<7 thymeleaf

HTI HTMI

Tutorial: Thymeleaf + Spring

Document version: 20141222 - 22 December 2014
Project version: 2.1.4.RELEASE

Project web site: http://www.thymeleaf.org

Page 1 of 33

http://www.thymeleaf.org

Preface

This tutorial explains how Thymeleaf can be integrated with the Spring Framework, especially (but not only) Spring MVC.

Note that Thymeleaf has integrations for both versions 3.x and 4.x of the Spring Framework, provided by two separate
libraries called thymeleaf-spring3 and thymeleaf-spring4.These libraries are packaged in separate .jar files
(thymeleaf-spring3-{version}.jar and thymeleaf-spring4-{version}.jar)and need to be added to your
classpath in order to use Thymeleaf's Spring integrations in your application.

The code samples and example application in this tutorial make use of Spring 4.x and its corresponding Thymeleaf
integrations, but the contents of this text are valid also for Spring 3.x. If your application uses Spring 3.x, all you have to
do is replace the org.thymeleaf.spring4 package with org.thymeleaf.spring3 in the code samples.

Page 2 of 33

1 Integrating Thymeleaf with Spring

Thymeleaf offers a set of Spring integrations that allow you to use it as a full-featured substitute for JSP in Spring MVC
applications.

These integrations will allow you to:

e Make the mapped methods in your Spring MVC @controller objects forward to templates managed by
Thymeleaf, exactly like you do with JSPs.

e Use Spring Expression Language (Spring EL) instead of OGNL in your templates.

e Create forms in your templates that are completely integrated with your form-backing beans and result bindings,
including the use of property editors, conversion services and validation error handling.

e Display internationalization messages from messages files managed by Spring (through the usual Messagesource
objects).

Note that in order to fully understand this tutorial, you should have first gone through the “Using Thymeleaf”tutorial,
which explains the Standard Dialect in depth.

Page 3 of 33

2 The SpringStandard Dialect

In order to achieve an easier and better integration, Thymeleaf provides a dialect which specifically implements all the
needed features for it to work correctly with Spring.

This specific dialect is based on the Thymeleaf Standard Dialect and is implemented in a class called
org.thymeleaf.spring4.dialect.SpringStandardDialect, Which in fact extends from
org.thymeleaf.standard.StandardDialect.

Besides all the features already present in the Standard Dialect - and therefore inherited -, the SpringStandard Dialect
introduces the following specific features:

e Use Spring Expression Language (Spring EL) as a variable expression language, instead of OGNL. Consequently, all
${...} and *{...} expressions will be evaluated by Spring's Expression Language engine.

e Access any beans in your application context using SpringEL's syntax: ${@myBean.doSomething() }

e New attributes for form processing: th:field, th:errors and th:errorclass, besides a new implementation of
th:object that allows it to be used for form command selection.

e An expression object and method, #themes.code (. ..), which is equivalent to the spring: theme JSP custom tag.

e An expression object and method, #mvc.uri(...), which is equivalent to the spring:mvcurl(...) JSP custom
function (only in Spring 4.1+).

e New DTDs for validation, including these new attributes, as well as new corresponding DOCTYPE translation rules.

Note that you shouldn't use this dialect directly in a normal TemplateEngine object as a part of its configuration. Instead, you
should instance a new template engine class that performs all the required configuration steps:
org.thymeleaf.spring4.SpringTemplateEngine.

An example bean configuration:

value="
value=".html"
de" value="HTML5"

<bean id=
class
erty name="te

Page 4 of 33

3 Views and View Resolvers

3.1 Views and View Resolvers in Spring MVC
There are two interfaces in Spring MVC that conform the core of its templating system:

® org.springframework.web.servlet.View

® org.springframework.web.servlet.ViewResolver

Views model pages in our applications and allow us to modify and predefine their behaviour by defining them as beans.
Views are in charge of rendering the actual HTML interface, usually by the execution of some template engine like JSP (or
Thymeleaf).

ViewResolvers are the objects in charge of obtaining View objects for a specific operation and locale. Typically, controllers
ask ViewResolvers to forward to a view with a specific name (a String returned by the controller method), and then all the
view resolvers in the application execute in ordered chain until one of them is able to resolve that view, in which case a
View object is returned and control is passed to it for the renderization of HTML.

Note that not all pages in our applications have to be defined as Views, but only those which behaviour we wish
to be non-standard or configured in a specific way (for example, by wiring some special beans to it. If a
ViewResolver is asked a view that has no corresponding bean —which is the common case—, a new View object
is created ad hoc and returned.

A typical configuration for a JSP+JSTL ViewResolver in a Spring MVC application looks like this:

value="
value="2"
s" value="

/
/

name="vi

A quick look at its properties is enough to know about how it's configured:

® viewClass establishes the class of the View instances. This is needed for a JSP resolver, but it will not be needed at
all when we're working with Thymeleaf.

e prefix and suffix workin a similar way to the attributes of the same names in Thymeleaf's TemplateResolver
objects.

e order establishes the order in which the ViewResolver will be queried in the chain.

e viewNames allows the definition (with wildcards) of the view names that will be resolved by this ViewResolver.

3.2 Views and View Resolvers in Thymeleaf
Thymeleaf offers implementations for the two interfaces mentioned above:

® org.thymeleaf.spring4.view.ThymeleafView

® org.thymeleaf.spring4.view.ThymeleafViewResolver

These two classes will be in charge of processing Thymeleaf templates as a result of the execution of controllers.

Configuration of the Thymeleaf View Resolver is very similar to that of JSP’s:

Page 5 of 33

value="1" />
value="*.html, *.xhtml" />

The templateEngine parameter is, of course, the springTemplateEngine Object we defined in the previous chapter. The

other two (order and viewNames) are both optional, and have the same meaning as in the JSP ViewResolver we saw
before.

Note that we do not need prefix Or suffix parameters, because these are already specified at the Template Resolver
(which in turn is passed to the Template Engine).

And what if we wanted to define a view bean and add some static variables to it? Easy:

er" value="

Page 6 of 33

4 Template Resolution

4.1 Spring-based Template Resolution

When used with Spring, Thymeleaf provides additional implementations of 1TemplateResolver and an associated
IResourceResolver, fully integrated with Spring's resource resolution mechanism. These are:

® org.thymeleaf.spring4.templateresolver.SpringResourceTemplateResolver forresohﬂngtenuﬂate&

L4 org.thymeleaf.spring4.resourceresolver.SpringResourceResourceResolver,rnOSﬂnyFinterna|Use.

This template resolver will allow applications to resolve templates using the standard Spring resource resolution syntax. It
can be configured like:

<bean id="ter
spring4.temp
value=".html"
value="HTML5"

@Reques
public

return "cl O sou templates/doit";

Note that this Spring-based resource resolver will never be used by default. It will just be an option available for
applications to configure in addition to the other template resolver implementations offered by the Thymeleaf core.

Page 7 of 33

5 Spring Thyme Seed Starter Manager

5.1 The Concept

At Thymeleaf we're huge fans of thyme, and every spring we prepare our seed starting kits with good soil and our
favourite seeds, place them under the Spanish sun and patiently wait for our new plants to grow.

But this year we got fed up with sticking labels to the seed starter containers for knowing which seed was in each cell of
the container, so we decided to prepare an application using Spring MVC and Thymeleaf to help us catalogue our
starters: The Spring Thyme SeedStarter Manager.

W4 Spring Thyme

SEEDSTARTER

Seed Starter List

MANAGER

Date planted ;| Covered Type Features Rows

03/20/2011 yas Seed starter-specific substrate, PH Carrector used 1 Thymus vulgaris 10
2 Thymus pseudolaginosus 15
3 Thymus x citriodorus 20

03/25/2011 no Flastic | Fertilizer used 1 Thymus herba-barona =
2 Thymus serpyllum 10

Add new Seed Starter

—Seed Starter data
Date planted (MM/dd/yyyy)
Covered

Type

Features

Rows

04;05/2011

O

Flastic v

[seed starterspecific substrate

O rertilizer used
[pH carrector used

Fow “ariety

1 Thymus wulgaris

Seeds per cell Add row
Remowe row

| ADD SEED STARTER |

STSM front page

In a similar way to the Good Thymes Virtual Grocery application we developed in the Using Thymeleaf tutorial, the STSM
will allow us to exemplify the most important aspects of the integration of Thymeleaf as a template engine for Spring

MVC.

Page 8 of 33

5.2 Business Layer

We will need a very simple business layer for our application. First of all, let's have a look at our model entities:

<<gnumeration== R
features
Fealure variety | Variety
SEEDSTARTER_SPECIFIC_SUBSTRATE | O seedsPerCell: Integer
FERTILIZER -
PH_CORRECTOR SeedStarter 0.
ALL . Feature 4 Tteger
name - Sting datePlanted : Date FOWS
cavered : Boolean variety
type Type
<<ghUmerations= features | Feature(]
Type rows ; List=Rows= P — 1
PLASTIC Wariety
R,;\vLOLOPI' 0 type id Integer
—E name : String
name : String 1
STSM model

A couple of very simple service classes will provide the required business methods. Like:

rvice

public class Sc

@Au

public List<S
return this.:
}

public void add

[CR vice
public class

QA Wir

private

public List
return this

1
J

public Variety

Page 9 of 33

5.3 Spring MVC configuration

Next we need to set up the Spring MVC configuration for the application, which will include not only the standard Spring
MVC artifacts like resource handling or annotation scanning, but also the creation of the Template Engine and View
Resolver instances.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://w w3.0rg/2001/XMLSchema-instance"
xmlns:mve="http://www.springframework.org/schema/mvc"
xmlns:context="http:// .springframework.org/schema/context"
xsi:schemalocation="http:/ springframework.org/schema/mvc
http: vw.springfram k.org/schema/mvc/spring-mvc-3.0.xsd
http:/, .springframework.org/schema/beans
http:// springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<mvc:resources location="/images/" mapping="/images/**" />
—_n /

<mvc:resources location="/css/" mapping="/css/**" />

<mvc:annotation-driven conversion-service="conversionService" />
<context:component-scan base-package="thymeleafexamples.stsm" />

<bean id="messageSource" class="org.springframework.context.support.ResourceBundleMessageSource">
<property name="basename" value="Messages" />
</bean>

<bean id="conversionService"
class="org.springframework.format.support.FormattingConversionServiceFactoryBean">
<property name="formatters">
<set>
<bean class="thymeleafexamples.stsm.web.conversion.VarietyFormatter" />
<bean class="thymeleafexamples.stsm.web.conversion.DateFormatter" />
</set>
</property>
</bean>

<bean id="templateResolver"
class="org.thymeleaf.templateresolver.ServletContextTemplateResolver">
<property name="prefix" wvalue="/WEB-INF/templates/" />
<property name="suffix" value=".html" />
<property name="templateMode" value="HTML5" />
</bean>

<bean id="templateEngine"
class="org.thymeleaf.spring4.SpringTemplateEngine">
<property name="templateResolver" ref="templateResolver"
</bean>

Page 10 of 33

<bean class="org.thymeleaf.springd4.view.ThymeleafViewResolver">
<property name="templateEngine" ref="templateEngine" />
</bean>

</beans>

Important: Note that we have selected HTML5 as a template mode.

5.4 The Controller

Of course, we will also need a controller for our application. As the STSM will only contain one web page with a list of
seed starters and a form for adding new ones, we will write only one controller class for all the server interactions:

@Controller
public class SeedStarterMngController {

@Autowired
private VarietyService varietyService;

@Autowired
private SeedStarterService seedStarterService;

Now let's see what we can add to this controller class.

Model Attributes

First we will add some model attributes that we will need in the page:

@ModelAttribute ("allTypes")
public List<Type> populateTypes () {
return Arrays.aslList (Type.ALL) ;

@ModelAttribute ("allFeatures")
public List<Feature> populateFeatures () {
return Arrays.aslist (Feature.ALL) ;

@ModelAttribute ("allVarieties")
public List<Variety> populateVarieties () {
return this.varietyService.findAll();

@ModelAttribute ("allSeedStarters")
public List<SeedStarter> populateSeedStarters() {
return this.seedStarterService.findAll();

Mapped methods

And now the most important part of a controller, the mapped methods: one for showing the form page, and other for
processing the addition of new Seed Starter objects.

QRequestMapping ({"/","/seedstartermng"})

public String showSeedstarters (final SeedStarter seedStarter) {
seedStarter.setDatePlanted(Calendar.getInstance () .getTime()) ;
return "seedstartermng";

Page 11 of 33

@RequestMapping (value="/seedstartermng", params={"save"})
public String saveSeedstarter (
final SeedStarter seedStarter, final BindingResult bindingResult, £final ModelMap model)
if (bindingResult.hasErrors()) {
return "seedstartermng";
}
this.seedStarterService.add (seedStarter) ;
model.clear();
return "redirect:/seedstartermng";

5.5 Configuring a Conversion Service

In order to allow easy formatting of bate and also variety objects in our view layer, we registered a Spring
ConversionService implementation at the application context. See it again:

<?xml version="1.0" encoding="UTF-8"7?>
<beans ...>

<mvc:annotation-driven conversion-service="conversionService" />

<bean id="conversionService"
class="org.springframework.format.support.FormattingConversionServiceFactoryBean">
<property name="formatters">
<set>
<bean class="thymeleafexamples.stsm.web.conversion.VarietyFormatter" />
<bean class="thymeleafexamples.stsm.web.conversion.DateFormatter" />
</set>
</property>
</bean>

</beans>

That conversion service allowed us to register two Spring formatters, implementations of the
org.springframework.format.Formatter interface. For more information on how the Spring conversion infrastructure
works, see the docs at spring.io.

Let's have a look at the pateFormatter, which formats dates according to a format string present at the date. format
lnessagekeyofOLw Messages.properties.

public class DateFormatter implements Formatter<Date> {

@Autowired
private MessageSource messageSource;

public DateFormatter () {
super () ;

public Date parse (final String text, final Locale locale) throws ParseException {
final SimpleDateFormat dateFormat = createDateFormat (locale);
return dateFormat.parse (text);

public String print (final Date object, final Locale locale) {
final SimpleDateFormat dateFormat = createDateFormat (locale) ;
return dateFormat.format (object);

Page 12 of 33

http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/validation.html#core-convert

private Si
final g 3 is.me 5 rce g ormat", null,
final at da m - (format) ;

date

return

The varietyFormatter automatically converts between our variety entities and the way we want to use them in our
forms (basically, by their id field values):

public VarietyFormatter ()
super () ;

orint (f£inal ¥
!'= null

We will learn more on how these formatters affect the way our data is displayed later on.

Page 13 of 33

6 Listing Seed Starter Data

The first thing that our /WEB-INF/templates/seedstartermng.html page will show is a listing with the seed starters
currently stored. For this we will need some externalized messages and also some expression evaluation on model
attributes. Like this:

<div class="seedstarterlist" th:unless="${#lists.isEmpty(allSeedStarters) }">

<h2 th:text="#{title.list}">List of Seed Starters</h2>
<table>
<thead>
<tr>
<th :text="4#{seedstarter.datePlanted}">Date Planted</th>
<th text="#{seedstarter.covered}">Covered</th>
<th :text="#{seedstarter.type}">Type</th>
<th ttext="4#{se tarter.features}">Features</th>
<th rtext="4#{see g .rows}">Rows</th>
</tr>
</thead>
<tbody>
<tr th:each="sb : ${allSeedStarters}">
<td 3 sb.datePlanted}}">13/01/2011</td>
<td ttext="5{ overed}? #{bool.true} : #{bool.false}">yes</td>
<td stext="#{ >dstarter.type.' + sb.type}}">Wireframe</td>
<td ttext="5{ arrayJoin (
sages.arrayMsg (
#strings.arrayPrepend (sb.features, '
') }">Electric Heating, Turf</td>

seedstarter.feature."')),

<td>
<table>
<tbody>
<tr th:each="row, rowStat : ${sb.rows}">
<td th:text="${rowStat.count}">1</td>
<td th:text="${row.variety.name}">Thymus Thymi</td>
<td th:text="S${row.seedsPerCell}">12</td>
</tr>
</tbody>
</table>
</td>
</tr>
</tbody>
</table>
</div>

Lots to see here. Let's have a look at each fragment separately.

First of all, this section will only be shown if there are any seed starters. We achieve that with a th:unless attribute and the
#lists.isEmpty (...) function.

<div class=' cdstarterlist" th:unless="${#lis

Note that all utility objects like #1ists are available in Spring EL expressions just as they were in OGNL expressions in
the Standard Dialect.

The next thing to see is a lot of internationalized (externalized) texts, like:

<h2 th:text="#{title.list}">List of Seed Starters</h2>

<table>
<thead>
<tr>
<th ctext="#{seedstarter.datePlanted}">Date Planted</th>
<th ctext="4#{seed:s ter.covered}">Covered</th>
<th :text="4#{seedstarter ype}">Type</th>
<th ctext="#{seedstarter.features}">Features</th>

Page 14 of 33

<th th:text="#{seedstarter.

This being a Spring MVC application, we already defined a Messagesource bean in our spring XML configuration
(MessageSource oObjects are the standard way of managing externalized texts in Spring MVC):

<bean id="me geSource" class="org. ~ingframework.context.support.ResourceBundleMe
I value="M

<property name=' -

</bean>

...and that basename property indicates that we will have files like Messages_es.properties or
Messages_en.properties in our classpath. Let's have a look at the Spanish version:

In the first column of the table listing we will show the date when the seed starter was prepared. Butwe will show it
formatted in the way we defined in our bateFormatter. In order to do that we will use the double-bracket syntax,
which will automatically apply the Spring Conversion Service.

<td th:text="${{sb.datePlanted}}">13/01/2011</td>

Next is showing whether the seed starter container is covered or not, by transforming the value of the boolean covered
bean property into an internationalized “yes” or “no” with a conditional expression:

<td th:text="${sb.cove

Now we have to show the type of seed starter container. Type is a java enum with two values (woop and prastIc), and
that's why we defined two properties in our Messages file called seedstarter.type.wooD and
seedstarter. type.PLASTIC.

But in order to obtain the internationalized names of the types, we will need to add theseedstarter. type. prefix to the
enum value by means of an expression, which result we will then use as the message key:

<td th:text="#{S${'see pe.' + sb.type}}">Wireframe</td>

The most difficult part of this listing is the features column. In it we want to display all the features of our container —that
come in the form of an array of Feature enums—, separated by commas. Like “Electric Heating, Turf".

Note that this is particularly difficult because these enum values also need to be externalized, as we did with Types. The
flow is then:

1. Prepend the corresponding prefix to all the elements of the features array.
2. Obtain the externalized messages corresponding to all the keys from step 1.

Page 15 of 33

3. Join all the messages obtained in step 2, using a comma as a delimiter.

For achieving this, we create the following code:

<td th:text="5{

arter.feature.')),

The last column of our listing will be quite simple, in fact. Even if it has a nested table for showing the contents of each

row in the container:

th:text=
th:text="

Page 16 of 33

7 Creating a Form

7.1 Handling the command object

Command object is the name Spring MVC gives to form-backing beans, this is, to objects that model a form'’s fields and
provide getter and setter methods that will be used by the framework for establishing and obtaining the values input by
the user at the browser side.

Thymeleaf requires you to specify the command object by using a th:object attribute in your <form> tag:

<form action="#" th:action="@{/seedstartermng}" th:object="S${seedStarter}" method="post">

</form>

This is consistent with other uses of th:object, butin fact this specific scenario adds some limitations in order to
correctly integrate with Spring MVC's infrastructure:

e Values for th:object attributes in form tags must be variable expressions (5. . . }) specifying only the name of a
model attribute, without property navigation. This means that an expression like ${seedstarter} isvalid, but
${seedstarter.data} would not be.

e Onceinside the <form> tag, no other th:object attribute can be specified. This is consistent with the fact that
HTML forms cannot be nested.

7.2 Inputs

Let's see now how to add an input to our form:

<input type="text" th:field="*{datePlanted}" />

As you can see, we are introducing a new attribute here: th:field. This is a very important feature for Spring MVC
integration because it does all the heavy work of binding your input with a property in the form-backing bean. You can
see it as an equivalent of the path attribute in a tag from Spring MVC's JSP tag library.

The th:field attribute behaves differently depending on whether it is attached to an <input>, <select> or

<textarea> tag (and also depending on the specific type of <input> tag). In this case (input[type=text]), the above
line of code is similar to:

<input type="text" id="datePlanted" name="datePlanted" th:value="*{datePlanted}

...butin fact it is a little bit more than that, because th:field will also apply the registered Spring Conversion Service,
including the pateFormatter we saw before (even if the field expression is not double-bracketed). Thanks to this, the
date will be shown correctly formatted.

Values for th:field attributes must be selection expressions (*{. . .}), which makes sense given the fact that they will
be evaluated on the form-backing bean and not on the context variables (or model attributes in Spring MVC jargon).

Contrary to the ones in th:object, these expressions can include property navigation (in fact any expression allowed for
the path attribute of a <form:input> JSP tag will be allowed here).

Note that th:field also understands the new types of <input> element introduced by HTMLS5 like <input
type="datetime" ... />, <input type="color" ... />,etc., effectively adding complete HTML5 support to Spring
MVC.

Page 17 of 33

7.3 Checkbox fields

th:field also allows us to define checkbox inputs. Let's see an example from our HTML page:

1') 1" th:text="4#/{ C OoVe /label>

Wl

Note there's some fine stuff here besides the checkbox itself, like an externalized label and also the use of the
#ids.next ('covered') function for obtaining the value that will be applied to the id attribute of the checkbox input.

Why do we need this dynamic generation of an id attribute for this field? Because checkboxes are potentially multi-valued,
and thus their id values will always be suffixed a sequence number (by internally using the #ids.seq(...) function)in
order to ensure that each of the checkbox inputs for the same property has a different id value.

We can see this more easily if we look at such a multi-valued checkbox field:

<li th:each=" e eatu >
<input type="checkk ' th:field="*{f th:value="8$
<label th:for v ('featu DR
starter. feature.' + feat}}">
</1li>

Note that we've added a th:value attribute this time, because the features field is not a boolean like covered was, but
instead is an array of values.

Let's see the HTML output generated by this code:

<input i cature ype="checkbox" value="FERTILIZER" />
<inpt

<input ¢ U ype= " value="PH CORRECTOR" />
<input 23 S
<label

We can see here how a sequence suffix is added to each input’s id attribute, and how the #ids.prev(...) function
allows us to retrieve the last sequence value generated for a specific input id.

Don't worry about those hidden inputs with name="_ features":they are automatically added in order to avoid

problems with browsers not sending unchecked checkbox values to the server upon form submission.

Also note that if our features property contained some selected values in our form-backing bean, th:£fielid would have
taken care of that and would have added a checked="checked" attribute to the corresponding input tags.

7.4 Radio Button fields

Page 18 of 33

Radio button fields are specified in a similar way to non-boolean (multi-valued) checkboxes —except that they are not
multivalued, of course:

<li th:each="ty
th:value=

th:for="5{#i .prev ('t th:text="#{S${"'se arter.type. ty} eframe<

7.5 Dropdown/List selectors

Select fields have two parts: the <select> tag and its nested <option> tags. When creating this kind of field, only the
<select> tag has toinclude a th:field attribute, but the th:value attributes in the nested <option> tags will be very
important because they will provide the means of knowing which is the currently selected option (in a similar way to non-
boolean checkboxes and radio buttons).

Let's re-build the type field as a dropdown select:

lect th:field="*{
on th:each="

th:value="
th:text="# ter. ty . ype} }">Wireframe</option>

At this point, understanding this piece of code is quite easy. Just notice how attribute precedence allows us to set the
th:each attribute in the <option> tag itself.

7.6 Dynamic fields

Thanks to the advanced form-field binding capabilities in Spring MVC, we can use complex Spring EL expressions to bind
dynamic form fields to our form-backing bean. This will allow us to create new Row objects in our seedstarter bean,
and to add those rows' fields to our form at user request.

In order to do this, we will need a couple of new mapped methods in our controller, which will add or remove a row from
our seedstarter depending on the existence of specific request parameters:

tartermng", params

final

<th th:text="#
<th th:text=

<th>

Page 19 of 33

<button type="submit" name="addRow" th:text="#{seedstarter.row.add}">Add row</button>
</th>
</tr>
</thead>
<tbody>
<tr th:each="row, rowStat st">
<td th:text="S${rowStat.count}">1</td>
<td>
<select th:field="*{rows[S${rowStat.index}].variety}">
<option th:each="var S{allVarieties}"
th:value="${var.id}"
th:text="${var.name}">Thymus Thymi</option>

*{row

</select>
</td>
<td>
<input type="text" th:field:”*{rows'77${rowSLaL.Lndex}7i]
</td>
<td>
<button type="submit
th:value="${rowStat.index}"

.seedsPerCell}"

"

name="removeRow"
th:text="#{seedstarter.row.remove}">Remove
row</button>
</td>
</tr>
</tbody>
</table>

Quite a lot of things to see here, but not much we should not understand by now... except for one strange thing:
.variety}">

<select th:field="*{rows[${rowStat.index}]

</select>

If you recall from the “Using Thymeleaf”tutorial, that __ ${...} __ syntaxis a preprocessing expression, which is an inner
expression that is evaluated before actually evaluating the whole expression. But why that way of specifying the row

index? Wouldn't it be enough with:

<select th:field="*{rows[rowStat.index].variety}">

</select>

...well, actually, no. The problem is that Spring EL does not evaluate variables inside array index brackets, so when
executing the above expression we would obtain an error telling us that rows[rowStat.index] (instead of rows[0],
rows[1], etc) is not a valid position in the rows collection. That's why preprocessing is needed here.

Let's have a look at a fragment of the resulting HTML after pressing “Add Row” a couple of times:

<tbody>
<tr>
<td>1</td>
<td>
<select id="rowsO.variety" name="rows[0].variety">

<option

selected="selected" value="1">Thymus vulgaris</option>

<option
<option
<option
<option
</select>
</td>
<td>
<input id="rowsO.
</td>
<td>
<button name="removeRow'
</td>
</tr>

value="2">Thymus
value="3">Thymus
value="4">Thymus
value="5">Thymus

i

seedsPerCell"

x citriodorus</option>
herba-barona</option>
pseudolaginosus</option>
serpyllum</option>

name="rows [0] .seedsPerCell" type="text" value="" />

type="submit" value="0">Remove row</button>

Page 20 of 33

t id=" .
selected=
value="2"
value="3
value="4">Thymu
value="5

—_nn /S

11" name="r [17. =1 (3 =" value

<button name="re S mit" value="1">Re

Page 21 of 33

8 Validation and Error Messages

Most of our forms will need to show validation messages in order to inform the user of the errors he/she has made.

Thymeleaf offers some tools for this: a couple of functions in the #£ields object, the th:errors and the
th:errorclass attributes.

8.1 Field errors

Let's see how we could set a specific CSS class to a field if it has an error:

<input type="te

/

fieldError" />

As you can see, the #fields.hasErrors(...) function receives the field expression as a parameter (datePlanted), and
returns a boolean telling whether any validation errors exist for that field.

We could also obtain all the errors for that field and iterate them:

<li th:each="err : ${#fields.errors('datePlanted')}" th:text="S${err

Instead of iterating, we could have also used th:errors, a specialized attribute which builds a list with all the errors for
the specified selector, separated by
:

<input type="text" th:field="*{datePlanted}

<p th:if="${#fields.hasErrors ('dat lanted'") }" th:errors="*{datePlanted}">Incorrect date</p>

Simplifying error-based CSS styling: th:errorclass

The example we saw above, setting a CSS class to a form input if that field has errors, is so common that Thymeleaf offers a
specific attribute for doing exacly that: th:errorclass.

Applied to a form field tag (input, select, textarea...), it will read the name of the field to be examined from any existing
name Of th:field attributes in the same tag, and then append the specified CSS class to the tag if such field has any

associated errors:

th:field=" e a 1" th:errorclass=

If datePlanted has errors, this will render as:

/N
/>

<input type="text" id="datePlanted" name="datePlanted" value="2

8.2 All errors

And what if we want to show all the errors in the form? We just need to query the#fields.hasErrors(...) and
#fields.errors(...) methods withthe '*' or 'a11' constants (which are equivalent):

th:text="${err}">Input is ir

Page 22 of 33

As in the examples above, we could obtain all the errors and iterate them...

i th:each="err

Finally. Note #fields.hasErrors('*') isequivalentto #fields.hasAnyErrors() and #fields.errors('*') is
equivalent to #fields.allErrors () . Use whichever syntax you prefer:

th:text="S${err}">...<

8.3 Global errors

There is a third type of error in a Spring form: global errors. These are errors that are not associated with any specific
fields in the form, but still exist.

Thymeleaf offers the global constant for accessing these errors:

<ul th:if=
<1li th:each="e 3 f errors ('g }" th:text="${err}">Inp

8.4 Displaying errors outside forms

Form validation errors can also be displayed outside forms by using variable (s{ . . .}) instead of selection (*{...})
expressions and prefixing the name of the form-backing bean:

cerrors="5
rerrors

Page 23 of 33

8.5 Rich error objects

Thymeleaf offers the possibility to obtain form error information in the form of beans (instead of merestrings), with the
fieldName (String), message (String) and global (boolean) attributes.

These errors can be obtained by means of the #fields.detailedErrors () utility method:

<li th:each="e : ${#fie detai "rors th:class=
{ IName } ">Th

fielderr">

Page 24 of 33

9 It’s still a Prototype!

Our application is ready now. But let's have a second look at the .nhtml page we created...

One of the nicest consequences of working with Thymeleaf is that after all this functionality we have added to our HTML,
we can still use it as a prototype (we say it is a Natural Template). Let's open seedstartermng.html directly in our
browser without executing our application:

W4 Spring Thyme

SEEDSTARTER MANAGER

List of Seed Starters

Date Planted Covered Type Features Rows

13/01/2011 yes Wireframe Electric Heating, Turf 1 Thymus Thymi 12

Add new Seed Starter

—Seed Starter Data

Input is incorrect

Date planted (¥Y¥Y/MM/DD)
Covered [

Type Wireframe v

Features
[Electric Heating
O murf
Rows Row \ariety Seeds per cell
1 Thymus Thymi %

| ADD SEED STARTER |

STSM natural templating

There itis! It's not a working application, it's not real data... but it is a perfectly valid prototype made up of perfectly
displayable HTML code. Try to do that with JSP!

Page 25 of 33

10 The Conversion Service

10.1 Configuration

As explained before, Thymeleaf can make use of a Conversion Service registered at the Application Context. Let's see
again what it looks like:

driven conversion-service="conv ionService" />

10.1 Double-bracket syntax

The Conversion Service can be easily applied in order to convert/format any object into String. This is done by means of
the double-bracket syntax:

e Forvariable expressions: ${{...}}
e For selection expressions: *{{...}}

So, for example, given an Integer-to-String converter that adds commas as a thousands separator, this:

<p th:text="${va
<p th:text="5{

...should result in:

10.2 Use in forms

We saw before that every th:field attribute will always apply the conversion service, so this:

<input type=" t" th:field="*{datePlanted}" />

...Is actually equivalent to:

Page 26 of 33

<input type="text" th:field="*{{datePlanted}}" />

Note that this is the only scenario in which the Conversion Service is applied in expressions using single-bracket syntax.

10.3 #conversions utility object

The #conversions expression utility object allows the manual execution of the Conversion Service wherever needed:

<p th:text="${'Val: fconversions.convert (val, 'String') }">...</

Syntax for this utility object:

® jconversions.convert (Object,Class) : converts the object to the specified class.

® i#conversions.convert (Object,String) : Same as above, but specifying the target class as a String (note the
java.lang. package can be ommitted).

Page 27 of 33

11 Rendering Template Fragments

Thymeleaf offers the possibility to render only part of a template as the result of its execution: afragment.

This can be a useful componentization tool. For example, it can be used at controllers that execute on AJAX calls, which
might return markup fragments of a page that is already loaded at the browser (for updating a select, enabling/disabling
buttons...).

Fragmentary rendering can be achieved by using Thymeleaf's fragment specs: objects implementing the
org.thymeleaf.fragment.IFragmentSpec interface.

The most common of these implementations is
org.thymeleaf.standard. fragment.StandardDOMSelectorFragmentSpec, Which allows specifying a fragment using a
DOM Selector exactly like the ones used at th:include Or th:replace.

11.1 Specifying fragments in view beans

View beans are beans of the org. thymeleaf.spring4.view.ThymeleafView class declared at the application context.
They allow the specification of fragments like this:

an name="con class=""c¢

- ntentPart")
public S g s ntentPart () {

return '«

..thymeleaf will return only the content fragment of the index template - which location will probably be something
like /WEB-INF/templates/index.html, once prefix and suffix are applied:

PE html>

th:fragment="con

Note also that, thanks to the power of Thymeleaf DOM Selectors, we could select a fragment in a template without
needing any th:fragment attributes at all. Let's use the id attribute, for example:

<bean name="co

Page 28 of 33

rty name="templ eName" value="index"

...which will perfectly select:

<!DOCTYPE html>
<html>

oe renderec

</html>

11.2 Specifying fragments in controller return values

Instead of declaring view beans, fragments can be specified from the controllers themselves by using the same syntax as
in th:include Or th:replace attributes:

@Requ apping (" tentPart")
public ring s ontentPart ()

return "ir

Of course, again the full power of DOM Selectors is available, so we could select our fragment based on standard HTML
attributes, like id="content":

ontentPart")
ntPart ()

return "i

Page 29 of 33

12 Advanced Integration Features

12.1 Integration with RequestDataValueProcessor

Thymeleaf now seamlessly integrates with Spring's RequestDatavalueProcessor interface. This interface allows the
interception of link URLs, form URLs and form field values before they are written to the markup result, as well as
transparently adding hidden form fields that enable security features like e.g. protection agains CSRF (Cross-Site Request
Forgery).

An implementation of RequestDatavalueProcessor Can be easily configured at the Application Context:

"1.0" er
5 xmlns="http:
xmlns:xsi="httg
xsi:schemalLocatior

http:

<bean name="re
r .MyRequestDataValuePr

...and Thymeleaf uses it this way:
® th:href and th:src call RequestDatavalueProcessor.processUrl(...) before rendering the URL.

® th:action calls RequestDataValueProcessor.processAction(. . .) before rendering the form’s action
attribute, and additionally it detects when this attribute is being applied on a <form> tag —which should be the
onIy place, anyway—, and in such case calls RequestDataValueProcessor.getExtraHiddenFields(...) and
adds the returned hidden fields just before the closing </form> tag.

® th:value Calls RequestDataValueProcessor.processFormFieldvalue (...) for rendering the value it refers to,
unless thereis a th:field presentin the same tag (in which case th:field will take care).

® th:field calls RequestDataValueProcessor.processFormFieldvalue(...) for rendering the value of the field it
applies to (or the tag body if it is a <textarea>).

Note this feature will only be available for Spring versions 3.1 and newer.

12.1 Building URIs to controllers

Since version 4.1, Spring allows the possibility to build links to annotated controllers directly from views, without the need
to know the URIs these controllers are mapped to.

In Thymeleaf, this can be achieved by means of the #mvc.url(...) expression method, which allows the specification of
controller methods by the capital letters of the controller class they are in, followed by the name of the method itself. This
is equivalent to JSP's spring:mvcUrl(...) custom function.

For example, for:

public class Example

"

@RequestMapping
public HttpEnt

Page 30 of 33

The following code will create a link to it:

<a th:href="${#mvc.url ('EC#getData') .arg(0, 'internal') }">Get Data

You can read more about this mechanism at http://docs.spring.io/spring-framework/docs/4.1.2.RELEASE/spring-
framework-reference/html/mvc.html#mvc-links-to-controllers-from-views

Page 31 of 33

13 Spring WebFlow integration

13.1 Basic configuration
The thymeleaf-spring4 integration package includes integration with Spring WebFlow 2.3.x.

WebFlow includes some AJAX capabilities for rendering fragments of the displayed page when specific events ¢ransitions)
are triggered, and in order to enable Thymeleaf to attend these AJAX requests, we will have to use a different
viewResolver implementation, configured like this:

<bean id="mvcVi

class="\c¢

In the above example, bookingDetail is a Thymeleaf template specified in the usual way, understandable by any of the
Template Resolvers configured at the TemplateEngine.

13.2 Ajax fragments

WebFlow allows the specification of fragments to be rendered via AJAX with <render> tags, like this:

These fragments (hoteldata, in this case) can be a comma-separated list of fragments specified at the markup with

th: fragment:

Always remember that the specified fragments must have an id attribute, so that the Spring JavaScript libraries running on the
browser are capable of substituting the markup.

<render> tags can also be specified using DOM selectors:

Page 32 of 33

r fragments="[//div[@

ontent

pt type="t
ipt type="t

id="tri n" method="¢ " action="">

input ty submit" id="doUpdate" name="_ ex

C1m >

ent:'onclick'}));

Page 33 of 33

	Tutorial: Thymeleaf + Spring
	Preface
	1 Integrating Thymeleaf with Spring
	2 The SpringStandard Dialect
	3 Views and View Resolvers
	3.1 Views and View Resolvers in Spring MVC
	3.2 Views and View Resolvers in Thymeleaf

	4 Template Resolution
	4.1 Spring-based Template Resolution

	5 Spring Thyme Seed Starter Manager
	5.1 The Concept
	5.2 Business Layer
	5.3 Spring MVC configuration
	5.4 The Controller
	Model Attributes
	Mapped methods

	5.5 Configuring a Conversion Service

	6 Listing Seed Starter Data
	7 Creating a Form
	7.1 Handling the command object
	7.2 Inputs
	7.3 Checkbox fields
	7.4 Radio Button fields
	7.5 Dropdown/List selectors
	7.6 Dynamic fields

	8 Validation and Error Messages
	8.1 Field errors
	Simplifying error-based CSS styling: th:errorclass

	8.2 All errors
	8.3 Global errors
	8.4 Displaying errors outside forms
	8.5 Rich error objects

	9 It’s still a Prototype!
	10 The Conversion Service
	10.1 Configuration
	10.1 Double-bracket syntax
	10.2 Use in forms
	10.3 #conversions utility object

	11 Rendering Template Fragments
	11.1 Specifying fragments in view beans
	11.2 Specifying fragments in controller return values

	12 Advanced Integration Features
	12.1 Integration with RequestDataValueProcessor
	12.1 Building URIs to controllers

	13 Spring WebFlow integration
	13.1 Basic configuration
	13.2 Ajax fragments

