<7 thymeleaf

HTI HTMI

Tutorial: Using Thymeleaf

Document version: 20141222 - 22 December 2014
Project version: 2.1.4.RELEASE

Project web site: http://www.thymeleaf.org

Page 1 of 76

http://www.thymeleaf.org

1 Introducing Thymeleaf

1.1 What is Thymeleaf?

Thymeleaf is a Java library. It is an XML/XHTML/HTMLS5 template engine able to apply a set of transformations to
template files in order to display data and/or text produced by your applications.

It is better suited for serving XHTML/HTMLS5 in web applications, but it can process any XML file, be it in web or in
standalone applications.

The main goal of Thymeleaf is to provide an elegant and well-formed way of creating templates. In order to achieve this, it
is based on XML tags and attributes that define the execution of predefined logic on the DOM (Document Object Model),
instead of explicitly writing that logic as code inside the template.

Its architecture allows a fast processing of templates, relying on intelligent caching of parsed files in order to use the least
possible amount of I/0 operations during execution.

And last but not least, Thymeleaf has been designed from the beginning with XML and Web standards in mind, allowing
you to create fully validating templates if that is a need for you.

1.2 What kind of templates can Thymeleaf process?
Out-of-the-box, Thymeleaf allows you to process six kinds of templates, each of which is called a Template Mode:

e XML

e Valid XML

e XHTML

e Valid XHTML
e HTML5

e |egacy HTMLS

All of these modes refer to well-formed XML files except theLegacy HTML5 mode, which allows you to process HTMLS5 files
with features such as standalone (not closed) tags, tag attributes without a value or not written between quotes. In order
to process files in this specific mode, Thymeleaf will first perform a transformation that will convert your files to well-
formed XML files which are still perfectly valid HTMLS (and are in fact the recommended way to create HTML5 code)’.

Also note that validation is only available for XML and XHTML templates.

Nevertheless, these are not the only types of template that Thymeleaf can process, and the user is always able to define
his/her own mode by specifying both a way to parse templates in this mode and a way towrite the results. This way,
anything that can be modelled as a DOM tree (be it XML or not) could effectively be processed as a template by
Thymeleaf.

1.3 Dialects: The Standard Dialect

Thymeleaf is an extremely extensible template engine (in fact it should be better called a template engine framework) that
allows you to completely define the DOM nodes that will be processed in your templates and also how they will be
processed.

An object that applies some logic to a DOM node is called a processor, and a set of these processors —plus some extra
artifacts— is called a dialect, of which Thymeleaf's core library provides one out-of-the-box called the Standard Dialect,
which should be enough for the needs of a big percent of users.

The Standard Dialect is the dialect this tutorial covers. Every attribute and syntax feature you will learn about in the

Page 2 of 76

following pages is defined by this dialect, even if that isn't explicitly mentioned.

Of course, users may create their own dialects (even extending the Standard one) if they want to define their own
processing logic while taking advantage of the library’s advanced features. A Template Engine can be configured several
dialects at a time.

The official thymeleaf-spring3 and thymeleaf-spring4 integration packages both define a dialect called the
“SpringStandard Dialect”, mostly equivalent to the Standard Dialect but with small adaptations to make better
use of some features in Spring Framework (for example, by using Spring Expression Language instead of
Thymeleaf's standard OGNL). So if you are a Spring MVC user you are not wasting your time, as almost
everything you learn here will be of use in your Spring applications.

The Thymeleaf Standard Dialect can process templates in any mode, but is especially suited for web-oriented template
modes (XHTML and HTML5 ones). Besides HTMLS5, it specifically supports and validates the following XHTML
specifications: XHTML 1.0 Transitional, XHTML 1.0 Strict, XHTML 1.0 Frameset, and XHTML 1.1.

Most of the processors of the Standard Dialect areattribute processors. This allows browsers to correctly display
XHTML/HTMLS5 template files even before being processed, because they will simply ignore the additional attributes. For
example, while a JSP using tag libraries could include a fragment of code not directly displayable by a browser like:

e" value="S${user.name}" />

<input type="text" name="userName" value="James Carrot" th:value="${user.name}'

Which not only will be correctly displayed by browsers, but also allow us to (optionally) specify a value attribute in it
(“James Carrot”, in this case) that will be displayed when the prototype is statically opened in a browser, and that will be
substituted by the value resulting from the evaluation of ${user.name} during Thymeleaf processing of the template.

If needed, this will allow your designer and developer to work on the very same template file and reduce the effort
required to transform a static prototype into a working template file. The ability to do this is a feature usually called
Natural Templating.

1.4 Overall Architecture

Thymeleaf's core is a DOM processing engine. Specifically, it uses its own high-performance DOM implementation —not
the standard DOM API— for building in-memory tree representations of your templates, on which it later operates by
traversing their nodes and executing processors on them that modify the DOM according to the current configuration and
the set of data that is passed to the template for its representation —known as the context.

The use of a DOM template representation makes it very well suited for web applications because web documents are
very often represented as object trees (in fact DOM trees are the way browsers represent web pages in memory). Also,
building on the idea that most web applications use only a few dozen templates, that these are not big files and that they
don't normally change while the application is running, Thymeleaf's usage of an in-memory cache of parsed template
DOM trees allows it to be fast in production environments, because very little I/0 is needed (if any) for most template
processing operations.

If you want more detail, later in this tutorial there is an entire chapter dedicated to caching and to the way
Thymeleaf optimizes memory and resource usage for faster operation.

Nevertheless, there is a restriction: this architecture also requires the use of bigger amounts of memory space for each
template execution than other template parsing/processing approaches, which means that you should not use the
library for creating big data XML documents (as opposed to web documents). As a general rule of thumb (and always

Page 3 of 76

depending on the memory size of your JVM), if you are generating XML files with sizes around the tens of megabytes in a
single template execution, you probably should not be using Thymeleaf.

The reason we consider this restriction only applies to data XML files and not web XHTML/HTMLS5 is that you
should never generate web documents so big that your users’ browsers set ablaze and/or explode - remember
that these browsers will also have to create DOM trees for your pages!

1.5 Before going any further, you should read...

Thymeleaf is especially suited for working in web applications. And web applications are based on a series of standards
that everyone should know very well but few do - even if they have been working with them for years.

With the advent of HTML5, the state of the art in web standards today is more confusing than ever...are we going back
from XHTML to HTML? Will we abandon XML syntax? Why is nobody talking about XHTML 2.0 anymore?

So before going any further in this tutorial, you are strongly advised to read an article on Thymeleaf's web site called
“From HTML to HTML (via HTML)”, which you can find at this address:
http://www.thymeleaf.org/fromhtmltohtmlviahtml.html

Page 4 of 76

http://www.thymeleaf.org/doc/fromhtmltohtmlviahtml.html

2 The Good Thymes Virtual Grocery

2.1 A website for a grocery

In order to better explain the concepts involved in processing templates with Thymeleaf, this tutorial will use a demo
application you can download from the project web site.

This application represents the web site of an imaginary virtual grocery, and will provide us with the adequate scenarios

to exemplify diverse Thymeleaf features.

We will need a quite simple set of model entities for our application: products which are sold to customers by creating

orders . We will also be managing comments about those Products:

price - BigDecimal
InStock : boolean
comments ; List=Comment=

amount ; Integer
1 purchasePrice : BigDecimal

_ustomer rder
. customer
id Integer id © Integer
name . String 1 date | Calendar
customersince | Calendar customer : Customer
orderLines : Set=OrderLine=
orderLines
Product COrderLine
id Integer .
name - String oroduct product - Product

COMmments
I:I..#

Comment

Id : Integer
text © String

Example application model

Our small application will also have a very simple service layer, composed by service objects containing methods like:

public class Pr«

Page 5 of 76

public List<Product> findAll () {
return ProductRepository.getInstance ().findAll () ;

public Product findById(Integer id) {
return ProductRepository.getInstance ().findById(id) ;

Finally, at the web layer our application will have a filter that will delegate execution to Thymeleaf-enabled commands
depending on the request URL:

private boolean process (HttpServletRequest request, HttpServletResponse response)
throws ServletException {

try

IGTVGController controller = GTVGApplication.resolveControllerForRequest (request) ;
if (controller == null) {
return false;

TemplateEngine templateEngine = GTVGApplication.getTemplateEngine();

response.setContentType ("text/html;charset=UTF-8") ;
response.setHeader ("Pragma", "no-cache");
response.setHeader ("Cache-Control", "no-cache");
response.setDateHeader ("Expires", 0);

controller.process (
request, response, this.servletContext, templateEngine);

return true;

catch (Exception e) {
throw new ServletException (e);

This is our 16TVGController interface:

public interface IGTVGController ({

public void process (
HttpServletRequest request, HttpServletResponse response,
ServletContext servletContext, TemplateEngine templateEngine);

All we have to do now is create implementations of the 1cTvGcontroller interface, retrieving data from the services and
processing templates using the TemplateEngine Object.

In the end, it will look like this:

Page 6 of 76

Go6d Thymes

Virtual (

Welcome to our fantastic grocery store, John Apricot!
Today is: April 07, 2011
Please select an option

1.

%]

o our Mewsletter

ES

= looking at & working we

b application,

@ 2011 The Good Thymes Virtual Grocery

Example application home page

But first let's see how that template engine is initialized.

2.2 Creating and configuring the Template Engine

The process(...) method in our filter contained this sentence:

Engine =

Which means that the GTVGApplication class is in charge of creating and configuring one of the most important objects in
a Thymeleaf-enabled application: The TemplateEngine instance.

Our org.thymeleaf.TemplateEngine Objectis initialized like this:
public class GTY
private static
static {

initializ

private static void initializeTemplateEngine () {

rvle
new

templat

Page 7 of 76

Of course there are many ways of configuring a TemplateEngine object, but for now these few lines of code will teach us

enough about the steps needed.

The Template Resolver

Let's start with the Template Resolver:

Template Resolvers are objects that implement an interface from the Thymeleaf API called

org.thymeleaf.templateresolver.ITemplateResolver:

public interface ITemplat

These objects are in charge of determining how our templates will be accessed, and in this GTVG application, the
org.thymeleaf.templateresolver.ServletContextTemplateResolver implementation that we are using specifies that
we are going to retrieve our template files as resources from the Servlet Context: an application-wide
javax.servlet.ServletContext Object that exists in every Java web application, and that resolves resources
considering the web application root as the root for resource paths.

But that's not all we can say about the template resolver, because we can set some configuration parameters on it. First,
the template mode, one of the standard ones:

ver.setTemplateMode ("XHTML") ;

XHTML is the default template mode for servletContextTemplateResolver, butitis good practice to establish it anyway
so that our code documents clearly what is going on.

These prefix and suffix do exactly what it looks like: modify the template names that we will be passing to the engine for
obtaining the real resource names to be used.

Using this configuration, the template name “product/list” would correspond to:

Optionally, the amount of time that a parsed template living in cache will be considered valid can be configured at the
Template Resolver by means of the cacheTTLMs property:

Of course, a template can be expelled from cache before that TTL is reached if the max cache size is reached and it is the

Page 8 of 76

oldest entry currently cached.

Cache behaviour and sizes can be defined by the user by implementing the IcacheManager interface or simply

modifying the standardcacheManager Object set to manage caches by default.
We will learn more about template resolvers later. Now let's have a look at the creation of our Template Engine object.

The Template Engine

Template Engine objects are of class org.thymeleaf.TemplateEngine, and these are the lines that created our engine in the
current example:

templateEngine = new TemplateEngine();

emplateEngine. setTemplateRes ver (templateReso

Rather simple, isn't it? All we need is to create an instance and set the Template Resolver to it.

A template resolver is the only required parameter a TemplateEngine needs, although of course there are many others
that will be covered later (message resolvers, cache sizes, etc). For now, this is all we need.

Our Template Engine is now ready and we can start creating our pages using Thymeleaf.

Page 9 of 76

3 Using Texts

3.1 A multi-language welcome

Our first task will be to create a home page for our grocery site.

The first version we will write of this page will be extremely simple: just a title and a welcome message. This is our /WEB-
INF/templates/home.html file:

<! DO PE html

<html xmlns="http:
xmlns:th="ht

Thyme
http-equiv="Content pe /html;
rel="styl
href="../..

:text="4#{home

</html>

The first thing you will notice here is that this file is XHTML that can be correctly displayed by any browser, because it
does not include any non-XHTML tags (and browsers ignore all attributes they don't understand, like th:text). Also,
browsers will display it in standards mode (not in quirks mode), because it has a well-formed pocTypE declaration.

Next, this is also valid XHTMLZ, because we have specified a Thymeleaf DTD which defines attributes like th: text so that
your templates can be considered valid. And even more: once the template is processed (and all th:* attributes are
removed), Thymeleaf will automatically substitute that DTD declaration in the pocTypE clause by a standard xuTML 1.0
strict one (we will leave this DTD translation features for a later chapter).

A thymeleaf namespace is also being declared for th:* attributes:

<html xmlns="http:/ org/ !)/xhtml"
xmlns:th="http

Note that, if we hadn't cared about our template’s validity or well-formedness at all, we could have simply specified a
standard XHTML 1.0 Strict DOCTYPE , along with no xmlns namespace declarations:

E html PUBLIC "-// /DTD XHTML 1.0 ict//EN" "http:/ ae htmll/DTD/xhtmll-

Thyme rtual (ry</title>
http-equiv="' =" content=" html; cha

<link rel="style " medi all"
th:href="Q@{/

Page 10 of 76

</html>

...and this would still be perfectly processable by Thymeleaf in the XHTML mode (although probably our IDE would make
our life quite miserable showing warnings everywhere).

But enough about validation. Now for the really interesting part of the template: let's see what that th: text attribute is
about.

Using th:text and externalizing text

Externalizing text is extracting fragments of template code out of template files so that they can be kept in specific
separate files (typically .properties files) and that they can be easily substituted by equivalent texts written in other
languages (a process called internationalization or simply i78n). Externalized fragments of text are usually called
“messages”.

Messages have always a key that identifies them, and Thymeleaf allows you to specify that a text should correspond to a
specific message with the #{...} syntax:

<p th:text="4#{home.welcome}">W

What we can see here are in fact two different features of the Thymeleaf Standard Dialect:

e The th:text attribute, which evaluates its value expression and sets the result of this evaluation as the body of
the tag it is in, effectively substituting that “Welcome to our grocery store!” text we see in the code.

e The #{home.welcome} expression, specified in the Standard Expression Syntax, specifying that the text to be used
by the th:text attribute should be the message with the home .welcome key corresponding to whichever locale
we are processing the template with.

Now, where is this externalized text?

The location of externalized text in Thymeleaf is fully configurable, and it will depend on the specific

org.thymeleaf .messageresolver.IMessageResolver implementation being used. Normally, an implementation based
on .properties files will be used, but we could create our own implementations if we wanted, for example, to obtain
messages from a database.

However, we have not specified a message resolver to our Template Engine during initialization, and that means that our
application is using the Standard Message Resolver, implemented by class

org.thymeleaf.messageresolver.StandardMessageResolver.

This standard message resolver expects to find messages for /WEB-INF/templates/home.html in .properties files in the
same folder and with the same name as the template, like:

® /WEB-INF/templates/home en.properties for English texts.

® /WEB-INF/templates/home es.properties for Spanish language texts.

® /WEB-INF/templates/home pt BR.properties for Portuguese (Brazil) language texts.
® /WEB-INF/templates/home.properties for default texts (if locale is not matched).

Let's have a look at our home _es.properties file:

come=iBienvenido a nuestra tienda de co

This is all we need for making Thymeleaf process our template. Let's create our Home controller then.

Contexts

In order to process our template, we will create a HomeController class implementing the 1GTvGcontroller interface

Page 11 of 76

we saw before:

ngine)

The first thing we can see here is the creation of a context. A Thymeleaf context is an object implementing the
org.thymeleaf.context.IContext interface. Contexts should contain all the data required for an execution of the
Template Engine in a variables map, and also reference the Locale that must be used for externalized messages.

public interface

public
public
public

public
public
public
public

The Thymeleaf core library offers an implementation of each of these interfaces:

® org.thymeleaf.context.Context anﬂenwents IContext
o org.thymeleaf.context.WebContextinuﬂernerﬂs IWebContext

And as you can see in the controller code, webcontext is the one we will use. In fact we have to, because the use of a
ServletContextTemplateResolver requires that we use a context implementing IWebContext.

Only two of those three constructor arguments are required, because the default locale for the system will be used if
none is specified (although you should never let this happen in real applications).

From the interface definition we can tell that webcontext will offer specialized methods for obtaining the request
parameters and request, session and application attributes . But in fact webcontext will do a little bit more than just
that:

e Add all the request attributes to the context variables map.
e Add a context variable called param containing all the request parameters.
e Add a context variable called session containing all the session attributes.

Page 12 of 76

e Add a context variable called application containing all the ServletContext attributes.

Just before execution, a special variable is set into all context objects (implementations of Icontext), including both
Context and WebContext, called the execution info (execInfo). This variable contains two pieces of data that can be
used from within your templates:

e The template name (${execInfo.templateName}), the name specified for engine execution, and corresponding
to the template being executed.

e The current date and time (${execInfo.now}), @ Calendar Object corresponding to the moment the template
engine started its execution for this template.

Executing the template engine

With our context object ready, all we need is executing the template engine specifying the template name and the
context, and passing on the response writer so that the response can be written to it:

ODOCTYPE html PUBLIC "-//W3C/, ict//EN" "http://v R/xhtmll/DTD/xhtmll-
.dtd">

d Thymes Vi
< content="" ml; fl 3" http-equiv=""
<link rel="stylesheet ¢ t/css" media="all" hre

</he
<body>

iBie

3.2 More on texts and variables

Unescaped Text

The simplest version of our Home page seems to be ready now, but there is something we have not thought about...
what if we had a message like this?

1e to our fantas

Which is not exactly what we expected, because our tag has been escaped and therefore it will be displayed at the

browser.

This is the default behaviour of the th:text attribute. If we want Thymeleaf to respect our XHTML tags and not escape
them, we will have to use a different attribute: th:utext (for “unescaped text"):

Page 13 of 76

Using and displaying variables

Now let's add some more contents to our home page. For example, we could want to display the date below our
welcome message, like this:

our fant

12 july 2010

etLocale());

dy>

<p th:utext="#{ho

n th:text="'

As you can see, we are still using the th: text attribute for the job (and that's correct, because we want to substitute the
tag's body), but the syntax is a little bit different this time and instead of a #{...} expression value, we are using a
${...} one.Thisis a variable expression value, and it contains an expression in a language called OGNL (Object-Graph
Navigation Language) that will be executed on the context variables map.

The ${today} expression simply means “get the variable called today"”, but these expressions could be more complex
(like ${user.name} for “get the variable called user, and call its getName () method").

There are quite a lot of possibilities in attribute values: messages, variable expressions... and quite a lot more. Next
chapter will show us what all these possibilities are.

Page 14 of 76

4 Standard Expression Syntax

We will make a small break in the development of our grocery virtual store to learn about one of the most important
parts of the Thymeleaf Standard Dialect: the Thymeleaf Standard Expression syntax.

We have already seen two types of valid attribute values expressed in this syntax: message and variable expressions:

<p th:utext="#{h

<p>Today is: <span th:text="${to

But there are more types of value we don't know yet, and more interesting detail to know about the ones we already
know. First, let's see a quick summary of the Standard Expression features:

e Simple expressions:
o Variable Expressions: ${...}
o Selection Variable Expressions: *{...}
o Message Expressions: #{...}
o Link URL Expressions: @{. ..}
e literals

o Text literals: 'one text', 'Another one!',...
o Number literals: 0, 34, 3.0, 12.3,...
o Boolean literals: true, false
o Null literal: nu11
o Literal tokens: one, sometext, main,...
e Text operations:
o String concatenation: +
o Literal substitutions: |The name is ${name} |
e Arithmetic operations:
o Binary operators: +, -, *, /, %
o Minus sign (unary operator): -
e Boolean operations:
o Binary operators: and, or
o Boolean negation (unary operator): !, not
e Comparisons and equality:
o Comparators: >, <, >=, <= (gt, 1t, ge, le)
o Equality operators: ==, !'= (eq, ne)
e Conditional operators:
o |If-then: (if) ? (then)
o If-then-else: (if) ? (then) : (else)
o Default: (value) ?: (defaultvalue)

All these features can be combined and nested:

'Administrator' : (${user.type} ?: 'Unkn

4.1 Messages

As we already know, #{ ...} message expressions allow us to link this:

<p th:utext="#{home.we

Page 15 of 76

...to this:

home.welcome=;Bienvenido a nuestra tienda de comestibles!

But there’s one aspect we still haven't thought of: what happens if the message text is not completely static? What if, for
example, our application knew who is the user visiting the site at any moment and we wanted to greet him/her by name?

Parameters are specified according to the java. text.MessageFormat Sstandard syntax, which means you could add
format to numbers and dates as specified in the APl docs for that class.

In order to specify a value for our parameter, and given an HTTP session attribute called user, we would have:

<p th:utext="#{h
e to our

If needed, several parameters could be specified, separated by commas. In fact, the message key itself could come from a
variable:

4.2 Variables

We already mentioned that ${...} expressions are in fact OGNL (Object-Graph Navigation Language) expressions
executed on the map of variables contained in the context.

For detailed info about OGNL syntax and features, you should read the OGNL Language Guide at:
http://commons.apache.org/ognl/

From OGNL's syntax, we know that this:

an th:text="S${today

Page 16 of 76

http://commons.apache.org/ognl/

But getter method navigation is just one of OGNL's features. Let's see some more:

1. father .name}

1['father'] ["name"']}

n Zucchini'].age}

ay[0] .name}

Expression Basic Objects

When evaluating OGNL expressions on the context variables, some objects are made available to expressions for higher
flexibility. These objects will be referenced (per OGNL standard) starting with the # symbol:

e i#ctx:the context object.

e #vars: the contextvariables.

e #locale:the contextlocale.

® fhttpServletRequest: (Only in Web Contexts) the HttpServlietRequest object.
® #httpSession: (only in Web Contexts) the HttpSession object.

So we can do this:

Establish ocale country: <span th:text="S${#1

You can read the full reference of these objects in theAppendix A.

Expression Utility Objects

Besides these basic objects, Thymeleaf will offer us a set of utility objects that will help us perform common tasks in our
expressions.

e i#dates: utility methods for java.util.Date objects: formatting, component extraction, etc.

® jcalendars:analogous to #dates, butfor java.util.calendar objects.

e #numbers: utility methods for formatting numeric objects.

e #strings: utility methods for string objects: contains, startsWith, prepending/appending, etc.
e #objects: utility methods for objects in general.

® i#bools: utility methods for boolean evaluation.

e #arrays: utility methods for arrays.

e #lists: utility methods for lists.

Page 17 of 76

e #sets: utility methods for sets.

e #maps: utility methods for maps.

e i#aggregates: utility methods for creating aggregates on arrays or collections.

e #messages: utility methods for obtaining externalized messages inside variables expressions, in the same way as

they would be obtained using #{...} syntax.
e #ids: utility methods for dealing with id attributes that might be repeated (for example, as a result of an

iteration).

You can check what functions are offered by each of these utility objects in theAppendix B.

Reformatting dates in our home page

Now we know about these utility objects, we could use them to change the way in which we show the date in our home
page. Instead of doing this in our HomeController:

at ("dd MMMM

an th:text="

4.3 Expressions on selections (asterisk syntax)
Variable expressions not only can be writtenin ${...} expressions, butalsoin *{...} ones.

There is an important difference, though: the asterisk syntax evaluates expressions on selected objects rather than on the
whole context variables map. This is: as long as there is no selected object, the dollar and the asterisk syntaxes do exactly
the same.

And what is that object selection thing? A th:object attribute. Let's use it in our user profile (userprofile.html) page:

< {f
th:text="*

Page 18 of 76

Of course, dollar and asterisk syntax can be mixed:

th:object=" ¢
e: span thitext="*{fir

an th:text="$

When an object selection is in place, the selected object will be also available to dollar expressions as the#object
expression variable:

an th:text="%*{
th:text="*{
{span th:text="*{

4.4 Link URLs

Because of their importance, URLs are first-class citizens in web application templates, and theThymeleaf Standard Dialect
has a special syntax for them, the @ syntax: @{...}

There are different types of URLs:

e Absolute URLs, like http://www.thymeleaf.org
e Relative URLs, which can be:
o Page-relative, like user/login.html
o Context-relative, like /itemdetails?id=3 (context name in server will be added automatically)
o Server-relative, like ~/billing/processinvoice (allows calling URLs in another context (= application) in
the same server.
o Protocol-relative URLs, like //code.jquery.com/jquery-2.0.3.min.js

Thymeleaf can handle absolute URLs in any situation, but for relative ones it will require you to use a context object that
implements the rwebcontext interface, which contains some info coming from the HTTP request and needed to create
relative links.

Let's use this new syntax. Meet the th:href attribute:

<a href="deta
th:href="@{http:

<a href="details.html" th:href="@{

th:href="@{

Some things to note here:

e th:href is an attribute modifier attribute: once processed, it will compute the link URL to be used and set the href
attribute of the <a> tag to this URL.

Page 19 of 76

e We are allowed to use expressions for URL parameters (as you can see in orderId=${o.id}). The required URL-
encoding operations will also be automatically performed.

e |[f several parameters are needed, these will be separated by commas like
@{/order/process (execId=$ {execId} , execType='FAST') }

e Variable templates are also allowed in URL paths, like @{/order/{orderId}/details (orderId=${orderId}) }

e Relative URLs starting with / (like /order/details) will be automatically prefixed the application context name.

e [f cookies are not enabled or this is not yet known, a "; jsessionid=..." suffix might be added to relative URLs
so that session is preserved. This is called URL Rewriting, and Thymeleaf allows you to plug in your own rewriting
filters by using the response.encodeURL (. ..) mechanism from the Servlet API for every URL.

e The th:href tag allowed us to (optionally) have a working static href attribute in our template, so that our
template links remained navigable by a browser when opened directly for prototyping purposes.

As was the case with the message syntax (#{ ...}), URL bases can also be the result of evaluating another expression:

th:href="Q@{${url} (orderI

th:href="Q@{"'/details/'+$

A menu for our home page

Now we know how to create link URLs, what about adding a small menu in our home for some of the other pages in the
site?

</p>

html" th:href
.html" th:href="@
th:href="0@{

html" th:href="0a

4.5 Literals

Text literals

Text literals are just character strings specified between single quotes. They can include any character, but you should
escape any single quotes inside them as \'.

Number literals

Numeric literals look exactly like what they are: numbers.

th:text="2013">1492.</p>
it will be 1494.</p>

Boolean literals

The boolean literals are true and false. For example:

v th:if="S${u

Page 20 of 76

Note that in the above example, the == false is written outside the braces, and thus it is Thymeleaf itself who takes care
of it. If it were written inside the braces, it would be the responsibility of the OGNL/SpringEL engines:

<div th:if="S${user.is!

The null literal

The nul1l literal can be also used:

S{variable.something} == null">

Literal tokens
Numeric, boolean and null literals are in fact a particular case ofliteral tokens.

These tokens allow a little bit of simplification in Standard Expressions. They work exactly the same as text literals
("...") buttheyonly allow letters (a-z and a-z), numbers (0-9), brackets ([and 1), dots (.), hyphens (-) and
underscores (_). So no whitespaces, no commas, etc.

The nice part? Tokens don't need any quotes surrounding them. So we can do this:

instead of:

<div th:class="'content'">...</div>

4.6 Appending texts

Texts, no matter whether they are literals or the result of evaluating variable or message expressions, can be easily
appended using the + operator:

th:text=""'The name of the user is ' + ${user.name}"

4.7 Literal substitutions

Literal substitutions allow the easy formatting of strings containing values from variables without the need to append
literalswith "..." + " ..".

These substitutions must be surrounded by vertical bars (|), like:

N RIS

S{user.name} +

<span th:text="${onevar}

Page 21 of 76

Note: only variable expressions (${ ...}) are allowed inside | ... | literal substitutions. No other literals ('..."),
boolean/numeric tokens, conditional expressions etc. are.

4.8 Arithmetic operations

Some arithmetic operations are also available: +, -, *, / and %.

th:with="isEven=(${prodStat.count}

Note that these operators can also be applied inside OGNL variable expressions themselves (and in that case will be
executed by OGNL instead of the Thymeleaf Standard Expression engine):

th:with="isEven=${prodStat.count %

Note that textual aliases exist for some of these operators: div (/), mod (%).

4.9 Comparators and Equality

Values in expressions can be compared with the >, <, >= and <= symbols, as usual, and also the == and '= operators
can be used to check equality (or the lack of it). Note that XML establishes that the < and > symbols should not be used
in attribute values, and so they should be substituted by s1t; and sgt;.

"

'Development' : 'Production')

Note that textual aliases exist for some of these operators: gt (>), 1t (<), ge (>=), 1e (<=), not (!). Also eq (==),

neg/ne (!'=).

4.10 Conditional expressions

Conditional expressions are meant to evaluate only one of two expressions depending on the result of evaluating a
condition (which is itself another expression).

Let's have a look at an example fragment (introducing another attribute modifier, this time th:class):

All three parts of a conditional expression (condition, then and else) are themselves expressions, which means that
they can be variables (s{...}, *{...}), messages (#{...}), URLs(@{...})orliterals("...").

Conditional expressions can also be nested using parentheses:

nag

<tr th:class="${

</tr>

<tr th:class="5{

</tr>

Page 22 of 76

4.11 Default expressions (Elvis operator)

A default expression is a special kind of conditional value without a then part. It is equivalent to the Elvis operator present
in some languages like Groovy, and allows to specify two expressions, being the second one evaluated only in the case of
the first one returning null.

Let's see it in action in our user profile page:

th:object="5

an th:text="*

As you can see, the operator is 2:, and we use it here to specify a default value for a name (a literal value, in this case)
only if the result of evaluating *{age} is null. This is therefore equivalent to:

(*{admin}? 'Admin'

4.12 Preprocessing

In addition to all these features for expression processing, Thymeleaf offers to us the possibility ofpreprocessing
expressions.

And what is that preprocessing thing? It is an execution of the expressions done before the normal one, that allows the
modification of the actual expression that will be eventually executed.

Preprocessed expressions are exactly like normal ones, but appear surrounded by a double underscore symbol (like

__${expression}__).

Let's imagine we have an i18n Messages_fr.properties entry containing an OGNL expression calling a language-specific

static method, like:

@myapp.translator.Translator@translateToFrench ({0})

...and a Messages_es.properties equivalent:

article. text=Q@myapp.translator.Translator@translateT

We can create a fragment of markup that evaluates one expression or the other depending on the locale. For this, we will
first select the expression (by preprocessing) and then let Thymeleaf execute it:

<p th:text="¢

The preprocessing String _ can be escaped in attributes using __.

Page 23 of 76

5 Setting Attribute Values

This chapter will explain the way in which we can set (or modify) values of attributes in our markup tags, possibly the
next most basic feature we will need after setting the tag body content.

5.1 Setting the value of any attribute

Say our website publishes a newsletter, and we want our users to be able to subscribe to it, so we create a/weB-

INF/templates/subscribe.html template with a form:

It looks quite OK, but the fact is that this file looks more like a static XHTML page than a template for a web application.
First, the action attribute in our form statically links to the template file itself, so that there is no place for useful URL
rewriting. Second, the value attribute in the submit button makes it display a text in English, but we'd like it to be
internationalized.

Enter then the th:attr attribute, and its ability to change the value of attributes of the tags it is set in:

<form

type="text" name="emai
mit" value="S

The concept is quite straightforward: th:attr simply takes an expression that assigns a value to an attribute. Having
created the corresponding controller and messages files, the result of processing this file will be as expected:

<form action="/gtvc

name="emai
it" value=

Besides the new attribute values, you can also see that the applicacion context name has been automatically prefixed to
the URL base in /gtvg/subscribe, as explained in the previous chapter.

But what if we wanted to set more than one attribute at a time? XML rules do not allow you to set an attribute twice in a
tag, so th:attr will take a comma-separated list of assignments, like:

<img src="../..
th:attr="src=

de d Thymes" alt="Log

5.2 Setting value to specific attributes

Page 24 of 76

By now, you might be thinking that something like:

<input type="submit" wvalue="St

...Is quite an ugly piece of markup. Specifying an assignment inside an attribute’s value can be very practical, but it is not
the most elegant way of creating templates if you have to do it all the time.

Thymeleaf agrees with you. And that's why in fact th:attr is scarcely used in templates. Normally, you will be using
other th:* attributes whose task is setting specific tag attributes (and not just any attribute like th:attr).

And which attribute does the Standard Dialect offer us for setting the value attribute of our button? Well, in a rather
obvious manner, it's th:value. Let's have a look:

<input type="submit" wvalue="Subscribe me!" th:value="#{su

"

th:action="@{

<form action="subscribe.html

list.html"™ th:href="@/{

There are quite a lot of attributes like these, each of them targeting a specific XHTML or HTMLS5 attribute:

th:abbr th:accept th:accept-charset
th:accesskey th:action th:align
th:alt th:archive th:audio
th:autocomplete th:axis th:background
th:bgcolor th:border th:cellpadding
th:cellspacing th:challenge th:charset
th:cite th:class th:classid
th:codebase th:codetype th:cols
th:colspan th:compact th:content
th:contenteditable th:contextmenu th:data
th:datetime th:dir th:draggable
th:dropzone th:enctype th:for

th:form th:formaction th:formenctype
th:formmethod th:formtarget th:frame
th:frameborder th:headers th:height
th:high th:href th:hreflang
th:hspace th:http-equiv th:icon

th:id th:keytype th:kind
th:label th:lang th:list
th:longdesc th:low th:manifest
th:marginheight th:marginwidth th:max
th:maxlength th:media th:method
th:min th:name th:optimum
th:pattern th:placeholder th:poster
th:preload th:radiogroup th:rel

th:rev th:rows th:rowspan

Page 25 of 76

th:rules th:sandbox th:scheme

th:scope th:scrolling th:size
th:sizes th:span th:spellcheck
th:src th:srclang th:standby
th:start th:step th:style
th:summary th:tabindex th:target
th:title th:type th:usemap
th:value th:valuetype th:vspace
th:width th:wrap th:xmlbase
th:xmllang th:xmlspace

5.3 Setting more than one value at a time

There are two rather special attributes called th:alt-title and th:lang-xmllang which can be used for setting two
attributes to the same value at the same time. Specifically:

e th:alt-title willset alt and title.
® th:lang-xmllang Will set lang and xml:lang.

For our GTVG home page, this will allow us to substitute this:

<img src="../.. S C .
th:attr="src=0@{/images/gtvglogo.png},title=#{logo},alt=#{logo}" />

th:title="#{logo}" th:alt="#{logo}" />

..by this:

—_n

<img src=

th:src="Q/{

5.4 Appending and prepending

Working in an equivalent way to th:attr, Thymeleaf offers the th:attrappend and th:attrprepend attributes, which
append (suffix) or prepend (prefix) the result of their evaluation to the existing attribute values.

For example, you might want to store the name of a CSS class to be added (not set, just added) to one of your buttons in
a context variable, because the specific CSS class to be used would depend on something that the user did before. Easy:

<input type="button" value="Do it!" class="btn" th:attrappend="clas

If you process this template with the cssstyle variable set to "warning", you will get:

/

<input type="button" wvalue="Do it!" class="btn warning" />

There are also two specific appending attributes in the Standard Dialect: the th:classappend and th:styleappend
attributes, which are used for adding a CSS class or a fragment of style to an element without overwriting the existing
ones:

Page 26 of 76

<tr th:each="prod : ${prods}" class="row" th:classappend="S{prodSta

(Don't worry about that th:each attribute. It is an iterating attribute and we will talk about it later.)

5.5 Fixed-value boolean attributes

Some XHTML/HTMLS5 attributes are special in that, either they are present in their elements with a specific and fixed
value, or they are not present at all.

For example, checked:

—, 1 "

<input type="c x" name="optionl

]

<input type="c name="option2

No other value than "checked" is allowed according to the XHTML standards for the checked attribute (HTML5 rules are
a little more relaxed on that). And the same happens with disabled, multiple, readonly and selected.

The Standard Dialect includes attributes that allow you to set these attributes by evaluating a condition, so that if
evaluated to true, the attribute will be set to its fixed value, and if evaluated to false, the attribute will not be set:

<input type="checkbox" name="active" th:checked="${user.active}

The following fixed-value boolean attributes exist in the Standard Dialect:

th:async th:autofocus th:autoplay
th:checked th:controls th:declare
th:default th:defer th:disabled
th:formnovalidate th:hidden th:ismap
th:loop th:multiple th:novalidate
th:nowrap th:open th:pubdate
th:readonly th:required th:reversed
th:scoped th:seamless th:selected

5.6 Support for HTML5-friendly attribute and element names

It is also possible to use a completely different syntax to apply processors to your templates, more HTML5-friendly.

<tr data-th-each="u
<td data-th-text="

The data-{prefix}-{name} Syntax is the standard way to write custom attributes in HTMLS5, without requiring
developers to use any namespaced names like th:*. Thymeleaf makes this syntax automatically available to all your
dialects (not only the Standard ones).

There is also a syntax to specify custom tags: {prefix}-{name}, which follows the W3C Custom Elements specification (a
part of the larger W3C Web Components spec). This can be used, for example, for the th:block element (or also th-
block), which will be explained in a later section.

Important: this syntax is an addition to the namespaced th:* one, it does not replace it. There is no intention at all to
deprecate the namespaced syntax in the future.

Page 27 of 76

Page 28 of 76

6 Iteration

So far we have created a home page, a user profile page and also a page for letting users subscribe to our newsletter...
but what about our products? Shouldn’t we build a product list to let visitors know what we sell? Well, obviously yes. And
there we go now.

6.1 Iteration basics

For listing our products in our /WEB-INF/templates/product/list.html page we will need a table. Each of our products
will be displayed in a row (a <tx> element), and so for our template we will need to create atemplate row —one that will
exemplify how we want each product to be displayed— and then instruct Thymeleaf to iterate it once for each product.

The Standard Dialect offers us an attribute for exactly that, th:each.

Using th:each

For our product list page, we will need a controller that retrieves the list of products from the service layer and adds it to
the template context:

public void

<!D PE html EM "http: thymeleaf.org/dtd/xhtmll-strict-thym

<html xmlns="http: '] “ml"

a http-equiv=' g
< rel=" y1e t c "
href="../../.. th:href="0@

<tr th:each="
<td th:text
th:text="5
th:text=

Page 29 of 76

./home.html" th:href="@{/}">Return to home

</html>

That prod : ${prods} attribute value you see above means “for each element in the result of evaluating ${prods},
repeat this fragment of template setting that element into a variable called prod”. Let's give a name each of the things we
see:

e We will call ${prods} the iterated expression or iterated variable.
e We will call prod the iteration variable or simply iter variable.

Note that the prod iter variable will only be available inside the <tr> element (including inner tags like <td>).

Iterable values

Not only java.util.List objects can be used for iteration in Thymeleaf. In fact, there is a quite complete set of objects
that are considered iterable by a th:each attribute:

e Any object implementing java.util.Iterable

e Any object implementing java.util.Map.When iterating maps, iter variables will be of class
java.util.Map.Entry.

e Any array

e Any other object will be treated as if it were a single-valued list containing the object itself.

6.2 Keeping iteration status

When using th:each, Thymeleaf offers a mechanism useful for keeping track of the status of your iteration: thestatus
variable.

Status variables are defined within a th:each attribute and contain the following data:

e The current jteration index, starting with 0. This is the index property.

e The current iteration index, starting with 1. This is the count property.

e The total amount of elements in the iterated variable. This is the size property.

e The iter variable for each iteration. This is the current property.

e Whether the current iteration is even or odd. These are the even/odd boolean properties.
e Whether the current iteration is the first one. This is the £first boolean property.

e Whether the current iteration is the last one. This is the 1ast boolean property.

Let's see how we could use it within the previous example:

}" th:class="${

As you can see, the status variable (iterstat in this example) is defined in the th:each attribute by writing its name
after the iter variable itself, separated by a comma. As happens to the iter variable, the status variable will only be

Page 30 of 76

available inside the fragment of code defined by the tag holding the th:each attribute.

Let's have a look at the result of processing our template:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtmll/DTD/xhtmll-
strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>Good Thymes Virtual Grocery</title>

<meta content="text/html; charset=UTF-8" http-equiv="Content-Type"/>

<link rel="stylesheet" type="text/css" media="all" href="/gtvg/css/gtvg.cs:s
</head>

<body>
<hl1>Product list</hl1>

<table>

<tr>
<th colspan="1" rowspan="1">NAME</th>
<th colspan="1" rowspan="1">PRICE</th>
<th colspan="1" rowspan="1">IN STOCK</th>

</tr>

<tr>
<td colspan="1" rowspan="1">Fresh Sweet Basil</td>
<td colspan="1" rowspan="1">4.99</td>
<td colspan="1" rowspan="1">yes</td>

</tr>

<tr class="odd">
<td colspan="1" rowspan="1">Italian Tomato</td>
<td colspan="1" rowspan="1">1.25</td>
<td colspan="1" rowspan="1">no</td>

</tr>

<tr>
<td colspan="1" rowspan="1">Yellow Bell Pepper</td>
<td colspan="1" rowspan="1">2.50</td>
<td colspan="1" rowspan="1">yes</td>

</tr>

<tr class="odd">
<td colspan="1" rowspan="1">0ld Cheddar</td>
<td colspan="1" rowspan="1">18.75</td>
<td colspan="1" rowspan="1">yes</td>

</tr>

</table>

<p>
Return to home
</p>

</body>

</html>

Note that our iteration status variable has worked perfectly, establishing the odd CSS class only to odd rows (row
counting starts with 0).

All those colspan and rowspan attributes in the <td> tags, as well as the shape one in <a> are automatically
added by Thymeleaf in accordance with the DTD for the selected XHTML 1.0 Strict standard, that establishes
those values as default for those attributes (remember that our template didn't set a value for them). Don't
worry about them at all, because they will not affect the display of your page. As an example, if we were using
HTMLS (which has no DTD), those attributes would never be added.

If you don't explicitly set a status variable, Thymeleaf will always create one for you by suffixingstat to the name of the
iteration variable:

<table>
<tr>

Page 31 of 76

r>
<tr th:each=

Page 32 of 76

7 Conditional Evaluation

7.1 Simple conditionals: “if” and “unless”

Sometimes you will need a fragment of your template only to appear in the result if a certain condition is met.

For example, imagine we want to show in our product table a column with the number of comments that exist for each
product and, if there are any comments, a link to the comment detail page for that product.

In order to do this, we would use the th:if attribute:

<table>
<tr>
<th>NAME</th>
<th>PRICE</th>
<th>IN STOCK</th>
<th>COMMENTS</th>
</tr>
<tr th:each="prod : ${prods}" th:class="${prodStat.odd}? 'odd'">
<td th:text="${prod.name}">Onions</td>
<td th:text="${prod.price}">2.41</td>
<td th:text="${prod.inStock}? #{true} : #{false}">yes</td>
<td>
2 comment/s
<a href="comments.html"
th:href="@{/product/comments (prodId=S${prod.id}) }"
th:if="${not #lists.isEmpty (prod.comments) }">view
</td>
</tr>
</table>

Quite a lot of things to see here, so let's focus on the important line:

<a href="comments.html"
th:href="@{/product/comments (prodId=S${prod.id}) } "
th:if="${not #lists.isEmpty (prod.comments) }">view

There is little to explain from this code, in fact: We will be creating a link to the comments page (with URL
/product/comments) With @ prodIid parameter set to the id of the product, but only if the product has any comments.

Let's have a look at the resulting markup (getting rid of the defaulted rowspan and colspan attributes for a cleaner view):

<table>
<tr>
<th>NAME</th>
<th>PRICE</th>
<th>IN STOCK</th>
<th>COMMENTS</th>
</tr>
<tr>
<td>Fresh Sweet Basil</td>
<td>4.99</td>
<td>yes</td>
<td>
0 comment/s
</td>
</tr>
<tr class="odd">
<td>Italian Tomato</td>
<td>1.25</td>
<td>no</td>
<td>
2 comment/s
view
</td>

Page 33 of 76

‘span>

<tr class="odd">

Perfect! That's exactly what we wanted.

Note that the th:if attribute will not only evaluate boolean conditions. Its capabilities go a little beyond that, and it will
evaluate the specified expression as true following these rules:

e [fvalueis not null:

o Ifvalueis aboolean andis true.

o [fvalueis a number and is non-zero

o Ifvalue is a character and is non-zero

o Ifvalueis a String and is not “false”, “off” or “no”

o Ifvalue is not a boolean, a number, a character or a String.
e (If value is null, th:if will evaluate to false).

Also, th:if has a negative counterpart, th:unless, which we could have used in the previous example instead of using
a not inside the OGNL expression:

<a href="comme

th:href="0{
th:unless="$

7.2 Switch statements

There is also a way to display content conditionally using the equivalent of aswitch structure in Java: the th:switch /
th:case attribute set.

They work exactly as you would expect:

th:switch="
th:case=""a

th:case="#{

Note that as soon as one th:case attribute is evaluated as true, every other th:case attribute in the same switch
context is evaluated as false.

The default option is specified as th:case="+":

:switch="

:case=""admin'">U

:case="#{rol
:case="*"

Page 34 of 76

Page 35 of 76

8 Template Layout

8.1 Including template fragments

Defining and referencing fragments

We will often want to include in our templates fragments from other templates. Common uses for this are footers,
headers, menus...

In order to do this, Thymeleaf needs us to define the fragments available for inclusion, which we can do by using the
th: fragment attribute.

Now let's say we want to add a standard copyright footer to all our grocery pages, and for that we define a /weB-
INF/templates/footer.html file containing this code:

<!DO (PE html ¢ [WWw .org/dtd/xhtmll-strict-thymeleaf-4.dtd">

<html xmlns="http:
xmlns:th="http:/

th:fragment=
2011 The

The code above defines a fragment called copy that we can easily include in our home page using one of the
th:include Or th:replace attributes:

The syntax for both these inclusion attributes is quite straightforward. There are three different formats:

® ‘'templatename::domselector" Or the equivalent templatename: : [domselector] Includes the fragment
resulting from executing the specified DOM Selector on the template named templatename.
o Note that domselector can be a mere fragment name, so you could specify something as simple as
templatename: : fragmentname like in the footer :: copy above.

DOM Selector syntax is similar to XPath expressions and CSS selectors, see the Appendix C for more info on this
syntax.

e "templatename" Includes the complete template named templatename.

Note that the template name you use in th:include/ th:replace tags will have to be resolvable by the
Template Resolver currently being used by the Template Engine.

Page 36 of 76

® ::domselector" Or "this::domselector" Includes a fragment from the same template.

Both templatename and domselector in the above examples can be fully-featured expressions (even conditionals!) like:

v th:include="footer :: (${user.is 1in}? #{foot } : #{footer.normaluser})"></div>

Fragments can include any th:* attributes. These attributes will be evaluated once the fragment is included into the
target template (the one with the th:include/th:replace attribute), and they will be able to reference any context
variables defined in this target template.

A big advantage of this approach to fragments is that you can write your fragments' code in pages that are
perfectly displayable by a browser, with a complete and even validating XHTML structure, while still retaining the
ability to make Thymeleaf include them into other templates.

Referencing fragments without th: fragment

Besides, thanks to the power of DOM Selectors, we can include fragments that do not use any th: fragment attributes. It
can even be markup code coming from a different application with no knowledge of Thymeleaf at all:

7 th:include="footer

Difference between th:include and th:replace

And what is the difference between th:include and th:replace? Whereas th:include will include the contents of the
fragment into its host tag, th:replace will actually substitute the host tag by the fragment's. So that an HTML5 fragment
like this:

oter th:fragment="c
2011 The G

iv th:include="fc
v th:replace="f

...will result in:

Page 37 of 76

ymes Virtual Grc

Virtual G

The th:substituteby attribute can also be used as an alias for th:replace, but the latter is recommended. Note that
th:substituteby might be deprecated in future versions.

8.2 Parameterizable fragment signatures

In order to create a more function-like mechanism for the use of template fragments, fragments defined with
th:fragment can specify a set of parameters:

v th:fragment="fr:
< th:text="5{

v th:include="::
v th:include=

<div th:include="::frag (twovar=

Fragment local variables without fragment signature

Even if fragments are defined without signature, like this:

<div th:fragment="frag">

</div>

We could use the second syntax specified above to call them (and only the second one):

<div th:include="::frag" th:with="onevar=${valuel}, twovar=

Note that this specification of local variables for a fragment —no matter whether it has a signature or not— does not
cause the context to emptied previously to its execution. Fragments will still be able to access every context variable
being used at the calling template like they currently are.

th:assert for in-template assertions

Page 38 of 76

The th:assert attribute can specify a comma-separated list of expressions which should be evaluated and produce true
for every evaluation, raising an exception if not.

<div th:assert="S${onevar}, (S{twovar} != 43
This comes in handy for validating parameters at a fragment signature:

<header th:fragment="contentheader (title)" th:assert="${!#strings.isEmpty (title)}">...</header>

8.3 Removing template fragments

Let's revisit the last version of our product list template:

<table>
<tr>
<th>NAME</th>
<th>PRICE</th>
<th>IN STOCK</th>
<th>COMMENTS</th>
</tr>
<tr th:each="prod : ${prods}" th:class="${prodStat.odd}? 'odd'">
<td th:text="${prod.name}">Onions</td>
<td th:text="${prod.price}">2.41</td>
<td th:text="${prod.inStock}? #{true} : #{false}">yes</td>
<td>
2 comment/s
<a href="comments.html"
th:href="@{/product/comments (prodId=S${prod.id}) } "
th:unless="${#lists.isEmpty (prod.comments) }">view
</td>
</tr>
</table>

This code is just fine as a template, but as a static page (when directly open by a browser without Thymeleaf processing
it) it would not make a nice prototype.

Why? Because although perfectly displayable by browsers, that table only has a row, and this row has mock data. As a
prototype, it simply wouldn't look realistic enough... we should have more than one product, we need more rows.

So let's add some:

<table>
<tr>
<th>NAME</th>
<th>PRICE</th>
<th>IN STOCK</th>
<th>COMMENTS</th>
</tr>
<tr th:each="prod : ${prods}" th:class="${prodStat.odd}? 'odd'">
<td th:text="${prod.name}">Onions</td>
<td th:text="${prod.price}">2.41</td>
<td th:text="${prod.inStock}? #{true} : #{false}">yes</td>
<td>
2 comment/s
<a href="comments.html"
th:href="@{/prod /comments (prodId=${prod.id}) }"
th:unless="${#lists.isEmpty (prod.comments) }">view
</td>
</tr>
<tr class="odd">
<td>Blue Lettuce</td>
<td>9.55</td>
<td>no</td>
<td>
0 comment/s
</td>

Page 39 of 76

</tr>
<tr>
<td>Mild Cinnamon</td>
<td>1.99</td>
<td>yes</td>
<td>
3 comment/s
view
</td>
</tr>
</table>

Ok, now we have three, definitely better for a prototype. But... what will happen when we process it with Thymeleaf?:

<table>
<tr>
<th>NAME</th>
<th>PRICE</th>
<th>IN STOCK</th>
<th>COMMENTS</th>
</tr>
<tr>
<td>Fresh Sweet Basil</td>
<td>4.99</td>
<td>yes</td>
<td>
0 comment/s
</td>
</tr>
<tr class="odd">
<td>Italian Tomato</td>
<td>1.25</td>
<td>no</td>
<td>
2 comment/s
view
</td>
</tr>
<tr>
<td>Yellow Bell Pepper</td>
<td>2.50</td>
<td>yes</td>
<td>
0 comment/s
</td>
</tr>
<tr class="odd">
<td>0ld Cheddar</td>
<td>18.75</td>
<td>yes</td>
<td>
1 comment/s
view
</td>
</tr>
<tr class="odd">
<td>Blue Lettuce</td>
<td>9.55</td>
<td>no</td>
<td>
0 comment/s
</td>
</tr>
<tr>
<td>Mild Cinnamon</td>
<td>1.99</td>
<td>yes</td>
<td>
3 comment/s
view
</td>
</tr>
</table>

Page 40 of 76

The last two rows are mock rows! Well, of course they are: iteration was only applied to the first row, so there is no
reason why Thymeleaf should have removed the other two.

We need a way to remove those two rows during template processing. Let's use the th:remove attribute on the second

and third <tr> tags:

<table>
<tr>
<th>NAME</th>
<th>PRICE</th>
<th>IN STOCK</th>
<th>COMMENTS</th>
</tr>
<tr th:each="prod : ${prods}" th:class="${prodStat.odd}? 'odd'">
<td th:text="${prod.name}">Onions</td>
<td th:text="${prod.price}">2.41</td>
<td th:text="${prod.inStock}? #{true} : #{false}">yes</td>
<td>
2 comment/s
<a href="comments.html"
th:href="@{/product/comments (prodId=S${prod.id}) }"
th:unless="${#lists.isEmpty (prod.comments) }">view
</td>
</tr>
<tr class="odd" th:remove="all">
<td>Blue Lettuce</td>
<td>9.55</td>
<td>no</td>
<td>
0 comment/s
</td>
</tr>
<tr th:remove="all">
<td>Mild Cinnamon</td>
<td>1.99</td>
<td>yes</td>
<td>
3 comment/s
view
</td>
</tr>
</table>

Once processed, everything will look again as it should:

<table>
<tr>
<th>NAME</th>
<th>PRICE</th>
<th>IN STOCK</th>
<th>COMMENTS</th>
</tr>
<tr>
<td>Fresh Sweet Basil</td>
<td>4.99</td>
<td>yes</td>
<td>
0 comment/s
</td>
</tr>
<tr class="odd">
<td>Italian Tomato</td>
<td>1.25</td>
<td>no</td>
<td>
2 comment/s
view
</td>
</tr>
<tr>
<td>Yellow Bell Pepper</td>
<td>2.50</td>
<td>yes</td>

Page 41 of 76

<td>
0 comment/s
</td>
</tr>
<tr class="odd">
<td>01ld Cheddar</td>
<td>18.75</td>
<td>yes</td>
<td>
1 comment/s
view
</td>
</tr>
</table>

And what about that a11 value in the attribute, what does it mean? Well, in fact th: remove can behave in five different
ways, depending on its value:

all:Remove both the containing tag and all its children.

body: Do not remove the containing tag, but remove all its children.

tag: Remove the containing tag, but do not remove its children.
all-but-first: Remove all children of the containing tag except the first one.
none : Do nothing. This value is useful for dynamic evaluation.

What can that ali-but-first value be useful for? It will let us save some th:remove="all" when prototyping:

<table>
<thead>
<tr>
<th>NAME</th>
<th>PRICE</th>
<th>IN STOCK</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody th:remove="all-but-f
<tr th:each="prod : ${prods}" th:class="${prodStat.odd}? 'odd'">
<td th:text="${prod.name}">Onions</td>
<td th:text="${prod.price}">2.41</td>
<td th:text="${prod.inStock}? #{true} : #{false}">yes</td>
<td>
2 comment/s
<a href="comments.html"
th:href="Q{/product/comments (prodId=${prod.id}) }"
th:unless="${#lists.isEmpty (prod.comments) }">view
</td>
</tr>
<tr class="odd">
<td>Blue Lettuce</td>
<td>9.55</td>
<td>no</td>
<td>
0 comment/s
</td>
</tr>
<tr>
<td>Mild Cinnamon</td>
<td>1.99</td>
<td>yes</td>
<td>
3 comment/s
view
</td>
</tr>
</tbody>
</table>

The th:remove attribute can take any Thymeleaf Standard Expression, as long as it returns one of the allowed String values

(all, tag, body, all-but-first Or none)

Page 42 of 76

This means removals could be conditional, like:

<a href="/something" th:remove="S${condition}?

Link text not to be rem

In this case, if ${condition} is false, null will be returned, and thus no removal will be performed.

Page 43 of 76

9 Local Variables

Thymeleaf calls local variables those variables that are defined for a specific fragment of a template, and are only available
for evaluation inside that fragment.

An example we have already seen is the prod iter variable in our product list page:

That prod variable will be available only within the bonds of the <tx> tag. Specifically:

e It will be available for any other th:* attributes executing in that tag with lessprecedence than th:each (which
means they will execute after th:each).
e [t will be available for any child element of the <tr> tag, such as <td> elements.

Thymeleaf offers you a way to declare local variables without iteration. It is the th:with attribute, and its syntax is like
that of attribute value assignments:

name of the first p is Julius r.

When th:with is processed, that firstPer variable is created as a local variable and added to the variables map coming
from the context, so that it is as available for evaluation as any other variables declared in the context from the
beginning, but only within the bounds of the containing <div> tag.

You can define several variables at the same time using the usual multiple assignment syntax:

th:with="firs > 0 S ndPer=$

name of the firs person 1is - th:text="S${fi

1t the name
an th:text= > Antoniu

'dd MMMM

Well, what if we wanted that "dd MM yyyy" to actually depend on the locale? For example, we might want to add the
following message to our home_en.properties:

Page 44 of 76

...and an equivalent one to our home_es.properties:

That was clean and easy. In fact, given the fact that th:with has a higher precedence than th:text, we could have
solved this all in the span tag:

th:with="df={ —e.format}"

th:text= e .format (tods 3 February 2011<

You might be thinking: Precedence? We haven't talked about that yet! Well, don’t worry because that is exactly what the
next chapter is about.

Page 45 of 76

10 Attribute Precedence

What happens when you write more than one th:* attribute in the same tag? For example:

1li th:each="item : S${items}" th:text="S${item cription}">Item ption here...<
< // u l j:'

Of course, we would expect that th:each attribute to execute before the th:text so that we get the results we want,
but given the fact that the DOM (Document Object Model) standard does not give any kind of meaning to the order in

which the attributes of a tag are written, a precedence mechanism has to be established in the attributes themselves in
order to be sure that this will work as expected.

So, all Thymeleaf attributes define a numeric precedence, which establishes the order in which they are executed in the
tag. This order is:

Order Feature Attributes
. . th:include
1 Fragment inclusion
th:replace
2 Fragment iteration th:each
th:if
- . th:unless
3 Conditional evaluation .
th:switch
th:case
. o th:object
4 Local variable definition
th:with
th:attr
5 General attribute modification th:attrprepend
th:attrappend
th:value
o . e e th:href
6 Specific attribute modification
th:src
e . th:text
7 Text (tag body modification)
th:utext
8 Fragment specification th:fragment
9 Fragment removal th:remove

This precedence mechanism means that the above iteration fragment will give exactly the same results if the attribute
position is inverted (although it would be slightly less readable):

1i th:text="${item.d iption}" th:each="item : ${items}">Item

Page 46 of 76

11. Comments and Blocks

11.1. Standard HTML/XML comments

Standard HTML/XML comments <!-- ... --> can be used anywhere in thymeleaf templates. Anything inside these

comments won't be processed by neither Thymeleaf nor the browser, and will be just copied verbatim to the result:

11.2. Thymeleaf parser-level comment blocks

Parser-level comment blocks are code that will be simply removed from the template when thymeleaf parses it. They look
like this:

Thymeleaf will remove absolutely everything between <!--/+ and */-->, so these comment blocks can also be used for
displaying code when a template is statically open, knowing that it will be removed when thymeleaf processes it:

n see me only before thymeleaf proc

<table>
<tr th:each="x : ${xs}">

11.3. Thymeleaf prototype-only comment blocks

Thymeleaf allows the definition of special comment blocks marked to be comments when the template is open statically
(i.e. as a prototype), but considered normal markup by Thymeleaf when executing the template.

hello!

g

Page 47 of 76

Thymeleaf's parsing system will simply remove the <!--/*/ and /*/--> markers, but not its contents, which will be left
therefore uncommented. So when executing the template, Thymeleaf will actually see this:

hello!

7 th:text="8{...}

As happens with parser-level comment blocks, note that this feature is dialect-independent.

11.4. Synthetic th:block tag

Thymeleaf's only element processor (not an attribute) included in the Standard Dialects is th:block.

th:block is a mere attribute container that allows template developers to specify whichever attributes they want.
Thymeleaf will execute these attributes and then simply make the block dissapear without a trace.

So it could be useful, for example, when creating iterated tables that require more than one <tr> for each element:

ock thieach="user

<td th:text
<td th:text=

Note how this solution allows templates to be valid HTML (no need to add forbidden<div> blocks inside <table>), and

still works OK when open statically in browsers as prototypes!

Page 48 of 76

12 Inlining

12.1 Text inlining

Although the Standard Dialect allows us to do almost everything we might need by using tag attributes, there are
situations in which we could prefer writing expressions directly into our HTML texts. For example, we could prefer writing
this:

on.user.name}]]!<

...instead of this:

Bl

<p>Hello, Sebastian!</p>

Expressions between [[...]] are considered expression inlining in Thymeleaf, and in them you can use any kind of
expression that would also be valid in a th:text attribute.

In order for inlining to work, we must activate it by using the th:inline attribute, which has three possible values or

modes (text, javascript and none). Let's try text:

<p th:inline="text">Hello, [I[${ ion.user.name}]] !'</p>

The tag holding the th:inline does not have to be the one containing the inlined expression/s, any parent tag would do:

ly th:inline="text">

So you might now be asking: Why aren’t we doing this from the beginning? It's less code than all those th:text attributes!
Well, be careful there, because although you might find inlining quite interesting, you should always remember that
inlined expressions will be displayed verbatim in your HTML files when you open them statically, so you probably won't
be able to use them as prototypes anymore!

The difference between how a browser would statically display our fragment of code without using inlining...

...Is quite clear.

12.2 Script inlining (JavaScript and Dart)

Thymeleaf offers a series of “scripting” modes for its inlining capabilities, so that you can integrate your data inside
scripts created in some script languages.

Page 49 of 76

Current scripting modes are javascript (th:inline="javascript")and dart (th:inline="dart").

The first thing we can do with script inlining is writing the value of expressions into our scripts, like:

pt th:inline="jax

stian';

The /*[[...11*/ syntax, instructs Thymeleaf to evaluate the contained expression. But there are more implications
here:

e Being a javascript comment (/*...*/), our expression will be ignored when displaying the page statically in a
browser.

e The code after the inline expression ('sebastian') will be executed when displaying the page statically.

e Thymeleaf will execute the expression and insert the result, but it will also remove all the code in the line after the
inline expression itself (the part that is executed when displayed statically).

So, the result of executing this will be:

ript th:inline="3j

= 'John

You can also do it without comments with the same effects, but that will make your script to fail when loaded statically:

n.user.name}]];

Note that this evaluation is intelligent and not limited to Strings. Thymeleaf will correctly write in Javascript/Dart syntax
the following kinds of objects:

e Strings

e Numbers

e Booleans

e Arrays

e Collections

e Maps

e Beans (objects with getter and setter methods)

For example, if we had the following code:

<script th:inline="jax

Page 50 of 76

</script>

That ${session.user} expression will evaluate to a user object, and Thymeleaf will correctly convert it to Javascript
syntax:

<script th:inline="javascript">

var user = {'age':null, 'firstName':'John', 'lastName': 'Apricot',
'name' : 'John Apricot', 'nationality':'Antarctica'};

</script>

Adding code

An additional feature when using javascript inlining is the ability to include code between a special comment syntax /*
[+...+1*/ sothat Thymeleaf will automatically uncomment that code when processing the template:

function () {

Will be executed as:

= 'This is a working application';

function () {

You can include expressions inside these comments, and they will be evaluated:

= function () {

Removing code

It is also possible to make Thymeleaf remove code between special /*[- */ and /* -]1*/ comments, like this:

Page 51 of 76

= function ()

Page 52 of 76

13 Validation and Doctypes

13.1 Validating templates

As mentioned before, Thymeleaf offers us out-of-the-box two standard template modes that validate our templates
before processing them: varIpxmL and vALIDXHTML. These modes require our templates to be not onlywell-formed XML
(which they should always be), but in fact valid according to the specified ptp.

The problem is that if we use the varIpxuT™ML mode with templates including a pocTypE clause such as this:

"-//W3C//DTD XHTML 1.0 Strict//EN" "http://v n3.0rg/TR/xhtmll/DTD/xhtmll-

..we are going to obtain validation errors because the th:* tags do not exist according to that pTp. That's perfectly
normal, as the W3C obviously has no reason to include Thymeleaf's features in their standards but, how do we solve it?
By changing the pTp.

Thymeleaf includes a set of pTp files that mirror the original ones from the XHTML standards, but adding all the available
th:* attributes from the Standard Dialect. That's why we have been using this in our templates:

EM "http:// v.thymeleaf.org/dtd/xhtmll-strict-thymeleaf-4.dtd">

That sysTeM identifier instructs the Thymeleaf parser to resolve the special Thymeleaf-enabledxuTyMn 1.0 strict DTD
file and use it for validating our template. And don't worry about that http thing, because that is only an identifier, and
the pTp file will be locally read from Thymeleaf's jar files.

Note that because this DOCTYPE declaration is a perfectly valid one, if we open a browser to statically display
our template as a prototype it will be rendered in Standards Mode.

Here you have the complete set of Thymeleaf-enabled pTp declarations for all the supported flavours of XHTML:

PE html
OCTYPE html

E html
<!DOCTYPE html

Also note that, in order for your IDE to be happy, and even if you are not working in a validating mode, you will need to
declare the th namespace in your html tag:

<html xmlns="http:

xmlns:th="http:/

13.2 Doctype translation

It is fine for our templates to have a pocTyrE like:

EM "http:// thymeleaf.org/dtd/xhtmll-strict-thymeleaf-4.dtd">

But it would not be fine for our web applications to send XHTML documents with thispocTypE to client browsers,
because:

Page 53 of 76

e They are not puBLIC (they are sysTEM DOCTYPE S), and therefore our web would not be validatable with the W3C
Validators.
e They are not needed, because once processed, all th:* tags will have dissapeared.

That's why Thymeleaf includes a mechanism for DOCTYPE translation, which will automatically translate your thymeleaf-
specific XHTML pocTypESs into standard DOCTYPES.

For example, if your template is XHTML 1.0 Strict and looks like this:

<!DOCTYPE html EM "http:// wymeleaf.org/dtd/xhtmll-strict-thyme

<html xmlns="http:
xmlns:th="http:

</html>

<!DOCTYPE html PUBLIC "-/, C/ ML 1.0 Strict//EN" "http:/ .w3.0rg/TR/xhtmll/DTD/xhtmll-
strict.dtd">

<html xmlns="http: ale xhtml">

</html>

You don't have to do anything for these transformations to take place: Thymeleaf will take care of them automatically.

Page 54 of 76

14 Some more Pages for our Grocery

Now we know a lot about using Thymeleaf, we can add some new pages to our website for order management.

Note that we will focus on XHTML code, but you can have a look at the bundled source code if you want to see the
corresponding controllers.

14.1 Order List

Let's start by creating an order list page, /WEB-INF/templates/order/list.html:

<!DOC

<html xmlns="http:
xmlns:th="htt

equiv="C
71

th:href="@{

th:each="0
d th:text
d th:text='

~ails.html"” th:href="@{

.html" th:href="@{/}">Re

<td th:text="${#agc n(o. JerLin oUrC rice * amount}) }">

What that does is, for each order line (orderLine object) in the order, multiply its purchasePrice and amount
properties (by calling the corresponding getPurchasePrice () and getamount () methods)and return the resultinto a
list of numbers, later aggregated by the #aggregates.sum(...) function in order to obtain the order total price.

You've got to love the power of OGNL.

Page 55 of 76

14.2 Order Details

Now for the order details page, in which we will make a heavy use of asterisk syntax:

<!DOCTYPE html SYSTEM "http://www.thymeleaf.org/dtd/xhtmll-strict-thymeleaf-4.dtd">

<html xmlns="http://w 3.0rg/1999/xhtml"
xmlns:th="http://w thymeleaf.org">

<head>
<title>Good Thymes Virtual Grocery</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<link rel="stylesheet" type="text/css" media="all"
href="../../../css/gtvg.css" th:href="@{/css/gtvg.css}" />
</head>

<body th:object="${order}">
<h1>Order details</hl>

<div>
<p>Code: 99</p>
<p>
Date:
13 jan 2011
</p>
</div>

<h2>Customer</h2>

<div th:object="*{customer}">
<p>Name: Frederic Tomato</p>
<p>
Since:
1 jan 2011
</p>
</div>

<h2>Products</h2>

<table>
<tr>
<th>PRODUCT</th>
<th>AMOUNT</th>
<th>PURCHASE PRICE</th>
</tr>
<tr th:each="ol,row : *{orderLines}" th:class="S${row.odd}? 'odd'">
<td th:text="${ol.product.name}">Strawberries</td>
<td th:text="${ol.amount}" class="number">3</td>
<td th:text="${ol.purchasePrice}" class="number">23.32</td>
</tr>
</table>

<div>
TOTAL:
35.23
</div>
<p>
Return to order list
</p>
</body>

</html>

Not much really new here, except for this nested object selection:

<body th:object="${order}">

<div th:object="*{customer}">

Page 56 of 76

S

an th:text="*{name}">

Page 57 of 76

15 More on Configuration

15.1 Template Resolvers

For our Good Thymes Virtual Grocery, we chose an ITemplateResolver implementation called
ServletContextTemplateResolver that allowed us to obtain templates as resources from the Servlet Context.

Besides giving you the ability to create your own template resolver by implementing 1TemplateResolver, Thymeleaf
includes three other implementations out of the box:

L4 org.thymeleaf.templateresolver.ClassLoaderTemplateResolver,vachresoNesteanbtesaSCbsﬂoader

resources, like:

® org.thymeleaf.templateresolver.FileTemplateResolver, which resolves templates as files from the file
system, like:

return new FileInputStream(new File(templateName)) ;

® org.thymeleaf.templateresolver.UrlTemplateResolver, which resolves templates as URLs (even non-loca
ones), like:

return (new URL(templateName)) .openStream() ;

All of the pre-bundled implementations of ITemplateResolver allow the same set of configuration parameters, which
include:

e Prefix and suffix (as already seen):

e Template aliases that allow the use of template names that do not directly correspond to file names. If both
suffix/prefix and alias exist, alias will be applied before prefix/suffix:

admin/home") ;

c() .addPattern("*.xhtml") ;

Page 58 of 76

e TTL in milliseconds for parsed template cache entries originated in this template resolver. If not set, the only way
to remove an entry from the cache will be LRU (cache max size exceeded and the entry is the oldest).

Also, a Template Engine can be specified several template resolvers, in which case an order can be established between
them for template resolution so that, if the first one is not able to resolve the template, the second one is asked, and so
on:

When several template resolvers are applied, it is recommended to specify patterns for each template resolver so that
Thymeleaf can quickly discard those template resolvers that are not meant to resolve the template, enhancing
performance. Doing this is not a requirement, but an optimization:

t/*.html") ;

*.html") ;

15.2 Message Resolvers

We did not explicitly specify a Message Resolver implementation for our Grocery application, and as it was explained
before, this meant that the implementation being used was an

org.thymeleaf.messageresolver.StandardMessageResolver object.

This standardMessageResolver, which looks for messages files with the same name as the template in the way already
explained, is in fact the only message resolver implementation offered by Thymeleaf core out of the box, although of
course you can create your own by just implementing the org. thymeleaf.messageresolver.IMessageResolver
interface.

The Thymeleaf + Spring integration packages offer an IMessageResolver implementation which uses the

standard Spring way of retrieving externalized messages, by using Messagesource objects.

What if you wanted to add a message resolver (or more) to the Template Engine? Easy:

And why would you want to have more than one message resolver? for the same reason as template resolvers: message
resolvers are ordered and if the first one cannot resolve a specific message, the second one will be asked, then the third,

Page 59 of 76

etc.

15.3 Logging

Thymeleaf pays quite a lot of attention to logging, and always tries to offer the maximum amount of useful information
through its logging interface.

The logging library used is s1£45, which in fact acts as a bridge to whichever logging implementation you might want to
use in your application (for example, 1og47).

Thymeleaf classes will log TrRace, pEBUG and InrFo-level information, depending on the level of detail you desire, and
besides general logging it will use three special loggers associated with the TemplateEngine class which you can configure
separately for different purposes:

® org.thymeleaf.TemplateEngine.CONFIG Will output detailed configuration of the library during initialization.
® org.thymeleaf.TemplateEngine.TIMER Will output information about the amount of time taken to process each
template (useful for benchmarking!)
® org.thymeleaf.TemplateEngine.cache is the prefix for a set of loggers that output specific information about
the caches. Although the names of the cache loggers are configurable by the user and thus could change, by
default they are:
© org.thymeleaf.TemplateEngine.cache.TEMPLATE CACHE
0 org.thymeleaf.TemplateEngine.cache.FRAGMENT CACHE
0 org.thymeleaf.TemplateEngine.cache.MESSAGE CACHE
© org.thymeleaf.TemplateEngine.cache.EXPRESSION CACHE

An example configuration for Thymeleaf's logging infrastructure, using 1og47, could be:

Page 60 of 76

16 Template Cache

Thymeleaf works thanks to a DOM processing engine and a series of processors —one for each type of node that needs
to apply logic— that modify the document's DOM tree in order to create the results you expect by combining this tree
with your data.

It also includes —by default— a cache that stores parsed templates, this is, the DOM trees resulting from reading and
parsing template files before processing them. This is especially useful when working in a web application, and builds on
the following concepts:

e Input/Output is almost always the slowest part of any application. In-memory process is extremely quick
compared to it.

e (loning an existing in-memory DOM-tree is always much quicker than reading a template file, parsing it and
creating a new DOM object tree for it.

e Web applications usually only have a few dozen templates.

e Template files are small-to-medium size, and they are not modified while the application is running.

This all leads to the idea that caching the most used templates in a web application is feasible without wasting big
amounts of memory, and also that it will save a lot of time that would be spent on input/output operations on a small set
of files that, in fact, never change.

And how can we take control of this cache? First, we've learned before that we can enable or disable it at the Template
Resolver, even acting only on specific templates:

Also, we could modify its configuration by establishing our own Cache Manager object, which could be an instance of the
default standardCacheManager implementation:

StandardCacheMa

Refer to the javadoc API of org. thymeleaf.cache.StandardCacheManager for more info on configuring the caches.

Entries can be manually removed from the template cache:

Page 61 of 76

17 Appendix A: Expression Basic Objects

Some objects and variable maps are always available to be invoked at variable expressions (executed by OGNL or
SpringEL). Let's see them:
Base objects

e #ctx : the context object. It will be an implementation of org. thymeleaf.context.IContext,
org.thymeleaf.context.IWebContext depending on our environment (standalone or web). If we are using the

Spring integration module, it will be an instance of org. thymeleaf.spring[3|4] .context.SpringWebContext .

e #locale : direct access to the java.util.Locale associated with current request.

e #vars:aninstance of org. thymeleaf.context.VariablesMap With all the variables in the Context (usually the
variables contained in #ctx.variables plus local ones).

Unqualified expressions are evaluated against this object. In fact, ${something} is completely equivalent to (but
more beautiful than) ${#vars.something}.

#root is a synomyn for the same object.

Web context namespaces for request/session attributes, etc.

When using Thymeleaf in a web environment, we can use a series of shortcuts for accessing request parameters, session

Page 62 of 76

attributes and application attributes:

Note these are not context objects, but maps added to the context as variables, so we access them without #. In

some way, therefore, they act as namespaces.

e param : for retrieving request parameters. ${param. foo} isa string[] with the values of the foo request

parameter, SO ${param.foo[0]} will normally be used for getting the first value.

e session : for retrieving session attributes.

e application : for retrieving application/servlet context attributes.

Note there is no need to specify a namespace for accessing request attributes (as opposed to request parameters)
because all request attributes are automatically added to the context as variables in the context root:

Web context objects

Inside a web environment there is also direct access to the following objects (note these are objects, not
maps/namespaces):

o #httpServletRequest : direct access to the javax.servlet.http.HttpServlietRequest Object associated with

the current request.

Page 63 of 76

o #httpSession : direct access to the javax.servlet.http.HttpSession Object associated with the current
request.

Spring context objects
If you are using Thymeleaf from Spring, you can also access these objects:

e #themes : provides the same features as the Spring spring: theme JSP tag.

Spring beans

Thymeleaf also allows accessing beans registered at your Spring Application Context in the standard way defined by
Spring EL, which is using the syntax @beanName, for example:

<div th:text="${Qauth

Page 64 of 76

18 Appendix B: Expression Utility Objects

Dates

e #dates : utility methods for java.util.Date objects:

S{#dates. format (date) }
S{#dates.arrayFormat (datesArray) }
S{#dates.listFormat (datesList) }
S{#dates.setFormat (datesSet) }

${#dates. format (date, 'dd/MMM/yyyy HH:mm') }
${#dates.arrayFormat (datesArray, 'dd/MMM/yyyy HH:mm') }
${#dates.listFormat (datesList, 'dd/MMM/yyyy HH:mm") }
${#dates.setFormat (datesSet, 'dd/MMM/yyyy HH:mm') }

S{#dates.day (date) }
${#dates.month (date) }

S {#dates.monthName (date) }
S{#dates.monthNameShort (date) }

S {#dates.year (date) }
${#fdates.dayOfWeek (date) }

S {#dates.dayOfWeekName (date) }
S{#dates.dayOfWeekNameShort (date) }
S{#dates.hour (date) }
${#dates.minute (date) }

S {#dates.second (date) }
S{#dates.millisecond (date) }

S{#dates.create (year,month, day) }

S {#dates.create (year, month, day, hour, minute) }

S {#dates.create (year,month, day, hour, minute, second) }
${#dates.create (year,month, day, hour, minute, second, millisecond) }

${f#dates.createNow () }

${#dates.createToday () }

Calendars

Page 65 of 76

e #calendars : analogous to #dates, but for java.util.Calendar objects:

S {#calendars.
$S{#calendars.
S {#calendars.
S {#calendars.

S {#calendars.
S {#calendars.
${f#calendars.
S {#calendars.

S {#calendars.
S{#calendars.
S {#calendars.
S {#calendars.

S {#calendars.
${fcalendars.
$S{#calendars.

S{#calendars.

${#calendars.
S {#calendars.
S {#calendars.
S{#calendars.

S{#calendars.
S {#calendars.
S {#calendars.
$S{#calendars.

$S{#calendars.

S{#calendars.

Numbers

format (cal) }
arrayFormat (calArray) }
listFormat (callList) }
setFormat (calSet) }

format (cal, 'dd/MMM/yyyy HH:mm') }
arrayFormat (calArray, 'dd/MMM/yyyy HH:mm') }
listFormat (callist, 'dd/MMM/yyyy HH:mm') }
setFormat (calSet, 'dd/MMM/yyyy HH:mm') }

day (date) }

month (date) }
monthName (date) }
monthNameShort (date) }

year (date) }
dayOfWeek (date) }
dayOfWeekName (date) }

dayOfWeekNameShort (date) }

hour (date) }

minute (date) }
second (date) }
millisecond (date) }

create (year,month, day) }
year,month, day, hour, minute) }
year,month, day, hour, minute, second) }

year,month, day, hour, minute, second, millisecond) }

create
Ccreate
create

(
(
(
(

createNow () }

createToday () }

e #numbers : utility methods for number objects:

Page 66 of 76

S {#numbers.
$ {#numbers.
S {#numbers.
S {#numbers.

S {#numbers.
S {#numbers.
S {#numbers.
$ {#numbers.

S {#numbers.
S {#numbers.
S {#numbers.
S {#numbers.

S {#numbers.
S {#numbers.
S {#numbers.
$ {#numbers.

S {#numbers.
S {#numbers.
S {#numbers.
S {#numbers.

S {#numbers.
$ {#numbers.

formatInteger (num, 3) }
arrayFormatInteger (numArray, 3) }
listFormatInteger (numList, 3) }
setFormatInteger (numSet, 3) }

formatInteger (num, 3, '"POINT') }
arrayFormatInteger (numArray, 3, '"POINT') }
listFormatInteger (numList, 3, '"POINT') }
setFormatInteger (numSet, 3, '"POINT'") }

formatDecimal (num, 3,2) }
arrayFormatDecimal (numArray, 3,2) }
listFormatDecimal (numList, 3,2) }
setFormatDecimal (numSet, 3,2) }

formatDecimal (num, 3,2, "COMMA") }
arrayFormatDecimal (numArray, 3,2, 'COMMA') }
listFormatDecimal (numList, 3,2, "COMMA'") }
setFormatDecimal (numSet, 3,2, '"COMMA"'") }

formatDecimal (num, 3, "POINT', 2, "COMMA") }
arrayFormatDecimal (numArray, 3, 'POINT', 2, 'COMMA"') }
listFormatDecimal (numList, 3, "POINT', 2, "COMMA') }
setFormatDecimal (numSet, 3, "POINT', 2, 'C A

sequence (from, to) }
sequence (from, to, step) }

Page 67 of 76

Strings

e d#strings : utility methods for string objects:

S{#strings.toString (obj) }

${#strings.isEmpty (name) }
S{#strings.arrayIsEmpty (nameArr) }
${#strings.listIsEmpty (nameList) }
S{#strings.setIsEmpty (nameSet) }

${ffstrings.defaultString (text, default) }
S{#strings.arrayDefaultString (textArr,default) }
S{#strings.listDefaultString (textList,default) }
S{#strings.setDefaultString (textSet,default) }

S{#strings.contains (name, 'ez"') }
S {#strings.containsIgnoreCase (name, 'ez') }

S{#strings.startsWith (name, 'Don") }
S {#strings.endsWith (name, endingFragment) }

S {#strings.indexOf (name, frag) }
S{#strings.substring(name,3,5) }
S{#strings.substringAfter (name, prefix) }
${f#strings.substringBefore (name, suffix) }
S {#strings.replace (name, 'las', 'ler')}

$S{#strings.prepend (str,prefix) }
${#strings.append (str, suffix) }

S {#strings.toUpperCase (name) }
S{#strings.toLowerCase (name) }

Page 68 of 76

S{#strings.
${#strings.
S{#strings.
${#strings.
${#strings.
${#strings.

S{#strings.

${#strings.

S{#strings.

${#strings.
${#strings.

${#strings.
${#strings.

${#strings.
${#strings.
${#strings.
${fstrings.
S{#strings.

S{#strings.
${#strings.
${#strings.
${#strings.

S{#strings.

Objects

arrayJoin (namesArray,',"')}

listJoin (namesList, ', ")}

setJoin (namesSet, ', ")}

arraySplit (namesStr,',")}
L} L}

listSplit(namesStr, "', ")}
setSplit (namesStr,',"')}

trim(str) }

length (str) }

abbreviate (str, 10) }

capitalize (str)}
unCapitalize(str)}

capitalizeWords (str) }
capitalizeWords (str,delimiters) }

escapeXml (str) }
escapedava (str) }
escapedJavaScript (str)}
unescapeJava (str) }
unescapeJavaScript (str) }

equals (str) }
equalsIgnoreCase (str)}
concat (str) }
concatReplaceNulls (str) }

randomAlphanumeric (count) }

e #objects : utility methods for objects in general

Page 69 of 76

${f#fobjects.nullSafe (obj,default) }
S{#objects.arrayNullSafe (objArray, default) }
S{#objects.listNullSafe (objList, default) }
S{#objects.setNullSafe (objSet, default) }

Booleans

e #bools : utility methods for boolean evaluation

${#bools.isTrue (obj) }
${#bools.arrayIsTrue (objArray) }
S{#bools.listIsTrue (objList) }

$ {#bools.setIsTrue (objSet) }

S {#bools.isFalse (cond) }

S {#bools.arrayIsFalse (condArray) }
S{#bools.listIsFalse (condList) }

S {#bools.setIsFalse (condSet) }

S {#bools.arrayAnd (condArray) }
${#bools.listAnd (condList) }
S {#bools.setAnd (condSet) }

${#bools.arrayOr (condArray) }
$ {#bools.1listOr (condList) }
${#bools.setOr (condSet) }

Arrays

e #arrays : utility methods for arrays

S{#arrays.toArray (object) }

Page 70 of 76

S {#arrays.toStringArray (object) }
S {#arrays.toIntegerArray (object)
${#arrays.toLongArray (object) }

S {#arrays.toDoubleArray (object)
${ffarrays.toFloatArray (object) }
S {#arrays.toBooleanArray (object) }

}

}

${#arrays.length (array) }

S{#arrays.isEmpty (array) }

S{#arrays.contains (array, element) }
S {#arrays.containsAll (array, elements) }

Lists

e #lists : utility methods for lists

S{#lists.tolList (object) }

S{#lists.

S{#lists.isEmpty(list) }

S{#lists.contains (list, element) }
S{#lists.containsAll (list, elements)}

S{#lists.sort(list)}
S{#lists.sort(list, comparator)}

Sets

e #sets : utility methods for sets

Page 71 of 76

.toSet (object) }

.size(set)}

$S{fsets.isEmpty(set) }

S{#sets.contains (set, element)}
S{#sets.containsAll (set, elements)}

Maps

e #maps : utility methods for maps

.size (map) }

$ {#maps. isEmpty (map) }

.containsKey (map, key)}
.containsAllKeys (map, keys)}
.containsValue (map, value)}
.containsAllValues (map, value)}

Aggregates

e #aggregates : utility methods for creating aggregates on arrays or collections

${#aggregates.sum(array) }
${#faggregates.sum(collection) }

Page 72 of 76

S{#aggregates.avg (array) }
$ {#aggregates.avg(collection) }

Messages

e #messages : utility methods for obtaining externalized messages inside variables expressions, in the same way as
they would be obtained using #{. ..} syntax.

S {#messages
S {#messages
S {#messages
$ {#messages
$ {#fmessages

$ {#messages
S {#messages
$ {#messages
$ {#messages
$ {#messages

IDs

.Msg

.msgOrNull

.msgOrNull
.msgOrNull ('msgKey', paraml, param2, param3) }
.msgOrNullWithParams ('msgKey', new Object[]
S {#messages.
S {#messages.
$ {#fmessages.

msgKey') }

(
.msg ('msgKey', paraml) }
.msqg ('

msgKey', paraml, param?)}

.msg ('msgKey', paraml, param2, param3) }
.msgWithParams ('msgKey', new Object []
S {#messages.
$ {#messages.
S {#messages.

{paraml, param2,
arrayMsg (messageKeyArray) }

listMsg (messageKeyList) }

setMsg (messageKeySet) }

msgKey') }

(
.msgOrNull ('msgKey', paraml)}
(

msgKey', paraml, param?)}

arrayMsgOrNull (messageKeyArray) }
1istMsgOrNull (messageKeyList) }
setMsgOrNull (messageKeySet) }

{paraml, param2,

param3,

param3,

param4}) }

param4}) }

e #ids : utility methods for dealing with id attributes that might be repeated (for example, as a result of an
iteration).

S{#ids.seq('someId'") }

S{#ids.next ('someId') }

Page 73 of 76

Page 74 of 76

19 Appendix C: DOM Selector syntax

DOM Selectors borrow syntax features from XPATH, CSS and jQuery, in order to provide a powerful and easy to use way
to specify template fragments.

For example, the following selector will select every <div> with the class content, in every position inside the markup:

<div th:include="mytemplate :: [//div[@c content']]">...</c

The basic syntax inspired from XPath includes:
e /x means direct children of the current node with name x.
e //x means children of the current node with name x, at any depth.
® x[@z="v"] means elements with name x and an attribute called z with value “v".

® x[@zl="vl" and @z2="v2"] means elements with name x and attributes z1 and z2 with values “v1” and “v2",
respectively.

® x[i] means element with name x positioned in number i among its siblings.

e x[@z="v"][i] means elements with name X, attribute z with value “v" and positioned in number i among its
siblings that also match this condition.

But more concise syntax can also be used:
e x is exactly equivalentto //x (search an element with name or reference x at any depth level).

e Selectors are also allowed without element name/reference, as long as they include a specification of arguments.
So [@class='oneclass'] is avalid selector that looks for any elements (tags) with a class attribute with value

“oneclass”.
Advanced attribute selection features:

e Besides = (equal), other comparison operators are also valid: '= (not equal), = (starts with) and $= (ends with).
For example: x[@class”*='section'] means elements with name x and a value for attribute class that starts

with section.

e Attributes can be specified both starting with @ (XPath-style) and without (jQuery-style). So x[z="v'] is equivalent
to x[@z="'v"'].

e Multiple-attribute modifiers can be joined both with and (XPath-style) and also by chaining multiple modifiers
(jQuery-style). So x[@z1="v1l' and @z2='v2'] isactually equivalentto x[ez1="v1'][@z2="'v2"'] (and also to
x[zl='vl'][z2="v2']).

Direct jQuery-like selectors:
® x . oneclass iS equivalent to x[class='oneclass'].
® _oneclass iS equivalent to [class='oneclass'].
® xioneid is equivalentto x[id='oneid'].
® joneid isequivalentto [id='oneid'].

e x3%oneref means nodes -not just elements- with name x that match reference oneref according to a specified

DOMSelector.INodeReferenceChecker implementation.

Page 75 of 76

® soneref means nodes -not just elements- with any name that match reference oneref according to a specified
DOMSelector.INodeReferenceChecker implementation. Note this is actually equivalent to simply oneref
because references can be used instead of element names.

e Direct selectors and attribute selectors can be mixed: a.external [@href*="https'].

The above DOM Selector expression:

<div th:include="mytemplate :: [//div[@class='content']]">...</div>

could be written as:

<div th:include="mytemplate :: [div.content]">...</div>

Multivalued class matching

DOM Selectors understand the class attribute to be multivalued, and therefore allow the application of selectors on this
attribute even if the element has several class values.

For example, div[class="two'] will match <div class="one two three" />

Optional brackets

The syntax of the fragment inclusion attributes converts every fragment selection into a DOM selection, so brackets
[...1 are not needed (though allowed).

So the following, with no brackets, is equivalent to the bracketed selector seen above:

<div th:include="mytemplate :: div.cc nt">...</div>

So, summarizing, this:

<div th:replace="mytemplate

Will look for a th: fragment="myfrag" fragment signature. But would also look for tags with name myfrag if they existed
(which they don't, in HTML). Note the difference with:

<div th:replace="mytemplate

which will actually look for any elements with class="myfrag", without caring about th:fragment signatures.

1. Given the fact that XHTMLS is just XML-formed HTML5 served with the application/xhtml+xml content type, we could also say that Thymeleaf
supports XHTMLS.

2. Note that, although this template is valid XHTML, we earlier selected template mode “XHTML" and not “VALIDXHTML". For now, it will be OK for

us to just have validation turned off - but at the same time we don’t want our IDE to complain too much.

Page 76 of 76

	Tutorial: Using Thymeleaf
	1 Introducing Thymeleaf
	1.1 What is Thymeleaf?
	1.2 What kind of templates can Thymeleaf process?
	1.3 Dialects: The Standard Dialect
	1.4 Overall Architecture
	1.5 Before going any further, you should read…

	2 The Good Thymes Virtual Grocery
	2.1 A website for a grocery
	2.2 Creating and configuring the Template Engine
	The Template Resolver
	The Template Engine

	3 Using Texts
	3.1 A multi-language welcome
	Using th:text and externalizing text
	Contexts
	Executing the template engine

	3.2 More on texts and variables
	Unescaped Text
	Using and displaying variables

	4 Standard Expression Syntax
	4.1 Messages
	4.2 Variables
	Expression Basic Objects
	Expression Utility Objects
	Reformatting dates in our home page

	4.3 Expressions on selections (asterisk syntax)
	4.4 Link URLs
	A menu for our home page

	4.5 Literals
	Text literals
	Number literals
	Boolean literals
	The null literal
	Literal tokens

	4.6 Appending texts
	4.7 Literal substitutions
	4.8 Arithmetic operations
	4.9 Comparators and Equality
	4.10 Conditional expressions
	4.11 Default expressions (Elvis operator)
	4.12 Preprocessing

	5 Setting Attribute Values
	5.1 Setting the value of any attribute
	5.2 Setting value to specific attributes
	5.3 Setting more than one value at a time
	5.4 Appending and prepending
	5.5 Fixed-value boolean attributes
	5.6 Support for HTML5-friendly attribute and element names

	6 Iteration
	6.1 Iteration basics
	Using th:each
	Iterable values

	6.2 Keeping iteration status

	7 Conditional Evaluation
	7.1 Simple conditionals: “if” and “unless”
	7.2 Switch statements

	8 Template Layout
	8.1 Including template fragments
	Defining and referencing fragments
	Referencing fragments without th:fragment
	Difference between th:include and th:replace

	8.2 Parameterizable fragment signatures
	Fragment local variables without fragment signature
	th:assert for in-template assertions

	8.3 Removing template fragments

	9 Local Variables
	10 Attribute Precedence
	11. Comments and Blocks
	11.1. Standard HTML/XML comments
	11.2. Thymeleaf parser-level comment blocks
	11.3. Thymeleaf prototype-only comment blocks
	11.4. Synthetic th:block tag

	12 Inlining
	12.1 Text inlining
	12.2 Script inlining (JavaScript and Dart)
	Adding code
	Removing code

	13 Validation and Doctypes
	13.1 Validating templates
	13.2 Doctype translation

	14 Some more Pages for our Grocery
	14.1 Order List
	14.2 Order Details

	15 More on Configuration
	15.1 Template Resolvers
	15.2 Message Resolvers
	15.3 Logging

	16 Template Cache
	17 Appendix A: Expression Basic Objects
	Base objects
	Web context namespaces for request/session attributes, etc.
	Web context objects
	Spring context objects
	Spring beans

	18 Appendix B: Expression Utility Objects
	Dates
	Calendars
	Numbers
	Strings
	Objects
	Booleans
	Arrays
	Lists
	Sets
	Maps
	Aggregates
	Messages
	IDs

	19 Appendix C: DOM Selector syntax
	Multivalued class matching
	Optional brackets

