The ABC of PDF with iText

PDF Syntax essentials

by Bruno Lowagie

The ABC of PDF with iText

PDF Syntax essentials

iText Software
This book is for sale at http://leanpub.com/itext_pdfabc

This version was published on 2015-01-06

)

Leanpub
This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean

Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction once you do.

©2013 - 2015 iText Software

http://leanpub.com/itext_pdfabc
http://leanpub.com
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Tweet This Book!

Please help iText Software by spreading the word about this book on Twitter!
The suggested tweet for this book is:

@iText: I just bought The ABC of PDF with iText

The suggested hashtag for this book is #itext_pdfabc.

Find out what other people are saying about the book by clicking on this link to search for this hashtag on
Twitter:

https://twitter.com/search?q=#itext_pdfabc

http://twitter.com
https://twitter.com/search?q=%23itext_pdfabc
https://twitter.com/search?q=%23itext_pdfabc

Also By iText Software

The Best iText Questions on StackOverflow

http://leanpub.com/u/itextsoftware
http://leanpub.com/itext_so

Contents

Introduction i
I Part 1: The Carousel Object System 1
1. PDFObjects e
1.1 Thebasic PDF objects 2
1.2 iText’s PdfObject implementations
1.3 The difference between direct and indirect objects, 15
14 SUMMATY vt vttt it e e e e e e e e e e e e e e 16
2. PDFFile Structure 17
2.1 Theinternal structureof aPDFfile 17
2.2 Variations on the file structure L L 21
23 SUMMATY L 26
3. PDF Document Structure o oo 27
3.1 Viewing a document as a tree structure using RUPS 27
3.2 Obtaining objects from a PDF using PdfReader 29
3.3 Examining the pagetree L 32
3.4 Examining a page dictionary L L 38
3.5 Optional entries of the Document Catalog Dictionary 51
3.6 SUMMAry e e 74
II Part 2: The Adobe Imaging Model 75
4. GraphicsState 76
4.1 Understanding the syntax L L 76
4.2 Graphics State Operators 80
43 SUMMATY v v vt ettt e e e e e e e e e e e 141
5. Text State o 142
5.1 Textobjects e e e e e e e 142
52 Introducing fonts 152
53 Usingfonts in PDF e 154
54 Using fontsiniText e 165

55 SUMMATY ottt e 173

CONTENTS

6. MarkedContent

III Part 3: Annotations and form fields
7. Annotations

8. Interactiveforms

Introduction

This book is a vademecum for the other iText books entitled “Create your PDFs with iText?,” “Update your
PDFs with iText?,” and “Sign your PDFs with iText®”

In the past, I used to refer to ISO-32000 whenever somebody asked me questions such as “why can’t I use PDF
as a format for editing documents” or whenever somebody wanted to use a feature that wasn’t supported
out-of-the-box.

I soon realized that answering “read the specs” is lethal when the specs consist of more than a thousand pages.
In this iText tutorial, I'd like to present a short introduction to the syntax of the Portable Document Format.
It’s not the definitive guide, but it should be sufficient to help you out when facing a PDF-related problem.

You’ll find some simple iText examples in this book, but the heavy lifting will be done in the other iText books.

'https://leanpub.com/itext_pdfcreate
*https://leanpub.com/itext_pdfupdate
*https://leanpub.com/itext_pdfsign

https://leanpub.com/itext_pdfcreate
https://leanpub.com/itext_pdfupdate
https://leanpub.com/itext_pdfupdate
https://leanpub.com/itext_pdfsign
https://leanpub.com/itext_pdfcreate
https://leanpub.com/itext_pdfupdate
https://leanpub.com/itext_pdfsign

| Part 1: The Carousel Object System

The Portable Document Format (PDF) specification, as released by the International Organization for
Standardization (ISO) in the form of a series of related standards (ISO-32000-1 and -2, ISO-19005-1, -2, and -3,
ISO-14289-1,...), was originally created by Adobe Systems Inc.

Carousel was the original code name for what later became Acrobat. The name Carousel was already taken
by Kodak, so a marketing consultant was asked for an alternative name. These were the names that were
proposed:

+ Adobe Traverse— didn’t make it,

+ Adobe Express— sounded nice, but there was already that thing called Quark Express,

« Adobe Gates— was never an option, because there was already somebody with that name at another
company,

« Adobe Rosetta— couldn’t be used, because there was an existing company that went by that name.

« Adobe Acrobat— was a name not many people liked, but it was chosen anyway.

Although Acrobat exists for more than 20 years now, the name Carousel is still used to refer to the way a PDF
file is composed, and that’s what the first part of this book is about.

In this first part, we’ll:

+ Take a look at the basic PDF objects,
« Find out how these objects are organized inside a file, and
« Learn how to read a file by navigating from object to object.

At the end of this chapter, you’ll know how PDF is structured and you’ll understand what you see when
opening a PDF in a text editor instead of inside a PDF viewer.

1. PDF Objects

There are eight basic types of objects in PDF. They’re explained in sections 7.3.2 to 7.3.9 of ISO-32000-1.

1.1 The basic PDF objects

These eight objects are implemented in iText as subclasses of the abstract PdfOb ject class. Table 1.1 lists these
types as well as their corresponding objects in iText.

Table 1.1: Overview of the basic PDF objects

PDF Object iText object Description

Boolean PdfBoolean This type is similar to the Boolean type in
programming languages and can be true or false.

Numeric object PdfNumber There are two types of numeric objects: integer and
real. Numbers can be used to define coordinates, font
sizes, and so on.

String PdfString String objects can be written in two ways:
as a sequence of literal characters enclosed in
parentheses () or as hexadecimal data enclosed in
angle brackets < >.
Beginning with PDF 1.7, the type is further qualified as
text string, PDFDocEncoded string, ASCII string, and
byte string, depending upon how the string is used in
each particular context.

Name PdfName A name object is an atomic symbol uniquely defined
by a sequence of characters. Names can be used as keys
for a dictionary, to define an explicit destination type,
and so on. You can easily recognize names in a PDF file
because they’re all introduced with a forward slash: /.

Array PdfArray An array is a one-dimensional collection of objects,
arranged sequentially between square brackets. For
instance, a rectangle is defined as an array of four
numbers: [0 @ 595 842].

Dictionary PdfDictionary A dictionary is an associative table containing pairs of
objects known as dictionary entries. The key is always
a name; the value can be (a reference to) any other
object. The collection of pairs is enclosed by double
angle brackets: << and >>.

Stream PdfStream Like a string object, a stream is a sequence of bytes.
The main difference is that a PDF consumer reads a
string entirely, whereas a stream is best read
incrementally. Strings are used for small pieces of data;
streams are used for large amounts of data.

©O© 00 9 O O b» W N =

EURNEY
= o

PDF Objects 3

Table 1.1: Overview of the basic PDF objects

PDF Object iText object Description

Each stream consists of a dictionary followed by zero
or more bytes enclosed between the keywords stream
(followed by a newline) and endstream.

Null object PdfNull This type is similar to the null object in programming
languages. Setting the value of a dictionary entry to
null is equivalent to omitting the entry.

If you look inside iText, you’ll find subclasses of these basic PDF implementations created for specific purposes.

+ PdfDate extends PdfString because a date is a special type of string in the Portable Document Format.

« PdfRectangle is a special type of PdfArray, consisting of four number values: [11x, 1ly, urx, ury]
representing the coordinates of the lower-left and upper-right corner of the rectangle.

« PdfAction, PdfFormField, PdfOutline are examples of subclasses of the PdfDictionary class.

« PRStream is a special implementation of PdfStream that needs to be used when extracting a stream
from an existing PDF document using PdfReader.

When creating or manipulating PDF documents with iText, you’ll use high-level objects and convenience
methods most of the time. This means you probably won’t be confronted with these basic objects very often,
but it’s interesting to take a look under the hood of iText.

1.2 iText's PdfObject implementations
Let’s take a look at some simple code samples for each of the basic types.

1.2.1 PdfBoolean

As there are only two possible values for the PdfBoolean object, you can use a static instance instead of
creating a new object.

Code sample 1.1: C0101_BooleanObject

public static void main(String[] args) {
showOb ject (PdfBoolean.PDFTRUE);
showOb ject (PdfBoolean.PDFFALSE);

}

public static void showObject(PdfBoolean obj) {
System.out.printin(obj.getClass().getName() + ":");
System.out.println("-> boolean? " + obj.isBoolean());
System.out.println("-> type: " + obj.type());
System.out.println("-> toString: " + obj.toString());
System.out.println("-> booleanvalue: " + obj.booleanValue());

©O© 00 N O O b» W N =

(RS
N N O

PDF Objects 4

In code sample 1.1, we use PdfBoolean’s constant values PDFTRUE and PDFFALSE and we inspect these objects
in the showObject() method. We get the fully qualified name of the class. We use the isBoolean() method
that will return false for all objects that aren’t derived from PdfBoolean. And we display the type() in the
form of an int (this value is 1 for PdfBoolean).

AllPd£object implementations have a toString() method, but only the PdfBoolean class has abooleanValue()
method that allows you to get the value as a primitive Java boolean value.

The output of the showOb ject method looks like this:

com.itextpdf.text.pdf.PdfBoolean:
-> boolean? true

-> type: 1

-> toString: true

-> booleanvalue: true
com.itextpdf.text.pdf.PdfBoolean:
-> boolean? true

-> type: 1

-> toString: false

-> booleanvalue: false

We'll use the PdfBoolean object in the tutorial Update your PDFs with iText' when we’ll update properties of
dictionaries to change the behavior of a PDF feature.

1.2.2 PdfNumber

There are many different ways to create a PdfNumber object. Although PDF only has two types of numbers
(integer and real), you can create a PdfNumber object using a String, int, long, double or float.

This is shown in code sample 1.2.

Code sample 1.2: C0102_NumberObject

public static void main(String[] args) {
showOb ject(new PdfNumber("1.5"));
showOb ject (new PdfNumber(100));
showOb ject(new PdfNumber(1001));
showOb ject(new PdfNumber(1.5));
showOb ject(new PdfNumber(1.5f));

}

public static void showObject(PdfNumber obj) {
System.out.printlin(obj.getClass().getName() + ":");
System.out.printin("-> number? " + obj.isNumber());
System.out.printin("-> type: " + obj.type());
System.out.printin("-> bytes: " + new String(obj.getBytes()));

"https://leanpub.com/itext_pdfupdate

https://leanpub.com/itext_pdfupdate
https://leanpub.com/itext_pdfupdate

13
14
15
16
17
18

PDF Objects

System.
System.
System.
System.
System.

out.
out.
out.
out.

out.

printIn("-»>
println("->
printIn("-»>
println("->
println("->

toString: " + obj.toString());
intValue: " + obj.intValue());
longValue: " + obj.longValue());
doubleValue: " + obj.doubleValue());
floatValue: " + obj.floatValue());

Again we display the fully qualified classname. We check for number objects using the isNumber () method.
And we get a different value when we asked for the type (more specifically: 2).

The getBytes() method returns the bytes that will be stored in the PDF. In the case of numbers, you’ll get a
similar result using toString() method. Although iText works with float objects internally, you can get the
value of a PdfNumber object as a primitive Java int, long, double or float.

com.itextpdf.text.pdf.PdfNumber:

-> number? true

-> type: 2

-> bytes: 1.5
-> toString: 1.5
-> intValue: 1

-> longValue: 1

-> doubleValue: 1.5
-> floatValue: 1.5
com.itextpdf.text.pdf.PdfNumber:

-> number? true

-> type: 2

-> bytes: 100
-> toString: 100
-> intValue: 100
-> longValue: 100
-> doubleValue: 100.0
-> floatValue: 100.0

Observe that you lose the decimal part if you invoke the intvalue() or longvalue() method on a real number.
Just like with PdfBoolean, you’ll use PdfNumber only if you hack a PDF at the lowest level, changing a property
in the syntax of an existing PDF.

1.2.3 PdfString

The PdfString class has four constructors:

« Anempty constructor in case you want to create an empty Pd£String object (in practice this constructor
is only used in subclasses of PdfString),

« A constructor that takes a Java String object as its parameter,

©O© 00 9 O O » W N =

10
11
12
13
14
15
16
17
18
19
20

PDF Objects 6

+ A constructor that takes a Java String object as well as the encoding value (TEXT_PDFDOCENCODING or
TEXT_UNICODE) as its parameters,

+ A constructor that takes an array of bytes as its parameter in which case the encoding will be
PdfString.NOTHING. This method is used by iText when reading existing documents into PDF objects.

You can choose to store the PDF string object in hexadecimal format by using the setHexWriting() method:

Code sample 1.3: C0103_StringObject

public static void main(String[] args) {
PdfString s1 = new PdfString("Test");
PdfString s2 = new PdfString("\u6d4b\u8bd5", PdfString.TEXT_UNICODE);
showObject(s1);
showOb ject(s2);
s1.setHexWriting(true);
showObject(s1);
showOb ject(new PdfDate());

}

public static void showObject(PdfString obj) {
System.out.printlin(obj.getClass().getName() + ":");
System.out.printin("-> string? " + obj.isString());
System.out.println("-> type: " + obj.type());
System.out.printin("-> bytes: " + new String(obj.getBytes()));
System.out.println("-> toString: " + obj.toString());
System.out.println("-> hexWriting: " + obj.isHexWriting());
System.out.println("-> encoding: " + obj.getEncoding());
System.out.printin("-> bytes: " + new String(obj.getOriginalBytes()));

System.out.println("-> unicode string: " + obj.toUnicodeString());

In the output of code sample 1.3, we see the fully qualified name of the class. The isString() method returns
true. The type value is 3. In this case, the toBytes() method can return a different value than the toString()
method. The String "\u6d4b\u8bds" represents two Chinese characters meaning “test”, but these characters
are stored as four bytes.

Hexademical writing is applied at the moment the bytes are written to a PDF OutputStream. The encoding
values are stored as String values, either "PDF" for PdfDocEncoding, "UnicodeBig" for Unicode, or "" in case
of a pure byte string.

The getOriginalBytes() method only makes sense when you get a PdfString value from an
existing file that was encrypted. It returns the original encrypted value of the string object.

The toUnicodeString() method is a safer method than tostring() to get the PDF string object as a Java
String.

PDF Objects 7

com.itextpdf.text.pdf.PdfString:
-> string? true

-> type: 3

-> bytes: Test

-> toString: Test

-> hexWriting: false

-> encoding: PDF

-> original bytes: Test

-> unicode string: Test

com. itextpdf.text.pdf.PdfString:
-> string? true

-> type: 3

-> bytes: 0O0OmKOO

-> toString: 0OO

-> hexWriting: false

-> encoding: UnicodeBig

-> original bytes: 0O0OmKOO

-> unicode string: OO0

com. itextpdf.text.pdf.PdfString:
-> string? true

-> type: 3

-> bytes: Test

-> toString: Test

-> hexWriting: true

-> encoding: PDF

-> original bytes: Test

-> unicode string: Test
com.itextpdf.text.pdf.PdfDate:

-> string? true

-> type: 3

-> bytes: D:20130430161855+02'00"
-> toString: D:20130430161855+02'00Q"
-> hexWriting: false

-> encoding: PDF

-> original bytes: D:20130430161855+02'00"
-> unicode string: D:20130430161855+02'00'

In this example, we also create a PdfDate instance. If you don’t pass a parameter, you get the current date and
time. You can also pass a Java Calendar object if you want to create an object for a specific date. The format
of the date conforms to the international Abstract Syntax Notation One (ASN.1) standard defined in ISO/IEC
8824. You recognize the pattern YYYYMMDDHHmmSSOHH' mm where YYYY is the year, MM the month, DD the day,
HH the hour, mm the minutes, SS the seconds, OHH the relationship to Universal Time (UT), and ' mm the offset
from UT in minutes.

©O© 00 9 O O b» W N =

[N
N RO

PDF Objects 8

1.2.4 PdfName

There are different ways to create a PdfName object, but you should only use one. The constructor that takes
a single String as a parameter guarantees that your name object conforms to ISO-32000-1 and -2.

You probably wonder why we would add constructors that allow people names that don’t conform

0 with the PDF specification. With iText, we did a great effort to ensure the creation of documents that
comply. Unfortunately, this can’t be said about all PDF creation software. We need some PdfName
constructors that accept any kind of value when reading names in documents that are in violation
with the PDF ISO standards.

In many cases, you don’t need to create a PdfName object yourself. The PdfName object contains a large set of
constants with predefined names. One of these names is used in code sample 1.4.

Code sample 1.4: C0104_NameObject

public static void main(String[] args) {
showOb ject (PdfName . CONTENTS) ;
showOb ject (new PdfName("CustomName"));
showOb ject(new PdfName("Test #1 100%"));

}

public static void showObject(PdfName obj) {
System.out.println(obj.getClass().getName() + ":");
System.out.printin("-> name? " + obj.isName());
System.out.printin("-> type: " + obj.type());
System.out.printin("-> bytes: " + new String(obj.getBytes()));
System.out.println("-> toString: " + obj.toString());

The getClass().getName() part no longer has secrets for you. We use isName() to check if the object is really
a name. The type is 4. And we can get the value as bytes or as a String.

com.itextpdf.text.pdf.PdfName:
-> name? true

-> type: 4

-> bytes: /Contents

-> toString: /Contents
com.itextpdf.text.pdf.PdfName:
-> name? true

-> type: 4

-> bytes: /CustomName

-> toString: /CustomName
com.itextpdf.text.pdf.PdfName:
-> name? true

-> type: 4

©O© 00 < O O b» W N =

SR ST S T S = = G i i G S U G
N »» © O 0 3 O O b W N~

PDF Objects 9

-> bytes: /Test#20%#231#20100%#25
-> toString: /Test#20%#231#20100%#25

Note that names start with a forward slash, also know as a solidus. Also take a closer look at the name that
was created with the String value "Test #1 100%". iText has escaped values such as ' ', '#' and '%’
because these are forbidden in a PDF name object. ISO-32000-1 and -2 state that a name is a sequence of 8-
bit values and iText’s interprets this literally. If you pass a string containing multibyte characters (characters
with a value greater than 255), iText will only take the lower 8 bits into account. Finally, iText will throw an
IllegalArgumentException if you try to create a name that is longer than 127 bytes.

1.2.5 PdfArray

The PdfArray class has six constructors. You can create a PdfArray using an ArraylList of PdfObject
instances, or you can create an empty array and add the PdfObject instances one by one (see code sample
1.5). You can also pass a byte array of float or int values as parameter in which case you create an array
consisting of PdfNumber objects. Finally you can create an array with a single object if you pass a PdfoObject,
but be carefull: if this object is of type PdfArray, you’re using the copy constructor.

Code sample 1.5: C0105_ArrayObject

public static void main(String[] args) {
PdfArray array = new PdfArray();
array.add(PdfName.FIRST);
array.add(new PdfString("Second"));
array.add(new PdfNumber(3));
array.add(PdfBoolean.PDFFALSE);
showOb ject(array);
showOb ject(new PdfRectangle(595, 842));

}

public static void showObject(PdfArray obj) {
System.out.printin(obj.getClass().getName() + ":");
System.out.printin("-> array? " + obj.isArray());
System.out.printin("-> type: " + obj.type());
System.out.println("-> toString: " + obj.toString());
System.out.printin("-> size: " + obj.size());
System.out.print("-> Values:");
for (int i = ©0; i < obj.size(); i++) {

System.out.print(" ");
System.out.print(obj.getPdfObject(i));

}
System.out.printin();

Once more, we see the fully qualified name in the output. The isArray() method tests if this class is a
PdfArray. The value of the array type is 5.

©O© 00 < O O b» W N =

PDF Objects 10

The elements of the array are stored in an ArraylList. The toString() method of the PdfArray
class returns the tostring() output of this ArraylL ist: the values of the separate objects delimited
with a comma and enclosed by square brackets. The getBytes() method returns null.

You can ask a PdfArray for its size, and use this size to get the different elements of the array one by one. In
this case, we use the getPdfObject() method. We’ll discover some more methods to retrieve elements from
an array in section 1.3.

com.itextpdf.text.pdf.PdfArray:
-> array? true

-> type: 5
-> toString: [/First, Second, 3, false]
-> size: 4

-> Values: /First Second 3 false
com.itextpdf.text.pdf.PdfRectangle:
-> array? true

-> type: 5
-> toString: [@, 0@, 595, 842]
-> size: 4

-> Values: © © 595 842

In our example, we created a PdfRectangle using only two values 595 and 842. However, a rectangle needs
four values: two for the coordinate of the lower-left corner, two for the coordinate of the upper-right corner.
As you can see, iText added two zeros for the coordinate of the lower-left coordinate.

1.2.6 PdfDictionary

There are only two constructors for the PdfDictionary class. With the empty constructor, you can create
an empty dictionary, and then add entries using the put() method. The constructor that accepts a PdfName
object will create a dictionary with a /Type entry and use the name passed as a parameter as its value. This
entry identifies the type of object the dictionary describes. In some cases, a /SubType entry is used to further
identify a specialized subcategory of the general type.

In code sample 1.6, we create a custom dictionary and an action.

Code sample 1.6: C0106_DictionaryObject

public static void main(String[] args) {
PdfDictionary dict = new PdfDictionary(new PdfName("Custom"));
dict.put(new PdfName("Entry1"), PdfName.FIRST);
dict.put(new PdfName("Entry2"), new PdfString("Second"));
dict.put(new PdfName("3rd"), new PdfNumber(3));
dict.put(new PdfName("Fourth"), PdfBoolean.PDFFALSE);
showObject(dict);
showOb ject (PdfAction.gotoRemotePage("test.pdf", "dest", false, true));

10
11
12
13
14
15
16
17
18
19
20

PDF Objects

11

public static void showObject(PdfDictionary obj) {

System.out.printin(obj.getClass().getName() + ":");

System.out.println("-> dictionary? " + obj.isDictionary());

System.out.printin("-> type:

"+ obj.type());

System.out.println("-> toString: " + obj.toString());

System.out.println("-> size:

" + obj.size());

for (PdfName key : obj.getKeys()) {
System.out.print(" " + key + ": ");

System.out.printin(obj.get(key));

The showObject() method shows us the fully qualified names. The isDictionary() returns true and the

type() method returns 6.

Just like with PdfArray, the getBytes() method returns null. iText stores the objects in a HashMap.

A The toString() method of a PdfDictionary doesn’t reveal anything about the contents of the
dictionary, except for its type if present. The type entry is usually optional. For instance: the
PdfAction dictionary we created in code sample 1.6 doesn’t have a /Type entry.

We can ask a dictionary for its number of entries using the size() method and get each value as a PdfObject
by its key. As the entries are stored in a HashMap, the keys aren’t shown in the same order we used to add
them to the dictionary. That’s not a problem. The order of entries in a dictionary is irrelevant.

com.itextpdf.text.pdf.PdfDictionary:

-> dictionary? true
-> type: 6

-> toString: Dictionary of type:

-> size: 4

/3rd: 3
/Entryl: /First
/Type: /Custom
/Fourth: false
/Entry2: Second

com.itextpdf.text.pdf.PdfAction:

-> dictionary? true

-> type: 6

-> toString: Dictionary
-> size: 4

/D: dest

/F: test.pdf

/S: /GoToR

/NewWindow: true

/Custom

©O© 00 9 O O b W N =

I S U
O 00 9 O O b W N~ O

PDF Objects 12

As explained in table 1.1, a PDF dictionary is stored as a series of key value pairs enclosed by << and >>. The
action created in code sample 1.6 looks like this when viewed in a plain text editor:

<</D(dest)/F(test.pdf)/S/GoToR/NewWindow true>>

The basic PdfDictionary object has plenty of subclasses such as PdfAction, PdfAnnotation, PdfCollection,
PdfGState, PdfLayer, PdfOutline, etc. All these subclasses serve a specific purpose and they were created
to make it easier for developers to create objects without having to worry too much about the underlying
structures.

1.2.7 PdfStream

The PdfStream class also extends the PdfDictionary object. A stream object always starts with a dictionary
object that contains at least a /Length entry of which the value corresponds with the number of stream bytes.

For now, we’ll only use the constructor that accepts a byte[] as parameter. The other constructor involves
a PdfWriter instance, which is an object we haven’t discussed yet. Although that constructor is mainly for
internal use —it offers an efficient, memory friendly way to write byte streams of unknown length to a PDF
document—, we’ll briefly cover this alternative constructor in the Create your PDFs with iText* tutorial.

Code sample 1.7: C0107_StreamObject

public static void main(String[] args) {
PdfStream stream = new PdfStream(
"Long stream of data stored in a FlateDecode compressed stream object"
.getBytes());
stream. flateCompress();
showOb ject (stream);
}
public static void showObject(PdfStream obj) {
System.out.println(obj.getClass().getName() + ":");
System.out.printin("-> stream? " + obj.isStream());
System.out.printin("-> type: " + obj.type());
System.out.println("-> toString: " + obj.toString());
System.out.println("-> raw length: " + obj.getRawLength());

System.out.printin("-> size: " + obj.size());
for (PdfName key : obj.getKeys()) {
System.out.print(" " + key + ": ");

System.out.printin(obj.get(key));

In the lines following the fully qualified name, we see that the isStream() method returns true and the
type() method returns 7. The toString() method returns nothing more than the word "Stream".

*https://leanpub.com/itext_pdfcreate

https://leanpub.com/itext_pdfcreate
https://leanpub.com/itext_pdfcreate

©O© 00 9 O O b» W N =

PDF Objects 13

We can store the long String we used in code sample 1.7 “as is” inside the stream. In this case,
invoking the getBytes() method will return the bytes you used in the constructor.

If a stream is compressed, for instance by using the flateCompress() method, the getBytes()
method will return null. In this case, the bytes are stored inside a ByteArrayOutputStream and you
can write these bytes to an OutputStream using the writeContent() method. We didn’t do that
because it doesn’t make much sense for humans to read a compressed stream.

The PdfStream instance remembers the original length aka the raw length. The length of the compressed
stream is stored in the dictionary.

com.itextpdf.text.pdf.PdfStream:
-> stream? true

-> type: 7

-> toString: Stream

-> raw length: 68

-> size: 2
/Filter: /FlateDecode
/Length: 67

In this case, compression didn’t make much sense: 68 bytes were compressed into 67 bytes. In theory, you could
choose a different compression level. The PdfStream class has different constants such as NO_COMPRESSION (0),
BEST_SPEED (1) and BEST_COMPRESSION (9). In practice, we’ll always use DEFAULT_COMPRESSION (-1).

1.2.8 PdfNull

We’re using the PdfNull class internally in some very specific cases, but there’s very little chance you’ll ever
need to use this class in your own code. For instance: it’s better to remove an entry from a dictionary than to
set its value to null; it saves the PDF consumer processing time when parsing the files you’ve created.

Code sample 1.8: C0108_NullObject

public static void main(String[] args) {
showObject (PAfNull.PDFNULL);

}

public static void showObject(PdfNull obj) {
System.out.println(obj.getClass().getName() + ":");
System.out.printin("-> type: " + obj.type());
System.out.printin("-> bytes: " + new String(obj.getBytes()));
System.out.println("-> toString: " + obj.toString());

The output of code sample 1.8 is pretty straight-forward: the fully qualified name of the class, its type (8) and
the output of the getBytes() and toString() methods.

©O© 00 9 O O b» W N =

EGENEN
= o

PDF Objects 14

com.itextpdf.text.pdf.PdfNull:
-> type: 8

-> bytes: null

-> toString: null

These were the eight basic types, numbered from 1 to 8. Two more numbers are reserved for specificPdf0b ject
classes: 0 and 10. Let’s start with the class that returns 0 when you call the type() method.

1.2.9 PdfLiteral

The objects we've discussed so far were literally the first objects that were written when I started writing
iText. Since 2000, they’ve been used to build billions of PDF documents. They form the foundation of iText’s
object-oriented approach to create PDF documents.

Working in an object-oriented way is best practice and it’s great, but for some straight-forward objects, you
wish you’d have a short-cut. That’s why we created PdfLiteral. It’s an iText object you won’t find in the PDF
specification or ISO-32000-1 or -2. It allows you to create any type of object with a minimum of overhead.

For instance: we often need an array that defines a specific matrix, called the identity matrix. It consists of
six elements: 1, 0, 0, 1, 0 and 0. Should we really create a PdfArray object and add these objects one by one?
Wouldn'’t it be easier if we just created the literal array: [1 @ @ 1 0 0]?

That’s what PdfLiteral is about. You create the object passing a String or a byte[]; you can even pass the
object type to the constructor.

Code sample 1.9: C0109_LiteralObject

public static void main(String[] args) {
showOb ject (PdfFormXOb ject . MATRIX);
showOb ject (new PdfLiteral(
PdfObject .DICTIONARY, "<</Type/Custom/Contents [1 2 3]>>"));
}
public static void showObject(PdfObject obj) {
System.out.printlin(obj.getClass().getName() + ":");
System.out.printin("-> type: " + obj.type());
System.out.println("-> bytes: " + new String(obj.getBytes()));
System.out.printin("-> toString: " + obj.toString());

The MATRIX constant used in code sample 1.9 was created like this: new PdfLiteral("[1 @ @ 1 © @]"); when
we write this object to a PDF, it is treated in exactly the same way as if we’d had created a PdfArray, except
that its type is 0 because PdfLiteral doesn’t parse the String to check the type.

We also create a custom dictionary, telling the object its type is PdfObject.DICTIONARY. This doesn’t have
any impact on the fully qualified name. As the String passed to the constructor isn’t being parsed, you can’t
ask the dictionary for its size nor get the key set of the entries.

The content is stored literally, as indicated in the name of the class: PdfLiteral.

PDF Objects 15

com.itextpdf.text.pdf.PdfLiteral:

-> type: ©

-> bytes: [1 2 21 0 Q]

-> toString: [1 0 9@ 1 0 Q]
com.itextpdf.text.pdf.PdfLiteral:

-> type: 6

-> bytes: <</Type/Custom/Contents [1 2 3]>>

-> toString: <</Type/Custom/Contents [1 2 3]>>

It goes without saying that you should be very careful when using this object. As iText doesn’t parse the
content to see if its syntax is valid, you’ll have to make sure you don’t make any mistakes. We use this object
internally as a short-cut, or when we encounter content that can’t be recognized as being one of the basic
types whilst reading an existing PDF file.

1.3 The difference between direct and indirect objects

To explain what the iText PdfObject with value 10 is about, we need to introduce the concept of indirect
objects. So far, we've been working with direct objects. For instance: you create a dictionary and you add an
entry that consists of a PDF name and a PDF string. The result looks like this:

<</Name (Bruno Lowagie)>>
The string value with my name is a direct object, but I could also create a PDF string and label it:

1 0 obj
(Bruno Lowagie)
endob j

This is an indirect object and we can refer to it from other objects, for instance like this:
<</Name 1 @ R>>

This dictionary is equivalent to the dictionary that used a direct object for the string. The1 @ R in the latter
dictionary is called an indirect reference, and its iText implementation is called PdfIndirectReference. The
type value is 10 and you can check if a PdfObject is in fact an indirect reference using the isIndirect()
method.

A stream object may never be used as a direct object. For example, if the value of an entry in

A a dictionary is a stream, that value always has to be an indirect reference to an indirect object
containing a stream. A stream dictionary can never be an indirect object. It always has to be a
direct object.

An indirect reference can refer to an object of any type. We’ll find out how to obtain the actual object referred
to by an indirect reference in chapter 3.

PDF Objects 16

1.4 Summary

In this chapter, we’ve had an overview of the building blocks of a PDF file:

« boolean,

« number,

e string,

. name,

. array,

« dictionary,
« stream, and
e null

Building blocks can be organized as numbered indirect objects that reference each other.

It’s difficult to introduce code samples explaining how direct and indirect objects interact, without seeing the
larger picture. So without further ado, let’s take a look at the file structure of a PDF document.

2. PDF File Structure

Figure 2.1 shows a simple, single-page PDF document with the text “Hello World” opened in Adobe Reader.

T hellol.pdf - Adobe Reader = B R
‘File Edit View Window Help 3
f{} Z o B @ /1 | - (a | | R Tools Sign Comment

Hello World

8,26 x11,69 in 4 i

-

Figure 2.1: Hello World

Now let’s open the file in a text editor and examine its internal structure.

2.1 The internal structure of a PDF file

When we open the “Hello World” document in a plain text editor instead of in a PDF viewer, we soon discover
that a PDF file consists of a sequence of indirect objects as described in the previous chapter.

Table 2.1 shows how to find the four different parts that define the “Hello World” document listed in code

sample 2.1:
Table 2.1: Overview of the parts of a PDF file
Part Name Line numbers
1 The Header Lines 1-2
2 The Body Lines 3-24
3 The Cross-reference Table Lines 25-33
4 The Trailer Lines 34-40

Note that I've replaced a binary content stream by the words *binary stuff*. Lines that were too long to fit

on the page were split; a \ character marks where the line was split.

© 00 9 O O b W N =

B W W W W W MWW WWNDNNDDNDNDNDNDNDDND S s R s s L s
© © ® I O O d WNPL O O W0 0 b WNRARS O WO U h Wb~

PDF File Structure 18

Code sample 2.1: A PDF file inside-out

%PDF -1 .4

%4510

2 0 obj

<</Length 64/Filter/FlateDecode>>stream

binary stuff

endstream

endob j

4 0 obj

<</Parent 3 @ R/Contents 2 @ R/Type/Page/Resources<</ProcSet [/PDF /Text /ImageB /ImageC /\
Imagel]/Font<</F1 1 @ R>>>>/MediaBox[@ © 595 842]>>

endob j

1 0 obj

<</BaseFont/Helvetica/Type/Font/Encoding/WinAnsiEncoding/Subtype/Typel>>

endob j

3 0 obj

<</Type/Pages/Count 1/Kids[4 © R]>>

endob j

5 0 obj

<</Type/Catalog/Pages 3 @ R>>

endob j

6 0 obj

<</Producer(iText® 5.4.2 ©2000-2012 1T3XT BVBA \(AGPL-version\))/ModDate(D:20130502165150+\
02'00')/CreationDate(D:20130502165150+02'00")>>

endob j

xref

QT

0000V 65535
0000000302 VL
0000YYVV15 VL
0000000390 VL
00000VV145 L
0000000441 L
0000YVV486 YL
trailer

<</Root 5 @ R/ID [<91bee3a87061eb2834fb6a3258bf817e><91bee3a87061eb2834fb6a3258bf817e>]/In\
fo 6 @ R/Size 7>>

%1Text-5.4.2

startxref

639

%%EQF

53 3 3 3 3 3 +h

Let’s examine the four parts that are present in code sample 2.1 one by one.

PDF File Structure 19

2.1.1 The Header

Every PDF file starts with %PDF -. If it doesn’t, a PDF consumer will throw an error and refuse to open the file
because it isn’t recognized as a valid PDF file. For instance: iText will throw an InvalidPdfException with
the message “PDF header signature not found.”

iText supports the most recent PDF specifications, but uses version 1.4 by default. That’s why our “Hello
World” example (that was created using iText) starts with %PDF-1 . 4.

Beginning with PDF 1.4, the PDF version can also be stored elsewhere in the PDF. More specifically

A in the root object of the document, aka the catalog. This implies that a file with header %PDF-1.4
can be seen as a PDF 1.7 file if it’s defined that way in the document root. This allows the version
to be changed in an incremental update without changing the original header.

The second line in the header needs to be present if the PDF file contains binary data (which is usually the
case). It consists of a percent sign, followed by at least four binary characters. That is: characters whose codes
are 128 or greater. This ensures proper behavior of the file transfer applications that inspect data near the
beginning of a file to determine whether to treat the file’s contents as a text file, or as a binary file.

Line 1 and 2 start with a percent sign (%). Any occurence of this sign outside a string or stream

O introduces a comment. Such a comment consists of all characters after the percent sign up to (but
not including) the End-of-Line marker. Except for the header lines discussed in this section and the
End-of-File marker %%EOF, comments are ignored by PDF readers because they have no semantical
meaning,

The Body of the document starts on the third line.

2.1.2 The Body

We recognize six indirect objects between line 3 and 24 in code sample 2.1. They aren’t ordered sequentially:

Object 2 is a stream,

Object 4 is a dictionary of type /Page,

Object 1 is a dictionary of type /Font,

Object 3 is a dictionary of type /Pages,
Object 5 is a dictionary of type /Catalog, and

AN S

Object 6 is a dictionary for which no type was defined.

A PDF producer is free to add these objects in any order it desires. A PDF consumer will use the cross-reference
table to find each object.

PDF File Structure 20

2.1.3 The Cross-reference Table

The cross-reference table starts with the keyword xref and contains information that allows access to the
indirect objects in the body. For reasons of performance, a PDF consumer doesn’t read the entire file.

Imagine a document with 10,000 pages. If you only want to see the last page, a PDF viewer doesn’t
need to read the content of the 9,999 previous pages. It can use the cross-reference table to retrieve
only those objects needed as a resource for the requested page.

The keyword xref is followed by a sequence of lines that either consist of two numbers, or of exactly 20 bytes.
In code sample 2.1, the cross-reference table starts with @ 7. This means the next line is about object 0 in a
series of seven consecutive objects: 0, 1, 2, 3, 4, 5, and 6.

There can be gaps in a cross-reference table. For instance, an additional line could be 10 3 followed
by three lines about objects 10, 11, and 12.

The lines with exactly 20 bytes consist of three parts separated by a space character:

1. a 10-digit number representing the byte offset,
2. a 5-digit number indicates the generation of the object,
3. a keyword, either n if the object is in use, or £ if the object is free.

Each of these lines ends with a 2-byte End-of-Line sequence.

The first entry in the cross-reference table representing object 0 at position 0 is always a free object with the
highest possible generation number: 65,535. In code sample 2.1, it is followed by 6 objects that are in use:
object 1 starts at byte position 302, object 2 at position 15, and so on.

Since PDF 1.5, there’s another, more compact way to create a cross-reference table, but let’s first take a look
at the final part of the PDF file in code sample 2.1, the trailer.

2.1.4 The Trailer

The trailer starts with the keyword trailer, followed by the trailer dictionary. The trailer dictionary in line
35-36 of code sample 2.1 consists of four entries:

« The /1D entry is a file identifier consisting of an array of two byte sequences. It’s only required for
encrypted documents, but it’s good practice to have them because some workflows depend on each
document to be uniquely identified (this implies that no two files use the same identifier). For documents
created from scratch, the two parts of the identifier should be identical.

+ The /Size entry shows the total number of entries in the file’s cross-reference table, in this case 7.

« The /Root entry refers to object 5. This is a dictionary of type /Catalog. This root object contains
references to other objects defining the content. The Catalog dictionary is the starting point for PDF
consumers that want to read the contents of a document.

PDF File Structure 21

« The /Info entry refers to object 6. This is the info dictionary. This dictionary can contain metadata
such as the title of the document, its author, some keywords, the creation date, etc. This object will be
deprecated in favor of XMP metadata in the next PDF version (PDF 2.0 defined in ISO-32000-2).

Other possible entries in the trailer dictionary are the /Encrypt key, which is required if the document is
encrypted, and the /Prev key, which is present if the file has more than one cross-reference section. This will
occur in the case of PDFs that are updated in append mode as will be explained in section 2.2.1.

Every PDF file ends with three lines consisting of the keyword startxref, a byte position, and the keyword
%%EOF . In the case of code sample 2.1, the byte position points to the location of the xref keyword of the most
recent cross-reference table.

Let’s take a look at some variations on this file structure.

2.2 Variations on the file structure

Depending on the document requirements of your project, you’ll expect a slightly different structure:

« When a document is updated and the bytes of the previous revision need to remain intact,
« When a document is postprocessed to allow fast web access, or
« When file size is important and therefore full compression is recommended.

Let’s take a look at the possible impact of these requirements on the file structure.

2.2.1 PDFs with more than one cross-reference table

There are different ways to update the contents of a PDF document. One could take the objects of an existing
PDF, apply some changes by adding and removing objects, and creating a new structure where the existing
objects are reordered and renumbered. That’s the default behavior of iText’s PdfStamper class.

In some cases, this behavior isn’t acceptable. If you want to add an extra signature to a document that was
already signed, changing the structure of the existing document will break the original signature. You’ll have
to preserve the bytes of the original document and add new objects, a new cross-reference table and a new
trailer. The same goes for Reader enabled files, which are files signed using Adobe’s private key, adding specific
usage rights to the file.

Code sample 2.2 shows three extra parts that can be added to code sample 2.1 (after line 40): an extra body,
an extra cross-reference table and an extra trailer. This is only a simple example of a possible update to an
existing PDF document; no extra visible content was added. We’ll see a more complex example in the tutorial
Sign your PDFs with iText".

'https://leanpub.com/itext_pdfsign

https://leanpub.com/itext_pdfsign
https://leanpub.com/itext_pdfsign

41
42
43
44
45
46
47
48
49
50
o1
52
93
54
55
o6

PDF File Structure 22

Code sample 2.2: A PDF file inside-out (part 2)

6 @ obj

<</Producer(iText® 5.4.2 ©2000-2012 1T3XT BVBA \(AGPL-version\))/ModDate(D:20130502165150+\
02'00')/CreationDate(D:20130502165150+02'00"')>>

endob j

xref

201

0000V 65535 f

6 1

00000938 VYA n

trailer

<</Root 5 @ R/Prev 639/ID [<91bee3a87061eb2834fb6a3258bf817e><84c1b02d932693e4927235¢c277cc\
489e>]/Info 6 © R/Size T>>

%iText-5.4.2

startxref

1091

%%EOF

When we look at the new cross-reference table, we see that object 0 is again a free object, whereas object 6 is
now updated.

Object 6 is reused and therefore the generation number doesn’t need to be incremented. It remains
00000. In practice, the generation number is only incremented if the status of an object changes
fromn to f.

Observe that the /Prev key in the trailer dictionary refers to the byte position where the previous cross-
reference starts.

The first element of the /ID array generally remains the same for a given document. This helps

0 Enterprise Content Management (ECM) systems to detect different versions of the same document.
They shouldn’t rely on it, though, as not all PDF processors support this feature. For instance: iText’s
PdfStamper will respect the first element of the ID array; PdfCopy typically won’t because there’s
usually more than one document involved when using PdfCopy, in which case it doesn’t make sense
to prefer the identifier of one document over the identifier of another.

The file parts shown in code sample 2.2 are an incremental update. All changes are appended to the end of
the file, leaving its original contents intact. One document can have many incremental updates.

The principle of having multiple cross-reference streams is also used in the context of linearization.

2.2.2 Linearized PDFs

A linearized PDF file is organized in a special way to enable efficient incremental access. Linearized PDF is
sometimes referred to as PDF for “fast web view.” Its primary goal is to enhance the viewing performance

©O© 00 9 O O b» W N =

NN NN N N S R R 1 1 s L sy
O B 0O N - © O 00 N O O b W N -~ O

PDF File Structure 23

whilst downloading a PDF file over a streaming communications channel such as the internet. When data for
a page is delivered over the channel, you’d like to have the page content displayed incrementally as it arrives.

With the essential cross-reference at the end of the file, this isn’t possible unless the file is linearized. All the
content in the PDF file needs to be reorganized so that the first page can be displayed as quickly as possible
without the need to read all of the rest of the file, or to start reading with the final cross-reference file at the
very end of the file.

Such a reorganization of the PDF objects, creating a cross-reference for each page, can only be done after the
PDF file is completed and after all resources are known. iText can read linearized PDFs, but it can’t create a
linearized PDF, nor can you (currently) linearize an existing PDF using iText.

2.2.3 PDFs with compressed object and cross-reference streams

Starting with PDF 1.5, the cross reference table can be stored as an indirect object in the body, more specifically
as a stream object allowing big cross-reference tables to be compressed. Additionally, the file size can be
reduced by putting different objects into one compressed object stream.

Code sample 2.3 has the same appearance as code sample 2.1 when opened in a PDF viewer, but the internal
file structure is quite different:

Code sample 2.3: Compressed PDF file structure

%PDF-1.5

%4510

2 0 obj

<</Length 64/Filter/FlateDecode>>stream

binary stuff

endstream

endob j

6 @ obj

<</Type/Catalog/Pages 3 @ R>>

endob j

7 @ obj

<</Producer(iText® 5.4.2 ©2000-2012 1T3XT BVBA \(AGPL-version\))/ModDate(D:20130502165150+\
02'00')/CreationDate(D:20130502165150+02'00")>>

endob j

5 0 obj

<</Type/0ObjStm/N 3/Length 191/First 16/Filter/FlateDecode>>stream

pbinary stuff

endstream

endob j

8 0 obj

<</Type/XRef/W[1 2 2]/Root 6 @ R/Index[@ 9]/ID [<21cb45ach652a807ba62d55f7b29d8be> <21cb45a\
cb652a807bab62d55f7b29d8be> | /Length 41/Info 7 @ R/Size 9/Filter/FlateDecode>>stream
binary stuff

endstream

endob j

26
27
28
29

PDF File Structure

%1iText-5.4.2
startxref
626

%%EOF

24

Note that the header now says %PDF-1.5. When I created this file, I've opted for full compression before
opening the Document instance, and iText has automatically changed the version to 1.5.

The startxref value on line 28 no longer refers to the byte position of an xref keyword, but to the byte
position of the stream object containing the cross-reference stream.

The stream dictionary of a cross-reference stream has a /Length and a /Filter entry just like all other streams,
but also requires some extra entries as listed in table 2.2.

Table 2.2: Entries specific to a cross-reference stream dictionary

Key Type Value

Type name Required; always /XRef.

W array Required; an array of integers representing the size of the fields in a
single cross reference entry.

Root dictionary Required; refers to the catalog dictionary; equivalent to the /Root
entry in the trailer dictionary.

Index array An array containing a pair of integers for each subsection in the
cross-reference table. The first integer shall be the first object number
in the subsection; the second integer shall be the number of entries in
the subsection.

ID array An array containing a pair of IDs equivalent to the /ID entry in the
trailer dictionary.

Info dictionary An info dictionary, equivalent to the /Info entry in the trailer
dictionary (deprecated in PDF 2.0).

Size integer Required; equivalent to the /Size entry in the trailer dictionary.

Prev integer Equivalent of the /Prev key in the trailer dictionary. Refers to the

byte offset of the beginning of the previous cross-reference stream (if
such a stream is present).

If we look at code sample 2.3, we see that the /Size of the cross-reference table is 9, and all entries are
organized in one subsection [@ 9], which means the 9 entries are numbered from 0 to 8. The value of the w
key, in our case [1 2 2], tells us how to distinguish the different cross-reference entries in the stream, as well
as the different parts of one entry.

Let’s examine the stream by converting each byte to a hexadecimal number and by adding some extra white
space so that we recognize the [1 2 2] pattern as defined in the W key:

PDF File Structure

(414
02
1
02
02
01
1
01
(4%

(5]616]0]
005
000t
005
0005
0157
0091
@Bbe
(5]616]]

ffff
0001
00
0002
00
0000
000
0000
ffff

25

We see 9 entries, representing objects 0 to 8. The first byte can be one out of three possible values:

« If the first byte is @0, the entry refers to a free entry. We see that object 0 is free (as was to be expected),
as well as object 8, which is the object that stores the cross-reference stream itself.

« Ifthe first byte is @1, the entry refers to an object that is present in the body as an uncompressed indirect
object. This is the case for objects 2, 5, 6, and 7. The second part of the entry defines the byte offset of
these objects: 15 (000£), 343 (9157), 145 (0091) and 190 (@@be). The third part is the generation number.

« If the first byte is 02, the entry refers to a compressed object. This is the case with objects 1, 3, and 4.
The second part gives you the number of the object stream in which the object is stored (in this case
object 5). The third part is the index of the object within the object stream.

Objects 1, 3, and 4 are stored in object 5. This object is an object stream, and its stream dictionary requires
some extra keys as listed in table 2.3.

Table 2.3: Entries specific to an object stream dictionary

Key Type Value

Type name Required; always /0bjStm.

N integer Required; the number of indirect objects stored in the stream.

First integer Required; the byte offset in the decoded stream of the first compressed
object

Extends stream A reference to another object stream, of which the current object shall

be considered an extension.

The N value of the stream dictionary in code sample 2.3 tells us that there are three indirect objects stored
in the object stream. The entries in the cross-reference stream tell us that these objects are numbered and
ordered as 4, 1, and 3. The First value tells us that object 4 starts at byte position 16.

We'll find three pairs of integers, followed by three objects starting at byte position 16 when we uncompress
the object stream stored in object 5. I've added some extra newlines to the uncompressed stream so that we
can distinguish the different parts:

PDF File Structure 26

40

1 142

3 215

<</Parent 3 @ R/Contents 2 @ R/Type/Page/Resources<</ProcSet [/PDF /Text /ImageB /ImageC /\
Imagel]/Font<</F1 1 @ R>>>>/MediaBox[0@ @ 595 842]>>
<</BaseFont/Helvetica/Type/Font/Encoding/WinAnsiEncoding/Subtype/Typel>>
<</Type/Pages/Count 1/Kids[4 © R]>>

The three pairs of integers consist of the numbers of the objects (4, 1, and 3), followed by their offset relative
to the first object stored in the stream. We recognize a dictionary of type /Page (object 4), a dictionary of type
/Font (object 1), and a dictionary of type /Pages (object 3).

9 You can never store the following objects in an object stream:

- stream objects,

« objects with a generation number different from zero,

« a document’s encryption dictionary,

« an object representing the value of the /Length entry in an object stream dictionary,
« the document catalog dictionary,

« the linearization dictionary, and

« page objects of a linearized file.

Now that we know how a cross-reference is organized and how indirect objects are stored either in the body
or inside a stream, we can retrieve all the relevant PDF objects stored in a PDF file.

2.3 Summary

In this chapter, we’ve examined the four parts of a PDF file: the header, the body, the cross-reference table
and the trailer. We’ve learned that some PDFs have incremental updates, that the cross-reference table can be
compressed into an object, and that objects can be stored inside an object stream. We can now start exploring
the file structure of every PDF file that can be found in the wild.

While looking under the hood of some simple PDF documents, we’ve encountered objects such as the Catalog
dictionary, Pages dictionaries, Page dictionaries, and so on. It’s high time we discover how these objects relate
to each other and how they form a document.

3. PDF Document Structure

In chapter 1, we’ve learned about the different types of objects available in the Portable Document Format,
and we discovered that one object can refer to another using an indirect reference. In chapter 2, we’ve learned
how the objects are stored in a file, as well as where to find indirect objects based on their object number.
In this chapter, we're going to combine this knowledge to find out how these objects are structured into a
hierarchy that defines a document.

3.1 Viewing a document as a tree structure using RUPS

The seemingly linear sequence of PDF objects we see when we open a PDF file in a text editor, isn’t as linear
as one might think at first sight.

Figure 3.1 shows the “Hello World” document we examined in code sample 2.1, opened in iText RUPS.

-~

| £ iText RUPS 5.4.2 = E 2E
File Help
)~ | PDF Object Tree (hello.pdf) (‘Pages | Outlines | Form [XFA [XRef |
¢ IRoot: 5 0 R -= Dictionary of type: /Catalog .
¢~ [Dictionary of type: /Catalog Number . Object
[/Pages: 3 0 R -= Dictionary of type: /Pages Dictionary of type: /Font
&L Dictionary of type: /Pages Stream

@ Mype: IPages
= ICount: 1
¢ 1= /Kids:[4 0 R]
¢ 4 0 R -= Dictionary of type: IPage
? Page 1
[Parent: 3 0 R -= Dictionary of type: [Pages
9 IContents: 2 0 R -= Stream
9 ke Stream
= /Length: 64
@ JFilter: /FlateDecode
@ Mype: IPage
¢ [Ed /Resources: Dictionary
e = [ProcSet: [[POF, /Text, iImageB, imageC, /imagel]
o= [/Font: Dictionary
o := /MediaBox: [0, 0, 595, 842]
@ Mype: ICatalog
o = /ID: [=9ndg¥ & R +IAfO,.m TgU0y Od -lug]
o finfo: 6 0 R -= Dictionary

Dictionary of type: /Pages

Dictionary of type: /(Page

Dictionary of type: /Catalog

o [n | fe [[ra =

Dictionary

= ISize: 7
Key WValue f Stream r XFA r{lonsole
/Parent I0R -
Type IPage
/Contents 20R =
/Resources Dictionary | 4
MediaBox [0, 0, 595, 842] bt

Figure 3.1: Hello World opened in iText RUPS

RUPS offers a Graphical User Interface that allows you to look inside a PDF. It’s written in Java and compiled
to a Windows executable. You can download the source code and the binary from SourceForge'.

*http://sourceforge.net/projects/itextrups/

http://sourceforge.net/projects/itextrups/
http://sourceforge.net/projects/itextrups/

PDF Document Structure 28

To the left, you recognize the entries of the trailer dictionary (see section 2.1.4). These entries are visualized
in a Tree-view panel as the branches of a tree. The most prominent branch is the /Root dictionary. In figure
3.1, we’ve opened the /Pages dictionary, and we’ve unfolded the leaves of the /Page dictionary representing
“Page 1” of the document.

To the right, there’s a panel with different tabs. We see the XRef tab, listing the entries of the cross-reference
table. It contains all the objects we discussed in section 2.1.3, organized in a table with rows numbered from
1 to 6. Clicking a row opens the corresponding object in the Tree-view panel. We’ll take a look at the other
tabs later on.

At the bottom, we can find info about the object that was selected. In this case, RUPS shows a tabular structure
listing the keys and values of the /Page dictionary that was opened in the tree view panel.

To the right, we see another panel with different tabs. The Console tab shows whatever output is written
to the System.out or System.err while using RUPS. Here’s where you’ll find the stack trace when you try
reading a file that can’t be parsed by iText because it contains invalid PDF syntax. We’ll have a closer look at
the Stream panel in part 2 and at the XFA panel in part 3 of this book.

Figure 3.2 shows the “Hello World” document we examined in code sample 2.3.

-

[£] Text RUPS 5.4.2 o=@ =
File Help
)~ PDF Object Tree (hello3.pdf) [Pages | Outlines | Form | XFA | XRef |
@ Mype: MRef :
= fW.1,2 2] Mumber Object

Dictionary of type: /[Font
Stream

Dictionary of type: /Pages
Dictionary oftype: /Page
Dictionary of type: /Catalog
Dictionary

e /Root 6 0 R -= Dictionary of type: /Catalog
¢ L& Dictionary of type: /Catalog
? /Pages: 3 0 R -= Dictionary oftype: /[Pages
@I Dictionary of type: IPages
@ Mype: iPages
= /count: 1
§ i= Kids:[4 0 R]
? 4 0 R -= Dictionary of type: /Page
T Page 1
[Parent: 3 0 R -= Dictionary of type: /Pages
o= IContents: 2 0 R -= Stream
@ Mype: IPage
o= [/Resources: Dictionary
o := MediaBox [0, 0, 595, 842
@ Mype: ICatalog
o= = [Index: [0, 9]
o iZ ID: [-B+A«%ETA D80, Thid $70m A7
[LLength: 41
o= finfo: 7 0 R -= Dictionary
= /3ize: 9
@ fFilter: IFlateDecode

e B =R SRS R L

Key Value ||(Stream rJ{FA r{:onsole
/Parent 30R
Mype Page
/Contents 20R
/Resources Dictionary
/MediaBox [0, 0, 595, 842]

Figure 3.2: Compressed Hello World opened in iText RUPS

PDF Document Structure

When you open a file with a compressed cross-reference stream, RUPS shows the /XRef dictionary instead of

the trailer dictionary (because there is no trailer dictionary).

The XRef table on the right is also slightly different. Based on what we know from section 2.2.3 about this

“Hello World” file, we notice that two objects are missing:

« object 5 — a compressed object stream. Instead of showing the original stream, RUPS shows the objects

that were compressed into this stream: 4, 1 and 3.

« object 8 — the compressed cross-reference stream. This stream isn’t shown either; instead its content is

interpreted and visualized in the XRef tab.

When you open a document that was incrementally updated in RUPS, you’ll only see the most recent objects.

RUPS doesn’t show any unused objects.

®,

Now that we have a means to look at the document structure using a tool with a GUL, let’s find out how we

The history behind RUPS

I wrote RUPS out of frustration, at a time iText wasn’t generating any revenue. When I needed to
debug a PDF file, I used to open that PDF in a text editor. I then had to search through that text file
looking for specific object numbers and references. When I needed to examine streams, I used the
iText toolbox, a predecessor of RUPS, to decompress the binary data.

All of this was very time-consuming and almost unaffordable as long as I didn’t get paid for
debugging other people’s documents. So I've spent the Christmas holidays of 2007 writing a GUI to
“Read and Update PDF Syntax” aka “RUPS”. Rups is the Dutch word for caterpillar, and I imagined
the GUI as a tool to penetrate into the heart of a document, the way a caterpillar eats its way through
the leaves of a plant.

My initial idea was to also allow people to change objects at their core and by doing so, to update
their PDFs manually. We’ve only recently started implementing functionality that allows updating
keys in dictionaries and applying other minor changes. Such functionality makes it very easy for
people who aren’t fluent in PDF to cause serious damage to a PDF file. We still aren’t sure if it’s a
good idea to allow this kind of PDF updating.

can obtain the different objects that compose a PDF document programmatically, using code.

3.2 Obtaining objects from a PDF using PdfReader

When you open a document with RUPS, RUPS uses iText’s PdfReader class under the hood. This class allows
you to inspect a PDF file at the lowest level. Code sample 3.1 shows how we can create such a PdfReader

instance and fetch different objects.

O 00 = O O » W N =~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

PDF Document Structure 30

Code sample 3.1: C0301_TrailerInfo

public static void main(String[] args) throws IOException {

PdfReader reader =
new PdfReader("src/main/resources/primes.pdf");

PdfDictionary trailer = reader.getTrailer();
showEntries(trailer);
PdfNumber size = (PdfNumber)trailer.get(PdfName.SIZE);
showOb ject(size);
size = trailer.getAsNumber (PdfName.SIZE);
showOb ject(size);
PdfArray ids = trailer.getAsArray(PdfName.ID);
PdfString id1 = ids.getAsString(0);

showObject(idl);

PdfString id2 = ids.getAsString(1);
showObject(id2);

PdfObject object = trailer.get(PdfName.INFO);
showOb ject(object);

showObject(trailer.getAsDict(PdfName.INFO));
PdfIndirectReference ref = trailer.getAsIndirectObject(PdfName.INFO);
showOb ject(ref);
object = reader.getPdfObject(ref.getNumber());
showOb ject(object);
object = PdfReader.getPdfObject(trailer.get(PdfName.INFO));
showOb ject(object);
reader.close();
}
public static void showEntries(PdfDictionary dict) {
for (PdfName key : dict.getKeys()) {
System.out.print(key + ": ");
System.out.printin(dict.get(key));

}

public static void showObject(PdfObject obj) {
System.out.println(obj.getClass().getName() + ":");
System.out.printin("-> type: " + obj.type());
System.out.println("-> toString: " + obj.toString());

In this code sample, we create a PdfReader object that is able to read and interpret the PDF syntax stored in
the file primes . pdf. This reader object will allow us to obtain any indirect object as an iText PDF object from
the body of the PDF document. But let’s start by fetching the trailer dictionary.

In line 4, we get the trailer dictionary using the getTrailer() method. We take a look at its entries the same
way we looked a the entries of other dictionaries in section 1.2.6.

The showEntries() method produces the following output:

PDF Document Structure 31

/Root: 762 @ R

/ID: [8A~28ge-0 , 8A~25g0-0]
/Size: T64

/Info: 763 @ R

In line 6 of code sample 3.1, we use the same get() as in the showEntries() method to obtain the value
of the /Size entry. As we expect a number, we cast the PdfObject to a PdfNumber instance. We'll get a
ClassCastException if the value of the entry is of a different type. The same exception will be thrown if the
entry is missing in the dictionary, in which case the get() method will return nu11.

One way to avoid ClassCastException problems, is to get the value as a PdfObject instance first and to
check whether or not it’s null. If it’s not, we can check the type before casting the PdfObject to one of its
subclasses. An alternative to this convoluted method sequence would be to use one of the getAsX() methods
listed in table 3.1.

Table 3.1: Overview of the getters available in PdfArray and PdfDictionary

Method name Return type

get() / getPdfObject() aPdfObject instance (could even be an indirect reference). The
get() method is to be used for entries in a PdfDictionary; the
getPdfObject() for elements in a PdfArray.

getDirectObject() a PdfObject instance. Indirect references will be resolved. In
case the value of an entry is referenced, PdfReader will go and
fetch the PdfObject using that reference. You’ll get a direct
object, or null if the object can’t be found.

getAsBoolean() a PdfBoolean instance.

getAsNumber () a PdfNumber instance.

getAsString() a PdfString instance.

getAsName() a PdfName instance.

getAsArray() a PdfArray instance.

getAsDict() a PdfDictionary instance.

getAsStream() a PdfStream instance, that can be cast to a PRStream object.

getAsIndirectObject() aPdfIndirectReference instance, that can be cast to a
PRIndirectReference object.

These methods either return a specific subclass of PdfOb ject, or they returnnull if the object was of a different
type or missing. In line 8 of code sample 3.1, we get aPdfNumber by using trailer.getAsNumber (PdfName.SIZE);

Suppose that we had used the getAsstring() method instead of the getAsNumber() method. This would
have returned null because the size isn’t expressed as a PdfString value. This behavior is useful in case you
don’t know the type of the value for a specific entry in advance. For instance, when we’ll talk about named
destinations in section 35.2.1.1, we’ll see that a named destination can be defined using either a PdfString
or a PdfName. We could use the getAsName() method as well as the getAsString() method and check which
method doesn’t return null to determine which flavor of named destination we’re dealing with.

PDF Document Structure 32

When invoked on a PdfDictionary, the methods listed in table 3.1 require a PdfName —the key— as parameter;
when invoked on a PdfArray, they require an int —the index. In line 10 of code sample 3.1, we get the /ID
entry as a PdfArray, and we get the two elements of the array using the getAsString() method and the
indexes @ and 1.

In line 15, we ask for the /Info entry, but the info dictionary isn’t stored in the trailer dictionary as a direct
object. The entry in the trailer dictionary refers to an indirect object with number 763. If we want the actual
dictionary, we need to use the getAsDict () method. This method will look at the object number of the indirect
reference and fetch the corresponding indirect object from the PdfReader instance.

Take a look at the output of the showOb ject() methods in line 16 and line 17 to see the difference:

com.itextpdf.text.pdf.PRIndirectReference:
-> type: 10

-> toString: 763 @ R
com.itextpdf.text.pdf.PdfDictionary:

-> type: 6

-> toString: Dictionary

The get() method returns the reference, the getAsDict() method returns the actual object by fetching the
content of object 763. Note that the reference instance is of type PRIndirectReference.

The PdfStream and PdfIndirectReference objects have PRStream and PRIndirectReference

0 subclasses. The prefix PR refers to PdfReader and the object instances contain more information
than the object instances we’ve discussed in chapter 1. For instance: if you want to extract the
content of a stream, you’ll need the PRStream instance instead of the PdfStream object.

On line 18, we try a slightly different approach. First, we get the indirect reference value of the /Info dictionary
using the getAsIndirectReferenceObject() method. Then we get the actual object from the PdfReader by
using the reference number. PdfReader’s getPdfObject() method can give you every object stored in the
body of a PDF file by its number. PdfReader will fetch the byte position of the indirect object from the cross-
reference table and parse the object found at that specific byte offset.

As an alternative, you can also use PdfReader’s static getPdfObject() method that accepts a PdfObject
instance as parameter. If this parameter is an indirect reference, the reference will be resolved. If it’s a direct
object, that object will be returned as-is.

Now that we’ve played with different objects obtained from a PdfReader instance, let’s explore the document
structure using code. Looking at what RUPS shows us, the /Root dictionary aka the Document Catalog
dictionary is where we should start. This dictionary has two required entries. One is the /Type which must
be /Catalog. The other is the /Pages entry which refers to the root of the page tree.

We'll look at the optional entries in a moment, but let’s begin by looking at the page tree.

3.3 Examining the page tree

Every page in a PDF document is defined using a /Page dictionary. These dictionaries are stored in a structure
known as the page tree. Each /Page dictionary is the child of a page tree node, which is a dictionary of type

PDF Document Structure 33

/Pages. One could work with a single page tree node, the one that is referred to from the catalog, but that
would be bad practice. The performance of PDF consumers can be optimised by contructing a balanced tree.

If you create a PDF using iText, you won’t have more than 10 /Page leaves or /Pages branches
attached to every /Pages node. By design, a new intermediary page tree node is introduced by
iText every 10 pages.

Before we start coding, let’s take a look at figure 3.3. It shows part of the page tree of the primes.pdf document
using RUPS, starting with the root node.

¢ [Pages: 758 0 R = Dictionary of type: /Pages| :l’ Pages | Outiines | Form | XFA | XRef |
¢ L Dictionary of type: [Pages Object Page
8”5‘091”'3995 Objedti Fagel -
= /Count: 299 i
¢ i= IKids: [T55 0 R, 756 0 R, 757 0 R] S§j§§§ E:§§§
e 755 0 R -= Dictionary of type: /Pages Object 9 Page 4
¢ | Dictionary of type: [Pages Object 12 Page 5 =
/Parent: 758 0 R -= Dictionary of type: /Pages Object 13 Page 6
ggopueﬁtﬂaugues Solec 19 pael
§ = Kids:[40R, 24 0R, 450R, 66 0R,870R, 108 0R, 1290R, 150 0 R, 1710 R, 192 0R] ggizggﬁ E:gsg |
e 4 0 R -= Dictionary of type: /Pages Object 21 Page 10
¢ L[Dictionary of type: /Pages Object 25 Page 11
[Parent: 755 0 R -= Dictionary of type: /Pages Object 26 Page 12
(] ﬂt;yopueﬁtﬂaﬂges Object 29 Page 13
A Object 31 Page 14
Kids:[10R,50R,B0R, 90R, 120R, 130R, 16 0R, 18 0R, 200R, 21 0R] Object 33 Page 15
o= 10 R -= Dictionary of type: /Page Object 34 Page 16
o= 50 R -= Dictionary of type: /Page Object 37 Page 17
o= > 8 0R-= Dictionary of type: /Page Object 28 Page 18
o= 9 0 R -= Dictionary of type: /Page Object 41 Page 19
o= 12 0 R -= Dictionary of type: /Page Object 43 Page 20
o= 13 0 R -= Dictionary of type: /Page Object 46 Page 21
o= 16 0 R -= Dictionary of type: /Page Object 47 Page 22
o= 18 0 R -= Dictionary of type: /Page Object 50 Page 23
o= 20 0 R -= Dictionary of type: /Page =|[lobject 52 Page 24
o 210 R -= Dictionary of type: /Page Object 54 Page 25
o= 24 0 R -= Dictionary of type: /Pages Object 56 Page 26
o= > 45 0R -= Dictionary of type: /[Pages Object 58 Page 27
o=+ 66 0R -= Dictionary of type: /[Pages Object 59 Page 28
o= > 87 0R -= Dictionary of type: /IPages Object 52 Page 29
©= > 108 0 R -= Dictionary of type: /[Pages Object 52 Page 30
o= > 129 0 R -= Dictionary of type: /Pages Object 67 Page 31
o= > 150 0 R -= Dictionary of type: /Pages Object 59 Page 32
o= 1710 R -= Dictionary of type: /Pages Object 71 Page 33
o 192 0 R -= Dictionary of type: /Pages Object 73 Page 34
e 756 0 R -= Dictionary of type: /Pages Object 75 Page 35
¢ | Dictionary of type: [Pages Object 76 Page 36
/Parent: 758 0 R -= Dictionary of type: /Pages Object 79 Page 37
g EYopuemf:'?aUQUeS Object 81 Page 38
o= /Kids: [2130R, 234 0R, 255 0R, 276 0R, 297 0R, 318 0R, 3390 R, 360 0R, 3810 R, 4020 R] ggizg gi E:gs ig
? 757 0 R -= Dictionary of type: /Pages Object 28 Page 41
¢ | Dictionary of type: /[Pages Object 89 Page 42
/Parent: 758 0 R -= Dictionary of type: /Pages —i[[Object a2 Page 43
g EYopuemf:Pgagges Object 94 Page 44
ks = /Kids: [4230R, 444 0R, 4650R, 486 0R, 507 0R, 528 0R, 549 0R, 570 0R, 591 0 R, 612 0 R] z OEJ.QCT % Eage %5 ~|

Figure 3.3: The page tree of primes.pdf opened in RUPS

The/Count entry of a page tree node shows the total number of leaf nodes attached directly or indirectly to
this branch. The root of the page tree (object 758) shows that the document has 299 pages. The /Kids entry is
an array with references to three other page tree nodes (objects 755, 756 and 757). The 299 leaves are nicely
distributed over these three branches: 100, 100 and 99 pages. Each branch or leaf requires a /Parent entry
referring to its parent; for the root node, the /Parent entry is forbidden.

PDF Document Structure 34

When we expand the first page tree node, we discover that this tree node has ten branches. The first of these
ten page tree nodes (object 4) has ten leaves, each leaf being a dictionary of type /Page. If you look to the panel
at the right, you see that we’ve selected the Pages tab. This tab shows a table in which every row represents a
page in the document. In the first column, you’ll find the object number of a /Page dictionary; in the second
column, you’ll find its page number.

3.3.1 Page Labels

A page object on itself doesn’t know anything about its page number. The page number of a page is calculated
based on the occurrence of the page dictionary in the page tree. In figure 3.3, RUPS has examined the page
tree, and attributed numbers going from 1 to 299.

If the Catalog has a /PageLabels entry, viewers can present a different numbering, for instance using latin
numbering, such as i, i, iii, iv, etc... It’s important to understand that page labels and even page numbers are
completely independent from the number that may or may not be visible on the actual page. Both the page
number and its label only serve as an extra info when browsing the document in a viewer. You won’t see any
of these page labels on the printed document.

Figure 3.4 shows an example of a PDF file with a /PageLabels entry.

[£] iText RUPS 5.4.2 =8 =
File Help
)~ PDF Object Tree (pages.pdf) Pages | Outlines | Form | XFA | XRef |
? /Root: 20 0 R -= Dictionary of type: iCatalog =
¢ L Dictionary of type: iCatalog Object Page
o~ % /Pages: 2 0 R -= Dictionary of type: /Pages Object4 Page 1(A)
¢ L /Pagel abels: Dictionary Object 7 Page 2 (B)
¢ = /Nums: [0, Dictionary, 2, Dictionary, 3, Dictionary]| |[/@0iect8 Page3(1)
|j 0 Object 11 Page 4 (Custom-2)
o Dictionary Object 13 Page 5 (Custom-3)
@ s A Object 15 Page 6 (Custom-4)
|j 2 Object 19 Page 7 (Custom-5)
¢ L Dictionary
@ s
=
¢ L Dictionary
[5 rst2
@ s
> [P Custom-
@ mype: ICatalog
Key Value ||f Stream rXFA |/('.onsole
ISt 2
IS /D
P Custom-

Figure 3.4: Using page labels

The value of the /PagelLabels entry is a number tree.

PDF Document Structure 35

o What is a number tree?

A number tree serves a similar purpose as a dictionary, associating keys and values, but the keys are
numbers, they are ordered, and a structure similar to the page tree (involving branches and leaves)
can be used. The leaves are stored in an array that looks like this [key1 valuel key2 value2

. keyN valueN] where the keys are numbers sorted in numerical order and the values are either
references to a string, array, dictionary or stream, or direct objects in case of null, boolean, number
or name values. See also section 3.5.1 for the definition of a name tree.

In the case of a number tree defining page labels, you always need a @ key for the first page. The value of each
entry will be a page label dictionary. Table 3.2 lists the possible entries of such a dictionary.

Table 3.2: Entries in a page label dictionary

Key Type Value

Type name Optional value: /PageLabel

S name The numbering style:
- /D for decimal,
- /R for upper-case roman numerals,
- /r for lower-case roman numerals,
- /A for upper-case letters,
- /a for lower-case letters.
In case of letters, the pages go from A to Z, then continue from AA to
ZZ.1f the /S entry is missing, page numbers will be omitted.

P string A prefix for page labels.
St number The first page number —or its equivalent— for the current page label
range.

Looking at figure 3.4, we see three page label ranges:

1. Index o (page 1)— the page labels consist of upper-case letters,

2. Index 2 (page 3)— the page labels consist of decimals. As we’ve started a new range, the numbering
restarts at 1. This means that page 3 will get “1” as page label.

3. Index 3 (page 4)— the page labels consist of decimals, but starts with label “2” (as defined in the /st
entry). It also introduces a prefix (/P): “Custom-*.

When opened in a PDF viewer, the pages of this document will be numbered A, B, 1, Custom-2, Custom-3,
Custom-4, and Custom-5. Talking about page labels was fun, but now let’s find out how to obtain a page
dictionary based on its sequence in the page tree.

3.3.2 Walking through the page tree

Code sample 3.2 shows how we could walk through the page tree to find all the pages in a document. This
time we get the Catalog straight from the reader instance using the getCatalog() method instead of using
trailer.getAsDict(PdfName.ROOT). Once we have the Catalog, we get the /Pages entry, and pass it to the
expand() method.

O 00 = O O » W N =~

W N DN NDNDDNDNDDNDDNDNDNS A 2 2 B2 2
© © 00 N O O b WN- O © 03O0 O bk W~

PDF Document Structure 36

Code sample 3.2: C0302_PageTree

public static void main(String[] args) throws IOException {
PdfReader reader
= new PdfReader("src/main/resources/primes.pdf");
PdfDictionary dict = reader.getCatalog();
PdfDictionary pageroot = dict.getAsDict(PdfName.PAGES);
new CQ302_PageTree().expand(pageroot);

private int page = 1;
public void expand(PdfDictionary dict) {
if (dict == null)
return;
PdfIndirectReference ref = dict.getAsIndirectObject(PdfName.PARENT);
if (dict.isPage()) {
System.out.println("Child of " + ref + ": PAGE " + (page++));

}
else if (dict.isPages()) {
if (ref == null)
System.out.println("PAGES ROOT");
else
System.out.println("Child of " + ref + ": PAGES");
PdfArray kids = dict.getAsArray(PdfName.KIDS);
System.out.println(kids);
if (kids != null) {
for (int i = 0; i < kids.size(); i++) {
expand(kids.getAsDict(i));
}
}
}

The C0302_PageTree example has a single private member variable page that is initialized at 1. This variable
is used in the recursive expand() method:

« Ifthe dictionary passed to the method is of type /Page, the isPage() method will return true, and we’ll
increment the page number, writing it to the System.out along with info about the parent.

« If the dictionary passed to the method is of type /Pages, the isPages() method will return true, and
we’ll loop over all the /Kids array, calling the expand() method recursively for every branch or leaf.

The output of code sample 3.2 is consistent with what we saw in figure 3.3:

O O B W N =

PDF Document Structure 37

PAGES ROOT

[755 @ R, 756 @ R, 757 @ R]

Child of 758 @ R: PAGES

[4 0 R,24 O R,45 0 R,66 @ R,87 @ R,108 @ R,129 © R,150 @ R,171 @ R,192 @ R]
Child of 755 @ R: PAGES

[1@R,50R,80R,90R,120R,13 @ R,16 0 R,18 @ R,20 @ R,21 @ R]
Child of 4 @ R: PAGE 1
Child of 4 @ R: PAGE 2
Child of 4 @ R: PAGE 3
Child of 4 @ R: PACE 4
Child of 4 @ R: PAGE 5
Child of 4 @ R: PAGE 6
Child of 4 @ R: PAGE 7
Child of 4 @ R: PAGE 8
Child of 4 @ R: PAGE 9
Child of 4 @ R: PAGE 10
Child of 755 @ R: PAGES

[25 @ R,26 @ R,29 @ R,31 @ R,33 @ R,34 0 R,37 @ R,38 @ R,41 @ R,43 @ R]
Child of 24 @ R: PAGE 11
Child of 24 @ R: PAGE 12

This is one way to obtain the /Page dictionary of a certain page. Fortunately, there’s a more straight-forward
method. In code sample 3.3, the getNumberOfPages() method provides us with the total number of pages. We
loop from 1 to that number and use the getPageN() method to get the /Page dictionary for each separate

page.

Code sample 3.3: C0303_PageTree

int n = reader.getNumberOfPages();
PdfDictionary page;
for (int i = 1; 1 <=n; i++) {
page = reader.getPageN(i);
System.out.printlin("The parent of page " + i + " is " + page.get(PdfName.PARENT));

The output of this code snippet corresponds with what we had before:

PDF Document Structure

The
The
The
The
The
The
The
The
The
The
The
The

parent
parent
parent
parent
parent
parent
parent
parent
parent
parent
parent
parent

of
of
of
of
of
of
of
of
of
of
of
of

page
page
page
page
page
page
page
page
page
page
page
page

38

1 is 4 O R
2 is 4 O R
3is 4 O R
4 is 4 O R
5is 4 O R
6 is 4 0 R
7T is 4 O R
8 is 4 O R
9 is 4 OR
10 is 4 O R
11 is 24 O R
12 is 24 O R

ISO-32000-1 and -2 define many possible entries for the /Page dictionary. It would lead us too far to discuss
them all, but let’s take a look at the most important ones.

3.4 Examining a page dictionary

Every /Page dictionary specifies the attributes of a single page. Table 3.3 lists the required entries in the /Page

dictionary.
Table 3.3: Required entries in a page dictionary
Key Type Value
Type name Must be /Page
Parent name The page tree node that is the immediate parent of the page.
Resources string A dictionary containing any resources needed for the page. If the
page doesn’t require resources,an empty dictionary must be
present. We’ll discuss the possible entries in section 3.4.1.2.
MediaBox rectangle A rectangle defining the page size: the physical boundaries on

which the page shall be displayed or printed. Other (optional)
boundaries will be discussed in section 3.4.2.2.

The actual content of the page is stored in the /Content entry. This entry isn’t listed in table 3.3 because it
isn’t required. If it’s missing, the page is blank.

The value of the /Contents entry can either be a reference to a stream or an array. If it’s an array, the elements
consist of references to streams that need to be concatenated when rendering the page content.

3.4.1 The content stream and its resources

We’ll discuss the syntax needed to describe the content in Part 2, but let’s already peek at the content of the
/Contents entry.

B W N =

PDF Document Structure 39

3.4.1.1 The content stream of a page

In code sample 3.4, we get the value of the /Contents entry as a PRStream; a PdfStream wouldn’t be sufficient
to get the stream bytes. PdfReader has two types of static methods to extract the contents of a stream:
getStreamBytesRaw() gets the original bytes; getStreamBytes() returns the uncompressed bytes.

Code sample 3.4: C0304_PageContent

PdfDictionary page = reader.getPageN(1);

PRStream contents = (PRStream)page.getAsStream(PdfName.CONTENTS);
byte[] bytes = PdfReader.getStreamBytes(contents);
System.out.printin(new String(bytes));

The first page of the document we’re parsing has two paragraphs: Hello World and Hello People. You can
easily recognize these sentences in the output that is produced by code sample 3.4:

q

BT

36 806 Td

© -18 Td

/F1 12 Tf
(Hello World)Tj
Q@ 0 Td

@ -18 Td

(Hello People)Tj
@ 0 Td

ET

Q

Don’t worry about the syntax. Every operator and operand will be explained in chapter 4, entitled “Graphics
state” —for example: q and the Q are graphics state operators— and chapter 5, entitled “Text State” —BT and
ET are text state operators.

The second page looks identical to the first page when opening the document in a PDF viewer. Internally
there’s a huge difference.

Code sample 3.5 shows a short-cut method to get the content stream of a page.

Code sample 3.5: C0304_PageContent

bytes = reader.getPageContent(2);
System.out.printin(new String(bytes));

The resulting stream looks like this:

<N O O b W N =

PDF Document Structure 40

q
BT

36 806 Td

ET

Q

BT

/F1 12 Tf
88.66 788 Td
(1d)Tj

-22 0 Td
(Wor)Tj
-15.33 @ Td
(110)Tj
-15.33 @ Td
(He)Tj

ET

q1 001 36 763 cm /Xf1 Do Q

We still recognize the text Hello World, but it’s mangled into Id, Wor, llo and He. Many PDFs aren’t created
in an ideal way. You’re bound to encounter documents of which the content stream doesn’t contain the exact
words you expect. You shouldn’t expect the content stream of a PDF to be human-readable.

Looking at the output of code sample 3.5, you notice that the worlds Hello People seem to be missing from
this content stream. This text snippet is added as an external object or XObject marked as /Xf1. We'll find
this object in the /X0Object entry of the page resources.

3.4.1.2 The Resources dictionary
In code snippet 3.6, we get the resources from the page dictionary, and we list all of its entries.

Code sample 3.6: C0304_PageContent

page = reader.getPageN(2);

PdfDictionary resources = page.getAsDict(PdfName.RESOURCES);

for (PdfName key : resources.getKeys()) {
System.out.print(key);
System.out.print(": ");
System.out.println(resources.getDirectObject(key));

The output of this code snippet looks like this:

/XObject: Dictionary
/Font: Dictionary

© 00 9 O O b W N =

[N
N PO

PDF Document Structure 41

If we’d examine these dictionaries, we’d find the key /Xf1 refering to a Form XObject in the former, and the
key /F1 refering to a font in the latter. We recognize references to these keys in the content stream resulting
from code snippet 3.5.

Code sample 3.7 lists the entries and the content stream of the XObject with name /X£1 (line 2) and the entries
of the font dictionary with name /F1 (line 9):

Code sample 3.7: C0304_PageContent

PdfDictionary xObjects = resources.getAsDict(PdfName.XOBJECT);
PRStream xObject = (PRStream)xObjects.getAsStream(new PdfName("Xf1"));
for (PdfName key : xObject.getKeys()) {

System.out.printin(key + ": " + xObject.getDirectObject(key));
}
bytes = PdfReader.getStreamBytes(xObject);
System.out.printin(new String(bytes));
PdfDictionary fonts = resources.getAsDict(PdfName.FONT);
PdfDictionary font = fonts.getAsDict(new PdfName("F1"));
for (PdfName key : font.getKeys()) {

System.out.printin(key + ": " + font.getDirectObject(key));

The resulting output for the XObject looks like this:

/Matrix: [1, @, @, 1, 0, 0]
/Filter: /FlateDecode
/Type: /XObject
/FormType: 1

/Length: 48
/Resources: Dictionary
/Subtype: /Form

/BBox: [@, @, 250, 25]
BT

/F1 12 Tf

Q7 Td

(Hello People)Tj

ET

Now we clearly see Hello People in the content stream of the external object. This form XObject also contains
a resources dictionary. We’ll discuss the entries of the XObject’s stream dictionary in more detail in part 2.

The resulting output for the font looks like this:

PDF Document Structure 42

/Type: /Font

/BaseFont: /Helvetica
/Subtype: /Typel

/Encoding: /WinAnsiEncoding

A trained eye immediately notices that this dictionary represents the standard Typel font Helvetica, a font
that doesn’t need to be embedded as it’s one of the 14 standard Type 1 fonts. In part 2, we’ll find out more
about the different fonts in a PDF.

Table 3.4 offers the complete list of entries one can encounter in a /Resources dictionary.

Table 3.4: Possible entries in a resources dictionary

Key Type Value
Font dictionary A dictionary that maps resource names to font dictionaries.
XObject dictionary A dictionary that maps resource names to external objects.

ExtGState dictionary A dictionary that maps resource names to graphics state
parameter dictionaries.

ColorSpace dictionary A dictionary that maps each resource name to either the name
of a device-dependent colorspace or an array describing a color

space.
Pattern dictionary A dictionary that maps resource names to pattern objects.
Shading dictionary A dictionary that maps resource names to shading dictionaries.

Properties dictionary A dictionary that maps resource names to property list
dictionaries for marked content.

ProcSet array A feature that became obsolete in PDF 1.4 and that can safely be
ignored.

Table 3.4 contains plenty of concepts that need further explaining, but we’ll have to wait until part 2 before
we can discuss them. Let’s move on for now and take a look at page boundaries.

3.4.2 Page boundaries and sizes

The size of a page is stored in the /MediaBox, which was an entry listed as required in table 3.3. You can get
this value as a PdfArray using pageDict.getAsArray(PdfName.MEDIABOX); but a more programmer-friendly
way is shown in code sample 3.8.

<N O O B W N =

©O© 00 = O O b» W N =

[N
N = O

PDF Document Structure

Code sample 3.8: C0305_PageBoundaries

PdfReader reader =

new PdfReader("src/main/resources/pages.pdf");

show(reader .getPageSize(1));

show(reader .getPageSize(3));

show(reader .getPageSizeWithRotation(3));

show(reader .getPageSize(4));

show(reader .getPageSizeWithRotation(4));

We see two convenience methods, named getPageSize() and getPageSizeWithRotation(). These methods
return a Rectangle object that is passed to the show() method (see code sample 3.9).

Code sample 3.9: C0305_PageBoundaries

public static void show(Rectangle rect) {
print("1lx: ");
print(rect.getleft());
print(", 1ly: ");
print(rect.getBottom());
print(", urx: ");
print(rect.getRight());
print(", 1ly: ");

System
System

System.
System.
System.
System.
System.
System.
System.
System.

.out.

.out.

out

out.
out.
out.
out.

out.

out.
out.

.print(rect.getTop());

print(", rotation: ");

println(rect.getRotation());

Let’s discuss the difference between getPageSize() and getPageSizeWithRotation() by examining the
output of code sample 3.8:

11x: 0.9, lly: 0.0, urx: 595.0, lly: 842.0, rotation: ©
11x: 0.0, 1lly: 0.0, urx: 595.0, lly: 842.0, rotation: 0
11x: 0.9, lly: 0.0, urx: 842.0, lly: 595.09, rotation: 90
11x: 0.9, lly: 0.0, urx: 842.0, lly: 595.0, rotation: ©
11x: 0.0, lly: 0.0, urx: 842.0, lly: 595.0, rotation: 0

The first page in the pages . pdf document is an A4 page in portrait orientation. If you’d extract the /MediaBox
array, you'd get [0 @ 595 842].

3.4.2.1 Pages in landscape

Page 3 (see line 4 in code sample 3.8) is also an A4 page, but it’s oriented in landscape. The /MediaBox
entry is identical to the one used for the first page [@ @ 595 842], and that’s why getPageSize() returns

PDF Document Structure 44

the same result. The page is in landscape, because the \Rotate entry in the page dictionary is set to 90.
Possible values for this entry are @ (which is the default value if the entry is missing), 90, 180 and 270. The
getPageSizeWithRotation() method takes this value into account. It swaps the width and the height so that
you're aware of the difference. It also gives you the value of the /Rotate entry.

Page 4 also has a landscape orientation, but in this case, the rotation is mimicked by adapting the /MediaBox
entry. In this case the value of the /MediaBox is [@ 842 595] and if there’s a /Rotate entry, its value is
0. That explains why the output of the getPageSizeWithRotation() method is identical to the output of the
getPageSize() method.

3.4.2.2 The CropBox and other page boundaries

Looking at figure 3.5, we see the page labels we’ve discussed in section 3.3.1, we see the different orientations
discussed in section 3.4.2.1, and we see something strange happening to the Hello World text on page 5.

| pages.pdf - Adobe Reader =3 R

*®

@@@D%‘f"ﬁofi"w&‘(ﬂ}-'ﬁ|‘@@|.’ Tools 5ign§Cnmmenl
e ‘Hello World

el

A B 1 Custom-2

Custom-3 Custom-4 Custom-5

729x1049in <« [v

Figure 3.5: Pages and page boundaries

The text is cropped because there’s a /CropBox entry in the page dictionary. As shown in code sample 3.10,
you can get the cropbox using the getCropBox() method.

Code sample 3.10: C0305_PageBoundaries

show(reader .getPageSize(5));
show(reader .getCropBox(5));

These two lines result in the following output:

11x: 0.0, 1lly: 0.0, urx: 595.0, lly: 842.0, rotation: 0
11x: 40.0, 1lly: 40.0, urx: 565.0, lly: 795.0, rotation: ©

PDF Document Structure 45

Let’s consult ISO-32000-1 or -2 to find out the difference between the /MediaBox returned by the getPageSize()
method and the /CropBox returned by the getCropBox() method.

« The media box— defines the boundaries of the physical medium on which the page is to be printed. It
may include any extended area surrounding the finished page for bleed, printing marks, or other such
purposes. It may also include areas close to the edges of the medium that cannot be marked because of
physical limitations of the output device. Content falling outside this boundary may safely be discarded
without affecting the meaning of the PDF file.

+ The crop box— defines the region to which the contents of the page shall be clipped (cropped) when
displayed or printed. Unlike the other boxes, the crop box has no defined meaning in terms of physical
page geometry or intended use; it merely imposes clipping on the page contents. However, in the absence
of additional information, the crop box determines how the page’s contents shall be positioned on the
output medium.

Summarized: the media box is the working area on your page, but only the content inside the crop box will
be visible.

FAQ: I've added content to a page and it isn’t visible

Y 4
Maybe you’re adding the content outside the visible area. The lower-left corner of the rectangle
defining the media box and the crop box (if present) doesn’t necessarily correspond with the
coordinate x = @; y = 0. You could easily have a media box defined like this: [595 842 1190
1684]. This is still an A4 page, but if you add a watermark at the coordinate x = 397.5; y = 421,
that watermark won’t be visible as it’s outside the visible area of the page. If rect is the visible area
of a page, you could center the watermark using these formulas for x and y:

float x = rect.getlLeft() + rect.getWidth() / 2f;
float y = rect.getBottom() + rect.getHeight() / 2f;

These formulas calculate the coordinate of the middle of the page.

The definition of the media box and the crop box mention that a page can have some other boxes too:

+ The bleed box— defines the region to which the contents of the page shall be clipped when output in a
production environment. This may include any extra bleed area needed to accommodate the physical
limitations of cutting, folding, and trimming equipment. The actual printed page may include printing
marks that fall outside the bleed box.

+ The trim box— defines the intended dimensions of the finished page after trimming. It may be smaller
than the media box to allow for production-related content, such as printing instructions, cut marks, or
color bars.

« The art box— defines the extent of the page’s meaningful content (including potential white space) as
intended by the page’s creator.

If present, you’ll find these boxes in the page dictionary by the following names: /Bleedbox, /TrimBox and
/ArtBox. Code sample 3.11 shows how to obtain the media box and art box of page 7:

PDF Document Structure 46

Code sample 3.11: C0305_PageBoundaries

show(reader.getBoxSize(7, "media"));
show(reader .getBoxSize(7, "art"));

The resulting output looks like this:

11x: 0.0, lly: 0.0, urx: 595.0, lly: 842.0, rotation: 0
11x: 36.0, lly: 36.0, urx: 559.0, lly: 806.0, rotation: ©

The getBoxSize() method accepts the following values for the boxName parameter: media, crop, bleed, trim
and art. As you probably noticed, it can be used as an alternative for the getPageSize() and getCropBox()
method.

All boxes, except for the media box can be visualized in an interactive PDF processor. This is done using a
box color information dictionaries for each boundary. These box color information dictionaries are stored in
the /BoxColorInfo entry of the page dictionary.

3.4.2.3 The measurement unit

Let’s consult the PDF specification to find out what it says about the measurement unit:

ISO-32000-1 states: The default for the size of the unit in default user space (1 / 72 inch) is

0 approximately the same as a point, a unit widely used in the printing industry. It is not exactly
the same, however; there is no universal definition of a point. In short: 1 in. = 25.4 mm = 72 user
units (which roughly corresponds to 72 pt).

The media box of the pages we’ve discussed so far was [@ @ 595 842]. By default, this corresponds with the
standard page size A4, measuring 210 by 297 mm (or 8.27 by 11.69 in), but that’s not always the case. Figure
3.6 shows pages 5 and 6 of the pages . pdf document.

PDF Document Structure 47

- ~
511 pages.pdf - Adobe Resder E=E
File Edit View Window Help ®
@ Ej B4 % \i‘, \i, 6of7) | ™ ‘ ey \E/ € . ‘ | ‘ = g | lz‘ Tools Sign Comment
Page Thumbnails 5] i
Heto vora
gE
A B
1 Custom-2
Custom-3] Cotomd
Custom-5
L

Figure 3.6: Pages with a different user unit

If we’d examine page 6, we’d discover that the media box is the only page boundary. It’s defined as[@ @ 595
842], but when we look at the document properties, we see that the page size is 41.32 by 58.47 in. which is
about 5 times bigger than the A4 page we expected. This difference is caused by the fact that a different user
unit was used. In code sample 3.12, we get the /UserUnit value from the page dictionary of page 6. The output
of this code sample is indeed 5.

Code sample 3.12: C0305_PageBoundaries

PdfDictionary page6 = reader.getPageN(6);
System.out.println(page6.getAsNumber (PdfName.USERUNIT));

Theoretically, you could create pages of any size, but the PDF specification imposes limits depending on the
PDF version of the document. Table 3.5 shows how the implementation limits changed throughout the history
of PDF.

Table 3.5: Possible entries in a resources dictionary

PDF version Minimum page size Maximum page size

PDF 1.3 and earlier 72 x 72 units (1 x 1 in.) 3240 x 3240 units (45 x 45 in.)

PDF 1.4 and later 3 X 3 units (approx. 0.04 x 0.04 14,400 x 14,400 units (200 x 200
in.) in.)

Changing the user unit has been possible since PDF 1.6. The minimum value of the user unit is 1 (this is the
default; 1 unit = 1/72 in.); the maximum value as defined in PDF 1.7 is 75,000 points (1 unit = 1042 in.).

PDF Document Structure 48

The PDF ISO standards don’t restrict the range of supported values for the user unit, but says that
the value is implementation-dependent.

Let’s conclude that the biggest PDF page you can create without hitting any viewer implementations measures
15,000,000 x 15,000,000 in or 381 x 381 km. That’s almost 5 times the size of Belgium (the country where iText
was born).

3.4.3 Annotations

Figure 3.7 shows the last page in the pages.pdf document. If you hover over the words Hello World, a link to
http://maps.google.com appears. If you click the small page icon, a post-it saying This is a post-it annotation
pops up. These are annotations.

1 pages.pdf - Adobe Reader o B &
File Edit View Window Help ®
@ ﬁ, Z @ C% * [of7) | =) (s | | e Tools Sign Comment
[Page Thumbnails M i

& - Example =
é h a U £ 1/07/2013 12:34:37
o E p |__|8”0 World
— This is a post-it annotation
=
N i Z| -
Eistone “If &ax1e9in <] '

Figure 3.7: Annotations

If a page contains annotations, you’ll find them in the /Annots entry of the page dictionary. This is an array
of annotation dictionaries.

In figure 3.7, we're dealing with a /Text and a /Link annotation. Other types include line, stamp, rich media,
watermark, and many other annotations. We’ll get a closer look at all of these types in chapter 7. For now, it’s
sufficient to know that an annotation is an interactive object associated with a page.

Annotations aren’t part of the content stream of a page. PDF viewers will always render visible
annotations on top of all the other content of a page.

Code sample 3.13 shows how to obtain the annotation dictionaries from page 7’s page dictionary.

g = W N -

PDF Document Structure 49

Code sample 3.13: C0306_PageAnnotations

PdfArray annots = page.getAsArray(PdfName.ANNOTS);

for (int i = ©0; i < annots.size(); i++) {
System.out.println("Annotation " + (i + 1));
showEntries(annots.getAsDict(i));

We reuse the showEntries method from code sample 3.1, and this gives us the following result:

Annotation 1

/Contents: This is a post-it annotation
/Subtype: /Text

/Rect: [36, 768, 56, 788]

/T: Example

Annotation 2

/C: [0, 0, 1]

/Border: [@, 0, Q]

/A: Dictionary

/Subtype: /Link

/Rect: [66.67, 785.52, 98, 796.62]

The first annotation is a simple text annotation with title Example and contents This is a post-it annotation.
The /Rect entry defines the coordinates of the clickable icon.

The second one is a link annotation. The /C entry defines the color of the border, but as the third element of the
/Border array is @, no border is shown. You’ll learn all about the different properties available for annotations
in chapter 7.

Code sample 3.14 allows us to obtain the keys of the value of the /A entry, an action dictionary.

Code sample 3.14: C0306_PageAnnotations

PdfDictionary link = annots.getAsDict(1);
showEntries(link.getAsDict(PdfName.A));

The resulting output looks like this:

/URI: http://maps.google.com
/S: /URI

The action is of type /URI. You can trigger it by clicking the rectangle defined by /Rect in the link annotation.

Let’s take a look at some other possible entries of the page dictionary before we return to the document
catalog.

3.4.4 Other entries of the page dictionary

Table 3.6 lists entries of the page dictionary we haven’t discussed so far.

PDF Document Structure

Key

Table 3.6: Optional entries of the page dictionary

Type

Description

Metadata

AF

StructParents

Tabs

Thumb

VP

Dur

Trans

PZ

PresSteps

Piecelnfo

LastModified

B

DPart
Outputlntents

SeparationInfo

stream

array

dictionary

integer

name

stream

array

number

dictionary

number

dictionary

dictionary

date

array

dictionary
array

dictionary

A stream containing XML metadata for the page in
XMP format. This entry is also available in the
document catalog. We’ll discuss it in the next
section.

References to embedded files associated with this
page. This entry is also available in the document
catalog. We'll discuss this in the next section.

Additional actions to be performed when the page is
opened or closed. This entry is also available in the
document catalog. We’ll discuss it in the next
section.

Required if the page contains structural items. We’ll
discuss this in chapter 6.

A name containing the tab order used for the
annotations on the page. Possible values are:

- /R for row order,

- /C for column order,

- /S for structure order,

- /A for annotations array order (PDF 2.0) and
- /W for widget order (PDF 2.0).

A stream object that defines the page’s thumbnail
image.
An array of viewport dictionaries. This is outside

the scope of this book.

The page’s display duration in seconds during
presentations.

A transition dictionary describing the effect when
opening the page in a viewer.

The preferred zoom factor for the page. For more
info, see next section.

Used in the context of sub-page navigation while
presenting a PDF.

A page piece dictionary for the page. This entry is
also available in the document catalog. We’ll briefly
discuss it in the next section.

Required if Piecelnfo is present. Contains the date
and time when the page’s contents were recently
modified.

An array containing indirect references to article
beads.

An indirect reference to a DPart dictionary.
This entry is also available in the document catalog.

Information needed to generate color separations
for the page.

50

PDF Document Structure 51

Table 3.6: Optional entries of the page dictionary

Key Type Description

Group dictionary Used in the context of transparency group XObject.

ID byte string A digital identifier used in the context of Web
Capture.

Templatelnstantiated name Required if this page was created from a named

page object, in which case it’s the name of the
originating page object.

Many of these entries are outside the scope of this book, or can only be described briefly here, please consult
ISO-32000-1 or -2 for more info. Now it’s high time to take a closer look at the document catalog.

3.5 Optional entries of the Document Catalog Dictionary

We’ve already used the getCatalog() method in section 3.3.2 to get the root of the page tree. We learned that
the document catalog has two required entries, /Type and /Pages. In this section, we’ll discuss the optional
entries of the root dictionary.

3.5.1 The names dictionary

We were already introduced to the concept of a number tree when we discussed page labels in section 3.3.1.
When the keys of such a tree structure consist of strings instead of numbers, we talk about a name tree.

o What is a name tree?

A name tree serves a similar purpose to a dictionary, associating keys and values. Based on the fact
that we call this structure a name tree, you may expect that the keys are names, but they aren’t.
The keys are strings, they are ordered, and they are structured as a tree (involving branches and
leaves). The leaves are stored in an array that looks like this [key1 valuel key2 value2 ... keyN
valueN] where the keys are strings sorted in alphabetical order and the values are either references
to a string, array, dictionary or stream, or direct objects in case of null, boolean, number or name
values.

A name tree —or a number tree for that matter— usually consists of the following elements:

« The root node is a dictionary that refers to intermediate or leaf nodes in its /Kids entry. Alternatively,
it can have a /Names entry in the case of a name tree, and a /Nums entry in the case of a number tree.

+ An intermediate node is a dictionary with a /Kids entry referring to an array of intermediate nodes or
leave nodes.

+ A leaf node is a dictionary that has a /Names entry in the case of a name tree, and a /Nums entry in the
case of a number tree.

PDF Document Structure 52

Each intermediate and leaf node also has a /Limits entry, which is an array of two strings in case of a name
tree, and an array of two integers in the case of a number tree. The elements of the array specify the least and
greatest keys present in the node or its sub-nodes.

The document’s name dictionary, which is the /Names entry of the document catalog, refers to one or more
name trees. Each entry in the name dictionary is a name tree for a specific category of objects that can be
referred to by name rather than by object reference. These are the most important categories:

+ /Dests— maps name strings to destinations. We’ll learn more about this in the next section.

« /AP— maps name strings to annotation appearance streams. We’ve already seen some simple annota-
tions in section 3.4.3. In chapter 7, we’ll create a custom appearance for some more complex annotations.
Such an appearance could be referred to by name.

« /JavaScript— maps name strings to document-level JavaScript actions. We’ve learned about a simple
URI action, but soon we’ll find out that we can also use JavaScript to program custom actions.

« /EmbeddedFiles— maps name strings to file specifications for embedded file streams.

If you study ISO-32000-1 or -2, you’ll discover that there are more categories, but they are out of scope of this
book. In the next section, we’ll take a look at a name tree containing named destinations.

3.5.2 Document navigation and actions

In section 3.3, we’ve examined the page tree, and we’ve learned how to navigate through a document
programmatically. Now we’re going to take a look at some ways we can help the end user navigate through
the document using a PDF viewer.

3.5.2.1 Destinations

There are different ways to define destinations. You can associate names with destinations, or you can use
explicit destinations.

3.,5.2.1.1 Named destinations When we discussed the name dictionary, we listed /Dests as one possible
category of named objects. This name tree defines named destinations with string values as keys.

The concept of using a name tree for named destinations was introduced in PDF 1.2. In PDF 1.1,

o named destinations were defined using names instead of string. They were stored in a /Dests entry
of the document catalog. It referred to a dictionary with the names as keys and their destination
dictionary as values. Most of the PDF producers have abandoned using this Catalog entry in favor
of the /Dests entry in the name tree.

Code sample 3.15 shows how we get the first named destination from the name tree in the name dictionary.

=N O O B W N =

PDF Document Structure 53

Code sample 3.15: C0306_DestinationsOutlines

PdfReader reader = new PdfReader("src/main/resources/primes.pdf");
PdfDictionary catalog = reader.getCatalog();

PdfDictionary names = catalog.getAsDict(PdfName.NAMES);
PdfDictionary dests = names.getAsDict(PdfName.DESTS);

PdfArray array = dests.getAsArray(PdfName.NAMES);
System.out.println(array.getAsString(0));
System.out.printlin(array.getAsArray(1));

This is the resulting output:

Prime101
[210 @ R, /XYZ, 36, 782, 0]

This means that we can now use the string Prime101 as a name to refer to a destination on the page described
by the indirect object with number 210. Code sample 3.16, shows a short-cut to get the same information
using much less code:

Code sample 3.16: C0306_DestinationsOutlines

Map<String, String> map =
SimpleNamedDestination.getNamedDestination(reader, false);
System.out.println(map.get("Primel101"));

The SimpleNamedDestination class can be used to obtain a map of all named destinations. If you use false
as the second parameter of the getNamedDestination() method, you get the named destinations stored in the
/Dests entry of the names dictionary —destinations referred to by strings (since PDF 1.2). If you use true,
you get the named destinations stored in the /Dests entry —destinations referred to by names (PDF 1.1).

The SimpleNamedDestination class also has an exportToXML () method that allows you to export
the named destinations to an XML file.

In code sample 3.15 and 3.16, the destination is defined using four parameters: the name /XYZ and three
numbers, the x-position 36, the y-position 782, and the zoom factor 0 (no zoom). This is an explicit destination.

3.5.2.1.2 Explicit destinations Destinations are defined as an array consisting of a reference to a page
dictionary and a location on a page, optionally including the zoom factor. Table 3.7 lists the different names
and parameters that can be used to define the location and zoom factor.

PDF Document Structure

Table 3.7: Destination syntax

Type Extra parameters Description

/Fit - The page is displayed with its contents magnified just
enough to fit the document window, both horizontally
and vertically.

/FitB - The page is displayed magnified just enough to fit the
bounding box of the contents (the smallest rectangle
enclosing all of its contents).

/FitH top The page is displayed so that the page fits within the
document window horizontally (the entire width of the
page is visible). The extra parameter specifies the vertical
coordinate of the top edge of the page.

/FitBH top This option is almost identical to /FitH, but the with of
the bounding box of the page is visible. This isn’t
necessarily the entire width of the page.

/Fitv left The page is displayed so that the page fits within the
document window vertically (the entire height of the
page is visible). The extra parameter specifies the
horizontal coordinate of the left edge of the page.

/FitBvV left This option is almost identical to /FitV, but the height of
the bounding box of the page is visible. This isn’t
necessarily the entire height of the page.

/XYZ left, top, zoom The left parameter defines an x coordinate, top defines a
y coordinate, and zoom defines a zoom factor. If you
want to keep the current x coordinate, the current y
coordinate, or zoom factor, you can pass negative values
or 0 for the corresponding parameter.

/FitR left, bottom, right, top The parameters define a rectangle. The page is displayed
with its contents magnified just enough to fit this
rectangle. If the required zoom factors for the horizontal
and the vertical magnification are different, the smaller
of the two is used.

Destinations may be associated with outline items, link annotations, or actions. Let’s start with outlines.

3.5.2.2 The outline tree

Figure 3.8 shows a PDF with bookmarks for every prime number.

=N O O s W N -

PDF Document Structure 55

F primes.pdf - Adobe Reader = B X

File Edit View Window Help *

d% flik, 2 & B @ ‘ ‘I‘ lv /299 ‘ ‘ |z| = Tools Sign Comment

D Bookmarks
PE

[P prime2
@ || TP primes This is a prime number!
[F primes Factor: 11

[F Prime7 :
® Prime11
[P Prime13
[P Prime17
[P prime19
[P Prime23
[P prime29 i 826%x11,69in ¢ | i b

These are the factors of 11:

Lm | »

Figure 3.8: A PDF with bookmarks

Bookmarks can have a tree-structured hierarchy, but in this case, we only have a simple list of items. If we
click an item, you either jump to a destination, which is the case if you click Prime11, or you trigger an action.

The root of this bookmarks tree is specified by the /0utlines entry of the document catalog. In code sample
3.17, we extract the root, its first leaf and its last leaf as a dictionary:

Code sample 3.17: C0306_DestinationsOutlines

PdfDictionary outlines = catalog.getAsDict(PdfName.OUTLINES);
System.out.printin("Root:");

showEntries(outlines);

System.out.println("First:");
showEntries(outlines.getAsDict(PdfName.FIRST));
System.out.println("Last:");
showEntries(outlines.getAsDict(PdfName.LAST));

The output of this code sample looks like this:

PDF Document Structure

Root:
/Type: /Outlines
/Count: 62

/Last: 754 @ R
/First: 693 @ R
First:

/Next: 694 @ R
/Parent: 692 0 R
/Title: Prime2
/Dest: [1 @ R, /Fit]
Last:

/Parent: 692 0 R
/Title: Prime293
/Dest: [614 © R, /Fit]
/Prev: 753 @ R

This corresponds with what we see when we look at the outline tree using RUPS. See figure 3.9.

56

|1

&) ext RUPS 5.4.2 =@ =
File Help
)~ | PDF Object Tree (primes.pdf) 2| Pages [Outiines [Form [XFA | XRef |
T /Root 762 0 R -= Dictionary of type: /Catalog E’ Bookmarks -
¢ E3 Dictionary of type: (Catalog) r
o [Pages: 758 0 R -= Dictionary of type: /Pages = F'r!meE
o> Names: 760 0 R - Dictionary % Em::
@ Mype: iCatalog T Primer
e [Outlines: 692 0 R -= Dictionary of type: /Outlines . =
¢] Dictionary of type: /Outlines = F'r!me‘l‘l
% Mype: (Outlines r g E:ﬁ::};
=| /Count: 62)
/Last 754 0 R -> Dictionary = Prime19 m
¢ First: 693 0 R -= Dictionary = Prime23
¢ o B mezs
9 IMext: 694 0 R -= Dictionary 3 Primeat
[Dictionary I Primed1
? /Mext 695 0 R -= Dictionary X
¢ Eodonay B st
Q IMext: 696 0 R -= Dictionary 3 Primesa
[Dictionary I Primes9
e /Mext: 697 0 R -= Dictionary X
- L ones B et
® IParent: 692 0 R -= Dictionary of type: /Outlines 3 Prime7
o= := /Dest [13 0 R, /Fif] 3 Prime73
& [Title: Prime7 X -
/Prev: 695 0 R -> Dictionary S| = Prime7o =
Key Value ||f Stream | XFA | Console
Mext G980 R I
/Parent 6920R
[Mitle Prime11
Dest [21 0 R, /Fif]
/Prev BOGOR

Figure 3.9: The outline tree

Note that all the entries at the same level are chained to each other as a linked list, with the /Next entry
referring to the next item and the /Prev entry referring to the previous item.

The root of the outline tree is an outline dictionary. Table 3.8 explains the different entries.

PDF Document Structure 57

Table 3.8: Entries in the outline dictionary

Key Type Value

Type name If present, the value must be /Outlines.

First dictionary An indirect reference to the first top-level outline item.

Last dictionary An indirect reference to the last top-level outline item.

Count integer The total number of open outline items. The value can’t be negative.

It’s to be omitted if there are no open items.
Table 3.9 shows the possible entries for outline item dictionaries.

Table 3.9: Entries in the outline dictionary

Key Type Value

Title string The text for the outline as displayed in the bookmarks
panel.

Parent dictionary The parent of this outline, this is the outline dictionary
for top-level outline items, otherwise it’s another outline
item.

Prev dictionary The previous item at the current outline level. Not

present for the first one.

Next dictionary The next item at the current outline level. Not present for
the last one.

First dictionary An indirect reference to the first descendant of which
this item is the parent.

Last dictionary An indirect reference to the last descendant of which this
item is the parent.

Count integer The total number of open outline items. If the outline
item is closed, a negative value is used with as absolute
value the number of descendants that would be opened if
the item was open.

Dest name, string or array In the case of named destinations a name or string will be
used. In the case of explicit destinations an array is used.
See section 3.5.2.1.

A dictionary The action that needs to be performed. See next section.

SE dictionary The structure item to which the outline refers; see
chapter 6.

C array An array of three numbers ranging from 0.0 to 1.0

representing an RGB color.

F integer The style used for the text: by default 0 for regular text, 1
for italic, 2 for bold, 3 for bold and italic.

Just like with named destinations where we had the SimpleNamedDestination convenience class, there’s also
a SimpleBookmark class that allows you to get more information about bookmarks, without having to fetch

S W N e

PDF Document Structure 58

all the outline item dictionaries. Code sample 3.18 gives you an example of how to create a List containing
all the bookmarks.

Code sample 3.18: C0306_DestinationsOutlines

List<HashMap<String, Object>> bookmarks = SimpleBookmark.getBookmark(reader);
for (HashMap<String, Object> item : bookmarks) {
System.out.printin(item);

The output for the primes.pdf starts like this:

{Action=GoTo, Page=1 Fit, Title=Prime2}
{Action=GoTo, Page=2 Fit, Title=Prime3}
{Action=GoTo, Page=4 Fit, Title=Prime5}
{Action=GoTo, Page=6 Fit, Title=PrimeT7}
{Action=GoTo, Page=10 Fit, Title=Primei1}

The map consists of strings such as Open, Title, Page, Color, Style, Kids, and so on. In the case of the Kids
entry, the object is a List with more HashMap elements.

The SimpleBookmark class also has an exportToXML() method that allows you to export the
bookmarks to an XML file.

Note that iText uses the keyword Action to indicate that clicking a bookmark item is the equivalent of a GoTo
action.

g Some outline actions, such as JavaScript actions, aren’t picked up by SimpleBookmark.

Let’s take a closer look at actions in general.

3.5.2.3 Actions

An action in a PDF document is defined using an action dictionary that specifies what the viewer should do
when the action is triggered. Table 3.10 shows the entries common to all action dictionaries.

Table 3.10: Entries common to all action entries

Key Type Value
Type name If present, the value must be /Action.
S name The type of action, see table 3.11.

Next dictionary or array The next action or sequence of actions that must be
performed after this action. This allows actions to be chained.

PDF Document Structure 59

Table 3.11 shows the possible values for the /S entry.

Table 3.11: Action types

Action Type Context Description

Named Nav. Execute a predefined action.

GoTo Nav. Go to a destination in the current document.

GoToR Nav. Go to a destination in a remote document.

URI Nav. Resolve a uniform resource identifier (URI).

GoToE Nav. Go to a destination in an embedded PDF file.

GoToDp Nav. Go to a document part.

Hide Ann. Set an annotation’s Hidden flag.

Sound Ann. Play a sound.

Movie Ann. Play a movie.

Rendition Ann. Controls playing of multimedia content.

GoTo3DView Ann. Sets the current view of a 3D annotation.

RichMediaExecute Ann. Specifies a command to be sent to a rich media
annotation’s handler.

SubmitForm Form Send form data to a uniform resource locator (URL).

ResetForm Form Reset the fields in a form to their default values.

ImportData Form Import field values from a file.

Set0OCGState OCG Sets the states of optional content groups.

JavaScript Misc. Execute a JavaScript script.

Launch Misc. Launch an application, usually to open a file.

Trans Misc. Updates the display of a document using a transition
dictionary.

Thread Misc. Begin reading an article thread.

We won’t discuss all these types of action in detail. We’ll look at some of the actions marked with Nav. which
allow us to navigate through a document. We’ll discuss some of the actions marked with Ann. triggering
events related to annotations in chapter 7, and actions marked with Form in chapter 7. The OCG action will
be discussed in chapter 6.

Actions can be triggered in many ways. For now we’ll only look at two places where we can find actions.

« The /OpenAction entry in the catalog. Its value can be an array defining an explicit destination or an
action dictionary. The action is triggered upon opening the document.

+ The /AA entry that can occur in root, page, annotation and form field dictionaries. Its value is an
additional actions dictionary defining actions that need to be executed in response to various trigger
events.

PDF Document Structure 60

We'll discuss the events that can be triggered from an annotation in chapter 8 and those that can be triggered
from a form field in chapter 8. Table 3.12 shows the possible entries in the additional actions dictionary of a
page dictionary.

Table 3.12: Entries in a page object’s additional actions dictionary

Key Type Value

(0] dictionary An action that will be executed when the page is opened, for instance
when the user navigates to it from the next or previous page.

C dictionary An action that will be executed when the page is closed, for instance
when the user navigates away from it by clicking a link to another
page.

Table 3.13 shows the possible entries in the additional actions dictionary of the document catalog.

Table 3.13: Entries in the document catalog’s additional actions dictionary

Key Type Value

WC dictionary A JavaScript action to be executed before closing the document (“will
close”).

WS dictionary A JavaScript action to be executed before saving the document (“will
save”)

DS dictionary A JavaScript action to be executed after saving the document (“did
save”)

WP dictionary A JavaScript action to be executed before printing the document (“will
print”)

DP dictionary A JavaScript action to be executed after printing the document (“did
print”)

Just like an HTML file, a PDF document can contain JavaScript. There are some differences in the sense that
you get extra objects that allow you to use functionality that is specific to a PDF viewer. We’ll take a look at
some JavaScript examples in chapter 7.

The “will save” action isn’t triggered by a “Save As” operation. In practice this often means that it’s
only triggered in Adobe Acrobat, not in Adobe Reader.

Let’s conclude this section about actions by looking at some of the actions marked with Nav. in table 3.11.

A named action is an action of which the value of the /S entry is /Named. It has an additional /N entry of
which the value is one of the names listed in table 3.14.

PDF Document Structure 61

Table 3.14: Named actions

Name Action

NextPage Go to the next page of the document.
PrevPage Go to the previous page of the document.
FirstPage Go to the first page of the document.
LastPage Go to the last page of the document.

A go to action is an action of which the value of the /S entry is /GoTo. It must have a /D entry that can be a
name or a string in case of named destinations, or an array in case of an explicit destination. Starting with
PDF 2.0, there can also be an /SD entry to jump to a specific structure destination (see chapter 6).

The remote go to action is very similar. It’s an action of which the value of the /s entry is /GoToR. It must
have an /F entry of which the value is a file specification dictionary, as well as a /D entry. The value of the
/D entry can be a name or a string in case of named destinations. When an explicit destination is defined, an
array is used of which the first element isn’t an indirect reference to a page dictionary, but instead the page
number of the target destination.

There’s an optional NewWindow entry of which the value is a Boolean. If true, the document will

0 be opened in a new window, provided that the referring document is opened in a standalone PDF
viewer. For instance: setting this entry to true won’t open a new browser window if the document
is opened in Adobe Reader’s browser plug-in.

An URI action is an action of which the value of the /S entry is URI. It must have an URI entry defining the
uniform resource identifier to resolve, for instance: a link to open a hyperlink in a browser.

When the Catalog of a document contains a /URI entry, it refers to a dictionary with a single entry,
/Base, of which the value is the base URI that shall be used when resolving relative URI references
throughout the document.

An URI action dictionary can have an /IsMap entry of which the value is a Boolean. If true, a mouse position
will be added to the URI in the form of a query string containing the values of an x and a y coordinate.

Another way to send data to a server involves interactive forms.

3.5.3 Interactive forms

When you find an /AcroForm key in the root dictionary of a PDF file, your document is an interactive form.
There are different flavors of forms in PDF.

1. One is based on AcroForm technology. These forms are defined using the PDF objects described in
chapter 1, for instance an array of fields where each field is defined using a dictionary.

2. Another type of form uses the XML Forms Architecture (XFA). In this case, the PDF file acts as a
container for a set of streams that form a single XML file defining the appearance as well as the data
of the form.

PDF Document Structure 62

3. Finally, there are also hybrid forms that contain both an AcroForm description and an XFA stream
defining the form.

Forms are used for different purposes. One purpose can be to allow users to fill out a form manually and to
submit the filled out data to a server. Another purpose could be to create a template that can be filled out in
an automated process. For instance: one could create a PDF containing an AcroForm form that represents a
voucher for an event. Such a PDF could have fields that act as placeholders for the name of an attendee, a date,
a bar code, etc... These static placeholders can then be filled out automatically using data from a database.
If you need dynamic fields, XFA is your only option. You could create an XFA template based on your own
XML schema, and then inject different sets of XML data into this template.

We'll discuss these types of forms in more detail in chapter 8. For now, we’ll just take a look at an example of
each flavor and find out how to tell the different flavors apart.

3.5.3.1 AcroForm technology

Figure 3.10 shows an interactive form based on AcroForm technology. It contains text fields that can be filled
out with a title of a movie, a director, etc. It also contains some check boxes and radio buttons. To the left, we
see the same document opened in RUPS. We see that the Catalog has an /AcroForm entry. The value of the
/Fields entry of this dictionary is an array that isn’t empty. Its elements are AcroForm fields.

[&] iText RUPS 5,42 =8 %
File Help
/~| PDF Object Tree (datasheet pdf} |~|["Pages | outines | Form | xFA | xRer
@ /DocChecksum: [4D23560EF1D916D79D " S il
#-'% IRoot 107 0 R -> Dictionary oftype: /Catalog o , o =] %
+ [Dictionary of type: /Catalog [3==] Ee\‘nmse 5 datasheetpdf - Adobe Reader
o /Pages: 39 0 R -> Dictionary of type: /Pages S direcor | | Fle_Edit View Window Help *
o-éfgpenmmn [10R, XXYZ, null, nuil, 0] Bera EE % /1 =V o= E o < . N
e cados = : 8 & = | Llelo®[e==-]|HB | &3 | gokeylySan, yCommen
¢ [racroForm: Dictionary S g;ﬁ
§ i Fields:[40R,60R, 70R 90R, 100R, 1 = op T2| Please fill out the following form. You can save data typed into this form. T Highlight Existing Fields
¢ & 40 R > Dictionary of type: /Annct g & = KL= e
o L] Dictionary of type: Annot Q s A
o & 80 R->Dictionary of type: /Annot Bors 7
o ' 70 R > Dictionary of type: /Annot Bz
o 90 R-> Dictionary of type: JAnnat o ‘V"(}
o "% 10 0 R+ Dictionary of type: JAnnot Q Y b
o 110R > Dictionary of ype: /Annot 1B Sef:,?;m
o (4 120 R > Dictionary oftype: /Annot = :
o 130 R-> Dictionary oftype: JAnnot || g unnarm Film Data Sheet
¢ ' 140 R~ Dictionary oftype: /Annot = unnam
o "4 150 R = Dictionary of type: JAnnot = unnam)
&% 160 R-» Dictionary of ype: /Annat = Lnnam Title
[unnam|
o (4 17 DR -+ Dictionary B unnam =
o' 250 R > Dictionary oftype: /Annot = i
o "% 260 R+ Dictionary oftype: JAnnot 3 unnam) Director
¢ IDR: 46 0 R -> Dictionary =2 i
9 [Dictionary CI unnam o Durafi
o .= /ProcSet [PDF, Mexi] CI car uration
' iFont 45 0 R - Dictionary B unnam
¢ [Dictionary .j unnam
& & [F1:44 0 R == Dictionary of B unnam
[ZaDi’ 8 0 R -» Dictionary of =
E-J unnam|
JHe: 5 0 R -> Dictionary of ty - - - - "
© INeedAppearances: true 3 unnam| Cinema Paradiso 1 O Official Selection: competition O —
o =) unnam)|
ILang: n-BE) - - N -
& 1= D:[_4 US®BA'S¢=sD, >_4 U$EBA'S;=50] L CI:J unnam Cinema Paradiso 2] Official Selection: festival (o]
= e - £ duration
7] ISize: 109) - -
‘I‘—‘ - I ‘ ”: E year Cinema Paradiso 3 O Focus on the director O
Key Value Googolplex 3 O Focus on Stanley Kubrick o)
U PR
F :‘f ‘Googolplex 4 O Focus on Akira Kurosawa o]
Type Annot N
| e Widgst ‘Googolplex 7 (] Focus on Zhang Yimou O
DV 7
oR Dictionary ‘Googolplex 8 [} Focus on Ang Lee @)
as E‘K;E,le The Majestic 2 O Focus on Kim Ki-Duk ®)
" L0R The Majestic 3 [0 |Focus on Guillermo del Toro o)
AP Dictionary
Rect [141.1,730.7, 528.3, 743.3] World cinema o)
FT M
I 00rgHe Tl French cinema ©]

Figure 3.10: AcroForm technology

We selected one specific field in RUPS: the title field. In the dictionary panel, we see the combined field and
annotation dictionary defining that field. The /P value refers to the page on which the widget annotation of

©O© 00 9 O O b» W N =

RSN
= o

PDF Document Structure 63

the field will appear; the /Rect entry defines the position of the field’s annotation on that page. We’ll discuss
the other entries of this dictionary in chapter 8. For now, it’s important to understand that every placeholder
has its fixed place on a fixed page when using AcroForm technology. Placeholders can’t resize automatically
when their content doesn’t fit the designated space.

We could test this form, by getting the AcroForm dictionary from the catalog, retrieving the fields array, and
so on, but let’s skip that, and use the AcroFields convenience class. See code sample 3.18.

Code sample 3.18: C0306_DestinationsOutlines

public static void inspectForm(File file) throws IOException {
System.out.print(file.getName());
System.out.print(": ");
PdfReader reader = new PdfReader(file.getAbsolutePath());
AcroFields form = reader.getAcroFields();
XfaForm xfa = form.getXfa();
System.out.printlin(xfa.isXfaPresent() ?
form.getFields().size() == @ ? "XFA form" : "Hybrid form"
form.getFields().size() == @ ? "not a form" : "AcroForm");
reader.close();

This code snippet can be used to check which type of form you’re dealing with. It writes the name of the file
to the System.out, followed by one of the following results: XFA form, Hybrid form, not a form or AcroForm.
The AcroFields class inspects the /AcroForm entry, and checks if there’s an XFA part. If not, it checks the
number of fields. If there is no /AcroForm entry or if the /Fields array is empty, you don’t have an AcroForm.
In the example shown in figure 3.10, the method returns AcroForm.

The AcroForm technology supports four types of fields:

« Button fields— representing interactive controls on the screen that can be manipulate using a mouse,
such as pushbuttons, check boxes and radio buttons.

« Text fields— consisting of boxes or spaces in which the users can enter text from the keyboard.

+ Choice fields— containing several text items that can be selected, for instance list boxes and combo
boxes.

« Signature fields— representing digital signatures and optional data for authenticating the name of the
signer and the document’s contents.

We’ll cover button, text and choice fields in chapter 8, but digital signature fields are outside the scope of this
book.

A digital signature involves a digital certificate, a timestamp, revocation information and so on.

O This information is needed as soon as you want to validate the signature. If this information is
missing or expired, one can create an incremental update and add a dictionary to the document
catalog containing the most up-to-date validation-related information. This dictionary is known
as the Document Security Store (DSS) and it’s used as the value for the /DSS entry of the root
dictionary.

PDF Document Structure

64

Digital signatures, including the Document Security Store, are discussed in great detail in the book “Sign your

PDFs with iText?”

3.5.3.2 The XML Forms Architecture

Figure 3.11 shows such an example of a pure XFA form opened in Adobe Reader as well as in RUPS.

|£)] iText RUPS 5.4.2

=B %

File

Help

[/ PDF Object Tree (xfa_mavies.pdf)
& () DecodeParms: Dictionary
@ rmype: IXRef
oS M[1,2,1]
¢ Root: 20 0 R -» Dicionary oftype: /Catalo:
4 L Dictionary of type: /Catalog
o 4 [Pages: 26 0 R - Dictionary of typ
o~ X2 markinfo: Dictionary
@ MNeedsRendering: true
&% Names: 38 0 R - Dictionary
@ mype: [Catalog
o= IStructTreeRoot 19 0 R -> Dietion:
¢ " fAcroForm: 37 0 R - Dictionary
% [Dictionary

|~/] Pages | Outiines | Form [XFA | XRef

> XFA Document

¢ < xdp
timeStamp="2009-11-26T153

» ULid="02334f06-32e8-4004-0

> config

> template

> connectionSet

¢ <> datasels
¢ <> data

¥

i= FFields: D }
§ 1= IXFA: [preamble, 10 R, con|=| © dataNode="dataGroup|
preamble @ <> dataDescription
&5 10R = Stream name="movies"
config § < movies
&5 20R > Stream ¢ < movie
template ° maxOceur="1

30R = Stream

o [[Siream
connectionset
&5 40R > Sream
datasets
& 50R > Stream
localeset
& 60R > Stream
xmpmeta
& 70R > Stream
postamole
&% 80R->Stream
IDAHeN D TFO g
o /DR Dictionary

° reqAttrs="qurat
<> itle
¢ <> original
= minOceur=1|
© nuiType="g
¢ <> directors
§ <> director
= max0cd]
& <> countries
& <> country

o < localeSet

o MMelagala: 120R = Stream |5
= o= <> xympmeta
Il M I e - |
Key I value Stream | XFA | Console
Lengin 278 - -
o e et et xrin i i o1l ezl

name="movies" layout="to" locale="nl_BE"

defaultPD! acrof

pageset

T xfa_movies.pdf - Adobe Reader = B %2
File Edit View Window Help *
GREZeB e M| (]| = @ [ox]-]| 5 @ | | [Z] Tools . Sign = Comment

Plezsefill out the following form. You cannot save data typed into this form.
Please print your completed form if yeu would like a copy for yeur records.

Highlight Existing Fields

Title

Duration

Original
Director

n

Figure 3.11: An empty XFA form

We detect a /NeedsRendering entry with value true in the Catalog. This means that the PDF viewer will have
to parse XML in order to render the content of the document.

A

Not all PDF viewers support pure XFA forms. For instance: if you open a pure XFA form in Apple
Preview, you’ll see whatever content is available in the form of PDF syntax. This is usually a

warning saying that your PDF viewer doesn’t support this particular version of PDF documents.

The /AcroForm entry has an empty /Fields array. The form is defined in different streams that are to be
concatenated to form a valid XML file.

The form shown in figure 3.11 is empty: it doesn’t contain any data. Figure 3.12 shows the same form, but
now filled out using an XML file that contains 120 movies. The document that originally counted only one
page, now consists of 23 pages. The complete group of fields is repeated 120 times, once for each movie in the
XML file. Some fields are repeated too, see for instance the Country field.

*https://leanpub.com/itext_pdfsign

https://leanpub.com/itext_pdfsign
https://leanpub.com/itext_pdfsign
https://leanpub.com/itext_pdfsign

PDF Document Structure

) iText RUPS 5.42 [=/83] %
File Help |

o
-

¢
¢

-

©
o~ [MMarkinfo: Dictionary

Pages. 22U R = Dicionary o
INeedsRendering: true

INames: 26 0 R -> Dictionary

@ mype: [Catalog
IStructTreeRoot: 15 0 R - Dict|

IAcroForm: 26 0 R -> Dictiona
[pictionary
ields: [
= IXFA: [preamble, 5 0 R,
S preamble
& 50R > Stream
S config
& 6OR > Stream
S template
&5 10R = Stream
S connectionSet
&5 70R > Stream
S datasets
§ "0 20R - Stream
o= (») Stream
S localeSet
&4 BOR > Strzam
S xmpmeta
& 90R > Stream
5 postamole
&% 10 0R - Stream
& [/DR: Dictionary
S DA Helv0Tr0 g
IMetadata: 4 0 R-> Stream

Pages | Outlines | Form | XFA | XRef

6

5

]

[»

> XFA Document

& < xdp
» timeStamp="2009-11-26T15:21:36Z"
 ULid="02334106-3a88-4094-027 - 29159

& < config
o <> template

& < connectionSet
¢ <> datasets
¢ < data
* dataNode="dataGroup"
¥ < movies

¢ <> movie
= duration="141"
o imdb="0062622"
° year='1968
- <> ttle
> 2001: ASpace Odysse
¢ <> directors
¢ <> director
= Kubrick, Stanley
¢ <> countries
9 <> country
® United Kingdom
¢ <> country
© United States

ILength|5226

Key Value

[Filter _|IFiateDecode

stream | XFA | Console

<xfa:datas ets xmins xa="htp:wwwxia.ora/schemanda-datal.0r><da:data
<movie duration="141" imdb="0062622" year="1968"> <title=2001: A Space

United

<movie duration="8g" imdo="0423866" year="2004"><title>3-Iron </title><orig

" vear="194A" 1 ast Niaht]

<qa jie duration="113" imdh="0000:
4

As opposed to the static AcroForm documents, XFA forms are truly dynamic. You can use them for forms
of templates of which you don’t know the amount of data nor the size of the data up-front. XML forms
also consist of text fields, choice fields, buttons and signature fields, but they are defined using XML, which

provides much more flexibility.

3.5.3.3 Hybrid forms

Figure 3.13 shows a hybrid form. There’s no /NeedsRendering entry in the Catalog. A PDF viewer doesn’t

X «fa filled_in.pdf - Adobe Reader o8] %
File Edit View Window Help x
SEFeB &= ®[1]in| = @[] H B | | Tools | Sign | Comment

) Please il ut the following form. You cannot sovedatatyped ntothisform.
Please print your completed form if you would like a copy for your records.

Highlight Existing Fields

]
Title
Duration
Original

Director

Title
Duration
Original

Director

Title

Duration

|2001: ASpace Odyssey

o mts ooz e
|Ku brick, Stanley ‘ Country United Kingdom

[ron |
IBin-jip |
IAbout Last Night... |
113 Imdb 0090583 Year

.

Figure 3.12: A filled out XFA form

need to parse any XML in order to render the form as the form is also defined using AcroForm technology

PDF Document Structure

62 0 R-» Dictionary of type: /Annot
Mmpymovie[0]
Mpimovies(0]
¢ 1= [XFA: [preamble, 10 R, config, 2 0 R, template, 3 0 R, connectionset, 4 0
preamble
&% 10R > Stream
config
o 20R->Stream

template
e
< 1 I D]

510R stream | XFA | Console |

[<2xmi version="1.0" encoding="UTF-8"7>

<config xmins="htip:/fwww xfa.org/schemalxcif2.6r> <agent name="designer>
<pdr=
<o -
<fontinfol
<Ipdf>
<lagent>
<present>
< 0.l —
<pdf-
<k [0.n) —
“version=1T=iversion>
evel- evel»

l<xdpzxdp xmins:xdp="http:/insadobe.comixdp/” timeStamp="2009-11-27T14:45:557" uuid="db17205b-5000-412]

<destination=pdf</desti

(1 1 [

[iText RUPS 5.4.2 o5 =
File Help
¢ IRoot 420 R > Dictionary of type: /Catalog [Pages | Outiines | Form | XFA | XRef
& L Dictionary of type: /Catalog =
&% IPages: 39 0 R - Dictionary oftype: /Pages B j";‘ B
4~ [Markinfo: Dictionary [R= j s \
&' MNames: 52 0 R = Dictionary vE %MM\HI EI1
@ mype: Catalog ¢+ E tg/m udv ie : 1 .
o= ' [StructTreeRoot 23 0 R -> Dictionary of type: /StructTreeRoot d by du ;ah ‘Dﬂ n[o]
9 IAcroForm: 51 0 R - Dictionary = pyim [0}
¢ A Dictionary Epyyeariol
= Fields: 18 0R] Spytitiero]
¢ "0 18 0 R-> Dictionary L _ Edpyoriginairol
4 EJ XFA
¢ [Dictionary 5 "
¢ i= IKigsi[19 0R] :Jnre:m e
¢ ' 190R-> Dictionary inmm?‘
¢ L2 Dictionary g emplate] xfa_movie,pdf - Adobe Reader =8 ®
[Parent: 18 0 R > Dicl =
o= ,K‘ad':"m R 55 0R S0OR 510R 620 fl) datasets File Edit View Window Help -
> 5 localeSet
58 0 R-> Dici ftype: JAnnot = N o -)
T3 B e et Ll S mpmeta AREeBE &M | (=) @) [eax]| [- Tools | Sign = Comment
] xar
o % 59 0 R-> Dictionary oftype: /Annot = = —
N : £ form &5 Please fill out the following form. You cannot save data typed into this form. e
r 23 3 E; g:g:g::x Z:gsz j:::z: £ postamole Please print your completed form if you would like a copy for your records. bishiiohBnatialis
-

Title |

Duration Imdb

Year

Original [

Figure 3.13: A hybrid form

Hybrid forms have the advantage that they can be viewed in PDF viewer that don’t support XFA, but they
have the disadvantage that the dynamic nature of XFA is lost.

3.5.4 Marked Content

In the next chapter, we’ll take a closer look at the Adobe Imaging Model. We’ll learn more about the operators

that are needed to draw text, paths, shapes and images to a page. These operators only serve to make sure the
visual representation of the document is correct.

There is also a set of operators that allow you to mark this content. Marked-content operators are used to
identify a portion of a PDF content stream as an element of interest for a particular goal. For instance: a word
drawn on a page doesn’t necessarily know which line it belongs too. A line doesn’t know which paragraph
it belongs too. You can mark a sequence of text operators as a paragraph, so that software can discover the
structure of your document. In this case, we add marked content operators to add structure to the document.
When specific rules are followed when creating this structure, we say that the PDF is a Tagged PDF document.

d

FAQ: I've created a PDF with a table and now | want to
extract the cells of that table

This is only possible if the PDF is tagged. If the document isn’t tagged, it doesn’t know there’s a
tabular structure on the page. What looks like a table to the human eye, is nothing more than a
bunch of glyphs, lines and shapes drawn on a page. By introducing marked content operators into

the content stream, you can mark all the different elements of a table in a way that software can
detect rows, columns, headers, and so on.

PDF Document Structure 67

Using marked content, you can also add object data. For example: if your PDF consists of a blueprint of
a machine, you can use marked content operators to add specific properties for each machine part that is
drawn. Marked content can also be used to make documents accessible. For instance: for each image in the
document, you can add a short textual description so that people who are visually impaired can find out what
the image represents. Another typical use case involves optional content. You can mark a sequence of PDF
syntax in a way that it becomes visible or invisible, for instance depending on user interaction.

Several entries in the root dictionary refer to Marked Content. The /MarkInfo entry refers to a dictionary con-
taining information about the document’s use of Tagged PDF conventions. We’ll discuss the /StructTreeRoot
entry in detail in chapter 6. The same goes for the /0CProperties key which refers to optional content.

3.5.5 Embedded files

We’ve looked at the actual content of a document, at navigation information and at the structure of the
content, but there’s more. A document can also contain attachments, and these attachments can be organized
in a special way.

There are different ways to attach a file to a PDF document. You can add an attachment using an annotation.
In this case, you’ll have a visible object on the page (for instance a paper clip) that can be clicked by the end
user to open the attachment. We’ll learn more about file attachment annotations in chapter 7.

You can also create document-level attachments also known as embedded files. You need to open the
attachments panel in your PDF viewer to see these attachments. When double-clicking an attachment of
a different format than PDF, you need an external viewer to open the attachment. See figure 3.14.

] portable_collection.pdf - Adobe Reader = | B
File Edit View Window Help %
@@@U@| f1|f +W||£= ToolséSign Comment

Open File | i

ﬂ;J Attachments

The file 'berlin2013.jpg’ may contain programs, macros, or viruses that could potentially harm your computer.,

f - 43 Open ég] Save ¢ | Open the file only if you are sure it is safe. Would you like to:
MName : Description Modifi | & Open this flle
[berlin2013.jpg berlin2013.jpg 12/02/3| ¢ Always allow opening files of this type
@ hello.pdf hello.pdf 12/02/2 | Mever allow opening files of this type
@ united_states.csw united_states.csw 12/02/3

oK Cancel

Figure 3.14: Document-level attachments

If you want an approach that is more integrated into the PDF Viewer, you may want to create a portable
collection.

3.5.5.1 Portable Collections

Figure 3.15 shows the most simple type of portable collection you can create.

PDF Document Structure 68

L portable_collection.pdf - Adobe Reader o =3 K
| File Edit View Window Help x|
é% @ [@ [% | aa Layout | i Files Search ﬁ|' Tools Sign

»| berlin2013.jpg Open File ™

Figure 3.15: A portable collection

In this case, the PDF is defined as a portable collection.

When using a portable collection, the PDF acts as a container for different files, similar to a ZIP file.

0 The advantage of having a PDF package over a ZIP file is the fact that some files can be rendered in
Adobe Reader. For instance: you can view the JPG without having to open an external application.
To open the CSV file however, you’ll need an application such as Excel.

The difference between the PDF shown in figure 3.14 and the one shown in figure 1.15 consists of a single
entry in the root dictionary.

PDF Document Structure 69

/= PDF Object Tree (portable_collection.pdf)
? /Root: 19 0 R -= Dictionary of type: /Catalog
¢ L Dictionary of type: /Catalog
? Mames: 18 0 R -= Dictionary
¢ L Dictionary
? {EmbeddedFiles: 17 0 R -= Dictionary
¢ L Dictionary
& := Mames: [berlin2013.jpg, 12 0 R, hello.pdf, 8 0 R, united_states.csv, 4 0 R]
> berlin2013jpg
o= 12 0 R -= Dictionary of type: /Filespec
> hello.pdf
o= 8 0 R -= Dictionary of type: /Filespec
> united_states.csv
o= 4 0 R -= Dictionary of type: /Filespec
@ mype: ICatalog
@ wersion: 17
o= fPages: 15 0 R -= Dictionary of type: /Pages
¢ L /Collection: Dictionary of type: /Collection
@ wiew T
@ mype: ICollection

Figure 3.16: A portable collection

In both cases, there is a /Names entry with an /EmbeddedFiels name tree. In the second case, there is also
a /Collection entry in the Catalog. In figure 3.16, the view type is /T for Tile. There are different types
of portable collections. Instead of showing thumbnails, you can provide a table consisting of rows you can
populate with data of your choice. You can also create your own Flash component to navigate through the
different documents.

3.5.5.2 Associated files

When attaching files to a document, the PDF isn’t aware of any relationship between the document and the
attachment. To the document, the attachment is merely a sequence of bytes, unless you define an associated
files relationship. See the /AFRelationship key in the filespecification of the fileunited_states.csv in figure
3.17.

/~| PDF Object Tree (pdf_a.pdf)
[[Root 24 0 R -= Dictionary of type: /Catalog
¢ [Dictionary of type: /Catalag
[Mames: 22 0 R -= Dictionary
o [Dictionary
[[EmbeddedFiles: 21 0 R —= Dictionary
o [Dictionary
g i= /Names: [united_states.cav, 50 R]
> united_states.csv
[5 0 R -= Dictionary of type: [Filespec
o [Dictionary of type: /Filespec
@ /AFRelationship: /Data
> [F: united_states . csv
@ Mype: Filespec
> [Desc:united_states.csv
o~ [/EF: Dictionary
> IUF: united_states.csv
@ Mype: ICatalog
¢ i= JAF:[50R]
50 R -= Dictionary of type: [Filespec
o~ [Dictionary of type: /Filespec

Figure 3.17: A portable collection

PDF Document Structure 70

The file that is opened in RUPS contains a list of US states that was created based on the data file united_-
states.csv. We add an extra reference to this file specification in the array of associated files; see the value
of the /AF key in the root dictionary. Defining the relationship between a document and its attachments is a
mandatory requirement when you need to comply with the PDF/A-3 standard.

3.5.6 Viewer preferences

The /PageLayout, /PageMode and /ViewerPreferences entries refer to the way the document must be
presented on the screen when the document is opened. The /PageLayout entry tells the PDF viewer how
pages should be displayed. Possible values are:

+ /SinglePage— Display one page at a time.

+ /OneColumn— Display the pages in one column.

+ /TwoColumnLeft— Display the pages in two columns, with the odd-numbered pages on the left.

+ /TwoColumnRight— Display the pages in two columns, with the odd-numbered pages on the right.
+ /TwoPagelLeft— Display the pages two at a time, with the odd-numbered pages on the left.

+ /TwoPageRight— Display the pages two at a time, with the odd-numbered pages on the right.

The /PageMode entry defines which panel —if any— needs to be opened next to the actual content. You can
also use it to have the document opened in full screen view. Possible values are:

+ /UseNone— Neither document outline nor thumbnail images visible.

+ /UseOutlines— The bookmarks panel is visible, showing the outline tree.
+ /UseThumbs— A panel with pages visualized as thumbnails is visible.

« /FullScreen— The document is shown in full screen mode.

+ /UseOC— The panel with the optional content structure is open.

+ /UseAttachments— The attachments panel is visible.

The values of both the page layout and the page mode are expressed as names. The /ViewerPreferences are
stored in a dictionary. Table 3.15 lists the most important entries involving the viewer application.

Key Value Description

/NonFullScreenPageMode Name The document’s page mode when exiting from full
screen mode; this entry only makes sense if the
value of the /PageMode entry is /FullScreen.
/UseNone: no panel is opened
/UseOutlines: the bookmarks panel is opened
/UseThumbs: the thumbnails panels is opened
/UseOC: the optional content panel is opened

/FitWindow Boolean Changes the zoom factor to fit the size of the first
displayed page when true.

/CenterWindow Boolean Positions the document’s window in the center of
the screen when true.

/DisplayDocTitle Boolean Shows the title of the document as stored in the
metadata in the title bar of the viewer.

PDF Document Structure 71

Key Value Description

/HideToolbar Boolean Hides the toolbars in the PDF viewer when true.

/HideMenubar Boolean Hides the menubar in the PDF viewer when true.

/HideWindowUI Boolean Hides user interface elements in the document’s
window (scrollbars, navigation controls) when
true.

Table 3.16 lists the most important entries with respect to printing the document.

Key Value Description

/PrintScaling Name Allows you to avoid print scaling by the viewer by
setting the value to /None; the default is /AppDefault.

/Duplex Name The paper handling option. Possible values are:
/Simplex: print single sided
/DuplexFlipShortEdge: duplex and flip on the short

edge of the sheet.
/DuplexFliplLongEdge: duplex and flip on the long edge
of the sheet.

/PickTrayByPDFSize Boolean If true, the check box in the print dialog associated with
input paper tray will be checked.

/PrintPageRange Array The page numbers to initialize the print dialog box. The
array consists of an even number of integers of which
each pair defines a subrange of pages with the first and
the last page to be printed.

/NumCopies Integer Presets the value of the number of copies that need to be
printed.

These viewer preferences preselect or preset a value in the dialog box. They can be used to set parameters,
not to actually print the document.

'd

FAQ: How can | print a document silently?

In old versions of Adobe Reader, it was possible to print a PDF without any user interaction. This
was known as silent printing. This feature can also be seen as a security hazard. A PDF with silent
printing activated would start your printer the moment the user opens the document, without asking
the user for permission. This problem was fixed in the more recent versions of Adobe Reader. Silent
printing is no longer possible. The end user always has to confirm that the document can be printed
in the print dialog.

Other possible entries in the /ViewerPreferences dictionary are:

« /Direction— to define the predominant order for text (/L2R for left to right and /R2L for right to left).

« /ViewArea, /ViewClip, /PrintArea and /PrintClip— to define page boundaries. These entries are
deprecated and should no longer be used.

+ /Enforce— anew entry introduced in PDF 2.0 with an array of viewer preferences that shall be enforced
in the sense that they can’t be overridden in the viewer’s user interface.

PDF Document Structure 72

Whether or not setting these viewer preferences has any effect depends on the implementation of the PDF
viewer. Not all PDF viewers respect the viewer preferences as defined in the PDF document.

3.5.7 Metadata

In section 2.1.4, we’ve found a reference to the info dictionary in the trailer. This info dictionry contains
metadata such as the title of the document, its author, some keywords, the creation and modification date,
and so on. However: this type of storing metadata inside a PDF file will be deprecated in PDF 2.0. Let’s find
out which type of metadata will remain available in the near future.

3.5.7.1 Version

As explained in section 2.1.1, you can find the PDF version in the document header. However, there are two
situations that required an alternative place to store the PDF version.

1. When creating a PDF on the fly, the first bytes can already be sent to the output stream before the
document has been completed. Now suppose that your application starts by writing %PDF-1 . 4, but you
decide to introduce functionality that didn’t exist in PDF 1.4 —for instance Optional Content— during
the writing process. You can’t change the first bytes anymore. They are sent to an output stream that
could be out of reach —for instance a browser on a client machine. In this case, you’ll change the version
at the level of the catalog. This explains why iText always writes the Document Catalog Dictionary as
one of the last objects in the file structure, followed only by the /info dictinary. You need to be able to
change the keys of the root dictionary up until the very last step in the process.

2. When creating an incremental update, you add an extra body, cross-reference table and trailer. Suppose
that you want to add an extra signature to a signed PDF. Suppose that the type of signature you’re
adding didn’t exist in the version of the original PDF. You can’t change the existing header in an
incremental update; if you tried, you'd break the original signature. In this case, you’ll change the
version by defining it in the Catalog.

The value of the /Version entry in the Catalog is a name object. For instance: /1.4, /1.7, /2.0,...

3.5.7.2 Extensions

Third party vendors can —within certain limits— extend the PDF specification with their own features. When
they use these extensions in a document, they’ll add an /Extensions dictionary that contains a prefix that
serves as identification for the vendor or developer, as well as a version number for the extensions that are
used in the docment.

3.5.7.3 XMP streams

The /1nfo will be deprecated in favor of using a /Metadata entry in the Catalog starting with PDF 2.0 (ISO-
32000-2). The value of this entry is a stream of which the dictionary has two additional entries: the /Type entry
of which the value shall be /Metadata, and the /Subtype of which the value shall be /XML. The metadata is
stored as an XML stream. This stream is usually uncompressed so that it can be detected and parsed by
applications who aren’t PDF aware.

PDF Document Structure 73

There can be more than one Metadata stream inside a document. One can add a /Metadata entry
to a page dictionary, or any other object that requires metadata.

The XML grammar that is used for the XML is described in a separate standard (ISO-16684-1:2012) known as
the Extensible Metadata Platform (XMP). This standard includes different schemas such as Dublin Core. The
XMP specification is outside the scope of this book.

3.5.7.4 The natural language specification

In the context of accessibility, it is recommended that you add a /Lang entry to the Catalog. The value of this
entry is a string that represents a language identifier that specifies the natural language for all the text in the
document. The language defined in the Catalog is valid for the complete document, except where overridden
by language specification for marked content or structure elements.

3.5.8 Extra information stored in the Catalog

The Catalog can also be used to store specific information about the content, the producer that created the
PDF, and the reader application that will consume the PDF.

The following entries provide more information about the content in some very specific use cases:

 Threads — The content of a PDF can consist of different items that are logically connected, but not
physically sequential. For instance: an article in a news paper can consist of different blocks of text,
distributed over different pages. For instance: a title with some text on the front page, and the rest of
the article somewhere in the middle of the news paper. The /Threads entry in the Catalog, allows you
to store an array of thread dictionaries defining the separate articles.

+ Legal — JavaScript, optional content,... PDF offers plenty of functionality that can make the rendered
appearance of a document vary. This functionality could potentially be used to construct a document
that misleads the recipient of the document. These situations are relevant when considering the legal
implications of a signed PDF document. With the /Legal entry, we’ll add a dictionary that lists how
many JavaScript actions can be found in the document, how many annotations, etc. In case of a legal
challenge of the document, any questionable content can be reviewed in the context of the information
in this dictionary.

These entries are used by specific software products that produce PDF documents:
« Private data from the processor — software that produces PDF as one of its output formats can use the
/Piecelnfo entry to store private PDF processor data. This extra data will be ignored by a PDF viewer.
+ Web Capture data — if the PDF was the result of a Web Capture operation, the /SpiderInfo entry can
be used to store the commands that were used to create the document.

These entries are meant to be inspected by software that consumes PDF documents:

« Permissions — a PDF can be signed to grant the user specific permissions, for instance to save a filled
out form locally. The /Perms entry will define the usage rights granted for this document.

PDF Document Structure 74

+ Requirements — not all PDF consumers support the complete PDF specification. The /Requirements
entry allows you to define an array of the minimum functionality a processor must support (optional
content, digital signatures, XFA,...) as well as a penalty if these requirements aren’t met.

 Reader requirements — The /ReaderRequirements entry is similar to the /Requirements entry, but
defines specific reader requirements, for instance related to output intents.

« Output intents — The /OutputIntents entry consists of an array of output intent dictionaries specifying
color characteristics of output devices on which the document might be rendered.

This concludes the overview of possible entries in the root dictionary aka catalog of a PDF document.

3.6 Summary

We've covered a lot of ground in this chapter. After examining the file structure in chapter 2, we’ve now
learned how to obtain an instance of the objects discussed in chapter 1.

We’ve started exploring the pages of a document starting from the root dictionary and we’ve gotten used to
the concept of using dictionaries to store destinations, outline items, action, and many other elements. While
doing so, we’ve discovered that there’s more to a page than meets the eye. We'll elaborate on some concepts
such as annotations and optional content in later chapters.

The same goes for the other entries in the document catalog. We’ve only scratched the surface of what is
available in the PDF reference.

In part 2, we’ll dive into the content of a page. We’ll talk about graphics and text, as well as about structure.

Il Part 2: The Adobe Imaging Model

We studied the Carousel Object System and the structure of PDF files and documents in the previous part.
While doing so, we briefly looked at a specific type of stream, more specifically a stream containing PDF
syntax that draws lines, shapes, text and images to a page. In this part, we’ll take a closer look at this syntax.

We’ll start by looking at the different operators and operands that can be used to draw lines and shapes and
to change properties such as the color, line widths, and so on. We usually refer to the graphics state in this
context.

In the next chapter, we’ll discuss the text state, which is a subset of the graphics state. We’ll discover how to
show text on a page, referring to a font program that knows how to draw each glyph.

Finally, we’ll revisit some of the entries in the Catalog dictionary that we discussed only briefly, involving
marked content, tagged PDF and optional content.

4. Graphics State

In section 3.4.1.1, we’ve already seen a glimpse of a content stream when we looked at the content stream of
a page. Let’s take a look at a similar content snippet:

BT

36 788 Td

/F1 12 Tf
(Hello World)Tj
ET

q

Q0m

595 842 1

S

Q

This code snippet writes the words “Hello Word” to a pages and strokes a diagonal line.

4.1 Understanding the syntax

Before we start with a syntax overview, let’s start by looking at the syntax notation, and find out how the
imaging model was implemented in iText.

4.1.1 PDF Syntax Notation
The Portable Document Format evolved from the PostScript language and uses the same syntax notation
known as postfix, aka reverse Polish notation. In reverse Polish notation, the operators follow their operands.

Table 4.1 shows the different notations that can be used to note down the addition of the integers 10 and 6.

Table 4.1: Mathematical notations

Notation Example Description

prefix +106 Polish notation

infix 10+ 6 The common arithmetic and logical formula notation
postfix 106 + Reverse Polish notation

Interpreters of the postfix notation are often stack-based. Operands are pushed onto a stack, and when an
operation is performed, its operands are popped from a stack and its result is pushed back on. This has the
advantage of being easy to implement and very fast.

©O© 00 9 O O b W N =

[Y = G S S N S U
© O 0 1 O O b W N =~ O

Graphics State 77

Let’s take a look at the snippet 595 842 1 taken from the content stream in our example. We see the path
construction operator 1 preceded by its operands, 595 and 842, which are in this case values for an (x , y)
coordinate. You’ll find a corresponding method for this operator in iText. There’s a 1ineTo() method in the
PdfContentByte class that is responsible for writing two parameters, x and y, to a byte buffer, followed by the
operator 1. You can use this method if you want to create PDF at the lowest-level, using PDF syntax instead
of the high-level objects described in the book “Create your PDFs with iText"”

4.1.2 Creating a PDF using low-level PDF syntax

Creating a PDF using iText always requires five basic steps:

Create a Document object
Get a Pdfwriterinstance
Open the Document

Add content
Close the Document

SAEE SR

Code sample 4.1 shows the five steps. In the fourth step, we use the PdfContentByte object to add some text
and some graphics. The corresponding PDF syntax is added as a comment after each line.

Code sample 4.1: C0401_ImagingModel

// step 1

Document document = new Document();

// step 2

PdfWriter writer = PdfWriter.getInstance(document, new FileOutputStream(dest));
// step 3

document .open();

// step 4

PdfContentByte canvas = writer.getDirectContent();
canvas.beginText(); // BT
canvas.moveText (36, 788); // 36 788 Td
canvas.setFontAndSize(BaseFont.createFont(), 12); // /F1 12 Tf
canvas.showText("Hello World "); // (Hello World)Tj
canvas.endText(); // ET
canvas.saveState(); // q

canvas.moveTo(0, 0); // 00 m

canvas.lineTo(595, 842); // 595 842 1

canvas.stroke(); // S

canvas.restoreState(); // 0

// step &5

document.close();

'https://leanpub.com/itext_pdfcreate

https://leanpub.com/itext_pdfcreate
https://leanpub.com/itext_pdfcreate

Graphics State 78

Figure 4.1 shows the result of this code sample. We see the text Hello World positioned more or less at the

top of the page (36, 788). We also see a diagonal line going from the lower-left corner (0, 0) to the upper-right
corner (595, 842).

L hello_world.pdf - Adobe Reader o B =
| File Edit View Window Help x

&) B2 B [o [ses [=)] uf]

L1l

Tools Sign Comment

Hello World

Figure 4.1: Hello World example

Now lets take a look at figure 4.2 where RUPS shows what’s under the hood of the PDF.

RUPS inflates the compressed stream to allow us to see the PDF syntax. It removes or introduces spaces and
newlines: all operands are separated by a single space character, each operator is shown on a separate line. It
highlights the syntax in different colors: text state operators are shown in blue; pure graphics state operators
are shown in orange; operands are shown in black. The begin text and end text operators, as well as the save
state and end state operators are also highlighted differently.

Graphics State

79

| £ iText RUPS iText® 5.5.0 ©2000-2013 iText Group NV (AGPL-version)

= B

P

“

File

Help

|)-| PDF Object Tree (hello_world.pdf)
s /Root 50 R -= Dictionary of type: /Catalog
¢ [Dictionary of type: /Catalog
@ ype: ICatalog
IPages: 3 0 R -= Dictionary of type: IPages
" Dictionary of type: IPages
@ mype: IPages
[= /count: 1
¢ i= IKids: [4 0 R]
? 4 0 R -= Dictionary of type: /Page
Page 1
[Parent: 3 0 R -= Dictionary of type: /Pages
@ Mype: IPage
IContents: 2 0 R -= Stream
o= | Stream
o= [/Resources: Dictionary
o= := /MediaBox: [0, 0, 595, 842]
o 2 D[+ ¢° ZEY-iimg HO, = ¢ ZEV-iieg HOJ
=] /5ize: 7

?
?

T

?

(Pages | Outlines | Structure | Form | XFA | XRef | PlainText

MNumber Object

Dictionary of type: /Font

Stream

Dictionary of type: /Pages

Dictionary of type: /Page

Dictionary of type: /Catalog

| o [pa]—

Dictionary

q
0om
595 842

=1 o

o " fInfo: 6 0 R -= Dictionary
4] i [»
Key value [stream | xFa | console
ILength 83 b4 -
[Filter /FlateDecode X EE?BB T4]
@ F112Tf

(Hello World) T]

4[]

Figure 4.2: Syntax of the Hello World example

As you can see, RUPS makes it really easy for PDF-savvy people to read the syntax of different graphics

objects.

4.1.3 Graphics objects

There are 5 types of graphics objects in PDF:

1. A path object is a shape created using path construction and painting operators. The path construction
operators allow you to define lines, rectangles and curves. With the path painting operators you can
fill or stroke the paths. You can also use a path to clip content.

A text object consists of a sequence of operators enclosed between the begin text and end text operator.

A text object always refers to a font program that knows how to draw glyphs. Just like paths, these
glyphs can be filled, stroked or used to clip content.

An external object (XObject) is an object defined outside the content stream and referenced by its name.

The most common types of XObjects are form XObjects refering to another content stream that is to be
considered as a single graphics object, and image XObjects refering to a raster image such as a JPEG, a

CCITT image, and so on.

is only allowed for images with a size up to 4096 bytes.

An inline image object uses special syntax to include raster image data within the content stream. This

Graphics State 80

5. A shading object describes a geometric shape whose color at a specific position is defined by a function,
for instance a function defining a gradient transitioning from one color to another. A shading can also
be used as a color when painting other graphics objects. It’s not considered to be a separate graphics
object in that case.

These objects are created using graphics state operators.

4.2 Graphics State Operators

There are different categories of graphics state operators: general graphics state operators, special graphics
state operators, color operators, shading operators, path construction operators, path painting operators,
clipping path operators, XObjects operators, inline images operators, text objects operators, text state
operators, text positioning operators, text showing operators, Type 3 fonts operators, marked content operators
and compatibility operators.

All of these operators are supported in iText, except for the compatibility operators. The BX and EX
operators are used to begin and end a sequence of operators that may not be recognized by a PDF
processor. Such a PDF processor will ignore unrecognized operators without reporting an error.

Lets start with the operators that allow us to draw a path object.

4.2.1 Constructing path objects

A path object always starts with one of the following operators: m or re. It ends either with a path painting
or a path clipping operator. All the available path construction operators are shown in figure 4.3.

Figure 4.3: Path construction operators

Let’s take a look at the overview of all the available path construction operators and find out if we can
recognize them in figure 4.3.

Graphics State

In the first column, we have the PDF operator; in the second column you’ll find the corresponding iText
method; the parameters for those methods (the operands needed by the operator) are listed in the third column;

the fourth column gives us a description.

PDF iText

Parameters

Table 4.2: PDF path construction operators and operands

Description

m moveTo

1 lineTo

c curveTo

Y curveTo

y curveTo

h closePath

re rectangle

(x, y)

(x, y)

(x1, y1, %2, y2, x3, y3)

(x2, y2, x3, y3)

(x1, y1, %3, y3)

O

(x, y, w, h)

Moves the current point to coordinates
(x, y), omitting any connecting line
segment. This begins a new (sub)path.

Moves the current point to coordinates
(x, y), appending a line segment from
the previous to the new current point.

Moves the current point to coordinates
(x3, y3), appending a cubic Bézier
curve from the previous to the new
current point, using (x1, y1) and (x2,
y2) as Bézier control points

Moves the current point to coordinates
(x3, y3), appending a cubic Bézier
curve from the previous to the new
current point, using the previous
current point and (x2, y2) as Bézier
control points

Moves the current point to coordinates
(x3, y3), appending a cubic Bézier
curve from the previous to the new
current point, using (x1, y1) and (x3,
y3) as Bézier control points

Closes the current subpath by
appending a straight line segment from
the current point to the starting point
of the subpath.

Starts a new path with a rectangle or
appends this rectangle to the current

path as a complete subpath.
The x and y parameter define the

coordinate of the lower-left corner; w
and h define the width and the height
of the rectangle.

Code sample 4.2 shows the code that was used to create the PDF in figure 4.3.

0 = O O b W N =

W W WNNDNNDNDNDINNDND DN A B Ry
N = O © 0 3 0 O & WD RO O W10 0 & W= O

Graphics State 82

Code sample 4.2: C0302_PathConstruction

PdfContentByte canvas = writer.getDirectContent();
// a line

canvas.moveTo(36, 806);
canvas.lineTo(559, 806);

// lines and curves
canvas.moveTo(70, 680);
canvas.lineTo(80, 750);
canvas.moveTo(140, 770);
canvas.lineTo(160, 710);
canvas.moveTo(70, 680);
canvas.curveTo(80, 750, 140, 770, 160, 710);
canvas.moveTo(300, 770);
canvas.lineTo(320, 710);
canvas.moveTo(230, 680);
canvas.curveTo(300, 770, 320, 710);
canvas.moveTo(390, 680);
canvas.lineTo(400, 750);
canvas.moveTo(390, 680);
canvas.curveTo(400, 750, 480, T710);
// two sides of a triangle
canvas.moveTo(36, 650);
canvas.lineTo(559, 650);
canvas.lineTo(559, 675);

// three sides of a triangle
canvas.moveTo(36, 600);
canvas.lineTo(559, 600);
canvas.lineTo(559, 625);
canvas.closePath();

// a rectangle

canvas.rectangle(36, 550, 523, 25);
// nothing is drawn unless we stroke:

canvas.stroke();

We start with a moveTo() and a lineTo() operation. This draws the first line.

Then we draw some more lines followed by the three flavors of the curveTo() method. These curveTo()
methods create Bézier curves.

Bézier curves are parametric curves developed in 1959 by Paul de Casteljau (using de Casteljau’s
algorithm). They were widely publicized in 1962 by Paul Bézier, who used them to design
automobile bodies. Nowadays they’re important in computer graphics.

Cubic Bézier curves are defined by four points: the two endpoints —the current point and point (x3, y3)—
and two control points —(x1, y1) and (x2, y2). The curve starts at the first endpoint going onward to the

Graphics State 83

first control point. In general, the curve doesn’t pass through the control points. They’re only there to provide
directional information. The distance between an endpoint ad its corresponding control point determines
how long the curve moves toward the control point before turning toward the other endpoint. In figure 4.3,
we’ve added lines that connect the endpoints with their corresponding control point. In the second curve, the
endpoint to the left coincides with the first control point (the v operator was used instead of ¢). In the third
curve, the endpoint to the right coincides with the second control point (the y operator was used).

Right under the curves, we see a subpath consisting of two lines. It is followed by another subpath that was
constructed by a single moveTo() and two 1ineTo() operators, but instead of two lines, we now see a triangle.
That’s because we’ve used the closePath() operator. This operator adds a linear segment to the subpath that
connects the current endpoint with the original startpoint of the subpath that was started with a moveTo()
operation. Finally, we’ve also used the rectangle() method to draw a rectangle.

s FAQ:I've constructed a path, but | can’t see any line or
4 shape in my document

The operators we've discussed so far can be used to construct a path. This doesn’t mean the path is
actually drawn. To draw the path, you need a path painting operator. In the example, we used the
stroke() method to stroke the paths.

The PDF specification doesn’t have any operator that allows you to draw a circle or an ellipse. Instead,
you’re supposed to combine the path construction operators listed in table 4.2. For instance: a circle consists
of one moveTo() and four curveTo() operations. This isn’t trivial. Fortunately, iText provides a handful of
convenience methods, as listed in table 4.3.

Table 4.3: Convenience methods for specific shapes

iText method Parameters Description

ellipse() (x1, y1, x2, y2) Constructs the path of an ellipse
inscribed within the rectangle [x1 y1 x2
y2].

arc() (x1, y1, x2, y2, a, e) Constructs a path of a partial ellipse

inscribed within the rectangle [x1 y1 x2
y2]; starting at a degrees (the start angle)
and covering e degrees (the extent).
Angles start with 0 to the right and
increase counterclockwise.

circle() (x, y, r) Constructs the path of a circle with
center (x, y) and radiusr.

roundRectangle() (%, y, w, h, r) Constructs the path of a rounded
rectangle: (x, y) is the coordinate of the
lower-left corner; w and h define the
width and the height. The radius used

for the rounded cornersisr.

Now that we know how to construct paths, let’s find out how to paint them.

Graphics State 84

4.2.2 Painting and Clipping Path Objects

We’ve already used one painting operator in the previous examples: the stroke() operator s. To explain all
the possible painting operators, we’ll work with a series of paths that represent a set of triangles as shown in

figure 4.4.

Figure 4.4: stroke() and closePathStroke()

Code sample 4.3 shows how we constructed the paths rendered in figure 4.4.

Code sample 4.3: C0403_PathPainting

protected void trianglesi(PdfContentByte canvas) {

canvas.
canvas.
canvas.
canvas.
canvas
canvas.

canvas.

}

moveTo(50, T760);
1ineTo(150, 720);
lineTo(50, 680);
lineTo(50, 760);

.moveTo(65, 740);

lineTo(115, 720);
lineTo(65, 700);

protected void triangles2(PdfContentByte canvas) {

canvas.
canvas.
canvas
canvas.
canvas
canvas.

canvas.

}

moveTo (200, T60);
1ineTo(300, 720);

.1ineTo(200, 680);

1ineTo(200, 760);

.moveTo (215, 740);

1ineTo(265, 720);
lineTo(215, 700);

protected void triangles3(PdfContentByte canvas) {

canvas.
canvas.
canvas.
canvas.
canvas
canvas.

canvas.

moveTo (350, T760);
lineTo(450, 720);
1ineTo(350, 680);
1ineTo(350, 760);

.moveTo(400, 740);

1ineTo(350, 720);
1ineTo(400, 700);

<N O O B W N =

Graphics State 85

In the triangles1() and triangles2() method, we draw one large triangle using three 1ineTo() methods,
one for each side of the triangle. We start with the upper-left corner, draw a line that goes down to the right,
followed by a line that returns down to the left. We close the path by connecting the lower-left corner with
the upper-left corner. Inside this large triangle, we draw two sides of a smaller rectangle. Again we start with
the upper-left corner, we draw a line to the right, followed by a line that returns to the left.

The triangles3() method is slightly different. The outer triangle is drawn in exactly the same way as before,
but when we draw the inner triangle, we start to the right, we add a line that moves down to the right, followed
by a line that moves down to the left. In triangles1() and triangles2() the two triangles are drawn using
the clockwise orientation. In triangles3() one triangle is drawn clockwise, the other one counterclockwise.

The orientation of the paths doesn’t matter when we merely stroke the paths. Code sample 4.4 shows how
we’ve painted the paths shown in figure 4.4.

Code sample 4.4: C0403_PathPainting

PdfContentByte canvas = writer.getDirectContent();
trianglesi(canvas);

canvas.stroke();

triangles2(canvas);

canvas.closePathStroke();

triangles3(canvas);

canvas.closePathStroke();

This code snippet explains why the second and third triangle have three sides in figure 4.4 in spite of the fact
that we only constructed two lines. The stroke() method will only stroke two lines; the closePathStroke()
method will close the path first, then stroke it.

Figure 4.5 shows what happens if we fill the path instead of stroking it.

Figure 4.5: fill()

In the first two sets of triangles, both the other and the inner triangle are filled. This isn’t the case in the third
set: the inner triangle made a hole in the outer triangle. Let’s take a look at code sample 4.5 and then discover
why that hole is there.

O O B W N =

Graphics State 86

Code sample 4.5: C0403_PathPainting

trianglesi(canvas);
canvas.fill();
triangles2(canvas);
canvas.fill();
triangles3(canvas);
canvas.fill();

We have filled the different sets of triangles using the £i11() method. This method uses the nonzero winding
number rule to determine whether or not a given point is inside a path.

With the nonzero winding number rule, you need to draw a line from that point in any direction,

0 and examine every intersection of the path with this line. Start with a count of zero; add one each
time a subpath crosses the line from left to right; subtract one each time a subpath crosses from
right to left. Continue doing this until there are no more path segments to cross. If the final result
is zero, the point is outside the path; otherwise it’s inside.

This explains why the orientation we used to draw the segments of the triangles matters. The winding number
count for the points inside the inner triangle is 2: when drawing a line from inside the inner triangle to outside
the outer triangle, we encounter two segments drawn from left to right. In the third set, the count is 0 because

we encounter a segment drawn from right to left (subtract one), followed by a segment drawn from left to
right (add one).

Figure 4.6 shows two more methods that use the nonzero winding number rule:

Figure 4.6: fillStroke() and closePathFillStroke()

Code sample 4.6 shows how these triangles were drawn.

O O B W N =

O O b W N =

Graphics State 87

Code sample 4.6: C0403_PathPainting

trianglesi(canvas);
canvas. fillStroke();
triangles2(canvas);
canvas.closePathFillStroke();
triangles3(canvas);
canvas.closePathFillStroke();;

The fi11Stroke() method is a combination of the fi11() and the stroke() method. TheclosePathFillStroke()
method combines closePath(), fill() and stroke().

Figure 4.7 shows a different way to fill the paths. In this case there’s also a hole in the first two sets of triangles.

Figure 4.7: eoFill()

Please compare code sample 4.7 with code sample 4.5.

Code sample 4.7: C0403_PathPainting

trianglesi(canvas);
canvas.eofFill();
triangles2(canvas);
canvas.eofFill();
triangles3(canvas);
canvas.eofFill();

The eoFi11() method uses the even-odd rule to determine whether or not a given point is inside a path.

With the even-odd rule, you draw a line from the point that’s being examined to infinity. Now
count the number of path segments that are crossed, regardless of their orientation. If this number
is odd, the point is inside; if even, the point is outside.

In this case, the orientation we used to draw the triangles doesn’t matter.

O O B W N

O 00 9 O U b wWw N =~

-
()

Graphics State 88

> D> P

Figure 4.8: eoFillStroke() and closePathEoFillStroke()

Figure 4.8 shows two more methods using the even-odd rule. These methods are used in code sample 4.8.

Code sample 4.8: C0403_PathPainting

trianglesi(canvas);
canvas.eofFillStroke();
triangles2(canvas);
canvas.closePathEoFillStroke();
triangles3(canvas);
canvas.closePathEoFillStroke();

The nonzero winding number rule and the even-odd rule can also be used for clipping. Figure 4.9 looks
identical to figure 4.5.

- - >

Figure 4.9: clip()

In spite of the resemblance, the code is completely different. See code sample 4.9.

Code sample 4.9: C0403_PathPainting

canvas.saveState();
trianglesi(canvas);

canvas.clip();

canvas.newPath();
canvas.rectangle(45, 675, 120, 100);
canvas.fill();
canvas.restoreState();
canvas.saveState();
triangles2(canvas);

canvas.clip();

11
12
13
14
15
16
17
18
19
20
21

O 00 9 O U b W N =

= S
B W N SO

Graphics State 89

canvas.newPath();
canvas.rectangle(195, 675, 120, 100);
canvas.fill();

canvas.restoreState();
canvas.saveState();
triangles3(canvas);

canvas.clip();

canvas.newPath();
canvas.rectangle(345, 675, 120, 100);
canvas.fill();

canvas.restoreState();

In this snippet, we draw the same paths, but we use them as clipping paths by invoking the clip() method.
It’s not our intention to draw the paths we’ve constructed, hence we start a new path with the newPath()
method. Then we draw a rectangle and we fill that rectangle. The result a rectangle that is clipped using the
path of the triangles. As we used the c1ip() method, the nonzero winding number rule is used.

Figure 4.10 shows what happens when we use the even-odd rule for the clipping path.

> B> >

Figure 4.10: eoClip()

Code sample 4.10 shows how it’s done.

Code sample 4.10: C0403_PathPainting

canvas.saveState();
trianglesi(canvas);

canvas.eoClip();

canvas.newPath();
canvas.rectangle(45, 675, 120, 100);
canvas.fill();
canvas.restoreState();
canvas.saveState();
triangles2(canvas);

canvas.eoClip();

canvas.newPath();
canvas.rectangle(195, 675, 120, 100);
canvas.fill();

canvas.restoreState();

15
16
17
18
19
20
21

Graphics State

canvas.saveState();

triangles3(canvas);

canvas.eoClip();

canvas.newPath();
canvas.rectangle(345, 675, 120, 100);

canvas. fill();

canvas.restoreState();

90

In these code snippets, we introduced some methods we haven’t discussed yet. We’ve also silently changed the
fill color: the default color is black, not gray. Before we continue with more types of graphics states operators,

let’s look at an overview all the path painting operators in table 4.4.

Table 4.4: Path painting and clipping path operators

PDF iText Description

S stroke() Strokes the path: lines only; the shape isn’t filled.

s closePathStroke() Closes and strokes the path. This is the same as doing
closePath() and stroke().

£ £ill1() Fills the path using the nonzero winding number rule.
Open subpaths are closed implicitly.

F — Deprecated! Equivalent to f, and included for
compatibility. ISO-32000-1 says that PDF writer
applications should use f instead.

£* eoFill() Fills the path using the even-odd rule.

B fillStroke() Fills the path using the nonzero winding number rule,
and then strokes the path. This is equivalent to £fi11()
followed by stroke().

B* eoFillStroke() Fills the path using the even-odd rule, and then
strokes the path. This is equivalent to eoFil1()
followed by stroke().

b closePathFillStroke() Closes, fills, and strokes the path, as is done with
closePath() followed by fillStroke().

b* closePathEoFillStroke() Closes, fills, and strokes the path, as is done with
closePath() followed by eoFillStroke().

n newPath() Ends the path object without filling or stroking it.
Used primarily after defining a clipping path.

W clip() Modifies the current clipping path by intersecting it
with the current path, using the nonzero winding
number rule.

W eoClip() Modifies the current clipping path by intersecting it

In figures 4.4 to 4.10, we used the default stroke color, but we changed the fill color to paint the path. Let’s

with the current path, using the even-odd rule.

take a closer look at the way colors are defined in PDF.

Graphics State 91

4.2.3 Color, color spaces and shading

When painting a path with a stroke or fill method, the current color. This color is defined using a value that
consists of one or more color components, for instance: a set of three numbers for the values of the red, green
and blue components. These values are interpreted according to the current color space. The PDF specification
distinguishes 11 different color spaces, grouped into three categories:

1. Device color spaces— these specify colors or shades of gray that the output device must produce:
grayscale, RGB (red-green-blue) or CMYK (cyan-magenta-yellow-black), corresponding to the color
space families DeviceGray, DeviceRGB, and DeviceCMYK.

2. CIE-based color spaces— these are based on the international standard for color specification created
by the Commission Internationale de I’éclairage (CIE). The colors are specified in a device-independent
way: CalGray, CalRGB, Lab and ICCBased.

3. Special color spaces— these add features to an underlying color space. They include facilities for pat-
terns, color mapping, separations, and high-fidelity and multitone clor: Pattern, Indexed, Separation,
and DeviceN.

Not all of these color spaces are currently supported when creating a document from scratch using iText. It
wouldn’t be difficult to extend iText to support them, but so far, we haven’t received any request to do so.
We’ll focus on the functionality that is available and discuss device colors, spot colors and painting patterns.
While we’re at it, we’ll also discuss shadings.

4.2.3.1 Device colors

Device colors allow you to control color precisely for a particular device. The family consists of three color
spaces:

1. DeviceRGB— This is an additive color model: red, green, and blue light is used to produce the other
colors. For example, if you add red light (#FFeee0) to green light (*0oFFee), you get yellow light
(*FFFF@). This is how a TV-screen works: the colors are composed of red, green and blue dots. RGB is
typically used for graphics that need to be rendered on a screen.

2. DeviceCMYK— This is a subtractive color model: If you look at an object using white light, you see
a color because the object reflects and absorbs some of the wavelengths that make up white light. A
yellow object absorbs blue and reflects red and green. White (#FFFFFF) minus blue (#0000FF) equals
yellow (#FFFF@0). The subtractive color model is used when printing a document. You don’t use red,
green, and blue, but cyan (C), magenta (M), yellow (Y), and black (K).

3. DeviceGray— This is the default color space when drawing lines or shapes in PDF is gray. It is expressed
as the intensity of achromatic light, represented by a single number in the range 0 to 1, where 0
corresponds to black, 1 to white, and intermediate values to different gray levels.

The iText classes corresponding with these color spaces are BaseColor, CMYKColor, and GrayColor. The color
values can either be defined using int values ranging from 0 to 255, or as float ranging values from 0.0 to
1.0. Figure 4.11 shows the result of using these classes.

0w N O O b W N -

O 00 9 O O » W N~

Graphics State

92

Figure 4.11: Device colors

Code sample 4.11 shows a method that will be used in the next couple of examples involving color. It changes
the color using the setColorFill() method and then draws a rectangle that will be filled in that color.

Code sample 4.11: drawing a colored rectangle

public void colorRectangle(PdfContentByte canvas,
BaseColor color, float x, float y, float width, float height) {

canvas.saveState();
canvas.setColorFill(color);
canvas.rectangle(x, y, width, height);
canvas. fillStroke();

canvas.restoreState();

Let’s start by drawing some squares using the BaseColor class.

4.2.3.1.1 RGB Code sample 4.12 draws the first row of squares in figure 4.11.

Code sample 4.12: C0404_DeviceColor

colorRectangle(canvas, new BaseColor(0x00, 0x00,

colorRectangle(canvas, new BaseColor(0x00, 0x00,

colorRectangle(canvas, new BaseColor(0x00, OxFF,

colorRectangle(canvas, new BaseColor (255, 0,
colorRectangle(canvas, new BaseColor(Qf, 1f,
colorRectangle(canvas, new BaseColor(1f, Of,
colorRectangle(canvas, new BaseColor(1f, 1f,
colorRectangle(canvas, BaseColor.BLACK, 416,
colorRectangle(canvas, BaseColor.l IGHT GRAY,

9),

1f),
1f),
of),
770,
4170,

Px00), 36, 770, 36, 36);
OxFF), 90, 770, 36, 36);
Px00), 144, 770, 36, 36);
198, 770, 36, 36);

252, 770, 36, 36);

306, 770, 36, 36);

360, 770, 36, 36);

36, 36);

770, 36, 36);

©O© 00 9 O O b W N =

Graphics State 93

In the first four lines, we create a BaseColor instance using four int values.

I have the habit of writing the integers in hexadecimal form. Although both notations are

0 semantically identical, I find (0x@@, 0x00, 0xFF) easier to read than (@, @, 255) because it
refers to the way colors are usually defined in HTML: #0000FF. That’s only a matter of taste. In the
fourth line, I use the decimal notation equivalent to new BaseColor (@xFF, 0x00, 0x00).

In lines 5 to 7, we use float values. We recognize the values for cyan, magenta and yellow, because we only
used ones and zeros. Should we have used values between 0 and 1, we’d have a harder time to recognize
which colors are selected.

Finally, we have two lines where we use colors that are predefined as constants in the BaseColor class. Possible
values are WHITE, L IGHT_GRAY, GRAY, DARK_GRAY, BLACK, RED, PINK, ORANGE, YELLOW, GREEN, MAGENTA, CYAN, and
BLUE.

4.2.3.1.2 CMYK The second row of squares in figure 4.11 are CMYK colors. Code sample 4.13 shows how
these colors were created.

Code sample 4.13: C0404_DeviceColor

colorRectangle(canvas, new CMYKColor(0x00, 0x00, 0x00, 0x00), 36, 716, 36, 36);
colorRectangle(canvas, new CMYKColor(0x00, 0x00, OxFF, 0x00), 90, 716, 36, 36);
colorRectangle(canvas, new CMYKColor(0x00, 0x00, OxFF, OxFF), 144, 716, 36, 36);
colorRectangle(canvas, new CMYKColor(0x00, 0OxFF, 0x00, 0x00), 198, 716, 36, 36);
colorRectangle(canvas, new CMYKColor(0f, 1f, 0f, ©.5f), 252, 716, 36, 36);
colorRectangle(canvas, new CMYKColor(1f, 0f, of, 0f), 306, 716, 36, 36);
colorRectangle(canvas, new CMYKColor(1f, of, 0f, 0.5f), 360, 716, 36, 36);
colorRectangle(canvas, new CMYKColor(1f, 0f, of, 1f), 416, 716, 36, 36);
colorRectangle(canvas, new CMYKColor(0f, of, of, 1f), 470, 716, 36, 36);

We now use the CMYKColor class. It’s a subclass of the abstract ExtendedColor class which is in turn a subclass
of the BaseColor class. All other available color classes in iText are subclasses of ExtendedColor.

There are currently no constants available for specific CMYK colors.

4.2.3.1.3 Gray The third row of squares in figure 4.11 are nine shades of gray. Code sample 4.14 shows
how these colors were created.

O 00 9 O O b W N =~

O 00 = O O » W N =~

S S =Y
O = W N =~ O

Graphics State 94

Code sample 4.14: C0404_DeviceColor

colorRectangle(canvas, new GrayColor(0x20), 36, 662, 36, 36);
colorRectangle(canvas, new GrayColor(0x40), 90, 662, 36, 36);
colorRectangle(canvas, new GrayColor(0x60), 144, 662, 36, 36);
colorRectangle(canvas, new GrayColor(0.5f), 198, 662, 36, 36);
colorRectangle(canvas, new GrayColor(0.625f), 252, 662, 36, 36);
colorRectangle(canvas, new GrayColor(0.75f), 306, 662, 36, 36);
colorRectangle(canvas, new GrayColor(0.825f), 360, 662, 36, 36);
colorRectangle(canvas, GrayColor.GRAYBLACK, 416, 662, 36, 36);
colorRectangle(canvas, GrayColor.GRAYWHITE, 470, 662, 36, 36);

In the first three lines, we use an int values, in the next four lines a float, and in the final two lines, we use
the two constants that are available in the GrayColor class: GRAYBLACK and GRAYWHITE.

4.2.3.1.4 Other methods to define the fill color There’s also a fourth lines of squares in figure 4.11. We
used variations of the setColorFill() method that don’t require a BaseColor instance. See code sample 4.15.

Code sample 4.14: C0404_DeviceColor

canvas.setRGBColorFill(0x00, 0x80, 0x80);
canvas.rectangle(36, 608, 36, 36);

canvas. fillStroke();
canvas.setRGBColorFillF(0.5f, ©.25f, 0.60f);
canvas.rectangle(90, 608, 36, 36);

canvas. fillStroke();
canvas.setCGrayFill(0.5f);
canvas.rectangle(144, 608, 36, 36);

canvas. fillStroke();
canvas.setCMYKColorFill(QxFF, OxFF, 0x00, 0x80);
canvas.rectangle(198, 608, 36, 36);

canvas. fillStroke();
canvas.setCMYKColorFillF(Qf, 1f, 1f, 0.5f);
canvas.rectangle(252, 608, 36, 36);

canvas. fillStroke();

We’'ll list all the available methods in a table at the end of section 4.2.3.

We’ve covered the three types of device colors, let’s now talk about ink, more specifically about spot colors.

4.2.3.2 Spot colors

A spot color is any color generated by an ink (pure or mixed) that is printed in a single run. Spot colors are
using in the context of Separation color spaces. Section 8.6.6.4 of ISO-32000-1, titled “Separation Color Spaces,”
contain the following note:

O O b W N

Graphics State 95

When printing a page, most devices produce a single composite page on which all process
colorants (and spot colorants, if any) are combined. However, some devices, such as image setters,
produce a separate, monochromatic rendition of the page, called a separation, for each colorant.
When the separations are later combined—on a printing press, for example—and the proper inks
or other colorants are applied to them, the result is a full color page.

The term separation is often misused as a synonym for an individual device colorant. In the
context of this discussion, a printing system that produces separations generates a separate piece
of physical medium (generally a film) for each colorant. It is these pieces of physical medium that
are correctly referred to as separations. A particular colorant properly constitutes a separation
only if the device is generating physical separations, one of which corresponds to the given
colorant. The Separation color space is so named for historical reasons, but it has evolved to
a broader purpose of controlling the application of individual colorants in general, regardless of
whether they are actually realized as physical separations.

—ISO-32000-1, section 8.6.6.4

Every color in the Separation color space has a name. Every color value consists of a single tint component in
the range of 0.0 to 1.0. A tint value of 0.0 denotes the lightest color that can be achieved with a given colorant,
and 1.0 is the darkest. Figure 4.12 shows a number of colorants that were created using the PdfSpotColor and
SpotColor classes.

Figure 4.12: Separation colors

Listing 4.15 shows how we define the colorants. Observe that I gave each colorant a name: i TextSpotColorGray,
iTextSpotColorRGB and iTextSpotColorCMYK. The colorant itself is defined using the color classes we've
discovered in the previous section about device colors.

Code sample 4.15: C0405_SeparationColor

PdfSpotColor psc_g = new PdfSpotColor(
"iTextSpotColorGray", new GrayColor(0.9f));
PdfSpotColor psc_rgb = new PdfSpotColor(
"iTextSpotColorRGB", new BaseColor(0x64, 0x95, Oxed));
PdfSpotColor psc_cmyk = new PdfSpotColor(
"iTextSpotColorCMYK", new CMYKColor(©.3f, .9f, .3f, .1f));

As shown in figure 4.13, we’ll find references to these colors in the /ColorSpace entry of the page where the
color is used.

=N O O & W N =

© © 00 N O U b W N =~

=Y

Graphics State 96

[Page 1
[Parent. 5 0 R -= Dictionary of type: /Pages
o= IContents: 4 0 R -= Stream
@ Mype: IPage
¢ [/Resources: Dictionary
¢ [/ColorSpace: Dictionary
? ICS3: 30 R = Array
g i= Array
@ /3eparation
@ TextSpotColorCMYK
@ DeviceCMYK
? 90 R -= Dictionary
¢ [Dictionary
o= := [Domain: [0, 1]
= FunctionType: 2
1= MN:1
IC1:[0.3,0.9,03, 0.1]

[
o 1C0:[0,0,0,0

Figure 4.13: Separation colors

We use these colorants in code sample 4.16.

Code sample 4.16: C0405_SeparationColor

colorRectangle(canvas, new SpotColor(psc_g, ©0.5f), 36, 770, 36, 36);
colorRectangle(canvas, new SpotColor(psc_rgb, ©.1f), 90, 770, 36, 36);
colorRectangle(canvas, new SpotColor(psc_rgb, ©.2f), 144, 770, 36, 36);

colorRectangle(canvas, new SpotColor(psc_rgb, ©.6f), 360, 770, 36, 36);
colorRectangle(canvas, new SpotColor(psc_rgb, 0.7f), 416, 770, 36, 36);
colorRectangle(canvas, new SpotColor(psc_cmyk, ©.25f), 470, 770, 36, 36);

We create a SpotColor instance using the PdfSpotColor colorant and a value between 0.0 and 1.0 for the tint.
In the first rows of figure 4.12, we start with a gray square. We then have sever squares with different tints of
blue. The row is closed with a light pink square.

In code sample 4.17, we use the colorants without creating an instance of the SpotColor class. We define the
color for the squares in the second row using a special setColorFill() method.

Code sample 4.17: C0405_SeparationColor

canvas.setColorFill(psc_g, 0.5f);
canvas.rectangle(36, 716, 36, 36);
canvas. fillStroke();
canvas.setColorFill(psc_g, 0.9f);
canvas.rectangle(90, 716, 36, 36);
canvas. fillStroke();

canvas.setColorFill(psc_cmyk, ©.9f);
canvas.rectangle(306, 716, 36, 36);
canvas. fillStroke();

Graphics State 97

So far, we’ve always used a single color when stroking or filling a path, but it’s also possible to apply “paint”
that consists of repeating graphical figures or a smoothly varying color gradient. In this case, we're talking
about pattern colors that use either a tiling pattern (a repeating figure) or a shading pattern (a smooth
gradient).

4.2.3.3 Tiling Pattern

Figure 4.14 shows a couple of examples of tiled patterns.

OOoOoOoOooooaQQ
Ooooooogao o o O O O O q LA N M N N N NN NNN]
Oooooooan FE NN ENNNNNN]
OOoOoOooOooooaQn © @ @@ @ oq
LA BN BN B BN N BN N B N AN
aEaannas A LA N M N N N NN NNN]
OoOoOooQooooaQQ
Dopopoooooog [©0CO OO Oq eeseessesccee
OOoOoOooOooooaQn
Fe® o Y Yy
r‘&imﬁ'}r'&)r&jw
PP R SR L
r&jm&jr-&jr@"}w
PP P SR
mﬁ‘J r*\&'} r'\ﬁ'J r'\ﬁ'"; .
PP R e
m&jr\“"}r-\;ﬁ"jm&")w
S -1

Figure 4.14: Pattern colors

© 00 9 O O b W N =

(SN
= o

0 I O O b W N =

Graphics State 98

To created a tiled pattern color, we must construct a pattern cell, or, in the context of iText, an instance of
the PdfPatternPainter class. We can create such a pattern cell from the PdfContentByte object with the
createPattern() method. This pattern object inherits all the graphics state methods discussed in this chapter
from the PdfContentByte class. There are two kinds of tiling patterns: colored tiling patterns and uncolored
tiling patterns.

4.2.3.3.1 Colored tiling pattern A colored tiling pattern is self-contained. In the course of painting the
pattern cell, the pattern’s content stream explicitly sets the color of each graphical element it paints. Code
sample 4.18 shows how we create two pattern cells, used for the yellow squares with the red borders and the
ditto ellipses, used to paint the top left squares in figure 4.13.

Code sample 4.18: C0406_PatternColor

PdfContentByte canvas = writer.getDirectContent();
PdfPatternPainter square = canvas.createPattern(15, 15);
square.setColorFill(new BaseColor(0xFF, OxFF, 0x00));
square.setColorStroke(new BaseColor (0xFF, 0x00, 0x00));
square.rectangle(5, 5, 5, 5);

square. fillStroke();

PdfPatternPainter ellipse = canvas.createPattern(15, 10, 20, 25);
ellipse.setColorFill(new BaseColor(0xFF, OxFF, 0x00));
ellipse.setColorStroke(new BaseColor(0xFF, 0x00, 0x00));
ellipse.ellipse(2f, 2f, 13f, 8f);

ellipse.fillStroke();

In this code sample, we see two variations of the createPattern() method. The simplest version accepts two
float values: one for the width and one for the height of the pattern cell. Additionally, you can also specify
an X and Y step. This is the desired horizontal and vertical spacing between pattern cells. There are similar
variations to create cells for uncolored tiling patterns.

4.2.3.3.2 Uncolored tiling pattern A colored tiling pattern can consist of different colors, but uncolored
tiling patterns are monochrome. You can create such a pattern by adding a default color (or null) as a
parameter for the createPattern() method. This is shown in code sample 4.19.

Code sample 4.19: C0406_PatternColor

PdfPatternPainter circle = canvas.createPattern(15, 15, 10, 20, BaseColor.BLUE);
circle.circle(7.5f, 7.5f, 2.5f);

circle.fill();

PdfPatternPainter line = canvas.createPattern(5, 10, null);
line.setLineWidth(1);

line.moveTo(3, -1);

line.lineTo(3, 11);

line.stroke();

©O© 00 = O O b» W N =

© 00 < O O b W N =~

[= U S
B W N =~

Graphics State 99

In this code sample, we create a pattern with a circle that is blue by default (line 1-3), and we create a pattern
with an uncolored line (line 4-8). We’ll use these patterns in a moment.

4.2.3.3.3 Changing the pattern matrix In code sample 20, we create a colored tiling pattern using an
image, and we also change the pattern matrix.

Code sample 4.20: C0406_PatternColor

Image img = Image.getlnstance(IMG);

img.scaleAbsolute(20, 20);

img.setAbsolutePosition(@, 0);

PdfPatternPainter img_pattern = canvas.createPattern(20, 20, 20, 20);

img_pattern.addImage(img);

double d45 = -Math.PI / 4;

img_pattern.setPatternMatrix(
(float)Math.cos(d45), (float)Math.sin(d45),
-(float)Math.sin(d45), (float)Math.cos(d45), of, of);

We'll discuss the transformation matrix later on in this chapter. In this case, we change the matrix in a way
that the pattern cell with the image is rotated by 45 degrees.

4.2.3.3.4 Using the pattern cell Once we have a PdfPatternPainter object, we can use it in two ways.
We can either create a PatternColor object, or we can use one of the setPatternFill() methods. This is
shown in code sample 21.

Code sample 4.21: C0406_PatternColor

colorRectangle(canvas, new PatternColor(square), 36, 696, 126, 126);
colorRectangle(canvas, new PatternColor(ellipse), 180, 696, 126, 126);
colorRectangle(canvas, new PatternColor(circle), 324, 696, 126, 126);
colorRectangle(canvas, new PatternColor(line), 36, 552, 126, 126);
colorRectangle(canvas, new PatternColor(img_pattern), 36, 408, 126, 126);
canvas.setPatternFill(line, BaseColor.RED);

canvas.ellipse(180, 552, 306, 678);

canvas. fillStroke();

canvas.setPatternFill(circle, BaseColor.GREEN);

canvas.ellipse(324, 552, 450, 678);

canvas. fillStroke();

canvas.setPatternFill(img_pattern);

canvas.ellipse(180, 408, 450, 534);

canvas. fillStroke()

The first two PatternColor instances are created using colored tiling patterns, so is the pattern color with the
image. The third and the fourth PatternColor instances are created using an uncolored tiling pattern.

Graphics State 100

For the pattern with the circles, we defined blue as the default color. We didn’t define a color for the line.
Looking at figure 4.13, we see that Adobe Reader renders gray lines. Other PDF viewers may not show any
pattern at all. It’s safer to use the setPatternFill() method for uncolored tiling patterns and to pass the color
that needs to be used to paint the pattern as an extra parameter. This method can also be used for colored
tiling patterns, in which case no color must be defined.

A better name for uncolored tiling patterns might have been monochrome tiling patterns, but the next type
of pattern will be much more colorful.

4.2.3.4 Shading pattern

When we defined graphics objects in section 4.1.3, we talked about a shading object that describes a geometric
shape whose color at a specific position is defined by a function. In figure 4.15, we see two such objects.

Figure 4.15: Shading objects and colors
We see two different types of shading objects:
1. Axial shadings (Type 2 function in ISO-32000-1)—These define a color blend that varies along a linear

axis between two endpoints, in our case (36, 716) (orange) and (396, 788) (blue), and extends
indefinitely perpendicular to that axis.

©O© 00 = O O b» W N =

-
o

O = W N -

Graphics State 101

2. Radial shadings (Type 3 function in ISO-32000-1)—These define a color blend that varies between two
circles, in our case a circle with center (200, 700) and radius 50 and a circle with center (300, 700)
and radius 100.

Code sample 4.22 shows how these graphics objects were created. We use PdfShading’s static simpleAxial()
or simpleRadial() method, and we paint the object using the paintShading() method.

Code sample 4.22: C0407_Shading

PdfContentByte canvas = writer.getDirectContent();
PdfShading axial = PdfShading.simpleAxial(writer,

36, 716, 396, 788, BaseColor.ORANGE, BaseColor.BLUE);
canvas.paintShading(axial);
document . newPage() ;
PdfShading radial = PdfShading.simpleRadial(writer,

200, 700, 50, 300, 700, 100,

new BaseColor(0xFF, OxF7, 0x94),

new BaseColor(0xF7, 0x8A, 0x6B), false, false);
canvas.paintShading(radial);

The boolean values passed to the simpleRadial() method indicate whether or not the color should be
extended beyond the circle.

We can also use a shading as a color. For instance by wrapping it inside a ShadingColor object, or by using
the setShadingFill() method. This is done in code sample 4.23.

Code sample 4.23: C0407_Shading
PdfShadingPattern shading = new PdfShadingPattern(axial);
colorRectangle(canvas, new ShadingColor(shading), 150, 420, 126, 126);

canvas.setShadingFill(shading);
canvas.rectangle(300, 420, 126, 126);
canvas. fillStroke();

Shadings are created using specific types of functions. So far we’ve seen an example involving type 2 (axial)
and type 3 (radial) functions. The PDF specification includes five more types. If you want to use these other
types, you need to combine one or more of the static type() methods of the PdfShading class. This goes beyond
the scope of the ABC of PDF. Please consult ISO-32000-1 for more info, and inspect the implementation of
the simpleAxial() and simpleRadial() methods in the iText source code for inspiration.

As promised, we conclude the section about color, color spaces and shadings with an overview of the operators
and methods we’ve discussed.

4.2.3.5 Overview of the color operators

You can change the color of the current graphics state using the methodssetColorStroke() andsetColorFill().
These methods accept an instance of the BaseColor class. This class has many different subclasses, and the
type of the subclass will determine which operator is used.

Table 4.5 lists the different operators and operands that are at play.

Graphics State

PDF

Table 4.5: Color and shading operators

iText

Parameters

Description

rg

RG

rg

RG

cs

setGrayFill

setGrayStroke

setRGBColorFill

setRGBColorStroke

setRGBColorFillF

setRGBColorStrokeF

setCMYKColorFill

setCMYKColorStroke

setCMYKColorFillF

setCMYKColorStrokeF

(gray)

(gray)

(r, g,

(r, g,

(r, g,

(r, g,

(c/ ml

(¢, m,

(c, m,

(¢, m,

name

b)

b)

b)

b)

Y,

Y,

k)

k)

k)

k)

Sets the color space to DeviceGray
and changes the current gray tint
for filling paths to a float value
from 0 (black) to 1 (white).

Sets the color space to DeviceGray
and changes the current gray tint
for stroking paths to a float value
from 0 (black) to 1 (white).

Sets the color space to DeviceRGB
and changes the current color for
filling paths. The color values are
integers from 0 to 255.

Sets the color space to DeviceRGB
and changes the current color for
stroking paths. The color values are
integers from 0 to 255.

Sets the color space to DeviceRGB
and changes the current color for
filling paths. The color values are
floats from 0 to 1.

Sets the color space to DeviceRGB
and changes the current color for
stroking paths. The color values are
floats from 0 to 1.

Sets the color space to
DeviceCMYK and changes the
current color for filling paths. The
color values are integers from 0 to
255.

Sets the color space to
DeviceCMYK and changes the
current color for stroking paths.
The color values are integers from 0
to 255.

Sets the color space to
DeviceCMYK and changes the
current color for filling paths. The
color values are floats from 0 to 1.

Sets the color space to
DeviceCMYK and changes the
current color for stroking paths. The
color values are floats from 0 to 1.

Sets the color space for nonstroking

operations. this is done implicitly
by iText when necessary.

102

Graphics State

PDF iText

103

Table 4.5: Color and shading operators

Parameters

Description

CS

SsC

SC

scn

SCN

sh paintShading

name

cl c2 c3 ...

cl c2 c3 ...

cl c2 c3 ...

cl c2 c3 ...

(shading)

name

name

Sets the color space for stroking
operations. this is done implicitly
by iText when necessary.

Sets the color to use for nonstroking
operations in a device, CIE-based
(other than ICCBased), or Indexed
color space. Not used in iText.

Same as sc for stroking operations.

Same as sc but also supports

Pattern, Separation, DeviceN, and
ICCBased colore spaces. The
operand is implicitly used in the
methods
setColorFill(PdfSpotColor sp,
float tint),
setPatternFill(PdfPatternPainter
P,
setPatternFill(PdfPatternPainter
p, BaseColor color),
setPatternFill(PdfPatternPainter
p, BaseColor color, float

tint), and
setShadingFill(PdfShadingPattern
shading).

Same as SC but also supports

Pattern, Separation, DeviceN, and
ICCBased colore spaces. The

operand is implicitly used in the
methods
setColorStroke(PdfSpotColor

sp, float tint),
setPatternStroke(PdfPatternPainter
P,
setPatternStroke(PdfPatternPainter
p, BaseColor color),
setPatternStroke(PdfPatternPainter
p, BaseColor color, float

tint), and
setShadingStroke(PdfShadingPattern
shading).

Paints the shape and color shading
described by a shading dictionary.
In iText the shading dictionary can
be a PdfShading or
PdfShadingPattern object.

O O b W N =

Graphics State 104

This concludes the overview of color in the context of iText that are important when executing a fill()
operation. Now let’s take a look at some operators that can change the way paths are drawn when performing
a stroke() operation.

4.2.4 General graphics state operators

The general graphics state operators allow you to change the line style when performing a stroke() operation.
Figure 4.16 shows five different operators in action.

AAN
SRR AAAAA

Figure 4.16: General graphics state operators

4.2.4.1 Line width

We can change the line width using the setLineWidth() method as shown in example 4.24.

Code sample 4.24: C0408_GeneralGraphicsOperators

for (int 1 = 25; i > 9; i--) {
canvas.setlLineWidth((float) i / 10);
canvas.moveTo(50, 806 - (5 * i));
canvas.lineTo(320, 806 - (5 * i));

canvas.stroke();

The corresponding PDF syntax looks like this:

2.5 w 50 681 m 320 681 1 S
2.4 w50 686 m 320 686 1 S ...

We recognize the m, 1 and S operator, we’re now introducting to the w operator to change the width of the

line.

©O© 00 9 O O b W N =

(SN
N N O

Graphics State 105

4.2.4.2 Line cap

When we draw a thick line from one coordinate to another, we can choose between different line cap styles.
This is shown in figure 4.17.

Figure 4.17: Line cap types

Code sample 4.25 shows how the line cap style can be changed using iText.

Code sample 4.25: C0408_GeneralGraphicsOperators

canvas.setlineCap(PdfContentByte.LINE_CAP_BUTT);
canvas.moveTo(350, 790);

canvas.lineTo(540, 790);

canvas.stroke();
canvas.setlineCap(PdfContentByte.LINE_CAP_ROUND);
canvas.moveTo(350, 775);

canvas.lineTo(540, 775);

canvas.stroke();

canvas.setl ineCap(PdfContentByte . INE_CAP_PROJECTING_SQUARE);
canvas.moveTo(350, 760);

canvas.lineTo(540, 760);

canvas.stroke();

When we translate the Java code to PDF syntax, we get:

@ J 350 790 m 540 790 1 S
1 J 350 775 m 540 775 1 S
2 J 350 760 m 540 760 1 S

The line cap can be changed using the J operator, and there are three possible values as listed in table 4.6.

Table 4.6: Line Cap styles

PDF iText Description

0 LINE_CAP_BUTT The stroke is squared off at the endpoint of the
path. This is the default.

1 LINE_CAP_ROUND A semicircular arc with diameter equal to the line
width is drawn around the endpoint.

0 I O U b W N =

[O S UV
O & 0O N »~ O O

Graphics State

Table 4.6: Line Cap styles

PDF iText Description

2 LINE_CAP_PROJECTING_SQUARE The stroke continues beyond the endpoint of the

path for a distance equal to half of the line width.

These are the styles for the endpoints of a path. We can also define the way lines are joined.

4.2.4.3 Line join styles

Figure 4.18 shows the three different line join styles.

Figure 4.18: Line join types

This figure was created using the iText code shown in code sample

Code sample 4.26: C0408_GeneralGraphicsOperators

106

canvas.
canvas.
canvas.
canvas.
canvas.
canvas.
canvas.
canvas.
canvas.
canvas.
canvas.
canvas.
canvas.
canvas.

canvas.

setlLineJoin(PdfContentByte. L INE_JOIN_MITER);
moveTo (387, T00Q);

1ineTo(402, 730);

lineTo(417, 700);

stroke();
setlLineJoin(PdfContentByte. L INE_JOIN_ROUND);
moveTo (427, 700);

lineTo(442, 730);

1ineTo(457, T00);

stroke();

setlLinedoin(PdfContentByte. . INE_JOIN_BEVEL);
moveTo (467, 700);

1ineTo(482, 730);

1ineTo(497, 700);

stroke();

This translates to:

B W N -

Graphics State 107

Q@ j 387 700 m 402 730 1 417 700 1 S
1 j 427 700 m 442 730 1 457 700 1 S
2 j 467 700 m 482 730 1 497 700 1 S

Table 4.7 shows the possible values for the j operator in PDF or the setLineJoin().

Table 4.7: Line Join Styles

PDF iText Description

9 LINE_JOIN_MITER The outer edges of the strokes for two segments are extended
until they meet at an angle. This is the default.

1 LINE_JOIN_ROUND An arc of a circle with diameter equal to the line width is
drawn around the point where the two line segments meet.

2 LINE_JOIN_BEVEL The two line segments are finished with butt caps.

When you define miter joins, and two line segments meet at a sharp angle, it’s possible for the miter to extend
far beyond the thickness of the line stroke.

4.2.4.4 Miter limit

If @ is the angle between both line segments, the miter limit equals the line width divided by sin(¢/2). You
can define a maximum value for the ratio of the miter length to the line width. The maximum is called the
miter limit. When this limit is exceeded, the join is converted from a miter to a bevel. Figure 4.19 shows two
rows of hooks. In every row, the angle of the hook decreases from left to right.

FAVAVAYAY,
VAVAVAYAY,

Figure 4.19: Miter limits

In spit of the fact that the PDF syntax to draw the hooks is identical for both rows, the appearance of the third
hook is different when comparing both rows. This is due to the fact that we defined a different miter limit as
shown in code sample 4.27:

Code sample 4.27: C0408_GeneralGraphicsOperators

canvas.setMiterLimit(2);

// draw first row of hooks
canvas.setMiterLimit(2.1f);
// draw second row of hooks

In PDF syntax, you’ll find the M operator, preceded by the value for the miter limit.

0 N O O & W N =

NN NN NN NN R R R S 1 sl
S 0 OB WM, O O 10 U b whhe~=r oo ©

Graphics State

4.2.4.5 Dash patterns

There’s one aspect of figure 4.16 we haven’t discussed yet. See figure 4.20.

L ...]
H I = H = = = = == = = = = = = &= = = = == ==
I H H H I = H = =5 = = I = = = =B = = &= = = =N
N Il I S S S S S S S -
I N L I L N LN -
L 232 N 2N RN R 2N _RE RN _NX SR LR RN _N)

Figure 4.20: Dash patterns

First let’s take a look at the code that was used to draw these lines.

Code sample 4.28: C0408_GeneralGraphicsOperators

108

canvas.setlLineWidth(3);
canvas.moveTo(50, 660);
canvas.lineTo(320, 660);
canvas.stroke();
canvas.setlineDash(6, 0);
canvas.moveTo(50, 650);
canvas.lineTo(320, 650);
canvas.stroke();
canvas.setlineDash(6, 3);
canvas.moveTo(50, 640);
canvas.lineTo(320, 640);
canvas.stroke();
canvas.setlLineDash(15, 10, 5);
canvas.moveTo(50, 630);
canvas.lineTo(320, 630);
canvas.stroke();

float[] dasht = { 10, 5, 5, 5, 20 };
canvas.setlLineDash(dashl, 5);
canvas.moveTo(50, 620);
canvas.lineTo(320, 620);
canvas.stroke();

float[] dash2 = { 9, 6, 0, 6 };
canvas.setl ineCap(PdfContentByte. L INE_CAP_ROUND);
canvas.setlineDash(dash2, 0);
canvas.moveTo(50, 610);
canvas.lineTo(320, 610);
canvas.stroke();

This results in the following PDF syntax:

Graphics State 109

3w 50 660 m 320 660 1 S

[6] @ d 50 650 m 320 650 1 S

[6] 3 d 50 640 m 320 640 1 S

[15, 10] 5 d 50 630 m 320 630 1 S

[10, 5, 5, 5, 20] 5 d 50 620 m 320 620 1 S
1J[9, 6,0 6] 0d50 610 m 320 610 1

Six lines are drawn:

1. The first line is drawn using the default line style, which is solid.

2. For the second line, the line dash is set to a dash pattern of 6 units with phase 0. This means that the
line starts with a dash of 6 units long, then there’s a gap of 6 units, then there’s a dash of 6 units, and
SO on.

3. The same goes for the third line, but it uses a different phase.

4. In line four, you have a dash of 15 units and a gap of 10 units. The phase is 5, so the first dash is 10 units
long (15 - 5).

5. Line five uses a more complex pattern. You start with a dash of 5 (10 - 5), then there’s a gap of 5, followed
by a dash of 5, a gap of 5, and a dash of 20, and so on.

6. Line six is also special: a dash of 9, a gap of 6, a dash of 0, a gap of 6. The dash of 0 may seem odd, but
as you're using round caps (1 J), a dot is drawn instead of a 0-length dash.

Let’s take a look at an overview of all the available general graphics state operators.

4.2.4.6 Overview of the general graphics state operators

Table 4.8 lists the operators as defined in the PDF specification and in the iText APL

Table 4.8: General graphics state operators

PDF iText Parameters Description

w setLineWidth (width) Sets the line width. The
parameter represents the
thickness of the line in user
units (default = 1).

J setLineCap (style) Defines the line cap style.
j setlLineJoin (style) Defines the line join style.
M setMiterLimit (miterLimit) Defines a limit for joining

lines. When it’s exceeded,
the join is converted from a
miter to a bevel.

d setlLineDash (phase), (unitsOn, phase), Sets the line dash type. The
(unitsOn, unitsOff, default line dash is a solid
phase), (array, phase) line. You can create all sorts

of dashed lines by using the
different iText methods that
change the dash pattern.

Graphics State 110

Table 4.8: General graphics state operators

PDF iText Parameters Description

ri setRenderingIntent (intent) Sets the color rendering
intent. The value is a name;
possible values are
/AbsoluteColorimetric,
/RelativeColorimetric,
/Saturation, and
/Perceptual.

i setFlatness (flatness) Sets the maximum
permitted distance, in
device pixels, between the
mathematically correct path
and an approximation
constructed from straight
line segments. This is a
value between 0 and 100.
Smaller values yield greater
precision at the cost of more
computation.

gs setGState (gState) Sets a group of paramters in
the graphics state using a
graphics state parameter
dictionary. Possible entries
are listed in table 4.7.

We’ve discused five operators already. The rendering intent is used when CIE colors need to be rendered to
device colors. The flatness indicates the level of tolerance when rendering paths. We’ll discuss the gs operator
in section 4.2.7.

4.2.5 Special graphics state operators

In previous code samples, we changed the graphics state and we’ve constructed and painted paths, but we
skipped a couple of important operators, such as the operators that change the coordinate system and those
who save and restore the graphics state stack. These are the ‘special’ graphics state operators.

4.2.5.1 Transforming the coordinate system

In previous examples, we always assumed:

« that the coordinate system has its origin in the lower-left corner,
« that the x axis has increasing x values from left to right, and
« that the y axis has increasing y values from bottom to top.

When we talked about page boundaries and page sizes in section 3.4.2, we discovered that the origin of the
coordinate system can have a different location, depending on how the MediaBox was defined. In this section,
we’ll discuss another way to transform the coordinate system.

Graphics State 111

Let’s take a look at figure 4.21, which is the screen shot of a page that contains five triangles.

Figure 4.21: Coordinate system transformations

These five triangles are drawn using the exact same triangle() method. See listing 4.29.

Code sample 4.29: C0409_CoordinateSystem

protected void triangle(PdfContentByte canvas) {

canvas.moveTo(@, 80);

canvas.lineTo(100, 40);

canvas.lineTo(Q, 0);

canvas.lineTo(0Q, 80);

canvas.moveTo(15, 60);

canvas.lineTo(65, 40);

canvas.lineTo(15, 20);

canvas.lineTo(15, 60);
canvas.eofFillStroke();

The paths of the five triangles are identical, even when you look inside the PDF file using RUPS. However,
when looking at them in a PDF viewer, the triangles are drawn at different positions, using a different scale
or orientation. This is due to a changed coordinate system.

Listing 4.30 shows how the coordinate system was changed.

© 00 9 O O b W N =

-
(]

Graphics State 112

Code sample 4.30: C0430_CoordinateSystem

canvas.setColorFill(BaseColor.GRAY);
triangle(canvas);

canvas.concatCTM(1, @, @, 1, 100, 40);
triangle(canvas);

canvas.concatCTM(@, -1, -1, 0, 150, 150);
triangle(canvas);

canvas.concatCTM(@.5f, 0, @, ©0.3f, 100, 0);
triangle(canvas);

canvas.concatCTM(3, 0.2f, ©.4f, 2, -150, -150);

triangle(canvas);

The six values of the concatCTM() method are elements of a matrix that has three rows and three columns.

ab(
cd(

e f1

You can use this matrix to express a transformation in a two-dimentional system.

[z’ y' l]=[z y 1]=xX ggg
e f1

Carrying out this multiplication results in this:

a*x+c*y+e
b*x+d*y+f

The third column in the matrix is fixed: you’re working in two dimensions, so you don’t need to calculate a
new z coordinate.

When studying analytical geometry in high school, you’ve probably learned how to apply
transformations to objects. In PDF, we use a slightly different approach: instead of transforming
objects, we transform the coordinate system.

By default the Current Transformation Matrix (CTM) is:

100
010
001

The concatCTM() method changes the CTM by multiplying it with a new transformation matrix. In listing
4.30, we transform the coordinate system like this canvas.concatCTM(1, @, @, 1, 100, 40):

© 0 N O O P+ W N =

-
o

Graphics State 113

100 1 00 1 00
010X 0 O]=(.0 0
001 100401 100401

As a result, the second triangle will be translated 100 user units to the right and 40 user units upwards. The
next transformation canvas.concatCIM(@, -1, -1, @, 150, 150) rotates by 90 degrees and translates the

coordinate system:
1 00 0 =10 0 =10
0 1 0(x{=1 0 O0|=[~=1 00
100 40 11 L150 150 1 110 50 1

The concatCTM(@.5f, @, @, ©.3f, 100,) transformation scales down using a different factor for the x
and y axis, and introduces a translation in the x direction. As we’ve already rotated the coordinate system, it
is perceived as a downward translation.

0 —10 0.5 0 0 0 -
—1 0 01X 0 0.30|=|-0.5
110 50 1 100 0 1 155 15 1
Finally, we scale, skew and translate: concatCTM(3, @.2f, 0.4f, 2, -150, -150@).
0 —0.30 3 0 2 0 0 12 —0. 6 0
—0.5 0 0| 0.4 0= 1.h 0.1 0
155 15 11 L-150 —150 1 321 -89 1

The order in which the transformations of the CTM is important. If you change this order, you’ll get a different
result. In listing 4.31, we have switched two concatCTM() operations when compared to listing 4.30.

oo

Code sample 4.31: C0409_CoordinateSystem

canvas.setColorFill(BaseColor.GRAY);
triangle(canvas);

canvas.concatCTM(1, @, @, 1, 100, 40);
triangle(canvas);

canvas.concatCTM(0.5f, @, 0, ©0.3f, 100, 0);
triangle(canvas);

canvas.concatCTM(@, -1, -1, 0, 150, 150);
triangle(canvas);

canvas.concatCTM(3, ©.2f, ©0.4f, 2, -150, -150);

triangle(canvas);

If you’d multiply the matrices in that order, the final CTM will be:
[—0.2 -1

0
—0.9 —0.06 0]
264 —122.41

Graphics State 114

This result is different from what we had before, and that is also shown in figure 4.21. The first couple of
triangles are identical to the corresponding triangles in figure 4.20, but the final triangle is quite different
because we switch the rotating and the scaling operation.

>

Figure 4.22: Coordinate system transformations

The concatCTM() method is the iText equivalent of the cm operator in PDF. All coordinates used after a
transformation took place are expressed in the transformed coordinate system. Switching back to the original
(or a previous) coordinate system could be achieved by calculating a new transformation matrix —the inverse
matrix of the CTM—, but there’s a much easier way to achieve the same result. That’s what the saving and
restoring the graphics state stack is about.

4.2.5.2 Saving and restoring the graphics state stack

When we talk about graphics state, we refer to an internal data structure that holds current graphics control
parameters. These parameters have an impact on the graphics objects we draw. Figure 4.23 shows some more
triangles that demonstrate differences on the graphics state level.

Figure 4.23: Graphics State Stack

The path of each triangle is constructed using the code from listing 4.32.

w N O O b W N =

[= S i S U O S Y
© © 00 9 O O b W N =~ O ©O

Graphics State

Code sample 4.32: C0410_GraphicsState

115

protected void triangle(PdfContentByte canvas, float x)

canvas.moveTo(x, 760);
canvas.lineTo(x + 100, 720);
canvas.lineTo(x, 680);
canvas.lineTo(x, 760);
canvas.moveTo(x + 15, 740);
canvas.lineTo(x + 65, 720);
canvas.lineTo(x + 15, 700);
canvas.lineTo(x + 15, 740);
canvas.eofFillStroke();

Not all triangles have the same appearance because we changed the graphics state before filling and stroking

the paths of each individual triangle.

Code sample 4.33: C0410_GraphicsState

triangle(canvas, 50);
canvas.saveState();
canvas.concatCTM(1, @, @, 1, 0, 15);
canvas.setColorFill(BaseColor.GRAY);
triangle(canvas, 90);
canvas.saveState();
canvas.concatCTM(1, @, @, 1, @, -30);
canvas.setColorStroke(BaseColor .RED);
canvas.setColorFill(BaseColor.CYAN);
triangle(canvas, 130);
canvas.saveState();
canvas.setlineDash(6, 3);
canvas.concatCTM(1, @, @, 1, 0, 15);
triangle(canvas, 170);
canvas.restoreState();
triangle(canvas, 210);
canvas.restoreState();
triangle(canvas, 250);
canvas.restoreState();
triangle(canvas, 290);

The PDF syntax generated with this iText code looks like this:

©O© 00 9 O O b W N =

[= G G N O o S G S Y
© O 0 N1 O O b W N =~ O

Graphics State 116

50 760 m 150 720 1 50 680 1 50 760 1 65 740 m 115 720 1 65 700 1 65 740 1 B*

q

1001015 cm
0.50196 0.50196 0.50196 rg
90 760 m 190 720 1 90 680 1 90 760 1 105 740 m 155 720 1 105 700 1 105 740 1 B*

q
10

10
01
130
q

(6]
10
170

Q
210

Q
250

Q
290

©1 0 -30 cm

© RG

1 rg

T60 m 230 720 1 130 680 1 130 760 1 145 740 m 195 720 1 145 700 1 145 740 1 B*

3d

21 0 15 cm

760 m 270 720 1 170 680 1 170 760 1 185 740 m 235 720 1 185 700 1 185 740 1 B*
760 m 310 720 1 210 680 1 210 760 1 225 740 m 275 720 1 225 700 1 225 740 1 B*

760 m 350 T20 1 250 680 1 250 760 1 265 740 m 315 720 1 265 700 1 265 740 1 B*

760 m 390 720 1 290 680 1 290 760 1 305 T740@ m 355 720 1 305 700 1 305 740 1 B*

Now let’s explain this syntax, line by line:

In line 1, we add a triangle with an offset of 50 user units. We didn’t change the state, which means the
fill color as well as the stroke color are black.

We save the state in line 2 and change the current state in lines 3 and 4. In line 3 we add an upward
translation. In line 4, we change the fill color to gray. We draw another triangle with horizontal offset
90 in line 5. Now we have a gray triangle with black borders. Due to the transformation of the CTM,
it’s no longer at the same height as the first triangle.

We save the state in line 6. We perform another transformation in line 7. We change the stroke color in
line 8 and the fill color in line 9. We add a third triangle with offset 130 in line 10. We now have a cyan
triangle with a red border that is displayed at a lower y coordinate than the previous ones.

We save the state once more in line 11. We introduce a dash pattern in line 12 and a CTM transformation
that brings the CTM back to the default CTM in line 13. We add a triangle with offset 170 in line 14.
It’s a cyan triangle with a dashed, red border.

In line 15, we restore the graphics state to the previous state in the stack. That is: to the situation before
line 11. We add a triangle with offset 210 in line 16. This triangle looks identical to the third triangle
added in line 10, because we’re using the exact same graphics state.

In line 17, we restore the graphics state to the situation that was in place before line 6. The triangle with
offset 250 that is added in line 18 is drawn using the same graphics state as the second triangle added
in line 5.

With our final restore operation in line 19, we return to the default graphics state stack. The triangle
with offset 290 from line 20 has black borders and is filled in black.

Graphics State 117

The saveState() and restoreState() method introduce q and Q operators. These operators should always
be balanced.

A FAQ: Why am | getting an InvalidPdfSyntaxException
saying Unbalanced save/restore state operators?

You can’t introduce restoreState() before you’ve used the saveState() method. In PDF syntax:
you can’t have a Q without a preceding q. For every saveState(), you must have a restoreState()
operator somewhere in the same content stream. In other words: for every g there must be at least
one Q. This exception tells you this isn’t the case.

In this context, the same content stream doesn’t necessarily mean the same stream object. When

0 we discussed the page dictionary, we explained that the value of the /Contents entry can either be
a reference to a stream or an array. If it’s an array, the elements consist of references to streams
that need to be concatenated when rendering the page content. In this case, you can have a q in
one stream, and a Q in the next one. When we say that the save and restore operators need to be
balanced, we refer to the resulting stream, not to each separate stream in the array.

Note that each new page starts with a new, empty graphics state stack. If you changed the state on one page,
those changes won’t be transferred to the next page automatically. The new page starts with default values
for the graphics state. We can use the gs operator to reuse a specific graphics state, but before we do so, let’s
take a look at the overview of the special graphics state operators.

4.2.5.3 Overview of the special graphics state operators
Table 4.9 summarizes the methods and operators we’ve discussed in this section.

Table 4.9: Special graphics state operators

PDF iText Parameters Description

cm concateCTM (a, b, ¢, d, e, f) Modifies the current transformation
matrix (CTM) by concatenating the matrix

defined by a, b, ¢, d, e, and f.

q saveState @) Saves the current graphics state on the
graphics state stack.

Q restoreState () Restores the graphics state by removing
the most recently saved state from the
stack, making it the current state.

When we look at the PDF syntax that was used to draw the triangles in figure 4.23, we see that the line
painting the path of the triangles is repeated over and over again, although using different operators. Let’s
find a way to optimize this syntax by introducing an external object, also known as an XObject.

Graphics State 118

4.2.6 XObjects

An external object is an object that is defined outside the content stream and referenced as a named resource.
When we discussed page dictionaries and more specifically the resources dictionary, we already encountered
such an XObject. We can distinguish two major types of XObjects:

« a form XObject is an entire content stream to be treated as a single graphics object,
« an image XObject defines a rectangular array of color samples to be painted.

Let’s start with an example of a form XObject.

4.2.6.1 Form XObjects

Figure 4.24 shows the page dictionary of a page that contains an external object.

? Page 1
{Parent: 3 0 R -= Dictionary of type: /Pages
@ Mype: IPage
? iContents: 2 0 R -= Stream
@ ¥ Stream
|Z| /Length: 129
@ fFilter: fFlateDecode
¢ L /IResources: Dictionary
¢ L Object: Dictionary
? X110 R -= Stream
@ ¥ Stream
@ mype: MODbject
[/Resources: Dictionary
@ /subtype: IForm
— /BBox: [0, 0, 100, 80]
— Matrix: [1,0, 0,1, 0, 0]
= /Length: 49
= IFormType: 1
@ fFilter: fFlateDecode
o := MediaBox: [0, 0, 595, 842]

o=
o=

Figure 4.24: Page dictionary of a page with an XObject

The indirect object with object number 1 is a stream that is defined as a form XObject. We recognize a
bounding box and a transformation matrix. Note that we could have omitted the /FormType entry; 1 is the
default type, but also the only possible type that is currently available in the PDF specification.

The content of the stream looks like this:

Graphics State 119

© 89 m
100 40 1
001

0 801
15 60 m
65 40 1
15 20 1
15 60 1
B*

The stream is referenced in the resources dictionary of the page using the name /Xf1.

If there were more pages, it could have been referenced by the same name or by any other name in
the resources dictionaries of those other pages.

In the content stream of this page however, we’ll find references to /Xf1:

© 0 N O O P+ W N =

[= G N S U S ¥
© O 0 3 O U b W N ~=~O

q1l1 00150 680 cm /Xf1 Do Q

Q01015 cm

1 0 -30 cm

RG

rg

© 1 130 680 cm

R)
(SIS

w

15 cm
© 01 170 680 cm

, O =
S
[
()

(Y
o
o
(Y

210 680 cm

(Y
o
o
(Y

250 680 cm

o0 0 o0 0o 0o r—,O o000 000~ .0

1 001 290 680 cm

.50196 0.50196 ©.50196 rg
1001 90 680 cm /Xf1 Do Q

/Xf1

/Xf1

/Xf1

/Xf1

/Xf1

Do Q

Do Q

Do Q

Do Q

Do Q

These 20 lines correspond with the 20 lines of PDF syntax we had before, except for the fact that we now use
the Do operator and the /Xf1 operand to draw the triangles. We position the form XObject using a cm operator
and we use q / Q to make sure we don’t change the coordinate system permanently.

The iText code corresponding with this PDF syntax is shown in listing 4.34:

O 00 = O O » W N =~

W W N DNDNDNDDNNDDNDDNDDNDDN-S - » = B 2 2 2
, O © 0 N O U b WONHPH O O 03O0 O w4+~

Graphics State 120

Code sample 4.34: C0411_GraphicsState

PdfContentByte canvas = writer.getDirectContent();

PdfTemplate template = canvas.createTemplate(100, 80);
template.moveTo(0, 80);

template.lineTo(100, 40);

template.lineTo(0, 0);

template.lineTo(0, 80);

template.moveTo(15, 60);

template.lineTo(65, 40);

template.lineTo(15, 20);

template.lineTo(15, 60);

template.eoFillStroke();

canvas.addTemplate(template, 50, 680);
canvas.saveState();

canvas.concatCTM(1, @, @, 1, @, 15);
canvas.setColorFill(BaseColor.GRAY);
canvas.addTemplate(template, 90, 680);
canvas.saveState();

canvas.concatCTM(1, @, @, 1, @, -30);
canvas.setColorStroke(BaseColor.RED);
canvas.setColorFill(BaseColor.CYAN);
canvas.addTemplate(template, 130, 680);
canvas.saveState();
canvas.setlLineDash(6, 3);
canvas.concatCTM(1, @0, 0, 1, @, 15);
canvas.addTemplate(template, 170, 680);
canvas.restoreState();
canvas.addTemplate(template, 210, 680);
canvas.restoreState();
canvas.addTemplate(template, 250, 680);
canvas.restoreState();
canvas.addTemplate(template, 290, 680);
Images can be added in the exact same way. Instead of a stream of PDF syntax, we’ll have a compressed

stream

of pixel values.

4.2.6.2 PDF and images

In figure 4.25, we see a PDF showing three light bulbs. The original image for the single light bulb was bulb.gif.

Graphics State 121

T

@ image_xobject.pdf - Adobe Reader = = 2

|Fi|e Edit View Window Help ®

BB 6| BECIERNI

Al

Tools Sign Comment

]

¥

210 x 297 mm < 1 | '

Figure 4.25: Images in PDF

In the ideal situation, the image bytes are stored in the PDF only once. This requires that the image is added
as an XObject as shown in figure 4.26.

? Page 1
[Parent: 3 0 R -= Dictionary of type: /Pages
@ mype: IPage
? IContents: 2 0 R -= Stream
@k Stream
|= Length: 62
@ /Filter: /FlateDecode
¢ d /Resources: Dictionary
¢ [MObject: Dictionary
? fimg0: 1 0 R -= Stream
@k Stream
@ mype: MODbject
& := [ColorSpace: [Indexed, [DeviceRGB, 255,
@ /subtype: Image
=] BitsPerComponent: 8
Midth: 16
=] Length: 110
= Meight: 16
@ /Filter: /FlateDecode
o= := /Mask: [63, 63]

Figure 4.26: Image as XObject

The stream object with object number 1 contains an image with a width and a height of 16 pixels. Each
component consists of 8 bits and we’re using an Indexed colorspace with a selection of 256 RGB colors. The
sequence of color values is compressed to 110 bytes.

The page stream looks like this:

q 20 0 @ 20 36 786 cm /img® Do Q
q 20 @ 0 20 56 786 cm /img@ Do Q
q 20 0 0 20 76 786 cm /img® Do Q

The alternative is to add the image inline. In that case, there is no XObject, but the bytes that define the color

Graphics State

space and the image are repeated in the content stream:

q 20 © 0 20 36 786 cm

BI

/CS [/Indexed/DeviceRGB 255(***binary
/BPC 8 /W 16 /H 16 /F /FlateDecode /L
1D

*kkpinary stuffrxx

EI

Q

q 20 0 0 20 56 786 cm

BI

/CS [/Indexed/DeviceRGB 255(***binary
/BPC 8 /W 16 /H 16 /F /FlateDecode /L
ID

*kkpinary stuffrxx

EI

Q

q 20 © 0 20 76 786 cm

BI

/CS [/Indexed/DeviceRGB 255(***binary
/BPC 8 /W 16 /H 16 /F /FlateDecode /L
ID

*¥**binary stuff*kx

EI

Q

stuff*xx*)]
110

stuffrex)]
110

stuffrex)]
110

122

Note that we didn’t print the binary values of the colorspace and the compressed image bytes in this PDF
snippet. An inline image starts with the BI operator, following by a series of key value pairs. Then there’s the

1D operator followed by the image bytes. The inline image object is closed with the EI operator.

1, there is no /L value for the length. Without this value, a PDF parser needs to search for the EI
operator and the white space delimiters for that operator to find the end of the image. While this
will work for most images, this won’t work for all images, more specifically for images for which

0 This snippet also introduces a value that will be introduced in ISO-32000-2 (PDF 2.0). In ISO-32000-

the binary data contains a sequence *

ISO-32000-1 recommended not to use inline images with a length higher than 4 KB. ISO-32000-2
makes this normative: the value for /L shall not exceed 4096.

The difference in iText code is minimal. Listing 4.35 shows the solution that uses image XObjects; listing 4.36

shows the solution that uses inline images.

g s W N -

B W N -

Graphics State

Code sample 4.35: C0411_GraphicsState

123

PdfContentByte canvas = writer.getDirectContent();

Image img = Image.getInstance(IMG);

canvas.addImage(img, 20, 0, @, 20, 36, 786);
canvas.addImage(img, 20, 0, @0, 20, 56, 786);
canvas.addImage(img, 20, 0, @, 20, 76, 786);

Code sample 4.36: C0411_GraphicsState

Image img = Image.getInstance(IMG);
canvas.addImage(img, 20, 0, 0, 20, 36, 786, true);
canvas.addImage(img, 20, 0, 0, 20, 56, 786, true);
canvas.addImage(img, 20, 0, 0, 20, 76, 786, true);

iText supports JPEG, JPEG2000, GIF, PNG, BMP, WMF, TIFF, CCITT and JBIG2 images. This doesn’t mean
that these images types are also supported in PDF.

« JPEG images are kept as is by iText. You can take the content stream of an Image XObject of type JPEG,

copy it into a file and you’ll have a valid JPEG image. You can recognize these images by their filter:
/DCTDecode.

JPEG2000 is supported since PDF 1.5. The name of the filter is JPXDecode.

Although PDF supports images with LZW compression (used for GIFs), iText decodes GIF images into
a raw image. If you create an Image in iText with a path to a GIF file, you’ll get an image with filter
/FlateDecode in your PDF.

PNG isn’t supported in PDF, which is why iText will also decode PNG images into rw images. If the color
space of the image is DeviceGray and if the image only has 1 bit per component, CCITT will be used as
compression and you’ll recognize the filter /CCITTFaxDecode. Otherwise, the filter /FlateDecode will
be used.

BMP files will be stored as a series of compressed pixels using /FlateDecode as filter.

WMF is special. If you insert a WMEF file into a PDF document using iText, iText will convert that image
into PDF syntax. Instead of adding an Image XObject, iText will create a form XObject.

When the image data is encoded using the CCITT facsimile standard, the /CCITTFaxDecode filter will
be used. These are typically monochrome images with one bit per pixel.

TIFFs will be examined by iText. Depending on the TIFFs parameters, iText can decide to use
/CCITTFaxDecode, FlateDecode or even DCTDecode as filter.

JBIG2 uses the /JBIG2Decode filter.

Normally, you don’t need to worry about the image type. The Image class takes care of choosing the right

compression method for you.

4.2.6.3 Overview of the XObject and image operators

Table 4.10 is somewhat different than the tables we had before. The Do operator can be introduced using the
addTemplate() method and the addImage() method. Using the addImage() method can introduce either a g

cm Do Q sequence or aBI ID EI sequence.

Graphics State

124

Table 4.10: form XObject and Image operators

PDF iText methods Description

Do addTemplate(template, e, f), The operator Do, preceded by a name
addTemplate(template, a, b, c, of a form XObject, such as /Xf1,

d, e, f) paints the XObject. iText will take
care of handling the template object,
as well as saving the state,
performing a transformation of the
CTM that’s used for adding the
XObject, and restoring the state.

Do addImage(template), The operator Do, preceded by the
addImage(image, false), name of an image XObject, such as
addImage(image, a, b, c, d, e, Imgo, paints the image. iText will
f), addImage(image, a, b, c, d, take care of storing the image stream
e, f, false) correctly, as well as saving the state,

performing a transformation of the
CTM, and restoring the state.
BI /ID/EI addImage(image, true), Inline images are enclosed by the BI

(addImageimage, a, b, ¢, d, e,
f, true)

and EI operator. The ID operator
marks where the actual image data
begins. These operators should not
be used for images larger than 4096
bytes.

We used XObjects to reuse large snippets of PDF code or images. Now let’s take a look at the graphics state

dictionary that allows us to reuse graphics state parameters.

4.2.7 Graphics state dictionary

Suppose that you want to draw the triangle shape we used before with a different line width, line join and
dash pattern. See for instance figure 4.27.

Figure 4.27: Triangle with different line width, line join and dash pattern

You could change the graphics state like we did before with the setLineWidth(), setLineJoin() and
setDashPattern() methods, but the moment you start a new page, the state is lost. If you draw the same
shape on the next page, it looks like this:

Graphics State 125

Figure 4.28: Ordinary triangle

The graphics state dictionary allows you to reuse graphics state as a resource.

? 4 0 R -= Dictionary of type: [Page
? Page 1
[Parent: 3 0 R -= Dictionary of type: IPages
@ mype: IPage
o= IContents: 2 0 R -= Stream
¢ L& /Resources: Dictionary
o [/ExtGState: Dictionary
1G31: 1 0 R -= Dictionary
¢] Dictionary|
o= :i= /D112, 1], 0]
=N
= LW 3
o = [MediaBox: [0, 0, 595, 842]
o 6 0 R -= Dictionary of type: /Page
? 8 0 R -= Dictionary of type: /[Page
? Page 3
[Parent: 3 0 R -= Dictionary of type: /Pages
@ Mype: IPage
o IContents: 7 0 R -= Stream
¢] /Resources: Dictionary
o [/ExtGState: Dictionary
o 1G31: 1 0 R -= Dictionary
o = [MediaBox: [0, 0, 595, 842]

Figure 4.29: Graphics State dictionary

Object 1 is a dictionary with three entries, /D for the dash pattern ([[12 1] @]), /LJ for the line join (1) and
/LW for the line width (3). This object is used on page 1 and page three like this:

/GS1 gs

50 680 m 150 640 1 50 600 1 50 680 1
65 660 m 115 640 1 65 620 1 65 660 1
S

The line /GS1 gs set the line width, line join and dash pattern all at once. Listing 4.37 shows how to create a

graphics state dictionary:

© 00 9 O O b W N =

I = U
O O & W N~ O

Graphics State

Code sample 4.37: C0411_GraphicsState

126

PdfContentByte canvas = writer.getDirectContent();
PdfGState gs = new PdfGState();

gs.put(new PdfName("LW"), new PdfNumber(3));
gs.put(new PdfName("LJ"), new PdfNumber(1));
PdfArray dashArray = new PdfArray(new int[]{12, 1});
PdfArray dashPattern = new PdfArray();
dashPattern.add(dashArray);

dashPattern.add(new PdfNumber(Q));

gs.put(new PdfName("D"), dashPattern);
canvas.setGState(gs);

triangle(canvas);

document . newPage();

triangle(canvas);

document . newPage();

canvas.setGState(gs);

triangle(canvas);

In this code snippet, we draw the triangles three times (on lines 11, 13 and 16) on three different pages. The
graphics state dictionary is for the triangles on pages 1 and 3. These triangles look like figure 4.27. The triangles
on page 2 look like figure 4.28.

Table 4.8 shows a selection of possible entries of the entries in a graphics state dictionary. For more entries,
see table 58 in ISO-32000-1.

Table 4.8: Entries in a graphics state dictionary

Name iText method Parameter Description

/LW PdfNumber The line width of the graphics state.

/LC PdfNumber The line cap style of the graphics
state.

/LY PdfNumber The line join style of the graphics
state.

/ML PdfNumber The miter limit of the graphics state.

/D PdfArray The line dash pattern of the graphics
state. The pattern is expressed as an
array of the form [dashArray
dashPhase] where dashArray is itself
a PdfArray and dashPhase is a
PdfNumber.

/RI setRenderingIntent (ri) The parameter is the name of the

rendering intent (see table 4.7).

Graphics State

Name

127

Table 4.8: Entries in a graphics state dictionary

iText method Parameter Description

/op

/OP

/OPM

/FL
/SM
/SA

/BM

/ca

/CA

/AIS

/TK

setOverPrintNonStroking (op) The parameter is a Boolean value that
specifies whether or not to apply
overprint for painting operations
other than stroking. If the entry is
absent, this parameter will also be set
by the /0P entry (if present).

setOverPrintStroking (op) The parameter is a Boolean value that
specifies whether or not to apply
overprint. If there’s also an /op entry
in the dictionary, the /0P entry will
only set the parameter for stroking
operations.

setOverPrintMode (opm) The parameter is an integer value,
either 0 or 1. It specifies the overprint
mode and it’s only taken into account
if the overprint parameter is true. It
controls the tint value in the context
of DeviceCMYK colors.

PdfNumber Specifies the flatness tolerance.
PdfNumber Specifies the smoothness tolerance.
PdfBoolean Specifies the stroke adjustment.

setBlendMode (bm) The parameter is a name that
specifies the current blend mode that
will be used.

setFillOpacity (ca) The parameter is a float value that
specifies the opacity of the shapes
that are painted in the transparent
imaging model.

setStrokeOpacity (ca) The parameter is a float value that
specifies the opacity of the path that
are stroked in the transparent
imaging model.

setAlphalsShape (ais) The parameter is a Boolean value that
specifies whether the current soft
mask and alpha constant must be
interpreted as shape values (true) or
opacity values (false).

setTextKnockout (tk) The parameter is a Boolean value that
determines the behavior of
overlapping glyphs within a text
object in the transparant imaging
model.

Graphics State 128

When looking at table 4.8, we see a series of entries introducing transparency. Let’s take a closer look at these
entries in the next section.

4.2.8 Graphics state and transparency

The chapter on transparency in ISO-32000-1 is about 40 pages long. Using snippets from that chapter, one
could summarize it as follows:

A given object shall be composited with a backdrop. Ordinarily, the backdrop consists of the
stack of all objects that have been specified previously. The result of the compositing shall then
be treated as the backdrop for the next object. However, within certain kinds of transparancy
groups, a different backdrop may be chosen.

During the compositing of an object with its backdrop, the color at each point shall be computed
using a specified blend mode, which is a function of both the object’s color and the backdrop
color ...

Two scalar quantities called shape and opacity mediate compositing of an object with its backdrop
... Both shape and opacity vary from 0.0 (no contribution) to 1.0 (maximum contribution) ...
Shape and opacity are conceptually very similar. In fact, they can usually be combined into a
single value, called alpha, which controls both the color compositing computation and the fading
between an object and its backdrop. However, there are a few situations in which they shall be
treated separately; see knockout groups.

In the next couple of examples, we’ll explain concepts such as transparency, transparency groups, isolation
and knockout using a couple of simple examples.

4.2.8.1 Transparency

Let’s take a look at figure 4.30. In both cases, the backdrop consists of a square of which half is painted gray.
On this backdrop, we add three full circles in a specific order: red, yellow, blue.

In the figure to the left, the red circle covers part of the backdrop, the yellow circle covers part of the backdrop
and part of the red circle, the blue circle covers part of the backdrop, part of the red circle and part of the
yellow circle. There is no transparency involved. The opacity is 1.

In the figure to the right, we have introduced an opacity of 0.5 for the circles. This makes the circles transparent.
The colors are mixed where the circles overlap, and the color of the circles is blended with the color of the
backdrop.

B W N -

Graphics State 129

Ungrouped objects Ungrouped objects
Object opacity = 1.0 Object opacity = 0.5

Figure 4.30: Opaque circles, transparent circles

Code sample 4.38 shows how the transparency was introduced.

Code sample 4.38: C0415_TransparencyGroups

PdfGState gs1 = new PdfGState();
gsl.setFillOpacity(@.5f);
cb.setGState(gsl);

drawCircles(200 + 2 * gap, 500, cb);

We can also define the transparency at the level of a group of objects.

4.2.8.2 Transparency Groups

Looking at figure 4.31, we see three circles that aren’t transparent among each other to the left. As a group
they are made transparent against the backdrop. To the right, we see that the circles are transparent as objects,
but there’s no extra transparency as a group. We’ve also introduced a special blend mode for the circles to the
right.

O 00 9 O O b W N =~

N U S S Y
o I O O b WO N~ O

Graphics State 130

Transparency group Transparency group
Object opacity = 1.0 Object opacity = 0.5
Group opacity = 0.5 Group opacity = 1.0
Blend mode = Normal Blend mode = HardLight

Figure 4.31: Transparency groups

Code sample 4.39 demonstrates that the transparency groups were defined using a Form XObject.

Code sample 4.39: C0415_TransparencyGroups

cb.saveState();

PdfTemplate tp = cb.createTemplate(200, 200);
PdfTransparencyGroup group = new PdfTransparencyGroup();

tp.setGroup(group);

drawCircles(9, 0, tp);

cb.setGState(gsl);

cb.addTemplate(tp, gap, 500 - 200 - gap);
cb.restoreState();

cb.saveState();

tp = cb.createTemplate(200, 200);
tp.setGroup(group);

PdfGState gs2 = new PdfGState();
gs2.setFillOpacity(@.5f);
gs2.setBlendMode (PdfGState.BM_HARDLIGHT);
tp.setGState(gs2);

drawCircles(9, 0, tp);

cb.addTemplate(tp, 200 + 2 * gap, 500 - 200 - gap);
cb.restoreState();

Inline 1to 8, we create aPdfTemplate object on which we draw the circles. We define a PdfTransparencyGroup

Graphics State 131

and we use the setGroup() method to indicate that all objects of the Form XObject belong to this group. We
change the general graphics state stat by reusing the gs1 object from code sample 4.38.

In line 9 to 18, we create another PdfTemplate and another PdfGState introducing a different blend mode
(HardLight). This time, we use the setGState() method on the level of the Form XObject instead of on the
general graphics state. This explains the difference in result shown in figure 4.31.

4.2.8.3 Isolation and knockout

The PdfTransparencyGroup class has two methods: setIsolated() and setknockout(). Both methods expect
a Boolean value as parameter. Figure 4.32 shows all possible combinations.

Figure 4.32: Isolation and knockout

The code to draw the four figures is identical. The backdrop is a square with an axial shading going from
yellow to red. Four circles are drawn against this backdrop. All the circles have the same CMYK color: C, M
and Y are set to 0 and K to 0.15. The opacity is 1 and the blend mode is multiply, the only difference is the
isolation and the knockout mode.

<N O O B W N =

Graphics State

132

« Isolation—For the two upper squares, the group is isolated: it doesn’t interact with the backdrop. For

the two lower squares, the group is nonisolated: the group composites with the backdrop.

+ Knockout—For the squares at the left, knockout is set to true: the circles don’t composite with each

other. For the two on the right, it’s set to false: they composite with each other.

Listing 4.40 shows how the upper-right figure was drawn. The other figures are created by changing the

Boolean parameters in line 4 and 5.

Code sample 4.40: C0416_IsolationKnockout

PdfTemplate tp = cb.createTemplate(200, 200);
pictureCircles(0, 0, tp);

PdfTransparencyGroup group = new PdfTransparencyGroup();
group.setlsolated(true);

group.setKnockout (true);

tp.setGroup(group);

cb.addTemplate(tp, 50 + gap, 500);

The graphics state when drawing the circles was defined like this:

PdfGState gs = new PdfGState();
gs.setBlendMode (PdfGState.BM_MULTIPLY);
gs.setFillOpacity(1f);
cb.setGState(gs);

The PDF reference defines many other blend modes apart from multiply. You can find these blend modes in
the PdfGState class. They all start with the prefix BM_. Feel free to experiment with some other values to find

out how they are different.

We’ll conclude this chapter by applying transparency to images.

4.2.9 Masking and clipping images

In section 4.2.6.2, we briefly discussed images, and we introduced the Image object without going into much

detail. In this section, we’ll introduce some concepts that are related to transparency. Let’s start with the

concept of image masks.

4.2.9.1 Hard masks and soft masks

In figure 4.33, we see an image of which parts are made fully transparent using a hard mask.

Graphics State 133

Figure 4.33: Hard image mask

In figure 4.34, we see an image that is gradually made transparent using a soft mask. The left side of the image
is made completely transparent; the right side is completely opaque.

Figure 4.34: Soft image mask

If we take a look inside, we see the syntax for the hard image mask to the left and the syntax for the soft
image mask to the right.

W N O O b W N -

[ENNEN
=, o O

12

Graphics State 134

fimg1: 30 R -= Stream ? fimg3: 7 0 R -> Stream
¢ (») Stream 9 (») Stream

@ Mype: XObject

& := [ColorSpace: [ICCBased, 20 R]

?

@ /subtype: image
|Z| BitsPerComponent: 8
[E mvidth: 500
|| MLength: 55332
|Z| MHeight: 332
@ FFilter: IDCTDecode
Mask 10 R -= Stream
@ (M) Stream
o := /Decode: [1,0]
& AmageMask: true
¢- 3 /DecodeParms: Dictionary
& /Blackis1: true
B KA
= Rows: 8
T /IColumns: 8
@ Mype: XObject
@ /Subtype: image
[7 /BitsPerComponent: 1
= Mwvidth: 8
|= MLength: 9
M| MHeight: &
@ [Filter: ICCITTFaxDecode

@ iMype: XObject
o := IColorSpace: [ICCBased, 6 0R]
ISMask: 50 R -= Stream
@ ¥ Stream
@ Mype: XObject

@ /ColorSpace: IDeviceGray

@ /Subtype: Amage
7 /BitsPerComponent 8
= mwidth: 256
= /Length: 267
T MHeight: 1
@ /Filter: /FlateDecode
@ /Subtype: image
(M /BitsPerComponent 8
= /wvidth: 500
= NLength: 55332
[T Height; 332
@ JFilter: IDCTDecode

Figure 4.35: Hard and soft image masks: the syntax

To the right, we have a JPEG image (/DCTDecode filter) of which the stream dictionary has a /Mask entry that
refers to an image XObject. This is called stencil masking. The value of the /Mask entry is an image of which
the /ImageMask value is true. This image should be a monochrome image (the /BitsPerComponent value is 1)
that is treated as a stencil mark that is partly opaque and partly transparent. The number of pixels of the mask
can be different from the number of pixels of the image it is masking. In our example, the JPEG measures 500
by 332 pixels, whereas the mask only measures 8 by 8 pixels.

To the left, we have a JPEG image of which the stream dictionary has an /SMask entry that refers to an image
XObject of which the colorspace is /DeviceGray. The gray value of each pixel determines the opacity of the
pixels that are being masked.

Let’s take a look at the code that was used to produce the masked images shown in figures 4.33 and 4.34.

Code sample 4.41: C0417_ImageMask

public Image getImageHardMask() throws DocumentException, IOException {
byte circledata[] = { (byte) 0x3c, (byte) 0x7e, (byte) Oxff,
(byte) 0xff, (byte) 0xff, (byte) Oxff, (byte) 0xTe,
(byte) 0x3c };
Image mask = Image.getlInstance(8, 8, 1, 1, circledata);

}

mask . makeMask() ;

mask .setInverted(true);
Image img = Image.getlInstance(RESOURCE);
img.setImageMask(mask);

return img;

public Image getImageSoftMask() throws DocumentException, IOException {

13
14
15
16
17
18
19
20
21

Graphics State 135

byte gradient|] new byte[256];
for (int i = ©; i < 256; i++)
gradient[i] = (byte) i;

Image mask = Image.getlInstance(256, 1, 1, 8, gradient);
mask . makeMask() ;

Image img = Image.getlInstance(RESOURCE);
img.setImageMask(mask);

return img;

Looking at listing 4.41, we see that we create images using raw bytes in lines 5 and 16.

In the first case, we create a byte array with a specific pattern, and we use the getInstance() method that
accepts a width and a height (8 by 8), the number of components and the number of bits per component.
We have one component of which the value can be either 1 or 0—this is a black and white image. the final
parameter is the byte array. Note that we use the “setInverted()” method. This method defines which color
needs to be used as stencil. In this case, we make sure the white part of the stencil is the part that will be made
transparent.

In the second case, we have an image of 256 by 1 pixels. We still have one component, with 8 bits per component
(a value between 0 and 255)—this is a gray color image. The bytes we pass as data consist of a gradient that
varies between 0 and 255. Note that iText doesn’t really require you to define whether or not the mask is a
hard mask or a soft mask. This is determined by the nature of the image that is being used as mask.

Figure 4.36 shows two other cases in which the /Mask entry is used.

Graphics State

| iText RUPS iText® 5.5.0 ©2000-2013 iText Group NV

File

136

| iText RUPS T up NV (AGPL-version)

File

[90 R -= Dictionary of type: /Page
¢ Page 1
IParent: 8 0 R -= Dictionary of type: /Pa
@ Mype: IPage
o & [Contents: 7 0 R -= Stream
¢ [/Resources: Dictionary
¢ [XObject: Dictionary
o= limg3: 6 0 R -= Stream
L3 fimg2: 5 0 R -= Stream
9 r) Stream
@ ype: XObject
e = /ColorSpace: [ICCBase
o I8Mask: 3 0 R = Strean|
@ /Subtype: image
IBitsPerComponent 8
IWwidth: 64
ILength: 4819
IHeight: 64
@ [Filter: fFlateDecode
fimg1: 3 0 R -= Stream
o % fimg0: 2 0 R-> Stream
o i= IMediaBox [0, 0, 500, 332]
°-| i= ND: [£be0n@{C <2y'V, £bu0n@{C <2y\] I
Ll Il

|/~| PDF Object Tree (fransparent_image.pdf)
9 [Root: 10 0 R -= Dictionary of type: /Catalog
¢~ LA Dictionary of type: /Catalog
@ mMype: iCatalog
? /Pages: 8 0 R -= Dictionary of type: /Pages
[3 Dictionary of type: /Pages
@ Mype: IPages
=] iCount: 1
¢ i= IKids: [9 0 R]
[3 9 0 R -= Dictionary of type: IPage
-3 Page 1
fParent: 8 0 R -= Dictionary of type: /Pages
@ mype: iPage
o IContents: 7 0 R - Stream
¢ LI /Resources: Dictionary
¢ [mObject Dictionary
o fimg3: 60 R -= Stream
o= fimg2: 5 0 R -» Stream
s fimg1: 30 R -= Stream
o (1) Stream
o fimg0: 2 0 R -= Stream
o i= /MediaBox: [0, 0, 500, 332]
o = JID° [Eba0=@{C «2yY, £b208@{C <2y

[F] isize: 12

Key Value Stream | XFA Key Value (" stream Consol
Mype IXObject X MType IXObiject X |(gr——
/ColorSpace [ICCBased, 4 0 R] A iColorSpace |IDeviceGray P
1SMask 30R # y ISubtype Nmage X
/Sublype hmage A] iBitsPerCom_ |8 A
/BitsPerComp... & X Width 64 X
Width 54 & saveimage || {1 cnotn G52 %
ILength 4519 b Height 64 X
[Height B4 A [Filter [FlateDecode X
[Filter FlateDecode 4 @

[#]

Figure 4.36: transparent images

In the upper-left corner, we see a circular image that was originally a transparent PNG image. PNG isn’t
supported in PDF, let alone transparent PNG files. When adding such a PNG to a document, iText creates an
opaque bitmap (see object 5) as well as a mask for this image.

In the lower-left corner, we see a JPEG image that is also partly transparent. Figure 4.37 shows the
corresponding syntax.

N O O b W N -

Graphics State

¢ i= Kids: [9 0 R]
? 90 R -= Dictionary of type: /[Page

? Page 1
[Parent: 8 0 R -= Dictionary of type: /Pages
@ Mype: IPage
o= IContents: 7 0 R -= Stream
¢ [/Resources: Dictionary
¢ [/XObject: Dictionary
? fimg3: 6 0 R = Stream
- ») S
@ Type: MObject
o= := [ColorSpace: [indexed, ([DeviceRGE, 255,
@ /subtype: image
[=] BitsPerCompanent; &
[F] awvidth: 180
= /Length: 3512
[Z] Height 180
@ IFilter: [FlateDecode
e = Mask: [240, 255]
o fimg2: 50 R -= Stream
? fimg1: 30 R -= Stream
o= (») Stream
« m]
Key Value || Stream |/KFh rConsole
Mype /XObject X
IColorSpace |[indexed, iD... X
ISubtype fimage X
IBitsPerCom... |8 X
MWidth 180 X .
ILength 3512 X
/Height 180 X
[Filter [FlateDecode X
Mask [240, 255] X
[&]

Figure 4.37: Color key masking

137

In this case, we have an image with an indexed color space (values from 0 to 255) and now we define the /Mask
as an array of pairs that represent color ranges. In our case, we have a single pair ranging from color value
240 to color value 255. These colors will be transparent. Note that the result isn’t always very nice, especially
when applied to images with a lossy compression.

Code sample 4.42 shows how both images were added to the PDF.

Code sample 4.42: C0418_TransparentImage

Image img2 = Image.getlInstance(RESOURCEZ2);
img2.setAbsolutePosition(@, 260);
document .add(img2);
Image img3 = Image.getlInstance(RESOURCES3);

img3.setTransparency(new int[]{ 0xFOQ, OxFF });
img3.setAbsolutePosition(Q, @);
document .add(img3);

Graphics State

138

The path named RESOURCE2 refers to a transparent PNG image. This PNG is implicitly converted to two images
by iText. The color key masking for RESOURCES is defined using the setTransparency() method.

In the final section of this chapter, we’ll look at another way to make part of an image transparent: we’ll clip

the image.

4.2.9.2 Clipping images

In figure 4.38, you see a picture of my wife and me at the film festival in Ghent. To the right, you see the same
file opened in iText RUPS. When looking at the image using RUPS, you see that the original image stored in
the PDF is larger than expected. You can see that we're standing at a desk.

al

Template clip:

|£:| iText RUPS iText® 5.5.0 ©2000-2013 iText Group NV (AGPL-version)

File

s [¥F1: 1 0 R -= Stream
¢ M Stream

@ Mype: MObject

¢ IResources: Dictionary
¢ 2 /XObject: Dictionary

¢ fimg0: 30 R -= Stream
o (») Stream

@ /subtype: /Form

o i= BBox [0, 0, 850, 600]
|F iLength: 40
= IFormType: 1

@ FFilter: FlateDecode

Key

Value

||(Slream HFA Console|

Type

KObject

IColors..

[MCCBa..

ISubtype

fimage

/BitsPer

8

Width

851

Wil/Length

268865

[Height

1280

/IDCTDe..

il Filter

) 3| 3| | 3| 3| 9| | 3¢

Figure 4.38: Template clipping

Looking more closely, we see that the image consists of 851 by 1280 pixels. It’s a resource of a Form XObject
(/x£1) with a bounding box of 850 by 600 user units. This bounding box clips the image. Code sample 4.43

shows how it’s done.

O 00 9 O O b W N =~

Graphics State 139

Code sample 4.43: C0419_TemplateClip

Image img = Image.getlInstance(RESOURCE);

float w = img.getScaledwidth();

float h = img.getScaledHeight();

PdfTemplate t = writer.getDirectContent().createTemplate(850, 600);
t.addImage(img, w, @, @, h, @, -600);

Image clipped = Image.getlnstance(t);

clipped.scalePercent(50);

document .add(new Paragraph("Template clip:"));

document .add(clipped);

What happens with the image in the template is true for all the objects you add to the direct content.
Everything that is added outside the boundaries of a PdfTemplate of a page will be present in the PDF,
but you won’t see it in a PDF viewer.

iText may change the way an image is compressed, but it doesn’t remove pixels. In the case of code sample
4.40, the complete picture will be in the PDF file, but it won’t be visible when looking at the PDF document.

If you need to clip an image using a shape that is different from a rectangle, you need to use a clipping path.
This is shown in figure 4.39.

Figure 4.39: Clipping path

We don’t need any new functionality to achieve this, we can use the newPath() method that was introduced
in section 4.2.2. See code sample 4.44.

g B W N =

O 00 I O O » W N~

Graphics State 140

Code sample 4.44: C0419_TemplateClip

t = writer.getDirectContent().createTemplate(850, 600);

t.ellipse(Q, @, 850, 600);

t.clip();

t.newPath();

t.addImage(img, w, @, ©, h, 0, -600);

Flgure 4.40 shows the result of the final example of this chapter. If you look closely, you see that the edges are
a gradient similar to what we had when we discussed soft mask images. In this case however, we are using a
soft mask dictionary.

Figure 4.40: Transparent overlay

The code to create this soft mask is a tad more complex.

Code sample 4.45: C0419_TemplateClip

Image img = Image.getlInstance(RESOURCE);

float w = img.getScaledWidth();

float h = img.getScaledHeight();

canvas.ellipse(1, 1, 848, 598);

canvas.clip();

canvas.newPath();

canvas.addImage(img, w, 0, 0, h, 9, -600);

PdfTemplate t2 = writer.getDirectContent().createTemplate(850, 600);
PdfTransparencyGroup transGroup = new PdfTransparencyGroup();

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Graphics State 141

transGroup.put(PdfName.CS, PdfName.DEVICEGRAY);
transGroup.setlsolated(true);
transGroup.setKnockout(false);
t2.setGroup(transGroup);
int gradationStep = 30;
float|[] gradationRatiolList = new float[gradationStep];
for(int i = ©0; i < gradationStep; i++) {
gradationRatiolList[i] = 1 - (float)Math.sin(Math.toRadians(90.0f/gradationStep*(i + 1)));
}
for(int i = 1; i < gradationStep + 1; i++) {
t2.setlineWidth(5 * (gradationStep + 1 - i));
t2.setCGrayStroke(gradationRatiolList[gradationStep - i]);
t2.ellipse(@, 0, 850, 600);
t2.stroke();
}
PdfDictionary maskDict = new PdfDictionary();
maskDict.put(PdfName.TYPE, PdfName.MASK);
maskDict.put(PdfName.S, new PdfName("Luminosity"));
maskDict.put(new PdfName("G"), t2.getIndirectReference());
PdfGState gState = new PdfGState();
gState.put(PdfName.SMASK, maskDict);
canvas.setGState(gState);
canvas.addTemplate(t2, 0, 0);

Let’s take a closer look at what happens in code sample 4.45:

« In line 1 to 7, we create an image and we add it to the canvas after defining a clipping path. If we
stopped here, we’d have the same result as in figure 4.39.

« In line 8 to 13, we create a Form XObject and we define a transparency group for that PdfTemplate.

« Inline 14 to 14, we draw 30 identical ellipses with different border widths and different border colors—30
shades of gray.

« In line 25 to 28, we create a soft mask dictionary for the Form XObject with the ellipses.

« In line 29 to 31, we create a graphics state dictionary with an /SMask entry and we change the state.

+ When we add the Form XObject with the ellipses in line 32, the PdfTemplate acts as a transparent
overlay for the image.

With this example, we conclude chapter 4.
4.3 Summary

In this chapter, we’ve taken a closer look at the first part of the Adobe Imaging Model, more specifically at the
syntax that allows you to construct and paint paths, to introduce colors, and to change, save and restore the
graphics state. We've created external objects, Form XObjects as well as image XObjects, and when discussing
the graphics state dictionary, we’ve focused on transparency and we’ve applied this to images.

In the next chapter, we’ll focus on text state.

5. Text State

In section 4.1.3, we discovered that there are 5 types of graphics objects in PDF. We’ve already discussed path
objects, external objects, inline image objects, and shading objects in chapter 4. We’ve saved text objects for
this chapter.

5.1 Text objects

We started chapter 4 with the following snippet of PDF syntax:

BT

36 788 Td

/F1 12 Tf

(Hello World)Tj
ET

q

9 0m

595 842 1

S

Q

The part between the BT and ET operators is a text object. Table 5.1 shows the corresponding iText methods.

Table 5.1: Text object operators

PDF iText Description

BT beginText() Begins a text object. Initializes the text matrix, text line matrix and
identity matrix.

ET endText () Ends a text object, discards the text matrix.

There are specific rules for text objects. Inside a BT/ET sequence, it is allowed:

« to change color (using the operators listed in table 4.5),

« to use general graphics state operators (listed in table 4.8),

« to use text state, text positioning and text showing operators (as will be discussed in this chapter), and
+ to use marked content operators (as will be discussed in the next chapter).

It is not allowed to use any other operator, e.g. you are not allowed to construct, stroke or fill paths inside a
BT/ET sequence.

Text State 143

It is not allowed to nest text objects. When discussing the graphics state stack, we nested
saveState()/restoreState() sequences. With text objects, a second BT is forbidden before an ET.

The color of text is determined by using the graphics state operators to change the fill and the stroke color. By
default, glyphs will be drawn using the fill color. The default can be changed by using a text state operator
that changes the rendering mode.

5.1.1 Text state operators

The text state is a subset of the graphics state. The available text state operators are listed in table 5.2.

Table 5.2: Text state operators

PDF iText Parameters Description

Tf setFontAndSize (font, size) Sets the text font (a BaseFont object)
and size.

Tc setCharacterSpacing (charSpace) Sets the character spacing (initially o).

Tw setWordSpacing (wordSpace) Sets the word spacing (initially).

Tz setHorizontalScaling (scale) Sets the horizontal scaling (initially 100).

TL setLeading (leading) Sets the leading (initially o).

Ts setTextRise (rise) Sets the text rise (initially o).

Tr setTextRenderingMode (render) Specifies a rendering mode (a

combination of stroking and filling). By
default, glyphs are filled.

We can’t take a look at any examples yet, because we don’t know anything about operators to position and
to show text yet.

5.1.2 Text-positioning operators

A glyph is a graphical shape and it’s subject to all graphical manipulations, such as coordinate transformations
defined by the CTM, but there are also three matrices for text that are valid inside a text object:

+ The text matrix—This matrix is updated by the text-positioning and text-showing operators listed in
tables 5.3 and 5.4.
+ The text-line matrix—This captures the value of the text matrix at the beginning of a line of text.

+ The text-rendering matrix—This is an intermediate result that combines the effects of text state
parameters, the text matrix and the CTM.

Table 5.3 lists the available text-positioning operators.

Text State

PDF

iText

144

Table 5.3: Text-positioning operators

Parameters

Description

Td

TD

Tm

T*

moveText

(tx, ty)

moveTextWithLeading (tx, ty)

setTextMatrix

newlineText

Moves the text to the start of the
next line, offset from the start of
the current line by (tx, ty).

Same as moveText () but sets the
leading to -ty.

(a,b,c,d,e,f) / (e, f) Sets the text matrix and the

0

text-line matrix. The parameters
a,b,c,d, e, and f are the
elements of a matrix that will
replace the current text matrix.

Moves to the start of the next
line (depending on the current
value of the leading.

The value of the matrix parameters isn’t persisted from one text object to another. Every new text object,
starts with a new text, text-line and text-rendering matrix.

5.1.3 Text-showing operators

We conclude the overview of text-related operators with the text-showing operators. See table 5.4.

Table 5.4: Text-showing operators

PDF iText Parameters Description

Tj showText (string) Shows a text string.

' newlineShowText (string) Moves to the next line, and shows a text
string.

" newlineShowText (aw, ac, string) Moves to the next line, and shows a text
string using aw as word spacing and ac as
character spacing.

TJ showText (textarray) Shows one or more text strings, allowing

individual glyph positioning.

Now that we’ve been introduced to all the available text operators, let’s take a look at some examples.

5.1.4 Text operators in action

In the first example, we changed the text state a couple of times before adding the words “Hello World”. This
is shown in figure 5.1.

g s W N -

©O© 00 9 O O b» W N =

RS
N r O

Text State

145

Hello World

Hello World
Hello World
Hello World

Hello \World

Figure 5.1: Text state operators

We already know from the first example in the previous chapter how the first “Hello World” was added. This
is shown in code sample 5.1.

Code sample 5.1: C0501_TextState

canvas.
canvas.
canvas
canvas

canvas.

beginText();
moveText (36, 788);

.setFontAndSize(BaseFont.createFont(), 12);
.showText("Hello World ");

endText();

In code
increase

sample 5.2, we try some more text state operators. With the setCharacterSpacing() method, we
the space between the characters with 3 user units. With the setWordSpacing() method, we increase

the space between the words with 30 user units. With the setHorizontalScaling() method, we scale the
words to 150% of their original width. Finally, we add the word “Hello” followed by the word “World” with a

text rise

of 4 user units.

Code sample 5.2: C0501_TextState

canvas.
canvas.
canvas
canvas
canvas.
canvas.
canvas.
canvas
canvas.
canvas.
canvas

canvas

beginText();
moveText (36, T60);

.setCharacterSpacing(3);
.showText("Hello World ");

setCharacterSpacing(Q);
setlLeading(16);

newlineText();

.setWordSpacing(30);

showText("Hello World ");
setWordSpacing(Q);

.setHorizontalScaling(150);
.newlineShowText("Hello World ");

13
14
15
16
17

O 00 9 O O » W N =~

RS
N =~ O

Text State

canvas.
.setleading(24);

.newlineShowText("Hello ");

canvas
canvas

canvas.
canvas.

146

setHorizontalScaling(100);

setTextRise(4);
showText("World ");

Figure 5.2 demonstrates the different parameters we can use for the setTextRenderingMode() method.

-

e orla (sfr

HelloWorld (fill)

HelloWorld (fill and stroke)
LIAllA VAlAarlA fAlin)

Hello World (stroke clip)
HelloWorld (fill clip)
HelloWorld (fill and stroke clip)

Figure 5.2: Text rendering mode

= 'III |'J'|' |:
”LQ}' W

A
\:i

OIK

Let’s start with the first four lines, of which only three are visible. These are added to the document using the
code from code sample 5.3.

Code sample 5.3: C0501_TextState

canvas
canvas

canvas.
canvas.
canvas.
.setTextRenderingMode(PdfContentByte. TEXT_RENDER_MODE_STROKE) ;

canvas

canvas.
canvas.
canvas.
.setTextRenderingMode(PdfContentByte. TEXT RENDER_MODE_FILL_STROKE);
.newlineShowText("HelloWorld (fill and stroke)");

canvas
canvas

canvas.

.setColorFill(BaseColor.BLUE);
.setLineWidth(@.3f);

setColorStroke(BaseColor.RED);
setTextRenderingMode(PdfContentByte . TEXT_RENDER_MODE _INVISIBLE);
newlineShowText("Hello World (invisible)");

newlineShowText("Hello World (stroke)");

setTextRenderingMode(PdfContentByte. TEXT_RENDER_MODE_FILL);
newlineShowText("HelloWorld (fill)");

endText();

The first line that is drawn is invisible. You can only see what is written if you select the text and copy it
into a text editor. This is a way to add text to a document that can be seen by a machine when parsing a

© 00 9 O O b W N =

[=Y
W N,

Text State

document, but not by a human being when reading the document in a PDF viewer. In the second line (the
first visible line), the outlines of every glyph is drawn using the stroke color (red). The next line shows the
default behavior. The fill color is blue and that’s the color that is used to draw text. There’s also a line where

we fill and stroke the text. You see the outlines of the text in red and the glyphs are filled in blue.

Table 5.5 shows an overview of all the possible parameters. The first column shows the value of the operand

for the Tr operator in PDF. The second column shows the value that is used in iText.

Table 5.5: Overview of the text rendering mode values

PDF Rendering mode

Description

0 TEXT_RENDER_MODE_FILL

1 TEXT_RENDER_MODE_STROKE

2 TEXT_RENDER_MODE_FILL _STROKE

3 TEXT_RENDER_MODE _INVISIBLE

4 TEXT_RENDER_MODE_FILL_CLIP

5 TEXT_RENDER_MODE_STROKE_CLIP

6 TEXT_RENDER_MODE_FILL_STROKE_CLIP
7 TEXT_RENDER_MODE_CLIP

We’ve used the parameters ending with _CLIP for the final four lines in figure 4.2. In code sample 5.4, we show
the text, and then we draw a green rectangle that should normally cover the upper half of the text. However,
the text is used as a clipping path, which explains why we don’t see any rectangle. We just see the text, even

half of the text that is invisible.

Code sample 5.4: C0501_TextState

This is the default: glyphs are shapes that
are filled.

With this mode, the paths of the glyphs
are stroked, not filled.

Glyphs are filled first, then stroked.

Glyphs are neither filled nor stroked. Text
added using this rendering mode is
invisible, but it can be selected and copied.

Fill text and add text to path for clipping.

Stroke text and add text to path for
clipping.

Fill and stroke text and add text to path
for clipping.

Add text to path for clipping.

canvas.setColorFill(BaseColor.GREEN);
canvas.saveState();
canvas.beginText();
canvas.setTextMatrix(36, 624);

canvas.setTextRenderingMode(PdfContentByte. TEXT RENDER_MODE_CLIP);

canvas.showText("Hello World (clip)");
canvas.endText();

canvas.rectangle(36, 628, 236, 634);
canvas.fill();

canvas.restoreState();
canvas.saveState();
canvas.beginText();
canvas.setTextMatrix (36, 608);

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Text State

canvas.

canvas
canvas

canvas.
canvas.
canvas.
canvas.

canvas
canvas

canvas.
canvas.
canvas.

canvas
canvas

canvas.
canvas.
canvas.

canvas
canvas

canvas.
canvas.
canvas.

canvas.

148

setTextRenderingMode(PdfContentByte. TEXT RENDER_MODE_STROKE CLIP);

.showText("Hello World (stroke clip)");
.endText();

rectangle(36, 612, 236, 618);
£i11();

restoreState();

saveState();

.beginText();
.setTextMatrix (36, 592);

setTextRenderingMode(PdfContentByte . TEXT_RENDER_MODE_FILL_CLIP);
showText("HelloWorld (fill clip)");
endText();

.rectangle(36, 596, 236, 602);
Fi11();
canvas.

restoreState();
saveState();
beginText();
setTextMatrix(36, 576);

.setTextRenderingMode(PdfContentByte. TEXT RENDER_MODE_FILL_STROKE_CLIP);
.showText("HelloWorld (fill and stroke clip)");

endText();
rectangle(36, 580, 236, 586);
£i11();

restoreState();

Figure 5.3 shows us some text positioning examples.

Hello World Hello World
Hello World
Hello World

Hello World

Helno World

Figure 5.3: Text positioning

In code sample 5.5, we move the text to a specific coordinate using the moveText () method. We show the text
“Hello World” twice. These words are added on the same line. Then we move down 16 user units using the
moveTextWithLeading() method. As we’re using the relative Y-value -16, the leading is set to 16 user units.

© 00 9 O O b W N =

I = U N
B W N =~

Text State 149

We add the text that is shown on the second line. Using the newlineText() method will once more move the
current position down with 16 user units. We add a third line.

We can change the text matrix to a new absolute value using the setTextMatrix() method. The text we add
is shown on the fourth line. We change the text matrix once more, introducing more values. Due to the new
text matrix, the text we add in the last showText() line is scaled with a factor 2 and slightly skewed.

Code sample 5.5: C0502_TextState

canvas.beginText();

canvas.moveText(36, 788);
canvas.setFontAndSize(BaseFont.createFont(), 12);
canvas.showText("Hello World ");
canvas.showText("Hello World ");
canvas.moveTextWithlLeading(Q, -16);
canvas.showText("Hello World ");
canvas.newlineText();
canvas.showText("Hello World ");
canvas.setTextMatrix (72, 740);
canvas.showText("Hello World ");
canvas.setTextMatrix(2, @0, 1, 2, 36, 710);
canvas.showText("Hello World ");
canvas.endText();

In figure 5.4, we try some text showing operators.

Hello World
Hello World
Hello World
Hello World

Figure 5.4: Text showing

We’ve already used the showText () and the newlineText() methods in previous examples. We now also use
the newlineShowText () method that changes the text state. We use it once to show Hello Text using the current
state regarding word and character spacing, and we use it once to introduce a word spacing of 30 units and
a character spacing of 3 units. Finally, we take a look at the showText () method that accepts a PdfTextArray
object. We can use this method to fine-tune the distance between different parts of a line. In this case, we
move “el” 45 glyph units closer to “H”, we move the two “1” glyphs 85 glyph units closer to each other. We
don’t use a space character to separate the two words “Hello” and “World”. Instead, we introduce a gap of 250
units in glyph space. Finally, we move “1d” 35 glyph units closer to “Wor”. Using a text array is common in
high-end PDF tools that require a high typography-quality.

© 00 9 O O b W N =

[T S S N O U Y
S O 0 N1 O O b W N =~ O

Text State 150

Code sample 5.5: C0502_TextState

canvas.beginText();

canvas.moveText (216, 788);
canvas.showText("Hello World ");
canvas.setleading(16);
canvas.newlineShowText("Hello World ");
canvas.newlineShowText(30, 3, "Hello World ");
canvas.setCharacterSpacing(0);
canvas.setWordSpacing(9);
canvas.newlineText();

PdfTextArray array = new PdfTextArray("H");
array.add(45);

array.add("el");

array.add(85);

array.add("lo");

array.add(-250);

array.add("Wor");

array.add(35);

array.add("1ld ");

canvas.showText(array);

canvas.endText();

All the examples we've seen so far are marked with an all-caps warning: “THIS IS NOT THE USUAL WAY
TO ADD TEXT; THIS IS THE HARD WAY!!!”

iText provides much easier ways to add text to a document, but that’s outside the scope of this book. We’ll only
take a look at a couple of the convenience methods that can be used when adding text at absolute positions.

5.1.5 Convenience methods

The result we got when we tried to move glyphs closer to each other using a self-made PdfTextArray wasn’t
that successful. It’s not something you’re supposed to do manually. The PdfContentByte class has a static
getKernArray() method that allows you to create the PdfTextArray automatically based on the kerning info
that is available in the font program. Let’s take a close look at figure 5.5.

3
o

Hello World
WO\
HelloWorld ¥© 0"

HelloWorld &
Kerned: 64.68; not kerned: 65.340004

Figure 5.5: Text with and without kerning

Text State 151

The first line is added the same way, we’ve added text before, using canvas.showText("Hello World ");
For the second and third line, we introduced kerning. You may not see the difference with the naked eye, but

©O© 00 9 O O b» W N =

= U
W N o

when we calculate the widths without and with kerning, we get a difference of 0.66 point.

Code sample 5.6 shows two different ways to use kerning.

Code sample 5.6: C0503_TextState

BaseFont bf = BaseFont.createFont();

canvas.setFontAndSize(bf, 12);

canvas.setleading(16);

canvas.showText("Hello World ");

canvas.newlineText();

PdfTextArray array = PdfContentByte.getKernArray("Hello World ", bf);

canvas.showText(array);

canvas.newlineText();

canvas.showTextKerned("Hello World ");

canvas.newlineText();

canvas.showText(String. format("Kerned: %s; not kerned: %s",
canvas.getEffectiveStringWidth("Hello World ", true),
canvas.getEffectiveStringWidth("Hello World ", false)));

Instead of using the showText () method passing a PdfTextArray created with the getKernArray() method,
we can also use the showTextKerned() method. The result is identical. The showTextKerned() method uses
the getKernedArray() internally. If you’d use RUPS to look inside the PDF, you’d find the following syntax:

[(Hello), 4@, (W), 30, (or), -15, (1d)] TJ

The word “Hello” isn’t optimized, but we save 40 units in glyph space between the space character and the
“W”. The word “World” is split into three pieces, saving 30 units between “W” and “or”, but introducing an
extra 15 units between “or” and “1d”.

With the getEffectiveStringWidth() method, we can get the effective width of a String using the current
font and font size that is active in the PdfContentByte object. The Boolean parameter indicates whether you
want the width using kerning (true) or the width without taking into account the kerning (false). Looking
at figure 5.5, we see that the kerned string measures 64.68 user units whereas the string without kerning
measures 65.340004 user units.

0 How does glyph space relate to user space?

We already know that one user unit corresponds with one point by default. These measurements are
done in user space. Glyphs are measured in glyph space. Thousand units in glyph space correspond
with one unit in text space. The conversion from text space to user space is done through the text
matrix.

An example will help us understand. When we kerned the words “Hello World “, we gained 55
units in glyph space (40 + 30 - 15). This is 0.055 units in text space. We used a font size of 12 points,
hence we’ve gained 12 x 0.055 or 0.66 points. If we ignore the rounding errors, that’s the difference
between the effective width of the non-kerned and the kerned text string: 65.34 - 64.68.

Text State 152

Figure 5.5 also shows a couple of “Hello World” text snippets that are rotated. This could be achieved by
calculating a text matrix, but in this case, we used the showTextAligned() and the showTextAlignedKerned()
methods as shown in code sample 5.7.

Code sample 5.6: C0503_TextState

canvas.showTextAligned(Element .ALIGN_CENTER, "Hello World ", 144, 790, 30);
canvas.showTextAlignedKerned(Element .ALIGN_CENTER, "Hello World ", 144, 770, 30);

Using these methods is much easier than having to define a text matrix. In this case, we define a coordinate,
for instance (114, 790) and an angle in degrees, for instance 30. We tell iText to align the text in such a way
that the coordinate is at the center of the baseline of the text.

Possible values are:

+ Element.ALIGN_LEFT— aligns the text, so that the coordinate is to the left of the text,
+ Element.ALIGN_CENTER— aligns the text, so that the coordinate is at the center of the text, and
« Element.ALIGN_RIGHT— aligns the text, so that the coordinate is to the right of the text.

This is still a pretty low level approach, we’ll discuss more convenient ways to add text in the book “Create
your PDFs with iText"”.

We have listed all the possible text state operators and we've made some simple examples demonstrating
the difference between the different iText methods involving text state, but we’ve overlooked one important
aspect. So far, we’ve always used BaseFont .createFont() to create a BaseFont object. This createFont()
method introduces the default font, which is the Standard Type 1 font Helvetica. In the next section, we’ll
discover how we can introduce other font types.

5.2 Introducing fonts

The very first versions of Adobe Reader, at that time known as Acrobat Reader, shipped with 14 so-called
Base 14 fonts. The rationale behind these fonts was that you never had to embed these fonts into a PDF file
as you could always expect them to be present in the viewer.

Today, these fonts are no longer part of the viewer. The terminology has also changed. We now call these
fonts the Standard Type 1 fonts: (1) Courier, (2) Courier-Bold, (3) Courier-Oblique, (4) Courier-BoldOblique,
(5) Helvetica, (6) Helvetica-Bold, (7) Helvetica-Oblique, (8) Helvetica-BoldOblique, (9) Times-Roman, (10)
Times-Bold, (11) Times-Italic, (12) Times-BoldItalic, (13) Symbol, and (14) ZapfDingbats.

Each viewer is supposed to have access to the 14 Standard Type 1 fonts on the OS, or to a font that
is very similar. For instance: on Windows, Helvetica will be substituted by Arial.

These fonts are useful if you want to keep the file size of the PDF document small, but in general it is
recommended to embed (subsets of) fonts. As a matter of fact, embedding fonts can be mandatory in some
use cases, for instance when you’re creating PDF/A documents (A stands for Archiving).

To embed a font, we need a font program.

'https://leanpub.com/itext_pdfcreate

https://leanpub.com/itext_pdfcreate
https://leanpub.com/itext_pdfcreate
https://leanpub.com/itext_pdfcreate

Text State 153

5.2.1 Font programs

Table 5.6 lists the extensions of the files that contain font metrics or a font program, or both.

Table 5.6: Font files and their extensions

Font Type Extension Description

Type 1 .afm, .pfm, .pfb A Type 1 font is composed of two files: one containing the
metrics (.afm or .pfm) and one containing the mathematical
descriptions for each character (.pfb).

TrueType .ttf A font based on a specification developed by Apple to
compete with Adobe’s type 1 fonts

OpenType .off, .ttf, .ttc A cross-platform font file format based on Unicode.
OpenType font files containing Type 1 outlines have an .otf
extension. Filenames of OpenType fonts containing
TrueType data have a .ttf or .ttc extension. The .ttc
extension is used for TrueType Collections.

Type 1 was originally a proprietary specification owned by Adobe, but after Apple introduced TrueType as
a competitor, the specification was published, and third party manufacturers were allowed to create Type 1
fonts, provided they adhered to the specification. In 1991, Microsoft started using TrueType as its standard
font and for a long time, TrueType was the most common font on both Mac OS and MS Windows systems.
Unfortunately, Apple as well as Microsoft added their own proprietary extensions, and soon they had their
own versions and interpretations of (what once was) the standard. When looking at a commercial font, you
had to be careful to buy a font that could be used on your system. A TrueType font for Windows didn’t
necessarily work on a Mac, and vice versa. To resolve the platform dependency of TrueType fonts, Microsoft
started developing a new format. Microsoft was joined by Adobe, and support for Adobe’s Type 1 fonts was
added. In 1996, a new font format was born: OpenType fonts. The glyphs in an OpenType font can be defined
using either TrueType or Type 1 technology.

This is the history of fonts in a nutshell. There’s nothing to worry about: fonts inside a PDF, no matter of
which type, can be viewed on any platform. Let’s examine fonts from a PDF perspective.

5.2.2 Fonts inside a PDF

Fonts are stored in a dictionary of type /Font and the /Subtype entry indicates how the font is stored inside
the PDF. Table 5.7 shows the different options for the /Subtype value.

Table 5.7: Subtype values for fonts

Subtype Description

/Typetl A font that defines glyph shapes using Type 1 font technology
/Type3 A font that defines glyphs with streams of PDF graphics operators
/TrueType A font based on the TrueType font format

/Type® A composite font—a font composed of glyphs from a descendant CIDFont

Text State 154

Table 5.7: Subtype values for fonts

Subtype Description

/CIDTypeType® A CIDFont whose glyph descriptions are based on the Compact Font
Format (CFF)

/CIDTypeType2 A CIDFont whose glyph descriptions are based on TrueType font
technology

Table 5.7 in this book corresponds to Table 110 in ISO-32000-1, omitting the subtype /MMType1. Multiple Master
fonts have been discontinued.

Multiple Master (MMTypel) fonts can be present in a PDF document, and iText can deal with
PDFs containing MMTypel fonts, but there’s no support for MMTypel in the context of creating
documents.

Fonts in PDF are a complex matter. Instead of diving into the theory of fonts, we’ll take a look at some
examples to see how section 5.2.1 and section 5.2.2 relate to each other.

5.3 Using fonts in PDF

Let’s start by making a distinction between two groups of fonts. If the font dictionary has a /Subtype entry
with value /Type1, /Type3 and /TrueType, the font is stored inside the PDF as a simple font. This means that
each glyph corresponds with a single-byte character. A Type 0 font is called a composite font. It obtains its
glyphs from a font-like object called a CIDFont, but let’s start with simple fonts.

5.3.1 Simple fonts

Content that needs to be rendered using a simple font is stored in the content stream as a sequence of single
byte characters. In a simple font, we can define 256 glyphs. These glyphs are represented by characters with
values ranging from 0 to 255.

The mapping between the characters and the glyphs is called the character encoding. A Type 1 font can have
a special built-in encoding, as is the case for Symbol and ZapfDingbats. With other fonts, multiple encodings
may be available. For instance, the glyph known as dagger () corresponds with (char) 134 in the encoding
known as WinAnsi, aka Western European Latin (code page 1252), a superset of Latin 1 (ISO-8859-1). The same
dagger glyph corresponds to different character values in the Adobe Standard encoding (178), MacRoman
encoding (160), and PDF Doc Encoding (129).

Figure 5.6 shows a PDF with five lines of text. If we look at the Fonts tab in the Document Properties dialog,
we see a list of five fonts.

Text State 155

(Do | B @ 8 I & ® 2 [
]| v [O] & @

Description | Security | Fents | Initial View

Fonts Used in this Document

= @ CMR10 (Embedded)

No country for old men Type: Type 1

. Encoding: Built-in
Inception

=] a Courier
Nikogarsdnja zemlja Type: Type 1
N ' Encoding: Ansi
UpEG Actual Font: CourierStd

A nobnto Teba Actual Font Type: Type 1
=] @ OpenSans (Embedded Subset)
Type: TrueType

Encoding: Custom
=] @ OpenSans (Embedded Subset)
Type: TrueType
Encoding: Custom
= @@ Puritan2 (Embedded)
Type: Type 1
Encoding: Custom

Figure 5.6: Simple fonts

Let’s examine the content on this screen shot line by line:

« The first line (“No Country for old men”) is written in Courier, using the Windows code page (ANSI
encoding). In our code, we defined the standard type 1 font Courier, but we didn’t embed the font into
the PDF. Instead of the Courier font we expected, Acrobat used CourierStd, a Typel font that is very
similar (if not identical) to Courier.

« The second line (“Inception”) is written using the Type 1 font Computer Modern Regular (CMR10). This
font was embedded into the PDF and has a single built-in encoding.

« The third line (a text in a Central European language) is written using an OpenType font with Type 1
outlines called Puritan. We used Code Page 1250 which is the encoding used for Central European and
Eastern European languages that use Latin script, but that involve some special characters that can’t be
found in Latin-1. This custom set of glyphs is fully embedded into the PDF.

+ The fourth line (a text in Greek) is written using an OpenType font with TrueType outlines called
OpenSans. We used Code Page 1253 used to write Modern Greek. Only a subset of this font is embedded,
containing only those characters that are used in the text.

« The fifth line (a text in Russian) is also written using OpenSans, but now we used Code Page 1251 that
covers languages that use the Cyrillic alphabet. OpenSans is mentioned twice in the fonts tab because
there are two sets of OpenSans in the PDF using a different custom encoding.

Sample 5.7 shows the code that was used to create this PDF.

O 00 = O O » W N =~

SIS S TS T = G N i G i G G Y
W NP, O © 00 O b N =~

Text State 156

Code sample 5.7: C0504_SimpleFonts

String TYPE1 = "resources/fonts/cmr1@.afm";

String OT_T1 = "resources/fonts/Puritan2.otf";

String OT_TT = "resources/fonts/OpenSans-Regular.ttf";
canvas.beginText();

canvas.moveText (36, 806);

canvas.setleading(16);

BaseFont bf;

bf = BaseFont.createFont(BaseFont.COURIER, BaseFont.WINANSI, BaseFont.NOT_EMBEDDED);
canvas.setFontAndSize(bf, 12);

canvas.newlineShowText("No country for old men");

bf = BaseFont.createFont(TYPE1, BaseFont.WINANSI, BaseFont.EMBEDDED);
canvas.setFontAndSize(bf, 12);

canvas.newlineShowText("Inception");

bf = BaseFont.createFont(0OT_T1, BaseFont.CP1250, BaseFont.EMBEDDED);
canvas.setFontAndSize(bf, 12);
canvas.newlineShowText("Nikogar\u@16inja zemlja");

bf = BaseFont.createFont(OT_TT, "CP1253", BaseFont.EMBEDDED);
canvas.setFontAndSize(bf, 12);
canvas.newlineShowText (" \u@39d\u@3cd\ud3c6\ud3b5\u@3c2");

bf = BaseFont.createFont(OT_TT, "CP1251", BaseFont.EMBEDDED);
canvas.setFontAndSize(bf, 12);

canvas.newlineShowText ("\u@42f \u@43b\u@44e\ud431\u@43b\uddde \ud442\u0435\u0431\u044f");
canvas.endText();

Now let’s look inside the PDF.

5.3.1.1 The font is not embedded

The font courier is defined like this:

1 © obj
<</BaseFont/Courier/Type/Font/Encoding/WinAnsiEncoding/Subtype/Typel>>
endob j

This is a simple PDF dictionary with four entries:
. The /Type is /Font,

. The /Subtype is /Type1,
. The /BaseFont is Courier, and

BN W N -

. The /Encoding is /WinAnsiEncoding.

When we look at the content stream of the page, we see:

Text State 157

/F1 12 Tf
(No country for old men) '

We recognize the name /F1 in the /Resources of the page dictionary:
/Resources<</Font<</F1 1 @ R/F2 2 @ R/F3 3 O R/F4 4 @ R/F5 5 0 R>>>>

The page resources consist of a /Font entry, which in turn has five entries, one for each font that is used
on the page. The name /F1 refers to object 1 in the document. This is pretty straightforward, but as already
mentioned, it is often better to embed the font, because your operating system won’t always be able to find a
font that resembles the font you selected.

5.3.1.2 The font is embedded

Figure 5.7 shows how the font Computer Modern Regular (CMR10) is stored inside our sample PDF. We

recognize the /Type, /Subtype and /BaseFont entry. There is no /Encoding entry, but there’s a /FirstChar,
/LastChar, /Widths and /FontDescriptor entry.

@ IF2. 20 R -> Dictionary of type: Font
¢ 23 Dictionary of type: /Font
|# /LastChar: 116
@ BaseFont ICMR10
@ mype: Font
@ /Subtype: Mype1
= [FirstChar. 73
o= = M\idths: [364,0 0, 444 1
[FontDescriptor: 10 0 R -= Dictionary of type: IFontDescriptor
¢ 2 Diclionary of type: iIFontDescriptor
ICapHeight: 683
FontBBox: [-40, -250, 1009, 969]
s IFontFile: 9 0 R -= Stream
) Stream
I iLength1: 3611
= LLength2: 22718
= MLength3: 533
2| Length: 24452
@ Filter: iIFlateDecode
Mype: /FontDescriptor
IDescent: -194
IStemV: 80
[Flags: 4
IAscent 694
[FontMame: /ICMR10
MalicAngle: 0

=0

o

E!

-

A@HEERMS

Figure 5.7: Type 1 font with built-in encoding

We are using this font to write the word “Inception”. We only need 8 different glyphs to write this word, the
first glyph being ‘T’ (corresponding with character 73) and the last one being ‘t’ (corresponding with character
116). In the /Widths array, we define the width of each glyph, starting with T" and ending with ‘t’. We are not
interested in the widths of the glyphs we don’t use, hence we can define these widths as 0.

The value of the /FontDescriptor entry is another dictionary. It contains more info about the font metrics.
It also contains a /FontFile entry. The value of this entry is a stream containing the font program.

A font descriptor of an embedded font has a /FontFile entry, a /FontFile2 entry, or a /FontFile3 entry.
Table 5.8 explains the difference.

Text State

Entry key

Table 5.8: Possible font file entries for the font descriptor

Description

/FontFile

/FontFile2

/FontFile3

The stream refers to a Type 1 font program in the original (non-compact)
format. As usual, the /Length parameter shows the length of the compressed
stream. There are 3 extra length values that give us information about the
decoded stream: /Length1 shows the length in bytes of the clear-text portion
of the Type 1 font program. /Length2 shows the length in bytes of the
encrypted portion of the Type 1 font program. /Length3 shows the length in
bytes of the fixed-content portion.

The stream refers to a TrueType font program. Again, the value of the
/Length parameter corresponds with the length of the compressed stream,
but there’s an extra /Length2 entry that shows the length of the decoded
TrueType font program.

The stream refers to a font program represented in the Compact Font

Format. The /Subtype entry further specifies the type of font.
Possible values for /Subtype are:

- /Type1C: the font file is a Type 1 compact font.
- /CIDFontType@C: the font file is a Type 0 compact CIDFont.
- /OpenType: the font is an OpenType font.

158

The way the font is stored in a PDF by iText depends on the type of font program that was provided, but also
on the encoding that was used. For instance, we have used the font program Puritan2.otf, an OpenType

font with Type 1 outlines, but we stored it inside the PDF as a Type 1 font. This is shown in figure 5.8.

?

F330R -}_DICIIGI'IEI';'-GT type: [Font
¢- [Dictionary of type: /Font

B ALastChar: 154

@ BaseFont: Puritan2
@ Mype: Font

@ /Subtype; Mype1

% [/Encoding: Dictionary of type: /IEncoding

-0

© Mype: /EEncoding
& .= [Differences: [32, /space, 78, /M, 97, /3, 101, /e, 103, 1g, 105, 4, 4, . N, im, in, o, 114, I,
|| /FirstChar: 32
= Midths: [273,0
[FontDescriptor: 12 0 R -= Dictionary of type: IFontDescriptor
¢ 3 Dictionary of type: /FontDescriptor
B rCapHeight 642
e :— [FoniBBox: [-148, -232 973, 860]
@ mMype: FontDescriptor
T [FoniFile3. 11 0 R -» Stream
¢ M) Stream
@ /Subtype: MypeiC
|7 iLength; 21295
@ sFilter: IFlateDecade
|| /Descent -250
[rstemv: 80
||| /Flags: 32
=] JAscent 860
@@ /FoniName: /Puritan2
= Mtalictngle: 0

Figure 5.8: Type 1 font

In the /FontDescriptor entry, we recognize a /FontFile3 stream with /Subtype equal to /Type1C. The font
is stored as a Type 1 Compact font. In the next section, we’ll use the same font program without a different

Text State 159

encoding. We’ll discover that the font will be embedded in a totally different way.

5.3.1.3 Encoding

If we look at the font dictionary, we also see an entry for the /Encoding. This entry is a dictionary that contains
a /Differences array. This array describes the differences from the encoding specified by /BaseEncoding or,
if /BaseEncoding is absent from a default base encoding. The numbers in this array are the first index in a
sequence of character codes to be changed. In figure 5.8, we start with the index 23 for the character code
/space. The index 105 is the first index for the sequence of character codes /i, /j, /k,... These differences
reflect the glyphs we use in code page 1250.

We see a similar custom encoding in figure 5.9 (code page 1253) and figure 5.10 (code page 1251). In both cases
the font OpenSans-Regular is used.

? [F4. 40 R -= Dictionary of type: Font
¢ [Dictionary of type: Font
7| /LastChar: 253
@ /BaseFont JETWWKP+0OpenSans
@ Mype: iFont
@ rsubtype: TrueType
¢~ 2 /Encoding: Dictionary of type: /Encoding
Q IMype; [Encoding
o != IDifferences: [205, /N, 229, lepsilon, 242, sigma, 246, Iphi, 253, jupsilontonos]
[fFirstChar: 205
@ := MWidths: [753,0,475,0,0,0,0,0,
IFantDescriptor: 14 0 R -= Dictionary of type: /FontDescriptor
- Dictionary of type: IFontDescriptor
J /CapHeight: 713
o= := /FontBBox [-549, -270, 1204, 1047)
& Mype: IFontDescriptor
| /Descent -240
2 /Stem\: 80
- [FontFile2: 13 0 R -> Stream
¢ #) Slream
= Length1: 10292
T Length: 5287
@ FFilter: IFlateDecode
= [Flags: 32
= /scent 765
@ /FontName: IETWWKP+0OpenSans
Z| MalicAngle: 0

-0

Figure 5.9: OpenSans subset for Greek characters

This is the font that is used for the greek text. The content stream for the snippet of Greek text looks like this:

JF4 12 Tf
(1y680)

The I character corresponds with Unicode 205. In the custom encoding shown in figure 5.9, it is used for the
greek capital Nu. The o character corresponds with Unicode 242. In the custom encoding shown in figure 5.9,
it is used for a glyph representing the greek letter sigma. And so on.

Figure 5.10 shows how the same font, stored using a different encoding.

Text State 160

3 F5: 50 R -= Dictionary of type: /Font
- [Dictionary of type: Font
P MLastChar: 255
@ /BaseFont IRWIKRO+OpenSans
& Mype: [Font
@ /subtype; MrueType
¢ EJ /Encoding: Diclionary of type: /JEncoding
@ Mype: Encoding
o := IDifferences: [32, /space, 223, /afi10049, 225, /afi10066, 229, /3fi10070, 235,/
| /FirstChar: 32
& .= /Widths: [259,0
¢ fFontDescriptor: 16 0 R -= Dictionary of type: FontDescriptor
¢ 23 Dictionary of type; IFontDescriptor
ICapHeight: 713

& :— [FontBBox [-549,-270, 1204, 1047)]
@ Mype: iIFontDescriptor
™ Descent -240
= IStemV: 80
? fFontFile2: 150 R -= Stream
¢ () Stream

[T nength1: 10436
=] Length: 5362
@ FFilter; FlateDecode
| Flags: 32
= JAscent 765
& Fonthame: IRWIKRO+0penSans
= MalicAngle: 0

Figure 5.10: OpenSans subset for Russian characters

The content stream for the snippet of Russian text looks like this:

JF5 12 Tf
(R &padp 08ay) '

Whereas the 0 in the Greek example corresponded with sigma, it now corresponds with afii1ee84. AFII
stands for the Association for Font Information Interchange, and AFII has defined an id for a large set of
characters from different languages. The AFII notation is different from Unicode in the sense that AFII was
designed for textual entities, whereas Unicode was designed for graphic entities. The AFII notation has been
replaced with Unicode in many cases, but you may still find references to it in PDF.

5.3.1.4 Font subsets

When we look at the font descriptor, we see a /FontFile2 entry: the font is embedded as a TrueType font.
There is something odd about the /FontName entry in the font descriptor dictionary. In figure 5.9, we see
/ETWWKP+OpenSans. In figure 5.10, we see /RWIKRO+OpenSans. The actual font name is OpenSans, but we are
using two different subsets of the font. The distinction between the subsets is made by prefixing the name
with a tag followed by a plus sign. The tag consists of six upper case letters that can be chosen randomly, but
that need to be unique for each different subset within the PDF file. When creating a PDF using iText, the
subset will only contain glyph descriptions for the characters that are used in the document.

If we compare the original length of font files, we see that the OpenSans fonts take about 10K
o bytes. The Type 1 fonts were more than double in byte-size. This is caused by the fact that Type 1

fonts can’t be sub-setted. We only need a handful of glyphs and we only define the widths and the

encoding for the glyphs we use, but we can’t store a reduced version of the font program.

©O© 00 9 O U b W N =

N = U E N
O© 00 9 O O b W N~ O

Text State 161

5.3.1.5 Available encodings

Once you start experimenting with code sample 5.7, for instance by trying to render the Cyrillic characters
using the font Courier, you’ll notice that the Russian String isn’t rendered. That’s because Codepage 1251
isn’t supported in Courier. The Standard Type1 font Courier doesn’t know anything about Cyrillic characters.
In code sample 5.8, we ask iText which encodings are supported in Courier, Computer Modern, Puritan and
OpenSans.

Code sample 5.8: C0505_SupportedEncoding

public static final String TYPE1 = "resources/fonts/cmr1@.afm";

public static final String OT_T1 = "resources/fonts/Puritan2.otf";

public static final String OT_TT = "resources/fonts/OpenSans-Regular.ttf";

public static void main(String[] args) throws DocumentException, IOException {
C0505_SupportedEncoding app = new C0505_SupportedEncoding();
app.listEncodings(BaseFont.createfFont(

BaseFont.COURIER, BaseFont.WINANSI, BaseFont.NOT_EMBEDDED));
app.listEncodings(BaseFont.createFont(TYPE1, BaseFont.WINANSI, BaseFont.NOT_EMBEDDED));
app.listEncodings(BaseFont.createFont(0OT_T1, BaseFont.WINANSI, BaseFont.NOT_EMBEDDED));
app.listEncodings(BaseFont.createFont(OT_TT, BaseFont.WINANSI, BaseFont.NOT_EMBEDDED));

}

public void listEncodings(BaseFont bf) {
System.out.println(bf.getPostscriptFontName());
String[] encoding = bf.getCodePagesSupported();
for (String enc : encoding) {

System.out.print("\t"');

System.out.printin(enc);

When we run this small example and look at the System.out, we see the following overview:

Courier
CMR10
Puritan2
1252 Latin 1
Macintosh Character Set (US Roman)
Symbol Character Set
865 MS-DOS Nordic
863 MS-DOS Canadian French
861 MS-DOS Icelandic
860 MS-DOS Portuguese
OpenSans
1252 Latin 1
1250 Latin 2: Eastern Europe

Text State 162

1251 Cyrillic

1253 Greek

1254 Turkish

1257 Windows Baltic

1258 Vietnamese

Macintosh Character Set (US Roman)

Only Puritan and OpenSans offer the possibility to use different encodings to create a simple font.

Those are also the fonts that allow the use of Identity-H and Identity-V. When you see these Identity
encodings, you are looking at text that uses Unicode. In that case, you are dealing with a composite font.

5.3.2 Composite fonts

A composite font obtains its glyphs from a font-like object called a CIDFont. A composite font is represented
by a font dictionary with subtype /Type@. The Type 0 font is know as the root font, and its associated CIDFont
is called its descendant.

Ll o (1| @ @ [esx]-] | [B] B | [

Description | Security | Fonts | Initial View | Custom

Fonts Used in this Document

le{)gargn]a Zeml]a = OpenS5ans (Embedded Subset)
r Type: TrueType (CID)
N ULPE-C Encoding: Identity-H
= B Puritan2-ldentity-H (Embedded Subset)
A nrobnro Tebs Type: Type 1 (CID)
Encoding: Identity-H

Figure 5.11: Composite fonts seen from the outside

In figure 5.11, we use two of the fonts we already used in figure 5.6, but instead of introducing them as a simple
font, we now use them as a composite font. The encoding is no longer custom, but Identity-H. We don’t reuse
the standard Type 1 font Courier, nor the Computer Modern font as they can’t be used as composite fonts.

If you compare code sample 5.9 with code sample 5.7, you’ll notice only one major difference: we now use
BaseFont . IDENTITY_H instead of a custom encoding.

O 00 = O O » W N =~

I = U
O O b WO N~

Text State 163

Code sample 5.9: C0506_CompositeFonts

String OT_T1
String OT_TT = "resources/fonts/OpenSans-Regular.ttf";

"resources/fonts/Puritan2.otf";

canvas.beginText();

canvas.moveText (36, 806);

canvas.setleading(16);

BaseFont bf;

bf = BaseFont.createFont(OT_T1, BaseFont.IDENTITY H, BaseFont.EMBEDDED);
canvas.setFontAndSize(bf, 12);

canvas.newlineShowText("Nikogar\u@i161inja zemlja");

bf = BaseFont.createFont(OT_TT, BaseFont.IDENTITY H, BaseFont.EMBEDDED);
canvas.setFontAndSize(bf, 12);
canvas.newlineShowText (" \u@39d\u03cd\u@3c6\ud3b5\ud3c2") ;

bf = BaseFont.createFont(OT_TT, BaseFont.IDENTITY_ H, BaseFont.EMBEDDED);
canvas.setFontAndSize(bf, 12);

canvas.newlineShowText (" \uQ42f \u@43b\u@44e\u0431\u043b\uddde \ud442\u435\u0431\u044f");
canvas.endText();

Let’s take a look inside the PDF document. Figure 5.12 shows a snippet of the content stream.

36 806 Td
16 TL

F112Tf

(IJJLPHBESAQKB [FNWMKB)
F212Tf

(kE=,)

F212Tf

(E GeEGE OIEs&y

Figure 5.12: Composite fonts seen from the inside

Every glyph is now represented by two characters, which is different from what we saw in section 5.3.1.3.

We can now compare figure 5.13 with figure 5.8, and figure 5.14 with figure 5.9.

Text State 164

[IF1: 1 0 R -= Dictionary of type: /IFont
¢ [Dictionary of type: /Font
@ [BaseFont /BAICQL+Puritan2-ldentity-H
¢ := /DescendantFonts: [8 0 R]
? 8 0 R -= Dictionary of type: /Font
¢ L Dictionary of type: /Font
@' [BaseFont: IBAIGL+Puritan2-ldentity-H
9 L /clDSysteminfo: Dictionary
10rdering: ldentity
IRegistry: Adobe
=] 1Supplement: 0
@ Mype: Font
o = MW [1,[273], 47, [582], 66, [491], 70, [491], 72, [511], 74, [233, 233, 476, 234, 776, 512, 546], 83, [342], 91, [482], 194, [437]]
@ Isubtype: ICIDFontTypel
¢ IFontDescriptor: 7 0 R -= Dictionary of type: /IFontDescriptar
¢ [Dictionary of type: IFontDescriptar
|=| /CapHeight: 642
o= := [FontBBox: [-148, -232, 973, 860]
@ Mype: IFontDescriptor
? [FontFile3: 6 0 R -= Stream
¢ M Stream
@ /Subtype: /ICIDFontTypelC
= /Length: 3314
@ FFilter: JFlateDecode
|Z| IDescent: -250

= /Ascent: 860
@ [FontMame: /[BAINQL+Puritan2-ldentity-H
|=| MalicAngle: 0
=] /DW: 1000
@ fMype: IFont
@ /Subtype: Myped
@ /Encoding: dentity-H
[fMolnicode: 9 0 R -= Stream
- (%) Stream
|| /Length: 300
@ FFilter: FlateDecode

Figure 5.13: Puritan as a composite font

For the Puritan font, we have a dictionary of type /Font if which the /Subtype is /Type® and the /Encoding
is /Identity-H. The /ToUnicode entry is very important: it maps every character code that is used in this
font to its corresponding Unicode value. This /ToUnicode stream is called a CMap. Such a CMap is similar to
the /Encoding entry we encountered when we discussed simple fonts. It maps character codes to character
selectors. These character selectors are the CIDs (Character Identifiers) of a CIDFont.

The DescendantFonts entry is an array containing references to the descendant fonts that define the Type0
font. In PostScript, this array can contain multiple fonts. In PDF, this array can only contain one value: a single
CIDFont. In this case, we have a CIDFont of which the /Subtype is /CIDTypeType®. In the font descriptor, we
see a /FontFile3 (Compact Font Format) entry of which the /Subtype is /CIDFontType@C.

The OpenSans font is no longer used as a simple font with /SubType /TrueType, but as a /Type@ font with a
descendant CIDFontType2. The font descriptor has a /FontFile2 (TrueType font program). See figure 5.14.

Text State 165

¢ [F2: 20 R -= Dictionary of type: /Font
¢ [Dictionary of type: /Font
@ BaseFont I[SMUQZJ+0penSans
¢ :i= /DescendantFonts: [12 0 R]
- 12 0 R -= Dictionary of type: /Font
¢ [Dictionary of type: iFont
@ BaseFont [SMUQZI+0pen3ans
¢ L iCIDSysteminfo: Dictionary
10rdering: |dentity
IRegistry: Adobe
1= 1Supplement: 0
@ mype: IFont
&= = MW [3, [259], 363, [FH3], 386, [475], 309, [481], 403, [717], 410, [608), 457, [636], 459, [596], 463, [561], 469, [570], 476, [466], 488,
@ rSubtype: ICIDFontType2
? IFontDescriptor: 11 0 R == Dictionary of type: /FontDescriptor
¢ [Dictionary of type: IFontDescriptor
= /CapHeight: 713
o= := [FontBBox: [-549, -270, 1204, 1047]
@ [Mype: IFontDescriptor
= /IDescent -240
|=] /StemV: 80
- {FontFile2: 10 0 R -= Stream
¢ M Stream
= /Length1: 11292
|=| /Length: 6063
@ /Filter: IFlateDecode
= /Flags: 32
= /Ascent 765
@' [Fonthame: ISMUQZJ+0pen3ans
= MalicAngle: 0
= /DWW 1000
@ /CIDToGIDMap: /identity
@ Mype: Font
@ /subtype: Mype0
@ /Encoding: Ndentity-H
[Molnicode: 13 0 R -= Stream
¢k Stream
= /Length: 300
@ JFilter: IFlateDecode

Figure 5.14: OpenSans as a composite font

5.4 Using fonts in iText

Looking back at the examples in the previous section, you see something magical going on. We take a single
font file, e.g. OpenSans-Regular.ttf and by using different parameters for the createFont() method, iText
gives us a BaseFont object that results in a completely different type of font when we look under the hood. If
you look at the BaseFont class, you’ll notice that it is defined as an abstract class.

Let’s take a look at the different BaseFont implementations that are available in iText. This will also allow us
to discuss Type3 fonts and fonts with CMaps in a context that is different from the /ToUnicode entry.

5.4.1 Overview of the BaseFont implementations

Table 5.9 lists a series of iText classes that are used when creating a BaseFont object. Together these classes
cover all the font types listed in table 5.6, as well as all the font subtypes listed in table 5.7.

Text State 166

Table 5.9: iText BaseFont classes

Class name Description

TypelFont You’ll get a Type1Font instance if you create a standard type 1
font, or if you pass an .afm or .pfm file. Standard Type 1 fonts are
never embedded. For other Type 1 fonts, it depends on the value of
the embedded parameter and the presence of a .pfb file whether or
not the font will be embedded by iText.

TrueTypeFont In spite of its name, this class isn’t only used for TrueType fonts
(.tt£), but also for OpenType fonts with TrueType (.ttf) or
Typel (.ot£) outlines. This class will create a font of subtype
/TrueType or /Typei in a PDF document.

TrueTypeFontUnicode Files with extension .ttf or .otf can also result in this subclass of
TrueTypeFont if you use them to create a composite font. So will
files with extension .ttc. Inside the PDF, you’ll find the subtype
/Type@ along with /CIDFontType2 (.ttf and .ttc files) or
/CIDFontType® (.ot f files). Contrary to its superclass,
TrueTypeFontUnicode ignores the embedded parameter. iText will
always embed a subset of the font.

CFFFont OpenType fonts with extension .ot f use the Compact Font
Format (CFF). CFFFont is not a subclass of BaseFont. Creating a
font using an .otf file results in an instance of TrueTypeFont, but
it’s the CFFFont class that does the work.

Type3Font Type3 fonts are special. They don’t come in files, but you need to
create them using PDF syntax. Type3 fonts are always embedded.

CJKFont This is a special class for Chinese, Japanese, and Korean fonts for
which the metrics files are shipped in a separate JAR. Using a CJK
font results in a Type 0 font; the font is never embedded.

You don’t need to address classes such as Type1Font or TrueTypeFont directly; just as you used the Image
class to make iText select the correct image type, you can let BaseFont decide which font class applies, except
for one very special type of font: Type3.

5.4.2 A Type3 font example

When we created a new iText logo in 2014, we decided to use the brand name as the basis for the graphics.

T =XT

Figure 5.15: iText logo

This logo was created by a graphical designer, but we thought it would be nice if we could use this logo in
documents using a font. As we only need four glyphs: I, T, E, and X, and as two of these glyphs (I and E)
need to be rendered in orange, whereas the other two (X and T) need to be rendered in blue, it makes sense
to introduce a Type3 font consisting of nothing but these four glyphs. Type3 fonts are user-defined fonts of
which the glyphs are drawn using PDF syntax. They can also contain color information.

Code sample 5.10 shows how the font is created.

O 00 = O O » W N =~

W W W W W W wWwowWNINDNDNDDND-NDNDNDNDNDND A A B s sy
00 RN OO 0000 WD RO OO0 0 WwN RSO

Text State 167

Code sample 5.10: C0507_Type3Font

Type3Font t3 = new Type3Font(writer, true);

PdfContentByte i = t3.defineGlyph('I', 700, 0, 0, 1200, 600):
i.setColorStroke(new BaseColor(0xf9, 0x9d, 0x25));
i.setlLineWidth(linewidth);
i.setlineCap(PdfContentByte. L INE_CAP_ROUND);

i.moveTo(600, 36);

i.lineTo(600, 564);

i.stroke();

PdfContentByte t = t3.defineGlyph('T', 1170, @, @, 1200, 600):
.setColorStroke(new BaseColor(0x08, 0x49, 0x75));
.setlLineWidth(linewidth);

.setlineCap(PdfContentByte.L INE_CAP_ROUND);

.moveTo(144, 564);

.1ineTo(1056, 564);

.moveTo (600, 36);

.1ineTo(600, 564);

.stroke();

PdfContentByte e = t3.defineGlyph('E"', 1150, 0, 0, 1200, 600);
.setColorStroke(new BaseColor(0xf8, 0x9b, 0x22));
.setlLineWidth(linewidth);
.setlLineCap(PdfContentByte. . INE_CAP_ROUND);

.moveTo(144, 36);

.1ineTo(1056, 36);

.moveTo(144, 300);

.1ineTo(1056, 300);

.moveTo(144, 564);

.1ineTo(1056, 564);

.stroke();

PdfContentByte x = t3.defineGlyph('X"', 1160, 0, 0, 1200, 600);
x.setColorStroke(new BaseColor(0x10, 0x46, 0x75));
.setlLineWidth(linewidth);
.setlLineCap(PdfContentByte. . INE_CAP_ROUND);

.moveTo(144, 36);

.1ineTo(1056, 564);

.moveTo(144, 564);

.1ineTo(1056, 36);

.stroke();

¢ F o F &

® ® ® ® ® ® ® ® O® D

LT T T - -

In line 1, we create a BaseFont instance. This is the only type of font for which we use a specific constructor
instead of using the createFont() method. We pass an instance of PdfWriter to which the Type3Font will
write the description of each glyph. The Boolean parameter indicates whether or not we want to define the
color at the level of the glyph.

Text State 168

In this case, we pass true, which means that we want want to create colored glyphs. If we pass false, we are
not allowed to use color for the glyphs; instead we’ll define the color by changing the overall fill (and stroke)
color as explained in section 5.1.4.

Once we have a Type3Font instance, we can start defining glyphs using the defineGlyph() method. This
method returns a Type3Glyph instance. This class extends the PdfContentByte class, which means that we
can draw the glyph using the methods explained in chapter 4.

The defineGlyph() method expects the following parameters:

« c: the character to match this glyph.

« wx: the width of the glyph in glyph space.

« 11x: the X coordinate of the lower-left corner of the glyph’s bounding box.

« 1ly:the Y coordinate of the lower-left corner of the glyph’s bounding box.

« urx: the X coordinate of the upper-right corner of the glyph’s bounding box.
« ury: the Y coordinate of the upper-right corner of the glyph’s bounding box.

In line 2 to 8 of code sample 5.10, we define the glyph that corresponds with the 'I' character. In line 9 to 17,
we define the 'T' character. In line 18 to 28. we define the 'E'. Finally, we define the 'X' character in line 29
to 37.

Figure 5.16 shows what the font looks like when seen from the inside of the PDF document.

¢ [/Font: Dictionary
[IF1: 10 R -= Dictionary of type: /Font
o [Dictionary of type: /Font
o= := [FontBBox: [0, 0, 0, 0]
=] /lLastChar: 88
e = [FontMatrix: [0.001, 0, 0, 0.001, 0, 0]
@ Mype: Font
@ /subtype: Mype3
[ICharProcs: 8 0 R —= Dictionary
o [Dictionary
[/E:50R -= Stream
¢ Stream
=] /lLength: 83
@ IFilter: IFlateDecade
[X8 0 R -= Stream
¢ Stream
=] lLength: 78
@ IFilter: IFlateDecade
[IT.70R -=Stream
¢ Stream
=] lLength: 78
@ IFilter: IFlateDecade
[/. 60 R -=Stream
¢ Stream
=] /Length: 68
@ IFilter: IFlateDecade
[[Encoding: 10 0 R -= Dictionary
o [Dictionary
o = |Differences: [69, /E, 73, /1, 84, /T, 88, [¥]
=] [FirstChar: 69
o Mvidths: 11 0 R -= Array

Figure 5.16: Type3 font

Text State 169

We have a font of subtype /Type3 defining four characters in the character value range from 69 ("E") to 88
("X"). The /Encoding array maps four values in this range to four names /E, /1, /T, and /X. These four names
correspond with keys in the /CharProcs dictionary. The value of each key is a stream that defines the glyph.

For instance, the /I key corresponds with the following content stream:

700 0 do

0.97647 0.61569 ©0.1451 RG
125 w

1J

600 36 m

600 564 1

S

The d@ operator sets width information and declares that the glyph description specifies both its shape and
color. Alternatively, the d1 operator is used when you only define the shape, not the color.

In this case, we set the color using the RG operator, the width of the strokes using the w operator, and we use
the J operator to define round caps. The actual glyph consists of a stroked line (S) between the coordinate
defined by the m operator and the coordinate defined by the 1 operator. This is different from a “normal” font,
where we define the outlines of the glyphs and then fill these outlines using a fill color.

The /T key corresponds with the following stream:

1170 © do

0.03137 0.28627 0.45882 RG
125 w

1J

144 564 m

1056 564 1

600 36 m

600 564 1

S

In short: each line in the content stream of a glyph description will correspond with a line in your code. In
this case, the previous snippet corresponds with lines 9 to 17 in code sample 5.10.

Code sample 5.11 shows how to use a BaseFont in iText.

O W N

Text State 170

Code sample 5.11: C0507_Type3Font

Font font = new Font(t3, 20);

Paragraph p = new Paragraph("ITEXT", font);
document .add(p);

p = new Paragraph(20, "I\nT\nE\nX\nT", font);
document .add(p);

We create a Font object, passing the BaseFont instance and a font size. Then we create Paragraph objects
that use this font, and we add these objects to the Document. For instance: we add the strings "ITEXT" and
"I\nT\nE\nX\nT". Figure 5.17 shows the result.

File Edit View Window Help *®

Open ‘E%Create' ‘ Eﬂ @ % ‘ e Customize ~ | E
. |I| / 1| Ix H}U| 300% | v | = Tools Fill & Sign Comment

T

Figure 5.17: iText logo

Text State 171

Type3 fonts are always tricky, in the sense that they often produce odd results when trying to extract text
from a PDF. In this case, we chose the characters that correspond with each glyph in such a way that we can
easily recognize the actual text in the content stream:

BT

36 806 Td @ -30 Td

JF1 20 Tf

(ITEXT) Tj

00 Td o -20 Td

(I) Tj 0@ Td © -20 Td (T) Tj @ @ Td @ -20 Td (E)

Tj @0 Td © -20 Td (X) Tj © @ Td @ -20 Td (T) Tj @ @ Td
ET

This isn’t always the case. We could easily have used the character 'a' for the I glyph, 'b' for the T glyph,
'c' for the E glyph, and 'd" for the X glyph. When you would extract the text from the PDF, you would then
get "abcdb" instead of "ITEXT". This is a common complaint from people who want to extract text from PDFs
that use Type3 fonts, or when extracting text from a document with simple fonts with fonts that use a custom
encoding or a wrong /ToUnicode table. In that case, you shouldn’t blame the tool that extracts the content,
but the tool that created it.

Let’s conclude this chapter with an example that requires a CJKFont.

5.4.3 A CJKFont example

In figure 5.18, we list three movies showing their original title in Chinese, Japanese and Korean.

D] & [0 @ @ [ze0]-]| [H] B | (6]

Description | Security| Fonts | Initial View | Custom | Advanced

Fonts Used in this Document.

= [F] HYGaThic-Medium

STSong-Light
House of The Flying Daggers (China), by Zhang Yimou

+EFHER
KozMinPro-Regular ngﬁﬁiﬁﬁﬁm«
Nobody Knows (Japan), by Hirokazu Koreeda i
alf & HIS 780

HYGoThic - Medium
‘3-lIron' aka 'Bin -jip' (South - Korea), by Kim Ki- Duk

H| X
[— |

Figure 5.18: Chinese, Japanese and Korean fonts

We could have used an embedded font such as MS Arial Unicode to show these titles, but in this case, we
used the so-called CJK fonts that don’t need to be embedded.

© 00 9 O O b W N =

S S Y
g b 0N =~ O

Text State 172

If you open a file using these CJK fonts in Adobe Reader, and if the fonts aren’t available, a dialog
box will open. You'll be asked if you want to update the Reader. If you agree, the necessary font
packs will be downloaded and installed.

To make this work, we don’t need font programs that contain the drawing instructions for the glyphs, but we
do need information about the font’s properties and the encoding. This information can be found in files that
are shipped in a separate jar: itext-asian. jar. You need to add this jar to your CLASSPATH if you want to
try the code shown in listing 5.12.

Code sample 5.12: C0507_Type3Font

BaseFont bf = BaseFont.createFont("STSong-Light", "UniGB-UCS2-H", BaseFont.NOT_EMBEDDED);
Font font = new Font(bf, 12);

document . add(new Paragraph(bf.getPostscriptFontName(), font));

document . add(new Paragraph("House of The Flying Daggers (China), by Zhang Yimou", font));
document . add(new Paragraph("\u5341\u950a\u57cb\u4fof", font));

bf = BaseFont.createFont("KozMinPro-Regular", "UniJIS-UCS2-H", BaseFont.NOT_EMBEDDED);
font = new Font(bf, 12);

document . add(new Paragraph(bf.getPostscriptFontName(), font));

document . add(new Paragraph("Nobody Knows (Japan), by Hirokazu Koreeda", font));
document . add(new Paragraph("\u8ab@\u3082\u77e5\u3089\u306a\u3044", font));

bf = BaseFont.createFont("HYGoThic-Medium", "UniKS-UCS2-H", BaseFont.NOT_EMBEDDED);

font = new Font(bf, 12);

document .add(new Paragraph(bf.getPostscriptFontName(), font));

document .add(new Paragraph("'3-Iron' aka 'Bin-jip' (South-Korea), by Kim Ki-Duk", font));
document .add(new Paragraph("\ube48\uc9di1", font));

In line 6 of this code snippet, iText will look in the itext-asian. jar for the . properties file that corresponds
with the fontname we used. More specifically, iText will look for the file KozMinPro-Regular.properties. In
this file, iText will find information about the font, for instance metrics such as the ascent and the descent of

the glyphs.

iText will also search for the file used as the value for the encoding. The UniJIS-UCS2-H file contains a CMap
that contains the Unicode (UCS-2) encoding for the Adobe-Japan1 character collection. We don’t need to
embed this CMap in the PDF, the way we did with the /ToUnicode CMap, because this is a predefined CMap.
All PDF processors should support the predefined CMaps listed in the ISO standard for PDF.

Observe that the CMap files come in pairs: one for horizontal writing systems (ending in -H) and
one for vertical writing systems (ending in -V).

Let’s finish this chapter by looking what the KozMinPro=Regular font with encoding UniJIS-UCS2-H looks
like when seen from this inside. This is shown in figure 5.18.

Text State 173

¢ L Dictionary of type: (Font
@ iBaseFont: iKozMinPro-Regular-UniJI53-UC52-H
¢ := [DescendantFonts: [10 0 R]
? 10 0 R -= Dictionary of type: /Font
¢] Dictionary of type: (Font
@ iBaseFont: iKozMinPro-Regular
¢ L /CIDSysteminfo: Dictionary
iOrdering: Japani
IRegistry: Adobe
\Z| /Supplement: 4
@ Mype: Font
o := AW [1,[278], 9, 10, 323, 13, [219, 306], 41, [738], 43, [433, 637], 46, [904, 710],
@ /subtype: /CIDFontTypel
? iFontDescriptor: 9 0 R -= Dictionary of type: IFantDescriptor
¢] Dictionary of type: IFontDescriptor
\Z| /CapHeight: 830
o :— [FontBBox: [-195, -272, 1110, 1074]
o L istyle: Dictionary
Panose:
@ Mype: IFontDescriptor
\Z| IDescent -120
IStemV: 93
\#| /Flags: 6
\F| /ascent 380
@ [FontMame: /KozMinPro-Regular
= MtalicAngle: 0
= /OW: 1000
@ Mype: Font
@ /3ubtype; Myped
@ /Encoding: UniJIS-UCS2-H

Figure 5.18: Japanese font

We see a /Type@ font with a /CIDFontType® as descendant font. There is no font file, meaning that the font
isn’t embedded, but iText has taken some of the information from the files in itext-asian. jar for entries
such as /Descent, /Ascent, /W, and so on. Without this information, it’s not possible to create a valid CJK
font.

5.5 Summary

This chapter about the Text State was an extension of the chapter about the Graphics State. We started by
introducing a new series of PDF operators that can be used to change the text state, to position text and to
show text.

We can not talk about text without talking about fonts, so we looked at the different flavors of font files, we
looked at the way a font is stored inside a PDF, and we looked at how iText deals with fonts.

In the next chapter, we’ll see a third series of PDF operators. Unlike the operators we discussed in the chapter
about graphics state and the chapter about text state, these operators are not about drawing content on a page.
Instead they are about adding attributes or specific characteristics to content that is visible or invisible on a
page. We call them Marked Content operators.

6. Marked Content

1l Part 3: Annotations and form fields

7. Annotations

8. Interactive forms

	Table of Contents
	Introduction
	I Part 1: The Carousel Object System
	PDF Objects
	The basic PDF objects
	iText's PdfObject implementations
	The difference between direct and indirect objects
	Summary

	PDF File Structure
	The internal structure of a PDF file
	Variations on the file structure
	Summary

	PDF Document Structure
	Viewing a document as a tree structure using RUPS
	Obtaining objects from a PDF using PdfReader
	Examining the page tree
	Examining a page dictionary
	Optional entries of the Document Catalog Dictionary
	Summary

	II Part 2: The Adobe Imaging Model
	Graphics State
	Understanding the syntax
	Graphics State Operators
	Summary

	Text State
	Text objects
	Introducing fonts
	Using fonts in PDF
	Using fonts in iText
	Summary

	Marked Content

	III Part 3: Annotations and form fields
	Annotations
	Interactive forms

