developer has to wait for an
hour or more to verify a new change until the test run is complete. This blocks the
progress of the development.

A test may take time to execute or fail needlessly when your code exhibits
testing-unfriendly behaviors or interacts with testing-unfriendly external objects.

[37]

Socializing with Mockito

The following are examples of testing-unfriendly behaviors:

* Acquiring a database connection and fetching/updating data
* Connecting to the Internet and downloading files

* Interacting with an SMTP server to send an e-mail

* Looking up JNDI objects

* Invoking a web service

* Performing I/O operations, such as printing a report

Do we really need a database connection or Internet connectivity to unit test a piece
of code?

If the connection to a database is not possible or the stock price cannot be
downloaded, the code cannot be tested and a few parts of the system remain
untested. So, DB interaction or network connection is mandatory for unit testing
some parts of the system. To unit test these parts, you need to isolate the testing of
unfriendly objects, or technically, the external dependencies need to be mocked out
(or faked).

Mockito plays a key role in mocking external dependencies. Mockito can be used to
mock out a database connection or any external I/ O behavior so that the actual logic
can be unit tested and your code can interact with the mocked external objects.

Mocking provides the following benefits:

* Unit test reliability: You mock test unfriendly objects so that your test
becomes reliable. They don't fail for any unavailable external object as
you mock the external object.

* Unit tests can be automated: Mockito makes unit test configuration simple
as the tests can mock external dependencies, such as a web service call or
database access.

* Extremely fast test execution: Unit tests access mock objects, so delay in
external service call or slow I/O operations can be isolated.

[38]

Chapter 2

Working with Mockito

This section provides an overview of Mockito. Here is the official Mockito logo:

The following topics are covered in this section:

* Configuring Mockito

* Stubbing method calls

* Throwing exceptions

* Matching method arguments

* Verifying method calls
Download the latest Mockito binary ZIP folder from the following link and add it
to the project dependency. The recommended channel for getting Mockito is Maven
(or Gradle), or download it directly from the central Maven repository if you need to
get the JAR files manually from either http://central.maven.org/maven2/org/

mockito/mockito-all/ or http://central .maven.org/maven2/org/mockito/
mockito-core/.

As of April 2014, the latest Mockito version is 1.9.5.

Adding a Mockito dependency
The following steps describe how Mockito JAR files can be added as
project dependency:
1. Extract the JAR files into a folder.
2. Launch Eclipse.
3. Create an Eclipse project named 36050S_Socializing with Mockito.
4

Go to the Libraries tab in the project's build path.

[39]

http://central.maven.org/maven2/org/mockito/mockito-all/
http://central.maven.org/maven2/org/mockito/mockito-all/
http://central.maven.org/maven2/org/mockito/mockito-core/
http://central.maven.org/maven2/org/mockito/mockito-core/

Socializing with Mockito

5. Click on the Add External JARs... button and browse to the Mockito
JAR folder.

6. Select all the JAR files and click OK.

The following code snippet will add the Mockito dependency to a Maven project and
download the JAR files from the central Maven repository (http://mvnrepository.
com/artifact/org.mockito/mockito- core):

<dependency>
<grouplds>org.mockito</groupIds>
<artifactIdsmockito-core</artifactIds
<version>1.9.5</version>
<scope>test</scope>

</dependency>

The following Gradle script snippet will add the Mockito dependency to a
Gradle project:

testCompile 'org.mockito:mockito-core:1.9.5'

Stubbing method calls

This section demonstrates the mock objects with an example. The following jQuery
table displays a list of countries:

Countries

O Add @ Delete

IéO Name Printable Name 1503 Number Code
AF Afghanistan Afghanistan AFG 4
AN MNetherlands Antilles Netherlands Antiles ANT 530
Al Angoela AGO 24
Al Antarctica ART 0
AR Argentina ARG 32
.~ |50 - i -
. 4 Page 1 of 16k “Z, Displaying 1 to 15 of 239 items

This special table has numerous controls; you can sort by a column, either in
descending or ascending order. The table displays selectable rows per page as a
dropdown; you can change the number of records per page — you can choose 10,
15, 20, 30, or 50. The table has a next page, previous page, first page, and last page
widget. It has a refresh icon to load the latest dataset.

[40]

http://mvnrepository.com/artifact/org.mockito/mockito-core
http://mvnrepository.com/artifact/org.mockito/mockito-core

Chapter 2

We need to create a controller class to accept the Ajax call from the jQuery table and
return a country list. The Ajax request contains the requested page number, rows
per page, sort order, sort column name, and search query. The controller needs to
retrieve the country details from a database table and return only filtered countries
as an Ajax response.

The following is the Ajax controller class:

@Controller
@Scope ("session")
public class AjaxController {
private final CountryDao countryDao;

public AjaxController (CountryDao countryDao) {
this.countryDao = countryDao;

@RequestMapping (value = "retrieveCountries", method =
RequestMethod.POST)

public @ResponseBody

JsonDataWrapper<Country> retrieve (HttpServletRequest webRequest)
List<Country> countries = new ArrayList<Country >();
RetrieveCountryRequest request = RequestBuilder.build

(webRequest) ;

countries = countryDao.retrieve (request) ;

Long startIndex = (request.getPage() - 1) *
(request.getRowPerPage ()) ;

int size = countries.size();

Long endIndex = (startIndex + request.getRowPerPage()) > size
? size: (startIndex + request.getRowPerPage()) ;

if (startIndex < endIndex) ({
countries = countries.subList (startIndex.intValue(),
endIndex.intValue()) ;

JsonDataWrapper<Country> wrapper = new JsonDataWrapper
<Countrys> (request.getPage (), size, countries);

return wrapper;

[41]

Socializing with Mockito

The retrieve method accepts an HttpServletRequest object and builds a database
access request from this object. The following is the request's builder code:

public class RequestBuilder ({

public static RetrieveCountryRequest build (HttpServlet
RequestwebReq) {
RetrieveCountryRequest request = new RetrieveCountryRequest () ;
request . setPage (getLong (webReq.getParameter ("page"))) ;
request . setRowPerPage (getInt (webReg.getParameter ("rp"))) ;

request .setSortOrder (SortOrder. find (webReqg.getParameter
("sortorder"))) ;

request .setSortname (SortColumn. find (webReqg.getParameter
("sortname"))) ;

request .setSerachQuery (webReqg.getParameter ("gtype")) ;

return request;

private static Integer getInt (String val)
Integer retVal = null;
try {
retVal = Integer.parselnt (val) ;
} catch (Exception e) {

}

return retval;

}

private static Long getlLong(String val)
Long retVal = null;
try {
retVal = Long.parselLong(val) ;
} catch (Exception e) {

}

return retval;

}

Finally, the retrieve method builds a JsonDatawWrapper object from the country list
and hands it over to the Ajax request as JSON data. The @rResponseBody annotation
instructs the JSON response.

[42]

Chapter 2

To unit test this class, we need to create an Ht tpServletRequest object, populate it
with testable data, and then isolate the countrybao/database access call.

We'll use the Mockito framework to create a mock HttpServletRequest object and
isolate the countryDao access call by stubbing the database call.

A mock object can be created with the help of a static method mock (). You need
to invoke the Mockito.mock () method or static import Mockito's mock () method.
The following is the syntax:

import org.mockito.Mockito;
public class AjaxControllerTest {

HttpServletRequest request;
CountryDao countryDao;

@Before

public void setUp () {
request = Mockito.mock (HttpServletRequest.class);
countryDao = Mockito.mock (CountryDao.class) ;

}
The following code snippet uses Java's static import construct:

import static org.mockito.Mockito.mock;
public class AjaxControllerTest {

HttpServletRequest request;
CountryDao countryDao;

@Before

public void setUp () {
request = mock (HttpServletRequest.class);
countryDao = mock (CountryDao.class) ;

M Static import in Java allows you to import static members and methods
Q of Java classes and use them as if they are local variables or methods
declared in the same class.

[43]

Socializing with Mockito

There's another way of mocking objects — using the @Mock annotation. But to
work with the @Mock annotation, it is necessary to call MockitoAnnotations.
initMocks (this) before using the mocks; or use MockitodUnitRunner as a JUnit
runner. We'll cover the annotation in depth in the next chapter. The following
example is the syntax of mocking using the @Mock annotation:

import org.junit.Before;

import org.mockito.Mock;

import org.mockito.MockitoAnnotations;
public class AjaxControllerTest {

private @Mock HttpServletRequest request;
private @Mock CountryDao countryDao;

@Before
public void setUp () {
MockitoAnnotations.initMocks (this) ;

}
The following is the syntax of the @Mock annotation using MockitoJUnitRunner:

import org.junit.Before;

import org.junit.runner.RunWith;

import org.mockito.Mock;

import org.mockito.runners.MockitodUnitRunner;

@RunWith (MockitoJUnitRunner.class)
public class AjaxControllerTest {

private @Mock HttpServletRequest request;
private @Mock CountryDao countryDao;

@Before
public void setUp() {

}

[44]

Chapter 2

Before we deep dive into the Mockito world, there are a few things to
remember — Mockito cannot mock/spy the following things:

* Final classes
* Final methods

M * Enums
e Static methods

Q * Private methods

* The hashCode () and equals () method
* Anonymous classes
* Primitive types

PowerMock has the capability to mock these constructs.

We read about stubs in Chapter 1, Exploring Test Doubles. The stubbing process
defines the behavior of a mock method, such as what value should be returned
or whether any exception should be thrown when the method is invoked.

The Mockito framework supports stubbing and allows us to return a given value
when a specific method is called. It can be done using Mockito.when () along with
thenReturn ().

The following is the syntax for importing when:

import static org.mockito.Mockito.when;

The following test code stubs the retrieve method for CountryDao and returns an
empty list. Finally, the stubbing is verified using the assertTrue method:

@Test

public void retrieves empty country list() throws Exception {
List<Country> list = new ArrayList<Countrys>() ;
list.add (new Country()) ;

when (countryDao.retrieve (isA (RetrieveCountryRequest.class)))
.thenReturn (emptyList) ;

assertTrue (countryDao.retrieve (new RetrieveCountryRequest ())
.size() == 1);

[45]

Socializing with Mockito

The when () method represents the trigger —when to stub it. The following methods
are used to represent a trigger action or what to do when the trigger is triggered.
* thenReturn (a value to be returned): This method returns a given value.

* thenThrow (a throwable to be thrown): This method throws a
given exception.

* thenAnswer (Answer answer): In this method, unlike returning a hardcoded
value, a dynamic, user-defined logic is executed; more like fake test doubles.
Answer is an interface. Dynamic code logic is needed to implement the
Answer interface.

® thenCallRealMethod (): This method calls the real method on the mock
object/spy.

The thenReturn () method has a variant; it can either return a hardcoded value
or can accept variable arguments of hardcoded values. What follows are the three
ensuing variants:

®* thenReturn(value)

®* thenReturn(value, values...)

®* thenReturn(value) .thenReturn (value2) .thenReturn (value3)
The thenReturn (value) variant returns the same hardcoded value for each method
call, whereas when (mock . someMethod ()) . thenReturn(10,5,100) returns the
following values:

* During the first invocation, mock . someMethod () returns 10

* During the second invocation, mock . someMethod () returns 5

* During the third invocation, mock . someMethod () returns 100

* During all the other invocations, mock . someMethod () returns 100

We'll use this style of mocking for Ht tpservletRequest. The following is the
modified test:

@Test
public void retrieves empty country list() throws Exception {

when (request.getParameter (anyString())) .thenReturn("1",
"10",SortOrder.ASC.name (), SortColumn.iso.name()):;

List<Country> countryList = new ArrayList<Countrys () ;
countryList.add (new Country()) ;

when (countryDao.retrieve (isA (RetrieveCountryRequest.class)))
.thenReturn (countrylList) ;

[46]

Chapter 2

JsonDataWrapper<Country> response = ajaxController.retrieve
(request) ;

assertEquals(l, response.getPage()):;
assertEquals (1, response.getTotal());
assertEquals (1, response.getRows () .size());

}

The RequestBuilder class calls the getParameter () method of

HttpServletRequest to fetch the request parameters. Sequentially, it calls
webReqg.getParameter ("page"), webReq.getParameter ("rp"), webReq.
getParameter ("sortorder"), and webReq.getParameter ("sortname").

In the test method, we stubbed the getParameter call with a variable argument
thenReturn style.

We used two Mockito matchers, namely, anyString and isA. The anyString ()
matcher is used to stub the get Parameter method. The get Parameter method
accepts a string argument, such as webReq.getParameter ("page"). The anyString
matcher is used as a generic argument matcher. This means, no matter what value is
passed to the get Parameter method, it will return a hardcoded value.

The isA matcher is used to stub the retrieve method of CountryDao to get
the following:

* If the retrieve method is called with a RetrieveCountryRequest object,
it will return the country list

In the next section, we'll discuss argument matchers.

Throwing exceptions

Unit tests are not meant only for happy path testing. We should test our code for
failure conditions as well. Mockito provides an API to raise errors during testing.
Suppose we are testing a flow where we compute some value and then send it to
a printer; if the printer is not configured or a network error occurs or a page is
not loaded, the system throws an exception. We can test this using Mockito's
exception APIs.

How do we test exceptional conditions such as database access failure?

For this, Mockito provides a thenThrow (Throwable) method. This method tells
the Mockito framework to throw a throwable (could be exception or error) when
the stubbed method is invoked.

[47]

Socializing with Mockito

JUnit 4.0 provides a way to test exceptions using @Test (expected=<exceptions).

We'll stub the countryDao access call to throw an exception and assert the exception
using @Test (execpted=). If the test doesn't throw any exception, it will fail:

@Test (expected=RuntimeException.class)

public void when system throws exception() {
when (request .getParameter (anyString())) .thenReturn("1", "10",
SortOrder .DESC.name (), SortColumn.iso.name()) ;

when (countryDao.retrieve (isA (RetrieveCountryRequest.class))) .
thenThrow (new RuntimeException ("Database failure"));

JsonDataWrapper<Country> response = ajaxController.retrieve
(request) ;

}
To throw an exception from a void method, use the following code syntax:

doThrow (exception) .when (mock) .voidmethod (arguments) ;

Checking and throwing Runt imeException is not recommended. Instead,
we can use a specific exception in production code. In JUint 4, there exists
an ExpectedException rule API for exception handling.

Using argument matchers

The argument matcher plays a key role in mocking. Mock objects return expected
values, but when they need to return different values for different arguments,
the argument matcher comes into play.

Suppose we have a method that takes a cricket player's name as an input and returns
the number of runs as an output. We want to stub it and return 100 for the player
Sachin and 10 for xyz. We have to use the argument matcher to stub this.

Mockito returns expected values when a method is stubbed. If the method takes
arguments, the argument must match during the execution. For example, the
getValue (int someValue) method is stubbed in the following way:

when (mockObject .getValue (1)) .thenReturn (expected value) ;

[48]

Chapter 2

Here, the getvalue method is called with mockObject .getValue (100).

The parameter doesn't match (it is expected that the method will be called with 1,
but at runtime it encounters 100), so the mock object fails to return the expected
value. It will return the default value of the return type. If the return type is int or
short or long, it returns 0 for wrapper types such as integer and long. If it returns
NULL for Boolean, it'll return £alse if the object is null and so on.

Mockito verifies argument values in natural Java style by using an object's equals ()
method. Sometimes, we use argument matchers when extra flexibility is required.
Mockito provides built-in matchers, such as anyInt (), anyDouble (), anyString(),
anyList (), and anyCollection (). More built-in matchers and examples of custom
argument matchers / hamcrest matchers can be found at the following link:

https://github.com/mockito/mockito/blob/master/src/org/mockito/
Matchers.java

Examples of other matchers are isA (java.lang.Class<T> clazz),
any (java.lang.Class<T> clazz),and eq(T) or eq(primitive

value).

The isa matcher checks whether the passed object is an instance of the class type
passed in the isa argument. The any (T) matcher also works in the same way.

Working with wildcard matchers

A test invokes a method on a code under test. When the invoked method creates

a new object and passes that to a mock object, the test method doesn't have the
reference of that new object. So the test cannot stub the mock method with a specific
value, as the value is not available to the test method. In this context, we use the
wildcard matchers.

In the following code snippet, an object is passed to a method and then a request
object is created and passed to a service. Now, if we call someMethod from a test and
service is a mocked object, we cannot stub callMethod from a test with a specific
request, as the request object is local to someMethod.

public void someMethod (Object obj) {
Request reqg = new Request () ;
Reqg.setValue (obj) ;

Response resp = service.callMethod (req) ;

}

[49]

https://github.com/mockito/mockito/blob/master/src/org/mockito/Matchers.java
https://github.com/mockito/mockito/blob/master/src/org/mockito/Matchers.java

Socializing with Mockito

In our jQuery example, we create a mock HttpServletRequest object and pass

it to AjaxController. We have the control to stub the HttpServletRequest

object, but inside the retrieve method, AjaxController creates a new instance of
RetrieveCountryRequest and passes it to Countrybao. We don't have any control
over the new instance of RetrieveCountryRequest, so we used a wildcard matcher
isA () to stub the retrieve method of CountryDao.

While using argument matchers, all arguments have to be provided

by matchers.

We're passing three arguments, and all of them are passed using matchers

N in the following manner:
~ verify (mock) .someMethod (anyInt (), anyString(),

eq("third argument")) ;

The following example will fail because the first and the third argument

are not passed using a matcher:
verify (mock) .someMethod (1, anyString(), "third
argument") ;

Working with a custom ArgumentMatcher class

The ArgumentMatcher class allows us to create our own custom argument
matchers. The ArgumentMatcher class is a hamcrest matcher with the predefined
describeTo () method. Use the Matchers.argThat (org.hamcrest .Matcher)
method and pass an instance of the hamcrest matcher. Hamcrest provides a
utility matcher class, org.hamcrest . CoreMatchers. A few utility methods for
CoreMatchers include all10f, anyOf, both, either, describedAs, everyItem, is,
isA, anything, hasItem, hasItems, equalTo, any, instanceOf, not, nullvalue,
notNullvValue, sameInstance, and theInstance. It also includes a few string
methods such as startsWith, endsWith, and containsString. All these methods
return a matcher.

Look at the usage of assertThat and explore the utility methods. The following
section provides example of matchers. Let's start with equalTo. The equalTo
matcher is equivalent to assertEquals.

Comparison matchers — equalTo, is, and not

Create a JUnit test, AssertThatTest . java, and static import org. hamcrest.
CoreMatchers. *; in the following manner:

import static org.hamcrest.CoreMatchers.*;
import static org.junit.Assert.*;

[50]

Chapter 2

import org.junit.Test;
public class AssertThatTest {

@Test

public void verify Matcher() throws Exception {
int age = 30;
assertThat (age, equalTo(30));
assertThat (age, 1s(30));

assertThat (age, not (equalTo(33)));
assertThat (age, is(not(33)));

}

Set the age variable to 30 and then, like assertEquals, call equalTo, which is a
matcher; equalTo takes a value. If the matcher value doesn't match the actual value,
assertThat throws an AssertionError. Set the age variable value to 29 and rerun
the test; the following error will occur:

java.lang.AssertionError:
Expected: <30>
but: was <29>
at org.hamcrest.MatcherAssert.assertThat (MatcherAssert.java:20)
at org.junit.Assert.assertThat (Assert.java:865)

The is matcher takes a value and behaves similarly to equalTo. The not matcher
takes a value or a matcher. In the preceding code, we used assertThat (age,

is (not (33))) ;, which is nothing but age is not 33 and more readable than
assert methods.

Compound value matchers — either, both, anyOf, allOf,

and not

In this section, we will use the either, both, any0f, al10f, and not matchers.
Add the following test to the AssertThatTest.java JUnit test:

@Test
public void verify multiple values() throws Exception {

double marks = 100.00;
assertThat (marks, either (is(100.00)) .or(is(90.9)));

assertThat (marks, both(not(99.99)) .and(not(60.00))) ;

[51]

Socializing with Mockito

assertThat (marks, anyOf (is(100.00),is(1.00),is(55.00),1s(88.00),
is(67.8)));

assertThat (marks, not (anyOf (is(0.00),1s(200.00)))) ;

assertThat (marks, not (allOf(is(1.00),1is(100.00), is(30.00))));

}

In the preceding example, a double variable mark is initialized with the value
100.00. This variable value is asserted with an either matcher.

Basically, using either, we can compare two values against an actual/calculated
value. If any of them match, the assertion is passed. If none of them match,
AssertionError is thrown.

The either (Matcher) takes a matcher and returns a CombinableEitherMatcher
class. The combinableEitherMatcher class has an or (Matcher other) method so
that either and or can be combined:

or (Matcher other) is translated as
return (new CombinableMatcher (first)) .or (other);-> finally to
new CombinableMatcher (new AnyOf (templatedListWith (other))) ;

Using both, we can compare two values against an actual/calculated value.
If neither of them match, the assertion error is thrown. If both of them match,
the assertion is passed.

A numeric value, like math score, cannot be equal to both 60 and 80. But we can
negate the expression. If the math score is 80, using the both matcher, we can write
the expression as assertThat (mathScore , both (not(60)). and(not (90))).

The anyof matcher is more like either with multiple values. Using anyOf, we can
compare multiple values against an actual/calculated value. If any of them match,
the assertion is passed. If none of them match, the assertionError is thrown.

The al10f matcher is more like both with multiple values. Using al110f, we can
compare multiple values against an actual/calculated value. If none of them match,
the assertionError is thrown. Just like both, we can use al10f, along with not,
to check that a value doesn't belong to a set.

In the preceding example, using a110f and not, we checked that the score is not 1 or
100 or 30.

We'll create a custom matcher for the jQuery table example.

[52]

Chapter 2

The countryDao access call accepts a request and returns a list of countries. The
request contains the sort column name and the sort order. We can create a matcher to
return the country list sorted in ascending order. The following is a custom matcher:

class SortByISOInAscendingOrderMatcher extends
ArgumentMatcher<RetrieveCountryRequest> {
@Override
public boolean matches (Object request) {
if (request instanceof RetrieveCountryRequest) {

SortOrder sortOrder = ((RetrieveCountryRequest) request)
.getSortOrder () ;

SortColumn col = ((RetrieveCountryRequest) request)
.getSortname () ;

return SortOrder.ASC.equals (sortOrder) && SortColumn
.iso.equals(col) ;

}

return false;

}

The preceding code extends the ArgumentMatcher class and overrides the matches
method. The matches method checks the RetrieveCountryRequest request type,
gets the sortorder and SortColumn attributes from the request object, and finally,
checks the sortorder type. If the order is Asc and the column name is 150, the
match happens.

If you pass a RetrieveCountryRequest object with Sortorder DESC or
SortColumn ISO03, the matches method returns false and the method is
not stubbed. The following test method uses the custom matcher:

@Test
public void countryList sortedBy ISO In asc_order () ({
when (request.getParameter (anyString())) .thenReturn("1", "10",

SortOrder.ASC.name (), SortColumn.iso.name()) ;

Country argentina = new Country() ;
argentina.setIso("AR") ;

Country india = new Country () ;
india.setIso ("IN") ;

Country usa = new Country() ;
usa.setIso("UsS") ;

List<Country> ascCountryList = new ArrayList<Countrys>();
ascCountryList.add (argentina) ;

[53]

Socializing with Mockito

ascCountryList.add (india) ;
ascCountryList.add (usa) ;

when (countryDao.retrieve (argThat (new SortByISOIn
AscendingOrderMatcher()))) .thenReturn(ascCountrylList) ;

JsonDataWrapper<Country> response = ajaxController.retrieve
(request) ;
assertEquals (ascCountryList, response.getRows()) ;

}

We stubbed the HttpServletRequest object to return SortOrder.ASC,
populated a list, and stubbed the countryDao access call with argThat (new
SortByISOInAscendingOrderMatcher ()).If we stub the HttpServletRequest
object to return a different sort order or sort column name, the test will fail.

Verifying method calls

To verify a redundant method invocation or if a stubbed method was not called but
was important from the test perspective, we should manually verify the invocation.
We need to use the static verify method.

Mock objects are used to stub external dependencies. We set an expectation and
a mock object returns an expected value. In some conditions, a behavior/ method
of a mock object should not be invoked, or sometimes we may need to call the
method N (a number) times. The verify method verifies the invocation of mock
objects. Mockito does not automatically verify all stubbed calls; JMock does

this automatically.

If a stubbed behavior should not be called, but is called due to bug in a code, the
verify method flags the error (but we have to verify that manually). The void
methods don't return a value; verify is very handy to test a void method's
behavior (explained later).

The verify () method has an overloaded version, which takes verificationMode
(AtLeast, AtMost, Times, and so on) as an argument. The Times mode is a Mockito
framework class of package, org.mockito.internal.verification, and it takes
the integer argument, wantedNumberOf Invocations.

[54]

Chapter 2

If 0 is passed to Times, it infers that the method will not be invoked in the testing
path. We can pass 0 to Times (0) to make sure that the sell or buy methods are not
invoked. If a negative number is passed to the Times constructor, Mockito throws
MockitoException - org.mockito.exceptions.base.MockitoException and
shows the Negative value is not allowed here error. The following methods are
used in conjunction with verify:

times (int wantedNumberOfInvocations): This is invoked exactly N
times. If the method is not invoked wantedNumberOf Invocations times,
the test fails.

never (): This is never called or is called as times (0).

atLeastoOnce (): This is invoked at least once. It works fine if the method is
invoked multiple times, but fails if the method is not invoked.

atLeast (int minNumberOfInvocations): This is called at least N times.
It works fine if the method is invoked more than minNumberOfInvocations
times, but fails if the method is not called minNumberOfInvocations times.

atMost (int maxNumberOfInvocations): This is called at the most N times.
It fails if the method is called more than minNumberoOf Invocations times.

only (): This is used to verify that only one method is called on a mock. It
fails if any other method is called on the mock object. In our example, if we
use verify (request, only()).getParameter (anyString()) ;, the test
will fail with the following output:

@t com.packt.mockito.stubbing. AjaxControllerTest [Runner: JUnit 4] (0,156 <)
el retrieves_empty_country_list (0.141 5)
gl countrylist_sortedBy_I50_In_asc_order (0.012)
el countrylist_sortedBy 150 _In_desc_order (0.003 5]

= = =
= Failure Trace _,

J

¢ org.mockito.exceptions.verification.Molnteractions\Wanted:
Mo interactions wanted here:

= -» gt com. ackt.mockito.stubbing.AjaxControllerTest.countrylist_sortedBy 150 _In_asc ...

But found this interaction:

-> 3 com.pac
s

.mockito.stubbing.RequestBuilder build(RequestBuilder,java:g)

For your reference, here is the list of all invocations ([7] - means unverified).

= 1.[?]-> at com.packt.mockito.stubbing.RequestBuilder.build (RequestBuilder.java:d)

2. [7]-» at com.packt.mockito.stubbing.RequestBuilder.build(RequestBuilder.java:10)
3.[?1-* at com.packt.mockito.stubbing.RequestBuilder.build(RequestBuilder java:11)
4, [?]-» at com.packt.mockito.stubbing.RequestBuilder.build(RequestBuilder java:l2)
5. [?]-> at com.packt.mockito.stubbing.RequestBuilder.build(RequestBuilder.java:13)

[55]

Socializing with Mockito

The test fails as it doesn't expect multiple calls to the request.
getParameter () method.

* timeout (int millis): This is specified in a time range.

Verifying zero and no-more interactions

The verifyZeroInteractions (object, mocks) method verifies that no
interactions happened on the given mocks. The following test code directly calls the
verifyZeroInteractions and passes the two mock objects. Since no methods are
invoked on the mock objects, the test passes.

@Test public void verify zero interaction() {
verifyZeroInteractions (request, countryDao) ;

}

This is useful if your code depends on two or more collaborators. For a given input,
only one collaborator should handle the request while others should just ignore
the request.

The verifyNoMoreInteractions (Object, mocks) method checks if any of the
given mocks have any unverified interaction. We can use this method after verifying
a mock method to make sure that nothing else was invoked on the mock.

This is generally not a good practice as it makes your tests overly brittle and you end
up testing more than just what you care about. The following test code demonstrates
the verifyNoMoreInteractions method:

@Test public void verify nomore interaction() {
request .getParameter ("page") ;
request .getContextPath () ;

verify (request) .getParameter (anyString()) ;
//this will fail getContextPath() is not verified
verifyNoMoreInteractions (request) ;

}

The following is the JUnit output. The test fails as the getContextpath () method
was not verified even though the getParameter () method was verified. So the
test considered the getContextPath () method invocation as a coding bug and
verifyNoMoreInteractions raised the error.

[56]

Chapter 2

4 E?_| com.packt.mockito.stubbing. AjaxControllerTest [Runner JUnit 4] (0159 5) -
EF'—_l wverify_zero_interaction (0123 5)
#'—_l werify_nomore_interaction (0.022 s)

IE] crntnd ict cartadBie T8N Tn ace ardar 01010
= Failure Trace _=
J:—j org.mockito.exceptions.verification.MolnteractionsWanted:
Mo interactions wanted here:
= -> at com.packt.mockito.stubbing AjaxControllerTest.verify_nomore_interaction

But found this interaction:

a -» at com.packt. mockito.stubbing.AjaxControllerTest.verify_nemore_interaction

i

For your reference, here is the list of all invecations ([7] - means unverified).
=1.-» at com.packt.mockito.stubbing.AjaxControllerTest.verify_nomore_interaction

= 2.[7]-» at com.packt.mockito.stubbing.AjaxControllerTest.verify_nomore_interaction

Answering method calls

Stubbed methods return a hardcoded value but cannot return a dynamic on-the-fly
result. Mockito framework offers callbacks to compute on-the-fly results.

Mockito allows stubbing with the generic Answer interface; this is a callback. When
a stubbed method on a mock object is invoked, the answer (InvocationOnMock
invocation) method of the Answer object is called. This Answer object's answer ()
method returns the actual object. The syntax is similar to thenReturn () and
thenThrow () :

when (mock . someMethod ()) . thenAnswer (new Answer () {..});
Alternatively, we can also use the following syntax:

when (mock.someMethod ()) .then (answer) ;
The answer interface is defined as follows:

public interface Answer<T> {
T answer (InvocationOnMock invocation) throws Throwable;

[57]

Socializing with Mockito

The InvocationOnMock argument is an important part of a callback. It gives you the
arguments passed to the method and the mock object as well. The following methods
of InvocationOnMock are used to get the arguments and the mock object:

Object[] args = invocation.getArguments() ;
Object mock = invocation.getMock() ;

The retrieve method of CountryDao is stubbed. We'll create an answer object to
dynamically sort the country list based on the input sort order.

In test class, create a list for storing countries, and in the setUp method, populate the
list with countries. The following is the changed test code:

List<Country> countries;

@Before

public void setUp()
ajaxController = new AjaxController (countryDao) ;
countries = new ArrayList<Countrys () ;

countries.add (create ("Argentina", "AR", "32"));
countries.add (create ("USA", "UsS", "01"));
countries.add (create ("Brazil", "BR", "05"));
countries.add (create("India", "IN", "91"));

}

Write a new Answer class to sort the countries list based on the user input.
The following example is the custom Answer class:

class SortAnswer implements Answer<Objects> {
@Override

public Object answer (InvocationOnMock invocation) throws
Throwable {

RetrieveCountryRequest request = (RetrieveCountryRequest)
invocation.getArguments () [0];

final int order = request.getSortOrder () .equals (SortOrder.ASC)

?1: -1;
final SortColumn col = request.getSortname () ;
Collections.sort (countries, new Comparator<Countrys () {

public int compare (Country arg0, Country argl) ({
if (SortColumn.countryCode.equals (col))

return order * arg0.getCountryCode () .compareTo
(argl.getCountryCode ()) ;

if (SortColumn.iso.equals(col))
return order * arg0.getIso() .compareTo(argl.getIsol()) ;

[58]

Chapter 2

return order * arg0.getName () .compareTo (argl.getName ()) ;

}
3N

return countries;

}

The answer method gets the request object and sorts the countries list based on the
SortOrder and SortColumn attributes. The following test verifies the ascending and
descending sorting:

@Test
public void sorting asc_on iso() {
when (request.getParameter (anyString())) .thenReturn("1", "10",
SortOrder.ASC.name (), SortColumn.iso.name()) ;

when (countryDao.retrieve (isA (RetrieveCountryRequest.class)))
.thenAnswer (new SortAnswer()) ;

JsonDataWrapper<Country> response = ajaxController.
retrieve (request) ;

assertEquals ("AR", response.getRows () .get(0).getIsol());
assertEquals ("BR", response.getRows () .get (1) .getIsol());
assertEquals ("IN", response.getRows().get(2).getIsol());
assertEquals ("US", response.getRows () .get(3).getIsol());
}
@Test
public void sorting desc on iso() ({
when (request.getParameter (anyString())) .thenReturn("1",
"10",SortOrder.DESC.name (), SortColumn.iso.name()) ;

when (countryDao.retrieve (isA (RetrieveCountryRequest.class)))
.thenAnswer (new SortAnswer()) ;

JsonDataWrapper<Country> response = ajaxController.retrieve

(request) ;
assertEquals ("AR", response.getRows () .get(3).getIsol());
assertEquals ("BR", response.getRows () .get(2).getIsol());
assertEquals ("IN", response.getRows().get(1l).getIsol());
assertEquals ("US", response.getRows().get(0).getIsol());

[59]

Socializing with Mockito

Understanding the Mockito architecture

Mockito applies the proxy design pattern to create mock objects. For concrete
classes, Mockito internally uses CGLib to create proxy stubs. CGLib is used to
generate dynamic proxy objects and intercept field access. The following URL

talks about CGLib:

https://github.com/cglib/cglib

The following sequence diagram depicts the call sequence. The ClassImposterizer
class is a singleton class. This class has a createProxyClass method for generating a
source using CGLib. Finally, it uses reflection to create an instance of the proxy class.

Method calls are stubbed using the callback API of MethodInterceptor.

Mockito |

| MockitoCore |

| MockitoCore |

|Classlmposterizer| | InstantiatorStrategy

mock(Class)
—_—>

proxy

mock(Class,

MockSettings)

proxy

createMock(

Class,
MockSettings)

proxy

imposterise()

proxy

rd

ateProxy

Cre
[| E Class
newlnstantiatorOf(__,

proxyClass)
proxy

<
<

<
<

The MethodInterceptor class acts as a Java reflection class, java.lang.reflect.

InvocationHandler. Any method call on a mock object (proxy) is handled by a

MethodInterceptor instance.

We'll create a custom mocking framework to handle external dependencies. We'll
use the Java reflection framework's dynamic proxy object-creation API. The java.
lang.reflect.Proxy method provides a Proxy.newProxyInstance (ClassLoader,

Class, InvocationHandler) API to create dynamic proxy objects. The
InvocationHandler interface has the following signature:

public interface InvocationHandler {

}

public abstract Object invoke (Object obj,

Object aobjll)

throws Throwable;

Method method,

All method calls to a proxy object are redirected to the invoke method.

[60

1

https://github.com/cglib/cglib

Chapter 2

Create a class ourMockito for handling dynamic proxies. The following is the
ourMockito class definition. It implements the InvocationHandler interface,
provides an implementation of the invoke () method, and provides three static
mock methods and two stub methods.

public class OurMockito implements InvocationHandler ({
private static Map<String, Object> stubMap = new HashMap<String,
Object> () ;

private static Map<String, Exception> excepMap = new
HashMap<String, Exceptions () ;

@Override

public Object invoke (Object proxy, Method method, Object[] args)
throws Throwable {

String methodName = method.getName () ;
if (Modifier.isFinal (method.getModifiers()) |
Modifier.isPrivate (method.getModifiers()) |
Modifier.isStatic (method.getModifiers())) {
throw new RuntimeException ("You naughty developer mocking
a private, static or final method "+ methodName) ;

if (excepMap.containsKey (methodName)) {
Exception excep = excepMap.get (methodName) ;
throw excep;

if (stubMap.containsKey (methodName)) {
return stubMap.get (methodName) ;

return null;

}

The mock () method takes a java.lang.Class, creates a proxy object of the class,
and passes an instance of ourMockito () as InvocationHandler. The following is
the body of the mock () method:

public static Object mock (Class aClass) {

Object newProxyInstance = Proxy.newProxylInstance
(OurMockito.class.getClassLoader (), new Class][] { aClass
} ,new OurMockito()) ;

return newProxylInstance;

}

[61]

Socializing with Mockito

The two overloaded stub methods are as follows:

public static void stub(Object stubOn, String methodName, Object
stubbedvalue) {

stubMap.put (methodName, stubbedValue) ;

public static void stub (Object stubOn, String methodName,
Exception excep) {

if (excep != null) ({
excepMap .put (methodName, excep) ;

}

The mock method uses the proxy class to generate a proxy object. The stub (Object
stubOn, String methodName, Object stubbedvalue) method allows a method call
return value to stub. The stub (Object stubOn, String methodName, Exception
excep) method allows an exception to be thrown on a method call to check the
negative testing path. The stub methods populate two hashmaps for storing

the stubbed values/exceptions. The reflection API delegates the method calls

(on proxy objects) to InvocationHandler. The invoke method in the OurMockito
class handles the method calls. The invoke method looks up the method name in
the exception map. If the method was stubbed for throwing an exception, the
exception is thrown; otherwise, the method stub map is looked up for returning

a stubbed value.

Create an interface to represent an external dependency. The following is the class:

public interface ExternalService {
public String concat (String argl, String arg2);
public void someStrangeOperation (Object obj) ;
public int divide (int a, int b);

}

Now create a test class to verify the mocking capability. The following is the class:

public class OurMockTest ({

ExternalService externalService = (ExternalService)OurMockito
.mock (ExternalService.class) ;

@Test

public void stubbing method() throws Exception {
OurMockito.stub (externalService, "concat", "dummy");
String returned = externalService.concat (null, null);

[62]

Chapter 2

assertEquals ("dummy", returned) ;

@Test

public void stubbing error conditions() throws Exception {
OurMockito.stub (externalService, "divide", 0);
int returned = externalService.divide (0, 0);
assertEquals (0, returned) ;

@Test
public void stubbing exception() throws Exception {
OurMockito.stub (externalService, "someStrangeOperation", new
RuntimeException ("Just blow this up!"));
externalService.someStrangeOperation (null) ;

}
The Externalservice method is mocked using following construct:

ExternalService externalService = (ExternalService)OurMockito.mock
(ExternalService.class) ;

The concat method is stubbed to return a string "dummy", the divide method is
stubbed to return a hardcoded integer 0, and the someStrangeOperation method
is stubbed to throw a Runt imeException. The following is the JUnit output:

4 pe] com.packt.mockito.architecture. OurfockTest
gEl stubbing_metheod (0.000)
gEl stubbing_error_conditions (0,000 <)
gel stubbing_exception (0,000 5]

I

A

Failure Trace B

java.lang.RuntimeException: Just blow this up!
at com.packt.mockito.architecture, QurMockTest stubbing .

.=
[-L

Note that the third test throws the Runt imeException ("Just blow
s this up!").

[63]

Socializing with Mockito

Summary

This chapter covered the Mockito overview, unit test qualities, and the significance of
Mockito in unit testing. It explained and provided examples of stubbing, answering,
throwing exceptions, argument matcher, and method call verification. It also covered
the Mockito architecture.

By now, you should be able to verify method calls, stub methods, and throw
exceptions using the Mockito framework.

The next chapter, Accelerating Mockito, focuses on advanced Mockito topics.

[64]

Accelerating Mockito

" Any sufficiently advanced technology is indistinguishable from magic."
- Arthur C. Clarke

This chapter explores the advanced topics of the Mockito framework. Using
Mockito's advanced features, we can stub out void methods, capture arguments
passed to the stubbed methods and assert the argument values, verify the invocation
order to check that the collaborators are accessed in proper order, spy a real

object and set expectation on the spy object in the legacy code, and change

mocking behavior.

The following topics are covered in this chapter:

* Void methods

* Annotations

* Argument captor

* Verifying an invocation order

* Spying an object

* Changing default Mockito settings
* Resetting mock objects

* Inline stubbing

* Mock details

Accelerating Mockito

Learning advanced Mockito features

Chapter 2, Socializing with Mockito, explained the external dependencies and provided
examples of basic Mockito features, such as stubbing method calls, throwing
exceptions, matching arguments, verifying method invocations, and answering
method calls.

Mockito provides a fluent API for mocking Java objects. It offers a collection of
advanced features for advanced users. This section deals with the advanced Mockito
features and answers several questions, such as how to change the Mockito settings
to return smart null values instead of default return types, how to reset a mock object
to clear all previous information, how to determine whether an object is a spy or a
mock, and how to capture arguments passed to a mock object and verify the values.

The following sections cover the advanced Mockito APIs.

Working with void methods

Unit testing void methods is difficult. Conventional unit tests prepare data, pass
values to a method, and then assert the return type to verify the behavior of the code.
But when a method doesn't return a value but only changes the internal state of the
object under test, it becomes difficult to decide what to assert. Conventional unit
tests work with direct input and output, but void methods need to work with
indirect output.

In this section, we'll examine a legacy servlet code and write unit test for the legacy
code. To unit test a servlet code, you need the Servlet-apixX.jar, Junit JAR file,
and the Mockito JAR file. To download servlet-api.<version numbers.jar,
you can visit the Oracle URL at http://www.oracle.com/technetwork/java/
javasebusiness/downloads/java-archive-downloads-eeplat-419426.html,
and we already have the JUnit and Mockito JAR files. On the other hand, you can
download the code and associated JAR files for this chapter from the Packt website.

The following servlet code acts as a front controller. It intercepts all the web requests
and delegates these requests to appropriate resources. The DemoController servlet

extends from HttpServlet and has a dependency on a LoginController class. The
constructor creates an instance of LoginController, as shown in the following code:

@WebServlet ("/DemoController")
public class DemoController extends HttpServlet {
private LoginController loginController;
public DemoController () {
loginController = new LoginController (new LDAPManagerImpl ()) ;

}
}

[66]

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-eeplat-419426.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-eeplat-419426.html

Chapter 3

The dopPost () and doGet () methods are inherited from HttpServlet.
The doPost () method intercepts the HTTP POST requests, and delegates
calls to the doGet () method.

protected void doPost (HttpServletRequest request, HttpServlet
Response response) throws ServletException, IOException

doGet (request, response);

}

The doGet () method intercepts all the HTTP GET requests, and depending on the
request context URL, it routes the requests to appropriate handlers. Initially, the
login.jsp page is opened for user login. On submission of the Login form, the
/logon.do action is taken. The 1loginController class handles the /logon.do
request, and all other requests are routed to the error page. The following is the
body of the doGet () method:

protected void doGet (HttpServletRequest req, HttpServletResponse
res) throws ServletException, IOException {
String urlContext = reg.getServletPath() ;
if (urlContext.equals ("/"))
reqg.getRequestDispatcher ("login.jsp") . forward (req, res);
}else if (urlContext.equals("/logon.do")) {
loginController.process (req, res);

}else {
req.setAttribute ("error", "Invalid request path
'"rurlContext+"'") ;
reqg.getRequestDispatcher ("error.jsp") . forward (req, res);

}

The LoginController class has a dependency on LDAPManager for user validation.
This class handles the login request, retrieves the username and encrypted password
from the HTTP request, and asks the LDAPManager to validate whether the user
exists or not. The following is the LoginController class:

public class LoginController ({
private final LDAPManager ldapManager;

public LoginController (LDAPManager ldapMngr) {
this.ldapManager = ldapMngr;

[67]

Accelerating Mockito

The process () method delegates user validation to LDAPManager and if the user

is valid, then it creates a new session, puts the user information to the session, and
routes the user to the home page. However, if the username or password is invalid,
it forwards the request back to the login page.

public void process (HttpServletRequest req, HttpServletResponse
res) throws ServletException, IOException {
String userName = reqg.getParameter ("userName") ;

String encrypterPassword = req.getParameter
("encrypterPassword") ;

if (ldapManager.isValidUser (userName, encrypterPassword)) {
reg.getSession(true) .setAttribute ("user", userName) ;
reg.getRequestDispatcher ("home.jsp") . forward(req, res);

} else {
reqg.setAttribute ("error", "Invalid user name or password") ;
reg.getRequestDispatcher ("login.jsp") . forward (req, res);

}

The process () method doesn't return any value, but validates user login, and
on successful login, it routes the user to the home page. How can we unit test
this behavior? We can verify that the isvaliduser () method of LDAPManager is
invoked, then check that the username is put in the session, and confirm that the
request is dispatched to the home. jsp page.

We learned about the mocking object and verifying method invocation using the
verify () method in Chapter 2, Socializing with Mockito. Here, we'll create a mock
HttpServletRequest, HttpServletResponse, and an LDAPManager and verify that
the actions are taken. We'll stub the isvaliduser method of LDAPManager to return
true to unit test the successful user login and return false to unit test the invalid
login scenario. The following is the JUnit setup for the LoginController class:

package com.packt.mockito.advanced.voidmethods;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.junit.Before;

import org.junit.Test;

import org.mockito.Mock;

import org.mockito.MockitoAnnotations;

public class LoginControllerTest {
private LoginController controller;
private @Mock HttpServletRequest request;
private @Mock HttpServletResponse response;
private @Mock LDAPManager ldapManager;

[68]

Chapter 3

@Before
public void beforeEveryTest () {
MockitoAnnotations.initMocks (this) ;
controller = new LoginController (ldapManager) ;

@Test

public void when valid user credentials for login Then
routes_to_home page () {

}

@Test

public void when invalid user credentials Then
routes_to_login page () {

}
}

Mock objects are instantiated by the MockitoAnnotations.initMocks (this)
instance in the beforeEveryTest method. Two empty test methods are created

for unit testing the valid and invalid login, and the sanity checking of the mock
objects creation. We'll start with the happy path. Modify the when _valid user_
credentials for login Then routes to home page () test, and then we'll
modify the when_invalid_user credentials_Then routes_to_login_page test.

After successful login, the process () method creates a user session, puts the user
information to the session, and then dispatches the request. Hence, for this, we need
to create a mock HttpSession object and a RequestDispatcher object:

@Mock HttpSession session;
@Mock RequestDispatcher dispatcher;

We modify the happy path test to verify successful login. Happy path unit tests can
verify the most obvious things, such as when a valid user ID and password is passed,
the user can login; but when we test complicated business conditions, such as an
invalid password or an expired password, we call it the alternate path or sad path.
The following is the modified test:

@Test
public void when valid user credentials for login Then
routes_to_home page() throws Exception{

verify(ldapManager) .isValidUser (anyString () ,anyStrin());
verify(request) .getSession(true);

verify(session) .setAttribute (anyString(), anyString()):;
verify (request) .getRequestDispatcher (eq("home.jsp"));
verify(dispatcher) .forward(request, response);

[69]

Accelerating Mockito

We are verifying a successful login that requires a user session to be created, a
session attribute to be set, a request dispatcher object to be created for the home page
("home . jsp"), and the request dispatcher to be forwarded to the home page. The
JUnit test verifies that things are set up and executed sequentially. Similarly, modify
the other test to unit test the invalid login. The following is the modified test:

@Test
public void when invalid user credentials Then routes to
login page() throws Exception({

verify (request) .getRequestDispatcher (eq("login.jsp"));
verify (dispatcher) . forward (request, response);

}

The following output is shown in the Eclipse JUnit runner when we run the
unit tests:

4 @t com.packt.mockito.advanced.voidmethods. LoginControllerTest [Runner JUnit 4] (0.205 =)
g when_valid_user_credentials_for_login_Then_routes_to_home_page (0175 s
gl when_invalid_user_credentials_Then_routes_to_login_page (0,022 <)

We need to invoke the process () method and modify the first test to stub
LDAPManager to return true in order to simulate a successful login.
The following is the modified test:

@Test
public void when valid user credentials for login Then routes
_to_home page () throws Exception{

when (ldapManager.isValidUser (anyString (), anyString()))
.thenReturn (true) ;

when (request.getSession(true)) .thenReturn(session) ;

when (request.getRequestDispatcher (anyString()))
.thenReturn (dispatcher) ;

when (request.getParameter (anyString()))
.thenReturn ("user", "pwd") ;

controller.process (request, response) ;

verify (request) .getSession(true) ;
verify (session) .setAttribute (anyString (), anyString());

verify

(
(
(request) .getRequestDispatcher (eg("home.jsp")) ;
(

verify (dispatcher) .forward (request, response) ;

[70]

Chapter 3

The isvalidUser method of the 1dapManager is stubbed to return true, request.
getSession () is stubbed to return a mock HttpSession object, request.
getRequestDispatcher () is stubbed to return a mock RequestDispatcher, and
finally, the request .getParameter method is stubbed to return "user" and then
"pwd". When we run the tests again, the first test passes! The following is the

test output:

4] com.packt.mockito.advanced.voidmethods.LoginControllerTest [Funner: JUnit 4] (0.210 <) I
gl when_valid_user_credentials_for_login_Then_routes_to_home_page (0.201 =)
gl when_invalid_user_credentials_Then_routes_to_login_page (0.009 5]

We must modify the second test to stub the isvaliduser method to return false,
stub the request .getRequestDispatcher () to return a mock RequestDispatcher,
and finally, stub the request . getParameter method to return "user" and then
"pwd". The following is the modified test:

@Test
public void when invalid user credentials Then routes to
_login page() throws Exception{
when (1ldapManager.isValidUser (anyString (), anyString()))
.thenReturn (false) ;
when (request.getRequestDispatcher (anyString()))
.thenReturn (dispatcher) ;
when (request.getParameter (anyString()))
.thenReturn ("user", "pwd") ;

controller.process (request, response) ;

verify (request) .getRequestDispatcher (eg("login.jsp")) ;
verify (dispatcher) .forward (request, response) ;

}

When we run the tests, we get a green bar as shown in the following screenshot:

Finished after 0.193 seconds

Runs: 2/2 B Errors: 0 B Failures: 0

4 |Fie] com.packt.mockito.advanced voidmethods.LeginCentrollerTest [Runner: JUnit 4]
gl when_valid_user_credentials_for_login_Then_routes_to_heme_page (0,160 5]
el when_invalid_user_credentials_Then_routes_to_legin_page (0.003 =)

[71]

Accelerating Mockito

We learned how to unit test void methods. Revisit the tests; you will find duplicate
code in the test methods, such as stubbing the get Parameter () method or stubbing
the getRequestDispatcher () method. You can move the stubbing calls to the
beforeEveryTest method to clean the test code.

The following section explores the concept of exception handling for void methods.

Throwing exceptions from void methods

In the preceding example, the LoginController class calls the LDAPManager for
user validation. The web application fails if the LDAPManager throws an exception.
The DemoController servlet is the gateway; it should handle any unwanted
exceptions and show a proper error message to the user. We have to find a
mechanism to handle exceptions.

We'll create a unit test for the DemoController servlet. To recreate an exceptional
condition, we have to stub the LoginController class to throw an exception, but
the problem is the DemoController constructor. The constructor instantiates the
LoginController class, so we cannot mock the controller. We can refactor the
DemoController constructor to pass a mock instant of the LoginController class.
There are several ways to achieve this; for now, we'll add a constructor to pass

the mocked LoginController class. We cannot remove the default constructor,
otherwise the servlet container will fail to instantiate the servlet. Servlets run in

a container and the container maintains the servlet's lifecycle. The container
invokes the default constructor to instantiate a servlet instance. If we remove the
default constructor, the container will fail to create the servlet. The following is the
modified code:

@WebServlet ("/DemoController")
public class DemoController extends HttpServlet {
private final LoginController loginController;

public DemoController (LoginController loginController) {
this.loginController = loginController;
}
public DemoController () {
loginController = new LoginController (new LDAPManagerImpl ()) ;
}
}

[72]

Chapter 3

The following is the empty unit test for the DemoController constructor:

public class DemoControllerTest {
DemoController controller;
@Mock LoginController loginController;

@Before public void beforeEveryTest(){
MockitoAnnotations.initMocks (this) ;
controller = new DemoController (loginController) ;

}

We'll modify the code to handle the exceptions and route the request to an
error page. After catching the exception, the servlet will dispatch the request
to the error page. So we need to create a mock HttpServletRequest object,
an HttpServletResponse object, and a RequestDispatcher object:

@Mock HttpServletRequest request;
@Mock HttpServletResponse response;
@Mock RequestDispatcher dispatcher;

Add the following test to simulate the scenario:

@Test
public void when subsystem throws exception Then routes to_
error_page () throws Exception {

verify (request) .getRequestDispatcher (eq("error.jsp")) ;
verify (dispatcher) . forward (request, respomnse);

}

We are verifying the request dispatcher creation for the error. jsp error page.
The LoginController class needs to throw an exception. The Mockito convention
for throwing an exception from a void method is as follows:

doThrow (exception) .when (mockObject) . someVoidMethod () ;

We'll modify the test to stub the process () method in order to throw an exception.
The following is the modified test code:

@Test
public void when subsystem throws exception Then routes to
_error _page () throws Exception {

doThrow (new IllegalStateException ("LDAP error")).
when (loginController) .process (request, response);
when (request.getServletPath()) .thenReturn("/logon.do") ;

[73]

Accelerating Mockito

when (request.getRequestDispatcher (anyString()))
.thenReturn (dispatcher) ;

controller.doGet (request, response) ;
verify (request) .getRequestDispatcher (eg("error.jsp")) ;
verify (dispatcher) .forward (request, response) ;

}

When we run the test, it fails for an unhandled exception as exception handling has
not been done yet. The following is the JUnit output:

Runs: 1/1 B Errors: 1 B Failures: 0
a E?_| com.packt.mockito.advancedvoidmethods.DemoControllerTest [Runner JUnit 4] (0173 <)

E,E'—_l when_subsystern_throws_exception_Then_routes_to_error_page_ (0,173 s5)

Failure Trace =

javalanglllegalStateException: LDAP error

.=
o

at com.packt mockito.advanced voidmetheds.DemoController.doGetiDemoCeontroller.java:31)

Modify the DemoController constructor to handle exceptions. The following is the
modified code:

protected void doGet (HttpServletRequest req, HttpServletResponse
res) throws ServletException, IOException {
try {
String urlContext = reg.getServletPath() ;
if (urlContext.equals("/")) {
reqg.getRequestDispatcher ("login.jsp") . forward (req, res);
} else if (urlContext.equals("/logon.do")) ({
loginController.process (req, res);

} else {
reqg.setAttribute ("error", "Invalid request path '" +
urlContext + "'");

reqg.getRequestDispatcher ("error.jsp") . forward (req, res);
}
} catch (Exception ex) {
req.setAttribute ("error", ex.getMessage()):;
reqg.getRequestDispatcher ("error.jsp") . forward(req, res);

[74]

Chapter 3

Rerunning the test passes execution; the following is the test output:

Run= 171 B Errors: 0 B Failures: 0

4 |gje] com.packt.mockito.advanced voidmethods.DemoControllerTest
el when_subsystern_throws_exception_Then_routes_to_error_page_ (0.183 5]

Working with void method callbacks

An external code dependency may process data in a void method, for example, it
may send an e-mail or update a database row. We can easily stub a void method

by mocking the dependency, but at times, void methods may change the input
argument object's attribute, for example, it may set the error code of an Error object
passed in as an argument, and we may use the modified value in our calculation.

In this scenario, if we stub the void method, it doesn't help us to modify or add the
stubbed method's argument attribute. As a result, our test might either fail or some
portion of the code might remain untested.

Consider the exception handling code for DemoController. It retrieves the error
message of the exception and passes the message to the end users, as the message
might not be useful to the business users; it doesn't make any sense to us if we see a
NullPointerException error while booking a movie ticket. Instead of passing the
raw business exception to the user, the system should analyze the error message,
form a useful error message, and pass a meaningful message to the end user.

We'll modify the DemoController code to analyze the StackTrace method, retrieve
an error message code for the trace, look up the code for a meaningful error message,
and pass the message to the user. We'll create an Error object with an array of
StackTraceElement and an errorCode string. The following is the code:

public class Error {
private StackTraceElement [] trace;
private String errorCode;
//Getters and setters are ignored for brevity

}

[75]

Accelerating Mockito

An ErrorHandler interface takes the Error object, maps the StackTraceElements
method to an errorCode string, and sets the code back to the Error object.
The following is the code body:

public interface ErrorHandler ({

void mapTo (Error error) ;

}

The MessageRepository interface looks up the error code and retrieves a meaningful
message from the database. The following is the MessageRepository class:

public interface MessageRepository {
String lookUp (String... errorCode) ;

}

The following modified DemoController code invokes the ErrorHandler
and MessageRepository interface to get a meaningful message, and passes
the message to the user.

} catch (Exception ex) ({
String errorMsg = ex.getMessage() ;
Error errorDto = new Error();
errorDto.setTrace (ex.getStackTrace()) ;
errorHandler .mapTo (errorDto) ;

if (errorDto.getErrorCode () != null) {

errorMsg = messageRepository.lookUp (errorDto.
getErrorCode()) ;

}
reqg.setAttribute ("error", errorMsg) ;
reg.getRequestDispatcher ("error.jsp") . forward (req, res);

}

We ignored the rest of the method and dependencies for brevity. You can download
the code for details. The mapTo method takes an Error object and populates the
errorCode string of the Error object. If no matching errorcode string is found, the
errorCode remains as it is. If the errorcode string is found, the errorcode string is
passed to messageRepository for an error message lookup.

[76]

Chapter 3

When we mock the dependencies (errorHandler and messageRepository) and
rerun the tests, some portion remains untested. The following is the screenshot of
the untested code:

} catch (Exception ex) {

String errorMsg = ex.getMessage();
Error errorDto = new Error();
errordandler.mapTo(errorDto);

1t (errorDto.getErrorCode() != null){
errorMsg = messageRepository.lookUp(errorDto.getErrorCode()).;

req.setAttribute(error”, errormsg)s
req.getRequestDispatcher("error.jsp”).forward(req, res);

We should modify the Error object from the void mapTo method to unit test the
untested line. The mapTo method looks up the database to map a StackTrace
method with an error code, so we must mock out the database call and stub the void
method. The following are reasons behind mocking the database call, and you must
configure your tests to adhere to these principles:

Fast execution: Tests should be executed extremely fast, so that they can
provide quick feedback. Would you care to wait for a build system that takes
2 hours to finish execution? This means if a test fails, you have to wait for

2 hours to verify your fix.

Tests should be reliable: Tests should fail if the production code is broken.
Your tests will be considered unreliable in the following situations:

o

You break the production logic, but the tests pass
° You don't touch the production code, but your tests still fail
In-memory data dependent: Tests should depend on in-memory data
rather than pulling data from an external source, for instance, accessing
the database for data can fail a test if the expected data is not present in
the database for any reason, such as, if someone has deleted the data.

However, if we stub the void method, how can we set the errorcode string to the
Error object? Also, we cannot directly set the Error object attributes as the object is
created inside the catch block.

[77]

Accelerating Mockito

The resolution is Mockito's doAnswer () method. The doAnswer () method can
intercept the void method call and access the void method arguments and the mock
object. So, we can create our callback Answer implementation, access the Error object
passed as an argument, and set an errorCode string to it. The following is the syntax
for doAnswer ():

doAnswer (answer) .when (mock) . someVoidMethod () ;

We'll create an anonymous Answer object , access the Error object, and set the
errorCode string. The following is the code:

@Test

public void when subsystem throws any exception Then finds
error message and routes to error page () throws Exception {

doThrow (new IllegalStateException ("LDAP error")) .when
(loginController) .process (request, response) ;

doAnswer (new Answer<Object>() {
@Override

public Object answer (InvocationOnMock invocation) throws
Throwable {

Error err = (Error)invocation.getArguments() [0];
err.setErrorCode ("123");
return err;
}
}

) .when (errorHandler) .mapTo (isA (Error.class)) ;

when (request.getServletPath()) .thenReturn("/logon.do") ;

when (request .getRequestDispatcher (anyString()))
.thenReturn (dispatcher) ;

controller.doGet (request, response) ;

verify (request) .getRequestDispatcher (eq("error.jsp")) ;
verify (dispatcher) . forward (request, response) ;

[78]

Chapter 3

The preceding change covers the untested lines. The following screenshot shows the
test coverage output:

String errorMsg = ex.getMessage();
Error errorDto = new Error();
errorDto.setTrace(ex.getStackTrace());
errorHandler.mapTo(errorDto);

if(errorDto.getErrorCode() != null){
errorMsg = messageRepository.lookUp(errorDto.getErrorCode());
h

req.setAttribute("error™, errorMsg);
req.getRequestDispatcher(“error.jsp”).forward(req, res);

Learning doCallRealMethod and doNothing

In this section, we'll explore two methods, namely, doNothing and
doCallRealMethod.

The doNothing () method does nothing. By default, when we create a mock object
and call a void method on that mock object, the void method does not do anything,
or rather, it is stubbed by default, but still, we stub void methods using doNothing ()
for void method chaining. If you need consecutive calls on a void method, the first
call to throw an error, the next call to do nothing, and then the call after that to
perform some logic using doAnswer (), then follow the ensuing syntax:

doThrow (new RuntimeException()) .
doNothing () .

doAnswer (someAnswer) .

when (mock) .someVoidMethod () ;

The docallrRealMethod () method is used when you want to call the real
implementation of a method on a mock object. The following is the syntax:

doCallRealMethod () .when (mock) . someVoidMethod () ;

Exploring doReturn

The doreturn () method is like thenReturn (), but this is used only when

when (mock) . thenReturn (return) cannot be used. The when () . thenReturn ()
method is more readable than doReturn (). Also, doReturn () is not type safe. The
thenReturn method checks method return types and raises a compilation error if an
unsafe type is passed. You can use dorReturn () when working with spy objects. Here
is the syntax for using the doReturn () test:

doReturn (value) .when (mock) .method (argument) ;

[79]

Accelerating Mockito

The following code snippet provides an example of unsafe usage of doReturn:

@Test

public void when do return is not safe() throws Exception ({
when (request.getServletPath()) .thenReturn("/logon.do") ;
assertEquals ("/logon.do", request.getServletPath());

doReturn(1.111d) .when (request.getServletPath()) ;
request.getServletPath() ;

}

The request.getServletpPath () method returns a string value. If we try to stub
the request .getServletPath () method with a double using thenkReturn, the
Java compiler will complain about the return type; but if we use dorReturn and
return a double value, the test fails at runtime. So doReturn has two drawbacks;
it is unreadable and error prone. The following is the test output:

Runs: 3/3 B Errors: 1 B Failures: 0

4 E?_| com.packt.mockite.advanced.voidmethods.DemoControllerTest [Runner JUnit 4] (0.270 5)
E,E'—_l when_subsystem_throws_any_exception_Then_finds_error_message_and_routes_to_error_page_ (0192 5)
E,E'—_l when_subsystem_throws_any_exception_Then_routes_to_error_page_ (0.003 5)
;;'E when_do_return_is_not_safe (0.074 s)

4 n k

The following screenshot shows the failure trace:

= Failure Trace
|

& org.mockito.exceptions.misusing UnfinishedStubbingException:
Unfinished stubbing detected here:
= -» at com.packt.mockito.advanced.voidmethods.DemoControllerTest,
when_do_return_is_not_safe(DemoControllerT est.java:79)
E.g. thenReturn() rmay be missing.
Exarmnples of correct stubbing:
when{mock.isOk()).thenReturnitrue):
when(mockisOk().thenThrow({exception);

doThrowi{exception).when(mock).someVoidMethod();

The doreturn method becomes handy with spy objects. We'll explore doReturn in
the spy section.

[80]

Chapter 3

Verifying arguments using ArgumentCaptor

An ArgumentCaptor object verifies the arguments passed to a stubbed method.
Sometimes, we create an object in our code under test and then pass it to a method
on a mocked dependency, but never return it. Argument captors let us directly
access these values provided to our mocks in order to examine them more closely.
An ArgumentCaptor object provides an API to test the computed value.

In our exception handling code, we create an Error object, set exception trace to the
object, invoke the ErrorHandler interface to map the Error object to an errorCode
string, and finally, call the MessageRepository class to return a meaningful

error message for the errorcode string. An ArgumentCaptor can return to

us the argument details passed to a stubbed method.

Mockito verifies argument values in natural Java style by using the equals ()
method. This is also the recommended way for matching arguments because it
makes tests clean and simple. In some situations though, it is helpful to assert on
certain arguments after the actual verification.

An ArgumentCaptor object is defined as follows:

ArgumentCaptor<T> argCaptor= ArgumentCaptor.forClass(T.class) ;
Where T is the type of argument, such as a string or a user-defined class.

The following syntax is used to capture arguments:

verify (mockObject) .methodA (argCaptor.capture()) ;

If an ArgumentCaptor object captures arguments for multiple invocations, the
captured values can be retrieved by calling the getAl1lvalues () method. The
getAllvalues () method returns List<T> and the getvalue () method returns T,
which is the last method invocation result. Here, T is the type of argument class,
such as an integer or any Java class type.

The following code uses an ArgumentCaptor to verify the argument passed into the
lookUp method.

ArgumentCaptor<String> captor = ArgumentCaptor.forClass
(String.class) ;

verify (repository) .lookUp (captor.capture()) ;
assertEquals ("123", captor.getValue()) ;

[81]

Accelerating Mockito

Working with generic collection arguments

The following example demonstrates how to capture collection arguments. Create
an interface and add a method to accept a list of strings. The following is the code:

interface Service({
void call (List<String> args) ;

}

Try to create an ArgumentCapture for the list of strings. You cannot create a

class for List<String>.class, so you can try to use List .class. The following
screenshot shows you the Java compilation error while converting List.class to
List<Strings>:

@Test

public woid when_captures_collections() throws Exception {
ArgumentCaptor<List<String»> captor
= ArgumentCaptor.forClassiList.class);

; £ Type mismatch: cannot convert from ArgumentCaptor<List> to ArgumentCaptor«<List=String> =
interf|1 quick fix available:
} Y & Change type of 'captor' to ‘ArgumentCaptor<List>'

Press ‘F2' for focus

The following code snippet creates List .class and casts it to
Class<List<String>>, and passes it to ArgumentCaptor. This will give

you warnings about unsafe casts; you can suppress the warning by annotating
the construct with @SuppressWarnings ("unchecked"):

@Test
public void when captures collections() throws Exception {
Class<List<String>> listClass = (Class<List<String>>)

(Class)List.class;

ArgumentCaptor<List<String>> captor = ArgumentCaptor.forClass
(listClass) ;

}

The following test provides an example of such a use. Here, service is a mocked
implementation of the Service interface:

@Test public void when captures collections () {

Class<List<String>> listClass = (Class<List<String>>) (Class)
List.class;

ArgumentCaptor<List<String>> captor = ArgumentCaptor.forClass
(listClass) ;

[82]

Chapter 3

service.call (Arrays.asList ("a","b")) ;
verify(service) .call (captor.capture());
assertTrue (captor.getValue() .
containsAll (Arrays.asList("a","b")));

Working with variable arguments and arrays

The following example shows you how to capture an argument of type arrays or
var-args (T... t).

Modify the MessageRepository class to accept variable arguments of strings as
errorCodes. The following is the modified code:

public interface MessageRepository ({
String lookUp (String... errorCode) ;

}

Create a test to pass an array to the 1ookUp method and capture values. The
following is the code snippet:

@Test
public void when capturing variable args() throws Exception {
String[] errorCodes = {"a","b",6 "c"};

ArgumentCaptor<String> captor = ArgumentCaptor.forClass
(String.class) ;

repository.lookUp (errorCodes) ;

verify (repository) .lookUp (captor.capture () ,captor.capture ()
,captor.capture()) ;

assertTrue (captor.getAllValues () .containsAll (Arrays.asList
(errorCodes))) ;

}
The following Mockito URL has the fix for the variable argument capture:

https://github.com/mockito/mockito/commit/
e43a958833df5aa46f54d7cd83blcl7fal9cc5dce

ArgumentCaptor is modified in a default branch to capture variable arguments.
The following is the code snippet:

verify (messageRepository) . lookUp (argumentCaptor.captureVararg()) ;

[83]

https://github.com/mockito/mockito/commit/e43a958833df5aa46f54d7cd83b1c17fa19cc5dc
https://github.com/mockito/mockito/commit/e43a958833df5aa46f54d7cd83b1c17fa19cc5dc

Accelerating Mockito

Note that this fix is not available in the latest Mockito build 1.9.5.

Verifying an invocation order

Mockito facilitates verification if interactions with a mock were performed in a given
order using the 1norder API. It allows us to create an Inorder of mocks and verify
the call order of all the calls of all the mocks.

InOrder is created with mock object using the following syntax:

InOrder inOrder=inOrder (mockl,mock2, ...mockN) ;

Method invocation order is checked using the following syntax:

inOrder.verify (mockl) .methodCalll () ;
inOrder.verify (mock2) .methodCall2 () ;

If methodcall2 () of mock2 is invoked before methodcalll () of mockl, the test fails.
The following test verifies the test order:

@Test

public void when inorder() throws Exception {
request.getServletPath() ;
service.call (Arrays.asList ("a","b")) ;
InOrder inOrder=inOrder (request, service) ;
inOrder.verify (service) .call (anyList ()) ;
inOrder.verify (request) .getServletPath() ;

}

The test verifies that the call () method is invoked before the getServletPath ()
method, but the methods were invoked in reverse order, so the test will fail. The
following screenshot demonstrates the error:

= Failure Trace LT

1 org.mockito.exceptions.verification VerificationInCrderFailure:

Werification in order failure
Wanted but not invoked:
request.getServietPath();

=-»at com.packt. mockito.advanced voidmethods. DermoControllerTest.when_inarder

[84]

Chapter 3

Reordering the verification sequence in the following manner fixes the test:

@Test public void when inorder () throws Exception {
request.getServletPath() ;
service.call (Arrays.asList ("a","b")) ;
InOrder inOrder=inOrder (request, service) ;
inOrder.verify (request) .getServletPath() ;
inOrder.verify (service) .call (anyList ()) ;

Spying objects

A Mockito spy allows us to use real objects instead of mocks by replacing some of
the methods with stubbed ones. This behavior allows us to test the legacy code.

The spy is useful for legacy code as you cannot invoke a few testing impediment
methods from your code under test, and also, you cannot mock a class that needs to
be tested. A spy can stub these testing impediments without mocking the code under
test. A spy can stub the nontestable methods so that other methods can be tested
easily. You can also use spies without doing any stubbing and just use them to verify
interactions between two totally real objects.

Once an expectation is set for a method on a spy object, the spy object no longer
returns the original value. It starts returning the stubbed value, but still exhibits
the original behavior for the other methods that are not stubbed.

Mockito can create a spy for a real object. Unlike stubbing, when we use the spy
object, real methods are called (unless a method was stubbed).

Spy is also known as partial mock. The following is the declaration of spy:

SomeClass realObject = new RealImplemenation() ;
SomeClass spyObject = spy(realObject) ;

The following is a self-explanatory example of spy:

@Test
public void when spying real objects() throws Exception {
Error error = new Error () ;

error.setErrorCode ("Q123") ;

Error spyError = spy(error) ;

//call real method from spy

assertEquals ("Q123", spyError.getErrorCode()) ;

//Changing value using spy
spyError.setErrorCode (null) ;

//verify spy has the changed value

[85]

Accelerating Mockito

assertEquals (null, spyError.getErrorCode()) ;

//Stubbing method
when (spyError.getErrorCode ()) . thenReturn ("E456") ;

//Changing value using spy
spyError.setErrorCode (null) ;

//Stubbed method value E456 is returned NOT NULL
assertNotEquals (null, spyError.getErrorCode()) ;

//Stubbed method value E456
assertEquals ("E456", spyError.getErrorCode()) ;

}

Spying real objects and calling real methods on a spy object has side effects;
to immunize this side effect, use doReturn () instead of thenReturn().

The following code describes the side effect of spying and calling thenReturn():

@Test

public void when doReturn fails() throws Exception ({
List<String> list = new ArrayList<String>();
List<String> spy = spy(list);
//impossible the real list.get(0) is called and fails
//with IndexOutofBoundsException, as the list is empty
when (spy.get (0)) .thenReturn ("not reachable");

}

The spy object calls a real method when trying to stub get (index), and
unlike the mock objects, the real method was called and it failed with an
ArrayIndexOutOfBounds error. The following screenshot displays the
failure message:

4 5?_1_:om.paclct.mcn_ckito.advanced.xr_uznidme?:hods.DemoCDntroIIerTest [Runner: JUnit 4] (0.301 5]

g] when_doReturn_fails (0,063 s)

Ef—l—_l when_subsystem_throws_any_exception_Then_routes_to_error_page_ (0,004 5]
1 . . .

»

m

I -

=

i’II I*

Failure Trace
javalangIndexOutOfBoundsException: Index: 0, Size: 0
at java.util. ArrayList.rangeCheck(Unknown Source)

at java.util. ArrayList.get(Unknown Source)

e m S0 m

at com.packt.mockito.advanced voidmethods,DemoContrellerTest when_doReturn_fails

[86]

Chapter 3

This failure can be protected using doreturn (), as shown is the following code:

@Test public void when doReturn fails() throws Exception {
List<String> list = new ArrayList<String>();
List<String> spy = spy(list);

//doReturn fixed the issue
doReturn ("now reachable") .when (spy) .get (0) ;
assertEquals ("now reachable", spy.get(0));

Exploring Mockito annotations

We learned that Mockito supports the @Mock annotation for mocking. Like @Mock,
Mockito offers three useful annotations, namely, @spy, @Captor, and @InjectMocks:

* @captor: This simplifies the creation of ArgumentCaptor, and this is useful
when the argument to capture is a horrible generic class

* @spy: This creates the spy of a given object; use it instead of spy (Object)

* @InjectMocks: It injects mock or spy fields into tested objects automatically
using constructor injection, setter injection, or field injection

The following example demonstrates the @captor annotation:

@RunWith (MockitoJUnitRunner.class)
public class AnnotationTest {

@Captor
ArgumentCaptor<List<String>> captor;
@Mock Service service;

@Test
public void when captor annotation is used() ({
service.call (Arrays.asList ("a","b")) ;
verify (service) .call (captor.capture()) ;
assertTrue (captor.getValue () .containsAll (Arrays.
asList ("a","b"))) ;

}

The annotation creates the ArgumentCaptor object, and we don't need to typecast it
to Class<List<Strings>>.

[87]

Accelerating Mockito

The following example demonstrates the use of the @espy annotation:
@RunWith (MockitoJUnitRunner.class)

public class SpyAnnotationTest {

@Spy
ErrorHandlerImpl errorHandler;

@Test
public void when spy annotation is used() throws Exception ({
assertNotNull (errorHandler) ;

}

A spy object of ErrorHandlerImpl is created automatically for errorHandler. You
cannot create a spy for an interface. The following error message pops up when we
try to create a spy for the ErrorHandler interface:

@Spy
ErrorHandler errorHandler;

The following screenshot displays the error message:

= Failure Trace

1y org.mockito.exceptions. base.MockitoException:

Cannct instantiate a @5py for "errorHandler’ field.
= You haven't provided the instance for spying at field declaration so I tried to construct the instance.
However, [failed because: the type 'ErrorHandler’ is an interface,
Examples of correct usage of @5py:
@5py List mock = new LinkedList();
@5py Foo foo; /fonly if Foo has parameterless constructor
/falso, den't forget about MockitoAnnotations.initMocks();

The following example demonstrates the use of the @InjectMocks annotation.
Here, we'll create a @spy annotation and two emocks annotations. The @InjectMocks
annotation sets the mocks and spy to the real object as a constructor injection.

@RunWith (MockitoJUnitRunner.class)
public class InjectMocksAnnotationTest {

@Mock LoginController loginController;
@Mock MessageRepository repository;
@Spy ErrorHandlerImpl errorHandler;

@InjectMocks

[88]

Chapter 3

DemoController controller;

@Mock HttpServletRequest request;
@Mock HttpServletResponse response;
@Mock RequestDispatcher dispatcher;

@Test
public void when mocks are injected() throws Exception ({
when (request.getServletPath()) .thenReturn("/") ;
when (request.getRequestDispatcher (anyString())) .thenReturn
(dispatcher) ;

controller.doGet (request, response) ;
verify (request) .getRequestDispatcher (eq("login.jsp")) ;
}
}

The DemoController constructor depends on three classes; the preceding
example creates the mock and spy objects and injects them to the
DemoController constructor.

Changing the default Mockito settings

We learned that nonstubbed methods of a mock object return default values,

such as Null for an object and false for a Boolean. However, Mockito allows us
to change the default settings to return other nondefault values; these are basically
preconfigured answers. The following are settings that are allowed:

* RETURNS_DEFAULTS: This is the default setting that returns nul1l for an object,
false for a Boolean, and so on.

* RETURNS_ SMART NULLS: This returns smart nulls, which are stubs that
act like nulls (in that they throw exceptions if you try and call stub.
anyMethod ()), but throw exceptions that are much more useful than normal
NullPointerExceptions by giving you information on which call they came
from and where.

* RETURNS_MOCKS: This returns mock for objects and default value for
primitives. If the object cannot be mocked (such as a final class), a Null
value is returned.

[89]

Accelerating Mockito

* RETURNS_DEEP_STUBS: This returns a deep stub. This is really important for
legacy code where we need to stub the method chaining, for example, when
Foo calls getBar () .getTar () .getName (). Deep stubbing allows Foo to
directly stub the getName () method to return a value. Otherwise, we have
to stub Foo's getBar method to return a mock Bar object, stub the bar's
getTar () method to return a mock Tar object, and finally, stub the Tar's
getName method to return a value.

e caLLS_REAL_METHODS: This calls the corresponding method from the real
implementation of the mocked class.

The following example overrides the default Mockito settings and uses different
return types. Suppose we have the following classes:

class Foo {

Bar bar;

//Getter and setter
class Bar {

Tar tar;

//Getter and setter
class Tar {

private String name;

//Getter and setter

}

The following test case uses the RETURNS_DEFAULTS setting to return a
NULL Bar object:

@Test
public void when default settings() throws Exception ({

Foo fooWithReturnDefault = Mockito.mock (Foo.class,
Mockito.RETURNS DEFAULTS) ;

// default null is returned

assertNull (fooWithReturnDefault.getBar()) ;

}

The following test case uses the RETURNS_SMART NULLS setting to return a smart
NULL object:

@Test
public void when changing default settings to return smartNULLS () {

Foo fooWithSmartNull = Mockito.mock (Foo.class, Mockito.RETURNS
SMART_NULLS);

[90]

Chapter 3

// a smart null is returned
assertNotNull (fooWithSmartNull.getBar()) ;

System.out.println("fooWithSmartNull.getBar() =" + fooWith
SmartNull.getBar());

}
The following is the System. out output:

fooWithSmartNull.getBar () =SmartNull returned by this unstubbed method
call on a mock:foo.getBar() ;

The following test case uses the RETURNS_MOCKS setting to return a mock
object hierarchy:

@Test
public void when changing default settings to return mocks () {

Foo fooWithReturnsMocks = Mockito.mock (Foo.class, Mockito.
RETURNS MOCKS) ;

// a mock is returned

Bar mockBar = fooWithReturnsMocks.getBar() ;

assertNotNull (mockBar) ;

assertNotNull (mockBar.getTar()) ;

assertNotNull (mockBar.getTar () .getName ()) ;

System.out.println ("fooWithReturnsMocks.getBar()=" + mockBar) ;

System.out.println ("fooWithReturnsMocks.getBar () .getTar().
getName():{" + mockBar.getTar().getName()+"}");

}

The RETURNS_MOCKS setting populates the Foo object with a mocked Bar object.
A mocked Bar object has a mocked Tar object and the mocked Tar object has an
empty mocked string name. The following is the output:

fooWithReturnsMocks.getBar () =Mock for Bar, hashCode: 1620275837
fooWithReturnsMocks.getBar () .getTar () .getName () ={}

The following test case uses the RETURNS_DEEP_STUBS setting to return a
deep-stubbed object hierarchy:

@Test
public void when returns deep stub() throws Exception {

Foo fooWithDeepStub = Mockito.mock (Foo.class, Mockito.
RETURNS_DEEP_STUBS);

when (fooWithDeepStub.getBar () .getTar () .getName()) .
thenReturn ("Deep Stub") ;

// a deep stubbed mock is returned

[91]

Accelerating Mockito

System.out.println ("fooWithDeepStub.getBar () .getTar ().
getName () ="+ fooWithDeepStub.getBar () .getTar() .getName()) ;

assertNotNull (fooWithDeepStub.getBar () .getTar () .getName()) ;

}

The RETURNS_DEEP_STUBS setting is very useful for legacy code. In the preceding
example, we had to stub the getName () method of a Tar object, but to stub

the method, we had to mock a series of other objects. Only when we used the
RETURNS_DEEP_STUBS setting could the chaining of the method call stub the
method and other objects.

The following is the print output:

fooWithDeepStub.getBar () .getTar () .getName () =Deep Stub

Resetting mock objects

A static method reset (T..) enables the resetting of mock objects. The reset ()
method clears the stubs.

The following code snippet stubs the getName () method of a mocked Bar object.
After resetting the getName () method, the stubbing gets cleared and starts returning
the default NULL value.

@Test

public void when resetting mocks() throws Exception
Bar bar= Mockito.mock (Bar.class) ;
when (bar.getName ()) . thenReturn ("***mw) ;
assertNotNull (bar.getName()) ;
reset (bar) ;
//Bar is reset, the getName() stub is cleared
assertNull (bar.getName()) ;

}

Resetting mocks is not recommended as it's a sign that your test is probably doing
too much, and you should probably just have another test with fresh mocks instead.

Working with inline stubbing

Mockito allows us to create mocks while stubbing it. Basically, it allows you to
create a stub in one line of code. This can be helpful to keep the test code clean. For
example, some stubs can be created and stubbed during field initialization in a test:

public class InlineStubbing {

Bar bar = when(mock(Bar.class).getTar()).thenReturn (new
Tar()) .getMock () ;

[92]

Chapter 3

@Test

public void when stubbing inline() throws Exception {
assertNotNull (bar) ;
assertNotNull (bar.getTar()) ;

}
}

The bar object is stubbed and created at the same time. This is useful when the bar
object is used in many test cases within the test class. The bar object should always
return a Tar object.

Determining mock details

Sometimes, we need to determine whether an object is a mock or a spy. This
situation can arise when an object uses the @injectMocks annotation; it can inject
a spy or a mock object. We can find out the type using Mockito.mockingDetails.
It can identify whether a particular object is a mock or a spy.

The following example demonstrates the Mockito.mockingDetails APL

The serviceImpl class has two dependencies, namely, Dependency1
and Dependency?2.

class Dependencyl{

}

class Dependency2{

}
The following is the ServiceImpl class:

class ServiceImpl({

private final Dependencyl dependencyl;

private final Dependency2 dependency?2;

public ServiceImpl (Dependencyl dependencyl, Dependency?2
dependency2) {
this.dependencyl = dependencyl;
this.dependency2 = dependency?2;

}

public Dependencyl getDependencyl () {
return dependencyl;

}

public Dependency2 getDependency?2 () {
return dependency2;

}

[93]

Accelerating Mockito

The following test demonstrates the usage of mockingDetails:

import static org.mockito.Mockito.mockingDetails;

@RunWith (MockitoJUnitRunner.class)
public class MockDetailsTest {
@Spy Dependencyl dep;
@Mock Dependencyl depl;
@Mock Dependency2 dep2;
@InjectMocks ServiceImpl service;

@Test public void when determining type() throws Exception ({
assertNotNull (service) ;
assertTrue (mockingDetails (service.getDependency2()) .isMock()) ;
assertTrue (mockingDetails (dep) .isSpy());

}
}

The service object can be populated with a stub or a mock Dependency1.
We verified that Dependency2 is a mock and dep1 is a spy. We can also verify
service.getDependencyl () to check whether a mock or a stub was injected.

Summary

This chapter covered the advanced Mockito framework topics such as working
with void methods, throwing exception from void methods, writing callbacks for
void methods, returning value using doReturn, void method chaining, and calling
original method. It also covered Mockito annotations, verifying arguments using
argument captor, verifying an invocation order, spying objects using spy, changing
default Mockito settings, resetting mock objects, inline stubbing, and mock details.

By now, you should be able to use advanced Mockito features.

The next chapter in line, Behavior-driven Development with Mockito, covers the BDD
concepts, scenarios, test conventions, and examples of BDD with Mockito.

[94]

Behavior-driven Development
with Mockito

"Computer science is no more about computers than astronomy is
about telescopes."
- Edsger Dijkstra

This chapter explores Behavior-driven Development (BDD) and how BDD can help
you minimize project failure risks. The following topics are covered in this chapter:

* Understanding the context of BDD

* Exploring BDD

* Exercising BDD with Mockito

Understanding the context of BDD

This section deals with the software development strategies, drawbacks, and
conquering the shortcomings of traditional approaches. The following strategies
are applied to deliver software products to customers:

* Top-down or waterfall approach
* Bottom-up approach

We'll cover these two approaches in the following sections.

Behavior-driven Development with Mockito

The following key people/roles/stakeholders are involved in software development:

* Customers: They explore the concept and identify the high-level goal of the
system, such as automating the expense claim process

* Analysts: They analyze the requirements, work with the customer to
understand the system, and build the system requirement specifications

* Designers/architects: They visualize the system, design the baseline
architecture, identify the components, interact and handle the nonfunctional
requirements, such as scalability and availability

* Developers: They construct the system from the design and
specification documents

* Testers: They design test cases and verify the implementation

* Operational folks: They install the software as per the
customer's environment

* Maintenance team: They handle bugs and monitor the system's health

* Managers: They act as facilitators and keep track of the progress
and schedule

Exploring the top-down strategy

In the top-down strategy, analysts analyze the requirements and hand over the use
cases / functional specifications to the designers and architects for designing the
system. The architects/designers design the baseline architecture, identify the system
components and interactions, and then pass the design over to the developers for
implementation. The testers then verify the implementation (might report bugs for
fixing), and finally, the software is deployed to the customer's environment.

The following diagram depicts the top-down flow from requirement engineering
to maintenance:

Requirements

Design

Construction (Implementation)

Testing

Installation/deployment

Operations and
maintenance

[96]

Chapter 4

The biggest drawback of this approach is the cost of rework. For instance, if the
development team finds that a requirement is not feasible, they consult the design
or analysis team. Then the architects or analysts look at the issue and rework the
analysis or design. This approach has a cascading effect; the cost of rework is very
high. Customers rarely know what they want before they see the system in action.
Building everything all at once is a quick way to cause your requirements to change.
Even without the difference in cost of requirement changes, you'll have fewer
changes if you write the requirements later in the process, when you have a partially
working product that the customer can see and everybody has more information
about how the product will work.

Exploring the bottom-up strategy

In the bottom-up strategy, the requirement is broken into small chunks and each
chunk is designed, developed, and unit tested separately, and finally, the chunks
are integrated. The individual base elements of the system are first specified in great
detail. These elements are then linked together to form larger subsystems, which

in turn are linked until a complete top-level system is formed. Each subsystem is
developed in isolation from the other subsystems, so integration is very important
in the bottom-up approach. If integration fails, the cost and effort of building the
subsystems gets jeopardized. Suppose you are building a healthcare system with
three subsystems, namely, patient management, receivable management, and the
claims module. If the patient module cannot talk to the claims module, the system
fails. The effort of building the patient management and claims management
subsystems is just wasted. Agile development methodology would suggest building
the functionality feature by feature across subsystems, that is, building a very basic
patient management and claims management subsystem to make the functionality
work initially, and then adding more to both simultaneously, to support each new
feature that is required.

Finding the gaps

In real-life projects, the following is the percentage of feature usage:
* 60 percent of features are never used
* 30 percent of features are occasionally used

* 10 percent of features are frequently used

[97]

Behavior-driven Development with Mockito

However, in the top-down approach, the analyst pays attention and brainstorms
to create system requirements for all the features. In the top-down approach,
time is spent to build a system where 90 percent of features are either not used
or occasionally used. Instead, we can identify the high-value features and start
building the features instead of paying attention to the low priority features,

by using the bottom-up approach.

In the bottom-up approach, subsystems are built in isolation from each other, and
this causes integration problems. If we prioritize the requirements and start with the
highest priority feature, design the feature, build it, unit test it, integrate it, and then
show a demo to the stakeholders (customers, analysts, product managers, and so on),
we can easily identify the gaps and reduce the risk of rework. We can then pick the
next feature and follow the steps (designing, coding, testing, and getting feedback
from the customers), and finally integrate the feature with the existing system. This
reduces the integration issues of the bottom-up approach.

The following figure represents the approach. Each feature is analyzed, designed,
coded, tested, and integrated separately. An example of a requirement could be
login failure error messages appear red and in bold, while a feature could be incorrect
logins are rejected. Typically, it should be a little larger and a useful standalone bit
of functionality, rather than a specific single requirement for that functionality.

Analyze .
Req#l Z> Deploy e
Analyze .
»Z> Deploy FeedbaCk
Analyze :
Req#N Z> Deploy e

Another problem associated with software development is communication;
each stakeholder has a different vocabulary and this causes issues for
common understanding.

The following are the best practices to minimize software delivery risks:

* Focus on high-value, frequently used features.

* Build a common vocabulary for the stakeholders; a domain-specific language
that anybody can understand.

[98]

Chapter 4

* No more big-fat upfront designing. Evolve the design with the
requirements, iteratively.

* Code to satisfy the current requirement. Don't code for a future requirement,
which may or may not be delivered. Follow the YAGNI (You Aren't Going
to Need It) principle.

* Build test the safety net for each requirement.
* Integrate the code with the system and rerun the regression test.

* Get feedback from the stakeholders and make immediate changes.

BDD suggests the preceding best approaches. The following section talks about BDD.

Exploring BDD
BDD is a software engineering process based on Test-driven Development (TDD).
Martin Fowler explains TDD on the following URL:

http://martinfowler.com/bliki/TestDrivenDevelopment.html

BDD combines the best practices of TDD, Domain-driven Development (DDD),
and Object Oriented Programming (OOPs). You can learn about DDD on the
following URL:

http://martinfowler.com/tags/domain%20driven%20design.html

In an agile team, scoping a feature is a mammoth task; the business stakeholders talk
about business interests and the development team talks about technical challenges.

BDD provides a universal language that allows useful communication and feedback
between the stakeholders.

Agile methodologies include Scrum, Lean, Kanban, XP, and so on. Agile
methodologies believe in self-organized teams. You can get more information
about agile development on the following URL:

http://www.versionone.com/Agilel01l/Agile-Development-Methodologies-
Scrum-Kanban-Lean-XP/

Dan North developed BDD and created the JBehave framework for BDD. He defines
BDD as follows:

" Behavior-driven Development is about implementing an application by describing
it from the point of view of its stakeholders."

[99]

http://martinfowler.com/bliki/TestDrivenDevelopment.html
http://martinfowler.com/tags/domain%20driven%20design.html
http://www.versionone.com/Agile101/Agile-Development-Methodologies-Scrum-Kanban-Lean-XP/
http://www.versionone.com/Agile101/Agile-Development-Methodologies-Scrum-Kanban-Lean-XP/

Behavior-driven Development with Mockito

He proposed the following best practices:

e Unit test names should start with the word should and should be written in
order of business value.

* Acceptance tests are different from unit tests; unit tests are written by the
developers whereas acceptance tests are written by analysts and other
stakeholders. Acceptance testing is carried out to assess the system's
acceptance against the business rules. Acceptance tests (AT) should be
written in a user story manner, for example, As a [role] I want [feature] so
that [benefit]. You can get more information about acceptance tests at the
following URL:

http://c2.com/cgi/wiki?AcceptanceTest

* Acceptance criteria should be written in terms of scenarios and implemented
in the following manner:

Given [initial context], when [event occurs], then [ensure some outcomes]

A user story describes a testable requirement, and a scenario defines the
completeness or acceptance criteria of a story.

Let us write a user story for our stock broker simulation:

* Story: A stock is sold in order to maximize the profit. As a stock broker, I want
to sell a stock when the price goes up by 10 percent.

The following is a scenario example:

* Scenario: 10 percent increase in stock price should sell the stock to the
market. Given a customer previously bought 'FB' stocks at $10.00/per share and
he currently has 10 shares left in his portfolio when the 'FB' stock price becomes
$11.00, then I should sell all the 'FB" stocks and the portfolio should have zero
'FB' stocks.

Mockito supports the BDD style of writing tests, using the given-when-then syntax.

Exercising BDD with Mockito

In BDD, given represents the initial context and when represents the event/condition,
but Mockito already has a when style (initial context definition) of method stubbing.
Therefore, when doesn't go well with BDD. Thus, the BDDMockito class introduces an
alias, so that we can stub method calls with the given (Object) method.

[100]

http://c2.com/cgi/wiki?AcceptanceTest

Chapter 4

The following JUnit test is implemented in the BDD style:

@RunWith (MockitoJUnitRunner.class)

public class StockBrokerBDDTest {
@Mock MarketWatcher marketWatcher;
@Mock Portfolio portfolio;

StockBroker broker;

@Before public void setUp() {
broker = new StockBroker (marketWatcher) ;

@Test
public void should sell a stock when price increases
by ten percent ()
Stock aCorp = new Stock ("FB", "FaceBook", new BigDecimal
(11.20)) ;
//Given a customer previously bought 10 'FB' stocks at
//$10.00/per share
given (portfolio.getAvgPrice (isA(Stock.class))) .willReturn (new
BigDecimal ("10.00")) ;

given (marketWatcher.getQuote (eq("FB"))) .willReturn (aCorp) ;

//when the 'FB' stock price becomes $11.00
broker.perform(portfolio, aCorp) ;

//then the 'FB' stocks are sold
verify (portfolio) .sell (aCorp,10) ;

}

Note, the test name starts with a should statement. Mockito's given syntax is used
to set the initial context that the portfolio already has 'FB' stocks bought at
$10.00/ share and the current FB stock price is $11.00.

[101]

Behavior-driven Development with Mockito

The following is the test execution output:

gt JUnit &2 =8
® 5| Q g+ ¥
Finished after 0.728 seconds

Runs: 1f1 B Errors: 0 B Failures: 0

=l Fic] com.packt.trading. StockBrokerBDDTest [unn: t 4] (0.002s)
Fil should_sell_a_stock_when_price_increases_by_ten_percent (0.002 s)

The BDD syntax

The following methods are used in conjunction with the given condition:

* willReturn (a value to be returned): This method returns a given value
* willThrow (a throwable to be thrown): This method throws a
given exception
* will (Answer answer) and willAnswer (Answer answer): These methods
are similar to then (answer) and thenAnswer (answer)
* willCallRealMethod (): This method calls the real method on the
mock object/spy

jMock and EasyMock are the two other Java-based unit testing
frameworks that support mocking for automated unit tests.

% To learn about BDD and JBehave, visit the following URLs:
VS
* http://jbehave.org/
* http://www.infoqg.com/presentations/bdd-dan-north/

Summary

This chapter covered BDD concepts, BDD examples, and how we can write
BDD-style tests with Mockito.

Now, you will be able to practice BDD and write BDD-style unit tests with Mockito.

The next chapter, Unit Testing the Legacy Code with Mockito, will cover the legacy
code, testing impediments, design for testability, and unit testing the legacy code
with Mockito.

[102]

http://jbehave.org/
http://www.infoq.com/presentations/bdd-dan-north/

Unit Testing the Legacy Code
with Mockito

"Legacy code. The phrase strikes disgust in the hearts of programmers. It conjures
images of slogging through a murky swamp of tangled undergrowth with leaches

beneath and stinging flies above. It conjures odors of murk, slime, stagnancy, and
offal. Although our first joy of programming may have been intense, the misery of
dealing with legacy code is often sufficient to extinguish that flame."

— Michael C. Feathers, Working Effectively with Legacy Code
This chapter explores the following topics:

* Understanding the legacy code

* Working with testing impediments

* Exploring PowerMock

* Designing for testability with Mockito and PowerMock

Understanding the legacy code

The term legacy is frequently used as a slang to describe a complex code, which is
difficult to understand, rigid, fragile in nature, and almost impossible to enhance.

But Michael Feathers, author of the legacy code refactoring book Working Effectively
with Legacy Code, defines that any code with no automated unit tests is a legacy code.
A piece of code could be well written, follow coding guidelines, easy to understand,
clean, loosely coupled, and very easy to extend, but if it doesn't have automated unit
tests, it is a legacy code.

Unit Testing the Legacy Code with Mockito

Usually, fixing bugs or adding new features to a legacy project is very difficult
compared to doing the same to a greenfield project. In legacy code, either
automated unit tests do not exist or very few tests are written; the code is

not designed for testability.

Winston Churchill said, "We make a living by what we get, but we make a life by what
we give."

We inherit legacy code from someone else, it could come from a very old project,
from another team that cannot maintain the code, or it could be acquired from
another company; but it is our duty to improve the quality.

Unit tests give us some level of assurance that our code is doing what the code is
expected to do and allow us to change the code quickly and verify the change faster.

In general, legacy code is not testable and requires code structure change
(refactoring) to make it testable, but the dilemma is, most of the time, the legacy
system is so crucial to the business that no one dares to touch the code. It makes no
sense to modify an existing crucial module unless something is seriously wrong.
Stalemate! You cannot refactor code unless you have the automated test suite,
because without tests, you have no idea whether you've changed or broken the
system, and you cannot write tests, as the code needs refactoring.

Sometimes, it feels like legacy code, even with unit tests, is hard to understand,
maintain, and enhance. We need to be careful to make our tests especially readable
and to avoid close coupling with the actual implementation details.

To learn more about legacy code, you can read the legacy code Bible —Working
Effectively with Legacy code, Michael Feathers. The following is the URL to the book:

http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/
dp/0131177052

Exploring testing impediments

This section explains the nature or quality of code that makes unit testing difficult.
Automated tests help us develop software quickly, even when we have a large code
base to work on. Automated unit tests should be executed very fast so that the tests
can give us quick feedback, however we cannot unit test code when it exhibits any of
the following symptoms:

* Performs long running operations
e Connects to a database and modifies database records

* Performs remote computing — RMI

[104]

http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052

Chapter 5

* Looks up JNDI resources or web/application server objects
* Accesses filesystems

* Works with native objects or graphical widgets (Ul components,
Windows alerts, JAVA Swing components, and so on)

* Accesses network resources (LAN printer, downloads data from the Internet,
and so on)

Unit tests should not wait for a long running process to complete; it will defeat the
purpose of quick feedback.

Unit tests should be reliable and they should fail if, and only if, the production code
breaks. However, if your unit test verifies an I/ O operation, such as connecting to a
LAN printer, which is slow, error prone, and unpredictable, your unit test may fail for
some network issue, but it will incorrectly signal that the code is broken. So unit testing
a network operation defeats the test reliability principle. If you depend on anything

in your unit tests that's unreliable (such as LAN connections, databases, random
numbers, and so on), in turn, you make your tests unreliable. Testing is about getting
confidence that your code is correct, and unreliability destroys confidence.

Unit tests run automatically, so it doesn't make any sense to open a modal dialog or
show an alert message during test execution, because the test will wait, unless the Ul
dialog or the alert is closed.

Working with PowerMock

Sometimes, we cannot unit test our code, as the special Java constructs hide the
testing impediments (a LAN connection or database connection in a private method,
final method, static method, or initialization block), such as private methods, final
methods and classes, static methods and initialization blocks, new operator, and

so on. We refactor code for testability (explained in the Designing for testability with
Mockito section) and, sometimes, compromise a good design for the sole purpose of
testability. For example, final classes and methods are avoided, private methods are
converted to protected or default, or unnecessarily moved to a collaborator class,
static methods are avoided completely, and so on. This is done simply because of
the limitations of the existing frameworks. Also, these aren't just feature limitations;
they are intentional choices. Mockito could do the things PowerMock does, but it
doesn't because those are test smells and strong indications that you are following
a poor design. Many of these are bad designs by themselves even outside testability
and/or things you shouldn't do even in the name of testability. For example, the
static method involves direct coupling between random chunks of code, directly
subverting good OO design and encapsulation.

[105]

Unit Testing the Legacy Code with Mockito

Converting private methods to protected ones so that you can stub internal methods
is not a good testing design. Partial mocks are typically code smell against the SRP,
and refactoring such things into another class makes for a better design!

Code with final methods typically protects a specific implementation, and
that should imply that such implementations have an interface that can be
stubbed instead.

Some design decisions taken without the pressure of the testability result with little
thought for it (static/final/no SRP), and this results in code that is actively difficult
to test. These are not things people should be doing intentionally, and then use
PowerMock as a matter of recourse. PowerMock is a fallback for legacy code that
they should aim to stop using with time.

PowerMock provides special mocking capabilities and allows us to unit test code
even when the special Java constructs hide the testing impediments. PowerMock is
a framework that extends other mock libraries, such as EasyMock and Mockito, with
more powerful capabilities. PowerMock uses a custom classloader and bytecode
manipulation to enable mocking of static methods, constructors, final classes and
methods, private methods, removal of static initializers, and so on. PowerMock is
essential for legacy code.

B The following is the website for PowerMock:]

_ www.powermock.org
% PowerMock's distribution for EasyMock and Mockito can be
— downloaded from the following website:

URL:https://code.google.com/p/powermock/wiki/
Downloads?tm=2

Download the powermock-mockito-junit-1.5.5.zip file for Mockito and
JUnit. The ZIP file contains the powermock-mockito-1.5.5-full.jar file
and its dependencies.

The following examples explore the Mockito extension API, also known
as PowerMockito.

You need to annotate the test class with the @Runwith (PowerMockRunner.class)
annotation in order to bootstrap PowerMock. The classes that cannot be mocked
need to be prepared for testability by using the @PrepareForTest annotation.

[106]

www.powermock.org
URL:https://code.google.com/p/powermock/wiki/Downloads?tm=2
URL:https://code.google.com/p/powermock/wiki/Downloads?tm=2

Chapter 5

We'll create a Java project to unit test the PowerMockito capabilities. The following
are the steps to set up the project:

1. Create a Java project named UnitTestingLegacyCode.

2. Extract the powermock-mockito-junit-1.5.5.zip file, copy the JAR files,
and add to the project's classpath.

3. Create two source folders, namely, src and test, and add the com.packt.
legacy.powermockito packages to them. The following figure displays the
project structure:

4 =2 UnitTestinglegacyCode
4 [src
B com.packtlegacy.powermockito
4 B test
B com.packt.legacy.powermockito
- =, JRE Systemn Library [jre7]
. =, Referenced Libraries
=!| cglib-nodep-2.2.2 jar
21 javassist-318.2-GA jar
=1 mockito-all-1.8.5.jar
=1| objenesis-2.1 jar
=1 powermock-mockito-1.5-full jar
21 powermock-mockito-1.5.5-full jar

We'll examine the mocking capabilities of PowerMockito for untestable constructs,
such as private method, static method, initialization blocks, final classes and
methods, and constructor and super constructor.

You can get more information from the following URL:

https://code.google.com/p/powermock/wiki/
SuppressUnwantedBehavior

[107]

https://code.google.com/p/powermock/wiki/SuppressUnwantedBehavior
https://code.google.com/p/powermock/wiki/SuppressUnwantedBehavior

Unit Testing the Legacy Code with Mockito

Stubbing static methods

This section deals with static methods. You cannot stub a static method with
Mockito, but PowerMockito allows us to stub static methods. The following
MedicalBill class generates the medical bill ID; the generate1d () method is a
static method and, in real life, it calls the database to generate an identifier. For
simplicity, we will call the random number generator to generate an integer:

package com.packt.legacy.powermockito;
import java.util.Random;
public class MedicalBill {

public static int generateId() {
return new Random() .nextInt () ;

}

You cannot stub the generate1d () method to return a hardcoded value, but
the following mockstatic () method of PowerMockito allows us to stub the
generateId () method to return a hardcoded value:

package com.packt.legacy.powermockito;

import static org.junit.Assert.assertEquals;
import static org.powermock.api.mockito.PowerMockito.mockStatic;
import static org.powermock.api.mockito.PowerMockito.when;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.powermock.core.classloader.annotations.PrepareForTest;
import org.powermock.modules.junit4.PowerMockRunner;

@RunWith (PowerMockRunner.class)
@PrepareForTest (MedicalBill.class)
public class StaticMethodTest ({

@Test
public void stubs static _methods() throws Exception {
System.out.println(MedicalBill.generateId()) ;
//enable mocking
mockStatic (MedicalBill.class);
//stub the static method
PowerMockito.when (MedicalBill.generateId()) .thenReturn (1) ;

[108]

Chapter 5

//check the stubbed value
assertEquals (1, MedicalBill.generateId()) ;

}
}

The test class is annotated with @RunWith (PowerMockRunner.class) and
@PrepareForTest(MedicalBill.class),m&wrePowerMockRunnerboo&hﬂps
PowerMockito to use a classloader to load the classes, and @PrepareForTest
enables the classes to be mocked.

The static mocksStatic () method is defined in the org.powermock. api.mockito.
PowerMockito class. This method allows us to mock static methods.

We need to mock static methods in the following circumstances:

* Code under test calls a utility class or a data access object with static
methods, and static methods hide testing impediments, such as a database
call, file access, and so on

* Code under test calls a third-party library; we cannot modify the third-party
library source code, which in turn hides a testing impediment in a
static method

Suppressing static blocks

Suppose legacy code has a static data initialization block and it loads a database
driver in this block. If you need to unit test the class, you need to load the class and
in turn, the static block is processed. So your test will indirectly load the database
driver before executing a test. This is unacceptable, but you cannot suppress the
static initialization using any mocking tool. PowerMockito allows us to suppress the
static blocks and enables us to write test for the code that hides testing impediments
in static initialization blocks.

The following class has a static block whereby it initializes a value with 100/0. This
100/0 signifies a testing impediment. If you load the class in a test harness, the test
will fail with a divide by zero exception. Division by zero is just a trick to show the
effect of the PowerMock @suppress annotation and to state that the class does not
work in functional mode:

public class StaticInitializationBlock {
static int value;
static{
value = 100/0;
System.out.println("In static block");
}
}

[109]

Unit Testing the Legacy Code with Mockito

The following PowerMockito test suppresses the static block:

package com.packt.legacy.powermockito;
import static org.junit.Assert.assertEquals;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.powermock.core.classloader.annotations.
SuppressStaticInitializationFor;

import org.powermock.modules.junit4.PowerMockRunner;

@RunWith (PowerMockRunner.class)

@SuppressStaticInitializationFor ("com.packt.legacy.powermockito.St
aticInitializationBlock")

public class StaticInitializationBlockTest {

@Test
public void supresses_static initialization blocks() ({
assertEquals (0,StaticInitializationBlock.value) ;

}

In the preceding test, we assert StaticInitializationBlock.

value against 0 because 0 is the default value for an integer. The @
SuppressStaticInitializationFor annotation instructs the PowerMockito
classloader to skip the static initialization for the fully qualified class name.

Suppressing a superclass constructor

When a class needs to extend from another class in a third-party framework or
some other kind of module and the third-party class constructor hides a testing
impediment, then that prevents you from unit testing your own code. For example,
the framework may try to connect to the Internet to load some value or access
filesystem for some reason. You cannot suppress the super constructor chaining
from your unit test, and hence, your test may fail.

The following class has a constructor that hides a testing impediment; the divide by
zero replicates a testing impediment:

class DontExtendMePlease(
DontExtendMePlease () {
int x =1/0;

[110]

Chapter 5

The following class extends the DontExtendMePlease class:

public class SuppressSuperConstructor extends DontExtendMePlease{

public SuppressSuperConstructor () {
super () ;

}

When we instantiate the SuppressSuperConstructor class in a test case, the test
fails with the following error, to indicate that you cannot instantiate the class, as the
super class constructor has some problem:

Finizhed after 0.104 seconds

Runs: 1/1 B Errors: 1 B Failures: 0
4 E?_| com.packt.legacy.powermockito.5uppressSuperConstructorTest [Funner: JUnit 4] (0,037)

EE' supresses_super_class_constructor (0,037 s)

Failure Trace =

javalang.ArithmeticException: / by zero

.= u
==

at com.packt.legacy. powermockito. DontExtendMePlease. <init= (SuppressSuperConstructor,java:

The PowerMockito JUnit test resolves the issue by suppressing the super
class constructor:

import static org.powermock.api.support.membermodification.
MemberMatcher.constructor;

import static org.powermock.api.support.membermodification.
MemberModifier.suppress;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.powermock.core.classloader.annotations.PrepareForTest;
import org.powermock.modules.junit4.PowerMockRunner;

@RunWith (PowerMockRunner.class)
@PrepareForTest (SuppressSuperConstructor.class)

public class SuppressSuperConstructorTest {

@Test

[111]

Unit Testing the Legacy Code with Mockito

public void supresses_super class constructor () ({
suppress (constructor (DontExtendMePlease.class)) ;
new SuppressSuperConstructor() ;
assertTrue ("Just checking", true);

}

The suppress method takes a constructor or a field or a method. We are creating
a constructor of the DontExtendMePlease class using the constructor (class)
method. The PowerMockito classloader suppresses the constructor and allows
us to unit test the code.

Suppressing our own constructor

Just like with the super class constructor, when we add our own constructor
that hides a testing impediment, we cannot instantiate the class in test harness
and hence, cannot unit test the class.

The following constructor divides by zero and indicates a testing impediment:

public class SuppressConstructor {

public int someValue = 100;
public SuppressConstructor (int val) {
val = val/0;

}
}

However, PowerMock provides us a Whitebox class. It allows us to create class
instances by suppressing the defined constructors; but the problem is that the
values we initialize in the constructor are just ignored, or rather, not initialized.
The following JUnit test uses Whitebox to suppress the parameterized constructor:

import static org.junit.Assert.assertNotNull;
import org.junit.Test;
import org.powermock.reflect.Whitebox;

public class SuppressConstructorTest {

@Test
public void supresses _own constructor () throws Exception {
SuppressConstructor nasty = Whitebox.newInstance (Suppress
Constructor.class) ;
assertNotNull (nasty) ;

}

[112]

Chapter 5

Suppressing methods

Sometimes, we need to suppress method calls. For instance, when our code under
the test calls another method that hides a testing impediment, we must suppress the
second method to proceed with the testing. Suppressing means the method will not
be invoked; if a method returns a string (or any object) value, then a null value will
be returned.

The following class has a private getCurrency () method; this method is called from
the format () method:

package com.packt.legacy.powermockito;
public class SuppressMethod ({

public String format (String str) {
return str + getCurrency() ;

private String getCurrency () {
return "$";

}
The following JUnit will suppress the getCurrency () method call:

import static org.junit.Assert.assertFalse;

import static org.powermock.api.support.membermodification.
MemberMatcher.method;

import static org.powermock.api.support.membermodification.
MemberModifier.suppress;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.powermock.core.classloader.annotations.PrepareForTest;
import org.powermock.modules.junit4.PowerMockRunner;

@RunWith (PowerMockRunner.class)
@PrepareForTest (SuppressMethod.class)
public class SuppressMethodTest {

@Test

public void supresses method() throws Exception
suppress (method (SuppressMethod.class, "getCurrency")) ;
SuppressMethod method = new SuppressMethod() ;
assertFalse (method.format ("10") .contains ("$")) ;

}

[113]

Unit Testing the Legacy Code with Mockito

Note that the org.powermock. api . support .membermodification.
MemberModifier.suppress method takes org.powermock.api . support.
membermodification.MemberMatcher.method, the method that has to be
suppressed. We passed the class and the method name getCurrency. Spell the
method name correctly (because it is passed as a string) and without parenthesis.
An immediate call to the getCurrency () method from the format () method

is suppressed.

Stubbing private methods

You cannot access private methods of a class from outside the class. When a private
method hides a testing impediment, and that method is invoked from a public

or protected method, then you cannot JUnit test the public/ protected method as
you cannot bypass the private method call or stub the private method. However,
PowerMockito allows us to stub private methods and enables us to write JUnit tests
by suppressing the testing impediments.

The following example has a private method known as secretvalue (); this method
returns a secret value and the other public method exposeTheSecretvalue () calls
the secretvalue () method. When we call the exposeTheSecretvalue () method
from a JUnit test, it always returns the same secret value, but if we need to change
the secretvalue () method for every method call, then we need to stub the private
method's behavior:

package com.packt.legacy.powermockito;
public class PrivateMethod ({

private String secretValue(){
return "#$$%"&*";

}

public String exposeTheSecretValue () {
return secretValue() ;
}
}

[114]

Chapter 5

To stub the private method using PowerMockito, we need to create a spy object of
the class and then stub the private method on the spy object. Remember that we
cannot access a private method from outside the class; so when we stub a private
method, we just pass the method name as a string value. We cannot call the method
directly as its access scope is private. Hence, the name is passed as a string so that,
using reflection, the method is found and stubbed. Make sure you spell the method
name correctly. The following test exhibits the private method's stubbing:

package com.packt.legacy.powermockito;

import static org.junit.Assert.*;
import static org.powermock.api.mockito.PowerMockito.*;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.powermock.core.classloader.annotations.PrepareForTest;
import org.powermock.modules.junit4.PowerMockRunner;

@RunWith (PowerMockRunner.class)
@PrepareForTest (PrivateMethod.class)
public class PrivateMethodTest {

@Test

public void stubs private methods() throws Exception ({
PrivateMethod privateMethodClass = spy(new PrivateMethod()) ;
when (privateMethodClass, "secretValue").thenReturn ("123");

assertEquals("123", privateMethodClass.exposeTheSecretValue()) ;

}
}

The test stubs the secretvalue method to return 123 and asserts the value by
invoking the public method exposeTheSecretvalue.

Stubbing final methods

Mockito cannot stub final methods, as Java doesn't allow us to override the final
methods. However, when a final method hides a testing impediment, either we
cannot unit test the method, or remove the final keyword and override the method
for JUnit testing. This actually violates the encapsulation principle, but the good
news is that PowerMockito allows us to stub the final methods.

[115]

Unit Testing the Legacy Code with Mockito

The following example demonstrates the £inal method's stubbing:

package com.packt.legacy.powermockito;
public class FinalMethod ({

public final String getValue () {
return null;

}

The getvalue () method is a final method, but we can mock the class and stub the
final method using the @PrepareForTest annotation. The following JUnit test stubs

the getvalue () method:

@RunWith (PowerMockRunner.class)
@PrepareForTest (FinalMethod.class)
public class FinalMethodTest ({

private static final String A STUBBED VALUE = "A stubbed value";

@Test

public void stubs final methods() throws Exception {
FinalMethod finalMethod = mock(FinalMethod.class) ;
when (finalMethod.getValue()) . thenReturn (A STUBBED VALUE) ;
assertEquals (A STUBBED VALUE, finalMethod.getValue()) ;

}

Mocking final classes

You cannot extend a final class, but during JUnit testing, we encounter that third-
party framework classes or external module classes are final and they hide testing
impediments, but we cannot change the files as we don't have the permission to
change the source code to make them nonfinal classes. Luckily, PowerMockito
allows us to mock final classes. The following example will work with a final class:

public final class SystemVerifier ({
public boolean isInstallable(){
return false;

[116]

Chapter 5

The systemverifier class is a final class and it has a public method
isInstallable (); this method checks system prerequisites, such as RAM, disk
space, and so on. If everything is okay, then returns true; we are hardcoding the
method to return false.

The softwareInstaller class has a reference to the Systemverifier class.
When the SystemVerifier.isInstallable method returns true, it starts
installing a software. The following is the SoftwareInstaller class:

public class SoftwarelInstaller {
private final SystemVerifier systemVerifier;

public SoftwarelInstaller (SystemVerifier systemVerifier) ({
this.systemVerifier = systemVerifier;

public boolean install (String packageName) {
if (systemVerifier.isInstallable()) {
// install something
return true;

return false;

}

We have already hardcoded the isInstallable () method to return false; to unit
test the installation part, we need to stub the isInstallable () method to return
true, but the Systemverifier class is a final class, so we cannot stub the method.

The following PowerMockito JUnit test mocks the final class Systemverifier and
stubs the isInstallable () method to return true:

@RunWith (PowerMockRunner.class)
@PrepareForTest (SystemVerifier.class)
public class FinalClassTest {

@Test

public void mocks final classes() throws Exception ({
SystemVerifier systemVerifier = mock(SystemVerifier.class) ;
when (systemVerifier.isInstallable()) .thenReturn(true) ;

SoftwareInstaller installer = new Softwarelnstaller
(systemVerifier) ;
assertTrue (installer.install ("java"));

}
}

[117]

Unit Testing the Legacy Code with Mockito

Designing for testability with Mockito

We learned about testing impediments and how to refactor them. We cannot unit
test code when testing impediments are present; we refactor code and move the
impediments out (to another class or method), and during testing, the impediments
are replaced with mock objects. PowerMock is a dirty solution and it should only be
used for legacy code. This is the better way is to refactor the source and make more
test friendly.

However, sometimes we cannot mock out the external dependencies due to
testing-unfriendly design. This section covers the design for testability, or rather,
things to avoid in code. The following Java constructs go up against mocking the
testing impediments:

* Constructors initialize testing impediments

* C(lass level variable declaration and initialization

* Private methods

* Final methods

* Static methods

* Final classes

* Use of new

* Static variable declaration and initialization

* Static initialization blocks
You cannot unit test legacy code because it is either tightly coupled, or testing

unfavorable language constructs hide the testing impediments. The following
section explains testing unfavorable constructs.

To represent a testing impediment, we'll throw a special
runtime exception TestingImpedimentException. If
%j%“ your test fails with a TestingImpedimentException
’ error, it means you cannot automate the test, as your code
has testing unfavorable features.

[118]

Chapter 5

Identifying constructor issues

To build a test, we need to instantiate the class in test harness, but the problem with
legacy code is that it is difficult to break dependency and instantiate a class in a test
harness. For example, in a constructor, the class instantiates many objects, reads
from the properties file, or even creates a database connection. There could be
many callers of the class, so you cannot change the constructor to pass dependencies,
otherwise it will cause a series of compilation errors.

We will take a look at the legacy code and try to write a test for the class.

Suppose we have a TestingUnfavorableConstructor class with two

external dependencies, DatabaseDependency and FileReadDependency.

Both the dependencies are slow in nature and testing impediments. The
TestingUnfavorableConstructor class creates dependencies in the constructor.
The dependencies represent the database access and the file reads from the
TestingUnfavorableConstructor constructor. The following is the class:

public class TestingUnfavorableConstructor {
private DatabaseDependency dependencyl;
private FileReadDependency dependency?2;

public TestingUnfavorableConstructor ()
this.dependencyl = new DatabaseDependency () ;
this.dependency2 = new FileReadDependency () ;

}

public Object testMe (Object arg) {
return arg;

}

[119]

Unit Testing the Legacy Code with Mockito

If we want to unit test the testMe () behavior of the class, we need to create an object
for the TestingUnfavorableConstructor class. However, when we try to create an
instant in the unit test, the class fails to indicate that the class cannot be instantiated
from an automated test suite. The following is the output:

Runs: 11 B Errors: 1 B Failures: 0

EE?_I com.packt. legacy.unfavarable. construct. constructor, TestinglUnfavorableConstructon

e Ej:'—_| sanity (0.000 s)

Failure Trace

com.packt.legacy . unfavorable. construcl TestingImpedimentException: calls database
at com.packt.legacy.unfavorable. constuct. constructor . DatabaseDependency. <init
at com.packt.legacy.unfavorable. construct. constructor. TestngUntavorableConstructor.

To overcome this, you should inject the dependencies through the constructor
instead of creating them in the constructor.

We cannot modify the default constructor because the class is invoked from many
other clients; we cannot break the clients. Two other options are as follows:

* Keep the default constructor as it is, create another constructor, and inject
dependencies through this new constructor. From test, we can call this new
constructor. You're also putting the code into production for testing purpose;
this is a test smell, but to overcome this, you need to unit test the code
with PowerMock.

* Create a protected method, move the dependency instantiation to that
method, create two setter methods, and initialize the dependencies through
a setter injection. In the test, create a fake object for the main class, override
the protected method to do nothing, and pass the dependencies through
setter methods.

The first option is relatively straightforward; we'll apply the second approach.

The following is the modified code:

public class TestingUnfavorableConstructor {
private DatabaseDependency dependencyl;
private FileReadDependency dependency?2;

public TestingUnfavorableConstructor () {
createDependencies () ;

[120]

Chapter 5

protected void createDependencies() {
this.dependencyl = new DatabaseDependency () ;
this.dependency2 = new FileReadDependency () ;

public void setDependencyl (DatabaseDependency dependencyl) {
this.dependencyl = dependencyl;

public void setDependency2 (FileReadDependency dependency2) {
this.dependency2 = dependency2;

public Object testMe (Object arg) ({
return arg;

}

The following unit test overrides the TestingUnfavorableConstructor class,
provides an empty implementation of the createbDependencies () method, creates
mock dependencies, and calls setter methods to set the mock dependencies:

@RunWith (MockitoJUnitRunner.class)
public class TestingUnfavorableConstructorTest {
@Mock DatabaseDependency depl;
@Mock FileReadDependency dep2;
TestingUnfavorableConstructor unfavorableConstructor;
@Before public void setUp() {
unfavorableConstructor= new TestingUnfavorableConstructor() {
protected void createDependencies() {

}
}:

unfavorableConstructor.setDependencyl (depl) ;
unfavorableConstructor.setDependency2 (dep2) ;

@Test public void sanity() throws Exception {

}
}

The empty test method is used to check the health of the test setup, as you need at
least one test method to invoke the setup method.

[121]

Unit Testing the Legacy Code with Mockito

Do not instantiate dependencies in the constructor; the dependencies may
M exhibit testing impediments and make the class nontestable. Instead of
Q instantiating the dependencies in the constructor, you can pass the real
implementations (real dependencies) to the constructor or setter method
of the code under the test.

Realizing initialization issues

Declaring the class-level variable and instantiating the object at the same time creates

a problem; you don't get a chance to mock out the variable. The following example
explains the problem.

The variableInitialization class has a database dependency and the
dependency is instantiated where it is declared:

Public class VariableInitialization {

DatabaseDependency dependencyl = new DatabaseDependency() ;
public void testMe (Object obj) ({

}
}

When you instantiate the VariableInitialization class in the test, the test fails.
The following screenshot shows the output:

Rums: 1f1 B Errors: 1 B Failures: 0

E---E?_:l com. packt. legacy .unfavorable. construct.instantiate. VariableInitializationTest

...... E:f—'—_l sanity {0.001 s}

.

Failure Trace

com.packt.legacy.unfavorable, construct, TestingImpedimentException: calls database
at com.packt.legacy.unfavorable. construct. constructor . DatabaseDependency. <init=
at com.packt.legacy.unfavorable. construct.instantiate. VariableInitialization. <init:>

at com.packt.legacy.unfavorable. construct.instantiate, VariableInitializationTest.setUp

ISR
(=] =

[122]

Chapter 5

Here is the test class:

public class VariableInitializationTest ({
VariableInitialization initialization;

@Before public void setUp() throws Exception
initialization = new VariableInitialization() ;
}
@Test public void sanity() throws Exception {
}
}

The following are the options to overcome class-level variable initialization:

* Add a default constructor and move the dependency instantiation to the
default constructor, create another constructor, and inject dependencies
through this new constructor. From the test, we can call this new constructor.
This is a test smell, as the code is added in production for testing purposes.

* Add a default constructor, move the dependency instantiation to a protected
method, call the method from the default constructor, create a setter method,
and initialize the dependency through a setter injection. In the test, create
a fake object of the main class and override the protected method to do
nothing, and pass the dependencies through the setter methods.

Do not instantiate the testing impediment variables at the class
M level. You can still instantiate variables, such as 1ist = new
Q ArrayList<Strings> () and more, which are totally reasonable
to build internal fields in themselves; it's the difference between
coupling to collaborating classes and the internal state.

Working with private methods

Private methods are useful for hiding the internal state and encapsulation, but they
can also hide the testing impediments. The following example explains the details.

The privateMethod class has a private method showError (). This private method
hides a test impediment. When we unit test the validate () method with a null
object, the validate () method calls the showError message:

public class PrivateMethod ({
public Object validate (Object arg) ({
if (arg == null) {
showError ("Null input");

[123]

Unit Testing the Legacy Code with Mockito
}

return arg;

}

private void showError (String msg) {
GraphicalInterface.showMessage (msg) ;

}
}

The following is the test output:

Runms: 1f1 B Errors: 1 B Failures: 0

ElE?_I com.packt.legacy.unfavorable . construct, privates. PrivateMethodTest [Funner: JUnit 4] (0,004 5)
vtk zlicate (0.0045)

= Failure Trace =

icom, packt.legacy .unfavorable.construct, TestingImpedimentException: GUI objects need manual interventic |
at com.packt.legacy.unfavorable.construct, constructor, Graphicalinterface . showMessage (Graphicallnterfa
at com.packt.legacy.unfavorable.construct. privates. PrivateMethod . showError(PrivateMethod. java: 16)

You can extract the testing impediments to a protected (or default package
visibility) method, or you can separate the concern, create a new class, move the
testing impediment to that class, and inject the new class as a dependency. Objects
should do one thing; if you've got a method you want to test that does X and is in
the same class as a method that does Y (which is so totally different that it can't be
allowed to happen in your test for X), then your class must be doing two things.
Split these responsibilities.

In this example, validating objects and showing errors are two different

responsibilities and should be managed by two different classes.

Al

Q Do not hide testing impediments in private methods.

[124]

Chapter 5

The following code refactors the testing impediments and makes the class
unit testable:

public class PrivateMethodRefactored ({
public Object validate (Object arg) ({
if (arg == null) {
showError ("Null input") ;

return arg;

protected void showError (String msg) {
GraphicalInterface.showMessage (msg) ;

}
}

The showError method's access specifier is changed to protected.

The following test code extends the class with an anonymous implementation

and overrides the protected method with an empty implementation. The test code
invokes the validate () method on the new anonymous implementation of the
PrivateMethodRefactored class, and in turn, the polymorphic behavior calls the
empty implementation. Hence, the test will always bypass the testing impediments
by calling the overridden empty implementation of the testing impediment, but the

real production code will always invoke the protected method.

public class PrivateMethodRefactoredTest {
PrivateMethodRefactored privateMethod;

@Before
public void setUp()
privateMethod = new PrivateMethodRefactored() ({
protected void showError (String msg) {

}
};

@Test
public void validate() throws Exception {
privateMethod.validate (null) ;

[125]

Unit Testing the Legacy Code with Mockito

This approach of bypassing the testing impediments with overridden
\ versions of the testing impediments is known as faking or fake object.
~ If the code under the test contains many testing impediments, it is not
Q possible to override all of them in an anonymous class; rather, we can
create an inner class, extend the code under test, and override all testing-
unfriendly methods.

Working with final methods

When a method is final, you cannot override it. If the final method hides any testing

impediment, you cannot unit test the class. The following example demonstrates
the issue.

The FinalDependency class has a final method called doSomething. This method
hides a testing-unfriendly feature. The following is the class definition:

public class FinalDependency {

public final void doSomething() {

throw new TestingImpedimentException ("Final methods cannot be
overriden") ;

}

The FinalMethodDependency class has a dependency on FinalDependency, and in
the testMe method, it calls the doSomething method:

public class FinalMethodDependency {
private final FinalDependency dependency;

public FinalMethodDependency (FinalDependency dependency) {
this.dependency = dependency;
}

public void testMe () ({
dependency.doSomething () ;
}

}

In the test, we'll mock the dependency and unit test the code:

@RunWith (MockitoJUnitRunner.class)

public class FinalMethodDependencyTest {
@Mock
FinalDependency finalDependency;
FinalMethodDependency methodDependency;

[126]

Chapter 5

@Before
public void setUp()
new FinalMethodDependency (finalDependency) ;

methodDependency =

}

@Test
public void testSomething() throws Exception {

methodDependency.testMe () ;

}
}

When we run the test, it still accesses the testing impediment, as the mock object
cannot stub a final method. When we try to stub the method, we get an error.

The following test stubs the final method call:

@Test
public void testSomething() throws Exception {

doNothing () .when (finalDependency) .doSomething () ;

methodDependency.testMe () ;

}

When we run the test, we get the following error message thrown by the

Mockito framework:

=it com.packt.legacy.unfavorable. construct. finals. FinalMe thodDependencyTest

=i} t=stSomething (0. 175 s)

1

= Failure Trace
J;—; org.mockito. exceptions . misusing. UnfinishedStubbingException:

Unfinished stubbing detected here:
= - at com.packt.legacy .unfavorable .construct. finals. FinalMethodDependency Test

doThrow({exception).when{mock). someVoidMethod();

Hints:
1. missing thenReturn()
2. you are trying to stub a final method, you naughty developer!

1
~ Do not hide the testing impediments in the final methods; you cannot
override or stub a final method.

[127]

Unit Testing the Legacy Code with Mockito

A possible way to overcome this is by extracting the content of the final method
to a protected method, calling the protected method from the final method, and
overriding the protected method in the test. If you cannot touch the class at all,
use the PowerMock framework. For example, when you have only a JAR file,
create a MethodDependency interface with FinalDependency, implementing

it as we have done here, rather than having FindalMethodDependency

depend on MethodDependency. Then in production, you need to provide a
FinalMethodDependency instance (as done here), but in tests, you can stub the
interface happily, which doesn't have any final methods, and you are all set

to proceed.

Exploring static method issues

Static methods are good for utility classes but unnecessary use of static can hide the
testing impediments and create a problem for unit testing. The following example
demonstrates the issue.

The singletonDependency class is an implementation of the Gang of Four (GoF)
singleton design pattern. It has a private constructor and a static get Instance ()
method to create only a single instance of the class. The static callMe () method
hides a testing impediment. Note that the GoF singleton pattern doesn't define
methods as static, but in this example, we are defining the callMe () method

as static, to display a drawback of static methods. The following is the

singleton implementation:

public class SingletonDependency {
private static SingletonDependency singletonDependency;

private SingletonDependency () {

}

public synchronized static SingletonDependency getInstance() {
if (singletonDependency == null)
singletonDependency = new SingletonDependency () ;

}

return singletonDependency;

}

Public static void callMe() {

throw new TestingImpedimentException ("we dont need
singleton") ;

[128]

Chapter 5

The victimOfAPatternLover class has a dependency on singletonDependency.
The following are the class details:

public class VictimOfAPatternLover ({
private final SingletonDependency dependency;

public VictimOfAPatternLover (SingletonDependency dependency) {
this.dependency = dependency;

}

public void testMe () ({
dependency.callMe () ;

}
}

Mockito cannot stub a static method. When we try to stub the static callMe ()
method, it still calls the original method and fails for the testing impediment.
You cannot stub a static method.

1
‘\Q Do not hide the testing impediments in static methods; you cannot

stub static methods.

The only way to overcome this issue is to create a protected method and wrap the
static call. From the code, call the wrapped method, and from the test, override the
protected method. We will now add a wrapper method in the dependency class and
call the static method from it:

public static void callMe()

throw new TestingImpedimentException("Come on we dont need
singleton") ;

protected void wrapper () {
callMe() ;

}
}

From the code, call the wrapper method:

public void testMe () ({
dependency.wrapper () ;

}

[129]

Unit Testing the Legacy Code with Mockito

Stub the wrapper method in the test:

@Test
public void testMe() throws Exception {
Mockito.doNothing () .when (dependency) .wrapper () ;
aPatternLover.testMe () ;

}

The better way to do this is to stop calling the static method from this class entirely
and wrap it in a separate class, which you pass in as a dependency.

Say you've got a Database.create () static method you call from your class A.

You could have a batabaseBuilder class which you pass into class A, and then just
have a call databaseBuilder.create (), where DatabaseBuilder is something like
the following:

public class DatabaseBuilder {
public void create() {
Database.create() ;

}
}

And then in the tests, you just provide a stubbed database builder and swap out the
whole thing. I would really not recommend using this pattern of making private
methods protected and overriding them, except where it's absolutely necessary.

Alternatively, of course, if you can't change the API; you'd use PowerMock to stub
the static call.

Working with final classes

You cannot override a final class, so you can hide testing-unfavorable features in a
final class. The following example explains the problem.

The final class hides a testing impediment:
public final class FinalDepencyClass {
public void poison() {

throw new TestingImpedimentException ("Finals cannot be
mocked") ;

[130]

Chapter 5

The code under the test has a dependency on the final class:

public class FinalClassDependency {

private final FinalDepencyClass finalDepencyClass;

public FinalClassDependency (FinalDepencyClass finalDepencyClass)

{

this.finalDepencyClass = finalDepencyClass;

public void testMe () ({
finalDepencyClass.poison() ;

}
In the test, we'll try to stub the poison method:

@RunWith (MockitoJUnitRunner.class)
public class FinalClassDependencyTest {
@Mock

FinalDepencyClass finalDependency;
FinalClassDependency test;

@Before
public void setUp() {

test = new FinalClassDependency (finalDependency) ;

}

@Test
public void testMe() throws Exception {

Mockito.doNothing () .when (finalDependency) .poison () ;
test.testMe() ;

[131]

Unit Testing the Legacy Code with Mockito

The test fails with a MockitoException error as Mockito cannot mock a final class.
The following screenshot displays the JUnit output:

El---E?_:I com.packt.leqacy.unfavorable. construct. finals,. FinalClassDependencyTest

...... E?l—_l testMe {0.044 5}

= Failure Trace
10 org.mockito. exceptions. base, MockitoException:
Cannot mock/spy dass com.packt.legacy.unfavorable, construct. finals. FinalDepencyClass
Mockito cannot mockfspy following:
- final dasses

- anonymous dasses
- primitive types
= at org.modkito.internal. runners. JUnit45AndHigherRunnerImpl$1. withBefores

1
‘\Q Do not hide the testing impediments in final classes; you cannot mock a

final class.

Final classes are important for framework or architecture design so that no one can
hack the behavior, but it can create a serious problem for unit testing. Before you
choose to make a class final, ensure that your final class is a final implementation of
some interface so that other clients of the class can potentially use stubbed instances
of the interface.

Learning new concerns

Java instantiates classes using the new operator, but an innocent new can create a
problem for unit testing.

The following example explains the issue. The PoisonIvy constructor has a testing
impediment, for instance, when the method call fetches data from a database

table or reads from the filesystem, we represent the testing impediment with

the TestingImpedimentException error:

public class PoisonIvy
public PoisonIvy() {

throw new TestingImpedimentException ("use dependency
injection") ;

[132]

Chapter 5

public void poison() ({

}
}

The following is the code that calls the PoisonIvy class:

public class NewExpressionDependency {

public void testMe () {
PoisonIvy ivy = new PoisonIvy();
ivy.poison() ;
}
}

When we unit test the testMe () code, it fails. The testMe () method directly creates
an instance of dependency and calls the poison () method. You cannot override this
new expression. If we want to unit test the testMe () method, first we need to move
the new operator outside testMe (), as we cannot instantiate the PoisonIvy class.
The constructor of the PoisonIvy class throws an exception, hence we cannot unit
test the testMe behavior unless we move the object creation out of testMe. Instead
of creating a new instance of PoisonIvy inside testMe (), we can pass an instance
of PoisonIvy as a method argument, or create a class-level dependency and pass
PoisonIvy as a constructor- or setter-dependency argument.

Program to an interface, not an implementation. Rather than hardcoding

W\l the collaborator instantiation of the subtype into the code, assign the
concrete collaborator implementation object through a dependency
injection. Separate the parts of the codebase that use objects, and
implement your logic from the parts that decide which objects to use
where (typically with a DI framework such as Guice or Spring).

What does program to an interface, not an implementation mean? It means, program
to a super type, rather than a subtype. You can interchange the implementation
at runtime. In a collection framework, we have the List interface and its many
implementations. In your class, always define a variable or method return type
for List not ArrayList, so that if required, you can assign any implementation
you want.

In this example, you can pass the PoisonIvy class as a constructor or setter
dependency, and at runtime (during testing), you can pass a mock or a fake
implementation to suppress the testing impediments.

[133]

Unit Testing the Legacy Code with Mockito

Exploring static variables and blocks

Static initializations and static blocks are executed during class loading; you cannot
override them. If you initialize a testing impediment in a static block, you cannot unit
test the class. The following example demonstrates the issue.

The staticBlockOwner class has a static variable known as staticBlockDependency,
and it initializes the variable in a static block. The following is the class:

public class StaticBlockOwner {
private static StaticBlockDependency blockDependency;
static {
blockDependency = new StaticBlockDependency() ;
blockDependency.loadTime = new Date();
}
public void testMe() ({
}
}

When we unit test the class, it fails. The following is the unit test:

public class StaticBlockOwnerTest {
StaticBlockOwner owner;
@Before public void setUp() {
owner = new StaticBlockOwner () ;
}
@Test public void clean() throws Exception {
owner.testMe () ;

}

The test fails with java.lang.ExceptionInInitializationError as it tries to
instantiate the dependency in a static block and the dependency throws an exception.

1
‘Q Do not instantiate dependencies in a static block. You cannot override the

testing impediments; you shouldn't be using static initializer blocks at all.

[134]

Chapter 5

Summary

This chapter covered legacy code, testing impediments, design for testability,
and unit testing the legacy code with Mockito and PowerMock.

Now you should be able to write JUnit tests for legacy code with Mockito and
PowerMock, refactor legacy code to make it unit testable, and design code to
bypass the testing impediments.

The next chapter, Developing SOA with Mockito, will cover Service-oriented
Architecture (SOA), web services, and how to unit test the REST- and
SOAP-based web services with Mockito.

[135]

Developing SOA with Mockito

"The Web as I envisaged it, we have not seen it yet. The future is still so much
bigger than the past."

— Tim Berners-Lee

This chapter explores web services, web service styles—SOAP-based and RESTful,
web service components, and building and unit testing SOAP and RESTful web
services with Mockito.

Exploring Service-oriented Architecture
(SOA)

Service-oriented Architecture (SOA) is an architectural style that transforms
business use cases into a set of interlinked services or reusable business tasks that
can be accessed over a network. This could be an intranet or over the Internet. The
services could be geographically and technologically diverse. SOA can combine
services hosted on remote locations as if they are hosted on your local machine,
and accomplish a specific business task, enabling your business to quickly adapt
to changing conditions and requirements.

Service is a self-contained unit of business tasks, such as a credit card payment or
stock quote. SOA orchestrates the services to accomplish a bigger task. The main
theme of SOA is loose coupling so that you can reuse the services, for instance,
define fine-grained services and combine them in a coarse-grained service.

Developing SOA with Mockito

Organizations can have existing heterogeneous IT systems, such as a payroll system
developed in C++ and an expense claim workflow developed in Java. SOA enables
businesses to leverage existing investments, by allowing them to reuse existing IT
systems, and accomplishes interoperability between heterogeneous applications
and technologies.

For more details on SOA, you can visit http://www.oracle.com/technetwork/
articles/javase/soa-142870.html or the book Applied SOA: Service-oriented
Architecture and Design Strategies.

SOA can rely on web services for interoperability between heterogeneous
applications and technologies. In the next section, we'll explore the web services.

Working with web services

Organizations rely on different software applications, each with their own business
purpose. These different software applications run on different platforms and
operating systems, and are implemented in different programming languages.

So, it is very difficult for different applications to communicate with each other
and share their resources in a coordinated way. Heterogeneous applications

can communicate with each other via web services. The following are the web
service characteristics:

* Web services are web application components

* Web services communicate using open standards, such as XML,
SOAP, and HTTP

* Web services are self-contained and self-describing
e HTTP and XML are the basis for web services

Web services are client and server applications that communicate over HyperText
Transfer Protocol (HTTP) and provide a standard means for interoperating
between software applications running on a variety of platforms and frameworks.
Web services are characterized by interoperability and extensibility.

We'll be looking at two of the most common tools for building web services in Java,
namely, the Java API for XML Web Services (JAX-WS) and Java API for RESTful
Web Services (JAX-RS):

* JAX-WS: This uses XML messages that follow the client-to-server
communication that is done through messages the Simple Object Access
Protocol (SOAP) standard. The SOAP message architecture and message
formats are defined in XML. Each web service operation has a machine-
readable description written in the Web Services Description Language
(WSDL), which is an XML format for defining interfaces syntactically.

[138]

http://www.oracle.com/technetwork/articles/javase/soa-142870.html
http://www.oracle.com/technetwork/articles/javase/soa-142870.html

Chapter 6

* JAX-RS: This provides the functionality for Representational State Transfer
(RESTful) web services. REST is well suited for basic, ad hoc integration
scenarios. RESTful web services are better integrated with HTTP than
SOAP-based services. REST web services do not require XML messages
or WSDL service-API definitions. JavaScript Object Notation (JSON) is
typically the XML alternative of choice for all data transfer that is required
in RESTful web services.

Visit the following URL for more details on JAX-WS and JAX-RS:
http://docs.oracle.com/javaee/6/tutorial/doc/gijti.html

In the following section, we'll explore the JAX-WS web services with Eclipse.

Exploring JAX-WS with Eclipse

JAX-WS web services require a service description written in WSDL.

A WSDL document defines services as collections of network endpoints or ports.
In WSDL, the abstract definition of endpoints and messages is separated from their
concrete network deployment or data format bindings. This allows the reuse of
abstract definitions: messages, which are abstract descriptions of the data being
exchanged and port types, which are abstract collections of operations.

A WSDL document uses the following elements in the definition of network services:

* Types: This is a container for data type definitions (such as XSD or schemas).
* Message: This is an abstract, typed definition of the data being communicated.

* Operation: This is an abstract description of an action supported by
the service.

* Port type: This is an abstract set of operations supported by one or
more endpoints.

* Port: This is a single endpoint defined as a combination of a binding and a
network address.

* Binding: This is a concrete protocol and data format specification for a
particular port type. The binding is usually SOAP, and the encoding and data
formatting regulations used (also known as the style) are usually literal (this
includes document/literal, and sometimes RPC/literal).

* Service: This is a collection of related endpoints.

[139]

http://docs.oracle.com/javaee/6/tutorial/doc/gijti.html

Developing SOA with Mockito

JAX-WS web services can be developed using two approaches:

Top-down approach or contract-first web services: In this, Schema/XSD,
WSDL, and message formats are defined; and then, using tools, the Java
service skeletons are generated

Bottom-up approach or contract-last web services: The Java services are
developed first, then using tools/wizards, the WSDL and the web service
are created from the Java classes

In this section, we'll follow the bottom-up approach.

To develop a web service in Eclipse, the following components should be installed
on your machine:

You need Apache Tomcat, and you can visit the Tomcat website for
installation and setup instructions; the URL is http://tomcat .apache.org/.

Your Eclipse should have the web tool platform component installed. You
can go to the About Eclipse menu and click on the Installation Details
button for details on the WIP components, under the Plug-ins tab. The
following is the screenshot of the installation details. For details on Eclipse,
visit http://www.eclipse.org/webtools/.

E.} Eclipse Installation Details = @
Installed Software | Installation History | Features | Plug-ins | Configuration
Signed Provider Plug-in Mame \ Plug-jnId i
(=] Eclipse Web Tools Platform WTP Webservice Ul Plug-in org.e lipse.jst.j2eewebservice
(7=] Eclipse.org WTP UIPlug-in org.e lipse.wst.common.fram
EH| Eclipse Web Tools Platform WTP Servlet UTPlug-in org.e lipse,jst.serviet.ui
EH| Eclipse.org WTP JCA UI Plug-in org.e lipsejst.j2eejca.ui
(7=] Eclipse Web Tools Platform WTP J2EE UI Plug-in org.e lipsejstj2ee.ul -
ik I F
'i? Legal Info | |§h0w Signing Info | | Columns... | [Close

[140]

http://tomcat.apache.org/
http://www.eclipse.org/webtools/

Chapter 6

The following are steps to create a web service with Apache Axis and
Apache Tomcat:

1. Create a dynamic web project in Eclipse and enter the project name
as DNACheckWsS.

2. We'll create a DNA fingerprint service to verify a DNA sample with the
existing database for a match. The DNA sample will hold a DNA profile of
DNA elements, each element will have a genetic marker, such as THO1, and
corresponding allele Aand allele B valuessuchas THO1, 8, and 11. The
DNA profile will be examined against the database, and if the exact match is
found, the person's details will be sent back as a response.

3. Create a ProfileElement class in the com.packt.webservice.jaxws.dto
package, add three string attributes geneticMarker, alleled, and alleleB,
and generate getters and setters for the three attributes. The following is the
code for the class details:

package com.packt.webservice.jaxws.dto;

public class ProfileElement {
private String geneticMarker;
private String alleleA;
private String alleleB;
//The getters and setters are ignored for brevity

}

4. Create a DNAProfile class with an array of profileElements. The following
is the code for the class details:

package com.packt.webservice.jaxws.dto;

public class DNAProfile
private ProfileElement [] dnaElements;
//The getters and setters are ignored for brevity

}

5. Create an empty service DNAFingerPrintService for matching a DNA
profile with an existing set of DNAs; it just returns a fixed value here.
The following are the details:

package com.packt.webservice.jaxws.service;
import com.packt.webservice.jaxws.dto.DNAProfile;

public class DNAFingerPrintService {
public String findMatch (DNAProfile dnaProfile){

return "sujoy";
}
}

[141]

Developing SOA with Mockito

6. We'll create a web service out of DNAFingerPrintService with runtime Axis
and Tomcat. Right-click on the project and select the Web Services menu,
expand the menu, and select Create Web Service. The following screenshot

displays the steps:
— DMNACheckWs Cover As » Ed, Republish]
o A JAK-WS Web Services Coverage As »
- '@ Deployment Descriptor: DNACheck\® .
Validat
4 2 Java Resources sldate
a B sre Apply Checkstyle fixes
4 f com.packt.webservice jaows.c Teamn +
. [J] DMAProfilejava Compare With »
> @ PraflIEEIement.Jf':wal Replace With >
4 {7 com.packt.webservice jaws.s)
QT T T e ——— Restore from Local History...
. 2 test Web Services » Create Web Service
. =i, Libraries PMD 3 Generate JAX-RPC J5Ps

7. A wizard will open; select the web service type as Bottom up Java bean
Web Service and choose the server runtime as Tomcat and the web
service runtime as Apache Axis. You can deploy the web service to IBM
WebSphere or choose the web service runtime as Apache CFX, as shown
in the following screenshot:

[.] Web Service =

[i
Web Services q
Select a service implementation or definition and move the sliders to set the level of service and client generation. - :2

Web service type: Bottom up Java bean Web Service

)
Service implementation: com.packt.webservicejaws.service. DNAFingerPrintService -

Start service

Cenfiguration:

Server runtime: Temcat v7.0 Server

Axis,
'TIE Q Web service runtime: Apache Axis ‘

Q Service project: DNACheckWS

Do not generate the client; set the slider to No client:

[142]

Chapter 6

Client type: |Java Proxy v | |

Mo client
Configuration: No client generation.

r
|

8. In the next section, select the £indMatch method, select the Style and use
option as documenty/literal (wrapped), and hit the Next or Finish button:

WSDL filee DMNAFingerPrintService.wsdl

Methods
findMatch(com.packt.webservice jaxws.dto.DNAProfile)

| select All | | Deselect Al

Style and use

@ documentyliteral (wrapped)
() document/literal

(") RPC/encoded

9. You can see that the following files are newly generated. These are
required for the server to run the web service and deploy the module
into the web server container. The most important file created here is
DNAFingerPrintService.wsdl:

4 [= WEB-INF
4 = DMAFingerPrintServiceService
4 [~ com
4 [= packt
4 [webservice
4 [= jaxws
4 [service
%] deploy.wsdd

deploy.wsdd.bak
undeploy.wsdd

=

. = lib
\X| server-config.wsdd
%] webxml
& = wsdl
@ DNAFingerPrintSenvice.wsdl

[143]

Developing SOA with Mockito

10. Click on DNAFingerPrintService.wsdl and open it in the Eclipse editor;
check that the web service URL is defined as http://localhost:8080/
DNACheckWS/services/DNAFingerPrintService:

25 DMAFingerPrintServiceService (] €3 DNAFingerPrintService
> DNAFingerPrintService / @ | % findMatch

http://lecalhost:3080/D... L] [»input parameters | [&] findMatch

] G]Uutput parameters [e] findMatchResponse

11. Deploy the project in Tomcat, right-click on the project, and select Run
on Server. Once the server is started, open a web browser and type the
following URL to verify that the web service is deployed:

http://localhost:8080/DNACheckWS/services/
DNAFingerPrintService?wsdl

The following is the WSDL output:

— <wsdl:definitions targetNamespace="http:/[service.jaxws.webservice.packt.com”
xmins:impl="http:/ fservice.jaxws.webservice.packt.com"
xmins:wsdl="http:/ /schemas.xmlsoap.org/wsdl/"
— {!__

- <wsdl:types>

+ «schema elementFormDefault="qualified" targetNamespace="http://service.jaxws.webservice.packt.com"

+ =schema elementFormDefault="qualified" targetNamespace="http://dto.jaxws.webservice.packt.com"

<fwsdl:types=

zwsdl:message name="findMatchRequest">

<wsdl:message name="findMatchResponse">

zwsdl:portType name="DNAFingerPrintService">

<wsdl:binding name="DNAFingerPrintServiceSoapBinding" type="impl:DNAFingerPrintService">

zwsdl:service name="DNAFingerPrintServiceService">

- zwsdl:port binding="impl:DNAFingerPrintServiceSoapBinding" name="DNAFingerPrintService">

<wsdlsoap:address location="http:/ /localhost:8080 /DNACheckWS/services/DNAFingerPrintService" />

</wsdl:port=

</wsdl:service=

</wsdl:definitions =

[

[144]

Chapter 6

We're done with the web service server component; next we'll build the client
component to invoke the web service:

1.
2.

Create a Java project DNAWsClient.

We'll generate the client stubs from the web service and, in turn, it will
create the remote interface to call the business methods, namely, a server
proxy class (the intermediate between the client and the server) and a service
locator class (contains the details of the server). However, to generate the
client stub, we need a wsd1 file. Copy the wsd1l folder from the DNACheckWs
project's WebContent folder to the DNAWsClient project's src folder,

as shown in the following screenshot:

la 7= DNACheckWs
4 = WebContent
a = META-INF
[E) MANIFEST.MF
WEB-INF

7@ DMAFingerPrintService.wsdl

copy the wsdl
folder

Desiv

b =) DNAWSsClie
4 |8 src « Paste the wsdl folder
4 £ wsdl in src source folder

79 DNAFingerPrintServiceawsdl

[

B P

> |

Right-click on the wsdl file and select Web Services | Generate Client,

as shown in the following screenshot:

4 =2 DMNAWSsClient

. B src Coverage As
a H wsdl Team
7? DNAFingerP Compare With
> (2 test Replace With
- B JRE Systemn Library | Web Services
== Servers
s H tomcat? PMD
. 12 UnitTestinglegacyCed Checkstyle
il Google
-:l Signinto Google.. @ 0% Source

» Test with Web Services Explorer
3 Publish WSDL File

» Generate Java Bean Skeleton

» Generate Client

» Generate WSIL

[145]

Developing SOA with Mockito

4. The Eclipse plugin will generate the dto classes and stubs. The following are
the generated classes:

a4 [=> DNAWsClient
& B osrc
4 B com.packtwebservicejanws.dto
. 4J] DMAProfilejava
- 4J] ProfileElement.java
4 [B com.packt.webservicejaxws.service
- [J] DMAFingerPrintService java
. [J] DMAFingerPrintServiceProxy.java
- [J] DMAFingerPrintServiceService,java
. 4J] DMAFingerPrintServiceServiceLocator,java
. 4J] DMAFingerPrintServiceSoapBindingStub.java
4 H wsd
1 DMAFingerPrintService.wsdl
o [test

5. Now create a client class named DNAFingerPrintWsInvoker to invoke the
web service. The DNAFingerPrintServiceServiceLocator class is a facade
class and it hides the underlying service invocation details. We'll create a
findMatch method to invoke the web service and return the result. The
following is the client code:

package com.packt.webservice.jaxws.client;
import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;

import com.packt.webservice.jaxws.dto.DNAProfile;

import com.packt.webservice.jaxws.service.DNAFinger
PrintServiceServiceLocator;

public class DNAFingerPrintWsInvoker {

public String findMatch (DNAProfile dnaProfile) throws
RemoteException, ServiceException {

DNAFingerPrintServiceServiceLocator locator = new
DNAFingerPrintServiceServiceLocator () ;

return locator.getDNAFingerPrintService () .findMatch
(dnaProfile) ;

[146]

Chapter 6

Our client code is ready for testing, but to JUnit test the web

service call, we need to refactor the code, as the findMatch method
instantiates the DNAFingerPrintServiceServiceLocator class

and delegates call to the locator for accessing the web service. The
DNAFingerPrintServiceServiceLocator class makes a network call and,
hence, it can be considered as a testing impediment. We need to bypass the
instantiation of the testing impediments, to make our test reliable, with a
mock object. Add Mockito and JUnit JAR files to the project's classpath
and create a test class DNAFingerPrintWsInvokerTest under the test
source package.

Refactor the DNAFingerPrintWsInvoker class and extract a

protected method getServiceLocator () to return a new instance

of the DNAFingerPrintServiceServiceLocator class. Replace

the new DNAFingerPrintServiceServicelLocator () call with the
getServiceLocator () call. The following code shows the modified class.
Also, as a better alternative, DNAFinderPrintWsInvoker could take a
DNAFingerPrintServiceServiceLocation call as a constructor argument,
which is to be provided by whoever uses it. The tests can then provide a
stub to that constructor. This reduces coupling between the test and the class
under the test's internals and ensures that we're actually definitely testing
the code, which is as close as possible to what's going to be running

in production:

public class DNAFingerPrintWsInvoker {

public String findMatch (DNAProfile dnaProfile) throws
RemoteException, ServiceException
return getServiceLocator () .getDNAFingerPrintService ()
.findMatch (dnaProfile) ;

protected DNAFingerPrintServiceServiceLocator
getServiceLocator () {

return new DNAFingerPrintServiceServiceLocator () ;

}
Modify the test as follows:

@RunWith (MockitoJUnitRunner.class)
public class DNAFingerPrintWsInvokerTest {

DNAFingerPrintWsInvoker invoker;
@Mock DNAFingerPrintService mockService;

[147]

Developing SOA with Mockito

@Mock DNAFingerPrintServiceServiceLocator mockLocator;

@Before
public void setup() throws ServiceException {
invoker = new DNAFingerPrintWsInvoker () {

protected DNAFingerPrintServiceServicelLocator
getServiceLocator ()

return mockLocator;

}
}i

when (mockLocator.getDNAFingerPrintService()) .
thenReturn (mockService) ;

@Test
public void finds DNA match() throws Exception {

when (mockService.findMatch (isA (DNAProfile.class))) .
thenReturn ("Sherlock") ;

assertEquals ("Sherlock", invoker.findMatch
(new DNAProfile()));

}

We created a fake instance of the invoker to return a mock service locator
class, stubbed the service locator to return a mock web service, and finally,
from the JUnit test, we stubbed the mock service to return the name
Sherlock for any DNA profile.

We are done with client-side JUnit testing; now its time to verify

the integration. Rerun the web application and create a JUnit test to

invoke the service. Create a source folder slowtest and add the test
DNAFingerPrintWsInvokerIntegrationTest under the com.packt.
webservice.jaxws.client package. The following is the integration test.
Do you remember we hardcoded the web service to return sujoy? Check
the DNAFingerPrintService class at step 5. You need to make sure that you
still have the web service running at this stage, as we should not break the
functionality for JUnit testing.

public class DNAFingerPrintWsInvokerIntegrationTest {
DNAFingerPrintWsInvoker invoker;

@Before
public void setup() throws ServiceException {
invoker = new DNAFingerPrintWsInvoker () ;

[148]

Chapter 6

@Test
public void finds DNA match() throws Exception {

assertEquals ("sujoy", invoker.findMatch (new
DNAProfile())) ;

}
}

The following is the integration test output:

Finished after 1.135 seconds

Runs: 1/1 B Errors: 0 B Failures: 0

4 | com.packt.webservice jaxws.client, DNAFingerPrintWslnvokerIntegrationTest [Runner: JUnit 4] (1,125 s)
gl finds_DMA_match (1125 5]

We are done with the testing and client validation. We can start writing JUnit for the
server side; but the server-side code is not tied up with the web service APIs, so we
can easily write the JUnit test for the server side, hence skipping the topic.

Developing a RESTful web service

Representational State Transfer (REST) is an architectural style consisting of a
coordinated set of architectural constraints applied to components, connectors, and
data elements, within a distributed hypermedia system.

REpresentational State Transfer (REST) / RESTful web services are built to work
best on the Web. REST is an architectural style that specifies constraints (such as the
uniform interface) that, if applied to a web service, induces desirable properties, such

as performance, scalability, and modifiability, which enable services to work best on
the Web.

In REST, architectural data and functionality are considered resources and are
accessed using Uniform Resource Identifiers (URIs) and hyperlinks on the
Web. The REST architectural style has a constraint to have a stateless HTTP
communication protocol in a client/server architecture. In the REST architectural
style, clients and servers exchange representations of resources by using a
standardized interface and protocol.

[149]

Developing SOA with Mockito

Basically, RESTful web services consist of the following components:

* Resource URLs: A resource URL represents a resource. Basically, a noun is
used to represent a resource, for example, a collection of resources can be
represented as http://my.colleage.com/students/ and a specific resource
can be represented as http://my.colleage.com/students/101.

* Operations/HTTP headers: RESTful web services use the following
HTTP headers:

° posT: This signifies a CREATE operation or a new resource
creation. For example, an HTTP POST operation on the
http://my.colleage.com/students URL with the following
data will create a student with the roll number 102:

{

"roleNumber": "102",

"name": "Bob Biswas",

"class" : "XII",

"email" : "bob.sawsib@gmail.com"
}

° GET: This implies a READ operation. For example, an HTTP GET
operation on the http://my.colleage.com/students URL will
return the following data:

{
students =
{
"roleNumber": "101",
"name": "Leo Anthony",
Ilclassll : lell'
"email" : "leo.p@someemail.com"
}I
{
"roleNumber": "102",
"name": "Bob Biswas",
"class" : "XII",
"email" : "bob.sawsib@gmail.com"
}I
}

° puT: This stands for the MODIFY/UPDATE operation. For example, an
HTTP PUT operation that can help us to update the e-mail ID of the
student whose roll number is 101.

[150]

http://my.colleage.com/students/
http://my.colleage.com/students/101
http://my.colleage.com/students
http://my.colleage.com/students

Chapter 6

[e]

DELETE: This represents a DELETE operation. For example, an HTTP
DELETE operation on the http://my.colleage.com/students/101
URL will delete the student whose roll number is 101.

The main PUT/POST difference
% PUT is idempotent, so repeated PUT operations result in
)~ the same thing, whereas repeated POST operations may
perform repeated actions.

Media types: Hypermedia as the Engine of Application State (HATEOAS)
is a constraint of the REST application architecture. A hypermedia-driven site
provides information to navigate the site's REST interfaces dynamically by
including hypermedia links with the responses. The responses of a RESTful
web service are media types such as JSON or XML.

HTTP status codes: Every RESTful web service call returns a status code.
The status codes given in the following table are very useful:

Status code Description

200 OK

201 Created

202 Accepted

203 Non-authoritative Information
204 No Content

205 Reset Content

300 Multiple Choices

304 Not Modified

400 Bad Request

401 Unauthorized

403 Forbidden

404 Not Found

405 Method Not Allowed
408 Request Timeout

409 Conflict

500 Internal Server Error
501 Not Implemented

For RESTful web service details, visit the following URL:
http://docs.oracle.com/javaee/6/tutorial/doc/gijqgy.html

[151]

http://my.colleage.com/students/101
http://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html

Developing SOA with Mockito

Building a RESTful web service with Spring
Framework

Spring MVC was built to provide a flexible framework for web application developers.
Spring's DispatcherServlet class acts as a front controller; it receives all the incoming
requests and delegates the processing of the requests to handlers. It allows developers
to concentrate on business logic rather than work on the boilerplate of a custom front
controller. This section describes the Spring MVC architecture and how RESTful web
applications can be unit tested using Spring MVC.

In Spring MVC, the following is a pattern of a simplified request handling mechanism:

1. DispatcherServlet receives a request, confers with handler mappings to
find out which controller can handle the request, and then passes the request
to the selected controller.

2. The selected controller performs the business logic (can delegate the request
to a service or business logic processor) and returns some information back
to Dispatcherservlet for user display or response. Instead of sending the
information (model) directly to the user, the controller returns a view name
that can render the model.

3. Dispatcherservlet then resolves the physical view from the view name
and passes the model object to the view. This way, DispatcherServlet
is decoupled from the view implementation. The view renders the model.
A view could be a JSP page, a servlet, a PDF file, an Excel report, or any
presentable component.

The following sequence diagram represents the flow and interaction of the
Spring MVC components:

| :Browser| |:Dispatcher8ervlet| | :HandlerMapping| | :Controller | | :ViewResolver | | View |

request
—> request :|
7|

1
____controller
~

request

L model and logical view
s information

view name
view

N

request [model]

renders the model j

[152]

A4

N

Chapter 6

For a RESTful web service, instead of forwarding the model and the view object or
the logical view name from controller, we can directly return response data from
the controller using Spring's @ResponseBody annotation.

We'll build a Spring RESTful web service and unit test the code using JUnit.
The following are the steps to be performed:

1.
2.

Launch Eclipse and create a dynamic web project named RESTfulStudentWs.

Open web. xml and enter the following lines:

<display-name>RESTfulStudentWS</display-name>
<servlets>
<servlet-names>rest</servlet-name>
<servlet-class>
org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<load-on-startup>1l</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-names>rest</servlet-name>
<url-pattern>/</url-pattern>
</servlet-mapping>
<context-params>
<param-name>contextConfiglocation</param-name>
<param-value>
/WEB-INF/rest-servlet.xml
</param-value>
</context-param>
</web-app>

The dispatcher is named rest, and it maps all requests. Note the
contextConfigLocation parameter; it indicates that the Spring
beans are defined in /WEB-INF/rest-servlet.xml.

Create an XML file named rest-servlet.xml in WEB-INF and add the
following lines:

<?xml version="1.0"encoding="UTF-8"7?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:context="http://www.springframework.org/
schema/context™"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org
/schema/beans

http://www.springframework.org/schema/beans/spring-
beans-3.0.xsd

[153]

Developing SOA with Mockito

http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-
context-3.0.xsd">

<context:component-scan base-package="com.packt.
restful.controller" />

<bean class= "org.springframework.web.servlet.view.
InternalResourceViewResolver"s>

"n cmve:annotation-driven />

</beans>

The preceding XML code instructs the Spring configuration that all beans are
configured under the com.packt.restful.controller package with the
Spring annotations.

4. Copy the following Spring JAR files from the Spring download site and put
them under the /WEB-INF/1ib folder:

W = WEB-INF

4 [= lib
com.springsource.org.codehaus.jackson.mapper-1.4.2,jar
com.springsource.org.codehaus.jackson-14.2 jar
commaons-logging.jar

org.springframework.aop-3.1.1. RELEASE. jar
org.springframework.asm-3.1.1.RELEASE. jar
org.springframework.aspects-3.1.1.RELEASE jar
org.springframework.beans-3.1.1.RELEASE jar
org.springframework. context.support-3.1.1.RELEASE jar
org.springframework. context-3.1 1.RELEASE jar
org.springframewaork.core-3.1.1 RELEASE.jar
org.springframework.expression-3.1.1 RELEASE, jar
org.springframework.web, servlet-3.1.1.RELEASE. jar
org.springframework.web-3.1.1.RELEASE. jar
servlet-api-2.5-6.1.3 jar

| rest-servletxmnl

ar Ly 1

P P s) P P P P P P P s P P

5. Create a Java class com.packt .restful .model.Student and add the
following members and getters/setters in it:
private String roleNumber;
private String name;
private String className;
private String emailId;

[154]

Chapter 6

Create a data access class studentDao to mimic the JDBC data access.
We'll set up a map of students to bypass the real database interaction. Add
the following lines to the StudentDao class. Note that the retrieveall
and retrieve (roleId) methods are public methods for retrieving all the
students and a specific student respectively.

@Component
public class StudentDao {

private Map<String, Student> database = new HashMap
<String, Students>();

public StudentDao () {
load() ;

public Collection<Students> retrieveAll () {
return database.values () ;

public Student retrieve(String roleld) {
return database.get (roleld) ;

private void load()
Student student = new Student () ;
student.setClassName ("X") ;
student .setEmailIld("sujoy@gmaill.com") ;
student . setName ("Sujoy Acharya") ;
student .setRoleNumber ("100") ;
database.put (student .getRoleNumber (), student) ;

student = new Student () ;
student.setClassName ("XII") ;

student .setEmailIld ("leo.p@gmaiil.com") ;
student . setName ("Leo Anthony") ;

student .setRoleNumber ("101") ;
database.put (student .getRoleNumber (), student) ;

student = new Student () ;
student.setClassName ("XII") ;

student .setEmailId("john.p@ggmail.com") ;
student .setName ("John Paul") ;

student .setRoleNumber ("7") ;

database.put (student .getRoleNumber (), student) ;

[155]

Developing SOA with Mockito

student = new Student () ;
student.setClassName ("XII") ;

student.setEmailld ("cs@yahumail.com") ;
student . setName ("Subodh Chavan") ;

student .setRoleNumber ("3") ;
database.put (student .getRoleNumber (), student) ;

}

7. Create a controller class for exposing the student's data as a RESTful service.
Create a StudentController class and annotate the class with eController
to notify the Spring framework that the class is a Spring controller class. Also
annotate the class with @RequestMapping ("/college") to map requests for
"/college" to StudentController. The following is the class:

@Controlle

@RequestMapping ("/college")

public class StudentController ({
@Autowired StudentDao studentDao;

@RequestMapping (value = "/students/{roleNumber}", method
= RequestMethod.GET)

public @ResponseBody Student retrieve (@PathVariable
String roleNumber) {
return studentDao.retrieve (roleNumber) ;

@RequestMapping (value = "/students/", method =
RequestMethod.GET)
public @ResponseBody List<Student> retrieveAll() {
return new ArrayList<Student> (studentDao.
retrieveAll()) ;

}
}

Note that the methods are annotated with @RequestMapping; this annotation
maps a URL to a method. An HTTP GET request with the /college/
students/n URL (where n is a roll number) will be handled by the
retrieve () method. We can change the method type to POST in order

to handle HTTP POST requests; the default method type is GET.

[156]

Chapter 6

In MVC, controller methods return a model and a view object or a logical
view name, but when we annotate a method with @ResponseBody, it implies
that the response will be sent back directly to the caller instead of getting
processed by a view.

8. Start the web application in Tomcat and type the URL http://
localhost:8080/RESTfulStudentWS/college/students/. Please change
the server name and port as per your Tomcat settings. You will get a JSON
response back for all the students; the following is the output:

<« C' | [localhost:8080/RESTfulStudentwWs/college/students/ oW =
[{"name":"Subodh Chavan","className":"XII","emailld":"cs@yahumail.com","roleNumber”:"3"}, @x™:"3"},
{"name":"John Paul™,"className":"XII","emailld"”:"john.pfiggmail.com”," roleNumber™:"7"}, pmyny,

{"name":"Leo Anthony","className":"XII","emailld":"leo.pf@gmaiil.com”, "roleNumber™:"181"}, mamiginy,
{"name":"Sujoy Acharya","className"”:"x","emailld":"sujoyfigmaill.com”, "roleNumber”:"188"}] .n niggny)

9. Now pass a roll number to the URL to get a student's details. The following is
the output when we pass 7 as the roll number:

&« C' [3 localhost:8080/RESTfulStudentWs/college/students/7
{"name”:"John Paul™,"className”:"XII","emailld"”: " john.piggmail.com™, "rolelumber™:"7"}

10. When we pass a roll number that doesn't exist, it returns null. The following

URL passes the number 1000 and gets the following output:
= C' | [1 localhost:8080/RESTfulStudentWS/college/students/1000

[157]

Developing SOA with Mockito

In real life application, the studentDao class will be replaced by a real database

access class. The real DAO class makes unit testing the controller difficult. Separating

the data access layer from the business logic layer helps us change the database

without affecting the business logic layer and allows us to unit test the business logic

layer in isolation from the database. Suppose you are using the MySQL database

and you want to migrate to SQLServer, then you don't have to touch the business
logic layer. We'll use Mockito to isolate the DAO layer from the service layer; the

following are the steps to be performed:

1.

Create a test class StudentControllerTest under the source folder test
and add mockito-all-1.9.5.7jar to the 1ib folder under wEB- INF. The

controller class calls the studentDao class and Spring autowires the DAO
layer to the controller class. We need to modify the controller class to pass
as a setter from the JUnit tests. The following is the modified controller class
(other methods are skipped for brevity):

@Controller
@RequestMapping ("/college")
public class StudentController ({
@Autowired
private StudentDao studentDao;
public void setStudentDao (StudentDao studentDao) {
this.studentDao = studentDao;
}
}

In the test, create a mock instance of the DAO class and pass it on to the
controller as a setter injection. The following is the test:

@RunWith (MockitoJUnitRunner.class)
public class StudentControllerTest ({
@Mock
StudentDao studentDao;

@InjectMocks
StudentController controller;

}

The @RunWith (MockitoJUnitRunner.class) annotation allows us

to use the @Mock annotation to automatically mock the objects. The
@InjectMocks annotation injects the mock objects as a setter, constructor,
or property injection.

[158]

Chapter 6

Now, stub the retrieveall method of the DAO class to return the students.
The following is the modified test:

@RunWith (MockitoJUnitRunner.class)
public class StudentControllerTest ({

@Mock

StudentDao studentDao;

@InjectMocks
StudentController controller;

@Before

public void setUp(){

Student

student.
student.
student.
student.

student = new Student () ;
setClassName ("X") ;

setEmailld ("email@mail.com") ;
setName ("sujoy") ;
setRoleNumber ("7") ;

Collection<Student> studentColl = new ArraylList
<Student> () ;

studentColl.add (student) ;

when (studentDao.retrieveAll ()) .thenReturn (studentColl) ;

}

@Test

public void retrieves students() throws Exception {
List<Student> retrieveAll = controller.retrieveAll () ;
assertFalse (retrieveAll.isEmpty());

}

Similarly, add more tests to verify that a specific student's details are
retrieved when the roll number matches what is passed, and, also, null is
returned when the roll number doesn't match. The following is the test:

@Test
public void retieves a student () throws Exception {
when (studentDao.retrieve (eq("100"))) .thenReturn (new
Student ()) ;

assertNotNull (controller.retrieve ("100")) ;

@Test

public void when invalid role number returns null () {
assertNull (controller.retrieve ("100")) ;

[159]

Developing SOA with Mockito

Summary

This chapter covered web services, explored SOAP and RESTful web services with
examples, and created JUnit tests for the web services with Mockito.

The next chapter, Unit Testing GWT Code with Mockito, covers building web
applications with Google Web Toolkit (GWT), GWT development patterns,
and JUnit testing GWT modules with Mockito.

[160]

Unit Testing GWT Code
with Mockito

"The secret of change is to focus all of your energy, not on fighting the old, but on
building the new."

- Socrates

In today's world, Ajax plays an essential role in web application development.
Google Web Toolkit (GWT) offers internationalization, cross-browser compatibility,
Java coding, hosted mode for unit testing the client component in isolation from

the server-side component, and so many things, for free. Unit testing the client-

side business logic and building a JUnit safety net around the GWT code is very
important for code quality and code maintenance. GWT code works with different
Document Object Model (DOM) widgets and events; business logic gets tied up
with the DOM widgets and events and makes it impossible to write unit test for the
business logic. Mockito plays a key role in isolating the DOM widgets and events
from the logic.

This chapter provides an overview of Ajax/GWT, explains the Model View
Presenter (MVP) pattern and loose coupling, and provides examples and
strategies to mock GWT widgets using Mockito. The following topics are
covered in this chapter:

* AJAX/GWT overview
* Developing a small GWT application with the MVP pattern
* Unit testing MVP with Mockito

Unit Testing GWT Code with Mockito

Exploring Ajax and GWT

AJAX stands for Asynchronous JavaScript and XML. Ajax allows content on web
pages to update immediately when a user performs any action, unlike an HTTP
request, where users must wait for a whole new page to load and be rendered by the
web browser. Conventional web applications transmit information to and from the
server using synchronous requests. Users fill out a form, hit submit, and get directed
to a new page with new information from the server. The user cannot do anything
with the web page until the response is back from the server; this means the user is
blocked while the request is being processed. In Ajax, JavaScript makes a request

to the server, interprets the response, and updates the current screen. The user
never gets to know that anything was even transmitted to the server, as the user can
continue to use the application while the JavaScript requests information from the
server in the background.

Ajax combines numerous tools, such as JavaScript, Dynamic HTML (DHTML),
XML, Cascading Style Sheets (CSS), JSON, the DOM, and the Microsoft object,
XMLHttpRequest.

The following JavaScript snippet explains an Ajax call and how to handle the result
in a JavaScript callback method:

function ajaxFunction() {
var xmlhttp;
if (window.XMLHttpRequest) {
// code for IE7+, Firefox, Chrome, Opera, Safari
xmlhttp=new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
// code for IE6, IE5
xmlhttp=new ActiveXObject ("Microsoft.XMLHTTP") ;
} else {
alert ("Your browser does not support XMLHTTP!") ;
}
xmlhttp.onreadystatechange=function()
if (xmlhttp.readyState == 4)
// 200 is a successful return
if (xmlhttp.status == 200) {
alert (xmlhttp.responseText) ;
}else{
alert ('Error: '+ xmlhttp.status);
}

}
}

xmlhttp.open ("GET", "time.asp", true) ;
xmlhttp.send (null) ;

[162]

Chapter 7

The xmlhttp.responseText object contains the server response. It could be an
document, a simple text, or JSON data. The client-side JavaScript has to process
the data as per requirement. To know more about Ajax, visit the following URL:

https://developer.mozilla.org/en/docs/AJAX

GWT is a development toolkit for building and optimizing complex browser-based
RPC applications. The goal of GWT is to enable productive development of high-
performance web applications without the developer having to be an expert in
browser quirks, XMLHttpRequest, and JavaScript.

The preceding Ajax example checks the browser version, creates the request object,
and makes an asynchronous call. The callback checks the status of the response

and processes the response to bind the data to the appropriate DOM object. Ajax
response processing needs special care as it handles lots of potential error cases due
to network and asynchrony (plus browser incompatibilities), and adds complexity.
Maintaining JavaScript code is very difficult as it is dynamic in nature, and because
there is no modularization; even the inheritance system using prototype inheritance
is both weak and poorly understood. There is no encapsulation, due to which,
writing unit tests for JavaScript is not easy. Also, JavaScripts are browser sensitive as
each browser doesn't support the same set of JavaScript APIs. GWT provides cross-
browser support; we build the application in Java and the GWT compiler translates
the Java code into JavaScript that runs on all common browsers. As the code is
written in Java, we can write unit tests, refactor code, reuse our existing Java skills,
share code with other Java codebases, use Java tools, and gain the things that the
Java language is good at, such as static typing and strong OO designs, and build a
maintainable software in Java using GWT.

The following are the main advantages of GWT:

* Asitis written in Java, it gets Java tool supports such as refactoring,
unit testing, seamless integration with continuous integration tools,
and Java documentation

* The GWT compiler generates optimized JavaScript code that helps in faster
client-side JavaScript execution and performance

* GWT provides cross-browser support; so if your code runs fine in one
browser, it will run fine in other common browsers as well

* Maintainable application can be developed using GWT, for example, MVP,
MVC, and event bus
* Decent library support and third-party widgets for complex UI development

* Java code can be debugged; the GWT-hosted mode allows us to debug
client-side code and also helps us to unit test JavaScript code in isolation
from the server code

[163]

https://developer.mozilla.org/en/docs/AJAX

Unit Testing GWT Code with Mockito

Visit http://www.gwtproject.org/ for more information. The next section will
explore the MVP pattern.

Learning the MVP pattern

Building an application in an unplanned way suffers many problems, such as adding
new features, making a huge effort as the architecture becomes rigid, maintaining the
software (activities such as bug fixing) can turn into a nightmare, white box testing
or unit testing the code becomes very difficult, and conflict and integration issues
when many people work with the same or similar features. Generally, if no thought
is given to refactoring as you go, the architecture may become a big ball of mud, and
without planning, you may end up with a poor structure that might become difficult
to change. To overcome these issues, we can employ many design patterns, such as
MVC and MVP. GWT development goes very well with the MVP pattern as it allows
loose coupling and separation of concerns.

The MVP approach divides the code into layers that solve the issues with code. MVP
believes in separation of concerns and proposes the following logical layers:

* Model: A model encompasses business objects or data.

* View: A view contains all of the Ul components that make up our
application. This includes any tables, labels, buttons, textboxes, and so on.
Views are responsible for the layout of the UI components and have no
notion of the model. That is to say a view doesn't know that it is displaying
a house or kangaroo; it simply knows that it has a label, two textboxes, and
two buttons that are organized in a vertical or horizontal fashion.

Switching between views is tied to the history management within the
presentation layer.

* Presenter: A presenter manages the views while updating the models when
necessary. A presenter contains all of the logic for the application, including
history management, view transition, and data synchronization via Remote
Procedure Calls (RPCs) back to the server. In general, every view is driven
by a presenter and it handles events that are sourced from the Ul widgets
within the view. RPC is an inter-process communication, which allows
the GWT code to cause a Java process or procedure to execute in another
address space.

[164]

http://www.gwtproject.org/

Chapter 7

The following figure represents the MVP components:

Presenter defines
q . a\View
IView "~ Presenter has a
IView
View implements Presenter
the IView has

a model

The presenter contains a view interface and a model. A concrete view is created and
passed to the presenter; the presenter doesn't know about the concrete view, but it
can access the methods of the view through the view interface. The view interface
defines methods to render data, update the view, or access a DOM component of
the view, but the interface should not return a low-level DOM component to the
presenter. If a view contains a button, the interface should define a method to get
hold of the button, but the method shouldn't return the button type; instead, it
should return a high-level DOM component, such as clickable. The view doesn't
handle the DOM events; the presenter implements the DOM event handling; for
example, it will create a click event handler and set it to the button's handler list. That
way, the view doesn't contain any logic. The presenter manages event handling and
view transition. For example, consider a word processor application that has a view
for listing all documents and has an edit button for editing a selected document.

On the edit button, when you click on current (the list documents presenter), the
presenter needs to change the view to the edit mode and open the document for
editing. The list document presenter will fire an event so that another presenter can
handle the edit operation. An edit document presenter will take care of the view. The
presenter can update the model and send it to view for updating the view, such as a
presenter making an asynchronous call to the server to get the updated stock price;
on service callback, it will update the model with the latest data and call the view to
update the new information.

The next section will demonstrate a GWT application and explain the MVP details.

[165]

Unit Testing GWT Code with Mockito

Developing a GWT application using MVP

We'll develop an application in Eclipse. Visit the following URL to download the
Google Plugin for Eclipse:

https://developers.google.com/eclipse/docs/download

Install the plugin and create a new web application. The following screenshot
shows this:

=

= lava - Eclipse
File Edit Source Refactor Mavigate Search Project CodePro Run Window H

_="v="v @v&bavihvﬁ;vﬁvi-{-vﬁ@vk

@' Mew Web Application Project... [.
T fTestjava &7

' i

 Pa. 32| f& Ty.. B

24, Import App Engine Sample Apps...

A new application wizard will appear on the screen. To create a new web
application, perform the following steps:

1. Enter the project name as outstandingBills and the package name as com.
packt.billing.

Check the Google SDKs checkbox and select the default SDK radio button.
If you have downloaded a separate GWT binary, provide the path and
configure the SDK. Also, check the Generate project sample code checkbox;

it will create the necessary files we need to develop a GWT application. We'll
change the filenames as required.

The following screenshot displays the settings:

[166]

https://developers.google.com/eclipse/docs/download

Chapter 7

% MNew Web Application Project

Create a Web Application Project

Create a Web Application project in the workspace or in an external location

Project name:
OutstandingBills

Package: (e.g. com.example.myproject)

o o]

com.paclct.billing|
Location
(@ Create new project in workspace

() Create new project in:
Di\workspace\PacktPub\Mockito_360505\OutstandingBills
Google SDKs

Use Google Web Toolkit
@ Use default SDK (GWT - 2.3.0)

() Use specific SDIG | GWT - 2.3.0

Sample Code

Generate project sample code

Configure 5DKs..,

The preceding steps will generate the following project structure:

4 =2 OutstandingBills
PRE:E s
a4 {2 com.packt.billing
a 7 client
- |[J] GreetingServicejava
- [J] GreetingServicedsync.java
. [J] OutstandingBills.java
a [server
- [J] GreetingServicelmpl.java
4 {7 shared
- [J] FieldVerifierjava
|| QutstandingBills.gwt.xml

4. Open the outstandingBill.gwt.xml file; this file contains the project

metadata, for example, the <entry-point> classname. The EntryPoint

is the starting point in GWT applications.

[167]

Unit Testing GWT Code with Mockito

5. Open the com.packt.billing.client.OutstandingBills entry-
point class. It implements the EntryPoint interface and overrides the
onModuleLoad () method. This method is invoked during a GWT
application loading.

GWT applications make asynchronous calls to the server and process
responses with service callbacks. When the server response comes back, a
callback processes the response. All callbacks implement the Asynccallback
interface and the onSuccess () and onFailure () methods. The onFailure
method is called when the server encounters any error and throws an
exception or error. The onFailure method can take care of the server failure,
for example, it can show a proper error message to the user. The onsuccess
method is called when the server returns a response and no error occurs on
the server side.

6. Check that Eclipse has generated two interfaces, GreetingService and
GreetingServiceAsync, for service invocation. Conventionally, the
<ServiceNamesService interface defines the service methods and
extends the RemoteService interface as follows:

@RemoteServiceRelativePath ("greet")
public interface GreetingService extends RemoteService {
String greetServer (String name) throws IllegalArgument
Exception;

}

A server-side class implements the interface.

The other <ServiceName>ServiceAsync interface redefines the method,
but all methods become void; yet they all take an additional parameter
called Asynccallback:

public interface GreetingServiceAsync {

void greetServer (String input, AsyncCallback<Strings
callback)
throws IllegalArgumentException;

}

Note that greetserver () is a void method and it takes an additional
parameter's AsyncCallback<Strings> callback. If a service method returns
ArrayList<Integers, the callback will look like AsyncCallback<ArrayLi
st<Integer>>. We would rather define the service interface and the async
interface relation as follows:
@RemoteServiceRelativePath ("name")
public interface SomeService extends RemoteService {

T someMethod (String name) throws E;

[168]

Chapter 7

In the preceding code, T is any Java type, such as object, integer, or string,
and E is any exception, such as I1legalStateException.

The async interface will look like the following code snippet:

public interface SomeServiceAsync {
void someMethod (String input, AsyncCallback<Ts> callback)
throws E;

}

The GWT compiler translates the Java code to JavaScript. Select the project
and click on the red-colored GWT Compile icon from the toolbar, or you can
right-click on the project and then select Google from the pop-up menu and
click on the GWT Compile menu item, as shown in the following screenshot:

F

PMD 5 'é Profile Using Speed Tracer
Checkstyle 5 i GWT Compile

Spring Tools , | @ Add Google APIs...

Google « % Import Google Hosted Project.
Shiiree y L4, Deploy to App Engine

The preceding step will compile the code and generate JavaScript under the
war folder; the following screenshot displays the location:

4 =% OutstandingBills

. B, GWT SDE [GWT - 2.3.0]
=' IRE Systemn Library [jrel]

4 [= war
4 [= outstandinghbills

Ry 0A9476898799A150D840F0B1 C3672921 .cache.png

1 L

: outstandingbills.nocache,js

Note that the compilation has generated a JavaScript file called
outstandingbills.nocache.js. This JavaScript file is responsible for
rendering the application. From the HTML or JSP file, you need to provide
the path of the script file, as shown in the following line of code:

<script type="text/javascript" language="javascript" src
="outstandingbills/outstandingbills.nocache.js"></script>

[169]

Unit Testing GWT Code with Mockito

We'll now build an application to handle outstanding hotel bills. The user interface
will display a textbox and a Query Bill button. The user will enter a room number
and then hit the button to query the current outstanding bill. A pop up will be
displayed with the bill details and payment options. The following are the steps

to build the application:

1. Create a serializable class Bill in the com.packt.billing.client package,
and add the following members and getters/setters:

private String details;
private BigDecimal payable;

2. Create a service interface to retrieve the outstanding bills and make the
payment. Create a BillingService interface in the com.packt.billing.
client package with the following details:

@RemoteServiceRelativePath ("bill")

public interface BillingService extends RemoteService {
public Bill retrieve (String roomNumber) ;
public boolean pay(String roomNumber, BigDecimal amount) ;

}

3. Create an async interface with the following information:

public interface BillingServiceAsync {
public void retrieve (String roomNumber, AsyncCallback
<Bill> callback) ;
public void pay(String roomNumber, BigDecimal amount,
AsyncCallback<Booleans> callback) ;

}

4. Create a service implementation class com.packt.billing.server.
BillingServiceImpl, implementing BillingService:

@SuppressWarnings ("serial")
public class BillingServiceImpl extends RemoteServiceServlet
implements BillingService ({
@Override
public Bill retrieve (String rommNumber) {
// TODO Auto-generated method stub
return null;

}

@Override

public boolean pay (String roomNumber, BigDecimal amount)
{
// TODO Auto-generated method stub
return false;

}
}

[170]

Chapter 7

Usually, two separate projects should be created for the GWT service
and service implementation, namely, a contract project with service and
async interfaces, and an implementation project that implements the
service interface. Both the projects should be deployed in the
web/application server.

Modify the web.xm1 file under the war folder and add the following
entries to define the BillingServiceImpl servlet and to map the URL to
BillingServiceImpl. All HTTP requests with the /outstandingbills/
bill URL pattern will be mapped to the BillingServiceImpl servlet:

<servlet>
<servlet-names>billingServlet</servlet-name>
<servlet-class>
com.packt.billing.server.BillingServiceImpl
</servlet-class>
</servlet>

<servlet-mapping>
<servlet-names>billingServlet</servlet-name>
<url-pattern>/outstandingbills/bill</url-pattern>
</servlet-mapping>

Open the outstandingBills class and replace all GreetingService
references with BillingService; remove everything from the
onModuleLoad () method. The following is the modified class:

public class OutstandingBills implements EntryPoint {

private final BillingServiceAsync service = GWT
.create(BillingService.class) ;

/*** This is the entry point method. ***/
@Override
public void onModuleLoad() {

}
}

Did you notice the service definition? The BillingServiceAsync interface

is created with GWT. create (BillingService.class). Basically, a remote
service proxy is created to talk to the server-side BillingServiceImpl class.
The BillingService interface is annotated with @RemoteServiceRelativeP
ath("bill"). Any service call will have the /bill token in the URL. We will
set up web.xml to map /bill to the BillingServiceImpl servlet.

[171]

Unit Testing GWT Code with Mockito

7. Now modify the BillingServiceImpl class to have some hardcoded room
numbers and bills. In constructor, populate a HashMap with room numbers
and payable bill amounts. We'll use room numbers from 1 to 5000 and
generate random payable amounts. The retrieve method will look up the
HashMap for the outstanding payable and the pay method will deduct the
amount from the HashMap. The following is the modified class:

public class BillingServiceImpl extends Remote
ServiceServlet implements BillingService ({
private Map<String, BigDecimal> billMap = new
HashMap<String, BigDecimals>() ;

public BillingServiceImpl () ({
Random random = new Random() ;
for (int i = 1; i < 5000; i++)
billMap.put (String.valueOf (i) ,new BigDecimal
(random.nextInt (1000000))) ;

}

@Override
public Bill retrieve (String roomNumber) {
BigDecimal payable = billMap.get (roomNumber) ;
Bill bill = new Bill();
if (payable != null) {
bill.setDetails ("Accomodation charge for room#" +
roomNumber + " and payable amount="+ payable
.doublevalue()) ;
}
bill.setPayable (payable) ;
return bill;
}
@Override
public boolean pay (String roomNumber, BigDecimal
amount) {
BigDecimal payable = billMap.get (roomNumber) ;
if (payable != null) {
payable = payable.subtract (amount) ;
billMap.put (roomNumber, payable) ;
return true;

}

return false;

[172]

Chapter 7

We will have two views — the initial query view with the room number
textbox and query button, and the bill details view with bill details, payment
textbox, and the make payment button; we'll call them Queryview and
DetailsView, respectively.

We've already talked about the view interfaces in the MVP section.

We'll create two view interfaces with abstract DOM elements, such as
HasClickHandlers Or HasValue, to represent QueryView and DetailsView
in the com.packt.billing.client.view package.

We need the room number when the Query button is pressed. So we'll add
a method to the view to get the room number value. We need to intercept
the button click, so we'll add a method to the view to get a clickable object,
so that we can add a handler to the object to intercept the button click. The
view should not add any handlers to any DOM object. Rather, it should
provide the handle to the presenter to handle the logic. The following is the
QueryView body:
public interface QueryView

Widget asWidget () ;

HasClickHandlers getQueryButton() ;

HasValue<String> getRoomNumber () ;

}

The aswidget () method returns a widget. We'll add the widget to the
container. The getQueryButton () method represents the Query button
and the getRoomNumber () represents the value entered in the room number
textbox. Now we need the actual view implementation.

Create a QueryViewImpl class in the com.packt.billing.client.
view package, implementing the QueryView interface and extending the
Composite class:

A composite class is a type of a widget that can wrap another widget, hiding
the wrapped widget's methods. When added to a panel, a Composite class
behaves exactly as it should if the widget it wraps had been added. The
Composite class is useful for creating a single widget out of an aggregate of
multiple other widgets contained in a single panel.

[173]

Unit Testing GWT Code with Mockito

We'll use the Label, TextBox, Button, FlexTable, and HorizontalPanel
GWT widgets to represent the view. The Label, TextBox, and Button
GWT widgets will be added to FlexTable. Flexible table creates cells on
demand. It can be jagged (that is, each row can contain a different number
of cells), and individual cells can be set to span multiple rows or columns.
The FlexTable widget will be added to the HorizontalPanel widget. The
following is the implementation. The beauty of having a view interface is that
you can change the view implementation without altering the code in the
presenter. You can use a Textbox Or PasswordTextBox widget to represent
HasValue; the presenter won't know about the actual implementation.
This is how the view is abstracted from the presenter or rather, the view

is loosely coupled from the business logic/ presenter:

public class QueryViewImpl extends Composite implements
QueryView {
private HorizontalPanel mainPanel;
private TextBox roomNumber= new TextBox() ;
private Button query = new Button ("Query") ;

public QueryViewImpl () {
mainPanel = new HorizontalPanel () ;
mainPanel.setWidth ("100%") ;

mainPanel.setHorizontalAlignment (HasHorizontalAlignment
.ALIGN LEFT) ;

FlexTable mainTable = new FlexTable() ;
mainTable.setWidth ("100%") ;

mainTable.setWidget (0, 0, new Label ("Room#")) ;
mainTable.setWidget (0, 1, roomNumber) ;
mainTable.setWidget (0, 2, query);
mainTable.getCellFormatter () .setWidth(0, 0, "5%");
mainTable.getCellFormatter () .setWidth (0o, 1, "10%");
mainPanel.add (mainTable) ;

initWidget (mainPanel) ;

@0override public Widget asWidget () {
return this;

[174]

Chapter 7

10.

@Override public HasClickHandlers getQueryButton() {
return query;

@0verride public HasValue<String> getRoomNumber ()
return roomNumber;

}

We'll define the view interface and implementation of Detailsview in the
next section when the application is up and running with Queryview.

Similarly, we need two presenters to present the views. We'll define a
presenter interface in the presenter package with following details:

public interface Presenter {
void render (final HasWidgets container) ;

}

HasWidgets represents a DOM element on the HTML page, such as a <div>
element. GWT renders Ul components in that DOM container; we'll refer

to it as container. The QueryPresenter will present the initial view and
implement the Presenter interface. We need to pass a view interface to

the presenter, so we'll pass a QueryView instance to the QueryPresenter.
The following is the presenter:

public class QueryPresenter implements Presenter {
private final QueryView queryView;

bv public QueryPresenter (QueryView queryView) {
this.queryView = queryView;

}

@Override public void render (HasWidgets container) {
container.clear () ;
container.add (queryView.asWidget ()) ;

}

In the next section, we'll create the DetailsPresenter to represent the
DetailsView.

[175]

Unit Testing GWT Code with Mockito

11.

12.

In a browser, we hit the back button to go back to the previous page. In GWT,
there is no previous page, as a single HTML/]JSP page displays many views.
So to go back or forward to the previous or next view so that we can browse
the history. The com.google.gwt .user.client.History class represents
the browser history. This class allows you to interact with the browser's
history stack. Each itern on the stack is represented by a single string referred
to as a foken. You can create new history items (which have a token associated
with them when they are created), and you can programmatically force the
current history to move backward or forward.

History token change is handled by implementing the
ValueChangeHandler<Ts> interface:
public interface ValueChangeHandler<T> extends
EventHandler {
void onValueChange (ValueChangeEvent<T> event) ;

}

When a history token is changed, the ValueChangeHandler interface is
notified. However, before that, the handler needs to be registered to
History using the following syntax:

History.addvValueChangeHandler (this) ;

We'll create an ApplicationController class. This class will implement

the Presenter interface and provide the concrete implementation of the
render () method. Also, the class will implement the ValueChangeHandler
interface and register itself to History to interact with the history. The
render method will put a new token START to the History stack to start the
view transition. The onvalueChange (ValueChangeEvent event) method
will be invoked on History value change; this method will check the token
value START and create a new Presenter interface to display the initial view.
The following is the ApplicationController class:

public class ApplicationController implements Presenter,
ValueChangeHandler<Strings{

private static final String BLANK = "";
private static final String START = "START";
private HasWidgets container;

public ApplicationController () {
History.addValueChangeHandler (this) ;

}

[176]

Chapter 7

The render () method stores the container and checks the History token.
If the application is invoked the first time, the History stack will contain

a blank string, and then the render () method will add a new token item
"START" to the History stack. Otherwise, when you hit refresh, the current
state of the History stack is fired so that the same view is rerendered. That
way, a user doesn't lose any data. When a new item is pushed or a current
history item is fired, the history value changes and then the onvalueChange
method is invoked:

@Override
public void render (HasWidgets container) {
this.container = container;

if (BLANK.equals (History.getToken())) {
History.newItem (START) ;
} else {

History.fireCurrentHistoryState() ;

}
}

The onvalueChange method checks the history token. If the token

is "START", it creates the QueryviewImpl view, instantiates the
QueryPresenter, and finally, calls the presenter.render () method

to display the view. For multiple views, the history token value will be
changed, and depending upon the token value, the appropriate presenter
will be instantiated and finally, the render () method will be invoked on
the presenter:

@Override public void onValueChange (ValueChangeEvent
<Strings> event) {

String token = event.getValue() ;
container.clear() ;
Presenter presenter = null;
if (START.equals (token)) ({
presenter = new QueryPresenter (new QueryViewImpl ()) ;
}
if (presenter != null)
presenter.render (container) ;

}
}

[177]

Unit Testing GWT Code with Mockito

13. Modify the onModuleLoad () method of the outstandingBills EntryPoint
class to create an instance of ApplicationController and invoke the
render method with a DOM ID. The following is the modified method:

@Override

public void onModuleLoad () {
Presenter presenter = new ApplicationController () ;
presenter.render (RootPanel.get ("dom")) ;

}

14. Modify the outstandingBills.html file to add a div with id="dom":
<html>
<head>

<meta http-equiv="content-type" content="text/html;
charset=UTF-8">

<link type="text/css" rel="stylesheet" href=
"OutstandingBills.css">

<script type="text/javascript" language="javascript"
src="outstandingbills/outstandingbills.nocache.js"/>

</head>
<body>

<iframe src="javascript:''" id="_gwt historyFrame"
tabIndex='-1'style="position:absolute;width:0;
height:0;border:0">

</iframe>

<hl>Web Application Starter Project</hl>

<div id="dom"></div>
</body>
</html>

Note that the <script> tag loads the GWT script and the <iframe> tag
enables the history mechanism. If this entry is missing, the history token
management will not work and the MVP pattern's purpose will be violated.

[178]

Chapter 7

15.

16.

17.

Right-click on the project and run it as GWT web application, then copy the
URL and paste it to a web browser. The following output will be displayed:

] Web Application Start:

« C [127.00153235,@5y =

Outstanding Bills

Room# Query

Now we have the application configured. The next step is to build the
DetailsView interface and enable the view transition. We'll start with the
new view. Create an interface Detailsview and add the following lines:

public interface DetailsView {
Widget asWidget () ;
HasClickHandlers getPaymentButton() ;
HasClickHandlers getCloseButton() ;
HasValue<String> getPaymentAmount () ;
void populate (Bill bill) ;

}

The populate () method is used to populate the bill details to the Ul,
the getCloseButton () method is used to get hold of the close button,
the getPaymentButton () method is for the payment button, the
getPaymentAmount () method is for the payment textbox, and the
asWidget method is used to return the composite.

Create the DetailsviewImpl class for displaying the details view.
The following is the code:
public class DetailsViewImpl extends Composite implements
DetailsView {
private VerticalPanel mainPanel;
private TextBox amount = new TextBox () ;
private Button payment = new Button ("Pay");
private Button close = new Button("Close");
private Label desc = new Label() ;
private Label dueAmt = new Label () ;

[179]

Unit Testing GWT Code with Mockito

public DetailsViewImpl () ({

mainPanel
mainPanel.

FlexTable
mainTable.

mainTable.
mainTable.

mainTable.
mainTable.

= new VerticalPanel () ;

setWidth ("100%") ;

mainTable = new FlexTable() ;

setWidth("100%") ;

setWidget (0,0, new Label ("Desc#")) ;
setWidget (0,1, desc) ;

setWidget (1,0, new Label ("Due#")) ;
setWidget (1,1, dueAmt) ;

mainTable.setWidget (2, 0,new Label ("Pay amount#")) ;

mainTable.setWidget (2,1,

mainTable.
mainTable

mainTable
mainTable

mainTable
mainTable

mainTable
mainTable

mainTable
mainTable

amount) ;

setWidget (3,0, payment) ;

.getCellFormatter ()
.getCellFormatter ()

.getCellFormatter ()
.getCellFormatter ()

.getCellFormatter ()
.getCellFormatter ()

.getCellFormatter ()
.getCellFormatter ()

.setWidget (3,1, close);

.setWidth (0,0, "5%");
.setWidth (0,1, "60%");

.setWidth (1,0, "5%");
.setWidth(1,1, "60%");

.setWidth (2,0, "5%");
.setWidth(2,1, "60%");

.setWidth (3,0, "25%");
.setWidth (3,1, "60%");

mainTable.getCellFormatter () .setAlignment (3, O,
HasHorizontalAlignment .ALIGN RIGHT,
HasVerticalAlignment .ALIGN MIDDLE) ;

mainTable.getCellFormatter () .setAlignment (3, 1,
HasHorizontalAlignment .ALIGN LEFT,
HasVerticalAlignment .ALIGN MIDDLE) ;

mainPanel.

add (mainTable) ;

initWidget (mainPanel) ;

@0verride public Widget asWidget () {

return this;

[180]

Chapter 7

@Override public HasClickHandlers getPaymentButton()
return payment;

@Override public HasValue<String> getPaymentAmount () {
return amount;

@0verride public void populate(Bill bill) {
desc.setText (bill.getDetails()) ;
dueAmt .setText (""+bill.getPayable () .doubleValue()) ;

@Override public HasClickHandlers getCloseButton() {
return close;

}

GWT fires GwtEvents to indicate the completion of the task. The class, com.
google.gwt.event .shared.GwtEvent, represents the event. This is the
root of all GWT events. The user can create custom events to notify if a
view change is required (to interact with other views).

An event is always defined with an event handler such as the following;:

public class SearchEvent extends GwtEvent
<SearchEventHandler> {

}

Every event comes up with an event handling contract. This contract is
known as an event handler.

Event handlers extend a marker interface com.google.gwt .event .shared.
EventHandler.
The following is an example of an event handler contract:

public interface SearchEventHandler extends EventHandler ({
void onSearch (SearchEvent event) ;

}

Events are fired to an event bus class: com.google.gwt .event . shared.
HandlerManager

HandlerManager (also known as event bus) is responsible for adding
handlers to event sources and associating those handlers to pass in events.

[181]

Unit Testing GWT Code with Mockito

The following code snippet is an example of firing events:

eventBus.fireEvent (new SearchEvent (getSearchText ())) ;

The following is an example of event handling:
eventBus.addHandler (SearchEvent .TYPE, new
SearchEventHandler () {
public void onSearch (SearchEvent event) {
doSearch (event .getRoomNumber ()) ;

}
3N

In an MVP context, when a presenter needs to notify a view change to
Ry the system, it fires a GWT event.
Q The event handler associated with this event intercepts the event

and hands over the control to another presenter. This new presenter
renders a new view.

Our QueryView needs to notify the view change when the user hits
the Query button. We'll create a GWT event called SearchEvent
and a SearchEventHandler:
public class SearchEvent extends GwtEvent
<SearchEventHandlers> {
private String roomNumber;

public static Type<SearchEventHandler> TYPE = new
Type<SearchEventHandlers () ;

@Override

public com.google.gwt.event.shared.GwtEvent.Type
<SearchEventHandler> getAssociatedType () ({

return TYPE;

@Override
protected void dispatch(SearchEventHandler handler) ({
handler.onSearch (this) ;

public String getRoomNumber () {
return roomNumber;

public void setRoomNumber (String roomNumber) {

[182]

Chapter 7

this.roomNumber = roomNumber;

}
The event handler will look like this:

public interface SearchEventHandler extends EventHandler {

void onSearch (SearchEvent event) ;

}

18. We'll modify the QueryPresenter to fire the SearchEvent with the
roomNumber when the user hits the Query button. To fire the event,
the presenter needs an event bus. Modify the constructor to pass a
HandlerManager instance. The following is the modified constructor:

public QueryPresenter (QueryView view,HandlerManager bus) {
this.queryView = view;
this.eventBus = bus;
queryView.getQueryButton () .addClickHandler (new
ClickHandler () {
@Override
public void onClick(ClickEvent event) {
SearchEvent searchEvent = new SearchEvent () ;
searchEvent . setRoomNumber (queryView.getRoomNumber ()
.getValue()) ;
eventBus.fireEvent (searchEvent) ;

I3
}

19. Modify the ApplicationController to create a HandlerManager instance
and pass it to the modified presenter. The following are the modified
constructor and class level members for roomNumber and HandlerManager:

private HandlerManager eventBus;

private String roomNumber;

public ApplicationController () {
History.addValueChangeHandler (this) ;
this.eventBus = new HandlerManager (this) ;

eventBus.addHandler (SearchEvent .TYPE, new Search
EventHandler () {
@Override
public void onSearch (SearchEvent event) {
roomNumber = event.getRoomNumber () ;
History.newItem (SEARCH) ;

3N
}

[183]

Unit Testing GWT Code with Mockito

20. Create a DetailsPresenter to handle the view. The presenter
needs to make a service call to check the bill, so we need to pass the
BillingServiceAsync instance to the presenter, and we also need to pass
the roomNumber string for which the view will be rendered. The following
is the presenter:

public class DetailsPresenter implements Presenter {
private final DetailsView detailsView;
private final BillingServiceAsync billingService;
private final String roomNumber;

public DetailsPresenter (BillingServiceAsync
billingService, DetailsView detailsView, String
roomNumber) {

this.detailsView = detailsView;
this.billingService = billingService;
this.roomNumber = roomNumber;

@Override

public void render (final HasWidgets container) {
container.clear () ;
container.add (detailsView.asWidget ()) ;

billingService.retrieve (roomNumber, new
AsyncCallback<Bills () {

@Override
public void onSuccess(Bill bill) {
detailsView.populate (bill) ;

@Override
public void onFailure (Throwable caught) {
Window.alert ("Error occured "+caught) ;

13N
}

The render () method makes a service call to get the bill information and
then passes that information to the view by making a call to the populate ()
method.

[184]

Chapter 7

21. Modify the ApplicationController to intercept the history value change
for the search token. Modify the constructor to inject the BillingService
interface:
public ApplicationController (BillingServiceAsync

billingService) {

this.billingServiceAsync = billingService;

}

Modify the onvalueChange () method to handle the Search history
token class.

@Override
public void onValueChange (ValueChangeEvent<String> event) {
String token = event.getValue() ;
container.clear() ;
Presenter presenter = null;
if (START.equals (token)) ({

presenter = new QueryPresenter (new QueryViewImpl (),
eventBus) ;

if (SEARCH.equals (token)) {

presenter = new DetailsPresenter (billingServiceAsync,
new DetailsViewImpl (), roomNumber) ;

}

if (presenter != null)
presenter.render (container) ;

}
}

The following will be the output of the new changes:

Desc# Accomodation charge for rcom#4 and payable amount=292.0
Due# 592.0
Fay
amount#
Pay || Close

[185]

Unit Testing GWT Code with Mockito

22. Modify the DetailsPresenter interface to handle the Pay and Close
button click. On the Pay button click, we'll make a service call, display
the message, and close the view. On the Close button click, we'll put a
START item to the history to go back to the initial state. The following is
the modified constructor:

public DetailsPresenter (BillingServiceAsync service,
DetailsView view, String rn) {
this.detailsView = view;
this.billingService = service;
this.roomNumber = rn;

detailsView.getCloseButton () .addClickHandler (new
ClickHandler () {

@Override public void onClick (ClickEvent event) {
History.newItem ("START") ;
}
I3

detailsView.getPaymentButton () .addClickHandler (new
ClickHandler () {

@Override
public void onClick (ClickEvent event) {
String amount = detailsView.getPaymentAmount ()
.getValue() ;
billingService.pay (roomNumber, new BigDecimal
(amount) , new AsyncCallback<Booleans () {
@Override

public void onFailure (Throwable caught) {
Window.alert ("Error "+caught) ;

}

@Override
public void onSuccess (Boolean result) {
if (result) {
Window.alert ("Posted payment") ;
History.newItem ("START") ;
}else{
Window.alert ("Could not post payment") ;

[186]

Chapter 7

We are done with MVP. We should add the validation logic for user entry fields for
blank or invalid input. For instance, an error message should be displayed when
the room number textbox is blank but a user hits the Query button, or when the
payment amount textbox is blank and a user hits the Pay button.

Unit testing the GWT code

MVP's loose coupling enables rapid development, as the view implementation,
server-side service implementation, and presenters are independent of each other.
Hence, developers can concentrate on different areas of the application without
stepping on each other, for instance, one can work on the server-side business
logic, work on the presentation layer logic, and implement the view logic. View
implementation doesn't contain any business logic other than UI components

and layout information. So no JUnit test is required for the view implementation;
only manual inspection is good enough. However, the presentation layer contains
business logic, such as, a user cannot post a negative amount while making the
payment for a bill or the payment amount cannot exceed the payable amount.
Mockito plays a key role in mocking DOM widgets and stubbing widget behaviors.
We'll refactor the DetailsPresenter class and extract the anonymous DOM

click handler out of the constructor and create a new handler class. The following
ClickHandler class performs the validation logic:

public class PaymentButtonClickHandler implements ClickHandler ({
private DetailsPresenter presenter;

public PaymentButtonClickHandler (DetailsPresenter
detailsPresenter) {

this.presenter = detailsPresenter;

@Override
public void onClick(final ClickEvent event) ({
String amount = presenter.getDetailsView() .
getPaymentAmount () .getValue () ;
if (amount == null || "".equals (amount)) {
Window.alert ("Please enter a payment amount") ;
return;

BigDecimal paymentAmt = null;

try{
double amtDbl = Double.parseDouble (amount) ;
paymentAmt = new BigDecimal (amtDbl) ;

}ecatch (NumberFormatException exception) {

[187]

Unit Testing GWT Code with Mockito

Window.alert ("Please enter a valid payment amount");
return;

if (paymentAmt.compareTo (BigDecimal.ZERO) <= 0) {
Window.alert ("Please enter a positive payment amount") ;
return;

if (presenter.getDetailsView () .getOutstandingAmount ()
.compareTo (paymentAmt) < 0)

Window.alert ("Payment amount cannot exceed the payable
amount") ;

return;
}
((Button)event.getSource ()) .setEnabled(false) ;
presenter.makePayment (paymentAmt) ;

}

Modify the DetailsPresenter class to call this click handler. Create a JUnit test
PaymentButtonClickHandlerTest under the test source folder and the com.
packt.billing.client.event package. You cannot mock the static call to the
Window.alert () method. If you just write Window.alert () in your JUnit test and
run the test, you will encounter an UnsatisfiedLinkError exception, as shown in
the following screenshot:

w0 B BH| Y O L
Finizhed after 0.15 seconds

Runs: 1/1 B Errors: 1 B Failures: 0

4 Ea com.packt.billing.client.event.PaymentButtonClickHandlerTest [Funner JUnit 4] (0,130 =)
gl sanity (0130 5)

. 1
Failure Trace =

java.lang.UnsatisfiedLinkErrer: com.google.gwt.user.client. Window.alert(Ljava/lang,/String;)V
at com.google.gwt.user.client. Window.alert(Mative Method)

.= m
==

at com.packt.billing.client.event.PavmentButtonClickHandlerT est.zanity

[188]

Chapter 7

We'll use PowerMock to disable the static calls to the window.alert () method.
Add the associated JAR files to the project classpath and modify the test as follows:

@RunWith (PowerMockRunner.class)
@PrepareForTest (Window.class)

public class PaymentButtonClickHandlerTest {

}

PaymentButtonClickHandler handler;

@Mock

DetailsPresenter mockPresenter;

ArgumentCaptor<String> captor = null;

@Before

public void before() throws Exception{
GWTMockUtilities.disarm() ;
captor = ArgumentCaptor.forClass (String.class) ;

handler = new PaymentButtonClickHandler (mockPresenter) ;

mockStatic (Window.class) ;
PowerMockito.doNothing () .when (Window.class, "alert",
captor.capture()) ;

@After
public void after ()
GWTMockUtilities.restore();

@Test
public void sanity() throws Exception {
Window.alert ("dd") ;

Google provides the com.google.gwt . junit.GWTMockUtilities class to facilitate
testing without launching any web server. This class provides methods for disabling

and enabling GWT. create () behavior in isolation from the web server. The

GWTMockUtilities.disarm() behavior replaces the normal GWT.create () behavior
with a method that returns null instead of throwing a runtime exception. This is

to allow JUnit tests to mock classes that make GWT.create () calls in their static
initializers. GWTMockUtilities is not used with GWTTestCase and is not used to test
widgets themselves. Rather, it is to allow pure Java unit tests of classes that need to
manipulate widgets.

In our test, we need to create a mock button to represent the payment button and
disable and re-enable the button within our handler code. So, we need to disarm the
static initialization.

[189]

Unit Testing GWT Code with Mockito

The mockStatic (Window.class) class disables the Window.alert calls.

The PowerMockito.doNothing () .when (Window.class, "alert", captor.
capture ()) method is used to capture the arguments passed to the alert method.
The following is the modified test with all the error conditions and happy path:

@RunWith (PowerMockRunner.class)
@PrepareForTest (Window.class)
public class PaymentButtonClickHandlerTest {

PaymentButtonClickHandler handler;
@Mock

DetailsPresenter mockPresenter;
ArgumentCaptor<String> captor = null;

@Mock

ClickEvent clickEvent;
@Mock

DetailsView detailsView;
@Mock

HasValue<String> payAmount;

@Before

public void before() throws Exception{
GWTMockUtilities.disarm() ;
when (mockPresenter.getDetailsView ()) .thenReturn (detailsView) ;
when (detailsView.getPaymentAmount ()) . thenReturn (payAmount) ;
handler = new PaymentButtonClickHandler (mockPresenter) ;
mockStatic (Window.class) ;
captor = ArgumentCaptor.forClass (String.class) ;
doNothing () .when (Window.class, "alert", captor.capture());

@After
public void after ()
GWTMockUtilities.restore() ;

@Test

public void when empty payment amount then raises error() {
handler.onClick (clickEvent) ;
assertEquals (PLEASE ENTER A PAYMENT AMOUNT, captor.getValue()) ;

}

@Test
public void when invalid payment amount then raises error() {
when (payAmount.getValue ()) . thenReturn ("abecss$") ;

[190]

Chapter 7

handler.onClick (clickEvent) ;
assertEquals (PLEASE ENTER A VALID PAYMENT AMOUNT,
captor.getValue()) ;

@Test
public void when zero payment amount then raises error () {
when (payAmount.getValue ()) .thenReturn("0.00") ;

handler.onClick (clickEvent) ;
assertEquals (PLEASE ENTER A POSITIVE PAYMENT AMOUNT,
captor.getValue()) ;

@Test
public void when negative payment amount then raises error () {
when (payAmount .getValue ()) .thenReturn("-10.00") ;

handler.onClick (clickEvent) ;
assertEquals (PLEASE ENTER A POSITIVE PAYMENT AMOUNT,
captor.getValue()) ;

@Test

public void when payment amount_ exceeds the payable then raises
_error () {
when (payAmount.getValue ()) .thenReturn("100.00") ;
when (detailsView.getOutstandingAmount ()) .thenReturn (new

BigDecimal ("50.00")) ;

handler.onClick (clickEvent) ;

assertEquals (PAYMENT AMOUNT CANNOT EXCEED THE PAYABLE AMOUNT
,captor.getValue()) ;

@Test

public void when payment amount not greater than payable amount
_then posts_the payment () throws Exception {
Button pay = PowerMockito.mock (Button.class) ;

PowerMockito.when (clickEvent.getSource ()) .thenReturn (pay) ;
when (payAmount.getValue ()) .thenReturn("100.00") ;
when (detailsView.getOutstandingAmount ()) .thenReturn (new

BigDecimal ("200.00")) ;
handler.onClick (clickEvent) ;
verifyStatic (Mockito.never()) ;

[191]

Unit Testing GWT Code with Mockito

So far, we covered the noninvasive, POJO-based Java unit tests for GWT, but Google
provides a GWTTestCase class for invasive unit testing that acts as a bridge between
the JUnit environment and the GWT environment. The GWTTestCase class extends
the TestCase class. Running a compiled GWTTestCase subclass under JUnit launches
the HtmlUnit browser, which serves to emulate your application behavior during
test execution.

The typical way to set up a JUnit test case class is to have it extend TestCase and
then run it with the JUnit TestRunner class. It is a convention to begin the name
of all test methods with the prefix test. Now we use JUnit 4, which supports
noninvasive, POJO-based unit testing and allows us to use annotations instead of
conventions, such as a test should be started with the prefix test. So GWTTestCase
is not recommended.

The HtmlUnit browser is an open source, GUI-less browser written in 100 percent
Java. As HtmlUnit does not involve any native code, debugging GWT tests in
development mode can be done entirely in a Java debugger. The HtmlUnit browser
does not require firing up a new browser process; the HtmlUnit browser instances
just run as new threads. To learn more about HtmlUnit or GWTTestCase, Visit
http://www.gwtproject.org/.

Summary

This book has taught you the essentials of Mockito, such as Mockito basics, advanced
usage of Mockito APIs, writing BDD with Mockito, handling legacy code with
Mockito, mocking web services, and finally, this chapter covered the AJAX and GWT
overview, discussed the MVP pattern, built an example of MVP with GWT, isolated
DOM widgets from client-side business logic using PowerMockito, and disabled
static DOM calls with PowerMockito and GWTMockUtility.

Now you should be able to isolate your business logic from external dependencies
using Mockito.

[192]

http://www.gwtproject.org/

Index

Sym bols agile team
scoping feature 99
@captor annotation AJAX
example 87 exploring 162-164
@InjectMocks annotation URL 163
example 88, 89 Apache Axis
@Mock annotation 44 JAX-WS, creating with 141-144
@spy annotation Apache Tomcat
example 88 JAX-WS, creating with 141-144
URL, for installation 140
A ArgumentCaptor object

used, for verifying arguments 81

acceptance tests argument matchers

URL 100] using 48, 49
advanced Mock¥to 66 arguments
advanced Mockito APIs verifying, ArgumentCaptor object used 81

annotations 87
arguments, verifying
ArgumentCaptor used 81

arrays
working with 83
Asynchronous JavaScript and

default Mockito settings, XML. See AJAX
modifying 89-92
doCallRealMethod method 79 B
doNothing method 79
doReturn() method 79, 80 bar object 93
exception, throwing from BDD
void methods 72-74 about 95
inline stubbing 92, 93 bottom-up strategy, exploring 97
invocation order, verifying 84, 85 exercising, with Mockito 100-102
mock details, determining 93, 94 exploring 99, 100
mock objects, resetting 92 gaps, finding 98
objects, spying 85, 86 top-down strategy, exploring 96, 97
void method callbacks 75-79 URL 102
void methods 66-72 BDD syntax
agile methodologies about 102
about 99 willAnswer() method 102

URL 99 willCallRealMethod() method 102

will() method 102

willReturn() method 102

willThrow() method 102
Behavior-driven Development. See BDD
benefits, mocking 38
bottom-up approach

exploring 97

used, for developing JAX-WS 140
builder pattern 20

C

Cascading Style Sheets (CSS) 162
CGLib

URL 60
comparison matchers

about 50

equalTo 51

is 51

not 51
compound value matchers

about 51-53

allof 52

anyOf 52

both 52

either 52

not 52
constructor injection 87
contract-first web services.

See top-down approach
contract-last web services.
See bottom-up approach

custom ArgumentMatcher class

comparison matchers 50

compound value matchers 51-54

working with 50

D

database call
mocking, reasons 77
DDD
about 99
URL 99
default Mockito settings
CALLS_REAL_METHODS 90

modifying 89-92

RETURNS_DEEP_STUBS 90-92

RETURNS_DEFAULTS 89, 90

RETURNS_MOCKS 89-91

RETURNS_SMART_NULLS 89, 90
defined constructor

suppressing, in PowerMock 112
DemoController servlet 66
DispatcherServlet class 152
doCallRealMethod method 79
Document Object Model (DOM) 161

Domain-driven Development. See DDD

doNothing() method 79
doReturn() method
exploring 79, 80
dummy objects
using 11-15
Dynamic HTML (DHTML) 162

E

EasyMock 102
Eclipse
JAX-WS, exploring with 139-149
URL, for downloading 11
URL, for installation 140
enrollToCourse method 19
event handler 181
exceptions
throwing 47, 48
throwing, from void methods 72-74

F

fake object
about 126
implementing 26-33
faking 126
field injection 87
final classes
stubbing, in PowerMock 116, 117
working with, for unit test 130-132
final methods
stubbing, in PowerMock 115, 116
working with, for unit test 126, 127

[194]

G

Gang of Four (GoF) 128
gaps, BDD
finding 98
generic collection arguments
working with 82
Google Plugin for Eclipse
URL, for downloading 166
Google Web Toolkit (GWT)
about 161
advantages 163
exploring 162-164
GWT application
developing, MVP pattern used 166-187
GWT code
about 161
unit testing, performing
with Mockito 187-192

H

Hamcrest 50

hamcrest matchers 49

HtmlUnit browser 192

HttpServlet 66

HTTP status codes 151

Hypermedia as the Engine of Application
State (HATEOAS) 151

HyperText Transfer Protocol (HTTP) 138

inline stubbing
working with 92, 93

invocation order
verifying 84, 85

J

Java API for RESTful Web Services.
See JAX-RS
Java API for XML Web Services.
See JAX-WS
JavaScript Object Notation (JSON) 139
JAX-RS
about 138

reference link 139

JAX-WS

about 138

creating, with Apache Axis 141-144
creating, with Apache Tomcat 141-144
developing, using bottom-up approach 140
developing, using top-down approach 140
exploring, with Eclipse 139-149

reference link 139

JBehave

URL 102

jMock 102

L

legacy 103
legacy code

about 103, 104
reference link 104

LoginController class 66, 67

matchers

reference link 49

Maven repository

URL 40

media types, RESTful web services 151
method calls

answering 57-59

no-more interactions, verifying 56
retrieve method 42-44

stubbing 40-47

thenAnswer() method 46
thenCallRealMethod() method 46
thenReturn() method 46
thenReturn(value) method 46
thenThrow() method 46
verifying 55

when() method 46

zero interactions, verifying 56

method calls, verifying

about 54

atLeast(int minNumberOfInvocations) 55
atLeastOnce() 55

atMost(int maxNumberOfInvocations) 55
never() 55

[195]

only() 55
timeout(int millis) 56
times(int wantedNumberOfInvocations) 55
MethodInvocation class 20
methods
suppressing, in PowerMock 113, 114
mock details
determining 93, 94
mocking
benefits 38
Mockito
about 36, 65
architecture 60-63
BDD, exercising with 100-102
dependency, adding 39
references 36, 39
significance, realizing 37, 38
unit test, designing 118
URL, for variable argument capture 83
used, for unit testing GWT code 187-192
working with 39
Mockito annotations
@Captor 87
@InjectMocks 87-89
@Spy 87,88
mock objects
about 23
resetting 92
model, MVP pattern 164
Model View Presenter (MVP) pattern
about 161-165
model 164
presenter 164
used, for developing GWT
application 166-187
view 164

N

new operator
usage concerns 132, 133

(0

objects
spying 85, 86

operations/HTTP headers
DELETE operation 151
GET operation 150
POST operation 150
PUT operation 150

P

Plain Old Java Object (POJO) 15
PowerMock
about 105
defined constructor, suppressing 112
final classes, mocking 116, 117
final methods, stubbing 115, 116
methods, suppressing 113, 114
private methods, stubbing 114, 115
static blocks, suppressing 109, 110
static methods, stubbing 108, 109
super class constructor,
suppressing 110-112
URL 106
working with 105-107
PowerMock's distribution
URL, for downloading 106
presenter, MVP pattern 164, 165
private methods
stubbing, in PowerMock 114, 115
working with, for unit test 123-125

R

Remote Procedure Calls (RPCs) 164
render() method 177
Representational State Transfer web
services. See RESTful web services
request.getServletPath() method 80
resource URLs 150
RESTful web services
about 139
building, with Spring Framework 152-159
developing 149
URL, for details 151
RESTful web services, components
HTTP status codes 151
media types 151
operations/ HTTP headers 150
resource URLs 150

[196]

S

Service-oriented Architecture. See SOA

servlet-api.<version number>.jar
URL, for downloading 66
setter injection 87

Simple Object Access Protocol (SOAP) 138

SOA
about 137,138
URL 138

software delivery risks

best practices, for minimizing 98
software development

stakeholders 96
Spring Framework

RESTful web services,

building with 152-159

Spring MVC 152
stakeholders, software development

analysts 96

customers 96

designers/architects 96

developers 96

maintenance team 96

managers 96

operational folks 96

testers 96
static blocks

exploring, for unit test 134

suppressing, in PowerMock 109, 110
static methods

mock circumstances 109

stubbing, in PowerMock 108, 109
static variables

exploring, for unit test 134
stubs

working with 15-18
StudentService class 19
super class constructor

suppressing, in PowerMock 110-112

T

TDD
about 99
URL 99

test automation
benefits 8
test doubles
about 10
dummy objects 11-15
fake objects 26-33
mock objects 23-25
spy 18-22
stubs 15-18
Test-driven Development. See TDD
test failure scenario
demonstrating 23-25
testing impediments
exploring 104, 105
testing-unfriendly behaviors
examples 38
test spy
exploring 18-22
top-down approach
exploring 96, 97
used, for developing JAX-WS 140

U

Uniform Resource Identifiers (URIs) 149
unit tests
characteristics 9
constructor issues, identifying 119-121
designing, with Mockito 118
final classes, working with 130-132
final methods, working with 126, 127
initialization issues, realizing 122, 123
new operator, usage concerns 132, 133
performing, on GWT code
with Mockito 187-192
principles 36, 37
private methods, working with 123-125
static blocks, exploring 134
static method issues, exploring 128-130
static variables, exploring 134
working with 8

\'

variable arguments
working with 83
verify() method 54

[197]

verifyNoMorelnteractions (Object, mocks)
method 56
verifyZerolnteractions (object, mocks)
method 56
view, MVP pattern 164
void method callbacks
working with 75-79
void methods
doGet() 67
doPost() 67
exception, throwing from 72-74
process() 68-70
verify() 68
working with 66-72

w

web services
about 138
characteristics 138
Web Services Description
Language. See WSDL

wildcard matchers
working with 49, 50
WSDL 138
WSDL document, elements
binding 139
message 139
operation 139
port 139
port type 139
service 139
types 139

Y

YAGNI (You Aren't Going to Need It)
principle 99

[198]

open source

community experience distilled

PUBLISHING

Thank you for buying
Mockito Essentials

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

open source

community experience distilled

PUBLISHING

Test-Driven Development
with Mockito

Test-Driven Development

with Mockito
ISBN: 978-1-78328-329-3 Paperback: 172 pages

Learn how to apply Test-Driven Development and
the Mockito framework in real life projects, using
realistic, hands-on examples

1. Start writing clean, high-quality code to apply
design patterns and principles.

2. Add new features to your project by
applying Test-first development— JUnit 4.0
and Mockito framework.

3. Make legacy code testable and clean up
technical debts.

Focu

Eclipse Application Testing
How-to

Anataly Spektor

sed

Instant Eclipse Application Testing
How-to
ISBN: 978-1-78216-324-4 Paperback: 62 pages

An easy-to-use guide on how to test Java applications
of any scope using Eclipse IDE

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. Learn how to install Eclipse and Java for
any platform.

3. Get to grips with how to efficiently navigate in
the Eclipse environment using shortcuts.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Instant Mockito
ISBN: 978-1-78216-797-6 Paperback: 66 pages

Learn how to create stubs, mocks, and spies and verify
their behavior using Mockito

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. Stub methods with callbacks.
3. Verify the behavior of test mocks.

4. Assert the arguments passed to functions
of mocks.

Marcin Grzejszczak

Instant Mock Testing with

PowerMock
ISBN: 978-1-78328-995-0 Paperback: 82 pages

Discover unit testing using PowerMock

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

Short | Fast

Mock Testing with
PowerMock

2. Understand how to test unit code using
PowerMock, through hands-on examples.

3. Learn how to avoid unwanted behavior
of code using PowerMock for testing.

Deep Shah [PACKT]

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Exploring Test
Doubles
	Working with unit tests
	Understanding test doubles
	Using dummy objects
	Working with stubs
	Exploring a test spy
	Getting started with mock objects
	Implementing fake objects – simulators
	Summary

	Chapter 2
: Socializing with Mockito
	Exploring Mockito
	Exploring unit test qualities
	Realizing the significance of Mockito

	Working with Mockito
	Adding a Mockito dependency
	Stubbing method calls
	Throwing exceptions
	Using argument matchers
	Working with wildcard matchers
	Working with a custom ArgumentMatcher class

	Verifying method calls
	Verifying zero and no-more interactions

	Answering method calls

	Understanding the Mockito architecture
	Summary

	Chapter 3
: Accelerating Mockito
	Learning advanced Mockito features
	Working with void methods
	Throwing exceptions from void methods
	Working with void method callbacks
	Learning doCallRealMethod and doNothing
	Exploring doReturn
	Verifying arguments using ArgumentCaptor
	Working with generic collection arguments
	Working with variable arguments and arrays

	Verifying an invocation order
	Spying objects
	Exploring Mockito annotations
	Changing the default Mockito settings
	Resetting mock objects
	Working with inline stubbing
	Determining mock details

	Summary

	Chapter 4
: Behavior-driven Development with Mockito
	Understanding the context of BDD
	Exploring the top-down strategy
	Exploring the bottom-up strategy
	Finding the gaps

	Exploring BDD
	Exercising BDD with Mockito
	The BDD syntax

	Summary

	Chapter 5
: Unit Testing the Legacy Code with Mockito
	Understanding the legacy code
	Exploring testing impediments
	Working with PowerMock
	Stubbing static methods
	Suppressing static blocks
	Suppressing a superclass constructor
	Suppressing our own constructor
	Suppressing methods
	Stubbing private methods
	Stubbing final methods
	Mocking final classes

	Designing for testability with Mockito
	Identifying constructor issues
	Realizing initialization issues
	Working with private methods
	Working with final methods
	Exploring static method issues
	Working with final classes
	Learning new concerns
	Exploring static variables and blocks

	Summary

	Chapter 6
: Developing SOA with Mockito
	Exploring Service-oriented Architecture (SOA)
	Working with web services
	Exploring JAX-WS with Eclipse
	Developing a RESTful web service
	Building a RESTful web service with Spring Framework

	Summary

	Chapter 7
 : Unit Testing GWT Code with Mockito
	Exploring Ajax and GWT
	Learning the MVP pattern
	Developing a GWT application using MVP
	Unit testing GWT Code with Mockito
	Summary

	Index

