
www.it-ebooks.info

http://www.it-ebooks.info/

Testing with JUnit

Master high-quality software development driven
by unit tests

Frank Appel

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Testing with JUnit

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1240815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-660-3

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Frank Appel

Reviewers
Stefan Birkner

Jose Muanis Castro

John Piasetzki

Acquisition Editor
Sonali Vernekar

Content Development Editor
Merwyn D'souza

Technical Editor
Humera Shaikh

Copy Editors
Sarang Chari

Sonia Mathur

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Jason Monteiro

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Frank Appel is a stalwart of agile methods and test-driven development in
particular. He has over 2 decades of experience as a freelancer and understands
software development as a type of craftsmanship. Having adopted the test first
approach over a decade ago, he applies unit testing to all kinds of Java-based
systems and arbitrary team constellations. He serves as a mentor, provides training,
and blogs about these topics at codeaffine.com.

I'd like to thank the reviewers, John Piasetzki, Stefan Birkner, and
Jose Muanis Castro, and the editors, Sonali Vernekar, Merwyn
D'souza, and Humera Shaikh, who spent time and effort to point
out my errors, omissions, and sometimes unintelligible writing. In
particular, I would like to thank my friend Holger Staudacher, who
helped in the reviewing process of the book.
Thanks to all of you for your valuable input and support!

www.it-ebooks.info

codeaffine.com
http://www.it-ebooks.info/

About the Reviewers

Stefan Birkner has a passion for software development. He has a strong
preference for beautiful code, tests, and deployment automation. Stefan is a
contributor to JUnit and maintains a few other libraries.

Jose Muanis Castro holds a degree in information systems. Originally from the
sunny Rio de Janeiro, he now lives in Brooklyn with his wife and kids. At The New
York Times, he works with recommendation systems on the personalization team.
Previously, he worked on CMS and publishing platforms at Globo.com in Brazil.

Jose is a seasoned engineer with hands-on experience in several languages. He's
passionate about continuous improvement, agile methods, and lean processes. With
a lot of experience in automation, from testing to deploying, he constantly switches
hats between development and operations. When he's not coding, he enjoys riding
around on his bike. He was a reviewer on the 2014 book, Mastering Unit Testing Using
Mockito and JUnit, Packt Publishing. His Twitter handle is @muanis.

I'm thankful to my wife, Márcia, and my kids, Vitoria and Rafael,
for understanding that I couldn't be there sometimes when I was
reviewing this book.

www.it-ebooks.info

Globo.com
http://www.it-ebooks.info/

John Piasetzki has over 15 years of professional experience as a software
developer. He started out doing programming jobs when he was young and
obtained a bachelor of science degree in computer engineering. John was fortunate
enough to get his start in programming by contributing to WordPress. He continued
by working at IBM on WebSphere while getting his degree. Since then, he has moved
on to smaller projects. John has worked with technologies such as Python, Ruby,
and most recently, AngularJS. He's currently working as a software developer at
OANDA, a foreign exchange company.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[i]

Table of Contents
Preface	 v
Chapter 1: Getting Started	 1

Why you should busy yourself with unit tests	 1
Reducing the defect rate	 2
Improving the code quality	 3
Increasing the development pace	 5
Enhancing the specification density	 6
Boosting confidence and courage	 6

Setting the table	 7
Choosing the ingredients	 7
Organizing your code	 8

Serving the starter	 10
Introducing the example app	 10

Understanding the nature of a unit test	 12
Writing the first test	 14
Evaluating test results	 17
Writing tests first	 18

Summary	 20
Chapter 2: Writing Well-structured Tests	 21

The four phases of a unit test	 21
Using a common test structure	 21
Setting up the fixture	 24
What goes up must come down	 27
Verification	 28

Choosing the next functionality to test	 29
Start with the happy path	 29
Conclude with corner cases	 30
After the war	 32

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Getting the test names right	 33
Test prefix	 33
Behavior-expressing patterns	 34
Reducing names to the essentials	 36

Summary	 38
Chapter 3: Developing Independently Testable Units	 39

Decomposing requirements	 40
Separating concerns	 40
Component dependencies	 42

Understanding isolation	 44
Delegating responsibilities to DOCs	 44
Indirect input and output	 46
Unit isolation with test doubles	 47

Working with test doubles	 49
Placeholder dummies	 49
Fake it till you make it	 50
Providing indirect input with stubs	 51
Recording interactions with spies	 55
Verifying behavior with mocks	 56

Increasing efficiency with mock frameworks	 58
The promised land?	 59
Basic stubbing	 60
Indirect output verification	 63

Using test helpers	 65
Motivation	 65
The test helper class	 66
The test helper object	 67

Summary	 68
Chapter 4: Testing Exceptional Flow	 69

Testing patterns	 69
Using the fail statement	 69
Annotated expectations	 71
Verification with the ExpectedException rule	 73
Capturing exceptions with closures	 74

Treating collaborators	 76
Fail fast	 76
The stubbing of exceptional behavior	 78

Summary	 81

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 5: Using Runners for Particular Testing Purposes	 83
Understanding the architecture	 83

What are runners good for?	 84
Looking at the big picture	 85
Writing your own extension	 86

Using custom runners	 90
Furnishing a suite with test cases	 90
Structuring suites into categories	 90
Populating suites automatically	 91
How about creating test doubles with annotations?	 92

Writing dataset tests	 93
Using parameterized tests	 93
Reducing glue code with JUnitParams	 97
Increasing the expressiveness of test descriptions with Burst	 99

Summary	 102
Chapter 6: Reducing Boilerplate with JUnit Rules	 103

Understanding rules	 103
What are JUnit rules?	 104
Writing your own rule	 108
Configuring the fixture with annotations	 110

Working with advanced concepts	 112
Using ClassRules	 112
The ordering of rule execution	 115

Employing custom solutions	 116
Working with system settings	 116
Ignoring tests conditionally	 118

Summary	 121
Chapter 7: Improving Readability with Custom Assertions	 123

Working with the JUnit built-in assert approach	 123
Understanding the basics	 124
Reviewing the file session storage	 125
Verifying the storage behavior	 128
Improving readability with assertion helpers	 129

Creating flexible expressions of intent with Hamcrest	 132
Using matcher expressions	 132
Writing custom matchers	 134

Writing fluently readable assertions with AssertJ	 137
Employing assertion chains	 137
Creating your own asserts	 141

Summary	 144

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Chapter 8: Running Tests Automatically within a CI Build	 145
Wrapping up the sample application	 145

Refining the architecture	 145
Separating concerns into modules	 148

Setting up an automated CI build	 153
What is continuous integration?	 153
Principles and practices	 155
Creating your own build	 157

Integrating code coverage reports	 162
Enlarging on code coverage	 162
Automating reporting	 164

Summary	 167
Appendix: References	 169
Index	 175

www.it-ebooks.info

http://www.it-ebooks.info/

[v]

Preface
Testing with JUnit is a skill that presents much harder challenges than you might
expect at first sight. This is because, despite its temptingly simple API, the tool plays
ball with profound and well-conceived concepts. Hence, it's important to acquire a
deep understanding of the underlying principles and practices. This avoids ending
up in gridlocked development due to messed-up production and testing code.

Mastering high-quality software development driven by unit tests is about following
well-attuned patterns and methods as a matter of routine rather, than reinventing the
wheel on a daily basis. If you have a good perception of the conceptual requirements
and a wide-ranging arsenal of solution approaches, they will empower you to
continuously deliver code, which achieves excellent ratings with respect to the usual
quality metrics out of the box.

To impart these capabilities, this book provides you with a well-thought-out,
step-by-step tutorial. Foundations and essential techniques are elaborated, guided
by a golden thread along the development demands of a practically relevant sample
application. The chapters and sections are built on one another, each starting with
in-depth considerations about the current topic's problem domain and concluding
with an introduction to and discussion of the available solution strategies.

At the same time, it's taken care that all thoughts are backed up by illustrative images
and expressive listings supplemented by adequate walkthroughs. For the best possible
understanding, the complete source code of the book's example app is hosted at
https://github.com/fappel/Testing-with-JUnit. This allows you to comprehend
the various aspects of JUnit testing from within a more complex development context
and facilitates an exchange of ideas using the repository's issue tracker.

www.it-ebooks.info

https://github.com/fappel/Testing-with-JUnit
http://www.it-ebooks.info/

Preface

[vi]

What this book covers
Chapter 1, Getting Started, opens with a motivational section about the benefits of
JUnit testing and warms up with a short coverage of the toolchain used throughout
the book. After these preliminaries, the example project is kicked off, and writing
the first unit test offers the opportunity to introduce the basics of the test-driven
development paradigm.

Chapter 2, Writing Well-structured Tests, explains why the four fundamental phases'
test pattern is perfectly suited to test a unit's behavior. It elaborates on several
fixture initialization strategies, shows how to deduce what to test, and concludes by
elucidating different test-naming conventions.

Chapter 3, Developing Independently Testable Units, shows you how to decompose
big requirements into small and separately testable components and illustrates the
impact of collaboration dependencies on testing efforts. It explains the importance of
test isolation and demonstrates the use of test doubles to achieve it.

Chapter 4, Testing Exceptional Flow, discusses the pros and cons of various exception
capture and verification techniques. Additionally, it explains the meaning of
the fail fast strategy and outlines how it intertwines with tests on particular
boundary conditions.

Chapter 5, Using Runners for Particular Testing Purposes, presents JUnit's pluggable
test processor architecture that allows us to adjust test execution to highly diverse
demands. It covers how to write custom runners and introduces several useful areas
of application.

Chapter 6, Reducing Boilerplate with JUnit Rules, unveils the test interception
mechanism behind the rule concept, which allows you to provide powerful, test-
related helper classes. After deepening the knowledge by writing a sample extension,
the chapter continues with the tools' built-in utilities and concludes by inspecting
useful third-party vendor offerings.

Chapter 7, Improving Readability with Custom Assertions, teaches the writing of concise
verifications that reveal the expected outcome of a test clearly. It shows how domain-
specific assertions help you to improve readability and discusses the assets and
drawbacks of the built-in mechanisms, Hamcrest and AssertJ.

Chapter 8, Running Tests Automatically within a CI Build, concludes the example
project with important considerations of test-related architectural aspects. Finally,
it rounds out the book by giving an introduction to continuous integration, which
is an excellent brief of the test first approach and establishes short feedback cycles
efficiently by automation.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[vii]

Appendix, References, lists all the bibliographic references used throughout the
chapters of this book.

What you need for this book
For better understanding and deepening of the knowledge acquired, it's advisable
to comprehend the examples within a local workspace on your computer. As
JUnit is written in Java, the most important thing you need is Java Development
Kit. The sample code requires at least Java 8, which can be downloaded from
http://www.oracle.com/technetwork/java/index.html.

Although it's possible to compile and run the listings from the command line,
the book assumes you're working with a Java IDE, such as Eclipse (http://www.
eclipse.org/), IntelliJ IDEA (https://www.jetbrains.com/idea/) or NetBeans
(https://netbeans.org/). The sample application was developed using Eclipse
and so are the screenshots.

As mentioned in the preceding paragraph, the book's code sources are hosted at
GitHub, so you can clone your local copy using Git (https://git-scm.com/). The
chapter and sample app projects are based on Maven (https://maven.apache.
org/) with respect to their structure and dependency management, which makes
it easy to get the sample solutions up and running. This allows a thorough live
inspection and debugging of passages that are not fully understood.

Due to this availability of comprehensive sources, the listings in the chapters are
stripped down using static imports wherever appropriate or use ellipses to denote
a class that has content unrelated to the topic. This helps you to keep the snippets
small and focus on the important stuff.

Apart from that, in the course of the book, several Java libraries are introduced. They
can all be declared as Maven dependencies and can be downloaded automatically
from the publicly available Maven Central Repository (http://search.maven.org/).
For some examples, you can refer to the pom.xml files of the sample application. An
overview of the testing toolset is given in Chapter 1, Getting Started.

Who this book is for
No matter what your specific background as a Java developer is, whether you're
simply interested in building up a safety net to reduce the regression of your
desktop application or in improving your server-side reliability based on robust and
reusable components, unit testing is the way to go. This book provides you with a
comprehensive, but concise, entrance, advancing your knowledge step-wise, to a
professional level.

www.it-ebooks.info

http://www.oracle.com/technetwork/java/index.html
http://www.eclipse.org/
http://www.eclipse.org/
https://www.jetbrains.com/idea/
https://netbeans.org/
https://git-scm.com/
https://maven.apache.org/
https://maven.apache.org/
http://search.maven.org/
http://www.it-ebooks.info/

Preface

[viii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"As a result, a test case was a compound of various methods called testFoo,
testBar, and so on."

A block of code is set as follows:

private final static int NEW_FETCH_COUNT
 = Timeline.DEFAULT_FETCH_COUNT + 1;

@Test
public void setFetchCount() {
 // (1) setup (arrange, build)
 Timeline timeline = new Timeline();

 // (2) exercise (act, operate)
 timeline.setFetchCount(NEW_FETCH_COUNT);

 // (3) verify (assert, check)
 assertEquals(NEW_FETCH_COUNT, timeline.getFetchCount());
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

private ItemProvider itemProvider;
private Timeline timeline;

@Before
public void setUp() {
 itemProvider = ???
 timeline = new Timeline(itemProvider);
}

Any command-line input or output is written as follows:

mvn clean test

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[ix]

New terms and important words are shown in bold like this: "Changing code
without changing its behavior is called refactoring."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

[x]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/6603OS_Graphics.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

https://www.packtpub.com/sites/default/files/downloads/6603OS_Graphics.pdf
https://www.packtpub.com/sites/default/files/downloads/6603OS_Graphics.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

[1]

Getting Started
Accomplishing the evolving objectives of a software project in time and budget on
a long-term basis is a difficult undertaking. In this opening chapter, we're going
to explain why unit testing can play a vital role in meeting these demands. We'll
illustrate the positive influence on the defect rate, code quality, development pace,
specification density, and team morale. All that makes it worthwhile to acquire a
broad understanding of the various testing techniques. To get started, you'll learn to
arrange our tool set around JUnit and organize our project infrastructure properly.
You'll be familiarized with the definition of unit tests and the basics of test-driven
development. This will prepare us for the following chapters, where you'll come to
know about more advanced testing practices.

•	 Why you should busy yourself with unit tests
•	 Setting the table
•	 Serving the starter

Why you should busy yourself with
unit tests
Since you are reading this, you likely have a reason to consider unit testing as an
additional development skill to learn. Whether you are motivated by personal interest
or driven by external stimulus, you probably wonder if it will be worth the effort.
But properly applied unit testing is perhaps the most important technique the agile
world has to offer. A well-written test suite is usually half the battle for a successful
development process, and the following section will explain why.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[2]

Reducing the defect rate
The most obvious reason to write unit tests is to build up a safety net to guard your
software from regression. There are various grounds for changing the existing code,
whether it be to fix a bug or to add supplemental functionality. But understanding
every aspect of the code you are about to change is difficult to achieve. So, a new bug
sneaks in easily. And it might take a while before it gets noticed.

Think of a method returning some kind of sorted list that works as expected. Due
to additional requirements, such as filtering the result, a developer changes the
existing code. Inadvertently, these changes introduce a bug that only surfaces under
rare circumstances. Hence, simple sanity tests may not reveal any problems and the
developer feels confident to check in the new version. If the company is lucky, the
problem will be detected by the quality assurance team, but chances are that it slips
through to the customer. Boom!

This is because it's hardly possible to check all corner cases of a nontrivial software
from a user's point of view, let alone if done manually. Besides an annoyed customer,
this leads to a costly turnaround consisting of, for example, filing a bug report,
reproducing and debugging the problem, scheduling it for repair, implementing the
fix, testing, delivering, and, finally, deploying the corrected version. But who will
guarantee that the new version won't introduce another regression?

Sounds scary? It is! I have seen teams that were barely able to deliver new
functionality as they were about to drown in a flood of bugs. And hot fixes produced
to resolve blocking situations on the customer side introduced additional regression
all the time. Sounds familiar? Then, it might be time for a change.

Good unit tests can be written with a small development overhead and verify, in
particular, all the corner case behavior of a component. Thus, the developer's said
mistake would have been captured by a test. At the earliest possible point in time
and at the lowest possible price. But humans make mistakes: what if a corner case
is overlooked and a bug turns up? Even then, you are better off because fixing
the issue sustainably means simply writing an additional test that reproduces the
problem by a failing verification. Change the code until all tests pass and you get rid
of the fault forever.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[3]

Improving the code quality
The influence a consistent testing approach will have on the code quality is less
apparent. Once you have a safety net in place, changing the existing code to make
it more readable, and hence easier to enhance, isn't risky anymore. If you are
introducing a regression, your tests will tell you immediately. So, the code morphs
from a never touch a running system shrine to a lively change embracing place.

Matured test-first practices will implicitly improve your code with respect to most of
the common quality metrics. Testing first is geared to produce small, coherent, and
loosely coupled components combined with a high coverage and verification of the
component's behavior. The production of clean code is an inherent step of the test-
driven development mantra explained further ahead.

The following image shows two screenshots of measurements taken from a small,
real-world project of the Xiliary GitHub repository (https://github.com/fappel/
xiliary). Developed completely driven by tests, we couldn't care less about the
project's metrics before writing this chapter. But not very surprisingly, the numbers
look quite okay.

Don't worry if you're not familiar with the meaning of the
metrics. All you need to know at the moment is that they would
appear in red if exceeding the tool's default thresholds.

So, in case you wonder about the three red spots with low coverage numbers, note
that two of those classes are covered by particular integration tests as they are
adapters to third-party functionality (a more detailed explanation of integration tests
follows in the upcoming Understanding the nature of a unit test section). The remaining
class is at an experimental or prototypical stage and will be replaced in the future.

www.it-ebooks.info

https://github.com/fappel/xiliary
https://github.com/fappel/xiliary
http://www.it-ebooks.info/

Getting Started

[4]

Note that we'll deepen our knowledge of code coverage
in Chapter 2, Writing Well-structured Tests, and in Chapter 8,
Running Tests Automatically within a CI Build.

Metrics of a TDD project

Programs built on good code quality stand out from systems that merely run, because
they are easier to maintain and usually impress with a higher feature evolution rate.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[5]

Increasing the development pace
At first glance, the math seems to be simple. Writing additional testing code means
more work, which consumes more time, which leads to lower development speed.
Right? But would you like to drive a car whose individual parts did not undergo
thorough quality assurance? And what would be gained if the car had to spend most
of its lifetime in the service shop rather than on the road, let alone the possibility of a
life-threatening accident?

The initial production speed might be high, but the overall outcome would be poor
and might ruin the car manufacturer in the end. It is not that much different with
the development of nontrivial software systems. We elaborated already on the costs
of bugs that manage to sneak through to the customer. So, it is a naïve assessment
calculating development speed like that.

As a developer, you stand between two contradictory goals: on the one hand, you
have to be quick on the draw to meet your deadlines. On the other hand, you must
not commit too many sins to be able to also meet subsequent deadlines. The term sin
refers to work that should be done before a particular job can be considered complete
or proper. This is also denoted as technical debt, [TECDEP]. And here comes the catch.
Keeping the balance often does not work out, and once the technical debt gets too high,
the system collapses. From that point in time, you won't meet any deadlines again.

So, yes, writing tests causes an overhead. But if done well, it ensures that subsequent
deadlines are not endangered by technical debt. The development pace might be
initially at a slightly lower rate with testing, but it won't decrease and is, therefore,
higher when watching the overall picture.

By the way, if you know your tools and techniques, the overhead isn't that much at
all. At least, I am usually not hired for being particularly slow. When you think of
it, running a component's unit tests is done in the time of a wink. On the flip side,
checking its behavior manually involves launching the application, clicking to the
point where your code actually gets involved, and after that, you click and type
yourself again through certain scenarios you consider important. Does the latter
sound like an efficient modus operandi?

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[6]

Enhancing the specification density
A good test suite at hand can be an additional source of information about what your
system components are really capable of and one that doesn't outdate unlike design
docs, which usually do. Of course, this is a kind of low-level specification that only a
developer is apt to write. But if done well, a test's name tells you about the functionality
under test with respect to specific initial conditions and the test's verifications about the
expected outcome produced by the execution of this functionality.

This way, a developer who is about to change an existing component will always
have a chance to check against the accompanying tests to understand what a
component is really all about. So, the truth is in the tests! But this underscores that
tests have to be treated as first-class citizens and have to be written and adjusted
with care. A poorly written test might confuse a programmer and hinder the
progressing rate significantly.

Boosting confidence and courage
Everybody likes to be in a winning team. But once you are stuck in a bug trail
longer than the Great Wall of China and a technical debt higher than Mount
Everest, fear creeps in. At that time, the implementation of new features can cause
avalanches of lateral damage and developers get reluctant to changes. What follow
are debates about consolidation phases or even rewriting large parts of the system
from scratch before they dare to think about new functionality. Of course, this is an
economic horror scenario from the management's point of view, and that's how the
development team member's confidence and courage say good bye.

Again, this does not happen as easily with a team that has build its software upon
components backed up with well-written unit tests. We learned earlier why unit
tested systems neither have many bugs nor too much technical debt. Introducing
additional functionality is possible without expecting too much lateral damage
since the existing tests beware of regressions. Combined with module-spanning
integration tests, you get a rock-solid foundation in which developers learn to trust.

I have seen more than once how restructuring requirements of nontrivial systems
were achieved without doing any harm to dependent components. All that was
necessary was to take care not to break existing tests and cover changed code
passages with new or adjusted tests. So, if you are unluckily more or less familiar
with some of the scenarios described in this section, you should read on and learn
how to get confidence and courage back in your team.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

Setting the table
This book is based on a hands-on example that will guide us through the essential
concepts and programming techniques of unit testing. For a sustainable learning
experience, feel encouraged to elaborate and complete the various code snippets in
your own working environment. Hence, here comes a short introduction of the most
important tools and the workspace organization used while programming the sample.

Choosing the ingredients
As the book's title implies, the main tool this is all about is JUnit (http://www.
junit.org). It is probably the most popular testing framework for developers within
the Java world. Its first version was written by Kent Beck and Eric Gamma on a flight
from Zurich to OOPSLA 1997 in Atlanta, [FOWL06]. Since then, it has evolved by
adapting to changing language constructs, and quite a few supplemental libraries
have emerged.

Java IDEs provide a UI and build path entries to compile, launch, and evaluate
JUnit tests. Build tools, such as Ant, Maven, and Gradle, support test integration out
of the box. When it comes to IDEs, the example screenshots in this book are captured
using Eclipse (http://www.eclipse.org/). However, we do not rely on any
Eclipse-specific features, which should make it easy to reproduce the results in your
favorite IDE too.

In general, we use Maven (https://maven.apache.org/) for dependency
management of the libraries mentioned next, which means that they can be retrieved
from the Maven Central Repository (http://search.maven.org/). But if you
clone the book's GitHub repository (https://github.com/fappel/Testing-with-
JUnit), you will find a separate folder for each chapter, providing a complete project
configuration with all dependencies and sources. This means navigating to this
directory and using the 'mvn test' Maven command should enable you to compile
and run the given examples easily. Let's finish this section with an introduction of
the more important utilities we'll be using in the course of the book.

Chapter 3, Developing Independently Testable Units, covers the sense and purpose of
the various test double patterns. It is no wonder that there are tools that simplify test
double creation significantly. Usually, they are summarized under the term mock
frameworks. The examples are based on Mockito (http://mockito.org), which
suits very well to building up clean and readable test structures.

www.it-ebooks.info

http://www.junit.org
http://www.junit.org
http://www.eclipse.org/
https://maven.apache.org/
http://search.maven.org/
https://github.com/fappel/Testing-with-JUnit
https://github.com/fappel/Testing-with-JUnit
http://mockito.org
http://www.it-ebooks.info/

Getting Started

[8]

There are several libraries that claim to improve your daily testing work.
Chapter 5, Using Runners for Particular Testing Purposes, will introduce JUnitParams
(http://pragmatists.github.io/JUnitParams/) and Burst (https://github.
com/square/burst) as alternatives to writing parameterized tests. Chapter 7,
Improving Readability with Custom Assertions, will compare the two verification tools
Hamcrest (http://hamcrest.org/) and AssertJ (http://assertj.org).

Automated tests are only valuable if they are executed often. Because of this, they
are usually an inherent part of each project's continuous integration build. Hence,
Chapter 8, Running Tests Automatically within a CI Build, will show how to create
a basic build with Maven and introduce the value of code coverage reports with
JaCoCo (http://www.eclemma.org/jacoco/).

Organizing your code
In the beginning, one of the more profane-looking questions you have to agree upon
within your team is where to put the test code. The usual convention is to keep unit
tests in classes with the same name as the class under test, but post- or prefixed with an
extension Test or such like. Thus, a test case for the Foo class might be named FooTest.

Based on the description of Hunt/Thomas, [HUTH03], of different project structuring
types, the simplest approach would be to put our test into the same directory where
the production code resides, as shown in the following diagram:

A single-source tree with the same package

We usually don't want to break the encapsulation of our classes for testing purposes,
which shouldn't be necessary in most cases anyway. But as always, there are
exceptions to the rule, and before leaving a functionality untested, it's probably
better to open up the visibility a bit. The preceding code organization provides the
advantage that, in such rare cases, one can make use of the package member access
the Java language offers.

www.it-ebooks.info

http://pragmatists.github.io/JUnitParams/
https://github.com/square/burst
https://github.com/square/burst
http://hamcrest.org/
http://assertj.org
http://www.eclemma.org/jacoco/
http://www.it-ebooks.info/

Chapter 1

[9]

Members or methods without visibility modifiers, such as public, protected, and
private, are only accessible from classes within the same package. A test case that
resides in the same package can use such members, while encapsulation still shields
them from classes outside the package, even if such classes would extend the type
under test.

Unfortunately, putting tests into the same directory as the production code has a
great disadvantage too. When packages grow, the test cases are perceived soon as
clutter and lead to confusion when looking at the package's content. Because of this,
another possibility is to have particular test subpackages, as shown here:

Single-source tree with a separate test package

However, using this structure, we give up the package member access. But how
can we achieve a better separation of production and testing code without loosing
this capability? The answer is to introduce a parallel source tree for test classes, as
shown here:

A parallel-source tree

To make this work, it is important that the root of both trees are part of the compiler's
CLASSPATH settings. Luckily, you usually do not have to put much effort in
this organization as it is the most common one and gets set up automatically, for
example, if you use Maven archetypes to create your projects. Examples in this book
assume this structure.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[10]

Last but not least, it is possible to enhance the parallel tree concept even further. A far-
reaching separation can be achieved by putting tests in their own source code project.
The advantage of this strategy is the ability to use different compiler error/warning
settings for test and production code. This is useful, for example, if you decide to
avoid auto-boxing in your components but feel it would make test code overly
verbose when working with primitives. With project-specific settings, you can have
hard compiler errors in production code without having the same restriction in tests.

Parallel-source tree with separate test project

Whatever organization style you may choose, make sure that all team members
use the same one. It will be very confusing and hardly maintainable, if the different
concepts get mixed up. Now that the preliminaries are done, we are ready for action.

Serving the starter
To reach as much practical relevance as possible, this book shows how to implement a
real-world scenario driven by unit tests. This way of proceeding allows us to explain
the various concepts and techniques under the light of a coherent requirement. Thus,
we kick off with a modest specification of what our example application will be all
about. However, before finally descending into the depths of development practices,
we will go ahead and clarify the basic characteristics of unit testing and test-first
practices in dedicated sections.

Introducing the example app
Let's assume that we have to write a simple timeline component as it is known from
the various social networks, such as Twitter, Google+, Facebook, and the like. To make
things a bit more interesting, the application has to run on different platforms (desktop,
browser, and mobile) and allow the display of content from arbitrary sources. The
wireframe in the following image gives an impression of the individual functional
requirements of our timeline:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

Timeline wireframe

The header contains a label indicating the source of the items displayed in the list
under it. It also notifies the user if newer entries are available and allows the them to
fetch and insert them at the top.

The list section is a sequence of chronologically ordered items, which can be browsed
by a scrollbar. The component should allow us to load its entries page-wise. This
means that it shows a maximum of, let's say, ten entries. If scrolling reaches the last
one, the next ten items can be fetched from the provider. The newly loaded entries
are added and the scrollbar is adjusted accordingly. To keep things in scope, a push
button for manual fetching will be sufficient here.

An item type, in turn, comprises several text or image attributes that compose an
entry's content. Note that the timestamp is considered mandatory as it is needed for
chronological ordering. Apart from that, the depiction should be undetermined by
the component itself and depend on the type of the underlying information source.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[12]

This means that a Twitter feed probably provides a different information structure
than the commits of a branch in a Git repository. The following image shows what
the running applications will look like. The JUnit items shown are commits taken
from the master branch of the tool's project repository at GitHub.

Given the application description, it is important to note that the following chapters
will focus on the unit testing aspects of the development process to keep the book on
target. But this immediately raises the question: what exactly is a unit test?

Understanding the nature of a unit test
A unit test is basically a piece of code written by a developer to verify that
another piece code—usually the implementation of a feature—works correctly.
In this context, a unit identifies a very small, specific area of behavior and not the
implementing code itself. If we regard adding an item to our timeline as a functional
feature for example, appropriate tests would ensure that the item list grows by one
and that the new item gets inserted at the right chronological position.

Yet, there is more to it than meets the eye. Unit tests are restricted to that code for
which the developer is responsible. Consider using a third-party library that relies on
external resources. Tests would implicitly run against that third-party code. In case
one of the external resources is not available, a test could fail although there might be
nothing wrong with the developer's code. Furthermore, set up could get painstaking,
and due to the invocation time of external resources, execution would get slow.

But we want our unit tests to be very fast because we intend to run them all as often
as possible without impeding the pace of development. By doing so, we receive
immediate feedback about busting a low-level functionality. This puts us in the
position to detect and correct a problem as it evolves and avoid expensive quality
assurance cycles.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Different timeline UIs

As the book progresses, we will see how to deal with the integration of third-party
code properly. The usual strategy is to create an abstraction of the problematic
component. This way, it can be replaced by a stand-in that is under the control of the
developer. Nevertheless, it is important to verify that the real implementation works
as expected. Tests that cope with this task are called integration tests. Integration
tests check the functionality on a more coarse-grained level and focus on the correct
transition of component boundaries.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[14]

Having said all this, it is clear that testing a software system from the client's point
of view to verify formal specifications does not belong to unit testing either. Such
tests simulate user behavior and verify the system as a whole. They usually require a
significant amount of time for execution. These kinds of tests are called acceptance or
end-to-end tests.

Another way to look at unit tests is as an accompanying specification of the code
under test, comparable to the dispatch note of a cogwheel, which tells Quality
Assurance (QA) what key figures this piece of work should meet. But due to the
nature of the software, no one but the developer is apt to write such low-level
specifications. Thus, automated tests become an important source of information
about the intended behavior of a unit and one that does not become outdated as
easily as documentation.

We'll elaborate on this thought in Chapter 2, Writing
Well-structured Tests.

Now that we've heard so much about the nature of unit tests, it's about time to write
the first one by ourselves!

Writing the first test
"A journey of a thousand miles begins with a single step."

 – Lao Tzu

Unit tests written with JUnit are grouped by plain Java classes, each of which is
called a test case. A single test case specifies the behavior of a low-level component
normally represented by a class. Following the metaphor of the accompanying
specification, we can begin the development of our timeline example as follows:

public class TimelineTest {
}

The test class expresses the intent to develop the a component Timeline, which
Meszaros, [MESZ07], would denote as system under test (SUT). And applying a
common naming pattern, the component's name is complemented by the suffix Test.
But what is the next logical step? What should be tested first? And how do we create
an executable test anyway?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

Usually, it is a good idea to start with the happy path, which is the normal path of
execution and, ideally, the general business use case. Consider that we expect
fetch-count to be an attribute of our timeline component. The value configures
how many items will be fetched at once from an item source. To keep the first
example simple, we will ignore the actual item loading for now and regard only
the component's state change that is involved.

An executable JUnit test is a public, nonstatic method that gets annotated with @Test
and takes no parameters. Summarizing all this information, the next step could be
a method stub that names a functionality of our component we want to test. In our
case, this functionality could be the ability to set the fetch-count to a certain amount:

public class TimelineTest {
 @Test
 public void setFetchCount() {
 }
}

Downloading the example code
You can download the example code files for all Packt books
you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.
Additionally, the author has hosted the code sources for this
book on his GitHub repository at https://github.com/
fappel/Testing-with-JUnit. So, you can download it
from this URL and work with the code.

This is still not much, but it is actually sufficient to run the test for the first time. JUnit
test executions can be launched from the command line or a particular UI. But for the
scope of this book, let's assume we have IDE integration available. Within Eclipse,
the result would look like the next image.

The green progress bar signals that the test run did not recognize any problems,
which is not a big surprise as we have not verified anything yet. But remember that
we have already done some useful considerations that help us to populate our first
test easily:

•	 We intend to write the Timeline component. To test it, we can create a local
variable that takes a new instance of this component.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/fappel/Testing-with-JUnit
https://github.com/fappel/Testing-with-JUnit
http://www.it-ebooks.info/

Getting Started

[16]

•	 As the first test should verify the state-changing effect of setting the item-count
attribute, it seems natural to introduce appropriate setters and getters to do so:
@Test
public void setFetchCount() {
 Timeline timeline = new Timeline();

 timeline.setFetchCount(5);
 int actual = timeline.getFetchCount();
}

It looks reasonable so far, but how can we assure that a test run is denoted as a
failure if the actual value returned by getFetchCount does not match the input
used with setFetchCount? For this purpose, JUnit offers the org.junit.Assert
class, which provides a set of static methods to help developers to write so-called
self-checking tests.

The green bar after a successful launch

The methods prefixed with assert are meant to check a certain condition, throwing
an java.lang.AssertionError on a negative evaluation. Such errors are picked
up by the tool's runtime and mark the test as failed in the resulting report. To assert
that two values or objects are equal, we can use Assert.assertEquals. As it is very
common to use static imports for assertion method calls, the getFetchCount test can
be completed like this:

@Test
public void setFetchCount() {
 Timeline timeline = new Timeline();
 int expected = 5;

 timeline.setFetchCount(expected);
 int actual = timeline.getFetchCount();

 assertEquals(expected, actual);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

The built-in mechanism of JUnit, which is often considered somewhat dated, isn't the
only possibility to express test verifications. But to avoid information flooding, we
will stick to it for now and postpone a thorough discussion of the pros and cons of
alternatives to Chapter 7, Improving Readability with Custom Assertions.

Looking at our first test, you can recognize that it specifies a behavior of the SUT,
which does not even exist yet. And by the way, this also means that the test class
does not compile anymore. So, the next step is to create a skeleton of our component
to solve this problem:

public class Timeline {

 public void setFetchCount(int fetchCount) {
 }

 public int getFetchCount() {
 return 0;
 }
}

Well, the excitement gets nearly unbearable. What will happen if we run our test
against the newly created component?

Evaluating test results
Now the test run leads to a failure with a red progress bar due to the insufficient
implementation of the timeline component, as shown in the next image. The
execution report shows how many tests were run in total, how many of those
terminated with errors, and how many failed due to unmet assertions.

A stack trace for each error/failure helps to identify and understand the problem's
cause. AssertionError raised by a verification call of a test provides an explaining
message, which is shown in the first line of the trace. In our example, this
message tells us that the expected value did not meet the actual value returned
by getFetchCount.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[18]

A test terminated by an Exception indicates an arbitrary programming mistake
beyond the test's assertion statements. A simple example of this can be access
to an uninitialized variable, which subsequently terminates test execution with
NullPointerException. JUnit follows the all or nothing principle. This means that if
an execution involves more then one test, which is usually the case, a single problem
marks the whole suite as failed.

The red bar after test failure

The UI reflects this by painting the progress bar red. You would now wonder
whether we shouldn't have completed our component's functionality first. The
implementation seems easy enough, and at least, we wouldn't have ended up with
the red bar. But the next section explains why starting with a failing test is crucial for
a clean test-first approach.

Writing tests first
Writing tests before the production code even exists might look strange to a newbie,
but there are actually good reasons to do so. First of all, writing tests after the fact
(meaning first code, then test) is no fun at all. Well, that sounds like a hell of a reason
because, if you gotta do what you gotta do, [FUTU99], what's the difference whether
you do it first or last?

The difference is in the motivation to do it right! Once you are done with the fun
part, it is all too human to get rid of the annoying duties as fast and as sloppily as
one can get through. You are probably reading this because you are interested in
improving things. So, ask yourself how effective tests will be if they are written just
for justification or to silence the conscience.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

Even if you are disciplined and motivated to do your after the fact tests right, there
will be more holes in the test coverage compared to the test-first approach. This is
because the class under test was not designed for testing. Most of the time, it will take
costly steps to decompose a component written from scratch into separate concerns
that can be tested easily. And if these steps are considered too expensive, testing will
be omitted. But isn't it a bad thing to change a design for testing purposes?

"Separation of Concerns' is probably the single most important concept in software
design and implementation."

 – [HUTH03]

The point is that writing your tests first supports proper separation implicitly.
Every time your test setup feels overly complicated, you are about to put too much
functionality in your component. In this case, you should reconsider your class-level
design and split it up into smaller pieces. Following this practice consequently leads
to a healthy design on the class level out of the box.

Although this book is not about how to write tests first or test-driven development
(TDD) as it is usually called, it follows this principle while developing the example
application. But as the focus will be on getting unit tests right and not on the
implementation aspects of the components, here come a few words about the work
paradigm of TDD for better understanding.

The procedure is simple. Once you have picked your first work unit, write a test,
make it run, and last, make it right, [BECK03]. After you're done, start it all over
again with the next piece of functionality. This is exactly what we have done
until now with our first test. We've decided about a small feature to implement.
So, we wrote a test that specifies the intended behavior and invented a kind of
programming interface that would match the use case.

When we feel confident with the outcome, it is about time to fix the compile errors and
create a basic implementation stub to be able to execute the test. This way, the test is
the first client of the freshly created component, and we will have the earliest possible
feedback on how using it in programs will look. However, it is important that the first
test run fails to ensure that the verification conditions were not met by accident.

The make it run step is about fixing the failing test as quickly as possible. This goal
outweighs everything else now. We are even allowed to commit programming sins
we usually try to avoid. If this feels a bit outlandish, think of it like this: if you want
to write clean code that works (Ron Jeffries, [BECK03]) ensure that it works first and
then take your time and clean it up second. This has the advantage that you know
the specification can be met without wasting time in writing pretty code that will
never work.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[20]

Last but not least, make it right. Once your component behaves as specified, ascertain
that your production and test code follow the best programming standards you can
think of. While overhauling your code, repeatedly executing the tests ensures that
the behavior is kept intact. Changing code without changing its behavior is called
refactoring.

In the overall image, we started with a failing test and a red bar, fixed the test, made
the bar green again, and, finally, cleaned up the implementation during a last refactor
step. As this pattern gets repeated over and over again in TDD, it is known as the
red/green/refactor mantra.

So, always remember folks: keep the bar green to keep the code clean.

Summary
In this chapter, you learned why unit tests are such a valuable asset for Java
developers. We've seen that well-written tests go beyond pure regression avoidance
and experienced how they improve your code quality, increase your overall
development pace, enhance your component specifications, and, last but not least,
convey confidence and courage to your team members.

We've addressed the tool set that accompanies JUnit and prepared our workspace
to be able to take active part in the following chapters. After the introduction of
the ongoing example, which will serve us as the motivation and source for code
snippets for the various subjects, we elaborated a definition of what unit testing is all
about. Then, the time came to learn the very basics of writing and executing our first
self-checking test. We concluded with an overview of the essentials of TDD, which
prepared you for the following topics when you come to know more advanced unit
testing techniques.

By continuously evolving our example, the next chapter will reveal the common
structure of well-written unit tests. You'll learn some heuristics to pick the
next behavior to implement and, finally, gain some insights into unit test
naming conventions.

www.it-ebooks.info

http://www.it-ebooks.info/

[21]

Writing Well-structured Tests
In this chapter, we're going to learn how to write unit tests with a clean and
consistent structure by means of the four-phase pattern, and outline why it is
important to do so. We'll be explaining the purpose of a fixture, and how to get a
clear definition of the relation between a component's behavior and its verification.
Furthermore, we're going to gain insight on what to test, where to start, how to
continue, and how to know when we are done. We'll be concluding with a discussion
on the pros and cons of various testing naming conventions. In a nutshell, we will be
going through the following topics:

•	 The four phases of a unit test
•	 Choosing the next functionality to test
•	 Getting the test names right

The four phases of a unit test
Well-written unit tests follow a clean and consistent structure based on four exactly
defined phases. In this section, we will learn about the purpose of each of those and
delve into some subtleties of fixture setup and result verification.

Using a common test structure
"A tidy house, a tidy mind."

 – Old adage

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Well-structured Tests

[22]

The attentive reader may have wondered why our first test setFetchCount was
segmented by the use of empty lines. To answer this question, let's have an in-depth
look at each of these segments with the first listing of this section, showing the
common structure of a unit test. There are minor refactorings and additional comments
compared to the version in the last chapter to emphasize more on the separation.

Note how the constant NEW_FETCH_COUNT replaces the
literal value assigned previously to a local input variable.
Literal numbers often tell little or nothing about their
purpose because they emerge from nowhere like a kind of
miracle. Hence, they are often denoted as magic numbers.
Constants can improve the awareness of the situation, since
a meaningful name is able to unveil, at least to some extent,
what the number is all about. Besides, they allow defining
values in a way that ensures that they differ from the
component defaults. This guarantees that the test action has
an effect, but hides the uninteresting details away from the
test method itself.

private final static int NEW_FETCH_COUNT
 = Timeline.DEFAULT_FETCH_COUNT + 1;

@Test
public void setFetchCount() {
 // (1) setup (arrange, build)
 Timeline timeline = new Timeline();

 // (2) exercise (act, operate)
 timeline.setFetchCount(NEW_FETCH_COUNT);

 // (3) verify (assert, check)
 assertEquals(NEW_FETCH_COUNT, timeline.getFetchCount());
}

Looking at the preceding example, the common structure of a unit test is as follows:

(1) The first section creates an instance of the object to be tested. This is referred to
as system under test (SUT), [MESZ07]. In general, this section establishes the SUT's
related state prior to any test activities. Because this state constitutes well-defined test
input and preconditions, it is also called the fixture of a test.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

(2) After the fixture has been initialized, it is time to invoke that functionality of the
SUT whose behavior the test intends to check. Often, this is just a single method, and
the outcome gets stored in local variables. In our test, we are interested in the new
value of fetch-count, and for compactness, its retrieval is in-lined.

(3) The last section verifies that the outcome actually matches the specified
behavior. In our case, we expect the actual fetch-count to be equal to the value
of the NEW_FETCH_COUNT constant.

Structuring a test like this is very common and has been described by
various authors. It has been labelled as an arrange, act, assert, [BECK03] or build,
operate, check, [MART09] pattern. But I'd like to be thorough for once, and stick to
the Meszaros' ([MESZ07]) terminology of the four phases called setup (1), exercise (2),
verify (3), and teardown (4), in this book. So let's conclude with an explanation of the
fourth phase, which isn't a part of the previous listing.

(4) A test should leave its environment in the same condition as it was in before the
execution of the test. Because of this, it is supposed to clean up any persistent state.
The latter implies conditions created during setup or exercise that survive the end
of a test. And this may influence a test's successor unfavorably. Think, for example,
of a system property set to evoke a specific behavior of a component. Teardown
should take care of a proper reset at the end of a test. This is important as most
subsequent tests probably don't expect the property to be set and might fail due to
this unexpected side effect.

Plain unit tests rarely have to deal with the persistent state, so teardown is, as in our
example, often omitted. And since it is completely irrelevant from the specification
point of view, we'd like to keep it out of the test method anyway. We'll see soon how
this can be achieved with JUnit.

Given the introduction of the common unit test structure, you might ask yourself,
"What's the point, why is this so important?".

"The ratio of time spent reading (code) versus writing is well over 10 to 1…"

 – Robert C. Martin, Clean Code, [MART09]

A four-phases-pattern test expresses the objective of a test clearly. Setup always
defines the test's precondition, exercise actually invokes the functionality under test,
and verify checks the expected outcome that constitutes a component's behavior. Last,
but not least, teardown is all about housekeeping, as Meszaros ([MESZ07]) puts it.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Well-structured Tests

[24]

The common structure and clean separation increases readability tremendously.
As you're aware of the purpose of each section, you know where to look if you need
to understand, for example, the test-specific precondition. As a consequence, this
approach implies that one test verifies only a particular behavior for a given input
state at a time. This is why unit tests normally do without conditional blocks or the
like (single-condition test, [MESZ07]).

Especially for rookies, it is tempting to avoid the allegedly tedious fixture setup
and check as much as possible within a single method. But this usually leads to
obfuscation by nature. Compared to the structure described here, crabbed tests make
it very hard to grasp the writer's intention. Changes will get more difficult, and
maintainability or enhancement cycles will take longer. So remember:

"The road to hell is paved with good intentions."

 – Old proverb

When written badly, tests can make things even worse than they were before. Resist
the urge and structure your test properly, even if it takes some time to carve out a
test's precondition. But to ease your first steps on the latter, we'll have a closer look at
some fixture setup practices now.

Setting up the fixture
As mentioned earlier, a test's fixture setup includes all the activities necessary to
prepare a well-defined input state on which a component's functionality is invoked.
This may affect things like component creation, setting of particular values,
registering of test doubles, and so on.

In our very simple example, all it needs is the creation of a new timeline instance. But
most of the time, a test case consists of more than a single test. We might consider it
a good idea to check that the initial value of our timeline fetch-count is greater than
zero. Thus, we add a test initialState to verify exactly this behavior, as shown in
the next listing:

public class TimelineTest {

 private final static int NEW_FETCH_COUNT
 = new Timeline().getFetchCount() + 1;

 @Test
 public void setFetchCount() {
 Timeline timeline = new Timeline();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

 timeline.setFetchCount(NEW_FETCH_COUNT);

 assertEquals(NEW_FETCH_COUNT, timeline.getFetchCount());
 }

 @Test
 public void initialState() {
 Timeline timeline = new Timeline();

 assertTrue(timeline.getFetchCount() > 0);
 }
}

Mind how reflecting about the initial component state has influenced our
NEW_FETCH_COUNT constant definition.

.. NEW_FETCH_COUNT = new Timeline().getFetchCount() + 1;

As we can expect the default value to be a positive integer, we derive the
constant from the initial fetch-count setting. This way, we make the test
less dependent on the component internals. It is quite natural that a test
case matures while adding more and more specifications. So don't be
too keen on getting everything perfect, right from the start. Usually, good
means it's a little step that's good enough to begin with.

As you can see, initialState leaves out the exercise phase. This is hardly
surprising, as it checks whether the initial component state matches certain criteria.
You may look at it as verifying the outcome of the component's creation, which melts
the phases setup and the exercise into a single statement.

The two timeline tests have their fixture definition within their body. This situation
is called in-line setup, [MESZ07]. But since the definition is the same for both, it is
a clear case of redundancy, which we usually like to avoid. Hence, we could choose
delegate setup, [MESZ07], to move the common code into a method called by each
test, as shown in the following snippet:

@Test
public void setFetchCount() {
 Timeline timeline = createTimeline();

 timeline.setFetchCount(NEW_FETCH_COUNT);

 assertEquals(NEW_FETCH_COUNT, timeline.getFetchCount());

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Well-structured Tests

[26]

}

@Test
public void initialState() {
 Timeline timeline = createTimeline();

 assertTrue(timeline.getFetchCount() > 0);
}

private static Timeline createTimeline() {
 return new Timeline();
}

The method createTimeline is actually a special delegation variant called create
method, [MESZ07], because its only purpose is to create a new instance of the SUT.
Of course, it is dubious whether the delegation improves readability in our very
trivial case. But keep in mind that component creation often involves initialization of
values or reference components needed as constructor arguments. However, since
these arguments might be unimportant and thus disturbing for the understanding of
a given test, delegation can be useful even if no redundancy is involved.

At any rate, delegate setup bridges to an interesting feature of JUnit: the possibility
to execute a common test setup implicitly. Implicit setup, [MESZ07], can be achieved
with the annotation @Before applied to a public, nonstatic method that has no return
value and arguments. But this feature comes at a price. If we want to eliminate the
redundant createTimeline calls within the tests, we have to introduce a field that
takes an instance of Timeline (see the following listing):

public class TimelineTest {

 private final static int NEW_FETCH_COUNT
 = new Timeline(). getFetchCount() + 1;

 private Timeline timeline;

 @Before
 public void setUp() {
 timeline = new Timeline();
 }

 @Test
 public void setFetchCount() {
 timeline.setFetchCount(NEW_FETCH_COUNT);

 assertEquals(NEW_FETCH_COUNT, timeline.getFetchCount());
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

 @Test
 public void initialState() {
 assertTrue(timeline.getFetchCount() > 0);
 }
}

It's evident that implicit setup can remove a lot of code duplication, but it also
introduces a kind of magic from the test's point of view. This makes it harder to
read. So the clear answer to the question which kind of setup type should one use is:
it depends.

When we painstakingly pay attention to keep components and test cases small, the
trade-off seems acceptable. Then, implicit setup can be used to define the fixture
common for all tests. Small in-line and delegate setup statements may supplement the
specific preconditions on per-test basis. But as beginners often tend to let classes grow
too large, it might be better to stick with the in-line and delegate setup first.

Before actually executing a test, the JUnit runtime creates a new
instance of the test class. This means that the simple fixture in our
example could omit the setUp method completely. Assignment
of the timeline field with a fresh fixture could be done implicitly
like this:

private final Timeline timeline = new Timeline();

While some people use this a lot, other people argue that the
@Before annotated method makes the intention more explicit, which
is why we'll stick to the annotated version throughout this book.

Now that we know how to set up a fixture properly, one might wonder how to get
rid of it neatly in case it is persistent?

What goes up must come down
Imagine for a moment that a Timeline instance would produce a persistent state
and needs to be disposed of. This means that we have to add a teardown phase to
our tests. Based on the current TimelineTest class, this is an easy thing to do. JUnit
supports implicit teardown in conjunction with the @After annotation. We would
only have to add the following implicit teardown method:

@After
public void tearDown() {
 timeline.dispose();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Well-structured Tests

[28]

As explained earlier, teardown is all about housekeeping and adds no information
to a particular test. Because of this, it is convenient to perform it implicitly.
Alternatively, one would have to handle this with a try-finally construct around the
exercise and verify statements to ensure that the clean-up gets done even if a test
fails. Unfortunately, the latter construct decreases readability notably since it creates
an overhead of inner blocks (see the following snippet).

@Test
public void setFetchCount() {
 Timeline timeline = new Timeline();

 try {
 timeline.setFetchCount(NEW_FETCH_COUNT);

 assertEquals(NEW_FETCH_COUNT, timeline.getFetchCount());
 } finally {
 timeline.dispose();
 }
}

Verification
As previously mentioned, a unit test verifies only one behavior at a time. We
define behavior as the outcome of a component's functionality applied under given
circumstances. The following diagram shows how this definition maps to the phases
of a unit test and, in particular, how the verify phase checks the behavior's outcome:

Relation of behavior and unit test phases

For example, under the condition that our timeline component already contains
some items in a sorted order (initial state), the functionality adding an item behaves
correctly with respect to our specification (transition), if afterwards the component
contains all old items, plus the new ones, in a sorted order (outcome).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

It is important to understand that behavior shows its effects not only in one or
more state changes, but also in interactions like notifications of other components.
Overall, there might be various things to check to ensure correctness. There is a
school of thought propagating a one-assert-per-test policy, but in the light of the
preceding explanations, it appears more obvious to use a single-concept-per-test idea,
[MART09]. If you put concept on a level with behavior, it is evident that verification is
not limited to just one assertion as it, incidentally, happens to be in our simple listings.

Note that a detailed discussion on verification techniques
will be provided in Chapter 7, Improving Readability with
Custom Assertions. For now, we'll leave it at that and go on
writing more tests.

Choosing the next functionality to test
Now that you know how to structure a test properly, you still might feel a bit
insecure about what to test, where to start, how to continue, and how to know
when you are done. What follows will be a few heuristics to help you in mastering
these hurdles.

Start with the happy path
Meszaros defines the happy path as the normal path of execution through a use case or
the software that implements it; also known as the sunny day scenario. Nothing goes wrong,
nothing out of the ordinary happens, and we swiftly and directly achieve the user's or caller's
goal, [MESZ07]. Regarding the addition of an item to our timeline functionality, the
happy path is made up of an item that gets sorted into a list of existing items, and
hence, gets depicted at the correct chronological position.

But what makes it so important to start with it? Because it delivers the highest
business value, and gets us closer to the component's expected capabilities. Once we
are done with the normal path of execution, we know that a specification can be met.
Starting with boundary conditions, we might waste time if we recognize later on
that the prime scenario does not work out well. Furthermore, it seems that the code
for boundary conditions often hinders a straightforward sunny day implementation
when done last, whereas corner case code can be integrated easily into a main
scenario most of the time.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Well-structured Tests

[30]

Since a component might have several functionalities to offer, it is quite possible
to have more than one happy path per test case. Similar to the aforementioned
reasoning, it is plausible in such situations to start with the implementation that
offers the highest business value. But sometimes, it may also be suitable to begin
with a low hanging fruit, [KACZ13], that is, a very simple functionality.

This is particularly useful if you are stuck and not yet completely sure about where
to go. Commencing like this, you probably gain some insights on the more complex
tasks ahead. You may have noticed by now that this is exactly the approach we took
with our example listings. So hopefully, you've obtained a lot of knowledge by now!
But how do we continue after we're done with the main course of action?

Conclude with corner cases
"There are two hard things in computer science: cache invalidation, naming things,
and off-by-one errors."

 – [FOWL2H]

While the happy path scenario usually represents the highest business value, you're
not done once your component under test meets the main requirements. On the
contrary, the nastiest problems can occur with respect to boundary conditions and
might be spotted rather late. This is because they often appear on less frequently
used but important paths of execution.

It is necessary to recognize these corner cases and cover them with tests. To make
sure that our timeline's paging mechanism gets shielded from unreasonable
fetch-count settings, one might limit the allowed attribute values to an appropriate
range. Additional tests ensure that input values exceeding the boundaries are
not accepted.

@Test
public void setFetchCountExceedsLowerBound() {
 int originalFetchCount = timeline.getFetchCount();

 timeline.setFetchCount(Timeline.FETCH_COUNT_LOWER_BOUND - 1);

 assertEquals(originalFetchCount, timeline.getFetchCount());
}

@Test
public void setFetchCountExceedsUpperBound() {
 int originalFetchCount = timeline.getFetchCount();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

 timeline.setFetchCount(Timeline.FETCH_COUNT_UPPER_BOUND + 1);

 assertEquals(originalFetchCount, timeline.getFetchCount());
}

We have chosen to provide the values that define our range boundaries as constants.
Now we can use them to find the first value that exceeds an affected boundary. This
way, changing the range value definitions later on does not affect our test code. At
the end, we specify that out-of-bounds values should be ignored, which is expressed
by the assertEquals verifications.

The latter is probably not the brightest design decision as it may
obscure misbehaving client calls. In general, it is better to quit
invalid input values with IllegalArgumentException. This
approach would follow the fail fast pattern, [SHOR04], with
the intention to reveal the programming mistakes at the earliest
possible point in time.
But nobody is immune from making bad calls, and so it might
be helpful to show how sound test cases can adapt easily to low
level specifications evolving over time. We'll come back to this
topic in Chapter 4, Testing Exceptional Flow.

But how can we make sure that we have tested all the necessary corner cases?
Hunt and Thomas, [HUTH03], have introduced the acronym CORRECT to provide
a checklist that one can go through to localize potential hotspots. The acronym
CORRECT stands for:

•	 Conformance: Does a value conform to an expected format?
•	 Ordering: Is a set of values ordered appropriately?
•	 Range: Is a value within a minimum and maximum definition?
•	 Reference: Is there a reference to anything external that isn't controlled by

your component (notifications)?
•	 Existence: Does the value exist (for example not null, non-zero, present in a

set, and so on)?
•	 Cardinality: Are there exactly enough values?
•	 Time (absolute and relative): Is everything happening in order? At the right

time? In time?

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Well-structured Tests

[32]

While this is a fine starting point, you'll pretty soon develop a good sense of what
cases have to be covered. And if you happen to miss something? Well, this will
happen! Then proceed as mentioned in Chapter 1, Getting Started. Once the problem
occurs, add a new test that reproduces the malfunction with a failing verification.
Change your code to get all your tests green. After that, you can go on with your life
as the issue will be solved sustainably.

After the war
"Test Driven Development is a very useful, but certainly not sufficient, tool to help
you get good tests."

 – Martin Fowler, [FOWL12]

So in rare cases, it may happen that we think we are done with all the boundary
conditions, but have still overlooked something due to a conceptual error or the like.
At this development stage, it can be valuable to use a code coverage tool to find out if
we have missed any paths of execution.

Consider, for example, that we have inadvertently deleted the @Test annotation of
the setFetchCountExceedsUpperBound test. Running our tests while recording
coverage would reveal that the path responsible to meet the respective requirement
does not get executed. The image Incomplete Test Coverage shows how the
statement matching the start point of the exceeds-upper-bound-condition-branch is
marked with a yellow background.

Incomplete test coverage

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

This is problematic as we now have a gap in our safety net. One could easily break
the component's behavior by changing the marked line without being noticed. Of
course, the example is based on a simple mistake, which can be fixed quickly. But
according to Brian Marick, such gaps may be an indication of a more fundamental
problem in your test case called faults of omission, [MARI] (these are explained
in detail in Chapter 8, Running Tests Automatically within a CI Build). So it might be
advisable to reconsider the affected test cases completely.

Code coverage can detect holes and, therefore, potential trouble with respect to
our component's correctness. But note that the reverse conclusion is not valid.
Completeness of coverage doesn't ensure that we have tested every potential
behavior. Adding a single statement to a covered path of execution might alter the
outcome of a test's exercise phase and still pass all of its existing verifications.

Having said this, please note that full coverage is not always achievable or would
be unreasonably expensive to achieve. So be careful not to overdo things. To quote
Martin Fowler again:

"I would be suspicious of anything like 100% – it would smell of someone
writing tests to make the coverage numbers happy, but not thinking about what
they are doing."

 – [FOWL12]

So now that we've learned a lot about the nature of a well structured test and how to
evolve test cases efficiently, let's turn towards the real difficult task: how to name our
tests concisely.

Getting the test names right
Finding good names is one of the challenges of crafting software. You need to find
them all the time and for everything: classes, methods, variables, just to name a few.
Because of that, the last section of this chapter explains the particularities of naming
tests and balances the pros and cons of common approaches and conventions.

Test prefix
What makes a name a good name? To quote Uncle Bob:

"Three things: Readability, readability, and readability!"

He defines this later on as clarity, simplicity, and density of expression, [MART09].
Though this sounds reasonable, it leaves us with the question of how to achieve
these qualities when naming our tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Well-structured Tests

[34]

Before the arrival of annotations in the Java language, it was necessary to distinguish
tests from ordinary methods to be able to process them by the JUnit runtime. This is
because the latter has to pick up each test separately, run it, and report the results.
The technical solution was to prefix the name of public, nonstatic methods that do
without return values and arguments with test to denote them as executable. As a
result, a test case was a compound of various methods called testFoo, testBar,
and so on.

Unfortunately, this prefix adds little to nothing to the intention revealing purpose
of a test name, but rather increases the clutter or even worse it sometimes makes it
more difficult to find a name that can be read fluently. That's why, the designers of
JUnit decided, once annotations were around, to mark JUnit executables with @Test.
Since then, the prefix approach is obsolete, and the name can be chosen at will. But as
is often the case, bad habits die hard, and so this convention is still used a lot.

Notwithstanding the above, developer's strived early on for naming conventions
that focused on the behavior related nature of unit tests and at which we'll have a
look now.

Behavior-expressing patterns
One of the trend-setting work in behavior related naming conventions was Roy
Osherove's post on Naming Standards for Unit Tests, [OSHE05]. He postulated that a
test name should express a specific requirement and should include the expected input or
state and the expected result for that input or state.

Note that this is fairly close to our behavior definition and the
unit test structure given previously.

The resulting pattern that he proposed separates the different responsibilities with
underscores, and looks like this:

[UnitOfWork_StateUnderTest_ExpectedBehavior]

So if we look again at the addition of an item to our timeline example, we deduce
that the unit of work is adding an item. The state under test is reflected by the
timeline's list of already added items (in sorted order, which probably means at least
two). Last but not least, the expected behavior (which we refer to more precisely as
outcome) results in the list of correctly sorted items that now also contains the newly
added one.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

Trying to translate these considerations into a meaningful name according to
Osherove's standards, we might end up somewhat like this:

addItem_hasListOfSortedItems_listContainsAdditionalItemAndIsSorted

You can see that the name is actually a compound of three names, each of which uses
camel case notation to express its purpose in a fluently readable fashion. The idea
is that anyone should get a fairly good understanding of the component's behavior
simply by browsing through the method names of a component's test case.

However, underscores are somewhat frowned upon in Java and some people claim
that unit test names ought to focus on the scenario (probably the outcome of our way
of looking at things). A popular approach in this area starts with the should prefix to
express the test's intention. In Osherove's terms, an abstraction of this pattern might
be written as follows:

[shouldExpectedBehaviorWhenUnitOfWorkOnStateUnderTest]

Once again, we can try to translate our example into a name, but this time starting
with the should prefix followed by the expected behavior.

shouldContainAdditionalItemAndIsSortedWhenAddItemOnListOfSortedItems

Well, maybe our examples are overdoing things a bit, but unfortunately, names
following these patterns tend to lack clarity and simplicity of expression. In
particular, the last name makes it difficult for our in-brain-parser to distinguish
the behavior defining segments at one glance. While the underscores make the
differentiation easier, in case of multiple preconditions and outcomes, one still has to
dig deep to grasp what a test is all about.

The reason for this is that we are looking for a meaningful name, not a
comprehensive specification. A one liner is simply not able to cope with the
information density of a complex behavior. The latter brought Dan North to the
idea of behavior-driven development (BDD), where test names should be sentences,
[NORT06]. He even created an alternative testing framework, [JBEHAV]. This allows
writing of tests in a textual Given-When-Then structure, and maps each line to an
annotated Java test step method. The following listing gives an idea of a textural
description based on our example:

Given the timeline contains two sorted items

 When a new item gets added to the timeline

 Then the timeline contains all old items
 And the timeline contains the newly added one
 And the timeline is sorted correctly

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Well-structured Tests

[36]

Fowler clarifies that the different step types can be mapped to our four-phase
test structure like this: given = > setup, when => exercise, and then => verify (in
case you wonder, BDD has no teardown equivalent), [FOWL13]. Some developers
even emphasize this by adding comments before each phase using the BDD step
identifiers, as shown in the next variant of setFetchCountExceedsLowerBound with
BDD step identifiers:

@Test
public void setFetchCountExceedsLowerBound() {
 // given
 int originalFetchCount = timeline.getFetchCount();

 // when
 timeline.setFetchCount(Timeline.FETCH_COUNT_LOWER_BOUND - 1);

 // then
 assertEquals(originalFetchCount, timeline.getFetchCount());
}

But how can these considerations help us to improve our test names?

Reducing names to the essentials
The point of the BDD turnaround was to remind us that we already have the
complete behavior specification in our unit test. We don't need to force this
information redundantly into the test's name! The more information we put
into it, the harder it is to read and the likelier it is that it gets outdated, as code
documentation often does.

For example, when changing an expected outcome from ignoring a certain input value
to throwing an exception on that value, it can easily happen that the developer forgets to
update the test's name accordingly. This is symptomatic to all tasks requiring great
diligence. There is no compile-time check for those kinds of mistakes and the test
case would be misleading, if written in accordance with the conventions introduced
previously. But we can avoid this kind of trouble simply by skipping the outcome
section entirely.

This is possible as a behavior is unambiguously identifiable by its functionality and
the appropriate preconditions. Test cases following that convention simply list the
various use case scenarios of the component under test. But as a consequence, one
has to step into a method to get an understanding of the expected outcome.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

Another simplification is related to the fixture state. In general, test cases share some
common setup state, which seldom represents the base for the happy path tests.
Corner cases may vary this common state a bit to match their preconditions. Kent
Beck notes, for example, that:

"If you can't easily find a common place for common setup code, then there are too
many objects too tightly intertwined."

 – [BECK03]

So you should probably be able to find a name that spares the mentioning of these
common preconditions.

This means that we can ignore the sorted list of initial items in our example when
it comes down to naming the tests. Once again using Osherove's terms and starting
with the functionality, the pattern is basically shortened to the following:

[UnitOfWork_StateUnderTest]

With this in mind, the next listing of test method names shows what our example
test case could look like using this strategy. Note that the underscore was replaced
with a more fluently readable version using words like to, with, or if to get a better
binding between the segments:

TimelineTest:

addItem
addItemToEmptyList
addItemWithMissingDate
addItemIfThresholdHasBeenReached
addItemWithNull
...
setFetchCount
setFetchCountExceedsLowerBound
setFetchCountExceedsUpperBound
...

But where does this leave us now? As the saying goes, the bigger the choice, the
harder it is to choose. While brevity is the soul of the wit, there are supporters for
any of the described conventions. Rather it is more likely possible to reduce global
warming than finding a common denominator on this topic. But no matter how you
choose, make sure that at least all your team members follow the same standard.
This keeps your test cases consistent and ensures that the poor wretch working on
legacy code doesn't run into apoplexy while continuously adjusting to different
naming styles.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Well-structured Tests

[38]

Summary
In this chapter, we've learned about the structure of a well-written unit test. We've
got to know how to use the four phases, that is setup, exercise, verify, and teardown,
to map a single test to a certain component behavior. We've addressed the different
techniques to set up a test fixture efficiently and illustrated the relation of a behavior
to its verification.

Once we were familiar with how to write a test, we've been concerned with what
to test. We've understood why we should always start testing with happy-path
scenarios and do the corner cases later on. Moreover, we've been introduced to how
code coverage can help detect holes in our safety net.

In the last section, we've discussed the pros and cons of the various test naming
conventions. We've learned about the difficulties to map behavior verification
into a meaningful name, and showed some possibilities to reduce a test name to
the essentials.

The next chapter will evolve our example to make use of component dependencies.
We'll learn about depended-on components and how they are related to indirect inputs
and outputs of the component under test. We'll look at the importance of test isolation,
and how it can be achieved by using stand-in doubles to satisfy dependencies.

www.it-ebooks.info

http://www.it-ebooks.info/

[39]

Developing Independently
Testable Units

One of the most difficult parts for JUnit beginners confronted with non-trivial
real-world situations is to decompose big requirements into small and independently
testable units. At the beginning of this chapter, you're going to learn how
requirements can be translated into single responsibility components and how
they assemble into a collaborating system.

Next you're going to understand the impact of collaboration dependencies on our
testing efforts. Once you're aware of the role of collaborators and how a component
under test interacts with them, you'll get to know when it is important to replace
them with test doubles.

Continuing our timeline example, we'll look at the use cases and application
practices of the various double patterns in depth. After that, you'll learn about the
advantages and disadvantages of mock frameworks. You'll also see how to work
with generated doubles in practice, based on Mockito.

Last but not least, you'll be introduced to a particular type of classes that,
in contrast to doubles, do not collaborate with our component under test, but
rather reduce redundancy and decouple test cases by extracting reusable test
related functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Independently Testable Units

[40]

This chapter contains more theoretical superstructure as compared to the rest of the
book, so it's worthwhile to read it thoroughly and comprehend the examples and
exercises. This is because once you're familiar with the topics and skills imparted
here, you will be forearmed even for the sneakier situations of your daily testing
work. The topics covered in this chapter are:

•	 Decomposing requirements
•	 Understanding isolation
•	 Working with test doubles
•	 Increasing efficiency with mock frameworks
•	 Using test helpers

Decomposing requirements
Real-world requirements describe the highly diverse behavior of a software under
development. Grouping functionality into single responsibilities, which have to play
together to accomplish the program's objectives, creates dependencies between the
components that implement such responsibilities. In the first section, you'll learn
why and how these relations can affect our unit testing efforts.

Separating concerns
"Divide and rule."

 – Julius Caesar

So far, we've learned a lot about the basics of unit testing. But real-world software
doesn't consist of one simple class whose behavior is specified by a single test case.
Hence, we have to reflect a bit about the requirements before actually starting
development. At this stage, we try to spot and group together functionality that
affects common concerns from a high level point of view. This helps us to assess the
interplay of responsibilities and to decide where to begin.

Remembering our timeline specification from Chapter 1, Getting Started, we could list
functionality on the left side of an index card, whiteboard, or the like. After that, we
could think about how to group these coherently and note some meaningful names
on the right side. This way, we decompose the list of requirements into separate
components and the related data types. Each component abstracts a functionality
subset needed to fulfill the timeline's overall behavior.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[41]

But how do we recognize if functionality is related? A good starting point is to
watch out for the usage of common state or resources. The following image shows
an excerpt of functionality and components/data types that we could have come up
with. See that we've noted, for example, the types Item and ItemProvider.

The index card timeline

We've done that to represent the ability to load the structured data records from
arbitrary sources. It is related to the functionality of fetching items page wise (fetch items
page wise), or fetching items that are newer than the latest locally buffered one (fetch
new items). The common denominator is the external resource providing access to those
data records. It might be a web service, database, e-mail server, and suchlike. Taken as
a whole, we've worked out that the responsibility of loading items will be abstracted
by the item-provider components. Their implementations will have to supply several
methods with specific semantics, all related to the functionality of item retrieval.

In general, we should respect the single responsibility principle that claims a
component should have one, and only one, reason to change. Since the principle
defines responsibility as a reason for change, this implies that each component should
only have one of it—thus the name. Classes that assume more than one responsibility
have more than one reason to change. Most of the time, this leads to coupling of
concerns, and changing one responsibility may compromise the class's ability to
accomplish the other, [MART02].

You recognize that we've already identified the more coarsely grained concerns in
the scopes of UI and model representation. This might not be perfect, but we can
always do more iterations and refine our findings if we don't feel confident enough
to move on. However, we avoid extensive upfront planning. This is because we'll
shape the subtleties of our class-level design by means of our testing efforts as we've
already learned. So where is the catch?

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Independently Testable Units

[42]

Component dependencies
"With a little help from my friends."

 – Beatles

Separating concerns into particular components is reasonable as it allows to
encapsulate state and group related functionality together, and abstract access to
external resources. But there is a price tag to it. Components must work together to
meet the overall requirements, which means there are dependencies between them.
And component interdependencies are the normal case, not the exception.

Dependencies have a huge impact on our testing practices. Components that help
others to satisfy their responsibility are often denoted as collaborators. A component
that depends on collaborators relies on their behavior. As a consequence, the
outcome of the functionality that we'd like to verify can be tightly coupled to the
outcome of a collaborator's functionality. And before we know it, we end up with
a collaborator chain that makes fixture setup cumbersome at best.

Component versus data classes
In Java, we've got the class concept to provide the
implementation of a certain type. Throughout this book, we
follow a convention that divides classes into the categories
data and components. Data classes are compounds of value
fields, which may be published by so-called accessor methods
or direct field access. Either way, they serve plain, state
representational intentions.
Components, by contrast, express a certain responsibility and
supply a coherent set of functionality. Instead of exposing
state, they encapsulate and treat it as an implementation
detail. Components often depend on other components to
fulfill their purpose, and define a behavior policy expressed in
terms of the programming interface. This allows the pluggable
exchange of different implementation variants.
Applying this distinction to the example, Item is a simple
data type, while ItemProvider establishes a component
declaration whose implementations can be plugged into
Timeline instances to handle item retrieval.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[43]

The timeline UML diagram

Suddenly, an image of a provisional architecture arises in our head, and we identify
the necessary components and their interactions. But how can we cope with the
dependencies that come along in our tests? When we look at the preceding Timeline
UML Diagram reflecting our thoughts, we notice, for example, several types
providing abstractions to external resources or services.

We intend these abstractions to be types declared by interfaces only. Although we
might envision them to look roughly like the following listings, we aim to get a more
precise picture once we are writing tests. But as tests won't run with interfaces, it
seems that we're stuck.

public interface Item {
 long getTimeStamp();
}

public interface ItemProvider {
 List<Item> fetchItems(Item ancestor, int itemCount);
 int getNewCount(Item predecessor);
 List<Item> fetchNew(Item predecessor);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Independently Testable Units

[44]

public interface SessionStorage {
 void storeTop(Item top);
 Item readTop();
}

The blade we use to cut the Gordian knot (also known as an impossible knot, it is an
expression for solving an intractable problem by cheating or thinking outside the
box) is denoted as isolation. With a view to learn how to segregate a component
from its collaborators for testing purposes, the next section will start by examining
the relationship between both parties more closely.

Understanding isolation
As we've just learned, a component under test usually has to collaborate with
other components. But why can this be a problem with respect to unit tests, and
what are we going to do about it? This section will explain the necessity of testing
functionality in isolation. Afterwards, it introduces the so-called test doubles, which
we will use later on to achieve this goal.

Delegating responsibilities to DOCs
Now that we've got a pretty good understanding of the timeline's responsibilities,
we want to go ahead with development. As we may consider fetching items from
a provider as the most valuable functionality on our way to a minimal viable
product, [MIVIPR] we decide to continue with page wise fetching.

But we know that a Timeline component relies on an ItemProvider instance to
make this happen. To implement this dependency, we could choose constructor
injection. Indeed, this binds a certain provider statically to a timeline instance, but
it avoids any component reinitialization mechanics that a setter injection would
demand, [FOWL04].

Expanding the implicit setup of our TimelineTest, the following snippet shows
what the constructor injection usage would look like. Note the three question marks
as we do not know yet where our item provider will emerge from.

private ItemProvider itemProvider;
private Timeline timeline;

@Before
public void setUp() {
 itemProvider = ???
 timeline = new Timeline(itemProvider);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

Let's consider for a moment that we would proceed and implement a real-world
collaborator that make calls to a remote service to supply us with items. Since the
components that we intend to test depend on collaborators, Meszaros denotes the
former more generally as system under test (SUT) and the latter as depended-on
component (DOC), [MESZ07]. Using a DOC that encapsulates access to external
resources brings along testing related trouble in many respects:

•	 Depending on the components that we cannot control might impede the
decent verification of a test specification. Just think of our real-world web
service that could be unavailable at times. This could cause a test failure,
although the SUT itself is working properly.

•	 DOCs might also slow down test execution. To enable unit tests to act as
safety net, the complete test-suite of a system under development has to be
executed very often. This is only feasible if each test runs incredibly fast.
Again think of the web service example.

•	 Last but not least, the DOC's behavior may change unexpectedly due to the
usage of a newer version of the web service API, for example. This shows how
depending directly on components we cannot control makes a test fragile.

So what can we do to circumvent these problems?

As we do not want our unit tests to be dependent on the behavior of a DOC, nor
do we want them to be slow or fragile, we strive to shield our components as much
as possible from all other parts of the software. Flippantly spoken, we make the
verification of external resource abstractions from the view point of a unit test to
somebody else's problem, [SOELPR].

Often, we set up specific integration tests—and if we want to check the overall
system behavior, acceptance tests—that handle such DOCs. The first type verifies
that a component meets its specifications, and the second that its incorporation
works as expected from an end user's way of looking at things.

In general, the principle introduced here is known as isolation of the SUT. It expresses
the aspiration to test concerns separately and keep tests independent of each other.
Practically, it implies that a component should be designed in such a manner that
each DOC can be replaced by a so-called test double. This is a lightweight stand-in
collaborator used instead of the real DOC, [MESZ07].

With regard to our example, this means we have to provide an implementation
of ItemProvider that does not make any remote calls to a web service API. This
surely keeps our unit test fast. But how can we configure, for example, a stand-in
component to supply us with the behavior needed for testing the happy path and
corner-case scenarios of our SUT? To answer this question, we need to take a closer
look at how SUT and DOCS interact. More precisely, we have to understand the
different test related input and output types involved with their communication.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Independently Testable Units

[46]

Indirect input and output
So far, our testing efforts confronted us with direct inputs and outputs of the SUT
only. They are denoted as direct because our test code communicates by itself with
the SUT. Changing the fetch-count attribute of a Timeline instance or reading its
current state are examples of a direct input and output respectively. Direct inputs are
used to configure an SUT during setup and direct outputs are devoted to verify the
outcome of an expected behavior. This relation is shown in the following image:

Direct inputs and outputs

But with DOCs involved, the situation gets a bit more complicated. Consider an
ItemProvider instance supplying items by its fetchItems method. Its signature is
declared in the interface sketch further up. As we're about to implement a fetching
mechanism for our timeline model, we depend on the items provided by our
collaborator's fetch functionality. From the SUT's point of view, the items are indirect
input as they're reachable only via the item provider detour.

Interestingly enough, the items made available as indirect input will serve as direct
output once the fetch call of the timeline instance under test has been exercised. This
way, we check whether the expected items (indirect input) have been made available
in the timeline's data structure (direct output). This path of state transfer can be
followed in the following image by the two arrows at the bottom:

Different types of inputs and outputs

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

To be able to restore a Timeline instance after system restart, we could expect that each
state change due to an item fetch run gets persisted. This could be achieved by dispatching
the current state to the storage each time a call to fetchItems or fetchNew occurs.
Because of this, we've already started to think about a collaborator, SessionStorage.

But instead of buffering the complete content, we consider it sufficient for the
moment, if the DOC persists the timeline's latest top item which avoids missing out
items released after the last session has been halted. On a restart, the timeline fetches
its first list of items starting with the buffered one.

If we look at the timeline directly, there is no chance to find out whether saving the
most recent item has happened or not. There is no state change of the SUT involved.
But we can check if the item has reached the collaborator via its storeTop method.
This kind of data transfer is called indirect output. As saving is a side effect of
fetching, this time, the path of state transfer is more difficult to comprehend. The
item to save is not provided as direct input to the SUT. Instead, it is derived from the
items supplied as indirect input of the item provider component.

Given these explanations, we're now able to see the big picture and understand the
advantages, but we should also recognize some pitfalls that one has to keep in mind.

Unit isolation with test doubles
Summarizing what we've learned so far in this chapter, in unit tests, we replace
expensive DOCs with cheap test doubles. In doing so, we separate our SUT from the
undesirable effects induced by real-world collaborators. And this, in turn, ensures
that the functionality under test gets executed in isolation from the functionality we
can't control.

Furthermore, we gain authority over indirect inputs and outputs, which allows us to
set up a specific fixture state and verify the expected outcome in our tests efficiently.
The next section will bring an in-depth explanation of how to apply the various test
double design patterns on the basis of our ongoing timeline example.

"Where there is light, there must be shadow..."

 – Haruki Murakami

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Independently Testable Units

[48]

But before we move on, it's important to note that there is a trade-off when working
with replacements. A problem arises if stand-in components do not mimic the
genuine collaborator correctly. This can easily falsify the test results. We mentioned
earlier the importance of validating the correctness of expensive collaborators with
integration tests. But having a flawed replacement in our unit test opens a gap in
our safety net. This is because the test verifies the outcome that would have been
different if the stand-in would have behaved correctly.

Because of this, we must place emphasis on meeting the common specification
exactly. Figuratively speaking, we don't want to come to a situation where we
build perfect cars for crash-test dummies, but fail on real humans. On that account,
it seems reasonable to cover the stand-in components with separate test cases in
extraordinary complex scenarios. However, these scenarios seldom use the test-first
approach, and so we usually go without the extra double tests.

Another difficulty originates from the fact that replacement components often
simulate only partial behavior. Just enough to pass a test. But sometimes, there
can be more than one way to implement a certain functionality when backed by
a collaborator. It is possible, for example, to check that a Collection is empty by
either using size or the convenient method isEmpty. So consider that we replace
a collection with a stand-in implementation that provides only the size variant,
because this is the one used by the component under test.

Although it would be completely reasonable, we were not be able to refactor the
code to use the empty check without breaking our test case. The good news is that if
we've worked thoroughly, the problem wouldn't go unnoticed. But it is annoying as
we run into unnecessary effort to make the refactoring work unnecessary since we
have technically used equivalent approaches.

This trivial example shows how inapt double usage couples tests tightly to SUT
implementation details. And having such tight coupling in real-world scenarios can
hinder maintenance and feature enhancement significantly. Thus, we do not use
stand-in components for lightweight collaborators or data structures. The approach
described here is meant to be used where access to resources (database, file system,
or the like) via software components (database driver, file system API, and so on)
should be encapsulated by adapters. Such adapters serve as collaborators for the
functionality provided by the components we write on our own.

But before concluding this section, one last advice: Make sure you define your own
collaborator types, and beware of using third-party library or framework interfaces!
This way, you determine a clear boundary between your application and the third-
party code. In case a new library version introduces a slightly different behavior, you
simply have to adjust your adapter code to make an corresponding integration test
pass again. Your actual application code, including the unit tests, will stay unaffected!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

In addition, you can switch to another vendor easily by providing an appropriate
adapter, which is what the timeline uses to be able to connect to different service
providers. But not less important is that you define the collaborator's behavior in
your own terms. This helps to avoid train wrecks, [TRAWRE], or the like, in cases
where the required functionality is spread over several third-party components.
Writing your own adapter will pay off as unit tests can be written more smoothly
without undergoing the setup litany of creating a web of test doubles replacing the
third-party functionality.

Finally, after all this theoretical elucidations, it is time to see how we use test doubles
in practice.

Working with test doubles
Test doubles serve various purposes like indirect input provisioning, recording
of indirect output, or immediate verification of interactions. So it can hardly be
surprising that there are quite a few different types of double patterns. This section
introduces them and gives examples of hand-written implementations, which should
be a precious experience for a deep comprehension and the correct application of
stand-in components.

Placeholder dummies
To get a component into a state that constitutes a test's precondition, it is sometimes
necessary to satisfy dependencies to collaborators which do not actually contribute
to the functionality under test. The only right to exist for these DOCs is to fill in
argument lists to avoid input verifying exceptions or the like. Because of this, it is
superfluous for the stand-in to provide any real functionality. A test double that
serves this role is denoted as dummy.

Let's assume our enhanced Timeline constructor checks whether the injected
ItemProvider instance is null and quits with an appropriate exception if true. As a
consequence, we need to initialize any timeline instance with an item provider, even
if it is used to calculate our NEW_FETCH_COUNT test constant value only. The following
listing shows an appropriate implementation:

public class ItemProviderDummy implements ItemProvider {

 private static String MESSAGE
 = "Dummy method must never be called.";

 @Override
 public List<Item> fetchItems(Item ancestor, int fetchCount) {

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Independently Testable Units

[50]

 throw new UnsupportedOperationException(MESSAGE);
 }

 @Override
 public int getNewCount(Item predecessor) {
 throw new UnsupportedOperationException(MESSAGE);
 }

 @Override
 public List<Item> fetchNew(Item predecessor) {
 throw new UnsupportedOperationException(MESSAGE);
 }
}

Looking at the code, you'll notice how every method throws
an UnsupportedOperationException error. A dummy is
meant to be passed around but not to be used. Throwing this
exception ensures that we don't break this contract by accident.

Now let's see how the dummy gets applied in our example code:

private final static int NEW_FETCH_COUNT
 = new Timeline(new ItemProviderDummy()).getFetchCount() + 1;

If the list of constructor arguments grows, this might go beyond our personal
readability threshold, and we prefer to extract the calculation into a separate method.
If used in more than one test case, it might even be justified to introduce a test helper
providing these calculations. We'll cover such helpers in the last section of this chapter.

Fake it till you make it
Sometimes, we need a collaborator that actually provides an implementation, but
takes one or more shortcuts that makes it unusable for production code. We are not
interested in the DOC's indirect inputs or outputs, but rather simply want it to be fast
or independent from environmental influences. This type of a stand-in component is
called a fake.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

As we do not need a pure fake double for testing purposes in our timeline example,
you may think of an in-memory database as a general example. However, as we'll make
use of the abstract Item data on many occasions, I take this opportunity to introduce an
item implementation FakeItem that surely isn't capable of productive assignment:

public class FakeItem implements Item {

 private final long timeStamp;
 FakeItem(long timeStamp) {
 this.timeStamp = timeStamp;
 }

 @Override
 public long getTimeStamp() {
 return timeStamp;
 }
}

The only thing our immutable fake item provides is the mandatory time-stamp value
needed for ordering. This is sufficient for the quick definition of test input data,
which is why we could have just as well named it TestItem.

Now we'll continue with the test double patterns that make use of indirect inputs
and outputs for SUT isolation and test verification.

Providing indirect input with stubs
It's time to remember that we're still on our way to introduce the capability of fetching
items page wise by means of an item provider collaborator. From what we've learned,
we'd like to have a test double supplying us a list of items as indirect input.

In general, we like to replace a real object with a test-specific object that feeds the
desired indirect inputs into the system under test, [MESZ07]. A stand-in component
following this pattern is called a stub, which implies that we need to implement
an ItemProviderStub, allowing us to configure the items we are expecting as a
test outcome.

Fetching items page wise means that we must be able to load a certain amount of
subsequent items starting from a given ancestor. Thinking about the item provider's
interface, we thus define a method called fetchItems. Along with this, an argument
specifying the actual amount of items to load would be helpful, and for follow-up
fetches, we should know about the oldest item loaded so far. This leads us to the
following signature:

List<Item> fetchItems(Item ancestor, int fetchCount);

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Independently Testable Units

[52]

To be able to preconfigure an item provider stub with expected result values, we
introduce a method addItems (see 'location 2' marker in ItemProviderStub
in the following listing), which accepts the varargs argument items. This way, we
can apply more than one item at once. Note that due to the somewhat static form of
a book, we anticipate the evolution of the stub a bit. The following listing already
supports corner case tests for different fetch conditions:

class ItemProviderStub implements ItemProvider {

 private final Set<Item> items;

 ItemProviderStub() {
 items = new HashSet<>();
 }

 @Override
 // location 1: stub implementation to provide items to fetch
 public List<Item> fetchItems(Item ancestor, int itemCount) {
 return items
 .stream()
 .sorted(sort())
 .filter(item -> isApplicable(ancestor, item))
 .limit(itemCount)
 .collect(toList());
 }

 // location 2: method for stub configuration
 void addItems(Item ... itemsToAdd) {
 items.addAll(asList(itemsToAdd));
 }

 private Comparator<? super Item> sort() {
 return (first, second)
 -> compare(second.getTimeStamp(), first.getTimeStamp());
 }

 private boolean isApplicable(Item ancestor, Item item) {
 return ancestor == null
 || item.getTimeStamp() < ancestor.getTimeStamp();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

The stub simply consists of a set as data structure, containing all the items added for
testing purposes. The method fetchItems (see: 'location 1') ensures that the items
are sorted chronologically, and only items older than the ancestor (if available) are
returned. Last but not least, the returned list is limited to the given item-count.

The considerations about the stub are motivated by the fact that we want to
introduce a timeline functionality, which allows us to fetch items page wise from a
data source. Having our data source abstraction in place, we can put our plan into
practice. We specify a parameter-less method fetchItems to be able to trigger this
functionality programmatically.

An appropriate test might configure two fake items as a fixture. During exercise,
we expect fetchItems to load these items into the timeline data model, which
will represent them afterwards in a chronological order. The outcome state can be
retrieved by getItems and will be checked with an assertArrayEquals expression,
for example:

private static final FakeItem FIRST_ITEM = new FakeItem(10);
private static final FakeItem SECOND_ITEM = new FakeItem(20);

private ItemProviderStub itemProvider;
private Timeline timeline;

@Before
public void setUp() {
 itemProvider = new ItemProviderStub();
 timeline = new Timeline(itemProvider);
}

@Test
public void fetchItems() {
 itemProvider.addItems(FIRST_ITEM, SECOND_ITEM);

 timeline.fetchItems();
 List<Item> actual = timeline.getItems();

 assertArrayEquals(new Item[] { SECOND_ITEM, FIRST_ITEM },
 actual.toArray(new Item[2]));
}

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Independently Testable Units

[54]

The preceding listing shows what such a test could look like. But wait a moment!
Reconsidering this, it occurs to us that fetching the first items is probably not the
happy path, but rather a particular boundary condition. Besides, having fewer items
available than the actual fetch-count value seems to be a corner case too. So the
normal path of execution should be represented by a subsequent fetch. We could
change our test accordingly, as shown in the following snippet:

@Test
public void fetchItems() {
 itemProvider.addItems(FIRST_ITEM, SECOND_ITEM, THIRD_ITEM);
 timeline.setFetchCount(1);
 timeline.fetchItems();

 timeline.fetchItems();
 List<Item> actual = timeline.getItems();

 assertArrayEquals(new Item[] { THIRD_ITEM, SECOND_ITEM },
 actual.toArray(new Item[2]));
}

The example shows that one could easily get mixed up a bit, identifying the sunny
day scenario correctly. Also note how our test actually overshadows the fetch first
items behavior. I wouldn't be too worried about running into such subtleties. Skill
comes with practice, and refinement of a test case is always possible.

Apropos practice, strictly speaking, the last variant is still a corner case. By now
you should be able to locate the restriction, and providing a proper happy path
test surely is a good exercise (hint: fetch-count is on the lower bound). After all, our
first test versions specify the behavior under particular boundary conditions. But
note that we stick for compactness of the item initialization in this chapter with the
lower-bound setup.

Now that you're aware of stubbing, think about other corner cases that you have
to cover regarding page wise fetching. Write the tests and make them pass by
appropriate implementations. Once you feel comfortable with your solution, enhance
the timeline's capability further to fetch newer items than those already loaded for
example. In the book, we'll continue by introducing test double patterns that make
use of indirect output for result verification.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

Recording interactions with spies
As explained earlier, we are assuming that fetching new items should persist the
most recent item of the data structure after an actual fetch has been processed. This
is needed to restore the timeline's state in case the program gets restarted. We have
already pondered on a SessionStore collaborator that offers the method storeTop
to acquire this task.

Unfortunately, we are not able to witness the actual storage invocation. Because
of this, we decide to use a test double to record the item argument every time the
method storeTop gets called. This way we can capture the indirect output of our
SUT for later verification in our tests. A stand-in component working this way is
called a spy, [MESZ07]. The following listing shows what such an implementation
could look like:

class SessionStorageSpy implements SessionStorage {

 private final List<Item> log;

 SessionStorageSpy() {
 log = new ArrayList<>();
 }

 @Override
 public void storeTop(Item top) {
 log.add(top);
 }

 public List<Item> getLog() {
 return log;
 }
}

Similar to the item provider, we choose to inject a session storage collaborator as a
constructor argument into our timeline instance. Looking at the scenario where we're
fetching the first items, we would expect the timeline to store the actual top item
once after performing the actual fetch. Our spy captures the indirect storage output
in its log data structure. Now a test can use these records for outcome verification.
The following snippet shows what this would look like:

private SessionStorageSpy sessionStorage;
private ItemProviderStub itemProvider;
private Timeline timeline;

@Before

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Independently Testable Units

[56]

public void setUp() {
 itemProvider = new ItemProviderStub();
 sessionStorage = new SessionStorageSpy();
 timeline = new Timeline(itemProvider, sessionStorage);
}

@Test
public void fetchFirstItems() {
 itemProvider.addItems(FIRST_ITEM, SECOND_ITEM);
 timeline.setFetchCount(1);

 timeline.fetchItems();
 List<Item> actual = timeline.getItems();

 assertEquals(1, sessionStorage.getLog().size());
 assertSame(SECOND_ITEM, sessionStorage.getLog().get(0));
 [...]
}

We can see that the test verifies storeTop has been called once logging the expected
item, assuming we find it important to avoid unnecessary storage cycles. As noted
previously, restoring the timeline's state more accurately would mean to persist more
information about the items loaded. In turn, we'd have to deal with a general data
structure as indirect output. We'll see later how to do this with generated doubles.

Besides, as soon as we implement the actual state recovery, we'll have to provide
such data as indirect input, and hence need to use a stub again. But this could
interfere with our implicit timeline instance setup and the session storage field type.
Either we would go back to in-line setup, or write a double that serves both roles.
We'll also see later how generated doubles bypass this problem implicitly.

It is obvious that the overall functionality adds quite a few pre - and post - conditions,
which is a good opportunity to deepen the skills learned by implementing the
additional scenarios as an exercise. But here, we'll continue with a different stand-in
component type that also deals with indirect output.

Verifying behavior with mocks
There is another test double pattern that can be used to verify which indirect output
gets transferred to storeTop. The most important characteristic of this type is that the
verification is performed inside its delegation method. Nonetheless, as we'll see further,
it is necessary to ensure that the expected delegation has actually been invoked.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

In general, we like to replace an object on which the SUT depends with a test-specific
object that verifies it is being used correctly by the SUT, [MESZ07]. A stand-in
component following this pattern is called a mock.

If we start the storage evolution once again with the storeTop functionality, a
SessionStorageMock can be configured with an expected item using a specific
setter. In the delegation method, it is immediately checked whether the given
item matches the configuration. An additional flag, storeTopDone, buffers the
information that the method has been called. This allows us to check if the invocation
took actually place by using the verify() method later on. The next listing shows
how this flag also ensures that storeTop is not called more than once:

class SessionStorageMock implements SessionStorage {

 private boolean storeTopDone;
 private Item expectedTopItem;

 @Override
 public void storeTop(Item top) {
 assertFalse(storeTopDone);
 assertSame(expectedTopItem, top);
 storeTopDone = true;
 }

 void setExpectedTopItem(Item expectedTopItem) {
 this.expectedTopItem = expectedTopItem;
 }

 public void verify() {
 assertTrue(storeTopDone);
 }
}

The usage snippet of the following mock looks quite similar to the spy example from
the preceding one. However, there are small but mighty differences.

private SessionStorageMock sessionStorage;
private ItemProviderStub itemProvider;
private Timeline timeline;

@Before
public void setUp() {
 itemProvider = new ItemProviderStub();
 sessionStorage = new SessionStorageMock();
 timeline = new Timeline(itemProvider, sessionStorage);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Independently Testable Units

[58]

@Test
public void fetchFirstItems() {
 itemProvider.addItems(FIRST_ITEM, SECOND_ITEM);
 timeline.setFetchCount(1);
 sessionStorage.setExpectedTopItem(SECOND_ITEM);

 timeline.fetchItems();
 List<Item> actual = timeline.getItems();

 sessionStorage.verify();
 [...]
}

You can see there is no specification verification regarding the indirect output left in
the test. And it seems strange that the usual test structure has been twisted a bit. This
is because the verification condition gets specified prior to the exercise phase at the
end of the fixture setup (mock configuration). Only the mock invocation check is left
in the verify phase.

But in return, a mock provides a precise stacktrace in case behavior verification
fails. This can ease problem analysis quite a bit. If you take a look at the spy solution
again, you will recognize that a failure trace would point to the verify section of the
test only. There would be no information about the line of production code that has
actually caused the test to fail.

This is completely different with a mock. The trace would let us exactly identify the
position where storeTop was called. Having this information, we could easily set a
break point and debug the problematic matter.

If you've completed the previous exercises successfully, you will have no problem
to go on and replace our spy with a mock. But writing all this test double types
by hand is often a bit tedious. So it's no surprise there are libraries available that
simplify double handling considerably. The next section will discuss their assets and
drawbacks and look into one of them in more detail.

Increasing efficiency with mock
frameworks
While hand-crafting test doubles is a skill each unit tester should be able to master,
mock frameworks aim to ease stand-in component creation and configuration.
Hence, they profess to make your daily testing work more efficient. But as opinions
on these tools are divided, this section will clarify the pros and cons and give some
examples of decent usage.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

The promised land?
"If all you have is a hammer, everything looks like a nail."

There are a couple of frameworks available claiming to simplify the usage of stand-in
components. Unfortunately, these libraries do not always do a good job when it comes
to the precise test double terminology, [GOUL12], which we've learned in the previous
sections. While JMock, [JMOCK], and EasyMock, [EASYMO], for example, basically
generate mocks, Mockito, [MOCKIT], despite its name, is spy centric. Maybe that's why
most people talk about mocking, regardless of what kind of double they are really using.

Nevertheless, there are indications, [PRIM13], that Mockito has evolved into the
preferred tool in that area. This is probably because it provides a good-to-read
fluent interface API, [FOWL05], that integrates well into the unit test phases, and
compensates the drawback of spies mentioned previously by providing detailed
verification failure messages.

In general, the frameworks generate configurable test doubles on the fly, using byte
code generation. Configuration is done prior to the exercise phase by means of the
tool API. This allows us to stub return values and record or verify indirect outputs
and interactions easily.

There has been a lot written about whether to use such tools or not. Robert C. Martin,
for example, prefers hand-written doubles, [MART14], and Michael Boldischar even
considers mocking frameworks harmful, [BOLD11]. While the latter is describing just
plain misuse, looking at the effort we already had to put in our simple hand-written
examples earlier, it seems implausible when Martin says, "writing those mocks is
trivial", [MART14].

After using crafted doubles myself for years, I was instantly sold to the fluent
syntax of stubbing and the intuitive way of verification when discovering Mockito.
So basically, I consider it an improvement to get rid of hand-written stand-in
components. But to some extent, this is surely in the eye of the beholder.

Even so, it is true that test double tools tempt developers to overdo things. For
instance, it can be very easy to replace third-party components, which otherwise might
be expensive to create. But this is considered bad practice and Steve Freeman and Nat
Pryce explain in detail why you should only mock types that you own, [FRPR10].

Third-party code calls for an abstracting adapter layer and, if heavy weighted, also
for integration tests. This gets comprehensible when looking at the ItemProvider
abstraction of our example. Since we own the adapter, we can replace it safely with
a double. If the behavior of the involved third-party code changes, we fix this within
the adapter and leave our application code alone.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Independently Testable Units

[60]

The second trap one easily walks into is writing tests, where a test double returns
another test double. If you come to this point, you should reconsider the design of
the code you are working with. Using such train wrecks probably breaks the Law
of Demeter, [WIKILD], which means that there might be something wrong with the
way your objects are coupled together.

"Excited that you can mock everything, huh? Slow down and make sure that you
really need to verify interactions. Chances are you don't."

 – Tomek Kaczanowski, [KACZ13]

We've focused in the previous sections on the usage of indirect inputs and outputs
in order to achieve proper isolation of the SUT. But we've already noticed that
verification of indirect outputs bears the risk of coupling implementation details
tightly to a test. This is unfortunate, as it impairs the degrees of freedom available
for changing the SUT's internal code. Mock frameworks make it very easy to check
for interactions only as well, which is why it is so tempting to use doubles for
verification, even if we could do better.

Last but not least, if you think about going with a test double framework, you should
keep in mind that this is usually a long-term decision affecting a whole team. It is
probably not the best idea to mix different frameworks due to a coherent coding
style. Moreover, even if you use only one, consider that each (new) member has to
learn the tool specific API.

After this discussion about the pros and cons and proper application of mock
frameworks, let's have a look at how their proper usage can simplify our life.

Basic stubbing
In our timeline example, we've introduced the SessionStorage collaborator to be
able to restore the component's state on program restart. We've seen so far how we
could verify that the itemlist's top item gets stored using the indirect output captured
by the storeTop method of the DOC.

We've already noticed that we need a stub if we want to supply the persistent
top item while fetching the first items. But instead of crafting the stub like the
ItemProviderStub, this time we'll use Mockito to reduce the manual work. The tool
provides an API class Mockito, which publishes a set of static methods. These serve
as an entry point to its capabilities.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

When working with the library, it's common practice to use static imports to increase
readability. This supports the fluent interface API style, available for configuration
or verification of test doubles. The following snippet shows how we create a stand-in
component by calling the mock method. The method accepts a type token argument
and creates an instance of the given type on the fly:

SessionStorage storage = mock(SessionStorage.class);
when(storage.readTop()).thenReturn(SECOND_ITEM);

The second line determines that the return value of readTop is SECOND_ITEM in case
the method gets called later on. Again, when is a static method provided by the tool's
base class. This when-then pattern is one of the typical fluently readable constructs
used for stub equipment or spy verification.

So let's have a look at our fetch first items scenario to see how we can use Mockito to
verify the recovery of a top item. This time we assume that our session store returns
an item representing the most recent entry of a previous session. Fetching the first
items should reflect this by loading the items starting after the given item.

private SessionStorage sessionStorage;
private ItemProviderStub itemProvider;
private Timeline timeline;

@Before
public void setUp() {
 itemProvider = new ItemProviderStub();
 sessionStorage = mock(SessionStorage.class);
 timeline = new Timeline(itemProvider, sessionStorage);
}

@Test
public void fetchFirstItemsWithTopItemToRecover() {
 itemProvider.addItems(FIRST_ITEM, SECOND_ITEM, THIRD_ITEM);
 when(sessionStorage.readTop()).thenReturn(SECOND_ITEM);
 timeline.setFetchCount(1);

 timeline.fetchItems();
 List<Item> actual = timeline.getItems();

 assertEquals(1, actual.size());
 assertSame(SECOND_ITEM, actual.get(0));
 [...]
}

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Independently Testable Units

[62]

Using Mockito allows us to work with the original DOC type instead of special
double implementations, which can be particularly neat in cases where we have to
deal with class extensions instead of interface implementations. As you can see, we
use the when-then pattern to configure our stub during the test's in-line fixture setup.
And that's all there is to do.

It is noteworthy that we expect SECOND_ITEM to be the only value to be loaded. This
is because we've reduced the fetch-count to a single entry and the second item is
the one which was loaded before. So now that you're understanding the basics of
stubbing, you'll probably wonder what the item provider might look like if replaced
by means of the tool. No problem at all!

private SessionStorage sessionStorage;
private ItemProvider itemProvider;
private Timeline timeline;

@Before
public void setUp() {
 itemProvider = mock(ItemProvider.class);
 sessionStorage = mock(SessionStorage.class);
 timeline = new Timeline(itemProvider, sessionStorage);
}

@Test
public void fetchFirstItemsWithTopItemToRecover() {
 when(sessionStorage.readTop()).thenReturn(SECOND_ITEM);
 when(itemProvider.fetchItems(SECOND_ITEM, 0))
 .thenReturn(emptyList());
 timeline.setFetchCount(1);

 timeline.fetchItems();
 List<Item> actual = timeline.getItems();

 assertEquals(1, actual.size());
 assertSame(SECOND_ITEM, actual.get(0));
 [...]
}

You can see in the preceding snippet how we configure the item provider's
fetchItems return value to be an empty list. We expect the ancestor to be our
SECOND_ITEM. As this represents the first and only list entry, we expect the actual
fetchCount parameter to be zero:

int actualFetchCount = timeline.getFetchCount() - 1;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

Although the new version is more slender than the previous one, it is also obvious
that it's coupled more tightly to the component internals. Which means the
slenderness does not always come for free. If one could think of a different but valid
solution using other arguments on fetchItems, for example, the new test version
would fail. This is important to keep in mind and before putting our component's
implementation details into a cast, we might be better off by keeping our hand-
crafted half-fake, half-stub double for once.

As a last topic regarding mock frameworks, let's have a look at how verification of
indirect output is supported.

Indirect output verification
One of the nice things about Mockito is that the role of how we use our test double
instance is not predefined. Well, it always records interactions and is hence, in
principle, always a spy, but what the eye does not see, the heart does not grieve over.
Meaning, if we use a replacement only to provide indirect input, it simply serves as
a stub. This is a bit more complicated with hand-written doubles, in particular when
combined with implicit setup.

So it is not astonishing that the double role might vary from test to test. While the
SessionStorage stand-in performs in fetchFirstItemsWithTopItemToRecover as a
stub, we could easily use it in another context as a spy. Checking whether a collaborator
receives indirect output can be done, as shown in the following line of code:

verify(sessionStorage).storeTop(SECOND_ITEM);

Again, the tool's main class provides a static method to start the verification process.
The method verify takes the spy as a parameter and returns a proxy that allows to
check whether the FIRST_ITEM has been provided as indirect output. If the argument
does not match, an AssertionError is thrown. So let's have a look at how we can
replace the verify phase of fetchFirstItems with a Mockito spy:

private SessionStorage sessionStorage;
private ItemProviderStub itemProvider;
private Timeline timeline;

@Before
public void setUp() {
 itemProvider = new ItemProviderStub();
 sessionStorage = mock(SessionStorage.class);
 timeline = new Timeline(itemProvider, sessionStorage);
}

@Test

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Independently Testable Units

[64]

public void fetchFirstItems() {
 itemProvider.addItems(FIRST_ITEM, SECOND_ITEM);
 timeline.setFetchCount(1);

 timeline.fetchItems();
 List<Item> actual = timeline.getItems();

 verify(sessionStorage).storeTop(SECOND_ITEM);
 [...]
}

As you can see, we expect that loading the first items selects SECOND_ITEM as the
top item. Because of this, it is written as an indirect output to our session store.
With the built-in recording mechanism of the spy, this is a piece of cake to check.
But before concluding this basic introduction, let's have a look at a bit more
sophisticated situation. Consider that we need to restore the complete timeline data
structure, and to do so, SessionStore would provide a store(Memento) and a
read(Memento) method.

The previous approach would not work as the state preserving memento instance is
created within our timeline component. The implicit identity check of the previous
example is not possible anymore. For such cases, the library provides matchers.
These can be used to check whether a recorded value fits the expected one. Simple
matchers check for equality, containment, or assignment compatibility. For more
difficult situations, there is a particular ArgumentCaptor that allows explicit checks
on the captured output. The following listing shows how capturing works:

ArgumentCaptor<Memento> captor = forClass(Memento.class);
verify(sessionStorage).store(captor.capture());
assertTrue(!captor.getValue().getItems().isEmpty());

ArgumentCaptor provides a static method forClass, taking a type token argument
to instantiate a parameterized captor. This instance supplies an assignment-
compatible matcher when it comes to intercepting the actual output value.
Interception is done by calling the method capture, as shown in the preceding
listing. While on first sight this looks like magic, it isn't that complicated at all. The
method capture returns a matcher that is recognized by the verification proxy, and
hence, it is possible to transfer the value of interest to the captor instance. Finally, this
value can be accessed with getValue to write appropriate assertions.

Of course, there is much more to know about test double handling with Mockito.
But we've covered enough to get an impression of how mock frameworks can
facilitate our lives when it comes down to the replacement of DOCs with stand-in
components. For more information, please refer to the tool's documentation.

We'll conclude this chapter with another category of classes useful to ease testing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

Using test helpers
Besides components, collaborators, data types, and test cases, we occasionally need
another category of classes to write our tests efficiently. These utility classes provide
any kind of testing related functionality that we want to reuse in several tests. This
section explains some of the common practices.

Motivation
While writing tests, we'll inevitably find ourselves in a situation were we'll code the
same routine for fixture setup, verification, or the like. If this happens to be in the
same test case, we can extract a method for common usage. But sometimes, we could
also make use of these methods in other test classes.

Java provides class inheritance, and so it's possible to introduce a common super
type supplying these helping methods. After that, a particular test case can extend
from this type and reuse the testing related functionality. Problem solved, right?

Wrong! First of all, inheritance is more than what the compiler checks. Class
hierarchies represent abstract data types (ADT) that follow specific rules with
respect to generalization and specialization. So usually, there are preconditions,
class invariants, and post-conditions that need to be met when inheriting an ADT's
behavior. This is also known as the Liskov Substitution Principle.

Although it's possible to whitewash oneself a super type of test case into an ADT
definition, inheritance has another restriction that finally downs this approach. For
good reason, the Java language has no support for multi-inheritance at the class
level. This implies that we'll, sooner or later, have to mix in different concerns into
one super-duper test case, which will eventually end up in a mess.

So normally, this isn't the way to go. Instead, we'll provide separate helper classes
that care about a single concern. Tests delegate to the functionality made available by
those utility types, which keeps our test class structure clean and flexible.

If you are working with multiple modules in your project, it is not unusual that
you need specific test utilities in more than one of them. Instead of introducing
non-natural module-dependencies to the one in which the helper originated, it is
preferable to initiate a test utility module as a common place for such types.

A test helper publishes its functionality either by class or instance methods, rarely
as a mix of both. The following sections examine the general idea of the different
approaches, as denoted by Meszaros, [MESZ07].

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Independently Testable Units

[66]

The test helper class
If all the utility methods of a test helper are stateless, a unit test needs no particular
instance to be able to incorporate the provided functionality. Typical use cases
are common create—or delegate—methods for fixture setup and/or teardown,
summarizing of particular assertions, or facilitation of indirect exercise invocations.

The latter might be necessary when testing components that rely on an external
trigger to perform a desired functionality. Think of an example of a UI widget
compound expecting a button to be pressed by a user. If you are lucky, an API for
programmatic release of such an events exists, but even then, this often comes along
with writing a lot of boilerplate.

A test helper can reduce such boilerplate considerably, and improve readability by
providing, for example, a fluent interface API. Although UI component tests are
technically at the borderline to integration tests, let's continue the thought and see
how this could look like in practice.

Consider that we are about to write a Standard Widget Toolkit [SWT]-based GUI
for our timeline model. More precisely, we need to check the proper invocation of
the functionality deposited with the fetch-new-items button. While developing UI
component tests, you need to do such things all the time. Luckily, we can resort to
a publicly available test helper, [APPE14]. The SWTEventHelper provides a static
trigger method that expects the event type you want to issue as an argument:

@Test
public void fetchNew() {
 TimelineUi timelineUi = ...

 trigger(SWT.Selection).on(timelineUi.fetchNew);

 // verify collaborators have been invoked properly for example
}

To be able to invoke the event on the responsible UI widget, TimelineUi opens
encapsulation a bit and allows access to the button responsible for triggering the
fetch new operation. We do this by increasing the button's visibility to package
private (see Chapter 1, Getting Started). Note how the fluently readable test helper API
accepts the button with the on statement.

Sometimes, stateless operations are not enough, which is why we conclude this
chapter discussing the nature of stateful utility classes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

The test helper object
Test helpers providing instances are helpful to swap out more complex collaborators
or data graphs into a root object, which allows coherent initialization and disposal.
While this indicates usage in the context of fixture setup and teardown, such
instances may also be useful for creating high-order assertions.

A particular test helper object pattern is the object mother that may consist of one or
more test helpers with common creation, configuration, and/or teardown methods.
A test uses a combination of these methods to set up its ready-to-use fixture objects,
[MESZ07].

In Chapter 6, Reducing Boilerplate with JUnit Rules, you'll learn about a JUnit feature
that allows to plug a test helper instance around a test's life cycle. This eases and
secures, in equal measure, the helper's usage since necessary teardown steps are
performed automatically.

It's notable that test helper introduction isn't always motivated by reuse. Sometimes,
it is advisable to encapsulate and externalize certain setup functionality merely to
increase readability by condensing the test class code to the crucial stuff.

If we look at our timeline test, it might happen that component and collaborator
initialization methods get too mingled and confusing. So it might help to introduce an
object mother to reduce the glue code a bit. However, before doing so, ensure that your
component isn't dealing with too many concerns and respects the single responsibility
principle. If it doesn't, it would be better to split up the component instead.

Well, this was quite a chapter, so let's summarize what we've learned before
reading on.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Independently Testable Units

[68]

Summary
In this chapter, we've seen how collaborating components have an impact on our
ability to write tests that run units shielded from the influences of other parts of a
software system. We've learned how to use test doubles to isolate the components
from real-world DOCs and hence, keep our tests fast, reliable, and maintainable.

To do so, you've been pointed first to the significance of indirect inputs and outputs.
Once you understood this basic interaction principle between SUT and DOC, we
went on with an in-depth discussion of the various double patterns available. In
this context, you've been told about the intended use of dummy-, fake-, stub, spy,
and mock stand-in types. After looking at the possibilities of mock frameworks and
questioning their pros and cons, you experienced how generated doubles increase
work efficiency in practice.

Finally, you learned about test helpers that, in contrast with doubles, do not
collaborate with components under test, but rather decouple the test cases and
fixture handling by extracting common functionality. Overall, the knowledge and
skills that you've acquired in this chapter will give you a comprehensive set of
techniques to face the challenges of unit testing in real-world scenarios.

The next chapter will build upon what you've learned so far, and look into situations
that deal with particular boundary conditions. Essentially, it'll teach you to write
tests that verify exceptional flow.

www.it-ebooks.info

http://www.it-ebooks.info/

[69]

Testing Exceptional Flow
Special care has to be taken when testing a component's functionality under
exception-raising conditions. In this chapter, you'll learn how to use the various
capture and verification possibilities and discuss their pros and cons. As robust
software design is one of the declared goals of the test-first approach, we're going to
see how tests intertwine with the fail fast strategy on selected boundary conditions.
Finally, we're going to conclude with an in-depth explanation of working with
collaborators under exceptional flow and see how stubbing of exceptional behavior
can be achieved. The topics covered in this chapter are as follows:

•	 Testing patterns
•	 Treating collaborators

Testing patterns
Testing exceptional flow is a bit trickier than verifying the outcome of normal
execution paths. The following section will explain why and introduce the different
techniques available to get this job done.

Using the fail statement
"Always expect the unexpected"

 – Adage based on Heraclitus

Testing corner cases often results in the necessity to verify that a functionality throws
a particular exception. Think, for example, of a java.util.List implementation.
It quits the retrieval attempt of a list's element by means of a non-existing index
number with java.lang.ArrayIndexOutOfBoundsException.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Exceptional Flow

[70]

Working with exceptional flow is somewhat special as without any precautions, the
exercise phase would terminate immediately. But this is not what we want since it
eventuates in a test failure. Indeed, the exception itself is the expected outcome of the
behavior we want to check.

From this, it follows that we have to capture the exception before we can verify
anything. As we all know, we do this in Java with a try-catch construct. The try
block contains the actual invocation of the functionality we are about to test. The
catch block again allows us to get a grip on the expected outcome—the exception
thrown during the exercise.

Note that we usually keep our hands off Error, so we
confine the angle of view in this book to exceptions.

So far so good, but we have to bring up to our minds that in case no exception is
thrown, this has to be classified as misbehavior. Consequently, the test has to fail.
JUnit's built-in assertion capabilities provide the org.junit.Assert.fail method,
which can be used to achieve this. The method unconditionally throws an instance of
java.lang.AssertionError if called.

The classical approach of testing exceptional flow with JUnit adds a fail statement
straight after the functionality invocation within the try block. The idea behind is
that this statement should never be reached if the SUT behaves correctly. But if not,
the assertion error marks the test as failed.

It is self-evident that capturing should narrow down the expected exception as much
as possible. Do not catch IOException if you expect FileNotFoundException, for
example. Unintentionally thrown exceptions must pass the catch block unaffected,
lead to a test failure and, therefore, give you a good hint for troubleshooting with
their stack trace.

We insinuated earlier in this book that the fetch-count range check of our timeline
example would probably be better off throwing IllegalArgumentException
on boundary violations. Let's have a look at how we can change the
setFetchCountExceedsLowerBound test to verify different behaviors with the
try-catch exception testing pattern (see the following listing):

@Test
public void setFetchCountExceedsLowerBound() {
 int tooSmall = Timeline.FETCH_COUNT_LOWER_BOUND - 1;

 try {
 timeline.setFetchCount(tooSmall);
 fail();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[71]

 } catch(IllegalArgumentException actual) {
 String message = actual.getMessage();
 String expected
 = format(Timeline.ERROR_EXCEEDS_LOWER_BOUND, tooSmall);
 assertEquals(expected, message);
 assertTrue(message.contains(valueOf(tooSmall)));
 }
}

It can be clearly seen how setFetchCount, the functionality under test, is called
within the try block, directly followed by a fail statement. The caught exception
is narrowed down to the expected type. The test avails of the inline fixture setup to
initialize the exceeds-lower-bound value in the tooSmall local variable because it is
used more than once.

The verification checks that the thrown message matches an expected one. Our test
calculates the expectation with the aid of java.lang.String.format (static import)
based on the same pattern, which is also used internally by the timeline to produce
the text. Once again, we loosen encapsulation a bit to ensure that the malicious value
gets mentioned correctly. Purists may prefer only the String.contains variant,
which, on the other hand would be less accurate.

Although this works fine, it looks pretty ugly and is not very readable. Besides,
it blurs a bit the separation of the exercise and verification phases, and so it is no
wonder that there have been other techniques invented for exception testing.

Annotated expectations
After the arrival of annotations in the Java language, JUnit got a thorough
overhauling. We already mentioned the @Test type used to mark a particular
method as an executable test. To simplify exception testing, it has been given the
expected attribute. This defines that the anticipated outcome of a unit test should
be an exception and it accepts a subclass of Throwable to specify its type.

Running a test of this kind captures exceptions automatically and checks whether
the caught type matches the specified one. The following snippet shows how this
can be used to validate that our timeline constructor doesn't accept null as the
injection parameter:

@Test(expected = IllegalArgumentException.class)
public void constructWithNullAsItemProvider() {
 new Timeline(null, mock(SessionStorage.class));
}

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Exceptional Flow

[72]

Here, we've got a test, the body statements of which merge setup and exercise in
one line for compactness. Although the verification result is specified ahead of the
method's signature definition, of course, it gets evaluated at last. This means that the
runtime test structure isn't twisted. But it is a bit of a downside from the readability
point of view as it breaks the usual test format.

However, the approach bears a real risk when using it in more complex scenarios.
The next listing shows an alternative of setFetchCountExceedsLowerBound using
the expected attribute:

@Test(expected = IllegalArgumentException.class)

public void setFetchCountExceedsLowerBound() {
 Timeline timeline = new Timeline(null, null);

 timeline.setFetchCount(Timeline.FETCH_COUNT_LOWER_BOUND - 1);
}

On the face of it, this might look fine because the test run would succeed
apparently with a green bar. But given that the timeline constructor already throws
IllegalArgumentException due to the initialization with null, the virtual point of
interest is never reached. So any setFetchCount implementation will pass this test.
This renders it not only useless, but it even lulls you into a false sense of security!

Certainly, the approach is most hazardous when checking for runtime exceptions
because they can be thrown undeclared. Thus, they can emerge practically
everywhere and overshadow the original test intention unnoticed. Not being able to
validate the state of the thrown exception narrows down the reasonable operational
area of this concept to simple use cases, such as the constructor parameter
verification mentioned previously.

Finally, here are two more remarks on the initial example. First, it might be debatable
whether IllegalArgumentException is appropriate for an argument-not-null-check
from a design point of view. But as this discussion is as old as the hills and probably
will never be settled, we won't argue about that. IllegalArgumentException
was favored over NullPointerException basically because it seemed to be an
evident way to build up a comprehensible example. To specify a different behavior
of the tested use case, one simply has to define another Throwable type as the
expected value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[73]

Second, as a side effect, the test shows how a generated test double can make our life
much easier. You've probably already noticed that the session storage stand-in
created on the fly serves as a dummy. This is quite nice as we don't have to
implement one manually and as it decouples the test from storage-related signatures,
which may break the test in future when changing. But keep in mind that such a
created-on-the-fly dummy lacks the implicit no-operation-check we've planted into
our crafted one in the preceding chapter. Hence, this approach might be too fragile
under some circumstances.

With annotations being too brittle for most usage scenarios and the try-fail-catch
pattern being too crabbed, JUnit provides a special test helper called
ExpectedException, which we'll take a look at now.

Verification with the ExpectedException rule
The third possibility offered to verify exceptions is the ExpectedException class. This
type belongs to a special category of test utilities we'll cover in Chapter 6, Reducing
Boilerplate with JUnit Rules. For the moment, it is sufficient to know that rules allow us
to embed a test method into custom pre- and post-operations at runtime.

In doing so, the expected exception helper can catch the thrown instance and
perform the appropriate verifications. A rule has to be defined as a nonstatic public
field, annotated with @Rule, as shown in the following TimelineTest excerpt. See
how the rule object gets set up implicitly here with a factory method:

public class TimelineTest {

 @Rule
 public ExpectedException thrown = ExpectedException.none();

 [...]

 @Test
 public void setFetchCountExceedsUpperBound() {
 int tooLargeValue = FETCH_COUNT_UPPER_BOUND + 1;
 thrown.expect(IllegalArgumentException.class);
 thrown.expectMessage(valueOf(tooLargeValue));

 timeline.setFetchCount(tooLargeValue);
 }

 [...]
}

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Exceptional Flow

[74]

Compared to the try-fail-catch approach, the code is easier to read and write. The
helper instance supports several methods to specify the anticipated outcome.
Apart from the static imports of constants used for compactness, this specification
reproduces pretty much the same validations as the original test. ExpectedExcepti
on#expectedMessage expects a substring of the actual message in case you wonder,
and we omitted the exact formatting here for brevity.

In case the exercise phase of setFetchCountExceedsUpperBound does not throw
an exception, the rule ensures that the test fails. In this context, it is about time we
mentioned the utility's factory method none. Its name indicates that as long as no
expectations are configured, the helper assumes that a test run should terminate
normally. This means that no artificial fail has to be issued. This way, a mix of
standard and exceptional flow tests can coexist in one and the same test case.

Even so, the test helper has to be configured prior to the exercise phase, which
still leaves room for improvement with respect to canonizing the test structure. As
we'll see next, the possibility of Java 8 to compact closures into lambda expressions
enables us to write even leaner and cleaner structured exceptional flow tests.

Capturing exceptions with closures
When writing tests, we strive to end up with a clear representation of separated test
phases in the correct order. All of the previous approaches for testing exceptional
flow did more or less a poor job in this regard. Looking once more at the classical
try-fail-catch pattern, we recognize, however, that it comes closest.

It strikes us that if we put some work into it, we can extract exception capturing into
a reusable utility method. This method would accept a functional interface—the
representation of the exception-throwing functionality under test—and return the
caught exception.

The ThrowableCaptor test helper puts the idea into practice:

public class ThrowableCaptor {

 @FunctionalInterface
 public interface Actor {
 void act() throws Throwable;
 }

 public static Throwable thrownBy(Actor actor) {
 try {
 actor.act();
 } catch(Throwable throwable) {
 return throwable;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[75]

 }
 return null;
 }
}

We see the Actor interface that serves as a functional callback. It gets executed
within a try block of the thrownBy method. If an exception is thrown, which should
be the normal path of execution, it gets caught and returned as the result. Bear in
mind that we have omitted the fail statement of the original try-fail-catch pattern.
We consider the capturer as a helper for the exercise phase. Thus, we merely return
null if no exception is thrown and leave it to the afterworld to deal correctly with
the situation.

How capturing using this helper in combination with a lambda expression works
is shown by the next variant of setFetchCountExceedsUpperBound, and this time,
we've achieved the clear phase separation we're in search of:

@Test
public void setFetchCountExceedsUpperBound() {
 int tooLarge = FETCH_COUNT_UPPER_BOUND + 1;

 Throwable actual
 = thrownBy(()-> timeline.setFetchCount(tooLarge));

 String message = actual.getMessage();
 assertNotNull(actual);
 assertTrue(actual instanceof IllegalArgumentException);
 assertTrue(message.contains(valueOf(tooLarge)));
 assertEquals(format(ERROR_EXCEEDS_UPPER_BOUND, tooLarge),
 message);
}

Please note that we've added an additional not-null-check compared to the
verifications of the previous version. We do this as a replacement for the non-existing
failure enforcement. Indeed, the following instanceof check would fail implicitly
if actual was null. But this would also be misleading since it overshadows the true
failure reason. Stating that actual must not be null points out clearly the expected
post condition that has not been met.

In Chapter 7, Improving Readability with Custom Assertions, you'll learn about
alternative ways to write test verifications. One of the libraries presented there will
be AssertJ. The latter is mainly intended to improve validation expressions. But it
also provides a test helper, which supports the closure pattern you've just learned to
make use of. Another choice to avoid writing your own helper could be the library
Fishbowl, [FISBOW].

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Exceptional Flow

[76]

Now that we understand the available testing patterns, let's discuss a few system-
spanning aspects when dealing with exceptional flow in practice.

Treating collaborators
Considerations we've made in Chapter 3, Developing Independently Testable Units, about
how a software system can be built upon collaborating components, foreshadows that
we have to take good care when modelling our overall strategy for exceptional flow.
Because of this, we'll start this section with an introduction of the fail fast strategy,
which is a perfect match to the test-first approach. The second part of the section will
show you how to deal with checked exceptions thrown by collaborators.

Fail fast
Until now, we've learned that exceptions can serve in corner cases as an
expected outcome, which we need to verify with tests. As an example, we've
changed the behavior of our timeline fetch-count setter. The new version throws
IllegalArgumentException if the given parameter is out of range. While we've
explained how to test this, you may have wondered whether throwing an exception
is actually an improvement.

On the contrary, you might think, doesn't the exception make our program more
fragile as it bears the risk of an ugly error popping up or even of crashing the entire
application? Aren't those things we want to prevent by all means? So, wouldn't it be
better to stick with the old version and silently ignore arguments that are out of range?

At first sight, this may sound reasonable, but doing so is ostrich-like head-in-the-
sand behavior. According to the motto: if we can't see them, they aren't there, and so,
they can't hurt us. Ignoring an input that is obviously wrong can lead to misbehavior
of our software system later on. The reason for the problem is probably much harder
to track down compared to an immediate failure.

Generally speaking, this practice disconnects the effects of a problem from its cause.
As a consequence, you often have to deal with stack traces leading to dead ends
or worse. Consider, for example, that we'd initialize the timeline fetch-count as an
invariant employed by a constructor argument. Moreover, the value we use would
be negative and silently ignored by the component. In addition, our application
would make some item position calculations based on this value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[77]

Sure enough, the calculation results would be faulty. If we're lucky, an exception
would be thrown, when, for example, trying to access a particular item based on
these calculations. However, the given stack trace would reveal nothing about
the reason that originally led to the situation. However, if we're unlucky, the
misbehavior will not be detected until the software has been released to end users.

On the other hand, with the new version of setFetchCount, this kind of
translocated problem can never occur. A failure trace would point directly to the
initial programming mistake, hence avoiding follow-up issues. This means failing
immediately and visibly increases robustness due to short feedback cycles and pertinent
exceptions. Jim Shore has given this design strategy the name fail fast, [SHOR04].

Shore points out that the heart of fail fast are assertions. Similar to the JUnit assert
statements, an assertion fails on a condition that isn't met. Typical assertions might
be not-null-checks, in-range-checks, and so on. But how do we decide if it's necessary
to fail fast? While assertions of input arguments are apparently a potential use case
scenario, checking of return values or invariants may also be so. Sometimes, such
conditions are described in code comments, such as // foo should never be null because...,
which is a clear indication that suggests to replace the note with an appropriate
assertion. See the next snippet demonstrating the principle:

public void doWithAssert() {
 [...]
 boolean condition = ...; // check some invariant
 if(!condition) {
 throw new IllegalStateException("Condition not met.")
 }
 [...]
}

But be careful not to overdo things because in most cases, code will fail fast by
default. So, you don't have to include a not-null-check after each and every variable
assignment for example. Such paranoid programming styles decrease readability for
no value-add at all.

A last point to consider is your overall exception-handling strategy. The intention of
assertions is to reveal programming or configuration mistakes as early as possible.
Because of this, we strictly make use of runtime exception types only. Catching
exceptions at random somewhere up the call stack of course thwarts the whole
purpose of this approach. So, beware of the absurd try-catch-log pattern that you
often see scattered all over the code of scrubs, and which is demonstrated in the next
listing as a deterrent only:

private Data readSomeData() {
 try {

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Exceptional Flow

[78]

 return source.readData();
 } catch(Exception hardLuck) {
 // NEVER DO THIS!
 hardLuck.printStackTrace();
 }
 return null;
}

The sample code projects exceptional flow to null return values and disguises
the fact that something seriously went wrong. It surely does not get better using a
logging framework or even worse, by swallowing the exception completely. Analysis
of an error by means of stack trace logs is cumbersome and often fault-prone. In
particular, this approach usually leads to logs jammed with ignored traces, where
one more or less does not attract attention. In such an environment, it's like looking
for a needle in a haystack when trying to find out why a follow-up problem occurs.

Instead, use the central exception handling mechanism at reasonable boundaries.
You can create a bottom level exception handler around a GUI's message loop.
Ensure that background threads report problems appropriately or secure event
notification mechanisms for example. Otherwise, you shouldn't bother with
exception handling in your code. As outlined in the next paragraph, securing
resource management with try-finally should most of the time be sufficient.

The stubbing of exceptional behavior
Every now and then, we come across collaborators, which declare checked
exceptions in some or all of their method signatures. There is a debate going on for
years now whether or not checked exceptions are evil, [HEVEEC]. However, in our
daily work, we simply can't elude them as they pop up in adapters around third-
party code or get burnt in legacy code we aren't able to change. So, what are the
options we have in these situations?

"It is funny how people think that the important thing about exceptions is
handling them. That's not the important thing about exceptions. In a well-written
application there's a ratio of ten to one, in my opinion, of try finally to try catch."

 – Anders Hejlsberg, [HEVEEC]

Cool. This means that we also declare the exception type in question on our own
method signature and let someone else up on the call stack solve the tricky things,
right? Although it makes life easier for us for at the moment, acting like this is
probably not the brightest idea. If everybody follows that strategy, the higher we get
on the stack, the more exception types will occur.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[79]

This doesn't scale well and even worse, it exposes details from the depths of the call
hierarchy. Because of this, people sometimes simplify things by declaring java.
lang.Exception as thrown type. Indeed, this gets them rid of the throws declaration
tail. But it's also a pauper's oath as it reduces the Java type concept to absurdity.

Fair enough. So, we're presumably better off when dealing with checked exceptions
as soon as they occur. But hey, wouldn't this contradict Hejlsberg's statement?
And what shall we do with the gatecrasher, meaning is there always a reasonable
handling approach? Fortunately there is, and it absolutely conforms with the quote
and the preceding fail fast discussion. We envelope the caught checked exception
into an appropriate runtime exception, which we afterwards throw instead.

This way, every caller of our component's functionality can use it without worrying
about exception handling. If necessary, it is sufficient to use a try-finally block
to ensure the disposal or closure of open resources for example. As described
previously, we leave exception handling to bottom line handlers around the message
loop or the like.

Now that we know what we have to do, the next question is how can we achieve this
with tests? Luckily, with the knowledge about stubs learned in the previous chapter,
you're almost there. Normally handling a checked exception represents a boundary
condition. We can regard the thrown exception as an indirect input to our SUT. All
we have to do is let the stub throw an expected exception (precondition) and check if
the envelope gets delivered properly (postcondition).

For better understanding, let's comprehend the steps in our timeline example.
We consider for this section that our SessionStorage collaborator declares
IOException on its methods for any reason whatsoever. The storage interface is
shown in the next listing.

public interface SessionStorage {
 void storeTop(Item top) throws IOException;
 Item readTop() throws IOException;
}

Next, we'll have to write a test that reflects our thoughts. At first, we create an
IOException instance that will serve as an indirect input. Looking at the next
snippet, you can see how we configure our storage stub to throw this instance on
a call to storeTop. As the method does not return anything, the Mockito stubbing
pattern looks a bit different than earlier. This time, it starts with the expectation
definition. In addition, we use Mockito's any matcher, which defines the exception
that should be thrown for those calls to storeTop, where the given argument is
assignment-compatible with the specified type token.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Exceptional Flow

[80]

After this, we're ready to exercise the fetchItems method and capture the actual
outcome. We expect it to be an instance of IllegalStateException just to keep
things simple. See how we verify that the caught exception wraps the original cause
and that the message matches a predefined constant on our component class:

@Test
public void fetchItemWithExceptionOnStoreTop()
 throws IOException
{
 IOException cause = new IOException();
 doThrow(cause).when(storage).storeTop(any(Item.class));

 Throwable actual = thrownBy(() -> timeline.fetchItems());

 assertNotNull(actual);
 assertTrue(actual instanceof IllegalStateException);
 assertSame(cause, actual.getCause());
 assertEquals(Timeline.ERROR_STORE_TOP, actual.getMessage());
}

With the test in place, the implementation is pretty easy. Let's assume that we have
the item storage extracted to a private timeline method named storeTopItem. It gets
called somewhere down the road of fetchItem and again calls a private method,
getTopItem. Fixing the compile errors, we end up with a try-catch block because
we have to deal with IOException thrown by storeTop. Our first error handling
should be empty to ensure that our test case actually fails. The following snippet
shows the ultimate version, which will make the test finally pass:

static final String ERROR_STORE_TOP
 = "Unable to save top item";

[...]

private void storeTopItem() {
 try {
 sessionStorage.storeTop(getTopItem());
 } catch(IOException cause) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[81]

 throw new IllegalStateException(ERROR_STORE_TOP, cause);
 }
}

Of course, real-world situations can sometimes be more challenging, for example,
when the collaborator throws a mix of checked and runtime exceptions. At times,
this results in tedious work. But if the same type of wrapping exception can always
be used, the implementation can often be simplified. First, re-throw all runtime
exceptions; second, catch exceptions by their common super type and re-throw
them embedded within a wrapping runtime exception (the following listing shows
the principle):

private void storeTopItem() {
 try {
 sessionStorage.storeTop(getTopItem());
 } catch(RuntimeException rte) {
 throw rte;
 } catch(Exception cause) {
 throw new IllegalStateException(ERROR_STORE_TOP, cause);
 }
}

Summary
In this chapter, you learned how to validate the proper behavior of an SUT with
respect to exceptional flow. You experienced how to apply the various capture
and verification options, and we discussed their strengths and weaknesses.
Supplementary to the test-first approach, you were taught the concepts of the fail fast
design strategy and recognized how adapting it increases the overall robustness of
applications. Last but not least, we explained how to handle collaborators that throw
checked exceptions and how to stub their exceptional bearing.

In the next chapter, we'll discuss how exchangeable JUnit processor types allow us
to adjust the environment of a test to specific requirements. We'll explain the tool
runners architecture and introduce some of the more useful implementations.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[83]

Using Runners for Particular
Testing Purposes

Until now, we used test cases as the pivotal point in writing self-checking behavior
specifications of components. But they can serve other purposes, such as collecting
particular test classes to run them as a group too, since pluggable processors
allow execution adjustments to highly diverse demands. This chapter will start by
explaining the architecture behind this mechanism and advance, for a profound
understanding, with what it takes to write a custom extension. With these insights,
we'll be ready to discuss a couple of valuable use cases and also draw attention to
some tradeoffs. Since one of the most important applications is parameterized tests,
we will cover the available approaches thoroughly in the last section. The topics we
are going to look at briefly include:

•	 Understanding the architecture
•	 Using custom runners
•	 Writing dataset tests

Understanding the architecture
Although we've already encountered quite a few of JUnit's essential testing
capabilities, there is more than meets the eye. Beyond standard test execution, it
is possible to meet other requirements by means of pluggable test processors. The
first section of this chapter will explain the most relevant concepts and deepen our
knowledge by developing a basic extension.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Runners for Particular Testing Purposes

[84]

What are runners good for?
"If you get stuck, draw with a different pen. Change your tools; it may free your
thinking."

 – Paul Arden

In the previous chapters, we heard a good deal about unit testing with respect to
structure and isolation. These concepts are well supported by the default behavior
of JUnit. However, sometimes, there are scenarios that demand additional or
different capabilities. Imagine, for example, a set of test cases comprising the
specification of a subsystem that should be grouped together for aggregated test
runs. You can even consider the need for a special test execution strategy facilitating
parameterized test methods.

On that account, the tool offers the adaption of various test processor types. Using
this mechanism is reasonable if there is a need for particular test class instantiation,
individual test lookup, or different execution behavior. For less fundamental
amendments, there is a more lightweight possibility, which we will describe in
Chapter 6, Reducing Boilerplate with JUnit Rules.

Processors are configured individually at the test case level using the @RunWith
annotation. If this annotation is missing, the BlockJUnit4ClassRunner processor
is the default choice. This is where the tool's standard behavior comes from. The
following snippet shows a declaration, which is equivalent to the preset:

@RunWith(BlockJUnit4ClassRunner.class)
public class TimelineTest {
 [...]
}

@RunWith takes a class reference as argument. An instance of the given type will do
the actual test processing. To meet the tool's execution policy, such a type has to be
a subclass of org.junit.runner.Runner. This explains the suffix of the default's
name. Providing a different runner is as simple as changing the declaration's
parameter value.

Thus, we've learned that test processors are pluggable. But how does it work exactly?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[85]

Looking at the big picture
A runner has to implement two methods of defining the cooperation policy with
the tool's runtime instance. The first, getDescription, is inherited from its super
interface Describable and returns an instance of Description. A description is
used to provide human-readable information about a test, which is to be run or has
been run. It can describe a single test (atomic) or a hierarchy of tests (compound).
The information provided by each runner is used, for example, by a GUI to depict
all tests that a particular launch affects.

The second method is called run and takes RunNotifier as argument. This is, of
course, where all the action happens. Here, the runner is supposed to select the
executables of a test case, invoke them, and report the appropriate state information
using the notifier callback. We'll provide more insight into this in a minute, when we
write our own implementation.

Runner has to be an abstract class as it supplies the convenient testCount method.
The latter provides the number of tests to be run calculated on the information
returned by getDescription. This enables subclasses to override computation for
unusual demands but probably only seldom makes sense. At any rate, this base class
is the way to go if you need functionality that differs significantly from the common
use cases.

More likely though is that one will extend ParentRunner<T>, a subclass of Runner.
This implements the policy described earlier by delegating a few abstract methods.
Essentially, an inheritor works on a list of children. A child is of the generic type T.
The list of T might be the tests defined by a single test case. It should be derived from
the constructor-injected test class. Development needs are reduced to retrieve this list
of children and to provide the description and execution of a single child.

The ParentRunner class itself is responsible among other things for invoking
the @BeforeClass and @AfterClass annotated methods, creating a composite
description, and running children sequentially. The annotations are meant to share
expensive fixture setups among the children, thus the marked methods get only
called once, namely after the entirety of child executions.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Runners for Particular Testing Purposes

[86]

We're already aware of the BlockJUnit4ClassRunner extension, which is used as
the standard JUnit test case processor. The following diagram also contains another
extension called Suite that we'll cover in the second section of this chapter:

Runner hierarchy

Other than the ones mentioned, the class hierarchy contains two interfaces declaring
filtering and sorting capabilities implemented by the parent runner. But before we
lose ourselves in too many boring architectural details, let's put some flesh on the
bones and see what it takes to develop a simple Runner.

Writing your own extension
To get a better feel of the interplay between a runner and its environment, this
section outlines how to write a basic extension. We expect our solution to pick up
executable methods by a distinct annotation. Hence, we declare an appropriate @
Execute type, as shown in the next listing:

@Retention(RetentionPolicy.RUNTIME)
@Target({ ElementType.METHOD })
public @interface Execute {}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[87]

Nothing surprising here, so we can move swiftly to the chief character that makes
use of it. The next Executor implementation provides a constructor taking a Class
parameter. Although this isn't enforced by the super type, the framework expects
this signature. The given argument is a type defining the executables we want to run.
As you can see, JUnit provides the TestClass helper, simplifying certain tasks, such
as parsing the contemplable methods.

Next, we supply the getDescription functionality, also based on this
helper. The actual return value is a compound of the test type information
(createClassDescription) and its executables (createMethodDescription).
Description provides several factory methods for this purpose.

Note that createSuiteDescription and
createTestDescription are used with static
imports for compactness.

What remains is the realization of the run behavior. We solve this by processing the
available annotated methods separately. Each execution call uses a newly created test
type instance for proper isolation and is invoked within a try-catch construct. Note
how the notifier callback instance is used to inform the framework about progress
and failures:

public class Executor extends Runner {

 private final List<FrameworkMethod> methods;
 private final TestClass meta;

 public Executor(Class<?> testType) {
 meta = new TestClass(testType);
 methods = meta.getAnnotatedMethods(Execute.class);
 }

 @Override
 public Description getDescription() {
 Description result = createClassDescription();
 methods.forEach(method
 -> result.addChild(createMethodDescription(method)
));
 return result;
 }

 @Override
 public void run(RunNotifier notifier) {
 methods.forEach(method -> run(notifier, method));

www.it-ebooks.info

http://www.it-ebooks.info/

Using Runners for Particular Testing Purposes

[88]

 }

 private void run(RunNotifier notifier, FrameworkMethod method) {
 Description description = createMethodDescription(method);
 notifier.fireTestStarted(description);
 try {
 Object target = meta.getJavaClass().newInstance();
 method.invokeExplosively(target);
 } catch(Throwable problem) {
 Failure failure = new Failure(description, problem);
 notifier.fireTestFailure(failure);
 }
 notifier.fireTestFinished(description);
 }

 private Description createClassDescription() {
 String name = meta.getName();
 Execute annotations = meta.getAnnotation(Execute.class);
 return createSuiteDescription(name, annotations);
 }

 private Description createMethodDescription(
 FrameworkMethod method)
 {
 return createTestDescription(meta.getClass(),
 method.getName());
 }
}

Despite this Runner extension being anything but production ready, it's sufficient
to get a basic sample working. ExecutorSample, which is used in the next code,
configures our runner using the @RunWith annotation. The class contains three
methods constituting the different results an execution could lead to. The first
method is rated as a success, the second as an error, and the third as a failure. Please
affirm to understand how these results are picked up by the executor's run method
and how they get reported to the JUnit environment:

@RunWith(Executor.class)
public class ExecutorSample {

 @Execute
 public void doIt() {}

 @Execute
 public void doItWithProblem() {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[89]

 throw new RuntimeException("Bad");
 }

 @Execute
 public void doItWithFailure() {
 throw new AssertionError("Invalid");
 }
}

Believe it or not, that's all we need to be ready to launch the sample from within the
IDE. The following screenshot displays the result of such a run. You can see clearly
how the single tests are marked with different overlay images according to their
respective outcomes. Regard also how the selected failure trace reflects the assertion
message of doItWithFailure. We are delighted to see that the stack trace proves
that it was actually an Executor instance that processed ExecutorSample.

Executor launch

Now that we've got a sufficient comprehension of what runners are good for and
how they work, let's have a look at a few more useful implementations.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Runners for Particular Testing Purposes

[90]

Using custom runners
This section will introduce different extensions that are helpful for structuring
your test universe. Further, we'll shed some light on the consequences of overdone
runner usage.

Furnishing a suite with test cases
Probably one of the best known runners is Suite. Its purpose is to compose several
test cases and/or other suites into a single entity that is processable by JUnit,
which allows an example to combine all test cases of a subsystem. This might be an
appropriate excerpt with respect to the overall test execution duration on your local
machine—if you're about to enhance some of the subsystem's capabilities.

The suite-defining class has normally no body implementation. The composition is
accomplished by means of the @SuiteClasses annotation, which is used to specify a
list of test cases or nested suites:

@RunWith(Suite.class)
@SuiteClasses({
 TimelineTest.class,
 UiITest.class,
 [...]
})
public class AllTestSuite {}

The AllTestSuite example illustrates how to configure the processor and the list of
test cases designated to be executed on suite launch.

Structuring suites into categories
The structuring capabilities of suites are somewhat limited. Because of this, JUnit 4.8
introduced the Categories runner, which is still classified as experimental. To begin
with, you declare custom category types, such as unit, integration, and acceptance
tests in the form of marker interfaces. A test case or method is assigned to one of
those with the aid of the @Category annotation. Consider the following category
declarations:

public interface Unit {}
public interface Integration {}
public interface Acceptance {}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[91]

We want our TimelineTest case to belong to the category Unit, so we make use of
the Category annotation:

@Category(Unit.class)
public class TimelineTest {
 [...]
}

Since Categories is an extension of Suite, it enables us, by means of
@SuiteClasses, to incorporate AllTestSuite defined previously. Additionally, it
provides include and/or exclude declarations to filter the overall collection of tests:

@RunWith(Categories.class)
@IncludeCategory(Unit.class)
@SuiteClasses({
 AllTestSuite.class,
})
public class AllUnitTestSuite {}

The AllUnitTestSuite example shows how the selection of tests to execute is
restricted to those that are assigned to the Unit category. But keep in mind that
Category is not confined to class-level declarations only and also accepts multiple
category values.

Concluding this topic, it may be worth noting that it is possible to configure filters
based on category assignments in Maven or Gradle build configuration files directly,
without the need to define particular category classes.

For more information about this, please refer to the Categories
section of the JUnit online documentation at https://
github.com/junit-team/junit/wiki/Categories.

Populating suites automatically
Since the maintenance of suite classes and/or category annotations is often
considered somewhat tedious, people have searched for ways to organize test runs
automatically. The Eclipse IDE, for instance, provides the capability to run all JUnit
tests determined by a project or package selection out of the box. However, this
granularity doesn't match every need. Again, assume that you want to run each unit
test on a regular basis that belongs to a specific subsystem. Furthermore, this time,
the code might comprise more than one source project.

www.it-ebooks.info

https://github.com/junit-team/junit/wiki/Categories
https://github.com/junit-team/junit/wiki/Categories
http://www.it-ebooks.info/

Using Runners for Particular Testing Purposes

[92]

A popular solution is based on class name filters. The idea is to post or prefix class
names of test cases with appropriate category names. Instead of FooTest, you could
use FooUnitTest, FooIntegrationTest, FooITest, or whatever you prefer. The
suite runner scans the classpath and selects only those test cases the fully qualified
names of which match a regular expression. ClasspathSuite, [CPSUIT], is a third-
party runner that goes down that road:

@RunWith(ClasspathSuite.class)
@ClassnameFilters({
 ".*Test",
 "!.*ITest"
})
public class AllUnitTestCpSuite {}

This example reveals how class name filters are declared with the @
ClassnameFilters annotation. In our case, we run all tests with the postfix Test,
but replace those with the postfix ITest. Of course, the regular expression approach
allows us to filter out specific package names or the like. If you happen to work with
integration tests related to OSGi, [OSGIAL], a suite runner working accordingly is
BundleTestSuite, [OSGITE].

Admittedly, the use of naming conventions for categorization has some kind of smell
to it because the collection of tests can easily be incomplete simply due to typos in a
test case's name, which in turn could lead to unrecognized holes in our safety net. On
the other hand, the name tells us "this is the integration test for the component Foo",
or "this is the unit test for the component Foo", which makes it look a bit less bad. But
certainly, it restricts test categorization to the class level.

How about creating test doubles with
annotations?
Mockito provides a processor that generates and assigns test double fields implicitly.
The following code snippet shows how we can use this approach in TimelineTest:

@RunWith(MockitoJUnitRunner.class)
public class TimelineTest {

 @Mock
 private SessionStorage storage;

 [...]
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[93]

Unfortunately, there are a few imperfections, which one should bear in mind when
using this solution. Recall Chapter 2, Writing Well-structured Tests, where we heard
about the different fixture setup possibilities. In this context, we've mentioned as a
downside of the implicit pattern that tests may lack readability. A similar concern
is related to the @Mock annotation. It tempts the test case author to favor implicit
test double creation, which again might be perfectly alright on small and simple
structured classes. But it might blur coherence if applied to fields, which are hardly
used in any test.

Yet more important is the fact that runners work exclusively. Their capabilities
cannot be combined. If you, for example, need dataset tests, as introduced in the
next section, you simply can't use the test double generator simultaneously. So, you
would have to add an implicit initialization via MockitoAnnotations.initMocks
or switch back to explicit stand-in creation. So, if you happen to advocate the @Mock
approach, you might be better off anyway to facilitate this with the MockitoRule
instead. Rules are explained in Chapter 6, Reducing Boilerplate with JUnit Rules.

Summarizing runners can have a pretty big but compared to the relatively small
value add they provide. Hence, once more, the advice is not to overdo things. Always
ensure that there is a reasonable advantage or necessity that justifies the use of a
particular type.

Writing dataset tests
The last section of this chapter will cover one of the most important usage scenarios
for runners. It'll explain the sense and purpose of tests that run against specific data
records and presents the advantages and disadvantages of the available approaches.

Using parameterized tests
Given all this new and fancy knowledge about pluggable processors, it's about
time to advance our TimelineTest. One of the main functionalities our component
provides is the ability to fetch items page-wise. But there are quite a few
preconditions that determine the behavior of item fetching. This leads to just as many
tests, which barely differ in their structure. Instead of rewriting the same pattern
over and over again, wouldn't it be nice to reuse a common test and simply provide
behavior defining pre- and post-conditions as a set of data beans?

www.it-ebooks.info

http://www.it-ebooks.info/

Using Runners for Particular Testing Purposes

[94]

In fact, there is more than one canned solution based on runner extensions. Let's start
with the built-in mechanism of JUnit, the Parameterized test processor. The basic
idea is to define a collection of uniform object arrays, each of which represents a
data record. Parameterized tests originally had to provide a public constructor with
an argument list matching the field types of these arrays. Nowadays, it's possible to
assign the parameters given by the records to dedicated fields automatically. The
processor creates for every record and test combination a new test case instance
injecting the data. Storing the data in fields of the test case enables us to use them as
input and expected outcome throughout all tests.

Sounds complicated? Have a look at the modified TimelineTest version that comes
next for a better understanding. Note how the annotation @Parameters marks data,
the necessary data providing method. Parameter methods use the public and static
modifiers and usually return a collection of object arrays. But if a test run needs a
single parameter, we don't have to wrap it within an extra array and can return the
parameter list as a simple object array, as shown next.

The actual data-supplying implementation delegates to a particular test helper type, a
so-called data provider. Data providers are handy for reuse or to straighten up a test
case. Stay tuned. We'll survey FetchItemsDataProvider in detail in just a minute.

We've already mentioned that we only expect a single parameter per test run, which
is, in our case, an instance of the utility data type FetchItemsData. Note how the
@Parameter annotation of the public field data facilitates the assignment of this
parameter. Application of a structured data type can be helpful to avoid test cases
bloated with too many fields. Having this in place, the fetchItems test can retrieve the
input and expected outcome for the fixture setup and verification from the data bean:

@RunWith(Parameterized.class)
public class TimelineTest {

 @Parameter
 public FetchItemsData data;

 [...]

 @Parameters
 public static Object[] data() {
 return new Object[] {
 fetchItemsOnLowerFetchCountBound(),
 fetchItemsIfFetchCountExceedsItemCount()
 };
 }

 @Test

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[95]

 public void fetchItems() {
 itemProvider.addItems(data.getInput());
 timeline.setFetchCount(data.getFetchCount());
 timeline.fetchItems();

 timeline.fetchItems();
 List<Item> actual = timeline.getItems();

 assertArrayEquals(data.getOutput(),
 actual.toArray());
 }

 [...]
}

Every test method gets executed once for each sample specification supplied by the
two data-providing methods of FetchItemsDataProvider. They are used by means
of static imports for compactness. Of course, it's possible to use a single delegation
method to finish off data provisioning in one go, but the different test scenarios
would have fallen from view, which seemed a bit coarse-grained to begin with.

What remains is the FetchItemsData bean, which is pretty straight forward,
using a fluent interface API for smooth initialization. Due to the book's line-length
limitations, the item fields are simply denoted as input and output for brevity but
could otherwise be more telling, such as expectedOutcome or the like:

public class FetchItemsData {

 private int fetchCount;
 private Item[] input;
 private Item[] output;

 public static FetchItemsData newFetchItemsData() {
 return new FetchItemsData();
 }

 public FetchItemsData withInput(Item ... input) {
 this.input = input;
 return this;
 }

 public FetchItemsData withFetchCount(int fetchCount) {
 this.fetchCount = fetchCount;
 return this;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Using Runners for Particular Testing Purposes

[96]

 public FetchItemsData withOutput(Item ... output) {
 this.output = output;
 return this;
 }

 public int getFetchCount() {
 return fetchCount;
 }

 public Item[] getInput() {
 return input;
 }

 public Item[] getOutput() {
 return output;
 }
}

At long last, let's examine the FetchItemsDataProvider class. It contains methods
defining the input and expected outcome for certain test scenarios. Each scenario is
represented by one method. Naturally, their amount is also restricted here for lack
of space:

public class FetchItemsDataProvider {

 private static final FakeItem FIRST_ITEM = new FakeItem(10);
 private static final FakeItem SECOND_ITEM = new FakeItem(20);
 private static final FakeItem THIRD_ITEM = new FakeItem(30);

 static FetchItemsData fetchItemsOnLowerFetchCountBound() {
 return FetchItemsData.newFetchItemsData()
 .withInput(FIRST_ITEM, SECOND_ITEM, THIRD_ITEM)
 .withFetchCount(Timeline.FETCH_COUNT_LOWER_BOUND)
 .withOutput(THIRD_ITEM, SECOND_ITEM);
 }

 static FetchItemsData fetchItemsIfFetchCountExceedsItemCount() {
 return FetchItemsData.newFetchItemsData()
 .withInput(FIRST_ITEM, SECOND_ITEM, THIRD_ITEM)
 .withFetchCount(2)
 .withOutput(THIRD_ITEM, SECOND_ITEM, FIRST_ITEM);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[97]

Now, we are able to run our restructured test case. The following screenshot shows
how the JUnit UI will depict the test results:

Result depiction of a test run with the Parameterized runner

We see that fetchItems truly gets executed twice. But wait a moment, every other
nonparameterized test is also executed twice. This isn't very desirable as it falsifies
the amount of actual useful test runs and unnecessarily increases the duration of
execution. So, we have to either split TimelineTest or use another runner that
claims to do better.

Reducing glue code with JUnitParams
To make a long story short, the library JUnitParams, [JUNITP], offers a processor that
allows us to attach data providers to specific test methods. This omits the glue code
for the separate field allocation of the previous approach. Its incorporation into our
example requires essentially only the moving of the data collecting method from
TimelineTest to the data provider and renaming it to provideData, as shown in the
next code snippet; this is because the runner expects data suppliers to start with the
prefix provide:

public class FetchItemsDataProvider {

 private static final FakeItem FIRST_ITEM = new FakeItem(10);
 private static final FakeItem SECOND_ITEM = new FakeItem(20);
 private static final FakeItem THIRD_ITEM = new FakeItem(30);

 public static Object[] provideData() {
 return new Object[] {

www.it-ebooks.info

http://www.it-ebooks.info/

Using Runners for Particular Testing Purposes

[98]

 fetchItemsOnLowerFetchCountBound(),
 fetchItemsIfFetchCountExceedsItemCount()
 };
 }

 [...]

}

Next, we adjust our test case again. Most notably, fetchItems has an additional
annotation, @Parameters, referring to our data-providing type. But on closer
inspection, it occurs to us that the test method also expects a FetchItemsData
instance as an argument:

@RunWith(JUnitParamsRunner.class)
public class TimelineTest {

 [...]

 @Test
 @Parameters(source = FetchItemsDataProvider.class)
 public void fetchItems(FetchItemsData data) {
 itemProvider.addItems(data.getInput());
 timeline.setFetchCount(data.getFetchCount());
 timeline.fetchItems();

 timeline.fetchItems();
 List<Item> actual = timeline.getItems();

 assertArrayEquals(data.getOutput(),
 actual.toArray());
 }

 [...]
}

This solution appears to be slimmer, better readable, and more flexible than its
precursor. The @Parameters annotation even facilitates various ways of data
definition. Among others, the direct listing of string-encoded literals is supported.
So, it seems as if we've struck gold. Let's behold the result depiction of the JUnit
UI for this matter:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[99]

Result depiction of a test run with JunitParamsRunner

Indeed, this looks better. The fetchItems test is executed twice, while the
nonparameterized tests are executed only once. The overall test method count is
correct and no test execution time gets wasted. Eureka! Mission accomplished!

Well, almost. Examining the failing test in the preceding screenshot, we have
difficulties in finding out which scenario actually does not work. Neither the test
index nor the message gives us a human-understandable clue. Probably, we can
improve this situation by equipping our data beans with more specific result
messages. But before doing so, we prefer to check another approach based on
datasets providing enum.

Increasing the expressiveness of test
descriptions with Burst
The basic idea of Burst, [BURST], turn out to be quite similar to JUnitParams, where
data is mapped to specific test methods. But this time, data records are provided
as elements of Java enum types. In doing so, the name of each element can be
determined at runtime and supplied to the test's description. The next listing shows
how we can convert FetchItemsData into such an enum:

public enum FetchItemsEnum {

 ON_LOWER_FETCH_COUNT_BOUND {
 @Override
 void init() {
 withInput(FIRST_ITEM, SECOND_ITEM, THIRD_ITEM);

www.it-ebooks.info

http://www.it-ebooks.info/

Using Runners for Particular Testing Purposes

[100]

 withFetchCount(Timeline.FETCH_COUNT_LOWER_BOUND);
 withOutput(THIRD_ITEM, SECOND_ITEM);
 }
 },

 ON_FETCH_COUNT_EXCEEDS_ITEM_COUNT {
 @Override
 void init() {
 withInput(FIRST_ITEM, SECOND_ITEM, THIRD_ITEM);
 withFetchCount(2);
 withOutput(THIRD_ITEM, SECOND_ITEM, FIRST_ITEM);
 }
 };

 private int fetchCount;
 private Item[] input;
 private Item[] output;

 FetchItemsEnum() {
 init();
 }

 abstract void init();

 [...]
}

We just introduced an abstract initialization method init to be able to configure
each data element according to the scenarios provided by our data provider. The
names for the elements might appear a bit unusual but add up to a fluent, readable
test description as we'll see soon. Note that we've merged the data provider and
data bean functionalities for brevity here, which requires the test item constants to
be defined in a separate class (used with static imports). This is because they can't be
initialized prior to the element's initialization if they are defined within the enum. Of
course, it would also be possible to write a separate enum backed up by our existing
data provider.

Finally, we have to adjust TimelineTest one last time:

@RunWith(BurstJUnit4.class)
public class TimelineTest {

 @Test
 public void fetchItems(FetchItemsEnum data) {
 itemProvider.addItems(data.getInput());

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[101]

 timeline.setFetchCount(data.getFetchCount());
 timeline.fetchItems();

 timeline.fetchItems();
 List<Item> actual = timeline.getItems();

 assertArrayEquals(data.getOutput(),
 actual.toArray());
 }

 [...]
}

It's striking that fetchItems gets along without any additional annotation. The test
is called for each element of the enum type. So, if a dataset can be packed easily into
an enum, this solution appears to be not so bad either. But how does the UI result
depiction look?

Result depiction of a test run with the BurstJUnit4 runner

The fetchItems test gets executed twice, while the non parameterized tests are
executed only once. The overall test method count is correct, and no test execution
time is wasted. Plus, this time, we've got more expressive hints about what a test run
is all about.

But bear in mind that Burst is still pretty new at the time
of writing this, hence it might still have to prove its
suitability for daily use.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Runners for Particular Testing Purposes

[102]

In case you are wondering about the extra level in the result's tree structure, the
tool allows additional constructor parameterization with enum. The second level is
reserved to be able to depict the outcome of such runs. You may have also recognized
the dot prior the enum element name. This is caused by the abstract type approach.
Nonabstract types will be shown with the simple class name before the dot.

Once again, it's up to you to make a choice. But bear in mind that all presented
solutions have a common tradeoff as input and outcome definitions are separated
from the test phases. This makes them more difficult to read and impedes error
tracking because failure traces do not point to a specific input/output combination
perceptible from your code base. Thus, it can also be argued that parameterized tests
be omitted for a manageable amount of preconditions. Before moving on to the next
chapter, let's wrap up what we've learned about runners.

Summary
In this chapter, you acquired a thorough understanding of JUnit's runner
architecture. You learned how to write your own extension and saw how it interacts
with the tool's runtime. Based on this knowledge, we encountered several options
to structure and categorize the entirety of our tests and discussed the downside of
over-extensive runner use. We concluded the topic by explaining the assets and
drawbacks of the different approaches to writing parameterized tests—one of the
most important use cases for runners.

In the next chapter, you'll learn about a particular type of test helper that eases
fixture setup and secures our tests with an automated teardown. We'll see how JUnit
Rules embed tests at runtime and learn how to develop and use our own rules.

www.it-ebooks.info

http://www.it-ebooks.info/

[103]

Reducing Boilerplate
with JUnit Rules

We already explained how to minimize clutter and redundancy in test cases by
extracting coherent utility code into separate test helpers, as seen in Chapter 3,
Developing Independently Testable Units. In this chapter, you'll learn how to enhance
this strategy by means of JUnit rules. You'll be given an introduction to the
approach's mechanics and potential. To deepen this knowledge, we'll continue by
writing and varying a sample extension. Then, we'll examine advanced features of
rules-related functionality and conclude with the inspection of useful third-party
vendor offerings. In short, this will make us capable of the following:

•	 Understanding rules
•	 Working with advanced concepts
•	 Employing custom solutions

Understanding rules
The benefits of JUnit rules, especially when dealing with integration tests, can hardly
be overrated. That's why, we start with a thorough explanation of how they work
and how you can implement your own extensions. This will put you in a position to
increase your daily work efficiency with the aid of custom rules.

www.it-ebooks.info

http://www.it-ebooks.info/

Reducing Boilerplate with JUnit Rules

[104]

What are JUnit rules?
"Pedantry and mastery are opposite attitudes toward rules."

 – George Pólya

JUnit offers a particular test helper support that we've already encountered in the
course of this book. Recollect the introduction of the ExpectedException rule in
Chapter 4, Testing Exceptional Flow, where you got a first impression of the possible
applications. But what are rules exactly?

To answer this question, let's take a look at an example. Until now, we've
concentrated our efforts on unit tests, which use DOCs as stand-in components to
isolate SUTs from their dependencies. But at some point in time, you'll have to turn
towards these dependencies, provide real-world implementations, and verify their
correct behavior. This is when you write tests that incorporate costly system calls and
third-party libraries and potentially span over several application layers—in short,
integration tests.

As you've already learned, these are important flanking activities to separate
our application code—the code we are in control of—from extrinsic influences.
Unfortunately, this test type is considerably more expensive than a unit test because
it has to deal with things such as environmental settings, framework startup, and last
but not least, housekeeping.

Assume that we've decided to store our timeline state on the local filesystem. Hence,
we'd need an appropriate SessionStorage realization. It seems natural to develop
such FileSessionStorage against a proper integration test, but this involves
dealing with tedious filesystem demands. First, there is the determination of a
platform-independent storage location, and second, we have to clean up the remains
after a test run.

Obviously, it's a pretty common challenge that cries out for a test helper. For this
reason, JUnit provides the TemporaryFolder class. To avoid running into file access
privilege trouble, it makes sense to choose storage locations for test output below
the system's temporary directory. As the name implies, the helper offers several API
methods for the creation of files or directories (below the temporary directory root)
and a cleanup functionality, delete. The latter removes all content from the disk that
has been originated by a temporary folder instance.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[105]

From what we've learned until now, we'd probably expect to use this helper as follows:

1.	 Create the storage location during test setup.
2.	 Call the delete method in an @After annotated method to do the

housekeeping.

But since TemporaryFolder is a rule, the second step isn't necessary. The only thing
we need to do is to register the rule correctly. Regard the SessionStorage interface
and a simplistic Memento type sufficient for our considerations here. The storage
reads and writes state mementos. The following code shows this:

public interface SessionStorage {
 void store(Memento memento);
 Memento read();
}

The state holder itself oversimplifies serialization a bit by employing a parameterized
constructor and the toString method for this purpose. But this shouldn't bother us
in the context of the current topic. We'll refine this approach in Chapter 7, Improving
Readability with Custom Assertions. The following code shows this:

public class Memento {

 private String content;

 public Memento(String content) {
 this.content = content;
 }

 @Override
 public String toString() {
 return content;
 }

 [...]
}

Let's apply our main attention to the following FileSessionStorageITest listing
instead. As you can see, the temporary folder instance is created implicitly during
field initialization. The temporaryFolder public field is annotated with @Rule. This
is how rules have to be registered. But before we explain the reason for this, we'll
complete the test case's examination first:

public class FileSessionStorageITest {

 private static final String CONTENT = "content";

www.it-ebooks.info

http://www.it-ebooks.info/

Reducing Boilerplate with JUnit Rules

[106]

 @Rule
 public TemporaryFolder temporaryFolder = new TemporaryFolder();

 private FileSessionStorage storage;
 private File storageLocation;

 @Before
 public void setUp() throws IOException {
 storageLocation = temporaryFolder.newFile();
 storage = new FileSessionStorage(storageLocation);
 }

 @Test
 public void store() throws IOException {
 Memento memento = new Memento(CONTENT);

 storage.store(memento);

 assertEquals(CONTENT, readStoredContent());
 }

 @Test
 public void read() throws IOException {
 writeContentToStore(CONTENT);

 Memento memento = storage.read();

 assertEquals(CONTENT, memento.toString());
 }

 [...]

 private String readStoredContent() throws IOException {
 byte[] bytes = Files.readAllBytes(storageLocation.toPath());
 return new String(bytes, StandardCharsets.UTF_8);
 }

 private Path writeContentToStore(String content)
 throws IOException
 {
 byte[] bytes = content.getBytes(StandardCharsets.UTF_8);
 return Files.write(storageLocation.toPath(), bytes);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[107]

The basic idea is to use the file session storage to serialize a memento to a content
string and store this on the local filesystem. Afterwards, we load the actual content
from the file and check that it matches the expected one. For the verification of the
read functionality, we proceed conversely. See how we rely always on the storage
location provided by our test helper.

It is noteworthy that the store and read utility methods may indicate a code
redundancy with respect to the component's implementation. We could get rid of
this duplication using the storage itself to complete the particular turnarounds.
Nevertheless, it seemed more plausible to have them here for initial understanding.
Furthermore, we assume that the storage file already exists. Among other things,
it would be worthwhile to verify how the storage deals with a situation where the
file doesn't exist. So, feel free to refactor and complement the preceding listing
appropriately as an exercise.

Now, it's about time to focus our attention on the rule mechanics. Rules provide a
possibility of intercepting test method calls similar as an AOP framework would
do. Comparable to an around advice in AspectJ, [ASPECT], the test method gets
embedded dynamically into a code block. This allows the inserting of useful
functionality before and/or after the actual test execution. It even enables you to skip
the original call completely. Thus, the temporary folder instance is able to delete its
files after a test run automatically.

But bear in mind that a test run in that regard includes the @Before and @After
annotated callbacks because they constitute implicitly executed test phases. The rule
clamp has to embrace these invocations, which in turn, explains why the rule's field
initialization takes place at construction time. The rule simply has to exist before
any testing-related action happens, to avoid interleaving. The tool creators probably
found this manner sufficient and refrained from introducing, for example, another
callback type.

While these abstract explanations surely sound reasonable, the best way to obtain
a profound understanding is to write a rule by yourself. Although you might
anticipate this to be complicated, it's actually a pretty simple thing to do.

www.it-ebooks.info

http://www.it-ebooks.info/

Reducing Boilerplate with JUnit Rules

[108]

Writing your own rule
The API part of a rule definition has to implement TestRule. The only method of this
interface is apply, which returns an instance of Statement. Statement represents—
simplistically spoken—your tests within the JUnit runtime and Statement#evaluate()
executes them. Inspecting the argument list of apply, we recognize that a statement
is also given as an input. The basic thought is to provide a wrapper extension of
Statement, which can implement additional contributions by overriding evaluate:

public class MyRule implements TestRule {

 @Override
 public Statement apply(Statement base,
 Description description)
 {
 return new MyStatement(base);
 }
}

class MyStatement extends Statement {

 private final Statement base;

 MyStatement(Statement base) {
 this.base = base;
 }

 @Override
 public void evaluate() throws Throwable {
 System.out.println("before");
 try {
 base.evaluate();
 } finally {
 System.out.println("after");
 }
 }
}

The preceding listing shows how a statement adapter works. Embedding the
delegating evaluate call into a try-finally block ensures that, no matter what
happens during the invocation, the console output 'before' and 'after' gets
written. MyRuleTest confirms that our custom extension MyRule can be used in the
same way as TemporaryFolder:

public class MyRuleTest {

 @Rule

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[109]

 public MyRule myRule = new MyRule();

 @Test
 public void testRun() {
 System.out.println("during");
 }
}

Launching the test case leads to the output depicted in the following image.
This proves that our example rule works as expected. The test execution gets
intercepted and modified by our rule to print before and after around the
during of the test method.

MyRuleTest console output

Doing something before and after a test run is particularly typical for rules dealing
with external resources, such as files, sockets, servers, database connections, and so on.
So, it isn't surprising that there is a common super class for such use cases. The current
example could be rewritten by extending ExternalResource, as indicated here:

public class MyRule extends ExternalResource {

 @Override
 protected void before() {
 System.out.println("before");
 }

 @Override
 protected void after() {
 System.out.println("after");
 }
}

Now that the very basics of rule development have been understood, we'll go a step
further and cover a more advanced, yet very popular, pattern.

www.it-ebooks.info

http://www.it-ebooks.info/

Reducing Boilerplate with JUnit Rules

[110]

Configuring the fixture with annotations
Up to this point, we apply rules if we want to take care of a certain aspect that relates
to all tests of a test case. Special fixture adjustments are done within each test method
by calling the rule's helper methods. But sometimes, these configurations may not
add much to the comprehension of the test's purpose or an aspect may not be related
to all tests.

In these instances, it might be appropriate to combine a rule with an additional
control annotation to reduce, for example, the clutter within a test. Remember the
@Mock annotation mentioned in the preceding chapter? We've heard about the
MockitoRule picking up marked fields and created test double instances on the
fly—before the actual test execution started.

Later, on we'll encounter another useful application, but first, let's examine how we
can evolve MyRule to enable test-specific settings by means of annotations. To do so,
we introduce a method-related annotation, MyRuleConfiguration, which accepts a
string value as a parameter:

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD})
public @interface MyRuleConfiguration {
 String value() default "";
}

It's possible to access test method annotations by the Description argument,
which we haven't used until now. This allows us to supplement the console output
with the specified configuration value. The MyConfigurableRule variant here
illustrates the details:

public class MyConfigurableRule implements TestRule {

 @Override
 public Statement apply(Statement base,
 Description description)
 {
 return new MyConfigurableStatement(base, description);
 }
}

class MyConfigurableStatement extends Statement {

 private final Description description;
 private final Statement base;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[111]

 MyConfigurableStatement(Statement base,
 Description description)
 {
 this.description = description;
 this.base = base;
 }

 @Override
 public void evaluate() throws Throwable {
 String configuration = getConfiguration();
 System.out.println("before [" + configuration + "]");
 try {
 base.evaluate();
 } finally {
 System.out.println("after [" + configuration + "]");
 }
 }

 private String getConfiguration() {
 return description
 .getAnnotation(MyRuleConfiguration.class)
 .value();
 }
}

This is all we have to do to bring MyRuleConfiguration into action. In the next
snippet, MyConfigurableRuleTest shows its appropriate use:

Note the additional annotation on the testRun method.

public class MyConfigurableRuleTest {

 @Rule
 public MyConfigurableRule myConfigurableRule
 = new MyConfigurableRule();

 @Test
 @MyRuleConfiguration("myConfigurationValue")
 public void testRun() {
 System.out.println("during");
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Reducing Boilerplate with JUnit Rules

[112]

In the end, the console output will respect the configuration value, as displayed in
the following image:

The MyRuleTest console output with annotation

Being able to write our own rules gives us a pretty good insight into how they
are working. All the more, it's interesting to learn what some out-of-the-box
implementations are capable of.

Working with advanced concepts
JUnit comes with a set of readymade rules, taking away some of the burden of
common test-related development tasks, and we've already encountered a few of
them. But the tool offers additional capabilities, allowing us to apply and combine
rules in a way so as to meet special requirements, at which we'll have a look in the
following section.

Using ClassRules
At times, integration tests need access to external resources, which can be expensive
to establish. If these resources do not contribute more to the precondition of any
test, rather than being an environmental invariant, testing individual creations and
disposing of them might be a waste.

Think of an application server necessary as the infrastructure to provide the
REST services you intend to validate. The application server does not contribute any
test-specific state. It simply has to be there to be able to deploy, test, and undeploy
REST resources on the fly. Because of this, it would be desirable to perform the
following actions:

1.	 Start the server once before the service tests are executed.
2.	 Stop it as soon as these tests are done.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[113]

JUnit supports this with the aid of class rules. These are public, static fields of
test cases annotated with @ClassRule. Eagerly created, they also have to be a
subtype of TestRule. They can affect the operation of a whole test case, which
means the execution of the complete sequence of its tests is embedded into a rule's
Statement#evaluate call.

For better understanding, let's sketch the preceding application server use case.
Consider ServerRule, which is responsible for starting and stopping a server
instance. It would extend ExternalResource and may accept a port as a constructor
argument. We do not really work with a server here but rather indicate the life cycle
events with console output messages:

public class ServerRule extends ExternalResource {

 private final int port;

 public ServerRule(int port) {
 this.port = port;
 }

 @Override
 protected void before() throws Throwable {
 System.out.println("start server on port: " + port);
 }

 @Override
 protected void after() {
 System.out.println("stop server on port: " + port);
 }
}

Moreover, we provide MyServerTest to represent a set of tests that expects the
server instance to be up and running. Again, we indicate this only with messages
written to the console.

Note how we use the TestName rule to determine the
name of a test.

public class MyServerTest {

 @Rule
 public TestName name = new TestName();

 @Test

www.it-ebooks.info

http://www.it-ebooks.info/

Reducing Boilerplate with JUnit Rules

[114]

 public void runFirstServerTest() {
 System.out.println(name.getMethodName());
 }

 @Test
 public void runSecondServerTest() {
 System.out.println(name.getMethodName());
 }
}

Due to the fact that any subclass of ParentRunner will support class rules, it's
feasible to aggregate all server-dependent test cases. ServerIntegrationTestSuite
uses the ClasspathSuite runner introduced in Chapter 5, Using Runners for Particular
Testing Purposes, to do so:

@RunWith(ClasspathSuite.class)
@ClassnameFilters({ ".*ServerTest" })
public class ServerIntegrationTestSuite {

 @ClassRule
 public static ServerRule serverRule = new ServerRule(4711);
}

The suite will first "start" our server, then pick up any test cases prefixed with
ServerTest, run all tests of these classes, and finally "stop" the server. The following
screenshot of a test launch's output confirms the expected behavior:

The MyServerTest console output

Although this approach has its advantages, there is a little downside too. Using class
rules on suites, as explained previously, leads to a situation where a single test case
loses its autonomy. It implies that running MyServerTest standalone isn't possible
anymore. But you might have a lot of server-related test cases. Then, the overhead
of starting and stopping the server for each of those separately might be too high,
which, in turn, can justify this kind of suite solution.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[115]

The ordering of rule execution
Of course, it is feasible to employ more than one rule in a test case. In this instance,
the rules' statement adapters get nested. However, in which sequence this will
happen is undetermined. But sometimes, correct ordering is crucial. Consider, for
example, a rule that depends on our server rule. It might deploy a service needed by
all of the suite's aggregated tests. As a consequence, we would run into an error if the
server isn't started first.

For such requirements, JUnit provides the RuleChain utility. Being an
implementation of TestRule, it's registered just as any other rule. It allows you
to compound rules in a way that defines their nesting order. The following listing
enhances our server integration test suite to illustrate the usage:

@RunWith(ClasspathSuite.class)
@ClassnameFilters({ ".*ServerTest" })
public class ServerIntegrationTestSuite {

 @ClassRule
 public static TestRule chain = RuleChain
 .outerRule(new ServerRule(4711))
 .around(new MyRule());
}

Rule chains are configured fluently. The outerRule static method marks the start
of a chain, and each around call adds a nested rule instance. Running the suite and
observing the console reveals how the MyRule-related messages are clamped within
the ServerRule output but spans the succession of tests. The following screenshot
shows this:

The MyServerTest console output with rule chaining

For a complete list and description of all built-in
rules, please refer to the eponymic section of the JUnit
documentation wiki at https://github.com/junit-
team/junit/wiki/Rules.

www.it-ebooks.info

https://github.com/junit-team/junit/wiki/Rules
https://github.com/junit-team/junit/wiki/Rules
http://www.it-ebooks.info/

Reducing Boilerplate with JUnit Rules

[116]

Now, we'll continue with the introduction of useful little helpers provided by
third-party vendors.

Employing custom solutions
Given the variety of possible applications, it's no wonder that there are custom rule
solutions for both routine and fancy demands. Because of this, the last section of the
chapter will dwell on noteworthy third-party implementations for each area.

Working with system settings
A source of constant burden is environment-specific functionality and state handling.
Most of it is made accessible via the java.lang.System class. Setting and resetting
system properties, capturing system output and so on produces quite a bit of
overhead of boilerplate code. Luckily, a third-party utility called System Rules,
[SYSRUL], comes to the rescue. It encapsulates the redundancies and supplies
several rules to accomplish the various tasks efficiently.

Let's have a quick look at some of the more common challenges and see how system
rules will help. If you need to ensure that a particular system property is removed
before test execution, you can use the ClearSystemProperty test helper. This rule
deletes a property before a test run and restores the original value after a test run.
The following example clears the predefined location of the temporary directory:

public class ClearPropertiesExample {

 private static final String JAVA_IO_TMPDIR = "java.io.tmpdir";

 @Rule
 public final ClearSystemProperties clearTempDirRule
 = new ClearSystemProperties(JAVA_IO_TMPDIR);

 @Test
 public void checkTempDir() {
 assertNull(System.getProperty(JAVA_IO_TMPDIR));
 }
}

Maybe more frequently, you want to define or override a particular system property
for all tests. This can be achieved with the ProvideSystemProperty rule. Again,
after a test run, the original value gets restored. The next example illustrates how you
could alter (falsify) the value of the temporary directory property:

public class ProvideSystemPropertyExample {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[117]

 private static final String JAVA_IO_TMPDIR = "java.io.tmpdir";
 private static final String MY_TMPDIR = "/path/to/my/tmpdir";

 @Rule
 public final ProvideSystemProperty provideCustomTempDirRule
 = new ProvideSystemProperty(JAVA_IO_TMPDIR, MY_TMPDIR);

 @Test
 public void checkTempDir() {
 assertEquals(MY_TMPDIR,
 System.getProperty(JAVA_IO_TMPDIR));
 }
}

But presumably, the most interesting is the RestoreSystemProperties helper. With
this in place, you can simply set or change any property during a test. After a test
run, the original values get restored. As this usage simply requires an appropriate
rule definition, we omit any code snippets here.

Another common use case is that of capturing content that gets written to System.
out or System.err print streams. For this purpose, the SystemOutRule and
SystemErrRule rules are made available. They provide several modes configurable
by the methods enableLog, mute, and muteForSuccessfulTests. The first one
activates the capturing of content, the second prevents write through to the original
stream. The last one does the same but allows messages to pass in the event of a test
failure. The following snippet shows how to capture output but suppresses message
depiction for successful tests:

public class CaptureSystemOutputExample {

 private static final String OUTPUT = "output";

 @Rule
 public final SystemOutRule systemOutRule
 = new SystemOutRule().enableLog().muteForSuccessfulTests();

 @Test
 public void captureSystemOutput() {
 System.out.print(OUTPUT);

 assertEquals(OUTPUT, systemOutRule.getLog());
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Reducing Boilerplate with JUnit Rules

[118]

The last system helper we'll examine here allows the provision of text
input. This can be read from the System.in input stream during a test. The
TextFromStandardInputStream rule gets created by the emptyStandardInputStream
factory method, as shown in the next code. It provides several methods to supply
the content that should be dispatched to the input stream. The example uses
provideLines to this end:

public class ProvideSystemInputExample {

 private static final String INPUT = "input";

 @Rule
 public final TextFromStandardInputStream systemInRule
 = TextFromStandardInputStream.emptyStandardInputStream();

 @Test
 public void stubInput() {
 systemInRule.provideLines(INPUT);

 assertEquals(INPUT, readLine(System.in));
 }

 private String readLine(InputStream inputstream) {
 return new Scanner(inputstream).nextLine();
 }
}

For a complete list and profound description of all system
rules, please refer to the library's documentation at http://
stefanbirkner.github.io/system-rules/index.html.

We'll conclude this chapter with a utility that can come in handy when you run into
trouble with platform-specific functionality for example.

Ignoring tests conditionally
JUnit offers the possibility to ignore single tests. To do so, you mark a test method
additionally with @Ignore. Different than simply commenting or deleting @Test,
runners will report the number of skipped tests and tag them appropriately within
the UI result view. It's even feasible to record the reason why a test is being ignored
using the annotation's optional string parameter.

www.it-ebooks.info

http://stefanbirkner.github.io/system-rules/index.html
http://stefanbirkner.github.io/system-rules/index.html
http://www.it-ebooks.info/

Chapter 6

[119]

But why should we wish to tear a hole in our safety net by ignoring a test? Well,
basically we shouldn't. Nevertheless there are situations where we might opt for
temporarily skipping certain tests. Think about nondeterministic tests for example,
which fail only intermittently when running our complete suite of tests.

"The trouble with non-deterministic tests is that when they go red, you have no
idea whether it's due to a bug, or just part of the non-deterministic behavior."

"Initially people will look at the failure report and notice that the failures are in
non-deterministic tests, but soon they'll lose the discipline to do that. Once that
discipline is lost, then a failure in the healthy deterministic tests will get ignored too."

 – [FOWL11]

Thus, it's better to deactivate these tests temporarily, just in case we are not able to
fix the problem on the spot. Fowler describes strategies on how to put such tests
into quarantine. A low-level approach might include marking them with @Ignore.
The advantage compared to deleting the @Test annotation is that ignored tests are
reported and, hence, pop up as reminders of future work items.

However, there can be reasons that call for a more fine-grained control of when
to skip a test. Some time ago, while working on an SWT-based UI, we ran into a
platform-related issue. It turned out that on non-Windows platforms asserting
whether an SWT widget has got the input focus does not work with automated
tests. But we thought that to have a test up and running on one platform is better
than nothing. Hence, we decided to ignore the focus-related tests on non-Windows
systems for the time being.

In JUnit, assumptions are the built-in means to skip tests that aren't meaningful.
Assume statements throw AssumptionViolatedException if a given condition isn't
met. The default runner marks a test with an unfulfilled assumption as skipped.
Have a look at the following snippet that illustrates the principle:

public class AssumptionTest {

 @Test
 public void ignored() {
 Assume.assumeFalse(true);
 // statements below this line are skipped
 }

 @Test
 public void executed() {
 Assume.assumeTrue(true);
 // statements below this line are executed
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Reducing Boilerplate with JUnit Rules

[120]

The following screenshot shows how a test run with a failed assumption gets
depicted in the UI. You can see clearly how the test named ignored is marked
as skipped:

Test ignored with assume

But this approach tends to mingle test code with unrelated aspects. It seems
more natural to separate the decision as to whether a test is to be ignored
from the test's body. This is the notion behind ConditionalIgnoreRule,
which uses the @ConditionalIgnore annotation to reach this goal, [HERR13].
ConditionalIgnoreTest demonstrates the concept as follows:

public class ConditionalIgnoreTest {

 @Rule
 public ConditionalIgnoreRule rule = new ConditionalIgnoreRule();

 @Test
 @ConditionalIgnore(condition = NotRunningOnWindows.class)
 public void focus() {
 // ...
 }
}

class NotRunningOnWindows implements IgnoreCondition {
 public boolean isSatisfied() {
 return
 !System.getProperty("os.name").startsWith("Windows");
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[121]

@ConditionalIgnore requires a condition argument, pointing to a class that
implements IgnoreCondition. IgnoreConditionRule picks up the annotation at
runtime as described previously. It creates an instance of the condition-defining type
and decides, based on the result of its isSatisfied method, whether a test should
be skipped.

If so, AssumptionViolatedException is thrown. Therefore the ConditionalIgnore
annotation has basically the same effect that an unmet Assume condition would have.
It has the slight advantage that @Before and @After callbacks are also skipped.

Now that you know how to stick to the rules, let's shortly recap what you've learned
in this chapter.

Summary
In this chapter, you acquired profound knowledge of the mechanics and capabilities
of JUnit rules. You saw what it takes to write your own extension and learned how
to evolve self-made rules by means of annotations. After that, you were imparted the
usage of class rules on test suites and discussed the pros and cons of this approach.
Besides, you were shown how rules can be nested in case your tests depend on
a well-defined execution order. To round out the topic, we introduce third-party
vendor solutions for common testing-related tasks.

The next chapter is devoted to the various available verification concepts. It will put
the built-in assert functionality on a test and explain the assets and drawbacks of the
most popular alternatives.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[123]

Improving Readability with
Custom Assertions

In this chapter, you'll learn to write concise verifications that reveal the expected
outcome of a test clearly. You'll be taught how domain-specific assertions help to
improve readability and reduce boilerplate at the same time. To achieve this, you'll
be given an overview of the respective capabilities and limitations of the various
JUnit test verification techniques. In detail, you'll be introduced to the built-in
mechanism, Hamcrest matchers, and AssertJ asserts. In this chapter, we will discuss
the following topics:

•	 Working with the JUnit built-in assert approach
•	 Creating flexible expressions of intent with Hamcrest
•	 Writing fluently readable assertions with AssertJ

Working with the JUnit built-in assert
approach
Starting with a short assertion definition recap, this section will give you an
overview of JUnit's built-in verification mechanism. Advancing the example, we'll be
confronted with more complex assertions and recognize how they impair readability.
But we'll learn how to improve them by means of assertion test helpers. Finally, we'll
discuss a few limitations of this approach.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Readability with Custom Assertions

[124]

Understanding the basics
By now, you comprehend why unit tests are usually arranged in phases. And it's
clear that the outcome verification takes place in the third phase. The technical
mechanism to achieve this is based on assertions. In principle, assertions check
whether a Boolean predicate evaluates to true or false. In the event of the value
false, an AssertionError is thrown. The runtime tool captures these errors
and reports them as failures. As you already know, tests taking this approach are
denoted as self-checking.

JUnit provides a built-in assertion utility, the class org.junit.Assert. It offers a
couple of static convenient methods to ease validation. As they read better when
referred by static imports, all listings in this book assume this implicitly. The
following statements outline the essential variants:

fail();
fail("Houston, we've got a problem.");

assertNull(identifier);
assertNull("Identifier must not be null.",
 identifier);

assertTrue(counter.hasNext());
assertTrue("Counter should have a successor.",
 counter.hasNext());

assertEquals(expected, actual);
assertEquals("Expected value does not match actual.",
 expected,
 actual);

Let's continue with a closer look at each of these assertion methods:

•	 fail() throws an assertion error unconditionally. This might be helpful to
mark an incomplete test (work in progress) or to ensure that an expected
exception has been thrown (see Chapter 4, Testing Exceptional Flow).

•	 assertNull(Object) and assertNotNull(Object) are used to verify the
initialization state of a variable. The first one asserts that the given argument
is unassigned and the second one ensures that it is assigned.

•	 The assertTrue(boolean) and assertFalse(boolean) methods check
the evaluation result of a Boolean expression. The invocation of the first
method assumes the findings to be true, whereas the second method
anticipates the opposite.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[125]

•	 assertEquals(Object,Object), assertNotEquals(Object,Object),
assertSame(Object,Object), and so on, and their equivalents for primitive
types, are used for comparison verification of values, objects, and arrays.
Although it makes no difference with respect to a test's outcome, it's
important to pass the expected value as the first parameter and the actual as
the second parameter. This is because it ensures the meaningfulness of failure
messages.

All these methods provide overloaded versions that take an additional string
parameter. In the event of a failure, the argument gets incorporated into the assertion
error's message. Many people consider this helpful to express deficiencies more
clearly. Others perceive such messages as clutter, making tests harder to read and
more expensive to maintain. Throughout this book, we usually omit messages for the
reason of brevity.

For more information on specific assertion methods please refer to the
JavaDoc utilities, [ASSJAD].

Reviewing the file session storage
Before examining assert statements in practice and going ahead with our timeline
example, we've first got to review the simple file session storage version from Chapter
6, Reducing Boilerplate with JUnit Rules. We've already noted that abusing a memento
for persistence purposes probably isn't the best design choice. That's because the
pattern is meant to capture and restore the internal state of a component without
breaking encapsulation, [GHJV96]. It should not be made accountable for handling
serialization by itself. This would imply more than one reason for the class to change
and, hence, break the single responsibility principle (see Chapter 3, Developing
Independently Testable Units).

Admittedly, we have to recall that Item is intended to have various implementations.
This is because the presentation of a particular timeline instance depends, to some
degree, on the characteristics of a concrete item type. And certainly, we need several
collaborators, such as an appropriate item provider and a UI item factory, for
successful adaption, but basically extension and adaption requirements are focused on
the item's peculiarities.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Readability with Custom Assertions

[126]

However, our present approach exposes the memento to changes with respect to
the different item types we may employ. But its functionality should be item type
unrelated, and there should be no need to modify it. An insight that is compliant with
the open/closed principle states:

"Software entities (classes, modules, functions, etc.) should be open for extension,
but closed for modification."

 – [OPECLO]

Reflecting this, we reduce Memento to be a plain-structured data type again. A simple
version is shown in the next listing. It assumes that the state is defined by a set of
items loaded by the timeline instance and a top item, which represents the upmost
item scrolled into view. For compactness, we ignore any input validations or the like:

public class Memento {

 private final Set<? extends Item> items;
 private final Item topItem;

 public Memento(Set<? extends Item> items, Item topItem) {
 this.items = items;
 this.topItem = topItem;
 }

 public Set<? extends Item> getItems() {
 return items;
 }

 public Item getTopItem() {
 return topItem;
 }
}

The problem is that now we have to alter the storage implementations accordingly.
And how shall we do the serialization anyway?

The example makes it obvious that the test first approach does not prevent us from
making design decision mistakes. As always, when evolving a system, the lessons
learned can call for substantial changes in the existing code. But having our safety
net, we can determine exactly which specifications have to be adjusted. So, don't
panic and first adapt the affected tests. Second, fix the SUTs. Once the bar is green
again and the refactoring is done, you can be sure that the modified functionality
has been introduced without breaking anything else. Everything will fall into place.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[127]

Applied to our example, we recognize that serialization apparently depends on a
particular item's type. Thus, we introduce a new ItemSerialization interface—a
collaborator used by our file item storage:

public interface ItemSerialization {
 String serialize(Item item);
 Item deserialize(String input);
}

The idea is to supply an individual implementation for each item type. The following
listing shows the plain serialization of FakeItem appropriate for testing purposes:

public class FakeItemSerialization implements ItemSerialization {

 @Override
 public String serialize(Item item) {
 return String.valueOf(item.getTimeStamp());
 }

 @Override
 public Item deserialize(String input) {
 return new FakeItem(parseLong(input));
 }
}

For completeness, we anticipate a little static helper, FakeItems, that
provides test item definitions and the like to keep the subsequent version of
FileSessionStorageITest more concise:

public class FakeItems {

 public static final FakeItem FIRST_ITEM = new FakeItem(10);
 public static final FakeItem SECOND_ITEM = new FakeItem(20);
 public static final FakeItem THIRD_ITEM = new FakeItem(30);

 public static final Set<FakeItem> ALL_ITEMS
 = unmodifiableSet(
 new HashSet<FakeItem>(
 asList(FIRST_ITEM, SECOND_ITEM, THIRD_ITEM)));
}

Now it's about time we put things together.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Readability with Custom Assertions

[128]

Verifying the storage behavior
With all these preliminary considerations, we're ready to forge a bridge back and
merge with the assert topic. If we look at the reworked storage test implementation
that follows, we see that the fixture setup includes the new collaborator for item
serialization. We pick up the thoughts from the preceding chapter and test the
storage functionality in a single store-and-read cycle. The check verifies that the
restored memento matches the initial one and asserts that, indeed, something gets
written to the storage location.

As you can see, we are not interested any longer in the storage content or format,
which is actually an internal detail of the storage class. The less we depend
on internals, the better it is since we minimize the risk of breaking our test by
refactoring the SUT:

public class FileSessionStorageITest {

 @Rule
 public TemporaryFolder temporaryFolder = new TemporaryFolder();

 private ItemSerialization itemSerialization;
 private FileSessionStorage storage;
 private File storageLocation;

 @Before
 public void setUp() throws IOException {
 storageLocation = temporaryFolder.newFile();
 itemSerialization = new FakeItemSerialization();
 storage =
 new FileSessionStorage(storageLocation, itemSerialization);
 }

 @Test
 public void storage() throws IOException {
 Memento expected = new Memento(ALL_ITEMS, FIRST_ITEM);

 storage.store(expected);
 Memento actual = storage.read();

 assertEquals(expected.getTopItem(),
 actual.getTopItem());
 assertEquals(expected.getItems(),
 actual.getItems());
 assertNotSame(expected, actual);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[129]

 assertTrue(storedMemento().length > 0);
 }

 private byte[] storedMemento() throws IOException {
 return Files.readAllBytes(storageLocation.toPath());
 }
}

While all this seems reasonable, we're struggling a bit with the readability of
the assert statements. This is why we'll inspect them in more detail in the next
paragraph.

Improving readability with assertion helpers
To begin with, assertEquals(Object,Object) is backed up in essence by Object.
equals(Object). This means our first assertion can only work if Item derivatives
are implementing the contract of equals and hashCode. Otherwise, we would have
to check each item attribute separately. So, for brevity, let's assume this requirement
has been realized by our FakeItem class.

However, not every data type may supply appropriate equals and hashCode
methods. Well, Memento doesn't and—to build up the case—assume that we're not in
a position to change it. This is when we'd have to swallow the pill and use more than
one statement to verify the memento's equality. Aside from that, there are plenty of
reasons for assertion conditions to get bulky, and in such cases, we may decide to
extract coherent statements into intention-revealing helping-methods. We do this by
providing expressive method names with respect to the underlying concept that the
assertions are verifying.

But the more statements and helping methods are needed, usually the less readable
and manageable the test case gets. Even in our simple example, it isn't recognizable
at a glance; the memento-related outcome simply expects the initial state holder to
be equal and not the same as the restored one. At this point, it's advisable to extract
an assertion helper class—all the more if you have to write checks against a certain
domain type in more than one test:

public class MementoAssert {

 public static void assertEqualsButNotSame(Memento expected,
 Memento actual)
 {
 assertTopItemEquals(expected, actual);
 assertItemsEquals(expected, actual);
 assertNotSame("Mementos must not be the same.",

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Readability with Custom Assertions

[130]

 expected,
 actual);
 }

 public static void assertItemsEquals(Memento expected,
 Memento actual)
 {
 Assert.assertEquals("Memento items do not match\n",
 expected.getItems(),
 actual.getItems());
 }

 public static void assertTopItemEquals(Memento expected,
 Memento actual)
 {
 Assert.assertEquals("Memento top item does not match\n",
 expected.getTopItem(),
 actual.getTopItem());
 }
}

MementoAssert exemplarily provides several methods that are tailored for
memento-related verifications. The functionality is actually backed up by JUnit's
Assert type and uses several messages to clarify failure reasons. The next version of
our storage test applies assertEqualsButNotSame(Memento,Memento) referred by
static import and increases the intelligibility of the test's expected outcome:

public class FileSessionStorageITest {

 [...]

 @Test
 public void storage() throws IOException {
 Memento expected = new Memento(ALL_ITEMS, FIRST_ITEM);

 storage.store(expected);
 Memento actual = storage.read();

 assertEqualsButNotSame(expected, actual);
 assertTrue(storedMemento().length > 0);
 }

 [...]
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[131]

All that remains is to watch our assertion helper in action. The following image shows
how trouble due to different top items would be displayed. To facilitate readability
as depicted, Item derivatives, of course, have to supply recognizable toString
implementations. The trace denotes a meaningful reason and ties in with the compared
objects. But note that depending on our helper implementation, this might not be the
only problem. We wouldn't know whether the mementos' item sets also differ. This
is because the first failure shadows the second. But this constraint only has so much
practical impact as the latter gets unveiled soon enough most of the time.

Failure message of MementoAssert

The JUnit assertion approach seems to be intuitive at first sight, which is why we
used it in the previous chapters to get started. Besides, it's still quite popular and the
tools support failure reporting well.

But looking at it more closely, it becomes clear that it's a bit limited and often makes
it difficult to express conditions in a readable manner. Assume that you want to
check a subset of attributes of a specific result type. You either have to write a single
assertion statement for each of the attributes or retreat to a single assertTrue or
assertFalse statement delegating the condition evaluation to a helper method.
While this might be readable, it's hardly reusable for a slightly different set
of attributes. Even if we write assertion helpers as shown earlier, we lack the
advantages of an object-oriented approach. The latter would allow us to inherit
and/or combine common verification functionality.

That's why there are alternative assertion strategies for self-checking tests. One is
provided by the Hamcrest library, and the next section will explain how to use it
with respect to our storage test.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Readability with Custom Assertions

[132]

Creating flexible expressions of intent
with Hamcrest
The following paragraphs will introduce the essentials of how to apply Hamcrest
matchers to test assertion and show you how to write your own predicate extensions.

Using matcher expressions
Hamcrest, [HAMJAV], aims to provide an API to create flexible expressions of intent.
The utility offers nestable predicates called Matchers to do so. These allow writing
complex verification conditions in a way which many developers consider easier to
read than Boolean operator expressions.

Test assertion is supported by the MatcherAssert class. It offers the assertThat(T,
Matcher<? super T>) static helper method. The first argument passed is the object
to verify. The second is an appropriate predicate used to evaluate the first one:

assertThat(item.getTimeStamp(), equalTo(10L));

Matcher implementations provide static factory methods for instantiation (above
IsEqual.equalTo(T)). The intention is to mimic the flow of a natural language. This
is made even more clear by the following statement. It uses Is.is(Matcher<T>)
to decorate the original expression. The Is class is a Matcher subtype referred to as
syntactical sugar. It retains the evaluation results of inner predicates and exists only
for readability aspects:

assertThat(item.getTimeStamp(), is(equalTo(10L)));

Lookups of matcher factory methods are eased by the org.hamcrest.CoreMatchers
helper class that subsumes the out-of-the-box predicates. Of course, there is also a
matcher for negation:

assertThat(item.getTimeStamp(),
 is(not(equalTo(20L))));

MatcherAssert.assertThat(...) exists with two more signatures. First, there is a
variant that takes a string and a Boolean parameter instead of the matcher argument.
Its behavior correlates to Assert.assertTrue(String, boolean). The second
variant takes an additional string compared to the already known one. This can be
used to improve the expressiveness of failure messages:

assertThat("Item timestamp does not match expected values",
 item,
 either(equalTo(10L)).or(equalTo(20L)));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[133]

As a side note, regard how the preceding statement combines two
expressions logically with or.

Soon, we'll also see a variant for and. With this short introduction, let's try to rewrite
the verifications of FileSessionStorageITest using Hamcrest expressions:

public class FileSessionStorageITest {

 [...]

 @Test
 public void storage() throws IOException {
 Memento expected = new Memento(ALL_ITEMS, FIRST_ITEM);

 storage.store(expected);
 Memento actual = storage.read();

 assertThat(actual.getItems(),
 is(equalTo(expected.getItems())));
 assertThat(actual.getTopItem(),
 is(equalTo(expected.getTopItem())));
 assertThat(actual, is(not(sameInstance(expected))));
 assertThat("Memento has not been written to disk.",
 storedMemento().length > 0);
 }

 [...]
}

Due to the simple nature of the example in this case, the advantages are moderate,
but it should be sufficient to get an idea of the concept. The next subsection will
demonstrate how to combine matchers in a bit more complex expression. As
mentioned previously, the assertThat variant, which checks against a Boolean
value, does not go without reason. Hence, the string parameter, when verifying the
memento, actually gets written to the disk.

As already mentioned, the library comes with a set of useful matcher
implementations. The most important ones are listed in the Tour of common matchers
section of the library's online documentation. But for domain-specific problems, you
can write your own extensions.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Readability with Custom Assertions

[134]

Writing custom matchers
The common base class for self-made matchers is TypeSaveMatcher<T>. It handles
null checks and type safety. The generic parameter type T refers to the domain type
the predicate is written for. In terms of our example, the MementoMatcher in the code
following this information box shows an appropriate extension:

Note how the factory method equalTo(Memento) gets annotated with
@Factory, which is meant for tool support.

public class MementoMatcher extends TypeSafeMatcher<Memento> {

 private Memento expected;

 @Factory
 public static Matcher<Memento> equalTo(Memento expected) {
 return new MementoMatcher(expected);
 }

 @Override
 protected boolean matchesSafely(Memento actual) {
 return actual.getItems().equals(expected.getItems())
 && actual.getTopItem().equals(expected.getTopItem());
 }

 @Override
 public void describeTo(Description description) {
 String pattern = "\n topItem: %s\n items: %s";
 description.appendText(format(expected, pattern));
 }

 @Override
 protected void describeMismatchSafely(Memento actual,
 Description description)
 {
 String pattern = "\n was:\n topItem: %s\n items: %s";
 description.appendText(format(actual, pattern));
 }

 private MementoMatcher(Memento expected) {
 this.expected = expected;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[135]

 private static String format(Memento memento,
 String pattern)
 {
 return String.format(pattern,
 memento.getTopItem(),
 memento.getItems());
 }
}

The factual evaluation takes place in the matchesSafely method and checks
memento attributes of both the expected and actual instances for equality. The
given actual argument is the dispatched parameter of the assertThat statement
of MatcherAssert. The describeTo and describeMismatchSafely methods are
available to equip failure messages with a suitable breakdown of the expected
and actual values. Different than the helper of the previous section, this time, all
attributes are listed. The next excerpt rewrites the storage test, this time backed
by the custom matcher. See how we are able to combine existing matchers with the
new one:

public class FileSessionStorageITest {

 [...]

 @Test
 public void storage() throws IOException {
 Memento expected = new Memento(ALL_ITEMS, FIRST_ITEM);

 storage.store(expected);
 Memento actual = storage.read();

 assertThat("Memento has not been written to disk.",
 storedMemento().length > 0);
 assertThat(actual,
 is(both(
 equalTo(expected))
 .and(not(
 sameInstance(expected)))));
 }

 [...]
}

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Readability with Custom Assertions

[136]

Of course, it's also possible to write a matcher that checks equalToButNotSame
in a single statement. But on one hand, we wanted to underline the combinability
of custom and pre-built predicates, and on the other hand, this constitutes a good
exercise for you to do it by yourself. Furthermore, please note the preceding example
has been chosen to explain how to build up a matcher from the bottom. But there is
also an easier way to achieve an equalTo functionality with respect to our Memento
type. To do so, you can use the composition capability of the AllOf core matcher
and the HasPropertyWithValue matcher provided by the org.hamcrest.beans
package, as shown in the next snippet:

public static Matcher<Memento> equalTo(Memento expected) {
 return allOf(
 hasProperty("items",
 CoreMatchers.equalTo(expected.getItems())),
 hasProperty("topItem",
 CoreMatchers.equalTo(expected.getTopItem())));
}

Now, let's take a look at the following screenshot, which shows how a failing test
result would look. Read through the detailed message. Although an assertion
error gets raised by the first mismatch, this time, you can recognize all potential
matcher-related problems at once. Nevertheless, if there are many attributes, the
complete listing might tend to be a bit confusing because one can easily miss the
woods for the trees.

Failure message of MementoMatcher

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[137]

It's a little unfortunate that JUnit expands the API of its Assert class
to provide a set of assertThat(…) methods. These methods actually
duplicate the API provided by MatcherAssert. In fact, the implementation
of those methods delegates to the respective methods of this type.
Although this might look like a minor issue, I think it is worth a mention.
Due to this approach, JUnit is firmly tied to the Hamcrest library. This
dependency leads to problems every now and then; in particular, when
used with other libraries, which do even worse by incorporating their own
copy of a downgraded Hamcrest version.
But for the sake of completeness, it must be said that the JUnit developers
are aware of these problems and intend to get independent from Hamcrest
in the future.

Unit test assertions à la Hamcrest are not without competition. The library's
verification statements are sometimes perceived as too verbose, and finding the
correct factories while creating expressions can be a bit of a hurdle without special
tool support. So, if you happen to be new to the library, you may wonder which
expression to use and typing may feel a little uncomfortable. Because of this, let's
have a look how AssertJ addresses the task of verification.

Writing fluently readable assertions with
AssertJ
The last section of this chapter will explain the fundamentals of AssertJ and explain
how to improve verification readability with custom extensions.

Employing assertion chains
In Chapter 4, Testing Exceptional Flow, one of the examples uses three assertXXX
statements to check whether:

•	 An expected exception is not null
•	 It's an instance of IllegalArgumentException
•	 It provides a specific error message

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Readability with Custom Assertions

[138]

The passage looks similar to the following snippet:

Throwable actual = ...

assertNotNull(actual);
assertTrue(actual instanceof IllegalArgumentException);
assertEquals(EXPECTED_ERROR_MESSAGE, actual.getMessage());

Indeed, it takes a second or two to grasp the verification conditions. This is because
there is a lot of redundant clutter: the relevant attributes of the Throwable type
are checked one by one, always repeating the "assert" prefix and dispatching the
actual parameter to the assertion statements. AssertJ, [ASSERJ], strives to improve
this by providing fluent assertions for Java. The intention behind the fluent interface
API is to supply an easy-to-read, expressive programming style that reduces
boilerplate and simplifies typing. So, this is how this approach can be used to
refactor the foregoing code:

import static org.assertj.core.api.Assertions.assertThat;

Similar to the other approaches, this library provides a utility class that offers a set
of static helper methods. Large sections of them are named assertThat and serve
as overloaded factories, all returning extensions of AbstractAssert. The returned
derivative depends on the particular type of the given argument and defines the
validation possibilities available for the latter. This is the starting point for the
so-called statement chaining.

Throwable actual = ...

assertThat(actual)
 .isInstanceOf(IllegalArgumentException.class)
 .hasMessage(EXPECTED_ERROR_MESSAGE);

The example returns an instance of ThrowableAssert, thus encapsulating the actual
Throwable argument to check. Each verification method, in turn, gives back this very
instance to enable the chaining mechanism.

Note that we've omitted the null check here. This is because
it's included as an explicit check by all verification methods
ensuring a clear failure message.

While readability is, to some extent, in the eye of the beholder, at any rate, AssertJ
assertions are very compact. See how the various verification aspects relevant for the
specific concept under test are added fluently. This makes typing very efficient since
the IDE's content assist can display a list of the available possibilities for a given
value type automatically.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[139]

Do you want to provide expressive failure messages to the afterworld? One
possibility is to use describedAs as the first link in the chain to comment the
whole block:

String description
 = "Expected exception does not match specification.";

Throwable actual = ...

assertThat(actual)
 .describedAs(description)
 .hasMessage(EXPECTED_ERROR_MESSAGE)
 .isInstanceOf(NullPointerException.class);

The snippet expects NullPointerException but assumes that
IllegalArgumentException is thrown at runtime. The failing test run
would produce the message shown by the following screenshot:

Failure message of ThrowableAssert

Perhaps you want your message to be more nuanced. In this case, you may add a
describedAs statement before each verification method call:

Throwable actual = ...

assertThat(actual)

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Readability with Custom Assertions

[140]

 .describedAs("Message does not match specification.")
 .hasMessage(EXPECTED_ERROR_MESSAGE)
 .describedAs("Exception type does not match specification.")
 .isInstanceOf(NullPointerException.class);

There are many more AssertJ capabilities to explore, especially the versatile assertion
possibilities of collections, which are worth mentioning.

But to keep this chapter in scope, please refer to the utility's online
documentation for detailed information, [ASSERJ].

Instead, we continue by rewriting our storage test once again:

public class FileSessionStorageITest {

 [...]

 @Test
 public void storage() throws IOException {
 Memento expected = new Memento(ALL_ITEMS, FIRST_ITEM);

 storage.store(expected);
 Memento actual = storage.read();

 assertThat(actual.getItems())
 .isEqualTo(expected.getItems());
 assertThat(actual.getTopItem())
 .isEqualTo(expected.getTopItem());
 assertThat(actual).isNotSameAs(expected);
 assertThat(storedMemento()).isNotEmpty();
 }

 [...]
}

Here, too, the advantages seem to be moderate at first glance. But looking
at the storage check, the readability improves quite a bit due to the
AbstractByteArrayAssert type. The assertion can be read like a natural language,
and the meaning is clear at once. There is no need for our in-brain parser to evaluate
any low-level Boolean expressions.

Well, before bringing this chapter to an end, we still have to explain how to write
and apply custom assert types with AssertJ.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[141]

Creating your own asserts
Custom assertion helpers extend AbstractAssert, as shown in the next code
snippet. The type's first generic parameter is the assert type itself. This is needed
for the fluent chaining style. The second one defines the type based on which
the assertion operates. MementoAssert overrides isEqualTo by delegating to
two additional exemplary verification methods. These could be used in chaining
expressions for partial equality checks. Because of this, they return the assert instance
itself. The code snippet following this information box shows this:

Note how calling isNotNull() ensures that the instance of Memento,
which we want to check, can never be null.

public class MementoAssert
 extends AbstractAssert<MementoAssert, Memento>
{

 private static final String ITEM_PATTERN
 = "\nExpected items to be\n <%s>,\nbut were\n <%s>.";
 private static final String TOP_ITEM_PATTERN
 = "\nExpected top item to be\n <%s>,\nbut was\n <%s>.";

 public static MementoAssert assertThat(Memento actual) {
 return new MementoAssert(actual);
 }

 public MementoAssert(Memento actual) {
 super(actual, MementoAssert.class);
 }

 @Override
 public MementoAssert isEqualTo(Object expected) {
 hasEqualItems((Memento)expected);
 hasEqualTopItem((Memento)expected);
 return this;
 }

 public MementoAssert hasEqualItems(Memento expected) {
 isNotNull();
 if(!actual.getItems().equals(expected.getItems())) {
 failWithMessage(ITEM_PATTERN,
 expected.getItems(),
 actual.getItems());

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Readability with Custom Assertions

[142]

 }
 return this;
 }

 public MementoAssert hasEqualTopItem(Memento expected) {
 isNotNull();
 if(!actual.getTopItem().equals(expected.getTopItem())) {
 failWithMessage(TOP_ITEM_PATTERN,
 expected.getTopItem(),
 actual.getTopItem());
 }
 return this;
 }
}

Note the failWithMessage call, which does the failure reporting. The given
arguments are dispatched to String.format and, thereby, get incorporated
into the assertion error's message. MementoAssert is intended to be created
by its assertThat(Memento) factory method. Since it inherits the available base
checks, the subclass can be used for more complex checks out of the box (see the
following snippet):

assertThat(actual)
 .isNotSameAs(expected)
 .hasEqualItems(expected);

Last but not least, here comes the final version of FileSessionStorageITest, which
uses MementoAssert for the equality check:

public class FileSessionStorageITest {

 [...]

 @Test
 public void storage() throws IOException {
 Memento expected = new Memento(ALL_ITEMS, FIRST_ITEM);

 storage.store(expected);
 Memento actual = storage.read();

 assertThat(storedMemento()).isNotEmpty();
 assertThat(actual)
 .isEqualTo(expected)
 .isNotSameAs(expected);
 }

 [...]
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[143]

The following screenshot shows how non-equal top-item instances leads to a failure
and how this problem gets displayed:

Failure message of AssertJ-based MementoAssert

A minor risk with the method chaining approach exists when writing a line of
code, such as assertThat(actual);, meaning without any assertion calls. It
would compile, but it wouldn't do anything useful. If actual is a Boolean object, a
developer could assume, by mistake, that the code asserting the object is equal to
true. Following the TDD practice of always starting with a failing test eliminates this
risk, though, [UTAS14].

Another problem with the fluent API approach is that single-line chained statements
can be more difficult to debug. That is because debuggers are not able to set different
breakpoints within a line. Likewise, it can be unclear which of the method calls may
have caused an exception or failure.

But these issues can be overcome by breaking chained statements into multiple lines,
as shown in the foregoing examples. This way, the user can set breakpoints within
the chain and easily step through the code line by line.

As usual, after going through the references, we close the chapter with a summary of
what we've have learned:

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Readability with Custom Assertions

[144]

Summary
In this chapter, you were given an overview of the capabilities and limitations of the
various JUnit test verification techniques. More precisely, you were introduced to the
built-in mechanism, Hamcrest matchers, and AssertJ asserts. You learned about the
difficulties involved in writing concise verifications to reveal the expected outcome
of a test clearly. However, we experienced how domain-specific assertions can help
to improve readability and reduce boilerplate at the same time.

In the upcoming, final chapter, we will wrap up the example application and
conclude the book with a short introduction to continuous integration. The latter can
be seen as the perfect JUnit testing complement to maintain short feedback cycles
and provide quality-related reports for your whole team.

www.it-ebooks.info

http://www.it-ebooks.info/

[145]

Running Tests Automatically
within a CI Build

This last chapter will conclude the sample application and consider important
test-related architectural aspects with respect to modularization. You'll learn how
continuous integration superbly supplements the test first approach and increases
the artifact delivery rate. For practice, we'll set up a timeline CI build based on
Maven and finish with the incorporation of coverage reports. In this chapter, we will
cover the following topics:

•	 Wrapping up the sample application
•	 Setting up an automated build
•	 Integrating code coverage reports

Wrapping up the sample application
In this section, we'll review some weak design spots of the example application and
talk about the testing-related effects of higher-level concepts, such as modularization.

Refining the architecture
"To finish first you must first finish."

 – Rick Mears

www.it-ebooks.info

http://www.it-ebooks.info/

Running Tests Automatically within a CI Build

[146]

Throughout the previous chapters, you received an impression of how architectural
fine-tuning goes hand in hand with the test first approach. You've experienced
that a safety net of well-written tests prevents collateral damage on changes even
if more substantial alterations due to the lessons learned in the course of system
development should be necessary.

As a consequence, justified changes are less risky to achieve and, chances are,
they get incorporated properly and consistently. This, in turn, promotes a healthy
structure, freed of dull workarounds that bite back at any given opportunity.
Obviously, software implemented that way is easier to maintain and faster to evolve.
Overall, it improves the odds of meeting reasonable goals in time and within budget.

Refined timeline class diagram

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[147]

As a matter of fact, writing tests first often reveals design flaws before they leave
the developer's custody. Pointed corner case scenarios can very well clarify a
component's insufficiency due to inappropriate interface definitions or the like.
In this sense, let's fastforward our sample and see how our coarse-grained class
structure of the beginning unfolds over time (see the preceding image).

The most evident changes introduce generic type parameters to a lot of the timeline
classes. This ensures implicitly the use of collaborators with matching Item types.
Admittedly, this is less an insight dawning over time and was rather omitted in the
previous chapters with the intent to provide stripped-down-to-essence listings. The
type U, by the way, represents a not-otherwise-specified container component of an
assumed widget toolkit. This is helpful to bridge to actual GUI implementations.

More related to the topic, the conversion of the Item interface to an abstract class
may be based on experiences we've had with the initial strategy. Having only a
timeStamp attribute is critical since there can be different items stamped with the
same value. Tests verifying the behavior of scenarios with identical stamps uncover
the subtleties. For example, fetching items page-wise requires the possibility
of distinguishing items with the same timestamp value to avoid holes in the
timeline entries.

Sufficient for the sample application, we've decided to go with an additional id attribute
and defined a natural item order supplemented with appropriate equality checks, hence
the Comparable.compareTo(Item), equals, and hashCode implementations. This
relieves subclasses and clients from handling these responsibilities.

Note, however, that this also requires instances of a subtype of Item to
be equal if their id attributes are equal.

Furthermore, the new ItemUiMap class catches the eye. It's a mediator between the
timeline GUI and the model-managing component itself. As the name indicates, its
purpose is to map UiItem entities to their underlying Item elements. This allows us
to access an item's UI abstraction directly. It is useful to check its existence, refresh its
relative timestamp designation, or perform top item calculations.

ItemUiMap.fetch(FetchOperation) delegates to the underlying model component
to load either the next set of older items (FetchOperation.MORE) or the newly
filed ones (FetchOperation.NEW). ItemUiMap.update avails the UiItemFactory
reference to create ItemUi entities for items that have yet to be mapped or even call
ItemUI.update. Overall, ItemUiMap abstracts the common UI functionality, which
is independent from a certain widget toolkit. Consequently, it's possible to test the
component with stubs specifying the generic type parameter U as Object.

www.it-ebooks.info

http://www.it-ebooks.info/

Running Tests Automatically within a CI Build

[148]

Please note that the class diagram places ItemUiMap as a direct
child of the timeline UI. This is a reduction to the essentials since a UI
component itself is a composition based on several collaborators, with
one of them actually referencing the map.

But architecture consists of more than a software's class structure. Because of this,
let's discuss another related aspect with interesting insights from the book's point
of view.

Separating concerns into modules
Recalling the introduction of the sample component's requirements, we remember
that it has to run on different platforms (desktop, browser, and mobile) and allow
the displaying of content from arbitrary sources. In other words, we expect the
timeline component to be reusable by means of pluggable collaborators and from
arbitrary widget toolkits.

Although it might be possible to realize this within a monolithic frame, such a
strategy bears several disadvantages. Having all classes in one place is tempting,
but it blurs the boundaries of higher-level building blocks. That's because it's all
too easy to use a particular implementation detail of one block within another. This
means they, sooner or later, blend in tightly coupled. As a result, changing a certain
functionality most often affects more than a single block.

Additionally, providing all capabilities by a single archive usually increases the
amount of references to third-party libraries. Just think about the various supported
timeline UI platforms. Packaging the UI implementations together would be
unfavorable since their dependencies would be induced transitively to every
application incorporating our components even though most of them might not be
needed at all.

But if they aren't needed, why bother? There is a reason to bother: third-party
code might participate in initialization routines, wasting time and space without
contributing any value. It may even happen that subject to the dependency resolution,
they might conflict with diverging library versions required by other parts of
the software. Using a wrong library version can cause difficult-to-track-down
malfunctions. These kinds of problems are often referred to as dependency hell.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[149]

Hence, it seems reasonable to translate the argumentation of the single responsibility
principle to more coarse-grained abstraction layers. Given that a coherent set of
classes represents a higher-level concept, this bundle of classes should have only
one reason to change with respect to the appropriate abstraction level. Separation
of concerns means that we split up our components into different bundles, each of
which is responsible for the realization of a certain concept. Bundles declare a usage
API together with the necessary dependencies and can be deployed separately.

Distributing our classes into bundles of common responsibilities also reduces
the dependency footprint. This is because an application only integrates those
bundles that are actually needed for its particular purpose. Thus, a Swing UI
wouldn't have any references to SWT. In general separating the functionality of a
program into independent, interchangeable bundles, such that each contains everything
necessary to execute only one aspect of the desired functionality is denoted as modular
programming, [MODPRO].

The following image shows how we can realize the sample requirements with
several reusable bundles. At the top, we see application modules defining the
executables for two of the supported platform environments. They depend on
different widget toolkit-specific modules that supply the appropriate UI abstractions.
But both environments share the same modules for the Git-related Item and
ItemProvider implementations, the timeline core abstractions, and a utility module.
The latter provides domain-unspecific helper classes applicable to all other modules.

With this structure in place, it's possible to extend the supported platforms without
the need to change any of the existing modules. Based on the SWT timeline, for
example, one can easily add another application module that serves as a browser
and/or mobile backend (facilitated by the RAP/Tabris port of SWT, [RAPRWT],
[TABRIS]). This is because a deployable application is an assembly of a reasonable
subset of modules.

www.it-ebooks.info

http://www.it-ebooks.info/

Running Tests Automatically within a CI Build

[150]

Just as well one can provide an ItemProvider module based on REST services that
connects to Twitter. After writing appropriate UI adapters for Swing Timeline, for
example, you're able to integrate tweets regarding your favored hashtag into any
Swing GUI-based application.

Module structure

Whether you're using a high-end modular environment, such as OSGi, Maven
dependency management, or only plain old JARs. Thinking in terms of modules
helps to separate your application into reusable building blocks, each of which
serves a distinct purpose. This clarifies architectural responsibilities and confines
deployment artifacts to the essential needs. In fact, modularity is considered so
important that Project Jigsaw aims at providing it as a new language feature in
Java 9, [JIGSAW].

But before discussing the effects of modules on the testing topic, let's look at
another screenshot, which shows how modular development may look using
one development project per module. As we use Maven throughout the sample
application for dependency management, all modules have their own project object
model file (pom.xml). A more detailed explanation of the POM's purpose follows in
the next section. For brevity, this screenshot only shows Swing-related UI projects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[151]

Project distribution

Noticeable at first glance is the alltests project, which doesn't seem to fit into the
modularity context of this section. But working with modules hampers, a bit, the
execution of all tests or specific subsets in a single launch from within the IDE.
Using suites, as described in Chapter 5, Using Runners for Particular Testing Purposes,
it's possible to specify several test sets with different granularity (unit, integration,
or all) and put them in a test launch helper project. Vital for this approach to work
is that the project has classpath dependencies on all the modules available in the
IDE's workspace.

Next, we recognize the build project, which is responsible for compiling, verifying,
and packaging our modules and/or applications. We'll supply a thorough
description of the particulars in the subsequent section. For all others, we should
be able to identify a match to an element of the previously shown module diagram;
well, with one exception.

www.it-ebooks.info

http://www.it-ebooks.info/

Running Tests Automatically within a CI Build

[152]

The timeline.test.util module serves only testing purposes and is not meant
for application deployment at all. It contains test helper classes, which are useful for
testing tasks of all (or most) of the modules under development. Thus, dependency
declarations to this module are restricted to the test scope. Again, the followup
section will bring more information on dependency and scope declarations. The
following screenshot shows, among others, little helpers we've encountered
throughout the book.

At this point, it's important to note that in a real-world software project, you might
have several test helper modules. This is because test utilities may depend on certain
functionality provided by other modules. Consider the MementoAssert helper from
Chapter 7, Improving Readability with Custom Assertions, for example.

Test helper module

This class might be helpful with higher-level modules too. But to make it available
for reuse, you have to unhinge it from the test source folder of the core timeline
module. Putting it into timeline.test.util isn't a good idea since this would
introduce a circular dependency. A clean solution supplies test helper classes
for a certain module within a separate test utility module on an appropriate
abstraction level.

At the close of the modularity explanations, let's have a look at the following image.
This shows the result of supplementing the module structure shown previously
with an RAP/Tabris executable module. Together with the screenshots of Chapter 1,
Getting Started, showing the Swing, SWT, and Web Client variants, we are now able
to happily declare mission accomplished.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[153]

Timeline as a mobile application

After all the explanations on testing with JUnit, let's round up our workflow by
giving a short introduction to a natural supplemental of test-driven development.

Setting up an automated CI build
JUnit tests are only valuable if they are executed regularly. This section explains
the general purpose of continuous integration builds, which ascertains a high
test execution frequency. Hence, CI constitutes a very good match to the
test first approach.

What is continuous integration?
In Chapter 1, Getting Started, we mentioned the importance of immediate feedback
with respect to unit testing. If we bust some low-level functionality, we want to
know about it as soon as possible. This puts us in a position to detect and correct a
problem as it evolves and avoid expensive quality assurance cycles. Because of this,
it's good practice to run all tests at least once after merging and before checking in
changes into Version Control System (VCS). This reduces the risk of spoiling a
teammate's day.

www.it-ebooks.info

http://www.it-ebooks.info/

Running Tests Automatically within a CI Build

[154]

To give an impression, the following screenshot shows a test run of the complete test
universe of the timeline sample:

AllTestSuite

AllTestSuite includes unit and integration tests and took about 9 seconds to run.
The problem is that on larger software projects, the execution time of this kind of
suite can prolong up to several minutes. This makes running them manually on a
regular basis a no-go. Nevertheless, you should run the unit tests locally as they are
written to be fast!

But how can we achieve fast enough feedback at a reasonable price? An answer
to that question is provided by Continuous Integration (CI). CI is a development
practice where programmers check in their code changes to the shared main line
of a VCS system several times a day. Each check-in gets verified by an automated
build, providing reports and problem notifications. This allows us to detect merging
deficiencies not only early enough, but also concurrently. The latter is important
since, with CI, there is no blocking of the developer. They don't have to wait for the
all test run to be completed successfully before they are allowed to do the actual
check-in (blocking integration).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[155]

In a nutshell, CI supplements testing first with the following advantages:

•	 Detecting overall problems early and avoiding expensive QA circles
•	 Increasing the confidence building on a solid foundation
•	 Abolishing expensive and tense integration tasks
•	 Enabling us to deliver software more rapidly

The last point can be deduced directly from the fact that no more costly integration
steps at the end of a development cycle are needed. Additionally, CI builds usually
include the packaging of operative executables already. But before looking into the
low-level details of a build setup, let's introduce the basic principles and practices of
the approach.

Principles and practices
Fortunately, the benefits listed previously come at moderate costs. On the one hand,
you need a VCS system, and on the other hand, you have to set up and maintain an
automated build, which is usually the first thing to do when starting development
work on a new project. In general, you should meet the following requirements:

•	 Maintaining a single-source code repository
•	 Automating the build
•	 Making your build self-testing
•	 Building every check-in on an integration machine
•	 Keeping the build fast
•	 Testing in a clone of the production environment
•	 Making it easy for anyone to get the latest executable
•	 Enabling everyone to see what's happening, [CITHOU]

Most of the bullet points should be self explanatory by now. But let's spend a few
words on the less conclusive ones. Self-testing means that the build compiles the
application modules and runs the unit tests against them. By running the tests in a
clone of the production environment, the significance of successful completion gets
amplified. In particular, this eliminates the runs on my machine problems. Finally,
packaging the modules into an executable allows the product owner to inspect
the operative application with the latest features at any time. This way, they can
comment on functionality under development at very early stages.

www.it-ebooks.info

http://www.it-ebooks.info/

Running Tests Automatically within a CI Build

[156]

To put CI into practice, developers participate in the following workflow:

•	 Developers check out code into their private workspaces
•	 When done, they check in their changes back to the repository
•	 The CI server monitors the repository and checks out changes when

they occur
•	 The CI server builds the system and runs unit and integration tests
•	 The CI server releases deployable artifacts for testing
•	 The CI server assigns a build label to the version of the code it just built
•	 The CI server informs the team about the successful build
•	 If the build or tests fail, the CI server alerts the team
•	 The team fixes the issue at the earliest opportunity
•	 Continue to continually integrate and test throughout the project, [CITHOU]

There are several variants of this basic set of activities. A quite popular one, for
example, integrates code review steps. This way, changes only get merged into the
main line of development after several team members have signaled their OK.

Note, however, that this also lowers the actual integration
velocity.

Finally, for a successful CI adoption, there are responsibilities each team member has
to accept:

•	 Check in frequently
•	 Don't check in broken code
•	 Don't check in untested code
•	 Don't check in when the build is broken
•	 Don't go home after checking in until the system builds, [CITHOU]

Again, most of the rules should be self explanatory given our initial remarks. You
should avoid anything that weakens the significance of a successful build and take
care to see that the runs stay unbroken. Failed integration impacts your teammates,
which explains the importance of the last point. If you're not able to fix code that
breaks a build immediately, you always have a chance to rewind to a previous
revision and check in a fixed version of your latest changes the next day. With
respect to the fourth rule, this means, of course, you are allowed to check in fixes to
make a build succeed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[157]

Failure notifications are usually done by e-mail but can be transmitted
by other services too. To achieve optimum attention and keep the
motivation high to fix broken builds fast, some teams additionally install
so-called extreme feedback devices. These can be connected lava lamps,
ambient orbs, or the like, within office rooms. Once such devices signal
an alarm, everybody knows immediately that the build is in trouble and
action has to be taken to get it back to normal.

The best way to digest all these preliminaries is to set up a build for our
timeline sample.

Creating your own build
There are many tools that allow us to manage the build, report, and document tasks
of a software under development. Without having preferences for a particular one,
we've decided to go with Maven for this example just because of its widespread use.
As already mentioned, the tool relies on the concept of Project Object Model (POM).
The model content gets defined by pom.xml files located usually in the root folders of
the build-related source code projects.

To begin with, a project's POM contains basic information, such as the project's ID,
version number, and packaging type. The ID comprises a common groupId shared,
for example, by all timeline modules, and artifactId, identifying the individual
modules of a group. The packaging element indicates the module's artifact type,
such as JAR, WAR, EAR, and so on.

To build a compound of many modules, a so-called parent pom.xml is used. This
model content contribution specifies our source code projects to build, declares
common dependencies, and configures specific customizations. The following listing
shows the head section of the sample's parent POM file located in our build project:

<project [...]>
 <modelVersion>4.0.0</modelVersion>

 <groupId>book.twju</groupId>
 <artifactId>build</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>pom</packaging>

 <properties>
 <project.build.sourceEncoding>
 UTF-8

www.it-ebooks.info

http://www.it-ebooks.info/

Running Tests Automatically within a CI Build

[158]

 </project.build.sourceEncoding>
 </properties>

 <modules>
 <module>../timeline</module>
 <module>../timeline.swing</module>
 <module>../timeline.swing.application</module>
 <module>../timeline.provider</module>
 <module>../timeline.test.util</module>
 <module>../timeline.util</module>
 [...]
 </modules>

 [...]

</project [...]>

As you can see, the terms module and (source code) project are used synonymously
within this topic. Unfortunately, there is also the notion of the overall software
project the build is related to. This can be a bit confusing at times but, hopefully,
emerges from the context.

We continue with an excerpt of pom.xml residing in the timeline project, which
demonstrates how modules refer back to their parent. By the way, the JAR packaging
type is the default value and can be safely omitted:

<project [...]>
 <modelVersion>4.0.0</modelVersion>
 <artifactId>timeline</artifactId>
 <packaging>jar</packaging>

 <parent>
 <groupId>book.twju</groupId>
 <artifactId>build</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <relativePath>../build/pom.xml</relativePath>
 </parent>

 [...]

</project>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[159]

Each POM can declare dependencies to third-party libraries needed for compilation
and/or execution. The tool's runtime resolves them by loading the appropriate
artifacts from a central repository server by default. Then, they get stored in a local
repository on the disk for subsequent requests. Of course, which remote repositories
to query is customizable.

In addition, the local repository can be populated with artifacts created by local
builds. In our example, this would be the timeline module archives. The next snippet
illustrates how dependency declarations look:

<dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 <scope>test</scope>
 </dependency>
</dependencies>

Please note the scope tag. Without going into detail, running a Maven build
requires us to specify a certain goal to be met. Executing a POM with the goal test,
for example, means to go through the validate, compile, and test phase of the tool's
processing life cycle. The scope tag value test means that a referenced library gets
added to the classpath during test case compilations and test executions only.
Consequently, these dependencies will not be available in the course of the compile
phase. In general, scope limits the transitivity of a dependency and is biased with
the classpath used for various build tasks.

Note that it's possible to declare dependencies needed by more than
one module at the parent POM level.

Build customizations are done by adding or reconfiguring so-called plugins. As
the name indicates, they make it possible to extend the available capabilities by
embedding specific artifacts. The following excerpt of the parent pom.xml configures,
for example, the Java compiler to allow JDK 8 sources:

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.3</version>
 <configuration>

www.it-ebooks.info

http://www.it-ebooks.info/

Running Tests Automatically within a CI Build

[160]

 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 </plugins>
</build>

Once we're done with our build definition, the last thing to do is launch it. The next
command-line instruction shows, for example, how to invoke the Maven executable
mvn with the goals clean and test. Hereby, we assume the working directory points
to the location of the parent pom.xml. The clean life cycle removes all files generated
by the previous build and gets executed first. Afterwards, the default life cycle
compiles the modules from scratch and runs them against the available tests. Test
result reports are written to the console:

mvn clean test

With the Maven build in place, we've set up the CI requirement of a self-checking,
automated build. But where do we get our integration machine from, and how do
we register our build definition with it? Luckily, there are a lot of offers that facilitate
this task. If you tend to host an integration machine by yourself, you may resort to
one of the integration server applications, such as Jenkins CI, [JENKIN], TeamCity,
[TEACIT], and so on.

But the cool kids nowadays employ Cloud CI services that use integration hooks into
source code repository providers, such as GitHub, out of the box. This makes it only
a minor configuration effort to get your integration machine up and running as soon
as your automated build configuration works. Examples of such service vendors are
Travis, [TRAVIS], Codeship, [CODSHI], and Cloudbees, [CLOBEE].

One of the nice things about using GitHub combined with Travis or Codeship is
that usage is free for public projects. Hence, we host the sources of our sample
application at GitHub (https://github.com/fappel/Testing-with-JUnit)
and let the automated builds be performed by Travis. All we need to do is log in
at Travis with our GitHub account, activate our source code repository to build,
and add a configuration file (.travis.yml) to the root directory of our source
code repository. This file specifies which JVM to use, sets the build command-line
instructions, defines after-success steps, and the like. The following snippet gives
an impression of how such a configuration may look:

language: java

jdk:

 - oraclejdk8

branches:

www.it-ebooks.info

https://github.com/fappel/Testing-with-JUnit
http://www.it-ebooks.info/

Chapter 8

[161]

 only:

 - master

script: mvn -f sample.application/build/pom.xml clean verify

Believe it or not, that's it, and from now on, every new commit will trigger a build
execution (for configuration details, refer to the Travis online documentation).

The following screenshot shows the correlation between the sample application's
source code repository and the tied integration build service. The vertical green bar
indicates that the build of the latest commit has finished successfully. In the event of
a failure, the bar would be drawn in red.

CI setup

With the CI build working, it's possible to add various quality measurement reports.
Representatively, we'll have a look at how this can be done with code coverage.

www.it-ebooks.info

http://www.it-ebooks.info/

Running Tests Automatically within a CI Build

[162]

Integrating code coverage reports
The last section will revisit and deepen the knowledge about the assets and
drawbacks of code coverage. It'll conclude this book by showing you how to add
coverage analysis to your CI build.

Enlarging on code coverage
Recall Chapter 2, Writing Well-structured Tests, and we know code coverage reports
can be a useful tool to detect gaps of untested passages in our production classes.
However, full coverage does not guarantee complete or even reasonable behavior
verification. To substantiate these statements a bit more, let's take a look at a class
highlighted with full coverage:

Full coverage

The preceding image shows the alleged pleasant case if full instruction and branch
coverage has been reached. But it can't be stressed enough that full coverage alone
testifies nothing about the quality of the underlying assertions!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[163]

The only reasonable conclusion to draw is that there are obviously no uncovered
spots. In this sense, adding a single statement to a covered path of execution, for
example, can alter the overall outcome of a test's exercise phase and still pass its
existing verifications.

If we, however, get a result such as in the following screenshot, we are in trouble for
sure. As you can see, the tests do not cover several branches and miss an instruction
entirely. This means there is still work to do. The obvious solution seems to be to add
a few tests to close these gaps.

"If a part of your test suite is weak in a way that coverage can detect, it's likely also
weak in a way coverage can't detect."

 – Brian Marik

Considering the preceding quote and the reflections, coverage holes may very well
be an indication of a more fundamental problem. The difficulty with code coverage
is that it cannot detect missing code that ought to be there but isn't. Marik describes
such faults of omission as code not complex enough for the problem, [MARI]. In other
words, coverage can't tell us about missing code on boundary conditions and corner
cases that we haven't anticipated. Because of this, it's advisable to reconsider gap-
affected scenarios thoroughly:

Missed instructions and branches

www.it-ebooks.info

http://www.it-ebooks.info/

Running Tests Automatically within a CI Build

[164]

Before showing you how to integrate coverage reporting into our Maven build,
we once again advice you that full coverage is not always achievable or can be
unreasonably expensive to achieve. So, be careful not to overdo things.

Automating reporting
Coverage report data is collected at the time of execution of a software. To enable
reporting, the software's classes need to be instrumented by a special tool. In our
case, we use Jacoco, [JACOCO], as it supports Java 8. Maven integration is provided
by an additional plugin, which takes care to instrument classes before test runs
and stores the reported data to the disk. The following excerpt of the parent pom.
xml shows the base inclusion. The full configuration details can be inspected in the
sample's source code repository:

<plugin>
 <groupId>org.jacoco</groupId>
 <artifactId>jacoco-maven-plugin</artifactId>
 <version>0.7.4.201502262128</version>
 <executions>
 [...]
 /executions>
</plugin>

While our build is capable of producing reports, the last thing to do is to visualize
and make them available for team members and other interested parties. Luckily,
there are online coverage reporting services available. One of them is Coveralls,
[COVALL], that integrates seamlessly with GitHub and that is free for public
repositories. All we have to do is add a Coverall Maven plugin reference, [TRAUTO],
to our parent POM and introduce an after-success step to our .travis.yml
configuration file. The following snippet shows how to trigger coverage data
recording and report uploading to Coveralls from Travis:

after_success:
 - mvn -f sample.application/build/pom.xml test \
 jacoco:report coveralls:report

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[165]

The following screenshot shows an excerpt of the coverage history and the statistics
of the latest build of our sample application at the time of writing this:

Coverage overview

www.it-ebooks.info

http://www.it-ebooks.info/

Running Tests Automatically within a CI Build

[166]

Of course, it is possible to drill down to the hotspots and see in highlighted code
viewers what branches and instructions have been missed (see the following
screenshot). The private Iterables constructor is an example of a coverage gap that
would be unreasonably expensive to close. Thus, we won't get any sleepless nights
about it.

File drill down

Naturally, it's possible to configure threshold values and notifications to, for example,
alarm team members immediately about falling below an expected minimum
coverage. This alarm system is a valuable contribution to the early feedback system
we maintain by writing our tests first and using continuous integration.

Now, before concluding the book, and after going through the references used, let's
recap for a last time what you learned in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[167]

Summary
In the last chapter, we concluded the example application by refining the timeline's
class design. You learned about important test-related architectural aspects of
modularization and reusable test helper classes. Furthermore, you got to know that
continuous integration supplements the test first approach very well by automatically
running tests after each check-in of changes to the VCS. Applying these insights,
you experienced what it takes to set up a CI build for the book's sample. Last but not
least, you deepened your knowledge on code coverage and incorporated a reporting
tool into your CI system.

Arriving at the end of this book, you gained a good perception of the conceptual
requirements, a wide-ranging arsenal of solution approaches, and the premises to
master the daily-work challenges of testing with JUnit. But remember that skill comes
with practice and life's not easy at the bottom; in particular, when starting within a
legacy system at hand, which lacks any tests until the time you start work on it.

In that case, begin with a CI build and a few islands of tests for components written
to solve your actual development tasks. Ensure that these new components are
tested under proper isolation from third-party vendor libraries and your old code if
it's expensive to use. Continue to grow the islands with every new requirement and
carefully rework legacy code that comes in the way. But avoid touching running
passages for no reason.

For more details on how to deal with legacy code, you can refer to
Working Effectively with Legacy Code by Michael C. Feathers, [FEAT05].

Continuously following this practice over time, the islands will grow, mass together,
and finally form prospering continents providing large areas of well-tested and
properly written code. So be patient—it won't come overnight but will definitely be
worth the effort.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[169]

References

Chapter 1
•	 [BECK03]: Beck. Test-Driven Development: By Example. Pearson Education,

Inc. 2003.
•	 [FOWL06]: Fowler. Xunit. http://www.martinfowler.com/bliki/Xunit.

html. 2006.
•	 [FUTU99]: Futurama. Space Pilot 3000. 1999.
•	 [HUTH03]: Hunt and Thomas. The Pragmatic Programmer. LLC. 2004.
•	 [MESZ07]: Meszaros. xUnit Test Patterns: Refactoring Test Code. Pearson

Education, Inc. 2007.
•	 [TECDEP]: Wikipedia. Technical debt. https://en.wikipedia.org/wiki/

Technical_debt.

Chapter 2
•	 [BECK03]: Beck. Test-Driven Development: By Example. Pearson Education,

Inc. 2003.
•	 [FOWL2H]: Fowler. http://martinfowler.com/bliki/TwoHardThings.

html.
•	 [FOWL12]: Fowler. http://martinfowler.com/bliki/TestCoverage.

html. 2012.
•	 [FOWL13]: Fowler. http://martinfowler.com/bliki/GivenWhenThen.

html. 2013.
•	 [HUTH03]: Hunt and Thomas. The Pragmatic Programmer. LLC. 2004.

www.it-ebooks.info

http://www.martinfowler.com/bliki/Xunit.html
http://www.martinfowler.com/bliki/Xunit.html
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
http://martinfowler.com/bliki/TwoHardThings.html
http://martinfowler.com/bliki/TwoHardThings.html
http://martinfowler.com/bliki/TestCoverage.html
http://martinfowler.com/bliki/TestCoverage.html
http://martinfowler.com/bliki/GivenWhenThen.html
http://martinfowler.com/bliki/GivenWhenThen.html
http://www.it-ebooks.info/

References

[170]

•	 [JBEHAV]: JBehave. http://jbehave.org/.
•	 [KACZ13]: Kaczanowski. Practical Unit Testing with JUnit and Mockito. 2013.
•	 [MARI]: Marick. http://www.exampler.com/testing-com/writings/

coverage.pdf.
•	 [MART09]: Martin. Clean Code. Pearson Education, Inc. 2008.
•	 [MESZ07]: Meszaros. xUnit Test Patterns: Refactoring Test Code. Pearson

Education, Inc. 2007.
•	 [NORT06]: North. Introducing BDD. http://dannorth.net/introducing-

bdd/. 2006.
•	 [OSHE05]: Osherove. http://osherove.com/blog/2005/4/3/naming-

standards-for-unit-tests.html. 2005.
•	 [SHOR04]: Shore. http://www.martinfowler.com/ieeeSoftware/

failFast.pdf. 2004.

Chapter 3
•	 [APPE14]: Appel. Clean SWT Listener Notifications with SWTEventHelper.

http://www.codeaffine.com/2014/03/10/clean-swt-listener-
notifcations-with-swteventhelper/. 2014.

•	 [BOLD11]: Boldischar. Mocking Frameworks Considered Harmful,
http://www.disgruntledrats.com/?p=620. 2011.

•	 [EASYMO]: EasyMock. http://easymock.org/.
•	 [FRPR10]: Freeman and Pryce. Growing Object-Oriented Software, Guided by

Tests. Addison-Wesley. 2010.
•	 [MIVIPR]: Wikipedia. Minimal viable product. https://en.wikipedia.org/

wiki/Minimum_viable_product.
•	 [FOWL04]: Fowler. Inversion of Control Containers and the Dependency Injection

pattern. http://martinfowler.com/articles/injection.html. 2004.
•	 [FOWL05]: Fowler. FluentInterface. http://martinfowler.com/bliki/

FluentInterface.html. 2005.
•	 [GOUL12]: Goulding. Test Double Terminology. http://jakegoulding.com/

blog/2012/01/12/test-double-terminology/. 2012.
•	 [JMOCK] : jMock. http://www.jmock.org/.
•	 [KACZ13]: Kaczanowski. Practical Unit Testing with JUnit and Mockito. 2013.
•	 [MART02]: Martin. Agile Software Development: Principles, Patterns, and

Practices. Prentice Hall. 2002.

www.it-ebooks.info

http://jbehave.org/
http://www.exampler.com/testing-com/writings/coverage.pdf
http://www.exampler.com/testing-com/writings/coverage.pdf
http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/
http://osherove.com/blog/2005/4/3/naming-standards-for-unit-tests.html
http://osherove.com/blog/2005/4/3/naming-standards-for-unit-tests.html
http://www.martinfowler.com/ieeeSoftware/failFast.pdf
http://www.martinfowler.com/ieeeSoftware/failFast.pdf
http://www.codeaffine.com/2014/03/10/clean-swt-listener-notifcations-with-swteventhelper/
http://www.codeaffine.com/2014/03/10/clean-swt-listener-notifcations-with-swteventhelper/
http://www.disgruntledrats.com/?p=620
http://easymock.org/
https://en.wikipedia.org/wiki/Minimum_viable_product
https://en.wikipedia.org/wiki/Minimum_viable_product
http://martinfowler.com/articles/injection.html
http://martinfowler.com/bliki/FluentInterface.html
http://martinfowler.com/bliki/FluentInterface.html
http://jakegoulding.com/blog/2012/01/12/test-double-terminology/
http://jakegoulding.com/blog/2012/01/12/test-double-terminology/
http://www.jmock.org/
http://www.it-ebooks.info/

Appendix

[171]

•	 [MART14]: Martin. When to Mock. http://blog.8thlight.com/uncle-
bob/2014/05/10/WhenToMock.html. 2014.

•	 [MESZ07]: Meszaros. xUnit Test Patterns: Refactoring Test Code. Pearson
Education, Inc. 2007.

•	 [SOELPR]: Wikipedia. Somebody else's problem. https://en.wikipedia.
org/wiki/Somebody_else%27s_problem.

•	 [MOCKIT]: Mockito. http://mockito.org/.
•	 [PRIM13]: Primat. GitHub's 10,000 most Popular Java Projects – Here are The

Top Libraries They Use, http://blog.takipi.com/githubs-10000-most-
popular-java-projects-here-are-the-top-libraries-they-use/. 2013.

•	 [SWT]: SWT: The Standard Widget Toolkit, https://www.eclipse.org/swt/.
•	 [TRAWRE]: Train Wrek. http://c2.com/cgi/wiki?TrainWreck. 2014.
•	 [WIKILD]: Wikipedia. Law of Demeter. http://en.wikipedia.org/wiki/

Law_of_Demeter.

Chapter 4
•	 [FISBOW]: Fishbowl. http://stefanbirkner.github.io/fishbowl/

index.html.
•	 [HEVEEC]: Hejlsberg, Venners, and Eckel. The Trouble with Checked

Exceptions. http://www.artima.com/intv/handcuffs.html. 2003.
•	 [SHOR04]: Shore. Fail Fast. http://www.martinfowler.com/

ieeeSoftware/failFast.pdf. 2004.

Chapter 5
•	 [BURST] : Burst. https://github.com/square/burst.
•	 [CPSUIT]: ClasspathSuite. https://github.com/takari/takari-cpsuite.
•	 [JUNITP]: JUnitParams. http://pragmatists.github.io/JUnitParams.
•	 [OSGIAL]: OSGi. http://www.osgi.org/Technology/HomePage.
•	 [OSGITE]: Automated OSGi Test Suite. https://github.com/rherrmann/

osgi-testsuite.

www.it-ebooks.info

http://blog.8thlight.com/uncle-bob/2014/05/10/WhenToMock.html
http://blog.8thlight.com/uncle-bob/2014/05/10/WhenToMock.html
https://en.wikipedia.org/wiki/Somebody_else%27s_problem
https://en.wikipedia.org/wiki/Somebody_else%27s_problem
http://mockito.org/
http://blog.takipi.com/githubs-10000-most-popular-java-projects-here-are-the-top-libraries-they-use/
http://blog.takipi.com/githubs-10000-most-popular-java-projects-here-are-the-top-libraries-they-use/
https://www.eclipse.org/swt/
http://c2.com/cgi/wiki?TrainWreck
http://en.wikipedia.org/wiki/Law_of_Demeter
http://en.wikipedia.org/wiki/Law_of_Demeter
http://stefanbirkner.github.io/fishbowl/index.html
http://stefanbirkner.github.io/fishbowl/index.html
http://www.artima.com/intv/handcuffs.html
http://www.martinfowler.com/ieeeSoftware/failFast.pdf
http://www.martinfowler.com/ieeeSoftware/failFast.pdf
https://github.com/square/burst
https://github.com/takari/takari-cpsuite
http://pragmatists.github.io/JUnitParams
http://www.osgi.org/Technology/HomePage
https://github.com/rherrmann/osgi-testsuite
https://github.com/rherrmann/osgi-testsuite
http://www.it-ebooks.info/

References

[172]

Chapter 6
•	 [ASPECT]: AspectJ. https://eclipse.org/aspectj/.
•	 [FOWL11]: Fowler. Eradicating Non-Determinism in Tests. http://

martinfowler.com/articles/nonDeterminism.html#Quarantine. 2011.
•	 [HERR13]: Herrman. A JUnit Rule to Conditionally Ignore Tests. http://www.

codeaffine.com/2013/11/18/a-junit-rule-to-conditionally-ignore-
tests/. 2013.

•	 [SYSRUL]: System Rules. http://stefanbirkner.github.io/system-
rules/.

Chapter 7
•	 [ASSJAD]: Class Assert. http://junit.org/javadoc/latest/org/junit/

Assert.html.
•	 [ASSERJ]: AssertJ. http://joel-costigliola.github.io/assertj/.
•	 [GHJV96]: Gamma, Helm, Johnson, and Vlissides. An Introduction to Design

Patterns. Addison-Wesley. 1996.
•	 [HAMJAV]: JavaHamcrest. https://github.com/hamcrest/JavaHamcrest.
•	 [OPECLO]: Open/closed principle. https://en.wikipedia.org/wiki/Open/

closed_principle.
•	 [UTAS14]: Comment by David M. Karr. http://www.codeaffine.

com/2014/09/10/junit-nutshell-unit-test-assertions/.

Chapter 8
•	 [CITHOU]: Continuous Integration. http://www.thoughtworks.com/de/

continuous-integration. ThoughtWorks.
•	 [CLOBEE]: CloudBees. https://www.cloudbees.com/.
•	 [CODSHI]: Codeship. https://codeship.com/.
•	 [COVALL]: Coveralls. https://coveralls.io/.
•	 [FEAT05]: Feathers. Working Effectively with Legacy Code. Pearson Education,

Inc. 2005.
•	 [JENKIN]: Jenkins. https://jenkins-ci.org/.
•	 [JACOCO]: JaCoCo. http://www.eclemma.org/jacoco/.
•	 [JIGSAW]: Jigsaw Quick Start. http://openjdk.java.net/projects/

jigsaw/doc/quickstart.html.

www.it-ebooks.info

https://eclipse.org/aspectj/
http://martinfowler.com/articles/nonDeterminism.html#Quarantine
http://martinfowler.com/articles/nonDeterminism.html#Quarantine
http://www.codeaffine.com/2013/11/18/a-junit-rule-to-conditionally-ignore-tests/
http://www.codeaffine.com/2013/11/18/a-junit-rule-to-conditionally-ignore-tests/
http://www.codeaffine.com/2013/11/18/a-junit-rule-to-conditionally-ignore-tests/
http://stefanbirkner.github.io/system-rules/
http://stefanbirkner.github.io/system-rules/
http://junit.org/javadoc/latest/org/junit/Assert.html
http://junit.org/javadoc/latest/org/junit/Assert.html
http://joel-costigliola.github.io/assertj/
https://github.com/hamcrest/JavaHamcrest
https://en.wikipedia.org/wiki/Open/closed_principle
https://en.wikipedia.org/wiki/Open/closed_principle
http://www.codeaffine.com/2014/09/10/junit-nutshell-unit-test-assertions/
http://www.codeaffine.com/2014/09/10/junit-nutshell-unit-test-assertions/
http://www.thoughtworks.com/de/continuous-integration
http://www.thoughtworks.com/de/continuous-integration
https://www.cloudbees.com/
https://codeship.com/
https://coveralls.io/
https://jenkins-ci.org/
http://www.eclemma.org/jacoco/
http://openjdk.java.net/projects/jigsaw/doc/quickstart.html
http://openjdk.java.net/projects/jigsaw/doc/quickstart.html
http://www.it-ebooks.info/

Appendix

[173]

•	 [MARI] : Marick. How to Misuse Code Coverage. http://www.exampler.com/
testing-com/writings/coverage.pdf.

•	 [MODPRO]: Modular programming. https://en.wikipedia.org/wiki/
Modular_programming.

•	 [RAPRWT]: RAP. http://www.eclipse.org/rap/.
•	 [TABRIS]: Tabris. http://developer.eclipsesource.com/tabris/.
•	 [TEACIT]: TeamCity. https://www.jetbrains.com/teamcity/.
•	 [TRAUTO]: coveralls-maven-plugin. https://github.com/trautonen/

coveralls-maven-plugin.
•	 [TRAVIS]: Travis CI. https://travis-ci.org/.

www.it-ebooks.info

http://www.exampler.com/testing-com/writings/coverage.pdf
http://www.exampler.com/testing-com/writings/coverage.pdf
https://en.wikipedia.org/wiki/Modular_programming
https://en.wikipedia.org/wiki/Modular_programming
http://www.eclipse.org/rap/
http://developer.eclipsesource.com/tabris/
https://www.jetbrains.com/teamcity/
https://github.com/trautonen/coveralls-maven-plugin
https://github.com/trautonen/coveralls-maven-plugin
https://travis-ci.org/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[175]

Index
A
abstract data types (ADT) 65
accessor methods 42
annotated expectations 71, 72
assertions

chains, employing 137-140
own asserts, creating 141-143
writing, with AssertJ 137

AssertJ
URL 8

B
basic stubbing 60-62
behavior

verifying, with mock 56-58
built-in assertion

about 123
assertion helpers, used for improving

readability 129-131
basics 124, 125
file session storage, reviewing 125-127
storage behavior, verifying 128, 129

C
closures

exceptions, capturing with 74, 75
code coverage

enlarging 162-164
reporting, automating 164-166
reports, integrating 162

collaborators, treating
about 76
fail fast 76-78
stubbing, of exceptional behavior 78-81

component
versus data classes 42

component dependencies 42, 43
Continuous Integration (CLI)

about 153-155
automated build, setting up 153
build, creating 157-161
practices 155-157
principles 155-157

create method 26
custom rule, solutions

about 116
system settings, working with 116-118
tests, ignoring conditionally 118-120

D
data classes

versus component 42
dataset tests, writing

about 93
glue code, reducing with

JUnitParams 97-99
parameterized tests, using 93-97
test descriptions, expressiveness increasing

with Burst 99-102
decomposing, requisites

about 40
component dependencies 42, 43
separating concerns 40, 41

depended-on components (DOCs)
responsibilities, delegating to 44, 45

dummy 49

www.it-ebooks.info

http://www.it-ebooks.info/

[176]

E
Eclipse

URL 7
example app 10-12
exceptions

capturing, with closures 74, 75
verifying, with ExpectedException

rule 73, 74
ExpectedException rule

exceptions, verifying with 73, 74

F
fail statement

using 69-71
fake 50

G
GitHub repository

URL 7

H
Hamcrest matchers

applying, to test assertions 132
custom matchers, writing 134-137
matcher expressions used 132, 133
URL 8

happy path
about 29, 30
corner cases 30-33

I
indirect input

about 46
providing, with stub 51-54
verifying 63, 64

indirect output 46, 47
interactions

recording, with spies 55, 56
isolation 44

J
JaCoCo

URL 8

JUnit
built-in assertion 123
URL 7

JUnitParams
URL 8
used, for reducing glue code 97-99

JUnit rules
about 103-107
advanced concepts 112
class rules, using 112-114
execution, ordering 115, 116
fixture, configuring with

annotations 110, 112
own rules, writing 108, 109

L
Liskov Substitution Principle 65

M
matcher expressions

using 132, 133
Maven

URL 7
Maven Central Repository

URL 7
mock

about 57
used, for increasing efficiency 58-60
used, for verifying behavior 56-58

Mockito
URL 7

P
parameterized tests

using 93-97
patterns, testing

about 69
annotated expectations 71, 72
exceptions, capturing with closures 74, 75
exceptions, verifying with

ExpectedException rule 73, 74
fail statement used 69-71

placeholder dummies 49, 50
Project Object Model (POM) 157

www.it-ebooks.info

http://www.it-ebooks.info/

[177]

R
references 169-173
responsibilities

delegating, to DOCs 44, 45
runners

architecture 83, 84
extension, writing 86-89
methods, implementing 85, 86

runners, custom
about 90
suite, furnishing with test cases 90
suites, populating automatically 91, 92
suites, structuring into categories 90, 91
test doubles, creating with

annotations 92, 93

S
sample

code, organizing 8-10
ingredients, selecting 7

sample application
about 145
architecture, refining 146-148
concerns, separating into modules 148-153

self-testing 155
spies

interactions, recording with 55, 56
starter

serving 10
stub

about 51
indirect input, providing with 51-54

system under test (SUT) 22 45

T
table, setting 7
test doubles

unit isolation, performing with 47, 48
working with 49

test helper class 66
test helper object 67
test helpers

using 65

U
unit isolation

performing, with test doubles 47, 48
unit tests

about 1, 12-14
behavior expressing patterns 34-36
code quality, improving 3, 4
confidence and courage, boosting 6
defect rate, reducing 2
development pace, increasing 5
first test, writing 14-17
name, reducing to essentials 36, 37
names, searching 33
prefix 33, 34
results, evaluating 17, 18
specification density, enhancing 6
tests, writing first 18

unit tests, phases
about 21
common test structure, using 22-24
fixture, setting up 24-27
Timeline instance 27
verification 28, 29

X
Xiliary GitHub repository

URL 3

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Testing with JUnit

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Mastering Unit Testing Using
Mockito and JUnit
ISBN: 9781-7-8398-250-9 Paperback: 314 pages

An advanced guide to mastering unit testing using
Mockito and JUnit

1.	 Create meaningful and maintainable automated
unit tests using advanced JUnit features and the
Mockito framework.

2.	 Build an automated continuous integration
environment to get real-time feedback on
broken code, code coverage, code quality,
and integration issues.

3.	 Covers best practices and presents insights on
architecture and designs to create faster and
reliable unit testing environments.

Test-Driven Python Development
ISBN: 978-1-78398-792-4 Paperback: 264 pages

Develop high-quality and maintainable Python
applications using the principles of test-driven
development

1.	 Write robust and easily maintainable code
using the principles of test driven development.

2.	 Get solutions to real-world problems faced by
Python developers.

3.	 Go from a unit testing beginner to a master
through a series of step-by-step tutorials that
are easy to follow.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering Mobile Test Automation
ISBN: 978-1-78217-542-1 Paperback: 274 pages

Master the full range of mobile automation and
testing techniques to develop customized mobile
automation solutions

1.	 Design and develop top-notch, efficient, and
scalable mobile automation frameworks.

2.	 Develop automation solutions quickly and
effectively using real, emulated devices and
mobile-specific tools.

3.	 A comprehensive and resourceful guide to
automate mobile applications through user
agents, emulators, and simulators.

Learning Android Application
Testing
ISBN: 978-1-78439-533-9 Paperback: 274 pages

Improve your Android applications through
intensive testing and debugging

1.	 Focus on Android instrumentation testing to
ensure full application coverage.

2.	 Apply testing techniques and utilize tools to
improve Android application development.

3.	 Build intensively tested and bug free Android
applications.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Why you should busy yourself with
unit tests
	Reducing the defect rate
	Improving the code quality
	Increasing the development pace
	Enhancing the specification density
	Boosting confidence and courage

	Setting the table
	Choosing the ingredients
	Organizing your code

	Serving the starter
	Introducing the example app

	Understanding the nature of a unit test
	Writing the first test
	Evaluating test results
	Writing tests first

	Summary

	Chapter 2: Writing Well-structured Tests
	The four phases of a unit test
	Using a common test structure
	Setting up the fixture
	What goes up must come down
	Verification

	Choosing the next functionality to test
	Start with the happy path
	Conclude with corner cases
	After the war

	Getting the test names right
	Test prefix
	Behavior expressing patterns
	Reducing names to the essentials

	Summary

	Chapter 3: Developing Independently Testable Units
	Decomposing requirements
	Separating concerns
	Component dependencies

	Understanding isolation
	Delegating responsibilities to DOCs
	Indirect input and output
	Unit isolation with test doubles

	Working with test doubles
	Placeholder dummies
	Fake it till you make it
	Providing indirect input with stubs
	Recording interactions with spies
	Verifying behavior with mocks

	Increasing efficiency with mock frameworks
	The promised land?
	Basic stubbing
	Indirect output verification

	Using test helpers
	Motivation
	The test helper class
	The test helper object

	Summary

	Chapter 4: Testing Exceptional Flow
	Testing patterns
	Using the fail statement
	Annotated expectations
	Verification with the ExpectedException rule
	Capturing exceptions with closures

	Treating collaborators
	Fail fast
	The stubbing of exceptional behavior

	Summary

	Chapter 5: Using Runners for Particular Testing Purposes
	Understanding the architecture
	What are runners good for?
	Looking at the big picture
	Writing your own extension

	Using custom runners
	Furnishing a suite with test cases
	Structuring suites into categories
	Populating suites automatically
	How about creating test doubles with annotations?

	Writing dataset tests
	Using parameterized tests
	Reduce glue code with JUnitParams
	Increase the expressiveness of test descriptions with Burst

	Summary

	Chapter 6: Reducing Boilerplate
with JUnit Rules
	Understanding rules
	What are JUnit rules?
	Writing your own rule
	Configuring the fixture with annotations

	Working with advanced concepts
	Using ClassRules
	The Ordering of rule execution

	Employing custom solutions
	Working with system settings
	Ignoring tests conditionally

	Summary

	Chapter 7: Improving Readability with Custom Assertions
	Working with the JUnit built-in assert approach
	Understanding the basics
	Reviewing the file session storage
	Verifying the storage behavior
	Improving readability with assertion helpers

	Creating flexible expressions of intent with Hamcrest
	Using matcher expressions
	Writing custom matchers

	Writing fluently readable assertions with AssertJ
	Employing assertion chains
	Creating your own asserts

	Summary

	Chapter 8: Running Tests Automatically within a CI Build
	Wrapping up the sample application
	Refining the architecture
	Separating concerns into modules

	Setting up an automated CI build
	What is continuous integration?
	Principles and practices
	Creating your own build

	Integrating code coverage reports
	Enlarging on code coverage
	Automating reporting

	Summary

	Appendix: References
	Index

