

Mockito Essentials

A practical guide to get you up and running with unit
testing using Mockito

Sujoy Acharya

BIRMINGHAM - MUMBAI

Mockito Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2014

Production reference: 1171014

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-360-5

www.packtpub.com

Cover image by Asher Wishkerman (wishkerman@hotmail.com)

www.packtpub.com

Credits

Author
Sujoy Acharya

Reviewers
Christian Baranowski

Tim Perry

Gualtiero Testa

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
James Jones

Content Development Editor
Pooja Nair

Technical Editor
Humera Shaikh

Copy Editors
Dipti Kapadia

Shambhavi Pai

Project Coordinator
Leena Purkait

Proofreaders
Simran Bhogal

Cathy Cumberlidge

Indexers
Mariammal Chettiyar

Tejal Soni

Graphics
Sheetal Aute

Abhinash Sahu

Production Coordinator
Shantanu N. Zagade

Cover Work
Alwin Roy

About the Author

Sujoy Acharya works as a software architect with Siemens Technology and
Services Pvt. Ltd. (STS). He grew up in a joint family and pursued his graduation in
the field of Computer Science and Engineering. His hobbies are watching movies and
sitcoms, playing outdoor sports, and reading books.

Sujoy likes to research on upcoming technologies. His major contributions are in the
field of Java, J2EE, SOA, Ajax, GWT, and Spring Framework.

Sujoy has authored two books, Test-Driven Development with Mockito and Mastering
Unit Testing Using Mockito and JUnit, both by Packt Publishing.

Sujoy designs and develops healthcare software products. He has over 11 years
of industrial experience and has architected and implemented large-scale
enterprise solutions.

I'd especially like to thank my wife, Sunanda, for pushing me to man
up and finish the book, for her patience, and for her endless support
for the many hours she spent reviewing my draft and providing
valuable inputs.

I would also like to thank my mother and my late father for their
support, blessings, and encouragement.

To my 20-month-old kid, Abhigyan: I am sorry, I couldn't be around
you as much as we all wanted and had to get you away from the
laptop many times. I love you very much.

About the Reviewers

Christian Baranowski is a project manager and software architect with
SEITENBAU, a midsized (120 employees) web agency, software development
company, and IT service provider. SEITENBAU's core areas of expertise are web
development, deployment and customization of content management systems,
the development of enterprise and employee portals, as well as customer-specific
software development. Christian leads a team of developers, and he describes his
role at SEITENBAU as an agile developer and tester. He has blogged and spoken at a
wide variety of conferences on web development, OSGi, and testing. When he is not
working, you'll find him spending time with his wife, son, and daughter.

Tim Perry is a technical lead and the open source champion at Softwire
(a bespoke software development company in North London). By day, he is
guiding teams, building a variety of great software at every scale for his clients,
and pushing Softwire to engage with and give back to the wider software
development community. He works with a huge range of tools daily, from Java,
Spring, and JUnit to JavaScript web components and SQL analytics engines.

By night, he's a frequent technical speaker, and a prolific open source contributor to a
huge variety of projects, including JUnit, Mockito, Knockout, and Lodash, and some
of his own, such as loglevel and grunt-coveralls. Tim is feverishly keen on all things
related to automated testing, polyglot persistence, as well as good, old-fashioned,
high-quality software development.

I'd like to thank my wonderful girlfriend, Rachel, for her endless
patience and support and for genuinely appearing delighted when
I signed up for yet another side project.

Gualtiero Testa is a software analyst, architect, and developer involved in Java
enterprise-level web applications, mainly in the banking, health, and government
agencies' domain.

His main interests are Test-driven Development (TDD), testing tools and
methodologies, and everything related to code quality. He can be reached
through his blog at http://www.gualtierotesta.it/. He lives in Pavia, Italy.

I would like to thank my wife for her constant support,
encouragement, and patience.

http://www.gualtierotesta.it/

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents
Preface	 1
Chapter 1: Exploring Test Doubles	 7

Working with unit tests	 8
Understanding test doubles	 10
Using dummy objects	 11
Working with stubs	 15
Exploring a test spy	 18
Getting started with mock objects	 23
Implementing fake objects – simulators	 26
Summary	 33

Chapter 2: Socializing with Mockito	 35
Exploring Mockito	 36

Exploring unit test qualities	 36
Realizing the significance of Mockito	 37

Working with Mockito	 39
Adding a Mockito dependency	 39
Stubbing method calls	 40
Throwing exceptions	 47
Using argument matchers	 48

Working with wildcard matchers	 49
Working with a custom ArgumentMatcher class	 50

Verifying method calls	 54
Verifying zero and no-more interactions	 56

Answering method calls	 57
Understanding the Mockito architecture	 60
Summary	 64

Table of Contents

[ii]

Chapter 3: Accelerating Mockito	 65
Learning advanced Mockito features	 66

Working with void methods	 66
Throwing exceptions from void methods	 72
Working with void method callbacks	 75
Learning doCallRealMethod and doNothing	 79
Exploring doReturn	 79
Verifying arguments using ArgumentCaptor	 81

Working with generic collection arguments	 82
Working with variable arguments and arrays	 83

Verifying an invocation order	 84
Spying objects	 85
Exploring Mockito annotations	 87
Changing the default Mockito settings	 89
Resetting mock objects	 92
Working with inline stubbing	 92
Determining mock details	 93

Summary	 94
Chapter 4: Behavior-driven Development with Mockito	 95

Understanding the context of BDD	 95
Exploring the top-down strategy	 96
Exploring the bottom-up strategy	 97
Finding the gaps	 97

Exploring BDD	 99
Exercising BDD with Mockito	 100

The BDD syntax	 102
Summary	 102

Chapter 5: Unit Testing the Legacy Code with Mockito	 103
Understanding the legacy code	 103
Exploring testing impediments	 104
Working with PowerMock	 105

Stubbing static methods	 108
Suppressing static blocks	 109
Suppressing a superclass constructor	 110
Suppressing our own constructor	 112
Suppressing methods	 113
Stubbing private methods	 114
Stubbing final methods	 115
Mocking final classes	 116

Table of Contents

[iii]

Designing for testability with Mockito	 118
Identifying constructor issues	 119
Realizing initialization issues	 122
Working with private methods	 123
Working with final methods	 126
Exploring static method issues	 128
Working with final classes	 130
Learning new concerns	 132
Exploring static variables and blocks	 134

Summary	 135
Chapter 6: Developing SOA with Mockito	 137

Exploring Service-oriented Architecture (SOA)	 137
Working with web services	 138

Exploring JAX-WS with Eclipse	 139
Developing a RESTful web service	 149
Building a RESTful web service with Spring Framework	 152

Summary	 160
Chapter 7: Unit Testing GWT Code with Mockito	 161

Exploring Ajax and GWT	 162
Learning the MVP pattern	 164
Developing a GWT application using MVP	 166
Unit testing the GWT code	 187
Summary	 192

Index	 193

Preface
We can acquire knowledge in different ways. On one side is theory, and on the
other side is the application of theory. Both are important and both make us better.
Theoretical knowledge can provide us with a deep understanding of the concept
through the experiences of others, but a practical application can give us a deep
understanding through the reality of life and the act of doing.

I was looking for a Mockito framework guide that could teach me the practical
application of the framework, but I didn't find any book or article. Then, I decided
to start writing a book that can focus on both the theoretical aspect and the practical
application, so that readers can get a deep understanding of the concepts through the
act of doing.

This book is an advanced-level guide that will help software developers to get
complete expertise in unit testing using Mockito as the mocking framework.
The focus of the book is to provide readers with comprehensive details on how
effectively Mockito can be used for mocking external dependencies in Java
application, web application, legacy code, GWT, and SOA.

Armed with the knowledge of advanced JUnit concepts and mocking framework
essentials, you will be pleasantly surprised at how quickly and easily you can write
high-quality, clean, readable, testable, maintainable, and extensible code.

What this book covers
Chapter 1, Exploring Test Doubles, covers the concept of automated unit tests, talks
about the characteristics of a good unit test, and explores the test's doubles. It
provides examples of dummy objects, fake objects, stubs, mock objects, and spies.

Preface

[2]

Chapter 2, Socializing with Mockito, focuses on getting the reader quickly started
with the Mockito overview, unit test qualities, and the significance of Mockito
in unit testing. It also explains and provides examples of stubbing, answering,
throwing exceptions, argument matchers, and method call verification.
The Mockito architecture is also uncovered.

Chapter 3, Accelerating Mockito, illustrates advanced Mockito framework topics, such
as working with void methods, throwing exceptions from void methods, writing
callbacks for void methods, returning values using doReturn, void method chaining,
calling original methods, Mockito annotations, verifying arguments using an
argument captor, verifying an invocation order, spying objects using spy, changing
default Mockito settings, resetting mock objects, inline stubbing, and mock details.

Chapter 4, Behavior-driven Development with Mockito, unfolds the BDD concepts,
BDD examples, and writing BDD style tests with Mockito.

Chapter 5, Unit Testing the Legacy Code with Mockito, explores legacy code, testing
impediments, design for testability, and unit testing the legacy code with Mockito
and PowerMock. By the end of this chapter, the reader will be able to write JUnit
tests for a legacy code with Mockito and PowerMock, refactor the legacy code to
make it unit testable, and design code to bypass the testing impediments.

Chapter 6, Developing SOA with Mockito, deals with web services, explores SOAP and
RESTful web services with examples, and helps us to write JUnit tests for the web
services with Mockito to mock out the web service framework dependencies.

Chapter 7, Unit Testing GWT Code with Mockito, provides an overview of Ajax/GWT,
explains the MVP pattern and loose coupling, and provides examples and strategies
to mock GWT widgets using Mockito.

What you need for this book
You will need the following software to be installed before running the examples in
this book:

•	 Java 7 or higher: JDK 1.7 or higher can be downloaded from the Oracle site at
http://www.oracle.com/technetwork/java/javase/downloads/index.
html.

•	 Eclipse editor: The latest version of Eclipse is Luna (4.4.1). Luna can be
downloaded from http://www.eclipse.org/downloads/.

•	 Mockito: Mockito is required for the creation and verification of mock objects
and for stubbing. Mockito can be downloaded from https://code.google.
com/p/mockito/downloads/list.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
https://code.google.com/p/mockito/downloads/list
https://code.google.com/p/mockito/downloads/list

Preface

[3]

Who this book is for
This book is for advanced to novice level software testers/developers using Mockito
in the JUnit framework, with a reasonable knowledge level and understanding of
unit testing elements and applications.

It is ideal for developers who have some experience in Java application
development as well as some basic knowledge of JUnit testing, but it covers
the basic fundamentals of JUnit testing and the Mockito framework to get you
acquainted with these concepts before using them.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Tests should be readable and expressive; for example, a test that verifies unauthorized
access can be written as testUnauthorizedAccess() or rather when_an_
unauthorized_user_accesses_the_system_then_raises_secuirty_error()."

A block of code is set as follows:

@Test
 public void currencyRoundsOff() throws Exception {
 assertNotNull(CurrencyFormatter.format(100.999));
 assertTrue(CurrencyFormatter.format(100.999).contains("$"));
 assertEquals("$101.00", CurrencyFormatter.format(100.999));
 }

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

public class LocaleTest {
 private Locale defaultLocale;
 @Before
 public void setUp() {
 defaultLocale = Locale.getDefault();
 Locale.setDefault(Locale.GERMANY);
 }
 @After
 public void restore() {
 Locale.setDefault(defaultLocale);

Preface

[4]

 }
 @Test
 public void currencyRoundsOff() throws Exception {
 assertEquals("$101.00", CurrencyFormatter.format(100.999));
 }
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Go to
the Libraries tab in the project's build path."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[5]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/3605OS_Graphics.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

https://www.packtpub.com/sites/default/files/downloads/3605OS_Graphics.pdf
https://www.packtpub.com/sites/default/files/downloads/3605OS_Graphics.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Exploring Test Doubles
"I never make stupid mistakes. Only very, very clever ones."

– John Peel

It is very difficult to find stupid mistakes, but it's even more daunting when you are
trying to figure out the clever ones. Debugging an application to know how to fix a
problem is very expensive and time-consuming. Automated unit tests provide an
extremely effective mechanism for catching regressions, especially when combined
with test-driven development; it creates a test safety net for the developers.

This chapter covers the concepts of unit testing, quality of unit tests, external
dependencies, and test doubles.

The Working with unit tests section introduces you to test automation and describes
the characteristics of a good unit test.

The Understanding test doubles section explores the concept of external dependency
and provides examples of test doubles. The following test doubles are explored:

•	 Dummy objects
•	 Stubs
•	 Spies
•	 Mock objects
•	 Fake objects

Exploring Test Doubles

[8]

Working with unit tests
A common understanding of unit testing is the testing of the smallest possible part of
software, such as a single method, a small set of related methods, or a class.

In reality, we do not test methods; we test a logical unit and its behavior instead.
Logical units can extend to a single method, to an entire class, or a collaboration
of multiple classes.

For example, a standard calculator program can have an add method for adding
two numbers. We can verify the add behavior by invoking the add method, or we
can design the calculator program to have a simple calculate API, which can take
two numbers and an operation (add, subtract, divide, and so on). Depending on the
operand type (integer, double, and so on), the calculator may delegate the calculation
to a collaborator class, such as a double calculator or a long calculator. We can still
unit test the add behavior, but multiple classes (units) are involved now.

A unit test verifies an assumption about the behavior of the system. Unit tests should
be automated to create a safety net so that the assumptions are verified continuously
and a quick feedback can be provided if anything goes wrong.

The following are the benefits of test automation:

•	 Behavior is continually verified: We refactor code (change the internal
structure of the code without affecting the behavior of the system) to improve
the code's quality, such as maintainability, readability, or extensibility.
We can refactor code with confidence if automated unit tests are running
and giving feedback.

•	 The side effects of code changes are detected immediately: This is useful
for a fragile, tightly-coupled system, where a change in one module breaks
another module.

•	 Saves time; no need for immediate regression testing: Suppose that you are
adding a scientific computational behavior to an existing calculator program
and modifying the code; after every piece of change, you do a regression
testing to verify the integrity of the system. Manual regression testing is
tedious and time-consuming, but if you have an automated unit test suite,
then you can delay the regression testing until the functionality is done. This
is because the automated suite will inform you at every stage if you break an
existing feature.

Chapter 1

[9]

A unit test should exhibit the following characteristics:

•	 It should be automated, as explained in the preceding section.
•	 It should have a fast test execution. To be precise, a test should not take more

than a few milliseconds to finish execution (they should be fast; the faster,
the better). A system can have thousands of unit tests. If they take time to
execute, then the overall test execution time will go up; as a result, no one
will be interested in running the tests. It will impact the feedback cycle.

•	 A test should not depend on the result of another test or rather test
execution order. Unit test frameworks can execute tests in any order.
So, if a test depends on another test, then the test may fail any time and
provide wrong feedback. You want tests to be standalone so that you can
look at them and quickly see what they're actually testing, without having
to understand the rest of the test code.

•	 A test should not depend on database access, file access, or any long
running task. Rather, an appropriate test double should isolate the
external dependencies.

•	 A test result should be consistent and time-and-location transparent.
A test should not fail if it is executed at midnight, or it should not fail
if it is executed in a different time zone.

•	 Tests should be meaningful. A class can have getter and setter methods;
you should not write tests for the getters and setters because they should be
tested in the process of other more meaningful tests. If they're not, then either
you're not testing the functionality or your getters and setters aren't being
used at all; so, they're pointless.

•	 Tests are system documentation. Tests should be readable and expressive;
for example, a test that verifies the unauthorized access could be written
as testUnauthorizedAccess() or rather when_an_unauthorized_user_
accesses_the_system_then_raises_secuirty_error(). The latter is
more readable and expresses the intent of the test.

•	 Tests should be short and tests should not be treated as second-class citizens. Code
is refactored to improve the quality; similarly, unit tests should be refactored
to improve the quality. A test class of 300 lines is not maintainable; we can
rather create new test classes, move the tests to the new classes, and create a
maintainable suite.

Exploring Test Doubles

[10]

As per the preceding best practices, a test should be executed as fast as possible.
Then what should you do if you need to test data access logic or file download code?
Simple, do not include the tests in an automated test suite. Consider such tests as
slow tests or integration tests. Otherwise, your continuous integration cycle will run
for hours. Slow tests should still be automated. However, they may not run all the
time, or rather they should be run out of the continuous integration feedback loop.

You cannot automate a unit test if your API class depends on slow external entities,
such as data access objects or JNDI lookup. Then, you need test doubles to isolate the
external dependencies and automate the unit test.

The next section covers test doubles.

Understanding test doubles
We all know about stunt doubles in movies. A stunt double or dummy is a trained
replacement used for dangerous action sequences in movies, such as a fight sequence
on the top of a burning train, jumping from an airplane, and so on, mainly fight
scenes. Stunt doubles are used to protect the real actors, are used when the actor is
not available, or when the actor has a contract to not get involved in stunts.

Similarly, sometimes it is not possible to unit test the code because of the
unavailability of the collaborator objects, or the cost of interaction and instantiation
of collaborators. For instance, when the code is dependent on database access, it is
not possible to unit test the code unless the database is available, or when a piece of
code needs to send information to a printer and the machine is not connected to a
LAN. The primary reason for using doubles is to isolate the unit you are testing
from the external dependencies.

Test doubles act as stunt doubles. They are a skilled replacement of the collaborator
objects and allow you to unit test code in isolation from the original collaborator.

Gerard Meszaros coined the term test doubles in his book xUNIT TEST PATTERNS,
Addison-Wesley—this book explores the various test doubles and sets the foundation
for Mockito.

Chapter 1

[11]

Test doubles can be created to impersonate collaborators and can be categorized into
the types, as shown in the following diagram:

Dummy Stub Mock Fake Spy

Doubles

Using dummy objects
In movies, sometimes a double doesn't perform anything; they just appear on the
screen. One such instance would be standing in a crowded place where the real actor
cannot go, such as watching a soccer match or tennis match. It will be very risky for
the real actor to go to a full house, but the movie's script needs it.

Likewise, a dummy object is passed as a mandatory parameter object. A dummy
object is not directly used in the test or code under test, but it is required for the
creation of another object required in the code under test. Dummy objects are
analogous to null objects, but a dummy object is not used by the code under test.
Null objects (as in the pattern) are used in the code under test and are actively
interacted with, but they just produce zero behavior. If they weren't used, you'd just
use an actual null value. The following steps describe the usage of dummy objects:

In this book, we will write the code and JUnit tests in the Eclipse editor.
You can download Eclipse from the following URL:
https://www.eclopse.org/downloads

1.	 Launch Eclipse and create a workspace, \PacktPub\Mockito_3605OS\;
we'll refer to it as <work_space> in the next steps/chapters.

2.	 We'll create an examination grade system. The program will analyze the
aggregate of all the subjects and determine the grade of a student. Create
a Java project named 3605OS_TestDoubles. Add an enum Grades field to
represent a student's grades:
package com.packt.testdoubles.dummy;

public enum Grades {
 Excellent, VeryGood, Good, Average, Poor;
}

https://www.eclopse.org/downloads

Exploring Test Doubles

[12]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.
We'll use src as our source code's source folder and test as our test
code's source folder. All Java files for this example will be created under
the com.packt.testdoubles.dummy package.

3.	 Create a Student class to uniquely identify a student:
public class Student {

 private final String roleNumber;
 private final String name;

 public Student(String roleNumber, String name) {
 this.roleNumber = roleNumber;
 this.name = name;
 }

 //setters are ignored

}

4.	 Create a Marks class to represent the marks of a student:
public class Marks {

 private final Student student;
 private final String subjectId;
 private final BigDecimal marks;

 public Marks(Student student, String subjectId,
 BigDecimal marks) {
 this.student = student;
 this.subjectId = subjectId;
 this.marks = marks;
 }
 //getters methods go here
}

Note that the Marks constructor accepts a Student object to represent the
marks of a student. So, a Student object is needed to create a Marks object.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[13]

5.	 Create a Teacher class to generate a student's grades:
public class Teacher {

 public Grades generateGrade(List<Marks> marksList) {

 BigDecimal aggregate = BigDecimal.ZERO;

 for (Marks mark : marksList) {
 aggregate = aggregate.add(mark.getMarks());
 }

 BigDecimal percentage = calculatePercent(aggregate,
 marksList.size());

 if (percentage.compareTo(new BigDecimal("90.00")) > 0) {
 return Grades.Excellent;
 }

 if (percentage.compareTo(new BigDecimal("75.00")) > 0) {
 return Grades.VeryGood;
 }

 if (percentage.compareTo(new BigDecimal("60.00")) > 0) {
 return Grades.Good;
 }

 if (percentage.compareTo(new BigDecimal("40.00")) > 0) {
 return Grades.Average;
 }

 return Grades.Poor;
}

private BigDecimal calculatePercent(BigDecimal aggregate,
 int numberOfSubjects) {
 BigDecimal percent = new BigDecimal(aggregate.
 doubleValue()/ numberOfSubjects);
 return percent;
}

Exploring Test Doubles

[14]

6.	 Create a DummyStudent class and extend the Student class. This is
the dummy object. A dummy object will be the one that is not the
real implementation and provides zero functionality or values.
The DummyStudent class throws a runtime exception from all the
methods. The following is the body of the DummyStudent class:
public class DummyStudent extends Student {

 protected DummyStudent() {
 super(null, null);
 }

 public String getRoleNumber() {
 throw new RuntimeException("Dummy student");
 }

 public String getName() {
 throw new RuntimeException("Dummy student");
 }

}

Note that the constructor passes NULL to the super constructor and throws a
runtime exception from the getRoleNumber() and getName() methods.

7.	 Create a JUnit test to verify our assumption that when a student gets more
than 75 percent (but less than 90 percent) in aggregate, then the teacher
generates the grade as VeryGood, creates a DummyStudent object, and passes
it as Student to the Marks constructor:

public class TeacherTest {

 @Test public void when_marks_above_seventy_five_percent_
 returns_very_good() {
 DummyStudent dummyStudent = new DummyStudent();

 Marks inEnglish = new Marks(dummyStudent, "English002",
 new BigDecimal("81.00"));

 Marks inMath = new Marks(dummyStudent, "Math005", new
 BigDecimal("97.00"));

 Marks inHistory = new Marks(dummyStudent, "History007, new
 BigDecimal("79.00"));

Chapter 1

[15]

 List<Marks> marks = Arrays.asList(inHistory, inMaths,
 inEnglish);

 Grades grade = new Teacher().generateGrade(marks);
 assertEquals(Grades.VeryGood, grade);
 }
}

Note that a DummyStudent object is created and passed to all the three Marks
objects, as the Marks constructor needs a Student object. This dummyStudent
object is not used in the Teacher class or test method, but it is necessary for
the Marks object. The dummyStudent object shown in the preceding example
is a dummy object.

Working with stubs
A stub delivers indirect inputs to the caller when the stub's methods are called. Stubs
are programmed only for the test scope. Stubs may record other information such as
how many times they are invoked and so on.

Unit testing a happy path is relatively easier than testing an alternate path. For
instance, suppose that you need to simulate a hardware failure or transaction
timeout scenario in your unit test, or you need to replicate a concurrent money
withdrawal for a joint account use case—these scenarios are not easy to imitate.
Stubs help us to simulate these conditions. Stubs can also be programmed to return a
hardcoded result; for example, a stubbed bank account object can return the account
balance as $100.00.

The following steps demonstrate stubbing:

1.	 Launch Eclipse, open <work_space>, and go to the 3605OS_TestDoubles
project.

2.	 Create a com.packt.testdoubles.stub package and add a
CreateStudentResponse class. This Plain Old Java Object (POJO)
contains a Student object and an error message:
 public class CreateStudentResponse {
 private final String errorMessage;
 private final Student student;

 public CreateStudentResponse(String errorMessage,
 Student student) {
 this.errorMessage = errorMessage;
 this.student = student;
 }

Exploring Test Doubles

[16]

 public boolean isSuccess(){
 return null == errorMessage;
 }

 public String getErrorMessage() {
 return errorMessage;
 }
 public Student getStudent() {
 return student;
 }
 }

3.	 Create a StudentDAO interface and add a create() method to persist a
student's information. The create () method returns the roll number
of the new student or throws an SQLException error. The following is
the interface definition:
public interface StudentDAO {
 public String create(String name, String className)
 throws SQLException;
}

4.	 Create an interface and implementation for the student's registration.
The following service interface accepts a student's name and a class
identifier and registers the student to a class. The create API returns a
CreateStudentResponse. The response contains a Student object or an
error message:
public interface StudentService {
 CreateStudentResponse create(String name, String
 studentOfclass);
}

The following is the service implementation:

public class StudentServiceImpl implements StudentService {
 private final StudentDAO studentDAO;

 public StudentServiceImpl(StudentDAO studentDAO) {
 this.studentDAO = studentDAO;
 }

 @Override public CreateStudentResponse create(String
 name, String studentOfclass) {
 CreateStudentResponse response = null;
 try{

Chapter 1

[17]

 String roleNum= studentDAO.create (name,
 studentOfclass);
 response = new CreateStudentResponse(null, new
 Student(roleNum, name));
 }catch(SQLException e) {){
 response = new CreateStudentResponse
 ("SQLException"+e.getMessage(), null);
 }catch (Exception e) {
 response = new CreateStudentResponse(e.getMessage(),
 null);
 }
 return response;
 }
}

Note that the service implementation class delegates the Student
object's creation task to the StudentDAO object. If anything
goes wrong in the data access layer, then the DAO throws an
SQLException error. The implementation class catches the
exceptions and sets the error message to the response object.

5.	 How can you test the SQLException condition? Create a stub object
and throw an exception. Whenever the create method is invoked
on the stubbed DAO, the DAO throws an exception. The following
ConnectionTimedOutStudentDAOStub class implements the StudentDAO
interface and throws an SQLException error from the create() method:
package com.packt.testdoubles.stub;
import java.sql.SQLException;

public class ConnectionTimedOutStudentDAOStub implements
 StudentDAO {
 public String create(String name, String className)
 throws SQLException {
 throw new SQLException("DB connection timed out");
 }
}

This class should be created under the test source folder since the class is
only used in tests.

Exploring Test Doubles

[18]

6.	 Test the SQLException condition. Create a test class and pass the stubbed
DAO to the service implementation. The following is the test code snippet:

public class StudentServiceTest {
 private StudentService studentService;
 @Test
 public void when_connection_times_out_then_the_student
 _is_not_saved() {
 studentService = new StudentServiceImpl(new
 ConnectionTimedOutStudentDAOStub());
 String classNine = "IX";
 String johnSmith = "john Smith";
 CreateStudentResponse resp = studentService.
 create(johnSmith, classNine);
 assertFalse(resp.isSuccss());
 }
}

The error condition is stubbed and passed into the service implementation
object. When the service implementation invokes the create() method on
the stubbed DAO, it throws an SQLException error.

Stubs are very handy to impersonate error conditions and external dependencies
(you can achieve the same thing with a mock; this is just one approach). Suppose
you need to test a code that looks up a JNDI resource and asks the resource to return
some value. You cannot look up a JNDI resource from a JUnit test; you can stub the
JNDI lookup code and return a stubbed object that will give you a hardcoded value.

Exploring a test spy
A spy secretly obtains the information of a rival or someone very important. As the
name suggests, a spy object spies on a real object. A spy is a variation of a stub, but
instead of only setting the expectation, a spy records the method calls made to the
collaborator. A spy can act as an indirect output of the unit under test and can also
act as an audit log.

We'll create a spy object and examine its behavior; the following are the steps to
create a spy object:

1.	 Launch Eclipse, open <work_space>, and go to the 3605OS_TestDoubles
project.

Chapter 1

[19]

2.	 Create a com.packt.testdoubles.spy package and create a
StudentService class. This class will act as a course register service.
The following is the code for the StudentService class:
public class StudentService {

 private Map<String, List<Student>> studentCouseMap = new
 HashMap<>();

 public void enrollToCourse(String courseName,Student
 student){
 List<Student> list = studentCouseMap.get(courseName);
 if (list == null) {
 list = new ArrayList<>();
 }

 if (!list.contains(student)) {
 list.add(student);
 }
 studentCouseMap.put(courseName, list);
 }

}

The StudentService class contains a map of the course names and students.
The enrollToCourse method looks up the map; if no student is enrolled,
then it creates a collection of students, adds the student to the collection, and
puts the collection back in the map. If a student has previously enrolled for
the course, then the map already contains a Student collection. So, it just
adds the new student to the collection.students list.

3.	 The enrollToCourse method is a void method and doesn't return a
response. To verify that the enrollToCourse method was invoked with a
specific set of parameters, we can create a spy object. The service will write to
the spy log, and the spy will act as an indirect output for verification. Create
a spy object to register method invocations. The following code gives the
method invocation details:
class MethodInvocation {

 private List<Object> params = new ArrayList<>();
 private Object returnedValue = null;
 private String method;

 public List<Object> getParams() {

Exploring Test Doubles

[20]

 return params;
 }

 public MethodInvocation addParam(Object parm){
 getParams().add(parm);
 return this;
 }

 public Object getReturnedValue() {
 return returnedValue;
 }

 public MethodInvocation setReturnedValue(Object
 returnedValue) {
 this.returnedValue = returnedValue;
 return this;
 }

 public String getMethod() {
 return method;
 }

 public MethodInvocation setMethod(String method) {
 this.method = method;
 return this;
 }
}

The MethodInvocation class represents a method invocation: the method
name, a parameter list, and a return value. Suppose a sum() method is
invoked with two numbers and the method returns the sum of two numbers,
then the MethodInvocation class will contain a method name as sum, a
parameter list that will include the two numbers, and a return value that
will contain the sum of the two numbers.

Note that the setter methods return
this(MethodInvocation). This coding approach is known as
builder pattern. It helps to build an object in multiple steps. Java
StringBuilder is an example of such a use:

StringBuilder builder = new StringBuilder();

builder.append("step1").append("step2")…

Chapter 1

[21]

The following is the spy object snippet. It has a registerCall
method to log a method call instance. It has a map of strings and a
List<MethodInvocation> method. If a method is invoked 10 times, then
the map will contain the method name and a list of 10 MethodInvocation
objects. The spy object provides an invocation method that accepts a
method name and returns the method invocation count from the
invocationMap class:

public class StudentServiceSpy {
 private Map<String, List<MethodInvocation>> invocationMap
 = new HashMap<>();

 void registerCall(MethodInvocation invocation) {
 List<MethodInvocation> list = invocationMap.get
 (invocation.getMethod());
 if (list == null) {
 list = new ArrayList<>();
 }
 if (!list.contains(invocation)) {
 list.add(invocation);
 }

 invocationMap.put(invocation.getMethod(), list);
 }

 public int invocation(String methodName){
 List<MethodInvocation> list = invocationMap.get
 (methodName);
 if(list == null){
 return 0;
 }

 return list.size();
 }

 public MethodInvocation arguments(String methodName, int
 invocationIndex){
 List<MethodInvocation> list = invocationMap.get
 (methodName);
 if(list == null || (invocationIndex > list.size())){
 return null;
 }
 return list.get(invocationIndex-1);
 }
}

Exploring Test Doubles

[22]

The registerCall method takes a MethodInvocation object and puts it in
a map.

4.	 Modify the StudentService class to set a spy and log every method
invocation to the spy object:
 private StudentServiceSpy spy;
 public void setSpy(StudentServiceSpy spy) {
 this.spy = spy;
 }
 public void enrollToCourse(String courseName, Student
 student) {
 MethodInvocation invocation = new MethodInvocation();
 invocation.addParam(courseName).addParam(student).
 setMethod("enrollToCourse");
 spy.registerCall(invocation);

 List<Student> list = studentCouseMap.get(courseName);
 if (list == null) {
 list = new ArrayList<>();
 }
 if (!list.contains(student)) {
 list.add(student);
 }

 studentCouseMap.put(courseName, list);
 }

5.	 Write a test to examine the method invocation and arguments. The following
JUnit test uses the spy object and verifies the method invocation:

public class StudentServiceTest {
 StudentService service = new StudentService();
 StudentServiceSpy spy = new StudentServiceSpy();

 @Test
 public void enrolls_students() throws Exception {
 //create student objects
 Student bob = new Student("001", "Robert Anthony");
 Student roy = new Student("002", "Roy Noon");
 //set spy
 service.setSpy(spy);

 //enroll Bob and Roy
 service.enrollToCourse("english", bob);
 service.enrollToCourse("history", roy);

Chapter 1

[23]

 //assert that the method was invoked twice
 assertEquals(2, spy.invocation("enrollToCourse"));

 //get the method arguments for the first call
 List<Object> methodArguments = spy.arguments
 ("enrollToCourse", 1).getParams();

 //get the method arguments for the 2nd call
 List<Object> methodArguments2 = spy.arguments
 ("enrollToCourse", 2).getParams();

 //verify that Bob was enrolled to English first
 assertEquals("english", methodArguments.get(0));
 assertEquals(bob, methodArguments.get(1));

 //verify that Roy was enrolled to history
 assertEquals("history", methodArguments2.get(0));
 assertEquals(roy, methodArguments2.get(1));

 }

}

Getting started with mock objects
A mock object is a combination of a spy and a stub. It acts as an indirect output
for a code under test, such as a spy, and can also stub methods to return values or
throw exceptions, like a stub. A mock object fails a test if an expected method is not
invoked or if the parameters of the method don't match.

The following steps demonstrate the test failure scenario:

1.	 Launch Eclipse, open <work_space>, and go to the 3605OS_TestDoubles
project.

2.	 Create a com.packt.testdoubles.mock package and a StudentService
class. This class will act as a course register service. The following is the code
for the StudentService class:
public class StudentService {

 private Map<String, List<Student>> studentCouseMap = new
 HashMap<>();

 public void enrollToCourse(String courseName,Student
 student){
 List<Student> list = studentCouseMap.get(courseName);
 if (list == null) {
 list = new ArrayList<>();

Exploring Test Doubles

[24]

 }

 if (!list.contains(student)) {
 list.add(student);
 }

 studentCouseMap.put(courseName, list);
 }
}

3.	 Copy the StudentServiceSpy class and rename it as
StudentServiceMockObject. Add a new method to verify
the method invocations:
public void verify(String methodName, int
 numberOfInvocation){
 int actual = invocation(methodName);
 if(actual != numberOfInvocation){
 throw new IllegalStateException(methodName+" was
 expected ["+numberOfInvocation+"] times but
 actuallyactaully invoked["+actual+"] times");
 }
}

4.	 Modify the StudentService code to set the mock object, as we did in the
spy example:
private StudentServiceMockObject mock;

public void setMock(StudentServiceMockObject mock) {
 this.mock = mock;
}
public void enrollToCourse(String courseName,Student
 student){
 MethodInvocation invocation = new MethodInvocation();

 invocation.addParam(courseName).addParam(student)
 .setMethod("enrollToCourse");

 mock.registerCall(invocation);
 …//existing code
}

5.	 Create a test to verify the method invocation:
public class StudentServiceTest {
 StudentService service = new StudentService();
 StudentServiceMockObject mockObject = new
 StudentServiceMockObject();

 @Test

Chapter 1

[25]

 public void enrolls_students() throws Exception {
 //create 2 students
 Student bob = new Student("001", "Robert Anthony");
 Student roy = new Student("002", "Roy Noon");

 //set mock/spy
 service.setMock(mockObject);

 //invoke method twice
 service.enrollToCourse("english", bob);
 service.enrollToCourse("history", roy);

 //assert that the method was invoked twice
 assertEquals(2,
 mockObject.invocation("enrollToCourse"));

 //verify wrong information, that enrollToCourse was
 //invoked once, but actually it is invoked twice
 mockObject.verify("enrollToCourse", 1);

 }

}

6.	 Run the test; it will fail, and you will get a verification error. The following
screenshot shows the JUnit failure output:

The Mockito framework provides an API for mocking objects. It uses proxy objects to
verify the invocation and stub calls.

Exploring Test Doubles

[26]

Implementing fake objects – simulators
A fake object is a test double with real logic (unlike stubs) and is much more
simplified or cheaper in some way. We do not mock or stub a unit that we test;
rather, the external dependencies of the unit are mocked or stubbed so that the
output of the dependent objects can be controlled or observed from the tests. The
fake object replaces the functionality of the real code that we want to test. Fakes are
also dependencies, and don't mock via subclassing (which is generally always a bad
idea; use composition instead). Fakes aren't just stubbed return values; they use some
real logic.

A classic example is to use a database stub that always returns a fixed value from
the DB, or a DB fake, which is an entirely in-memory nonpersistent database that's
otherwise fully functional.

What does this mean? Why should you test a behavior that is unreal? Fake objects
are extensively used in legacy code. The following are the reasons behind using a
fake object:

•	 The real object cannot be instantiated, such as when the constructor reads a
file, performs a JNDI lookup, and so on.

•	 The real object has slow methods; for example, a class might have a
calculate () method that needs to be unit tested, but the calculate()
method calls a load ()method to retrieve data from the database. The
load() method needs a real database, and it takes time to retrieve data, so
we need to bypass the load() method to unit test the calculate behavior.

Fake objects are working implementations. Mostly, the fake class extends the original
class, but it usually performs hacking, which makes it unsuitable for production.

The following steps demonstrate the utility of a fake object. We'll build a program
to persist a student's information into a database. A data access object class will
take a list of students and loop through the student's objects; if roleNumber is null,
then it will insert/create a student, otherwise it will update the existing student's
information. We'll unit test the data access object's behavior:

1.	 Launch Eclipse, open <work_space>, and go to the 3605OS_TestDoubles
project.

2.	 Create a com.packt.testdoubles.fake package and create a JdbcSupport
class. This class is responsible for database access, such as acquiring a
connection, building a statement object, querying the database, updating the
table, and so on. We'll hide the JDBC code and just expose a method for the
batch update. The following are the class details:

Chapter 1

[27]

public class JdbcSupport {
 public int[] batchUpdate(String sql, List<Map<String,
 Object>> params){
 //original db access code is hidden
 return null;
 }
}

Check whether the batchUpdate method takes an SQL string and a list
of objects to be persisted. It returns an array of integers. Each array index
contains either 0 or 1. If the value returned is 1, it means that the database
update is successful, and 0 means there is no update. So, if we pass only
one Student object to update and if the update succeeds, then the array
will contain only one integer as 1; however, if it fails, then the array will
contain 0.

3.	 Create a StudentDao interface for the Student data access. The following is
the interface snippet:
public interface StudentDao {
 public void batchUpdate(List<Student> students);
}

4.	 Create an implementation of StudentDao. The following class represents the
StudentDao implementation:
public class StudentDaoImpl implements StudentDao {

 public StudentDaoImpl() {
 }

 @Override
 public void batchUpdate(List<Student> students) {

 List<Student> insertList = new ArrayList<>();
 List<Student> updateList = new ArrayList<>();

 for (Student student : students) {
 if (student.getRoleNumber() == null) {
 insertList.add(student);
 } else {
 updateList.add(student);
 }
 }

 int rowsInserted = 0;

Exploring Test Doubles

[28]

 int rowsUpdated = 0;

 if (!insertList.isEmpty()) {
 List<Map<String, Object>> paramList = new
 ArrayList<>();
 for (Student std : insertList) {
 Map<String, Object> param = new HashMap<>();
 param.put("name", std.getName());
 paramList.add(param);
 }

 int[] rowCount = update("insert", paramList);
 rowsInserted = sum(rowCount);
 }

 if (!updateList.isEmpty()) {
 List<Map<String, Object>> paramList = new
 ArrayList<>();
 for (Student std : updateList) {
 Map<String, Object> param = new HashMap<>();
 param.put("roleId", std.getRoleNumber());
 param.put("name", std.getName());
 paramList.add(param);
 }

 int[] rowCount = update("update", paramList);
 rowsUpdated = sum(rowCount);
 }

 if (students.size() != (rowsInserted + rowsUpdated)) {
 throw new IllegalStateException("Database update error,
 expected " + students.size() + " updates but
 actual " + (rowsInserted + rowsUpdated));
 }
 }

 public int[] update(String sql, List<Map<String,
 Object>> params) {
 return new JdbcSupport().batchUpdate(sql, params);
 }

 private int sum(int[] rows) {
 int sum = 0;
 for (int val : rows) {
 sum += val;

Chapter 1

[29]

 }
 return sum;
 }

 }

The batchUpdate method creates two lists; one for the new students and
the other for the existing students. It loops through the Student list and
populates the insertList and udpateList methods, depending on the
roleNumber attribute. If roleNumber is NULL, then this implies a new student.
It creates a SQL parameter map for each student and calls the JdbcSupprt
class, and finally, checks the database update count.

5.	 We need to unit test the batchUpdate behavior, but the update method
creates a new instance of JdbcSupport and calls the database. So, we cannot
directly unit test the batchUpdate() method; it will take forever to finish.
Our problem is the update() method; we'll separate the concern, extend
the StudentDaoImpl class, and override the update() method. If we invoke
batchUpdate() on the new object, then it will route the update() method
call to the new overridden update() method.
Create a StudentDaoTest unit test and a TestableStudentDao subclass:
public class StudentDaoTest {
 class TestableStudentDao extends StudentDaoImpl{
 int[] valuesToReturn;
 int[] update(String sql, List<Map<String, Object>>
 params) {
 Integer count = sqlCount.get(sql);
 if(count == null){
 sqlCount.put(sql, params.size());
 }else{
 sqlCount.put(sql, count+params.size());
 }

 if (valuesToReturn != null) {
 return valuesToReturn;
 }

 return valuesToReturn;
 }
 }
}

Exploring Test Doubles

[30]

Note that the update method doesn't make a database call; it returns a
hardcoded integer array instead. From the test, we can set the expected
behavior. Suppose we want to test a database update's fail behavior; here,
we need to create an integer array of index 1, set its value to 0, such as int[]
val = {0}, and set this array to valuesToReturn.

6.	 The following example demonstrates the failure scenario:
public class StudentDaoTest {

 private TestableStudentDao dao;
 private Map<String, Integer> sqlCount = null;
 @Before
 public void setup() {
 dao = new TestableStudentDao();
 sqlCount = new HashMap<String, Integer>();
 }

 @Test(expected=IllegalStateException.class)
 public void when_row_count_does_not_match_then_rollbacks
 _tarnsaction(){
 List<Student> students = new ArrayList<>();
 students.add(new Student(null, "Gautam Kohli"));

 int[] expect_update_fails_count = {0};
 dao.valuesToReturn = expect_update_fails_count;
 dao.batchUpdate(students);

}

7.	 Check whether dao is instantiated with TestableStudentDao, then a new
student object is created, and the valuesToReturn attribute of the fake object
is set to {0}. In turn, the batchUpdate method will call the update method
of TestableStudentDao, and this will return a database update count of 0.
The batchUpdate() method will throw an exception for a count mismatch.
The following example demonstrates the new Student creation scenario:
@Test
public void when_new_student_then_creates_student(){
 List<Student> students = new ArrayList<>();
 students.add(new Student(null, "Gautam Kohli"));

 int[] expect_update_success = {1};
 dao.valuesToReturn = expect_update_success;

Chapter 1

[31]

 dao.batchUpdate(students);

 int actualInsertCount = sqlCount.get("insert");
 int expectedInsertCount = 1;
 assertEquals(expectedInsertCount, actualInsertCount);
}

Note that the valuesToReturn array is set to {1} and the Student object is
created with a null roleNumber attribute.

8.	 The following example demonstrates the Student information
update scenario:
 @Test
 public void when_existing_student_then_updates_
 student_successfully(){
 List<Student> students = new ArrayList<>();
 students.add(new Student("001", "Mark Leo"));
 int[] expect_update_success = {1};
 dao.valuesToReturn = expect_update_success;

 dao.batchUpdate(students);
 int actualUpdateCount = sqlCount.get("update");
 int expectedUpdate = 1;
 assertEquals(expectedUpdate, actualUpdateCount);
 }

Note that the valuesToReturn array is set to {1} and the Student object is
created with a roleNumber attribute.

9.	 The following example unit tests the create and update scenarios together.
We will pass two students: one to update and one to create. So, update
should return {1,1} for the existing students and {1} for the new student.
We cannot set this conditional value to the valuesToReturn array. We need
to change the update method's logic to conditionally return the count, but we
cannot break the existing tests. So, we'll check whether the valuesToReturn
array is not null and then return valuesToReturn; otherwise, we will apply
our new logic.
The following code snippet represents the conditional count logic:
class TestableStudentDao extends StudentDaoImpl {
 int[] valuesToReturn;
 int[] update(String sql, List<Map<String, Object>>
 params) {

 Integer count = sqlCount.get(sql);

Exploring Test Doubles

[32]

 if(count == null){
 sqlCount.put(sql, params.size());
 }else{
 sqlCount.put(sql, count+params.size());
 }

 if (valuesToReturn != null) {
 return valuesToReturn;
 }

 int[] val = new int[params.size()];
 for (int i = 0; i < params.size(); i++) {
 val[i] = 1;
 }

 return val;
 }
}

When valuesToReturn is null, the update method creates an array of the
params size and sets it as 1 for each index. So, when the update will be called
with two students, the update method will return {1,1}.
The following test creates a student list of three students, two existing
students with roleNumbers and one new student.
@Test
public void when_new_and_existing_students_then_creates
 _and_updates_students() {
 List<Student> students = new ArrayList<>();
 students.add(new Student("001", "Mark Joffe"));
 students.add(new Student(null, "John Villare"));
 students.add(new Student("002", "Maria Rubinho"));

 dao.batchUpdate(students);

}

Chapter 1

[33]

The following screenshot shows the output of the JUnit execution:

Note that it took 0.041 seconds to execute four tests. This is interesting
because it's something that you wouldn't easily get if you were using a
real database.

Summary
This chapter covered the concept of automated unit tests, the characteristics of a
good unit test, and explored tests doubles. It provided the examples of dummy
objects, fake objects, stubs, mock objects, and spies.

By now, you will be able to identify the different test doubles and write unit tests
using test doubles.

The next chapter, Socializing with Mockito, will focus on getting the reader quickly
started with the Mockito framework.

Socializing with Mockito
"The significant problems that exist in the world today cannot be solved by the level
of thinking that created them."

– Albert Einstein

This chapter distills the Mockito framework to its main core and provides technical
examples. No previous knowledge of Mocking is necessary.

The following topics are covered in this chapter:

•	 Exploring Mockito
•	 Working with Mockito
•	 Understanding the Mockito architecture

The Exploring Mockito section covers the unit test qualities and significance of
Mockito in unit testing.

The Working with Mockito section explicates the Mockito framework and covers the
following topics:

•	 Stubbing method calls
•	 Verifying method invocation
•	 Matching arguments
•	 Answering method calls

The Understanding the Mockito architecture section explains the internal architecture
of Mockito.

Socializing with Mockito

[36]

Exploring Mockito
Mockito is an open source mocking framework for Java. Mockito comes under the
MIT license. The MIT license says that anybody can use the software free of charge
and can use, copy, modify, merge, publish, distribute, and sell the software.

In Chapter 1, Exploring Test Doubles, we read about test doubles, spies, stubs, and
mock objects. Test doubles replicate the external dependencies so that the code
under test can interact with its external dependencies and allow you to isolate code
from its dependencies to test them on a standalone basis. Mockito streamlines the
creation and management of external dependencies and allows mock object creation,
verification, stubbing, and spying on real objects. To learn more about Mockito, visit
the following links:

•	 https://github.com/mockito/mockito

•	 https://github.com/mockito/mockito/wiki

Exploring unit test qualities
Writing clean, readable, and maintainable unit test cases (JUnit, TestNG) is an
art; just like writing clean code. A well-written unit test can prevent maintenance
nightmare and acts as a form of system documentation, but if not used carefully,
it may produce meaningless boilerplate test cases.

Unit tests should adhere to a number of principles for readability, flexibility, and
maintainability. This section elucidates the principles that we'll follow throughout
this journey. The following are the principles:

•	 Should be reliable: A unit test should fail if, and only if, the production code
is broken. If your test starts failing for some other reason, for example, if the
database server is down or Internet connection is not available, it implies that
your code is broken. However, in reality, your test is failing because of an
external resource that is not a part of your code.

•	 Unit tests should be automated: The following are the benefits of
test automation:

°° Assumptions are continually verified: We refactor code (change
the internal structure of the code without affecting the output of
the system) to improve code quality in terms of maintainability,
readability, or extensibility. We can refactor code with confidence if
automated unit tests are running and giving feedback. We should not
refactor code without proper test coverage.

https://github.com/mockito/mockito
https://github.com/mockito/mockito/wiki

Chapter 2

[37]

°° Side effects are detected immediately: This is useful for a fragile,
tightly-coupled system when a change in one module breaks
another module.

°° Saves time with no need for immediate manual regression testing:
If you are adding a scientific computation behavior to an existing
calculator program and modifying the code, you need to do a
regression to verify the integrity of the system after every piece of
change. Regression testing is tedious and time consuming, but if
you have an automated unit test suite, you can delay the regression
testing until the functionality is done. This is because the automated
suite will inform you at every stage if you break an existing feature.

•	 Tests should be executed extremely fast: This is because the tests can
provide quick feedback. A test should not take more than a second to finish
the execution. Your application can have thousands of tests. If they take
hours to finish, every change you commit will have to wait for an hour to
get the feedback, which is not acceptable.

•	 Trouble-free setup and run: Test setup should be simple. Unit tests
should not require a DB connection or an Internet connection or delete
a temp directory.

Mockito provides APIs to mock out the external dependencies and achieve the
qualities mentioned here.

Realizing the significance of Mockito
Automated tests are a safety net. They run and notify if the system is broken so
that the offending code can be fixed very quickly. If a test suite runs for an hour,
the purpose of quick feedback is compromised.

Consider a development environment where every line of code changes (commits
to the source control, for example, Git, SVN, or Rational ClearCase), triggers an
automated test suite, and takes hours to complete. A developer has to wait for an
hour or more to verify a new change until the test run is complete. This blocks the
progress of the development.

A test may take time to execute or fail needlessly when your code exhibits
testing-unfriendly behaviors or interacts with testing-unfriendly external objects.

Socializing with Mockito

[38]

The following are examples of testing-unfriendly behaviors:

•	 Acquiring a database connection and fetching/updating data
•	 Connecting to the Internet and downloading files
•	 Interacting with an SMTP server to send an e-mail
•	 Looking up JNDI objects
•	 Invoking a web service
•	 Performing I/O operations, such as printing a report

Do we really need a database connection or Internet connectivity to unit test a piece
of code?

If the connection to a database is not possible or the stock price cannot be
downloaded, the code cannot be tested and a few parts of the system remain
untested. So, DB interaction or network connection is mandatory for unit testing
some parts of the system. To unit test these parts, you need to isolate the testing of
unfriendly objects, or technically, the external dependencies need to be mocked out
(or faked).

Mockito plays a key role in mocking external dependencies. Mockito can be used to
mock out a database connection or any external I/O behavior so that the actual logic
can be unit tested and your code can interact with the mocked external objects.

Mocking provides the following benefits:

•	 Unit test reliability: You mock test unfriendly objects so that your test
becomes reliable. They don't fail for any unavailable external object as
you mock the external object.

•	 Unit tests can be automated: Mockito makes unit test configuration simple
as the tests can mock external dependencies, such as a web service call or
database access.

•	 Extremely fast test execution: Unit tests access mock objects, so delay in
external service call or slow I/O operations can be isolated.

Chapter 2

[39]

Working with Mockito
This section provides an overview of Mockito. Here is the official Mockito logo:

The following topics are covered in this section:

•	 Configuring Mockito
•	 Stubbing method calls
•	 Throwing exceptions
•	 Matching method arguments
•	 Verifying method calls

Download the latest Mockito binary ZIP folder from the following link and add it
to the project dependency. The recommended channel for getting Mockito is Maven
(or Gradle), or download it directly from the central Maven repository if you need to
get the JAR files manually from either http://central.maven.org/maven2/org/
mockito/mockito-all/ or http://central.maven.org/maven2/org/mockito/
mockito-core/.

As of April 2014, the latest Mockito version is 1.9.5.

Adding a Mockito dependency
The following steps describe how Mockito JAR files can be added as
project dependency:

1.	 Extract the JAR files into a folder.
2.	 Launch Eclipse.
3.	 Create an Eclipse project named 3605OS_Socializing_with_Mockito.
4.	 Go to the Libraries tab in the project's build path.

http://central.maven.org/maven2/org/mockito/mockito-all/
http://central.maven.org/maven2/org/mockito/mockito-all/
http://central.maven.org/maven2/org/mockito/mockito-core/
http://central.maven.org/maven2/org/mockito/mockito-core/

Socializing with Mockito

[40]

5.	 Click on the Add External JARs… button and browse to the Mockito
JAR folder.

6.	 Select all the JAR files and click OK.

The following code snippet will add the Mockito dependency to a Maven project and
download the JAR files from the central Maven repository (http://mvnrepository.
com/artifact/org.mockito/mockito-core):

<dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-core</artifactId>
 <version>1.9.5</version>
 <scope>test</scope>
</dependency>

The following Gradle script snippet will add the Mockito dependency to a
Gradle project:

 testCompile 'org.mockito:mockito-core:1.9.5'

Stubbing method calls
This section demonstrates the mock objects with an example. The following jQuery
table displays a list of countries:

This special table has numerous controls; you can sort by a column, either in
descending or ascending order. The table displays selectable rows per page as a
dropdown; you can change the number of records per page — you can choose 10,
15, 20, 30, or 50. The table has a next page, previous page, first page, and last page
widget. It has a refresh icon to load the latest dataset.

http://mvnrepository.com/artifact/org.mockito/mockito-core
http://mvnrepository.com/artifact/org.mockito/mockito-core

Chapter 2

[41]

We need to create a controller class to accept the Ajax call from the jQuery table and
return a country list. The Ajax request contains the requested page number, rows
per page, sort order, sort column name, and search query. The controller needs to
retrieve the country details from a database table and return only filtered countries
as an Ajax response.

The following is the Ajax controller class:

@Controller
@Scope("session")
public class AjaxController {
 private final CountryDao countryDao;

 public AjaxController(CountryDao countryDao) {
 this.countryDao = countryDao;
 }

 @RequestMapping(value = "retrieveCountries", method =
 RequestMethod.POST)
 public @ResponseBody
 JsonDataWrapper<Country> retrieve(HttpServletRequest webRequest)
 {
 List<Country> countries = new ArrayList<Country >();
 RetrieveCountryRequest request = RequestBuilder.build
 (webRequest);
 countries = countryDao.retrieve(request);
 Long startIndex = (request.getPage() - 1) *
 (request.getRowPerPage());
 int size = countries.size();
 Long endIndex = (startIndex + request.getRowPerPage()) > size
 ? size: (startIndex + request.getRowPerPage());
 if (startIndex < endIndex) {
 countries = countries.subList(startIndex.intValue(),
 endIndex.intValue());
 }

 JsonDataWrapper<Country> wrapper = new JsonDataWrapper
 <Country>(request.getPage(), size, countries);

 return wrapper;
 }

}

Socializing with Mockito

[42]

The retrieve method accepts an HttpServletRequest object and builds a database
access request from this object. The following is the request's builder code:

public class RequestBuilder {

 public static RetrieveCountryRequest build(HttpServlet
 RequestwebReq) {
 RetrieveCountryRequest request = new RetrieveCountryRequest();
 request.setPage(getLong(webReq.getParameter("page")));
 request.setRowPerPage(getInt(webReq.getParameter("rp")));
 request.setSortOrder(SortOrder.find(webReq.getParameter
 ("sortorder")));
 request.setSortname(SortColumn.find(webReq.getParameter
 ("sortname")));
 request.setSerachQuery(webReq.getParameter("qtype"));

 return request;
 }

 private static Integer getInt(String val) {
 Integer retVal = null;
 try {
 retVal = Integer.parseInt(val);
 } catch (Exception e) {
 }

 return retVal;
 }

 private static Long getLong(String val) {
 Long retVal = null;
 try {
 retVal = Long.parseLong(val);
 } catch (Exception e) {
 }
 return retVal;
 }
}

Finally, the retrieve method builds a JsonDataWrapper object from the country list
and hands it over to the Ajax request as JSON data. The @ResponseBody annotation
instructs the JSON response.

Chapter 2

[43]

To unit test this class, we need to create an HttpServletRequest object, populate it
with testable data, and then isolate the countryDao/database access call.

We'll use the Mockito framework to create a mock HttpServletRequest object and
isolate the countryDao access call by stubbing the database call.

A mock object can be created with the help of a static method mock(). You need
to invoke the Mockito.mock() method or static import Mockito's mock() method.
The following is the syntax:

import org.mockito.Mockito;
public class AjaxControllerTest {

 HttpServletRequest request;
 CountryDao countryDao;

 @Before
 public void setUp(){
 request = Mockito.mock(HttpServletRequest.class);
 countryDao = Mockito.mock(CountryDao.class);
 }
}

The following code snippet uses Java's static import construct:

import static org.mockito.Mockito.mock;
public class AjaxControllerTest {

 HttpServletRequest request;
 CountryDao countryDao;

 @Before
 public void setUp(){
 request = mock(HttpServletRequest.class);
 countryDao = mock(CountryDao.class);
 }
}

Static import in Java allows you to import static members and methods
of Java classes and use them as if they are local variables or methods
declared in the same class.

Socializing with Mockito

[44]

There's another way of mocking objects — using the @Mock annotation. But to
work with the @Mock annotation, it is necessary to call MockitoAnnotations.
initMocks(this) before using the mocks; or use MockitoJUnitRunner as a JUnit
runner. We'll cover the annotation in depth in the next chapter. The following
example is the syntax of mocking using the @Mock annotation:

import org.junit.Before;
import org.mockito.Mock;
import org.mockito.MockitoAnnotations;
public class AjaxControllerTest {

 private @Mock HttpServletRequest request;
 private @Mock CountryDao countryDao;

 @Before
 public void setUp(){
 MockitoAnnotations.initMocks(this);
 }
}

The following is the syntax of the @Mock annotation using MockitoJUnitRunner:

import org.junit.Before;
import org.junit.runner.RunWith;
import org.mockito.Mock;
import org.mockito.runners.MockitoJUnitRunner;

@RunWith(MockitoJUnitRunner.class)
public class AjaxControllerTest {

 private @Mock HttpServletRequest request;
 private @Mock CountryDao countryDao;

 @Before
 public void setUp() {
 }
}

Chapter 2

[45]

Before we deep dive into the Mockito world, there are a few things to
remember—Mockito cannot mock/spy the following things:

•	 Final classes
•	 Final methods
•	 Enums
•	 Static methods
•	 Private methods
•	 The hashCode() and equals() method
•	 Anonymous classes
•	 Primitive types

PowerMock has the capability to mock these constructs.

We read about stubs in Chapter 1, Exploring Test Doubles. The stubbing process
defines the behavior of a mock method, such as what value should be returned
or whether any exception should be thrown when the method is invoked.

The Mockito framework supports stubbing and allows us to return a given value
when a specific method is called. It can be done using Mockito.when() along with
thenReturn().

The following is the syntax for importing when:

import static org.mockito.Mockito.when;

The following test code stubs the retrieve method for CountryDao and returns an
empty list. Finally, the stubbing is verified using the assertTrue method:

@Test
public void retrieves_empty_country_list() throws Exception {
 List<Country> list = new ArrayList<Country>();
 list.add(new Country());
 when(countryDao.retrieve(isA(RetrieveCountryRequest.class)))
 .thenReturn(emptyList);

 assertTrue(countryDao.retrieve(new RetrieveCountryRequest())
 .size() == 1);
}

Socializing with Mockito

[46]

The when() method represents the trigger—when to stub it. The following methods
are used to represent a trigger action or what to do when the trigger is triggered.

•	 thenReturn (a value to be returned): This method returns a given value.
•	 thenThrow (a throwable to be thrown): This method throws a

given exception.
•	 thenAnswer (Answer answer): In this method, unlike returning a hardcoded

value, a dynamic, user-defined logic is executed; more like fake test doubles.
Answer is an interface. Dynamic code logic is needed to implement the
Answer interface.

•	 thenCallRealMethod(): This method calls the real method on the mock
object/spy.

The thenReturn() method has a variant; it can either return a hardcoded value
or can accept variable arguments of hardcoded values. What follows are the three
ensuing variants:

•	 thenReturn(value)

•	 thenReturn(value, values...)

•	 thenReturn(value).thenReturn(value2).thenReturn(value3)

The thenReturn(value) variant returns the same hardcoded value for each method
call, whereas when(mock.someMethod()).thenReturn(10,5,100) returns the
following values:

•	 During the first invocation, mock.someMethod() returns 10
•	 During the second invocation, mock.someMethod() returns 5
•	 During the third invocation, mock.someMethod() returns 100
•	 During all the other invocations, mock.someMethod() returns 100

We'll use this style of mocking for HttpServletRequest. The following is the
modified test:

@Test
public void retrieves_empty_country_list() throws Exception {
 when(request.getParameter(anyString())).thenReturn("1",
 "10",SortOrder.ASC.name(), SortColumn.iso.name());

 List<Country> countryList = new ArrayList<Country>();
 countryList.add(new Country());

 when(countryDao.retrieve(isA(RetrieveCountryRequest.class)))
 .thenReturn(countryList);

Chapter 2

[47]

 JsonDataWrapper<Country> response = ajaxController.retrieve
 (request);

 assertEquals(1, response.getPage());
 assertEquals(1, response.getTotal());
 assertEquals(1, response.getRows().size());

}

The RequestBuilder class calls the getParameter() method of
HttpServletRequest to fetch the request parameters. Sequentially, it calls
webReq.getParameter("page"), webReq.getParameter("rp"), webReq.
getParameter("sortorder"), and webReq.getParameter("sortname").

In the test method, we stubbed the getParameter call with a variable argument
thenReturn style.

We used two Mockito matchers, namely, anyString and isA. The anyString()
matcher is used to stub the getParameter method. The getParameter method
accepts a string argument, such as webReq.getParameter("page"). The anyString
matcher is used as a generic argument matcher. This means, no matter what value is
passed to the getParameter method, it will return a hardcoded value.

The isA matcher is used to stub the retrieve method of CountryDao to get
the following:

•	 If the retrieve method is called with a RetrieveCountryRequest object,
it will return the country list

In the next section, we'll discuss argument matchers.

Throwing exceptions
Unit tests are not meant only for happy path testing. We should test our code for
failure conditions as well. Mockito provides an API to raise errors during testing.
Suppose we are testing a flow where we compute some value and then send it to
a printer; if the printer is not configured or a network error occurs or a page is
not loaded, the system throws an exception. We can test this using Mockito's
exception APIs.

How do we test exceptional conditions such as database access failure?

For this, Mockito provides a thenThrow(Throwable)method. This method tells
the Mockito framework to throw a throwable (could be exception or error) when
the stubbed method is invoked.

Socializing with Mockito

[48]

JUnit 4.0 provides a way to test exceptions using @Test(expected=<exception>).

We'll stub the countryDao access call to throw an exception and assert the exception
using @Test(execpted=). If the test doesn't throw any exception, it will fail:

@Test(expected=RuntimeException.class)

public void when_system_throws_exception() {

 when(request.getParameter(anyString())).thenReturn("1", "10",
 SortOrder.DESC.name(), SortColumn.iso.name());

 when(countryDao.retrieve(isA(RetrieveCountryRequest.class))).
 thenThrow(new RuntimeException("Database failure"));

 JsonDataWrapper<Country> response = ajaxController.retrieve
 (request);

}

To throw an exception from a void method, use the following code syntax:

doThrow(exception).when(mock).voidmethod(arguments);

Checking and throwing RuntimeException is not recommended. Instead,
we can use a specific exception in production code. In JUint 4, there exists
an ExpectedException rule API for exception handling.

Using argument matchers
The argument matcher plays a key role in mocking. Mock objects return expected
values, but when they need to return different values for different arguments,
the argument matcher comes into play.

Suppose we have a method that takes a cricket player's name as an input and returns
the number of runs as an output. We want to stub it and return 100 for the player
Sachin and 10 for xyz. We have to use the argument matcher to stub this.

Mockito returns expected values when a method is stubbed. If the method takes
arguments, the argument must match during the execution. For example, the
getValue(int someValue) method is stubbed in the following way:

when(mockObject.getValue(1)).thenReturn(expected value);

Chapter 2

[49]

Here, the getValue method is called with mockObject.getValue(100).
The parameter doesn't match (it is expected that the method will be called with 1,
but at runtime it encounters 100), so the mock object fails to return the expected
value. It will return the default value of the return type. If the return type is int or
short or long, it returns 0 for wrapper types such as integer and long. If it returns
NULL for Boolean, it'll return false if the object is null and so on.

Mockito verifies argument values in natural Java style by using an object's equals()
method. Sometimes, we use argument matchers when extra flexibility is required.
Mockito provides built-in matchers, such as anyInt(), anyDouble(), anyString(),
anyList(), and anyCollection(). More built-in matchers and examples of custom
argument matchers / hamcrest matchers can be found at the following link:

https://github.com/mockito/mockito/blob/master/src/org/mockito/
Matchers.java

Examples of other matchers are isA(java.lang.Class<T> clazz),
any(java.lang.Class<T> clazz), and eq(T) or eq(primitive
value).

The isA matcher checks whether the passed object is an instance of the class type
passed in the isA argument. The any(T) matcher also works in the same way.

Working with wildcard matchers
A test invokes a method on a code under test. When the invoked method creates
a new object and passes that to a mock object, the test method doesn't have the
reference of that new object. So the test cannot stub the mock method with a specific
value, as the value is not available to the test method. In this context, we use the
wildcard matchers.

In the following code snippet, an object is passed to a method and then a request
object is created and passed to a service. Now, if we call someMethod from a test and
service is a mocked object, we cannot stub callMethod from a test with a specific
request, as the request object is local to someMethod.

public void someMethod(Object obj){
 Request req = new Request();
 Req.setValue(obj);
 Response resp = service.callMethod(req);
}

https://github.com/mockito/mockito/blob/master/src/org/mockito/Matchers.java
https://github.com/mockito/mockito/blob/master/src/org/mockito/Matchers.java

Socializing with Mockito

[50]

In our jQuery example, we create a mock HttpServletRequest object and pass
it to AjaxController. We have the control to stub the HttpServletRequest
object, but inside the retrieve method, AjaxController creates a new instance of
RetrieveCountryRequest and passes it to CountryDao. We don't have any control
over the new instance of RetrieveCountryRequest, so we used a wildcard matcher
isA() to stub the retrieve method of CountryDao.

While using argument matchers, all arguments have to be provided
by matchers.
We're passing three arguments, and all of them are passed using matchers
in the following manner:

verify(mock).someMethod(anyInt(), anyString(),
eq("third argument"));

The following example will fail because the first and the third argument
are not passed using a matcher:

verify(mock).someMethod(1, anyString(), "third
argument");

Working with a custom ArgumentMatcher class
The ArgumentMatcher class allows us to create our own custom argument
matchers. The ArgumentMatcher class is a hamcrest matcher with the predefined
describeTo() method. Use the Matchers.argThat(org.hamcrest.Matcher)
method and pass an instance of the hamcrest matcher. Hamcrest provides a
utility matcher class, org.hamcrest.CoreMatchers. A few utility methods for
CoreMatchers include allOf, anyOf, both, either, describedAs, everyItem, is,
isA, anything, hasItem, hasItems, equalTo, any, instanceOf, not, nullValue,
notNullValue, sameInstance, and theInstance. It also includes a few string
methods such as startsWith, endsWith, and containsString. All these methods
return a matcher.

Look at the usage of assertThat and explore the utility methods. The following
section provides example of matchers. Let's start with equalTo. The equalTo
matcher is equivalent to assertEquals.

Comparison matchers – equalTo, is, and not
Create a JUnit test, AssertThatTest.java, and static import org.hamcrest.
CoreMatchers.*; in the following manner:

import static org.hamcrest.CoreMatchers.*;
import static org.junit.Assert.*;

Chapter 2

[51]

import org.junit.Test;

public class AssertThatTest {

 @Test
 public void verify_Matcher() throws Exception {
 int age = 30;
 assertThat(age, equalTo(30));
 assertThat(age, is(30));

 assertThat(age, not(equalTo(33)));
 assertThat(age, is(not(33)));
 }
}

Set the age variable to 30 and then, like assertEquals, call equalTo, which is a
matcher; equalTo takes a value. If the matcher value doesn't match the actual value,
assertThat throws an AssertionError. Set the age variable value to 29 and rerun
the test; the following error will occur:

java.lang.AssertionError:
Expected: <30>
 but: was <29>
 at org.hamcrest.MatcherAssert.assertThat(MatcherAssert.java:20)
 at org.junit.Assert.assertThat(Assert.java:865)

The is matcher takes a value and behaves similarly to equalTo. The not matcher
takes a value or a matcher. In the preceding code, we used assertThat(age,
is(not(33)));, which is nothing but age is not 33 and more readable than
assert methods.

Compound value matchers – either, both, anyOf, allOf,
and not
In this section, we will use the either, both, anyOf, allOf, and not matchers.
Add the following test to the AssertThatTest.java JUnit test:

@Test
public void verify_multiple_values() throws Exception {

 double marks = 100.00;
 assertThat(marks, either(is(100.00)).or(is(90.9)));

 assertThat(marks, both(not(99.99)).and(not(60.00)));

Socializing with Mockito

[52]

 assertThat(marks, anyOf(is(100.00),is(1.00),is(55.00),is(88.00),
 is(67.8)));

 assertThat(marks, not(anyOf(is(0.00),is(200.00))));

 assertThat(marks, not(allOf(is(1.00),is(100.00), is(30.00))));
}

In the preceding example, a double variable mark is initialized with the value
100.00. This variable value is asserted with an either matcher.

Basically, using either, we can compare two values against an actual/calculated
value. If any of them match, the assertion is passed. If none of them match,
AssertionError is thrown.

The either(Matcher) takes a matcher and returns a CombinableEitherMatcher
class. The CombinableEitherMatcher class has an or(Matcher other) method so
that either and or can be combined:

or(Matcher other) is translated as
return (new CombinableMatcher(first)).or(other);-> finally to
new CombinableMatcher(new AnyOf(templatedListWith(other)));

Using both, we can compare two values against an actual/calculated value.
If neither of them match, the assertion error is thrown. If both of them match,
the assertion is passed.

A numeric value, like math score, cannot be equal to both 60 and 80. But we can
negate the expression. If the math score is 80, using the both matcher, we can write
the expression as assertThat (mathScore , both (not(60)). and(not (90))).

The anyOf matcher is more like either with multiple values. Using anyOf, we can
compare multiple values against an actual/calculated value. If any of them match,
the assertion is passed. If none of them match, the assertionError is thrown.

The allOf matcher is more like both with multiple values. Using allOf, we can
compare multiple values against an actual/calculated value. If none of them match,
the assertionError is thrown. Just like both, we can use allOf, along with not,
to check that a value doesn't belong to a set.

In the preceding example, using allOf and not, we checked that the score is not 1 or
100 or 30.

We'll create a custom matcher for the jQuery table example.

Chapter 2

[53]

The CountryDao access call accepts a request and returns a list of countries. The
request contains the sort column name and the sort order. We can create a matcher to
return the country list sorted in ascending order. The following is a custom matcher:

class SortByISOInAscendingOrderMatcher extends
ArgumentMatcher<RetrieveCountryRequest> {
 @Override
 public boolean matches(Object request) {
 if (request instanceof RetrieveCountryRequest) {
 SortOrder sortOrder = ((RetrieveCountryRequest) request)
 .getSortOrder();
 SortColumn col = ((RetrieveCountryRequest) request)
 .getSortname();

 return SortOrder.ASC.equals(sortOrder) && SortColumn
 .iso.equals(col);
 }
 return false;
 }
}

The preceding code extends the ArgumentMatcher class and overrides the matches
method. The matches method checks the RetrieveCountryRequest request type,
gets the SortOrder and SortColumn attributes from the request object, and finally,
checks the SortOrder type. If the order is ASC and the column name is ISO, the
match happens.

If you pass a RetrieveCountryRequest object with SortOrder DESC or
SortColumn ISO3, the matches method returns false and the method is
not stubbed. The following test method uses the custom matcher:

@Test
public void countryList_sortedBy_ISO_In_asc_order() {
 when(request.getParameter(anyString())).thenReturn("1", "10",
 SortOrder.ASC.name(), SortColumn.iso.name());

 Country argentina = new Country();
 argentina.setIso("AR");
 Country india = new Country();
 india.setIso("IN");
 Country usa = new Country();
 usa.setIso("US");

 List<Country> ascCountryList = new ArrayList<Country>();
 ascCountryList.add(argentina);

Socializing with Mockito

[54]

 ascCountryList.add(india);
 ascCountryList.add(usa);

 when(countryDao.retrieve(argThat(new SortByISOIn
 AscendingOrderMatcher()))).thenReturn(ascCountryList);

 JsonDataWrapper<Country> response = ajaxController.retrieve
 (request);
 assertEquals(ascCountryList, response.getRows());
}

We stubbed the HttpServletRequest object to return SortOrder.ASC,
populated a list, and stubbed the countryDao access call with argThat(new
SortByISOInAscendingOrderMatcher()). If we stub the HttpServletRequest
object to return a different sort order or sort column name, the test will fail.

Verifying method calls
To verify a redundant method invocation or if a stubbed method was not called but
was important from the test perspective, we should manually verify the invocation.
We need to use the static verify method.

Mock objects are used to stub external dependencies. We set an expectation and
a mock object returns an expected value. In some conditions, a behavior/method
of a mock object should not be invoked, or sometimes we may need to call the
method N (a number) times. The verify method verifies the invocation of mock
objects. Mockito does not automatically verify all stubbed calls; JMock does
this automatically.

If a stubbed behavior should not be called, but is called due to bug in a code, the
verify method flags the error (but we have to verify that manually). The void
methods don't return a value; verify is very handy to test a void method's
behavior (explained later).

The verify() method has an overloaded version, which takes VerificationMode
(AtLeast, AtMost, Times, and so on) as an argument. The Times mode is a Mockito
framework class of package, org.mockito.internal.verification, and it takes
the integer argument, wantedNumberOfInvocations.

Chapter 2

[55]

If 0 is passed to Times, it infers that the method will not be invoked in the testing
path. We can pass 0 to Times(0) to make sure that the sell or buy methods are not
invoked. If a negative number is passed to the Times constructor, Mockito throws
MockitoException - org.mockito.exceptions.base.MockitoException and
shows the Negative value is not allowed here error. The following methods are
used in conjunction with verify:

•	 times(int wantedNumberOfInvocations): This is invoked exactly N
times. If the method is not invoked wantedNumberOfInvocations times,
the test fails.

•	 never(): This is never called or is called as times(0).
•	 atLeastOnce(): This is invoked at least once. It works fine if the method is

invoked multiple times, but fails if the method is not invoked.
•	 atLeast(int minNumberOfInvocations): This is called at least N times.

It works fine if the method is invoked more than minNumberOfInvocations
times, but fails if the method is not called minNumberOfInvocations times.

•	 atMost(int maxNumberOfInvocations): This is called at the most N times.
It fails if the method is called more than minNumberOfInvocations times.

•	 only(): This is used to verify that only one method is called on a mock. It
fails if any other method is called on the mock object. In our example, if we
use verify(request, only()).getParameter(anyString());, the test
will fail with the following output:

Socializing with Mockito

[56]

The test fails as it doesn't expect multiple calls to the request.
getParameter() method.

•	 timeout(int millis): This is specified in a time range.

Verifying zero and no-more interactions
The verifyZeroInteractions (object, mocks) method verifies that no
interactions happened on the given mocks. The following test code directly calls the
verifyZeroInteractions and passes the two mock objects. Since no methods are
invoked on the mock objects, the test passes.

@Test public void verify_zero_interaction() {
 verifyZeroInteractions(request,countryDao);
}

This is useful if your code depends on two or more collaborators. For a given input,
only one collaborator should handle the request while others should just ignore
the request.

The verifyNoMoreInteractions (Object, mocks) method checks if any of the
given mocks have any unverified interaction. We can use this method after verifying
a mock method to make sure that nothing else was invoked on the mock.

This is generally not a good practice as it makes your tests overly brittle and you end
up testing more than just what you care about. The following test code demonstrates
the verifyNoMoreInteractions method:

@Test public void verify_nomore_interaction() {
 request.getParameter("page");
 request.getContextPath();

 verify(request).getParameter(anyString());
 //this will fail getContextPath() is not verified
 verifyNoMoreInteractions(request);
}

The following is the JUnit output. The test fails as the getContextPath() method
was not verified even though the getParameter() method was verified. So the
test considered the getContextPath() method invocation as a coding bug and
verifyNoMoreInteractions raised the error.

Chapter 2

[57]

Answering method calls
Stubbed methods return a hardcoded value but cannot return a dynamic on-the-fly
result. Mockito framework offers callbacks to compute on-the-fly results.

Mockito allows stubbing with the generic Answer interface; this is a callback. When
a stubbed method on a mock object is invoked, the answer(InvocationOnMock
invocation) method of the Answer object is called. This Answer object's answer()
method returns the actual object. The syntax is similar to thenReturn() and
thenThrow():

when(mock.someMethod()).thenAnswer(new Answer() {…});

Alternatively, we can also use the following syntax:

when(mock.someMethod()).then(answer);

The Answer interface is defined as follows:

public interface Answer<T> {
 T answer(InvocationOnMock invocation) throws Throwable;
}

Socializing with Mockito

[58]

The InvocationOnMock argument is an important part of a callback. It gives you the
arguments passed to the method and the mock object as well. The following methods
of InvocationOnMock are used to get the arguments and the mock object:

Object[] args = invocation.getArguments();
Object mock = invocation.getMock();

The retrieve method of CountryDao is stubbed. We'll create an answer object to
dynamically sort the country list based on the input sort order.

In test class, create a list for storing countries, and in the setUp method, populate the
list with countries. The following is the changed test code:

 List<Country> countries;

 @Before
 public void setUp() {
 ajaxController = new AjaxController(countryDao);
 countries = new ArrayList<Country>();
 countries.add(create("Argentina", "AR", "32"));
 countries.add(create("USA", "US", "01"));
 countries.add(create("Brazil", "BR", "05"));
 countries.add(create("India", "IN", "91"));
 }

Write a new Answer class to sort the countries list based on the user input.
The following example is the custom Answer class:

class SortAnswer implements Answer<Object> {
 @Override
 public Object answer(InvocationOnMock invocation) throws
 Throwable {
 RetrieveCountryRequest request = (RetrieveCountryRequest)
 invocation.getArguments()[0];
 final int order = request.getSortOrder().equals(SortOrder.ASC)
 ? 1: -1;
 final SortColumn col = request.getSortname();
 Collections.sort(countries, new Comparator<Country>() {
 public int compare(Country arg0, Country arg1) {
 if (SortColumn.countryCode.equals(col))
 return order * arg0.getCountryCode().compareTo
 (arg1.getCountryCode());

 if (SortColumn.iso.equals(col))
 return order * arg0.getIso().compareTo(arg1.getIso());

Chapter 2

[59]

 return order * arg0.getName().compareTo(arg1.getName());
 }
 });

 return countries;
 }
}

The answer method gets the request object and sorts the countries list based on the
SortOrder and SortColumn attributes. The following test verifies the ascending and
descending sorting:

 @Test
 public void sorting_asc_on_iso() {
 when(request.getParameter(anyString())).thenReturn("1", "10",
 SortOrder.ASC.name(), SortColumn.iso.name());

 when(countryDao.retrieve(isA(RetrieveCountryRequest.class)))
 .thenAnswer(new SortAnswer());

 JsonDataWrapper<Country> response = ajaxController.
 retrieve(request);
 assertEquals("AR", response.getRows().get(0).getIso());
 assertEquals("BR", response.getRows().get(1).getIso());
 assertEquals("IN", response.getRows().get(2).getIso());
 assertEquals("US", response.getRows().get(3).getIso());
 }

 @Test
 public void sorting_desc_on_iso() {
 when(request.getParameter(anyString())).thenReturn("1",
 "10",SortOrder.DESC.name(), SortColumn.iso.name());

 when(countryDao.retrieve(isA(RetrieveCountryRequest.class)))
 .thenAnswer(new SortAnswer());

 JsonDataWrapper<Country> response = ajaxController.retrieve
 (request);
 assertEquals("AR", response.getRows().get(3).getIso());
 assertEquals("BR", response.getRows().get(2).getIso());
 assertEquals("IN", response.getRows().get(1).getIso());
 assertEquals("US", response.getRows().get(0).getIso());

 }

Socializing with Mockito

[60]

Understanding the Mockito architecture
Mockito applies the proxy design pattern to create mock objects. For concrete
classes, Mockito internally uses CGLib to create proxy stubs. CGLib is used to
generate dynamic proxy objects and intercept field access. The following URL
talks about CGLib:

https://github.com/cglib/cglib

The following sequence diagram depicts the call sequence. The ClassImposterizer
class is a singleton class. This class has a createProxyClass method for generating a
source using CGLib. Finally, it uses reflection to create an instance of the proxy class.
Method calls are stubbed using the callback API of MethodInterceptor.

mock(Class)

InstantiatorStrategyMockito MockitoCore MockitoCore ClassImposterizer

proxy
proxy

proxy
proxy

mock(Class,

MockSettings) createMock(

Class,

MockSettings)

imposterise()

newInstantiatorOf(

proxyClass)
proxy

createProxy

Class

The MethodInterceptor class acts as a Java reflection class, java.lang.reflect.
InvocationHandler. Any method call on a mock object (proxy) is handled by a
MethodInterceptor instance.

We'll create a custom mocking framework to handle external dependencies. We'll
use the Java reflection framework's dynamic proxy object-creation API. The java.
lang.reflect.Proxy method provides a Proxy.newProxyInstance(ClassLoader,
Class, InvocationHandler) API to create dynamic proxy objects. The
InvocationHandler interface has the following signature:

public interface InvocationHandler {

 public abstract Object invoke(Object obj, Method method,
 Object aobj[]) throws Throwable;
}

All method calls to a proxy object are redirected to the invoke method.

https://github.com/cglib/cglib

Chapter 2

[61]

Create a class OurMockito for handling dynamic proxies. The following is the
OurMockito class definition. It implements the InvocationHandler interface,
provides an implementation of the invoke() method, and provides three static
mock methods and two stub methods.

public class OurMockito implements InvocationHandler {
 private static Map<String, Object> stubMap = new HashMap<String,
 Object>();
 private static Map<String, Exception> excepMap = new
 HashMap<String, Exception>();

 @Override
 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable {

 String methodName = method.getName();
 if (Modifier.isFinal(method.getModifiers()) ||
 Modifier.isPrivate(method.getModifiers()) ||
 Modifier.isStatic(method.getModifiers())) {
 throw new RuntimeException("You naughty developer mocking
 a private, static or final method "+ methodName);
 }

 if (excepMap.containsKey(methodName)) {
 Exception excep = excepMap.get(methodName);
 throw excep;
 }

 if (stubMap.containsKey(methodName)) {
 return stubMap.get(methodName);
 }

 return null;
 }

The mock() method takes a java.lang.Class, creates a proxy object of the class,
and passes an instance of OurMockito() as InvocationHandler. The following is
the body of the mock() method:

 public static Object mock(Class aClass) {
 Object newProxyInstance = Proxy.newProxyInstance
 (OurMockito.class.getClassLoader(), new Class[] { aClass
 },new OurMockito());
 return newProxyInstance;
 }

Socializing with Mockito

[62]

The two overloaded stub methods are as follows:

 public static void stub(Object stubOn, String methodName, Object
 stubbedValue) {
 stubMap.put(methodName, stubbedValue);
 }

 public static void stub(Object stubOn,String methodName,
 Exception excep) {
 if (excep != null) {
 excepMap.put(methodName, excep);
 }
 }
}

The mock method uses the proxy class to generate a proxy object. The stub(Object
stubOn, String methodName, Object stubbedValue) method allows a method call
return value to stub. The stub(Object stubOn,String methodName, Exception
excep) method allows an exception to be thrown on a method call to check the
negative testing path. The stub methods populate two hashmaps for storing
the stubbed values/exceptions. The reflection API delegates the method calls
(on proxy objects) to InvocationHandler. The invoke method in the OurMockito
class handles the method calls. The invoke method looks up the method name in
the exception map. If the method was stubbed for throwing an exception, the
exception is thrown; otherwise, the method stub map is looked up for returning
a stubbed value.

Create an interface to represent an external dependency. The following is the class:

public interface ExternalService {
 public String concat(String arg1, String arg2);
 public void someStrangeOperation(Object obj);
 public int divide(int a, int b);
}

Now create a test class to verify the mocking capability. The following is the class:

public class OurMockTest {

 ExternalService externalService = (ExternalService)OurMockito
 .mock(ExternalService.class);

 @Test
 public void stubbing_method() throws Exception {
 OurMockito.stub(externalService, "concat", "dummy");
 String returned = externalService.concat(null, null);

Chapter 2

[63]

 assertEquals("dummy", returned);
 }

 @Test
 public void stubbing_error_conditions() throws Exception {
 OurMockito.stub(externalService, "divide", 0);
 int returned = externalService.divide(0, 0);
 assertEquals(0, returned);
 }

 @Test
 public void stubbing_exception() throws Exception {
 OurMockito.stub(externalService, "someStrangeOperation", new
 RuntimeException("Just blow this up!"));
 externalService.someStrangeOperation(null);
 }
}

The ExternalService method is mocked using following construct:

ExternalService externalService = (ExternalService)OurMockito.mock
 (ExternalService.class);

The concat method is stubbed to return a string "dummy", the divide method is
stubbed to return a hardcoded integer 0, and the someStrangeOperation method
is stubbed to throw a RuntimeException. The following is the JUnit output:

Note that the third test throws the RuntimeException ("Just blow
this up!").

Socializing with Mockito

[64]

Summary
This chapter covered the Mockito overview, unit test qualities, and the significance of
Mockito in unit testing. It explained and provided examples of stubbing, answering,
throwing exceptions, argument matcher, and method call verification. It also covered
the Mockito architecture.

By now, you should be able to verify method calls, stub methods, and throw
exceptions using the Mockito framework.

The next chapter, Accelerating Mockito, focuses on advanced Mockito topics.

Accelerating Mockito
"Any sufficiently advanced technology is indistinguishable from magic."

– Arthur C. Clarke

This chapter explores the advanced topics of the Mockito framework. Using
Mockito's advanced features, we can stub out void methods, capture arguments
passed to the stubbed methods and assert the argument values, verify the invocation
order to check that the collaborators are accessed in proper order, spy a real
object and set expectation on the spy object in the legacy code, and change
mocking behavior.

The following topics are covered in this chapter:

•	 Void methods
•	 Annotations
•	 Argument captor
•	 Verifying an invocation order
•	 Spying an object
•	 Changing default Mockito settings
•	 Resetting mock objects
•	 Inline stubbing
•	 Mock details

Accelerating Mockito

[66]

Learning advanced Mockito features
Chapter 2, Socializing with Mockito, explained the external dependencies and provided
examples of basic Mockito features, such as stubbing method calls, throwing
exceptions, matching arguments, verifying method invocations, and answering
method calls.

Mockito provides a fluent API for mocking Java objects. It offers a collection of
advanced features for advanced users. This section deals with the advanced Mockito
features and answers several questions, such as how to change the Mockito settings
to return smart null values instead of default return types, how to reset a mock object
to clear all previous information, how to determine whether an object is a spy or a
mock, and how to capture arguments passed to a mock object and verify the values.

The following sections cover the advanced Mockito APIs.

Working with void methods
Unit testing void methods is difficult. Conventional unit tests prepare data, pass
values to a method, and then assert the return type to verify the behavior of the code.
But when a method doesn't return a value but only changes the internal state of the
object under test, it becomes difficult to decide what to assert. Conventional unit
tests work with direct input and output, but void methods need to work with
indirect output.

In this section, we'll examine a legacy servlet code and write unit test for the legacy
code. To unit test a servlet code, you need the Servlet-apiXX.jar, JUnit JAR file,
and the Mockito JAR file. To download servlet-api.<version number>.jar,
you can visit the Oracle URL at http://www.oracle.com/technetwork/java/
javasebusiness/downloads/java-archive-downloads-eeplat-419426.html,
and we already have the JUnit and Mockito JAR files. On the other hand, you can
download the code and associated JAR files for this chapter from the Packt website.

The following servlet code acts as a front controller. It intercepts all the web requests
and delegates these requests to appropriate resources. The DemoController servlet
extends from HttpServlet and has a dependency on a LoginController class. The
constructor creates an instance of LoginController, as shown in the following code:

@WebServlet("/DemoController")
public class DemoController extends HttpServlet {
 private LoginController loginController;
 public DemoController() {
 loginController = new LoginController(new LDAPManagerImpl());
 }
}

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-eeplat-419426.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-eeplat-419426.html

Chapter 3

[67]

The doPost() and doGet() methods are inherited from HttpServlet.
The doPost() method intercepts the HTTP POST requests, and delegates
calls to the doGet() method.

 protected void doPost(HttpServletRequest request, HttpServlet
 Response response) throws ServletException, IOException {
 doGet(request, response);
 }

The doGet() method intercepts all the HTTP GET requests, and depending on the
request context URL, it routes the requests to appropriate handlers. Initially, the
login.jsp page is opened for user login. On submission of the Login form, the
/logon.do action is taken. The loginController class handles the /logon.do
request, and all other requests are routed to the error page. The following is the
body of the doGet() method:

 protected void doGet(HttpServletRequest req, HttpServletResponse
res) throws ServletException, IOException {
 String urlContext = req.getServletPath();
 if(urlContext.equals("/")) {
 req.getRequestDispatcher("login.jsp").forward(req, res);
 }else if(urlContext.equals("/logon.do")) {
 loginController.process(req, res);
 }else {
 req.setAttribute("error", "Invalid request path
 '"+urlContext+"'");
 req.getRequestDispatcher("error.jsp").forward(req, res);
 }
 }

The LoginController class has a dependency on LDAPManager for user validation.
This class handles the login request, retrieves the username and encrypted password
from the HTTP request, and asks the LDAPManager to validate whether the user
exists or not. The following is the LoginController class:

public class LoginController {
 private final LDAPManager ldapManager;

 public LoginController(LDAPManager ldapMngr) {
 this.ldapManager = ldapMngr;
 }
}

Accelerating Mockito

[68]

The process() method delegates user validation to LDAPManager and if the user
is valid, then it creates a new session, puts the user information to the session, and
routes the user to the home page. However, if the username or password is invalid,
it forwards the request back to the login page.

 public void process(HttpServletRequest req, HttpServletResponse
 res) throws ServletException, IOException {
 String userName = req.getParameter("userName");
 String encrypterPassword = req.getParameter
 ("encrypterPassword");
 if (ldapManager.isValidUser(userName, encrypterPassword)) {
 req.getSession(true).setAttribute("user", userName);
 req.getRequestDispatcher("home.jsp").forward(req, res);
 } else {
 req.setAttribute("error", "Invalid user name or password");
 req.getRequestDispatcher("login.jsp").forward(req, res);
 }
 }

The process() method doesn't return any value, but validates user login, and
on successful login, it routes the user to the home page. How can we unit test
this behavior? We can verify that the isValidUser() method of LDAPManager is
invoked, then check that the username is put in the session, and confirm that the
request is dispatched to the home.jsp page.

We learned about the mocking object and verifying method invocation using the
verify() method in Chapter 2, Socializing with Mockito. Here, we'll create a mock
HttpServletRequest, HttpServletResponse, and an LDAPManager and verify that
the actions are taken. We'll stub the isValidUser method of LDAPManager to return
true to unit test the successful user login and return false to unit test the invalid
login scenario. The following is the JUnit setup for the LoginController class:

package com.packt.mockito.advanced.voidmethods;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.junit.Before;
import org.junit.Test;
import org.mockito.Mock;
import org.mockito.MockitoAnnotations;

public class LoginControllerTest {
 private LoginController controller;
 private @Mock HttpServletRequest request;
 private @Mock HttpServletResponse response;
 private @Mock LDAPManager ldapManager;

Chapter 3

[69]

 @Before
 public void beforeEveryTest(){
 MockitoAnnotations.initMocks(this);
 controller = new LoginController(ldapManager);
 }

 @Test
 public void when_valid_user_credentials_for_login_Then_
 routes_to_home_page(){
 }
 @Test
 public void when_invalid_user_credentials_Then_
 routes_to_login_page(){
 }
}

Mock objects are instantiated by the MockitoAnnotations.initMocks(this)
instance in the beforeEveryTest method. Two empty test methods are created
for unit testing the valid and invalid login, and the sanity checking of the mock
objects creation. We'll start with the happy path. Modify the when_valid_user_
credentials_for_login_Then_routes_to_home_page() test, and then we'll
modify the when_invalid_user_credentials_Then_routes_to_login_page test.

After successful login, the process() method creates a user session, puts the user
information to the session, and then dispatches the request. Hence, for this, we need
to create a mock HttpSession object and a RequestDispatcher object:

 @Mock HttpSession session;
 @Mock RequestDispatcher dispatcher;

We modify the happy path test to verify successful login. Happy path unit tests can
verify the most obvious things, such as when a valid user ID and password is passed,
the user can login; but when we test complicated business conditions, such as an
invalid password or an expired password, we call it the alternate path or sad path.
The following is the modified test:

@Test
public void when_valid_user_credentials_for_login_Then_
 routes_to_home_page() throws Exception{
 verify(ldapManager).isValidUser(anyString(),anyStrin());
 verify(request).getSession(true);
 verify(session).setAttribute(anyString(), anyString());
 verify(request).getRequestDispatcher(eq("home.jsp"));
 verify(dispatcher).forward(request, response);
}

Accelerating Mockito

[70]

We are verifying a successful login that requires a user session to be created, a
session attribute to be set, a request dispatcher object to be created for the home page
("home.jsp"), and the request dispatcher to be forwarded to the home page. The
JUnit test verifies that things are set up and executed sequentially. Similarly, modify
the other test to unit test the invalid login. The following is the modified test:

@Test
public void when_invalid_user_credentials_Then_routes_to_
 login_page() throws Exception{
 verify(request).getRequestDispatcher(eq("login.jsp"));
 verify(dispatcher).forward(request, response);
}

The following output is shown in the Eclipse JUnit runner when we run the
unit tests:

We need to invoke the process() method and modify the first test to stub
LDAPManager to return true in order to simulate a successful login.
The following is the modified test:

@Test
public void when_valid_user_credentials_for_login_Then_routes
 _to_home_page() throws Exception{
 when(ldapManager.isValidUser(anyString(), anyString()))
 .thenReturn(true);
 when(request.getSession(true)).thenReturn(session);
 when(request.getRequestDispatcher(anyString()))
 .thenReturn(dispatcher);
 when(request.getParameter(anyString()))
 .thenReturn("user","pwd");

 controller.process(request, response);

 verify(request).getSession(true);
 verify(session).setAttribute(anyString(), anyString());
 verify(request).getRequestDispatcher(eq("home.jsp"));
 verify(dispatcher).forward(request, response);
}

Chapter 3

[71]

The isValidUser method of the ldapManager is stubbed to return true, request.
getSession() is stubbed to return a mock HttpSession object, request.
getRequestDispatcher() is stubbed to return a mock RequestDispatcher, and
finally, the request.getParameter method is stubbed to return "user" and then
"pwd". When we run the tests again, the first test passes! The following is the
test output:

We must modify the second test to stub the isValidUser method to return false,
stub the request.getRequestDispatcher() to return a mock RequestDispatcher,
and finally, stub the request.getParameter method to return "user" and then
"pwd". The following is the modified test:

@Test
public void when_invalid_user_credentials_Then_routes_to
 _login_page() throws Exception{
 when(ldapManager.isValidUser(anyString(), anyString()))
 .thenReturn(false);
 when(request.getRequestDispatcher(anyString()))
 .thenReturn(dispatcher);
 when(request.getParameter(anyString()))
 .thenReturn("user","pwd");

 controller.process(request, response);

 verify(request).getRequestDispatcher(eq("login.jsp"));
 verify(dispatcher).forward(request, response);
}

When we run the tests, we get a green bar as shown in the following screenshot:

Accelerating Mockito

[72]

We learned how to unit test void methods. Revisit the tests; you will find duplicate
code in the test methods, such as stubbing the getParameter() method or stubbing
the getRequestDispatcher() method. You can move the stubbing calls to the
beforeEveryTest method to clean the test code.

The following section explores the concept of exception handling for void methods.

Throwing exceptions from void methods
In the preceding example, the LoginController class calls the LDAPManager for
user validation. The web application fails if the LDAPManager throws an exception.
The DemoController servlet is the gateway; it should handle any unwanted
exceptions and show a proper error message to the user. We have to find a
mechanism to handle exceptions.

We'll create a unit test for the DemoController servlet. To recreate an exceptional
condition, we have to stub the LoginController class to throw an exception, but
the problem is the DemoController constructor. The constructor instantiates the
LoginController class, so we cannot mock the controller. We can refactor the
DemoController constructor to pass a mock instant of the LoginController class.
There are several ways to achieve this; for now, we'll add a constructor to pass
the mocked LoginController class. We cannot remove the default constructor,
otherwise the servlet container will fail to instantiate the servlet. Servlets run in
a container and the container maintains the servlet's lifecycle. The container
invokes the default constructor to instantiate a servlet instance. If we remove the
default constructor, the container will fail to create the servlet. The following is the
modified code:

@WebServlet("/DemoController")
public class DemoController extends HttpServlet {
 private final LoginController loginController;

 public DemoController(LoginController loginController) {
 this.loginController = loginController;
 }
 public DemoController() {
 loginController = new LoginController(new LDAPManagerImpl()) ;
 }
}

Chapter 3

[73]

The following is the empty unit test for the DemoController constructor:

public class DemoControllerTest {
 DemoController controller;
 @Mock LoginController loginController;

 @Before public void beforeEveryTest(){
 MockitoAnnotations.initMocks(this);
 controller = new DemoController(loginController);
 }
}

We'll modify the code to handle the exceptions and route the request to an
error page. After catching the exception, the servlet will dispatch the request
to the error page. So we need to create a mock HttpServletRequest object,
an HttpServletResponse object, and a RequestDispatcher object:

 @Mock HttpServletRequest request;
 @Mock HttpServletResponse response;
 @Mock RequestDispatcher dispatcher;

Add the following test to simulate the scenario:

@Test
public void when_subsystem_throws_exception_Then_routes_to_
 error_page_() throws Exception {

 verify(request).getRequestDispatcher(eq("error.jsp"));
 verify(dispatcher).forward(request, response);
}

We are verifying the request dispatcher creation for the error.jsp error page.
The LoginController class needs to throw an exception. The Mockito convention
for throwing an exception from a void method is as follows:

 doThrow(exception).when(mockObject).someVoidMethod();

We'll modify the test to stub the process() method in order to throw an exception.
The following is the modified test code:

@Test
public void when_subsystem_throws_exception_Then_routes_to
 _error_page_() throws Exception {
 doThrow(new IllegalStateException("LDAP error")).
 when(loginController).process(request, response);
 when(request.getServletPath()).thenReturn("/logon.do");

Accelerating Mockito

[74]

 when(request.getRequestDispatcher(anyString()))
 .thenReturn(dispatcher);
 controller.doGet(request, response);
 verify(request).getRequestDispatcher(eq("error.jsp"));
 verify(dispatcher).forward(request, response);
}

When we run the test, it fails for an unhandled exception as exception handling has
not been done yet. The following is the JUnit output:

Modify the DemoController constructor to handle exceptions. The following is the
modified code:

protected void doGet(HttpServletRequest req, HttpServletResponse
 res) throws ServletException, IOException {
 try {
 String urlContext = req.getServletPath();
 if (urlContext.equals("/")) {
 req.getRequestDispatcher("login.jsp").forward(req, res);
 } else if (urlContext.equals("/logon.do")) {
 loginController.process(req, res);
 } else {
 req.setAttribute("error", "Invalid request path '" +
 urlContext + "'");
 req.getRequestDispatcher("error.jsp").forward(req, res);
 }
 } catch (Exception ex) {
 req.setAttribute("error", ex.getMessage());
 req.getRequestDispatcher("error.jsp").forward(req, res);
 }

}

Chapter 3

[75]

Rerunning the test passes execution; the following is the test output:

Working with void method callbacks
An external code dependency may process data in a void method, for example, it
may send an e-mail or update a database row. We can easily stub a void method
by mocking the dependency, but at times, void methods may change the input
argument object's attribute, for example, it may set the error code of an Error object
passed in as an argument, and we may use the modified value in our calculation.
In this scenario, if we stub the void method, it doesn't help us to modify or add the
stubbed method's argument attribute. As a result, our test might either fail or some
portion of the code might remain untested.

Consider the exception handling code for DemoController. It retrieves the error
message of the exception and passes the message to the end users, as the message
might not be useful to the business users; it doesn't make any sense to us if we see a
NullPointerException error while booking a movie ticket. Instead of passing the
raw business exception to the user, the system should analyze the error message,
form a useful error message, and pass a meaningful message to the end user.

We'll modify the DemoController code to analyze the StackTrace method, retrieve
an error message code for the trace, look up the code for a meaningful error message,
and pass the message to the user. We'll create an Error object with an array of
StackTraceElement and an errorCode string. The following is the code:

public class Error {
 private StackTraceElement[] trace;
 private String errorCode;
 //Getters and setters are ignored for brevity
}

Accelerating Mockito

[76]

An ErrorHandler interface takes the Error object, maps the StackTraceElements
method to an errorCode string, and sets the code back to the Error object.
The following is the code body:

public interface ErrorHandler {

 void mapTo(Error error);
}

The MessageRepository interface looks up the error code and retrieves a meaningful
message from the database. The following is the MessageRepository class:

public interface MessageRepository {
 String lookUp(String... errorCode);
}

The following modified DemoController code invokes the ErrorHandler
and MessageRepository interface to get a meaningful message, and passes
the message to the user.

 } catch (Exception ex) {
 String errorMsg = ex.getMessage();
 Error errorDto = new Error();
 errorDto.setTrace(ex.getStackTrace());
 errorHandler.mapTo(errorDto);

 if(errorDto.getErrorCode() != null){
 errorMsg = messageRepository.lookUp (errorDto.
 getErrorCode());
 }
 req.setAttribute("error", errorMsg);
 req.getRequestDispatcher("error.jsp").forward(req, res);
 }

We ignored the rest of the method and dependencies for brevity. You can download
the code for details. The mapTo method takes an Error object and populates the
errorCode string of the Error object. If no matching errorCode string is found, the
errorCode remains as it is. If the errorCode string is found, the errorCode string is
passed to messageRepository for an error message lookup.

Chapter 3

[77]

When we mock the dependencies (errorHandler and messageRepository) and
rerun the tests, some portion remains untested. The following is the screenshot of
the untested code:

We should modify the Error object from the void mapTo method to unit test the
untested line. The mapTo method looks up the database to map a StackTrace
method with an error code, so we must mock out the database call and stub the void
method. The following are reasons behind mocking the database call, and you must
configure your tests to adhere to these principles:

•	 Fast execution: Tests should be executed extremely fast, so that they can
provide quick feedback. Would you care to wait for a build system that takes
2 hours to finish execution? This means if a test fails, you have to wait for
2 hours to verify your fix.

•	 Tests should be reliable: Tests should fail if the production code is broken.
Your tests will be considered unreliable in the following situations:

°° You break the production logic, but the tests pass
°° You don't touch the production code, but your tests still fail

•	 In-memory data dependent: Tests should depend on in-memory data
rather than pulling data from an external source, for instance, accessing
the database for data can fail a test if the expected data is not present in
the database for any reason, such as, if someone has deleted the data.

However, if we stub the void method, how can we set the errorCode string to the
Error object? Also, we cannot directly set the Error object attributes as the object is
created inside the catch block.

Accelerating Mockito

[78]

The resolution is Mockito's doAnswer() method. The doAnswer() method can
intercept the void method call and access the void method arguments and the mock
object. So, we can create our callback Answer implementation, access the Error object
passed as an argument, and set an errorCode string to it. The following is the syntax
for doAnswer():

doAnswer(answer).when(mock).someVoidMethod();

We'll create an anonymous Answer object , access the Error object, and set the
errorCode string. The following is the code:

@Test
public void when_subsystem_throws_any_exception_Then_finds_
 error_message_and_routes_to_error_page_() throws Exception {
 doThrow(new IllegalStateException("LDAP error")).when
 (loginController).process(request, response);
 doAnswer(new Answer<Object>() {
 @Override
 public Object answer(InvocationOnMock invocation) throws
 Throwable {
 Error err = (Error)invocation.getArguments()[0];
 err.setErrorCode("123");
 return err;
 }
 }
).when(errorHandler).mapTo(isA(Error.class));

 when(request.getServletPath()).thenReturn("/logon.do");
 when(request.getRequestDispatcher(anyString()))
 .thenReturn(dispatcher);

 controller.doGet(request, response);

 verify(request).getRequestDispatcher(eq("error.jsp"));
 verify(dispatcher).forward(request, response);
}

Chapter 3

[79]

The preceding change covers the untested lines. The following screenshot shows the
test coverage output:

Learning doCallRealMethod and doNothing
In this section, we'll explore two methods, namely, doNothing and
doCallRealMethod.

The doNothing() method does nothing. By default, when we create a mock object
and call a void method on that mock object, the void method does not do anything,
or rather, it is stubbed by default, but still, we stub void methods using doNothing()
for void method chaining. If you need consecutive calls on a void method, the first
call to throw an error, the next call to do nothing, and then the call after that to
perform some logic using doAnswer(), then follow the ensuing syntax:

 doThrow(new RuntimeException()).
 doNothing().
 doAnswer(someAnswer).
 when(mock).someVoidMethod();

The doCallRealMethod() method is used when you want to call the real
implementation of a method on a mock object. The following is the syntax:

doCallRealMethod().when(mock).someVoidMethod();

Exploring doReturn
The doReturn() method is like thenReturn(), but this is used only when
when(mock).thenReturn(return) cannot be used. The when().thenReturn()
method is more readable than doReturn(). Also, doReturn() is not type safe. The
thenReturn method checks method return types and raises a compilation error if an
unsafe type is passed. You can use doReturn() when working with spy objects. Here
is the syntax for using the doReturn() test:

doReturn(value).when(mock).method(argument);

Accelerating Mockito

[80]

The following code snippet provides an example of unsafe usage of doReturn:

@Test
public void when_do_return_is_not_safe() throws Exception {
 when(request.getServletPath()).thenReturn("/logon.do");
 assertEquals("/logon.do", request.getServletPath());

 doReturn(1.111d).when(request.getServletPath());
 request.getServletPath();
}

The request.getServletPath() method returns a string value. If we try to stub
the request.getServletPath() method with a double using thenReturn, the
Java compiler will complain about the return type; but if we use doReturn and
return a double value, the test fails at runtime. So doReturn has two drawbacks;
it is unreadable and error prone. The following is the test output:

The following screenshot shows the failure trace:

The doReturn method becomes handy with spy objects. We'll explore doReturn in
the spy section.

Chapter 3

[81]

Verifying arguments using ArgumentCaptor
An ArgumentCaptor object verifies the arguments passed to a stubbed method.
Sometimes, we create an object in our code under test and then pass it to a method
on a mocked dependency, but never return it. Argument captors let us directly
access these values provided to our mocks in order to examine them more closely.
An ArgumentCaptor object provides an API to test the computed value.

In our exception handling code, we create an Error object, set exception trace to the
object, invoke the ErrorHandler interface to map the Error object to an errorCode
string, and finally, call the MessageRepository class to return a meaningful
error message for the errorCode string. An ArgumentCaptor can return to
us the argument details passed to a stubbed method.

Mockito verifies argument values in natural Java style by using the equals()
method. This is also the recommended way for matching arguments because it
makes tests clean and simple. In some situations though, it is helpful to assert on
certain arguments after the actual verification.

An ArgumentCaptor object is defined as follows:

ArgumentCaptor<T> argCaptor= ArgumentCaptor.forClass(T.class);

Where T is the type of argument, such as a string or a user-defined class.

The following syntax is used to capture arguments:

verify(mockObject).methodA(argCaptor.capture());

If an ArgumentCaptor object captures arguments for multiple invocations, the
captured values can be retrieved by calling the getAllValues() method. The
getAllValues() method returns List<T> and the getValue() method returns T,
which is the last method invocation result. Here, T is the type of argument class,
such as an integer or any Java class type.

The following code uses an ArgumentCaptor to verify the argument passed into the
lookUp method.

ArgumentCaptor<String> captor = ArgumentCaptor.forClass
 (String.class);
verify(repository).lookUp(captor.capture());
assertEquals("123", captor.getValue());

Accelerating Mockito

[82]

Working with generic collection arguments
The following example demonstrates how to capture collection arguments. Create
an interface and add a method to accept a list of strings. The following is the code:

interface Service{
 void call(List<String> args);
}

Try to create an ArgumentCapture for the list of strings. You cannot create a
class for List<String>.class, so you can try to use List.class. The following
screenshot shows you the Java compilation error while converting List.class to
List<String>:

The following code snippet creates List.class and casts it to
Class<List<String>>, and passes it to ArgumentCaptor. This will give
you warnings about unsafe casts; you can suppress the warning by annotating
the construct with @SuppressWarnings("unchecked"):

@Test
public void when_captures_collections() throws Exception {
 Class<List<String>> listClass = (Class<List<String>>)
 (Class)List.class;
 ArgumentCaptor<List<String>> captor = ArgumentCaptor.forClass
 (listClass);
}

The following test provides an example of such a use. Here, service is a mocked
implementation of the Service interface:

@Test public void when_captures_collections(){
 Class<List<String>> listClass = (Class<List<String>>)(Class)
 List.class;
 ArgumentCaptor<List<String>> captor = ArgumentCaptor.forClass
 (listClass);

Chapter 3

[83]

 service.call(Arrays.asList("a","b"));
 verify(service).call(captor.capture());
 assertTrue(captor.getValue().
 containsAll(Arrays.asList("a","b")));
}

Working with variable arguments and arrays
The following example shows you how to capture an argument of type arrays or
var-args (T... t).

Modify the MessageRepository class to accept variable arguments of strings as
errorCodes. The following is the modified code:

public interface MessageRepository {
 String lookUp(String... errorCode);
}

Create a test to pass an array to the lookUp method and capture values. The
following is the code snippet:

@Test
public void when_capturing_variable_args() throws Exception {
 String[] errorCodes = {"a","b","c"};

 ArgumentCaptor<String> captor = ArgumentCaptor.forClass
 (String.class);
 repository.lookUp(errorCodes);
 verify(repository).lookUp(captor.capture(),captor.capture()
 ,captor.capture());
 assertTrue(captor.getAllValues().containsAll(Arrays.asList
 (errorCodes)));
}

The following Mockito URL has the fix for the variable argument capture:

https://github.com/mockito/mockito/commit/
e43a958833df5aa46f54d7cd83b1c17fa19cc5dc

ArgumentCaptor is modified in a default branch to capture variable arguments.
The following is the code snippet:

verify(messageRepository).lookUp(argumentCaptor.captureVararg());

https://github.com/mockito/mockito/commit/e43a958833df5aa46f54d7cd83b1c17fa19cc5dc
https://github.com/mockito/mockito/commit/e43a958833df5aa46f54d7cd83b1c17fa19cc5dc

Accelerating Mockito

[84]

Note that this fix is not available in the latest Mockito build 1.9.5.

Verifying an invocation order
Mockito facilitates verification if interactions with a mock were performed in a given
order using the InOrder API. It allows us to create an InOrder of mocks and verify
the call order of all the calls of all the mocks.

InOrder is created with mock object using the following syntax:

InOrder inOrder=inOrder(mock1,mock2,...mockN);

Method invocation order is checked using the following syntax:

inOrder.verify(mock1).methodCall1();
inOrder.verify(mock2).methodCall2();

If methodCall2() of mock2 is invoked before methodCall1() of mock1, the test fails.
The following test verifies the test order:

@Test
public void when_inorder() throws Exception {
 request.getServletPath();
 service.call(Arrays.asList("a","b"));
 InOrder inOrder=inOrder(request,service);
 inOrder.verify(service).call(anyList());
 inOrder.verify(request).getServletPath();
}

The test verifies that the call() method is invoked before the getServletPath()
method, but the methods were invoked in reverse order, so the test will fail. The
following screenshot demonstrates the error:

Chapter 3

[85]

Reordering the verification sequence in the following manner fixes the test:

@Test public void when_inorder() throws Exception {
 request.getServletPath();
 service.call(Arrays.asList("a","b"));
 InOrder inOrder=inOrder(request,service);
 inOrder.verify(request).getServletPath();
 inOrder.verify(service).call(anyList());
}

Spying objects
A Mockito spy allows us to use real objects instead of mocks by replacing some of
the methods with stubbed ones. This behavior allows us to test the legacy code.
The spy is useful for legacy code as you cannot invoke a few testing impediment
methods from your code under test, and also, you cannot mock a class that needs to
be tested. A spy can stub these testing impediments without mocking the code under
test. A spy can stub the nontestable methods so that other methods can be tested
easily. You can also use spies without doing any stubbing and just use them to verify
interactions between two totally real objects.

Once an expectation is set for a method on a spy object, the spy object no longer
returns the original value. It starts returning the stubbed value, but still exhibits
the original behavior for the other methods that are not stubbed.

Mockito can create a spy for a real object. Unlike stubbing, when we use the spy
object, real methods are called (unless a method was stubbed).

Spy is also known as partial mock. The following is the declaration of spy:

SomeClass realObject = new RealImplemenation();
SomeClass spyObject = spy(realObject);

The following is a self-explanatory example of spy:

@Test
public void when_spying_real_objects() throws Exception {
 Error error = new Error();
 error.setErrorCode("Q123");
 Error spyError = spy(error);
 //call real method from spy
 assertEquals("Q123", spyError.getErrorCode());

 //Changing value using spy
 spyError.setErrorCode(null);

 //verify spy has the changed value

Accelerating Mockito

[86]

 assertEquals(null, spyError.getErrorCode());

 //Stubbing method
 when(spyError.getErrorCode()).thenReturn("E456");

 //Changing value using spy
 spyError.setErrorCode(null);

 //Stubbed method value E456 is returned NOT NULL
 assertNotEquals(null, spyError.getErrorCode());

 //Stubbed method value E456
 assertEquals("E456", spyError.getErrorCode());
}

Spying real objects and calling real methods on a spy object has side effects;
to immunize this side effect, use doReturn() instead of thenReturn().

The following code describes the side effect of spying and calling thenReturn():

@Test
public void when_doReturn_fails() throws Exception {
 List<String> list = new ArrayList<String>();
 List<String> spy = spy(list);
 //impossible the real list.get(0) is called and fails
 //with IndexOutofBoundsException, as the list is empty
 when(spy.get(0)).thenReturn("not reachable");
}

The spy object calls a real method when trying to stub get(index), and
unlike the mock objects, the real method was called and it failed with an
ArrayIndexOutOfBounds error. The following screenshot displays the
failure message:

Chapter 3

[87]

This failure can be protected using doReturn(), as shown is the following code:

@Test public void when_doReturn_fails() throws Exception {
 List<String> list = new ArrayList<String>();
 List<String> spy = spy(list);

 //doReturn fixed the issue
 doReturn("now reachable").when(spy).get(0);
 assertEquals("now reachable", spy.get(0));
}

Exploring Mockito annotations
We learned that Mockito supports the @Mock annotation for mocking. Like @Mock,
Mockito offers three useful annotations, namely, @Spy, @Captor, and @InjectMocks:

•	 @Captor: This simplifies the creation of ArgumentCaptor, and this is useful
when the argument to capture is a horrible generic class

•	 @Spy: This creates the spy of a given object; use it instead of spy(Object)
•	 @InjectMocks: It injects mock or spy fields into tested objects automatically

using constructor injection, setter injection, or field injection

The following example demonstrates the @captor annotation:

@RunWith(MockitoJUnitRunner.class)
public class AnnotationTest {

 @Captor
 ArgumentCaptor<List<String>> captor;
 @Mock Service service;

 @Test
 public void when_captor_annotation_is_used() {
 service.call(Arrays.asList("a","b"));
 verify(service).call(captor.capture());
 assertTrue(captor.getValue().containsAll(Arrays.
 asList("a","b")));
 }
}

The annotation creates the ArgumentCaptor object, and we don't need to typecast it
to Class<List<String>>.

Accelerating Mockito

[88]

The following example demonstrates the use of the @spy annotation:

@RunWith(MockitoJUnitRunner.class)
public class SpyAnnotationTest {

 @Spy
 ErrorHandlerImpl errorHandler;

 @Test
 public void when_spy_annotation_is_used() throws Exception {
 assertNotNull(errorHandler);
 }
}

A Spy object of ErrorHandlerImpl is created automatically for errorHandler. You
cannot create a spy for an interface. The following error message pops up when we
try to create a spy for the ErrorHandler interface:

 @Spy
 ErrorHandler errorHandler;

The following screenshot displays the error message:

The following example demonstrates the use of the @InjectMocks annotation.
Here, we'll create a @spy annotation and two @mocks annotations. The @InjectMocks
annotation sets the mocks and spy to the real object as a constructor injection.

@RunWith(MockitoJUnitRunner.class)
public class InjectMocksAnnotationTest {

 @Mock LoginController loginController;
 @Mock MessageRepository repository;
 @Spy ErrorHandlerImpl errorHandler;

 @InjectMocks

Chapter 3

[89]

 DemoController controller;

 @Mock HttpServletRequest request;
 @Mock HttpServletResponse response;
 @Mock RequestDispatcher dispatcher;

 @Test
 public void when_mocks_are_injected() throws Exception {
 when(request.getServletPath()).thenReturn("/");
 when(request.getRequestDispatcher(anyString())).thenReturn
 (dispatcher);
 controller.doGet(request, response);
 verify(request).getRequestDispatcher(eq("login.jsp"));
 }
}

The DemoController constructor depends on three classes; the preceding
example creates the mock and spy objects and injects them to the
DemoController constructor.

Changing the default Mockito settings
We learned that nonstubbed methods of a mock object return default values,
such as Null for an object and false for a Boolean. However, Mockito allows us
to change the default settings to return other nondefault values; these are basically
preconfigured answers. The following are settings that are allowed:

•	 RETURNS_DEFAULTS: This is the default setting that returns null for an object,
false for a Boolean, and so on.

•	 RETURNS_SMART_NULLS: This returns smart nulls, which are stubs that
act like nulls (in that they throw exceptions if you try and call stub.
anyMethod()), but throw exceptions that are much more useful than normal
NullPointerExceptions by giving you information on which call they came
from and where.

•	 RETURNS_MOCKS: This returns mock for objects and default value for
primitives. If the object cannot be mocked (such as a final class), a Null
value is returned.

Accelerating Mockito

[90]

•	 RETURNS_DEEP_STUBS: This returns a deep stub. This is really important for
legacy code where we need to stub the method chaining, for example, when
Foo calls getBar().getTar().getName(). Deep stubbing allows Foo to
directly stub the getName() method to return a value. Otherwise, we have
to stub Foo's getBar method to return a mock Bar object, stub the bar's
getTar() method to return a mock Tar object, and finally, stub the Tar's
getName method to return a value.

•	 CALLS_REAL_METHODS: This calls the corresponding method from the real
implementation of the mocked class.

The following example overrides the default Mockito settings and uses different
return types. Suppose we have the following classes:

class Foo {
 Bar bar;
 //Getter and setter
}
class Bar {
 Tar tar;
 //Getter and setter
}
class Tar {
 private String name;
 //Getter and setter
}

The following test case uses the RETURNS_DEFAULTS setting to return a
NULL Bar object:

@Test
public void when_default_settings() throws Exception {

 Foo fooWithReturnDefault = Mockito.mock(Foo.class,
 Mockito.RETURNS_DEFAULTS);
 // default null is returned
 assertNull(fooWithReturnDefault.getBar());
}

The following test case uses the RETURNS_SMART_NULLS setting to return a smart
NULL object:

@Test
public void when_changing_default_settings_to_return_smartNULLS(){

 Foo fooWithSmartNull = Mockito.mock(Foo.class, Mockito.RETURNS_
 SMART_NULLS);

Chapter 3

[91]

 // a smart null is returned
 assertNotNull(fooWithSmartNull.getBar());
 System.out.println("fooWithSmartNull.getBar() =" + fooWith
 SmartNull.getBar());
}

The following is the System.out output:

fooWithSmartNull.getBar() =SmartNull returned by this unstubbed method
call on a mock:foo.getBar();

The following test case uses the RETURNS_MOCKS setting to return a mock
object hierarchy:

@Test
public void when_changing_default_settings_to_return_mocks() {

 Foo fooWithReturnsMocks = Mockito.mock(Foo.class, Mockito.
 RETURNS_MOCKS);
 // a mock is returned
 Bar mockBar = fooWithReturnsMocks.getBar();
 assertNotNull(mockBar);
 assertNotNull(mockBar.getTar());
 assertNotNull(mockBar.getTar().getName());
 System.out.println("fooWithReturnsMocks.getBar()=" + mockBar);
 System.out.println("fooWithReturnsMocks.getBar().getTar().
 getName()={" + mockBar.getTar().getName()+"}");
}

The RETURNS_MOCKS setting populates the Foo object with a mocked Bar object.
A mocked Bar object has a mocked Tar object and the mocked Tar object has an
empty mocked string name. The following is the output:

fooWithReturnsMocks.getBar()=Mock for Bar, hashCode: 1620275837
fooWithReturnsMocks.getBar().getTar().getName()={}

The following test case uses the RETURNS_DEEP_STUBS setting to return a
deep-stubbed object hierarchy:

@Test
public void when_returns_deep_stub() throws Exception {
 Foo fooWithDeepStub = Mockito.mock(Foo.class, Mockito.
 RETURNS_DEEP_STUBS);
 when(fooWithDeepStub.getBar().getTar().getName()).
 thenReturn("Deep Stub");
 // a deep stubbed mock is returned

Accelerating Mockito

[92]

 System.out.println("fooWithDeepStub.getBar().getTar().
 getName()="+ fooWithDeepStub.getBar().getTar().getName());
 assertNotNull(fooWithDeepStub.getBar().getTar().getName());
}

The RETURNS_DEEP_STUBS setting is very useful for legacy code. In the preceding
example, we had to stub the getName() method of a Tar object, but to stub
the method, we had to mock a series of other objects. Only when we used the
RETURNS_DEEP_STUBS setting could the chaining of the method call stub the
method and other objects.

The following is the print output:

fooWithDeepStub.getBar().getTar().getName()=Deep Stub

Resetting mock objects
A static method reset(T…) enables the resetting of mock objects. The reset()
method clears the stubs.

The following code snippet stubs the getName() method of a mocked Bar object.
After resetting the getName() method, the stubbing gets cleared and starts returning
the default NULL value.

@Test
public void when_resetting_mocks() throws Exception {
 Bar bar= Mockito.mock(Bar.class);
 when(bar.getName()).thenReturn("***");
 assertNotNull(bar.getName());
 reset(bar);
 //Bar is reset, the getName() stub is cleared
 assertNull(bar.getName());
}

Resetting mocks is not recommended as it's a sign that your test is probably doing
too much, and you should probably just have another test with fresh mocks instead.

Working with inline stubbing
Mockito allows us to create mocks while stubbing it. Basically, it allows you to
create a stub in one line of code. This can be helpful to keep the test code clean. For
example, some stubs can be created and stubbed during field initialization in a test:

public class InlineStubbing {

 Bar bar = when(mock(Bar.class).getTar()).thenReturn(new
 Tar()).getMock();

Chapter 3

[93]

 @Test
 public void when_stubbing_inline() throws Exception {
 assertNotNull(bar);
 assertNotNull(bar.getTar());
 }

}

The bar object is stubbed and created at the same time. This is useful when the bar
object is used in many test cases within the test class. The bar object should always
return a Tar object.

Determining mock details
Sometimes, we need to determine whether an object is a mock or a spy. This
situation can arise when an object uses the @injectMocks annotation; it can inject
a spy or a mock object. We can find out the type using Mockito.mockingDetails.
It can identify whether a particular object is a mock or a spy.

The following example demonstrates the Mockito.mockingDetails API.

The ServiceImpl class has two dependencies, namely, Dependency1
and Dependency2.

class Dependency1{

}
class Dependency2{

}

The following is the ServiceImpl class:

class ServiceImpl{
 private final Dependency1 dependency1;
 private final Dependency2 dependency2;
 public ServiceImpl(Dependency1 dependency1, Dependency2
 dependency2) {
 this.dependency1 = dependency1;
 this.dependency2 = dependency2;
 }
 public Dependency1 getDependency1() {
 return dependency1;
 }
 public Dependency2 getDependency2() {
 return dependency2;
 }

}

Accelerating Mockito

[94]

The following test demonstrates the usage of mockingDetails:

import static org.mockito.Mockito.mockingDetails;

@RunWith(MockitoJUnitRunner.class)
public class MockDetailsTest {
 @Spy Dependency1 dep;
 @Mock Dependency1 dep1;
 @Mock Dependency2 dep2;
 @InjectMocks ServiceImpl service;

 @Test public void when_determining_type() throws Exception {
 assertNotNull(service);
 assertTrue(mockingDetails(service.getDependency2()).isMock());
 assertTrue(mockingDetails(dep).isSpy());
 }
}

The Service object can be populated with a stub or a mock Dependency1.
We verified that Dependency2 is a mock and dep1 is a spy. We can also verify
service.getDependency1() to check whether a mock or a stub was injected.

Summary
This chapter covered the advanced Mockito framework topics such as working
with void methods, throwing exception from void methods, writing callbacks for
void methods, returning value using doReturn, void method chaining, and calling
original method. It also covered Mockito annotations, verifying arguments using
argument captor, verifying an invocation order, spying objects using spy, changing
default Mockito settings, resetting mock objects, inline stubbing, and mock details.

By now, you should be able to use advanced Mockito features.

The next chapter in line, Behavior-driven Development with Mockito, covers the BDD
concepts, scenarios, test conventions, and examples of BDD with Mockito.

Behavior-driven Development
with Mockito

"Computer science is no more about computers than astronomy is
about telescopes."

– Edsger Dijkstra

This chapter explores Behavior-driven Development (BDD) and how BDD can help
you minimize project failure risks. The following topics are covered in this chapter:

•	 Understanding the context of BDD
•	 Exploring BDD
•	 Exercising BDD with Mockito

Understanding the context of BDD
This section deals with the software development strategies, drawbacks, and
conquering the shortcomings of traditional approaches. The following strategies
are applied to deliver software products to customers:

•	 Top-down or waterfall approach
•	 Bottom-up approach

We'll cover these two approaches in the following sections.

Behavior-driven Development with Mockito

[96]

The following key people/roles/stakeholders are involved in software development:

•	 Customers: They explore the concept and identify the high-level goal of the
system, such as automating the expense claim process

•	 Analysts: They analyze the requirements, work with the customer to
understand the system, and build the system requirement specifications

•	 Designers/architects: They visualize the system, design the baseline
architecture, identify the components, interact and handle the nonfunctional
requirements, such as scalability and availability

•	 Developers: They construct the system from the design and
specification documents

•	 Testers: They design test cases and verify the implementation
•	 Operational folks: They install the software as per the

customer's environment
•	 Maintenance team: They handle bugs and monitor the system's health
•	 Managers: They act as facilitators and keep track of the progress

and schedule

Exploring the top-down strategy
In the top-down strategy, analysts analyze the requirements and hand over the use
cases / functional specifications to the designers and architects for designing the
system. The architects/designers design the baseline architecture, identify the system
components and interactions, and then pass the design over to the developers for
implementation. The testers then verify the implementation (might report bugs for
fixing), and finally, the software is deployed to the customer's environment.

The following diagram depicts the top-down flow from requirement engineering
to maintenance:

Construction (Implementation)

Requirements

Design

Testing

Installation/deployment

Operations and

maintenance

Chapter 4

[97]

The biggest drawback of this approach is the cost of rework. For instance, if the
development team finds that a requirement is not feasible, they consult the design
or analysis team. Then the architects or analysts look at the issue and rework the
analysis or design. This approach has a cascading effect; the cost of rework is very
high. Customers rarely know what they want before they see the system in action.
Building everything all at once is a quick way to cause your requirements to change.
Even without the difference in cost of requirement changes, you'll have fewer
changes if you write the requirements later in the process, when you have a partially
working product that the customer can see and everybody has more information
about how the product will work.

Exploring the bottom-up strategy
In the bottom-up strategy, the requirement is broken into small chunks and each
chunk is designed, developed, and unit tested separately, and finally, the chunks
are integrated. The individual base elements of the system are first specified in great
detail. These elements are then linked together to form larger subsystems, which
in turn are linked until a complete top-level system is formed. Each subsystem is
developed in isolation from the other subsystems, so integration is very important
in the bottom-up approach. If integration fails, the cost and effort of building the
subsystems gets jeopardized. Suppose you are building a healthcare system with
three subsystems, namely, patient management, receivable management, and the
claims module. If the patient module cannot talk to the claims module, the system
fails. The effort of building the patient management and claims management
subsystems is just wasted. Agile development methodology would suggest building
the functionality feature by feature across subsystems, that is, building a very basic
patient management and claims management subsystem to make the functionality
work initially, and then adding more to both simultaneously, to support each new
feature that is required.

Finding the gaps
In real-life projects, the following is the percentage of feature usage:

•	 60 percent of features are never used
•	 30 percent of features are occasionally used
•	 10 percent of features are frequently used

Behavior-driven Development with Mockito

[98]

However, in the top-down approach, the analyst pays attention and brainstorms
to create system requirements for all the features. In the top-down approach,
time is spent to build a system where 90 percent of features are either not used
or occasionally used. Instead, we can identify the high-value features and start
building the features instead of paying attention to the low priority features,
by using the bottom-up approach.

In the bottom-up approach, subsystems are built in isolation from each other, and
this causes integration problems. If we prioritize the requirements and start with the
highest priority feature, design the feature, build it, unit test it, integrate it, and then
show a demo to the stakeholders (customers, analysts, product managers, and so on),
we can easily identify the gaps and reduce the risk of rework. We can then pick the
next feature and follow the steps (designing, coding, testing, and getting feedback
from the customers), and finally integrate the feature with the existing system. This
reduces the integration issues of the bottom-up approach.

The following figure represents the approach. Each feature is analyzed, designed,
coded, tested, and integrated separately. An example of a requirement could be
login failure error messages appear red and in bold, while a feature could be incorrect
logins are rejected. Typically, it should be a little larger and a useful standalone bit
of functionality, rather than a specific single requirement for that functionality.

Design Code Test Deploy Feedback
Analyze

Req#1

Design Code Test Deploy Feedback
Analyze

Req#2

Design Code Test Deploy Feedback
Analyze

Req#N

Another problem associated with software development is communication;
each stakeholder has a different vocabulary and this causes issues for
common understanding.

The following are the best practices to minimize software delivery risks:

•	 Focus on high-value, frequently used features.
•	 Build a common vocabulary for the stakeholders; a domain-specific language

that anybody can understand.

Chapter 4

[99]

•	 No more big-fat upfront designing. Evolve the design with the
requirements, iteratively.

•	 Code to satisfy the current requirement. Don't code for a future requirement,
which may or may not be delivered. Follow the YAGNI (You Aren't Going
to Need It) principle.

•	 Build test the safety net for each requirement.
•	 Integrate the code with the system and rerun the regression test.
•	 Get feedback from the stakeholders and make immediate changes.

BDD suggests the preceding best approaches. The following section talks about BDD.

Exploring BDD
BDD is a software engineering process based on Test-driven Development (TDD).
Martin Fowler explains TDD on the following URL:

http://martinfowler.com/bliki/TestDrivenDevelopment.html

BDD combines the best practices of TDD, Domain-driven Development (DDD),
and Object Oriented Programming (OOPs). You can learn about DDD on the
following URL:

http://martinfowler.com/tags/domain%20driven%20design.html

In an agile team, scoping a feature is a mammoth task; the business stakeholders talk
about business interests and the development team talks about technical challenges.
BDD provides a universal language that allows useful communication and feedback
between the stakeholders.

Agile methodologies include Scrum, Lean, Kanban, XP, and so on. Agile
methodologies believe in self-organized teams. You can get more information
about agile development on the following URL:

http://www.versionone.com/Agile101/Agile-Development-Methodologies-
Scrum-Kanban-Lean-XP/

Dan North developed BDD and created the JBehave framework for BDD. He defines
BDD as follows:

"Behavior-driven Development is about implementing an application by describing
it from the point of view of its stakeholders."

http://martinfowler.com/bliki/TestDrivenDevelopment.html
http://martinfowler.com/tags/domain%20driven%20design.html
http://www.versionone.com/Agile101/Agile-Development-Methodologies-Scrum-Kanban-Lean-XP/
http://www.versionone.com/Agile101/Agile-Development-Methodologies-Scrum-Kanban-Lean-XP/

Behavior-driven Development with Mockito

[100]

He proposed the following best practices:

•	 Unit test names should start with the word should and should be written in
order of business value.

•	 Acceptance tests are different from unit tests; unit tests are written by the
developers whereas acceptance tests are written by analysts and other
stakeholders. Acceptance testing is carried out to assess the system's
acceptance against the business rules. Acceptance tests (AT) should be
written in a user story manner, for example, As a [role] I want [feature] so
that [benefit]. You can get more information about acceptance tests at the
following URL:
http://c2.com/cgi/wiki?AcceptanceTest

•	 Acceptance criteria should be written in terms of scenarios and implemented
in the following manner:

Given [initial context], when [event occurs], then [ensure some outcomes]

A user story describes a testable requirement, and a scenario defines the
completeness or acceptance criteria of a story.

Let us write a user story for our stock broker simulation:

•	 Story: A stock is sold in order to maximize the profit. As a stock broker, I want
to sell a stock when the price goes up by 10 percent.

The following is a scenario example:

•	 Scenario: 10 percent increase in stock price should sell the stock to the
market. Given a customer previously bought 'FB' stocks at $10.00/per share and
he currently has 10 shares left in his portfolio when the 'FB' stock price becomes
$11.00, then I should sell all the 'FB' stocks and the portfolio should have zero
'FB' stocks.

Mockito supports the BDD style of writing tests, using the given-when-then syntax.

Exercising BDD with Mockito
In BDD, given represents the initial context and when represents the event/condition,
but Mockito already has a when style (initial context definition) of method stubbing.
Therefore, when doesn't go well with BDD. Thus, the BDDMockito class introduces an
alias, so that we can stub method calls with the given(Object) method.

http://c2.com/cgi/wiki?AcceptanceTest

Chapter 4

[101]

The following JUnit test is implemented in the BDD style:

@RunWith(MockitoJUnitRunner.class)
public class StockBrokerBDDTest {
 @Mock MarketWatcher marketWatcher;
 @Mock Portfolio portfolio;

 StockBroker broker;

 @Before public void setUp() {
 broker = new StockBroker(marketWatcher);
 }

 @Test
 public void should_sell_a_stock_when_price_increases_
 by_ten_percent(){
 Stock aCorp = new Stock("FB", "FaceBook", new BigDecimal
 (11.20));
 //Given a customer previously bought 10 'FB' stocks at
 //$10.00/per share
 given(portfolio.getAvgPrice(isA(Stock.class))).willReturn(new
 BigDecimal("10.00"));

 given(marketWatcher.getQuote(eq("FB"))).willReturn(aCorp);

 //when the 'FB' stock price becomes $11.00
 broker.perform(portfolio, aCorp);

 //then the 'FB' stocks are sold
 verify(portfolio).sell(aCorp,10);
 }
}

Note, the test name starts with a should statement. Mockito's given syntax is used
to set the initial context that the portfolio already has 'FB' stocks bought at
$10.00/ share and the current FB stock price is $11.00.

Behavior-driven Development with Mockito

[102]

The following is the test execution output:

The BDD syntax
The following methods are used in conjunction with the given condition:

•	 willReturn (a value to be returned): This method returns a given value
•	 willThrow (a throwable to be thrown): This method throws a

given exception
•	 will (Answer answer) and willAnswer (Answer answer): These methods

are similar to then(answer) and thenAnswer(answer)
•	 willCallRealMethod(): This method calls the real method on the

mock object/spy

jMock and EasyMock are the two other Java-based unit testing
frameworks that support mocking for automated unit tests.
To learn about BDD and JBehave, visit the following URLs:

•	 http://jbehave.org/

•	 http://www.infoq.com/presentations/bdd-dan-north/

Summary
This chapter covered BDD concepts, BDD examples, and how we can write
BDD-style tests with Mockito.

Now, you will be able to practice BDD and write BDD-style unit tests with Mockito.

The next chapter, Unit Testing the Legacy Code with Mockito, will cover the legacy
code, testing impediments, design for testability, and unit testing the legacy code
with Mockito.

http://jbehave.org/
http://www.infoq.com/presentations/bdd-dan-north/

Unit Testing the Legacy Code
with Mockito

"Legacy code. The phrase strikes disgust in the hearts of programmers. It conjures
images of slogging through a murky swamp of tangled undergrowth with leaches
beneath and stinging flies above. It conjures odors of murk, slime, stagnancy, and
offal. Although our first joy of programming may have been intense, the misery of
dealing with legacy code is often sufficient to extinguish that flame."

– Michael C. Feathers, Working Effectively with Legacy Code

This chapter explores the following topics:

•	 Understanding the legacy code
•	 Working with testing impediments
•	 Exploring PowerMock
•	 Designing for testability with Mockito and PowerMock

Understanding the legacy code
The term legacy is frequently used as a slang to describe a complex code, which is
difficult to understand, rigid, fragile in nature, and almost impossible to enhance.

But Michael Feathers, author of the legacy code refactoring book Working Effectively
with Legacy Code, defines that any code with no automated unit tests is a legacy code.
A piece of code could be well written, follow coding guidelines, easy to understand,
clean, loosely coupled, and very easy to extend, but if it doesn't have automated unit
tests, it is a legacy code.

Unit Testing the Legacy Code with Mockito

[104]

Usually, fixing bugs or adding new features to a legacy project is very difficult
compared to doing the same to a greenfield project. In legacy code, either
automated unit tests do not exist or very few tests are written; the code is
not designed for testability.

Winston Churchill said, "We make a living by what we get, but we make a life by what
we give."

We inherit legacy code from someone else, it could come from a very old project,
from another team that cannot maintain the code, or it could be acquired from
another company; but it is our duty to improve the quality.

Unit tests give us some level of assurance that our code is doing what the code is
expected to do and allow us to change the code quickly and verify the change faster.

In general, legacy code is not testable and requires code structure change
(refactoring) to make it testable, but the dilemma is, most of the time, the legacy
system is so crucial to the business that no one dares to touch the code. It makes no
sense to modify an existing crucial module unless something is seriously wrong.
Stalemate! You cannot refactor code unless you have the automated test suite,
because without tests, you have no idea whether you've changed or broken the
system, and you cannot write tests, as the code needs refactoring.

Sometimes, it feels like legacy code, even with unit tests, is hard to understand,
maintain, and enhance. We need to be careful to make our tests especially readable
and to avoid close coupling with the actual implementation details.

To learn more about legacy code, you can read the legacy code Bible—Working
Effectively with Legacy code, Michael Feathers. The following is the URL to the book:

http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/
dp/0131177052

Exploring testing impediments
This section explains the nature or quality of code that makes unit testing difficult.
Automated tests help us develop software quickly, even when we have a large code
base to work on. Automated unit tests should be executed very fast so that the tests
can give us quick feedback, however we cannot unit test code when it exhibits any of
the following symptoms:

•	 Performs long running operations
•	 Connects to a database and modifies database records
•	 Performs remote computing—RMI

http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052

Chapter 5

[105]

•	 Looks up JNDI resources or web/application server objects
•	 Accesses filesystems
•	 Works with native objects or graphical widgets (UI components,

Windows alerts, JAVA Swing components, and so on)
•	 Accesses network resources (LAN printer, downloads data from the Internet,

and so on)

Unit tests should not wait for a long running process to complete; it will defeat the
purpose of quick feedback.

Unit tests should be reliable and they should fail if, and only if, the production code
breaks. However, if your unit test verifies an I/O operation, such as connecting to a
LAN printer, which is slow, error prone, and unpredictable, your unit test may fail for
some network issue, but it will incorrectly signal that the code is broken. So unit testing
a network operation defeats the test reliability principle. If you depend on anything
in your unit tests that's unreliable (such as LAN connections, databases, random
numbers, and so on), in turn, you make your tests unreliable. Testing is about getting
confidence that your code is correct, and unreliability destroys confidence.

Unit tests run automatically, so it doesn't make any sense to open a modal dialog or
show an alert message during test execution, because the test will wait, unless the UI
dialog or the alert is closed.

Working with PowerMock
Sometimes, we cannot unit test our code, as the special Java constructs hide the
testing impediments (a LAN connection or database connection in a private method,
final method, static method, or initialization block), such as private methods, final
methods and classes, static methods and initialization blocks, new operator, and
so on. We refactor code for testability (explained in the Designing for testability with
Mockito section) and, sometimes, compromise a good design for the sole purpose of
testability. For example, final classes and methods are avoided, private methods are
converted to protected or default, or unnecessarily moved to a collaborator class,
static methods are avoided completely, and so on. This is done simply because of
the limitations of the existing frameworks. Also, these aren't just feature limitations;
they are intentional choices. Mockito could do the things PowerMock does, but it
doesn't because those are test smells and strong indications that you are following
a poor design. Many of these are bad designs by themselves even outside testability
and/or things you shouldn't do even in the name of testability. For example, the
static method involves direct coupling between random chunks of code, directly
subverting good OO design and encapsulation.

Unit Testing the Legacy Code with Mockito

[106]

Converting private methods to protected ones so that you can stub internal methods
is not a good testing design. Partial mocks are typically code smell against the SRP,
and refactoring such things into another class makes for a better design!

Code with final methods typically protects a specific implementation, and
that should imply that such implementations have an interface that can be
stubbed instead.

Some design decisions taken without the pressure of the testability result with little
thought for it (static/final/no SRP), and this results in code that is actively difficult
to test. These are not things people should be doing intentionally, and then use
PowerMock as a matter of recourse. PowerMock is a fallback for legacy code that
they should aim to stop using with time.

PowerMock provides special mocking capabilities and allows us to unit test code
even when the special Java constructs hide the testing impediments. PowerMock is
a framework that extends other mock libraries, such as EasyMock and Mockito, with
more powerful capabilities. PowerMock uses a custom classloader and bytecode
manipulation to enable mocking of static methods, constructors, final classes and
methods, private methods, removal of static initializers, and so on. PowerMock is
essential for legacy code.

The following is the website for PowerMock:
www.powermock.org

PowerMock's distribution for EasyMock and Mockito can be
downloaded from the following website:
URL:https://code.google.com/p/powermock/wiki/
Downloads?tm=2

Download the powermock-mockito-junit-1.5.5.zip file for Mockito and
JUnit. The ZIP file contains the powermock-mockito-1.5.5-full.jar file
and its dependencies.

The following examples explore the Mockito extension API, also known
as PowerMockito.

You need to annotate the test class with the @RunWith(PowerMockRunner.class)
annotation in order to bootstrap PowerMock. The classes that cannot be mocked
need to be prepared for testability by using the @PrepareForTest annotation.

www.powermock.org
URL:https://code.google.com/p/powermock/wiki/Downloads?tm=2
URL:https://code.google.com/p/powermock/wiki/Downloads?tm=2

Chapter 5

[107]

We'll create a Java project to unit test the PowerMockito capabilities. The following
are the steps to set up the project:

1.	 Create a Java project named UnitTestingLegacyCode.
2.	 Extract the powermock-mockito-junit-1.5.5.zip file, copy the JAR files,

and add to the project's classpath.
3.	 Create two source folders, namely, src and test, and add the com.packt.

legacy.powermockito packages to them. The following figure displays the
project structure:

We'll examine the mocking capabilities of PowerMockito for untestable constructs,
such as private method, static method, initialization blocks, final classes and
methods, and constructor and super constructor.

You can get more information from the following URL:
https://code.google.com/p/powermock/wiki/
SuppressUnwantedBehavior

https://code.google.com/p/powermock/wiki/SuppressUnwantedBehavior
https://code.google.com/p/powermock/wiki/SuppressUnwantedBehavior

Unit Testing the Legacy Code with Mockito

[108]

Stubbing static methods
This section deals with static methods. You cannot stub a static method with
Mockito, but PowerMockito allows us to stub static methods. The following
MedicalBill class generates the medical bill ID; the generateId() method is a
static method and, in real life, it calls the database to generate an identifier. For
simplicity, we will call the random number generator to generate an integer:

package com.packt.legacy.powermockito;

import java.util.Random;

public class MedicalBill {

 public static int generateId(){
 return new Random().nextInt();
 }
}

You cannot stub the generateId() method to return a hardcoded value, but
the following mockStatic()method of PowerMockito allows us to stub the
generateId() method to return a hardcoded value:

package com.packt.legacy.powermockito;

import static org.junit.Assert.assertEquals;
import static org.powermock.api.mockito.PowerMockito.mockStatic;
import static org.powermock.api.mockito.PowerMockito.when;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.powermock.core.classloader.annotations.PrepareForTest;
import org.powermock.modules.junit4.PowerMockRunner;

@RunWith(PowerMockRunner.class)
@PrepareForTest(MedicalBill.class)
public class StaticMethodTest {

 @Test
 public void stubs_static_methods() throws Exception {
 System.out.println(MedicalBill.generateId());
 //enable mocking
 mockStatic(MedicalBill.class);
 //stub the static method
 PowerMockito.when(MedicalBill.generateId()).thenReturn(1);

Chapter 5

[109]

 //check the stubbed value
 assertEquals(1, MedicalBill.generateId());
 }
}

The test class is annotated with @RunWith(PowerMockRunner.class) and
@PrepareForTest(MedicalBill.class), where PowerMockRunner bootstraps
PowerMockito to use a classloader to load the classes, and @PrepareForTest
enables the classes to be mocked.

The static mockStatic() method is defined in the org.powermock.api.mockito.
PowerMockito class. This method allows us to mock static methods.

We need to mock static methods in the following circumstances:

•	 Code under test calls a utility class or a data access object with static
methods, and static methods hide testing impediments, such as a database
call, file access, and so on

•	 Code under test calls a third-party library; we cannot modify the third-party
library source code, which in turn hides a testing impediment in a
static method

Suppressing static blocks
Suppose legacy code has a static data initialization block and it loads a database
driver in this block. If you need to unit test the class, you need to load the class and
in turn, the static block is processed. So your test will indirectly load the database
driver before executing a test. This is unacceptable, but you cannot suppress the
static initialization using any mocking tool. PowerMockito allows us to suppress the
static blocks and enables us to write test for the code that hides testing impediments
in static initialization blocks.

The following class has a static block whereby it initializes a value with 100/0. This
100/0 signifies a testing impediment. If you load the class in a test harness, the test
will fail with a divide by zero exception. Division by zero is just a trick to show the
effect of the PowerMock @Suppress annotation and to state that the class does not
work in functional mode:

public class StaticInitializationBlock {
 static int value;
 static{
 value = 100/0;
 System.out.println("In static block");
 }
}

Unit Testing the Legacy Code with Mockito

[110]

The following PowerMockito test suppresses the static block:

package com.packt.legacy.powermockito;

import static org.junit.Assert.assertEquals;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.powermock.core.classloader.annotations.
 SuppressStaticInitializationFor;
import org.powermock.modules.junit4.PowerMockRunner;

@RunWith(PowerMockRunner.class)
@SuppressStaticInitializationFor("com.packt.legacy.powermockito.St
 aticInitializationBlock")
public class StaticInitializationBlockTest {

 @Test
 public void supresses_static_initialization_blocks() {
 assertEquals(0,StaticInitializationBlock.value);
 }
}

In the preceding test, we assert StaticInitializationBlock.
value against 0 because 0 is the default value for an integer. The @
SuppressStaticInitializationFor annotation instructs the PowerMockito
classloader to skip the static initialization for the fully qualified class name.

Suppressing a superclass constructor
When a class needs to extend from another class in a third-party framework or
some other kind of module and the third-party class constructor hides a testing
impediment, then that prevents you from unit testing your own code. For example,
the framework may try to connect to the Internet to load some value or access
filesystem for some reason. You cannot suppress the super constructor chaining
from your unit test, and hence, your test may fail.

The following class has a constructor that hides a testing impediment; the divide by
zero replicates a testing impediment:

class DontExtendMePlease{
 DontExtendMePlease(){
 int x =1/0;
 }
}

Chapter 5

[111]

The following class extends the DontExtendMePlease class:

public class SuppressSuperConstructor extends DontExtendMePlease{

 public SuppressSuperConstructor() {
 super();
 }

}

When we instantiate the SuppressSuperConstructor class in a test case, the test
fails with the following error, to indicate that you cannot instantiate the class, as the
super class constructor has some problem:

The PowerMockito JUnit test resolves the issue by suppressing the super
class constructor:

import static org.powermock.api.support.membermodification.
 MemberMatcher.constructor;
import static org.powermock.api.support.membermodification.
 MemberModifier.suppress;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.powermock.core.classloader.annotations.PrepareForTest;
import org.powermock.modules.junit4.PowerMockRunner;

@RunWith(PowerMockRunner.class)
@PrepareForTest(SuppressSuperConstructor.class)
public class SuppressSuperConstructorTest {

 @Test

Unit Testing the Legacy Code with Mockito

[112]

 public void supresses_super_class_constructor() {
 suppress(constructor(DontExtendMePlease.class));
 new SuppressSuperConstructor();
 assertTrue("Just checking", true);
 }
}

The suppress method takes a constructor or a field or a method. We are creating
a constructor of the DontExtendMePlease class using the constructor (class)
method. The PowerMockito classloader suppresses the constructor and allows
us to unit test the code.

Suppressing our own constructor
Just like with the super class constructor, when we add our own constructor
that hides a testing impediment, we cannot instantiate the class in test harness
and hence, cannot unit test the class.

The following constructor divides by zero and indicates a testing impediment:

public class SuppressConstructor {

 public int someValue = 100;
 public SuppressConstructor(int val){
 val = val/0;
 }

}

However, PowerMock provides us a Whitebox class. It allows us to create class
instances by suppressing the defined constructors; but the problem is that the
values we initialize in the constructor are just ignored, or rather, not initialized.
The following JUnit test uses Whitebox to suppress the parameterized constructor:

import static org.junit.Assert.assertNotNull;
import org.junit.Test;
import org.powermock.reflect.Whitebox;

public class SuppressConstructorTest {

 @Test
 public void supresses_own_constructor() throws Exception {
 SuppressConstructor nasty = Whitebox.newInstance(Suppress
 Constructor.class);
 assertNotNull(nasty);
 }
}

Chapter 5

[113]

Suppressing methods
Sometimes, we need to suppress method calls. For instance, when our code under
the test calls another method that hides a testing impediment, we must suppress the
second method to proceed with the testing. Suppressing means the method will not
be invoked; if a method returns a string (or any object) value, then a null value will
be returned.

The following class has a private getCurrency()method; this method is called from
the format() method:

package com.packt.legacy.powermockito;

public class SuppressMethod {

 public String format(String str){
 return str + getCurrency();
 }

 private String getCurrency(){
 return "$";
 }
}

The following JUnit will suppress the getCurrency() method call:

import static org.junit.Assert.assertFalse;
import static org.powermock.api.support.membermodification.
 MemberMatcher.method;
import static org.powermock.api.support.membermodification.
 MemberModifier.suppress;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.powermock.core.classloader.annotations.PrepareForTest;
import org.powermock.modules.junit4.PowerMockRunner;

@RunWith(PowerMockRunner.class)
@PrepareForTest(SuppressMethod.class)
public class SuppressMethodTest {

 @Test
 public void supresses_method() throws Exception {
 suppress(method(SuppressMethod.class, "getCurrency"));
 SuppressMethod method = new SuppressMethod();
 assertFalse(method.format("10").contains("$"));
 }
}

Unit Testing the Legacy Code with Mockito

[114]

Note that the org.powermock.api.support.membermodification.
MemberModifier.suppress method takes org.powermock.api.support.
membermodification.MemberMatcher.method, the method that has to be
suppressed. We passed the class and the method name getCurrency. Spell the
method name correctly (because it is passed as a string) and without parenthesis.
An immediate call to the getCurrency() method from the format() method
is suppressed.

Stubbing private methods
You cannot access private methods of a class from outside the class. When a private
method hides a testing impediment, and that method is invoked from a public
or protected method, then you cannot JUnit test the public/protected method as
you cannot bypass the private method call or stub the private method. However,
PowerMockito allows us to stub private methods and enables us to write JUnit tests
by suppressing the testing impediments.

The following example has a private method known as secretValue(); this method
returns a secret value and the other public method exposeTheSecretValue() calls
the secretValue() method. When we call the exposeTheSecretValue() method
from a JUnit test, it always returns the same secret value, but if we need to change
the secretValue() method for every method call, then we need to stub the private
method's behavior:

package com.packt.legacy.powermockito;

public class PrivateMethod {

 private String secretValue(){
 return "#$$%^&*";
 }

 public String exposeTheSecretValue(){
 return secretValue();
 }
}

Chapter 5

[115]

To stub the private method using PowerMockito, we need to create a spy object of
the class and then stub the private method on the spy object. Remember that we
cannot access a private method from outside the class; so when we stub a private
method, we just pass the method name as a string value. We cannot call the method
directly as its access scope is private. Hence, the name is passed as a string so that,
using reflection, the method is found and stubbed. Make sure you spell the method
name correctly. The following test exhibits the private method's stubbing:

package com.packt.legacy.powermockito;

import static org.junit.Assert.*;
import static org.powermock.api.mockito.PowerMockito.*;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.powermock.core.classloader.annotations.PrepareForTest;
import org.powermock.modules.junit4.PowerMockRunner;

@RunWith(PowerMockRunner.class)
@PrepareForTest(PrivateMethod.class)
public class PrivateMethodTest {

 @Test
 public void stubs_private_methods() throws Exception {
 PrivateMethod privateMethodClass = spy(new PrivateMethod());
 when(privateMethodClass, "secretValue").thenReturn("123");

assertEquals("123", privateMethodClass.exposeTheSecretValue());
 }
}

The test stubs the secretValue method to return 123 and asserts the value by
invoking the public method exposeTheSecretValue.

Stubbing final methods
Mockito cannot stub final methods, as Java doesn't allow us to override the final
methods. However, when a final method hides a testing impediment, either we
cannot unit test the method, or remove the final keyword and override the method
for JUnit testing. This actually violates the encapsulation principle, but the good
news is that PowerMockito allows us to stub the final methods.

Unit Testing the Legacy Code with Mockito

[116]

The following example demonstrates the final method's stubbing:

package com.packt.legacy.powermockito;

public class FinalMethod {

 public final String getValue(){
 return null;
 }
}

The getValue() method is a final method, but we can mock the class and stub the
final method using the @PrepareForTest annotation. The following JUnit test stubs
the getValue() method:

@RunWith(PowerMockRunner.class)
@PrepareForTest(FinalMethod.class)
public class FinalMethodTest {

 private static final String A_STUBBED_VALUE = "A stubbed value";

 @Test
 public void stubs_final_methods() throws Exception {
 FinalMethod finalMethod = mock(FinalMethod.class);
 when(finalMethod.getValue()).thenReturn(A_STUBBED_VALUE);
 assertEquals(A_STUBBED_VALUE, finalMethod.getValue());
 }
}

Mocking final classes
You cannot extend a final class, but during JUnit testing, we encounter that third-
party framework classes or external module classes are final and they hide testing
impediments, but we cannot change the files as we don't have the permission to
change the source code to make them nonfinal classes. Luckily, PowerMockito
allows us to mock final classes. The following example will work with a final class:

public final class SystemVerifier {
 public boolean isInstallable(){
 return false;
 }
}

Chapter 5

[117]

The SystemVerifier class is a final class and it has a public method
isInstallable(); this method checks system prerequisites, such as RAM, disk
space, and so on. If everything is okay, then returns true; we are hardcoding the
method to return false.

The SoftwareInstaller class has a reference to the SystemVerifier class.
When the SystemVerifier.isInstallable method returns true, it starts
installing a software. The following is the SoftwareInstaller class:

public class SoftwareInstaller {
 private final SystemVerifier systemVerifier;

 public SoftwareInstaller(SystemVerifier systemVerifier) {
 this.systemVerifier = systemVerifier;
 }

 public boolean install(String packageName) {
 if (systemVerifier.isInstallable()) {
 // install something
 return true;
 }

 return false;
 }
}

We have already hardcoded the isInstallable() method to return false; to unit
test the installation part, we need to stub the isInstallable() method to return
true, but the SystemVerifier class is a final class, so we cannot stub the method.

The following PowerMockito JUnit test mocks the final class SystemVerifier and
stubs the isInstallable() method to return true:

@RunWith(PowerMockRunner.class)
@PrepareForTest(SystemVerifier.class)
public class FinalClassTest {

 @Test
 public void mocks_final_classes() throws Exception {
 SystemVerifier systemVerifier = mock(SystemVerifier.class);
 when(systemVerifier.isInstallable()).thenReturn(true);

 SoftwareInstaller installer = new SoftwareInstaller
 (systemVerifier);
 assertTrue(installer.install("java"));
 }
}

Unit Testing the Legacy Code with Mockito

[118]

Designing for testability with Mockito
We learned about testing impediments and how to refactor them. We cannot unit
test code when testing impediments are present; we refactor code and move the
impediments out (to another class or method), and during testing, the impediments
are replaced with mock objects. PowerMock is a dirty solution and it should only be
used for legacy code. This is the better way is to refactor the source and make more
test friendly.

However, sometimes we cannot mock out the external dependencies due to
testing-unfriendly design. This section covers the design for testability, or rather,
things to avoid in code. The following Java constructs go up against mocking the
testing impediments:

•	 Constructors initialize testing impediments
•	 Class level variable declaration and initialization
•	 Private methods
•	 Final methods
•	 Static methods
•	 Final classes
•	 Use of new
•	 Static variable declaration and initialization
•	 Static initialization blocks

You cannot unit test legacy code because it is either tightly coupled, or testing
unfavorable language constructs hide the testing impediments. The following
section explains testing unfavorable constructs.

To represent a testing impediment, we'll throw a special
runtime exception TestingImpedimentException. If
your test fails with a TestingImpedimentException
error, it means you cannot automate the test, as your code
has testing unfavorable features.

Chapter 5

[119]

Identifying constructor issues
To build a test, we need to instantiate the class in test harness, but the problem with
legacy code is that it is difficult to break dependency and instantiate a class in a test
harness. For example, in a constructor, the class instantiates many objects, reads
from the properties file, or even creates a database connection. There could be
many callers of the class, so you cannot change the constructor to pass dependencies,
otherwise it will cause a series of compilation errors.

We will take a look at the legacy code and try to write a test for the class.

Suppose we have a TestingUnfavorableConstructor class with two
external dependencies, DatabaseDependency and FileReadDependency.
Both the dependencies are slow in nature and testing impediments. The
TestingUnfavorableConstructor class creates dependencies in the constructor.
The dependencies represent the database access and the file reads from the
TestingUnfavorableConstructor constructor. The following is the class:

public class TestingUnfavorableConstructor {
 private DatabaseDependency dependency1;
 private FileReadDependency dependency2;

 public TestingUnfavorableConstructor() {
 this.dependency1 = new DatabaseDependency();
 this.dependency2 = new FileReadDependency();
 }

 public Object testMe(Object arg) {
 return arg;
 }

}

Unit Testing the Legacy Code with Mockito

[120]

If we want to unit test the testMe() behavior of the class, we need to create an object
for the TestingUnfavorableConstructor class. However, when we try to create an
instant in the unit test, the class fails to indicate that the class cannot be instantiated
from an automated test suite. The following is the output:

To overcome this, you should inject the dependencies through the constructor
instead of creating them in the constructor.

We cannot modify the default constructor because the class is invoked from many
other clients; we cannot break the clients. Two other options are as follows:

•	 Keep the default constructor as it is, create another constructor, and inject
dependencies through this new constructor. From test, we can call this new
constructor. You're also putting the code into production for testing purpose;
this is a test smell, but to overcome this, you need to unit test the code
with PowerMock.

•	 Create a protected method, move the dependency instantiation to that
method, create two setter methods, and initialize the dependencies through
a setter injection. In the test, create a fake object for the main class, override
the protected method to do nothing, and pass the dependencies through
setter methods.

The first option is relatively straightforward; we'll apply the second approach.

The following is the modified code:

public class TestingUnfavorableConstructor {
 private DatabaseDependency dependency1;
 private FileReadDependency dependency2;

 public TestingUnfavorableConstructor() {
 createDependencies();

Chapter 5

[121]

 }

 protected void createDependencies() {
 this.dependency1 = new DatabaseDependency();
 this.dependency2 = new FileReadDependency();
 }

 public void setDependency1(DatabaseDependency dependency1) {
 this.dependency1 = dependency1;
 }

 public void setDependency2(FileReadDependency dependency2) {
 this.dependency2 = dependency2;
 }

 public Object testMe(Object arg) {
 return arg;
 }
}

The following unit test overrides the TestingUnfavorableConstructor class,
provides an empty implementation of the createDependencies() method, creates
mock dependencies, and calls setter methods to set the mock dependencies:

@RunWith(MockitoJUnitRunner.class)
public class TestingUnfavorableConstructorTest {
 @Mock DatabaseDependency dep1;
 @Mock FileReadDependency dep2;
 TestingUnfavorableConstructor unfavorableConstructor;
 @Before public void setUp() {
 unfavorableConstructor= new TestingUnfavorableConstructor() {
 protected void createDependencies() {
 }
 };

 unfavorableConstructor.setDependency1(dep1);
 unfavorableConstructor.setDependency2(dep2);
 }

 @Test public void sanity() throws Exception {
 }
}

The empty test method is used to check the health of the test setup, as you need at
least one test method to invoke the setup method.

Unit Testing the Legacy Code with Mockito

[122]

Do not instantiate dependencies in the constructor; the dependencies may
exhibit testing impediments and make the class nontestable. Instead of
instantiating the dependencies in the constructor, you can pass the real
implementations (real dependencies) to the constructor or setter method
of the code under the test.

Realizing initialization issues
Declaring the class-level variable and instantiating the object at the same time creates
a problem; you don't get a chance to mock out the variable. The following example
explains the problem.

The VariableInitialization class has a database dependency and the
dependency is instantiated where it is declared:

Public class VariableInitialization {
 DatabaseDependency dependency1 = new DatabaseDependency();
 public void testMe(Object obj) {

 }
}

When you instantiate the VariableInitialization class in the test, the test fails.
The following screenshot shows the output:

Chapter 5

[123]

Here is the test class:

public class VariableInitializationTest {
 VariableInitialization initialization;

 @Before public void setUp() throws Exception {
 initialization = new VariableInitialization();
 }
 @Test 	 public void sanity() throws Exception {
 }
}

The following are the options to overcome class-level variable initialization:

•	 Add a default constructor and move the dependency instantiation to the
default constructor, create another constructor, and inject dependencies
through this new constructor. From the test, we can call this new constructor.
This is a test smell, as the code is added in production for testing purposes.

•	 Add a default constructor, move the dependency instantiation to a protected
method, call the method from the default constructor, create a setter method,
and initialize the dependency through a setter injection. In the test, create
a fake object of the main class and override the protected method to do
nothing, and pass the dependencies through the setter methods.

Do not instantiate the testing impediment variables at the class
level. You can still instantiate variables, such as list = new
ArrayList<String>() and more, which are totally reasonable
to build internal fields in themselves; it's the difference between
coupling to collaborating classes and the internal state.

Working with private methods
Private methods are useful for hiding the internal state and encapsulation, but they
can also hide the testing impediments. The following example explains the details.

The PrivateMethod class has a private method showError(). This private method
hides a test impediment. When we unit test the validate() method with a null
object, the validate() method calls the showError message:

public class PrivateMethod {
 public Object validate(Object arg) {
 if(arg == null) {
 showError("Null input");

Unit Testing the Legacy Code with Mockito

[124]

 }
 return arg;
 }

 private void showError(String msg) {
 GraphicalInterface.showMessage(msg);
 }
}

The following is the test output:

You can extract the testing impediments to a protected (or default package
visibility) method, or you can separate the concern, create a new class, move the
testing impediment to that class, and inject the new class as a dependency. Objects
should do one thing; if you've got a method you want to test that does X and is in
the same class as a method that does Y (which is so totally different that it can't be
allowed to happen in your test for X), then your class must be doing two things.
Split these responsibilities.

In this example, validating objects and showing errors are two different
responsibilities and should be managed by two different classes.

Do not hide testing impediments in private methods.

Chapter 5

[125]

The following code refactors the testing impediments and makes the class
unit testable:

public class PrivateMethodRefactored {
 public Object validate(Object arg) {
 if(arg == null) {
 showError("Null input");
 }

 return arg;
 }

 protected void showError(String msg) {
 GraphicalInterface.showMessage(msg);
 }
}

The showError method's access specifier is changed to protected.

The following test code extends the class with an anonymous implementation
and overrides the protected method with an empty implementation. The test code
invokes the validate() method on the new anonymous implementation of the
PrivateMethodRefactored class, and in turn, the polymorphic behavior calls the
empty implementation. Hence, the test will always bypass the testing impediments
by calling the overridden empty implementation of the testing impediment, but the
real production code will always invoke the protected method.

public class PrivateMethodRefactoredTest {

 PrivateMethodRefactored privateMethod;

 @Before
 public void setUp() {
 privateMethod = new PrivateMethodRefactored() {
 protected void showError(String msg) {

 }
 };
 }

 @Test
 public void validate() throws Exception {
 privateMethod.validate(null);
 }
}

Unit Testing the Legacy Code with Mockito

[126]

This approach of bypassing the testing impediments with overridden
versions of the testing impediments is known as faking or fake object.
If the code under the test contains many testing impediments, it is not
possible to override all of them in an anonymous class; rather, we can
create an inner class, extend the code under test, and override all testing-
unfriendly methods.

Working with final methods
When a method is final, you cannot override it. If the final method hides any testing
impediment, you cannot unit test the class. The following example demonstrates
the issue.

The FinalDependency class has a final method called doSomething. This method
hides a testing-unfriendly feature. The following is the class definition:

public class FinalDependency {

 public final void doSomething() {
 throw new TestingImpedimentException("Final methods cannot be
 overriden");
 }
}

The FinalMethodDependency class has a dependency on FinalDependency, and in
the testMe method, it calls the doSomething method:

public class FinalMethodDependency {

 private final FinalDependency dependency;

 public FinalMethodDependency(FinalDependency dependency) {
 this.dependency = dependency;
 }
 public void testMe() {
 dependency.doSomething();
 }
}

In the test, we'll mock the dependency and unit test the code:

@RunWith(MockitoJUnitRunner.class)
public class FinalMethodDependencyTest {
 @Mock
 FinalDependency finalDependency;
 FinalMethodDependency methodDependency;

Chapter 5

[127]

 @Before
 public void setUp() {
 methodDependency = new FinalMethodDependency(finalDependency);
 }
@Test
 public void testSomething() throws Exception {
 methodDependency.testMe();
 }
}

When we run the test, it still accesses the testing impediment, as the mock object
cannot stub a final method. When we try to stub the method, we get an error.
The following test stubs the final method call:

 @Test
 public void testSomething() throws Exception {
 doNothing().when(finalDependency).doSomething();
 methodDependency.testMe();
 }

When we run the test, we get the following error message thrown by the
Mockito framework:

Do not hide the testing impediments in the final methods; you cannot
override or stub a final method.

Unit Testing the Legacy Code with Mockito

[128]

A possible way to overcome this is by extracting the content of the final method
to a protected method, calling the protected method from the final method, and
overriding the protected method in the test. If you cannot touch the class at all,
use the PowerMock framework. For example, when you have only a JAR file,
create a MethodDependency interface with FinalDependency, implementing
it as we have done here, rather than having FindalMethodDependency
depend on MethodDependency. Then in production, you need to provide a
FinalMethodDependency instance (as done here), but in tests, you can stub the
interface happily, which doesn't have any final methods, and you are all set
to proceed.

Exploring static method issues
Static methods are good for utility classes but unnecessary use of static can hide the
testing impediments and create a problem for unit testing. The following example
demonstrates the issue.

The SingletonDependency class is an implementation of the Gang of Four (GoF)
singleton design pattern. It has a private constructor and a static getInstance()
method to create only a single instance of the class. The static callMe() method
hides a testing impediment. Note that the GoF singleton pattern doesn't define
methods as static, but in this example, we are defining the callMe() method
as static, to display a drawback of static methods. The following is the
singleton implementation:

public class SingletonDependency {
 private static SingletonDependency singletonDependency;

 private SingletonDependency() {
 }

 public synchronized static SingletonDependency getInstance() {
 if (singletonDependency == null) {
 singletonDependency = new SingletonDependency();
 }

 return singletonDependency;
 }

 Public static void callMe() {
 throw new TestingImpedimentException("we dont need
 singleton");
 }
}

Chapter 5

[129]

The VictimOfAPatternLover class has a dependency on SingletonDependency.
The following are the class details:

public class VictimOfAPatternLover {
 private final SingletonDependency dependency;

 public VictimOfAPatternLover(SingletonDependency dependency) {
 this.dependency = dependency;
 }

 public void testMe() {
 dependency.callMe();
 }
}

Mockito cannot stub a static method. When we try to stub the static callMe()
method, it still calls the original method and fails for the testing impediment.
You cannot stub a static method.

Do not hide the testing impediments in static methods; you cannot
stub static methods.

The only way to overcome this issue is to create a protected method and wrap the
static call. From the code, call the wrapped method, and from the test, override the
protected method. We will now add a wrapper method in the dependency class and
call the static method from it:

 public static void callMe() {
 throw new TestingImpedimentException("Come on we dont need
 singleton");
 }

 protected void wrapper() {
 callMe();
 }
}

From the code, call the wrapper method:

 public void testMe() {
 dependency.wrapper();
 }

Unit Testing the Legacy Code with Mockito

[130]

Stub the wrapper method in the test:

@Test
 public void testMe() throws Exception {
 Mockito.doNothing().when(dependency).wrapper();
 aPatternLover.testMe();
 }

The better way to do this is to stop calling the static method from this class entirely
and wrap it in a separate class, which you pass in as a dependency.

Say you've got a Database.create() static method you call from your class A.
You could have a DatabaseBuilder class which you pass into class A, and then just
have a call databaseBuilder.create(), where DatabaseBuilder is something like
the following:

public class DatabaseBuilder {
 public void create() {
 Database.create();
 }
}

And then in the tests, you just provide a stubbed database builder and swap out the
whole thing. I would really not recommend using this pattern of making private
methods protected and overriding them, except where it's absolutely necessary.

Alternatively, of course, if you can't change the API; you'd use PowerMock to stub
the static call.

Working with final classes
You cannot override a final class, so you can hide testing-unfavorable features in a
final class. The following example explains the problem.

The final class hides a testing impediment:

public final class FinalDepencyClass {

 public void poison() {
 throw new TestingImpedimentException("Finals cannot be
 mocked");
 }
}

Chapter 5

[131]

The code under the test has a dependency on the final class:

public class FinalClassDependency {
 private final FinalDepencyClass finalDepencyClass;

 public FinalClassDependency(FinalDepencyClass finalDepencyClass)
 {
 this.finalDepencyClass = finalDepencyClass;
 }

 public void testMe() {
 finalDepencyClass.poison();
 }
}

In the test, we'll try to stub the poison method:

@RunWith(MockitoJUnitRunner.class)
public class FinalClassDependencyTest {
 @Mock
 FinalDepencyClass finalDependency;

 FinalClassDependency test;

 @Before
 public void setUp() {
 test = new FinalClassDependency(finalDependency);
 }
 @Test
 public void testMe() throws Exception {
 Mockito.doNothing().when(finalDependency).poison();
 test.testMe();
 }
}

Unit Testing the Legacy Code with Mockito

[132]

The test fails with a MockitoException error as Mockito cannot mock a final class.
The following screenshot displays the JUnit output:

Do not hide the testing impediments in final classes; you cannot mock a
final class.

Final classes are important for framework or architecture design so that no one can
hack the behavior, but it can create a serious problem for unit testing. Before you
choose to make a class final, ensure that your final class is a final implementation of
some interface so that other clients of the class can potentially use stubbed instances
of the interface.

Learning new concerns
Java instantiates classes using the new operator, but an innocent new can create a
problem for unit testing.

The following example explains the issue. The PoisonIvy constructor has a testing
impediment, for instance, when the method call fetches data from a database
table or reads from the filesystem, we represent the testing impediment with
the TestingImpedimentException error:

public class PoisonIvy {

 public PoisonIvy() {
 throw new TestingImpedimentException("use dependency
 injection");

Chapter 5

[133]

 }

 public void poison() {

 }
}

The following is the code that calls the PoisonIvy class:

public class NewExpressionDependency {

 public void testMe() {
 PoisonIvy ivy = new PoisonIvy();
 ivy.poison();
 }
}

When we unit test the testMe() code, it fails. The testMe() method directly creates
an instance of dependency and calls the poison() method. You cannot override this
new expression. If we want to unit test the testMe() method, first we need to move
the new operator outside testMe(), as we cannot instantiate the PoisonIvy class.
The constructor of the PoisonIvy class throws an exception, hence we cannot unit
test the testMe behavior unless we move the object creation out of testMe. Instead
of creating a new instance of PoisonIvy inside testMe(), we can pass an instance
of PoisonIvy as a method argument, or create a class-level dependency and pass
PoisonIvy as a constructor- or setter-dependency argument.

Program to an interface, not an implementation. Rather than hardcoding
the collaborator instantiation of the subtype into the code, assign the
concrete collaborator implementation object through a dependency
injection. Separate the parts of the codebase that use objects, and
implement your logic from the parts that decide which objects to use
where (typically with a DI framework such as Guice or Spring).

What does program to an interface, not an implementation mean? It means, program
to a super type, rather than a subtype. You can interchange the implementation
at runtime. In a collection framework, we have the List interface and its many
implementations. In your class, always define a variable or method return type
for List not ArrayList, so that if required, you can assign any implementation
you want.

In this example, you can pass the PoisonIvy class as a constructor or setter
dependency, and at runtime (during testing), you can pass a mock or a fake
implementation to suppress the testing impediments.

Unit Testing the Legacy Code with Mockito

[134]

Exploring static variables and blocks
Static initializations and static blocks are executed during class loading; you cannot
override them. If you initialize a testing impediment in a static block, you cannot unit
test the class. The following example demonstrates the issue.

The StaticBlockOwner class has a static variable known as StaticBlockDependency,
and it initializes the variable in a static block. The following is the class:

public class StaticBlockOwner {
 private static StaticBlockDependency blockDependency;
 static {
 blockDependency = new StaticBlockDependency();
 blockDependency.loadTime = new Date();
 }
 public void testMe() {
 }
}

When we unit test the class, it fails. The following is the unit test:

public class StaticBlockOwnerTest {
 StaticBlockOwner owner;
 @Before public void setUp() {
 owner = new StaticBlockOwner();
 }
 @Test public void clean() throws Exception {
 owner.testMe();
 }
}

The test fails with java.lang.ExceptionInInitializationError as it tries to
instantiate the dependency in a static block and the dependency throws an exception.

Do not instantiate dependencies in a static block. You cannot override the
testing impediments; you shouldn't be using static initializer blocks at all.

Chapter 5

[135]

Summary
This chapter covered legacy code, testing impediments, design for testability,
and unit testing the legacy code with Mockito and PowerMock.

Now you should be able to write JUnit tests for legacy code with Mockito and
PowerMock, refactor legacy code to make it unit testable, and design code to
bypass the testing impediments.

The next chapter, Developing SOA with Mockito, will cover Service-oriented
Architecture (SOA), web services, and how to unit test the REST- and
SOAP-based web services with Mockito.

Developing SOA with Mockito
"The Web as I envisaged it, we have not seen it yet. The future is still so much
bigger than the past."

– Tim Berners-Lee

This chapter explores web services, web service styles—SOAP-based and RESTful,
web service components, and building and unit testing SOAP and RESTful web
services with Mockito.

Exploring Service-oriented Architecture
(SOA)
Service-oriented Architecture (SOA) is an architectural style that transforms
business use cases into a set of interlinked services or reusable business tasks that
can be accessed over a network. This could be an intranet or over the Internet. The
services could be geographically and technologically diverse. SOA can combine
services hosted on remote locations as if they are hosted on your local machine,
and accomplish a specific business task, enabling your business to quickly adapt
to changing conditions and requirements.

Service is a self-contained unit of business tasks, such as a credit card payment or
stock quote. SOA orchestrates the services to accomplish a bigger task. The main
theme of SOA is loose coupling so that you can reuse the services, for instance,
define fine-grained services and combine them in a coarse-grained service.

Developing SOA with Mockito

[138]

Organizations can have existing heterogeneous IT systems, such as a payroll system
developed in C++ and an expense claim workflow developed in Java. SOA enables
businesses to leverage existing investments, by allowing them to reuse existing IT
systems, and accomplishes interoperability between heterogeneous applications
and technologies.

For more details on SOA, you can visit http://www.oracle.com/technetwork/
articles/javase/soa-142870.html or the book Applied SOA: Service-oriented
Architecture and Design Strategies.

SOA can rely on web services for interoperability between heterogeneous
applications and technologies. In the next section, we'll explore the web services.

Working with web services
Organizations rely on different software applications, each with their own business
purpose. These different software applications run on different platforms and
operating systems, and are implemented in different programming languages.
So, it is very difficult for different applications to communicate with each other
and share their resources in a coordinated way. Heterogeneous applications
can communicate with each other via web services. The following are the web
service characteristics:

•	 Web services are web application components
•	 Web services communicate using open standards, such as XML,

SOAP, and HTTP
•	 Web services are self-contained and self-describing
•	 HTTP and XML are the basis for web services

Web services are client and server applications that communicate over HyperText
Transfer Protocol (HTTP) and provide a standard means for interoperating
between software applications running on a variety of platforms and frameworks.
Web services are characterized by interoperability and extensibility.

We'll be looking at two of the most common tools for building web services in Java,
namely, the Java API for XML Web Services (JAX-WS) and Java API for RESTful
Web Services (JAX-RS):

•	 JAX-WS: This uses XML messages that follow the client-to-server
communication that is done through messages the Simple Object Access
Protocol (SOAP) standard. The SOAP message architecture and message
formats are defined in XML. Each web service operation has a machine-
readable description written in the Web Services Description Language
(WSDL), which is an XML format for defining interfaces syntactically.

http://www.oracle.com/technetwork/articles/javase/soa-142870.html
http://www.oracle.com/technetwork/articles/javase/soa-142870.html

Chapter 6

[139]

•	 JAX-RS: This provides the functionality for Representational State Transfer
(RESTful) web services. REST is well suited for basic, ad hoc integration
scenarios. RESTful web services are better integrated with HTTP than
SOAP-based services. REST web services do not require XML messages
or WSDL service-API definitions. JavaScript Object Notation (JSON) is
typically the XML alternative of choice for all data transfer that is required
in RESTful web services.

Visit the following URL for more details on JAX-WS and JAX-RS:

http://docs.oracle.com/javaee/6/tutorial/doc/gijti.html

In the following section, we'll explore the JAX-WS web services with Eclipse.

Exploring JAX-WS with Eclipse
JAX-WS web services require a service description written in WSDL.

A WSDL document defines services as collections of network endpoints or ports.
In WSDL, the abstract definition of endpoints and messages is separated from their
concrete network deployment or data format bindings. This allows the reuse of
abstract definitions: messages, which are abstract descriptions of the data being
exchanged and port types, which are abstract collections of operations.

A WSDL document uses the following elements in the definition of network services:

•	 Types: This is a container for data type definitions (such as XSD or schemas).
•	 Message: This is an abstract, typed definition of the data being communicated.
•	 Operation: This is an abstract description of an action supported by

the service.
•	 Port type: This is an abstract set of operations supported by one or

more endpoints.
•	 Port: This is a single endpoint defined as a combination of a binding and a

network address.
•	 Binding: This is a concrete protocol and data format specification for a

particular port type. The binding is usually SOAP, and the encoding and data
formatting regulations used (also known as the style) are usually literal (this
includes document/literal, and sometimes RPC/literal).

•	 Service: This is a collection of related endpoints.

http://docs.oracle.com/javaee/6/tutorial/doc/gijti.html

Developing SOA with Mockito

[140]

JAX-WS web services can be developed using two approaches:

•	 Top-down approach or contract-first web services: In this, Schema/XSD,
WSDL, and message formats are defined; and then, using tools, the Java
service skeletons are generated

•	 Bottom-up approach or contract-last web services: The Java services are
developed first, then using tools/wizards, the WSDL and the web service
are created from the Java classes

In this section, we'll follow the bottom-up approach.

To develop a web service in Eclipse, the following components should be installed
on your machine:

•	 You need Apache Tomcat, and you can visit the Tomcat website for
installation and setup instructions; the URL is http://tomcat.apache.org/.

•	 Your Eclipse should have the web tool platform component installed. You
can go to the About Eclipse menu and click on the Installation Details
button for details on the WTP components, under the Plug-ins tab. The
following is the screenshot of the installation details. For details on Eclipse,
visit http://www.eclipse.org/webtools/.

http://tomcat.apache.org/
http://www.eclipse.org/webtools/

Chapter 6

[141]

The following are steps to create a web service with Apache Axis and
Apache Tomcat:

1.	 Create a dynamic web project in Eclipse and enter the project name
as DNACheckWS.

2.	 We'll create a DNA fingerprint service to verify a DNA sample with the
existing database for a match. The DNA sample will hold a DNA profile of
DNA elements, each element will have a genetic marker, such as TH01, and
corresponding allele A and allele B values such as TH01, 8, and 11. The
DNA profile will be examined against the database, and if the exact match is
found, the person's details will be sent back as a response.

3.	 Create a ProfileElement class in the com.packt.webservice.jaxws.dto
package, add three string attributes geneticMarker, alleleA, and alleleB,
and generate getters and setters for the three attributes. The following is the
code for the class details:
package com.packt.webservice.jaxws.dto;

public class ProfileElement {
 private String geneticMarker;
 private String alleleA;
 private String alleleB;
 //The getters and setters are ignored for brevity
}

4.	 Create a DNAProfile class with an array of ProfileElements. The following
is the code for the class details:
package com.packt.webservice.jaxws.dto;

public class DNAProfile {
 private ProfileElement[] dnaElements;
 //The getters and setters are ignored for brevity
}

5.	 Create an empty service DNAFingerPrintService for matching a DNA
profile with an existing set of DNAs; it just returns a fixed value here.
The following are the details:
package com.packt.webservice.jaxws.service;

import com.packt.webservice.jaxws.dto.DNAProfile;

public class DNAFingerPrintService {
 public String findMatch(DNAProfile dnaProfile){

 return "sujoy";
 }
}

Developing SOA with Mockito

[142]

6.	 We'll create a web service out of DNAFingerPrintService with runtime Axis
and Tomcat. Right-click on the project and select the Web Services menu,
expand the menu, and select Create Web Service. The following screenshot
displays the steps:

7.	 A wizard will open; select the web service type as Bottom up Java bean
Web Service and choose the server runtime as Tomcat and the web
service runtime as Apache Axis. You can deploy the web service to IBM
WebSphere or choose the web service runtime as Apache CFX, as shown
in the following screenshot:

Do not generate the client; set the slider to No client:

Chapter 6

[143]

8.	 In the next section, select the findMatch method, select the Style and use
option as document/literal (wrapped), and hit the Next or Finish button:

9.	 You can see that the following files are newly generated. These are
required for the server to run the web service and deploy the module
into the web server container. The most important file created here is
DNAFingerPrintService.wsdl:

Developing SOA with Mockito

[144]

10.	 Click on DNAFingerPrintService.wsdl and open it in the Eclipse editor;
check that the web service URL is defined as http://localhost:8080/
DNACheckWS/services/DNAFingerPrintService:

11.	 Deploy the project in Tomcat, right-click on the project, and select Run
on Server. Once the server is started, open a web browser and type the
following URL to verify that the web service is deployed:
http://localhost:8080/DNACheckWS/services/
DNAFingerPrintService?wsdl

The following is the WSDL output:

Chapter 6

[145]

We're done with the web service server component; next we'll build the client
component to invoke the web service:

1.	 Create a Java project DNAWsClient.
2.	 We'll generate the client stubs from the web service and, in turn, it will

create the remote interface to call the business methods, namely, a server
proxy class (the intermediate between the client and the server) and a service
locator class (contains the details of the server). However, to generate the
client stub, we need a wsdl file. Copy the wsdl folder from the DNACheckWS
project's WebContent folder to the DNAWsClient project's src folder,
as shown in the following screenshot:

3.	 Right-click on the wsdl file and select Web Services | Generate Client,
as shown in the following screenshot:

Developing SOA with Mockito

[146]

4.	 The Eclipse plugin will generate the dto classes and stubs. The following are
the generated classes:

5.	 Now create a client class named DNAFingerPrintWsInvoker to invoke the
web service. The DNAFingerPrintServiceServiceLocator class is a facade
class and it hides the underlying service invocation details. We'll create a
findMatch method to invoke the web service and return the result. The
following is the client code:
package com.packt.webservice.jaxws.client;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;

import com.packt.webservice.jaxws.dto.DNAProfile;
import com.packt.webservice.jaxws.service.DNAFinger
 PrintServiceServiceLocator;

public class DNAFingerPrintWsInvoker {

 public String findMatch(DNAProfile dnaProfile) throws
 RemoteException, ServiceException {
 DNAFingerPrintServiceServiceLocator locator = new
 DNAFingerPrintServiceServiceLocator();
 return locator.getDNAFingerPrintService().findMatch
 (dnaProfile);
 }

}

Chapter 6

[147]

6.	 Our client code is ready for testing, but to JUnit test the web
service call, we need to refactor the code, as the findMatch method
instantiates the DNAFingerPrintServiceServiceLocator class
and delegates call to the locator for accessing the web service. The
DNAFingerPrintServiceServiceLocator class makes a network call and,
hence, it can be considered as a testing impediment. We need to bypass the
instantiation of the testing impediments, to make our test reliable, with a
mock object. Add Mockito and JUnit JAR files to the project's classpath
and create a test class DNAFingerPrintWsInvokerTest under the test
source package.

7.	 Refactor the DNAFingerPrintWsInvoker class and extract a
protected method getServiceLocator() to return a new instance
of the DNAFingerPrintServiceServiceLocator class. Replace
the new DNAFingerPrintServiceServiceLocator() call with the
getServiceLocator() call. The following code shows the modified class.
Also, as a better alternative, DNAFinderPrintWsInvoker could take a
DNAFingerPrintServiceServiceLocation call as a constructor argument,
which is to be provided by whoever uses it. The tests can then provide a
stub to that constructor. This reduces coupling between the test and the class
under the test's internals and ensures that we're actually definitely testing
the code, which is as close as possible to what's going to be running
in production:
public class DNAFingerPrintWsInvoker {

 public String findMatch(DNAProfile dnaProfile) throws
 RemoteException, ServiceException {
 return getServiceLocator().getDNAFingerPrintService()
 .findMatch(dnaProfile);
 }

 protected DNAFingerPrintServiceServiceLocator
 getServiceLocator() {
 return new DNAFingerPrintServiceServiceLocator();
 }

}

8.	 Modify the test as follows:
@RunWith(MockitoJUnitRunner.class)
public class DNAFingerPrintWsInvokerTest {

 DNAFingerPrintWsInvoker invoker;
 @Mock DNAFingerPrintService mockService;

Developing SOA with Mockito

[148]

 @Mock DNAFingerPrintServiceServiceLocator mockLocator;

 @Before
 public void setup() throws ServiceException {
 invoker = new DNAFingerPrintWsInvoker(){
 protected DNAFingerPrintServiceServiceLocator
 getServiceLocator() {
 return mockLocator;
 }
 };

 when(mockLocator.getDNAFingerPrintService()).
 thenReturn(mockService);
 }

 @Test
 public void finds_DNA_match() throws Exception {
 when(mockService.findMatch(isA(DNAProfile.class))).
 thenReturn("Sherlock");
 assertEquals("Sherlock", invoker.findMatch
 (new DNAProfile()));
 }
}

We created a fake instance of the invoker to return a mock service locator
class, stubbed the service locator to return a mock web service, and finally,
from the JUnit test, we stubbed the mock service to return the name
Sherlock for any DNA profile.

9.	 We are done with client-side JUnit testing; now its time to verify
the integration. Rerun the web application and create a JUnit test to
invoke the service. Create a source folder slowtest and add the test
DNAFingerPrintWsInvokerIntegrationTest under the com.packt.
webservice.jaxws.client package. The following is the integration test.
Do you remember we hardcoded the web service to return sujoy? Check
the DNAFingerPrintService class at step 5. You need to make sure that you
still have the web service running at this stage, as we should not break the
functionality for JUnit testing.

 public class DNAFingerPrintWsInvokerIntegrationTest {
 DNAFingerPrintWsInvoker invoker;

 @Before
 public void setup() throws ServiceException {
 invoker = new DNAFingerPrintWsInvoker();

Chapter 6

[149]

 }

 @Test
 public void finds_DNA_match() throws Exception {
 assertEquals("sujoy", invoker.findMatch(new
 DNAProfile()));
 }
 }

The following is the integration test output:

We are done with the testing and client validation. We can start writing JUnit for the
server side; but the server-side code is not tied up with the web service APIs, so we
can easily write the JUnit test for the server side, hence skipping the topic.

Developing a RESTful web service
Representational State Transfer (REST) is an architectural style consisting of a
coordinated set of architectural constraints applied to components, connectors, and
data elements, within a distributed hypermedia system.

REpresentational State Transfer (REST) / RESTful web services are built to work
best on the Web. REST is an architectural style that specifies constraints (such as the
uniform interface) that, if applied to a web service, induces desirable properties, such
as performance, scalability, and modifiability, which enable services to work best on
the Web.

In REST, architectural data and functionality are considered resources and are
accessed using Uniform Resource Identifiers (URIs) and hyperlinks on the
Web. The REST architectural style has a constraint to have a stateless HTTP
communication protocol in a client/server architecture. In the REST architectural
style, clients and servers exchange representations of resources by using a
standardized interface and protocol.

Developing SOA with Mockito

[150]

Basically, RESTful web services consist of the following components:

•	 Resource URLs: A resource URL represents a resource. Basically, a noun is
used to represent a resource, for example, a collection of resources can be
represented as http://my.colleage.com/students/ and a specific resource
can be represented as http://my.colleage.com/students/101.

•	 Operations/HTTP headers: RESTful web services use the following
HTTP headers:

°° POST: This signifies a CREATE operation or a new resource
creation. For example, an HTTP POST operation on the
http://my.colleage.com/students URL with the following
data will create a student with the roll number 102:

	 {
	 "roleNumber": "102",
	 "name": "Bob Biswas",
	 "class" : "XII",
	 "email" : "bob.sawsib@gmail.com"
	 }

°° GET: This implies a READ operation. For example, an HTTP GET
operation on the http://my.colleage.com/students URL will
return the following data:

	 {
	 students =[
	 {
	 "roleNumber": "101",
	 "name": "Leo Anthony",
	 "class" : "X",
	 "email" : "leo.p@someemail.com"
	 },
	 {
	 "roleNumber": "102",
	 "name": "Bob Biswas",
	 "class" : "XII",
	 "email" : "bob.sawsib@gmail.com"
	 },
	 }

°° PUT: This stands for the MODIFY/UPDATE operation. For example, an
HTTP PUT operation that can help us to update the e-mail ID of the
student whose roll number is 101.

http://my.colleage.com/students/
http://my.colleage.com/students/101
http://my.colleage.com/students
http://my.colleage.com/students

Chapter 6

[151]

°° DELETE: This represents a DELETE operation. For example, an HTTP
DELETE operation on the http://my.colleage.com/students/101
URL will delete the student whose roll number is 101.

The main PUT/POST difference
PUT is idempotent, so repeated PUT operations result in
the same thing, whereas repeated POST operations may
perform repeated actions.

•	 Media types: Hypermedia as the Engine of Application State (HATEOAS)
is a constraint of the REST application architecture. A hypermedia-driven site
provides information to navigate the site's REST interfaces dynamically by
including hypermedia links with the responses. The responses of a RESTful
web service are media types such as JSON or XML.

•	 HTTP status codes: Every RESTful web service call returns a status code.
The status codes given in the following table are very useful:

Status code Description
200 OK
201 Created
202 Accepted
203 Non-authoritative Information
204 No Content
205 Reset Content
300 Multiple Choices
304 Not Modified
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
405 Method Not Allowed
408 Request Timeout
409 Conflict
500 Internal Server Error
501 Not Implemented

For RESTful web service details, visit the following URL:
http://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html

http://my.colleage.com/students/101
http://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html

Developing SOA with Mockito

[152]

Building a RESTful web service with Spring
Framework
Spring MVC was built to provide a flexible framework for web application developers.
Spring's DispatcherServlet class acts as a front controller; it receives all the incoming
requests and delegates the processing of the requests to handlers. It allows developers
to concentrate on business logic rather than work on the boilerplate of a custom front
controller. This section describes the Spring MVC architecture and how RESTful web
applications can be unit tested using Spring MVC.

In Spring MVC, the following is a pattern of a simplified request handling mechanism:

1.	 DispatcherServlet receives a request, confers with handler mappings to
find out which controller can handle the request, and then passes the request
to the selected controller.

2.	 The selected controller performs the business logic (can delegate the request
to a service or business logic processor) and returns some information back
to DispatcherServlet for user display or response. Instead of sending the
information (model) directly to the user, the controller returns a view name
that can render the model.

3.	 DispatcherServlet then resolves the physical view from the view name
and passes the model object to the view. This way, DispatcherServlet
is decoupled from the view implementation. The view renders the model.
A view could be a JSP page, a servlet, a PDF file, an Excel report, or any
presentable component.
The following sequence diagram represents the flow and interaction of the
Spring MVC components:

:DispatcherServlet:Browser :HandlerMapping :Controller :ViewResolver :View

request

controller

model and logical view

information

view name

view

request [model]

renders the model

request

request

Chapter 6

[153]

For a RESTful web service, instead of forwarding the model and the view object or
the logical view name from controller, we can directly return response data from
the controller using Spring's @ResponseBody annotation.

We'll build a Spring RESTful web service and unit test the code using JUnit.
The following are the steps to be performed:

1.	 Launch Eclipse and create a dynamic web project named RESTfulStudentWS.
2.	 Open web.xml and enter the following lines:

<display-name>RESTfulStudentWS</display-name>
<servlet>
 <servlet-name>rest</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>rest</servlet-name>
 <url-pattern>/</url-pattern>
</servlet-mapping>
<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 /WEB-INF/rest-servlet.xml
 </param-value>
</context-param>
</web-app>

The dispatcher is named rest, and it maps all requests. Note the
contextConfigLocation parameter; it indicates that the Spring
beans are defined in /WEB-INF/rest-servlet.xml.

3.	 Create an XML file named rest-servlet.xml in WEB-INF and add the
following lines:
<?xml version="1.0"encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/
 schema/context"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org
 /schema/beans
 http://www.springframework.org/schema/beans/spring-
 beans-3.0.xsd

Developing SOA with Mockito

[154]

 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-
 context-3.0.xsd">
 <context:component-scan base-package="com.packt.
 restful.controller" />
 <bean class= "org.springframework.web.servlet.view.
 InternalResourceViewResolver">
 "" <mvc:annotation-driven />
</beans>

The preceding XML code instructs the Spring configuration that all beans are
configured under the com.packt.restful.controller package with the
Spring annotations.

4.	 Copy the following Spring JAR files from the Spring download site and put
them under the /WEB-INF/lib folder:

5.	 Create a Java class com.packt.restful.model.Student and add the
following members and getters/setters in it:
private String roleNumber;
private String name;
private String className;
private String emailId;

Chapter 6

[155]

6.	 Create a data access class StudentDao to mimic the JDBC data access.
We'll set up a map of students to bypass the real database interaction. Add
the following lines to the StudentDao class. Note that the retrieveAll
and retrieve(roleId) methods are public methods for retrieving all the
students and a specific student respectively.
@Component
public class StudentDao {

 private Map<String, Student> database = new HashMap
 <String, Student>();
 public StudentDao(){
 load();
 }

 public Collection<Student> retrieveAll() {
 return database.values();
 }

 public Student retrieve(String roleId) {
 return database.get(roleId);
 }

 private void load() {
 Student student = new Student();
 student.setClassName("X");
 student.setEmailId("sujoy@gmaill.com");
 student.setName("Sujoy Acharya");
 student.setRoleNumber("100");
 database.put(student.getRoleNumber(), student);

 student = new Student();
 student.setClassName("XII");
 student.setEmailId("leo.p@gmaiil.com");
 student.setName("Leo Anthony");
 student.setRoleNumber("101");
 database.put(student.getRoleNumber(), student);

 student = new Student();
 student.setClassName("XII");
 student.setEmailId("john.p@ggmail.com");
 student.setName("John Paul");
 student.setRoleNumber("7");
 database.put(student.getRoleNumber(), student);

Developing SOA with Mockito

[156]

 student = new Student();
 student.setClassName("XII");
 student.setEmailId("cs@yahumail.com");
 student.setName("Subodh Chavan");
 student.setRoleNumber("3");
 database.put(student.getRoleNumber(), student);
 }
}

7.	 Create a controller class for exposing the student's data as a RESTful service.
Create a StudentController class and annotate the class with @Controller
to notify the Spring framework that the class is a Spring controller class. Also
annotate the class with @RequestMapping("/college") to map requests for
"/college" to StudentController. The following is the class:
@Controlle
@RequestMapping("/college")
public class StudentController {
 @Autowired StudentDao studentDao;

 @RequestMapping(value = "/students/{roleNumber}", method
 = RequestMethod.GET)
 public @ResponseBody Student retrieve(@PathVariable
 String roleNumber) {
 return studentDao.retrieve(roleNumber);
 }

 @RequestMapping(value = "/students/", method =
 RequestMethod.GET)
 public @ResponseBody List<Student> retrieveAll() {
 return new ArrayList<Student>(studentDao.
 retrieveAll());
 }
}

Note that the methods are annotated with @RequestMapping; this annotation
maps a URL to a method. An HTTP GET request with the /college/
students/n URL (where n is a roll number) will be handled by the
retrieve() method. We can change the method type to POST in order
to handle HTTP POST requests; the default method type is GET.

Chapter 6

[157]

In MVC, controller methods return a model and a view object or a logical
view name, but when we annotate a method with @ResponseBody, it implies
that the response will be sent back directly to the caller instead of getting
processed by a view.

8.	 Start the web application in Tomcat and type the URL http://
localhost:8080/RESTfulStudentWS/college/students/. Please change
the server name and port as per your Tomcat settings. You will get a JSON
response back for all the students; the following is the output:

9.	 Now pass a roll number to the URL to get a student's details. The following is
the output when we pass 7 as the roll number:

10.	 When we pass a roll number that doesn't exist, it returns null. The following
URL passes the number 1000 and gets the following output:

Developing SOA with Mockito

[158]

In real life application, the StudentDao class will be replaced by a real database
access class. The real DAO class makes unit testing the controller difficult. Separating
the data access layer from the business logic layer helps us change the database
without affecting the business logic layer and allows us to unit test the business logic
layer in isolation from the database. Suppose you are using the MySQL database
and you want to migrate to SQLServer, then you don't have to touch the business
logic layer. We'll use Mockito to isolate the DAO layer from the service layer; the
following are the steps to be performed:

1.	 Create a test class StudentControllerTest under the source folder test
and add mockito-all-1.9.5.jar to the lib folder under WEB-INF. The
controller class calls the studentDao class and Spring autowires the DAO
layer to the controller class. We need to modify the controller class to pass
as a setter from the JUnit tests. The following is the modified controller class
(other methods are skipped for brevity):
@Controller
@RequestMapping("/college")
public class StudentController {
 @Autowired
 private StudentDao studentDao;
 public void setStudentDao(StudentDao studentDao) {
 this.studentDao = studentDao;
 }
}

2.	 In the test, create a mock instance of the DAO class and pass it on to the
controller as a setter injection. The following is the test:
@RunWith(MockitoJUnitRunner.class)
public class StudentControllerTest {
 @Mock
 StudentDao studentDao;

 @InjectMocks
 StudentController controller;
}

The @RunWith(MockitoJUnitRunner.class) annotation allows us
to use the @Mock annotation to automatically mock the objects. The
@InjectMocks annotation injects the mock objects as a setter, constructor,
or property injection.

Chapter 6

[159]

3.	 Now, stub the retrieveAll method of the DAO class to return the students.
The following is the modified test:
@RunWith(MockitoJUnitRunner.class)
public class StudentControllerTest {
 @Mock
 StudentDao studentDao;

 @InjectMocks
 StudentController controller;

 @Before
 public void setUp(){
 Student student = new Student();
 student.setClassName("X");
 student.setEmailId("email@mail.com");
 student.setName("sujoy");
 student.setRoleNumber("7");
 Collection<Student> studentColl = new ArrayList
 <Student>();
 studentColl.add(student);
 when(studentDao.retrieveAll()).thenReturn(studentColl);

 }
 @Test
 public void retrieves_students() throws Exception {
 List<Student> retrieveAll = controller.retrieveAll();
 assertFalse(retrieveAll.isEmpty());
 }
}

4.	 Similarly, add more tests to verify that a specific student's details are
retrieved when the roll number matches what is passed, and, also, null is
returned when the roll number doesn't match. The following is the test:

 @Test
 public void retieves_a_student() throws Exception {
 when(studentDao.retrieve(eq("100"))).thenReturn(new
 Student());
 assertNotNull(controller.retrieve("100"));
 }

 @Test
 public void when_invalid_role_number_returns_null(){
 assertNull(controller.retrieve("100"));
 }

Developing SOA with Mockito

[160]

Summary
This chapter covered web services, explored SOAP and RESTful web services with
examples, and created JUnit tests for the web services with Mockito.

The next chapter, Unit Testing GWT Code with Mockito, covers building web
applications with Google Web Toolkit (GWT), GWT development patterns,
and JUnit testing GWT modules with Mockito.

Unit Testing GWT Code
with Mockito

"The secret of change is to focus all of your energy, not on fighting the old, but on
building the new."

– Socrates

In today's world, Ajax plays an essential role in web application development.
Google Web Toolkit (GWT) offers internationalization, cross-browser compatibility,
Java coding, hosted mode for unit testing the client component in isolation from
the server-side component, and so many things, for free. Unit testing the client-
side business logic and building a JUnit safety net around the GWT code is very
important for code quality and code maintenance. GWT code works with different
Document Object Model (DOM) widgets and events; business logic gets tied up
with the DOM widgets and events and makes it impossible to write unit test for the
business logic. Mockito plays a key role in isolating the DOM widgets and events
from the logic.

This chapter provides an overview of Ajax/GWT, explains the Model View
Presenter (MVP) pattern and loose coupling, and provides examples and
strategies to mock GWT widgets using Mockito. The following topics are
covered in this chapter:

•	 AJAX/GWT overview
•	 Developing a small GWT application with the MVP pattern
•	 Unit testing MVP with Mockito

Unit Testing GWT Code with Mockito

[162]

Exploring Ajax and GWT
AJAX stands for Asynchronous JavaScript and XML. Ajax allows content on web
pages to update immediately when a user performs any action, unlike an HTTP
request, where users must wait for a whole new page to load and be rendered by the
web browser. Conventional web applications transmit information to and from the
server using synchronous requests. Users fill out a form, hit submit, and get directed
to a new page with new information from the server. The user cannot do anything
with the web page until the response is back from the server; this means the user is
blocked while the request is being processed. In Ajax, JavaScript makes a request
to the server, interprets the response, and updates the current screen. The user
never gets to know that anything was even transmitted to the server, as the user can
continue to use the application while the JavaScript requests information from the
server in the background.

Ajax combines numerous tools, such as JavaScript, Dynamic HTML (DHTML),
XML, Cascading Style Sheets (CSS), JSON, the DOM, and the Microsoft object,
XMLHttpRequest.

The following JavaScript snippet explains an Ajax call and how to handle the result
in a JavaScript callback method:

function ajaxFunction() {
 var xmlhttp;
 if (window.XMLHttpRequest) {
 // code for IE7+, Firefox, Chrome, Opera, Safari
 xmlhttp=new XMLHttpRequest();
 } else if (window.ActiveXObject) {
 // code for IE6, IE5
 xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");
 } else {
 alert("Your browser does not support XMLHTTP!");
 }
 xmlhttp.onreadystatechange=function() {
 if(xmlhttp.readyState == 4) {
 // 200 is a successful return
 if(xmlhttp.status == 200){
 alert(xmlhttp.responseText);
 }else{
 alert('Error: '+ xmlhttp.status);
 }
 }
 }
 xmlhttp.open("GET","time.asp",true);
 xmlhttp.send(null);
}

Chapter 7

[163]

The xmlhttp.responseText object contains the server response. It could be an
document, a simple text, or JSON data. The client-side JavaScript has to process
the data as per requirement. To know more about Ajax, visit the following URL:

https://developer.mozilla.org/en/docs/AJAX

GWT is a development toolkit for building and optimizing complex browser-based
RPC applications. The goal of GWT is to enable productive development of high-
performance web applications without the developer having to be an expert in
browser quirks, XMLHttpRequest, and JavaScript.

The preceding Ajax example checks the browser version, creates the request object,
and makes an asynchronous call. The callback checks the status of the response
and processes the response to bind the data to the appropriate DOM object. Ajax
response processing needs special care as it handles lots of potential error cases due
to network and asynchrony (plus browser incompatibilities), and adds complexity.
Maintaining JavaScript code is very difficult as it is dynamic in nature, and because
there is no modularization; even the inheritance system using prototype inheritance
is both weak and poorly understood. There is no encapsulation, due to which,
writing unit tests for JavaScript is not easy. Also, JavaScripts are browser sensitive as
each browser doesn't support the same set of JavaScript APIs. GWT provides cross-
browser support; we build the application in Java and the GWT compiler translates
the Java code into JavaScript that runs on all common browsers. As the code is
written in Java, we can write unit tests, refactor code, reuse our existing Java skills,
share code with other Java codebases, use Java tools, and gain the things that the
Java language is good at, such as static typing and strong OO designs, and build a
maintainable software in Java using GWT.

The following are the main advantages of GWT:

•	 As it is written in Java, it gets Java tool supports such as refactoring,
unit testing, seamless integration with continuous integration tools,
and Java documentation

•	 The GWT compiler generates optimized JavaScript code that helps in faster
client-side JavaScript execution and performance

•	 GWT provides cross-browser support; so if your code runs fine in one
browser, it will run fine in other common browsers as well

•	 Maintainable application can be developed using GWT, for example, MVP,
MVC, and event bus

•	 Decent library support and third-party widgets for complex UI development
•	 Java code can be debugged; the GWT-hosted mode allows us to debug

client-side code and also helps us to unit test JavaScript code in isolation
from the server code

https://developer.mozilla.org/en/docs/AJAX

Unit Testing GWT Code with Mockito

[164]

Visit http://www.gwtproject.org/ for more information. The next section will
explore the MVP pattern.

Learning the MVP pattern
Building an application in an unplanned way suffers many problems, such as adding
new features, making a huge effort as the architecture becomes rigid, maintaining the
software (activities such as bug fixing) can turn into a nightmare, white box testing
or unit testing the code becomes very difficult, and conflict and integration issues
when many people work with the same or similar features. Generally, if no thought
is given to refactoring as you go, the architecture may become a big ball of mud, and
without planning, you may end up with a poor structure that might become difficult
to change. To overcome these issues, we can employ many design patterns, such as
MVC and MVP. GWT development goes very well with the MVP pattern as it allows
loose coupling and separation of concerns.

The MVP approach divides the code into layers that solve the issues with code. MVP
believes in separation of concerns and proposes the following logical layers:

•	 Model: A model encompasses business objects or data.
•	 View: A view contains all of the UI components that make up our

application. This includes any tables, labels, buttons, textboxes, and so on.
Views are responsible for the layout of the UI components and have no
notion of the model. That is to say a view doesn't know that it is displaying
a house or kangaroo; it simply knows that it has a label, two textboxes, and
two buttons that are organized in a vertical or horizontal fashion.
Switching between views is tied to the history management within the
presentation layer.

•	 Presenter: A presenter manages the views while updating the models when
necessary. A presenter contains all of the logic for the application, including
history management, view transition, and data synchronization via Remote
Procedure Calls (RPCs) back to the server. In general, every view is driven
by a presenter and it handles events that are sourced from the UI widgets
within the view. RPC is an inter-process communication, which allows
the GWT code to cause a Java process or procedure to execute in another
address space.

http://www.gwtproject.org/

Chapter 7

[165]

The following figure represents the MVP components:

View implements

the IView

IView Presenter

View Model

Presenter defines

a View

Presenter has a

IView

Presenter

has

a model

The presenter contains a view interface and a model. A concrete view is created and
passed to the presenter; the presenter doesn't know about the concrete view, but it
can access the methods of the view through the view interface. The view interface
defines methods to render data, update the view, or access a DOM component of
the view, but the interface should not return a low-level DOM component to the
presenter. If a view contains a button, the interface should define a method to get
hold of the button, but the method shouldn't return the button type; instead, it
should return a high-level DOM component, such as clickable. The view doesn't
handle the DOM events; the presenter implements the DOM event handling; for
example, it will create a click event handler and set it to the button's handler list. That
way, the view doesn't contain any logic. The presenter manages event handling and
view transition. For example, consider a word processor application that has a view
for listing all documents and has an edit button for editing a selected document.
On the edit button, when you click on current (the list documents presenter), the
presenter needs to change the view to the edit mode and open the document for
editing. The list document presenter will fire an event so that another presenter can
handle the edit operation. An edit document presenter will take care of the view. The
presenter can update the model and send it to view for updating the view, such as a
presenter making an asynchronous call to the server to get the updated stock price;
on service callback, it will update the model with the latest data and call the view to
update the new information.

The next section will demonstrate a GWT application and explain the MVP details.

Unit Testing GWT Code with Mockito

[166]

Developing a GWT application using MVP
We'll develop an application in Eclipse. Visit the following URL to download the
Google Plugin for Eclipse:

https://developers.google.com/eclipse/docs/download

Install the plugin and create a new web application. The following screenshot
shows this:

A new application wizard will appear on the screen. To create a new web
application, perform the following steps:

1.	 Enter the project name as OutstandingBills and the package name as com.
packt.billing.

2.	 Check the Google SDKs checkbox and select the default SDK radio button.
3.	 If you have downloaded a separate GWT binary, provide the path and

configure the SDK. Also, check the Generate project sample code checkbox;
it will create the necessary files we need to develop a GWT application. We'll
change the filenames as required.
The following screenshot displays the settings:

https://developers.google.com/eclipse/docs/download

Chapter 7

[167]

The preceding steps will generate the following project structure:

4.	 Open the OutstandingBill.gwt.xml file; this file contains the project
metadata, for example, the <entry-point> classname. The EntryPoint
is the starting point in GWT applications.

Unit Testing GWT Code with Mockito

[168]

5.	 Open the com.packt.billing.client.OutstandingBills entry-
point class. It implements the EntryPoint interface and overrides the
onModuleLoad() method. This method is invoked during a GWT
application loading.
GWT applications make asynchronous calls to the server and process
responses with service callbacks. When the server response comes back, a
callback processes the response. All callbacks implement the AsyncCallback
interface and the onSuccess() and onFailure() methods. The onFailure
method is called when the server encounters any error and throws an
exception or error. The onFailure method can take care of the server failure,
for example, it can show a proper error message to the user. The onSuccess
method is called when the server returns a response and no error occurs on
the server side.

6.	 Check that Eclipse has generated two interfaces, GreetingService and
GreetingServiceAsync, for service invocation. Conventionally, the
<ServiceName>Service interface defines the service methods and
extends the RemoteService interface as follows:
@RemoteServiceRelativePath("greet")
public interface GreetingService extends RemoteService {
 String greetServer(String name) throws IllegalArgument
 Exception;
}

A server-side class implements the interface.
The other <ServiceName>ServiceAsync interface redefines the method,
but all methods become void; yet they all take an additional parameter
called AsyncCallback:
public interface GreetingServiceAsync {
 void greetServer(String input, AsyncCallback<String>
 callback)
 throws IllegalArgumentException;
}

Note that greetServer() is a void method and it takes an additional
parameter's AsyncCallback<String> callback. If a service method returns
ArrayList<Integer>, the callback will look like AsyncCallback<ArrayLi
st<Integer>>. We would rather define the service interface and the async
interface relation as follows:
@RemoteServiceRelativePath("name")
public interface SomeService extends RemoteService {
 T someMethod(String name) throws E;
}

Chapter 7

[169]

In the preceding code, T is any Java type, such as object, integer, or string,
and E is any exception, such as IllegalStateException.
The async interface will look like the following code snippet:
public interface SomeServiceAsync {
 void someMethod (String input, AsyncCallback<T> callback)
 throws E;
}

7.	 The GWT compiler translates the Java code to JavaScript. Select the project
and click on the red-colored GWT Compile icon from the toolbar, or you can
right-click on the project and then select Google from the pop-up menu and
click on the GWT Compile menu item, as shown in the following screenshot:

The preceding step will compile the code and generate JavaScript under the
war folder; the following screenshot displays the location:

Note that the compilation has generated a JavaScript file called
outstandingbills.nocache.js. This JavaScript file is responsible for
rendering the application. From the HTML or JSP file, you need to provide
the path of the script file, as shown in the following line of code:

<script type="text/javascript" language="javascript" src
 ="outstandingbills/outstandingbills.nocache.js"></script>

Unit Testing GWT Code with Mockito

[170]

We'll now build an application to handle outstanding hotel bills. The user interface
will display a textbox and a Query Bill button. The user will enter a room number
and then hit the button to query the current outstanding bill. A pop up will be
displayed with the bill details and payment options. The following are the steps
to build the application:

1.	 Create a serializable class Bill in the com.packt.billing.client package,
and add the following members and getters/setters:
private String details;
private BigDecimal payable;

2.	 Create a service interface to retrieve the outstanding bills and make the
payment. Create a BillingService interface in the com.packt.billing.
client package with the following details:
@RemoteServiceRelativePath("bill")
public interface BillingService extends RemoteService {
 public Bill retrieve(String roomNumber);
 public boolean pay(String roomNumber, BigDecimal amount);
}

3.	 Create an async interface with the following information:
public interface BillingServiceAsync {
 public void retrieve(String roomNumber, AsyncCallback
 <Bill> callback);
 public void pay(String roomNumber, BigDecimal amount,
 AsyncCallback<Boolean> callback);
}

4.	 Create a service implementation class com.packt.billing.server.
BillingServiceImpl, implementing BillingService:
@SuppressWarnings("serial")
public class BillingServiceImpl extends RemoteServiceServlet
implements BillingService {
 @Override
 public Bill retrieve(String rommNumber) {
 // TODO Auto-generated method stub
 return null;
 }
 @Override
 public boolean pay(String roomNumber, BigDecimal amount)
 {
 // TODO Auto-generated method stub
 return false;
 }
}

Chapter 7

[171]

Usually, two separate projects should be created for the GWT service
and service implementation, namely, a contract project with service and
async interfaces, and an implementation project that implements the
service interface. Both the projects should be deployed in the
web/application server.

5.	 Modify the web.xml file under the war folder and add the following
entries to define the BillingServiceImpl servlet and to map the URL to
BillingServiceImpl. All HTTP requests with the /outstandingbills/
bill URL pattern will be mapped to the BillingServiceImpl servlet:
 <servlet>
 <servlet-name>billingServlet</servlet-name>
 <servlet-class>
 com.packt.billing.server.BillingServiceImpl
 </servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>billingServlet</servlet-name>
 <url-pattern>/outstandingbills/bill</url-pattern>
 </servlet-mapping>

6.	 Open the OutstandingBills class and replace all GreetingService
references with BillingService; remove everything from the
onModuleLoad() method. The following is the modified class:
public class OutstandingBills implements EntryPoint {

 private final BillingServiceAsync service = GWT
 .create(BillingService.class);

 /*** This is the entry point method. ***/
 @Override
 public void onModuleLoad() {
 }
}

Did you notice the service definition? The BillingServiceAsync interface
is created with GWT.create(BillingService.class). Basically, a remote
service proxy is created to talk to the server-side BillingServiceImpl class.
The BillingService interface is annotated with @RemoteServiceRelativeP
ath("bill"). Any service call will have the /bill token in the URL. We will
set up web.xml to map /bill to the BillingServiceImpl servlet.

Unit Testing GWT Code with Mockito

[172]

7.	 Now modify the BillingServiceImpl class to have some hardcoded room
numbers and bills. In constructor, populate a HashMap with room numbers
and payable bill amounts. We'll use room numbers from 1 to 5000 and
generate random payable amounts. The retrieve method will look up the
HashMap for the outstanding payable and the pay method will deduct the
amount from the HashMap. The following is the modified class:
 public class BillingServiceImpl extends Remote
 ServiceServlet implements BillingService {
 private Map<String, BigDecimal> billMap = new
 HashMap<String, BigDecimal>();

 public BillingServiceImpl() {
 Random random = new Random();
 for (int i = 1; i < 5000; i++) {
 billMap.put(String.valueOf(i),new BigDecimal
 (random.nextInt(1000000)));
 }
 }
 @Override
 public Bill retrieve(String roomNumber) {
 BigDecimal payable = billMap.get(roomNumber);
 Bill bill = new Bill();
 if (payable != null) {
 bill.setDetails("Accomodation charge for room#" +
 roomNumber + " and payable amount="+ payable
 .doubleValue());
 }
 bill.setPayable(payable);
 return bill;
 }
 @Override
 public boolean pay(String roomNumber, BigDecimal
 amount) {
 BigDecimal payable = billMap.get(roomNumber);
 if(payable != null){
 payable = payable.subtract(amount);
 billMap.put(roomNumber, payable);
 return true;
 }
 return false;
 }
 }

Chapter 7

[173]

We will have two views—the initial query view with the room number
textbox and query button, and the bill details view with bill details, payment
textbox, and the make payment button; we'll call them QueryView and
DetailsView, respectively.
We've already talked about the view interfaces in the MVP section.
We'll create two view interfaces with abstract DOM elements, such as
HasClickHandlers or HasValue, to represent QueryView and DetailsView
in the com.packt.billing.client.view package.

8.	 We need the room number when the Query button is pressed. So we'll add
a method to the view to get the room number value. We need to intercept
the button click, so we'll add a method to the view to get a clickable object,
so that we can add a handler to the object to intercept the button click. The
view should not add any handlers to any DOM object. Rather, it should
provide the handle to the presenter to handle the logic. The following is the
QueryView body:
public interface QueryView {
 Widget asWidget();
 HasClickHandlers getQueryButton();
 HasValue<String> getRoomNumber();
}

The asWidget() method returns a widget. We'll add the widget to the
container. The getQueryButton() method represents the Query button
and the getRoomNumber() represents the value entered in the room number
textbox. Now we need the actual view implementation.

9.	 Create a QueryViewImpl class in the com.packt.billing.client.
view package, implementing the QueryView interface and extending the
Composite class:
A Composite class is a type of a widget that can wrap another widget, hiding
the wrapped widget's methods. When added to a panel, a Composite class
behaves exactly as it should if the widget it wraps had been added. The
Composite class is useful for creating a single widget out of an aggregate of
multiple other widgets contained in a single panel.

Unit Testing GWT Code with Mockito

[174]

We'll use the Label, TextBox, Button, FlexTable, and HorizontalPanel
GWT widgets to represent the view. The Label, TextBox, and Button
GWT widgets will be added to FlexTable. Flexible table creates cells on
demand. It can be jagged (that is, each row can contain a different number
of cells), and individual cells can be set to span multiple rows or columns.
The FlexTable widget will be added to the HorizontalPanel widget. The
following is the implementation. The beauty of having a view interface is that
you can change the view implementation without altering the code in the
presenter. You can use a Textbox or PasswordTextBox widget to represent
HasValue; the presenter won't know about the actual implementation.
This is how the view is abstracted from the presenter or rather, the view
is loosely coupled from the business logic/presenter:

public class QueryViewImpl extends Composite implements
 QueryView {
 private HorizontalPanel mainPanel;
 private TextBox roomNumber= new TextBox();
 private Button query = new Button("Query");

 public QueryViewImpl(){
 mainPanel = new HorizontalPanel();
 mainPanel.setWidth("100%");
 mainPanel.setHorizontalAlignment(HasHorizontalAlignment
 .ALIGN_LEFT);
 FlexTable mainTable = new FlexTable();
 mainTable.setWidth("100%");
 mainTable.setWidget(0, 0, new Label("Room#"));
 mainTable.setWidget(0, 1, roomNumber);
 mainTable.setWidget(0, 2, query);
 mainTable.getCellFormatter().setWidth(0, 0, "5%");
 mainTable.getCellFormatter().setWidth(0, 1, "10%");
 mainPanel.add(mainTable);
 initWidget(mainPanel);
 }

 @Override public Widget asWidget() {
 return this;
 }

Chapter 7

[175]

 @Override public HasClickHandlers getQueryButton() {
 return query;
 }

 @Override public HasValue<String> getRoomNumber() {
 return roomNumber;
 }
}

We'll define the view interface and implementation of DetailsView in the
next section when the application is up and running with QueryView.

10.	 Similarly, we need two presenters to present the views. We'll define a
Presenter interface in the presenter package with following details:
 public interface Presenter {
 void render(final HasWidgets container);
 }

HasWidgets represents a DOM element on the HTML page, such as a <div>
element. GWT renders UI components in that DOM container; we'll refer
to it as container. The QueryPresenter will present the initial view and
implement the Presenter interface. We need to pass a view interface to
the presenter, so we'll pass a QueryView instance to the QueryPresenter.
The following is the presenter:
public class QueryPresenter implements Presenter {
 private final QueryView queryView;

 bv public QueryPresenter(QueryView queryView) {
 this.queryView = queryView;
 }
 @Override public void render(HasWidgets container) {
 container.clear();
 container.add(queryView.asWidget());
 }
}

In the next section, we'll create the DetailsPresenter to represent the
DetailsView.

Unit Testing GWT Code with Mockito

[176]

11.	 In a browser, we hit the back button to go back to the previous page. In GWT,
there is no previous page, as a single HTML/JSP page displays many views.
So to go back or forward to the previous or next view so that we can browse
the history. The com.google.gwt.user.client.History class represents
the browser history. This class allows you to interact with the browser's
history stack. Each item on the stack is represented by a single string referred
to as a token. You can create new history items (which have a token associated
with them when they are created), and you can programmatically force the
current history to move backward or forward.
History token change is handled by implementing the
ValueChangeHandler<T> interface:
 public interface ValueChangeHandler<T> extends
 EventHandler {
 void onValueChange(ValueChangeEvent<T> event);
 }

When a history token is changed, the ValueChangeHandler interface is
notified. However, before that, the handler needs to be registered to
History using the following syntax:

History.addValueChangeHandler(this);

12.	 We'll create an ApplicationController class. This class will implement
the Presenter interface and provide the concrete implementation of the
render() method. Also, the class will implement the ValueChangeHandler
interface and register itself to History to interact with the history. The
render method will put a new token START to the History stack to start the
view transition. The onValueChange(ValueChangeEvent event) method
will be invoked on History value change; this method will check the token
value START and create a new Presenter interface to display the initial view.
The following is the ApplicationController class:
public class ApplicationController implements Presenter,
 ValueChangeHandler<String>{

 private static final String BLANK = "";
 private static final String START = "START";
 private HasWidgets container;

 public ApplicationController(){
 History.addValueChangeHandler(this);
 }
}

Chapter 7

[177]

The render() method stores the container and checks the History token.
If the application is invoked the first time, the History stack will contain
a blank string, and then the render() method will add a new token item
"START" to the History stack. Otherwise, when you hit refresh, the current
state of the History stack is fired so that the same view is rerendered. That
way, a user doesn't lose any data. When a new item is pushed or a current
history item is fired, the history value changes and then the onValueChange
method is invoked:
 @Override
 public void render(HasWidgets container) {
 this.container = container;

 if (BLANK.equals(History.getToken())) {
 History.newItem(START);
 } else {
 History.fireCurrentHistoryState();
 }

 }

The onValueChange method checks the history token. If the token
is "START", it creates the QueryViewImpl view, instantiates the
QueryPresenter, and finally, calls the presenter.render() method
to display the view. For multiple views, the history token value will be
changed, and depending upon the token value, the appropriate presenter
will be instantiated and finally, the render() method will be invoked on
the presenter:

@Override public void onValueChange(ValueChangeEvent
 <String> event) {
 String token = event.getValue();
 container.clear();
 Presenter presenter = null;
 if (START.equals(token)) {
 presenter = new QueryPresenter(new QueryViewImpl());
 }
 if (presenter != null) {
 presenter.render(container);
 }
}

Unit Testing GWT Code with Mockito

[178]

13.	 Modify the onModuleLoad() method of the OutstandingBills EntryPoint
class to create an instance of ApplicationController and invoke the
render method with a DOM ID. The following is the modified method:
 @Override
 public void onModuleLoad() {
 Presenter presenter = new ApplicationController();
 presenter.render(RootPanel.get("dom"));
 }

14.	 Modify the OutstandingBills.html file to add a div with id="dom":
<html>
 <head>
 <meta http-equiv="content-type" content="text/html;
 charset=UTF-8">

 <link type="text/css" rel="stylesheet" href=
 "OutstandingBills.css">

 <script type="text/javascript" language="javascript"
 src="outstandingbills/outstandingbills.nocache.js"/>

 </head>

 <body>

 <iframe src="javascript:''" id="__gwt_historyFrame"
 tabIndex='-1'style="position:absolute;width:0;
 height:0;border:0">
 </iframe>

 <h1>Web Application Starter Project</h1>

 <div id="dom"></div>
 </body>
</html>

Note that the <script> tag loads the GWT script and the <iframe> tag
enables the history mechanism. If this entry is missing, the history token
management will not work and the MVP pattern's purpose will be violated.

Chapter 7

[179]

15.	 Right-click on the project and run it as GWT web application, then copy the
URL and paste it to a web browser. The following output will be displayed:

16.	 Now we have the application configured. The next step is to build the
DetailsView interface and enable the view transition. We'll start with the
new view. Create an interface DetailsView and add the following lines:
public interface DetailsView {
 Widget asWidget();
 HasClickHandlers getPaymentButton();
 HasClickHandlers getCloseButton();
 HasValue<String> getPaymentAmount();
 void populate(Bill bill);
}

The populate() method is used to populate the bill details to the UI,
the getCloseButton() method is used to get hold of the close button,
the getPaymentButton() method is for the payment button, the
getPaymentAmount() method is for the payment textbox, and the
asWidget method is used to return the composite.

17.	 Create the DetailsViewImpl class for displaying the details view.
The following is the code:
public class DetailsViewImpl extends Composite implements
 DetailsView {
 private VerticalPanel mainPanel;
 private TextBox amount = new TextBox();
 private Button payment = new Button("Pay");
 private Button close = new Button("Close");
 private Label desc = new Label();
 private Label dueAmt = new Label();

Unit Testing GWT Code with Mockito

[180]

 public DetailsViewImpl() {
 mainPanel = new VerticalPanel();
 mainPanel.setWidth("100%");

 FlexTable mainTable = new FlexTable();
 mainTable.setWidth("100%");

 mainTable.setWidget(0,0, new Label("Desc#"));
 mainTable.setWidget(0,1, desc);

 mainTable.setWidget(1,0, new Label("Due#"));
 mainTable.setWidget(1,1, dueAmt);

 mainTable.setWidget(2,0,new Label("Pay amount#"));
 mainTable.setWidget(2,1, amount);

 mainTable.setWidget(3,0, payment);
 mainTable.setWidget(3,1, close);

 mainTable.getCellFormatter().setWidth(0,0, "5%");
 mainTable.getCellFormatter().setWidth(0,1, "60%");

 mainTable.getCellFormatter().setWidth(1,0, "5%");
 mainTable.getCellFormatter().setWidth(1,1, "60%");

 mainTable.getCellFormatter().setWidth(2,0, "5%");
 mainTable.getCellFormatter().setWidth(2,1, "60%");

 mainTable.getCellFormatter().setWidth(3,0, "25%");
 mainTable.getCellFormatter().setWidth(3,1, "60%");

 mainTable.getCellFormatter().setAlignment(3, 0,
 HasHorizontalAlignment.ALIGN_RIGHT,
 HasVerticalAlignment.ALIGN_MIDDLE);

 mainTable.getCellFormatter().setAlignment(3, 1,
 HasHorizontalAlignment.ALIGN_LEFT,
 HasVerticalAlignment.ALIGN_MIDDLE);

 mainPanel.add(mainTable);
 initWidget(mainPanel);
 }

 @Override public Widget asWidget() {
 return this;

Chapter 7

[181]

 }

 @Override public HasClickHandlers getPaymentButton() {
 return payment;
 }

 @Override public HasValue<String> getPaymentAmount() {
 return amount;
 }

 @Override public void populate(Bill bill) {
 desc.setText(bill.getDetails());
 dueAmt.setText(""+bill.getPayable().doubleValue());
 }

 @Override public HasClickHandlers getCloseButton() {
 return close;
 }
}

GWT fires GwtEvents to indicate the completion of the task. The class, com.
google.gwt.event.shared.GwtEvent, represents the event. This is the
root of all GWT events. The user can create custom events to notify if a
view change is required (to interact with other views).
An event is always defined with an event handler such as the following:
public class SearchEvent extends GwtEvent
 <SearchEventHandler> {
}

Every event comes up with an event handling contract. This contract is
known as an event handler.
Event handlers extend a marker interface com.google.gwt.event.shared.
EventHandler.
The following is an example of an event handler contract:
public interface SearchEventHandler extends EventHandler {
 void onSearch(SearchEvent event);
}

Events are fired to an event bus class: com.google.gwt.event.shared.
HandlerManager.
HandlerManager (also known as event bus) is responsible for adding
handlers to event sources and associating those handlers to pass in events.

Unit Testing GWT Code with Mockito

[182]

The following code snippet is an example of firing events:
eventBus.fireEvent(new SearchEvent(getSearchText()));

The following is an example of event handling:
eventBus.addHandler(SearchEvent.TYPE, new
 SearchEventHandler() {
 public void onSearch(SearchEvent event) {
 doSearch(event.getRoomNumber());
 }
});

In an MVP context, when a presenter needs to notify a view change to
the system, it fires a GWT event.
The event handler associated with this event intercepts the event
and hands over the control to another presenter. This new presenter
renders a new view.

Our QueryView needs to notify the view change when the user hits
the Query button. We'll create a GWT event called SearchEvent
and a SearchEventHandler:
public class SearchEvent extends GwtEvent
 <SearchEventHandler> {
 private String roomNumber;

 public static Type<SearchEventHandler> TYPE = new
 Type<SearchEventHandler>();

 @Override
 public com.google.gwt.event.shared.GwtEvent.Type
 <SearchEventHandler> getAssociatedType() {
 return TYPE;
 }

 @Override
 protected void dispatch(SearchEventHandler handler) {
 handler.onSearch(this);
 }

 public String getRoomNumber() {
 return roomNumber;
 }

 public void setRoomNumber(String roomNumber) {

Chapter 7

[183]

 this.roomNumber = roomNumber;
 }

}

The event handler will look like this:

public interface SearchEventHandler extends EventHandler {
 void onSearch(SearchEvent event);
}

18.	 We'll modify the QueryPresenter to fire the SearchEvent with the
roomNumber when the user hits the Query button. To fire the event,
the presenter needs an event bus. Modify the constructor to pass a
HandlerManager instance. The following is the modified constructor:
public QueryPresenter(QueryView view,HandlerManager bus) {
 this.queryView = view;
 this.eventBus = bus;
 queryView.getQueryButton().addClickHandler(new
 ClickHandler() {
 @Override
 public void onClick(ClickEvent event) {
 SearchEvent searchEvent = new SearchEvent();
 searchEvent.setRoomNumber(queryView.getRoomNumber()
 .getValue());
 eventBus.fireEvent(searchEvent);
 }
 });
}

19.	 Modify the ApplicationController to create a HandlerManager instance
and pass it to the modified presenter. The following are the modified
constructor and class level members for roomNumber and HandlerManager:
 private HandlerManager eventBus;
 private String roomNumber;
 public ApplicationController(){
 History.addValueChangeHandler(this);
 this.eventBus = new HandlerManager(this);

 eventBus.addHandler(SearchEvent.TYPE, new Search
 EventHandler() {
 @Override
 public void onSearch(SearchEvent event) {
 roomNumber = event.getRoomNumber();
 History.newItem(SEARCH);
 }
 });
 }

Unit Testing GWT Code with Mockito

[184]

20.	 Create a DetailsPresenter to handle the view. The presenter
needs to make a service call to check the bill, so we need to pass the
BillingServiceAsync instance to the presenter, and we also need to pass
the roomNumber string for which the view will be rendered. The following
is the presenter:
public class DetailsPresenter implements Presenter {
 private final DetailsView detailsView;
 private final BillingServiceAsync billingService;
 private final String roomNumber;

 public DetailsPresenter(BillingServiceAsync
 billingService, DetailsView detailsView, String
 roomNumber) {
 this.detailsView = detailsView;
 this.billingService = billingService;
 this.roomNumber = roomNumber;
 }

 @Override
 public void render(final HasWidgets container) {
 container.clear();
 container.add(detailsView.asWidget());

 billingService.retrieve(roomNumber, new
 AsyncCallback<Bill>(){

 @Override
 public void onSuccess(Bill bill) {
 detailsView.populate(bill);
 }

 @Override
 public void onFailure(Throwable caught) {
 Window.alert("Error occured "+caught);
 }
 });
 }
}

The render() method makes a service call to get the bill information and
then passes that information to the view by making a call to the populate()
method.

Chapter 7

[185]

21.	 Modify the ApplicationController to intercept the history value change
for the Search token. Modify the constructor to inject the BillingService
interface:
public ApplicationController(BillingServiceAsync
 billingService){
 this.billingServiceAsync = billingService;
}

Modify the onValueChange() method to handle the Search history
token class.
@Override
public void onValueChange(ValueChangeEvent<String> event) {
 String token = event.getValue();
 container.clear();
 Presenter presenter = null;
 if (START.equals(token)) {
 presenter = new QueryPresenter(new QueryViewImpl(),
 eventBus);
 }

 if(SEARCH.equals(token)){
 presenter = new DetailsPresenter(billingServiceAsync,
 new DetailsViewImpl(), roomNumber);
 }
 if (presenter != null) {
 presenter.render(container);
 }
}

The following will be the output of the new changes:

Unit Testing GWT Code with Mockito

[186]

22.	 Modify the DetailsPresenter interface to handle the Pay and Close
button click. On the Pay button click, we'll make a service call, display
the message, and close the view. On the Close button click, we'll put a
START item to the history to go back to the initial state. The following is
the modified constructor:

public DetailsPresenter(BillingServiceAsync service,
 DetailsView view, String rn) {
 this.detailsView = view;
 this.billingService = service;
 this.roomNumber = rn;

 detailsView.getCloseButton().addClickHandler(new
 ClickHandler() {

 @Override public void onClick(ClickEvent event) {
 History.newItem("START");
 }
 });

 detailsView.getPaymentButton().addClickHandler(new
 ClickHandler() {

 @Override
 public void onClick(ClickEvent event) {
 String amount = detailsView.getPaymentAmount()
 .getValue();
 billingService.pay(roomNumber, new BigDecimal
 (amount), new AsyncCallback<Boolean>() {

 @Override
 public void onFailure(Throwable caught) {
 Window.alert("Error "+caught);
 }

 @Override
 public void onSuccess(Boolean result) {
 if(result){
 Window.alert("Posted payment");
 History.newItem("START");
 }else{
 Window.alert("Could not post payment");
 }
 }
 });
 }
 });
}

Chapter 7

[187]

We are done with MVP. We should add the validation logic for user entry fields for
blank or invalid input. For instance, an error message should be displayed when
the room number textbox is blank but a user hits the Query button, or when the
payment amount textbox is blank and a user hits the Pay button.

Unit testing the GWT code
MVP's loose coupling enables rapid development, as the view implementation,
server-side service implementation, and presenters are independent of each other.
Hence, developers can concentrate on different areas of the application without
stepping on each other, for instance, one can work on the server-side business
logic, work on the presentation layer logic, and implement the view logic. View
implementation doesn't contain any business logic other than UI components
and layout information. So no JUnit test is required for the view implementation;
only manual inspection is good enough. However, the presentation layer contains
business logic, such as, a user cannot post a negative amount while making the
payment for a bill or the payment amount cannot exceed the payable amount.
Mockito plays a key role in mocking DOM widgets and stubbing widget behaviors.
We'll refactor the DetailsPresenter class and extract the anonymous DOM
click handler out of the constructor and create a new handler class. The following
ClickHandler class performs the validation logic:

public class PaymentButtonClickHandler implements ClickHandler {
 private DetailsPresenter presenter;
 public PaymentButtonClickHandler(DetailsPresenter
 detailsPresenter) {
 this.presenter = detailsPresenter;
 }

 @Override
 public void onClick(final ClickEvent event) {
 String amount = presenter.getDetailsView().
 getPaymentAmount().getValue();
 if(amount == null || "".equals(amount)){
 Window.alert("Please enter a payment amount");
 return;
 }

 BigDecimal paymentAmt = null;
 try{
 double amtDbl = Double.parseDouble(amount);
 paymentAmt = new BigDecimal(amtDbl);
 }catch(NumberFormatException exception){

Unit Testing GWT Code with Mockito

[188]

 Window.alert("Please enter a valid payment amount");
 return;
 }
 if(paymentAmt.compareTo(BigDecimal.ZERO) <= 0){
 Window.alert("Please enter a positive payment amount");
 return;
 }

 if(presenter.getDetailsView().getOutstandingAmount()
 .compareTo(paymentAmt) < 0){
 Window.alert("Payment amount cannot exceed the payable
 amount");
 return;
 }
 ((Button)event.getSource()).setEnabled(false);
 presenter.makePayment(paymentAmt);
 }
}

Modify the DetailsPresenter class to call this click handler. Create a JUnit test
PaymentButtonClickHandlerTest under the test source folder and the com.
packt.billing.client.event package. You cannot mock the static call to the
Window.alert() method. If you just write Window.alert() in your JUnit test and
run the test, you will encounter an UnsatisfiedLinkError exception, as shown in
the following screenshot:

Chapter 7

[189]

We'll use PowerMock to disable the static calls to the Window.alert() method.
Add the associated JAR files to the project classpath and modify the test as follows:

@RunWith(PowerMockRunner.class)
@PrepareForTest(Window.class)
public class PaymentButtonClickHandlerTest {

 PaymentButtonClickHandler handler;
 @Mock
 DetailsPresenter mockPresenter;
 ArgumentCaptor<String> captor = null;
 @Before
 public void before() throws Exception{
 GWTMockUtilities.disarm();
 captor = ArgumentCaptor.forClass(String.class);
 handler = new PaymentButtonClickHandler(mockPresenter);
 mockStatic(Window.class);
 PowerMockito.doNothing().when(Window.class, "alert",
 captor.capture());
 }

 @After
 public void after(){
 GWTMockUtilities.restore();
 }

 @Test
 public void sanity() throws Exception {
 Window.alert("dd");
 }
}

Google provides the com.google.gwt.junit.GWTMockUtilities class to facilitate
testing without launching any web server. This class provides methods for disabling
and enabling GWT.create() behavior in isolation from the web server. The
GWTMockUtilities.disarm() behavior replaces the normal GWT.create() behavior
with a method that returns null instead of throwing a runtime exception. This is
to allow JUnit tests to mock classes that make GWT.create() calls in their static
initializers. GWTMockUtilities is not used with GWTTestCase and is not used to test
widgets themselves. Rather, it is to allow pure Java unit tests of classes that need to
manipulate widgets.

In our test, we need to create a mock button to represent the Payment button and
disable and re-enable the button within our handler code. So, we need to disarm the
static initialization.

Unit Testing GWT Code with Mockito

[190]

The mockStatic(Window.class) class disables the Window.alert calls.
The PowerMockito.doNothing().when(Window.class, "alert", captor.
capture()) method is used to capture the arguments passed to the alert method.
The following is the modified test with all the error conditions and happy path:

@RunWith(PowerMockRunner.class)
@PrepareForTest(Window.class)
public class PaymentButtonClickHandlerTest {

 PaymentButtonClickHandler handler;
 @Mock
 DetailsPresenter mockPresenter;
 ArgumentCaptor<String> captor = null;
 @Mock
 ClickEvent clickEvent;
 @Mock
 DetailsView detailsView;
 @Mock
 HasValue<String> payAmount;
 @Before
 public void before() throws Exception{
 GWTMockUtilities.disarm();
 when(mockPresenter.getDetailsView()).thenReturn(detailsView);
 when(detailsView.getPaymentAmount()).thenReturn(payAmount);
 handler = new PaymentButtonClickHandler(mockPresenter);
 mockStatic(Window.class);
 captor = ArgumentCaptor.forClass(String.class);
 doNothing().when(Window.class, "alert", captor.capture());
 }

 @After
 public void after(){
 GWTMockUtilities.restore();
 }

 @Test
 public void when_empty_payment_amount_then_raises_error() {
 handler.onClick(clickEvent);
 assertEquals(PLEASE_ENTER_A_PAYMENT_AMOUNT,captor.getValue());
 }

 @Test
 public void when_invalid_payment_amount_then_raises_error() {
 when(payAmount.getValue()).thenReturn("abc$$$");

Chapter 7

[191]

 handler.onClick(clickEvent);
 assertEquals(PLEASE_ENTER_A_VALID_PAYMENT_AMOUNT,
 captor.getValue());
 }

 @Test
 public void when_zero_payment_amount_then_raises_error(){
 when(payAmount.getValue()).thenReturn("0.00");
 handler.onClick(clickEvent);
 assertEquals(PLEASE_ENTER_A_POSITIVE_PAYMENT_AMOUNT,
 captor.getValue());
 }

 @Test
 public void when_negative_payment_amount_then_raises_error(){
 when(payAmount.getValue()).thenReturn("-10.00");
 handler.onClick(clickEvent);
 assertEquals(PLEASE_ENTER_A_POSITIVE_PAYMENT_AMOUNT,
 captor.getValue());
 }

 @Test
 public void when_payment_amount_exceeds_the_payable_then_raises
 _error(){
 when(payAmount.getValue()).thenReturn("100.00");
 when(detailsView.getOutstandingAmount()).thenReturn(new
 BigDecimal("50.00"));
 handler.onClick(clickEvent);
 assertEquals(PAYMENT_AMOUNT_CANNOT_EXCEED_THE_PAYABLE_AMOUNT
 ,captor.getValue());
 }

 @Test
 public void when_payment_amount_not_greater_than_payable_amount
 _then_posts_the_payment() throws Exception {
 Button pay = PowerMockito.mock(Button.class);

 PowerMockito.when(clickEvent.getSource()).thenReturn(pay);
 when(payAmount.getValue()).thenReturn("100.00");
 when(detailsView.getOutstandingAmount()).thenReturn(new
 BigDecimal("200.00"));
 handler.onClick(clickEvent);
 verifyStatic(Mockito.never());
 }
}

Unit Testing GWT Code with Mockito

[192]

So far, we covered the noninvasive, POJO-based Java unit tests for GWT, but Google
provides a GWTTestCase class for invasive unit testing that acts as a bridge between
the JUnit environment and the GWT environment. The GWTTestCase class extends
the TestCase class. Running a compiled GWTTestCase subclass under JUnit launches
the HtmlUnit browser, which serves to emulate your application behavior during
test execution.

The typical way to set up a JUnit test case class is to have it extend TestCase and
then run it with the JUnit TestRunner class. It is a convention to begin the name
of all test methods with the prefix test. Now we use JUnit 4, which supports
noninvasive, POJO-based unit testing and allows us to use annotations instead of
conventions, such as a test should be started with the prefix test. So GWTTestCase
is not recommended.

The HtmlUnit browser is an open source, GUI-less browser written in 100 percent
Java. As HtmlUnit does not involve any native code, debugging GWT tests in
development mode can be done entirely in a Java debugger. The HtmlUnit browser
does not require firing up a new browser process; the HtmlUnit browser instances
just run as new threads. To learn more about HtmlUnit or GWTTestCase, visit
http://www.gwtproject.org/.

Summary
This book has taught you the essentials of Mockito, such as Mockito basics, advanced
usage of Mockito APIs, writing BDD with Mockito, handling legacy code with
Mockito, mocking web services, and finally, this chapter covered the AJAX and GWT
overview, discussed the MVP pattern, built an example of MVP with GWT, isolated
DOM widgets from client-side business logic using PowerMockito, and disabled
static DOM calls with PowerMockito and GWTMockUtility.

Now you should be able to isolate your business logic from external dependencies
using Mockito.

http://www.gwtproject.org/

Index
Symbols
@captor annotation

example 87
@InjectMocks annotation

example 88, 89
@Mock annotation 44
@spy annotation

example 88

A
acceptance tests

URL 100
advanced Mockito 66
advanced Mockito APIs

annotations 87
arguments, verifying

ArgumentCaptor used 81
default Mockito settings,

modifying 89-92
doCallRealMethod method 79
doNothing method 79
doReturn() method 79, 80
exception, throwing from

void methods 72-74
inline stubbing 92, 93
invocation order, verifying 84, 85
mock details, determining 93, 94
mock objects, resetting 92
objects, spying 85, 86
void method callbacks 75-79
void methods 66-72

agile methodologies
about 99
URL 99

agile team
scoping feature 99

AJAX
exploring 162-164
URL 163

Apache Axis
JAX-WS, creating with 141-144

Apache Tomcat
JAX-WS, creating with 141-144
URL, for installation 140

ArgumentCaptor object
used, for verifying arguments 81

argument matchers
using 48, 49

arguments
verifying, ArgumentCaptor object used 81

arrays
working with 83

Asynchronous JavaScript and
XML. See AJAX

B
bar object 93
BDD

about 95
bottom-up strategy, exploring 97
exercising, with Mockito 100-102
exploring 99, 100
gaps, finding 98
top-down strategy, exploring 96, 97
URL 102

BDD syntax
about 102
willAnswer() method 102
willCallRealMethod() method 102

[194]

will() method 102
willReturn() method 102
willThrow() method 102

Behavior-driven Development. See BDD
benefits, mocking 38
bottom-up approach

exploring 97
used, for developing JAX-WS 140

builder pattern 20

C
Cascading Style Sheets (CSS) 162
CGLib

URL 60
comparison matchers

about 50
equalTo 51
is 51
not 51

compound value matchers
about 51-53
allOf 52
anyOf 52
both 52
either 52
not 52

constructor injection 87
contract-first web services.

See top-down approach
contract-last web services.

See bottom-up approach
custom ArgumentMatcher class

comparison matchers 50
compound value matchers 51-54
working with 50

D
database call

mocking, reasons 77
DDD

about 99
URL 99

default Mockito settings
CALLS_REAL_METHODS 90

modifying 89-92
RETURNS_DEEP_STUBS 90-92
RETURNS_DEFAULTS 89, 90
RETURNS_MOCKS 89-91
RETURNS_SMART_NULLS 89, 90

defined constructor
suppressing, in PowerMock 112

DemoController servlet 66
DispatcherServlet class 152
doCallRealMethod method 79
Document Object Model (DOM) 161
Domain-driven Development. See DDD
doNothing() method 79
doReturn() method

exploring 79, 80
dummy objects

using 11-15
Dynamic HTML (DHTML) 162

E
EasyMock 102
Eclipse

JAX-WS, exploring with 139-149
URL, for downloading 11
URL, for installation 140

enrollToCourse method 19
event handler 181
exceptions

throwing 47, 48
throwing, from void methods 72-74

F
fake object

about 126
implementing 26-33

faking 126
field injection 87
final classes

stubbing, in PowerMock 116, 117
working with, for unit test 130-132

final methods
stubbing, in PowerMock 115, 116
working with, for unit test 126, 127

[195]

G
Gang of Four (GoF) 128
gaps, BDD

finding 98
generic collection arguments

working with 82
Google Plugin for Eclipse

URL, for downloading 166
Google Web Toolkit (GWT)

about 161
advantages 163
exploring 162-164

GWT application
developing, MVP pattern used 166-187

GWT code
about 161
unit testing, performing

with Mockito 187-192

H
Hamcrest 50
hamcrest matchers 49
HtmlUnit browser 192
HttpServlet 66
HTTP status codes 151
Hypermedia as the Engine of Application

State (HATEOAS) 151
HyperText Transfer Protocol (HTTP) 138

I
inline stubbing

working with 92, 93
invocation order

verifying 84, 85

J
Java API for RESTful Web Services.

See JAX-RS
Java API for XML Web Services.

See JAX-WS
JavaScript Object Notation (JSON) 139
JAX-RS

about 138

reference link 139
JAX-WS

about 138
creating, with Apache Axis 141-144
creating, with Apache Tomcat 141-144
developing, using bottom-up approach 140
developing, using top-down approach 140
exploring, with Eclipse 139-149
reference link 139

JBehave
URL 102

jMock 102

L
legacy 103
legacy code

about 103, 104
reference link 104

LoginController class 66, 67

M
matchers

reference link 49
Maven repository

URL 40
media types, RESTful web services 151
method calls

answering 57-59
no-more interactions, verifying 56
retrieve method 42-44
stubbing 40-47
thenAnswer() method 46
thenCallRealMethod() method 46
thenReturn() method 46
thenReturn(value) method 46
thenThrow() method 46
verifying 55
when() method 46
zero interactions, verifying 56

method calls, verifying
about 54
atLeast(int minNumberOfInvocations) 55
atLeastOnce() 55
atMost(int maxNumberOfInvocations) 55
never() 55

[196]

only() 55
timeout(int millis) 56
times(int wantedNumberOfInvocations) 55

MethodInvocation class 20
methods

suppressing, in PowerMock 113, 114
mock details

determining 93, 94
mocking

benefits 38
Mockito

about 36, 65
architecture 60-63
BDD, exercising with 100-102
dependency, adding 39
references 36, 39
significance, realizing 37, 38
unit test, designing 118
URL, for variable argument capture 83
used, for unit testing GWT code 187-192
working with 39

Mockito annotations
@Captor 87
@InjectMocks 87-89
@Spy 87, 88

mock objects
about 23
resetting 92

model, MVP pattern 164
Model View Presenter (MVP) pattern

about 161-165
model 164
presenter 164
used, for developing GWT

application 166-187
view 164

N
new operator

usage concerns 132, 133

O
objects

spying 85, 86

operations/HTTP headers
DELETE operation 151
GET operation 150
POST operation 150
PUT operation 150

P
Plain Old Java Object (POJO) 15
PowerMock

about 105
defined constructor, suppressing 112
final classes, mocking 116, 117
final methods, stubbing 115, 116
methods, suppressing 113, 114
private methods, stubbing 114, 115
static blocks, suppressing 109, 110
static methods, stubbing 108, 109
super class constructor,

suppressing 110-112
URL 106
working with 105-107

PowerMock's distribution
URL, for downloading 106

presenter, MVP pattern 164, 165
private methods

stubbing, in PowerMock 114, 115
working with, for unit test 123-125

R
Remote Procedure Calls (RPCs) 164
render() method 177
Representational State Transfer web

services. See RESTful web services
request.getServletPath() method 80
resource URLs 150
RESTful web services

about 139
building, with Spring Framework 152-159
developing 149
URL, for details 151

RESTful web services, components
HTTP status codes 151
media types 151
operations/HTTP headers 150
resource URLs 150

[197]

S
Service-oriented Architecture. See SOA
servlet-api.<version number>.jar

URL, for downloading 66
setter injection 87
Simple Object Access Protocol (SOAP) 138
SOA

about 137, 138
URL 138

software delivery risks
best practices, for minimizing 98

software development
stakeholders 96

Spring Framework
RESTful web services,

building with 152-159
Spring MVC 152
stakeholders, software development

analysts 96
customers 96
designers/architects 96
developers 96
maintenance team 96
managers 96
operational folks 96
testers 96

static blocks
exploring, for unit test 134
suppressing, in PowerMock 109, 110

static methods
mock circumstances 109
stubbing, in PowerMock 108, 109

static variables
exploring, for unit test 134

stubs
working with 15-18

StudentService class 19
super class constructor

suppressing, in PowerMock 110-112

T
TDD

about 99
URL 99

test automation
benefits 8

test doubles
about 10
dummy objects 11-15
fake objects 26-33
mock objects 23-25
spy 18-22
stubs 15-18

Test-driven Development. See TDD
test failure scenario

demonstrating 23-25
testing impediments

exploring 104, 105
testing-unfriendly behaviors

examples 38
test spy

exploring 18-22
top-down approach

exploring 96, 97
used, for developing JAX-WS 140

U
Uniform Resource Identifiers (URIs) 149
unit tests

characteristics 9
constructor issues, identifying 119-121
designing, with Mockito 118
final classes, working with 130-132
final methods, working with 126, 127
initialization issues, realizing 122, 123
new operator, usage concerns 132, 133
performing, on GWT code

with Mockito 187-192
principles 36, 37
private methods, working with 123-125
static blocks, exploring 134
static method issues, exploring 128-130
static variables, exploring 134
working with 8

V
variable arguments

working with 83
verify() method 54

[198]

verifyNoMoreInteractions (Object, mocks)
method 56

verifyZeroInteractions (object, mocks)
method 56

view, MVP pattern 164
void method callbacks

working with 75-79
void methods

doGet() 67
doPost() 67
exception, throwing from 72-74
process() 68-70
verify() 68
working with 66-72

W
web services

about 138
characteristics 138

Web Services Description
Language. See WSDL

wildcard matchers
working with 49, 50

WSDL 138
WSDL document, elements

binding 139
message 139
operation 139
port 139
port type 139
service 139
types 139

Y
YAGNI (You Aren't Going to Need It)

principle 99

Thank you for buying
Mockito Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Test-Driven Development
with Mockito
ISBN: 978-1-78328-329-3 Paperback: 172 pages

Learn how to apply Test-Driven Development and
the Mockito framework in real life projects, using
realistic, hands-on examples

1.	 Start writing clean, high-quality code to apply
design patterns and principles.

2.	 Add new features to your project by
applying Test-first development—JUnit 4.0
and Mockito framework.

3.	 Make legacy code testable and clean up
technical debts.

Instant Eclipse Application Testing
How-to
ISBN: 978-1-78216-324-4 Paperback: 62 pages

An easy-to-use guide on how to test Java applications
of any scope using Eclipse IDE

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2.	 Learn how to install Eclipse and Java for
any platform.

3.	 Get to grips with how to efficiently navigate in
the Eclipse environment using shortcuts.

Please check www.PacktPub.com for information on our titles

Instant Mockito
ISBN: 978-1-78216-797-6 Paperback: 66 pages

Learn how to create stubs, mocks, and spies and verify
their behavior using Mockito

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2.	 Stub methods with callbacks.

3.	 Verify the behavior of test mocks.

4.	 Assert the arguments passed to functions
of mocks.

Instant Mock Testing with
PowerMock
ISBN: 978-1-78328-995-0 Paperback: 82 pages

Discover unit testing using PowerMock

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2.	 Understand how to test unit code using
PowerMock, through hands-on examples.

3.	 Learn how to avoid unwanted behavior
of code using PowerMock for testing.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Exploring Test
Doubles
	Working with unit tests
	Understanding test doubles
	Using dummy objects
	Working with stubs
	Exploring a test spy
	Getting started with mock objects
	Implementing fake objects – simulators
	Summary

	Chapter 2
: Socializing with Mockito
	Exploring Mockito
	Exploring unit test qualities
	Realizing the significance of Mockito

	Working with Mockito
	Adding a Mockito dependency
	Stubbing method calls
	Throwing exceptions
	Using argument matchers
	Working with wildcard matchers
	Working with a custom ArgumentMatcher class

	Verifying method calls
	Verifying zero and no-more interactions

	Answering method calls

	Understanding the Mockito architecture
	Summary

	Chapter 3
: Accelerating Mockito
	Learning advanced Mockito features
	Working with void methods
	Throwing exceptions from void methods
	Working with void method callbacks
	Learning doCallRealMethod and doNothing
	Exploring doReturn
	Verifying arguments using ArgumentCaptor
	Working with generic collection arguments
	Working with variable arguments and arrays

	Verifying an invocation order
	Spying objects
	Exploring Mockito annotations
	Changing the default Mockito settings
	Resetting mock objects
	Working with inline stubbing
	Determining mock details

	Summary

	Chapter 4
: Behavior-driven Development with Mockito
	Understanding the context of BDD
	Exploring the top-down strategy
	Exploring the bottom-up strategy
	Finding the gaps

	Exploring BDD
	Exercising BDD with Mockito
	The BDD syntax

	Summary

	Chapter 5
: Unit Testing the Legacy Code with Mockito
	Understanding the legacy code
	Exploring testing impediments
	Working with PowerMock
	Stubbing static methods
	Suppressing static blocks
	Suppressing a superclass constructor
	Suppressing our own constructor
	Suppressing methods
	Stubbing private methods
	Stubbing final methods
	Mocking final classes

	Designing for testability with Mockito
	Identifying constructor issues
	Realizing initialization issues
	Working with private methods
	Working with final methods
	Exploring static method issues
	Working with final classes
	Learning new concerns
	Exploring static variables and blocks

	Summary

	Chapter 6
: Developing SOA with Mockito
	Exploring Service-oriented Architecture (SOA)
	Working with web services
	Exploring JAX-WS with Eclipse
	Developing a RESTful web service
	Building a RESTful web service with Spring Framework

	Summary

	Chapter 7
 : Unit Testing GWT Code with Mockito
	Exploring Ajax and GWT
	Learning the MVP pattern
	Developing a GWT application using MVP
	Unit testing GWT Code with Mockito
	Summary

	Index

