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Foreword

The 21st century will probably be the century of the data revo-
lution. Our numerical world is creating masses of data every day
and the volume of generated data is increasing more and more (the
number of produced numerical data is doubling every two years
according to the most recent estimates). In such a context, data
science is nowadays an unavoidable field for anyone interested in
exploiting data. People may be interested in either understanding
a phenomenon or in predicting the future behavior of this phe-
nomenon.

To this end, it is important to have significant knowledge of
both the rationale (the theory) behind data science techniques and
their practical use on real-world data. Indeed, data science is a mix
of data, statistical/machine learning methods and software. Soft-
ware is actually the link between data and data science techniques.
It allows the practitioner to load the data and apply techniques on
it for analysis. It is therefore important to master at least one of
the data science languages.

The choice of the software language(s) mainly depends on your
background and the expected level of analysis. R and Python are
probably the two most popular languages for data science. On the
one hand, R has been made by statisticians. . .mostly for statisti-
cians! It is, however, an excellent tool for data science since the
most recent statistical learning techniques are provided on the R
platform (named CRAN). Using R is probably the best way to be
directly connected to current research in statistics and data science
through the packages provided by researchers. Python is, on the
other hand, an actual computer science language (with all appro-
priate formal aspects) for which some advanced libraries for data
science exist. In this context, the Julia language has the great ad-
vantage to permit users to interact with both R and Python (but
also C, Fortran, etc.), within a software language designed for effi-
cient and parallel numerical computing while keeping a high level
of human readability.

xiii



xiv � Foreword

Professor Paul McNicholas and Peter Tait propose in this book
to learn both fundamental aspects of data science: theory and ap-
plication. First, the book will provide you with the significant el-
ements to understand the mathematical aspects behind the most
used data science techniques. The book will also allow you to dis-
cover advanced recent techniques, such as probabilistic principal
components analysis (PPCA), mixtures of PPCAs, and gradient
boosting. In addition, the book will ask you to dive into the Julia
language such that you directly apply the learned techniques on
concrete examples. This is, in my opinion, the most efficient way
to learn such an applied science. In addition, the focus made by
this book on the Julia language is a great choice because of the
numerous qualities of this language regarding data science prac-
tice. These include ease of learning for people familiar with R or
Python, nice syntax, easy code debugging, the speed of the com-
piled language, and code reuse.

Both authors have extensive experience in data science. Profes-
sor Paul McNicholas is Canada Research Chair in Computational
Statistics at McMaster University and Director of the MacDATA
Institute of the same university. In his already prolific career,
McNicholas has made important contributions to statistical learn-
ing. More precisely, his research is mainly focused on model-based
learning with high-dimensional and skew-distributed data. He is
also a researcher deeply involved in the spreading of research prod-
ucts through his numerous contributions to the R software with
packages. Peter Tait is currently a Ph.D. student but, before re-
turning to academia, he had a professional life dedicated to data
science in industry. His strong knowledge of the needs of industry
regarding data science problems was really an asset for the book.

This book is a great way to both start learning data science
through the promising Julia language and to become an efficient
data scientist.

Professor Charles Bouveyron
Professor of Statistics
INRIA Chair in Data Science
Université Côte d’Azur
Nice, France



Preface

This is a book for people who want to learn about the Julia lan-
guage with a view to using it for data science. Some effort has
gone into making this book suitable for someone who has familiar-
ity with the R software and wants to learn about Julia. However,
prior knowledge of R is not a requirement. While this book is not
intended as a textbook for a course, some may find it a useful book
to follow for a course that introduces statistics or data science stu-
dents to Julia. It is our sincere hope that students, researchers and
data scientists in general, who wish to learn Julia, will find this
book beneficial.

More than twenty years have passed since the term data sci-
ence was described by Dr. Chikio Hayashi in response to a question
at a meeting of the International Federation of Classification So-
cieties (Hayashi, 1998). Indeed, while the term data science has
only gained notoriety over the past few years, much of the work
it describes has been practiced for far longer. Furthermore, what-
ever the precise meaning of the term, there is no doubt that data
science is important across virtually all areas of endeavour. This
book is born out of a mixture of experiences all of which led to
the conclusion that the use of Julia, as a language for data science,
should be encouraged.

First, part of the motivation to write this book came from expe-
rience gained trying to teach material in data science without the
benefit of a relatively easily understood base language that is effec-
tive for actually writing code. Secondly, there is the practical, and
related, matter of writing efficient code while also having access to
excellent code written by other researchers. This, of course, is the
major advantage of R, where many researchers have contributed
packages — sometimes based on code written in another language
such as C or Fortran — for a wide variety of statistics and data
science tasks. As we illustrate in this book, it is straightforward
to call R from Julia and to thereby access whatever R packages
are needed. Access to R packages and a growing selection of Julia

xv
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packages, together with an accessible, intuitive, and highly efficient
base language, makes Julia a formidable platform for data science.

This book is not intended as an exhaustive introduction to data
science. In fact, this book is far from an exhaustive introduction to
data science. There are many very good books that one can consult
to learn about different aspects of data science (e.g., Bishop, 2006;
Hastie et al., 2009; Schutt, 2013; White, 2015; Efron and Hastie,
2016), but this book is primarily about Julia. Nevertheless, sev-
eral important topics in data science are covered. These include
data visualization, supervised learning, and unsupervised learn-
ing. When discussing supervised learning, we place some focus on
gradient boosting — a machine learning technique — because we
have found this approach very effective in applications. However,
for unsupervised learning, we take a more statistical approach and
place some focus on the use of probabilistic principal components
analyzers and a mixture thereof.

This monograph is laid out to progress naturally. In Chapter 1,
we discuss data science and provide some historical context. Julia
is also introduced as well as details of the packages and datasets
used herein. Chapters 2 and 3 cover the basics of the Julia language
was well as how to work with data in Julia. After that (Chapter 4),
a crucially important topic in data science is discussed: visualiza-
tion. The book continues with selected techniques in supervised
(Chapter 5) and unsupervised learning (Chapter 6), before con-
cluding with details of how to call R functions from within Julia
(Chapter 7). This last chapter also provides further examples of
mixture model-based clustering as well as an example that uses
random forests. Some appendices are included to provide readers
with some relevant mathematics, Julia performance tips and a list
of useful linear algebra functions in Julia.

There is a large volume of Julia code throughout this book,
which is intended to help the reader gain familiarity with the lan-
guage. We strongly encourage readers to run the code for them-
selves and play around with it. To make the code as easy as possible
to work with, we have interlaced it with comments. As readers be-
gin to get to grips with Julia, we encourage them to supplement
or replace our comments with their own. For the reader’s con-
venience, all of the code from this book is available on GitHub:
github.com/paTait/dswj.

We are most grateful to David Grubbs of the Taylor & Francis
Group for his support in this endeavour. His geniality and pro-
fessionalism are always very much appreciated. Special thanks to

http://github.com/paTait/dswj
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Professor Charles Bouveyron for kindly agreeing to lend his ex-
pertise in the form of a wonderful Foreword to this book. Thanks
also to Dr. Joseph Kang and an anonymous reviewer for their very
helpful comments and suggestions. McNicholas is thankful to Ea-
monn Mullins and Dr. Myra O’Regan for providing him with a
solid foundation for data science during his time as an undergrad-
uate student. Dr. Sharon McNicholas read a draft of this book
and provided some very helpful feedback for which we are most
grateful.

A final word of thanks goes to our respective families; with-
out their patience and support, this book would not have come to
fruition.

Paul D. McNicholas and Peter A. Tait
Hamilton, Ontatio
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C H A P T E R 1

Introduction

DATA SCIENCE is discussed and some important connec-
tions, and contrasts, are drawn between statistics and data

science. A brief discussion of big data is provided, the Julia lan-
guage is briefly introduced, and all Julia packages used in this
monograph are listed together with their respective version num-
bers. The same is done for the, albeit smaller number of, R packages
used herein. Providing such details about the packages used helps
ensure that the analyses illustrated herein can be reproduced. The
datasets used in this monograph are also listed, along with some
descriptive characteristics and their respective sources. Finally, the
contents of this monograph are outlined.

1.1 DATA SCIENCE

What is data science? It is an interesting question and one without
a widely accepted answer. Herein, we take a broad view that data
science encompasses all work related to data. While this includes
data analysis, it also takes in a host of other topics such as data
cleaning, data curation, data ethics, research data management,
etc. This monograph discusses some of those aspects of data sci-
ence that are commonly handled in Julia, and similar software;
hence, its title.

The place of statistics within the pantheon of data science is
a topic on which much has been written. While statistics is cer-
tainly a very important part of data science, statistics should not
be taken as synonymous with data science. Much has been written
about the relationship between data science and statistics. On the
one extreme, some might view data science — and data analysis,
in particular — as a retrogression of statistics; yet, on the other

1
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extreme, some may argue that data science is a manifestation of
what statistics was always meant to be. In reality, it is probably an
error to try to compare statistics and data science as if they were
alternatives. Herein, we consider that statistics plays a crucial role
in data analysis, or data analytics, which in turn is a crucial part
of the data science mosaic.

Contrasting data analysis and mathematical statistics, Hayashi
(1998) writes:

. . .mathematical statistics have been prone to be re-
moved from reality. On the other hand, the method of
data analysis has developed in the fields disregarded
by mathematical statistics and has given useful results
to solve complicated problems based on mathematico-
statistical methods (which are not always based on sta-
tistical inference but rather are descriptive).

The views expressed by Hayashi (1998) are not altogether differ-
ent from more recent observations that, insofar as analysis is con-
cerned, data science tends to focus on prediction, while statistics
has focused on modelling and inference. That is not to say that pre-
diction is not a part of inference but rather that prediction is a part,
and not the goal, of inference. We shall return to this theme, i.e.,
inference versus prediction, several times within this monograph.

Breiman (2001b) writes incisively about two cultures in statis-
tical modelling, and this work is wonderfully summarized in the
first few lines of its abstract:

There are two cultures in the use of statistical modeling
to reach conclusions from data. One assumes that the
data are generated by a given stochastic data model.
The other uses algorithmic models and treats the data
mechanism as unknown. The statistical community has
been committed to the almost exclusive use of data
models. This commitment has led to irrelevant the-
ory, questionable conclusions, and has kept statisticians
from working on a large range of interesting current
problems.

The viewpoint articulated here leans towards a view of data analy-
sis as, at least partly, arising out of one culture in statistical mod-
elling.

In a very interesting contribution, Cleveland (2001) outlines a
blueprint for a university department, with knock-on implications
for curricula. Interestingly, he casts data science as an “altered
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field” — based on statistics being the base, i.e., unaltered, field.
One fundamental alteration concerns the role of computing:

One outcome of the plan is that computer science joins
mathematics as an area of competency for the field of
data science. This enlarges the intellectual foundations.
It implies partnerships with computer scientists just as
there are now partnerships with mathematicians.

Writing now, as we are 17 years later, it is certainly true that
computing has become far more important to the field of statistics
and is central to data science. Cleveland (2001) also presents two
contrasting views of data science:

A very limited view of data science is that it is practiced
by statisticians. The wide view is that data science is
practiced by statisticians and subject matter analysts
alike, blurring exactly who is and who is not a statisti-
cian.

Certainly, the wider view is much closer to what has been observed
in the intervening years. However, there are those who can claim to
be data scientists but may consider themselves neither statisticians
nor subject matter experts, e.g., computer scientists or librarians
and other data curators. It is noteworthy that there is a growing
body of work on how to introduce data science into curricula in
statistics and other disciplines (see, e.g., Hardin et al., 2015).

One fascinating feature of data science is the extent to which
work in the area has penetrated into the popular conscience, and
media, in a way that statistics has not. For example, Press (2013)
gives a brief history of data science, running from Tukey (1962)
to Davenport and Patil (2012) — the title of the latter declares
data scientist the “sexiest job of the 21st century”! At the start of
this timeline is the prescient paper by Tukey (1962) who, amongst
many other points, outlines how his view of his own work moved
away from that of a statistician:

For a long time I have thought I was a statistician, in-
terested in inferences from the particular to the general.
. . . All in all, I have come to feel that my central inter-
est is in data analysis, which I take to include, among
other things: procedures for analyzing data, techniques
for interpreting the results of such procedures, ways
of planning the gathering of data to make its analysis
easier, more precise or more accurate, and all the ma-
chinery and results of (mathematical) statistics which
apply to analyzing data.
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The wide range of views on data science, data analytics and
statistics thus far reviewed should serve to convince the reader
that there are differences of opinion about the relationship be-
tween these disciplines. While some might argue that data science,
in some sense, is statistics, there seems to be a general consensus
that the two are not synonymous. Despite the modern views ex-
pounded by Tukey (1962) and others, we think it is fair to say that
much research work within the field of statistics remains mathe-
matically focused. While it may seem bizarre to some readers, there
are still statistics researchers who place more value in an ability
to derive the mth moment of some obscure distribution than in an
ability to actually analyze real data. This is not to denigrate math-
ematical statistics or to downplay the crucial role it plays within
the field of statistics; rather, to emphasize that there are some who
value ability in mathematical statistics far more than competence
in data analysis. Of course, there are others who regard an ability to
analyze data as a sine qua non for anyone who would refer to them-
selves as a statistician. While the proportion of people holding the
latter view may be growing, the rate of growth seems insufficient
to suggest that we will shortly arrive at a point where a statistician
can automatically be assumed capable of analyzing data.

This latter point may help to explain why the terms data sci-
ence, data scientist and data analyst are important. The former
describes a field of study devoted to data, while the latter two
describe people who are capable of working with data. While it is
true that there are many statisticians who may consider themselves
data analysts, it is also true that there are many data analysts who
are not statisticians.

1.2 BIG DATA

Along with rapidly increasing interest in data science has come the
popularization of the term big data. Similar to the term data sci-
ence, big data has no universally understood meaning. Puts et al.
(2015) and others have described big data in terms of words that
begin with the letter V: volume, variety, and velocity. Collectively,
these can be thought of as the three Vs that define big data; how-
ever, other V words have been proposed as part of such a definition,
e.g., veracity, and alternative definitions have also been proposed.
Furthermore, the precise meaning of these V words is unclear. For
instance, volume can be taken as referring to the overall quantity
of data or the number of dimensions (i.e., variables) in the dataset.
Variety can be taken to mean that data come from different sources
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or that the variables are of different types (such as interval, nom-
inal, ordinal, binned, text, etc.). The precise meaning of velocity
is perhaps less ambiguous in that it is usually taken to mean that
data come in a stream. The word veracity, when included, is taken
as indicative of the extent to which the data are reliable, trust-
worthy, or accurate. Interestingly, within such three (or more) Vs
definitions, it is unclear how many Vs must be present for data to
be considered big data.

The buzz attached to the term big data has perhaps led to
some attempts to re-brand well-established data as somehow big.
For instance, very large databases have existed for many years but,
in some instances, there has been a push to refer to what might
otherwise be called administrative data as big data. Interestingly,
Puts et al. (2015) draw a clear distinction between big data and
administrative data:

Having gained such experience editing large adminis-
trative data sets, we felt ready to process Big Data.
However, we soon found out we were unprepared for
the task.

Of course, the precise meaning of the term big data is less impor-
tant than knowing how to tackle big data and other data types.
Further to this point, we think it is a mistake to put big data on
a pedestal and hail it as the challenging data. In reality there are
many challenging datasets that do not fit within a definition of big
data, e.g., situations where there is very little data are notoriously
difficult. The view that data science is essentially the study of big
data has also been expounded and, in the interest of completeness,
deserves mention here. It is also important to clarify that we reject
this view out of hand and consider big data, whatever it may be, as
just one of the challenges faced in data analysis or, more broadly,
in data science. Hopefully, this section has provided some useful
context for what big data is. The term big data, however, will not
be revisited within this monograph, save for the References.

1.3 JULIA

The Julia software (Bezansony et al., 2017) has tremendous po-
tential for data science. Its syntax is familiar to anyone who has
programmed in R (R Core Team, 2018) or Python (van Rossum,
1995), and it is quite easy to learn. Being a dynamic programming
language specifically designed for numerical computing, software
written in Julia can attain a level of performance nearing that of
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statically-compiled languages like C and Fortran. Julia integrates
easily into existing data science pipelines because of its superb lan-
guage interoperability, providing programmers with the ability to
interact with R, Python, C and many other languages just by load-
ing a Julia package. It uses computational resources very effectively
so that sophisticated algorithms perform extremely well on a wide
variety of hardware. Julia has been designed from the ground up
to take advantage of the parallelism built into modern computer
hardware and the distributed environments available for software
deployment. This is not the case for most competing data science
languages. One additional benefit of writing software in Julia is
how human-readable the code is. Because high-performance code
does not require vectorization or other obfuscating mechanisms,
Julia code is clear and straightforward to read, even months after
being written. This can be a true benefit to data scientists working
on large, long-term projects.

1.4 JULIA AND R PACKAGES

Many packages for the Julia software are used in this monograph as
well as a few packages for the R software. Details of the respective
packages are given in Appendix A. Note that Julia version 1.0.1 is
used herein.

1.5 DATASETS

1.5.1 Overview

The datasets used for illustration in this monograph are summa-
rized in Table 1.1 and discussed in the following sections. Note that
datasets in Table 1.1 refers to the datasets package which is part
of R, MASS refers to the MASS package (Venables and Ripley, 2002)
for R, and mixture refers to the mixture package (Browne and
McNicholas, 2014) for R. For each real dataset, we clarify whether
or not the data have been pre-cleaned. Note that, for our pur-
poses, it is sufficient to take pre-cleaned to mean that the data are
provided, at the source, in a form that is ready to analyze.

1.5.2 Beer Data

The beer dataset is available from www.kaggle.com and contains
data on 75,000 home-brewed beers. The 15 variables in the beer
data are described in Table 1.2. Note that these data are pre-
cleaned.

http://www.kaggle.com


Introduction � 7

Table 1.1 The datasets used herein, with the number of sam-
ples, dimensionality (i.e., number of variables), number of
classes, and source.
Name Samples Dimensionality Classes Source
beer 75,000 15 – www.kaggle.com
coffee 43 12 2 pgmm
crabs 200 5 2 or 4 MASS
food 126 60 – www.kaggle.com
iris 150 4 3 datasets
x2 300 2 3 mixture

Table 1.2 Variables for the beer dataset.
Variable Description
ABV Alcohol by volume.
BoilGravity Specific gravity of wort before boil.
BoilSize Fluid at beginning of boil.
BoilTime Time the wort is boiled.
Colour Colour from light (1) to dark (40).
Efficiency Beer mask extraction efficiency.
FG Specific gravity of wort after fermentation.
IBU International bittering units.
Mash thickness Amount of water per pound of grain.
OG Specific gravity of wort before fermentation.
PitchRate Yeast added to the fermentor per gravity unit.
PrimaryTemp Temperature at fermentation stage.
PrimingMethod Type of sugar used for priming.
PrimingAmount Amount of sugar used for priming.
SugarScale Concentration of dissolved solids in wort.

1.5.3 Coffee Data

Streuli (1973) reports on the chemical composition of 43 coffee
samples collected from 29 different countries. Each sample is ei-
ther of the Arabica or Robusta species, and 12 of the associated
chemical constituents are available as the coffee data in pgmm (Ta-
ble 1.3). One interesting feature of the coffee data — and one which
has been previously noted (e.g., Andrews and McNicholas, 2014;
McNicholas, 2016a) — is that Fat and Caffeine perfectly separate
the Arabica and Robusta samples (Figure 1.1). Note that these
data are also pre-cleaned.

http://www.kaggle.com
http://www.kaggle.com
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Table 1.3 The 12 chemical constituents given in the coffee
data.

Water Bean Weight Extract Yield
pH Value Free Acid Mineral Content
Fat Caffeine Trigonelline
Chlorogenic Acid Neochlorogenic Acid Isochlorogenic Acid

Fat
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Variety

0.0
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Figure 1.1 Scatterplot of fat versus caffeine, coloured by variety,
for the coffee data.

1.5.4 Leptograpsus Crabs Data

The crabs data are available in the MASS library for R. Therein
are five morphological measurements (Table 1.4) on two species
of crabs (blue and orange), further separated into two sexes. The
variables are highly correlated (e.g., Figures 1.2–1.4). As noted
in Table 1.1, these data can be regarded as having two or four
classes. The two classes can be taken as corresponding to either
species (Figure 1.2) or sex (Figure 1.3), and the four-class solution
considers both species and sex (Figure 1.4). Regardless of how the
classes are broken down, these data represent a difficult clustering
problem — see Figures 1.2–1.4 and consult McNicholas (2016a) for
discussion. These data are pre-cleaned.
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Table 1.4 The five morphological measurements given in the
crabs data, all measured in mm.

Frontal lobe size Rear width
Carapace length Carapace width
Body depth
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Figure 1.2 Scatterplot for rear width versus frontal lobe, for the
crabs data, coloured by species.

1.5.5 Food Preferences Data

The food dataset is available from www.kaggle.com and contains
data on food choices and preferences for 126 students from Mercy-
hurst University in Erie, Pennsylvania. The variables in the food
data are described in Tables B.1–B.1 (Appendix B). Note that
these data are raw, i.e., not pre-cleaned.

1.5.6 x2 Data

The x2 data are available in the mixture library for R. The
data consist of 300 bivariate points coming, in equal proportions,
from one of three Gaussian components (Figure 1.5). These data
have been used to demonstrate clustering techniques (see, e.g.,
McNicholas, 2016a).

http://www.kaggle.com


10 � Data Science with Julia

Frontal lobe size (mm)

0 5 10 15 20 25

M

F

Sex

0

5

10

15

20

25

R
e
a
r 

w
id

th
 (

m
m

)

Figure 1.3 Scatterplot for rear width versus frontal lobe, for the
crabs data, coloured by sex.

Frontal lobe size (mm)

0 5 10 15 20 25

B:M

B:F

O:M

O:F

Species:Sex

0

5

10

15

20

25

R
e
a
r 

w
id

th
 (

m
m

)

Figure 1.4 Scatterplot for rear width versus frontal lobe, for the
crabs data, coloured by species and sex.
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Figure 1.5 Scatterplot depicting the x2 data.

1.5.7 Iris Data

The iris data (Anderson, 1935) are available in the datasets
library for R. The data consists of four measurements (Table 1.5)
for 150 irises, made up of 50 each from the species setosa, versicolor,
and virginica. These data are pre-cleaned.

Table 1.5 The four measurements taken for the iris data, all
measured in cm.

Sepal length Sepal width
Petal length Petal width

1.6 OUTLINE OF THE CONTENTS OF THIS MONO-
GRAPH

The contents of this monograph proceed as follows. Several core
Julia topics are described in Chapter 2, including variable names,
types, data structures, control flow, and functions. Various tools
needed for working with, or handling, data are discussed in Chap-
ters 3, including dataframes and input-output (IO). Data visual-
ization, a crucially important topic in data science, is discussed in
Chapter 4. Selected supervised learning techniques are discussed
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in Chapter 5, including K-nearest neighbours classification, classi-
fication and regression trees, and gradient boosting. Unsupervised
learning follows (Chapter 6), where k-means clustering is discussed
along with probabilistic principal components analyzers and mix-
tures thereof. The final chapter (Chapter 7) draws together Julia
with R, principally by explaining how R code can be run from
within Julia, thereby allowing R functions to be called from within
Julia. Chapter 7 also illustrates further supervised and unsuper-
vised learning techniques, building on the contents of Chapters 5
and 6. Five appendices are included. As already mentioned, the
Julia and R packages used herein are detailed in Appendix A,
and variables in the food data are described in Appendix B. Ap-
pendix C provides details of some mathematics that are useful for
understanding some of the topics covered in Chapter 6. In Ap-
pendix D, we provide some helpful performance tips for coding in
Julia and, in Appendix E, a list of linear algebra functions in Julia
is provided.



C H A P T E R 2

Core Julia

THE PURPOSE of this chapter is to expose the reader to
the core parts of the Julia language. While it is intended

to serve as an introduction to the language, it should also prove
useful as a reference as the reader moves through the remainder of
the book. The topics covered can be considered under six headings:
variable names, operators, types, data structures, control flow, and
functions. Furthermore, the chapter is laid out so that the contents
build in a cumulative fashion, e.g., by the time one reaches the
material on functions, all of the other material is being, or could
usefully be, used. Accordingly, the material in this chapter is best
read in order upon first reading.

2.1 VARIABLE NAMES

In Julia, variable names are associated with a particular value. This
value is stored so it can be used in future computations or other
operations. Variable names are case sensitive and Unicode names
(in UTF-8 encoding) may be used. Specifically, Unicode math sym-
bols can be entered by using the LATEX2ε symbol followed by a
tab. In general, variable names must begin with a letter (uppercase
or lowercase), an underscore _ or a Unicode code point > 00A0,
and subsequent characters can include the ! symbol, digits and
other Unicode points. It is also possible to redefine constants (e.g.,
π); however, built-in statements cannot be used as variable names
(example below).� �
## Some playing around with variable names

## These are all correct
z = 100

13
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y = 10.0
s = "Data Science"
ϑ = 5.0
µ = 1.2
datascience = true
data_science = true

## These are incorrect and will return an error
if = true
else = 1.5� �
The recommended convention is that variable names are typed

in lowercase letters and words are separated by an underscore. In
general, this convention will be followed herein.

2.2 OPERATORS

In programming languages, operators are symbols used to do spe-
cific mathematical, logical or relational operations. Julia operators
will be familiar to R and Python users. There are four main cat-
egories of operators in Julia: arithmetic, updating, numeric com-
parison, and bitwise. Examples of the first three are given in the
following code block.� �
x = 2
y = 3
z = 4

## Arithmetic operators
x + y
# 5

xˆy
# 8

## Updating operators
x += 2
# 4

y -= 2
# 1

z *= 2
# 8

## Numeric Comparison
x == y
# false

x != y
# true

x <= z
# true� �



Core Julia � 15

When constructing expressions with multiple operators, the or-
der in which these operators are applied to the expression is known
as operator precedence. Operator precedence is an important prac-
tical consideration and can lead to unexpected results. The follow-
ing code block uses the variables instantiated above to evaluate
three different expressions. The first one is evaluated solely based
on the operator precedence. The following two are forced to eval-
uate in specific ways based on the parentheses () included in the
expression. Parentheses are evaluated first in the precedence hier-
archy. We recommend programming expressions with parentheses
to minimize bugs and improve code clarity.� �
## Operator precedence
x*y+zˆ2
# 68

x*(y+(zˆ2))
# 260

(x*y)+(zˆ2)
# 68� �

2.3 TYPES

2.3.1 Numeric

Numeric literals are representations of numbers in code. Numeric
primitives are representations of numbers as objects in memory. Ju-
lia has many primitive numeric types, e.g., Int32, Int64, Float32,
and Float64. Julia offers full support for real and complex num-
bers. The internal variable Sys.WORD_SIZE displays the architec-
ture type of the computer (e.g., 32 bit or 64 bit). The minimum
and maximum values of numeric primitives can be displayed with
the functions typemin() and typemax(), respectively. They take
the name of numeric primitives as an argument and are detailed in
the following code block. The default size of the primitive depends
on the type of computer architecture.� �
## Computer's architecture type
Sys.WORD_SIZE
# 64

## Size of the default primitive
typemax(Int)
# 9223372036854775807
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## Size of a specific primitive
## same as the default
typemax(Int64)
# 9223372036854775807

# Note that the above results are machine-specific.� �
A signed type can hold positive or negative integers, and uses

the leftmost bit to identify the sign of the integer (e.g., Int64).
An unsigned type can hold positive values only and stores larger
values by using the leading bit as part of the value (e.g., UInt128).
Boolean values are 8-bit integers, with false being 0 and true be-
ing 1. When doing arithmetic with integers, occasionally one will
encounter overflow errors. This occurs when the result of an arith-
metic expression is a value outside the representable range of the
numeric primitive being used. This can happen if the result is larger
or smaller than its allowable size. Examples are given in the code
block below. If this is a possibility in a particular application, con-
sider using unsigned integers or arbitrary precision integers, avail-
able in Julia as the BigInt type.� �
## Some examples of the Int type

# Integers
literal_int = 1
println("typeof(literal_int): ", typeof(literal_int))
# typeof(literal_int): Int64

# Boolean values
x = Bool(0)
y = Bool(1)

## Integer overflow error
x = typemax(Int64)
# 9223372036854775808
x += 1
# -9223372036854775807
x == typemax(Int64)
#false

## Integer underflow error
x = typemin(Int64)
# -9223372036854775808
x -= 1
# 9223372036854775807
x == typemin(Int64)
#false� �
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2.3.2 Floats

Floats are similar to scientific notation. They are made up of three
components: a signed integer whose length determines the precision
(the significand); the base used to represent the number (usually
base 10); and a signed integer that changes the magnitude of the
floating point number (the exponent). The value of a float is de-
termined by multiplying the significand by the base raised to the
power of the exponent. Float64 literals are distinguished by having
an e before the power, and can be defined in hexadecimal. Float32
literals are distinguished by having an f in place of the e. There
are three Float64 values that do not occur on the real line:

1. Inf, positive infinity: a value larger than all finite floating
point numbers, equal to itself, and greater than every other
floating point value but NaN.

2. -Inf, negative infinity: a value less than all finite floating
point numbers, equal to itself, and less than every other float-
ing point value but NaN.

3. NaN, not a number: a value not equal to any floating point
value, and not ==, < or > than any floating point value, in-
cluding itself.

It is good practice to check for NaN, Inf and -Inf values in floating
point operations. The following code block gives some examples of
how to do this.� �
## Some examples of floats

x1 = 1.0
x64 = 15e-5
x32 = 2.5f-4

typeof(x32)
# Float32

## digit separation using an _
9.2_4 == 9.24
# true

isnan(0/0)
# true
isinf(1/0)
# true
isinf(-11/0)
# true

y1 = 2*3
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# 6
isnan(y1)
# false
isinf(y1)
# false

y2 = 2/0
# Inf
isnan(y2)
# false
isinf(y2)
# true� �
The IEEE 754 standard (Zuras et al., 2008) sets out the tech-

nical standard for floating point arithmetic. The Julia Float type
and all operations performed on it adhere to this standard. Repre-
sentations of Float64 numbers are not evenly spaced, with more
occurring closer to zero on the real number line. This is due to
machine epsilon, an upper-bound on the rounding error in floating
point arithmetic. It is defined to be the smallest value of z such
that 1+z 6= 1. In Julia, the value of epsilon for a particular machine
can be found via the eps() function. The spacing between floating
point numbers and the value of machine epsilon is important to
understand because it can help avoid certain types of errors. Inte-
ger overflow errors have been mentioned, but there are also float
underflow errors, which occur when the result of a calculation is
smaller than machine epsilon or when numbers of similar precision
are subtracted. We give more details in Appendix D, and readers
are directed to Higham (2002) if further reading on the topic is
desired.� �
## Some examples of machine epsilon

eps()
# 2.220446049250313e-16

## spacing between a floating point number x and adjacent number is
## at most eps * abs(x)

n1 =[1e-25, 1e-5, 1., 1e5, 1e25]

for i in n1
println( *(i, eps() ))

end
# 2.2204460492503132e-41
# 2.2204460492503133e-21
# 2.220446049250313e-16
# 2.220446049250313e-11
# 2.2204460492503133e9� �
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Note that, as is common in scientific notation,

2.2204460492503132e-41

represents
2.2204460492503132× 10−41.

2.3.3 Strings

In Julia, a string is a sequence of Unicode code points, using UTF-8
encoding. The first 128 Unicode characters are the ASCII charac-
ters. Characters in strings have an index value within the string.
It is worth noting that Julia indices start at position 1, similar to
R but different to Python, which starts its indices at position 0.
The keyword end can be used to represent the last index. Herein,
we will deal with ASCII characters only. Note that String is the
built-in type for strings and string literals, and Char is the built-in
type used to represent single characters. In fact, Char is a numeric
value representing a Unicode code point. The value of a string can-
not be changed, i.e., strings are immutable, and a new string must
be built from another string. Strings are defined by double or triple
quotes.� �
## String examples

s1 = "Hi"
# "Hi"

s2 = """I have a "quote" character"""
# "I have a \"quote\" character"� �
Strings can be sliced using range indexing, e.g., my_string[4:6]

would return a substring of my_string containing the 4th, 5th and
6th characters of my_string. Concatenation can be done in two
ways: using the string() function or with the * operator. Note
this is a somewhat unusual feature of Julia — many other lan-
guages use + to perform concatenation. String interpolation takes
place when a string literal is defined with a variable inside its in-
stantiation. The variable is prepended with $. By using variables
inside the string’s definition, complex strings can be built in a
readable form, without multiple string multiplications.� �
## Some examples of strings
str = "Data science is fun!"
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str[1]
# 'D'

str[end]
#'!'

## Slicing
str[4:7]
# "a sc"

str[end-3:end]
# "fun!"

## Concatenation
string(str, " Sure is :)")
#"Data science is fun! Sure is :)"

str * " Sure is :)"
# "Data science is fun! Sure is :)"

## Interpolation
"1 + 2 = $(1 + 2)"
#"1 + 2 = 3"

word1 = "Julia"
word2 = "data"
word3 = "science"
"$word1 is great for $word2 $word3"
#"Julia is great for data science"� �
Strings can be compared lexicographically using comparison

operators, e.g., ==, >, etc. Lexicographical comparison involves se-
quentially comparing string elements with the same position, until
one pair of elements falsifies the comparison, or the end of the
string is reached. Some useful string functions are:

• findfirst(pat, str) returns the indices of the characters
in the string str matching the pattern pat.

• occursin(substr, str) returns true/false depending on
the presence/absence of substr in str.

• repeat(str, n) generates a new string that is the original
string str repeated n times.

• length(str) returns the number of characters in the string
str.

• replace(str, ptn => rep) searches string str for the pat-
tern ptn and, if it is present, replaces it with rep.

Julia fully supports regular expressions (regexes). Regexes in
Julia are fully Perl compatible and are used to hunt for patterns in
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string data. They are defined as strings with a leading r outside the
quotes. Regular expressions are commonly used with the following
functions:

• occursin(regex, str) returns true/false if the regex has
a match in the string str.

• match(regex, str) returns the first match of regex in the
string. If there is no match, it returns the special Julia value
nothing.

• eachmatch(regex, str) returns all the matches of regex in
the string str as an array.

Regexes are a very powerful programming tool for working with
text data. However, an in-depth discussion of them is beyond the
scope of this book, and interested readers are encouraged to consult
Friedl (2006) for further details.� �
## Lexicographical comparison
s1 = "abcd"
s2 = "abce"

s1 == s2
# false

s1 < s2
# true

s1 > s2
#false

## String functions
str = "Data science is fun!"

findfirst("Data", str)
# 1:4

occursin("ata", str )
# true

replace(str, "fun" => "great")
# "Data science is great!"

## Regular expressions
## match alpha-numeric characters at the start of the str
occursin(r"^[a-zA-Z0-9]", str)
# true

## match alpha-numeric characters at the end of the str
occursin(r"[a-zA-Z0-9]$", str)
# false

## matches the first non-alpha-numeric character in the string
match(r"[^a-zA-Z0-9]", str)
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#RegexMatch(" ")

## matches all the non-alpha-numeric characters in the string
collect(eachmatch(r"[^a-zA-Z0-9]", str))
#4-element Array{RegexMatch,1}:
# RegexMatch(" ")
# RegexMatch(" ")
# RegexMatch(" ")
# RegexMatch("!")� �

2.3.4 Tuples

Tuples are a Julia type. They are an abstraction of function argu-
ments without the function. The arguments are defined in a specific
order and have well-defined types. Tuples can have any number of
parameters, and they do not have field names. Fields are accessed
by their index, and tuples are defined using brackets () and com-
mas. A very useful feature of tuples in Julia is that each element
of a tuple can have its own type. Variable values can be assigned
directly from a tuple where the value of each variable corresponds
to a value in the tuple.� �
## A tuple comprising only floats
tup1 = (3.0, 9.1, 0.8, 1.9)
tup1
# (3.0, 9.1, 0.8, 1.9)
typeof(tup1)
# NTuple{4,Float64}

## A tuple comprising strings and floats
tup2 = ("Data", 2.5, "Science", 8.8)
typeof(tup2)
# Tuple{String,Float64,String,Float64}

## variable assignment
a,b,c = ("Fast", 1, 5.2)
a
#"Fast"
b
# 1
c
#5.2� �
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2.4 DATA STRUCTURES

2.4.1 Arrays

An array is a multidimensional grid that stores objects of any type.
To improve performance, arrays should contain only one specific
type, e.g., Int. Arrays do not require vectorizing for fast array
computations. The array implementation used by Julia is written in
Julia and relies on the compiler for performance. The compiler uses
type inference to make optimized code for array indexing, which
makes programs more readable and easier to maintain. Arrays are
a subtype of the AbstractArray type. As such, they are laid out as
a contiguous block of memory. This is not true of other members of
the AbstractArray type, such as SparseMatrixCSC and SubArray.

The type and dimensions of an array can be specified using
Array{T}(D), where T is any valid Julia type and D is the dimen-
sion of the array. The first entry in the tuple D is a singleton that
specifies how the array values are initialized. Users can specify
undef to create an uninitialized array, nothing to create arrays
with no values, or missing to create arrays of missing values. Ar-
rays with different types can be created with type Any.� �
## A vector of length 5 containing integers
a1 = Array{Int64}(undef, 5)

## A 2x2 matrix containing integers
a2 = Array{Int64}(undef, (2,2))
#2x2 Array{Int64,2}:
#493921239145 425201762420
#416611827821 104

## A 2x2 matrix containing Any type
a2 = Array{Any}(undef, (2,2))
#2x2 Array{Any,2}:
# #undef #undef
# #undef #undef� �
In Julia, [] can also be used to generate arrays. In fact, the

Vector(), Matrix() and collect() functions can also be used.� �
## A three-element row "vector"
a4 = [1,2,3]

## A 1x3 column vector -- a two-dimensional array
a5 = [1 2 3]

## A 2x3 matrix, where ; is used to separate rows
a6 = [80 81 82 ; 90 91 92]
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## Notice that the array a4 does not have a second dimension, i.e., it is
## neither a 1x3 vector nor a 3x1 vector. In other words, Julia makes a
## distinction between Array{T,1} and Array{T,2}.
a4
# 3-element Array{Int64,1}:
# 1
# 2
# 3

## Arrays containing elements of a specific type can be constructed like:
a7 = Float64[3.0 5.0 ; 1.1 3.5]

## Arrays can be explicitly created like this:
Vector(undef, 3)
# 3-element Array{Any,1}:
# #undef
# #undef
# #undef

Matrix(undef, 2,2)
# 2x2 Array{Any,2}:
# #undef #undef
# #undef #undef

## A 3-element Float array
a3 = collect(Float64, 3:-1:1)
# 3-element Array{Float64,1}:
# 3.0
# 2.0
# 1.0� �
Julia has many built-in functions that generate specific kinds

of arrays. Here are some useful ones:

• zeros(T, d1, ..) is a d1-dimensional array of all zeros.

• ones(T, d1, ..) is a d1-dimensional array of all ones.

• rand(T, d1, ..): if T is Float, a d1-dimensional array of
random numbers between 0 and 1 is returned; if an array is
specified as the first argument, d1 random elements from the
array are returned.

• randn(T, d1, ..) is a d1-dimensional array of random
numbers from the standard normal distribution with mean
zero and standard deviation 1.

• MatrixT(I, (n,n)) is the n×n identity matrix. The identity
operator I is available in the LinearAlgebra.jl package.

• fill!(A, x) is the array A filled with value x.

Note that, in the above, d1 can be a tuple specifying multiple
dimensions.
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Arrays can easily be concatenated in Julia. There are two func-
tions commonly used to concatenate arrays:

• vcat(A1, A2, ..) concatenates arrays vertically, i.e., stacks
A1 on top of A2.

• hcat(A1, A2, ..) concatenates arrays horizontally, i.e.,
adds A2 to the right of A1.

Of course, concatenation requires that the relevant dimensions
match.

The following code block illustrates some useful array functions
as well as slicing. Slicing for arrays works similarly to slicing for
strings.� �
## Create a 2x2 identity matrix
using LinearAlgebra
imat = Matrix{Int8}(I, (2,2))

## return random numbers between 0 and 1
rand(2)
#2-element Array{Float64,1}:
# 0.86398
# 0.491484

B = [80 81 82 ; 90 91 92]
# 2x3 Array{Int64,2}:
# 80 81 82
# 90 91 92

## return random elements of B
rand(B,2)
#2-element Array{Int64,1}:
# 80
# 91

## The number of elements in B
length(B)
# 6

## The dimensions of B
size(B)
# (2, 3)

## The number of dimensions of B
ndims(B)
# 2

## A new array with the same elements (data) as B but different dimensions
reshape(B, (3, 2))
# 3x2 Array{Int64,2}:
# 80 91
# 90 82
# 81 92

## A copy of B, where elements are recursively copied
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B2 = deepcopy(B)

## When slicing, a slice is specified for each dimension
## The first two rows of the first column done two ways
B[1:2, ]
# 2-element Array{Int64,1}:
# 80
# 90

B[1:2,1]

## The first two rows of the second column
B[1:2,2]
# 2-element Array{Int64,1}:
# 81
# 91

## The first row
B[1,:]
# 3-element Array{Int64,1}:
# 80
# 81
# 82

## The third element
B[3]
#81

# Another way to build an array is using comprehensions
A1 = [sqrt(i) for i in [16,25,64]]
# 3-element Array{Float64,1}:
# 4.0
# 5.0
# 8.0

A2 = [iˆ2 for i in [1,2,3]]
# 3-element Array{Int64,1}:
# 1
# 4
# 9� �
From a couple of examples in the above code block, we can see

that Julia counts array elements by column, i.e., the kth element
of the n×m matrix X is the kth element of the nm-vector vec(X).
Array comprehensions, illustrated above, are another more sophis-
ticated way of building arrays. They generate the items in the array
with a function and a loop. These items are then collected into an
array by the brackets [] that surround the loop and function.

2.4.2 Dictionaries

In Julia, dictionaries are defined as associative collections con-
sisting of a key-value pair, i.e., the key is associated with a spe-
cific value. These key-value pairs have their own type in Julia,
Pairtypeof(key), typeof(value) which creates a Pair object.
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Alternatively, the => symbol can be used to separate the key and
value to create the same Pair object. One use of Pair objects is in
the instantiation of dictionaries. Dictionaries in Julia can be used
analogously to lists in R. Dictionaries are created using the key-
word Dict and types can be specified for both the key and the
value. The keys are hashed and are always unique.� �
## Three dictionaries, D0 is empty, D1 and D2 are the same
D0 = Dict()
D1 = Dict(1 => "red", 2 => "white")
D2 = Dict{Integer, String}(1 => "red", 2 => "white")

## Dictionaries can be created using a loop
food = ["salmon", "maple syrup", "tourtiere"]

food_dict = Dict{Int, String}()

## keys are the foods index in the array
for (n, fd) in enumerate(food)
food_dict[n] = fd

end

## Dictionaries can also be created using the generator syntax
wine = ["red", "white", "rose"]
wine_dict = Dict{Int,String}(i => wine[i] for i in 1:length(wine))� �
Values can be accessed using [] with a value of a dictionary

key inserted between them or get(). The presence of a key can
be checked using haskey() and a particular key can be accessed
using getkey(). Keys can also be modified, as illustrated in the
below code block. Here, we also demonstrate adding and deleting
entries from a dictionary as well as various ways of manipulating
keys and values. Note that the following code block builds on the
previous one.� �
## Values can be accessed similarly to an array, but by key:
food_dict[1]

## The get() function can also be used; note that "unknown" is the
## value returned here if the key is not in the dictionary
get(food_dict, 1, "unknown")
get(food_dict, 7, "unknown")

## We can also check directly for the presence of a particular key
haskey(food_dict, 2)
haskey(food_dict, 9)

## The getkey() function can also be used; note that 999 is the
## value returned here if the key is not in the dictionary
getkey(food_dict, 1, 999)

## A new value can be associated with an existing key
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food_dict
food_dict[1] = "lobster"

## Two common ways to add new entries:
food_dict[4] = "bannock"
get!(food_dict, 4, "bannock")

## The advantage of get!() is that is will not add the new entry if
## a value is already associated with the the key
get!(food_dict, 4, "toutiere")

## Just deleting entries by key is straightforward
delete!(food_dict,4)

## But we can also delete by key and return the value associated with
## the key; note that 999 is returned here if the key is not present
deleted_fd_value = pop!(food_dict,3, 999)

# Keys can be coerced into arrays
collect(keys(food_dict))

# Values can also be coerced into arrays
collect(values(food_dict))

# We can iterate over both keys and values
for (k, v) in food_dict
println("food_dict: key: ", k, " value: ", v)

end

# We could also just loop over keys
for k in keys(food_dict)
println("food_dict: key: ", k)

end

# Or could also just loop over values
for v in values(food_dict)
println("food_dict: value: ", v)

end� �
2.5 CONTROL FLOW

2.5.1 Compound Expressions

In Julia, a compound expression is one expression that is used to
sequentially evaluate a group of subexpressions. The value of the
last subexpression is returned as the value of the expression. There
are two ways to achieve this: begin blocks and chains.� �
## A begin block
b1 = begin

c = 20
d = 5
c * d

end
println("b1: ", b1)
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# 100

## A chain
b2 = (c = 20 ; d = 5 ; c * d)
println("b2: ", b2)
# 100� �

2.5.2 Conditional Evaluation

Conditional evaluation allows parts of a program to be evaluated,
or not, based on the value of a Boolean expression, i.e., an expres-
sion that produces a true/false value. In Julia, conditional evalua-
tion takes the form of an if-elseif-else construct, which is eval-
uated until the first Boolean expression evaluates to true or the
else statement is reached. When a given Boolean expression eval-
uates to true, the associated block of code is executed. No other
code blocks or condition expressions within the if-elseif-else
construct are evaluated. An if-elseif-else construct returns the
value of the last executed statement. Programmers can use as many
elseif blocks as they wish, including none, i.e., an if-else con-
struct. In Julia, if, elseif and else statements do not require
parentheses; in fact, their use is discouraged.� �
# An if-else construct
k = 1
if k == 0
"zero"

else
"not zero"

end
# not zero

# An if-elseif-else construct
k = 11
if k % 3 == 0
0

elseif k % 3 == 1
1

else
2

end
# 2� �
An alternative approach to conditional evaluation is via short-

circuit evaluation. This construct has the form a ? b : c, where a
is a Boolean expression, b is evaluated if a is true, and c is evaluated
if a is false. Note that ? : is called the “ternary operator”, it asso-
ciates from right to left, and it can be useful for short conditional
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statements. Ternary operators can be chained together to accom-
modate situations analogous to an if-elseif-else construct with
one or more ifelse blocks.� �
# A short-circuit evaluation
b= 10; c = 20;
println("SCE: b < c: ", b < c ? "less than" : "not less than")

# A short-circuit evaluation with nesting
d = 10; f = 10;
println("SCE: chained d vs e: ",

d < f ? "less than " :
d > f ? "greater than" : "equal")

# Note that we do not use e in the above example because it is a literal
# in Julia (the exponential function); while it can be overwritten, it is
# best practice to avoid doing so.
e
# ERROR: UndefVarError: e not defined
using Base.MathConstants
e
# e = 2.7182818284590...� �

2.5.3 Loops

2.5.3.1 Basics

Two looping constructs exist in Julia: for loops and while loops.
These loops can iterate over any container, such as a string or
an array. The body of a loop ends with the end keyword. Vari-
ables referenced inside loops are typically in the local scope of the
loop. When using variables defined outside the body of the loop,
pre-append them with the global keyword inside the body of the
loop. A for loop can operate over a range object representing a
sequence of numbers, e.g., 1:5, which it uses to get each index to
loop through the range of values in the range, assigning each one
to an indexing variable. The indexing variable only exists inside
the loop. When looping over a container, for loops can access the
elements of the container directly using the in operator. Rather
than using simple nesting, nested for loops can be written as a
single outer loop with multiple indexing variables forming a Carte-
sian product, e.g., if there are two indexing variables then, for each
value of the first index, each value of the second index is evaluated.� �
str = "Julia"

## A for loop for a string, iterating by index



Core Julia � 31

for i = 1:length(str)
print(str[i])

end

## A for loop for a string, iterating by container element
for s in str
print(s)

end

## A nested for loop
for i in str, j = 1:length(str)
println((i, j))

end
# ('J', 1)
# ('J', 2)
# ..
# ('a', 4)
# ('a', 5)

## Another nested for loop
odd = [1,3,5]
even = [2,4,6]
for i in odd, j in even
println("i*j: $(i*j)")

end
# i*j: 2
# i*j: 4
# ..
# i*j: 20
# i*j: 30� �
A while loop evaluates a conditional expression and, as long as

it is true, the loop evaluates the code in the body of the loop. To
ensure that the loop will end at some stage, an operation inside the
loop has to falsify the conditional expression. Programmers must
ensure that a while loop will falsify the conditional expression,
otherwise the loop will become “infinite” and never finish execut-
ing.� �
## Example of an infinite while loop (nothing inside the loop can falsify
## the condition x<10)
n=0
x=1
while x<10:

global n
n=n+1

end

## A while loop to estimate the median using an MM algorithm
using Distributions, Random
Random.seed!(1234)

iter = 0
N = 100
x = rand(Normal(2,1), N)
psi = fill!(Vector{Float64}(undef,2), 1e9)
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while(true)
global iter, x, psi
iter += 1
if iter == 25

println("Max iteration reached at iter=$iter")
break

end
num, den = (0,0)
## elementwise operations in wgt
wgt = (abs.(x .- psi[2])).ˆ-1
num = sum(wgt .* x)
den = sum(wgt)
psi = circshift(psi, 1)
psi[2] = num / den

dif = abs(psi[2] - psi[1])
if dif < 0.001

print("Converged at iteration $iter")
break

end
end

# gives an estimate of the median
median(x)
# 1.959

psi[2]
# 1.956� �

2.5.3.2 Loop termination

When writing loops, it is often advantageous to allow a loop to
terminate early, before it has completed. In the case of a while
loop, the loop would be broken before the test condition is falsified.
When iterating over an iterable object with a for loop, it is stopped
before the end of the object is reached. The break keyword can
accomplish both tasks. The following code block has two loops, a
while loop that calculates the square of the index variable and
stops when the square is greater than 16. Note that without the
break keyword, this is an infinite loop. The second loop does the
same thing, but uses a for loop to do it. The for loop terminates
before the end of the iterable range object is reached.� �
## break keyword

i = 0
while true

global i
sq = iˆ2
println("i: $i --- sq: = $sq")
if sq > 16
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break
end
i += 1

end

# i: 0 --- sq: = 0
# i: 1 --- sq: = 1
# i: 2 --- sq: = 4
# i: 3 --- sq: = 9
# i: 4 --- sq: = 16
# i: 5 --- sq: = 25

for i = 1:10
sq = iˆ2
println("i: $i --- sq: = $sq")
if sq > 16

break
end

end� �
In some situations, it might be the case that a programmer

wants to move from the current iteration of a loop immediately
into the next iteration before the current one is finished. This can
be accomplished using the continue keyword.� �
## continue keyword

for i in 1:5
if i % 2 == 0

continue
end
sq = iˆ2
println("i: $i --- sq: $sq")

end

# i: 1 --- sq: 1
# i: 3 --- sq: 9
# i: 5 --- sq: 25� �
In real world scenarios, continue could be used multiple times

in a loop and there could be more complex code after the continue
keyword.

2.5.3.3 Exception handling

Exceptions are unexpected conditions that can occur in a program
while it is carrying out its computations. The program may not
be able to carry out the required computations or return a sensi-
ble value to its caller. Usually, exceptions terminate the function
or program that generates it and prints some sort of diagnostic
message to standard output. An example of this is given in the
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following code block, where we try and take the logarithm of a
negative number and the log() function throws an exception.� �
## Generate an exception
log(-1)

# ERROR: DomainError with -1.0:
# log will only return a complex result if called with a complex argument.
# Try log(Complex(x)).
# Stacktrace:
# [1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31
# [2] log(::Float64) at ./special/log.jl:285
# [3] log(::Int64) at ./special/log.jl:395
# [4] top-level scope at none:0� �
In the above code block, the log() function threw a

DomainError exception. Julia has a number of built-in exceptions
that can be thrown and captured by a Julia program. Any excep-
tion can be explicitly thrown using the throw() function.� �
## throw()

for i in [1, 2, -1, 3]
if i < 0
throw(DomainError())

else
println("i: $(log(i))")

end
end

# i: 0.0
# i: 0.6931471805599453
# ERROR: MethodError: no method matching DomainError()
# Closest candidates are:
# DomainError(::Any) at boot.jl:256
# DomainError(::Any, ::Any) at boot.jl:257
# Stacktrace:
# [1] top-level scope at ./none:3

## error
for i in [1, 2, -1, 3]

if i < 0
error("i is a negative number")

else
println("i: $(log(i))")

end
end

# i: 0.0
# i: 0.6931471805599453
# ERROR: i is a negative number
# Stacktrace:
# [1] top-level scope at ./none:3� �



Core Julia � 35

In the previous code block, we throw the DomainError() excep-
tion when the input to log() is negative. Note that DomainError()
requires the brackets () to return an exception object. Without
them, it is referring to the exception type. The error() func-
tion can be used in a similar way. It produces an object of type
ErrorException that will immediately stop all execution of the
Julia program.

If we want to test for an exception and handle it gracefully,
we can use a try-catch statement to do this. These statements
allow us to catch an exception, store it in a variable if required,
and try an alternative way of processing the input that generated
the exception.� �
## try/catch

for i in [1, 2, -1, "A"]
try log(i)
catch ex

if isa(ex, DomainError)
println("i: $i --- Domain Error")
log(abs(i))

else
println("i: $i")
println(ex)
error("Not a DomainError")

end
end

end

# i: -1 --- Domain Error
# i: A
# MethodError(log, ("A",), 0x00000000000061f0)
# ERROR: Not a DomainError
# Stacktrace:
# [1] top-level scope at ./none:10� �
In the previous code block, the exception is stored in the ex

variable and when the error is not a DomainError(), its value
is returned along with the ErrorException defined by the call to
error(). Note that try-catch blocks can degrade the performance
of code because of the overhead they require. For high-performance
code, it is better to use standard conditional evaluation to handle
known exceptions.



36 � Data Science with Julia

2.6 FUNCTIONS

A function is an object that takes argument values as a tuple and
maps them to a return value. Functions are first-class objects in
Julia. They can be:

• assigned to variables;

• called from these variables;

• passed as arguments to other functions; and

• returned as values from a function.

A first-class object is one that accommodates all operations other
objects support. Operations typically supported by first-class ob-
jects in all programming languages are listed above. The basic syn-
tax of a function is illustrated in the following code block.� �

function add(x,y)
return(x+y)

end� �
In Julia, function names are all lowercase, without underscores,

but can include Unicode characters. It is best practice to avoid ab-
breviations, e.g., fibonacci() is preferable to fib(). The body
of the function is the part contained on the lines between the
function and end keywords. Parenthesis syntax is used to call
a function, e.g., add(3, 5) returns 8. Because functions are ob-
jects, they can be passed around like any value and, when passed,
the parentheses are omitted.� �
addnew = add
addnew(3,5)
# 8� �
Functions may also be written in assignment form, in which case

the body of the function must be a single expression. This can be
a very useful approach for simple functions because it makes code
much easier to read.� �
add2(x, y) = x+y� �
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Argument passing is done by reference. Modifications to the
input data structure (e.g., array) inside the function will be visible
outside it. If function inputs are not to be modified by a function, a
copy of the input(s) should be made inside the function before do-
ing any modifications. Python and other dynamic languages handle
their function arguments in a similar way.� �
## Argument passing
function f1!(x)
x[1] = 9999
return(x)

end

ia = Int64[0,1,2]
println("Array ia: ", ia)
# Array ia: [0, 1, 2]

f1!(ia)
println("Argument passing by reference: ", ia)
# Argument passing by reference: [9999, 1, 2]� �
By default, the last expression that is evaluated in the body of a

function is its return value. However, when the function body con-
tains one or more return keywords, it returns immediately when a
return keyword is evaluated. The return keyword usually wraps
an expression that provides a value when returned. When used with
the control flow statements, the return keyword can be especially
useful.� �
## A function with multiple options for return
function gt(g1, g2)

if(g1 >g2)
return("$g1 is largest")

elseif(g1<g2)
return("$g2 is largest")

else
return("$g1 and $g2 are equal")
end

end

gt(2,4)
# "4 is largest"� �
The majority of Julia operators are actually functions and can

be called with parenthesized argument lists, just like other func-
tions.� �
## These are equivalent
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2*3
# 6
*(2,3)
# 6� �
Functions can also be created without a name, and such func-

tions are called anonymous functions. Anonymous functions can
be used as arguments for functions that take other functions as
arguments.� �
## map() applies a function to each element of an array and returns a new
## array containing the resulting values

a = [1,2,3,1,2,1]
mu = mean(a)
sd = std(a)

## centers and scales a
b = map(x -> (x-mu)/sd, a)� �
Julia accommodates optional arguments by allowing function

arguments to have default values, similar to R and many other
languages. The value of an optional argument does not need to be
specified in a function call.� �
## A function with an optional argument. This is a recursive function,
## i.e., a function that calls itself, for computing the sum of the first n
## elements of the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,...

function fibonacci(n=20)
if (n<=1)

return 1
else

return fibonacci(n-1)+fibonacci(n-2)
end

end

## Sum the first 12 elements of the Fibonacci sequence
fibonacci(12)
# 233

## Because the optional argument defaults to 20, these are equivalent
fibonacci()
fibonacci(20)� �
Function arguments determine its behaviour. In general, the

more arguments a function has, the more varied its behaviour will
be. Keyword arguments are useful because they help manage func-
tion behaviour; specifically, they allow arguments to be specified
by name and not just position in the function call. In the be-
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low code block, an MM algorithm is demonstrated. Note that we
have already used an MM algorithm in Section 2.5.3.1, but now
we construct an MM algorithm as a function. MM algorithms are
blueprints for algorithms that either iteratively minimize a ma-
jorizing function or iteratively maximize a minorizing function —
see Hunter and Lange (2000, 2004) for further details.� �
## A function with a keyword argument
## Arguments after the ; are keyword arguments
## The default values are evaluated from left-to-right.
## This allows keyword arguments to refer to previously defined keywords
## Keyword arguments can have explicit types

## estimate the median of a 1D array using an MM algorithm
## for clarity (too many m's!) we use an _ in the function name
function mm_median(x, eps = 0.001; maxit = 25, iter::Int64=Int(floor(eps)))

## initalizations
psi = fill!(Vector{Float64}(undef,2), 1e2)

while(true)
iter += 1
if iter == maxit

println("Max iteration reached at iter=$iter")
break

end
num, den = (0,0)
## use map() to do elementwise operations in wgt
wgt = map(d -> (abs(d - psi[2]))ˆ(-1), x)
num = sum(map(*, wgt, x))
den = sum(wgt)
psi = circshift(psi, 1)
psi[2] = num / den

dif = abs(psi[2] - psi[1])
if dif < eps

print("Converged at iteration $iter")
break

end
end

return(Dict(
"psi_vec" => psi,
"median" => psi[2]

))

end

## Run on simulated data
using Distributions, Random
Random.seed!(1234)

N = Int(1e3)
dat = rand(Normal(0,6), N)

## Function calls using different types of arguments
median(dat)
# 0.279
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mm_median(dat, 1e-9)["median"]
# Max iteration reached at iter=25

mm_median(dat, maxit=50)["median"]
# Converged at iteration 26
# 0.296

mm_median(dat, 1e-9, maxit=100)["median"]
# Converged at iteration 36
# 0.288� �
Some general tips for using functions are as follows:

1. Write programs as a series of functions because: functions
are testable and reusable, they have well-defined inputs and
outputs, and code inside functions usually runs much faster
because of how the Julia compiler works.

2. Functions should not operate on global variables.

3. Functions with ! at the end of their names modify their argu-
ments instead of copying them. Julia library functions often
come in two versions, distinguished by the !.

4. Pass a function directly, do not wrap it in an anonymous
function.

5. When writing functions that take numbers as arguments, use
the Int type when possible. When combined in numerical
computations, they change the resulting Julia type of the
result less frequently. This is known as type promotion.

6. If function arguments have specific types, the function call
should force its arguments to be the required type.

The aforementioned tips are illustrated in the following code block.� �
## Tip3: Function with a ! in the name
a1 = [2,3,1,6,2,8]
sort!(a1)
a1
#6-element Array{Int64,1}:
# 1
# 2
# 2
# 3
# 6
# 8

## Tip 4
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## Do not wrap abs() in an anonymous function
A = [1, -0.5, -2, 0.5]
map(x -> abs(x), A)

# Rather, do this
## abs() is not wrapped in an anonymous function
map(abs, A)

##Tip 5: Type promotion
times1a(y) = *(y, 1)
times1b(y) = *(y, 1.0)
println("times1a(1/2): ", times1a(1/2))
println("times1a(2): ", times1a(2)) ## preserves type
println("times1a(2.0): ", times1a(2.0))
println("times1b(1/2): ", times1b(1/2))
println("times1b(2): ", times1b(2)) ## changes type
println("times1b(2.0): ", times1b(2.0))

## Tip6: Function with typed arguments
times1c(y::Float64) = *(y, 1)
times1c(float(23))� �
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C H A P T E R 3

Working with Data

THE PURPOSE of this chapter is to familiarize the reader
with some of the basics of working with data in Julia. As

would be expected, much of the focus of this chapter is on or around
dataframes, including dataframe functions. Other topics covered
include categorical data, input-output (IO), and the split-apply-
combine strategy.

3.1 DATAFRAMES

A dataframe is a tabular representation of data, similar to a spread-
sheet or a data matrix. As with a data matrix, the observations are
rows and the variables are columns. Each row is a single (vector-
valued) observation. For a single row, i.e., observation, each column
represents a single realization of a variable. At this stage, it may
be helpful to explicitly draw the analogy between a dataframe and
the more formal notation often used in statistics and data science.

Suppose we observe n realizations x1, . . . ,xn of p-dimensional
random variables X1, . . . ,Xn, where Xi = (Xi1, Xi2, . . . , Xip)′ for
i = 1, . . . , n. In matrix form, this can be written

X = (X1,X2, . . . ,Xn)′ =


X′1
X′2
...

X′n



=


X11 X12 · · · X1p
X21 X22 · · · X2p
...

...
. . .

...
Xn1 Xn2 · · · Xnp

 .

(3.1)

43



44 � Data Science with Julia

Now, Xi is called a random vector and X is called an n×p random
matrix. A realization of X can be considered a data matrix. For
completeness, note that a matrix A with all entries constant is
called a constant matrix.

Consider, for example, data on the weight and height of 500
people. Let xi = (xi1, xi2)′ be the associated observation for the
ith person, i = 1, 2, . . . , 500, where xi1 represents their weight and
xi2 represents their height. The associated data matrix is then

X = (x1,x2, . . . ,x500)′ =


x′1
x′2
...

x′500

 =


x11 x12
x21 x22
...

...
x500,1 x500,2

 . (3.2)

A dataframe is a computer representation of a data matrix. In
Julia, the DataFrame type is available through the DataFrames.jl
package. There are several convenient features of a DataFrame,
including:

• columns can be different Julia types;

• table cell entries can be missing;

• metadata can be associated with a DataFrame;

• columns can be names; and

• tables can be subsetted by row, column or both.

The columns of a DataFrame are most often integers, floats or
strings, and they are specified by Julia symbols.� �
## Symbol versus String
fruit = "apple"

println("eval(:fruit): ", eval(:fruit))
# eval(:fruit): apple

println("""eval("apple"): """, eval("apple"))
# eval("apple"): apple� �
In Julia, a symbol is how a variable name is represented as

data; on the other hand, a string represents itself. Note that
df[:symbol] is how a column is accessed with a symbol; specifi-
cally, the data in the column represented by symbol contained in
the DataFrame df is being accessed. In Julia, a DataFrame can be
built all at once or in multiple phases.
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� �
## Some examples with DataFrames

using DataFrames, Distributions, StatsBase, Random

Random.seed!(825)

N = 50

## Create a sample dataframe
## Initially the DataFrame has N rows and 3 columns
df1 = DataFrame(

x1 = rand(Normal(2,1), N),
x2 = [sample(["High", "Medium", "Low"],

pweights([0.25,0.45,0.30])) for i=1:N],
x3 = rand(Pareto(2, 1), N)
)

## Add a 4th column, y, which is dependent on x3 and the level of x2
df1[:y] = [df1[i,:x2] == "High" ? *(4, df1[i, :x3]) :

df1[i,:x2] == "Medium" ? *(2, df1[i, :x3]) :
*(0.5, df1[i, :x3]) for i=1:N]� �

A DataFrame can be sliced the same way a two-dimensional
Array is sliced, i.e., via df[row_range, column_range]. These
ranges can be specified in a number of ways:

• Using Int indices individually or as arrays, e.g., 1 or [4,6,9].

• Using : to select indices in a dimension, e.g., x:y selects the
range from x to y and : selects all indices in that dimension.

• Via arrays of Boolean values, where true selects the elements
at that index.

Note that columns can be selected by their symbols, either indi-
vidually or in an array [:x1, :x2].� �
## Slicing DataFrames
println("df1[1:2, 3:4]: ",df1[1:2, 3:4])
println("\ndf1[1:2, [:y, :x1]]: ",df1[1:2, [:y, :x1]])

## Now, exclude columns x1 and x2
keep = setdiff(names(df1), [:x1, :x2])
println("\nColumns to keep: ", keep)
# Columns to keep: Symbol[:x3, :y]

println("df1[1:2, keep]: ",df1[1:2, keep])� �
In practical applications, missing data is common. In

DataFrames.jl, the Missing type is used to represent missing val-
ues. In Julia, a singlton occurence of Missing, missing is used to
represent missing data. Specifically, missing is used to represent
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the value of a measurement when a valid value could have been
observed but was not. Note that missing in Julia is analogous to
NA in R.

In the following code block, the array v2 has type
Union{Float64, Missings.Missing}. In Julia, Union types are
an abstract type that contain objects of types included in its ar-
guments. In this example, v2 can contain values of missing or
Float64 numbers. Note that missings() can be used to generate
arrays that will support missing values; specifically, it will gener-
ate vectors of type Union if another type is specified in the first
argument of the function call. Also, ismissing(x) is used to test
whether x is missing, where x is usually an element of a data struc-
ture, e.g., ismissing(v2[1]).� �
## Examples of vectors with missing values
v1 = missings(2)
println("v1: ", v1)
# v1: Missing[missing, missing]

v2 = missings(Float64, 1, 3)
v2[2] = pi
println("v2: ", v2)
# v2: Union{Missing, Float64}[missing 3.14159 missing]

## Test for missing
m1 = map(ismissing, v2)
println("m1: ", m1)
# m1: Bool[true false true]

println("Percent missing v2: ", *(mean([ismissing(i) for i in v2]), 100))
# Percent missing v2: 66.66666666666666� �
Note that most functions in Julia do not accept data of type

Missings.Missing as input. Therefore, users are often required
to remove them before they can use specific functions. Using
skipmissing() returns an iterator that excludes the missing val-
ues and, when used in conjunction with collect(), gives an array
of non-missing values. This approach can be used with functions
that take non-missing values only.� �
## calculates the mean of the non-missing values
mean(skipmissing(v2))
# 3.141592653589793

## collects the non-missing values in an array
collect(skipmissing(v2))
# 1-element Array{Float64,1}:
# 3.14159� �
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3.2 CATEGORICAL DATA

In Julia, categorical data is represented by arrays of type
CategoricalArray, defined in the CategoricalArrays.jl pack-
age. Note that CategoricalArray arrays are analogous to factors
in R. CategoricalArray arrays have a number of advantages over
String arrays in a dataframe:

• They save memory by representing each unique value of the
string array as an index.

• Each index corresponds to a level.

• After data cleaning, there are usually only a small number
of levels.

CategoricalArray arrays support missing values. The type
CategoricalArray{Union{T, Missing}} is used to represent
missing values. When indexing/slicing arrays of this type, missing
is returned when it is present at that location.� �
## Number of entries for the categorical arrays
Nca = 10

## Empty array
v3 = Array{Union{String, Missing}}(undef, Nca)

## Array has string and missing values
v3 = [isodd(i) ? sample(["High", "Low"], pweights([0.35,0.65])) :

missing for i = 1:Nca]

## v3c is of type CategoricalArray{Union{Missing, String},1,UInt32}
v3c = categorical(v3)

## Levels should be ["High", "Low"]
println("1. levels(v3c): ", levels(v3c))
# 1. levels(v3c): ["High", "Low"]

## Reordered levels - does not change the data
levels!(v3c, ["Low", "High"])
println("2. levels(v3c):", levels(v3c))
# 2. levels(v3c): ["Low", "High"]

println("2. v3c: ", v3c)
# 2. v3c: Union{Missing, CategoricalString{UInt32}}
# ["High", missing, "Low", missing, "Low", missing, "High",
# missing, "Low", missing]� �
Here are several useful functions that can be used with

CategoricalArray arrays:

• levels() returns the levels of the CategoricalArray.
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• levels!() changes the order of the array’s levels.

• compress() compresses the array saving memory.

• decompress() decompresses the compressed array.

• categorical(ca) converts the array ca into an array of type
CategoricalArray.

• droplevels!(ca) drops levels no longer present in the array
ca. This is useful when a dataframe has been subsetted and
some levels are no longer present in the data.

• recode(a, pairs) recodes the levels of the array. New levels
should be of the same type as the original ones.

• recode!(new, orig, pairs) recodes the levels in orig us-
ing the pairs and puts the new levels in new.

Note that ordered CategoricalArray arrays can be made and ma-
nipulated.� �
## An integer array with three values
v5 = [sample([0,1,2], pweights([0.2,0.6,0.2])) for i=1:Nca]

## An empty string array
v5b = Array{String}(undef, Nca)

## Recode the integer array values and save them to v5b
recode!(v5b, v5, 0 => "Apple", 1 => "Orange", 2=> "Pear")
v5c = categorical(v5b)

print(typeof(v5c))
# CategoricalArray{String,1,UInt32,String,CategoricalString{UInt32},
# Union{}}

print(levels(v5c))
# ["Apple", "Orange", "Pear"]� �

3.3 INPUT/OUTPUT

The CSV.jl library has been developed to read and write delimited
text files. The focus in what follows is on reading data into Julia
with CSV.read(). However, as one would expect, CSV.write()
has many of the same arguments as CSV.read() and it should be
easy to use once one becomes familiar with CSV.read(). Useful
CSV.read() parameters include:
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• fullpath is a String representing the file path to a delimited
text file.

• Data.sink is usually a DataFrame but can be any Data.Sink
in the DataStreams.jl package, which is designed to effi-
ciently transfer/stream “table-like” data. Examples of data
sinks include arrays, dataframes, and databases (SQlite.jl,
ODBC.jl, etc.).

• delim is a character representing how the fields in a file are
delimited (| or ,).

• quotechar is a character used to represent a quoted field
that could contain the field or newline delimiter.

• missingstring is a string representing how the missing val-
ues in the data file are defined.

• datarow is an Int specifying at what line the data starts in
the file.

• header is a String array of column names or an Int speci-
fying the row in the file with the headers.

• types specifies the column types in an Array of type
DataType or a dictionary with keys corresponding to the col-
umn name or number and the values corresponding to the
columns’ data types.

Before moving into an example using real data, we will illus-
trate how to change the user’s working directory. R users will be
familiar with the setwd() function, which sets the R session’s work-
ing directory to a user-defined location. The following code block
demonstrates how to set the user’s working directory in Julia using
the cd() function. We are using the function homedir() to prepend
the path. Note that Windows users have to “Escape” their back-
slashes when specifying the path.� �
# Specify working directory
homedir()
# "/Users/paul"

cd("$(homedir())/Desktop")

pwd()
"/Users/paul/Desktop"

# On Windows
# cd("D:\\julia\\projects")� �
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The following code block details how one could go about reading
in and cleaning the beer data in Julia. We start by defining some
Julia types to store the raw data. This was necessary as the raw
data contained missing values in addition to valid entries. The
column names that will be used by our dataframe are defined in
an array. These same names are used as keys for the dictionary that
defines the types for each column. The CSV.jl package is used to
read the comma separated value (CSV) data into Julia and store
it as a dataframe called df_recipe_raw. From the raw data, a
cleaned version of the data is produced, with new columns for a
binary outcome and dummy variables produced from the levels of
the categorical variables.� �

using DataFrames, Query, CSV, JLD2, StatsBase, MLLabelUtils, Random
include("chp3_functions.jl")
Random.seed!(24908)

## Types for the files columns
IntOrMiss = Union{Int64,Missing}
FltOrMiss = Union{Float64,Missing}
StrOrMiss = Union{String,Missing}

## define variable names for each column
recipe_header = ["beer_id", "name", "url", "style", "style_id", "size",

"og", "fg", "abv", "ibu", "color", "boil_size", "boil_time", "biol_grav",
"efficiency", "mash_thick", "sugar_scale", "brew_method", "pitch_rate",
"pri_temp", "prime_method", "prime_am"]

## dictionary of types for each column
recipe_types2 = Dict{String, Union}(

"beer_id" => IntOrMiss,
"name" => StrOrMiss,
"url" => StrOrMiss,
"style" => StrOrMiss,
"style_id" => IntOrMiss,
"size" => FltOrMiss,
"og" => FltOrMiss,
"fg" => FltOrMiss,
"abv" => FltOrMiss,
"ibu" => FltOrMiss,
"color" => FltOrMiss,
"boil_size" => FltOrMiss,
"boil_time" => FltOrMiss,
"biol_grav" => FltOrMiss,
"efficiency" => FltOrMiss,
"mash_thick" => FltOrMiss,
"sugar_scale" => StrOrMiss,
"brew_method" => StrOrMiss,
"pitch_rate" => FltOrMiss,
"pri_temp" => FltOrMiss,
"prime_method" => StrOrMiss,
"prime_am" => StrOrMiss

)

## read csv file
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df_recipe_raw = CSV.read("recipeData.csv",
DataFrame;
delim = ',' ,
quotechar = '"',
missingstring = "N/A",
datarow = 2,
header = recipe_header,
types = recipe_types2,
allowmissing=:all

)

## Drop columns
delete!(df_recipe_raw, [:prime_method, :prime_am, :url])

#####
## Write the raw data dataframe
JLD2.@save "recipeRaw.jld2" df_recipe_raw

###########################
## Create cleaned version

## Create a copy of the DF
df_recipe = deepcopy(df_recipe_raw)

## exclude missing styles
filter!(row -> !ismissing(row[:style]), df_recipe)

println("-- df_recipe: ",size(df_recipe))
# df_recipe: (73861, 19)

## Make beer categories
df_recipe[:y] = map(x ->
occursin(r"ALE"i, x) || occursin(r"IPA"i, x) || occursin(r"Porter"i, x)

|| occursin(r"stout"i, x) ? 0 :
occursin(r"lager"i, x) || occursin(r"pilsner"i, x) || occursin(r"bock"i, x)

|| occursin(r"okto"i, x) ? 1 : 99 ,
df_recipe[:style])

## remove styles that are not lagers or ales
filter!(row -> row[:y] != 99, df_recipe)

## remove extraneous columns
delete!(df_recipe, [:beer_id, :name, :style, :style_id])

## create dummy variables - one-hot-encoding
onehot_encoding!(df_recipe, "brew_method" , trace = true)
onehot_encoding!(df_recipe, "sugar_scale")

describe(df_recipe, stats=[:eltype, :nmissing])

delete!(df_recipe, [:brew_method,:sugar_scale])

JLD2.@save "recipe.jld2" df_recipe� �
The following code block illustrates many of the same steps used

to read and clean the food data which is used for our regression
examples in Chapters 5 and 7.� �

using DataFrames, Query, CSV, JLD2, StatsBase, MLLabelUtils, Random
include("chp3_functions.jl")
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Random.seed!(24908)

## Types for the file columns
IntOrMiss = Union{Int64,Missing}
FltOrMiss = Union{Float64,Missing}
StrOrMiss = Union{String,Missing}

## define variable names for each column
food_header =

["gpa", "gender", "breakfast", "cal_ckn", "cal_day",
"cal_scone", "coffee", "comfort_food", "comfort_food_reason",
"comfoodr_code1", "cook", "comfoodr_code2", "cuisine", "diet_current",
"diet_current_code", "drink", "eating_changes", "eating_changes_coded",
"eating_changes_coded1", "eating_out", "employment", "ethnic_food",
"exercise", "father_educ", "father_prof", "fav_cuisine",
"fav_cuisine_code", "fav_food", "food_child", "fries", "fruit_day",
"grade_level", "greek_food", "healthy_feeling", "healthy_meal",
"ideal_diet", "ideal_diet_coded", "income", "indian_food",
"italian_food", "life_reward", "marital_status", "meals_friend",
"mom_educ", "mom_prof", "nut_check", "on_campus", "parents_cook",
"pay_meal_out", "persian_food","self_perception_wgt", "soup", "sports",
"thai_food", "tortilla_cal", "turkey_cal", "sports_type", "veggies_day",
"vitamins", "waffle_cal", "wgt"]

## dictionary of types for each column
food_types = Dict{String, Union}(

"gpa" => FltOrMiss,
"gender" => IntOrMiss,
"breakfast" => IntOrMiss,
"cal_ckn" => IntOrMiss,
"cal_day" => IntOrMiss,
"cal_scone" => IntOrMiss,
"coffee" => IntOrMiss,
"comfort_food" => StrOrMiss,
"comfort_food_reason" => StrOrMiss,
"comfoodr_code1" => IntOrMiss,
"cook" => IntOrMiss,
"comfoodr_code2" => IntOrMiss,
"cuisine" => IntOrMiss,
"diet_current" => StrOrMiss,
"diet_current_code" => IntOrMiss,
"drink" => IntOrMiss,
"eating_changes" => StrOrMiss,
"eating_changes_coded" => IntOrMiss,
"eating_changes_coded1" => IntOrMiss,
"eating_out" => IntOrMiss,
"employment" => IntOrMiss,
"ethnic_food" => IntOrMiss,
"exercise" => IntOrMiss,
"father_educ" => IntOrMiss,
"father_prof" => StrOrMiss,
"fav_cuisine" => StrOrMiss,
"fav_cuisine_code" => IntOrMiss,
"fav_food" => IntOrMiss,
"food_child" => StrOrMiss,
"fries" => IntOrMiss,
"fruit_day" => IntOrMiss,
"grade_level" => IntOrMiss,
"greek_food" => IntOrMiss,
"healthy_feeling" => IntOrMiss,
"healthy_meal" => StrOrMiss,
"ideal_diet" => StrOrMiss,
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"ideal_diet_coded" => IntOrMiss,
"income" => IntOrMiss,
"indian_food" => IntOrMiss,
"italian_food" => IntOrMiss,
"life_reward" => IntOrMiss,
"marital_status" => IntOrMiss,
"meals_friend" => StrOrMiss,
"mom_educ" => IntOrMiss,
"mom_prof" => StrOrMiss,
"nut_check" => IntOrMiss,
"on_campus" => IntOrMiss,
"parents_cook" => IntOrMiss,
"pay_meal_out" => IntOrMiss,
"persian_food" => IntOrMiss,
"self_perception_wgt" => IntOrMiss,
"soup" => IntOrMiss,
"sports" => IntOrMiss,
"thai_food" => IntOrMiss,
"tortilla_cal" => IntOrMiss,
"turkey_cal" => IntOrMiss,
"sports_type" => StrOrMiss,
"veggies_day" => IntOrMiss,
"vitamins" => IntOrMiss,
"waffle_cal" => IntOrMiss,
"wgt" => FltOrMiss

)

## read csv file
df_food_raw = CSV.read("food_coded.csv",

DataFrame;
delim = ',' ,
quotechar = '"',
missingstrings = ["nan", "NA", "na", ""],
datarow = 2,
header = food_header,
types = food_types,
allowmissing=:all

)

## drop text fields which are not coded fields
delete!(df_food_raw, [:comfort_food, :comfort_food_reason, :comfoodr_code2,

:diet_current, :eating_changes, :father_prof, :fav_cuisine, :food_child,
:healthy_meal, :ideal_diet, :meals_friend, :mom_prof, :sports_type

])

## Change 1/2 coding to 0/1 coding
df_food_raw[:gender] = map(x -> x - 1, df_food_raw[:gender])
df_food_raw[:breakfast] = map(x -> x - 1, df_food_raw[:breakfast])
df_food_raw[:coffee] = map(x -> x - 1, df_food_raw[:coffee])
df_food_raw[:drink] = map(x -> x - 1, df_food_raw[:drink])
df_food_raw[:fries] = map(x -> x - 1, df_food_raw[:fries])
df_food_raw[:soup] = map(x -> x - 1, df_food_raw[:soup])
df_food_raw[:sports] = map(x -> x - 1, df_food_raw[:sports])
df_food_raw[:vitamins] = map(x -> x - 1, df_food_raw[:vitamins])

JLD2.@save "food_raw.jld2" df_food_raw

###########################
## Create cleaned version

## Create a copy of the DF
df_food = deepcopy(df_food_raw)
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println("- df_food size: ", size(df_food))
# - df_food size: (125, 48)

## generate dummy variables
## used string array bc onehot_encoding!() takes a string
change2_dv = ["cal_ckn", "cal_day", "cal_scone", "comfoodr_code1",

"cook", "cuisine", "diet_current_code", "eating_changes_coded",
"eating_changes_coded1", "eating_out", "employment", "ethnic_food",
"exercise", "father_educ", "fav_cuisine_code", "fav_food", "fruit_day",
"grade_level", "greek_food", "healthy_feeling", "ideal_diet_coded",
"income", "indian_food", "italian_food", "life_reward", "marital_status",
"mom_educ", "nut_check", "on_campus", "parents_cook", "pay_meal_out",
"persian_food", "self_perception_wgt", "thai_food", "tortilla_cal",
"turkey_cal", "veggies_day", "waffle_cal"]

println("-- onehotencoding()")
for i in change2_dv

println("i: ", i)
onehot_encoding!(df_food, i)
delete!(df_food, Symbol(i))

end

## remove NaNs
df_food[:gpa] =

collect(FltOrMiss, map(x -> isnan(x)?missing:x, df_food[:gpa]))
df_food[:wgt] =

collect(FltOrMiss, map(x -> isnan(x)?missing:x, df_food[:wgt]))

## remove missing gpa
filter!(row -> !ismissing(row[:gpa]), df_food)

println("--- df_food: ", size(df_food))
# --- df_food: (121, 214)

JLD2.@save "food.jld2" df_food� �
3.4 USEFUL DATAFRAME FUNCTIONS

There are several dataframe functions that have not been men-
tioned yet but that are quite useful:

• eltype() provides the types for each element in a
DataFrame.

• head(df, n) displays the top n rows.

• tail(df, n) displays the bottom n rows.

• size(df) returns a tuple with the dimensions of the
DataFrame.

• size(df, 1) returns the number of columns.

• size(df, 2) returns the number of rows.
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• describe(df) returns statistical summary measures along
with column types for each column in the df.

• colwise(f, df) applies function f to the columns in df.

• delete!(df, col_symbol) removes one or more columns,
where columns are referenced by a symbol or an array of
symbols, e.g., :x1 or [:x1, :x2].

• rename!(df, :old_name => :new_name) uses a Pair data
structure to specify the existing name and its new name. The
Pair data structure can be created dynamically:

� �
rename!(df1, o => n for (o, n) = zip([:x1, :x2, :x3, :y],

[:X1, :X2, :X3, :Y]))� �
• filter(f, df) filters the rows in dataframe df using the
anonymous function f and returns a copy of df with the
rows filtered by removing elements where f is false.

• filter!(f, df) updates the dataframe df; note that no
copy is created.

� �
## remove rows where the style column is missing.
filter!(row -> !ismissing(row[:style]), df_recipe)� �
• push!(df, item) adds one or more items item to the
dataframe df that are not already in a dataframe.

• append!(df1, df2) adds dataframe df2 to dataframe df1.

Several functions listed here have clear analogues in R. For exam-
ple, the describe() function in Julia is similar to the summary()
function in R. Similarly, the size() function in Julia is similar to
the dim() function in R.� �
## using the dataframe previously defined

describe(df1[:X1])

# Summary Stats:
# Mean: 2.078711
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# Minimum: -0.229097
# 1st Quartile: 1.262696
# Median: 2.086254
# 3rd Quartile: 2.972752
# Maximum: 4.390025
# Length: 50
# Type: Float64

## number of rows and columns of df_1
size(df1)
# (50, 4)� �

3.5 SPLIT-APPLY-COMBINE STRATEGY

Often data scientists need to extract summary statistics from the
data in dataframes. The split-apply-combine (SAC) strategy is a
convenient way to do this. This strategy for data analysis was out-
lined by Wickham (2011) and is implemented as the plyr pack-
age (Wickham, 2016) for R. The strategy involves partitioning the
dataset into groups and administering some function to the data
in each group and then recombining the results. Julia implements
this strategy with one of:

• by(df, cols, f),

• groupby(df, cols, skipmissing = false), or

• aggregate(df, cols, f).

The function by(df, cols, f) is used to apply function f to the
dataframe df, partitioning by the column(s) cols in the dataframe.
The function by() takes the following arguments:

• df is the dataframe being analyzed.

• cols is the columns making up the groupings.

• f is the function being applied to the grouped data.

The function by(df, cols, f) returns a DataFrame of the results.� �
## a count of the levels of X2
## the counts are in column x1 of the dataframe returned from by()
by(df1, :X2, nrow )

# 3x2 DataFrame
# | Row | X2 | x1 |
# | | String | Int64 |
# +-----+--------+-------+
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# | 1 | Medium | 28 |
# | 2 | Low | 11 |
# | 3 | High | 11 |

## median of X3 by the levels of X2
by(df1, :X2, df -> DataFrame(Median = median(df[:X3])))

# 3x2 DataFrame
# | Row | X2 | Median |
# | | String | Float64 |
# +-----+--------+---------+
# | 1 | Medium | 1.21086 |
# | 2 | Low | 1.19345 |
# | 3 | High | 1.82011 |� �
The function groupby(df, cols, skipmissing = false) splits

a dataframe df into sub-dataframes by rows and takes the following
arguments:

• df is the DataFrame to be split.

• cols is the columns by which to split up the dataframe.

• skipmissing determines if rows in cols should be skipped
if they contain missing entries and returns a grouped
DataFrame object that can be iterated over, returning sub-
dataframes at each iteration.

The function groupby(df, cols, skipmissing = false) re-
turns a grouped DataFrame object, each sub-dataframe in this ob-
ject is one group, i.e., a DataFrame, and the groups are accessible
via iteration.� �
## print the summary stats for x3 in each partition
for part in groupby(df1, :X2, sort=true)
println(unique(part[:X2]))
println(summarystats(part[:X3]))

end

# ["High"]
# Summary Stats:
# Mean: 2.004051
# Minimum: 1.011101
# 1st Quartile: 1.361863
# Median: 1.820108
# 3rd Quartile: 2.383068
# Maximum: 4.116220
#
# ["Low"]
# ...� �
The function aggregate(df, cols, f) splits a dataframe df

into sub-dataframes by rows and takes the following arguments:
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• df is the dataframe being analyzed.

• cols are the columns that make up the groupings.

• f is the function to apply to the remaining data. Multiple
functions can be specified as an array, e.g., [sum, mean].

The function aggregate(df, cols, f) returns a DataFrame.� �
## keep the grouping variable X2 and Y
keep2 = setdiff(names(df1), [:X1, :X3])

## agg_res has the summary statistics by levels of X2
## MAD = median absolute deviation
agg_res = aggregate(df1[keep2], [:X2],[length, mean, std, median, mad])
rename!(agg_res, :Y_length => :Y_n)
agg_res

# 3x6 DataFrame
# | Row | X2 | Y_n | Y_mean | Y_std | Y_median | Y_mad |
# | | String | Int64 | Float64 | Float64 | Float64 | Float64 |
# +-----+--------+-------+----------+----------+----------+----------+
# | 1 | Medium | 28 | 3.22175 | 1.70015 | 2.42171 | 0.473198 |
# | 2 | Low | 11 | 0.692063 | 0.208037 | 0.596726 | 0.109055 |
# | 3 | High | 11 | 8.01621 | 3.65864 | 7.28043 | 3.39415 |� �
Often dataframes need to be sorted. This can be accomplished

with the sort!() function. The ! in the function names indicates
it will sort the object in place and not make a copy of it. When sort-
ing dataframes, users will most often want to select the columns to
sort by and the direction to sort them (i.e., ascending or descend-
ing). To accomplish this, the sort!() function takes the following
arguments:

• df is the dataframe being sorted.

• cols is the dataframe columns to sort. These should be col-
umn symbols, either alone or in an array.

• rev is a Boolean value indicating whether the column should
be sorted in descending order or not.

� �
## sorting dataframes
sort!(df1, [:X2, :Y], rev = (true, false))

# 50x4 DataFrame
# | Row | X1 | X2 | X3 | Y |
# | | Float64 | String | Float64 | Float64 |
# +-----+----------+--------+---------+---------+
# | 1 | 1.45373 | Medium | 1.00982 | 2.01964 |
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# | 2 | 3.11033 | Medium | 1.01574 | 2.03148 |
# | 3 | 2.12326 | Medium | 1.01782 | 2.03563 |
# :
# | 45 | 2.31324 | High | 1.82011 | 7.28043 |
# :
# | 50 | 2.33929 | High | 4.11622 | 16.4649 |� �

3.6 QUERY.JL

Query.jl is a Julia package used for querying Julia data sources.
These data sources include the ones we have mentioned, such as
dataframes and data streams such as CSV. They can also include
databases via SQLite and ODBS, and time series data through the
TimeSeries.jl framework. Query.jl can interact with any iter-
able data source supported through the IterableTables.jl pack-
age. It has many features that will be familiar to users of the dplyr
package (Wickham et al., 2017) in R.

At the time of writing, Query.jl is heavily influenced by the
query expression portion of the C# Language-INtegrated Query
(LINQ) framework (Box and Hejlsberg, 2007). LINQ is a compo-
nent of the .NET framework that allows the C# language to na-
tively query data sources in the form of query expressions. These
expressions are comparable to SQL statements in a traditional
database and allow filtering, ordering and grouping operations on
data sources with minimal code. The LINQ framework allows C#
to query multiple data sources using the same query language.
Query.jl gives data scientists this capability in Julia, greatly sim-
plifying their work.

The following code block shows the basic structure of a
Query.jl query statement. The @from statement is provided by
the package which specifies how the query will iterate over the
data source. This is done in the same way a for loop iterates over
a data source, using a range variable, often i, the in operator and
the data source name. There can be numerous query statements
where <statements> is written in the below code block, each one
would be separated by a new line. The result of the query is stored
in the x_obj object which can be a number of different data sinks,
including dataframes and CSV files.� �
## Pseudo code for a generic Query.jl statement
## the query statements in <statements> are separated by \n
x_obj = @from <range_var> in <data_source> begin

<statements>
end� �



60 � Data Science with Julia

We will start our overview of Query.jl features with a simple
example using the beer data. The following code block shows how
to filter rows with the @where statement, select columns with the
@select statement, and return the result as a DataFrame object
with the @collect statement.� �

using Query
## select lagers (y ==1) and pri_temp >20
x_obj = @from i in df_recipe begin

@where i.y == 1 && i.pri_temp > 20
@select {i.y, i.pri_temp, i.color}
@collect DataFrame

end

typeof(x_obj)
# DataFrame

names(x_obj)
# Symbol[3]
# :y
# :pri_temp
# :color

size(x_obj)
# (333, 3)� �
Notice that the @where and @select statements use the it-

eration variable i to reference the columns in the dataframe.
The dataframe df_recipe is the data source for the query. The
@collect macro returns the result of the query as an object of a
given format. The formats available are called data sinks and in-
clude arrays, dataframes, dictionaries or any data stream available
in DataStreams.jl, amongst others.

The @where statement is used to filter the rows of the data
source. It is analogous to the filter! function described in Sec-
tion 3.3. The expression following @where can be any arbitrary
Julia expression that evaluates to a Boolian value.

The @select statement can use named tuples, which are in-
tegrated into the base language. They are tuples that allow their
elements to be accessed by an index or a symbol. A symbol is as-
signed to an element of the tuple, and @select uses these symbols
to construct column names in the data sink being used. Named
tuples are illustrated in the following code block. The second el-
ement is accessed via its symbol, unlike a traditional tuple which
would only allow access via its index (e.g., named_tup[2]). Named
tuples can be defined in a @select statement in two ways, using
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the traditional (name = value) syntax or the custom Query.jl
syntax {name = value}.� �
## named tuple - reference property by its symbol
named_tup = (x = 45, y =90)

typeof(named_tup)
# NamedTuple{(:x, :y),Tuple{Int64,Int64}}

named_tup[:y]
# 90� �
The next code block shows how to query a dataframe and re-

turn different arrays. The first query filters out the rows of the
dataframe, uses the get() function to extract the values of the
colour column and returns them as an array. Arrays are returned
when no data sink is specified in the @collect statement. The
second query selects two columns of the dataframe and returns an
array. This array is an array of named tuples. To create a two-
dimensional array of floating point values, additional processing is
required. The loop uses the arrays’ indices and the symbols of the
named tuple to populate the array of floats.� �
## Returns an array of Float64 values
a1_obj = @from i in df_recipe begin

@where i.y == 1 && i.color <= 5.0
@select get(i.color) #Float64[1916]
@collect

end

a1_obj
# 1898-element Array{Float64,1}:
# 3.3
# 2.83
# 2.1

## Returns a Named Tuple array. Each row is a NT with col and ibu values
a2_obj = @from i in df_recipe begin

@where i.y == 1 && i.color <= 5.0
@select {col = i.color, ibu = i.ibu}
@collect

end

a2_obj
# 1898-element Array{NamedTuple{(:col, :ibu),Tuple{DataValues.DataValue{
# Float64},DataValues.DataValue{Float64}}},1}:
# (col = DataValue{Float64}(3.3), ibu = DataValue{Float64}(24.28))
# (col = DataValue{Float64}(2.83), ibu = DataValue{Float64}(29.37))

## Additional processing to return an Array of floats
N = size(a2_obj)[1]
a2_array =zeros(N, 2)
for (i,v) in enumerate(a2_obj)
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a2_array[i, 1] = get(a2_obj[i][:col],0)
a2_array[i, 2] = get(a2_obj[i][:ibu],0)

end

a2_array
# 1898x2 Array{Float64,2}:
# 3.3 24.28
# 2.83 29.37� �
Another common scenario is querying a data structure and re-

turning a dictionary. This can be accomplished in Query.jl by
specifying the Dict type in the @collect statement. In addition
to this, the @select statement should include a pair expression,
the first variable being the dictionary’s key, the second being its
value.� �
## data sink is dictionary
## select statement creates a Pair
dict_obj = @from i in df_recipe begin

@where i.y == 1 && i.color <= 5.0
@select i.id => get(i.color)
@collect Dict

end

typeof(dict_obj)
# Dict{String,Float64}

dict_obj
# Dict String -> Float64 with 1898 entries
# "id16560" -> 3.53
# "id31806" -> 4.91
# "id32061" -> 3.66� �
In Query.jl, the @let statement can be used to create new

variables in a query, known as range variables. The @let statement
is used to apply a Julia expression to the elements of the data
source and writes them to a data sink. The following code block
details how to do this in the case where the objective is to mean
centre and scale each column to have a mean of 0 and a standard
deviation of 1. The @let statement can have difficulty with type
conversion, so we define a constant dictionary with specified types.
We store the column means and standard deviations here. The
@let statement uses the dictionary values to do the centering and
scaling.� �

using Statistics, StatsBase

## all missing values are skipped in the calculations
## Use a typed const to ensure type inference occurs correctly
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const cs_dict = Dict{String, Float64}()
push!(cs_dict, "m_color" => mean(skipmissing(df_recipe[:color])))
push!(cs_dict, "m_ibu" => mean(skipmissing(df_recipe[:ibu])))
push!(cs_dict, "sd_color" => std(skipmissing(df_recipe[:color])))
push!(cs_dict, "sd_ibu" => std(skipmissing(df_recipe[:ibu])))

## mean center and scale a column and return as array
s1_obj = @from i in df_recipe begin

@let ibu_cs = (i.ibu - cs_dict["m_ibu"]) / cs_dict["sd_ibu"]
@select get(ibu_cs, missing)
@collect

end
s1_obj
# 50562-element Array{Union{Missing, Float64},1}:
# -0.8151417763351124
# 0.1281156968892236
# 0.01995852988729847
# :
# -0.6337461084073555
# 0.07913886654872931

mean(skipmissing(s1_obj))
# 1.1198281324600945e-14
std(skipmissing(s1_obj))
# 1.00000000000000000000

## use named tuples
s2_obj = @from i in df_recipe begin

@let ibu_cs = (i.ibu - cs_dict["m_ibu"]) / cs_dict["sd_ibu"]
@let color_cs = (i.color - cs_dict["m_color"]) / cs_dict["sd_color"]
@select {id = i.id, ibu = ibu_cs, color = color_cs}
@collect DataFrame

end

s2_obj
# 50562x3 DataFrame
# | Row | id | ibu | color |
# | | String | Float64 | Float64 |
# +-------+---------+-----------+------------+
# | 1 | id1 | -0.815142 | -0.773402 |
# | 2 | id2 | 0.128116 | -0.453797 |
# | 3 | id3 | 0.0199585 | -0.490763 |
# :
# | 50560 | id50560 | 0.127209 | -0.536971 |
# | 50561 | id50561 | -0.633746 | -0.0579493 |
# | 50562 | id50562 | 0.0791389 | -0.479211 |

mean(skipmissing(s2_obj[:color]))
# -5.692740670427803e-15
std(skipmissing(s2_obj[:color]))
# 0.9999999999999948� �
Sorting is a common task when working with data. Query.jl

provides the @orderby statement to do sorting. It sorts the data
source by one or more variables and the default sort order is as-
cending. If multiple variables are specified, they are separated by
commas and the data source is sorted first by the initial variable
in the specification. The descending() function can be used to
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change each variable’s sorting order. Sorting is detailed in the fol-
lowing code block.� �
## sort at dataframe by 2 variables, one in ascending order
sort_obj = @from i in df_recipe begin

@orderby i.y, descending(i.color)
@select {i.y, i.color, i.ibu}
@collect DataFrame

end

sort_obj

# 50562x3 DataFrame
# | Row | y | color | ibu |
# | | Int64 | Float64 | Float64 |
# +-------+-------+----------+---------+
# | 1 | 0 | missing | missing |
# | 2 | 0 | missing | missing |
# :
# | 8 | 0 | 186.0 | missing |
# :
# | 50561 | 1 | 0.11 | 91.14 |
# | 50562 | 1 | 0.03 | missing |� �
When working with multiple datasets, combining them is often

necessary before the data can be analyzed. The @join statement is
used to do this and implements many of the traditional database
joins. We will illustrate an inner join in the next code block. Left
outer and group joins are also available. The @join statement cre-
ates a new range variable j for the second data source and uses
id as the key. This key is compared to a key from the first data
source y and matches are selected. Inner joins return all the rows
that share the specified key values in both data sources, which in
this case is all the rows in df_recipe.� �
## dataframe of beer labels
beer_style = DataFrame(id = 0:1, beername = ["Ale","Lager"])

## inner join
j1_obj = @from i in df_recipe begin

@join j in beer_style on i.y equals j.id
@select {i.y, j.beername}
@collect DataFrame

end

j1_obj
# 50562x2 DataFrame
# | Row | y | beername |
# | | Int64 | String |
# +-------+-------+----------+
# | 1 | 0 | Ale |
# | 2 | 0 | Ale |
# | 3 | 0 | Ale |
# :
# | 50562 | 0 | Ale |� �
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When processing data, it is often necessary to group the data
into categories and calculate aggregate summaries for these groups.
Query.jl facilitates this with the @group statement. It groups data
from the data source by levels of the specified columns into a new
range variable. This range variable is used to aggregate the data.
In the following code block, we group the df_recipe dataframe
by the beer categories y. The new range variable is called grp and
is used in the @select statement to specify which data are used.
The @where statement filters out the missing values in the IBU
variable. In the query, missing values are represented as instances
of the Query.jl data type DataValue. Consequently, isna() from
the DataValues.jl package is used to filter them out and not
ismissing(). The data for each group is aggregated by its mean
and trimmed mean values.� �

using DataValues

## group by beer type and summarise ibu
## filter out missing values
g1_obj = @from i in df_recipe begin

@where !isna(i.ibu)
@group i by i.y into grp
@select {Group = key(grp), Mean_IBU = mean(grp.ibu),

TrimM_IBU = mean(trim(grp.ibu, prop=0.2))}
@collect DataFrame

end

# 2x3 DataFrame
# | Row | Group | Mean_IBU | TrimM_IBU |
# | | Int64 | Float64 | Float64 |
# +-----+-------+----------+-----------+
# | 1 | 0 | 55.6269 | 47.8872 |
# | 2 | 1 | 33.9551 | 29.1036 |� �
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C H A P T E R 4

Visualizing Data

DATA VISUALIZATION is a crucially important part of
data science. This chapter outlines how several different types

of data visualizations may be carried out in Julia. This includes
very well-known approaches such as histograms and boxplots as
well as perhaps lesser-known, but very useful, approaches such as
violin plots and hexbin plots. Ancillary topics, such as saving plots
in Julia, are also discussed.

4.1 GADFLY.JL

Julia has a plethora of high-quality plotting options. For those fa-
miliar with R, GadFly.jl is a good option. GadFly.jl is an imple-
mentation of the Grammar of Graphics (GoG; Wilkinson, 2005)
written entirely in Julia. It will be very familiar to anyone who
regularly uses the popular ggplot2 package (Wickham, 2009) in
R.

The GoG framework provides a formal definition for creating
static visualizations. It breaks visualizations into component parts
similar to sentences in a human language. Sentences can be de-
composed into nouns, adjectives and verbs to form a grammar for
that sentence. These three components can be combined in spe-
cific ways to produce sentences with very different meanings. For
example, if we take the nouns from

“fast Julia passed slow R”

and combine them with new adjectives and verbs we can get very
different meanings. Another example along similar lines is

“popular R overshadows Julia”.

67
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GoG allows us to do the same thing with graphics, by taking a
set of nouns (data) and combining them with adjectives and verbs
(scales, geometries, etc.) to create both well-known visualizations
and custom visualizations to meet specific needs. All plots in the
GoG framework are built on data, aesthetics (scales to map the
data on, e.g., log10) and geometries (points, lines, etc.). In ad-
dition to these three components, users can add facets (row and
column subplots), statistics, coordinates (the plotting space used)
and themes (non-data related elements) to their plots to fully cus-
tomize them. This allows data scientists to quickly probe and ex-
plore their data and plan their visualizations the same way they
would plan their data analyses.

In this chapter, we will cover exploratory graphics through the
lens of the capabilities of GadFly.jl. Exploratory graphics is a
vast subject with many tomes devoted to it. It is most often used
to explore preexisting ideas about data and find interesting pat-
terns that can help direct modelling efforts. Exploratory graphics
typically do not make any parametric assumptions about the data
being examined. At best, graphics can essentially reveal the an-
swer to a question, e.g., a side-by-side boxplot can be very reveal-
ing when comparing two means (as one might for an independent
groups t-test) and a quantile-quantile plot, or QQ-plot, can essen-
tially address a question about normality. Even when graphics do
not essentially answer the question, they help the analyst gain an
understanding of the data under consideration. They can also help
discover, or at least point to, underlying structure in data.

Gadfly.jl has a simple plotting interface and prefers that its
data is consumed as Julia dataframes, although other formats are
possible. The interface is accessed through the plot() function
detailed in the following code block. Note that the specification of
Gadfly.plot() in this code block ensures that the plot() function
from Gadfly.jl is used rather than another plot() function.� �
GadFly.plot(data::DataFrame, mapping::Dict, elements::Element)� �
The mapping components are aesthetics that map the columns

of the dataframe to the geometry of the plot. The elements are the
adjectives and verbs used to display the data. They include:

• Geometries, which take aesthetics as input and use the data
bound to them to depict the plot.
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• Guides, which draw the axis, ticks, labels and keys outside
the plotting frame.

• Statistics, which take aesthetics as input, perform an opera-
tion on them and return the transformed aesthetic.

• Coordinates, which map data to the 2D visualization space.

• Scales, which map an aesthetic a transformation of an aes-
thetic back on to itself.

Plots can be saved as Julia objects, to be used by subsequent
function calls. When doing this, the plot() function call can be
postpended with a semicolon to keep the plot from rendering. This
is illustrated in the following code block.� �
## Plot, referenced with p1, and not rendered to STDOUT
p1 = GadFly.plot(data::DataFrame, mapping::Dict, elements::Element);� �
We will illustrate all of our exploratory plots using the data in-

troduced in Chapter 3. Simple plots or plots designed for small to
moderately sized datasets will use the simulated data from Chap-
ter 3. Plotting methods suitable for large datasets with greater
than 10,000 rows will be illustrated using the beer data.

4.2 VISUALIZING UNIVARIATE DATA

Visualizations at their most basic level display one set of numbers,
i.e., univariate data. Dot charts and bar charts do this by displaying
a point or a bar whose position or height coincide to the number.
GadFly.jl code to generate both types of plot is given in the
following code block. We start by using the by() function to create
a new dataframe and the result df_bc is used to store the count
of each level of x2. The call to plot() to generate the bar plot
in Figure 4.1 uses the bar Geom to draw the bars and the ylabel
Guide to change the plot’s y-axis label. The dot plot function call
differs in two meaningful ways. First, it uses the point Geom to
draw the points and the cartesian Coord to put the categories on
y-axis rather than the x-axis. Note that the Geom, Guide, and Coord
keywords are a shorthand for components of the GoG framework as
implemented in Gadfly.jl. In either graph, the summary measure
need not be the category’s count, it could just as easily be another
single-number summary, such as a variable’s mean value for the
levels of x2.
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� �
using Gadfly, Cairo

## adds the dark theme to the top of themes stack
Gadfly.push_theme(:dark)

## create a df of means of each level of x2.
df_bc = by(df_1, :x2, nrow)
rename!(df_bc, :x1 => :count)

## Geom.bar to draw the bars
## Guide.ylabel to rename the Y label
p_bar = plot(df_bc, x=:x2, y=:count, Guide.ylabel("Count"), Geom.bar,
style(bar_spacing=1mm))

## Dot plot
## same data different Geom
p_dot = plot(df_bc, y=:x2, x=:count, Guide.xlabel("Count"), Geom.point,
Coord.cartesian(yflip = true))� �
The bar and dot plots that result from this code block are

shown in Figures 4.1 and 4.2, respectively.
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Figure 4.1 Bar plot of the counts for each level of x2.

Histograms are another common plot method for summarizing
univariate data. A histogram is a bar chart where each bar repre-
sents a range of values of the continuous measurement. The height
of the bar is determined by the number of values in the range.
Because all the bars are the same width, the height of the bar is
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Figure 4.2 Dot plot of the counts for each level of x2.

equivalent to the proportion of observations in the range of values.
The code to generate a histogram is very similar to the preceding
calls to plot() except we are using a continuous variable for the
x-axis aesthetic and the histogram Geom to render the plot.� �
## histogram
p_hist = plot(df_1, x=:x1, Guide.ylabel("Count"),
Geom.histogram(bincount=10), style(bar_spacing=1mm))� �
The histogram Geom has a number of options; in the previous

code block, here we use bincount to specify the number of bins to
draw. The resulting histogram is shown in Figure 4.3.

Histograms are a coarse way of approximating a variable’s prob-
ability density function, or density. Kernel density estimates (Rup-
pert et al., 2003) are an alternative method of visualizing the den-
sity of a variable. They use a non-negative kernel function, which
integrates to one, and a bandwidth parameter to approximate the
density. The smaller the bandwidth, the more closely the function
will fit the data. Gadfly.jl uses a normal density function as its
kernel function. The following code block illustrates the creation
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Figure 4.3 Histogram of x1 from the simulated data.

of a density plot. The only difference between it and the code used
to generate the histogram is the density Geom.� �
## kernel density estimate
p_den = plot(df_1, x=:x1, Guide.ylabel("Density"),
Geom.density(bandwidth=0.25), Guide.title("Bandwidth: 0.25"))

p_den2 = plot(df_1, x=:x1, Guide.ylabel("Density"),
Geom.density(bandwidth=0.05), Guide.title("Bandwidth: 0.05"))

p_den3 = plot(df_1, x=:x1, Guide.ylabel("Density"),
Geom.density(bandwidth=0.5), Guide.title("Bandwidth: 0.5"))� �
Figures 4.4, 4.5, and 4.6 illustrate different settings for the

bandwidth using the bandwidth argument in Geom.

4.3 DISTRIBUTIONS

Data scientists often want to investigate the distributions within
data. There are many options for doing this. The first and most
well-known is the boxplot which gives a quick visual display of nu-
meric data and is a good alternative to histograms. It was popular-
ized by Tukey (1977) and consists of a rectangular box with lines or
whiskers extending from the top and bottom. The box gives an idea
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Figure 4.4 Kernel density estimate of x1 from the simulated
data with bandwidth = 0.05.
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Figure 4.5 Kernel density estimate of x1 from the simulated
data with bandwidth = 0.25.
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Figure 4.6 Kernel density estimate of x1 from the simulated
data with bandwidth = 0.5.

of the location and spread on the central portion of the data. The
box extends across the inter quartile range (IQR), with the middle
line indicating the median value of the data. The whiskers extend
1.5 times the IQR above and below the box. Outlier values are in-
dicated as points beyond the range covered by the whiskers. If the
data are roughly normally distributed, approximately 99% will fall
between the whiskers. Boxplots excel at comparing distributions
between two or more categories and do not make any assumptions
about the underlying distribution of the data. The following code
block creates a boxplot from the beer data. It maps the x aesthetic
to the beer categories and the y aesthetic to a quantitative measure
of the beer colour and the boxplot Geom is used to depict the plot.� �
## boxplot
p_bp = plot(df_beer1, x=:c3, y =:color, Geom.boxplot(),

Guide.xlabel("Type of Beer"), Guide.ylabel("Color"))

p_bp2 = plot(df_beer, x=:c3, y =:color, Geom.boxplot(),
Guide.xlabel("Type of Beer"), Guide.ylabel("Color"))

p_bp3 = plot(df_beer, x=:c6, y =:color, Geom.boxplot(),
Guide.xlabel("Type of Beer"), Guide.ylabel("Color"))� �
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The resulting boxplots are shown in Figures 4.7–4.9. From these
plots, many features of the beer data are apparent at a glance. For
example, the boxplot in Figure 4.7 indicates that ales have substan-
tially more variation in their colour values than lagers, and both
types have outliers in the right tails of their distribution. From
Figure 4.9, it is clear that porters and stouts are much darker than
the other types of beer. Several other points are immediately ap-
parent, e.g., with only a few exceptions, pilsners have relatively
little variation in their colour and are very light, and while IPAs
tend to be lighter in colour, their colours span the majority of the
(beer) colour spectrum. It should be noted that, in Figures 4.7
and 4.8, stouts and IPAs were members of the ale group and pil-
sners were part of the lager group. Details on the characteristics of
different beers are available from many sources, including Briggs
et al. (2004).

Violin plots (Hintze and Nelson, 1998) are a modern alternative
to boxplots. They look like water droplets, where the sides of the
drop are made up of kernel density traces. Similar to boxplots,
they can be used to examine a single variable’s distribution alone
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Figure 4.7 Boxplots of beer colour by type for the beer data,
using two types.
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Figure 4.8 Boxplots of beer colour by type for the beer data,
using three types.
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Figure 4.9 Boxplots of beer colour by type for the beer data,
using six types.
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or across categories. Because violin plots show the density of the
data and not only summaries, they are particularly effective at
discovering multimodal distributions, identifying clusters or bumps
in the data, and identifying known distributions based on the shape
of the density. The code to generate violin plots is detailed in the
following code block. The only difference between this and the
boxplot code is the Geom being used, highlighting the power and
flexibility of the GoG framework.� �
## Violin plots
p_vio = plot(df_beer1, x=:c3, y =:pri_temp, Geom.violin,
Guide.xlabel("Type of Beer"), Guide.ylabel("Primary Temperature"))

p_vio2 = plot(df_beer1, x=:c3, y =:color, Geom.violin,
Guide.xlabel("Type of Beer"), Guide.ylabel("Color"))

p_vio3 = plot(df_beer, x=:c3, y =:color, Geom.violin,
Guide.xlabel("Type of Beer"), Guide.ylabel("Color"))

p_vio4 = plot(df_beer, x=:c6, y =:color, Geom.violin,
Guide.xlabel("Type of Beer"), Guide.ylabel("Color"))� �
The resulting violin plots are displayed in Figures 4.10–4.13.

Figure 4.10 supports the conclusions that can be drawn from the
boxplot in Figure 4.7 and adds additional insight. Specifically, the
majority of lagers have a lower colour rating which gradually tap-
pers off in a series of humps as the density reaches 20. Colour
ratings for ales, on the other hand, taper off smoothly to 20 units
and have a larger portion of their observations in the right tail of
the distribution, with a pronounced hump at 50 units. Figure 4.11
displays the violin plots for the primary brewing temperature of
each beer. Lagers exhibit a clear bimodal pattern, indicating there
are two groups of lagers being brewed at slightly different temper-
atures. Ales seem to be brewed mostly at temperatures consistent
with the second group of lagers.

Another way to examine the distributions in data is to use
quantile-quantile plots, also known as QQ-plots. They are used to
compare the quantiles of one continuous variable against the quan-
tiles of a known distribution or the quantiles of another variable.
They are often used in statistical modelling to verify the distribu-
tional assumptions of different models. QQ-plots are scatterplots,
where the points are evenly spaced quantiles of the data and/or
distribution being examined. If a known distribution is used, the
theoretical quantiles are plotted on one axis.
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Figure 4.10 Violin plot of colour versus type for the beer data,
using two types.
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Figure 4.11 Violin plots of primary brewing temperature versus
type for the beer data, using two types.
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Figure 4.12 Violin plots of colour versus type for the beer data,
using three types.
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Figure 4.13 Violin plots of colour versus type for the beer data,
using six types.
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When the distributions of x and y align, the QQ-plot will have
a linear trend along the y = x line. If one distribution is a linear
transformation of the other, the line will be straight but shifted
away from the y = x line. When the distributions differ, there will
be a systematic pattern in the plot. If the points at the tails make
the plot form an “S” shape, one of the distributions has heavier
tails than the other. If the pattern is a “U” shape, one distribution
is skewed in the direction of the curve of the “U”.

The Julia code to generate the QQ-plots is given in the fol-
lowing code block. The first function call to plot() compares the
simulated data in the x3 column to a random sample of the same
size drawn from a Pareto(2,1) distribution. The theoretical quan-
tiles are drawn on the x-axis, as is convention for this style of QQ-
plot. The Stat.qq statistic is used to generate the evenly spaced
quantiles and they are rendered with the point Geom. The abline
Geom is used to draw a line with a zero intercept and a slope of
one.� �
p_qq1 = plot(df_1, y=:x3, x = rand(Pareto(2, 1), N), Stat.qq, Geom.point,
Geom.abline(color="green", style=:dash), Guide.ylabel("Quantiles of X3"),
Guide.xlabel("Quantiles of Pareto(2,1) Distribution"))

p_qq2 = plot(df_1, x=:x3, y = :x1, Stat.qq, Geom.point,
Guide.xlabel("Quantiles of X3"), Guide.ylabel("Quantiles of X1"))� �
Figure 4.14 displays a nice linear trend with some deviation at

the right tail of the data. In practice, a QQ-plot will rarely be as
well behaved as this because the x3 variable was simulated from
the same distribution as the theoretical quantiles. Figure 4.15 has
a pronounced “U” shape, where the bottom of the “U” is in the
upper left-hand side of the graph. This indicates that x1 is skewed
to the left of x3. This is expected given that x1 is simulated from
a Normal(2,1) distribution and its density is shifted to the left of
the Pareto(2,1) distribution. As can be seen from these examples,
important distributional information can be gleaned from a QQ-
plot, which can help inform a data scientist’s choice of modelling
strategy.

An alternative way of visualizing distributions of data is the em-
pirical cumulative distribution function (ECDF) plot. The ECDF
is a function that estimates the fraction of observations below a
given value of the measured data. Looking at Figure 4.16, we see
that 50% of the data values are less than 10, 75% are less than
20, and 95% of values are below 42. The Julia code to generate the
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Figure 4.14 QQ-plot of simulated data and theoretical quantiles
from a Pareto(2,1) distribution.
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Figure 4.15 QQ-plot of simulated data from a Normal(2,1) and
a Pareto(2,1) distributions.
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Figure 4.16 ECDF plot of the colour variable from the beer
dataset.

ECDF plots is given in the following code block. We use the ecdf()
function from the StatsBase.jl package to generate the ECDF
plot for colour (Figure 4.17). ecdf() returns a function that must
then be applied to the sample data to generate the ECDF values.
The step Geom is used to draw the step function of the ECDF.� �
## single variable ecdf plot
ecdf_p1 = plot(df_ecdf, x = :color,
y = ecdf(df_ecdf[:color])(df_ecdf[:color]),
Geom.step, yintercept=[0.5, 0.75, 0.95],
Geom.hline(style = :dot, color = "gray"),
Guide.yticks(ticks = [0,0.5, 0.75, 0.95, 1]),
Guide.xlabel("Color"), Guide.ylabel("Fraction of Data"))

## ecdf plot by beer type
## dataframe of data and percentiles by labels
df_p = by(df_ecdf, :label, df -> DataFrame(

e_cdf = ecdf(df[:color])(df[:color]), col = df[:color]))

ecdf_p2 = plot(df_p, y = :e_cdf, x = :col, color = :label, Geom.step,
yintercept=[0.5, 0.75, 0.95], Geom.hline(style = :dot, color = "gray"),
Guide.yticks(ticks = [0,0.5, 0.75, 0.95, 1]), Guide.xlabel("Color"),
Guide.ylabel("Fraction of Data"), Guide.colorkey(title = "Type of Beer"),
Scale.color_discrete_manual("cyan", "darkorange", "magenta"))� �
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Figure 4.17 ECDF plot of the colour variable by beer type from
the beer dataset.

ECDF plots really shine when multiple categories are com-
pared across the same measured variable. They allow the viewer to
quickly pick out where the distributions of the measured variable
differ between categories. The previous code block details how to
generate such a figure by plotting a separate ECDF plot for each
type of beer. We use the split-apply-combine framework discussed
in Section 3.5 to create the ECDF values for each beer label and
then plot the data in the newly created dataframe. Figure 4.17 il-
lustrates the results. We see that the ales are shifted to the right
of the lagers and ciders, having larger values at every fraction of
the data. This is supported by the box and violin plots discussed
previously in the chapter.

4.4 VISUALIZING BIVARIATE DATA

We are often interested in the relationship between two (or more)
quantities. When there are two quantities, bivariate plots can help
visualize these relationships. Scatterplots are one of the most well-
recognized bivariate plots, allowing the examination of two con-
tinuous measurements. They consist of two axes, one vertical and



84 � Data Science with Julia

one horizontal, and show how much one measure affects the other.
The relationships elucidated in a scatterplot can take any form,
not just linear relationships. The QQ-plot discussed previously is
an example of a scatterplot. Sometimes, a third variable can be
represented on a scatterplot by adding colour coding or sizing the
plotted symbols according to their value. The following code block
shows how to make a simple scatterplot, which is then displayed
in Figure 4.18. The x and y aesthetics point to two continuous
measurements in the referenced dataframe df_1. The only other
element need is the point Geom.� �
## basic scatterplot
sp_1 = plot(df_1, x=:x4, y=:y, Geom.point )

## scatterplot with color coding and a non-linear smoother
sp_2 = plot(df_1, x=:x4, y=:y, color = :x2, Geom.point,

Scale.color_discrete_manual("red","purple","blue"),
Geom.smooth(method=:loess,smoothing=0.5) )� �
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Figure 4.18 Scatterplot of y versus x4 from the simulated data.

Figure 4.18 is not very helpful in finding trends or patterns
in the data. The second scatterplot is displayed in Figure 4.19,
which adds a colour aesthetic for the categories in the x2 col-
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Figure 4.19 Scatterplot of y versus x4 with colour coding and
a Loess smoother from the simulated data.

umn, a colour_discrete_manual Scale to add custom colours
for the three levels of x2. Using the smooth Geom, a non-linear
Loess smoother (Ruppert et al., 2003) is added to the plot to de-
tect any non-linear trends within the three x2 groups. The degree
of smoothing done by the Loess model can be adjusted by the
smoothing argument, where smaller values result in less smooth-
ing. The smooth Geom method argument can be changed to :lm to
add linear trends to a plot.

The additional colour and non-linear trend lines visible in Fig-
ure 4.19 provide some interesting insights. There are three clear
groups in the data, where each level has a more pronounced non-
linear trend moving from Low to High. Without these two as-
pects, i.e., the colour and non-linear trend lines, we would not
have gleaned these insights (cf. Figure 4.18).

A modern alternative to scatterplots are hexbin plots (Carr
et al., 1987). They are particularly useful in situations where the
dataset is very large. In these situations, scatterplots can become
overwhelmed by the sheer number of points being displayed. Many
of the points will overlap, to the extent that traditional remedies
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such as jittering and semi-transparency are ineffective. The over-
lap can misrepresent data, making it hard to visualize the trends
therein. In situations such as this, hexbin plots can be invaluable.
They group the two continuous measures into hexagonal bins which
are coloured by the count or density of points in the bin and can
be viewed as a form of bivariate histogram. The hexagonal bins are
preferred over squares because they can be packed more densely
into the same space and they do not draw the viewer’s eyes to the
vertical and horizontal grid line of the resulting plot, making for a
more honest display of the data.

The following code block illustrates how to create a hexbin plot
using Gadfly.jl. As is the case in most visualizations produced
in a GoG framework, it requires only slight modifications to basic
scatterplot code; here, the hexbin Geom is used in place of the
points Geom. The colour scale for the counts is adjusted to vary
from blue on the low end to orange at the high end.� �
## Hexbin plot

p_hexb = plot(df_beer, x=:color, y=:pri_temp, Geom.hexbin,
Guide.xlabel("Color"), Guide.ylabel("Primary Temperature"),
Scale.color_continuous(colormap=Scale.lab_gradient("blue", "white",
"orange")))� �

We use the beer data to illustrate the hexbin plot because it
has 75,000 observations. From Figure 4.20, there is a pronounced
cluster of beers with low colour and moderate brewing tempera-
tures. The pattern of increased counts extends horizontally across
the plot, culminating in a cluster of beers having moderate brew-
ing temperatures and high colour values. The horizontal pattern is
also present at high and low temperatures.

Often data scientists would like to look at two categorical vari-
ables and how they relate to a given metric, be that a count of their
levels or another quantitative measure associated with them. This
can be accomplished using heat maps. Heat maps draw rectan-
gular bins, where each bin corresponds to a combination of levels
of the two categorical variables. The rectangles are coloured by
the magnitude of the metric of interest. The following code block
illustrates how to construct a heatmap for a correlation matrix, cal-
culated from the continuous variables in the simulated data. The
categorical variables are the variable names and the metric is the
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Figure 4.20 Hexbin plot of primary brewing temperature versus
colour for the beer data.

correlation between them. The correlation matrix is extracted as
a triangular matrix because it is symmetric around the diagonal.� �
## lower triangular correlation matrix
using LinearAlgebra

cor_mat = LowerTriangular(cor(
convert(Array{Float64}, df_1[[:x1, :x3, :x4, :y]])

))

## convert cor_mat into a dataframe for GadFly
df_cor = DataFrame(cor_mat)
rename!(df_cor, [:x4 => :y, :x3 => :x4, :x2 => :x3])
df_cor = stack(df_cor)
df_cor[:variable2] = repeat(["x1", "x3", "x4", "y"], outer=4)

## plot the heatmap
p_hm = plot(df_cor, x=:variable2, y = :variable, color=:value,

Geom.rectbin, Guide.colorkey(title = "Correlation"),
Scale.color_continuous(colormap=Scale.lab_gradient("blue", "white",
"orange"), minvalue=-1, maxvalue=1) )� �
The call to plot() assigns the correlation between the vari-

ables to the colour aesthetic and uses the rectbin Geom to draw
the heatmap rectangles. The colourkey Geom is used to rename the
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colour map label and the colour_continuous Scale defines a cus-
tom colour gradient, moving from blue indicating a correlation of
−1 through white denoting a correlation of 0 to orange designating
a correlation of 1. Looking at the plot (Figure 4.21), the diagonal
elements are orange as we would expect. The variable y is most
strongly correlated with x1 and x4. This is as we would expect
given both y and x2 are simulated from x1. The other variables
have zero correlation as they are not related in any way.
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Figure 4.21 Heatmap of a correlation matrix from the simulated
data.

Frequently data scientists want to graphically display a three-
dimensional surface. One way to do this is to use contours to project
it into the two-dimensional plane. Gadfly.jl can accomplish this
by producing a contour plot using the contour geometry. A con-
tour plot graphs two predictor variables, x and y, along their re-
spective axes and draws the third dimension, z as contour lines in
the xy-plane. Often, z is expressed as a function of the x and y
values.

We detail how to generate a contour plot in the following code
block. The code uses the covariance matrix S and the mean vec-
tor mu to plot the density function of the bivariate normal dis-
tribution. We use the pdf() and MvNormal() functions from the
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Distributions.jl package to generate the graph’s z values over
a 100× 100 grid of values from −10 to 10. The z argument in the
plot() function call must produce one z value for each combina-
tion of the x and y values.� �
## Multivariate Normal parameters
N=1000
S = [2.96626 1.91; 1.91 2.15085]
mu = [0,5]

## contour plot of MVN over grid -10 to 10
ct_p = plot(z=(x,y) -> pdf(MvNormal(mu, S), [x, y]),
x=range(-10, stop=10, length=N),
y=range(-10, stop=10, length=N),
Geom.contour)� �
The resulting plot is displayed in Figure 4.22. The large covari-

ance between the x and y values results in the elliptical shape. The
density values are displayed as a color gradient in the legend on
the right.
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Figure 4.22 Contour plot for a bivariate normal distribution.
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Figure 4.23 Error bars to summarize a logistic regression model
run on the beer data.

4.5 ERROR BARS

In many data science problems, it is desirable to summarize model
parameters and the uncertainty associated with these parameters.
Often graphical displays are a better option for doing this than
tables (Gelman et al., 2002). Parameter estimates and their un-
certainty can be visualized using error bars. In Gadfly.jl, error
bars are rendered using the errorbar Geom. It draws horizontal
(x-axis) or vertical (y-axis) error bars and has arguments for both
the minimum and maximum values of the bars. Error bars can also
be coloured based on the values of a third variable.

Figure 4.23 summarizes the results of a logistic regression model
with two predictor variables run on a random sample of the beer
data. The parameter estimates and their 95% confidence intervals
are plotted using the point and errorbar geometries. A vertical
line is rendered at a log-odds of 0, which corresponds to the null
hypothesis being tested for each parameter. The 95% confidence
intervals do not overlap this line, indicating that the parameters
are statistically significantly different from 0 at the 5% level.
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4.6 FACETS

Facets are a generalization of scatterplot matrices, where a matrix
of panels can be defined for different plotting types. They can be
defined by column, row or both. Facets are particularly useful when
it is desirable to stratify visualizations by one or two categorical
variables. The subsets of data in each panel allow one to quickly
compare patterns in different sections of the data. Creating facet
columns helps make comparisons along the y-axis of subplots. This
is useful in the supervised learning context when one wishes to visu-
alize how the relationship between the outcome and an important
predictor varies between facets. Row facets help make comparisons
along the x-axis of plots and are especially useful when visualizing
distributions. The following code block details how to produce a
plot with row facets. The salient parts of the code are the ygroup
aesthetic, which is bound to the dataframe column we wish to make
the facet from, and the subplot_grid Geom. This Geom creates a
matrix of panels and uses the Geoms in its argument along with the
other plot() parameters to draw a unique plot in each panel.� �
p_hexb2 = plot(df_beer1, x=:color, y=:pri_temp, ygroup =:c3,

Geom.subplot_grid(Geom.hexbin),
Guide.xlabel("Color"), Guide.ylabel("Primary Temperature"),
Scale.color_continuous(

colormap=Scale.lab_gradient("blue", "white", "orange")
)

)� �
The resulting plot is shown in Figure 4.24. By rendering the

plots in rows, many of the features we identified in Figures 4.10
and 4.11 are clearly visible. The bimodal pattern in the distribution
of the primary brewing temperature of lager can be identified along
with the long and wide tail shape in the distribution of ale colours.

4.7 SAVING PLOTS

Saving plots is trivial using Gadfly.jl. The draw() function is used
to save the plots. It is beneficial to assign a variable name to the
plots to be saved to reference it in the draw() function. In the
previous code block, the variable p_hexb2 can be used to reference
the Julia object that renders Figure 4.24 in this way. The draw()
function writes SVG output by default. Additional backends can
be accessed through the Cairo.jl package and include PNG, PDF
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Figure 4.24 Facet plot for the beer data.

and PS. The following code block shows how to write the p_1 plot
object to the dswj_plot1.eps postscript file.� �
draw(PS("dswj_plot1.eps", 197mm, 141mm), p_1)� �



C H A P T E R 5

Supervised Learning

SUPERVISED LEARNING uses labelled data to make pre-
dictions about unlabelled data. One defining characteristic of

supervised learning is that the goal is prediction, rather than mod-
elling or inference. A basic nomenclature, notation and framework
for supervised learning is laid down before cross-validation is intro-
duced. After that, a simple and yet quite effective supervised learn-
ing approach, i.e., K-nearest neighbours classification, is discussed.
The famous CART (classification and regression trees) framework
is discussed next, followed by the bootstrap. The bootstrap is
preparatory for the use of CART for ensemble learning; specifically
for random forests. The chapter concludes with another ensemble
learning approach, gradient boosting using XGBoost.

5.1 INTRODUCTION

Consider the situation where there is an outcome variable Y that
we want to predict based on several predictor variables X1, . . . , Xp,
which we express as a vector X = (X1, . . . , Xp)′. Suppose that we
observe n pairs (y1,x1), . . . , (yn,xn) and the objective is to learn
the values of “new” yn+1, . . . , ym for corresponding values of the
predictor variables, i.e., for xn+1, . . . ,xm. Broadly speaking, one
can use the observed pairs (y1,x1), . . . , (yn,xn) to build a model
of the form

yi = f(xi) + ei, (5.1)
where f(x) is a function, sometimes called the learner or predictor,
that takes a value xi and returns a prediction for yi, and ei is the
associated error. Rearranging (5.1) gives

ei = yi − f(xi), (5.2)

93
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for i = 1, . . . , n, which is the error incurred by using f(xi) to
predict yi. Some function of (5.2) can then be used to assess
how well the learner performs before we apply it to predict yi
for i = n + 1, . . . ,m. Within the supervised learning paradigm,
(y1,x1), . . . , (yn,xn) can be thought of as the labelled data be-
cause each value xi has a corresponding “label” yi. Accordingly,
the xn+1, . . . ,xm are considered unlabelled data because there
are no labels, i.e., no values yn+1, . . . , ym, attached to the values
xn+1, . . . ,xm.

The very general modelling approach described by (5.1) and
(5.2) is quite common in data science and statistics. For example,
in a regression setting with yi ∈ R there are a few functions of (5.2)
that are commonly used to assess how well the learner performs.
These include the mean squared error (MSE)

1
n

n∑
i=1

e2
i = 1

n

n∑
i=1

(yi − f(xi))2, (5.3)

for i = 1, . . . , n, the root mean squared error (RMSE)√√√√ 1
n

n∑
i=1

e2
i =

√√√√ 1
n

n∑
i=1

(yi − f(xi))2, (5.4)

for i = 1, . . . , n, and the median absolute error (MAE)

mediani=1,...,n|ei| = mediani=1,...,n|yi − f(xi)|. (5.5)

In a binary classification setting with yi ∈ {0, 1} and f(xi) ∈
{0, 1}, one could use the misclassification rate to assess how well
the predictor f(xi) performs. In this case, i.e., with yi ∈ {0, 1} and
f(xi) ∈ {0, 1}, the misclassification rate can be written

1
n

n∑
i=1
|ei| =

1
n

n∑
i=1
|yi − f(xi)|, (5.6)

for i = 1, . . . , n. Note that (5.6) would cease to be effective in a
binary classification setting with yi ∈ {−1, 1} and f(xi) ∈ {−1, 1},
for instance, or in the multinomial case, i.e., where there are more
than two classes. Equation (5.6) can be formulated more generally
for the misclassification rate:

Elabelled = 1
n

n∑
i=1

I(yi 6= f(xi)), (5.7)
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where I(yi 6= f(xi)) is an indicator function, i.e.,

I(yi 6= f(xi)) =
{

1 if yi 6= f(xi),
0 if yi = f(xi).

For some, functions such as the misclassification rate are con-
sidered too coarse for model selection. A common alternative for
binary classification is the binomial deviance, or simply deviance,
which can be written

Elabelled = −2
n∑
i=1

yi log(π̂i) + (1− yi) log(1− π̂i), (5.8)

where π̂i is the predicted probability of yi being equal to 1 and is
generated from f(xi). The quantity in (5.8) is negative two times
the maximized binomial log-likelihood (McCullagh and Nelder,
1989). The deviance is a proper scoring rule (Gneiting and Raftery,
2007), which helps ensure that the predicted probabilities fit the
data well and the learner is well calibrated to the data. Many other
proper scoring rules exist, such as the Brier score (Brier, 1950). Bi-
nary classification models used herein are trained on the deviance
and we report it along with the misclassification rate.

Hereafter, we shall use the notation Elabelled to denote a generic
error function for the labelled data. In general, Elabelled will take
the form

Elabelled = g((y1, f(x1)), . . . , (yn, f(xn))), (5.9)

where g((y1, f(x1)), . . . , (yn, f(xn))) is a function that reflects how
close f(X) is to Y for the training data; such a function is some-
times called a loss function or an error function.

When doing supervised learning, the choice of error function
is very important. In regression problems, the RMSE (5.4) is the
standard choice; however, the RMSE is highly sensitive to outliers
because it squares the errors ei. Instead of using RMSE, we train
our regression models herein to minimize the MAE (5.5). The MAE
is insensitive to outliers in the outcome because the median is not
affected by values in the tails of the error distribution.

The learning approach described thus far has some important
limitations:

1. We have said nothing about how the predictor f(x) is con-
structed.
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2. Constructing f(x) based on (y1,x1), . . . , (yn,xn) and also as-
sessing the error Elabelled based on (y1,x1), . . . , (yn,xn) will
tend to underestimate Eunlabelled, i.e., the error that one
would see when f(x) is applied to the unlabelled data. In
other words, Elabelled is a biased estimator of Eunlabelled.

With respect to the above list item 1., it is not possible to detail
exactly how the learner f(x) is constructed because this will de-
pend on the learning method used. However, we can say a little
more about how the learner f(x) is constructed in general and do-
ing so also serves as a response to list item 2. Rather than using
all of the labelled data to build the learner f(x), the labelled data
are partitioned into a training set and a test set. Then, the learner
f(x) is constructed based on the training set and the error is as-
sessed based on the test set. Of course, it is reasonable to expect
the test error Etest to be more reflective of Eunlabelled than either
Elabelled or the training error Etraining would be.

While we have gone some way towards addressing list item 1.,
and seemingly addressed list item 2., we have created a third prob-
lem:

3. If we overfit f(x) to the training data, then it may not per-
form well on the test data and/or the unlabelled data even
though the training error Etraining may be very small.

The existence of list item 3. as a problem is, in the first place, re-
flective of the fact that the goal of supervised learning is prediction.
This is a key point of difference with traditional statistical proce-
dures, where the goal is modelling or inference — while inference
can be taken to include prediction, prediction is not the goal of in-
ference. To solve the problem described in list item 3., we need to
move away from thinking only about an error and consider an error
together with some way to prevent or mitigate overfitting. Finally,
it is worth noting that some learning approaches are more prone
to overfitting than others; see Section 5.8 for further discussion.

5.2 CROSS-VALIDATION

5.2.1 Overview

We have seen that the training set is used to construct a learner
f(x). Now, consider how this is done. One approach is to further
partition the training set into two parts, and to use one part to
build lots of learners and the other to choose the “best” one. When
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this learning paradigm is used, the part that is used to build lots
of learners is called the training set, and the part used to choose
the best learner is called the validation set. Accordingly, such a
learning framework is called a training-validation-test framework.
Similarly, the paradigm discussed in Section 5.1 can be thought of
as a training-test framework.

One longstanding objection to the training-validation-test
framework is that a large dataset would be required to facilitate
separate training and validation sets. There are several other pos-
sible objections, one of which centres around the sensitivity of the
results to the training-validation split, which will often be equal
or at least close, e.g., a 40-40-20 or 50-40-10 training-validation-
test split might be used. Given the increasing ease of access to
large datasets, the former objection is perhaps becoming some-
what less important. However, the latter objection remains quite
valid. Rather than using the training-validation-test framework,
the training-test paradigm can be used with cross-validation, which
allows both training and validation within the training set.

5.2.2 K-Fold Cross-Validation

K-fold cross-validation partitions the training set into K (roughly)
equal parts. This partitioning is often done so as to ensure that
the yi are (roughly) representative of the training set within each
partition — this is known as stratification, and it can also be used
during the training-test split. In the context of cross-validation,
stratification helps to ensure that each of the K partitions is in
some sense representative of the training set. On each one of K
iterations, cross-validation proceeds by using K − 1 of the folds to
construct the learner and the remaining fold to compute the error.
Then, after all iterations are completed, the K errors are combined
to give the cross-validation error.

The choice of K in K-fold cross-validation can be regarded
as finding a balance between variance and bias. The variance-bias
tradeoff is well known in statistics and arises from the fact that,
for an estimator of a parameter,

MSE = Variance + Bias2.

Returning to K-fold cross-validation, choosing K = n, sometimes
called leave-one-out cross-validation, results is excellent (i.e., low)
bias but high variance. Lower values of K lead to more bias but
less variance, e.g., K = 10 and K = 5 are popular choices. In many
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practical examples, K = n, K = 10 and K = 5 will lead to similar
results.

The following code block illustrates how one could write their
own cross-validation routine in Julia. Note that this serves, in part,
as an illustration of how to write code in Julia — there are, in
fact, cross-validation functions available within Julia (see, e.g., Sec-
tion 5.7). The first function, cvind() breaks the total number of
rows in the training set, i.e., N, into k nearly equal groups. The
folds object returned by the function is an array of arrays. Each
sub-array contains gs randomly shuffled row indices. The last sub-
array will be slightly larger than gs if k does not divide evenly
into N. The second function, kfolds(), divides the input data
dat into k training-test dataframes based on the indices gener-
ated by cvind(). It returns a dictionary of dictionaries, with the
top level key corresponding to the cross-validation fold number
and the subdictionary containing the training and test dataframes
created from that fold’s indices. This code expects that dat is a
dataframe and would not be efficient for dataframes with large N.
In this scenario, the indices should be used to subset the data and
train the supervised learners in one step, without storing all the
training-test splits in a data structure.� �

using Random
Random.seed!(35)

## Partition the training data into K (roughly) equal parts
function cvind(N, k)

gs = Int(floor(N/k))
## randomly shuffles the indices

index = shuffle(collect(1:N))
folds = collect(Iterators.partition(index, gs))

## combines and deletes array of indices outside of k
if length(folds) > k

folds[k] = vcat(folds[k], folds[k+1])
deleteat!(folds, k+1)

end
return folds

end

## Subset data into k training/test splits based on indices
## from cvind
function kfolds(dat, ind, k)

## row indices for dat
ind1 = collect(1:size(dat)[1])
## results to return
res = Dict{Int, Dict}()
for i = 1:k

## results for each loop iteration
res2 = Dict{String, DataFrame}()
## indices not in test set
tr = setdiff(ind1, ind[i])



Supervised Learning � 99

## add results to dictionaries
push!(res2, "tr"=>dat[tr,:])
push!(res2, "tst"=>dat[ind[i],:])
push!(res, i=>res2)

end
return res

end� �
5.3 K-NEAREST NEIGHBOURS CLASSIFICATION

The k-nearest neighbours (kNN) classification technique is a very
simple supervised classification approach, where an unlabelled ob-
servation is classified based on the labels of the k closest labelled
points. In other words, an unlabelled observation is assigned to the
class that has the most labelled observations in its neighbourhood
(which is of size k). The value of k needs to be selected, which can
be done using cross-validation, and the value of k that gives the
best classification rate under cross-validation is generally chosen.
Note that, if different k give similar or identical classification rates,
the smaller value of k is usually chosen.

The next code block shows how the kNN algorithm could be
implemented in Julia. The knn() function takes arrays of numbers
for the existing data and labels, the new data and a scalar for k. It
uses Manhattan distance to compare each row of the existing data
to a row of the new data and returns the majority vote of the labels
associated with the smallest k distances between the samples. The
maj_vote() function is used to calculate the majority vote, and
returns the class and its proportion as an array.� �
## majority vote
function maj_vote(yn)

## majority vote
cm = countmap(yn)
mv = -999
lab = nothing
tot = 1e-8
for (k,v) in cm

tot += v
if v > mv

mv = v
lab = k

end
end
prop = /(mv, tot)
return [lab, prop]

end

## KNN label prediction
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function knn(x, y, x_new, k)
n,p = size(x)
n2,p2 = size(x_new)
ynew = zeros(n2,2)

for i in 1:n2 ## over new x_new
res = zeros(n,2)
for j in 1:n ## over x

## manhattan distance between rows - each row is a subject
res[j,:] = [j , cityblock(x[j,:], x_new[i,:])] #cityblock

end
## sort rows by distance and index - smallest distances
res2 = sortslices(res, dims = 1, by = x -> (x[2], x[1]))
## get indices for the largest k distances
ind = convert(Array{Int}, res2[1:k, 1])
## take majority vote for the associated indices
ynew[i,:] = maj_vote(y[ind])

end
## return the predicted labels
return ynew

end

## Returns the missclassification rate
function knnmcr(yp, ya)

disagree = Array{Int8}(ya .!= yp)
mcr = mean(disagree)
return mcr

end� �
An illustration of kNN is given in Figure 5.1, where k = 3 and

the neighbourhoods for each class are clearly visible. An unlabelled
observation in one of the red neighbourhoods will be labelled as
belonging to the red class, and similarly for the blue neighbour-
hood.

The next code block details how we can use the cross-validation
functions already described to do 5-fold cross-validation for a kNN
learner. Simulated data, df_knn which we mean centre and scale
to have standard deviation one (not shown), is divided into 5
training-test splits using the cvind() and kfold() functions. We
loop through the 15 values of k and, for each one, calculate the
mean misclassification rate and its standard error over the 5 folds.� �
## Simulated data
df_3 = DataFrame(y = [0,1], size = [250,250], x1 =[2.,0.], x2 =[-1.,-2.])

df_knn =by(df_3, :y) do df
DataFrame(x_1 = rand(Normal(df[1,:x1],1), df[1,:size]),
x_2 = rand(Normal(df[1,:x2],1), df[1,:size]))

end

## set up parameters for cross-validation
N = size(df_knn)[1]
kcv = 5
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## generate indices
a_ind = cvind(N, kcv)

## generate dictionary of dataframes
d_cv = kfolds(df_knn, a_ind, kcv)

## knn parameters
k = 15
knnres = zeros(k,3)

## loop through k train/test sets and calculate error metric
for i = 1:k
cv_res = zeros(kcv)
for j = 1:kcv

tr_a = convert(Matrix, d_cv[j]["tr"][[:x_1, :x_2]])
ytr_a = convert(Vector, d_cv[j]["tr"][:y])
tst_a = convert(Matrix, d_cv[j]["tst"][[:x_1, :x_2]])
ytst_a = convert(Vector, d_cv[j]["tst"][:y])
pred = knn(tr_a, ytr_a, tst_a, i)[:,1]
cv_res[j] = knnmcr(pred, ytst_a)

end
knnres[i, 1] = i
knnres[i, 2] = mean(cv_res)
knnres[i, 3] = /(std(cv_res), sqrt(kcv))

end� �
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Figure 5.1 An illustration of kNN, for k = 3, using simulated
data.
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The cross-validation results are depicted in Figure 5.2. This
plot shows an initial improvement in misclassification rate up to
k = 5, with the smallest CV misclassification rate occurring at
k = 15. For values of k from five to 15, the values oscillate up and
down but remain within one standard error of k = 15. Based on
these results, we would select k = 5, as it is the simplest learner
that attains close to the minimum misclassification rate.
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Figure 5.2 Results of 5-fold CV for 15 values of k using kNN on
simulated data, where the broken line indicates one standard
deviation above the minimum CV misclassification rate.

5.4 CLASSIFICATION AND REGRESSION TREES

5.4.1 Overview

Classification and regression trees (CART) were introduced by
Breiman et al. (1984). They are relatively easy to understand and
explain to a non-expert. The fact that they naturally lend them-
selves to straightforward visualization is a major advantage.
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Figure 5.3 Classification tree for the iris data.

5.4.2 Classification Trees

First, consider a classification tree, which starts at the top (root)
and recursively partitions data based on the best splitter. A clas-
sification tree for the famous iris data is shown in Figure 5.3,
where the leaves report the result (i.e., one misclassification in to-
tal). There are eight leaves: one where irises are classified as setosa,
three for versicolor, and four for virginica. The representation of
the tree in Figure 5.3 gives the value of the feature determining the
split and the fraction of observations classified as the iris type in
each leaf. Features are numbered and correspond to sepal length,
sepal width, petal length, and petal width, respectively.

As we saw with the iris tree (Figure 5.3), a splitter is a variable
(together with a rule), e.g.,

petal width < 1.75.

What it means to be the “best” splitter will be discussed, inter
alia, shortly. An in-depth discussion on pruning is probably not
helpful at this stage; however, there are many sources that contain
such details (e.g., Breiman et al., 1984; Hastie et al., 2009). A
classification tree is also known as a decision tree. Consider the
notation of Hastie et al. (2009), so that a nodem represents a region
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Rm with Nm observations. When one considers the relationship
between a tree and the space of observations, this is natural. Before
proceeding, consider a tree built using two variables from the iris
data — two variables so that we can visualize the partitioning of
the space of observations (Figure 5.4).

Figure 5.4 Classification tree for the Iris data using only two
variables: petal length and petal width.

An alternative way to visualize Figure 5.4 is via a scatterplot
with partitions (Figure 5.5). Each one of the five regions shown in
Figure 5.5 corresponds to a leaf in the classification tree shown in
Figure 5.4.

Recall that a node m represents a region Rm with Nm observa-
tions. Again, remaining with the notation of Hastie et al. (2009),
the proportion of observations from class g in node m is

p̂mg = 1
Nm

∑
xi∈Rm

I(yi = g).
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Figure 5.5 Partitioned scatterplot for the iris data.

All observations in node m are classified into the class with the
largest proportion of observations; in other words, the majority
class:

g∗ = arg max
k

p̂mg.

This is all just a formalization of what is quite clear by inspection
of the tree.

Consider how to come up with splits (or splitters) in the first
place. One approach is to base them on the misclassification error,
i.e.,

1− p̂mg∗ .

Splits can also be based on the Gini index, i.e.,

G∑
g=1

p̂mg(1− p̂mg)

or the cross-entropy (also called information or deviance), i.e.,

−
G∑
g=1

p̂mg log p̂mg. (5.10)
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Note that when used in this way, misclassification error, Gini in-
dex, and cross-entropy are referred to as impurity measures. In this
vernacular, we want nodes that are as pure as possible. The mis-
classification error is generally not the impurity measure of choice
because it is not differentiable and so less amenable to numerical
methods. Accordingly, the Gini index or cross-entropy is typically
used.

5.4.3 Regression Trees

Now, consider regression trees. They proceed in an analogous fash-
ion to classification trees. However, we now have a regression prob-
lem as opposed to a classification problem. The notion of impurity
is somewhat more straightforward here and common choices for
an impurity measure include the RMSE (5.4) and the MAE (5.5).
Splitting requires a little thought. The problem can be formulated
as choosing a value v and a variable Xj to split the (training) data
into the regions

R1(Xj , v) = {X | Xj < v} and R2(Xj , v) = {X | Xj ≥ v}.

The choice of j and v is made to minimize some loss function, such
as ∑

i:xi∈R1(j,v)

(yi − ŷR1)2 +
∑

i:xi∈R2(j,v)

(yi − ŷR2)2,

where ŷRk
is the mean of the (training) observations in Rk, for

k = 1, 2. Further splits continue in this fashion.
Consider the following code block. It uses the DecisionTree.jl

package to create a regression tree from the food data. The
leaves of the tree are merged if the purity of the merged leaf
is at least 85%. The resulting regression tree has a depth of 8
and 69 leaves. A tree of this size can be hard to interpret. The
DecisionTree.jl package can print out a textual representation
of the tree but this leaves much to be desired. At the time of writ-
ing, DecisionTree.jl does not support graphical visualizations
and plotting a decision tree in Gadfly.jl is not straightforward.
We used an unofficial Julia package called D3DecisionTrees.jl
to make interactive visualizations of our trees. They render in a
web browser and allow the user to click through the nodes and
branches to examine subsections of their tree. A static represen-
tation of one of these visualizations is used to partially visualize
the tree built from the food data (Figure 5.6). Based on an 80-20
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Figure 5.6 Regression tree built from the food data.

train test split of the data, the tree has a test set MAE of 0.82 for
predicting student GPA.� �

using DecisionTree, Random
Random.seed!(35)

## food training data from chapter 3
y = df_food[:gpa]
tmp = convert(Array, df_food[setdiff(names(df_food), [:gpa])] )
xmat = convert(Array{Float64}, collect(Missings.replace(tmp, 0)))
names_food = setdiff(names(df_food), [:gpa])

# defaults to regression tree if y is a Float array
model = build_tree(y, xmat)

# prune tree: merge leaves having >= 85% combined purity (default: 100%)
modelp = prune_tree(model, 0.85)

# tree depth is 9
depth(modelp)

# print the tree to depth 3
print_tree(modelp, 3)
#=
Feature 183, Threshold 0.5
L-> Feature 15, Threshold 0.5

L-> Feature 209, Threshold 0.5
L->
R->

R-> Feature 209, Threshold 0.5
L->
R->

R-> Feature 15, Threshold 0.5
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L-> Feature 8, Threshold 0.5
L->
R->

R-> Feature 23, Threshold 0.5
L->
R->

=#

# print the variables in the tree
for i in [183, 15, 209, 8, 23]
println("Variable number: ", i, " name: ", names_food[i])

end

#=
Variable number: 183 name: self_perception_wgt3
Variable number: 15 name: cal_day3
Variable number: 209 name: waffle_cal1315
Variable number: 8 name: vitamins
Variable number: 23 name: comfoodr_code11
=#� �

5.4.4 Comments

Trees have lots of advantages. For one, they are very easy to un-
derstand and to explain to non-experts. They mimic decision pro-
cesses, e.g., of a physician perhaps. They are very easy (natural,
even) to visualize. However, they are not as good as some other su-
pervised learning methods. Ensembles of trees, however, can lead
to markedly improved performance. Bagging, random forests and
gradient boosting are relatively well-known approaches for combin-
ing trees. However, we need to discuss ensembles and the bootstrap
first.

5.5 BOOTSTRAP

The introduction of the bootstrap by Efron (1979) is one of the
single most impactful works in the history of statistics and data
science. Use Q to denote the sample x1, x2, . . . , xn. Note that, for
the purposes of this section, taking xi to be univariate will simplify
the explanation. Now, Q can be considered a set, i.e.,

Q = {x1, x2, . . . , xn},

and is sometime called an ensemble. Suppose we want to construct
estimator θ̂ based upon that sample, and we are interested in the
bias and standard error of θ̂. A resampling technique can be used,
where we draw samples from an ensemble that is itself a sample,
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e.g., fromQ. There are a variety of resampling techniques available;
the most famous of these is called the bootstrap.

Before we look at an illustration of the bootstrap, we need to
consider the plug-in principle. Let X1, X2, . . . , Xn be iid random
variables. Note that the cumulative distribution function

G(x) = 1
n

n∑
i=1

I(Xi ≤ x)

defines an empirical distribution. The plug-in estimate of the pa-
rameter of interest θF is given by

θ̂ = θF̂ ,

where F̂ is an empirical distribution, e.g., summary statistics are
plug-in estimates.

Efron (2002) gives an illustration of the bootstrap very similar
to what follows here. Suppose that the data are a random sample
from some unknown probability distribution F , θ is the parameter
of interest, and we want to know SEF (θ̂). We can compute SEF̂ (θ̂),
where F̂ is the empirical distribution of F , as follows. Suppose we
have an ensemble

Q = {x1, x2, . . . , xn}.

Sample with replacement from Q, n times, to get a bootstrap sam-
ple

Q∗ = {x∗1, x∗2, . . . , . . . , x∗n}

and then compute θ̂∗ based on Q∗. Repeat this process M times
to obtain values

θ̂∗(1), θ̂∗(2), . . . , θ̂∗(M)

based on bootstrap samples

Q∗(1),Q∗(2), . . . ,Q∗(M).

Then,

ŜEboot =

√√√√ 1
M − 1

M∑
j=1

(θ̂∗(j)− θ̂∗(·))2, (5.11)

where

θ̂∗(·) = 1
M

M∑
i=1

θ̂∗(i).
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As M →∞,
ŜEboot → ŜEF̂ ,

where ŜEboot and ŜEF̂ are non-parametric bootstrap estimates be-
cause they are based on F̂ rather than F . Clearly, we want M to
be as large as possible, but how large is large enough? There is no
concrete answer but experience helps one get a feel for it.� �

using StatsBase, Random, Statistics
Random.seed!(46)

A1 = [10,27,31,40,46,50,52,104,146]
median(A1)
# 46.0

n = length(A1)
m = 100000
theta = zeros(m)

for i = 1:m
theta[i] = median(sample(A1, n, replace=true))

end

mean(theta)
# 45.767
std(theta)
#12.918

## function to compute the bootstrap SE, i.e., an implementation of (5.11)
function boot_se(theta_h)
m = length(theta_h)
c1 = /(1, -(m,1))
c2 = mean(theta_h)
res = map(x -> (x-c2)ˆ2, theta_h)
return(sqrt(*(c1, sum(res))))

end

boot_se(theta)
## 12.918� �
Now, suppose we want to estimate the bias of θ̂ given an en-

semble Q. The bootstrap estimate of the bias, using the familiar
notation, is

B̂iasboot = θ̂∗(·)− θ̂,

where θ̂ is computed based the empirical distribution F̂ .� �
## Bootstrap bias
-(mean(theta), median(A1))
#-0.233� �
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In addition to estimating the standard error and the bias, the
bootstrap can be used for other purposes, e.g., to estimate confi-
dence intervals. There are a number of ways to do this, and there
is a good body of literature around this topic. The most straight-
forward method is to compute bootstrap percentile intervals.� �
## 95% bootstrap percentile interval for the median
quantile(theta, [0.025,0.975])

# 2-element Array{Float64,1}:
# 27.0
# 104.0� �
With the very brief introduction here, we have only scratched

the surface of the bootstrap. There are many useful sources for
further information on the bootstrap, including the excellent books
by Efron and Tibshirani (1993) and Davison and Hinkley (1997).

5.6 RANDOM FORESTS

Consider a regression tree scenario. Now, generate M bootstrap
ensembles from the training set and use f̂m(x) to denote the re-
gression tree learner trained on the mth bootstrap ensemble. Av-
eraging these predictors gives

f̂bag(x) = 1
M

M∑
m=1

f̂m(x).

This is called bootstrap aggregation, or bagging (Breiman, 1996).
Although it seems very simple, bagging tends to result in a bet-
ter learner than a single tree learner. Note that, with bagging,
the M trees are not pruned. Bagging also gives a method for esti-
mating the (test) error, known as the out-of-bag error. When we
create a bootstrap ensemble, some observations will be included
more than once and some will be left out altogether — the left-out
observations are said to be out-of-bag. Typically, around 37% of
observations will be out-of-bag for a given tree; to see this, consider
that (

n− 1
n

)n
(5.12)

is the probability that a single observation is omitted from a boot-
strap sample (of size n) and then note how (5.12) behaves as n
increases (Figure 5.7).
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Figure 5.7 Illustration of the value of (5.12) as n increases, with
a broken horizontal line at 0.37.

The response for the ith observation can be predicted using the
trees for which it was out-of-bag. These can then be averaged to
give a prediction for the ith observation. This is sometimes used
as an estimate of the test error; however, we will not follow that
approach herein.

While bagging can (perhaps greatly) improve regression tree
performance, it comes at the expense of the easy visualization and
easy interpretability enjoyed by a single regression tree. However,
we can evaluate the importance of each predictor variable by con-
sidering the extent to which it decreases some cost function, e.g.,
the RMSE, averaged over all trees. Note that bagging for clas-
sification trees proceeds in a very similar fashion to bagging for
regression trees. Of course, a different approach is taken to com-
bine the predictions from the M bootstrap samples; this can be
done, e.g., via majority vote.

One downside to bagging is that the M trees can be very sim-
ilar, i.e., they can be highly correlated. The random forests ap-
proach (Breiman, 2001a) is an extension of bagging that decorre-
lates theM trees. For each tree, rather than all predictor variables
being available for each split, a random sample of M is taken at
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each split. In fact, a different random sample ofM predictor vari-
ables is considered at each split, for each tree. The result is that
the M trees tend to be far more different than for bagging. Some-
times, guidelines such asM≈ √p are used to selectM, where p is
the total number of predictor variables. We demonstrate a differ-
ent approach in Section 7.4.2. Note that bagging is a special case
of random forests, i.e., with M = p, and so it will not be con-
sidered separately hereafter. Further material on random forests is
deferred to Section 7.4.2, and we continue this chapter with gradi-
ent boosting.

5.7 GRADIENT BOOSTING

5.7.1 Overview

Boosting is a general approach to supervised learning, that gener-
ates an ensemble with M members from the training set. The en-
semble members are generated sequentially, where the current one
is created from a base learning algorithm using the residuals from
the previous member as the response variable. We will restrict our
discussion to decision tree learners. Unlike random forests, boost-
ing does not use bootstrap sampling. It uses the entire dataset, or
some subsample thereof, to generate the ensemble. There follows
some pseudocode for a straightforward boosting algorithm.

A Straightforward Boosting Algorithm
read in training data X, response Y , M , d, ω
initialize f(x) = 0, e0 = y0
set number of splits per tree to d
for m = 1, 2, . . . ,M

fit tree fm(x) to (X, em−1)
f(x) = f(x) + ωfm(x)
em(x) = em−1(x)− ωfm(x)

end for
return f(x)

The reader is encouraged to reflect on the relationship between
this simple pseudocode and (5.1) and (5.2). In the terminology
used in Section 5.1, we can think of final error as

eM (x) ≡ Etraining.
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Note that ω is a parameter that controls the learning rate, i.e., a
small number, and d is the tree depth. Of course, there is a tradeoff
between the respective values of ω, d, and M .

Towards the end of Section 5.1, we concluded that we need
to move away from thinking only about an error and consider an
error together with some way to prevent or mitigate overfitting.
The role of ω in the simple boosting algorithm already described is
precisely to reduce overfitting. The XGBoost.jl package in Julia is
an implementation of extreme gradient boosting (XGBoost), which
is based on the idea of a gradient boosting machine (Friedman,
2001). A nice description of XGBoost is given in Chen and Guestrin
(2016), where the starting point is a high-level description of the
learning problem as the minimization of

objective function = loss function + regularization term.

In the very simple boosting algorithm described above, the reg-
ularization term is not present (Chen and Guestrin, 2016). It is
an innovative feature of the XGBoost model which penalizes the
model complexity beyond the traditional shrinkage parameter rep-
resented above by ω and can greatly improve predictive perfor-
mance. Given the added complexity, the clearest way to explain
XGBoost is by example, as follows.

The first code block has functions used to do 5-fold cross-
validation for the boosting learners. The function tunegrid_xgb()
creates a grid of the learning rate η and tree depth values d
that the classification learners will be trained on. Including val-
ues for the number of boosting iterations (rounds) M performed
could be a valuable addition to the tuning grid. We set this pa-
rameter value to 1000 for ease of exposition. The parameter η
is a specific implementation of ω described above. Users of R
may be familiar with the gbm package (Ridgeway, 2017), which
also performs gradient boosting. The shrinkage parameter of the
gbm() function from this package is another implementation of
ω. The function binomial_dev() calculates the binomial deviance
(5.8), which is used to train the learners, and binary_mcr() cal-
culates the misclassification rate for the labeled outcomes. Note
that we are using the MLBase.jl infrastructure to do the cross-
validation of our boosting learners. It contains a general set of
functions to train any supervised learning model using a variety
of re-sampling schemes and evaluation metrics. The cvERR_xgb()
function is used by cross_validate() from MLBase.jl to re-
turn the error metric of choice for each re-sample iteration be-
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ing done. The cvResult_xgb() is the master control function
for our cross-validation scheme, it uses the MLBase.jl functions
cross_validate() and StratifiedKfold() to do stratified cross-
validation on the outcome. The cross-validation indices are passed
to XGBoost so it can make the predictions and the error metric
results are summarized and returned as an array.� �
## CV functions for classification
using Statistics, StatsBase

## Array of parameters to train models on
## Includes two columns for the error mean and sd
function tunegrid_xgb(eta, maxdepth)

n_eta = size(eta)[1]
md = collect(1:maxdepth)
n_md = size(md)[1]

## 2 cols to store the CV results
res = zeros(*(maxdepth, n_eta), 4)
n_res = size(res)[1]

## populate the res matrix with the tuning parameters
res[:,1] = repeat(md, inner = Int64(/(n_res, n_md)))
res[:,2] = repeat(eta, outer = Int64(/(n_res, n_eta)))

return(res)
end

## MCR
function binary_mcr(yp, ya; trace = false)

yl = Array{Int8}(yp .> 0.5)
disagree = Array{Int8}(ya .!= yl)
mcr = mean(disagree)
if trace

#print(countmap(yl))
println("yl: ", yl[1:4])
println("ya: ", ya[1:4])
println("disagree: ", disagree[1:4])
println("mcr: ", mcr)

end
return( mcr )

end

## Used by binomial_dev
## works element wise on vectors
function bd_helper(yp, ya)

e_const = 1e-16
pneg_const = 1.0 - yp
if yp < e_const

res = +(*(ya, log(e_const)), *( -(1.0, ya), log(-(1.0, e_const))))
elseif pneg_const < e_const

res = +(*(ya, log(-(1.0, e_const))), *( -(1.0, ya), log(e_const)))
else

res = +(*(ya, log(yp)), *( -(1.0, ya), log(pneg_const)))
end
return res

end
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## Binomial Deviance
function binomial_dev(yp, ya) #::Vector{T}) where {T <: Number}

res = map(bd_helper, yp, ya)
dev = *(-2, sum(res))
return(dev)

end

## functions used with MLBase.jl
function cvERR_xgb(model, Xtst, Ytst, error_fun; trace = false)

y_p = XGBoost.predict(model, Xtst)
if(trace)

println("cvERR: y_p[1:5] ", y_p[1:5])
println("cvERR: Ytst[1:5] ", Ytst[1:5])
println("cvERR: error_fun(y_p, Ytst) ", error_fun(y_p, Ytst))

end
return(error_fun(y_p, Ytst))

end

function cvResult_xgb(Xmat, Yvec, cvparam, tunegrid; k = 5, n = 50,
trace = false )

result = deepcopy(tunegrid) ## tunegrid could have two columns on input
n_tg = size(result)[1]

## k-Fold CV for each combination of parameters
for i = 1:n_tg

scores = cross_validate(
trind -> xgboost(Xmat[trind,:], 1000, label = Yvec[trind],

param = cvparam, max_depth = Int(tunegrid[i,1]),
eta = tunegrid[i,2]),

(c, trind) -> cvERR_xgb(c, Xmat[trind,:], Yvec[trind],
binomial_dev, trace = true),
## total number of samples
n,
## Stratified CV on the outcome
StratifiedKfold(Yvec, k)

)
if(trace)

println("cvResult_xgb: scores: ", scores)
println("size(scores): ", size(scores))

end
result[i, 3] = mean(scores)
result[i, 4] = std(scores)

end

return(result)
end� �

5.7.2 Beer Data

The next code block illustrates how the functions detailed in the
previous code block can be used to classify beers in the beer data
as either lagers or ales. We start by creating an 80-20 training test
split of the data, stratified on outcome. Next, there is an array of
parameters that we will pass to all of our XGBoost learners. Be-
sides the parameters being used to generate the tuning grid, the
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others will be held constant across learners. The tunegrid_xgb()
function is used to generate a training grid for η and d. Increasing
the tree depth and η is one way to increase the complexity of the
XGBoost learner. The cvResult_xgb() function is used to gener-
ate the training results illustrated in Figure 5.8, which suggest that
learners with small η values and medium sized trees are classifying
the beers best.

XGBoost: Tree Depth by ETA
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Figure 5.8 Summary of cross-validation performance for XG-
Boost from 5-fold cross-validation.

The horizontal line in Figure 5.8 is one standard error above
the smallest cross-validation training deviance. Because there are
a number of learners with error bars overlapping the line, we use
the one-standard error method for choosing the final learner. This
method was first proposed by Breiman et al. (1984) in the con-
text of classification and regression trees and is discussed further
by Hastie et al. (2009). The method finds the simplest, i.e., most
regularized, learner configuration within one standard error above
the numerically best learner, i.e., the configuration with the lowest
error rate. The results are depicted in Figure 5.9. We choose the
learner with η = 0.1 and a tree depth of 2. This learner is run on
the test set data and has a misclassification rate of 8.2% and a



118 � Data Science with Julia

deviance of 4458.08. As expected, the deviance is larger than the
value found by cross-validation but still very reasonable.
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Figure 5.9 Summary of results for the 1 SE method applied to
the XGBoost analysis of the beer data.

� �
## 80/20 split
splt = 0.8
y_1_ind = N_array[df_recipe[:y] .== 1]
y_0_ind = N_array[df_recipe[:y] .== 0]

tr_index = sort(
vcat(

sample(y_1_ind, Int64(floor(*(N_y_1, splt))), replace = false),
sample(y_0_ind, Int64(floor(*(N_y_0, splt))), replace = false)

)
)
tst_index = setdiff(N_array, tr_index)

df_train = df_recipe[tr_index, :]
df_test = df_recipe[tst_index, :]

## Check proportions
println("train: n y: $(sum(df_train[:y]))")
println("train: % y: $(mean(df_train[:y]))")
println("test: n y: $(sum(df_test[:y]))")
println("test: % y: $(mean(df_test[:y]))")

## Static boosting parameters
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param_cv = [
"silent" => 1,
"verbose" => 0,
"booster" => "gbtree",
"objective" => "binary:logistic",
"save_period" => 0,
"subsample" => 0.75,
"colsample_bytree" => 0.75,
"alpha" => 0,
"lambda" => 1,
"gamma" => 0
]

## training data: predictors are sparse matrix
tmp = convert(Array, df_train[setdiff(names(df_train), [:y])] )
xmat_tr = convert(SparseMatrixCSC{Float64,Int64},

collect(Missings.replace(tmp, 0)))

## CV Results

## eta shrinks the feature weights to help prevent overfilling by making
## the boosting process more conservative
## max_depth is the maximum depth of a tree; increasing this value makes
## the boosting process more complex
tunegrid = tunegrid_xgb([0.1, 0.25, 0.5, 0.75, 1], 5)
N_tr = size(xmat_tr)[1]

cv_res = cvResult_xgb(xmat_tr, y_tr, param_cv, tunegrid,
k = 5, n = N_tr, trace = true )

## dataframe for plotting
cv_df = DataFrame(tree_depth = cv_res[:, 1],

eta = cv_res[:, 2],
mean_error = cv_res[:, 3],
sd_error = cv_res[:, 4],

)
cv_df[:se_error] = map(x -> x / sqrt(5), cv_df[:sd_error])
cv_df[:mean_min] = map(-, cv_df[:mean_error], cv_df[:se_error])
cv_df[:mean_max] = map(+, cv_df[:mean_error], cv_df[:se_error])

## configurations within 1 se
min_dev = minimum(cv_df[:mean_error])
min_err = filter(row -> row[:mean_error] == min_dev, cv_df)
one_se = min_err[1, :mean_max]
possible_models = filter(row -> row[:mean_error] <= one_se, cv_df)

#####
## Test Set Predictions

tst_results = DataFrame(
eta = Float64[],
tree_depth = Int64[],
mcr = Float64[],
dev = Float64[])

## using model configuration selected above
pred_tmp = XGBoost.predict(xgboost(xmat_tr, 1000, label = y_tr,

param = param_cv, eta =0.1 , max_depth = 2), xmat_tst)
tmp = [0.1, 2, binary_mcr(pred_tmp, y_tst), binomial_dev(pred_tmp, y_tst)]
push!(tst_results, tmp)

#####
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## Variable importance from the overall data

fit_oa = xgboost(xmat_oa, 1000, label = y_oa, param = param_cv, eta = 0.1,
max_depth = 2)

## names of features
names_oa = map(string, setdiff(names(df_recipe), [:y]))
fit_oa_imp = importance(fit_oa, names_oa)

## DF for plotting
N_fi = length(fit_oa_imp)

imp_df = DataFrame(fname = String[], gain = Float64[], cover = Float64[])

for i = 1:N_fi
tmp = [fit_oa_imp[i].fname, fit_oa_imp[i].gain, fit_oa_imp[i].cover]
push!(imp_df, tmp)

end

sort!(imp_df, :gain, rev=true)� �
The learner chosen by the one-standard error method is run

on the full data to determine which variables are most predictive
of the beer types. We use the full dataset because the important
variables could differ from those found in the training set. The
results are displayed graphically in Figure 5.10.
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Figure 5.10 Variable importance plot from the XGBoost anal-
ysis of the beer data.
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XGBoost measures variable importance in a number of ways,
we will focus on the gain measure. It is the mean accuracy im-
provement brought on by creating a split in a tree on this variable
across the boosting ensemble. The gain is scaled to be between 0
and 1. There are three important predictor variables for the beer
data: primary brewing temperature; IBU; and colour units. This
makes sense considering that it is well-known that ales are brewed
at higher temperatures and tend have a higher bitterness rat-
ing (Oliver and Colicchio, 2011). Ales include many dark-coloured
beers, which might account for the predictive ability of the colour
variable.

5.7.3 Food Data

The following code block details how we went about training XG-
Boost regression learners on the food data. We have many of
the same functions but with slightly different configurations. The
tunegrid_xgb_reg() function adds a third parameter to the tun-
ing grid, but it is otherwise the same as the one we used for
the classification learners. The XGBoost models are run for 1000
iterations. The error metrics have changed: now, they are the
MAE, calculated using medae(), and the RMSE, calculated us-
ing rmse(). Note that cvResult_xgb_reg() plays an analogous
role to cvResult_xgb(), controlling the cross-validation process.
Specifically, it carries out unstratified cross-validation and trains
the learners using the medae() function.� �
## CV Functions for Regression

function tunegrid_xgb_reg(eta, maxdepth, alpha)
n_eta = size(eta)[1]
md = collect(1:maxdepth)
n_md = size(md)[1]
n_a = size(alpha)[1]

## 2 cols to store the CV results
res = zeros(*(maxdepth, n_eta, n_a), 5)
n_res = size(res)[1]
println("N:", n_res, " e: ", n_eta, " m: ", n_md, " a: ", n_a)
## populate the res matrix with the tuning parameters
n_md_i = Int64(/(n_res, n_md))
res[:,1] = repeat(md, outer=n_md_i)
res[:,2] = repeat(eta, inner = Int64(/(n_res, n_eta)))
res[:,3] = repeat(repeach(alpha, (n_md)), outer=n_a)

return(res)
end
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function medae(yp, ya)
## element wise operations
res = map(yp, ya) do x,y

dif = -(x, y)
return(abs(dif))

end
return(median(res))

end

function rmse(yp, ya)
## element wise operations
res = map(yp, ya) do x,y

dif = -(x, y)
return(difˆ2)

end
return(sqrt(mean(res)))

end

function cvResult_xgb_reg(Xmat, Yvec, cvparam, tunegrid; k = 5, n = 50,
trace = false )

result = deepcopy(tunegrid)
n_tg = size(result)[1]

## k-Fold CV for each combination of parameters
for i = 1:n_tg

scores = cross_validate(
## num_round investigate
trind -> xgboost(Xmat[trind,:], 1000, label = Yvec[trind],

param = cvparam, max_depth = Int(tunegrid[i,1]),
eta = tunegrid[i,2], alpha = tunegrid[i,3]),

(c, trind) -> cvERR_xgb(c, Xmat[trind,:], Yvec[trind], medae,
trace = true),

n, ## total number of samples
Kfold(n, k)

)
if(trace)

println("cvResult_xgb_reg: scores: ", scores)
println("size(scores): ", size(scores))

end
result[i, 4] = mean(scores)
result[i, 5] = std(scores)

end

return(result)
end� �
The following code block illustrates how the functions defined

above can be used to train our XGBoost regression learners. Start
by making a 80-20 training-test split of the data. Then define the
static boosting parameters for the XGBoost learners. The tuning
grid is generated for values of η, d, and α, an L1 regularization
term on the learner weights. The α parameter is one of XGBoost’s
regularization terms and, when included in the model tuning, can
produce very predictive and fast models when there are a large
number of predictor variables. The 5-fold cross-validation results
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are stored in the cv_res_reg array and visualized in Figure 5.11.
Once again, there are many candidate learners to choose from.
Learners with larger tree depths and smaller values of η and α
seem to perform best on the training set.

XGBoost: Tree Depth by ETA
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Figure 5.11 Summary of results for 5-fold cross-validation from
the XGBoost analysis of the food data.

� �
## 80/20 train test split
splt = 0.8

tr_index = sample(N_array, Int64(floor(*(N, splt))), replace = false)
tst_index = setdiff(N_array, tr_index)

df_train = df_food[tr_index, :]
df_test = df_food[tst_index, :]

## train data: predictors are sparse matrix
y_tr = convert(Array{Float64}, df_train[:gpa])
tmp = convert(Array, df_train[setdiff(names(df_train), [:gpa])] )
xmat_tr = convert(SparseMatrixCSC{Float64,Int64},
collect(Missings.replace(tmp, 0)))

## Static boosting parameters
param_cv_reg = [
"silent" => 1,
"verbose" => 0,
"booster" => "gbtree",
"objective" => "reg:linear",
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"save_period" => 0,
"subsample" => 0.75,
"colsample_bytree" => 0.75,
"lambda" => 1,
"gamma" => 0
]

## CV Results

## eta shrinks the feature weights to help prevent overfilling by making
## the boosting process more conservative
## max_depth is the maximum depth of a tree; increasing this value makes
## the boosting process more complex
## alpha is an L1 regularization term on the weights; increasing this value
## makes the boosting process more conservative
tunegrid = tunegrid_xgb_reg([0.1, 0.3, 0.5], 5, [0.1, 0.3, 0.5])
N_tr = size(xmat_tr)[1]

cv_res_reg = cvResult_xgb_reg(xmat_tr, y_tr, param_cv_reg, tunegrid,
k = 5, n = N_tr, trace = true )

## add the standard error
cv_res_reg = hcat(cv_res_reg, ./(cv_res_reg[:,5], sqrt(5)))

## dataframe for plotting
cv_df_r = DataFrame(tree_depth = cv_res_reg[:, 1],

eta = cv_res_reg[:, 2],
alpha = cv_res_reg[:, 3],
medae = cv_res_reg[:, 4],
medae_sd = cv_res_reg[:, 5]

)
cv_df_r[:medae_se] = map(x -> /(x , sqrt(5)), cv_df_r[:medae_sd])
cv_df_r[:medae_min] = map(-, cv_df_r[:medae], cv_df_r[:medae_se])
cv_df_r[:medae_max] = map(+, cv_df_r[:medae], cv_df_r[:medae_se])

min_medae = minimum(cv_df_r[:medae])
min_err = filter(row -> row[:medae] == min_medae, cv_df_r)
one_se = min_err[1, :medae_max]

#######
## Test Set Predictions

tst_results = DataFrame(
eta = Float64[],
alpha = Float64[],
tree_depth = Int64[],
medae = Float64[],
rmse = Float64[])

## using configuration chosen above
pred_tmp = XGBoost.predict(xgboost(xmat_tr, 1000, label = y_tr,

param = param_cv_reg, eta =0.1 , max_depth = 1, alpha = 0.1), xmat_tst)
tmp = [0.1, 0.1, 1, medae(pred_tmp, y_tst), rmse(pred_tmp, y_tst)]
push!(tst_results, tmp)

#####
## Variable Importance from the overall data

fit_oa = xgboost(xmat_oa, 1000, label = y_oa, param = param_cv_reg,
eta = 0.1, max_depth = 1, alpha = 0.1)

## names of features
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# names_oa = convert(Array{String,1}, names(df_food))
names_oa = map(string, setdiff(names(df_train), [:gpa]))
fit_oa_imp = importance(fit_oa, names_oa)

## DF for plotting
N_fi = length(fit_oa_imp)

imp_df = DataFrame(fname = String[], gain = Float64[], cover = Float64[])

for i = 1:N_fi
tmp = [fit_oa_imp[i].fname, fit_oa_imp[i].gain, fit_oa_imp[i].cover]
push!(imp_df, tmp)

end

sort!(imp_df, :gain, rev=true)� �
Given the plethora of candidate learners, we again apply the

one-standard error method to select the best candidate learner pa-
rameter configuration. The results are summarized in Figure 5.12.
There are six candidates to choose from. We opt for the stump
learner with η = α = 0.1 and d = 1, because it has the most reg-
ularization and the simplest tree structure. When run on the test
set, the MAE is 0.533 and the RMSE is 0.634.
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Figure 5.12 Summary of results for the 1 SE method applied
to the XGBoost analysis of the food data.
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This learner was used to determine the variable importance on
the overall data. The results are displayed in Figure 5.13. The left-
hand panel contains a violin plot of the overall gain scores. It is
obvious that most of the predictor variables have little-to-no effect
on the prediction of student GPA. There are many weak predictor
variables that play a part in successfully predicting student GPA
from these data. Based on the variable importance plot in Fig-
ure 5.13, the important predictor variables in the learner reflect:
a highly educated father; a poorly educated mother; being able to
estimate the calories in food; and measuring one’s body weight.
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Figure 5.13 Violin plot and variable importance plot from the
XGBoost analysis of the food data.

5.8 COMMENTS

Selected supervised learning techniques have been covered, along
with Julia code needed for implementation. The primary goal of
this book is to expose the reader to Julia and, as mentioned in
the Preface, it is not intended as a thorough introduction to data
science. Certainly, this chapter cannot be considered a thorough
introduction to supervised learning. Some of the more notable ab-
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sentees include generalized additive models, neural networks, and
their many extensions as well as assessment tools such as sensitiv-
ity, specificity, and receiver operating characteristic (ROC) curves.
Random forests were discussed in this chapter; however, their im-
plementation and demonstration is held over for Section 7.4.2.

The idea that some learners are more prone to overfitting than
others was touched upon in Section 5.1. This is a topic that de-
serves careful thought. For example, we applied the one standard
error rule to reduce the complexity when fitting our kNN learner,
by choosing the smallest k when several values gave similar per-
formance. The reader may be interested to contrast the use of
gradient boosting in Section 5.7 with that of random forests (Sec-
tion 7.4.2). It is, perhaps, difficult to escape the feeling that an
explicit penalty for overfitting might benefit random forests and
some other supervised learning approaches that do not typically
use one. When using random forests for supervised learning, it is
well known that increasing the size of the forest does not lead to
over-fitting (Hastie et al., 2009, Chp. 15). When using it for regres-
sion, utilizing unpruned trees in the forest can lead to over-fitting
which will increase the variance of the predictions (Hastie et al.,
2009, Chp. 15). Despite this, few software packages provide this
parameter for performance tuning.
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C H A P T E R 6

Unsupervised
Learning

UNSUPERVISED LEARNING includes a host of ex-
ploratory techniques that can be used to gain insight into

data, often when there is no outcome variable or clear target.
Although around for over a century, principal components anal-
ysis remains a data science staple and it is introduced along with
MultivariateStats.jl. Probabilistic principal components anal-
ysis (PPCA) is considered next and an expectation-maximization
algorithm for PPCA is implemented in Julia — this is the first of
two examples in this chapter that illustrate Julia as a base lan-
guage for data science. Clustering, or unsupervised classification,
is introduced along with the famous k-means clustering technique
and Clustering.jl. A mixture of probabilistic principal compo-
nents analyzers is then discussed and implemented, thereby pro-
viding the second example of Julia as a base language for data
science.

6.1 INTRODUCTION

Unsupervised learning differs from supervised learning (Chapter 5)
in that there are no labelled observations. It may be that there are
labels but none are known a priori, it may be that some labels
are known but the data are being treated as if unlabelled, or it
may be the case that there are no labels per se. Because there are
no labelled observations, it might be advantageous to lean towards
statistical approaches and models — as opposed to machine learn-

129
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ing — when tackling unsupervised learning problems. In a statis-
tical framework, we can express our uncertainty in mathematical
terms, and use clearly defined models and procedures with well-
understood assumptions. Statistical approaches have many practi-
cal advantages, e.g., we may be able to write down likelihoods and
compare models using likelihood-based criteria.

Suppose n realizations x1, . . . ,xn of p-dimensional random vari-
ables X1, . . . ,Xn are observed, where Xi = (Xi1, Xi2, . . . , Xip)′
for i = 1, . . . , n. As mentioned in Section 3.1, the quantity X =
(X1,X2, . . . ,Xn)′ can be considered a random matrix and its re-
alization is called a data matrix. Recall also that a matrix A with
all entries constant is called a constant matrix. Now, each Xi is a
p×1 random vector and, for our present purposes, it will be helpful
to consider some results for random vectors. Let X and Y be p×1
random vectors. Then,

E[X + Y] = E[X] + E[Y],

and, if A, B, and C are m×n, p× q, and m× q constant matrices,
respectively, then

E[AXB + C] = AE[X]B + C.

Suppose X has mean µ. Then, the covariance matrix of X is

Σ = Var[X] = E[(X− µ)(X− µ)′].

Suppose p-dimensional X has mean µ and q-dimensional Y has
mean θ. Then,

Cov[X,Y] = E[(X− µ)(Y− θ)′].

The covariance matrix Σ of p-dimensional X can be written

Σ =


σ11 σ12 · · · σ1p
σ21 σ22 · · · σ2p
...

...
. . .

...
σp1 σp2 · · · σpp

 .

The elements σii are variances and σij , where i 6= j, are the co-
variances. The matrix Σ is symmetric because σij = σji. Also,
Σ is positive semi-definite, i.e., for any p × 1 constant vector
a = (a1, . . . , ap)′,

a′Σa ≥ 0.
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Suppose C is a q × p constant matrix and c is a q × 1 constant
vector. Then, the covariance matrix of Y = CX + c is

Var[Y] = CΣC′.

In general, the covariance matrix Σ is positive semi-definite.
Therefore, the eigenvalues of Σ are non-negative, and are denoted

κ1 ≥ κ2 ≥ · · · ≥ κp ≥ 0.

Eigenvalues are also known as characteristic roots. Write vi to
denote the eigenvector corresponding to the eigenvalue κi, for
i = 1, . . . , p. Eigenvectors are also known as characteristic vectors.
Without loss of generality, it can be assumed that the eigenvectors
are orthonormal, i.e.,

v′ivi = 1
and

v′ivj = 0
for i 6= j. The eigenvalues and eigenvectors satisfy

Σvi = κivi, (6.1)

for i = 1, . . . , p.
Write V = (v1, . . . ,vp) and

K = diag{κ1, . . . , κp} =


κ1 0 · · · 0
0 κ2 · · · 0
...

...
. . .

...
0 0 · · · κp

 .

Then, (6.1) can be written

ΣV = VK.

Note that V′V = Ip, and

Σ = VKV′ = VK1/2V′VK1/2V′,

where
K1/2 = diag{

√
κ1, . . . ,

√
κp}.

The determinant of the covariance matrix Σ can be written
|Σ| = |VKV′| = |K|

= κ1 × κ2 × · · · × κp =
p∏
i=1

κi.
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The total variance of the covariance matrix Σ can be written

tr{Σ} = tr{K} = κ1 + κ2 + · · ·+ κp.

The determinant and total variance are sometimes used as sum-
maries of the total scatter amongst the p variables. Note that some
background on eigenvalues is provided in Appendix C.1.

6.2 PRINCIPAL COMPONENTS ANALYSIS

In general, observed data will contain correlated variables. The ob-
jective of principal components analysis is to replace the observed
variables by a number of uncorrelated variables that explain a suf-
ficiently large amount of the variance in the data. Before going into
mathematical details, it will be helpful to understand the practical
meaning of a principal component. The first principal component
is the direction of most variation in the data. The second principal
component is the direction of most variation in the data condi-
tional on it being orthogonal to the first principal component. In
general, for r ∈ (1, p], the rth principal component is the direction
of most variation in the data conditional on it being orthogonal to
the first r − 1 principal components. There are several mathemat-
ical approaches to motivating principal components analysis and
the approach followed here is based on that used by Fujikoshi et al.
(2010).

Let X be a p-dimensional random vector with mean µ and co-
variance matrix Σ. Let κ1 ≥ κ2 ≥ · · · ≥ κp ≥ 0 be the (ordered)
eigenvalues of Σ, and let v1,v2, . . . ,vp be the corresponding eigen-
vectors. The ith principal component of X is

Wi = v′i(X− µ), (6.2)

for i = 1, . . . , p. Which we can write as

W = V′(X− µ), (6.3)

where W = (W1, . . . ,Wp) and V = (v1, . . . ,vp).
Now, it is helpful to consider some properties of W. First of

all, because E[X] = µ,
E[W] = 0.

Recalling that Var[X] = Σ = VKV′, we have

Var[W] = V′Var[X]V
= V′(VKV′)V
= (V′V)K(V′V) = K.

(6.4)
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Rearranging (6.3),
V′X = V′µ+ W,

and left-multiplying by V gives

X = µ+ VW = µ+
p∑
i=1

viWi.

From (6.4), we can develop the result that
p∑
i=1

Var[Wi] = tr{K} = tr{KV′V}

= tr{VKV′} = tr{Σ}.

Now, the proportion of the total variation explained by the jth
principal component is

κi
tr{K} = κi

tr{Σ} .

Therefore, the proportion of the total variation explained by the
first k principal components is∑k

i=1 κi
tr{Σ} .

To understand how the theoretical explanation of a principal
component relates to the intuition given at the beginning of this
section, consider

W = v′(X− µ)

such that v′v = 1. Now,

Var[W ] = v′Σv

and we can write

v = a1v1 + · · ·+ apvp = Va

for a′a = 1. Therefore,

Var[W ] = a2
1κ1 + · · ·+ a2

pκp. (6.5)

Now, maximizing (6.5) subject to the constraint a′a = 1 gives
Var[W ] = κ1, i.e., a1 = 1 and aj = 0 for j > 1. In other words,
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Var[W ] is maximized at W = W1, i.e., the first principal compo-
nent.

Now suppose that W is uncorrelated with the first r − 1 < p
principal components W1, . . . ,Wr−1. We have

Cov[W,Wi] = E[v′(X− µ)(X− µ)′vi] = κici

and so ci = 0 for i = 1, . . . , r − 1. Maximizing (6.5) subject to the
constraint ci = 0, for i = 1, . . . , r − 1, gives Var[W ] = κr. In other
words, Var[W ] is maximized at W = Wr, i.e., the rth principal
component.

Illustrative Example: Crabs Data

The following code block performs principal components analyses
on the crabs data.� �

using LinearAlgebra

## function to do pca via SVD
function pca_svd(X)

n,p = size(X)
k = min(n,p)
S = svd(X)
D = S.S[1:k]
V = transpose(S.Vt)[:,1:k]
sD = /(D, sqrt(n-1))
rotation = V
projection = *(X, V)
return(Dict(
"sd" => sD,
"rotation" => rotation,
"projection" => projection

))
end

## crab_mat_c is a Float array with 5 continuous mearures
## each variable is mean centered
crab_mat = convert(Array{Float64}, df_crabs[[:FL, :RW, :CL, :CW, :BD]])
mean_crab = mean(crab_mat, dims = 1)
crab_mat_c = crab_mat .- mean_crab

pca1 = pca_svd(crab_mat)

## df for plotting
## label is the combination of sp and sex
pca_df2 = DataFrame(

pc1 = pca1["projection"][:,1],
pc2 = pca1["projection"][:,2],
pc3 = pca1["projection"][:,3],
pc4 = pca1["projection"][:,4],
pc5 = pca1["projection"][:,5],
label = map(string, repeat(1:4, inner = 50))

)� �
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More than 98% of the variation in the data is explained by the
first principal component, with subsequent principal components
accounting for relatively little variation (Table 6.1).

Table 6.1 The proportion, and cumulative proportion, of vari-
ation in the crabs data that is explained by the principal com-
ponents (PCs).

PC Prop. of Variation Explained Cumulative Prop.
1 0.9825 0.9825
2 0.0091 0.9915
3 0.0070 0.9985
4 0.0009 0.9995
5 0.0005 1.0000

Interestingly, even though the second and third principal com-
ponents explain a total of 1.61% of the variation in the data, they
give very good separation of the four classes in the crabs dataset;
in fact, they give much better separation of the classes than the
first two principal components (Figures 6.1 and 6.2). This example
illustrates that principal components that explain the vast major-
ity of the variation within data still might be missing important
information about subpopulations or, perhaps unknown, classes.

6.3 PROBABILISTIC PRINCIPAL COMPONENTS ANAL-
YSIS

Probabilistic principal components analysis (PPCA; Tipping and
Bishop, 1999b) is a data reduction technique that replaces p ob-
served variables by q < p latent components. The method works
well when the q latent components explain a satisfactory amount
of the variability in the p observed variables. In some situations,
we might even have substantial dimension reduction, i.e., q � p.
There are interesting relationships between PPCA and principal
components analysis and, indeed, between PPCA and factor analy-
sis (Spearman, 1904, 1927) — these relationships will be discussed
later. In what follows, the notation and approach are similar to
those used by McNicholas (2016a).

Consider independent p-dimensional random variables X1, . . . ,Xn.
The PPCA model can be written

Xi = µ+ ΛUi + εi, (6.6)
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Figure 6.1 Scallerplot depicting the first two principal compo-
nents for the crabs data, coloured by class.
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Figure 6.2 Scallerplot depicting the second and third principal
components for the crabs data, coloured by class.



Unsupervised Learning � 137

for i = 1, . . . , n, where Λ is a p×q matrix of component (or factor)
loadings, the latent component Ui ∼ N (0, Iq), and εi ∼ N (0, ψIp),
where ψ ∈ R+. Note that the Ui are independently distributed and
independent of the εi, which are also independently distributed.
From (6.6), it follows that the marginal distribution of Xi under
the PPCA model is N (µ,ΛΛ′ + ψIp). There are

pq − 1
2q(q − 1) + 1

free parameters in the covariance matrix ΛΛ′ + ψIp (Lawley and
Maxwell, 1962). Therefore, the reduction in free covariance param-
eters under the PPCA model is

1
2p(p+ 1)−

[
pq − 1

2q(q − 1) + 1
]

= 1
2
[
(p− q)2 + p− q − 2

]
,

(6.7)
and there is a reduction in the number of free parameters provided
that (6.7) is positive, i.e., provided that

(p− q)2 > q − p+ 2.

The log-likelihood for p-dimensional x1,x2, . . . ,xn from the
PPCA model is

l(µ,Λ,Ψ) =
n∑
i=1

log φ(xi | µ,ΛΛ′ + ψIp)

= −np2 log 2π − n

2 log |ΛΛ′ + ψIp| −
n

2 tr
{
S(ΛΛ′ + ψIp)−1} ,

(6.8)

where

S = 1
n

n∑
i=1

(xi − µ)(xi − µ)′. (6.9)

The maximum likelihood estimate for µ is easily obtained by dif-
ferentiating (6.8) with respect to µ and setting the resulting score
function equal to zero to get µ̂ = x̄. An EM algorithm can be used
to obtain maximum likelihood estimates for Λ and Ψ.

6.4 EM ALGORITHM FOR PPCA

6.4.1 Background: EM Algorithm

The expectation-maximization (EM) algorithm (Dempster et al.,
1977) is an iterative procedure for finding maximum likelihood es-
timates when data are incomplete or treated as such. The EM
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algorithm iterates between an E-step and an M-step until some
stopping rule is reached. On the E-step, the expected value of the
complete-data log-likelihood is computed conditional on the cur-
rent parameter estimates. On the M-step, this quantity is max-
imized with respect to the parameters to obtain (new) updates.
Extensive details on the EM algorithm are provided by McLachlan
and Krishnan (2008).

6.4.2 E-step

The complete-data comprise the observed x1, . . . ,xn together with
the latent components u1, . . . ,un, where ui = (ui1, . . . , uiq)′. Now,
noting that Xi | ui ∼ N (µ+ Λui, ψIp), we have

logf(xi | ui) = −p2 log 2π − 1
2 log |ψIp|

− 1
2(xi − µ−Λui)′(ψIp)−1(xi − µ−Λui)

= −p2 log 2π − p

2 logψ − 1
2ψ
[
(xi − µ)′(xi − µ) + (xi − µ)′Λui

+ u′iΛ′(xi − µ)− u′iΛ′Λui
]

= −p2 log 2π − p

2 logψ − 1
2ψ tr {(xi − µ)(xi − µ)′}

+ 1
ψ
tr {(xi − µ)′Λui} −

1
2ψ tr {Λ′Λuiu′i} .

Now, the complete-data log-likelihood can be written

lc(µ,Λ,Ψ) =
n∑
i=1

log [f(xi | ui)f(ui)]

= C − np

2 logψ − 1
2ψ tr

{
n∑
i=1

(xi − µ)(xi − µ)′
}

+ 1
ψ

n∑
i=1

tr {(xi − µ)′Λui} −
1

2ψ tr
{

Λ′Λ
n∑
i=1

uiu′i

}
,

where C is constant with respect to µ, Λ, and ψ.
Consider the joint distribution[

Xi

Ui

]
∼ N

([
µ
0

]
,

[
ΛΛ′ + ψIp Λ

Λ′ Iq

])
.
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It follows that
E[Ui | xi] = β(xi − µ), (6.10)

where β = Λ′(ΛΛ′ + ψIp)−1, and

E[UiU′i | xi] = Var[Ui | xi] + E[Ui | xi]E[Ui | xi]′

= Iq − βΛ + β(xi − µ)(xi − µ)′β′.
(6.11)

Therefore, noting that µ̂ = x̄ and that we are conditioning on the
current parameter estimates, the expected value of the complete-
data log-likelihood can be written

Q(Λ, ψ) = C − np

2 logψ − 1
2ψ tr

{
n∑
i=1

(xi − x̄)(xi − x̄)′
}

+ 1
ψ

n∑
i=1

tr {(xi − x̄)′ΛE [Ui | xi]}

− 1
2ψ tr

{
Λ′Λ

n∑
i=1

E[UiU′i | xi, ]
}

= C − np

2 logψ − n

2ψ tr
{
Sx̄
}

+ n

ψ
tr
{
Λβ̂Sx̄

}
− n

2ψ tr
{
Λ′ΛΘ

}
,

where Θ = Iq − β̂Λ̂ + β̂Sx̄β̂
′
is a symmetric q × q matrix, β̂ =

Λ̂′(Λ̂Λ̂′ + ψ̂Ip)−1, and

Sx̄ = 1
n

n∑
i=1

(xi − x̄)(xi − x̄)′ (6.12)

can be thought of as the sample, or observed, covariance matrix.

6.4.3 M-step

Differentiating Q with respect to Λ and ψ, respectively, gives the
score functions

S1(Λ, ψ) = ∂Q

∂Λ = n

ψ

∂

∂Λ tr
{
Λβ̂Sx̄

}
− n

2ψ
∂

∂Λ tr
{
Λ′ΛΘ

}
= n

ψ
S′x̄β̂

′
− n

2ψ
(
2ΛΘ

)
= n

ψ

(
Sx̄β̂

′
−ΛΘ

)
,
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and

S2(Λ, ψ) = ∂Q

∂ψ−1

= npψ

2 − n

2 tr
{
Sx̄
}

+ n tr
{
Λβ̂Sx̄

}
− n

2 tr
{
Λ′ΛΘ

}
= n

2

(
pψ − tr

{
Sx̄ − 2Λβ̂Sx̄ + Λ′ΛΘ

})
.

Solving the equations S1(Λ̂new, ψ̂new) = 0 and S2(Λ̂new, ψ̂new) = 0
gives

Λ̂new = Sx̄β̂
′
Θ−1,

ψ̂new = 1
p
tr
{
Sx̄ − 2Λ̂newβ̂Sx̄ + (Λ̂new)′Λ̂newΘ

}
= 1
p
tr
{
Sx̄ − 2Λ̂newβ̂Sx̄ + (Sx̄β̂

′
Θ−1)′Λ̂newΘ

}
= 1
p
tr{Sx̄ − Λ̂newβ̂Sx̄

}
.

The matrix results used to compute these score functions, and
used elsewhere in this section, are listed in Appendix C.

6.4.4 Woodbury Identity

On each iteration of the EM algorithm for PPCA, the p × p ma-
trix (Λ̂Λ̂′+ ψ̂Ip)−1 needs to be computed. Computing this matrix
inverse can be computationally expensive, especially for larger val-
ues of p. The Woodbury identity (Woodbury, 1950) can be used in
such situations to avoid inversion of non-diagonal p × p matrices.
For an m ×m matrix A, an m × k matrix U, a k × k matrix C,
and a k ×m matrix V, the Woodbury identity is

(A + UCV)−1 = A−1 −A−1U(C−1 + VA−1U)−1VA−1.

Setting U = Λ̂, V = Λ̂′, A = ψ̂Ip, and C = Iq gives

(ψ̂Ip + Λ̂Λ̂′)−1 = 1
ψ̂

Ip −
1
ψ̂

Λ
(

Iq + 1
ψ̂

Λ′Λ
)−1

Λ′ 1
ψ̂

= 1
ψ̂

Ip −
1
ψ̂

Λ
(
ψ̂Iq + Λ′Λ

)−1
Λ′,

(6.13)

which can be used to speed up the EM algorithm for the PPCA
model. The left-hand side of (6.13) requires inversion of a p × p
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matrix but the right-hand side leaves only a q × q matrix and
some diagonal matrices to be inverted. A related identity for the
determinant of the covariance matrix,

|Λ̂Λ̂′ + ψ̂Ip| =
|ψ̂Ip|

|Iq −Λ′(ΛΛ′ + ψ̂Ip)−1Λ|

= ψ̂p

|Iq −Λ′(ΛΛ′ + ψ̂Ip)−1Λ|
,

(6.14)

is also helpful in computation of the component densities. Identi-
ties (6.13) and (6.14) give an especially significant computational
advantage when p is large and q � p.

6.4.5 Initialization

Similar to McNicholas and Murphy (2008), the parameters Λ̂
and ψ̂ can be initialized in several ways, including via eigen-
decomposition of Sx̄. Specifically, Sx̄ is computed and then it is
eigen-decomposed to give

Sx̄ = PDP−1,

and Λ̂ is initialized using

Λ̂ = dP,

where d is the element-wise square root of the diagonal of D. The
initial value of ψ can be taken to be

ψ̂ = 1
p
tr{Sx̄ − (dP)(dP)′}.

6.4.6 Stopping Rule

There are several options for stopping an EM algorithm. One pop-
ular approach is to stop an EM algorithm based on lack of progress
in the log-likelihood, i.e., stopping the algorithm when

l(k+1) − l(k) < ε, (6.15)

for ε small, where l(k) is the (observed) log-likelihood value from
iteration k. This stopping rule can work very well when the log-
likelihood increases and then plateaus at the maximum likelihood
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estimate. However, likelihood values do not necessarily behave this
way and so it can be worth considering alternatives — see Chap-
ter 2 of McNicholas (2016a) for an illustrated discussion.

As McNicholas (2016a) points out, Böhning et al. (1994), Lind-
say (1995), and McNicholas et al. (2010) consider convergence cri-
teria based on Aitken’s acceleration Aitken (1926). Aitken’s accel-
eration at iteration k is

a(k) = l(k+1) − l(k)

l(k) − l(k−1) , (6.16)

and an asymptotic estimate of the log-likelihood at iteration k+ 1
can be computed via

l(k+1)
∞ = l(k) + l(k+1) − l(k)

1− a(k) . (6.17)

Note that “asymptotic” here refers to the iteration number so that
(6.17) can be interpreted as an estimate, at iteration k + 1, of the
ultimate value of the log-likelihood. Following McNicholas et al.
(2010), the algorithm can be considered to have converged when

0 < l(k+1)
∞ − l(k) < ε. (6.18)

6.4.7 Implementing the EM Algorithm for PPCA

The EM algorithm for PPCA is implemented in two steps. First,
we define some helper functions in the following code block. They
are used by the EM algorithm function. Specifically, we have im-
plemented a function for each of the identities (6.13) and (6.14)
along with functions for each of the equations (6.8) and (6.16).
Doing this helps keep the code modular, which facilitates testing
some of the more complex mathematics in the algorithm.� �
## EM Algorithm for PPCA -- Helper functions

function wbiinv(q, p, psi, L)
## Woodbury Indentity eq 6.13
Lt = transpose(L)
Iq = Matrix{Float64}(I, q, q)
Ip = Matrix{Float64}(I, p, p)
psi2 = /(1, psi)
m1 = *(psi2, Ip)
m2c = +( *(psi, Iq), *(Lt, L) )
m2 = *(psi2, L, inv(m2c), Lt)
return( -(m1, m2) )

end
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function wbidet(q, p, psi, L)
## Woodbury Indentity eq 6.14
Iq = Matrix{Float64}(I, q, q)
num = psiˆp
den1 = *(transpose(L), wbiinv(q, p, psi, L), L)
den = det(-(Iq, den1))
return( /(num, den) )

end

function ppca_ll(n, q, p, psi, L, S)
## log likelihood eq 6.8
n2 = /(n, 2)
c = /( *(n, p, log(*(2, pi))), 2)
l1 = *(n2, log(wbidet(q, p, psi, L)))
l2 = *(n2, tr(*(S, wbiinv(q, p, psi, L))))
return( *(-1, +(c, l1, l2)) )

end

function cov_mat(X)
n,p = size(X)
mux = mean(X, dims = 1)
X_c = .-(X, mux)
res = *( /(1,n), *(transpose(X_c), X_c))
return(res)

end

function aitkenaccel(l1, l2, l3, tol)
## l1 = l(k+1), l2 = l(k), l3 = l(k-1)
conv = false
num = -(l1, l2)
den = -(l2, l3)
## eq 6.16
ak = /(num, den)
if ak <= 1.0

c1 = -(l1, l2)
c2 = -(1.0, ak)
## eq 6.17
l_inf = +(l2, /(c2, c1))
c3 = -(l_inf, l2)
if 0.0 < c3 < tol

conv = true
end

end
return conv

end

function ppca_fparams(p, q)
## number of free parameters in the ppca model
c1 = *(p, q)
c2 = *(-1, q, -(q, 1), 0.5)
return( +(c1, c2, 1) )

end

function BiC(ll, n, q, ρ)
## name does not conflict with StatsBase
## eq 6.19
c1 = *(2, ll)
c2 = *(ρ, log(n))
return( -(c1, c2) )

end� �
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The ppca() function, illustrated in the following code block,
carries out the EM algorithm described previously. It uses the
eigen-decomposition of the sample covariance matrix to initialize
Λ, which is used in turn to initialize ψ. A while loop is used to
iteratively perform the (post-) E-step updates for β and Θ as well
as the M-step updates of Λ and ψ. After the M-step, the log-
likelihood is calculated and its value is stored in an array. The
values in the array are used to calculate the Aitken acceleration to
check convergence. The Woodbury identity is used to speed up the
beta updates and the log-likelihood computations. The function
returns a Julia dictionary with the PPCA results. The results in-
clude the number of iterations the EM algorithm ran, the array of
log-likelihoods, the model parameters, the number of latent com-
ponents q, the standard deviations from the eigen-decomposition,
the orthonormal coefficients, and the projections of the data onto
the latent space.� �

using LinearAlgebra, Random
Random.seed!(429)
include("chp6_ppca_functions.jl")

## EM Function for PPCA
function ppca(X; q = 2, thresh = 1e-5, maxit = 1e5)

Iq = Matrix{Float64}(I, q, q)
qI = *(q, Iq)
n,p = size(X)
## eigfact has eval/evec smallest to largest
ind = p:-1:(p-q+1)
Sx = cov_mat(X)
D = eigen(Sx)
d = diagm(0 => map(sqrt, D.values[ind]))
P = D.vectors[:, ind]

## initialize parameters
L = *(P, d) ## pxq
psi = *( /(1, p), tr( -( Sx, *(L, transpose(L)) ) ) )
B = zeros(q,p)
T = zeros(q,q)
conv = true
iter = 1
ll = zeros(100)
ll[1] = 1e4

## while not converged
while(conv)
## above eq 6.12
B = *(transpose(L), wbiinv(q, p, psi, L)) ## qxp
T = -(qI, +( *(B,L), *(B, Sx, transpose(B)) ) ) ## qxq
## sec 6.4.3 - update Lambda_new
L_new = *(Sx, transpose(B), inv(T)) ## pxq
## update psi_new
psi_new = *( /(1, p), tr( -(Sx, *(L_new, B, Sx) ) )) #num
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iter += 1

if iter > maxit
conv = false
println("ppca() while loop went over maxit parameter. iter =
$iter")

else
## stores at most the 100 most recent ll values
if iter <= 100
ll[iter]=ppca_ll(n, q, p, psi_new, L_new, Sx)

else
ll = circshift(ll, -1)
ll[100] = ppca_ll(n, q, p, psi_new, L_new, Sx)

end
if 2 < iter < 101

## scales the threshold by the latest ll value
thresh2 = *(-1, ll[iter], thresh)
if aitkenaccel(ll[iter], ll[(iter-1)], ll[(iter-2)], thresh2)
conv = false

end
else
thresh2 = *(-1, ll[100], thresh)
if aitkenaccel(ll[100], ll[(99)], ll[(98)], thresh2)
conv = false

end
end

end ## if maxit
L = L_new
psi = psi_new

end ## while

## orthonormal coefficients
coef = svd(L).U
## projections
proj = *(X, coef)

if iter <= 100
resize!(ll, iter)

end
fp = ppca_fparams(p, q)

bic_res = BiC(ll[end], n, q, fp)

return(Dict(
"iter" => iter,
"ll" => ll,
"beta" => B,
"theta" => T,
"lambda" => L,
"psi" => psi,
"q" => q,
"sd" => diag(d),
"coef" => coef,
"proj" => proj,
"bic" => bic_res

))
end

ppca1 = ppca(crab_mat_c, q=3, maxit = 1e3)� �
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It should be noted that the Λ matrix is neither orthonormal
nor composed of eigenvectors (Tipping and Bishop, 1999b). To get
orthonormal principal components from it, a singular value decom-
position is performed on Λ and the left singular vectors are used as
principal component loadings. The projections are plotted in Fig-
ure 6.3. With three latent components, we see a clear separation
between the crab species.
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Figure 6.3 Scallerplot depicting the second and third principal
components from the PPCA model with three latent compo-
nents for the crabs data, coloured by sex and species.

6.4.8 Comments

The choice of the number of latent components is an important
consideration in PPCA. One approach is to choose the number of
latent components that captures a certain proportion of the varia-
tion in the data. Lopes and West (2004) carry out simulation stud-
ies showing that the Bayesian information criterion (BIC; Schwarz,
1978) can be effective for selection of the number of latent factors
in a factor analysis model, and a similar approach can be followed
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for PPCA. The BIC is given by
BIC = 2l(ϑ̂)− ρ logn, (6.19)

where ϑ̂ is the maximum likelihood estimate of ϑ, l(ϑ̂) is the maxi-
mized (observed) log-likelihood, and ρ is the number of free param-
eters in the model. The BIC values for PPCA models with different
numbers of latent components run on the crabs data are displayed
in figure 6.4. The clear choice is the model with three latent com-
ponents, which has the largest BIC value based on equation 6.19.
Clearly this model is capturing the important information in the
third principal component, visualized in figure 6.3.
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Figure 6.4 BIC values for the PPCAmodels with different num-
bers of latent components for the crabs data.

The goal of PPCA is not to necessarily give better results than
PCA, but to permit a range of extensions. The probabilistic for-
mulation of the PPCA model allows these extensions, one of which
will be illustrated in Section 6.6. Because the PPCA model has a
likelihood formulation, it can easily be compared to other proba-
bilistic models, it may be formulated to work with missing data,
and adapted for use as a Bayesian method. Noted that, as ψ → 0,
the PPCA solution converges to the PCA solution (see Tipping
and Bishop, 1999b, for details).
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6.5 K-MEANS CLUSTERING

The k-means clustering technique iteratively finds k cluster centres
and assigns each observation to the nearest cluster centre. For k-
means clustering, these cluster centres are simply the means. The
result of k-means clustering is effectively to fit k circles of equal
radius to data, where each circle centre corresponds to one of the k
means. Of course, for p > 2 dimensions, we have p-spheres rather
than circles. Consider the k-means clustering of the x2 data in the
following code block. Recall that the x2 data is just a mixture of
three bivariate Gaussian distributions (Figure 6.5).

x1

-5 0 5 10

1

2

3

label

-10

-5

0

5

x
2

Figure 6.5 Scallerplot depicting the x2 data, coloured by class.

The x2 data present an interesting example of simulated data
where classes from the generative model, i.e., a three-component
Gaussian mixture model, cannot quite be taken as the correct re-
sult. Specifically, an effective clustering procedure would surely put
one of the green-coloured points in Figure 6.5 in the same cluster
as the yellow points.

In the following code block, the choice of k is made using the
elbow method, where one plots k against the total cost, i.e., the
total within-cluster sum of squares, and chooses the value of k cor-
responding to the “elbow” in the plot. Note that the total within-
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cluster sum of squares is

k∑
g=1

∑
xi∈Cg

(xi − x̄g)2,

where Cg is the gth cluster and x̄g is its mean.� �
using DataFrames, Clustering, Gadfly, Random
Random.seed!(429)

mean_x2 = mean(x2_mat, dims=1)
## mean center the cols
x2_mat_c = x2_mat .- mean_x2
N = size(x2_mat_c)[1]

## kmeans() - each column of X is a sample - requires reshaping x2
x2_mat_t = reshape(x2_mat_c, (2,N))

## Create data for elbow plot
k = 2:8
df_elbow = DataFrame(k = Vector{Int64}(), tot_cost = Vector{Float64}())
for i in k

tmp = [i, kmeans(x2_mat_t, i; maxiter=10, init=:kmpp).totalcost ]
push!(df_elbow, tmp)

end

## create elbow plot
p_km_elbow = plot(df_elbow, x = :k, y = :tot_cost, Geom.point, Geom.line,
Guide.xlabel("k"), Guide.ylabel("Total Within Cluster SS"),
Coord.Cartesian(xmin = 1.95), Guide.xticks(ticks = collect(2:8)))� �
From Figure 6.6, it is clear that the elbow occurs at k = 3. The

performance of k-means clustering on this data is not particularly
good (Figure 6.7), which is not surprising. The reason this result is
not surprising is that, as mentioned before, k-means clustering will
essentially fit k circles — for the x2 data, two of the three clusters
are long ellipses.

It is of interest to consider the solution for k = 2 (Figure 6.8)
because it further illustrates the reliance of k-means clustering on
clusters that are approximately circles. An example where k-means
should, and does, work well is shown in Figure 6.9, where the clus-
ters are well described by fitted circles of equal radius. It is also
worth noting that k-means clustering works well for trivial cluster-
ing problems where there is significant spatial separation between
each cluster, regardless of the cluster shapes.
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Figure 6.6 Elbow plot for selecting k in the k-means clustering
of the x2 data.
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Figure 6.7 Scallerplot depicting the x2 data, coloured by the
k-means clustering solution for k = 3, with red stars marking
the cluster means.
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Figure 6.8 Scallerplot depicting the x2 data, coloured by the
k-means clustering solution for k = 2, with red stars marking
the cluster means.

6.6 MIXTURE OF PROBABILISTIC PRINCIPAL COM-
PONENTS ANALYZERS

6.6.1 Model

Building on the PPCA model, Tipping and Bishop (1999a) intro-
duced the the mixture of probabilistic principal components an-
alyzers (MPPCA) model. It can model complex structures in a
dataset using a combination of local PPCA models. As PPCA pro-
vides a reduced dimensional representation of the data, MPPCA
models work well in high-dimensional clustering, density estima-
tion and classification problems.

Analogous to the PPCA model (Section 6.3), the MPPCA
model assumes that

Xi = µg + ΛgUig + εig (6.20)

with probability πg, for i = 1, . . . , n and g = 1, . . . , G, where Λg is a
p×q matrix of loadings, the Uig are independently N(0, Iq) and are
independent of the εig, which are independently N(0, ψgIp), where
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Figure 6.9 Scallerplot depicting a dataset where k-means works
well, coloured by the k-means clustering solution for k = 3,
with red stars marking the cluster means.

ψg ∈ R+. It follows that the density of Xi from the MPPCA model
is

f(xi | ϑ) =
G∑
g=1

πgφ(xi | µg,ΛgΛ′g + ψgIp), (6.21)

where ϑ denotes the model parameters.

6.6.2 Parameter Estimation

Overview

Parameter estimation for the MPPCA model can be carried out us-
ing an alternating expectation-conditional maximization (AECM)
algorithm (Meng and van Dyk, 1997). The expectation-conditional
maximization (ECM) algorithm (Meng and Rubin, 1993) is a vari-
ant of the EM algorithm that replaces the M-step by a series of
conditional maximization steps. The AECM algorithm allows a
different specification of complete-data for each conditional max-
imization step. Accordingly, the AECM algorithm is suitable for



Unsupervised Learning � 153

the MPPCA model, where there are two sources of missing data:
the unknown component membership labels and the latent com-
ponents (or factors) uig, for i = 1, . . . , n and g = 1, . . . , G. Details
of fitting the AECM algorithm for the more general mixture of
factor analyzers model are given by McLachlan and Peel (2000),
and parameter estimation for several related models is discussed
by McNicholas and Murphy (2008, 2010) and McNicholas et al.
(2010).

AECM Algorithm: First Stage

As usual, denote by z1, . . . , zn the unobserved component member-
ship labels, where zig = 1 if observation i belongs to component g
and zig = 0 otherwise. At the first stage of the AECM algorithm,
the complete-data are taken to be the observed x1, . . . ,xn together
with the unobserved z1, . . . , zn, and the parameters πg and µg are
estimated, for g = 1, . . . , G. The complete-data log-likelihood is

l1 =
n∑
i=1

G∑
g=1

zig log
[
πgφ(xi | µg,ΛgΛ′g + ψgIp)

]
, (6.22)

and the (conditional) expected values of the component member-
ship labels are given by

ẑig =
π̂gφ(xi | µ̂g, Λ̂gΛ̂′g + ψ̂gIp)∑G
h=1 π̂hφ(xi | µ̂h, Λ̂hΛ̂′h + ψ̂hIp)

, (6.23)

for i = 1, . . . , n and g = 1, . . . , G.
Using the expected values given by (6.23) within (6.22), the

expected value of the complete-data log-likelihood at the first stage
is

Q1 =
n∑
i=1

G∑
g=1

ẑig
[
log πg + log φ(xi | µg,ΛgΛ′g + ψgIp)

]
=

G∑
g=1

ng log πg −
np

2 log 2π −
G∑
g=1

ng
2 log |ΛgΛ′g + ψgIp|

−
G∑
g=1

ng
2 tr

{
Sg(ΛgΛ′g + ψgIp)−1} ,
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where ng =
∑n
i=1 ẑig and

Sg = 1
ng

n∑
i=1

ẑig(xi − µg)(xi − µg)′. (6.24)

Maximising Q1 with respect to πg and µg yields

π̂g = ng
n

and µ̂g =
∑n
i=1 ẑigxi∑n
i=1 ẑig

, (6.25)

respectively.

AECM Algorithm: Second Stage

At the second stage of the AECM algorithm, the complete-data are
taken to be the observed x1, . . . ,xn together with the unobserved
component membership labels z1, . . . , zn and the latent factors uig,
for i = 1, . . . , n and g = 1, . . . , G, and the parameters Λg and ψg
are estimated, for g = 1, . . . , G. Proceeding in an analogous fashion
to the EM algorithm for the factor analysis model (Section 6.4),
the complete-data log-likelihood is given by

l2 =
n∑
i=1

G∑
g=1

ẑig [log πg + log f(xi|ui) + log f(ui)]

= C +
G∑
g=1

[
− ngp

2 logψg −
ng
2ψg

tr {Sg}

+ 1
ψg

n∑
i=1

zig(xi − µg)′Λgui −
1

2ψg
tr
{

Λ′gΛg

n∑
i=1

ziguiu′i

}]
,

where C is constant with respect to Λg and Ψg. Bearing in mind
that we are conditioning on the current parameter estimates, and
using expected values analogous to those in (6.10) and (6.11), the
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expected value of the complete-data log-likelihood can be written

Q2 = C +
G∑
g=1

[
− ngp

2 logψg −
ng
2ψg

tr {Sg}

+ 1
ψg

n∑
i=1

ẑig(xi − µ̂g)′ΛgE[Uig | xi, zig = 1]

− 1
2ψg

tr
{

Λ′gΛg

n∑
i=1

ẑigE[UigU′ig | xi, zig = 1]
}]

= C + 1
2

G∑
g=1

ng
[
− p logψg −

1
ψg

tr
{
Sg
}

+ 2
ψg

tr
{
Λgβ̂gSg

}
− 1
ψg

tr
{
Λ′gΛgΘg

}]
,

where
β̂g = Λ̂′g(Λ̂gΛ̂′g + ψ̂gIp)−1

is a q × p matrix and

Θg = Iq − β̂gΛ̂g + β̂gSgβ̂
′
g

is a symmetric q × q matrix. Note that µ̂g replaces µg in Sg, see
(6.24).

Differentiating Q2(Λ,Ψ) with respect to Λg and ψ−1
g , respec-

tively, gives the score functions

S1(Λg, ψg) = ∂Q2

∂Λg
= ng
ψg

∂

∂Λg
tr
{
Λgβ̂gSg

}
− ng

2ψg
∂

∂Λg
tr
{
Λ′gΛgΘg

}
= ng
ψg

S′gβ̂
′
g −

ng
2ψg

(
2ΛgΘg

)
= ng
ψg

(
Sgβ̂

′
g −ΛgΘg

)
,

and

S2(Λg, ψg) = ∂Q

∂ψ−1
g

= ngpψg
2 − ng

2 tr
{
Sg
}

+ ng tr
{
Λgβ̂gSg

}
− ng

2 tr
{
Λ′gΛgΘg

}
= ng

2

(
pψg − tr

{
Sg − 2Λgβ̂gSg + Λ′gΛgΘg

})
.
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Solving the equations S1(Λ̂new
g , ψ̂new

g ) = 0 and S2(Λ̂new
g , ψ̂new

g ) = 0
gives

Λ̂new
g = Sgβ̂

′
gΘ−1

g ,

ψ̂new
g = 1

p
tr
{
Sg − 2Λ̂new

g β̂gSg + (Λ̂new
g )′Λ̂new

g Θg

}
= 1
p
tr
{
Sg − 2Λ̂new

g β̂gSg + (Sgβ̂
′
gΘ−1

g )′Λ̂new
g Θg

}
= 1
p
tr{Sg − Λ̂new

g β̂gSg
}
.

The matrix results used to compute these score functions, and
used elsewhere in this section, are listed in Appendix C.

AECM Algorithm for the MPPCA Model

An AECM algorithm for the MPPCA model can now be presented.

AECM Algorithm for MPPCA
initialize ẑig
initialize π̂g, µ̂g,Sg, Λ̂g, ψ̂g
while convergence criterion not met

update π̂g, µ̂g
if not iteration 1

update ẑig
end
compute Sg, β̂g, Θg

update Λ̂new
g , ψ̂new

g

update ẑig
check convergence criterion
Λ̂g ← Λ̂new

g , ψ̂g ← ψ̂new
g

end

In the following code block, we define some helper functions for
the MPPCA model.� �
## MPPCA helper functions
using LinearAlgebra

function sigmaG(mu, xmat, Z)
res = Dict{Int, Array}()
N,g = size(Z)
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c1 = ./(1, sum(Z, dims = 1))
for i = 1:g

xmu = .-(xmat, transpose(mu[:,i]))
zxmu = .*(Z[:,i], xmu)
res_g = *(c1[i], *(transpose(zxmu), zxmu))
push!(res, i=>res_g)

end
return res

end

function muG(g, xmat, Z)
N, p = size(xmat)
mu = zeros(p, g)
for i in 1:g

num = sum(.*(Z[:,i], xmat), dims = 1)
den = sum(Z[:, i])
mu[:, i] = /(num, den)

end
return mu

end

## initializations
function init_LambdaG(q, g, Sx)

res = Dict{Int, Array}()
for i = 1:g

p = size(Sx[i], 1)
ind = p:-1:(p-q+1)
D = eigen(Sx[i])
d = diagm(0 => map(sqrt, D.values[ind]))
P = D.vectors[:, ind]
L = *(P,d)
push!(res, i => L)

end
return res

end

function init_psi(g, Sx, L)
res = Dict{Int, Float64}()
for i = 1:g

p = size(Sx[i], 1)
psi = *(/(1, p), tr(-(Sx[i], *(L[i], transpose(L[i])))))
push!(res, i=>psi)

end
return res

end

function init_dict0(g, r, c)
res = Dict{Int, Array}()
for i = 1:g

push!(res, i=> zeros(r, c))
end
return res

end

## Updates
function update_B(q, p, psig, Lg)

res = Dict{Int, Array}()
g = length(psig)
for i=1:g

B = *(transpose(Lg[i]), wbiinv(q, p, psig[i], Lg[i]))
push!(res, i=>B)

end
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return res
end

function update_T(q, Bg, Lg, Sg)
res = Dict{Int, Array}()
Iq = Matrix{Float64}(I, q, q)
qI = *(q, Iq)
g = length(Bg)
for i =1:g

T = -(qI, +(*(Bg[i], Lg[i]), *(Bg[i], Sg[i], transpose(Bg[i]))))
push!(res, i=>T)

end
return res

end

function update_L(Sg, Bg, Tg)
res = Dict{Int, Array}()
g = length(Bg)
for i = 1:g

L = *(Sg[i], transpose(Bg[i]), inv(Tg[i]))
push!(res, i=>L)

end
return res

end

function update_psi(p, Sg, Lg, Bg)
res = Dict{Int, Float64}()
g = length(Bg)
for i = 1:g

psi = *( /(1, p), tr( -(Sg[i], *(Lg[i], Bg[i], Sg[i]) ) ) )
push!(res, i=>psi)

end
return res

end

function update_zmat(xmat, mug, Lg, psig, pig)
N,p = size(xmat)
g = length(Lg)
res = Matrix{Float64}(undef, N, g)
Ip = Matrix{Float64}(I, p, p)
for i = 1:g

pI = *(psig[i], Ip)
mu = mug[:, i]
cov = +( *( Lg[i], transpose(Lg[i]) ), pI)
pi_den = *(pig[i], pdf(MvNormal(mu, cov), transpose(xmat)))
res[:,i] = pi_den

end
return ./(res, sum(res, dims = 2))

end

function mapz(Z)
N,g = size(Z)
res = Vector{Int}(undef, N)
for i = 1:N

res[i] = findmax(Z[i,:])[2]
end
return res

end

function mppca_ll(N, p, pig, q, psig, Lg, Sg)
g = length(Lg)
l1,l2,l3 = (0,0,0)
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c1 = /(N,2)
c2 = *(-1, c1, p, g, log( *(2,pi) ))
for i = 1:g

l1 += log(pig[i])
l2 += log(wbidet(q, p, psig[i], Lg[i]))
l3 += tr(*(Sg[i], wbiinv(q, p, psig[i], Lg[i])))

end
l1b = *(N, l1)
l2b = *(-1, c1, l2)
l3b = *(-1, c1, l3)
return(+(c2, l1b, l2b, l3b))

end

function mppca_fparams(p, q, g)
## number of free parameters in the ppca model
c1 = *(p, q)
c2 = *(-1, q, -(q, 1), 0.5)
return(+( *( +(c1, c2), g), g))

end

function mppca_proj(X, G, map, L)
res = Dict{Int, Array}()
for i in 1:G

coef = svd(L[i]).U
sel = map .== i
proj = *(X[sel, :], coef)
push!(res, i=>proj)

end
return(res)

end� �
Having created helper functions in the previous code block,

an AECM algorithm for the MPPCA model is implemented in
the following code block. The values of ẑig can be initialized in
a number of ways, e.g., randomly or using the results of k-means
clustering.� �

using Clustering
include("chp6_ppca_functions.jl")
include("chp6_mixppca_functions.jl")

## MPPCA function
function mixppca(X; q = 2, G = 2, thresh = 1e-5, maxit = 1e5, init = 1))

## initializations
N, p = size(X)
## z_ig
if init == 1
## random
zmat = rand(Uniform(0,1), N, G)
## row sum to 1
zmat = ./(zmat, sum(zmat, dims = 2))

elseif init == 2
# k-means
kma = kmeans(permutedims(X), G; init=:rand).assignments
zmat = zeros(N,G)
for i in 1:N
zmat[i, kma[i]] = 1
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end
end
n_g = sum(zmat, dims = 1)
pi_g = /(n_g, N)
mu_g = muG(G, X, zmat)
S_g = sigmaG(mu_g, X, zmat)
L_g = init_LambdaG(q, G, S_g)
psi_g = init_psi(G, S_g, L_g)
B_g = init_dict0(G, q, p)
T_g = init_dict0(G, q, q)

conv = true
iter = 1
ll = zeros(100)
ll[1] = 1e4

# while not converged
while(conv)

## update pi_g and mu_g
n_g = sum(zmat, dims = 1)
pi_g = /(n_g, N)
mu_g = muG(G, X, zmat)
if iter > 1
## update z_ig
zmat = update_zmat(X, mu_g, L_g, psi_g, pi_g)

end
## compute S_g, Beta_g, Theta_g
S_g = sigmaG(mu_g, X, zmat)
B_g = update_B(q, p, psi_g, L_g)
T_g = update_T(q, B_g, L_g, S_g)

## update Lambda_g psi_g
L_g_new = update_L(S_g, B_g, T_g)
psi_g_new = update_psi(p, S_g, L_g, B_g)
## update z_ig
zmat = update_zmat(X, mu_g, L_g_new, psi_g_new, pi_g)

iter += 1

if iter > maxit
conv = false
println("mixppca() while loop went past maxit parameter. iter =
$iter")

else
## stores at most the 100 most recent ll values
if iter <= 100

ll[iter] = mppca_ll(N, p, n_g, pi_g, q, psi_g, L_g, S_g)
else

ll = circshift(ll, -1)
ll[100] = mppca_ll(N, p, n_g, pi_g, q, psi_g, L_g, S_g)

end
if 2 < iter < 101
## scales the threshold by the latest ll value
thresh2 = *(-1, ll[iter], thresh)
if aitkenaccel(ll[iter], ll[(iter-1)], ll[(iter-2)], thresh2)

conv = false
end

else
thresh2 = *(-1, ll[100], thresh)
if aitkenaccel(ll[100], ll[(99)], ll[(98)], thresh2)

conv = false
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end
end

end ## if maxit
L_g = L_g_new
psi_g = psi_g_new

end ## while

map_res = mapz(zmat)
proj_res = mppca_proj(X, G, map_res, L_g)

if iter <= 100
resize!(ll, iter)

end
fp = mppca_fparams(p, q, G)

bic_res = BiC(ll[end], N, q, fp)

return Dict(
"iter" => iter,
"ll" => ll,
"beta" => B_g,
"theta" => T_g,
"lambda" => L_g,
"psi" => psi_g,
"q" => q,
"G" => G,
"map" => map_res,
"zmat" => zmat,
"proj" => proj_res,
"bic" => bic_res

)
end

mixppca_12k = mixppca(cof_mat_c, q=1, G=2, maxit = 1e6, thresh = 1e-3,
init=2)� �

Predicted Classifications

Predicted classifications are given by the values of (6.23) after the
AECM algorithm has converged. These predicted classifications
are inherently soft, i.e., ẑig ∈ [0, 1]; however, in many practical ap-
plications, they are hardened by computing maximum a posteriori
(MAP) classifications:

MAP{ẑig} =
{

1 if g = arg maxh{ẑih},
0 otherwise.

6.6.3 Illustrative Example: Coffee Data

The MPPCA model is applied to the coffee data, using the code
in the previous block. Models are initialized with k-means clus-
tering and run for G = 2, 3, 4 and q = 1, 2, 3. Using the BIC, we
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choose a model with G = 2 groups (i.e., mixture components) and
q = 1 latent component (Figure 6.10). This model correctly classi-
fies all of the coffees into their respective varieties, i.e., the MAP
classifications exactly match the varieties.

Number of Latent Components

1 2 3

2

3

4

Groups

-6.0×10³

-5.0×10³

-4.0×10³

-3.0×10³

-2.0×10³

B
IC

Figure 6.10 BIC values for the MPPCA models with different
numbers of groups and latent components for the coffee data.

6.7 COMMENTS

Analogous to our comments in Section 5.8, it is worth emphasiz-
ing that only selected unsupervised learning techniques have been
covered, along with Julia code needed for implementation. Just as
Chapter 5 cannot be considered a thorough introduction to super-
vised learning, the present chapter cannot be considered a thorough
introduction to unsupervised learning. However, the Julia code cov-
ered herein should prove most instructive. Furthermore, it is worth
noting that two further unsupervised learning approaches — one of
which can be considered an extension of MPPCA — are discussed
in Chapter 7.

Two techniques for clustering, or unsupervised learning, have
been considered herein. While there are a host of clustering tech-
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niques available (see, e.g., Everitt et al., 2011), the authors of the
present monograph have a preference for mixture model-based ap-
proaches and a wide range of such approaches are available (see
McNicholas, 2016a,b, for many examples). In the PPCA example,
the BIC was used to select q and, when using mixtures thereof, the
BIC was used to select both G and q. For completeness, it is worth
noting that the BIC is a popular tool for mixture model selection
in general (see McNicholas, 2016a, Section 2.4, for further details).
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C H A P T E R 7

R Interoperability

THE PRIMARY purpose of this chapter is to illustrate the
interoperability between R and Julia. Considering the wide

range of contributed libraries available for R, the ease with which R
can be called from Julia is a significant advantage. After the basics
are covered, two case studies are used for illustration. The first,
using the coffee data, also introduces two unsupervised learning
approaches: one that can be viewed in the context of a general-
ization of the MPPCA model and another that performs simulta-
neous dimension reduction and clustering. The second, using the
food data, illustrates random forests, a tree ensemble method that
can be regarded as an alternative to boosting.

7.1 ACCESSING R DATASETS

The RDatasets.jl package provides access to some of the most
commonly used R datasets. At the time of writing, there are 733 R
datasets available, coming from base R and some of the most pop-
ular R packages. The RDatasets.jl package can be thought of as
a port of the Rdatasets package in R. The RDatasets.jl pack-
age contains the RDatasets.datasets() function, which returns
a Julia DataFrame object listing the package, dataset, dataset title
and the number of rows and columns in the dataset. The columns
can be searched to find the package or dataset we are interested
in.� �

using RDatasets

## look for crabs in available datasets
rds = RDatasets.datasets()

165
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filter(x -> occursin("crab", x[:Dataset]), rds)

crabs = dataset("MASS", "crabs")
print(crabs[1:5, :])� �
The RData.jl package allows users to read .Rdata and .rda

files into Julia. While not all R types can (currently) be converted
into Julia types, the major R types are well supported at present
(Table 7.1).

TABLE 7.1 Major R types and their
Julia equivalent.

R Julia
vector VectorType
factor CategoricalArray
data.frame DataFrame

The RData.jl package uses the load() function to read in R
data files. The load() function returns a Julia dictionary of the
form Dict{String, Any}, where the key is the R dataset name and
the value is the Julia DataFrame representing the R data. Users can
read in .Rdata and .rda files they have created or accessed from
their favourite R packages and read them into Julia. In the below
example, we read in the wine and coffee datasets from the pgmm
package in R and convert them into Julia DataFrame objects.� �

using RData

# Read in wine data (in two steps)
wine = RData.load("wine.rda")
wine_df = wine["wine"]
println("wine_df: ", typeof(wine_df))

# Read in coffee data (in two steps)
coffee_df = RData.load("coffee.rda")["coffee"]
print("coffee_df[1:5,:]:\n", coffee_df[1:5,:])� �

7.2 INTERACTING WITH R

The RCall.jl package allows Julia users to interact directly with
R packages. The RCall.jl package is written in Julia making it
very easy to use. Upon installation, it checks for an existing R
installation and, if one does not exist, it will install the version
of R distributed by anaconda (anaconda.org/r/r-base). After

http://anaconda.org
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updating a system’s R environment, it is recommended to rebuild
the RCall package so it picks up the updated version of R.� �
## Julia 0.6.x
Pkg.build("RCall")

## Julia 1.0.x
] build RCall� �
There are four ways to use RCall to interact with the R instal-

lation:

1. R REPL mode.

2. The @rput and @rget macros.

3. The R" " string macro.

4. RCall API: recal(), rcall(), rcopy().

Methods 1 and 2 above allow the user to interact with the R session
from the REPL environment. Herein, we will focus on methods 3
and 4 because they work well inside larger Julia programs and we
find that they have productivity advantages for a practicing data
scientist.

RCall package uses $ for variable substitution, i.e., it sends the
Julia object prepended with $ to the R environment for evaluation.
In the following code block, R"chisq.test($x)" sends the Julia
object x to R. Then R will run a chi-square test on x (as if it were a
contingency table with one row) and return the result to the Julia
environment. The result returned to Julia is of type RObject, which
is a Julia wrapper for the R object.� �

using RCall

# Perform a Chi squared test using R fundtion chisq.test()
x = Int[10,39,50,24]
R"chisq.test($x)"

# RObject{VecSxp}
#
# Chi-squared test for given probabilities
#
# data: `#JL`$x
# X-squared = 29.748, df = 3, p-value = 1.559e-06� �
Some caution is required when using RCall. For example, if

the expression representing the substitution is a valid R command
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or syntax, the results can be unexpected. Consider the following
code block. In the first example, the Julia array index is actually a
column in the crabs dataset, and the submitted command returns
the data in the index column of the R dataset. The second example,
however, is evaluated as expected in R, i.e., the rows of the crabs
dataframe corresponding to the integers in the index array are
returned.� �
## Here, the Julia variable is not used
## The data in the index field is returned
index = [1,2,5]
print(R"MASS::crabs$index")
# RCall.RObject{RCall.IntSxp}
# [1] 1 2 3 4 ..

## Here, the Julia variable is used
R"MASS::crabs[$index, ]"
# RCall.RObject{RCall.VecSxp}
# sp sex index FL RW CL CW BD
# 1 B M 1 8.1 6.7 16.1 19.0 7.0
# 2 B M 2 8.8 7.7 18.1 20.8 7.4
# 5 B M 5 9.8 8.0 20.3 23.0 8.2� �
An alternative is to use the string macro, which allows large

blocks of code to be submitted to R when they are enclosed in triple
quotes, i.e., """ ... """. Consider the following code block, which
simulates data for a logistic regression in Julia. This code uses the
Distributions.jl package to generate random numbers from a
Bernoulli distribution, where the probabilities for the Bernoulli
distribution come from applying the inv-logit function to the
linear function lf. Note that the logit of p ∈ (0, 1) is given by

logit(p) = log
(

p

1− p

)
,

and the inverse-logit, or logistic function, of q ∈ R is

logit−1(q) = 1
1 + exp{−q} .

The logit has an important interpretation in statistics and data
science: if an event E has probability p, then

log odds(E) = logit(p).

Returning to the following code block, notice that the variables
x1, x2 and y are sent to R. In R, these three variables, along with a
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third predictor variable, are made into a dataframe. The dataframe
is then used as input to the glm() function in R, which performs
a logistic regression. The results of the logistic regression are then
returned to Julia. The results are as one would expect: x1 and
x2 have significant regression coefficients because of their relation-
ship to the binary outcome through the linear predictor, but x3
is not related to the outcome — it is generated as noise from a
normal distribution — and does not have a statistically significant
relationship to the outcome.� �

using RCall, Distributions, StatsBase, Random
Random.seed!(636)

# Simulate data for logistic regression
N = 1000
x1 = randn(N)
x2 = randn(N)
x0 = fill(1.0, N)

# A linear function of x1 and x2
lf = x0 + 0.5*x1 + 2*x2

# The inv-logit function of lf
prob = 1 ./ ( x0+ exp.(-lf))

# Generate y
y = zeros(Int64, N)
for i = 1:N
y[i] = rand(Binomial(1, prob[i]), 1)[1]

end

# Run code in R
# Note that x3 is generated in R (randomly from a normal distribution) but
# x1 and x2 are sent from Julia to R
R"""
set.seed(39)
n <- length($x1)
df <- data.frame(x.1 = $x1, x.2 = $x2, y = $y, x.3 = rnorm(n))
fit1 <- glm(y ~ x.1 + x.2 + x.3, data = df, family = "binomial")
summary(fit1)
"""
# Coefficients:
# Estimate Std. Error z value Pr(>|z|)
# (Intercept) 0.86586 0.09077 9.540 < 2e-16 ***
# x.1 0.46455 0.08640 5.377 7.57e-08 ***
# x.2 1.86382 0.12481 14.934 < 2e-16 ***
# x.3 0.14940 0.08521 1.753 0.0795 .

# Odds ratios for x1 and x2, respectively
exp(0.46455)
# 1.592
exp(1.86382)
# 6.448� �



170 � Data Science with Julia

The RCall API has three commonly used functions: rcopy(),
reval(), and rcall(). The rcopy() function converts R objects
into Julia objects, and the Julia type for a given R object is deter-
mined by some heuristic criterion. Some conversion examples and
their types are given in the following code block:� �
# Heuristic conversion examples
d1 = rcopy(R"""data.frame(v1 = 1:2, v2=c("Data", "Science"))""")
println("type d1: ", typeof(d1))
# type d1: DataFrames.DataFrame

l1 = rcopy(R"list(2.3, 'red') ")
println("type l1: ", typeof(l1))
# type l1: Array{Any,1}

l2 = rcopy(R"list(v1=2.3, v2='red')")
println("type l2: ", typeof(l2))
# type l2: DataStructures.OrderedDict{Symbol,Any}

# Note that rcopy() will force an exact conversion if the type is
# specified as the first argument
l3 = rcopy(Array{String,1}, R"""c("Data","Science")""")
println("type l3: ", typeof(l3))
# type l3: Array{String,1}� �
The reval() function takes a Julia string as input and eval-

uates the string in the R environment as if it were R code. If
the string is accepted by R as a valid input, reval() returns an
RObject object back to the Julia environment. Note that, if $ is
used in the string representing the R code, it must be Escaped,
i.e., "\$". The rcall() function is used to make R function calls.
If a function call is successfully evaluated in R, then the result
is returned as an RObject. The first argument to rcall() is the
function being called and it is specified as a Julia symbol type
:R_function_name. Additional arguments to the R function can
be specified after its name; the arguments are separated by com-
mas and they must exist in the Julia environment. The following
code block illustrates the use of reval() and rcall(). Note that
the lm() function in R fits a linear model.� �
# Use reval() to pull the simulated data into Julia
# df is the R dataframe used to produce the glm object fit1
# df contains the data we simulated in Julia and sent to R via the R""
# string macro

df_r = reval("df")

# Then, use rcall() to run the lm() function in R
# note that df_r is in the Julia environment and is being passed back to R
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lm_r = rcall(:lm, "x.1 ~ y", df_r)
# or
lm_r = rcall(:lm, "as.formula('x.1~y')", df_r)

# Rather than using reval() followed by rcopy(), they can be used
# in conjuction
lm_df = rcopy(reval("summary(lm(x.1 ~ y, df))\$coefficients"))

print("typeof(lm_df): $(typeof(lm_df))")
# typeof(lm_df): Array{Float64,2}� �
The rcall() function requires some extra syntax when the user

wishes to pass keyword arguments that have ”.” in their names or
the names of R objects already initialized in the R environment.
The former case is a problem because Julia does not allow "." in
its variable names. The @var_str(str) macro, distributed with
the RCall.jl package was written to remedy this. It allows the
keyword name containing the "." to be passed from Julia to R.
The latter case can be solved by using the Symbol constructor
to create a new symbol from the R object name, allowing the R
function to recognize it as an R object in its environment. The
following code block uses reval() to create a custom R dataframe
in the R environment. The rcall() is required to use the Symbol
constructor to access this new dataframe and the var_str macro
to pass the "scale." keyword to the prcomp() function in R.� �
## create data in R
reval("""data(crabs, package = "MASS")
df.pca <- subset(crabs, select = -c(sp, sex, index))""")

## rcall() using both the var_str macro and Symbol constructor
prcomp_r = rcall(:prcomp, Symbol("df.pca"), center = true,
var"scale." = true)� �

7.3 EXAMPLE: CLUSTERING AND DATA REDUCTION
FOR THE COFFEE DATA

7.3.1 Coffee Data

Recall that the coffee data contain 43 samples of the Arabica and
Robusta species with 12 of the chemical constituents available for
each sample. As mentioned in Section 1.5.3, an interesting feature
of these data is that two variables, fat and caffeine, perfectly sep-
arate the Arabica and Robusta classes. Therefore, it is interesting
to consider whether a clustering technique can be used that re-
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lies heavily on dimension reduction — after all, only two of the 12
variables should be needed.

7.3.2 PGMM Analysis

PGMM Family

Recall the MPPCA model (Section 6.6), where we have a Gaussian
mixture model with covariance matrix Σg = ΛgΛ′g+ψgIp. Around
the same time as the MPPCA model was introduced, Ghahramani
and Hinton (1997) developed a related mixture of factor analyzers
model with Σg = ΛgΛ′g + Ψ. Shortly thereafter, McLachlan and
Peel (2000) introduced a more general mixture of factor analyzers
model with Σg = ΛgΛ′g + Ψg. McNicholas and Murphy (2008) de-
velop a family of eight parsimonious Gaussian mixture models (PG-
MMs) for clustering by imposing, or not, each of the constraints
Λg = Λ, Ψg = Ψ, and Ψg = ψgIp. Members of the PGMM family
have between pq− q(q− 1)/2 + 1 and G[pq− q(q− 1)/2] +Gp free
parameters in the component covariance matrices (see Table 7.2).
Note that the MPPCA model is called the UUC model in the
PGMM family nomenclature (Table 7.2).

Table 7.2 The nomenclature and covariance structure for each
member of the PGMM family of McNicholas and Murphy
(2008), where “C” denotes “constrained”, i.e., the constraint
is imposed, and “U” denotes “unconstrained”, i.e., the con-
straint is not imposed.

Λg = Λ Ψg = Ψ Ψg = ψgIp Σg
C C C ΛΛ′ + ψIp
C C U ΛΛ′ + Ψ
C U C ΛΛ′ + ψgIp
C U U ΛΛ′ + Ψg

U C C ΛgΛ′g + ψIp
U C U ΛgΛ′g + Ψ
U U C ΛgΛ′g + ψgIp
U U U ΛgΛ′g + Ψg

McNicholas and Murphy (2010) further parameterize the mix-
ture of factor analyzers component covariance structure by writing

Ψg = ωg∆g,
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where ωg ∈ R+ and ∆g is a diagonal matrix with |∆g| = 1. The re-
sulting mixture of modified factor analyzers model has component
covariance structure

Σg = ΛgΛ′g + ωg∆g.

In addition to the constraint Λg = Λ, all legitimate combinations
of the constraints ωg = ω, ∆g = ∆, and ∆g = Ip are imposed,
resulting in a family of 12 parsimonious Gaussian mixture models
(Table 7.3). Hereafter, this family will be called the PGMM family.

Table 7.3 The covariance structure and nomenclature for each
member of the PGMM family of McNicholas and Murphy
(2010).

Λg = Λ ∆g = ∆ ωg = ω ∆g = Ip Σg
C C C C ΛΛ′ + ωIp
C C U C ΛΛ′ + ωgIp
U C C C ΛgΛ′g + ωIp
U C U C ΛgΛ′g + ωgIp
C C C U ΛΛ′ + ω∆
C C U U ΛΛ′ + ωg∆
U C C U ΛgΛ′g + ω∆
U C U U ΛgΛ′g + ωg∆
C U C U ΛΛ′ + ω∆g

C U U U ΛΛ′ + ωg∆g

U U C U ΛgΛ′g + ω∆g

U U U U ΛgΛ′g + ωg∆g

Note that eight of the 12 models in Table 7.3 are equivalent
to models in Table 7.2 — the four models with no counterpart in
Table 7.2 are CCUU, UCUU, CUCU, and UUCU. In other words,
the models in Table 7.2 are a subset of those in Table 7.3. The pgmm
package for R implements all 12 PGMM models for model-based
clustering and classification. A key feature of the PGMM family is
that all members haveO(p) covariance parameters, i.e., the number
of covariance parameters is linear in the dimensionality of the data.
Clearly, this is very important in the analysis of high-dimensional
data. However, it is also important in cases where many of the
variables are not contributing, per se, to the model.
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Analysis of Coffee Data

In the following code block, a PGMM analysis of the coffee
dataset is carried out.� �
## Clustering the coffee data with PGMM
using DataFrames, RCall

## make a copy of the Julia coffee dataframe
## remove the Variety and Country columns before clustering
x = deepcopy(coffee_df)
delete!(x, [:Variety, :Country])
println("size(x): $(size(x))")
# size(x): (43, 12)

## Scale cols of x in R
x_scaled = rcall(:scale, x)

## load the pgmm library in R
reval("library(pgmm)")

## Run PGMM using pgmmEM() in R
## Note the parameter values are all defined in the Julia environment
pgmm_r = rcall(:pgmmEM, rG=2:3, rq=1:3, zstart=2, icl=true, x_scaled)

## change the RObject into a Julia dictionary
pgmm_j = rcopy(pgmm_r)
println("\n\ntypeof(pgmm_j): ", typeof(pgmm_j))
# typeof(pgmm_j): OrderedCollections.OrderedDict{Symbol,Any}

## print the dictionary keys
for (k,v) in pgmm_j
println("pgmm_j: key: ", k)

end

##Make an new dataframe for the analysis
df_results = deepcopy(coffee_df[[:Variety, :Fat, :Caffine]])
df_results[:Map] = pgmm_j[:map]
println("names(df_results): $(names(df_results))")
# names(df_results): Symbol[:Variety, :Fat, :Caffine, :Map]

## classification table
ct1 = by(df_results, [:Map, :Variety], nrow)
ct1
# 2x3 DataFrame
# | Row | Map | Variety | x1 |
# | | Float64 | Float64 | Int64 |
# +-----+---------+---------+-------+
# | 1 | 1.0 | 1.0 | 36 |
# | 2 | 2.0 | 2.0 | 7 |� �
The results of this analysis reveal that a q = 1 factor, G = 2

component CCUU model is selected by the BIC. Similar to the
MPPCA analysis (Section 6.6.3), this model obtains perfect clus-
tering on the coffee data.
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7.3.3 VSCC Analysis

VSCC

Andrews and McNicholas (2014) introduce the variable selection
for clustering and classification (VSCC) technique. The goal of
VSCC is to find a subset of variables that simultaneously mini-
mizes the within-group variance and maximizes the between-group
variance. In other words, VSCC finds variables that show separa-
tion between the desired groups. The within-group variance for the
jth variable can be written

Wj = 1
n

G∑
g=1

n∑
i=1

zig(xij − µgj)2,

where xij is the value of the jth variable for the ith observation,
µgj is the mean of the jth variable in the gth component, and n and
zig have the usual meanings. The variance within the jth variable
that is not accounted for by Wj , i.e., σ2

j − Wj , gives an indica-
tion of the variance between groups. In general, calculation of this
residual variance is needed; however, if the data are standardized
to have equal variance across variables, then a variable that min-
imizes the within-group variance will also maximize the leftover
variance. Accordingly, Andrews and McNicholas (2014) describe
the VSCC method in terms of variables that are standardized to
have zero mean and unit variance. The VSCC approach, which
also uses the correlation between variables, is described in detail in
Andrews and McNicholas (2014) and in Chapter 4 of McNicholas
(2016a).

Analysis of Coffee Data

� �
## Clustering and (explicit) variable reduction for the coffee
## data with VSCC

# This builds on the previous code block and we expect certain objects
# to be initialized, such as x_scaled

reval("library(vscc)")

## run vscc on the scaled data in R and copy the results into a Julia
## dictionary
vscc_j = rcopy(rcall(:vscc, x_scaled))

## Array containing the best data columns
## Fat and Free Acid were identified
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vscc_ts = vscc_j[:topselected]

## MAP classifications from the best VSCC model
vscc_map = vscc_j[:bestmodel][:classification]
df_results[:vscc_MAP] = vscc_map

## classification table
ct2 = by(df_results, [:vscc_MAP, :Variety], nrow)
ct2
# 2x3 DataFrame
# | Row | vscc_MAP | Variety | x1 |
# | | Float64 | Float64 | Int64 |
# +-----+----------+---------+-------+
# | 1 | 1.0 | 1.0 | 36 |
# | 2 | 2.0 | 2.0 | 7 |

## updating the analysis dataframe from pgmm with
## the missing variable selected by VSCC
df_results[:Free_Acid] = coffee_df[:Free_Acid]� �
The results reveal that two variables are chosen — free acid and

fat — and the selected G = 2 component model gives perfect clus-
tering performance (Figure 7.1). Although caffeine and fat have
perhaps more commonly been highlighted as separating the vari-
eties of coffee, free acid and fat also separate the classes perfectly
(Figure 7.1).

7.4 EXAMPLE: FOOD DATA

7.4.1 Overview

As an additional illustration of using RCall.jl to interact with R,
we re-analyze the food data. A random forest algorithm is used
to build a supervised learning model to predict student GPA from
the 196 diet and nutrition related predictor variables. The random
forest learner is built using the same training and test data we used
to build the boosting learners in Chapter 5.

7.4.2 Random Forests

Random forests were introduced in Section 5.6. The random forest
algorithm we use here is implemented in the R package ranger
(Wright and Ziegler, 2017). The ranger package is a newer im-
plementation of random forests, optimized for speed and high-
dimensional data. The ranger learner was trained with the help
of the train() function in the caret package (Kuhn, 2017) —
CARET is short for “Classification And REgression Training” and
simplifies building and training predictive learners in R. At the time
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Figure 7.1 Scatterplot of the variables selected by vscc for the
coffee data, coloured by the predicted classes (which are the
same as the true classes).

of this writing, caret gives R users a unified interface to train and
build 238 different predictive learners. Along with these learners,
users can choose from a number of different re-sampling schemes
and can enter custom evaluation metrics, as we did in Chapter 5
when we used MAE to train the boosting learner. The capabilities
of caret are vast and are nicely illustrated by Kuhn and Johnson
(2013).

We start the analysis by submitting the R code contained in
chp7_ranger.R to the R environment. When the code in the file
is run, it starts by loading the caret and ranger packages and
setting the random number seed. It then loads some custom caret
functions and parameter objects into the R environment. We will
use these objects with rcall() and train() to train our random
forest learners. The objects include some custom trainControl list
objects, controlling how the cross-validation will be done. There is
a function to calculate the MAE, a summary function that com-
putes performance metrics across all the training re-samples, and a
dataframe that represents the ranger parameter grid used to train
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the random forest learners. The ranger learners will be trained on
different values of the number of variables to use at each split, the
minimum node size and two different regression split rules.

From here, we load the food training and test data into the
Julia environment. We are required to re-format it so it will pass
through the RCall interface in the correct format for the train()
function. As illustrated in the following code block, each set of data
is separated into predictor and outcome arrays. These arrays are
then converted into Julia dataframes.� �
reval("""source("./chp7_ranger.R")""")

## Prep data for R
## training data
y_tr = convert(Array{Float64}, df_train[:gpa])

sel_var = setdiff(names(df_train), [:gpa])
tmp = convert(Array, df_train[sel_var] )
x_tr =convert(Array{Float64}, collect(Missings.replace(tmp, 0)))
x_tr_df = convert(DataFrame, x_tr)
names!(x_tr_df, sel_var)

## testing data
y_tst = convert(Array{Float64}, df_test[:gpa])

sel_var = setdiff(names(df_test), [:gpa])
tmp = convert(Array, df_test[sel_var] )
x_tst =convert(Array{Float64}, collect(Missings.replace(tmp, 0)))
x_tst_df = convert(DataFrame, x_tst)
names!(x_tst_df, sel_var)� �
The first ranger learner is trained using 5-fold cross-validation.

We grow an ensemble of 1000 trees on 16 different combinations of
the three training parameters. The Julia code is given in the fol-
lowing code block. Because the caret tuneGrid and trControl
objects are already defined in the R environment, we use the
Symbol constructor to pass their names to the R environment.
The ranger() function requires the number of trees to be spec-
ified by the num.trees function argument. To correctly pass this
argument, it must be passed to the @var_str macro. We find it is
more efficient to wrap the rcall() function call directly inside the
rcopy() function. Given that we know train() returns an R list
of results and rcopy() will convert this list to a Julia

DataStructures.OrderedDict{Symbol,Any}

object, we can append the rcopy() function call with the dictio-
nary key corresponding to the train() result we are interested
in.
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� �
## train the ranger model using 5-fold CV and 1000 trees
rf_tr_j1 = rcopy(
rcall(:train, x_tr_df, y_tr , method = "ranger",

trControl = Symbol("trainParam"),
tuneGrid = Symbol("rfParam"),
var"num.trees" = 500)

)[:results]

## add the standard errors for the CV error
## used in the plots
rf_tr_j1[:MedAE_se] = map(x -> x / sqrt(5), rf_tr_j1[:MedAESD])
rf_tr_j1[:MedAE_min] = map(-, rf_tr_j1[:MedAE], rf_tr_j1[:MedAE_se])
rf_tr_j1[:MedAE_max] = map(+, rf_tr_j1[:MedAE], rf_tr_j1[:MedAE_se])

min_medae = minimum(rf_tr_j1[:MedAE])
min_err = filter(row -> row[:MedAE] == min_medae ,rf_tr_j1)

## apply the 1 SE method
one_se = min_err[1, :MedAE_max]
possible_models = filter(row -> row[:MedAE] <= one_se, rf_tr_j1)� �
The 5-fold cross-validation results are illustrated in Figure 7.2.

The horizontal line represents one standard error above the small-
est MAE observed across the 16 learners. These results are ambigu-
ous in terms of which learner parametrization is likely to produce
the best predictions. All but three estimates are below or touching
the horizontal line. Applying the one-standard error method, these
three candidate learner configurations would be excluded. Learn-
ers that could sample from more variables to split their tree nodes
produced the smallest error estimates.

In the hopes of distinguishing a small handful of top perform-
ing parameterizations, we retrain the ranger learner using 10-fold
cross-validation and a 5000-tree ensemble. The additional folds will
tighten up the error bars and further trees could help the accuracy
of the prediction estimates. The Julia code to do this is in the ensu-
ing code block. The new cross-validation specifications are defined
in the trainParam10 object in the R environment.� �
## train the ranger model using 10-fold CV and 5000 trees
rf_tr_j2 = rcopy(
rcall(:train, x_tr_df, y_tr , method = "ranger",

trControl = Symbol("trainParam10"),
tuneGrid = Symbol("rfParam"),
var"num.trees" = 5000)

)[:results]

## add the standard errors for the CV error
## used in the plots
rf_tr_j2[:MedAE_se] = map(x -> x / sqrt(5), rf_tr_j2[:MedAESD])
rf_tr_j2[:MedAE_min] = map(-, rf_tr_j2[:MedAE], rf_tr_j2[:MedAE_se])
rf_tr_j2[:MedAE_max] = map(+, rf_tr_j2[:MedAE], rf_tr_j2[:MedAE_se])
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min_medae = minimum(rf_tr_j2[:MedAE])
min_err = filter(row -> row[:MedAE] == min_medae ,rf_tr_j2)

## apply the 1 SE method
one_se = min_err[1, :MedAE_max]
possible_models = filter(row -> row[:MedAE] <= one_se, rf_tr_j2)� �
The results are displayed in Figure 7.3. The additional cross-

validation folds resulted in tighter error bars but no real separa-
tion in the different learner parameterizations. The dashed line
indicates the cut-off for the one-standard error method. All the
estimates are below the line, making choosing between the learner
configurations more difficult. These results are not unexpected. It is
well known that trying to tune the performance of random forests
learners typically leads to only mild performance improvements
(Kuhn and Johnson, 2013). The results of the default configuration
is given by the right-most variance error bar in Figure 7.3, which
the best performing configuration marginally improves upon. In
our case, the smallest MAE improved from 0.309 to 0.278 but we
are not able to identify a small number of preferred learner con-

Random Forest: Variables Sampled by Split Rule
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Figure 7.2 5-fold cross-validation results for the random forest
learner trained on the food data.
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Random Forest: Parameter Combinations
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Figure 7.3 10-fold cross-validation results for the random forest
learner trained on the food data.

figurations. This is in sharp contrast to the boosting results in
Chapter 5 where, despite using 5-fold cross-validation, we could
select a few combinations of learner parameters that performed
better than the rest.

Given the ambiguous training results, we chose the simplest
learner to predict the test data. This learner has a minimum node
size of 10, making for trees of smaller depth, randomly chooses
15 variables at each split in the trees and uses the extratrees
splitting criteria to build the trees (Geurts et al., 2006). The
extratrees criteria, which is a parameter in ranger, chooses cut-
points from the candidate variables at random. When called indi-
vidually and not through train(), ranger and its predict func-
tion require the predictor and outcome data to be in one dataframe.
We call these Julia dataframes, ranger_tr and ranger_tst, re-
spectively. An empty Julia dataframe is created to store the test
set results. It has a field for each of the three parameters and
the two error metrics. We loop over the parameter settings, using
rcall() and rcopy() to make the R function calls and return the
predictions to the Julia environment. The predictions are used to
calculate the error metrics, MAE and RMSE, which are stored in
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an array along with the learner parameter values associated with
them. This array is then added to the testing result dataframe via
the push!() function.� �
## Test set performance

## ranger predict() needs one DF with outcome and predictors
ranger_tr = deepcopy(x_tr_df)
ranger_tr[:gpa] = y_tr
ranger_tst = deepcopy(x_tst_df)
ranger_tst[:gpa] = y_tst

## empty df to hold results
tst_results = DataFrame(
mtry = Float64[],
min_node_size = Float64[],
splitrule = String[],
medae = Float64[],
rmse = Float64[])

## call ranger and make the predictions
tmp_ranger = rcall(:ranger, "gpa ~ .", data = ranger_tr, mtry= 15,
var"num.trees" = 5000, var"min.node.size" = 10,
splitrule = "extratrees")

tmp_pred = rcopy(rcall(:predict, tmp_ranger, ranger_tst))[:predictions]

## consolidate the results
tmp_array = [15, 10, "extratrees",

medae(tmp_pred, y_tst), rmse(tmp_pred, y_tst)]
push!(tst_results, tmp_array)� �
When evaluated on the test set, the chosen learner produced

an MAE of 0.263 and a RMSE of 0.431. These results are very
competitive with the test set performance we saw from XGBoost
in Chapter 5. It has been shown empirically that the random forest
family of classifiers can outperform other well-known alternatives
over a wide range of datasets (Fernández-Delgado et al., 2014).
Given this, and their ease of training, random forests should be
considered as an option when faced with a supervised learning
problem.

The final step in this analysis is to calculate the variable im-
portance measures on the overall data. We start by making a
dataframe that contains the full dataset. The random forest learner
is run on this data with the help of rcall() and the @var_str
macro. The ranger learner is parameterized with the values iden-
tified using the one standard error method. The call to ranger()
explicitly tells it to calculate the variable importance measures, as
they are computationally expensive and not done by default. These
variable importance measures are calculated using the impurity
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RF:Variable Importance
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Figure 7.4 Random forest variable importance results for the
food data.

variable importance mode in ranger(), which for regression is the
variance of the responses. The code is detailed below and the vari-
able importance results are plotted in Figure 7.4.� �
## Overall data
df_oa = append!(ranger_tr, ranger_tst)

## best test set parameterization
best_ranger_r = rcall(:ranger, "gpa ~ .", data = df_oa, mtry= 15,
var"num.trees" = 5000, var"min.node.size" = 10,
splitrule = "extratrees", importance = "impurity")

## Variable Importance
br_imp_r = rcall(:importance, best_ranger_r)

## rcopy does not preserve the names
br_imp_j = DataFrame(varname = map(x -> string(x), names(br_imp_r)),

vi = rcopy(br_imp_r) )

## sort by variable importance
sort!(br_imp_j, :vi, rev=true)� �
The violin plot on the left-hand side of Figure 7.4 indicates that

the majority of the predictor variables are not important in the
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prediction of students’ GPA. In the context of the y-axis, we can
see that almost all of the predictor variables have importance values
below 0.2, with a median value close to 0 (it is 0.002). The results
advance the idea that the following characteristics are important in
predicting a student’s GPA: father’s education, favourite comfort
foods (or lack thereof), accurately estimating calories in food, and
family income.



A P P E N D I X A

Julia and R
Packages Used
Herein

The R packages used herein are detailed in Table A.1, and the Julia
packages used herein are listed in Table A.2.

Table A.1 The R packages used herein, with version number
and relevant citations.
Name Version Relevant Citations
caret 6.0-78 Kuhn (2017), Kuhn and Johnson (2013)
pgmm 1.2.2 McNicholas et al. (2018), McNicholas (2010),

McNicholas and Murphy (2008, 2010)
ranger 0.9 Wright and Ziegler (2017)
vscc 0.2 Andrews and McNicholas (2013, 2014)
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A P P E N D I X B

Variables for Food
Data

Variable names for the food data are given in Tables B.1.
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Table B.1 Variables for the beer dataset.
Variable Description
GPA Grade point average.
Gender Female (1); male (2).
breakfast What do you associate with breakfast?

Cereal (1); doughnut (2).
calories_chicken Guess for calories in chicken piadina:

265 (1), 430 (2), 610 (3), 720 (4).
calories_day Importance of daily amount of calorie

consumption: I don’t know how many
calories I should consume (1); not at
all important (2); moderately important
(3); very important (4).

calories_scone Guess for calories in a scone.
coffee What do you associate with coffee?

Creamy frappuccino (1); espresso (2).
comfort_food List 3–5 comfort foods.
comfort_food_reasons List up to three reasons you consume

comfort food.
comfort_food_reasons_coded Stress (1); boredom (2); depression/sad-

ness (3); hunger (4); laziness (5); cold
weather (6); happiness (7); watching
TV (8); none (9).
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Table B.1 Variables for the beer dataset (continued).
Variable Description
cook How often do you cook? Every day (1);

a couple of times a week (2); whenever I
can, but that is not very often (3); I only
help a little during holidays (4); never,
I really do not know my way around a
kitchen (5).

cuisine What type of cuisine did you eat grow-
ing up? American (1); Mexican/Span-
ish (2); Korean/Asian (3); Indian (4);
American inspired international dishes
(5); other (6).

diet_current Describe your current diet.
diet_current_coded Healthy/balanced/moderated (1); un-

healthy/cheap/too much/random (2);
the same thing over and over (3); un-
clear (4).

drink Binary: What do you associate with
drink? Orange juice (1); soda (2).

eating_changes Eating changes since admitted to col-
lege.

eating_changes_coded Worse (1); better (2); the same (3); un-
clear (4).

eating_changes_coded1 Eat faster (1); bigger quantity (2);
worse quality (3); same food (4); health-
ier (5); unclear (6); drink coffee (7); less
food (8); more sweets (9); timing (10);
more carbs or snacking (11); drink more
water (12); more variety (13).

eating_out Frequency of eating out in a typical
week: Never (1); 1–2 times (2); 2–3
times (3); 3–5 times (4); every day (5).

employment Do you work? Yes, full time (1); yes,
part time (2); no (3); other (4).

ethnic_food How likely are you to eat ethnic food?
Very unlikely (1); unlikely (2); neutral
(3); likely (4); very likely (5).

exercise How often do you exercise in a regu-
lar week? Every day (1); twice or three
times per week (2); once a week (3);
sometimes (4); never (5).
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Table B.1 Variables for the beer dataset (continued).
Variable Description
father_education Less than high school (1); high school

degree (2); some college degree (3); col-
lege degree (4); graduate degree (5).

father_profession Profession of father.
fav_cuisine Favourite cuisine.
fav_cuisine_coded None (0); Italian/French/Greek (1);

Spanish/Mexican (2); Arabic/Turkish
(3); Asian/Chinese/Thai/Nepal (4);
American (5); African (6); Jamaican
(7); Indian (8).

fav_food Favourite food was: cooked at home (1);
store bought (2); both bought at store
and cooked at home (3).

food_childhood Favourite childhood food.
fries Which do you associate with fries? Mc-

Donald’s fries (1); home fries.
fruit_day How likely are you to eat fruit in a regu-

lar day? Very unlikely (1); unlikely (2);
neutral (3); likely (4); very likely (5).

grade_level Freshman (1), Sophomore (2), Junior
(3), Senior (4).

greek_food How likely are you to eat Greek food
when available? Very unlikely (1); un-
likely (2); neutral (3); likely (4); very
likely (5).

healthy_feeling “I feel very healthy!”: Strongly agree (1)
to strongly disagree (10).

healthy_meal What is a healthy meal?
ideal_diet Describe your ideal diet.
ideal_diet_coded Portion control (1); adding veggies/eat-

ing healthier food/adding fruit(2);
balance (3); less sugar (4); home
cooked/organic (5); current diet (6);
more protein (7); unclear (8).

income <$15,000 (1); $15,001–$30,000 (2);
$30,001–$50,000 (3); $50,001–$70,000
(4); $70,001–$100,000 (5); >$100,000
(6).

indian_food How likely are you to eat Indian food
when available? Very unlikely (1); un-
likely (2); neutral (3); likely (4); very
likely (5).
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Table B.1 Variables for the beer dataset (continued).
Variable Description
italian_food How likely are you to eat Italian food

when available? Very unlikely (1); un-
likely (2); neutral (3); likely (4); very
likely (5).

life_rewarding “I feel life is very rewarding!”: strongly
agree (1) to strongly disagree (10).

marital_status Single (1), in a relationship (2), cohab-
iting (3), married (4), divorced (5), wid-
owed (6).

meals_dinner_friend What would you serve a friend for din-
ner?

mother_education Less than high school (1); high school
degree (2); some college degree (3); col-
lege degree (4); graduate degree (5).

mother_profession Mother’s profession.
nutritional_check Checking nutritional values frequency:

Never (1); on certain products only (2);
very rarely (3); on most products (4);
on everything (5).

on_off_campus Living situation: on campus (1); rent
out of campus (2); live with my parents
and commute (3); own my own house
(4).

parents_cook Approximately how many days a week
did your parents cook? Almost everyday
(1); 2–3 times a week (2); 1–2 times a
week (3); on holidays only (4); never (5).

pay_meal_out How much would you pay for a meal
out? <$5.00 (1); $5.01–$10.00 (2);
$10.01–$20.00 (3); $20.01–$30.00 (4);
$30.01–$40.00 (5); >$40.01 (6).

persian_food How likely are you to eat Persian food
when available: very unlikely (1); un-
likely (2); neutral (3); likely (4); and
very likely (5).

self_perception_weight Self-perception of weight: Slim (1); very
fit (2); just right (3); slightly overweight
(4); overweight (5); I don’t think of my-
self in these terms (6).
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Table B.1 Variables for the beer dataset (continued).
Variable Description
soup Which of the two pictures do you asso-

ciate with the word soup? Veggie soup
(1); creamy soup (2).

sports Do you do any sporting activity? Yes
(1); no (2); no answer (99).

thai_food How likely are you to eat Thai food
when available? Very unlikely (1); un-
likely (2); neutral (3); likely (4); very
likely (5).

tortilla_calories Guess for calories in a burrito sandwich
from Chipotle: 580 (1); 725 (2); 940 (3);
1165 (4).

turkey_calories Guess for calories in Panera Bread
roasted turkey and avocado BLT: 345
(1); 500 (2); 690 (3); 850 (4).

type_sports In what type of sports are you involved?
veggies_day How likely are you to eat veggies in

a day? Very unlikely (1); unlikely (2);
neutral (3); likely (4); very likely (5).

vitamins Do you take any supplements or vita-
mins? Yes (1); no (2).

waffle_calories Guess for calories in a waffle potato
sandwich: 575 (1); 760 (2); 900 (3); 1315
(4).

weight What is you weight in pounds?
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Useful Mathematical
Results

C.1 BRIEF OVERVIEW OF EIGENVALUES

Let A be an p × p matrix. Then λ ∈ R is an eigenvalue of A if
there exists a non-zero vector v such that

Av = λv. (C.1)

Now, (C.1) can also be written

(A− λIp)v = 0,

where Ip is the p× p identity matrix, and so

|A− λIp| = 0.

Note that if A is a diagonal matrix with diagonal elements
a11, a22, . . . , app, then

|A− λIp| = (a11 − λ)(a22 − λ)× · · · × (app − λ) = 0

and the eigenvalues of A are a11, a22, . . . , app.

C.2 SELECTED LINEAR ALGEBRA RESULTS

The following theorems are taken from Graybill (1983).

Theorem C.1 Let A and B be any matrices such that AB is
defined; then

(AB)′ = B′A′.

193



194 � Data Science with Julia

Theorem C.2 If A is any matrix, then A′A and AA′ are sym-
metric.

Theorem C.3 If A is a non-singular matrix, then A′ and A−1

are non-singular and

(A′)−1 =
(
A−1)′ .

Theorem C.4 If each element of the ith row of an n×n matrix A
contains a given factor k, then we may write |A| = k|B|, where the
rows of B are the same as the rows of A except that the number k
has been factored from each element of the ith row of A.

A corollary of Theorem C.4 is given below as Corollary 1, and
is stated as a result by Anton and Rorres (1994).

Corollary 1 Let A and B be n× n matrices such that

A = kB,

where k is a scalar. Then

|A| = kn|B|.

From this corollary, it follows that, for a ∈ R+ and a p×p identity
matrix Ip,

log |a−1Ip| = log a−p + log |Ip| = p log a−1 = −p log a.

The following results are taken from Chapter 4 of Lütkepohl
(1996) and are also available elsewhere:

Am×n,Bn×m : tr{AB} = tr{BA}.
Am×m,Bm×m : | AB | = | A || B | .

Am×m : | A′ | = | A | .
Am×m, non-singular : | A−1 | = | A |−1 .

Am×m = [aij ], triangular : | A | =
m∏
i=1

aii.

C.3 MATRIX CALCULUS RESULTS

Assume that all matrices and vectors are real, all objects that are
differentiated are continuously differentiable, and all differentials
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are well-defined. The following results, taken from Chapter 10 of
Lütkepohl (1996), are also available elsewhere:

Xm×m non-singular : ∂ log |X|
∂X = (X′)−1.

Xm×n,An×m : ∂ tr{XA}
∂X = ∂ tr{AX}

∂X = A′.

Xm×n,Am×n : ∂ tr{X′A}
∂X = ∂ tr{AX′}

∂X = A.

Xm×n,Ap×m,Bn×p : ∂ tr{AXB}
∂X = A′B′.

Xm×n,An×n symmetric : ∂ tr{XAX′}
∂X = 2XA.

Xm×n,An×m,Bn×m : ∂ tr{XAXB}
∂X = B′X′A′ + A′X′B′.

Xm×n,An×n,Bm×m : ∂ tr{XAX′B}
∂X = B′XA′ + BXA.

Xm×n,Ap×m,Bm×p : ∂ tr{AXX′B}
∂X = (BA + A′B′)X.

Xn×n non-singular : ∂|X−1|
∂X = −|X|−1(X′)−1.

A result related to the latter is also useful:

Xn×n non-singular : ∂|X|
∂X−1 = −|X|X′.
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Performance Tips

The material in this appendix is based on the Julia performance
tips detailed in the Julia manual1 and the material in Goldberg
(1991).

D.1 FLOATING POINT NUMBERS

D.1.1 Do Not Test for Equality

When comparing floating point numbers, check that the absolute
value of their difference is less than some tolerance. Floating point
operations often involve a tiny loss of precision, making two num-
bers unequal at the bit level when they are actually equal enough
for practical purposes.� �
a = 3.1415926
tol = 1e-5

## Bad
if a == pi
println("a is equal to $pi")

end

## Good
if abs(a - pi) < tol
println("a is equal to $pi")

end

## Better
if isapprox(a, pi, rtol = tol)
println("a is equal to $pi")

end� �
1docs.julialang.org/en/stable/manual/performance-tips/
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D.1.2 Use Logarithms for Division

When doing division with large numbers, it can be advantageous to
replace them with their logarithms. The following code block shows
how two large numbers, generated with the gamma() function, can
be divided using their logarithms.� �

using SpecialFunctions

## Two very large numbers
/(gamma(210), gamma(190))
#NaN

exp(-(lgamma(210), lgamma(190)))
#9.89070132023e45� �

D.1.3 Subtracting Two Nearly Equal Numbers

If two numbers agree to b bits, b bits of precision can be lost if
they are subtracted. If the two numbers have identical machine
representations, their difference could be zero, despite this being
mathematically false. A simple way to illustrate this is taking the
limit of a function at a particular point. The following code block
shows what happens when we take the limit of exp(1). As h → 0,
the limit reaches the true value at h = 10−5 and remains there until
h = 10−11. At h = 10−16, the two numbers in the numerator of
the limit expression are equal to machine precision and the result
is zero. When this occurs, it is often beneficial to reformulate the
problem so that it does not require a subtraction.� �
## limit of exp(1)
lim_exp1(h) = /( -(exp(1. + h), exp(1.)), h )

## h from 10e-4 to 10e-16
for i in 4:16
le1 = lim_exp1(10.0ˆ(-i))
println("$i : ", le1)
println("derivative == exp(1): $(isapprox( exp(1), le1, rtol = tol ))")

end

# 4 : 2.718417747082924
# derivative == exp(1): false
# 5 : 2.7182954199567173
# derivative == exp(1): true
# ..
# 10 : 2.7182833761685288
# derivative == exp(1): true
# 11 : 2.7183144624132183
# derivative == exp(1): false
# ..
# 16 : 0.0
# derivative == exp(1): false� �
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D.2 JULIA PERFORMANCE

D.2.1 General Tips

The following three tips will almost without exception improve
your Julia code:

1. Do not use global variables.

2. Write functions.

3. Profile your code.

The first tip is important because the Julia compiler has a hard
time optimizing global variables because their type can change at
any point in the program. If they must be used, they should be
defined as constants using the const keyword. Whenever possible,
constants should have a type associated with them.

The second tip is there because of the way the compiler works;
specifically, code inside functions is typically much faster. Func-
tions have well-defined arguments and outputs which help the com-
piler make optimizations. Additionally, functions are helpful for the
maintenance and testing of your software, both very important as-
pects of software development.

The third tip is crucial as it can help data scientists discover
problems and improve the performance of code. The Julia package
ecosystem has a few options for doing profiling, such as the profile
module ProfileView.jl and BenchmarkTools.jl. We will briefly
touch on the time macro, which is used in the following code block
(Appendix D.2.2), where @time is added before a Julia expression
and returns the time the expression took to execute, the number of
allocations it made, and the total number of bytes the allocations
used. Large memory allocation is often an indication of a problem
in code. Memory allocation problems are often related to type in-
stability or not using mutable data structures properly. Note that
the first time @time is run, it is being compiled and so this timing
should be ignored. Initially, we run @time two to three times before
we start to take note of the information it provides.

D.2.2 Array Processing

In Julia, similar to R, arrays are stored in column major order.
When processing two-dimensional arrays, it is much faster to pro-
cess them by first iterating over the columns and then the rows.
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The following code block compares two functions that total the
entries in a 10000× 3000 array of random numbers. The function
that uses an outer loop for the columns is roughly 70% faster.� �

using Random
Random.seed!(63)

## Processing arrays
A1 = rand(Float64, (10000,3000))

function outer_row(A)
tot = 0
m,n = size(A)
for i = 1:m, j = 1:n
tot += A[i, j]

end
return tot

end

function outer_col(A)
tot = 0
m,n = size(A)
for j = 1:n, i = 1:m
tot += A[i, j]

end
return tot

end

@time outer_row(A1)
# 0.725792 seconds (5 allocations: 176 bytes)

@time outer_col(A1)
# 0.207118 seconds (5 allocations: 176 bytes)� �
When writing functions that return an array, it is often ad-

vantageous to pre-allocate the memory for the return value. This
will cut down on performance bottlenecks associated with mem-
ory allocation and garbage collection. Pre-allocation also has the
advantage of providing some type control on the object being re-
turned. The following code block details how one might take the
mean of each column in an array. This is just for illustration and
ignores the fact that the mean() function can complete the task by
specifying the correct dimension in its arguments.

The first function colm() is very inefficient. The returned array
is defined at the beginning as the res object. Because no type is
specified, Julia assumes it can take entries of any type, making
for poor optimizations. At each value of j, colm() makes a copy of
the array slice, calculates its mean and concatenates it to the result
array res. This results in a function call that does approximately
91,000 allocations and uses 267 MB of memory.
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The second function colm2() allocates a 3000-element array of
type Float64 to store the column means, as we know the number
of columns in the input. Inside the loop, it takes advantage of array
views, which returns a view into the array at the specified indices
without making a copy of the slice. These modifications result in
an 80% speed improvement and 97% fewer memory allocations.� �

using Random
Random.seed!(65)

## Processing arrays
A1 = rand(Float64, (10000,3000))

## Inefficient
function colm(A)
res = Vector()
m,n = size(A)
for j = 1:n
res = vcat(res, mean(A[:, j]))

end
return res

end

@time colm(A1) # Any[3000]
# 0.561565 seconds (90.89 k allocations: 266.552 MiB, 21.93% gc time)

## efficient
function colm2(A)
m,n = size(A)
res = Vector{Float64}(undef, n)
for j = 1:n
res[j] = mean(view(A, :, j))

end
return res

end

@time colm2(A1) # Float64[3000]
# 0.118919 seconds (3.01 k allocations: 164.297 KiB� �

D.2.3 Separate Core Computations

When writing Julia functions, it is recommended that complex
and/or repeated computations be implemented in separate func-
tions. This can help the compiler optimize the code and aids with
debugging efforts. Another benefit is the increased opportunity for
code re-use.

The concept is illustrated in the next code block. The first
function matvec() does matrix-vector multiplication by expressing
the result as a linear combination of the matrix’s columns, where
the coefficients are the vector’s entries. The function does this in a
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for loop and returns the result as a dictionary. The function has
two components, the first dealing with the dictionary initialization
and population and the second concerning the multiplication. If we
separate these two components into separate functions, mvmul()
and matvec2(), we gain in performance with a 24% speed up, and
also have more readable and maintainable code.� �
## sample matrix and vector
M1 = [1 2 3; 2 4 6 ] #2x3
V1 = [1,2,2] # 3x1

## column representation of the multiplication
function matvec(M, v)
d1 = Dict{String, Vector{Real}}()
m,n = size(M)
res2 = zeros(m)
for i = 1:n

res2 = +(res2, *(view(M, :, i), v[i]))
end
return push!(d1, "M1xV1"=>res2)

end

@time matvec(M1, V1)
# 0.000021 seconds (21 allocations: 1.672 KiB)

## separate function to do the computation
## use dispatch so it accepts Int and Float arguments
function mvmul(M::Matrix{T}, v::Vector{T}) where {T <: Number}
m,n = size(M)
res2 = zeros(m)
for i = 1:n
res2 = +(res2, *(view(M, :, i), v[i]))

end
return res2

end

## calls the computation function
function matvec2(M, v)
d1 = Dict{String, Vector{Real}}()
v1 = mvmul(M, v)
return push!(d1, "M1xV1"=>v1)

end

@time matvec2(M1, V1)
# 0.000016 seconds (21 allocations: 1.672 KiB)� �
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Linear Algebra
Functions

This appendix will help readers translate the linear algebra they
know into Julia code. This material is based on the official docu-
mentation for the LinearAlgebra1 package and Eldén (2007).

E.1 VECTOR OPERATIONS

Some common vector operations in Julia are given in Table E.1.
Note that the Julia operations given in Table E.1 should not

be considered an exclusive list. For example, both dot(x,y) and
x·y are quoted for the inner product but ·(x,y) also works. The
following code block illustrates some of the operations in Table E.1.� �
x = [1, 2]
y = [3, 4]
c = 8

c*x
# 2-element Array{Int64,1}:
# 8
# 16

dot(x,y)
# 11

x + c*ones(2)
# 2-element Array{Float64,1}:
# 9.0
# 10.0

1docs.julialang.org/en/v1/stdlib/LinearAlgebra/index.html
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normalize(x)
# 2-element Array{Float64,1}:
# 0.4472135954999579
# 0.8944271909999159� �

Table E.1 Common vector operations in Julia, using
LinearAlgebra, for n-dimensional vectors x and y.

Operation Notation Julia
Addition x + y x+y or +(x, y)
Subtraction x− y x-y or -(x, y)
Scalar-vector addition x + c1 x+c*ones(n)
Scalar-vector multiplication cx c*x or *(c, x)
Transpose x′ or x> x′ or transpose(x)
Inner product x′y dot(x,y) or x·y
Cross product x× y cross(x,y) or x×y
Norm ‖ x ‖ norm(x)
Distance ‖ x− y ‖ norm(x-y)
Normalize x/‖ x ‖ normalize(x)
Sum

∑n
i=1 xi sum(x)

Mean (1/n)
∑n
i=1 xi mean(x)

E.2 MATRIX OPERATIONS

Some common matrix operations in Julia are given in Table E.2;
again, this is not intended to be an exhaustive list.

The following code block illustrates some of the operations in
Table E.2.� �
X = [5 1; 2 4]
Y = [2 0; 1 5]
y = [3, 4]

X*y
# 2-element Array{Int64,1}:
# 19
# 22

*(Y,X)
# 2x2 Array{Int64,2}:
# 10 2
# 15 21

## Row sums
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sum(X,dims=1)
# 1x2 Array{Int64,2}:
# 7 5� �

Table E.2 Common matrix operations in Julia, where all oper-
ations assume compatible matrix and vector dimensions.

Operation Notation Julia
Addition X + Y X+Y or +(X,Y)
Subtraction X−Y X-Y or -(X,Y)
Transpose X′ or X> X′ or transpose(X)
Inverse X−1 inv(X)
Moore-Penrose pseudo-inv. X† pinv(X)
Scalar-matrix multiplication cX, c ∈ R *(c,X) or c*X
Vector-matrix multiplication Xy *(X,y) or X*y
Matrix-matrix multiplication XY *(X,Y) or X*Y
Matrix raised to a power p Xp Xˆp
Determinant | X | det(X)
Log-determinant log(|X|) logdet(X)
Log absolute value det. log(||X||) logabsdet(X)
Column sum

∑
m∈M xm,n sum(X, dims=1)

Row sum
∑
n∈N xm,n sum(X, dims=2)

E.3 MATRIX DECOMPOSITIONS

Some common matrix decompositions in Julia are given in Ta-
ble E.3.

The following code block illustrates how to use the decomposi-
tions in Table E.3.� �

using LinearAlgebra

X = [5 1 3; 0 8 2; 3 1 6]
Y = [8 0 1; 0 3 2; 1 2 5] # symmetric positive-definite

## Eigenvalue decomposition
evX=eigen(X)

# eigenvectors
evX.vectors
# 3x3 Array{Float64,2}:
# 0.7024 -0.384529 -0.497977
# 0.242773 0.7843 -0.652046
# -0.6691 -0.486837 -0.571712
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# eigenvalues
evX.values
# 3-element Array{Float64,1}:
# 2.487860053322798
# 6.758543755579095
# 9.753596191098106

## Singular value decomposition
svdX=svd(X)

# matrix U
svdX.U
# 3x3 Array{Float64,2}:
# -0.476574 0.457265 -0.750857
# -0.655574 -0.753904 -0.0430237
# -0.585747 0.471739 0.659062

# matrix V
svdX.V
# 3x3 Adjoint{Float64,Array{Float64,2}}:
# -0.422445 0.539959 -0.728
# -0.643539 -0.744284 -0.178604
# -0.638278 0.393046 0.661904

# matrix Sigma
diagm(0 => svdX.S)
# 3x3 Array{Float64,2}:
# 9.80036 0.0 0.0
# 0.0 6.85522 0.0
# 0.0 0.0 2.44107

## Cholesky decomposition
cholY=cholesky(Y)

# matrix L
cholY.L
# 3x3 LowerTriangular{Float64,Array{Float64,2}}:
# 2.82843 . .
# 0.0 1.73205 .
# 0.353553 1.1547 1.88193

# note that cholY.U gives transpose(cholY.L)

## QR decomposition
qrX = qr(X)

# matrix Q
qrX.Q
# 3x3 LinearAlgebra.QRCompactWYQ{Float64,Array{Float64,2}}:
# -0.857493 0.0220386 -0.514024
# 0.0 -0.999082 -0.0428353
# -0.514496 -0.036731 0.856706

#matrix R
qrX.R
# 3x3 Array{Float64,2}:
# -5.83095 -1.37199 -5.65945
# 0.0 -8.00735 -2.15243
# 0.0 0.0 3.51249� �
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Table E.3 Common matrix decompositions in Julia, where No-
tation is intended to help in understanding the subsequent
code block.

Decomposition Notation Julia
Eigenvalue Xm×m = PDP−1 eigen(X)
Singular value Xm×n = Um×mΣm×nV′n×n,

m ≥ n
svd(X)

Cholesky Xm×m = LL′ , X positive defi-
nite

cholesky(X)

QR Xm×n = Qm×mRm×n, m ≥ n qr(X)
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