Node.js
Design
Patterns

Second Edition

By Mario Casciaro and Luciano Mammino

Node.js Design Patterns

Second Edition

Master best practices to build modular and scalable
server-side web applications

Mario Casciaro
Luciano Mammino

@Eeh SOUIRCE

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

Node.js Design Patterns

Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014
Second edition: July 2016

Production reference: 1110716

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B32PB, UK.

ISBN 978-1-78588-558-7

www.packtpub.com

http://www.packtpub.com

Authors
Mario Casciaro

Luciano Mammino

Reviewers
Tane Piper

Joel Purra

Commissioning Editor

Amarabha Banerjee

Acquisition Editor

Reshma Raman

Content Development Editor

Onkar Wani

Technical Editor

Prajakta Mhatre

Credits

Copy Editor

Safis Editing

Project Coordinator

Ulhas Kambali

Proofreader

Safis Editing

Indexer

Mariammal Chettiyar

Graphics

Kirk D'Penha

Production Coordinator

Nilesh Mohite

About the Authors

Mario Casciaro is a software engineer and entrepreneur, passionate about technology,
science and open source knowledge. Mario graduated with a master's degree in software
engineering and started his professional career at IBM where he worked for several years
on different enterprise products such as Tivoli Endpoint Manager, Cognos Insight, and
SalesConnect. Next, he moved to D4H Technologies, a growing SaaS company, to lead the
development of a new bleeding-edge product for managing emergency operations in real
time. Currently, Mario is the co-founder and CEO of Sponsorama. com, a platform to help
online projects raise funds through corporate sponsorship.

Mario is also the author of the first edition of Node.js Design Patterns.

https://sponsorama.com/

Acknowledgments

When I was working on the first edition of this book I would never have thought it would
become such a success. My biggest thanks go to all the readers of the first edition of this
book, to those who bought it, to those who left a review, and to those who recommended it
to their friends on Twitter or on other online forums. And of course, my gratitude also goes
to the readers of this second edition; to you who are reading these words, you make all our
efforts worthwhile. I also want you to join me in congratulating my friend Luciano, the co-
author of this second edition, who did a tremendous job updating and adding new
invaluable content to this book. All the merit goes to him as I only had the role of adviser in
this second edition. Working on a book is not an easy task, but Luciano impressed me and
all the staff at Packt for his dedication, professionalism, and technical skills, demonstrating
he can achieve any goal he sets his mind to. It was a pleasure and a honor working with
Luciano and I'm looking forward to other great collaborations. I also want to thank all the
people who worked on the book, the folks of Packt, the technical reviewers (Tane and Joel)
and all the friends who provided valuable suggestions and insights: Anton Whalley
(@dhigit9), Alessandro Cinelli (cirpo), Andrea Giuliano (@bit_shark), and Andrea
Mangano (@ManganoAndrea). Thanks to all the friends who give me unconditional love, to
my family, and most importantly to my girlfriend Miriam, the partner of all my adventures,
who brings love and joy in every day of my life. There are still a hundred thousand
adventures awaiting us.

Luciano Mammino is a software engineer born in 1987, the same year that the Nintendo
released Super Mario Bros in Europe, which by chance is his favorite video-game. He
started coding at the age of 12 using his father's old Intel 386, provided only with the DOS
operating system and the qBasic interpreter.

After a master's degree in computer science he developed his programming skills mostly as
a web developer working mainly as freelancer for companies and startups all around Italy.

After a start-up parenthesis of 3 years as CTO and co-founder of Sbaam. com in Italy and in
Ireland, he decided to relocate in Dublin to work as senior PHP engineer at Smartbox.

He loves developing open source libraries and working with frameworks such as Symfony
and Express. He is convinced that the JavaScript fame is still at the very beginning and that
this technology will have a huge impact in the future of most of the web-and mobile-related
technologies. For this reason, he spends most of his free time improving his knowledge of
JavaScript and playing with Node.js.

http://Sbaam.com

Acknowledgments

The first huge thanks go to Mario for giving me the opportunity and the trust to work
alongside him on the new edition of this book. It was an amazing experience and hopefully
just the beginning of a long series of collaborations.

This book was only possible thanks to the incredible and efficient work of the Packt team,

especially thanks to the relentless efforts and the patience of Onkar, Reshma, and Prajakta.
Also thanks to the reviewers Tane Piper and Joel Purra, their experience with Node.js was
crucial to raise the quality of the content provided in this book.

A great hug (and many beers) go to my friends Anton Whalley (@dhigit9), Alessandro
Cinelli (ecirpo), Andrea Giuliano (@bit_shark), and Andrea Mangano
(éManganoAndrea) for encouraging me all along the way, for sharing with me their
experience as developers and for providing meaningful insights on the contents of this
book.

Another great thank you goes to Ricardo, Jose, Alberto, Marcin, Nacho, David, Arthur, and
all my colleagues at Smartbox for making me love my days at work and for inspiring and
motivating me to get better every day as a software engineer. I couldn't ask for a better
team.

My deepest gratitude goes to my family, who raised and sustained me in every possible
way along my journey. Thanks, mom, for being a constant source of inspiration and
strength in my life. Thanks, dad, for all the lessons, the encouragement and the advice, I
really miss talking with you, I really miss you. Thanks to my brother Davide and my sister
Alessia for being present in the painful and the joyful moments and making me feel part of
a great family.

Thanks to Franco and his family for supporting many of my initiatives and for sharing their
wisdom and life experience with me.

Kudos to my "nerd" friends Gianluca, Flavio, Antonio, Valerio, and Luca for the great time
together and for constantly encouraging me to keep working on this book.

Also kudos to my "less nerdy" friends Damiano, Pietro, and Sebastiano for their friendship
and all the laughs and the fun we have when we hang out together in Dublin.

Last, but definitely not least, thanks to my girlfriend Francesca. Thank you for the
unconditioned love and for supporting me on every adventure, even the craziest ones. I
really look forward to writing the next pages in the book of our life with you.

About the Reviewers

Tane Piper is a full stack developer based in London, UK. For over 10 years He has worked
for several agencies and companies delivering software in a variety of languages such as
Python, PHP, and JavaScript. He has been working with Node.js since 2010 and was one of
the first people talking about server-side JavaScript in the UK and Ireland with several talks
in 2011/2012. He was also an early contributor to, and advocate for the jQuery project.
Currently he works at a consultancy in London delivering innovative solutions and is
mostly writing React and Node applications. Outside of his professional work he is a keen
scuba diver and amateur photographer.

I would personally like to thank my girlfriend Elina who has turned my life around in the
last two years and encouraged me to take up the task of reviewing this book.

Joel Purra started toying around with computers even before he was in his teens, seeing
them as another kind of a video game device. It was not long before he took apart
(sometimes broke and subsequently fixed) any computer he came across while playing the
latest games on them. It was gaming that led him to discover programming in his early
teens when modifying a Lunar Lander game triggered an interest in creating digital tools.
Soon after getting an Internet connection at home, he developed his first e-commerce
website, and thus his business started; it launched his career at an early age. At the age of
17, Joel started studying computer programming and an energy science program at a
nuclear power plant's school. After graduation, he studied to become a second lieutenant
telecommunications specialist in the Swedish Army before moving on to study for his
master's of science degree in information technology and engineering at Linkoping
University. He has been involved in start-ups and other companies —both successful and
unsuccessful —since 1998, and he has been a consultant since 2007. Born, raised, and
educated in Sweden, Joel also enjoys the flexible lifestyle of a freelance developer, having
traveled through five continents with his backpack and lived abroad for several years. A
learner constantly looking for challenges, one of his goals is to build and evolve software for
broad public use. You can visit his website at http: //joelpurra.com/.

1'd like to thank the open source community for providing the building blocks necessary to
compose both small and large software systems even as a freelance consultant. Nanos
gigantum humeris insidentes. Remember to commit early, commit often!

http://joelpurra.com/

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

IE\ PACKT! iE°

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://cdp.packtpub.com/endtoendtesting/wp-content/uploads/sites/52/2015/12/image_10_002.png
https://www2.packtpub.com/books/subscription/packtlib

Table of Contents

Preface 1
Chapter 1: Welcome to the Node.js Platform 8
The Node.js philosophy 8
Small core 9
Small modules 10
Small surface area 11
Simplicity and pragmatism 11
Introduction to Node.js 6 and ES2015 12
The let and const keywords 12
The arrow function 15
Class syntax 16
Enhanced object literals 18
Map and Set collections 19
WeakMap and WeakSet collections 21
Template literals 22
Other ES2015 features 23
The reactor pattern 24
1/O is slow 24
Blocking 1/0O 24
Non-blocking 1/0 26
Event demultiplexing 26
Introducing the reactor pattern 29
The non-blocking I/O engine of Node.js-libuv 31
The recipe for Node.js 31
Summary 32
Chapter 2: Node.js Essential Patterns 34
The callback pattern 35
The continuation-passing style 35
Synchronous continuation-passing style 35
Asynchronous continuation-passing style 36
Non-continuation-passing style callbacks 37
Synchronous or asynchronous? 38

An unpredictable function 38
Unleashing Zalgo 39

Using synchronous APIs 40
Deferred execution 42
Node.js callback conventions 43
Callbacks come last 43

Error comes first 44
Propagating errors 44
Uncaught exceptions 45

The module system and its patterns 47
The revealing module pattern 47
Node.js modules explained 47

A homemade module loader 48

Defining a module 50

Defining globals 51
module.exports versus exports 51

The require function is synchronous 51

The resolving algorithm 52

The module cache 54

Circular dependencies 55
Module definition patterns 56
Named exports 56
Exporting a function 57
Exporting a constructor 58
Exporting an instance 60
Modifying other modules or the global scope 61

The observer pattern 62
The EventEmitter class 63
Creating and using EventEmitter 64
Propagating errors 65
Making any object observable 66
Synchronous and asynchronous events 67
EventEmitter versus callbacks 68
Combining callbacks and EventEmitter 70
Summary 71
Chapter 3: Asynchronous Control Flow Patterns with Callbacks 72
The difficulties of asynchronous programming 73
Creating a simple web spider 73
The callback hell 76
Using plain JavaScript 77
Callback discipline 77
Applying the callback discipline 78

[ii]

Sequential execution 80
Executing a known set of tasks in sequence 81
Sequential iteration 82

Web spider version 2 82
Sequential crawling of links 83
The pattern 85

Parallel execution 86
Web spider version 3 88
The pattern 89
Fixing race conditions with concurrent tasks 90

Limited parallel execution 92
Limiting the concurrency 93
Globally limiting the concurrency 94

Queues to the rescue 94
Web spider version 4 95
The async library 97

Sequential execution 97
Sequential execution of a known set of tasks 98
Sequential iteration 100

Parallel execution 100

Limited parallel execution 101

Summary 102
Chapter 4: Asynchronous Control Flow Patterns with ES2015 and
Beyond 104
Promise 105

What is a promise? 105

Promises/A+ implementations 108

Promisifying a Node.js style function 109

Sequential execution 111
Sequential iteration 112
Sequential iteration — the pattern 113

Parallel execution 114

Limited parallel execution 114

Exposing callbacks and promises in public APIs 116

Generators 119

The basics of generators 119
A simple example 120
Generators as iterators 121
Passing values back to a generator 121

Asynchronous control flow with generators 122

[iii]

Generator-based control flow using co 125
Sequential execution 125
Parallel execution 128
Limited parallel execution 130

Producer-consumer pattern 131

Limiting the download tasks concurrency 133

Async await using Babel 134
Installing and running Babel 135
Comparison 136
Summary 138
Chapter 5: Coding with Streams 139
Discovering the importance of streams 139
Buffering versus streaming 139

Spatial efficiency 142

Gzipping using a buffered API 142

Gzipping using streams 143
Time efficiency 143
Composability 146

Getting started with streams 147
Anatomy of streams 148
Readable streams 149

Reading from a stream 149

The non-flowing mode 149
Flowing mode 150

Implementing Readable streams 151
Writable streams 153

Writing to a stream 153

Back-pressure 155

Implementing Writable streams 156
Duplex streams 158
Transform streams 158

Implementing Transform streams 159
Connecting streams using pipes 162

Through and from for working with streams 164

Asynchronous control flow with streams 164
Sequential execution 164
Unordered parallel execution 167

Implementing an unordered parallel stream 167

Implementing a URL status monitoring application 169
Unordered limited parallel execution 170

[iv]

Ordered parallel execution 172
Piping patterns 173
Combining streams 174
Implementing a combined stream 175
Forking streams 177
Implementing a multiple checksum generator 178
Merging streams 178
Creating a tarball from multiple directories 179
Multiplexing and demultiplexing 182
Building a remote logger 183

Client side — multiplexing 183

Server side — demultiplexing 185

Running the mux/demux application 187

Multiplexing and demultiplexing object streams 187
Summary 189
Chapter 6: Design Patterns 190
Factory 191
A generic interface for creating objects 191

A mechanism to enforce encapsulation 192
Building a simple code profiler 194
Composable factory functions 197

In the wild 200
Revealing constructor 201
A read-only event emitter 202

In the wild 204
Proxy 205
Techniques for implementing proxies 206
Object composition 206

Object augmentation 207

A comparison of the different techniques 208
Creating a logging Writable stream 208
Proxy in the ecosystem — function hooks and AOP 210
ES2015 Proxy 210

In the wild 212
Decorator 213
Techniques for implementing Decorators 213
Composition 213

Object augmentation 214
Decorating a LevelUP database 214
Introducing LevelUP and LevelDB 215

[v]

Implementing a LevelUP plugin 215

In the wild 217
Adapter 218
Using LevelUP through the filesystem API 218

In the wild 221
Strategy 222
Multi-format configuration objects 223

In the wild 227
State 227
Implementing a basic fail-safe socket 228
Template 233
A configuration manager template 234

In the wild 236
Middleware 236
Middleware in Express 236
Middleware as a pattern 237
Creating a middleware framework for GMQ 239
The Middleware Manager 240

A middleware to support JSON messages 242

Using the MQ middleware framework 243

The server 243

The client 244
Middleware using generators in Koa 245
Command 249
A flexible pattern 251
The task pattern 251

A more complex command 251
Summary 255
Chapter 7: Wiring Modules 256
Modules and dependencies 257
The most common dependency in Node.js 257
Cohesion and coupling 258
Stateful modules 259
The Singleton pattern in Node.js 259
Patterns for wiring modules 261
Hardcoded dependency 261
Building an authentication server using hardcoded dependencies 262

The db module 263

The authService module 263

The authController module

264

[vi]

The app module 265

Running the authentication server 266

Pros and cons of hardcoded dependencies 266
Dependency Injection 267
Refactoring the authentication server to use DI 268

The different types of DI 270

Pros and cons of DI 271
Service locator 273
Refactoring the authentication server to use a service locator 274

Pros and cons of a service locator 277
Dependency Injection container 278
Declaring a set of dependencies to a DI container 278
Refactoring the authentication server to use a DI container 280

Pros and cons of a DI container 283
Wiring plugins 283
Plugins as packages 283
Extension points 286
Plugin-controlled vs application-controlled extension 286
Implementing a logout plugin 289
Using hardcoded dependencies 290
Exposing services using a service locator 294
Exposing services using DI 296
Exposing services using a DI container 298
Summary 298
Chapter 8: Universal JavaScript for Web Applications 300
Sharing code with the browser 301
Sharing modules 301
Universal Module Definition 302
Creating an UMD module 302
Considerations on the UMD pattern 305

ES2015 modules 305
Introducing Webpack 306
Exploring the magic of Webpack 307
The advantages of using Webpack 308
Using ES2015 with Webpack 309
Fundamentals of cross-platform development 312
Runtime code branching 312
Build-time code branching 313
Module swapping 316
Design patterns for cross-platform development 318

[vii]

Introducing React 319
First React component 321
JSX, what?! 322
Configuring Webpack to transpile JSX 325
Rendering in the browser 325
The React Router library 327

Creating a Universal JavaScript app 332
Creating reusable components 332
Server-side rendering 335
Universal rendering and routing 339
Universal data retrieval 340

The API server 341

Proxying requests for the frontend 343

Universal API client 344

Asynchronous React components 345

The web server 347

Summary 350
Chapter 9: Advanced Asynchronous Recipes 351

Requiring asynchronously initialized modules 351
Canonical solutions 352
Preinitialization queues 353

Implementing a module that initializes asynchronously 353
Wrapping the module with preinitialization queues 356
In the wild 358

Asynchronous batching and caching 359
Implementing a server with no caching or batching 359
Asynchronous request batching 362

Batching requests in the total sales web server 363
Asynchronous request caching 365
Caching requests in the total sales web server 367
Notes about implementing caching mechanisms 368
Batching and caching with promises 369

Running CPU-bound tasks 371
Solving the subset sum problem 372
Interleaving with setimmediate 375

Interleaving the steps of the subset sum algorithm 375
Considerations on the interleaving pattern 377
Using multiple processes 378
Delegating the subset sum task to other processes 379
Implementing a process pool 380

[viii]

Communicating with a child process 382
Communicating with the parent process 383
Considerations on the multiprocess pattern 385
Summary 386
Chapter 10: Scalability and Architectural Patterns 387
An introduction to application scaling 387
Scaling Node.js applications 388
The three dimensions of scalability 388
Cloning and load balancing 391
The cluster module 392
Notes on the behavior of the cluster module 393

Building a simple HTTP server 393

Scaling with the cluster module 395
Resiliency and availability with the cluster module 397
Zero-downtime restart 399
Dealing with stateful communications 401
Sharing the state across multiple instances 402

Sticky load balancing 403
Scaling with a reverse proxy 404
Load balancing with Nginx 407

Using a service registry 409
Implementing a dynamic load balancer with http-proxy and Consul 411
Peer-to-peer load balancing 416
Implementing an HTTP client that can balance requests across multiple servers 418
Decomposing complex applications 419
Monolithic architecture 419
The microservice architecture 421

An example of microservice architecture 421

Pros and cons of microservices 423

Every service is expendable 424

Reusability across platforms and languages 424

A way to scale the application 424

The challenges of microservices 425

Integration patterns in a microservice architecture 425
The API proxy 426

API orchestration 427
Integration with a message broker 431
Summary 433
Chapter 11: Messaging and Integration Patterns 435
Fundamentals of a messaging system 436

[ix]

One-way and request/reply patterns
Message types
Command Message
Event Message
Document Message
Asynchronous messaging and queues
Peer-to-peer or broker-based messaging
Publish/subscribe pattern
Building a minimalist real-time chat application
Implementing the server side
Implementing the client side
Running and scaling the chat application
Using Redis as a message broker
Peer-to-peer publish/subscribe with GMQ
Introducing @MQ
Designing a peer-to-peer architecture for the chat server
Using the MQ PUB/SUB sockets
Durable subscribers
Introducing AMQP
Durable subscribers with AMQP and RabbitMQ
Designing a history service for the chat application
Implementing a reliable history service using AMQP
Integrating the chat application with AMQP
Pipelines and task distribution patterns
The OMQ fanout/fanin pattern
PUSH/PULL sockets
Building a distributed hashsum cracker with IMQ
Implementing the ventilator
Implementing the worker
Implementing the sink
Running the application
Pipelines and competing consumers in AMQP
Point-to-point communications and competing consumers
Implementing the hashsum cracker using AMQP
Implementing the producer
Implementing the worker
Implementing the result collector
Running the application

Request/reply patterns

Correlation identifier
Implementing a request/reply abstraction using correlation identifiers
Abstracting the request

436
438
439
439
439
439
440
442
443
444
445
446
447
450
451
451
452
454
457
459
460
461
463
464
466
466
467
468
469
470
470
470
471
471
472
473
474
475
475
475
476
477

[x]

Abstracting the reply
Trying the full request/reply cycle
Return address
Implementing the return address pattern in AMQP
Implementing the request abstraction
Implementing the reply abstraction
Implementing the requestor and the replier

Summary
Index

478
479
480
481
482
483
484
486

487

[xi]

Preface

Node,js is considered by many as a game-changer — the biggest shift of the decade in web
development. It is loved not just for its technical capabilities, but also for the paradigm shift
that it introduced in web development.

First, Node.js applications are written in JavaScript, the language of the web, the only
programming language supported natively by a majority of web browsers. This aspect
enables scenarios such as single-language application stacks and sharing of code between
the server and the client. Node.js itself is contributing to the rise and evolution of the
JavaScript language. People realize that using JavaScript on the server is not as bad as it is
in the browser, and they will soon start to love it for its pragmatism and for its hybrid
nature, halfway between object-oriented and functional programming.

The second revolutionizing factor is its single-threaded, asynchronous architecture. Besides
obvious advantages from a performance and scalability point of view, this characteristic
changed the way developers approach concurrency and parallelism. Mutexes are replaced
by queues, threads by callbacks and events, and synchronization by causality.

The last and most important aspect of Node.js lies in its ecosystem: the npm package
manager, its constantly growing database of modules, its enthusiastic and helpful
community, and most importantly, its very own culture based on simplicity, pragmatism,
and extreme modularity.

However, because of these peculiarities, Node.js development gives you a very different
feel compared to the other server-side platforms, and any developer new to this paradigm
will often feel unsure about how to tackle even the most common design and coding
problem effectively. Common questions include: "How do I organize my code?", "What's
the best way to design this?", "How can I make my application more modular?", "How do I
handle a set of asynchronous calls effectively?", "How can I make sure that my application
will not collapse while it grows?", or more simply "What's the right way of doing this?"
Fortunately, Node.js has become a mature enough platform and most of these questions can
now be easily answered with a design pattern, a proven coding technique, or a
recommended practice. The aim of this book is to guide you through this emerging world of
patterns, techniques, and practices, showing you what the proven solutions to the common
problems are and teaching you how to use them as the starting point to building the
solution to your particular problem.

Preface

By reading this book, you will learn the following:
e The "Node way":

How to use the right point of view when approaching a Node.js design
problem. You will learn, for example, how different traditional design
patterns look in Node.js, or how to design modules that do only one thing.

¢ A set of patterns to solve common Node.js design and coding problems:

You will be presented with a "Swiss army knife" of patterns, ready-to-use in
order to efficiently solve your everyday development and design problems.

e How to write modular and efficient Node.js applications:

You will gain an understanding of the basic building blocks and principles of
writing large and well-organized Node.js applications and you will be able to
apply these principles to novel problems that don't fall within the scope of
existing patterns.

Throughout the book, you will be presented with several real-life libraries and technologies,
such as LevelDb, Redis, RabbitMQ, ZMQ), Express, and many others. They will be used to
demonstrate a pattern or technique, and besides making the example more useful, these
will also give you great exposure to the Node.js ecosystem and its set of solutions.

Whether you use or plan to use Node.js for your work, your side project, or for an open
source project, recognizing and using well-known patterns and techniques will allow you to
use a common language when sharing your code and design, and on top of that, it will help
you get a better understanding of the future of Node.js and how to make your own
contributions a part of it.

What this book covers

Chapter 1, Welcome to the Node.js Platform, serves as an introduction to the world of
Node.js application design by showing the patterns at the core of the platform itself. It
covers the Node.js ecosystem and its philosophy, a short introduction to Node.js version 6,
ES2015, and the reactor pattern.

Chapter 2, Node.js Essential Patterns, introduces the first steps towards asynchronous
coding and design patterns with Node.js discussing and comparing callbacks and the event
emitter (observer pattern). This chapter also introduces the Node.js module system and the
related module pattern.

[2]

Preface

Chapter 3, Asynchronous Control Flow Patterns with Callbacks, introduces a set of patterns
and techniques for efficiently handling asynchronous control flow in Node.js. This chapter
teaches you how to mitigate the "callback hell" problem using plain JavaScript and the
async library.

Chapter 4, Asynchronous Control Flow Patterns with ES2015 and Beyond, progresses with the
exploration of asynchronous control flows introducing Promises, Generators, and Async-
Await.

Chapter 5, Coding with Streams, dives deep into one of the most important patterns in
Node.js: streams. It shows you how to process data with transform streams and how to
combine them into different layouts.

Chapter 6, Design Patterns, deals with a controversial topic: traditional design patterns in
Node js. It covers the most popular conventional design patterns and shows you how
unconventional they might look in Node.js. It also introduces the reader to some emerging
design patterns that are specific only to JavaScript and Node js.

Chapter 7, Wiring Modules, analyzes the different solutions for linking the modules of an
application together. In this chapter, you will learn design patterns such as Dependency
Injection and service locator.

Chapter 8, Universal JavaScript for Web Applications, explores one of the most interesting
capabilities of modern JavaScript web applications: being able to share application code
between the frontend and the backend. Across this chapter we learn the basic principles of
Universal JavaScript by building a simple web application with React, Webpack, and Babel.

Chapter 9, Advanced Asynchronous Recipes, takes a problem-solution approach to show you
how some common coding and design challenges can be solved with ready-to-use
solutions.

Chapter 10, Scalability and Architectural Patterns, teaches you the basic techniques and
patterns for scaling a Node.js application.

Chapter 11, Messaging and Integration Patterns, presents the most important messaging

patterns, teaching you how to build and integrate complex distributed systems using ZMQ
and AMQP.

[3]

Preface

What you need for this book

To experiment with the code, you will need a working installation of Node.js version 6 (or
greater) and npm 3 (or greater). Some examples will require you to use a transpiler such as
Babel. You will also need to be familiar with the command prompt, know how to install an
npm package, and know how to run Node.js applications. You will also need a text editor to
work with the code and a modern web browser.

Who this book is for

This book is for developers who have already had initial contact with Node.js and now
want to get the most out of it in terms of productivity, design quality, and scalability. You
are only required to have some prior exposure to the technology through some basic
examples, since this book will cover some basic concepts as well. Developers with
intermediate experience in Node.js will also find the techniques presented in this book
beneficial.

Some background in software design theory is also an advantage to understand some of the
concepts presented.

This book assumes that you have a working knowledge of web application development,
JavaScript, web services, databases, and data structures.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "ES2015
introduces the 1et keyword to declare variables that respect the block scope."

A block of code is set as follows:

const zmg = require('zmg')
const sink = zmqg.socket ('pull');
sink.bindSync ("tcp://*:5001");

sink.on ('message', buffer => {
console.log(Message from worker: ${buffer.toString ()});

)i

[4]

Preface

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

function produce () {
/] ...
variationsStream(alphabet, maxLength)
.on('data', combination => {
/] ...
const msg = {searchHash: searchHash, variations: batch};
channel. sendToQueue (' jobs_queue', new Buffer (JSON.stringify(msg)));
/] ...
H)
/] ...

}
Any command-line input or output is written as follows:

node replier
node requestor

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "To explain the problem, we
will create a little web spider, a command-line application that takes in a web URL as the
input and downloads its contents locally into a file."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

[5]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-

mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http: //www.
packtpub. com. If you purchased this book elsewhere, you can visit http: //www.packtpu
b.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSOk DN =

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged into your Packt account.
Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR / 7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

[6]

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

The code bundle for the book is also hosted on GitHub at http://bit.ly/node_book_co
de. We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/con
tent/support and enter the name of the book in the search field. The required information
will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

[7]

http://bit.ly/node_book_code
http://bit.ly/node_book_code
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Welcome to the Node.|s
Platform

Some principles and design patterns literally define developer experience with the Node.js
platform and its ecosystem; the most peculiar ones are probably its asynchronous nature
and its programming style that, in its simplest incarnation, make heavy use of callbacks. It's
important that we first dive into these fundamental principles and patterns, not only for
writing correct code, but also to be able to take effective design decisions when it comes to
solving bigger and more complex problems.

Another aspect that characterizes Node js is its philosophy. Approaching Node js is in fact
way more than simply learning a new technologys; it's also embracing a culture and a
community. We will see how this greatly influences the way we design our applications
and components, and the way they interact with those created by the community.

In addition to these aspects, it's worth knowing that the latest versions of Node.js
introduced support for many of the features described by ES2015 (formerly ES6), which
makes the language even more expressive and enjoyable to use. It is important to embrace
these new syntactic and functional additions to the language in order to be able to produce
more concise and readable code and come up with alternative ways to implement the
design patterns that we are going to see throughout this book.

In this chapter, we will learn the following topics:

e The Node.js philosophy, the “Node way”
¢ Node,js version 6 and ES2015

e The reactor pattern—the mechanism at the heart of the Node.js asynchronous
architecture

Welcome to the Node.js Platform

The Node.js philosophy

Every platform has its own philosophy —a set of principles and guidelines that are
generally accepted by the community, an ideology of doing things that influences the
evolution of a platform, and how applications are developed and designed. Some of these
principles arise from the technology itself, some of them are enabled by its ecosystem, some
are just trends in the community, and others are evolutions of different ideologies. In
Node.js, some of these principles come directly from its creator, Ryan Dahl; from all the
people who contributed to the core; from charismatic figures in the community; and some
of the principles are inherited from the JavaScript culture or are influenced by the Unix
philosophy.

None of these rules are imposed and they should always be applied with common sense;
however, they can prove to be tremendously useful when we are looking for a source of
inspiration while designing our programs.

You can find an extensive list of software development philosophies on
Wikipedia at http://en.wikipedia.org/wiki/List_of_software_d
evelopment_philosophies.

Small core

The Node.js core itself has its foundations built on a few principles; one of these is having
the smallest set of functionalities, leaving the rest to the so-called userland (or userspace),
the ecosystem of modules living outside the core. This principle has an enormous impact on
the Node.js culture, as it gives freedom to the community to experiment and iterate quickly
on a broader set of solutions within the scope of the userland modules, instead of being
imposed with one slowly evolving solution that is built into the more tightly controlled and
stable core. Keeping the core set of functionalities to the bare minimum, then, not only
becomes convenient in terms of maintainability, but also in terms of the positive cultural
impact that it brings on the evolution of the entire ecosystem.

[91

http://en.wikipedia.org/wiki/List_of_software_development_philosophies
http://en.wikipedia.org/wiki/List_of_software_development_philosophies

Welcome to the Node.js Platform

Small modules

Node.js uses the concept of a module as a fundamental means to structure the code of a
program. It is the building block for creating applications and reusable libraries called
packages (a package is also frequently referred to as a module since, usually, it has one single
module as an entry point). In Node.js, one of the most evangelized principles is to design
small modules, not only in terms of code size, but most importantly in terms of scope.

This principle has its roots in the Unix philosophy, particularly in two of its precepts, which
are as follows:

e “Small is beautiful.”
e “Make each program do one thing well.”

Node.js brought these concepts to a whole new level. Along with the help of npm, the
official package manager, Node.js helps solve the dependency hell problem by making sure
that each installed package will have its own separate set of dependencies, thus enabling a
program to depend on a lot of packages without incurring conflicts. The Node way, in fact,
involves extreme levels of reusability, whereby applications are composed of a high number
of small, well-focused dependencies. While this can be considered unpractical or even
totally unfeasible in other platforms, in Node.js this practice is encouraged. As a
consequence, it is not rare to find npm packages containing less than 100 lines of code or
exposing only one single function.

Besides the clear advantage in terms of reusability, a small module is also considered to be
the following:

e Easier to understand and use
e Simpler to test and maintain
e Perfect to share with the browser

Having smaller and more focused modules empowers everyone to share or reuse even the
smallest piece of code; it's the Don't Repeat Yourself (DRY) principle applied to a whole
new level.

[10]

Welcome to the Node.js Platform

Small surface area

In addition to being small in size and scope, Node.js modules usually also have the
characteristic of exposing a minimal set of functionalities. The main advantage here is
increased usability of the API, which means that the API becomes clearer to use and is less
exposed to erroneous usage. Most of the time, in fact, the user of a component is only
interested in a very limited and focused set of features, without the need to extend its
functionality or tap into more advanced aspects.

In Node,js, a very common pattern for defining modules is to expose only one piece of
functionality, such as a function or a constructor, while letting more advanced aspects or
secondary features become properties of the exported function or constructor. This helps
the user to identify what is important and what is secondary. It is not rare to find modules
that expose only one function and nothing else, for the simple fact that it provides a single,
unmistakably clear entry point.

Another characteristic of many Node.js modules is the fact that they are created to be used
rather than extended. Locking down the internals of a module by forbidding any possibility
of an extension might sound inflexible, but it actually has the advantage of reducing the use
cases, simplifying its implementation, facilitating its maintenance, and increasing its
usability.

Simplicity and pragmatism
Have you ever heard of the Keep It Simple, Stupid (KISS) principle or the famous quote:

“Simplicity is the ultimate sophistication.”
— Leonardo da Vinci

Richard P. Gabriel, a prominentcomputer scientist, coined the term “worse is better” to
describe the model, whereby less and simpler functionality is a good design choice for
software. In his essay, The Rise of “Worse is Better”, he says:

“The design must be simple, both in implementation and interface. It is more important for
the implementation to be simple than the interface. Simplicity is the most important
consideration in a design.”

Designing simple, as opposed to perfect, fully-featured software, is a good practice for
several reasons: it takes less effort to implement, allows faster shipping with fewer
resources, is easier to adapt, and is easier to maintain and understand. These factors foster
community contributions and allow the software itself to grow and improve.

[11]

Welcome to the Node.js Platform

In Nodejs, this principle is also enabled by JavaScript, which is a very pragmatic language.
It's not rare, in fact, to see simple functions, closures, and object literals replacing complex
class hierarchies. Pure object-oriented designs often try to replicate the real world using the
mathematical terms of a computer system without considering the imperfection and the
complexity of the real world itself. The truth is that; our software is always an
approximation of reality, and we would probably have more success in trying to get
something working sooner and with reasonable complexity, instead of trying to create near-
perfect software with huge effort and tons of code to maintain.

Throughout this book, we will see this principle in action many times. For example, a
considerable number of traditional design patterns, such as singleton or decorator, can have
a trivial, even if sometimes not foolproof, implementation and we will see how an
uncomplicated, practical approach (most of the time) is preferred to a pure, flawless design.

Introduction to Node.js 6 and ES2015

At the time of writing, the latest major releases of Node.js (versions 4, 5, and 6) come with
the great addition of increased language support for the new features introduced in the
ECMAScript 2015 specification (in short, ES2015, and formerly known also as ES6), which
aims to make the JavaScript language even more flexible and enjoyable.

Throughout this book, we will widely adopt some of these new features in the code
examples. These concepts are still fresh within the Node.js community so it's worth having
a quick look at the most important ES2015-specific features currently supported in Node.js.
Our version of reference is Node.js version 6.

Depending on your Node.js version, some of these features will work correctly only when
strict mode is enabled. Strict mode can be easily enabled by adding a "use strict"
statement at the very beginning of your script. Notice that the "use strict" statementisa
plain string and that you can either use single or double quotes to declare it. For the sake of
brevity, we will not write this line in our code examples, but you should remember to add it
to be able to run them correctly.

The following list is not meant to be exhaustive but just an introduction to some of the
ES2015 features supported in Node.js, so that you can easily understand all the code
examples in the rest of the book.

[12]

Welcome to the Node.js Platform

The let and const keywords

Historically, JavaScript only offered function scope and global scope to control the lifetime
and the visibility of a variable. For instance, if you declare a variable inside the body of an

if statement, the variable will be accessible even outside the statement, whether or not the
body of the statement has been executed. Let's see it more clearly with an example:

if (false) {
var x = "hello";

}

console.log(x);

This code will not fail as we might expect and it will just print undefined in the console.
This behavior has been the cause of many bugs and a lot of frustration, and that is the
reason why ES2015 introduces the 1et keyword to declare variables that respect the block
scope. Let's replacevar with let in our previous example:

if (false) {
let x = "hello";
}

console.log(x);

This code will raise a ReferenceError: x is not defined because we are trying to
print a variable that has been defined inside another block.

To give a more meaningful example we can use the 1et keyword to define a temporary
variable to be used as an index for a loop:

for (let i=0; 1 < 10; 1i++) {
// do something here
}

console.log(i);

As in the previous example, this code will raise a ReferenceError: i is not defined
error.

This protective behavior introduced with let allows us to write safer code, because if we
accidentally access variables that belong to another scope, we will get an error that will
allow us to easily spot the bug and avoid potentially dangerous side effects.

ES2015 introduces also the const keyword. This keyword allows us to declare constant
variables. Let's see a quick example:

const x = 'This will never change';

- Al L
x = "'...";

[13]

Welcome to the Node.js Platform

This code will raise a TypeError: Assignment to constant variable error because
we are trying to change the value of a constant.

Anyway, it's important to underline that const does not behave in the same way as
constant values in many other languages where this keyword allows us to define read-only
variables. In fact, in ES2015, const does not indicate that the assigned value will be
constant, but that the binding with the value is constant. To clarify this concept, we can see
that with const in ES2015 it is still possible to do something like this:

const x = {};
x.name = 'John';

When we change a property inside the object we are actually altering the value (the object),
but the binding between the variable and the object will not change, so this code will not
raise an error. Conversely, if we reassign the full variable, this will change the binding
between the variable and its value and raise an error:

x = null; // This will fail

Constants are extremely useful when you want to protect a scalar value from being
accidentally changed in your code or, more generically, when you want to protect an
assigned variable to be accidentally reassigned to another value somewhere else in your
code.

It is becoming best practice to use const when requiring a module in a script, so that the
variable holding the module cannot be accidentally reassigned:

const path = require('path');
// .. do stuff with the path module
let path = './some/path'; // this will fail

If you want to create an immutable object, const is not enough, so you

should use ES5's method Object.freeze () (https://developer.mozi
lla.org/it/docs/Web/JavaScript/Reference/Global_Objects/O

bject/freeze) or the deep-freeze module (https://www.npmjs.com
/package/deep-freeze).

[14]

https://developer.mozilla.org/it/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/it/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/it/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://www.npmjs.com/package/deep-freeze
https://www.npmjs.com/package/deep-freeze

Welcome to the Node.js Platform

The arrow function

One of the most appreciated features introduced by ES2015 is the support for arrow
functions. The arrow function is a more concise syntax for defining functions, especially
useful when defining a callback. To better understand the advantages of this syntax, let's
first see an example of classic filtering on an array:

const numbers = [2, 6, 7, 8, 11;
const even = numbers.filter (function(x) {
return x%2 === 0;

P
The preceding code can be rewritten as follows using the arrow function syntax:

const numbers = [2, 6, 7, 8, 1]

const even = numbers.filter(x => x%2 === 0);

The f£ilter function can be defined inline, and the keyword function is removed, leaving
only the list of parameters, which is followed by => (the arrow), which in turn is followed
by the body of the function. When the list of arguments contains more than one argument,
you must surround them with parentheses and separate the argument with commas. Also,
when there is no argument you must provide a set of empty parentheses before the arrow:
() => {...}. When the body of the function is just one line, there's no need to write the
return keyword as it is applied implicitly. If we need to add more lines of code to the body
of the function, we can wrap them in curly brackets, but beware that in this case return is
not automatically implied, so it needs to be stated explicitly, as in the following example:

const numbers = [2, 6, 7, 8, 11;
const even = numbers.filter(x => {
if (x%2 === 0) {
console.log(x + ' is even!');

return true;
}
}) i

But there is another important feature to know about arrow functions: arrow functions are
bound to their lexical scope. This means that inside an arrow function the value of this is
the same as in the parent block. Let's clarify this concept with an example:

function DelayedGreeter (name) {
this.name = name;

}

DelayedGreeter.prototype.greet = function() {
setTimeout (function cb () {
console.log('Hello ' + this.name);

[15]

Welcome to the Node.js Platform

}, 500);
bi

const greeter = new DelayedGreeter ('World');
greeter.greet (); // will print "Hello undefined"

In this code, we are defining a simple greeter prototype that accepts a name as an
argument. Then we are adding the greet method to the prototype. This function is
supposed to print Hello and the name defined in the current instance 500 milliseconds
after it has been called. But this function is broken, because inside the timeout callback
function (cb), the scope of the function is different from the scope of greet method and
the value of this is undefined.

Before Node.js introduced support for arrow functions, to fix this we needed to change the
greet function using bind, as follows:

DelayedGreeter.prototype.greet = function() {
setTimeout ((function cb () {
console.log('Hello' + this.name);
}) .bind(this), 500);
}i

But since we have now arrow functions and since they are bound to their lexical scope, we
can just use an arrow function as a callback to solve the issue:

DelayedGreeter.prototype.greet = function() {
setTimeout (() => console.log('Hello' + this.name), 500);
bi

This is a very handy feature; most of the time it makes our code more concise and
straightforward.

Class syntax

ES2015 introduces a new syntax to leverage prototypical inheritance in a way that should
sound more familiar to all the developers that come from classic object-oriented languages
such as Java or C#. It's important to underline that this new syntax does not change the way
objects are managed internally by the JavaScript runtime; they still inherit properties and
functions through prototypes and not through classes. While this new alternative syntax
can be very handy and readable, as a developer, it is important to understand that it is just
syntactic sugar.

[16]

Welcome to the Node.js Platform

Let's see how it works with a trivial example. First of all, let's describe a Person function
using the classic prototype-based approach:

function Person (name, surname, age) {

this.name = name;
this.surname = surname;
this.age = age;

Person.prototype.getFullName = function() {

return this.name + '' + this.surname;
}i
Person.older = function (personl, person2) A
return (personl.age >= person2.age) ? personl : person2;

}i

As you can see, a person has name, surname, and age. We are providing our prototype
with a helper function that allows us to easily get the full name of a person object and a
generic helper function accessible directly from the Person prototype that returns the older
person between two Person instances given as input.

Let's see now how we can implement the same example using the new handy ES2015class
syntax:

class Person {
constructor (name, surname, age) A
this.name = name;
this.surname = surname;
this.age = age;

getFullName () {
return this.name + ' ' + this.surname;

static older (personl, person2) {
return (personl.age >= person2.age) ? personl : person2;

}

This syntax is more readable and straightforward to understand. We are explicitly stating
what the constructor is for the class and declaring the function older asa static

method.

[17]

Welcome to the Node.js Platform

The two implementations are completely interchangeable, but the real killer feature of the
new syntax is the possibility of extending the Person prototype using the extend and
super keywords. Let's assume we want to create a PersonWithMiddlename class:

class PersonWithMiddlename extends Person {
constructor (name, middlename, surname, age) {
super (name, surname, age);
this.middlename = middlename;

}

getFullName () {
return this.name + '' + this.middlename + '' + this.surname;

}
}

What is worth noticing in this third example is that the syntax really resembles what is
common in other object-oriented languages. We are declaring the class from which we want
to extend, we define a new constructor that can call the parent one using the keyword
super, and we override the getFullName method to add support for our middle name.

Enhanced object literals

Along with the new class syntax, ES2015 introduced an enhanced object literals syntax. This
syntax offers a shorthand to assign variables and functions as members of the object, allows
us to define computed member names at creation time, and also handy setter and getter
methods.

Let's make all of this clear with some examples:
const x = 22;
const y = 17;
const obj = { x, v };

obj will be an object containing the keys x and y with the values 22 and 17, respectively.

We can do the same thing with functions:

module.exports {
square (x) |
return x * x;
}I
cube (x) A
return x * x * x;
}
}i

[18]

Welcome to the Node.js Platform

In this case, we are writing a module that exports the functions square and cube mapped
to properties with the same name. Notice that we don't need to specify the keyword
function.

Let's see in another example how we can use computed property names:

const namespace = '-webkit-';

const style = {
[namespace + 'box-sizing'] : 'border-box',
[namespace + 'box-shadow'] : '10pxlO0px5px #888888"'

bi

In this case, the resulting object will contain the properties ~webkit-box-sizingand -
webkit-box—-shadow.

Let's see now how we can use the new setter and getter syntax by jumping directly to an
example:

const person = {
name : 'George',
surname : 'Boole',

get fullname () {
return this.name + '' + this.surname;

b

set fullname (fullname) {

let parts = fullname.split('');
this.name = parts[0];
this.surname = parts[1l];

}
bi

console.log(person.fullname); // "George Boole"
console.log(person.fullname = 'Alan Turing'); // "Alan Turing"
console.log(person.name); // "Alan"

In this example we are defining three properties, two normal ones, name and surname, and
a computed fullname property through the set and get syntax. As you can see from the
result of the console. log calls, we can access the computed property as if it was a regular
property inside the object for both reading and writing the value. It's worth noticing that the
second call to console.log prints Alan Turing. This happens because by default every
set function returns the value that is returned by the get function for the same property, in
this case get fullname.

[19]

Welcome to the Node.js Platform

Map and Set collections

As JavaScript developers, we are used to creating hash maps using plain objects. ES2015
introduces a new prototype called Map that is specifically designed to leverage hash map
collections in a more secure, flexible, and intuitive way. Let's see a quick example:

const profiles = new Map();

profiles.set ('twitter', '@adalovelace');
profiles.set ('facebook', 'adalovelace');
profiles.set ('googleplus', 'ada');

profiles.size; // 3

profiles.has ('twitter'); // true

profiles.get ('twitter'); // "@adalovelace"

profiles.has ('youtube'); // false

profiles.delete ('facebook');

profiles.has ('facebook'); // false

profiles.get ('facebook'); // undefined

for (const entry of profiles) {
console.log(entry);

}

As you can see, the Map prototype offers several handy methods, such as set, get, has, and
delete, and the size attribute (notice how the latter differs from arrays where we use the
attribute length). We can also iterate through all the entries using the for. . .of syntax.
Every entry in the loop will be an array containing the key as first element and the value as
second element. This interface is very intuitive and self-explanatory.

But what makes maps really interesting is the possibility of using functions and objects as
keys of the map, and this is something that is not entirely possible using plain objects,
because with objects all the keys are automatically cast to strings. This opens new
opportunities; for example, we can build a micro testing framework leveraging this feature:

const tests = new Map();
tests.set (() => 242, 4);
tests.set (() => 2*2, 4);
tests.set (() => 2/2, 1);

for (const entry of tests) {
console.log((entry[0] () === entry[1]) ? 'PASS' : 'FAIL');
}

[20]

Welcome to the Node.js Platform

As you can see in this last example, we are storing functions as keys and expected results as
values. Then we can iterate through our hash map and execute all the functions. It's also
worth noticing that when we iterate through the map, all the entries respect the order in
which they have been inserted; this is also something that was not always guaranteed with
plain objects.

Along with Map, ES2015 also introduces the Set prototype. This prototype allows us to
easily construct sets, which means lists with unique values:

const s = new Set ([0, 1, 2, 3]);
s.add (3); // will not be added
s.size; // 4

s.delete (0);

s.has (0); // false

for (const entry of s) {
console.log(entry);

}

As you can see, in this example the interface is quite similar to the one we have just seen for
Map. We have the methods add (instead of set), has, and delete and the property size.
We can also iterate through the set and in this case every entry is a value, in our example it
will be one of the numbers in the set. Finally, sets can also contain objects and functions as
values.

WeakMap and WeakSet collections

ES2015 also defines a “weak” version of the Map and the set prototypes called weakMap
and WeakSet.

WeakMap is quite similar to Map in terms of interface; however, there are two main
differences you should be aware of: there is no way to iterate all over the entries, and it only
allows having objects as keys. While this might seem like a limitation, there is a good reason
behind it. In fact, the distinctive feature of weakMap is that it allows objects used as keys to
be garbage collected when the only reference left is inside WeakMap. This is extremely useful
when we are storing some metadata associated with an object that might get deleted during
the regular lifetime of the application. Let's see an example:

let obj = {};
const map = new WeakMap();

map.set (obj, {key: "some_value"});
console.log(map.get (obj)); // {key: "some_value"}
obj = undefined; // now obj and the associated data in the map

[21]

Welcome to the Node.js Platform

// will be cleaned up in the next gc cycle

In this code, we are creating a plain object called obj. Then we store some metadata for this
object in a new WeakMap called map. We can access this metadata with the map . get method.
Later, when we cleanup the object by assigning its variable to undefined, the object will be
correctly garbage collected and its metadata removed from the map.

Similar to WeakMap, WeaksSet is the weak version of set: it exposes the same interface of
Set but it only allows storing objects and cannot be iterated. Again, the difference with set
is that weakSet allows objects to be garbage collected when their only reference left is in the
weak set:

let objl= {key: "vall"};

let obj2= {key: "val2"};

const set= new WeakSet ([objl, obj2]);
console.log(set.has(objl)); // true

objl= undefined; // now objl will be removed from the set
console.log(set.has(objl)); // false

It's important to understand that weakMap and WeakSet are not better or worse than Map
and Set, they are simply more suitable for different use cases.

Template literals

ES2015 offers a new alternative and more powerful syntax to define strings: the template
literals. This syntax uses back ticks (") as delimiters and offers several benefits compared to
regular quoted (') or double-quoted (") delimited strings. The main benefits are that
template literal syntax can interpolate variables or expressions using ${expression}
inside the string (this is the reason why this syntax is called “template”) and that a single
string can finally be easily written in multiple lines. Let's see a quick example:

const name = "Leonardo";
const interests = ["arts", "architecture", "science", "music",
"mathematics"];
const birth = { year : 1452, place : 'Florence' };
const text = "${name} was an Italian polymath
interested in many topics such as
${interests.join(', ') }.He was born

in ${birth.year} in ${birth.place}.’;
console.log(text);

[22]

Welcome to the Node.js Platform

This code will print the following:

Leonardo was an Italian polymath interested in many topics
such as arts, architecture, science, music, mathematics.
He was born in 1452 in Florence.

Downloading the example code

Detailed steps to download the code bundle are mentioned in the Preface
of this book. Have a look.

The code bundle for the book is also hosted on GitHub at:
http://bit.ly/node_book_code.

We also have other code bundles from our rich catalog of books and
videos available at:

https://github.com/PacktPublishing/.

Other ES2015 features

Another extremely interesting feature added in ES2015 and available since Node.js version
4 is Promise. We will discuss Promise in detail in Chapter 4, Asynchronous Control Flow
Patterns with ES2015 and Beyond.

Other interesting ES2015 features introduced in Node.js version 6 are as follows:

¢ Default function parameters

¢ Rest parameters

e Spread operator

e Destructuring

® new.target (we will talk about this in Chapter 2, Node.js Essential Patterns)
e Proxy (we will talk about this in Chapter 6, Design Patterns)

e Reflect

¢ Symbols

A more extended and up-to-date list of all the supported ES2015 features
is available in the official Node.js documentation:
https://nodejs.org/en/docs/es6/.

[23]

http://bit.ly/node_book_code
https://github.com/PacktPublishing/
https://nodejs.org/en/docs/es6/

Welcome to the Node.js Platform

The reactor pattern

In this section, we will analyze the reactor pattern, which is the heart of the asynchronous
nature of Node.js. We will go through the main concepts behind the pattern, such as the
single-threaded architecture and the non-blocking I/O, and we will see how this creates the
foundation for the entire Node.js platform.

/0 is slow

I/O is definitely the slowest among the fundamental operations of a computer. Accessing
the RAM is in the order of nanoseconds (10E-9 seconds), while accessing data on the disk or
the network is in the order of milliseconds (10E-3 seconds). For the bandwidth, it is the
same story; RAM has a transfer rate consistently in the order of GB/s, while disk and
network varies from MB/s to, optimistically, GB/s. I/O is usually not expensive in terms of
CPU, but it adds a delay between the moment the request is sent and the moment the
operation completes. On top of that, we also have to consider the human factor; often, the
input of an application comes from a real person, for example, the click of a button or a
message sent in a real-time chat application, so the speed and frequency of I/O doesn't only
depend on technical aspects and it can be many orders of magnitude slower than the disk or
network.

Blocking 1/O

In traditional blocking I/O programming, the function call corresponding to an I/O request
will block the execution of the thread until the operation completes. This can go from a few
milliseconds, in the case of disk access, to minutes or even more, in case the data is
generated from user actions, such as pressing a key. The following pseudocode shows a
typical blocking thread performed against a socket:

//blocks the thread until the data is available
data = socket.read();

//data is available

print (data);

[24]

Welcome to the Node.js Platform

It is trivial to notice that a web server that is implemented using blocking I/O will not be
able to handle multiple connections in the same thread; each I/O operation on a socket will
block the processing of any other connection. For this reason, the traditional approach to
handling concurrency in web servers is to kick off a thread or a process (or to reuse one
taken from a pool) for each concurrent connection that needs to be handled. This way, when
a thread gets blocked for an I/O operation it will not impact the availability of the other
requests, because they are handled in separate threads.

The following image illustrates this scenario:

Connection A

Connection B

Connection C

A 4

Idle time]

handle data
from A

handle data
from A

Server

—

handle data from B

handle data from C

Thread

Thread

Thread

The preceding image lays emphasis on the amount of time each thread is idle, waiting for
new data to be received from the associated connection. Now, if we also consider that any
type of I/O can possibly block a request, for example, while interacting with databases or
with the filesystem, we soon realize how many times a thread has to block in order to wait
for the result of an I/O operation. Unfortunately, a thread is not cheap in terms of system
resources; it consumes memory and causes context switches, so having a long-running
thread for each connection and not using it for most of the time is not the best compromise
in terms of efficiency.

[25]

Welcome to the Node.js Platform

Non-blocking I/O

In addition to blocking I/O, most modern operating systems support another mechanism to
access resources called non-blocking I/O. In this operating mode, the system call always
returns immediately without waiting for the data to be read or written. If no results are
available at the moment of the call, the function will simply return a predefined constant,
indicating that there is no data available to return at that moment.

For example, in Unix operating systems, the fcnt1 () function is used to manipulate an
existing file descriptor to change its operating mode to non-blocking (with the 0_NONBLOCK
flag). Once the resource is in non-blocking mode, any read operation will fail with the
return code EAGAIN, in case the resource doesn't have any data ready to be read.

The most basic pattern for accessing this kind of non-blocking I/O is to actively poll the
resource within a loop until some actual data is returned; this is called busy-waiting. The
following pseudocode shows you how it's possible to read from multiple resources using
non-blocking I/O and a polling loop:

resources = [socketA, socketB, pipeAl;
while (!resources.isEmpty ()) {
for(i = 0; 1 < resources.length; i++) {
resource = resources[i];
//try to read
let data = resource.read();
if (data === NO_DATA_AVAILABLE)
//there is no data to read at the moment
continue;
if (data === RESOURCE_CLOSED)
//the resource was closed, remove it from the list
resources.remove (i) ;
else
//some data was received, process it
consumeData (data) ;

}

You can see that, with this simple technique, it is already possible to handle different
resources in the same thread, but it's still not efficient. In fact, in the preceding example, the
loop will only consume precious CPU for iterating over resources that are unavailable most
of the time. Polling algorithms usually result in a huge amount of wasted CPU time.

[26]

Welcome to the Node.js Platform

Event demultiplexing

Busy-waiting is definitely not an ideal technique for processing non-blocking resources, but
luckily, most modern operating systems provide a native mechanism to handle concurrent,
non-blocking resources in an efficient way; this mechanism is called synchronous event
demultiplexer or event notification interface. This component collects and queues I/O
events that come from a set of watched resources, and block until new events are available
to process. The following is the pseudocode of an algorithm that uses a generic synchronous
event demultiplexer to read from two different resources:

sockethA, pipeB;

watchedList.add (socketA, FOR_READ) ; // 1]
watchedList.add (pipeB, FOR_READ);
while (events = demultiplexer.watch (watchedList)) { //12]
//event loop
foreach (event in events) { // 3]
//This read will never block and will always return data
data = event.resource.read();
if (data === RESOURCE_CLOSED)

//the resource was closed, remove it from the watched list
demultiplexer.unwatch (event.resource);
else
//some actual data was received, process it
consumeData (data) ;

}
These are the important steps of the preceding pseudocode:

1. The resources are added to a data structure, associating each one of them with a
specific operation, in our example, read.

2. The event notifier is set up with the group of resources to be watched. This call is
synchronous and blocks until any of the watched resources are ready for read.
When this occurs, the event demultiplexer returns from the call and a new set of
events is available to be processed.

3. Each event returned by the event demultiplexer is processed. At this point, the
resource associated with each event is guaranteed to be ready to read and to not
block during the operation. When all the events are processed, the flow will block
again on the event demultiplexer until new events are again available to be
processed. This is called the event loop.

[27]

Welcome to the Node.js Platform

It's interesting to see that with this pattern, we can now handle several I/O operations inside
a single thread, without using a busy-waiting technique. The following image shows us
how a web server would be able to handle multiple connections using a synchronous event
demultiplexer and a single thread:

/ \ Idle time ||

Connection A

v

Connection B handle data handle data handle data

from A from C from B

v

Server

’ Thread

Connection C

A 4

—

The previous image helps us understand how concurrency works in a single-threaded
application using a synchronous event demultiplexer and non-blocking I/O. We can see that
using only one thread does not impair our ability to run multiple I/O bound tasks
concurrently. The tasks are spread over time, instead of being spread across multiple
threads. This has the clear advantage of minimizing the total idle time of the thread, as
clearly shown in the image. This is not the only reason for choosing this model. To have
only a single thread, in fact, also has a beneficial impact on the way programmers approach
concurrency in general. Throughout the book, we will see how the absence of in-process
race conditions and multiple threads to synchronize allows us to use much simpler
concurrency strategies.

In the next chapter, we will have the opportunity to talk more about the concurrency model
of Node js.

[28]

Welcome to the Node.js Platform

Introducing the reactor pattern

We can now introduce the reactor pattern, which is a specialization of the algorithms
presented in the previous section. The main idea behind it is to have a handler (which in
Node,js is represented by a callback function) associated with each I/O operation, which
will be invoked as soon as an event is produced and processed by the event loop. The
structure of the reactor pattern is shown in the following image:

& Application

Execute
_________ Handler

Request
I/0

(Event Queue \

3 Event Handler

A
/ Event Demultiplexer \

Resource Handler

Operation

Event Loop

A

Resource]‘ Operation]‘ Handler]

[29]

Welcome to the Node.js Platform

This is what happens in an application using the reactor pattern:

1.

L

The application generates a new I/O operation by submitting a request to the
Event Demultiplexer. The application also specifies a handler, which will be
invoked when the operation completes. Submitting a new request to the Event
Demultiplexer is a non-blocking call and it immediately returns control to the
application.

When a set of I/O operations completes, the Event Demultiplexer pushes the new
events into the Event Queue.

At this point, the Event Loop iterates over the items of the Event Queue.
For each event, the associated handler is invoked.

The handler, which is part of the application code, will give back control to the
Event Loop when its execution completes (5a). However, new asynchronous
operations might be requested during the execution of the handler (5b), causing
new operations to be inserted in the Event Demultiplexer (1), before control is
given back to the Event Loop.

When all the items in the Event Queue are processed, the loop will block again
on the Event Demultiplexer which will then trigger another cycle when a new
event is available.

The asynchronous behavior is now clear: the application expresses the interest to access a
resource at one point in time (without blocking) and provides a handler, which will then be
invoked at another point in time when the operation completes.

A Node.js application will exit automatically when there are no more
pending operations in the Event Demultiplexer, and no more events to be
processed inside the Event Queue.

We can now define the pattern at the heart of Node.js:

Pattern (reactor) handles I/O by blocking until new events are available from a set of
observed resources, and then reacts by dispatching each event to an associated handler.

[30]

Welcome to the Node.js Platform

The non-blocking I/O engine of Node.js-libuv

Each operating system has its own interface for the Event Demultiplexer: epoll on Linux,
kqueue on Mac OS X, and the I/O Completion Port (IOCP) API on Windows. Besides that,
each I/O operation can behave quite differently depending on the type of the resource, even
within the same OS. For example, in Unix, regular filesystem files do not support non-
blocking operations, so, in order to simulate non-blocking behavior, it is necessary to use a
separate thread outside the Event Loop. All these inconsistencies across and within the
different operating systems required a higher-level abstraction to be built for the Event
Demultiplexer. This is exactly why the Node.js core team created a C library called libuv,
with the objective to make Node.js compatible with all the major platforms and normalize
the non-blocking behavior of the different types of resource; libuv today represents the low-
level I/O engine of Nodejs.

Besides abstracting the underlying system calls, libuv also implements the reactor pattern,
thus providing an API for creating event loops, managing the event queue, running
asynchronous I/O operations, and queuing other types of task.

by Nikhil Marathe, which is available at:

A great resource to learn more about libuv is the free online book created
0 http://nikhilm.github.io/uvbook/

The recipe for Node.js

The reactor pattern and libuv are the basic building blocks of Node.js, but we need the
following three other components to build the full platform:

¢ A set of bindings responsible for wrapping and exposing libuv and other low-
level functionality to JavaScript.

e V8, the JavaScript engine originally developed by Google for the Chrome
browser. This is one of the reasons why Node.js is so fast and efficient. V8 is
acclaimed for its revolutionary design, its speed, and for its efficient memory
management.

e A core JavaScript library (called node-core) that implements the high-level
Node.js APL

[31]

http://nikhilm.github.io/uvbook/

Welcome to the Node.js Platform

Finally, this is the recipe of Node.js, and the following image represents its final
architecture:

Userland modules and applications

Node.js
s ~
Core Javascript API (node-core)

\ J
4 ~
Bindings
4 N
V8 libuv

Summary

In this chapter, we have seen how the Node.js platform is based on a few important
principles that provide the foundation to build efficient and reusable code. The philosophy
and the design choices behind the platform have, in fact, a strong influence on the structure
and behavior of every application and module we create. Often, for a developer moving
from another technology, these principles might seem unfamiliar and the usual instinctive
reaction is to fight the change by trying to find more familiar patterns inside a world which,
in reality, requires a real shift in the mindset.

On one hand, the asynchronous nature of the reactor pattern requires a different
programming style made of callbacks and things that happen at a later time, without
worrying too much about threads and race conditions. On the other hand, the module
pattern and its principles of simplicity and minimalism create interesting new scenarios in
terms of reusability, maintenance, and usability.

[32]

Welcome to the Node.js Platform

Finally, besides the obvious technical advantages of being fast, efficient, and based on
JavaScript, Node.js is attracting so much interest because of the principles we have just
discovered. For many, grasping the essence of this world feels like returning to the origins,
to a more humane way of programming in both size and complexity, and that's why
developers end up falling in love with Node.js. The introduction of ES2015 makes things
even more interesting and opens new scenarios in which we can embrace all these
advantages with an even more expressive syntax.

In the next chapter, we will get deep into the two basic asynchronous patterns used in
Node,js: the callback pattern and the event emitter. We will also understand the difference
between synchronous and asynchronous code and how to avoid writing unpredictable
functions.

[33]

Node.js Essential Patterns

Embracing the asynchronous nature of Node.js is not trivial at all, especially if coming from
a language such as PHP where it is not usual to deal with asynchronous code.

In synchronous programming, we are used to the concept of imagining code as a series of
consecutive computing steps defined to solve a specific problem. Every operation is
blocking, which means that only when an operation is completed is it possible to execute
the next one. This approach makes the code easy to understand and debug.

Instead, in asynchronous programming, some operations, such as reading a file or
performing a network request, can be executed as an operation in the background. When an
asynchronous operation is invoked, the next one is executed immediately, even if the
previous operation has not finished yet. The operations pending in the background can
complete at any time, and the whole application should be programmed to react in the
proper way when an asynchronous call finishes.

While this non-blocking approach could almost always guarantee superior performance
compared to an always-blocking scenario, it provides a paradigm that could be hard to
reason about and that can get really cumbersome when dealing with more advanced
applications that require complex control flows.

Node js offers a series of tools and design patterns to deal optimally with asynchronous
code. It's important to learn how to use them to gain confidence and write applications that
are both performant and easy to understand and debug.

In this chapter, we will see two of the most important asynchronous patterns: callback and
event emitter.

Node.js Essential Patterns

The callback pattern

Callbacks are the materialization of the handlers of the reactor pattern, which we
introduced in the previous chapter. They are one of those imprints that give Node.js its
distinctive programming style. Callbacks are functions that are invoked to propagate the
result of an operation and this is exactly what we need when dealing with asynchronous
operations. They do replace the use of the return instruction that always executes
synchronously. JavaScript is a great language to represent callbacks, because as we have
seen, functions are first class objects and can be easily assigned to variables, passed as
arguments, returned from another function invocation or stored into data structures.
Another ideal construct for implementing callbacks is closures. With closures, we can in
fact reference the environment in which a function was created; we can always maintain the
context in which the asynchronous operation was requested, no matter when or where its
callback is invoked.

If you need to refresh your knowledge about closures, you can refer to the article on the
Mozilla Developer Network at https://developer.mozilla.org/en-US/docs/Web/Ja
vaScript/Guide/Closures.

In this section, we will analyze this particular style of programming that's made of callbacks
instead of x return instructions.

The continuation-passing style

In JavaScript, a callback is a function that is passed as an argument to another function and
is invoked with the result when the operation completes. In functional programming, this
way of propagating the result is called continuation-passing style (CPS). It is a general
concept, and it is not always associated with asynchronous operations. In fact, it simply
indicates that a result is propagated by passing it to another function (the callback), instead
of directly returning it to the caller.

Synchronous continuation-passing style

To clarify the concept, let's take a look at a simple synchronous function:

function add(a, b) {
return a + b;

}

[35]

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Closures

Node.js Essential Patterns

There is nothing special here; the result is passed back to the caller using the return
instruction; this is also called direct style, and it represents the most common way of
returning a result in synchronous programming. The equivalent continuation-passing style
of the preceding function would be as follows:

function add(a, b, callback) {
callback(a + b);
}

The add () function is a synchronous CPS function, which means that it will return a value
only when the callback completes its execution. The following code demonstrates this
statement:

console.log('before');
add (1, 2, result => console.log('Result: ' + result));
console.log('after');

Since add () is synchronous, the previous code will trivially print the following;:

before
Result: 3
after

Asynchronous continuation-passing style

Now, let's consider a case where the add () function is asynchronous, as follows:

function additionAsync(a, b, callback) {
setTimeout (() => callback(a + b), 100);
}

In the previous code, we used setTimeout () to simulate an asynchronous invocation of
the callback. Now, let's try to use additionAsync and see how the order of the operations
changes:

console.log('before');
additionAsync (1, 2, result => console.log('Result: ' + result));
console.log('after');

The preceding code will print the following output:

before
after
Result: 3

[36]

Node.js Essential Patterns

Since setTimeout () triggers an asynchronous operation, it will not wait for the callback to
be executed, but instead, it returns immediately, giving the control back to

additionAsync (), and then back to its caller. This property in Node.js is crucial, as it gives
control back to the event loop as soon as an asynchronous request is sent, thus allowing a
new event from the queue to be processed.

The following image shows how this works:

Function invocationL
»

1 > console.log(’before’)
T Transfer of control
C 2 e
A 4

/,,:" addAysnc(...)
5 ' Z ——————— setTimeout(...)
6
EventLoop | ¢--——-—————————__"A console.log(after’)

When the async
operation
completes 7

B % callback(a + b)
10 "Q,
9 T console.log('Result:
‘+result)

When the asynchronous operation completes, the execution is then resumed starting from
the callback provided to the asynchronous function that caused the unwinding. The
execution will start from the Event Loop, so it will have a fresh stack. This is where
JavaScript comes in really handy. Thanks to closures, it is trivial to maintain the context of
the caller of the asynchronous function, even if the callback is invoked at a different point in
time and from a different location.

A synchronous function blocks until it completes its operations. An asynchronous function
returns immediately and the result is passed to a handler (in our case, a callback) at a later
cycle of the event loop.

[37]

Node.js Essential Patterns

Non-continuation-passing style callbacks

There are several circumstances in which the presence of a callback argument might make
us think that a function is asynchronous or is using a continuation-passing style; that's not
always true. Let's take, for example, the map () method of an Array object:

const result = [1, 5, 7].map(element => element - 1);
console.log(result); // [0, 4, 6]

Clearly, the callback is used just to iterate over the elements of the array, and not to pass the
result of the operation. In fact, the result is returned synchronously using a direct style. The
intent of a callback is usually clearly stated in the documentation of the APIL

Synchronous or asynchronous?

We have seen how the order of the instructions changes radically depending on the nature
of a function-synchronous or asynchronous. This has strong repercussions on the flow of
the entire application, both in correctness and efficiency. The following is an analysis of
these two paradigms and their pitfalls. In general, what must be avoided is creating
inconsistency and confusion around the nature of an API, as doing so can lead to a set of
problems which might be very hard to detect and reproduce. To drive our analysis, we will
take as an example the case of an inconsistently asynchronous function.

An unpredictable function

One of the most dangerous situations is to have an API that behaves synchronously under
certain conditions and asynchronously under others. Let's take the following code as an
example:

const fs = require('fs');
const cache = {};
function inconsistentRead(filename, callback) {
if (cache[filename]) {
//invoked synchronously
callback (cache[filename]) ;
} else {
//asynchronous function
fs.readFile(filename, 'utf8', (err, data) => {
cache[filename] = data;
callback (data) ;
P) i

[38]

Node.js Essential Patterns

The preceding function uses the cache variable to store the results of different file read
operations. Bear in mind that this is just an example, it does not have error management,
and the caching logic itself is suboptimal. Besides this, the preceding function is dangerous
because it behaves asynchronously if the cache is not set-which is not until the
fs.readFile () function returns its results-but it will also be synchronous for all the

subsequent requests for a file already in the cache-triggering an immediate invocation of the
callback.

Unleashing Zalgo

Now, let's see how the use of an unpredictable function, such as the one that we defined
previously, can easily break an application. Consider the following code:

function createFileReader (filename) {
const listeners = [];
inconsistentRead (filename, value => {
listeners.forEach(listener => listener (value));
)i

return |
onDataReady: listener => listeners.push(listener)
}i
}

When the preceding function is invoked, it creates a new object that acts as a notifier,
allowing us to set multiple listeners for a file read operation. All the listeners will be
invoked at once when the read operation completes and the data is available. The preceding
function uses our inconsistentRead () function to implement this functionality. Let's
now try to use the createFileReader () function:

const readerl = createFileReader ('data.txt');
readerl.onDataReady (data => {
console.log('First call data: ' + data);
//...sometime later we try to read again from
//the same file
const reader2 = createFileReader ('data.txt');
reader2.onDataReady (data => {
console.log('Second call data: ' + data);

)i
)i

[39]

Node.js Essential Patterns

The preceding code will print the following output:

First call data: some data
As you can see, the callback of the second operation is never invoked. Let's see why:

¢ During the creation of reader1, our inconsistentRead () function behaves
asynchronously, because there is no cached result available. Therefore, we have
all the time in the world to register our listener, as it will be invoked later in
another cycle of the event loop, when the read operation completes.

e Then, reader2 is created in a cycle of the event loop in which the cache for the
requested file already exists. In this case, the inner call to inconsistentRead ()
will be synchronous. So, its callback will be invoked immediately, which means
that all the listeners of reader2 will be invoked synchronously as well. However,
we are registering the listeners after the creation of reader2, so they will never
be invoked.

The callback behavior of our inconsistentRead () function is really unpredictable, as it
depends on many factors, such as the frequency of its invocation, the filename passed as
argument, and the amount of time taken to load the file.

The bug that we've just seen might be extremely complicated to identify and reproduce in a
real application. Imagine using a similar function in a web server, where there can be
multiple concurrent requests; imagine seeing some of those requests hanging, without any
apparent reason and without any error being logged. This definitely falls under the
category of nasty defects.

Isaac Z. Schlueter, creator of npm and former Node.js project lead, in one of his blog posts
compared the use of this type of unpredictable functions to unleashing Zalgo.

Zalgo is an Internet legend about an ominous entity believed to cause insanity, death, and
destruction of the world. If you're not familiar with Zalgo, you are invited to find out what
itis.

You can find Isaac Z. Schlueter's original post at http://blog.izs.me/post/591427421
43/designing-apis-for—asynchrony.

Using synchronous APIs

The lesson to learn from the unleashing Zalgo example is that it is imperative for an API to
clearly define its nature: either synchronous or asynchronous.

[40]

http://blog.izs.me/post/59142742143/designing-apis-for-asynchrony
http://blog.izs.me/post/59142742143/designing-apis-for-asynchrony

Node.js Essential Patterns

One suitable fix for our inconsistentRead () function is to make it totally synchronous.
This is possible because Node.js provides a set of synchronous direct style APIs for most
basic I/O operations. For example, we can use the £s.readFileSync () function in place of
its asynchronous counterpart. The code would now be as follows:

const fs = require('fs');
const cache = {};
function consistentReadSync (filename) {
if (cache[filename]) {
return cache[filename];
} else {
cache[filename] = fs.readFileSync(filename, 'utf8');

return cache[filename];
}

We can see that the entire function was also converted to a direct style. There is no reason
for a function to have a continuation-passing style if it is synchronous. In fact, we can state
that it is always best practice to implement a synchronous API using a direct style; this will
eliminate any confusion around its nature and will also be more efficient from a
performance perspective.

Pattern
Prefer the direct style for purely synchronous functions.

Bear in mind that changing an API from CPS to a direct style, or from asynchronous to
synchronous or vice versa might also require a change to the style of all the code using it.
For example, in our case, we will have to totally change the interface of our
createFileReader () APl and adapt it to always work synchronously.

Also, using a synchronous API instead of an asynchronous one has some caveats:

¢ A synchronous API for a specific functionality might not always be available.

¢ A synchronous API will block the event loop and put the concurrent requests on
hold. It does break the JavaScript concurrency model, slowing down the whole
application. We will see later in the book what this really means for our
applications.

[41]

Node.js Essential Patterns

In our consistentReadSync () function, the risk of blocking the event loop is partially
mitigated because the synchronous I/O API is invoked only once per filename, while the
cached value will be used for all the subsequent invocations. If we have a limited number of
static files, then using consistentReadSync () won't have a big effect on our event loop.
Things can change quickly if we have to read many files and only once. Using synchronous
I/O in Node.js is strongly discouraged in many circumstances; however, in some situations,
this might be the easiest and most efficient solution. Always evaluate your specific use case
in order to choose the right alternative. Just to make a real use case example: it makes
perfect sense to use a synchronous blocking API to load a configuration file while
bootstrapping an application.

Use blocking API only when they don't affect the ability of the application to serve
concurrent requests.

Deferred execution

Another alternative for fixing our inconsistentRead () function is to make it purely
asynchronous. The trick here is to schedule the synchronous callback invocation to be
executed “in the future” instead of being run immediately in the same event loop cycle. In
Node,js, this is possible using process.nextTick (), which defers the execution of a
function until the next pass of the event loop. Its functioning is very simple; it takes a
callback as an argument and pushes it to the top of the event queue, in front of any pending
I/O event, and returns immediately. The callback will then be invoked as soon as the event
loop runs again.

Let's apply this technique to fix our inconsistentRead () function as follows:

const fs = require('fs');
const cache = {};
function consistentReadAsync (filename, callback) {
if (cache[filename]) {
process.nextTick (() => callback(cache[filename]));
} else {
//asynchronous function
fs.readFile(filename, 'utf8', (err, data) => {
cache[filename] = data;

callback (data) ;
)i

}

Now, our function is guaranteed to invoke its callback asynchronously, under any
circumstances.

[42]

Node.js Essential Patterns

Another API for deferring the execution of code is set Immediate (). While their purposes
are very similar, their semantics are quite different. Callbacks deferred with
process.nextTick () run before any other I/O event is fired, while with

setImmediate (), the execution is queued behind any I/O event that is already in the
queue. Since process.nextTick () runs before any already scheduled I/O, it might cause
I/O starvation under certain circumstances, for example, a recursive invocation; this can
never happen with set Immediate (). We will learn to appreciate the difference between
these two APIs when we analyze the use of deferred invocation for running synchronous
CPU-bound tasks later in the book.

Pattern
We guarantee that a callback is invoked asynchronously by deferring its
execution using process.nextTick ().

Node.js callback conventions

In Node.js, continuation-passing style APIs and callbacks follow a set of specific
conventions. These conventions apply to the Node.js core API but they are also followed by
the vast majority of the userland modules and applications. So, it's very important that we
understand them and make sure that we comply whenever we need to design an
asynchronous APL

Callbacks come last

In all core Node.js methods, the standard convention is that when a function accepts a
callback in input, this has to be passed as the last argument. Let's take the following Node.js
core API as an example:

fs.readFile(filename, [options], callback)

As we can see from the signature of the preceding function, the callback is always put in the
last position, even in the presence of optional arguments. The reason for this convention is
that the function call is more readable in case the callback is defined in place.

[43]

Node.js Essential Patterns

Error comes first

In CPS, errors are propagated as any other type of result, which means using callbacks. In
Node,js, any error produced by a CPS function is always passed as the first argument of the
callback, and any actual result is passed starting from the second argument. If the operation
succeeds without errors, the first argument will be null or undefined. The following code
shows you how to define a callback complying with this convention:

fs.readFile ('foo.txt"', 'utf8', (err, data) => {
if (err)
handleError (err);
else

processData (data);

1)

It is best practice to always check for the presence of an error, as not doing so will make it
harder for us to debug our code and discover the possible points of failure. Another
important convention to take into account is that the error must always be of type Error.
This means that simple strings or numbers should never be passed as error objects.

Propagating errors

Propagating errors in synchronous, direct style functions is done with the well-known
throw statement, which causes the error to jump up in the call stack until it is caught.

In asynchronous CPS however, proper error propagation is done by simply passing the
error to the next callback in the chain. The typical pattern looks as follows:

const fs = require('fs');
function readJSON (filename, callback) {
fs.readFile(filename, 'utf8', (err, data) => {
let parsed;
if (err)

//propagate the error and exit the current function
return callback (err);

try {
//parse the file contents
parsed = JSON.parse (data);
} catch(err) {
//catch parsing errors
return callback (err);
}
//no errors, propagate Jjust the data
callback (null, parsed);

[44]

Node.js Essential Patterns

1)
bi

The detail you should notice in the previous code is how the callback is invoked when we
want to pass a valid result and when we want to propagate an error. Also notice that when
we are propagating an error we use the return statement. We do so to exit from the
function as soon as the callback function is invoked and to avoid executing the next lines in
readJSON.

Uncaught exceptions

You might have seen in the readJsoN () function, that was used in order to avoid any
exception being thrown into the fs.readFile () callback, we putatry...catch block
around JSON.parse (). Throwing inside an asynchronous callback will cause the exception
to jump up to the event loop and never be propagated to the next callback.

In Nodejs, this is an unrecoverable state and the application will simply shut down
printing the error to the stderr interface. To demonstrate this, let's try to remove the
try...catch block from the readJson () function defined previously:

const fs = require('fs');
function readJSONThrows (filename, callback) {
fs.readFile(filename, 'utf8', (err, data) =
if (err) {
return callback (err);

}

//no errors, propagate Jjust the data
callback (null, JSON.parse (data));
}) i
bi

> A

Now, in the function we just defined, there is no way of catching an eventual exception
coming from JSON.parse (). If we try to parse an invalid JSON file with the following
code:

readJSONThrows ('nonJSON.txt', err => console.log(err));

[45]

Node.js Essential Patterns

This would result in the application being abruptly terminated with the following exception
being printed on the console:

SyntaxError: Unexpected token d
at Object.parse (native)
at [...]
at fs.]js:266:14
at Object.oncomplete (fs.js:107:15)

Now, if we look at the preceding stack trace, we will see that it starts somewhere from the
fs.js module, exactly from the point at which the native API has completed reading and
returned its result back to the fs.readFile () function, via the event loop. This clearly
shows us that the exception traveled from our callback into the stack and then straight into
the event loop, where it's finally caught and thrown in the console.

This also means that wrapping the invocation of readJsONThrows () withatry...catch
block will not work, because the stack in which the block operates is different from the one
in which our callback is invoked. The following code shows the anti-pattern that we just
described:

try {
readJdSONThrows ('nonJSON.txt', function(err, result) {
/..
P i
} catch(err) {
console.log('This will not catch the JSON parsing exception');

}

The preceding catch statement will never receive the JSON parsing exception, as it will
travel back to the stack in which the exception was thrown. We just saw that the stack ends
up in the event loop and not with the function that triggers the asynchronous operation.

As said before, the application aborts the moment an exception reaches the event loop;
however, we still have a chance to perform some cleanup or logging before the application
terminates. In fact, when this happens, Node.js emits a special event called
uncaughtException just before exiting the process. The following code shows a sample
use case:

process.on ('uncaughtException', (err) => {
console.error ('This will catch at last the ' +
'JSON parsing exception: ' + err.message);
// Terminates the application with 1 (error) as exit code:
// without the following line, the application would continue
process.exit (1);
)i

[46]

Node.js Essential Patterns

It's important to understand that an uncaught exception leaves the application in a state
that is not guaranteed to be consistent, which can lead to unforeseeable problems. For
example, there might still be incomplete I/O requests running or closures might have
become inconsistent. That's why it is always advised, especially in production, to exit from
the application after an uncaught exception is received anyway.

The module system and its patterns

Modules are the bricks for structuring non-trivial applications, but also the main
mechanism to enforce information hiding by keeping private all the functions and variables
that are not explicitly marked to be exported. In this section, we will introduce the Node.js
module system and its most common usage patterns.

The revealing module pattern

One of the major problems with JavaScript is the absence of namespacing. Programs that
run in the global scope polluting it with data that comes from both internal application code
and dependencies. A popular technique to solve this problem is called the revealing module
pattern, and it looks like the following:

const module = (() => {
const privateFoo = () => {...};
const privateBar [1]

’

const exported = {
publicFoo: () => {...},
publicBar: () => {...}

bi

return exported;

PO

console.log (module) ;

This pattern leverages a self-invoking function to create a private scope, exporting only the
parts that are meant to be public. In the preceding code, the module variable contains only
the exported API, while the rest of the module content is practically inaccessible from
outside. As we will see in a moment, the idea behind this pattern is used as a base for the
Node.js module system.

[471]

Node.js Essential Patterns

Node.js modules explained

Common]S is a group with the aim to standardize the JavaScript ecosystem, and one of
their most popular proposals is called Common]S modules. Node.js built its module
system on top of this specification, with the addition of some custom extensions. To
describe how it works, we can make an analogy with the revealing module pattern, where
each module runs in a private scope, so that every variable that is defined locally does not
pollute the global namespace.

A homemade module loader

To explain how this works, let's build a similar system from scratch. The code that follows
creates a function that mimics a subset of the functionality of the original require ()
function of Node.js.

Let's start by creating a function that loads the content of a module, wraps it into a private
scope, and evaluates it:

function loadModule (filename, module, require) {
const wrappedSrc=" (function (module, exports, require) |
S{fs.readFileSync (filename, 'utf8')}
}) (module, module.exports, require); ;
eval (wrappedSrc) ;

}

The source code of a module is essentially wrapped into a function, as it was for the
revealing module pattern. The difference here is that we pass a list of variables to the
module, in particular, module, exports, and require. Make a note of how the exports
argument of the wrapping function is initialized with the content of module.exports, as
we will talk about this later.

Bear in mind that this is only an example, and you will rarely need to
evaluate some source code in a real application. Features such as eval ()
or the functions of the vm module (http://nodejs.org/api/vm.html)
can be easily used in the wrong way or with the wrong input, thus
opening a system to code injection attacks. They should always be used
with extreme care or avoided altogether.

[48]

http://nodejs.org/api/vm.html

Node.js Essential Patterns

Let's now see what these variables contain by implementing our require () function:

const require = (moduleName) => {
console.log (' Require invoked for module: ${moduleName}');
const id = require.resolve (moduleName) ; //11]
if (require.cache[id]) { // 2]

return require.cache[id] .exports;

}

//module metadata

const module = { //13]
exports: {1},
id: id

bi
//Update the cache
require.cache[id] = module; //14]

//load the module
loadModule (id, module, require); //15]

//return exported variables

return module.exports; // 6]
bi
require.cache = {};
require.resolve = (moduleName) => {

/* resolve a full module id from the moduleName */

bi

The previous function simulates the behavior of the original require () function of
Node.js, which is used to load a module. Of course, this is just for educative purposes and it
does not accurately or completely reflect the internal behavior of the real require ()
function, but it's great to understand the internals of the Node.js module system, how a
module is defined, and loaded. What our homemade module system does is explained as
follows:

1. A module name is accepted as input, and the very first thing that we do is resolve
the full path of the module, which we call id. This task is delegated to
require.resolve (), which implements a specific resolving algorithm (we will
talk about it later).

2. If the module has already been loaded in the past, it should be available in the
cache. In this case, we just return it immediately.

3. If the module was not loaded yet, we set up the environment for the first load. In
particular, we create a module object that contains an exports property
initialized with an empty object literal. This property will be used by the code of
the module to export any public APL

[49]

Node.js Essential Patterns

4. The module object is cached.

5. The module source code is read from its file and the code is evaluated, as we have
seen before. We provide the module with the module object that we just created,
and a reference to the require () function. The module exports its public API by
manipulating or replacing the module.exports object.

6. Finally, the content of module.exports, which represents the public API of the
module, is returned to the caller.

As we see, there is nothing magical behind the workings of the Node.js module system; the
trick is all in the wrapper we create around a module's source code and the artificial
environment in which we run it.

Defining a module

By looking at how our custom require () function works, we should now know how to
define a module. The following code gives us an example:

//load another dependency
const dependency = require('./anotherModule');

//a private function
function log()
console.log(' Well done ${dependency.username}’);

}

//the API to be exported for public use
module.exports.run = () => {

log();
i

The essential concept to remember is that everything inside a module is private unless it's
assigned to the module.exports variable. The content of this variable is then cached and
returned when the module is loaded using require ().

[50]

Node.js Essential Patterns

Defining globals

Even if all the variables and functions that are declared in a module are defined in its local
scope, it is still possible to define a global variable. In fact, the module system exposes a
special variable called global, which can be used for this purpose. Everything that is
assigned to this variable will end up automatically in the global scope.

Polluting the global scope is considered bad practice and nullifies the
advantage of having a module system. So, use it only if you really know
what you are doing.

module.exports versus exports

For many developers who are not yet familiar with Node.js, a common source of confusion
is the difference between using exports and module.exports to expose a public API. The
code of our custom require function should again clear any doubt. The variable exports
is just a reference to the initial value of module.exports; we have seen that such a value is
essentially a simple object literal created before the module is loaded.

This means that we can only attach new properties to the object referenced by the exports
variable, as shown in the following code:

exports.hello = () => {
console.log('Hello");

}

Reassigning the exports variable doesn't have any effect, because it doesn't change the
content of module.exports; it will only reassign the variable itself. The following code is
therefore wrong;:

exports = () => {
console.log('Hello'");

}

If we want to export something other than an object literal, such as a function, an instance,
or even a string, we have to reassign module.exports as follows:

module.exports = () => {
console.log('Hello'");

}

[51]

Node.js Essential Patterns

The require function is synchronous

Another important detail that we should take into account is that our homemade require
function is synchronous. In fact, it returns the module contents using a simple direct style,
and no callback is required. This is true for the original Node.js require () function too. As
a consequence, any assignment to module.exports must be synchronous as well. For
example, the following code is incorrect:

setTimeout (() => {
module.exports = function() {...};
b, 100);

This property has important repercussions in the way we define modules, as it limits us to
mostly using synchronous code during the definition of a module. This is actually one of
the most important reasons why the core Node.js libraries offer synchronous APIs as an
alternative to most of the asynchronous ones.

If we need some asynchronous initialization steps for a module, we can always define and
export an uninitialized module that is initialized asynchronously at a later time. The
problem with this approach, though, is that loading such a module using require does not
guarantee that it's ready to be used. In Chapter 9, Advanced Asynchronous Recipes, we will
analyze this problem in detail and present some patterns to solve this issue elegantly.

For the sake of curiosity, you might want to know that in its early days, Node.js used to
have an asynchronous version of require (), but it was soon removed because it was
overcomplicating a functionality that was actually meant to be used only at initialization
time and where asynchronous I/O brings more complexities than advantages.

The resolving algorithm

The term dependency hell describes a situation whereby the dependencies of software in turn
depend on a shared dependency, but require different incompatible versions. Node.js
solves this problem elegantly by loading a different version of a module depending on
where the module is loaded from. All the merits of this feature go to npm, and also to the
resolving algorithm used in the require function.

[52]

Node.js Essential Patterns

Let's now give a quick overview of this algorithm. As we saw, the resolve () function
takes a module name (which we will call here, moduleName) as input and it returns the full
path of the module. This path is then used to load its code and also to identify the module
uniquely. The resolving algorithm can be divided into the following three major branches:

e File modules: If moduleName starts with /, it is already considered an absolute
path to the module and it's returned as it is. If it starts with . /, then moduleName
is considered a relative path, which is calculated starting from the requiring
module.

¢ Core modules: If moduleName is not prefixed with / or ./, the algorithm will
first try to search within the core Node.js modules.

¢ Package modules: If no core module is found matching moduleName, then the
search continues by looking for a matching module in the first node_modules
directory that is found navigating up in the directory structure starting from the
requiring module. The algorithm continues to search for a match by looking into
the next node_modules directory up in the directory tree, until it reaches the root
of the filesystem.

For file and package modules, both the individual files and directories can match
moduleName. In particular, the algorithm will try to match the following;:

e <moduleName>.Jjs
e <moduleName>/index.]js

¢ The directory/file specified in the main property
of <moduleName>/package. json

The complete, formal documentation of the resolving algorithm can be found at http://no
dejs.org/api/modules.html#modules_all_together.

The node_modules directory is actually where npm installs the dependencies of each
package. This means that, based on the algorithm we just described, each package can have
its own private dependencies. For example, consider the following directory structure:

myApp
F— foo.js
L— node_modules
F— depa
| L— index.js
— depB
| F— bar.js
| L— node_modules
\ L— depa

[53]

http://nodejs.org/api/modules.html#modules_all_together
http://nodejs.org/api/modules.html#modules_all_together

Node.js Essential Patterns

| L— index.js
L— depcC
— foobar.js
L— node_modules
L— depa
L— index.js

In the previous example, myApp, depB, and depC all depend on depa; however, they all
have their own private version of the dependency! Following the rules of the resolving
algorithm, using require ('depa') will load a different file depending on the module that
requires it, for example:

e Calling require ('depA') from /myApp/foo.js will load
/myApp/node_modules/depA/index.js

e Calling require ('depA') from /myApp/node_modules/depB/bar.js will
load /myApp/node_modules/depB/node_modules/depA/index.js

¢ Calling require ('depA') from /myApp/node_modules/depC/foobar. js will
load /myApp/node_modules/depC/node_modules/depA/index. s

The resolving algorithm is the core part behind the robustness of the Node.js dependency
management, and is what makes it possible to have hundreds or even thousands of
packages in an application without having collisions or problems of version compatibility.

The resolving algorithm is applied transparently for us when we invoke require ();
however, if needed, it can still be used directly by any module by simply invoking
require.resolve ().

The module cache

Each module is only loaded and evaluated the first time it is required, since any subsequent
call of require () will simply return the cached version. This should be clear by looking at
the code of our homemade require function. Caching is crucial for performance, but it also
has some important functional implications:

e It makes it possible to have cycles within module dependencies

e It guarantees, to some extent, that the same instance is always returned when
requiring the same module from within a given package

The module cache is exposed via the require . cache variable, so it is possible to directly
access it if needed. A common use case is to invalidate any cached module by deleting the
relative key in the require. cache variable, a practice very useful during testing but very
dangerous if applied in normal circumstances.

[54]

Node.js Essential Patterns

Circular dependencies

Many consider circular dependencies an intrinsic design issue, but it is something which
might actually happen in a real project, so it's useful for us to know at least how this works
in Node.js. If we look again at our homemade require () function, we immediately get a
glimpse of how this might work and what its caveats are.

Suppose we have two modules defined as follows:
e Module a. js:

exports.loaded = false;

const b = require('./b'");

module.exports = {
bWasLoaded: b.loaded,
loaded: true

bi
e Moduleb. js:

exports.loaded = false;

const a = require('./a');

module.exports = {
aWasLoaded: a.loaded,
loaded: true

bi
Now, let's try to load these from another module, main. js, as follows:

const a = require('./a'")
const b = require('./b'");
console.log(a);
console.log(b);

The preceding code will print the following output:

{ bWasLoaded: true, loaded: true }
{ aWaslLoaded: false, loaded: true }

This result reveals the caveats of circular dependencies. While both the modules are
completely initialized the moment they are required from the main module, the a. js
module will be incomplete when it is loaded from b. js. In particular, its state will be the
one that it reached the moment it required b. js. This behavior should ring another bell,
which will be confirmed if we swap the order in which the two modules are required in
main.Jjs.

[55]

Node.js Essential Patterns

If you try it, you will see that this time it will be the module a. js that will receive an
incomplete version of b. js. We understand now that this can become quite a fuzzy
business if we lose control of which module is loaded first, which can happen quite easily if
the project is big enough.

Module definition patterns

The module system, besides being a mechanism for loading dependencies, is also a tool for
defining APIs. As for any other problem related to API design, the main factor to consider is
the balance between private and public functionality. The aim is to maximize information
hiding and API usability, while balancing these with other software qualities such as
extensibility and code reuse.

In this section, we will analyze some of the most popular patterns for defining modules in
Node.js; each one has its own balance of information hiding, extensibility, and code reuse.

Named exports

The most basic method for exposing a public API is using named exports, which consists of
assigning all the values we want to make public to properties of the object referenced by
exports (or module.exports). In this way, the resulting exported object becomes a
container or namespace for a set of related functionality.

The following code shows a module implementing this pattern:

//file logger.js

exports.info = (message) => {
console.log('info: ' + message);

}i

exports.verbose = (message) => {
console.log('verbose: ' + message);

bi

The exported functions are then available as properties of the loaded module, as shown in
the following code:

//file main.js

const logger = require('./logger');

logger.info ('This is an informational message');
logger.verbose ('This is a verbose message');

Most of the Node.js core modules use this pattern.

[56]

Node.js Essential Patterns

The Common]S specification only allows the use of the exports variable to expose public
members. Therefore, the named exports pattern is the only one that is really compatible
with the Common]S specification. The use of module.exports is an extension provided by
Node.js to support a broader range of module definition patterns, as those we are going to
see next.

Exporting a function

One of the most popular module definition patterns consists of reassigning the whole
module.exports variable to a function. Its main strength is the fact that it exposes only a
single functionality, which provides a clear entry point for the module, making it simpler to
understand and use; it also honors the principle of small surface area very well. This way of
defining modules is also known in the community as the substack pattern, after one of its
most prolific adopters, James Halliday (nickname substack). Have a look at this pattern in
the following example:

//file logger.js

module.exports = (message) => {
console.log(info: ${message}’);

}i

A possible extension of this pattern is using the exported function as namespace for other
public APIs. This is a very powerful combination, because it still gives the module the
clarity of a single entry point (the main exported function). This approach also allows us to
expose other functionalities that have secondary or more advanced use cases. The following
code shows you how to extend the module we defined previously by using the exported
function as a namespace:

module.exports.verbose = (message) => {
console.log(verbose: ${message}’);
}i

This code demonstrates how to use the module that we just defined:

//file main.js

const logger = require('./logger');

logger ('This is an informational message');
logger.verbose ('This is a verbose message');

[57]

Node.js Essential Patterns

Even though just exporting a function might seem like a limitation, in reality it's a perfect
way to put the emphasis on a single functionality, the most important one for the module,
while giving less visibility to secondary or internal aspects, which are instead exposed as
properties of the exported function itself. The modularity of Node.js heavily encourages the
adoption of the Single Responsibility Principle (SRP): every module should have
responsibility over a single functionality and that responsibility should be entirely
encapsulated by the module.

Pattern (substack)

Expose the main functionality of a module by exporting only one function.
Use the exported function as namespace to expose any auxiliary
functionality.

Exporting a constructor

A module that exports a constructor is a specialization of a module that exports a function.
The difference is that with this new pattern we allow the user to create new instances using
the constructor, but we also give them the ability to extend its prototype and forge new
classes. The following is an example of this pattern:

//file logger.js
function Logger (name) {

this.name = name;
}
Logger.prototype.log = function (message) {
console.log(’ [${this.name}] ${message}’);
bi
Logger.prototype.info = function (message) {

this.log (" info: ${message}’);
bi

Logger.prototype.verbose = function (message) {
this.log(verbose: ${message}’);

bi
module.exports = Logger;
And, we can use the preceding module as follows:
//file main.Js
const Logger = require('./logger');

const dbLogger = new Logger ('DB');
dbLogger.info('This is an informational message');

[58]

Node.js Essential Patterns

const accessLogger = new Logger ('ACCESS');
accessLogger.verbose ('This is a verbose message');

In the same fashion we can easily export an ES2015 class:

class Logger {
constructor (name) {
this.name = name;

}

log (message) {
console.log(’ [${this.name}] ${message}’);

}

info (message) {
this.log(info: ${message}’);
}

verbose (message) {
this.log(verbose: ${message}’);
}
}

module.exports = Logger;

Given that ES2015 classes are just syntactic sugar for prototypes, the usage of this module
will be exactly the same as its prototype-based alternative.

Exporting a constructor or a class still provides a single entry point for the module, but
compared to the substack pattern, it exposes a lot more of the module internals; however,
on the other hand it allows much more power when it comes to extending its functionality.

A variation of this pattern consists of applying a guard against invocations that doesn't use
the new instruction. This little trick allows us to use our module as a factory. Let's see how
this works:

function Logger (name) {
if (! (this instanceof Logger)) <
return new Logger (name);
}
this.name = name;

}i

[59]

Node.js Essential Patterns

The trick is simple: we check whether this exists and is an instance of Logger. If any of
these conditions is false, it means that the Logger () function was invoked without using
new, we then proceed with creating the new instance properly and returning it to the caller.
This technique allows us to use the module also as a factory:

//file logger.js

const Logger = require('./logger');

const dbLogger = Logger ('DB');
accessLogger.verbose ('This is a verbose message');

A much cleaner approach to implement the guard is offered by the ES2015 new.target
syntax which is available starting from Node.js version 6. This syntax exposes the
new.target property which is a “meta property” made available inside all the functions
and that evaluates to true at runtime if the function was called using the new keyword.

We can use this syntax to rewrite our logger factory:

function Logger (name) {
if (!'new.target) {
return new LoggerConstructor (name);

}

this.name = name;

}

This code is totally equivalent to the previous one, so we can say that this new.target
syntax is more helpful ES2015 syntactic sugar that makes our code much more readable and
natural.

Exporting an instance

We can leverage the caching mechanism of require () to easily define stateful
instances with a state created from a constructor or a factory, which can be shared across
different modules. The following code shows an example of this pattern:

//file logger.js

function Logger (name) {
this.count = 0;
this.name = name;

}

Logger.prototype.log = function (message) {
this.count++;
console.log('[' + this.name + '] ' + message);

bi
module.exports = new Logger ('DEFAULT');

[60]

Node.js Essential Patterns

This newly defined module can then be used as follows:

//file main.Js
const logger = require('./logger');
logger.log('This is an informational message');

Because the module is cached, every module that requires the 1ogger module will actually
always retrieve the same instance of the object, thus sharing its state. This pattern is very
much like creating a singleton; however, it does not guarantee the uniqueness of the
instance across the entire application, as it happens in the traditional singleton pattern.
When analyzing the resolving algorithm, we have seen in fact, that a module might be
installed multiple times inside the dependency tree of an application. This results in
multiple instances of the same logical module, all running in the context of the same
Node,js application. In Chapter 7, Wiring Modules, we will analyze the consequences of
exporting stateful instances and some alternative patterns.

An extension to the pattern we just described, consists of exposing the constructor used to
create the instance, in addition to the instance itself. This allows the user to create new
instances of the same object, or even to extend it if necessary. To enable this, we just need to
assign a new property to the instance, as shown in the following line of code:

module.exports.Logger = Logger;

Then, we can use the exported constructor to create other instances of the class:

const customLogger = new logger.Logger ('CUSTOM') ;
customLogger.log('This is an informational message');

From the usability perspective, this is similar to using an exported function as a namespace;
the module exports the default instance of an object—the piece of functionality we might
want to use most of the time, while more advanced features, such as the ability to create
new instances or extend the object, are still available through less exposed properties.

Modifying other modules or the global scope

A module can even export nothing. This can look a bit out of place; however, we should not
forget that a module can modify the global scope and any object in it, including other
modules in the cache. Please note that these are in general considered bad practices, but
since this pattern can be useful and safe under some circumstances (for example, for testing)
and is sometimes used in the wild, it is worth knowing and understanding it. We said a
module can modify other modules or objects in the global scope; well, this is called monkey
patching. It generally refers to the practice of modifying the existing objects at runtime to
change or extend their behavior or to apply temporary fixes.

[61]

Node.js Essential Patterns

The following example shows you how we can add a new function to another module:

//file patcher.js

// ./logger is another module
require('./logger') .customMessage = () => console.log('This is a new
functionality');

Using our new patcher module would be as easy as writing the following code:
//file main.js

require ('./patcher"');
const logger = require('./logger');
logger.customMessage () ;

In the preceding code, patcher must be required before using the 1ogger module for the
first time in order to allow the patch to be applied.

The techniques described here are all dangerous ones to apply. The main concern is that
having a module that modifies the global namespace or other modules is an operation with
side effects. In other words, it affects the state of entities outside their scope, which can have
consequences that aren't predictable, especially when multiple modules interact with the
same entities. Imagine having two different modules trying to set the same global variable,
or modifying the same property of the same module; the effects might be unpredictable
(which module wins?), but most importantly it would have repercussions in the entire
application.

The observer pattern

Another important and fundamental pattern used in Node.js is the observer pattern.
Together with the reactor, callbacks, and modules, the observer pattern is one of the pillars
of the platform and an absolute prerequisite for using many node-core and userland
modules.

Observer is an ideal solution for modeling the reactive nature of Node.js and a perfect
complement for callbacks. Let's give a formal definition as follows:

Pattern (observer) defines an object (called subject), which can notify a set of observers (or
listeners), when a change in its state happens.

[62]

Node.js Essential Patterns

The main difference from the callback pattern is that the subject can actually notify multiple
observers, while a traditional continuation-passing style callback will usually propagate its
result to only one listener, the callback.

The EventEmitter class

In traditional object-oriented programming, the observer pattern requires interfaces,
concrete classes, and a hierarchy; in Node.js, all becomes much simpler. The observer
pattern is already built into the core and is available through the EventEmitter class. The
EventEmitter class allows us to register one or more functions as listeners, which will be
invoked when a particular event type is fired. The following image visually explains the
concept:

The EventEmitter is a prototype and it is exported from the events core module. The
following code shows how we can obtain a reference to it:

const EventEmitter = require('events').EventEmitter;
const eelnstance = new EventEmitter();

The essential methods of the EventEmitter are given as follows:

e on(event, listener):This method allows you to register a new listener (a
function) for the given event type (a string)

e once (event, listener): This method registers a new listener, which is then
removed after the event is emitted for the first time

[63]

Node.js Essential Patterns

® emit (event, [argl], [...]):Thismethod produces a new event and
provides additional arguments to be passed to the listeners

e removelistener (event, listener): This method removes a listener for the
specified event type

All the preceding methods will return the EventEmitter instance to allow chaining. The
listener function has the signature function ([argl], [...]),so itsimply accepts the
arguments provided the moment the event is emitted. Inside the listener, this refers to the
instance of the EventEmitter that produces the event.

We can already see that there is a big difference between a listener and a traditional Node.js
callback; in particular, the first argument is not an error, but it can be any data passed to
emit () at the moment of its invocation.

Creating and using EventEmitter

Let's see how we can use an EventEmitter in practice. The simplest way is to create a new
instance and use it immediately. The following code shows a function that uses an
EventEmitter to notify its subscribers in real time when a particular pattern is found in a
list of files:

const EventEmitter = require('events').EventEmitter;
const fs = require('fs');

function findPattern(files, regex) {

const emitter = new EventEmitter();
files.forEach (function(file) {
fs.readFile(file, 'utf8', (err, content) => {
if (err)
return emitter.emit ('error', err);
emitter.emit ('fileread', file);
let match;
if (match = content.match (regex))

match.forEach (elem => emitter.emit ('found', file, elem));
}) i
}) i
return emitter;

}

[64]

Node.js Essential Patterns

The EventEmittercreated by the preceding function will produce three events:

e fileread: This event occurs when a file is read
e found: This event occurs when a match has been found

e error: This event occurs when an error has occurred during the reading of the
file

Let's see now how our findPattern () function can be used:

findPattern (
['fileA.txt', 'fileB.json'],
/hello \w+t+/g
)

.on('fileread', file => console.log(file + ' was read'))
.on('found', (file, match) => console.log('Matched "' + match +

'" in file ' + file))
.on('error', err => console.log('Error emitted: ' + err.message));

In the preceding example, we registered a listener for each of the three event types
produced by the EventEmitter which was created by our findPattern () function.

Propagating errors

The EventEmitter, as it happens for callbacks, cannot just throw exceptions when an error
condition occurs, as they would be lost in the event loop if the event is emitted
asynchronously. Instead, the convention is to emit a special event, called error, and to pass
an Error object as an argument. That's exactly what we are doing in the findPattern ()
function that we defined earlier.

It is always best practice to register a listener for the error event, as Node.js will treat it in a
special way and will automatically throw an exception and exit from the program if no
associated listener is found.

[65]

Node.js Essential Patterns

Making any object observable

Sometimes, creating a new observable object directly from the EventEmitter class is not
enough, as this makes it impractical to provide functionality that goes beyond the mere
production of new events. It is more common, in fact, to have the need to make a generic
object observable; this is possible by extending the EventEmitter class.

To demonstrate this pattern, let's try to implement the functionality of the findPattern ()
function in an object as follows:

const EventEmitter = require('events').EventEmitter;
const fs = require('fs');

class FindPattern extends EventEmitter {
constructor (regex) {
super () ;
this.regex = regex;
this.files [1;

addFile (file) {
this.files.push(file);
return this;

find () A
this.files.forEach(file => {
fs.readFile(file, 'utf8', (err, content) => {

if (err) {
return this.emit ('error', err);

this.emit ('fileread', file);

let match = null;
if (match = content.match(this.regex)) {
match.forEach (elem => this.emit ('found', file, elem));
}
)i
)i
return this;

[66]

Node.js Essential Patterns

The FindPattern prototype that we defined extends EventEmitter using the
inherits () function provided by the core module util. In this way it becomes a fully-
fledged observable class. The following is an example of its usage:

const findPatternObject = new FindPattern(/hello \w+/);
findPatternObject

.addFile('fileA.txt")

.addFile('fileB.json')

.find ()
.on('found', (file, match) => console.log(Matched "${match}"
in file ${file}"))
.on('error', err => console.log(Error emitted ${err.message}’));

We can now see how the FindPattern object has a full set of methods, in addition to being
observable, by inheriting the functionality of EventEmitter.

This is a pretty common pattern in the Node.js ecosystem, for example, the Server object of
the core HTTP module defines methods such as 1isten (), close (), setTimeout (), and
internally it also inherits from the EventEmitter function, thus allowing it to produce
events, such as request, when a new request is received; or connection, when a new
connection is established; or closed, when the server is closed.

Other notable examples of objects extending EventEmitter are Node.js streams. We will
analyze streams in more detail in Chapter 5, Coding with Streams.

Synchronous and asynchronous events

As with callbacks, events can be emitted synchronously or asynchronously. It is crucial that
we never mix the two approaches in the same EventEmitter, but even more important,
when emitting the same event type, to avoid producing the same problems that we
described in the Unleashing Zalgo section.

The main difference between emitting synchronous and asynchronous events lies in the
way listeners can be registered. When the events are emitted asynchronously, the program
has all the time to register new listeners even after EventEmitter is initialized, because the
events are guaranteed not to be fired until the next cycle of the event loop. That's exactly
what is happening in the findPattern () function. We defined this function previously
and it represents a common approach that is used in most Node.js modules.

[67]

Node.js Essential Patterns

On the contrary, emitting events synchronously requires that all the listeners are registered
before the EventEmitter function starts to emit any event. Let's look at an example:

const EventEmitter = require('events').EventEmitter;

class SyncEmit extends EventEmitter {
constructor () {
super () ;
this.emit ('ready');
}
}

const syncEmit = new SyncEmit ();
syncEmit.on('ready', () => console.log('Object is ready to be used'));

If the ready event was emitted asynchronously, then the previous code would have
worked perfectly; however, the event is produced synchronously and the listener is
registered after the event was already sent, so the result is that the listener is never invoked;
the code will print nothing to the console.

There are situations where using an EventEmitter function in a synchronous fashion
makes sense, given its different purpose. For this reason, it's very important to clearly
highlight the behavior of our EventEmitter in its documentation to avoid confusion, and
potentially incorrect usage.

EventEmitter versus callbacks

A common dilemma when defining an asynchronous API is to check whether to use an
EventEmitter or simply accept a callback. The general differentiating rule is semantic:
callbacks should be used when a result must be returned in an asynchronous way; events
should instead be used when there is a need to communicate that something has just
happened.

[68]

Node.js Essential Patterns

But besides this simple principle, a lot of confusion is generated from the fact that the two
paradigms are, most of the time, equivalent and allow you to achieve the same results.
Consider the following code as an example:

function helloEvents () {
const eventEmitter= new EventEmitter();
setTimeout (() => eventEmitter.emit ('hello', 'hello world'), 100);

return eventEmitter;

}

function helloCallback (callback) {
setTimeout (() => callback('hello world'), 100);
t

The two functions helloEvents () and helloCallback () can be considered equivalent in
terms of functionality; the first communicates the completion of the timeout using an event,
the second uses a callback to notify the caller instead, passing the event type as an
argument. But what really differentiates them is the readability, the semantics, and the
amount of code that is required to be implemented or used. While we cannot give a
deterministic set of rules to choose between one style or the other, we can certainly provide
some hints to help you take a decision.

As a first observation, we can say that callbacks have some limitations when it comes to
supporting different types of events. In fact, we can still differentiate between multiple
events by passing the type as an argument of the callback, or by accepting several callbacks,
one for each supported event. However, this cannot exactly be considered an elegant API.
In this situation, EventEmitter can give a better interface and leaner code.

Another case where EventEmitter might be preferable is when the same event can occur
multiple times, or not occur at all. A callback, in fact, is expected to be invoked exactly once,
whether the operation is successful or not. The fact that we have a possibly repeating
circumstance should let us think again about the semantic nature of the occurrence, which
is more similar to an event that has to be communicated rather than a result; in this case
EventEmitter is the preferred choice.

Lastly, an API using callbacks can notify only a particular callback, while using an
EventEmitter function is possible for multiple listeners to receive the same notification.

[69]

Node.js Essential Patterns

Combining callbacks and EventEmitter

There are also some circumstances where EventEmitter can be used in conjunction with a
callback. This pattern is extremely useful when we want to implement the principle of small
surface area by exporting a traditional asynchronous function as the main functionality,
while still providing richer features and more control by returning EventEmitter. One
example of this pattern is offered by the node-glob module (https://npmjs.org/packa
ge/glob), a library that performs glob-style file searches. The main entry point of the
module is the function it exports, which has the following signature:

glob (pattern, [options], callback)

The function takes pattern as the first argument, a set of options, and a callback function
that is invoked with the list of all the files matching the provided pattern. At the same time,
the function returns EventEmitter that provides a more fine-grained report over the state
of the process. For example, it is possible to be notified in real-time when a match occurs by
listening to the match event, to obtain the list of all the matched files with the end event, or
to know whether the process was manually aborted by listening to the abort event. The
following code shows how this looks:

const glob = require('glob');

glob ('data/*.txt', (error, files) => console.log(All files found:
${JSON.stringify(files)}))
.on('match', match => console.log(Match found: ${match}’));

As we can see, the practice of exposing a simple, clean, and minimal entry point while still
providing more advanced or less important features with secondary means is quite
common in Node.js, and combining EventEmitter with traditional callbacks is one of the
ways to achieve that.

Pattern

Create a function that accepts a callback and returns EventEmitter, thus
providing a simple and clear entry point for the main functionality, while
emitting more fine-grained events using EventEmitter.

[70]

https://npmjs.org/package/glob
https://npmjs.org/package/glob

Node.js Essential Patterns

Summary

In this chapter, we first learnt the difference between synchronous and asynchronous code.
Then we explored how to use the callback and the event emitter patterns to deal with some
basic asynchronous scenarios. We also learned the main differences between the two
patterns and when one is more suitable than the other to address a specific problem. We
just made the first steps toward more advanced asynchronous patterns.

In the next chapter we will have a look at more complex scenarios, learning how to leverage
the callback and the event emitter patterns to deal with advanced asynchronous control
flows.

[71]

Asynchronous Control Flow
Patterns with Callbacks

Moving from a synchronous programming style to a platform such as Node.js, where
continuation-passing style and asynchronous APIs are the norm, can be frustrating. Writing
asynchronous code can be a different experience, especially when it comes to control flow.
Asynchronous code might make it hard to predict the order in which statements are
executed within Node.js applications, so simple problems such as iterating over a set of
files, executing tasks in sequence, or waiting for a set of operations to complete require the
developer to take new approaches and techniques to avoid ending up writing inefficient
and unreadable code. One common mistake is to fall into the trap of the callback hell
problem and see the code growing horizontally rather than vertically, with a nesting that
makes even simple routines hard to read and maintain.

In this chapter, we will see how it's actually possible to tame callbacks and write clean,
manageable asynchronous code by using some discipline and with the aid of some patterns.
We will see how control flow libraries, such as async, can significantly simplify our
problems making our code much more readable and maintainable.

Asynchronous Control Flow Patterns with Callbacks

The difficulties of asynchronous
programming

Losing control of asynchronous code in JavaScript is undoubtedly easy. Closures and in-
place definitions of anonymous functions allow a smooth programming experience that
doesn't require the developer to jump to other points in the code base. This is perfectly in
line with the KISS principle; it's simple, it keeps the code flowing, and we get it working in
less time. Unfortunately, sacrificing qualities such as modularity, reusability, and
maintainability will sooner or later lead to the uncontrolled proliferation of callback nesting,
the growth in the size of functions, and will lead to poor code organization. Most of the
time, creating closures is not functionally needed, so it's more a matter of discipline than a
problem related to asynchronous programming. Recognizing that our code is becoming
unwieldy, or even better, knowing in advance that it might become unwieldy and then
acting accordingly with the most adequate solution is what differentiates a novice from an
expert.

Creating a simple web spider

To explain the problem, we will create a little web spider, a command-line application that
takes in a web URL as input and downloads its contents locally into a file. In the code
presented in this chapter, we are going to use a few npm dependencies:

e request: A library to streamline HTTP calls
e mkdirp: A small utility to create directories recursively

Also, we will often refer to a local module named . /utilities, which contains some
helpers which we will be using in our application. We omit the contents of this file for
brevity, but you can find the full implementation, along with a package. json file
containing the full list of dependencies, in the download pack for this book available at:

http://www.packtpub.com.

The core functionality of our application is contained inside a module named spider. js.
Let's see how it looks. To start with, let's load all the dependencies that we are going to use:

const request = require('request');

const fs = require('fs');

const mkdirp = require('mkdirp');

const path = require('path');

const utilities = require('./utilities');

[73]

http://www.packtpub.com

Asynchronous Control Flow Patterns with Callbacks

Next, we create a new function named spider (), which takes in the URL to download and
a callback function that will be invoked when the download process completes:

function spider (url, callback) {
const filename = utilities.urlToFilename (url);
fs.exists (filename, exists => { //11]
if (lexists) {
console.log (' Downloading ${url}’);
request (url, (err, response, body) => { //12]
if (err) |
callback (err);
} else {
mkdirp (path.dirname (filename), err => { // 131
if (err) |
callback (err);
} else {
fs.writeFile (filename, body, err => { //[4]
if (err) |
callback (err);
} else {
callback (null, filename, true);

P) i
} else {
callback (null, filename, false);

)i
}

The preceding function executes the following tasks:

1. Checks if the URL was already downloaded by verifying that the corresponding
file was not already created:

fs.exists (filename, exists =>
2. If the file is not found, the URL is downloaded using the following line of code:

request (url, (err, response, body) =>

[74]

Asynchronous Control Flow Patterns with Callbacks

3. Then, we make sure whether the directory that will contain the file exists or not:
mkdirp (path.dirname (filename), err => ...

4. Finally, we write the body of the HTTP response to the filesystem:
fs.writeFile (filename, body, err => ...

To complete our web spider application, we just need to invoke the spider () function by
providing a URL as an input (in our case, we read it from the command-line arguments):

spider (process.argv[2], (err, filename, downloaded) => {
if (err) |
console.log(err);
} else if (downloaded) {
console.log(Completed the download of "${filename}"');
} else {
console.log("${filename}" was already downloaded');

)i

Now we are ready to try our web spider application, but first, make sure you have the
utilities.js module and the package. json containing the full list of dependencies in
your project directory. Then, install all the dependencies by running the following
command:

npm install

Next, we can execute the spider module to download the contents of a web page, with a
command like this:

node spider http://www.example.com

Our web spider application requires that we always include the protocol
(for example, http://) in the URL we provide. Also, do not expect HTML
links to be rewritten or resources such as images to be downloaded as this
is just a simple example to demonstrate how asynchronous programming
works.

[75]

Asynchronous Control Flow Patterns with Callbacks

The callback hell

Looking at the spider () function we defined earlier, we can surely notice that even though
the algorithm we implemented is really straightforward, the resulting code has several
levels of indentation and is very hard to read. Implementing a similar function with a direct
style blocking API would be straightforward, and there would be very few chances to make
it look so wrong. However, using asynchronous CPS is another story, and making bad use
of closures can lead to incredibly bad code.

The situation where the abundance of closures and in-place callback definitions transform
the code into an unreadable and unmanageable blob is known as callback hell. It's one of
the most well recognized and severe anti-patterns in Node.js and JavaScript in general. The
typical structure of a code affected by this problem looks like the following:

asyncFoo (err => {
asyncBar (err => {
asyncFooBar (err => {
/.
1)
1)
1)

We can see how code written in this way assumes the shape of a pyramid due to the deep
nesting and that's why it is also colloquially known as the pyramid of doom.

The most evident problem with code such as the preceding snippet, is the poor readability.
Due to the nesting being too deep, it's almost impossible to keep track of where a function
ends and where another one begins.

Another issue is caused by the overlapping of the variable names used in each scope. Often,
we have to use similar or even identical names to describe the content of a variable. The best
example is the error argument received by each callback. Some people often try to use
variations of the same name to differentiate the object in each scope, for example, err,
error, errl, err2, and so on; others prefer to just hide the variable defined in the scope by
always using the same name; for example, err. Both alternatives are far from perfect, and
cause confusion and increase the probability of introducing defects.

[76]

Asynchronous Control Flow Patterns with Callbacks

Also, we have to keep in mind that closures come at a small price in terms of performance
and memory consumption. In addition, they can create memory leaks that are not so easy to
identify because we shouldn't forget that any context referenced by an active closure is
retained from garbage collection.

For a great introduction to how closures work in V8 you can refer to the
blog post by Vyacheslav Egorov, a software engineer at Google working
on V8, athttp://mrale.ph/blog/2012/09/23/grokking-v8-closur
es—for-fun.html.

If we look at our spider () function, we will notice that it clearly represents a callback hell
situation and has all the problems we just described. That's exactly what we are going to fix
with the patterns and techniques we will learn in this chapter.

Using plain JavaScript

Now that we have met our first example of callback hell, we know what we should
definitely avoid; however, that's not the only concern when writing asynchronous code. In
fact, there are several situations where controlling the flow of a set of asynchronous tasks
requires the use of specific patterns and techniques, especially if we are only using plain
JavaScript without the aid of any external library. For example, iterating over a collection by
applying an asynchronous operation in sequence is not as easy as invoking forEach () over
an array, but it actually requires a technique similar to a recursion.

In this section, we will learn not only about how to avoid callback hell but also how to
implement some of the most common control flow patterns using only simple and plain
JavaScript.

Callback discipline

When writing asynchronous code, the first rule to keep in mind is to not abuse closures
when defining callbacks. It can be tempting to do so, because it does not require any
additional thinking for problems such as modularization and reusability; however, we have
seen how this can have more disadvantages than advantages. Most of the time, fixing the
callback hell problem does not require any libraries, fancy techniques, or change of
paradigm, but just some common sense.

[771

http://mrale.ph/blog/2012/09/23/grokking-v8-closures-for-fun.html
http://mrale.ph/blog/2012/09/23/grokking-v8-closures-for-fun.html

Asynchronous Control Flow Patterns with Callbacks

These are some basic principles that can help us keep the nesting level low and improve the
organization of our code in general:

* You must exit as soon as possible. Use return, continue, or break, depending
on the context, to immediately exit the current statement instead of writing (and
nesting) complete i f. . .else statements. This will help keep our code shallow.

* You need to create named functions for callbacks, keeping them out of closures
and passing intermediate results as arguments. Naming our functions will also
make them look better in stack traces.

* You need to modularize the code. Split the code into smaller, reusable functions
whenever it's possible.

Applying the callback discipline

To demonstrate the power of the earlier mentioned principles, let's apply them to fix the
callback hell problem in our web spider application.

For the first step, we can refactor our error-checking pattern by removing the else
statement. This is made possible by returning from the function immediately after we
receive an error. So, instead of having code such as the following:

if (err) |
callback (err);
} else {
//code to execute when there are no errors

}

We can improve the organization of our code by writing the following one instead:

if (err) {
return callback (err);
}

//code to execute when there are no errors

[781

Asynchronous Control Flow Patterns with Callbacks

With this simple trick, we immediately have a reduction of the nesting level of our
functions; it is easy and doesn't require any complex refactoring.

A common mistake when executing the optimization we just described is
forgetting to terminate the function after the callback is invoked. For the
error-handling scenario, the following code is a typical source of defects:
if (err) {

callback (err);
} //code to execute when there are no errors.
We should never forget that the execution of our function will continue
even after we invoke the callback. It is then important to insert a return
instruction to block the execution of the rest of the function. Also note that
it doesn't really matter what output is returned by the function; the real
result (or error) is produced asynchronously and passed to the callback.
The return value of the asynchronous function is usually ignored. This
property allows us to write shortcuts such as the following;:
return callback(...)
Otherwise we'd have to write slightly more verbose ones such as the
following;:
callback(...)
return;

As a second optimization for our spider () function, we can try to identify reusable pieces
of code. For example, the functionality that writes a given string to a file can be easily
factored out into a separate function as follows:

function saveFile(filename, contents, callback) {
mkdirp (path.dirname (filename), err => {
if (err) |
return callback (err);
}
fs.writeFile(filename, contents, callback);
)i
}

Following the same principle, we can create a generic function named download () which
takes a URL and a filename as input, and downloads the URL into the given file. Internally,
we can use the saveFile () function we created earlier.

function download(url, filename, callback) {
console.log (' Downloading ${url});
request (url, (err, response, body) => {
if (err) {
return callback (err);

}

[791

Asynchronous Control Flow Patterns with Callbacks

saveFile (filename, body, err => {
if (err) |
return callback (err);

}

console.log (' Downloaded and saved: ${url}’);

callback (null, body);

)i
1) i

}

For the last step, we modify the spider () function, which, thanks to our changes, will now
look like the following:

function spider (url, callback) {
const filename = utilities.urlToFilename (url);
fs.exists (filename, exists => {
if (exists) |
return callback (null, filename, false);
}
download (url, filename, err => {
if (err) {
return callback (err);

}

callback (null, filename, true);

)i
}

The functionality and the interface of the spider () function remain exactly the same; what
changed is only the way the code was organized. By applying the basic principles that we
discussed, we were able to drastically reduce the nesting of our code and at the same time
increase its reusability and testability. In fact, we could think of exporting both saveFile ()
and download (), so that we can reuse them in other modules. This also allows us to test
their functionality more easily.

The refactoring we carried out in this section clearly demonstrates that most of the time, all
we need is just some discipline to make sure we do not abuse closures and anonymous
functions. It works brilliantly, requires minimal effort, and just uses plain JavaScript.

Sequential execution

We now begin our exploration of the asynchronous control flow patterns. We will start by
analyzing the sequential execution flow.

[80]

Asynchronous Control Flow Patterns with Callbacks

Executing a set of tasks in sequence means running them one at a time, one after the other.
The order of execution matters and must be preserved, because the result of a task in the list
may affect the execution of the next. The following image illustrates this concept:

.—»{ Task 1 H Task 2 H Task 3

There are different variations of this flow:

¢ Executing a set of known tasks in sequence, without chaining or propagating
results

¢ Using the output of a task as the input for the next (also known as chain, pipeline,
or waterfall)

e Iterating over a collection while running an asynchronous task on each element,
one after the other

Sequential execution, despite being trivial when implemented using the direct style
blocking AP], is usually the main cause of the callback hell problem when using
asynchronous CPS.

Executing a known set of tasks in sequence

We already met a sequential execution while implementing the spider () function in the
previous section. By applying the simple rules that we studied, we were able to organize a
set of known tasks in a sequential execution flow. Taking that code as a guideline, we can
then generalize the solution with the following pattern:

function taskl (callback)
asyncOperation (() => {

task2 (callback) ;

}) i

}

{

function task2(callback) {
asyncOperation (result () => {

task3 (callback);

}) i

}

[81]

Asynchronous Control Flow Patterns with Callbacks

function task3(callback) {

asyncOperation(() => {
callback(); //finally executes the callback
1) i
}

taskl (() => {
//executed when taskl, task2 and task3 are completed
console.log('tasks 1, 2 and 3 executed');

1)

The preceding pattern shows how each task invokes the next upon the completion of a
generic asynchronous operation. The pattern puts the emphasis on the modularization of
tasks, showing how closures are not always necessary to handle asynchronous code.

Sequential iteration

The pattern we described earlier works perfectly if we know in advance what and how
many tasks are to be executed. This allows us to hardcode the invocation of the next task in
the sequence; but what happens if we want to execute an asynchronous operation for each
item in a collection? In cases such as this, we cannot hardcode the task sequence anymore;
instead, we have to build it dynamically.

Web spider version 2

To show an example of sequential iteration, let's introduce a new feature to the web spider
application. We now want to download all the links contained in a web page recursively. To
do that, we are going to extract all the links from the page and then trigger our web spider
on each one of them recursively and in sequence.

The first step is modifying our spider () function so that it triggers a recursive download
of all the links of a page by using a function named spiderLinks (), which we are going to
create shortly.

[82]

Asynchronous Control Flow Patterns with Callbacks

Also, instead of checking if the file already exists, we now try to read it, and start spidering
its links; this way, we are able to resume interrupted downloads. As a final change, we
make sure we propagate a new parameter, nesting, which helps us limit the recursion
depth. The resultant code is as follows:

function spider (url, nesting, callback) {
const filename = utilities.urlToFilename (url);
fs.readFile(filename, 'utf8', (err, body) => {
if (err) {
if (err.code ! == 'ENOENT') {
return callback (err);

}

return download(url, filename, (err, body) => {
if (err) |
return callback (err);
}
spiderLinks (url, body, nesting, callback);
P) i
}

spiderLinks (url, body, nesting, callback);
)i

Sequential crawling of links

Now we can create the core of this new version of our web spider application, the
spiderLinks () function, which downloads all the links of an HTML page using a
sequential asynchronous iteration algorithm. Pay attention to the way we are going to
define that in the following code block:

function spiderLinks (currentUrl, body, nesting, callback) {
if (nesting === 0) {
return process.nextTick (callback);
}
const links = utilities.getPagelinks (currentUrl, body); //[1]
function iterate (index) { //12]
if (index === links.length) {
return callback();

}

spider (links[index], nesting - 1, err => { //13]
if (err) |
return callback (err);

[83]

Asynchronous Control Flow Patterns with Callbacks

iterate (index + 1);

iterate (0); // 4]

The important steps to understand from this new function are as follows:

1. We obtain the list of all the links contained in the page using the
utilities.getPageLinks () function. This function returns only the links
pointing to an internal destination (same hostname).

2. We iterate over the links using a local function called iterate (), which takes the
index of the next link to analyze. In this function, the first thing we do is check if
the index is equal to the length of the 1inks array, in which case we immediately
invoke the callback () function, as it means we processed all the items.

3. At this point, everything should be ready for processing the link. We invoke the
spider () function by decreasing the nesting level and invoking the next step of
the iteration when the operation completes.

4. As the last step in the spiderLinks () function, we bootstrap the iteration by
invoking iterate (0).

The algorithm we just presented allows us to iterate over an array by executing an
asynchronous operation in sequence, which in our case is the spider () function.

We can now try this new version of the spider application and watch it download all the
links of a web page recursively, one after the other. To interrupt the process, which can take
a while if there are many links, remember that we can always use Ctrl + C. If we then decide
to resume it, we can do so by launching the spider application and providing the same URL
we used for the first run.

Now that our web spider application might potentially trigger the
download of an entire website, please consider using it carefully. For
example, do not set a high nesting level or leave the spider running for
more than a few seconds. It is not polite to overload a server with
thousands of requests. In some circumstances this can also be considered
illegal. Spider responsibly!

[84]

Asynchronous Control Flow Patterns with Callbacks

The pattern

The code of the spiderLinks () function that we showed previously is a clear example of
how it's possible to iterate over a collection while applying an asynchronous operation. We
can also notice that it's a pattern that can be adapted to any other situation where we have
the need to iterate asynchronously in sequence over the elements of a collection or in
general over a list of tasks. This pattern can be generalized as follows:

function iterate (index) {
if (index === tasks.length) {
return finish();

}

const task = tasks[index];
task (function () {
iterate (index + 1);

)i
}

function finish () {
//iteration completed

}

iterate (0);

It's important to notice that these types of algorithm become really
recursive if task () is a synchronous operation. In such a case, the stack
will not unwind at every cycle and there might be a risk of hitting the
maximum call stack size limit.

The pattern we just presented is very powerful as it can adapt to several situations; for
example, we can map the values of an array or we can pass the results of an operation to the
next one in the iteration to implement a reduce algorithm, we can quit the loop prematurely
if a particular condition is met, or we can even iterate over an infinite number of elements.

We could also choose to generalize the solution even further by wrapping it into a function
having a signature such as the following;:

iterateSeries (collection, iteratorCallback, finalCallback)

[85]

Asynchronous Control Flow Patterns with Callbacks

We leave this to you as an exercise.

Pattern (sequential iterator)

Execute a list of tasks in sequence by creating a function named iterator,
which invokes the next available task in the collection and makes sure to
invoke the next step of the iteration when the current task completes.

Parallel execution

There are some situations where the order of execution of a set of asynchronous tasks is not
important and all we want is just to be notified when all those running tasks are completed.
Such situations are better handled using a parallel execution flow, as shown in the
following diagram:

Task 1

Task 2

Task 3

This may sound strange if we consider that Node js is single threaded, but if we remember
what we discussed in Chapter 1, Welcome to the Node.js Platform, we realize that even
though we have just one thread, we can still achieve concurrency, thanks to the non-
blocking nature of Node.js. In fact, the word parallel is used improperly in this case, as it
does not mean that the tasks run simultaneously, but rather that their execution is carried
out by an underlying non-blocking API and interleaved by the event loop.

As we know, a task gives control back to the event loop when it requests a new
asynchronous operation allowing the event loop to execute another task. The proper word
to use for this kind of flow is concurrency, but we will still use parallel for simplicity.

[86]

Asynchronous Control Flow Patterns with Callbacks

The following diagram shows how two asynchronous tasks can run in parallel in a Node.js
program:

Call
Event Loop Main Task 1 Task 2 e

_Retumn

T
I

a

h 4

NG

y

A
h

In the previous image, we have a Main function that executes two asynchronous tasks:

1. The Main function triggers the execution of Task 1 and Task 2. As these trigger
an asynchronous operation, they immediately return the control back to the Main
function, which then returns it to the event loop.

2. When the asynchronous operation of Task 1 is completed, the event loop gives
control to it. When Task 1 completes its internal synchronous processing as well,
it notifies the Main function.

3. When the asynchronous operation triggered by Task 2 is completed, the event
loop invokes its callback, giving the control back to Task 2. At the end of Task 2,
the Main function is again notified. At this point, the Main function knows that
both Task 1 and Task 2 are complete, so it can continue its execution or return
the results of the operations to another callback.

[87]

Asynchronous Control Flow Patterns with Callbacks

In short, this means that in Node.js, we can only execute in parallel asynchronous
operations, because their concurrency is handled internally by the non-blocking APIs. In
Node.js, synchronous (blocking) operations cannot run concurrently unless their execution
is interleaved with an asynchronous operation, or deferred with set Timeout () or
setImmediate (). We will see this in more detail in Chapter 9, Advanced Asynchronous
Recipes.

Web spider version 3

Our web spider application seems like a perfect candidate to apply the concept of parallel
execution. So far, our application is executing the recursive download of the linked pages in
a sequential fashion. We can easily improve the performance of this process by
downloading all the linked pages in parallel.

To do that, we just need to modify the spiderLinks () function to make sure to spawn all
the spider () tasks at once, and then invoke the final callback only when all of them have
completed their execution. So let's modify our spiderLinks () function as follows:

function spiderLinks (currentUrl, body, nesting, callback) {
if (nesting === 0) {
return process.nextTick (callback);
}
const links = utilities.getPagelinks (currentUrl, body);
if(links.length === 0) {
return process.nextTick (callback);

}
let completed = 0, hasErrors = false;

function done (err) {
if (err) |
hasErrors = true;
return callback (err);
)3
if (++completed === links.length && 'hasErrors) {
return callback();
)3
)3

links.forEach(link => {
spider (link, nesting - 1, done);
}) i

[88]

Asynchronous Control Flow Patterns with Callbacks

Let's explain what we changed. As we mentioned earlier, the spider () tasks are now
started all at once. This is possible by simply iterating over the links array and starting each
task without waiting for the previous one to finish:

links.forEach (link => {
spider (link, nesting - 1, done);

P

Then, the trick to make our application wait for all the tasks to complete is to provide the
spider () function with a special callback, which we call done (). The done () function
increases a counter when a spider task completes. When the number of completed
downloads reaches the size of the 1inks array, the final callback is invoked:

function done (err) {
if (err) |
hasErrors = true;
return callback (err);
}
if (++completed === links.length && 'hasErrors) {
callback () ;
}
}

With these changes in place, if we now try to run our spider against a web page, we will
notice a huge improvement in the speed of the overall process, as every download is carried
out in parallel without waiting for the previous link to be processed.

The pattern

Also, for the parallel execution flow, we can extract our nice little pattern, which we can
adapt and reuse for different situations. We can represent a generic version of the pattern
with the following code:

const tasks = [/* ... */ 1;
let completed = 0;
tasks.forEach (task => {
task (() => {
if (++completed === tasks.length) {
finish();

function finish () {
//all the tasks completed

[89]

Asynchronous Control Flow Patterns with Callbacks

}

With small modifications, we can adapt the pattern to accumulate the results of each task
into a collection, to filter or map the elements of an array, or to invoke the finish ()
callback as soon as one or a given number of tasks complete (this last situation in particular
is called competitive race).

Pattern (unlimited parallel execution)

Run a set of asynchronous tasks in parallel by spawning them all at once,
and then wait for all of them to complete by counting the number of times
their callbacks are invoked.

Fixing race conditions with concurrent tasks

Running a set of tasks in parallel can cause issues when using blocking I/O in combination
with multiple threads. However, we have just seen that in Node js this is a totally different
story; running multiple asynchronous tasks in parallel is in fact straightforward and cheap
in terms of resources. This is one of the most important strengths for Node.js, because it
makes parallelization a common practice rather than a complex technique to only use when
strictly necessary.

Another important characteristic of the concurrency model of Node.js is the way we deal
with task synchronization and race conditions. In multithreaded programming, this is
usually done using constructs such as locks, mutexes, semaphores, and monitors, and it can
be one of the most complex aspects of parallelization, which has considerable impact on
performances as well. In Node.js, we usually don't need a fancy synchronization
mechanism, as everything runs on a single thread! However, this doesn't mean that we can't
have race conditions; on the contrary, they can be quite common. The root of the problem is
the delay between the invocation of an asynchronous operation and the notification of its
result. To make a concrete example, we can refer again to our web spider application, in
particular, the last version we created, which actually contains a race condition (can you
spot it?).

The problem we are talking about lies in the spider () function, where we check if a file
already exists, before starting to download the corresponding URL:

function spider (url, nesting, callback) {
const filename = utilities.urlToFilename (url);
fs.readFile(filename, 'utf8', (err, body) => {
if (err) |
if (err.code !== 'ENOENT') {
return callback (err);

}

[90]

Asynchronous Control Flow Patterns with Callbacks

return download(url, filename, function(err, body) {

VY

The problem is that, two spider tasks operating on the same URL might invoke
fs.readFile () on the same file before one of the two tasks completes the download and
creates a file, causing both tasks to start a download. This situation is shown in the
following diagram:

] Task1
Read completes, Download and save completes, O Task 2
file does not exists now the files exists
= = =
spider(foo.com) -+ fs.readFile(foo.html) | spider(foo.com)-» fs.readFile(foo.html) | download(foo.com) | download(foo.com) | callback() callback()
Read cc?npletes. Download and;ve completes,
file does not exists file was saved twice

The preceding diagram shows how Task 1 and Task 2 are interleaved in the single thread
of Node.js and how an asynchronous operation can actually introduce a race condition. In
our case, the two spider tasks end up downloading the same file.

How can we fix that? The answer is much simpler than we might think. In fact, all we need
is a variable to mutually exclude multiple spider () tasks running on the same URL. This
can be achieved with some code such as the following:

const spidering = new Map();
function spider (url, nesting, callback) {
if (spidering.has (url)) {
return process.nextTick (callback);

}

spidering.set (url, true);
Y

The fix does not require many comments. We simply exit the function immediately if the
flag for the given url is set in the spidering map; otherwise, we set the flag and continue
with the download. For our case, we don't need to release the lock, as we are not interested
in downloading a URL twice, even if the spider tasks are executed at two completely
different points in time.

[91]

Asynchronous Control Flow Patterns with Callbacks

Race conditions can cause many problems, even if we are in a single-threaded environment.
In some circumstances, they can lead to data corruption and are usually very hard to debug
because of their ephemeral nature. So, it's always good practice to double check for this type
of situation when running tasks in parallel.

Limited parallel execution

Often, spawning parallel tasks without control can lead to an excessive load. Imagine
having thousands of files to read, URLs to access, or database queries to run in parallel. A
common problem in such situations is running out of resources, for example, by utilizing all
the file descriptors available for an application when trying to open too many files at once.
In a web application, it may also create a vulnerability that is exploitable with Denial of
Service (DoS) attacks. In all such situations, it is a good idea to limit the number of tasks
that can run at the same time. This way, we can add some predictability to the load of our
server and also make sure that our application will not run out of resources. The following
diagram describes a situation where we have five tasks that run in parallel with a
concurrency limit of 2:

From the preceding figure, it should be clear how our algorithm will work:

1. Initially, we spawn as many tasks as we can without exceeding the concurrency
limit.

2. Then, every time a task is completed, we spawn one or more tasks until we don't
reach the limit again.

[92]

Asynchronous Control Flow Patterns with Callbacks

Limiting the concurrency

We now present a pattern to execute a set of given tasks in parallel with limited
concurrency:

const tasks = ...

let concurrency 2, running = 0, completed = 0, index = O0;

function next () { // 1]
while (running < concurrency && index < tasks.length) {
task = tasks[index++];
task (() => { //12]

if (completed === tasks.length) {
return finish();

}
completed++, running--;
next () ;

)i

running++;

}
}

next ();

function finish () {
//all tasks finished
}

This algorithm can be considered a mix between a sequential execution and a parallel

execution. In fact, we might notice similarities with both the patterns we presented earlier in
the chapter:

1. We have an iterator function, which we called next (), and then an inner loop
that spawns in parallel as many tasks as possible while staying within the
concurrency limit.

2. The next important part is the callback we pass to each task, which checks if we
completed all the tasks in the list. If there are still tasks to run, it invokes next ()
to spawn another bunch of tasks.

Pretty simple, isn't it?

[93]

Asynchronous Control Flow Patterns with Callbacks

Globally limiting the concurrency

Our web spider application is perfect for applying what we learned about limiting the
concurrency of a set of tasks. In fact, to avoid the situation in which we have thousands of
links crawled at the same time, we can enforce a limit on the concurrency of this process by
adding some predictability on the number of concurrent downloads.

Node.js versions before 0.11 already limit the number of concurrent HTTP
connections per host to 5. This can, however, be changed to accommodate
our needs. Find out more in the official docs at
http://nodejs.org/docs/v0.10.0/api/http.html#http_agent_m
axsockets. Starting from Node.js 0.11, there is no default limit on the
number of concurrent connections.

We could apply the pattern we just learned to our spiderLinks () function, but what we
would obtain is only limiting the concurrency of a set of links found within one single page.
If we chose, for example, a concurrency of 2, we would have at most two links downloaded
in parallel for each page. However, as we can download multiple links at once, each page
would then spawn another two downloads, causing the grand total of download operations
to grow exponentially anyway.

Queues to the rescue

What we really want then, is to limit the global number of download operations we can
have running in parallel. We could slightly modify the pattern showed before, but we
prefer to leave this as an exercise for you, as we want to take this opportunity to introduce
another mechanism, which makes use of queues to limit the concurrency of multiple tasks.
Let's see how this works.

We are now going to implement a simple class named TaskQueue, which will combine a
queue with the algorithm we presented before. Let's create a new module named
taskQueue. js:

class TaskQueue {
constructor (concurrency) {
this.concurrency = concurrency;
this.running = 0;
this.queue = [];

}

pushTask (task) {
this.queue.push (task);
this.next ();

}

[94]

Asynchronous Control Flow Patterns with Callbacks

next () |
while (this.running < this.concurrency && this.queue.length) {
const task = this.queue.shift();
task (() => {
this.running——;
this.next ();
1)

this.running++;
}
}
i

The constructor of this class takes as input only the concurrency limit, but besides that, it
initializes the variables running and queue. The former variable is a counter used to keep
track of all the running tasks, while the latter is the array that will be used as a queue to
store the pending tasks.

The pushTask () method simply adds a new task to the queue and then bootstraps the
execution of the worker by invoking this.next ().

The next () method spawns a set of tasks from the queue, ensuring that it does not exceed
the concurrency limit.

We might notice that this method has some similarities with the pattern that limits the
concurrency we presented earlier. It essentially starts as many tasks from the queue as
possible, without exceeding the concurrency limit. When each task is complete, it updates
the count of running tasks and then starts another round of tasks by invoking next ()

again. The interesting property of the TaskQueue class is that it allows us to dynamically
add new items to the queue. The other advantage is that now we have a central entity
responsible for the limitation of the concurrency of our tasks, which can be shared across all
the instances of a function's execution. In our case, it's the spider () function, as we will see
in a moment.

Web spider version 4

Now that we have our generic queue to execute tasks in a limited parallel flow, let's use it
straightaway in our web spider application. Let's first load the new dependency and create
a new instance of the TaskQueue class by setting the concurrency limit to 2:

const TaskQueue = require('./taskQueue');
const downloadQueue = new TaskQueue (2);

[95]

Asynchronous Control Flow Patterns with Callbacks

Next, we need to update the spiderLinks () function so that it can use the newly created
downloadQueue:

function spiderLinks (currentUrl, body, nesting, callback) {
if (nesting === 0) {
return process.nextTick (callback);

}

const links = utilities.getPagelinks (currentUrl, body);
if(links.length === 0) {
return process.nextTick (callback);

}

let completed = 0, hasErrors = false;
links.forEach (link => {
downloadQueue.pushTask (done => {
spider (link, nesting - 1, err => {
if (err) |
hasErrors= true;
return callback (err);

}
if (++completed === links.length && 'hasErrors) {
callback () ;

This new implementation of the function is extremely easy, and it's very similar to the
algorithm for unlimited parallel execution, which we presented earlier in the chapter. This
is because we are delegating the concurrency control to the TaskQueue object, and the only
thing we have to do is to check when all our tasks are complete. The only interesting part in
the preceding code is how we defined our tasks:

e We run the spider () function by providing a custom callback.

¢ In the callback, we check if all the tasks relative to this execution of the
spiderLinks () function are completed. When this condition is t rue, we invoke
the final callback of the spiderLinks () function.

¢ At the end of our task, we invoke the done () callback so that the queue can
continue its execution.

[96]

Asynchronous Control Flow Patterns with Callbacks

After we have applied these small changes, we can now try to run the spider module
again. This time, we should notice that no more than two downloads will be active at the
same time.

The async library

If we take a look for a moment at every control flow pattern we have analyzed so far, we
can see that they could be used as a base to build reusable and more generic solutions. For
example, we could wrap the unlimited parallel execution algorithm into a function which
accepts a list of tasks, runs them in parallel, and invokes the given callback when all of them
are complete. This way of wrapping control flow algorithms into reusable functions can
lead to a more declarative and expressive way to define asynchronous control flows, and
that's exactly what async (https://npmjs.org/package/async) does. The async
library is a very popular solution, in Node.js and JavaScript in general, to deal with
asynchronous code. It offers a set of functions that greatly simplify the execution of a set of
tasks in different configurations and it also provides useful helpers for dealing with
collections asynchronously. Even though there are several other libraries with a similar
goal, async is a de facto standard in Node.js due to its popularity.

Let's try it straightaway to demonstrate its capabilities.

Sequential execution

The async library can help us immensely when implementing complex asynchronous
control flows, but one difficulty with it is choosing the right helper for the problem at hand.
For example, for the case of the sequential execution flow, there are around 20 different
functions to choose from, including eachSeries (), mapSeries (), filterSeries (),
rejectSeries (), reduce (), reduceRight (), detectSeries (), concatSeries (),
series (), whilst (), doWhilst (), until (), doUntil (), forever (), waterfall (),
compose (), seq (), applyEachSeries (), iterator (), and timesSeries ().

Choosing the right function is an important step in writing more compact and readable
code, but this also requires some experience and practice. In our examples, we are going to
cover just a few of these situations, but they will still provide a solid base to understand and
efficiently use the rest of the library.

Now, to show in practice how async works, we are going to adapt our web spider
application. Let's start directly with version 2, the one that downloads all the links
recursively in sequence.

[97]

https://npmjs.org/package/async

Asynchronous Control Flow Patterns with Callbacks

However, first let's make sure we install the async library into our current project:

npm install async

Then we need to load the new dependency from the spider. js module:

const async = require('async');

Sequential execution of a known set of tasks

Let's modify the download () function first. As we have already seen, it executes the
following three tasks in sequence:

1. Download the contents of a URL.
2. Create a new directory if it doesn't exist yet.
3. Save the contents of the URL into a file.

The ideal function to use with this flow is definitely async.series (), which has the
following signature:

async.series (tasks, [callback])

It takes a list of tasks and a callback function that is invoked when all the tasks have
been completed. Each task is just a function that accepts a callback function, which must
be invoked when the task completes its execution:

function task (callback) {}

The nice thing about async is that it uses the same callback conventions of Node.js, and it
automatically handles error propagation. So, if any of the tasks invoke its callback with an
error, async will skip the remaining tasks in the list and jump directly to the final callback.

With this in mind, let's see how the download () function would change by using async:

function download(url, filename, callback) {
console.log (' Downloading ${url}’);
let body;

async.series ([
callback => { //11]
request (url, (err, response, resBody) => {
if (err) {
return callback (err);
}
body = resBody;

[98]

Asynchronous Control Flow Patterns with Callbacks

] 4

}

callback () ;
)i
}I

mkdirp.bind(null, path.dirname (filename)), //[2]

callback => { //13]

fs.writeFile(filename, body, callback);

}
err => { //14]

if (err) |

return callback (err);

}

console.log (' Downloaded and saved: ${url}’);
callback (null, body);
1) i

If we remember the callback hell version of this code, we will surely appreciate the way
async allows us to organize our tasks. There is no need to nest callbacks anymore, as we
just have to provide a flat list of tasks, usually one for each asynchronous operation, which
async will then execute in sequence. This is how we define each task:

1.

The first task involves the download of the URL. Also, we save the response
body into a closure variable (body) so that it can be shared with the other tasks.
In the second task, we want to create the directory that will hold the downloaded
page. We do this by performing a partial application of the mkdirp () function,
binding the path of the directory to be created. This way, we can save a few lines
of code and increase its readability.

At last, we write the contents of the downloaded URL to a file. In this case, we
could not perform a partial application (as we did for the second task), because
the variable, body, is only available after the first task in the series completes.
However, we can still save some lines of code by exploiting the automatic error
management of async by simply passing the callback of the task directly to the
fs.writeFile () function.

After all the tasks are complete, the final callback of async.series () is invoked.

In our case, we are simply doing some error management and then returning the
body variable to callback of the download () function.

[99]

Asynchronous Control Flow Patterns with Callbacks

For this specific situation, a possible alternative to async.series () would be
async.waterfall (), which still executes the tasks in sequence but in addition, it also
provides the output of each task as input to the next. In our situation, we could use this
feature to propagate the body variable until the end of our sequence. As an exercise, you
can try to implement the same function using the waterfall flow and then take a look at the
differences.

Sequential iteration

We saw in the previous paragraph how we can execute a set of known tasks in sequence;
we used async.series () to do that. We could use the same functionality to implement
the spiderLinks () function of our web spider version 2; however, async offers a more
appropriate helper for the specific situation in which we have to iterate over a collection;
this helper is async.eachSeries (). Let's use it then to reimplement our spiderLinks ()
function (version 2, download in series) as follows:

function spiderLinks (currentUrl, body, nesting, callback) {
if (nesting === 0) {
return process.nextTick (callback);

}

const links = utilities.getPagelinks (currentUrl, body);
if(links.length === 0) {
return process.nextTick (callback);

}

async.eachSeries (links, (link, callback) => {
spider (link, nesting - 1, callback);
}, callback);
t

If we compare the preceding code, which uses async, with the code of the same function
implemented with plain JavaScript patterns, we will notice the big advantage that async
gives us in terms of code organization and readability.

Parallel execution

The async library doesn't lack functions to handle parallel flows; among them we can find
each (), map (), filter (), reject (), detect (), some (), every (), concat (),
parallel(), applyEach (), and times (). They follow the same logic as the functions we
have already seen for sequential execution, with the difference being that the tasks provided
are executed in parallel.

[100]

Asynchronous Control Flow Patterns with Callbacks

To demonstrate that, we can try to apply one of these functions to implement version 3 of
our web spider application, the one performing the downloads using an unlimited parallel
flow.

If we remember the code we used earlier to implement the sequential version of the
spiderLinks () function, adapting it to make it work in parallel is a trivial task:

function spiderLinks (currentUrl, body, nesting, callback) {
//
async.each(links, (link, callback) => {
spider (link, nesting - 1, callback);
}, callback);
}

The function is exactly the same one that we used for the sequential download, but this time
we used async.each () instead of async.eachSeries (). This clearly demonstrates the
power of abstracting the asynchronous flow with a library such as async. The code is not
bound to a particular execution flow anymore; there is no code specifically written for that.
Most of it is just application logic.

Limited parallel execution

If you are wondering if async can also be used to limit the concurrency of parallel tasks, the
answer is yes, it can! We have a few functions we can use for that, namely, eachLimit (),
mapLimit (), parallelLimit (), queue (), and cargo ().

Let's try to exploit one of them to implement version 4 of the web spider application, the
one executing the download of the links in parallel with limited concurrency. Fortunately,
async has async. queue (), which works in a similar way to the TaskQueue class we
created earlier in the chapter. The async. queue () function creates a new queue, which
uses a worker () function to execute a set of tasks with a specified concurrency limit:

const g = async.queue (worker, concurrency);

The worker () function receives, as input, task to run and a callback function to invoke,
when the task completes:

function worker (task, callback)

We should notice that task in this case can be anything, not just a function. In fact, it's the
responsibility of the worker to handle a task in the most appropriate way. New tasks can be
added to the queue by using g.push (task, callback).The callback associated to a task
has to be invoked by the worker after the task has been processed.

[101]

Asynchronous Control Flow Patterns with Callbacks

Now, let's modify our code again to implement a parallel globally limited execution flow,
using async. queue (). First of all, we need to create a new queue:

const downloadQueue = async.queue ((taskData, callback) => {
spider (taskData.link, taskData.nesting - 1, callback);
b 2)5

The code is really straightforward. We are just creating a new queue with a concurrency
limit of 2, having a worker that simply invokes our spider () function with the data
associated with a task. Next, we implement the spiderLinks () function:

function spiderLinks (currentUrl, body, nesting, callback) {
if (nesting === 0) {
return process.nextTick (callback);
}
const links = utilities.getPagelinks (currentUrl, body);
if(links.length === 0) {
return process.nextTick (callback);

}

const completed = 0, hasErrors = false;
links.forEach (function (link) {
const taskData = {link: link, nesting: nesting};

downloadQueue.push (taskData, err => {
if (err) {
hasErrors = true;
return callback (err);

}
if (++completed === links.lengthé&& 'hasErrors) {

callback () ;

The preceding code should look very familiar, as it's almost the same as the one we used to
implement the same flow using the TaskQueue object. Also, in this case, the important part
to analyze is where we push a new task into the queue. At that point, we ensure that we
pass a callback that enables us to check if all the download tasks for the current page are
completed, and eventually invoke the final callback.

Thanks to async. queue (), we could easily replicate the functionality of our TaskQueue
object, again demonstrating that with async, we can really avoid writing asynchronous
control flow patterns from scratch, reducing our efforts and saving precious lines of code.

[102]

Asynchronous Control Flow Patterns with Callbacks

Summary

At the beginning of this chapter, we said that Node.js programming can be tough because of
its asynchronous nature, especially for people used to developing on other platforms.
However, throughout this chapter we showed how asynchronous APIs can be bent to our
will, starting with plain JavaScript, which provided us the foundation for the analysis of
more sophisticated techniques. We then saw that the tools at our disposal are indeed
variegated and provide good solutions to most of our problems, in addition to offering a
programming style for every taste; for example, we may choose async to simplify the most
common flows.

This chapter served as an introduction to more advanced techniques, such as promises and
generators, that will be the main focus of the next chapter. When you know all these
techniques, you will be able to choose the best solution for your needs or use many of them
together in the same project.

[103]

Asynchronous Control Flow
Patterns with ES2015 and
Beyond

In the previous chapter, we learned how to deal with asynchronous code using callbacks
and how they can have a bad impact on our code, generating issues such as callback hell.
Callbacks are the building blocks of asynchronous programming in JavaScript and in
Node,js, but over the years, other alternatives have emerged. Those alternatives are more
sophisticated in order to be able to deal with asynchronous code in ways that are more
convenient.

In this chapter, we are going to explore some of the most famous alternatives, promises and
generators. We will also explore async await, an innovative syntax that will be available in
JavaScript as part of the release of ECMAScript 2017.

We will see how these alternatives can simplify the way we deal with asynchronous control
flows. Finally, we will compare all these approaches in order to understand all the pros and
cons of each of them and be able to wisely choose the approach that best suits the
requirements of our next Node.js project.

Asynchronous Control Flow Patterns with ES2015 and Beyond

Promise

We mentioned in the previous chapters that Continuation Passing Style (CPS) is not the
only way to write asynchronous code. In fact, the JavaScript ecosystem provides interesting
alternatives to the traditional callback pattern. One of the most famous alternatives is
promise, which is getting more and more attention, especially now that it is part of
ECMAScript 2015 and has been natively available in Node.js since version 4.

What is a promise?

In very simple terms, promise is an abstraction that allows a function to return an object
called promise, which represents the eventual result of an asynchronous operation. In the
promises jargon, we say that a promise is pending when the asynchronous operation is not
yet complete, it's fulfilled when the operation successfully completes, and rejected when
the operation terminates with an error. Once a promise is either fulfilled or rejected, it's
considered settled.

To receive the fulfillment value or the error (reason) associated with the rejection, we can use
the then () method of the promise. The following is its signature:

promise.then([onFulfilled], [onRejected])

In the preceding code, onFulfilled () is a function that will eventually receive the
fulfillment value of the promise, and onRejected () is another function that will receive
the reason for the rejection (if any). Both functions are optional.

To have an idea of how promises can transform our code, let's consider the following:

asyncOperation(arg, (err, result) => {
if (err) {
//handle error
}
//do stuff with result
)i

Promises allow us to transform this typical CPS code into a better structured and more
elegant code, such as the following:

asyncOperation (arg)
.then (result => {
//do stuff with result
}, err => {
//handle error
P

[105]

Asynchronous Control Flow Patterns with ES2015 and Beyond

One crucial property of the then () method is that it synchronously returns another
promise. If any of the onFulfilled () or onRejected () functions return a value x, the
promise returned by the then () method will be as follows:

e Fulfill with x if x is a value
e Fulfill with the fulfillment value of x if x is a promise or a thenable
¢ Reject with the eventual rejection reason of x if x is a promise or a thenable

A thenable is a promise-like object with a then () method. This term is

used to indicate a promise that is foreign to the particular promise
implementation in use.

This feature allows us to build chains of promises, allowing easy aggregation and
arrangement of asynchronous operations in several configurations. Also, if we don't specify
an onFulfilled () or onRejected () handler, the fulfillment value or rejection reasons are
automatically forwarded to the next promise in the chain. This allows us, for example, to
automatically propagate errors across the whole chain until caught by an onRejected()

handler. With a promise chain, sequential execution of tasks suddenly becomes a trivial
operation:

asyncOperation (arg)

.then (resultl => {
//returns another promise
return asyncOperation (arg2);

})

.then (result2 => {
//returns a value
return 'done';

})

.then (undefined, err => {
//any error in the chain is caught here

)i

[106]

Asynchronous Control Flow Patterns with ES2015 and Beyond

The following diagram provides another perspective on how a promise chain works:

Their return value eventually settles Promise B Their return value eventually settles Promise C Synchronously
L L L P e e PP I L L e e e P E R e AR Y
1 ! L | ! !
] i : i i | Asynchronously
onFulfilled() settled onRejected() E onFulfilled() settled onRejected() i
[] !
1 I
: | ' |
1
- fuifill i ~-=-p--- reject -2 i
1
[__4
Promise A then() » Promise C

Another important property of promises is that the onFulfilled () and onRejected()
functions are guaranteed to be invoked asynchronously, even if we resolve the promise
synchronously with a value, as we did in the preceding example, where we returned the
string done in the last then () function of the chain. This behavior shields our code against
all those situations where we could unintentionally release Zalgo (see Chapter 2, Node.js
Essential Patterns), making our asynchronous code more consistent and robust with no
effort.

Now comes the best part. If an exception is thrown (using the t hrow statement) in the
onFulfilled() or onRejected () handler, the promise returned by the then () method
will automatically reject, with the exception thrown as the rejection reason. This is a
tremendous advantage over CPS, as it means that with promises, exceptions will propagate
automatically across the chain, and that the throw statement is finally usable.

Historically, there have been many different implementations of promise libraries, and most
of the time they were not compatible between each other, meaning that it was not possible
to create thenable chains between promise objects coming from libraries that were using
different promise implementations.

The JavaScript community worked very hard to sort out this limitation and these efforts
lead to the creation of the Promises/A+ specification. This specification details the behavior
of the then method, providing an interoperable base, which makes promise objects from
different libraries able to work with each other out of the box.

For a detailed description of the Promises/A+ specification, you can refer
to the official website, https://promisesaplus.com.

[107]

https://promisesaplus.com

Asynchronous Control Flow Patterns with ES2015 and Beyond

Promises/A+ implementations

In JavaScript, and also in Node.js, there are several libraries implementing the Promises/A+
specification. The following are the most popular:

e Bluebird (https://npmjs.org/package/bluebird)

Q (https://npmjs.org/package/q)

RSVP (https://npmjs.org/package/rsvp)

Vow (https://npmjs.org/package/vow)

When,js (https://npmjs.org/package/when)
ES2015 promises

What really differentiates them is the additional set of features they provide on top of the
Promises/A+ standard. As we said, the standard defines the behavior of the then () method
and the promise resolution procedure, but it does not specify other functionalities, for
example, how a promise is created from a callback-based asynchronous function.

In our examples, we will use the set of APIs implemented by the ES2015 promises, as they
have been natively available in Node.js since version 4 without the support of any external
libraries.

For reference, here is the list of the APIs provided by ES2015 promises:

Constructor (new Promise(function(resolve, reject) {})): This creates a new promise that
fulfills or rejects based on the behavior of the function passed as an argument. The
arguments of the constructor are explained as follows:

e resolve (obj): This will resolve the promise with a fulfillment value, which will
be obj if obj is a value. It will be the fulfillment value of obj if obj is a promise
or a thenable.

e reject (err): This rejects the promise with the reason err. It is a convention for
err to be an instance of Error.

[108]

https://npmjs.org/package/bluebird
https://npmjs.org/package/q
https://npmjs.org/package/rsvp
https://npmjs.org/package/vow
https://npmjs.org/package/when

Asynchronous Control Flow Patterns with ES2015 and Beyond

Static methods of the Promise object:

e Promise.resolve (obj): This creates a new promise from a thenable or a value.

e Promise.reject (err): This creates a promise that rejects with err as the
reason.

e Promise.all (iterable): This creates a promise that fulfills with an iterable of
fulfillment values when every item in the iterable object fulfills, and rejects with
the first rejection reason if any item rejects. Each item in the iterable object can be
a promise, a generic thenable, or a value.

e Promise.race (iterable): This returns a promise that resolves or rejects as
soon as one of the promises in the iterable resolves or rejects, with the value or
reason from that promise.

Methods of a promise instance:

e promise.then (onFulfilled, onRejected): Thisis the essential method of a
promise. Its behavior is compatible with the Promises/A+ standard we described
before.

e promise.catch (onRejected): This is just syntactic sugar for
promise.then (undefined, onRejected).

It is worth mentioning that some promise implementations offer another
mechanism to create new promises, called deferreds. We are not going to
describe it here, because it's not part of the ES2015 standard, but if you
want to know more, you can read the documentation for Q
(https://github.com/kriskowal/qg#using-deferreds) or When.js
(https://github.com/cujojs/when/wiki/Deferred).

Promisifying a Node.js style function

In JavaScript, not all the asynchronous functions and libraries support promises out-of-the-
box. Most of the time, we have to convert a typical callback-based function into one that
returns a promise; this process is also known as promisification.

[109]

https://github.com/cujojs/when/wiki/Deferred

Asynchronous Control Flow Patterns with ES2015 and Beyond

Fortunately, the callback conventions used in Node.js allow us to create a reusable function
that we can utilize to promisify any Node.js style API. We can do this easily by using the
constructor of the Promise object. Let's then create a new function called promisify () and
include it into the utilities. js module (so we can use it later in our web spider
application):

module.exports.promisify = function(callbackBasedApi) {
return function promisified() {
const args = [].slice.call (arguments);
return new Promise ((resolve, reject) => { //11]
args.push((err, result) => { //12]
if (err) |
return reject (err); //13]
}
if (arguments.length <= 2) { //14]
resolve (result);
} else {
resolve([].slice.call (arguments, 1));
}
}) i
callbackBasedApi.apply (null, args); //15]

)i
}
bi

The preceding function returns another function called promisified (), which represents
the promisified version of the callbackBasedApi given in the input. This is how it works:

1. The promisified () function creates a new promise using the Promise
constructor and immediately returns it to the caller.

2. In the function passed to the Promise constructor, we make sure to pass to
callbackBasedApi, a special callback. As we know that the callback always
comes last, we simply append it to the argument list (args) provided to the
promisified () function.

3. In the special callback, if we receive an error, we immediately reject the promise.

4. If no error is received, we resolve the promise with a value or an array of values,
depending on how many results are passed to the callback.

5. Finally, we simply invoke the callbackBasedApi with the list of arguments we
have built.

[110]

Asynchronous Control Flow Patterns with ES2015 and Beyond

Most of the promise implementations already provide, out-of-the-box,
some sort of helper to convert a Node.js style API to one returning a
promise. For example, Q has 0.denodeify () and 0.nbind (), Bluebird
has Promise.promisify (), and When.js has node . 1ift ().

Sequential execution

After a little bit of necessary theory, we are now ready to convert our web spider
application to use promises. Let's start directly from version 2, the one downloading the
links of a web page in sequence.

In the spider.js module, the very first step required is to load our promises
implementation (we will use it later) and promisify the callback-based functions that we
plan to use:

const utilities = require('./utilities"');

const request = utilities.promisify(require('request'));
const mkdirp = utilities.promisify(require('mkdirp'));
const fs = require('fs');

const readFile = utilities.promisify(fs.readFile);
const writeFile = utilities.promisify(fs.writeFile);

Now, we can start converting the download () function:

function download(url, filename) {
console.log (' Downloading ${url});
let body;
return request (url)
.then (response => {
body = response.body;
return mkdirp (path.dirname (filename));
})
.then(() => writeFile (filename, body))
.then(() => {
console.log (' Downloaded and saved: ${url}’);
return body;

)i

[111]

Asynchronous Control Flow Patterns with ES2015 and Beyond

The important thing to notice here is that we also registered an onRejected () function for
the promise returned by readrile () to handle cases where a page has not been
downloaded (file does not exist). Also, it's interesting to see how we were able to use throw
to propagate the error from within the handler.

Now that we have converted our spider () function as well, we can modify its main
invocation as follows:

spider (process.argv[2], 1)
.then(() => console.log('Download complete'))
.catch(err => console.log(err));

Note how we used, for the first time, the syntactic sugar catch to handle any error
situations originating from the spider () function. If we look again at all the code we have
written so far, we would be pleasantly surprised by the fact that we haven't included any
error propagation logic, as we would be forced to do when using callbacks. This is clearly
an enormous advantage, as it greatly reduces the boilerplate in our code and the chances of
missing any asynchronous errors.

Now, the only missing bit to complete version 2 of our web spider application is the
spiderLinks () function, which we are going to implement in a moment.

Sequential iteration

So far, the web spider codebase was mainly an overview of what promises are and how
they are used, demonstrating how simple and elegant it is to implement a sequential
execution flow using promises. However, the code we considered until now only involves
the execution of a known set of asynchronous operations. So, the missing piece that will
complete our exploration of sequential execution flows is to see how we can implement an
iteration using promises. Again, the spiderLinks () function of web spider version 2 is a
perfect example to show that.

Let's add the missing piece:

function spiderLinks (currentUrl, body, nesting) {
let promise = Promise.resolve();
if (nesting === 0) {
return promise;

}

const links = utilities.getPagelinks (currentUrl, body);
links.forEach (link => {
promise = promise.then(() => spider (link, nesting - 1));

P

[112]

Asynchronous Control Flow Patterns with ES2015 and Beyond

return promise;

}

To iterate asynchronously over all the links of a web page, we had to dynamically build a
chain of promises:

1. First, we defined an “empty” promise, resolving to unde fined. This promise is
just used as a starting point to build our chain.

2. Then, in a loop, we updated the promise variable with a new promise obtained
by invoking then () on the previous promise in the chain. This is actually our
asynchronous iteration pattern using promises.

This way, at the end of the loop, the promise variable will contain the promise of the last
then () invocation in the loop, so it will resolve only when all the promises in the chain
have been resolved.

With this, we completely converted our web spider version 2 to use promises. We should
now be able to try it out again.

Sequential iteration — the pattern

To conclude this section on sequential execution, let's extract the pattern to iterate over a set
of promises in sequence:

let tasks = [/* ... */]
let promise = Promise.resolve();
tasks.forEach (task => {
promise = promise.then(() => {
return task();
P) i
P) i
promise.then(() => {
//All tasks completed
P) i

An alternative to using the forEach () loop is the reduce () function, allowing an even
more compact code:

let tasks = [/* ... */]
let promise = tasks.reduce((prev, task) => {
return prev.then(() => {

return task();

)i

}, Promise.resolve());

[113]

Asynchronous Control Flow Patterns with ES2015 and Beyond

promise.then(() => {
//All tasks completed
1)

As always, with simple adaptations of this pattern, we could collect all the tasks' results in
an array; we could implement a mapping algorithm, or build a filter, and so on.

Pattern (sequential iteration with promises):
This pattern dynamically builds a chain of promises using a loop.

Parallel execution

Another execution flow that becomes trivial with promises is the parallel execution flow. In
fact, all that we need to do is use the built-in Promise.all (). This helper function creates
another promise, which fulfills only when all the promises received in an input are fulfilled.
That's essentially a parallel execution because no order between the various promises'
resolutions is enforced.

To demonstrate this, let's consider version 3 of our web spider application, which
downloads all the links in page in parallel. Let's update the spiderLinks () function again
to implement a parallel flow, using promises:

function spiderLinks (currentUrl, body, nesting) {
if (nesting === 0) {
return Promise.resolve();

}

const links = utilities.getPagelinks (currentUrl, body);
const promises = links.map(link => spider (link, nesting - 1));

return Promise.all (promises);

}

The pattern here consists of starting the spider () tasks all at once in the elements.map ()
loop, which also collects all their promises. This time, in the loop, we are not waiting for the
previous download to complete before starting a new one: all the download tasks are
started in the loop at once, one after the other. Afterwards, we leverage the

Promise.all () method, which returns a new promise that will be fulfilled when all the
promises in the array are fulfilled. In other words, it fulfills when all the download tasks
have completed; this is exactly what we wanted.

[114]

Asynchronous Control Flow Patterns with ES2015 and Beyond

Limited parallel execution

Unfortunately, the ES2015 Promise API does not provide a native way to limit the number
of concurrent tasks, but we can always rely on what we learned about limiting the
concurrency with plain JavaScript. In fact, the pattern we implemented inside the
TaskQueue class can be easily adapted to support tasks that return a promise. This can
easily be done by modifying the next () method:

next () A
while (this.running < this.concurrency && this.queue.length) {
const task = this.queue.shift();
task () .then(() => {
this.running--;
this.next ();
}) i
this.running++;
}
}

Instead of handling the task with a callback, we simply invoke then () on the promise it
returns. The rest of the code is basically identical to the old version of TaskQueue.

Let's go back to the spider. js module, and modify it to support our new version of the
TaskQueue class. First, we make sure to define a new instance of TaskQueue:

const TaskQueue = require('./taskQueue');
const downloadQueue = new TaskQueue (2);

Then, it's the turn of the spiderLinks () function again. The change here is also pretty
straightforward:

function spiderLinks (currentUrl, body, nesting) {
if (nesting === 0) {
return Promise.resolve();

}

const links = utilities.getPagelinks (currentUrl, body);
//we need the following because the Promise we create next
//will never settle if there are no tasks to process
if(links.length === 0) {

return Promise.resolve();

}

return new Promise((resolve, reject) => {
let completed = 0;
let errored = false;
links.forEach(link => {

[115]

Asynchronous Control Flow Patterns with ES2015 and Beyond

let task = () => {
return spider(link, nesting - 1)
.then(() => {
if (++completed === links.length) {
resolve () ;
t
})
.catch(() => {
if ('errored) {
errored = true;
reject () ;
t
1) i
bi
downloadQueue.pushTask (task) ;
1) i
)i
t

There are a couple of things in the previous code that deserve our attention:

o First, we needed to return a new promise created using the Promise constructor.
As we will see, this enables us to resolve the promise manually, when all of the
tasks in the queue are completed.

e Second, we should look at how we defined the task. What we did is attach an
onFulfilled() callback to the promise returned by spider (), so we could
count the number of completed downloaded tasks. When the amount of
completed downloads matches the number of links in the current page, we know
that we are done processing, so we can invoke the resolve () function of the
outer promise.

The Promises/A+ specification states that the onFulfilled () and
onRejected () callbacks of the then () method have to be invoked only
once and exclusively (only one or the other is invoked). A compliant
promises implementation makes sure that even if we call resolve or
reject multiple times, the promise is either fulfilled or rejected only once.

Version 4 of the web spider application using promises should now be ready to try out. We
might notice once again how the download tasks now run in parallel, with a concurrency
limit of 2.

[116]

Asynchronous Control Flow Patterns with ES2015 and Beyond

Exposing callbacks and promises in public APls

As we have learned in the previous paragraphs, promises can be used as a nice replacement
for callbacks. They turn out to be very useful for making our code more readable and easy
to reason about. While promises bring many advantages, they also require the developer to
understand many non-trivial concepts in order to be used correctly and proficiently. For
this and other reasons, in some cases it might be more practical to prefer callbacks to
promises.

Now let's imagine for a moment that we want to build a public library that performs
asynchronous operations. What do we do? Do we create a callback-oriented API or a
promise-oriented one? Do we need to be opinionated on one side or another or there are
ways to support both and make everyone happy?

This is a problem that many well-known libraries face and there are at least two approaches
that are worth mentioning that allow us to provide a versatile APL

The first approach, used by libraries such as request, redis, and mysql, consists of
offering a simple API that is only based on callbacks and leave the developer the option to
promisify the exposed functions if needed. Some of these libraries provide helpers to be
able to promisify all the asynchronous functions they offer, but the developer still needs to
somehow convert the exposed API to be able to use promises.

The second approach is more transparent. It also offers a callback-oriented API, but it
makes the callback argument optional. Whenever the callback is passed as an argument, the
function will behave normally, executing the callback on completion or on failure.When the
callback is not passed, the function will immediately return a Promise object. This
approach effectively combines callbacks and promises in a way that allows the developer to
choose at call time what interface to adopt, without any need to promisify the function in
advance. Many libraries, such as mongoose and sequelize, support this approach.

Let's see a simple implementation of this approach with an example. Let's assume we want
to implement a dummy module that executes divisions asynchronously:

module.exports = function asyncDivision (dividend, divisor, cb) {
return new Promise ((resolve, reject) => { // [1]
process.nextTick (() => {
const result = dividend / divisor;
if (isNaN (result) || !Number.isFinite (result)) {
const error = new Error('Invalid operands');
if (cb) { cb(error); } // 2]

return reject (error);

}

[117]

Asynchronous Control Flow Patterns with ES2015 and Beyond

if (cb) { cb(null, result); } // 13]
resolve (result) ;

1)

1)
bi

The code of the module is very straightforward, but there are some details that are worth
underlining;:

e First, were return a new promise created using the Promise constructor. We
define the whole logic inside the function passed as argument to the constructor.

¢ In the case of an error, we reject the promise, but if the callback was passed at call
time, we also execute the callback to propagate the error.

¢ After we calculate the result we resolve the promise, but again, if there's a
callback, we propagate the result to the callback as well.

Let's see now how we can use this module with both callbacks and promises:

// callback oriented usage
asyncDivision (10, 2, (error, result) => {
if (error) {
return console.error (error);
}
console.log(result);
}) i

// promise oriented usage
asyncDivision (22, 11)
.then(result => console.log(result))
.catch(error => console.error (error));

It should be clear that with very little effort, the developers who are going to use our new
module will be able to easily choose the style that best suits their needs, without having to
introduce an external promisification function whenever they want to leverage promises.

[118]

Asynchronous Control Flow Patterns with ES2015 and Beyond

Generators

The ES2015 specification introduces another mechanism that, besides other things, can be
used to simplify the asynchronous control flow of our Node.js applications. We are talking
about generators, also known as semi-coroutines. They are a generalization of subroutines,
where there can be different entry points. In a normal function, in fact, we can have only
one entry point, which corresponds to the invocation of the function itself. A generator is
similar to a function, but in addition, it can be suspended (using the yield statement) and
then resumed at a later time. Generators are particularly useful when implementing
iterators, and this should ring a bell, as we already discussed how iterators can be used to
implement important asynchronous control flow patterns such as sequential and limited
parallel execution.

The basics of generators

Before we explore the use of generators for asynchronous control flow, it's important we
learn some basic concepts. Let's start from the syntax; a generator function can be declared
by appending the * (asterisk) operator after the function keyword:

function* makeGenerator () {
//body
}

Inside the makeGenerator () function, we can pause the execution using the keyword
yield and return to the caller the value passed to it:

function* makeGenerator () {
yield 'Hello World';
console.log('Re—-entered');

}

In the preceding code, the generator yields a string, Hel1lo World, by putting the execution
of the function on pause. When the generator is resumed, the execution will start from
console.log('Re—entered"').

The makeGenerator () function is essentially a factory that, when invoked, returns a new
generator object:

const gen = makeGenerator();

[119]

Asynchronous Control Flow Patterns with ES2015 and Beyond

The most important method of the generator object is next (), which is used to start/resume
the execution of the generator and returns an object in the following form:

{
value: <yielded wvalue>
done: <true if the execution reached the end>

}

This object contains the value yielded by the generator (value) and a flag to indicate if the
generator has completed its execution (done).

A simple example

To demonstrate generators, let's create a new module called fruitGenerator.js:

function* fruitGenerator () {
yield 'apple';
yield 'orange';
return 'watermelon';

}

const newFruitGenerator = fruitGenerator();

console.log (newFruitGenerator.next ()); //11]
console.log (newFruitGenerator.next ()); //12]
console.log (newFruitGenerator.next ()); //13]

The preceding code will print the following output:

{ value: 'apple', done: false }
{ value: 'orange', done: false }
{ value: 'watermelon', done: true }

This is a short explanation of what happened:

¢ The first time newFruitGenerator.next () was invoked, the generator started
its execution until it reached the first yield command, which put the generator
on pause and returned the value apple to the caller.

¢ At the second invocation of newFruitGenerator.next (), the generator
resumed, starting from the second yield command, which in turn put the
execution on pause again, while returning the value orange to the caller.

e The last invocation of newFruitGenerator.next () caused the execution of the
generator to resume from its last instruction, a return statement, which
terminates the generator, returns the value watermelon, and sets the done
property to true in the result object.

[120]

Asynchronous Control Flow Patterns with ES2015 and Beyond

Generators as iterators

To better understand why generators are so useful for implementing iterators, let's build
one. In a new module, which we will call iteratorGenerator. js, let's write the following

code:

function* iteratorGenerator (arr) {
for(let i = 0; i <arr.length; i++) {
yield arr[i];
}
}

const iterator = iteratorGenerator (['apple', 'orange', 'watermelon']);
let currentItem = iterator.next();
while (!currentItem.done) {

console.log(currentItem.value);

currentItem = iterator.next ();

}
This code should print the list of the items in the array as follows:

apple
orange
watermelon

In this example, each time we call iterator.next (), we resume the for loop of the
generator, which runs another cycle by yielding the next item in the array. This
demonstrates how the state of the generator is maintained across invocations. When
resumed, the loop and all the variables are exactly the same as when the execution was put
on pause.

Passing values back to a generator

To conclude our exploration of the basic functionality of generators, we will now learn how
to pass values back to a generator. This is actually very simple; what we need to do is just
provide an argument to the next () method, and that value will be provided as the return
value of the yield statement inside the generator.

To show this, let's create a new simple module:

function* twoWayGenerator () {
const what = yield null;
console.log('Hello ' + what);

}

[121]

Asynchronous Control Flow Patterns with ES2015 and Beyond

const twoWay = twoWayGenerator();
twoWay.next () ;
twoWay.next ('world');

When executed, the preceding code will print Hello world. This means that the following
has happened:

e The first time the next () method is invoked, the generator reaches the first
yield statement and is then put on pause.

e When next ('world') is invoked, the generator resumes from the point where it
was put on pause, which is on the yield instruction, but this time we have a
value that is passed back to the generator. This value will then be set into the
what variable. The generator then executes the console.log () instruction and
terminates.

In a similar way, we can force a generator to throw an exception. This is possible by using
the throw method of the generator, as shown in the following example:

const twoWay = twoWayGenerator();
twoWay.next ();
twoWay.throw(new Error());

Using this last code snippet, the twoWayGenerator () function will throw an exception the
moment the yield function returns. This works exactly as if an exception was thrown from
inside the generator, and this means that it can be caught and handled like any other
exception using a try. . .catch block.

Asynchronous control flow with generators

You must be wondering how generators can help us with handling asynchronous
operations. We can demonstrate this by creating a special function that accepts a generator
as an argument and allows us to use asynchronous code inside the generator. This function
takes care to resume the execution of the generator when the asynchronous operation
completes. We will call this function asyncFlow ():

function asyncFlow (generatorFunction) {
function callback (err) {
if (err) |
return generator.throw(err);
}
const results = [].slice.call (arguments, 1);
generator.next (results.length> 1 ? results : results[0]);

}

[122]

Asynchronous Control Flow Patterns with ES2015 and Beyond

const generator = generatorFunction (callback);
generator.next () ;

}

The preceding function takes a generator as input, instantiates it, and then immediately
starts its execution:

const generator = generatorFunction (callback);
generator.next () ;

The generatorFunction () receives as input, a special callback function that invokes
generator.throw () if an error is received; otherwise, it resumes the execution of the
generator by passing back the results received in the callback function:

if (err) A
return generator.throw(err);
t
const results = [].slice.call (arguments, 1);
generator.next (results.length> 1 ? results : results[0]);

To demonstrate the power of this simple function, let's create a new module called
clone. js, which, for no meaningful reason, creates a clone of itself. Paste the
asyncFlow () function we just created, followed by the core of the program:

const fs = require('fs');
const path = require('path');

asyncFlow (function* (callback) {
const fileName = path.basename(___filename);
const myself = yield fs.readFile(fileName, 'utf8', callback);
yield fs.writeFile (' clone_of_${filename} , myself, callback);
console.log('Clone created');

)i

Remarkably, with the help of the asyncFlow () function, we were able to write
asynchronous code using a linear approach, as we were using blocking functions! The
magic behind this result should be clear by now. The callback passed to each asynchronous
function will in turn resume the generator as soon as the asynchronous operation is
complete. Nothing complicated, but the outcome is surely impressive.

[123]

Asynchronous Control Flow Patterns with ES2015 and Beyond

There are two other variations of this technique, one involving the use of promises and the
other using thunks.

A thunk used in the generator-based control flow is just a function that
partially applies all the arguments of the original function except its
callback. The return value is another function that only accepts the
callback as an argument. For example, the thunkified version of
fs.readFile () would be as follows:

function readFileThunk (filename, options) {
return function (callback) {
fs.readFile(filename, options, callback);

Both thunks and promises allow us to create generators that do not need a callback to be
passed as an argument; for example, a version of asyncFlow () using thunks might be the

following;:

function asyncFlowWithThunks (generatorFunction) {
function callback (err) {
if (err) |
return generator.throw(err);
}
const results = [].slice.call (arguments, 1);
const thunk = generator.next (results.length> 1 ? results
results[0]) .value;
thunk && thunk (callback);
}
const generator = generatorFunction();
const thunk = generator.next () .value;
thunk && thunk (callback);

}

The trick is to read the return value of generator.next (), which contains the thunk. The
next step is to invoke the thunk itself by injecting our special callback. Simple! This allows
us to write the following code:

asyncFlowWithThunks (function* () {
const fileName = path.basename(___filename);
const myself = yield readFileThunk(__filename, 'utf8');
yield writeFileThunk (' clone_of_${fileName} , myself);
console.log("Clone created");

)i

[124]

Asynchronous Control Flow Patterns with ES2015 and Beyond

In the same way, we could implement a version of asyncFlow () that accepts a promise as
yieldable. We leave this as an exercise as its implementation requires only a minimal change
to the asyncFlowWithThunks () function. We may also implement an asyncFlow ()
function that accepts both promises and thunks as yieldables, using the same principles.

Generator-based control flow using co

As you may guess, the Node.js ecosystem provides some solutions to handle asynchronous
control flows using generators, for example, suspend (https://npmjs.org/package/sus
pend) is one of the oldest and supports promises, thunks, Node.js-style callbacks, as well as
raw callbacks. Also, most of the promise libraries we analyzed earlier in the chapter provide
helpers to use promises with generators.

All these solutions are based on the same principles we demonstrated with the
asyncFlow () function; so, we may want to reuse one of these instead of writing one
ourselves.

For the examples in this section, we chose to use co (https://npmjs.org/package/co).
It supports several types of yieldables, some of which are:

Thunks

e Promises

Arrays (parallel execution)

Objects (parallel execution)

Generators (delegation)

Generator functions (delegation)

co also has its own ecosystem of packages including the following:

e Web frameworks, the most popular being koa (https://npmjs.org/package/
koa)

e Libraries implementing specific control flow patterns
e Libraries wrapping popular APIs to support co

We will use co to re-implement our web spider application using generators.

While converting Node.js-style functions to thunks, we are going to use a little library called
thunkify (https://npmjs.org/package/thunkify).

[125]

https://npmjs.org/package/suspend
https://npmjs.org/package/suspend
https://npmjs.org/package/co
https://npmjs.org/package/koa
https://npmjs.org/package/koa
https://npmjs.org/package/thunkify

Asynchronous Control Flow Patterns with ES2015 and Beyond

Sequential execution

Let's start our practical exploration of generators and co by modifying version 2 of the web
spider application. The very first thing we have to do is to load our dependencies and
generate a thunkified version of the functions we are going to use. These will go at the top
of the spider. js module:

const thunkify = require('thunkify');

const co = require('co');

const request = thunkify(require('request'));
const fs = require('fs');

const mkdirp = thunkify (require('mkdirp'));
const readFile = thunkify(fs.readFile);

const writeFile = thunkify(fs.writeFile);
const nextTick = thunkify (process.nextTick);

Looking at the preceding code, we can surely notice some similarities with the code we
used earlier in the chapter to promisify some APIs. In this regard, it is interesting to point
out that if we decided to use the promisified version of our functions instead of their
thunkified alternative, the code would remain exactly the same, thanks to the fact that co
supports both thunks and promises as yieldable objects. In fact, if we want, we could even
use both thunks and promises in the same application, even in the same generator. This is a
tremendous advantage in terms of flexibility, as it allows us to use a generator-based

control flow with whatever solution we already have at our disposal.

Okay, now let's start transforming the download () function into a generator:

function* download(url, filename) {
console.log (' Downloading ${url});
const response = yield request (url);
const body = response[l];
yield mkdirp (path.dirname (filename)) ;
yield writeFile(filename, body);
console.log (' Downloaded and saved ${url}’);
return body;

}

By using generators and co, our download () function suddenly becomes trivial. All we had

to do is convert it into a generator function and use yield wherever we had an
asynchronous function (as thunk) to invoke.

[126]

Asynchronous Control Flow Patterns with ES2015 and Beyond

Next, it's the turn of the spider () function:

function* spider (url, nesting) {
const filename = utilities.urlToFilename (url);
let body;
try {
body = yield readfFile(filename, 'utf8');
} catch(err) {
if (err.code !== 'ENOENT') {
throw err;
}
body = yield download(url, filename);
}
yield spiderLinks (url, body, nesting);
}

The interesting detail to notice from this last fragment of code is how we were able to use a
try...catch block to handle exceptions. Also, we can now use throw to propagate errors!
Another remarkable line is where we yield the download () function, which is not a thunk
nor a promisified function, but just another generator. This is possible, thanks to co, which
also supports other generators as yieldables.

Finally, we can also convert spiderLinks (), where we implemented an iteration to
download the links of a web page in sequence. With generators, this becomes trivial as well:

function* spiderLinks (currentUrl, body, nesting) {
if (nesting === 0) {
return nextTick();

const links = utilities.getPagelinks (currentUrl, body);
for(let i = 0; i <links.length; i++) {
yield spider(links[i], nesting - 1);

}

There is little to explain from the previous code. There is no pattern to show for the
sequential iteration; generators and co are doing all the dirty work for us, so we were able
to write the asynchronous iteration as if we were using blocking, direct style APIs.

Now comes the most important part, the entry point of our program:

co (function* () |
try {
yield spider (process.argv([2], 1);
console.log('Download complete');
} catch(err) {

[127]

Asynchronous Control Flow Patterns with ES2015 and Beyond

console.log(err);
t
1) i

This is the only place where we have to invoke co (. . .) to wrap a generator. In fact, once
we do that, co will automatically wrap any generator we pass to a yield statement, and
this will happen recursively, so the rest of the program is totally agnostic to the fact we are
using co, even though it's under the hood.

Now it should be possible to run our generator-based web spider application.

Parallel execution

The bad news about generators is that they are great for writing sequential algorithms, but
they can't be used to parallelize the execution of a set of tasks, at least not just using yield
and generators. In fact, the pattern to use in these circumstances is to simply rely on a
callback-based or promise-based function, which in turn can easily be yielded and used
with generators.

Luckily, for the specific case of the unlimited parallel execution, co already allows us to
obtain it natively by simply yielding an array of promises, thunks, generators, or generator
functions.

With this in mind, version 3 of our web spider application can be implemented simply by
rewriting the spiderLinks () function as follows:

function* spiderLinks (currentUrl, body, nesting) {
if (nesting === 0) {
return nextTick () ;

}

const links = utilities.getPagelinks (currentUrl, body);
const tasks = links.map(link => spider(link, nesting - 1));
yield tasks;

}

What we did was just to collect all the download tasks, which are essentially generators,
and then yield on the resulting array. All these tasks will be executed by co in parallel and
then the execution of our generator (spiderLinks) will be resumed when all the tasks
finish running.

[128]

Asynchronous Control Flow Patterns with ES2015 and Beyond

If you think we cheated by exploiting the feature of co that allows us to yield on an arrayj, it
is possible to demonstrate how the same parallel flow can be achieved using a callback-
based solution similar to what we have already used earlier in the chapter. Let's use this
technique to rewrite spiderLinks () once again:

function spiderLinks (currentUrl, body, nesting) {
if (nesting === 0) {
return nextTick ();

//returns a thunk
return callback => {

let completed = 0, hasErrors = false;
const links = utilities.getPagelinks (currentUrl, body);
if(links.length === 0) {

return process.nextTick (callback);

function done (err, result) |
if (err && !'hasErrors) {
hasErrors = true;
return callback (err);

}
if (++completed === links.length && 'hasErrors) {
callback () ;

for(let 1 = 0; i < links.length; i++) {
co(spider(links[i], nesting - 1)) .then(done);

}

To run the spider () function in parallel, we use co, which executes the generator and
returns a promise. This way, we are able to wait for the promise to be resolved and call the
done () function. Usually, all the libraries for generator-based control flows have similar

features, so you can always transform a generator into a callback-based or a promise-based
function if needed.

[129]

Asynchronous Control Flow Patterns with ES2015 and Beyond

To start multiple download tasks in parallel, we just reused the callback-based pattern for
parallel execution defined earlier in the chapter. We should also notice that we transformed
the spiderLinks () function to a thunk (it's not even a generator anymore.) This enabled
us to have a callback function to invoke when all the parallel tasks are completed.

Pattern (generator-to-thunk)

It converts a generator to a thunk in order to be able to run it in parallel or
utilize it for taking advantage of other callback- or promise-based control
flow algorithms.

Limited parallel execution

Now that we know what to do with nonsequential execution flows, it should be easy to
plan the implementation of version 4 of our web spider application, the one imposing a
limit on the number of concurrent download tasks. We have several options we can use to
do that; some of them are as follows:

¢ Use the callback-based version of the previously implemented TaskQueue class.
We would need to just thunkify its functions and any generator we want to use as
a task.

¢ Use the promises-based version of the TaskQueue class, and just make sure that
each generator we want to use as a task is converted into a function returning a
promise.

¢ Use async, and thunkify any helper we plan to use, in addition to converting any
generator to a callback-based function that can be used by the library.

e Use a library from the co ecosystem, specifically designed for this type of flow,
such as, co-limiter (https://npmjs.org/package/co-limiter).

e Implement a custom algorithm based on the producer-consumer pattern, the
same that co-limiter uses internally.

For educational purposes, we are going to choose the last option, so we can dive into a
pattern that is often associated with coroutines (but also threads and processes).

[130]

https://npmjs.org/package/co-limiter

Asynchronous Control Flow Patterns with ES2015 and Beyond

Producer-consumer pattern

The goal is to leverage a queue to feed a fixed number of workers, as many as the
concurrency level we want to set. To implement this algorithm, we are going to take as a
starting point, the TaskQueue class we defined earlier in the chapter:

class TaskQueue {
constructor (concurrency) {

this.concurrency = concurrency;
this.running = 0;

this.taskQueue = [];
this.consumerQueue = [];
this.spawnWorkers (concurrency) ;

}
pushTask (task) {
if (this.consumerQueue.length !== 0) {
this.consumerQueue.shift () (null, task);
} else {
this.taskQueue.push (task);
}

spawnWorkers (concurrency) {
const self = this;
for(let i = 0; i < concurrency; i++) {
co (function* () {
while (true) |
const task = yield self.nextTask();
yield task;

nextTask () |
return callback => {
if (this.taskQueue.length !== 0) {
return callback (null, this.taskQueue.shift());

this.consumerQueue.push (callback);

[131]

Asynchronous Control Flow Patterns with ES2015 and Beyond

Let's start to analyze this new implementation of TaskQueue. The first thing to underline is
in the constructor. Notice the invocation of this.spawnWorkers (), as this is the method in
charge of starting the workers.

Our workers are very simple; they are just generators wrapped around co () and executed
immediately so that each one can run in parallel. Internally, each worker is running an
infinite loop that blocks (yield) waiting for a new task to be available in the queue (yield
self.nextTask ()), and when this happens, it yields the task (which is any valid yieldable)
waiting for its completion. You may be wondering how we can actually wait for the next
task to be queued. The answer is in the nextTask () method. Let's see in greater detail what
happens within this method:

nextTask () |
return callback => {
if (this.taskQueue.length !== 0) {

return callback(null, this.taskQueue.shift());
t

this.consumerQueue.push (callback);
t
t

Let's see what happens in this method, which is the core of the pattern:

1. The method returns a thunk, which is a valid yieldable for co.

2. The callback of the returned thunk is invoked by providing the next task in the
taskQueue function (if there is any available). This will immediately unblock a
worker, providing the next task to yield on.

3. If there are no tasks in the queue, the callback itself is pushed into
consumerQueue. By doing this, we are basically putting a worker in idle mode.
The callbacks in the consumerQueue function will be invoked as soon as we have
a new task to process, which will resume the corresponding worker.

Now, to understand how the idle workers in the consumerQueue function are resumed, we
need to analyze the pushTask () method. The pushTask () method invokes the first
callback in the consumerQueue function if available, which in turn will unblock a worker. If
no callback is available, it means that all the workers are busy, so we simply add a new item
to the taskQueue function.

[132]

Asynchronous Control Flow Patterns with ES2015 and Beyond

In the TaskQueue class, the workers have the role of consumers, while whoever uses
pushTask () can be considered a producer. This pattern shows us how a generator can be
very similar to a thread (or a process). In fact, the producer-consumer interaction is
probably the most common problem presented when studying inter-process
communication techniques, but as we already mentioned, it is also a common use case for
coroutines.

Limiting the download tasks concurrency

Now that we have implemented a limited parallel algorithm using generators and the
producer-consumer pattern, we can apply it to limit the concurrency of the download tasks
of our web spider application (version 4). First, let's load and initialize a TaskQueue object:

const TaskQueue = require('./taskQueue');
const downloadQueue = new TaskQueue (2);

Next, let's modify the spiderLinks () function. Its body is almost identical to the one we
just used to implement the unlimited parallel execution flow, so we will only show the
changed parts here:

function spiderLinks (currentUrl, body, nesting) {
YV
return (callback) => {
YV
function done (err, result) {
YV
}
links.forEach (function (link) {
downloadQueue.pushTask (function * () {
yield spider(link, nesting - 1);
done () ;
P i
P i

}

In each of the tasks, we invoke the done () function just after a download completes, so we
can count how many links were downloaded and then notify the callback of the thunk
when all are complete.

As an exercise, you can try to implement version 4 of the web spider application, using the
other four methods we presented at the beginning of this section.

[133]

Asynchronous Control Flow Patterns with ES2015 and Beyond

Async await using Babel

Callbacks, promises, and generators turn out to be the weapons at our disposal to deal with
asynchronous code in JavaScript and in Node.js. As we have seen, generators are very
interesting because they offer a way to actually suspend the execution of a function and
resume it at a later stage. Now we can adopt this feature to write asynchronous code that
allows developers to write functions that “appear” to block at each asynchronous operation,
waiting for the results before continuing with the following statement.

The problem is that generator functions are designed to deal mostly with iterators and their
usage with asynchronous code feels a bit cumbersome. It might be hard to understand,
leading to code that is hard to read and maintain.

But there is hope that there will be a cleaner syntax sometime in the near future. In fact,
there is an interesting proposal that will be introduced with the ECMAScript 2017
specification that defines the async function's syntax.

You can read more about the current status of the async await proposal at
https://tc39.github.io/ecmascript-asyncawait/.

The async function specification aims to dramatically improve the language-level model
for writing asynchronous code by introducing two new keywords into the language: async
and await.

To clarify how these keywords are meant to be used and why they are useful, let's see a
very quick example:

const request = require('request');

function getPageHtml (url) {
return new Promise (function (resolve, reject) {
request (url, function(error, response, body) {
resolve (body) ;
}) i
}) i
}

async function main() {
const html = await getPageHtml ('http://google.com');
console.log (html);

}

main () ;

[134]

https://tc39.github.io/ecmascript-asyncawait/

Asynchronous Control Flow Patterns with ES2015 and Beyond

console.log('Loading...");

In this code,there are two functions: getPageHtml and main. The first one is a very simple
function that fetches the HTML code of a remote web page given its URL. It's worth
noticing that this function returns a promise.

The main function is the most interesting one because it's where the new async and await
keywords are used. The first thing to notice is that the function is prefixed with the async
keyword. This means that the function executes asynchronous code and allows it to use the
await keyword within its body. The await keyword before the call to getPageHtml tells
the JavaScript interpreter to “await” the resolution of the promise returned by
getPageHtml before continuing to the next instruction. This way, the main function is
internally suspended until the asynchronous code completes without blocking the normal
execution of the rest of the program. In fact, we will see the string Loading. .. in the
console and, after a moment, the HTML code of the Google landing page.

Isn't this approach much more readable and easy to understand?

Unfortunately, this proposal is not yet final, and even if it will be approved we will need to
wait for the next version of the ECMAScript specification to come out and be integrated in
Node.js to be able to use this new syntax natively.

So what do we do today? Just wait? No, of course not! We can already leverage async await
in our code thanks to transpilers such as Babel.

Installing and running Babel

Babel is a JavaScript compiler (or transpiler) that is able to convert JavaScript code into
other JavaScript code using syntax transformers. Syntax transformers allows the use of new
syntax such as ES2015, ES2016, JSX, and others to produce backward compatible equivalent
code that can be executed in modern JavaScript runtimes, such as browsers or Node.js.

You can install Babel in your project using npm with the following command:

npm install —--save-dev babel-cli

We also need to install the extensions to support async await parsing and transformation:

npm install —--save-dev babel-plugin-syntax—-async-functions
babel-plugin—-transform-async-to—generator

[135]

Asynchronous Control Flow Patterns with ES2015 and Beyond

Now let's assume we want to run our previous example (called index. js). We need to
launch the following command:

node_modules/.bin/babel-node --plugins
"syntax—-async—-functions, transform-async-to—-generator"index. js

This way, we are transforming the source code in index. js on the fly, applying the
transformers to support async await. This new backward compatible code is stored in
memory and then executed on the fly on the Node.js runtime.

Babel can also be configured to act as a build processor that stores the generated code into
files so that you can easily deploy and run the generated code.

You can read more about how to install and configure Babel on the official
website at https://babelds.io.

Comparison

At this point, we should have a better understanding of the options we have to tame the
asynchronous nature of JavaScript. Each one of the solutions presented has its own pros
and cons. Let's summarize them in the following table:

Solutions Pros Cons

Plain JavaScript | * Does not require any additional | Might require extra code and relatively
libraries or technology complex algorithms

* Offers the best performance

* Provides the best level of
compatibility with third-party
libraries

* Allows the creation of ad hoc and
more advanced algorithms

Async (library) | e Simplifies the most common * Introduces an external dependency
control flow patterns * Might still not be enough for advanced
* Is still a callback-based solution | flows

* Good performance

[136]

https://babeljs.io

Asynchronous Control Flow Patterns with ES2015 and Beyond

like a blocking one
* Simplifies error handling
* Part of ES2015 specification

Solutions Pros Cons
Promises * Greatly simplifies the most * Requires promisify callback-based
common control flow patterns APIs
* Robust error handling * Introduces a small performance hit
* Part of the ES2015 specification
* Guarantees deferred invocation
of onFulfilled and
onRejected
Generators * Makes non-blocking API look * Requires a complementary control flow

library

» Still requires callbacks or promises to
implement non-sequential flows

* Requires thunkify or promisify
nongenerator-based APIs

Async await

* Makes non-blocking API look
like blocking
* Clean and intuitive syntax

* Not yet available in JavaScript and
Node.js natively

* Requires Babel or other transpilers and
some configuration to be used today

It is worth mentioning that we chose to present in this chapter only the
most popular solutions to handle asynchronous control flow, or the ones
receiving a lot of momentum, but it's good to know that there are a few
more options you might want to look at, for example, Fibers (https://n
pmjs.org/package/fibers) and Streamline (https://npmjs.org/p
ackage/streamline).

[137]

https://npmjs.org/package/fibers
https://npmjs.org/package/fibers
https://npmjs.org/package/streamline
https://npmjs.org/package/streamline

Asynchronous Control Flow Patterns with ES2015 and Beyond

Summary

Throughout this chapter, we analyzed some alternative approaches of dealing with
asynchronous control flows considering promises, generators, and the upcoming async
await syntax.

We learned how to use these approaches to write asynchronous code that is more concise,
cleaner and easier to reason about. We discussed some of the most important advantages
and drawbacks of these approaches and realized that even if they are very useful they need
some time to be mastered. That's why they should not be seen as a complete replacement of
callbacks which are still very useful in many scenarios. As a developer, you should now be
able to decide which solution best suits the problem you are facing. If you are building a
public library that performs asynchronous operations, you should provide an interface that
is easy to use, even for developers who only want to use callbacks.

In the next chapter we will explore another fascinating topic relevant to asynchronous code
execution and which is another fundamental building block in the whole Node.js
ecosystem: streams.

[138]

Coding with Streams

Streams are one of the most important components and patterns of Node.js. There is a
motto in the community that says “stream all the things!” and this alone should be enough
to describe the role of streams in Node.js. Dominic Tarr, a top contributor to the Node.js
community, defines streams as node's best and most misunderstood idea. There are
different reasons that make Node.js streams so attractive; again, it's not just related to
technical properties, such as performance or efficiency, but it's more about their elegance
and the way they fit perfectly into the Node.js philosophy.

In this chapter, you will learn about the following topics:

Why streams are so important in Node.js

Using and creating streams

Streams as a programming paradigm: leveraging their power in many different
contexts and not just for I/O

¢ Piping patterns and connecting streams together in different configurations

Discovering the importance of streams

In an event-based platform such as Node.js, the most efficient way to handle I/O is in real
time, consuming the input as soon as it is available and sending the output as soon as it is
produced by the application.

In this section, we are going to give an initial introduction to Node.js streams and their
strengths. Please bear in mind that this is only an overview, as a more detailed analysis on
how to use and compose streams will follow later in the chapter.

Coding with Streams

Buffering versus streaming

Almost all the asynchronous APIs that we've seen so far in the book work using buffer mode.
For an input operation, buffer mode causes all the data coming from a resource to be
collected into a buffer; it is then passed to a callback as soon as the entire resource is read.
The following diagram shows a visual example of this paradigm:

el
. R
Hello Node.js |—— "¢ »f |oxas| [oxe5| |oxee| |ox6c| |ox67| [ox20| [oxde Consumer
H e | I o N
12
Ox48| |0x65| |Ox6c| |Ox6c| |Ox6f| |0x20| |Oxde
Receive send
Hello Node.js > H e I ' g N Consumer
Ox6f | |Ox64| |0x65| |0x2e| |Ox6a| |0x73
o] d e . j s

In the preceding figure, we can see that, at the time t1, some data is received from the
resource and saved into the buffer. At the time t2, another data chunk is received —the final
one—that completes the read operation and causes the entire buffer to be sent to the
consumer.

[140]

Coding with Streams

On the other side, streams allow you to process the data as soon as it arrives from the
resource. This is shown in the following diagram:

t1
. R send
Hello Node.js |—— "¢ »f |oxas| [oxe5| |oxee| |ox6c| |ox67| [ox20| [oxde Consumer
H e | I o N
2
Receive send
Hello Node.js N Oxﬁf‘ 0)(64‘ OxSE‘ 0x2e| |Ox6a Ox?B‘ Consumer
o d e i s

This time, the diagram shows you how each new chunk of data is received from the

resource and is immediately provided to the consumer, who now has the chance to process
it straight away without waiting for all the data to be collected in the buffer.

But what are the differences between the two approaches? We can summarize them in two

major categories:

e Spatial efficiency

¢ Time efficiency

However, Node.js streams have another important advantage: composability. Let's now see

what impact these properties have in the way we design and write our applications.

[141]

Coding with Streams

Spatial efficiency

First of all, streams allow us to do things that would not be possible, by buffering data and
processing it all at once. For example, consider the case in which we have to read a very big
file, let's say, in the order of hundreds of megabytes or even gigabytes. Clearly, using an
API that returns a big buffer when the file is completely read is not a good idea. Imagine
reading a few of these big files concurrently; our application will easily run out of memory.
Besides that, buffers in V8 cannot be bigger than Ox3FFFFFFF bytes (a little bit less than
1GB). So, we might hit a wall way before running out of physical memory.

Gzipping using a buffered API

To make a concrete example, let's consider a simple command-line interface (CLI)
application that compresses a file using the Gzip format. Using a buffered AP, such an
application will look like the following in Node.js (error handling is omitted for brevity):

const fs = require('fs');
const zlib = require('zlib');

const file = process.argv[2];

fs.readrFile(file, (err, buffer) => {
zlib.gzip (buffer, (err, buffer) => {
fs.writeFile(file + '.gz', buffer, err => {
console.log('File successfully compressed');
}) i
}) i
P) i

Now, we can try to put the preceding code in a file named gzip. js and then run it with the
following command:

node gzip <path to file>

If we choose a file that is big enough, let's say a little bit bigger than 1GB, we will receive a
nice error message saying that the file that we are trying to read is bigger than the
maximum allowed buffer size, such as the following:

RangeError: File size is greater than possible Buffer: Ox3FFFFFFF bytes

That's exactly what we expected, and it's a symptom of using the wrong approach.

[142]

Coding with Streams

Gzipping using streams

The simplest way we have to fix our Gzip application and make it work with big files is to
use a streaming API. Let's see how this can be achieved; let's replace the contents of the
module we just created with the following code:

const fs = require('fs');
const zlib = require('zlib');
const file = process.argv[2];

fs.createReadStream(file)
.pipe(zlib.createGzip())
.pipe(fs.createWriteStream(file + '.gz"'))
.on('finish', () => console.log('File successfully compressed'));

“Is that it?” you may ask. Yes; as we said, streams are amazing also because of their
interface and composability, thus allowing clean, elegant, and concise code. We will see this
in a while in more detail, but for now the important thing to realize is that the program will
run smoothly against files of any size, ideally with constant memory utilization. Try it
yourself (but consider that compressing a big file might take a while).

Time efficiency

Let's now consider the case of an application that compresses a file and uploads it to a
remote HTTP server, which in turn decompresses it and saves it on the filesystem. If our
client was implemented using a buffered API, the upload would start only when the entire
file has been read and compressed. On the other hand, the decompression will start on the
server only when all the data has been received. A better solution to achieve the same result
involves the use of streams. On the client machine, streams allows you to compress and
send the data chunks as soon as they are read from the filesystem, whereas on the server, it
allows you to decompress every chunk as soon as it is received from the remote peer. Let's
demonstrate this by building the application that we mentioned earlier, starting from the
server side.

Let's create a module named gzipReceive. js containing the following code:

const http = require('http');

const fs = require('fs');

const zlib = require('zlib');

const server = http.createServer ((req, res) => {
const filename = reg.headers.filename;
console.log('File request received: ' + filename);

[143]

Coding with Streams

req
.pipe(zlib.createGunzip())
.pipe(fs.createWriteStream(filename))
.on('finish', () => {
res.writeHead (201, {'Content-Type': 'text/plain'});
res.end('That's it\n');
console.log('File saved: ${filename}’);
1) i
)i

server.listen (3000, () => console.log('Listening'));

The server receives the data chunks from the network, decompresses them, and saves them
as soon as they are received, thanks to Node.js streams.

The client side of our application will go into a module named gzipSend. js, and it looks
like the following:

const fs = require('fs');
const zlib = require('zlib');
const http = require('http');
const path = require('path')

const file = process.argv[2

’

17
const server = process.argv[3];
const options = {

hostname: server,
port: 3000,
path: '/',

method: 'PUT',
headers: {
filename: path.basename (file),
'Content-Type': 'application/octet-stream',
'Content-Encoding': 'gzip'
}
bi

const req = http.request (options, res => {
console.log('Server response: ' + res.statusCode);
P) i

fs.createReadStream(file)
.pipe(zlib.createGzip())
.pipe (req)
.on('finish', () => {
console.log('File successfully sent');
P) i

[144]

Coding with Streams

In the preceding code, we are again using streams to read the data from the file, and then
compressing and sending each chunk as soon as it is read from the filesystem.

Now, to try out the application, let's first start the server using the following command:
node gzipReceive

Then, we can launch the client by specifying the file to send and the address of the server
(for example, localhost):

node gzipSend <path to file> localhost

If we choose a file big enough, we will see more easily how the data flows from the client to
the server, but why exactly is this paradigm, where we have flowing data, more efficient
compared to using a buffered API? The following diagram should give us a hint:

[] onthe client
D On the server

Buffered i
Proc & read compress send receive decompress write
B
| read ‘cDmDrESS send ‘receive denompms‘ write |
Streaming
‘ read |COMpress| send ‘recewe decompress| write |
Time »>

When a file is processed it goes through a set of sequential stages:

[Client] Read from the filesystem.
[Client] Compress the data.
[Client] Send it to the server.
[Server] Receive from the client.
[Server] Decompress the data.
[Server] Write the data to disk.

AL N

[145]

Coding with Streams

To complete the processing, we have to go through each stage like in an assembly line, in
sequence, until the end. In the preceding figure, we can see that, using a buffered API, the
process is entirely sequential. To compress the data, we first have to wait for the entire file
to be read, then, to send the data, we have to wait for the entire file to be both read and
compressed, and so on. When instead we are using streams, the assembly line is kicked off
as soon as we receive the first chunk of data, without waiting for the entire file to be read.
But more amazingly, when the next chunk of data is available, there is no need to wait for
the previous set of tasks to be completed; instead, another assembly line is launched in
parallel. This works perfectly because each task that we execute is asynchronous, so it can
be parallelized by Node.js; the only constraint is that the order in which the chunks arrive in
each stage must be preserved (and Node.js streams take care of this for us).

As we can see from the previous figure, the result of using streams is that the entire process
takes less time, because we waste no time waiting for all the data to be read and processed
all at once.

Composability

The code we have seen so far has already given us an overview of how streams can be
composed thanks to the pipe () method, which allows us to connect the different
processing units, each being responsible for one single functionality in perfect Node.js style.
This is possible because streams have a uniform interface, and they can understand each
other in terms of API. The only prerequisite is that the next stream in the pipeline has to
support the data type produced by the previous stream, which can be either binary, text, or
even objects, as we will see later in the chapter.

To take a look at another demonstration of the power of this property, we can try to add an
encryption layer to the gzipReceive/gzipSend application that we built previously.

To do this, we only need to update the client by adding another stream to the pipeline; to be
precise, the stream returned by crypto.createChipher (). The resulting code should be
as follows:

const crypto = require('crypto');

//

fs.createReadStream(file)
.pipe(zlib.createGzip())

.pipe (crypto.createCipher ('aesl92', 'a_shared_secret'))
.pipe (req)
.on('finish', () => console.log('File succesfully sent'));

[146]

Coding with Streams

In a similar way, we can update the server so that the data is decrypted before being
decompressed:

const crypto = require('crypto');
//
const server = http.createServer ((req, res) => {
//
req
.pipe (crypto.createDecipher ('aesl92', 'a_shared_secret'))

.pipe(zlib.createGunzip ())

.pipe (fs.createWriteStream(filename))

.on('finish', () => { /* ... */ });
)i

With very little effort (just a few lines of code), we added an encryption layer to our
application; we simply had to reuse an already available transform stream by including it in
the pipeline that we already had. In a similar way, we can add and combine other streams,
as if we were playing with Lego bricks.

Clearly, the main advantage of this approach is reusability, but as we can see from the code
we presented so far, streams also enable cleaner and more modular code. For these reasons,
streams are often used not just to deal with pure I/O, but also as a means to simplify and
modularize the code.

Getting started with streams

In the previous section, we learned why streams are so powerful, but also that they are

everywhere in Node js, starting from its core modules. For example, we have seen that the
fs module has createReadStream () for reading from a file and createWriteStream()
for writing to a file, the HTTP request and response objects are essentially streams, and
the z1ib module allows us to compress and decompress data using a streaming interface.

Now that we know why streams are so important, let's take a step back and start to explore
them in more detail.

[147]

Coding with Streams

Anatomy of streams

Every stream in Node.js is an implementation of one of the four base abstract classes
available in the st ream core module:

® stream.Readable
® stream.Writable
® stream.Duplex

® stream.Transform

Each stream class is also an instance of EventEmitter. Streams, in fact, can produce
several types of event, such as end, when a Readable stream has finished reading, or error,
when something goes wrong.

Please note that, for brevity, in the examples presented in this chapter, we
will often omit proper error management. However, in production
applications it is always advised to register an error event listener for all
your streams.

One of the reasons why streams are so flexible is the fact that they can not only handle
binary data, but almost any JavaScript value; in fact, they can support two operating modes:

¢ Binary mode: This mode is where data is streamed in the form of chunks, such as
buffers or strings

¢ Object mode: This mode is where the streaming data is treated as a sequence of
discrete objects (allowing us to use almost any JavaScript value)

These two operating modes allow us to use streams not only for I/O, but also as a tool to
elegantly compose processing units in a functional fashion, as we will see later in the
chapter.

In this chapter, we will mainly use the Node.js stream interface, also
known as Version 3, which was introduced in Node.js 0.11. For further
details about the differences with the old interfaces, please refer to this
excellent blog post by StrongLoop at https://strongloop.com/strong
blog/whats-new-io-js-beta-streams3/.

[148]

https://strongloop.com/strongblog/whats-new-io-js-beta-streams3/
https://strongloop.com/strongblog/whats-new-io-js-beta-streams3/

Coding with Streams

Readable streams

A Readable stream represents a source of data; in Node.js, it's implemented using the
Readableabstract class that is available in the st ream module.

Reading from a stream

There are two ways to receive the data from a Readable stream: non-flowing and flowing.
Let's analyze these modes in more detail.

The non-flowing mode

The default pattern for reading from a Readable stream consists of attaching a listener for
the readable event that signals the availability of new data to read. Then, in a loop, we
read all the data until the internal buffer is emptied. This can be done using the read ()
method, which synchronously reads from the internal buffer and returns a Buf fer or
String object representing the chunk of data. The read () method has the following
signature:

readable.read([size])
Using this approach, the data is explicitly pulled from the stream on demand.

To show how this works, let's create a new module named readstdin. js, which
implements a simple program that reads from the standard input (a Readable stream) and
echoes everything back to the standard output:

process.stdin

.on('readable', () => {
let chunk;
console.log('New data available');
while ((chunk = process.stdin.read()) !== null) {

console.log(
‘Chunk read: (${chunk.length}) "${chunk.toString()}""

.on('end', () => process.stdout.write('End of stream'));

[149]

Coding with Streams

The read () method is a synchronous operation that pulls a data chunk from the internal
buffers of the Readable stream. The returned chunk is, by default, a Buf fer object if the
stream is working in binary mode.

In a Readable stream working in binary mode, we can read strings instead
of buffers by calling setEncoding (encoding) on the stream, and
provide a valid encoding format (for example, ut £8).

The data is read exclusively from within the readable listener, which is invoked as soon as
new data is available. The read () method returns null when there is no more data
available in the internal buffers; in such a case, we have to wait for another readable event
to be fired, telling us that we can read again or wait for the end event that signals the end of
the stream. When a stream is working in binary mode, we can also specify that we are
interested in reading a specific amount of data by passing a size value to the read ()
method. This is particularly useful when implementing network protocols or when parsing
specific data formats.

Now, we are ready to run the readstdin module and experiment with it. Let's type some
characters in the console and then press Enter to see the data echoed back into the standard
output. To terminate the stream and hence generate a graceful end event, we need to insert
an EOF (end-of-file) character (using Ctrl + Z on Windows or Ctrl + D on Linux).

We can also try to connect our program with other processes; this is possible using the pipe
operator (|), which redirects the standard output of a program to the standard input of
another. For example, we can run a command such as the following;:

cat <path to a file> | node readStdin

This is an amazing demonstration of how the streaming paradigm is a universal interface,
which enables our programs to communicate, regardless of the language they are written
in.

Flowing mode

Another way to read from a stream is by attaching a listener to the data event; this will
switch the stream into using flowing mode, where the data is not pulled using read (), but
instead it's pushed to the data listener as soon as it arrives. For example, the readsStdin
application that we created earlier will look like this using flowing mode:

process.stdin
.on('data', chunk => {
console.log('New data available');

[150]

Coding with Streams

console.log(
‘Chunk read: (${chunk.length}) "${chunk.toString()}""
)i
H)

.on('end', () => process.stdout.write('End of stream'));

Flowing mode is an inheritance of the old version of the stream interface (also known as
Streams1), and offers less flexibility to control the flow of data. With the introduction of the
Streams2 interface, flowing mode is not the default working mode; to enable it, it's
necessary to attach a listener to the data event or explicitly invoke the resume () method.
To temporarily stop the stream from emitting data events, we can then invoke the pause ()
method, causing any incoming data to be cached in the internal buffer.

Calling pause () does not cause the stream to switch back to non-flowing
mode.

Implementing Readable streams

Now that we know how to read from a stream, the next step is to learn how to implement a
new Readable stream. To do this, it's necessary to create a new class by inheriting the
prototype of st ream.Readable. The concrete stream must provide an implementation of
the _read () method, which has the following signature:

readable._read(size)

The internals of the Readable class will call the _read () method, which in turn will start
to fill the internal buffer using push () :

readable.push (chunk)

Please note that read () is a method called by the stream consumers,
while _read () is a method to be implemented by a stream subclass and
should never be called directly. The underscore usually indicates that the
method is not public and should not be called directly.

To demonstrate how to implement new Readable streams, we can try to implement a
stream that generates random strings. Let's create a new module called randomStream. js
that will contain the code of our string generator:

const stream = require('stream');
const Chance = require ('chance');

[151]

Coding with Streams

const chance = new Chance();

class RandomStream extends stream.Readable {
constructor (options) {
super (options) ;

}

_read(size) {

const chunk = chance.string(); // 1]
console.log (' Pushing chunk of size: ${chunk.length}’);

this.push (chunk, 'utf8'); // 2]
if (chance.bool ({likelihood: 5})) { //13]

this.push (null);
}

}
module.exports = RandomStream;

At the top of the file, we will load our dependencies. There is nothing special here, except
that we are loading a npm module called chance (https://npmjs.org/package/chanc
e), which is a library for generating all sorts of random values, from numbers to strings to
entire sentences.

The next step is to create a new class called RandomSt ream and that specifies
stream.Readable as its parent. In the preceding code, we call the constructor of the parent
class to initialize its internal state, and forward the options argument received as input.
The possible parameters passed through the opt ions object include the following:

¢ The encoding argument that is used to convert Buf fers to Strings (defaults to
null)

e A flag to enable object mode (objectMode defaults to false)

¢ The upper limit of the data stored in the internal buffer, after which no more
reading from the source should be done (highWaterMark defaults to 16KB)

Okay, now let's explain the _read () method:

¢ The method generates a random string using chance.

e It pushes the string into the internal reading buffer. Note that since we are
pushing String, we also specify the encoding, ut £8 (this is not necessary if the
chunk is simply a binary Buffer).

[152]

https://npmjs.org/package/chance
https://npmjs.org/package/chance

Coding with Streams

e It terminates the stream randomly, with a likelihood of 5 percent, by pushing
null into the internal buffer to indicate an EOF situation or, in other words, the
end of the stream.

We can also see that the size argument given in input to the _read () function is ignored,
as it is an advisory parameter. We can simply just push all the available data, but if there are
multiple pushes inside the same invocation, then we should check whether push () returns
false, as this would mean that the internal buffer has reached the highWaterMark limit
and we should stop adding more data to it.

That's it for RandomSt ream; we are now ready to use it. Let's create a new module named
generateRandom. js in which we instantiate a new RandomSt ream object and pull some
data from it:

const RandomStream = require('./randomStream');
const randomStream = new RandomStream();

randomStream.on ('readable', () => {
let chunk;
while ((chunk = randomStream.read()) !== null) {

console.log(Chunk received: ${chunk.toString()});
}
)i

Now, everything is ready for us to try our new custom stream. Simply execute the
generateRandom module as usual and watch a random set of strings flowing on the screen.

Writable streams

A Writable streamrepresents a data destination; in Node js, it's implemented using the
Writable abstract class, which is available in the stream module.

Writing to a stream

Pushing some data down a Writable stream is a straightforward business; all we need to do
is to use the write () method, which has the following signature:

writable.write (chunk, [encoding], [callback])

The encoding argument is optional and can be specified if chunk is String (it defaults to
ut £8, and is ignored if chunk is Buffer); the callback function instead is called when the
chunk is flushed into the underlying resource and is optional as well.

[153]

Coding with Streams

To signal that no more data will be written to the stream, we have to use the end () method:

writable.end([chunk], [encoding], [callback])

We can provide a final chunk of data through the end () method; in this case, the callback
function is equivalent to registering a listener to the finish event, which is fired when all
the data written in the stream has been flushed into the underlying resource.

Now, let's show how this works by creating a small HTTP server that outputs a random
sequence of strings:

const Chance = require('chance');
const chance = new Chance();
require ('http') .createServer ((req, res) => {
res.writeHead (200, {'Content-Type': 'text/plain'}); //11]
while (chance.bool ({likelihood: 95})) { //12]
res.write (chance.string() + '\n'); // 131
}
res.end ('\nThe end...\n'); //14]
res.on('finish', () => console.log('All data was sent')); //I[5]
}).listen (8080, () => console.log('Listening on http://localhost:8080"'));

The HTTP server that we created writes into the res object, which is an instance of
http.ServerResponse and also a Writable stream. What happens is explained as follows:

1. We first write the head of the HTTP response. Note that writeHead () isnota
part of the Writable interface; in fact, it's an auxiliary method exposed by the
http.ServerResponseChs&

2. We start a loop that terminates with a likelihood of 5% (we instruct
chance.bool () to return t rue 95% of the time).

3. Inside the loop, we write a random string into the stream.

4. Once we are out of the loop, we call end () on the stream, indicating that no more
data will be written. Also, we provide a final string to be written into the stream
before ending it.

5. Finally, we register a listener for the finish event, which will be fired when all
the data has been flushed into the underlying socket.

We can call this small module entropyServer. js, and then execute it. To test the server,
we can open a browser at the address http://localhost:8080, or use curl from the
terminal as follows:

curl localhost:8080

[154]

Coding with Streams

At this point, the server should start sending random strings to the HTTP client that you
chose (please bear in mind that some browsers might buffer the data, and the streaming
behavior might not be apparent).

Back-pressure

Similar to a liquid flowing in a real piping system, Node.js streams can also suffer from
bottlenecks, where data is written faster than the stream can consume it. The mechanism to
cope with this problem consists of buffering the incoming data; however, if the stream
doesn't give any feedback to the writer, we might incur a situation where more and more
data is accumulated into the internal buffer, leading to undesired levels of memory usage.

To prevent this from happening, writable.write () will return false when the internal
buffer exceeds the highWaterMark limit. Writable streams have a highWaterMark
property, which is the limit of the internal buffer size beyond which the write () method
starts returning false, indicating that the application should now stop writing. When the
buffer is emptied, the drain event is emitted, communicating that it's safe to start writing
again. This mechanism is called back-pressure.

The mechanism described in this section is similarly applicable to
Readable streams. In fact, back-pressure exists in Readable streams too,
and it's triggered when the push () method, which is invoked inside
_read (), returns false. However, it's a problem specific to stream
implementers, so we will deal with it less frequently.

We can quickly demonstrate how to take into account the back-pressure of aWritable
stream by modifying the ent ropyServer that we created before:

const Chance = require ('chance');
const chance = new Chance();
require ('http') .createServer ((req, res) => {
res.writeHead (200, {'Content-Type': 'text/plain'});
function generateMore () { // 111
while (chance.bool ({likelihood: 95})) {
let shouldContinue = res.write(
chance.string({length: (16 * 1024) - 1}) //12]
)i
if (!shouldContinue) { // 3]
console.log('Backpressure');
return res.once('drain', generateMore);

}

[155]

Coding with Streams

res.end ('\nThe end...\n', () => console.log('All data was sent'));

t
generateMore () ;
}).listen (8080, () => console.log('Listening on http://localhost:8080"'));

The most important steps of the previous code can be summarized as follows:

1. We wrapped the main logic in a function called generateMore ().

2. To increase the chances of receiving some back-pressure, we increased the size of
the data chunk to 16 KB-1 Byte, which is very close to the default
highWaterMark limit.

3. After writing a chunk of data, we check the return value of res.write (); if we
receive false, it means that the internal buffer is full and we should stop

sending more data. In this case, we exit from the function, and register another
cycle of writes for when the drain event is emitted.

If we now try to run the server again, and then generate a client request with curl, there is
a high probability that there will be some back-pressure, as the server produces data at a
very high rate, faster than the underlying socket can handle.

Implementing Writable streams

We can implement a new Writable stream by inheriting the prototype of stream.Writable
and providing an implementation for the _write () method. Let's try to do it immediately
while discussing the details along the way.

Let's build a Writable stream that receives objects in the following format:

{
path: <path to a file>
content: <string or buffer>

}

For each one of these objects, our stream has to save the content part into a file created at the
given path. We can immediately see that the inputs of our stream are objects, and not
strings or buffers; this means that our stream has to work in object mode.

Let's call the module toFileStream. js:

const stream = require('stream');
const fs = require('fs');

const path = require('path');
const mkdirp = require('mkdirp');

[156]

Coding with Streams

class ToFileStream extends stream.Writable {
constructor () {
super ({objectMode: true});
t

_write (chunk, encoding, callback) {
mkdirp (path.dirname (chunk.path), err => {
if (err) |
return callback (err);

t

fs.writeFile (chunk.path, chunk.content, callback);

1) i
t

t

module.exports = ToFileStream;

As the first step, let's load all the dependencies that we are going to use. Beware that we are
requiring the module mkdirp and, as you should know from the previous chapters, it
should be installed with NPM.

We created a new class for our new stream, which extends from stream.Writable.

We had to invoke the parent constructor to initialize its internal state; we also provide an
options object that specifies that the stream works in object mode (cbjectMode: true).
Other options accepted by stream.Writable are as follows:

® highWaterMark (the default is 16 KB): This controls the back-pressure limit.

¢ decodeStrings (defaults to t rue): This enables the automatic decoding of
strings into binary buffers before passing them to the _write () method. This
option is ignored in object mode.

Finally, we provided an implementation for the _write () method. As you can see, the
method accepts a data chunk, an encoding (which makes sense only if we are in binary
mode and the stream option decodeStrings is set to false). Also, the method accepts a
callback function, which needs to be invoked when the operation completes; it's not
necessary to pass the result of the operation but, if needed, we can still pass an error that
will cause the stream to emit an error event.

Now, to try the stream that we just built, we can create a new module called, for example,
writeToFile. js, and perform some write operations against the stream:

const ToFileStream = require('./toFileStream.]js');
const tfs = new ToFileStream();

tfs.write ({path: "filel.txt", content: "Hello"});

[157]

Coding with Streams

tfs.write ({path: "file2.txt", content: "Node.js"});
tfs.write ({path: "file3.txt", content: "Streams"});
tfs.end(() => console.log("All files created"));

With this, we created and used our first custom Writable stream. Run the new module as
usual to check its output; you will see that after the execution, three new files will be
created.

Duplex streams

A Duplex stream is a stream that is both Readable and Writable. It is useful when we want
to describe an entity that is both a data source and a data destination, such as network
sockets, for example. Duplex streams inherit the methods of both stream.Readable and
stream.Writable, so this is nothing new to us. This means that we can read () or

write () data, or listen for both the readable and drain events.

To create a custom Duplex stream, we have to provide an implementation for both _read ()
and _write (); the options object passed to the Duplex () constructor is internally
forwarded to both the Readable and Writable constructors. The options are the same as
those we already discussed in the previous sections, with the addition of a new one called
allowHalfOpen (defaults to true) that if set to false will cause both the parts (Readable
and Writable) of the stream to end if only one of them does.

To have a Duplex stream working in object mode on one side and binary
mode on the other, we need to manually set the following properties from
within the stream constructor:

this._writableState.objectMode
this._readableState.objectMode

Transform streams

The Transform streams are a special kind of Duplex stream that are specifically designed
to handle data transformations.

In a simple Duplex stream, there is no immediate relationship between the data read from
the stream and the data written into it (at least, the stream is agnostic to such a
relationship). Think about a TCP socket, which just sends and receives data to and from the
remote peer; the socket is not aware of any relationship between the input and output. The
following diagram illustrates the data flow in a Duplex stream:

[158]

Coding with Streams

Duplex stream

write _write
read (i:) i _read

On the other side, Transform streams apply some kind of transformation to each chunk of
data that they receive from their Writable side and then make the transformed data
available on their Readable side. The following diagram shows how the data flows in a
Transform stream:

Transform Stream

write _ﬁ read
_transform

From the outside, the interface of a Transform stream is exactly like that of a Duplex
stream. However, when we want to build a new Duplex stream, we have to provide the
_read() and _write () methods while, for implementing a new Transform stream, we
have to fill in another pair of methods: _transform() and _flush().

Let's show how to create a new Transform stream with an example.

Implementing Transform streams

Let's implement a Transform stream that replaces all the occurrences of a given string. To
do this, we have to create a new module named replaceStream. js. Let's jump directly to
the implementation:

const stream = require('stream');
const util = require('util');

class ReplaceStream extends stream.Transform {
constructor (searchString, replaceString) {
super () ;
this.searchString = searchString;

[159]

Coding with Streams

this.replaceString = replaceString;
this.tailPiece = '';

_transform(chunk, encoding, callback) {

const pieces = (this.tailPiece + chunk) //11]
.split (this.searchString);

const lastPiece = pieces[pieces.length - 1];

const tailPiecelen = this.searchString.length - 1;

this.tailPiece = lastPiece.slice(-tailPiecelen); //12]

pieces[pieces.length - 1] = lastPiece.slice(0,-tailPiecelen);

this.push (pieces.join (this.replaceString)); //[3]

callback () ;

_flush(callback) {
this.push(this.tailPiece);
callback () ;

module.exports = ReplaceStream;

As always, we will start building the module from its dependencies. This time we are not
using third-party modules.

Then we created a new class extending from the st ream. Transform base class. The
constructor of the class accepts two arguments: searchString and replaceString. As
you can imagine, they allow us to define the text to match and the string to use as a
replacement. We also initialize an internal tailPiece variable that will be used by the
_transform () method.

Now, let's analyze the _transform () method, which is the core of our new class. The
_transform () method has practically the same signature as that of the _write () method
of the Writable stream but, instead of writing data into an underlying resource, it pushes it
into the internal buffer using this.push (), exactly as we would do in the _read ()
method of a Readable stream. This confirms how the two sides of a Transform stream are
actually connected.

[160]

Coding with Streams

The _transform() method of ReplaceStream implements the core of our algorithm. To
search and replace a string in a buffer is an easy task; however, it's a totally different story
when the data is streaming, and possible matches might be distributed across multiple
chunks. The procedure followed by the code can be explained as follows:

1. Our algorithm splits the chunk using the searchstring function as a separator.

2. Then, it takes the last item of the array generated by the operation and extracts
the last searchString.length — 1 characters. The result is saved into the tailPiece
variable and it will be prepended to the next chunk of data.

3. Finally, all the pieces resulting from split () are joined together using
replaceString as a separator and pushed into the internal buffer.

When the stream ends, we might still have a last tailPiece variable not pushed into the
internal buffer. That's exactly what the _flush () method is for; it is invoked just before the
stream is ended, and this is where we have one final chance to finalize the stream or push
any remaining data before completely ending the stream.

The _flush () method only takes in a callback that we have to make sure to invoke when
all the operations are complete, causing the stream to be terminated. With this, we have
completed our ReplaceStream class.

Now, it's time to try the new stream. We can create another module called
replaceStreamTest . js that writes some data and then reads the transformed result:

const ReplaceStream = require('./replaceStream');

const rs = new ReplaceStream('World', 'Node.js');
rs.on('data', chunk => console.log(chunk.toString()));

rs.write('Hello W');
rs.write ('orld!"'");
rs.end();

[161]

Coding with Streams

To make life a little bit harder for our stream, we spread the search term (which is Wwor1d)
across two different chunks; then, using flowing mode, we read from the same stream,
logging each transformed chunk. Running the preceding program should produce the
following output:

Hel

lo Node.js
!

There is a fifth type of stream that is worth mentioning:
stream.PassThrough. Unlike the other stream classes that we presented,
PassThrough is not abstract and can be instantiated straightaway without
the need to implement any method. It is, in fact, a Transform stream that
outputs every data chunk without applying any transformation.

Connecting streams using pipes

The concept of Unix pipes was invented by Douglas Mcllroy; this enabled the output of a
program to be connected to the input of the next. Take a look at the following command:

echo Hello World! | sed s/World/Node.js/g

In the preceding command, echo will write Hello World!to its standard output, which is
then redirected to the standard input of the sed command (thanks to the pipe | operator);
then sed replaces any occurrence of Wworld with Node.js and prints the result to its standard
output (which, this time, is the console).

In a similar way, Node.js streams can be connected together using the pipe () method of
the Readable stream, which has the following interface:

readable.pipe (writable, [options])

Very intuitively, the pipe () method takes the data that is emitted from the readable
stream and pumps it into the provided writable stream. Also, the writable stream is
ended automatically when the readable stream emits an end event (unless we specify
{end: false} asoptions). The pipe () method returns the writable stream passed as
an argument, allowing us to create chained invocations if such a stream is also Readable
(such as a Duplex or Transform stream).

[162]

Coding with Streams

Piping two streams together will create a suction which allows the data to flow
automatically to the writable stream, so there is no need to call read () or write (); but
most importantly there is no need to control the back-pressure anymore, because it's
automatically taken care of.

To make a quick example (there will be tons of them coming), we can create a new module
called replace. js that takes a text stream from the standard input, applies the replace
transformation, and then pushes the data back to the standard output:

const ReplaceStream = require('./replaceStream');
process.stdin
.pipe (new ReplaceStream(process.argv[2], process.argv[3]))

.pipe (process.stdout) ;

The preceding program pipes the data that comes from the standard input into a
ReplaceStream and then back to the standard output. Now, to try this small application,
we can leverage a Unix pipe to redirect some data into its standard input, as shown in the
following example:

echo Hello World! | node replace World Node.js

This should produce the following output:

Hello Node.js

This simple example demonstrates that streams (and in particular text streams) are a
universal interface, and pipes are the way to compose and interconnect almost magically all
these interfaces.

The error events are not propagated automatically through the pipeline.
Take, for example, this code fragment:
streaml

.pipe (stream?2)

.on('error', function() {});
In the preceding pipeline, we will catch only the errors coming from
stream2, which is the stream that we attached the listener to. This means
that, if we want to catch any error generated from streami, we have to
attach another error listener directly to it. We will later see a pattern that
mitigates this inconvenience (combining streams). Also, we should notice
that if the destination stream emits an error it gets automatically unpiped
from the source stream, causing the pipeline to break.

[163]

Coding with Streams

Through and from for working with streams

The way we created custom streams so far does not exactly follow the Node way; in fact,
inheriting from a base stream class violates the small surface area principle and requires
some boilerplate code. This does not mean that the streams were badly designed; in fact, we
should not forget that since they are a part of the Node.js core they must be as flexible as
possible in order to enable userland modules to extend them for a broad range of purposes.

However, most of the time we don't need all the power and extensibility that prototypal
inheritance can give, but usually what we want is just a quick and an expressive way to
define new streams. The Node.js community, of course, created a solution also for this. A
perfect example is through2 (https://npmjs.org/package/through2), a small library
which simplifies the creation of Transform streams. With through2, we can create a new
Transform stream by invoking a simple function:

const transform = through2 ([options], [_transform], [_flush])

In a similar way, from2 (https://npmjs.org/package/from2) allows us to easily and
succinctly create Readable streams with code such as the following:

const readable = from2 ([options], _read)

The advantages of using these little libraries will be immediately clear as soon as we start
showing their usage in the rest of the chapter.

The packages through (https://npmjs.org/package/through) and
from (https://npmjs.org/package/from) are the original libraries
built on top of Streams].

Asynchronous control flow with streams

Going through the examples that we have presented so far, it should be clear that streams
can be useful not only to handle I/O, but also as an elegant programming pattern that can be
used to process any kind of data. But the advantages do not end at the simple appearance;
streams can also be leveraged to turn the asynchronous control flow into flow control, as we
will see in this section.

[164]

https://npmjs.org/package/through2
https://npmjs.org/package/from2
https://npmjs.org/package/through
https://npmjs.org/package/from

Coding with Streams

Sequential execution

By default, streams will handle data in a sequence; for example, a _transform() function
of a Transform stream will never be invoked again with the next chunk of data, until the
previous invocation completes by executing callback (). This is an important property of
streams, crucial for processing each chunk in the right order, but it can also be exploited to
turn streams into an elegant alternative to the traditional control flow patterns.

Some code is always better than too much explanation, so let's work on an example to
demonstrate how we can use streams to execute asynchronous tasks in a sequence. Let's
create a function that concatenates a set of files received as input, making sure to honor the
order in which they are provided. Let's create a new module called concatFiles.js and
define its contents starting from its dependencies:

const fromArray = require('from2-array');
const through = require('through2');
const fs = require('fs');

We will be using through? to simplify the creation of Transform streams and from2-
array in order to create a Readable stream from an array of objects.

Next, we can define the concatFiles () function:

function concatFiles (destination, files, callback) {

const destStream = fs.createWriteStream(destination);
fromArray.obj (files) //11]
.pipe (through.obj ((file, enc, done) => { //12]
const src = fs.createReadStream(file);
src.pipe(destStream, {end: false});
src.on('end', done) // 3]
)
.on('finish', () => { // 4]

destStream.end () ;
callback () ;
}) i
}

module.exports = concatFiles;

[165]

Coding with Streams

The preceding function implements a sequential iteration over the files array by
transforming it into a stream. The procedure followed by the function is explained as
follows:

1. First, we use from2-array to create a Readable stream from the files array.

2. Next, we create a through (Transform) stream to handle each file in the
sequence. For each file, we create a Readable stream and we pipe it into
destStream, which represents the output file. We make sure not to close
destStream after the source file finishes reading, by specifying {end: false}
into the pipe () options.

3. When all the contents of the source file have been piped into destStream, we
invoke the done function, which is exposed by through.obj to communicate the
completion of the current processing, which in our case is necessary to trigger the
processing of the next file.

4. When all the files have been processed, the finish event is fired; we can finally
end destStream and invoke the callback () function of concatFiles (),
which signals the completion of the whole operation.

We can now try to use the little module we just created. Let's do that in a new file, called
concat.js:

const concatFiles = require('./concatFiles');

concatFiles (process.argv[2], process.argv.slice(3), () => {
console.log('Files concatenated successfully');

)i

We can now run the preceding program by passing the destination file as the first
command-line argument followed by a list of files to concatenate, for example:

node concatallTogether.txtfilel.txtfile2.txt

This should create a new file called al1Together. txt containing, in order, the contents of
filel.txt and file2.txt

With the concatFiles () function, we were able to obtain an asynchronous sequential
iteration using only streams. As we saw in Chapter 3, Asynchronous Control Flow Patterns
with Callbacks, this would have required the use of an iterator, if implemented with pure
JavaScript, or an external library such as async. We have now provided another option for
achieving the same result, which as we see is also very compact and elegant.

[1661

Coding with Streams

Pattern
Use a stream, or combination of streams, to easily iterate over a set of
asynchronous tasks in sequence.

Unordered parallel execution

We just saw that streams process each data chunk in a sequence, but sometimes this can be
a bottleneck as we would not make the most of the Node.js concurrency. If we have to
execute a slow asynchronous operation for every data chunk, it can be advantageous to
parallelize the execution and speed up the overall process. Of course, this pattern can only
be applied if there is no relationship between each chunk of data, which might happen
frequently for object streams, but very rarely for binary streams.

Caution
Parallel streams cannot be used when the order in which the data is
processed is important.

To parallelize the execution of a Transform stream, we can apply the same patterns that we
learned in Chapter 3, Asynchronous Control Flow Patterns with Callbacks, but with some
adaptations to get them working with streams. Let's see how this works.

Implementing an unordered parallel stream

Let's demonstrate this immediately with an example; let's create a module called
parallelStream. js and define a generic Transform stream that executes a given
transform function in parallel:

const stream = require('stream');

class ParallelStream extends stream.Transform {
constructor (userTransform) <
super ({objectMode: true});
this.userTransform = userTransform;
this.running = 0;
this.terminateCallback = null;
}

_transform(chunk, enc, done) {
this.running++;
this.userTransform(chunk, enc, this.push.bind(this),

[167]

Coding with Streams

this._onComplete.bind(this));
done () ;

}

_flush (done) {
if (this.running> 0) {
this.terminateCallback = done;
} else {
done () ;
t
t

_onComplete (err) |
this.running——;
if (err) |
return this.emit ('error', err);
t
if (this.running === 0) {
this.terminateCallback && this.terminateCallback();
t

}

module.exports = ParallelStream;

Let's analyze this new class. As you can see, the constructor accepts a userTransform ()
function, which is then saved as an instance variable; we also invoke the parent constructor
and for convenience we enable the object mode by default.

Next, it is the turn of the _transform () method. In this method, we execute the
userTransform() function, then we increment the count of running tasks; finally, we
notify that the current transformation step is complete by invoking done (). The trick for
triggering the processing of another item in parallel is exactly this; we are not waiting for
the userTransform() function to complete before invoking done () ; instead, we do it
immediately. On the other hand, we provide a special callback to userTransform(),
which is the this._onComplete () method; this allows us to get notified when the
userTransform() completes.

[168]

Coding with Streams

The _flush () method is invoked just before the stream terminates, so if there are still tasks
running we can put on hold the release of the finish event by not invoking the done ()
callback immediately; instead, we assign it to the this.terminateCallback variable. To
understand how the stream is then properly terminated, we have to look into the
_onComplete () method. This last method is invoked every time an asynchronous task
completes. It checks whether there are any more tasks running and, if there are none, it
invokes the this.terminateCallback () function, which will cause the stream to end,
releasing the finish event that was put on hold in the _flush () method.

The ParallelStream class we just built allows us to easily create a Transform stream that
executes its tasks in parallel, but there is a caveat: it does not preserve the order of the items
as they are received. In fact, asynchronous operations can complete and push data at any
time, regardless of when they are started. We immediately understand that this property
does not play well with binary streams where the order of data usually matters, but it can
surely be useful with some types of object streams.

Implementing a URL status monitoring application

Now, let's apply our ParallelStream to a concrete example. Let's imagine that we wanted
to build a simple service to monitor the status of a big list of URLs. Let's imagine all these
URLs are contained in a single file and are newline separated.

Streams can offer a very efficient and elegant solution to this problem, especially if we use
our ParallelStream class to parallelize the checking of the URLs.

Let's build this simple application immediately in a new module called checkUrls. js:

const fs = require('fs');
const split = require('split');
const request = require('request');
const ParallelStream = require('./parallelStream');
fs.createReadStream(process.argv[2]) //11]
.pipe (split ()) //12]
.pipe (new ParallelStream((url, enc, push, done) => { //13]
if (!url) return done();
request.head(url, (err, response) => {
push (url + ' is ' + (err ? 'down' : 'up') + '\n');
done () ;
}) i
)
.pipe (fs.createWriteStream('results.txt"')) // 4]
.on('finish', () => console.log('All urls were checked'));

[169]

Coding with Streams

As we can see, with streams our code looks very elegant and straightforward; let's see how
it works:

1. First, we create a Readable stream from the file given as input.

2. We pipe the contents of the input file through split (https://npmjs.org/pac
kage/split), a Transform stream that ensures outputting each line on a
different chunk.

3. Then, it's the time to use our ParallelStream to check the URL. We do this by
sending a head request and waiting for a response. When the callback is invoked,
we push the result of the operation down the stream.

4. Finally, all the results are piped into a file, results.txt.

Now, we can run the checkUrls module with a command such as this:

node checkUrlsurlList.txt
Here the file urlList . txt contains a list of URLs, for example:

e http://www.mariocasciaro.me
e http://loige.co
e http://thiswillbedownforsure.com

When the command finishes running, we will see that a file, results.txt, was created.
This contains the results of the operation, for example:

http://thiswillbedownforsure.com is down
http://loige.co is up
http://www.mariocasciaro.me is up

There is a good probability that the order in which the results are written is different from
the order in which the URLs were specified in the input file. This is clear evidence that our
stream executes its tasks in parallel, and it does not enforce any order between the various
data chunks in the stream.

For the sake of curiosity, we might want to try replacing ParallelStream
with a normal through2 stream, and compare the behavior and
performances of the two (you might want to do this as an exercise). We
will see that using through2 is way slower, because each URL would be
checked in a sequence, but also that the order of the results in the file
results.txt would be preserved.

[170]

https://npmjs.org/package/split
https://npmjs.org/package/split
http://www.mariocasciaro.me
http://loige.co
http://thiswillbedownforsure.com/

Coding with Streams

Unordered limited parallel execution

If we try to run the checkUrls application against a file that contains thousands or millions
of URLs, we will surely run into trouble. Our application will create an uncontrolled
number of connections all at once, sending a considerable amount of data in parallel and
potentially undermining the stability of the application and the availability of the entire
system. As we already know, the solution to keep the load and resource usage under
control is to limit the concurrency of the parallel tasks.

Let's see how this works with streams by creating a 1imitedParallelStream. js module,
which is an adaptation of parallelStream. js that we created in the previous section.

Let's see what it looks like, starting from its constructor (we will highlight the changed
parts):

class LimitedParallelStream extends stream.Transform {
constructor (concurrency, userTransform) {
super ({objectMode: true});

this.concurrency = concurrency;
this.userTransform = userTransform;
this.running = 0;

this.terminateCallback = null;
this.continueCallback = null;
t
Y

We need a concurrency limit to be taken as the input, and this time we are going to save
two callbacks, one for any pending _transform method (continueCallback) and another
one for the callback of the _f1lush method (terminateCallback).

Nextis the transform() method:

_transform(chunk, enc, done) {
this.running++;
this.userTransform(chunk, enc, this._onComplete.bind(this));
if (this.running < this.concurrency) {
done () ;
} else {
this.continueCallback = done;
}
}

[171]

Coding with Streams

This time in the _transform () method, we have to check whether we have any free
execution slots before we invoke done () and trigger the processing of the next item. If we
have already reached the maximum number of concurrent running streams, we can simply
save the done () callback into the continueCallback variable, so that it can be invoked as
soon as a task finishes.

The _flush () method remains exactly the same as in the ParallelStream class, so let's
move directly to implementing the _onComplete () method:

_onComplete (err) |
this.running--;
if (err) |
return this.emit ('error', err);
}
const tmpCallback = this.continueCallback;
this.continueCallback = null;
tmpCallback && tmpCallback();
if(this.running === 0) {
this.terminateCallback && this.terminateCallback();
}
}

Every time a task completes we invoke any saved continueCallback () that will cause the
stream to unblock, triggering the processing of the next item.

That's it for the 1imitedParallelStream module; we can now use it in the checkUrls
module in place of parallelStreamand have the concurrency of our tasks limited to the
value that we set.

Ordered parallel execution

The parallel streams that we created previously might shuffle the order of the emitted data,
but there are situations where this is not acceptable; sometimes, in fact, it is necessary to
have each chunk emitted in the same order in which it was received. However, not all
hopes is lost, we can still run the transform function in parallel; all we have to do is to sort
the data emitted by each task so that it follows the same order in which the data was
received.

This technique involves the use of a buffer to reorder the chunks while they are emitted by
each running task. For brevity, we are not going to provide an implementation of such a
stream, as it's quite verbose for the scope of this book; what we are going to do instead is
reuse one of the available packages on NPM built for this specific purpose, for example,
through2-parallel (https://npmjs.org/package/through2-parallel).

[172]

https://npmjs.org/package/through2-parallel

Coding with Streams

We can quickly check the behavior of an ordered parallel execution by modifying our
existing checkUrls module. Let's say that we want our results to be written in the same
order as the URLs in the input file, while executing our checks in parallel. We can do this
using through2-parallel:

/.
const throughParallel = require('throughZ-parallel');

fs.createReadStream(process.argv([2])
-pipe (split())
.pipe (throughParallel.obj ({concurrency: 2}, (url, enc, done) => {
/).
)
)
.pipe(fs.createWriteStream('results.txt"'))
.on('finish', () => console.log('All urls were checked'));

As we can see, the interface of through2-parallel is very similar to that of through2; the
only difference is that we can also specify a concurrency limit for the transform function
that we provide. If we try to run this new version of checkUrls, we will now see that the
results.txt file lists the results in the same order as the URLs appear in the input file.

It is important to see that, even though the order of the output is the same
as the input, the asynchronous tasks still run in parallel and can possibly
complete in any order.

With this, we conclude our analysis of the asynchronous control flow with streams; next, we
are going to focus on some piping patterns.

Piping patterns

As in real-life plumbing, Node.js streams also can be piped together following different
patterns; we can, in fact, merge the flow of two different streams into one, split the flow of
one stream into two or more pipes, or redirect the flow based on a condition. In this section,
we are going to explore the most important plumbing techniques that can be applied to
Node.js streams.

[173]

Coding with Streams

Combining streams

In this chapter, we have stressed a lot on the fact that streams provide a simple
infrastructure to modularize and reuse our code, but there is one last piece missing in this
puzzle: what if we want to modularize and reuse an entire pipeline? What if we want to
combine multiple streams so that they look like one from the outside? The following figure

shows what this means:
4€> Combined)—b

From the preceding diagram, we should already get a hint of how this works:

e When we write into the combined stream, we are actually writing into the first
stream of the pipeline

e When we read from the combined stream, we are actually reading from the last
stream of the pipeline

A combined stream is usually a Duplex stream, which is built by connecting the first stream
to its Writable side and the last stream to its Readable side.

To create a Duplex stream out of two different streams, one Writable and
one Readable, we can use an npm module such as duplexer2 (https://
npmjs.org/package/duplexer?).

[174]

https://npmjs.org/package/duplexer2
https://npmjs.org/package/duplexer2

Coding with Streams

But that's not enough; in fact, another important characteristic of a combined stream is that
it has to capture all the errors that are emitted from any stream inside the pipeline. As we
already mentioned, any error event is not automatically propagated down the pipeline; so,
if we want to have proper error management (and we should), we will have to explicitly
attach an error listener to each stream. However, if the combined stream is really a black
box, which means that we don't have access to any of the streams in the middle of the
pipeline, so it's crucial for the combined stream to also act as an aggregator for all the errors
coming from any stream in the pipeline.

To recap, a combined stream has two major advantages:

e We can redistribute it as a black box by hiding its internal pipeline

e We have simplified error management, as we don't have to attach an error
listener to each stream in the pipeline, but just to the combined stream itself

Combining streams is a pretty generic and common practice, so if we don't have any
particular need we might just want to reuse an existing solution such as multipipe
(https://www.npmjs.org/package/multipipe) or combine-stream
(https://www.npmjs.org/package/combine-stream), just to name two.

Implementing a combined stream

To illustrate a simple example, let's consider the case of the following two transform
streams:

¢ One that both compresses and encrypts the data
¢ One that both decrypts and decompresses the data

Using a library such as multipipe, we can easily build these streams by combining some of
the streams that we already have available from the core libraries (file
combinedStreams. js):

const zlib = require('zlib');
const crypto = require('crypto');
const combine = require('multipipe');

module.exports.compressAndEncrypt = password => {
return combine (
zlib.createGzip (),
crypto.createCipher ('aesl192', password)
)i
bi

[175]

https://www.npmjs.org/package/multipipe
https://www.npmjs.org/package/combine-stream

Coding with Streams

module.exports.decryptAndDecompress = password => {
return combine (
crypto.createDecipher ('aesl92', password),
zlib.createGunzip ()
)i
i

We can now use these combined streams as if they were black boxes, for example, to create
a small application that archives a file by compressing and encrypting it. Let's do that in a
new module named archive. js:

const fs = require('fs');
const compressAndEncryptStream =
require ('./combinedStreams"') .compressAndEncrypt;

fs.createReadStream(process.argv[3])
.pipe (compressAndEncryptStream (process.argv[2]))
.pipe (fs.createWriteStream(process.argv([3] + ".gz.enc"));

We can further improve the preceding code by building a combined stream out of the
pipeline that we created, this time not to obtain a reusable black box but only to take
advantage of its aggregated error management. In fact, as we have already mentioned many
times, writing something such as the following will only catch the errors that are emitted by
the last stream:

fs.createReadStream(process.argv[3])
.pipe (compressAndEncryptStream(process.argv([2]))
.pipe(fs.createWriteStream(process.argv([3] + ".gz.enc"))
.on('error', err => {
//0Only errors from the last stream
console.log(err);

)i

However, by combining all the streams together, we can fix the problem elegantly. Let's
then rewrite the archive. js file as follows:

const combine = require('multipipe');
const fs = require('fs');
const compressAndEncryptStream =
require ('./combinedStreams') .compressAndEncrypt;
combine (

fs.createReadStream (process.argv[3])

.pipe (compressAndEncryptStream (process.argv[2]))

.pipe (fs.createWriteStream(process.argv[3] + ".gz.enc"))
).on('error', err => {

//this error may come from any stream in the pipeline

[176]

Coding with Streams

console.log(err);

1)

As we can see, we can now attach an error listener directly to the combined stream and it
will receive any error event that is emitted by any of its internal streams.

Now, to run the archive module, simply specify a password and a file in the command-
line argument:

node archive mypassword /path/to/a/file.txt

With this example, we have clearly demonstrated how important it is to combine streams;
from one aspect, it allows us to create reusable compositions of streams, and from another,
it simplifies the error management of a pipeline.

Forking streams

We can perform a fork of a stream by piping a single Readable stream into multiple Writable
streams. This is useful when we want to send the same data to different destinations, for
example, two different sockets or two different files. It can also be used when we want to
perform different transformations on the same data, or when we want to split the data
based on some criteria. The following figure gives us a graphical representation of this

pattern:
%) Destination A)
46) Destination B)

Forking a stream in Node js is a trivial matter; let's see why by working on an example.

=

[177]

Coding with Streams

Implementing a multiple checksum generator

Let's create a small utility that outputs both the shal and md5 hashes of a given file. Let's
call this new module generateHashes. js and let's start by initializing our checksum
streams:

const fs = require('fs');
const crypto = require('crypto');

const shalStream = crypto.createHash('shal');
shalStream.setEncoding ('base6d"') ;

const mdbStream = crypto.createHash('md5"');
md5Stream.setEncoding ('base6d"');

Nothing special so far; the next part of the module is actually where we will create a
Readable stream from a file and fork it to two different streams in order to obtain two other
files, one containing the shal hash and the other containing the md5 checksum:

const inputFile = process.argv[2];
const inputStream = fs.createReadStream (inputFile);
inputStream
.pipe (shalStream)
.pipe(fs.createWriteStream(inputFile + '.shal'));

inputStream
.pipe (md5Stream)
.pipe(fs.createWriteStream(inputFile + '.md5"));

Very simple, right? The inputStream variable is piped into shalStream on one side and
md5Stream on the other. There are a couple of things to note, though, that happen behind
the scenes:

e Both md5Streamand shalStream will be ended automatically when
inputStream ends, unless we specify {end: false} asan option when
invoking pipe ()

e The two forks of the stream will receive the same data chunks, so we must be
very careful when performing side-effect operations on the data, as that would
affect every stream that we are forking to

¢ Back-pressure will work out-of-the-box; the flow coming from inputstream will
go as fast as the slowest branch of the fork!

[178]

Coding with Streams

Merging streams

Merging is the opposite operation to forking and consists of piping a set of Readable
streams into a single Writable stream, as shown in the following figure:

() Source A
() Source B

Merging multiple streams into one is in general a simple operation; however, we have to
pay attention to the way we handle the end event, as piping using the auto end option will
cause the destination stream to be ended as soon as one of the sources ends. This can often
lead to an error situation, as the other active sources will still continue to write to an already
terminated stream. The solution to this problem is to use the option {end: false} when
piping multiple sources to a single destination and then invoke end () on the destination
only when all the sources have completed reading.

) Destination)

Creating a tarball from multiple directories

To make a simple example, let's implement a small program that creates a tarball from the
contents of two different directories. For this purpose, we are going to introduce two new
NPM packages:

e tar (https://npmjs.org/package/tar): a streaming library to create tarballs

e fstream (https://npmjs.org/package/fstream): alibrary to create object
streams from filesystem files

[179]

https://npmjs.org/package/tar
https://npmjs.org/package/fstream

Coding with Streams

Our new module is going to be called mergeTar. js; let's define its contents starting from

some initialization steps:

const tar = require('tar');
const fstream = require('fstream');
const path = require('path');

const destination = path.resolve (process.argv[2]);
const sourceA = path.resolve(process.argv([3]);
const sourceB = path.resolve (process.argv([4]);

In the preceding code, we are just loading all the dependencies and initializing the variables
that contain the name of the destination file and the two source directories (sourcea and

sourceB).

Next, we will create the tar stream and pipe it into its destination:

const pack = tar.Pack();
pack.pipe (fstream.Writer (destination));

Now it's time to initialize the source streams:

let endCount = 0;
function onEnd() {
if (++endCount === 2) {
pack.end() ;

const sourceStreamA = fstream.Reader ({type: "Directory",
.on('end', onEnd);

const sourceStreamB = fstream.Reader ({type: "Directory",
.on('end', onEnd);

path: sourceA})

path: sourceB})

[180]

Coding with Streams

In the preceding code, we created the streams that read from both the two source directories
(sourceStreama and sourceStreamB); then for each source stream we attach an end
listener, which will terminate the pack stream only when both the directories are read
completely.

Finally, it is time to perform the real merge:

sourceStreamA.pipe (pack, {end: false});
sourceStreamB.pipe (pack, {end: false});

We pipe both the sources into the pack stream and take care to disable the auto ending of
the destination stream by providing the option {end: false} to the two pipe ()
invocations.

With this, we have completed our simple TAR utility. We can try this utility by providing
the destination file as the first command-line argument, followed by the two source
directories:

node mergeTar dest.tar /path/to/sourceA /path/to/sourceB

To conclude this section, it's worth mentioning that, on npm, we can find a few modules
that can simplify the merging of streams, for example:

e merge-stream (https://npmjs.org/package/merge—stream)

e nultistream-merge (https://npmjs.org/package/multistream-merge)

As for the last comment on the stream merge pattern, it's worth reminding that the data
piped into the destination stream is randomly intermingled; this is a property that can be
acceptable in some types of object streams (as we saw in the last example) but it is often an
undesired effect when dealing with binary streams.

However, there is one variation of the pattern that allows us to merge streams in order; it
consists of consuming the source streams one after the other, when the previous one ends,
the next one starts emitting chunks (it is like concatenating the output of all the sources). As
always, on NPM we can find some packages that also deal with this situation. One of them
ismultistream (https://npmjs.org/package/multistream).

[181]

https://npmjs.org/package/merge-stream
https://npmjs.org/package/multistream-merge
https://npmjs.org/package/multistream

Coding with Streams

Multiplexing and demultiplexing

There is a particular variation of the merge stream pattern in which we don't really want to
just join multiple streams together but, instead, use a shared channel to deliver the data of a
set of streams. This is a conceptually different operation because the source streams remain
logically separated inside the shared channel, which allows us to split the stream again once
the data reaches the other end of the shared channel. The following figure clarifies the
situation:

B
G
B

— | Channel A

It ‘II Channel A } | | |
_/ o b .
\

[
MUX —Orf Shared Channel |—»DEMUX
\ /

h N\ N\
[] chamels ': Lt» | ChannelB)

\/

The operation of combining multiple streams together (in this case, also known as
channels) to allow transmission over a single stream is called multiplexing, while the
opposite operation, namely reconstructing the original streams from the data received from
a shared stream, is called demultiplexing. The devices that perform these operations are
called multiplexer (or mux) and demultiplexer (or demux) respectively. This is a widely
studied area in computer science and telecommunications in general, as it is one of the
foundations of almost any type of communication media such as telephony, radio, TV, and
of course the Internet itself. For the scope of this book, we will not go too far with the
explanations, as this is a vast topic.

What we want to demonstrate in this section, instead, is how it's possible to use a shared
Node.js stream in order to convey multiple logically separated streams that are then split
again at the other end of the shared stream.

[182]

Coding with Streams

Building a remote logger

Let's use an example to drive our discussion. We want to have a small program that starts a
child process and redirects both its standard output and standard error to a remote server,
which in turn saves the two streams into two separate files. So, in this case, the shared
medium is a TCP connection, while the two channels to be multiplexed are the stdout and
stderr of a child process. We will leverage a technique called packet switching, the same
technique that is used by protocols such as IP, TCP, or UDP and that consists of wrapping
the data into packets allowing us to specify various meta information, useful for
multiplexing, routing, controlling the flow, checking for corrupted data, and so on. The
protocol that we are going to implement for our example is very minimalist; in fact, we will
simply wrap our data into packets with the following structure:

1 byte
Channel
ID

4 bytes

Data length Data

As shown in the preceding figure, the packet contains the actual data, but also a header
(Channel 1D + Data length), which will make it possible to differentiate the data of each
stream and enable the demultiplexer to route the packet to the right channel.

Client side — multiplexing

Let's start to build our application from the client side. With a lot of creativity, we will call
the module client. js; this represents the part of the application that is responsible for
starting a child process and multiplexing its streams.

So, let's start by defining the module. First, we need some dependencies:

const child_process = require('child_process');
const net = require('net');

[183]

Coding with Streams

Then, let's implement a function that performs the multiplexing of a list of sources:

function multiplexChannels (sources, destination) {
let totalChannels = sources.length;
for(let i = 0; i <sources.length; i++) {
sources[i]
.on('readable', function() { //11]
let chunk;
while ((chunk = this.read()) !== null) {
const outBuff = new Buffer(l + 4 + chunk.length); //[2]
outBuff.writeUInt8 (i, 0);
outBuff.writeUInt32BE (chunk.length, 1);
chunk.copy (outBuff, 5);

console.log('Sending packet to channel: ' + 1i);
destination.write (outBuff); // 3]
t
t
.on('end', () => { // 4]
if (-—totalChannels === 0) {

destination.end();
1) i
t

The multiplexChannels () function takes in as input the source streams to be multiplexed
and the destination channel, and then it performs the following steps:

1. For each source stream, it registers a listener for the readable event where we
read the data from the stream using the non-flowing mode.

2. When a chunk is read, we wrap it into a packet that contains in order: 1 byte
(UInt8) for the channel ID, 4 bytes (UInt32BE) for the packet size, and then the
actual data.

3. When the packet is ready, we write it into the destination stream.

4. Finally, we register a listener for the end event so that we can terminate the
destination stream when all the source streams are ended.

Our protocol is to be able to multiplex up to 256 different source streams
because we only have 1 byte to identify the channel.

[184]

Coding with Streams

Now the last part of our client becomes very easy:

const socket = net.connect (3000, () => { //[1]
const child = child_process.fork(//12]
process.argvl[2],
process.argv.slice(3),
{silent: true}
)i
multiplexChannels ([child.stdout, child.stderr], socket); //[3]
)i

In this last code fragment, we perform the following operations:

1. We create a new TCP client connection to the address 1ocalhost :3000.

2. We start the child process by using the first command-line argument as the path,
while we provide the rest of the process.argv array as arguments for the child
process. We specify the option {silent: true}, so that the child process does
not inherit stdout and stderr of the parent.

3. Finally, we take stdout and stderr of the child process and we multiplex them
into socket using the mut iplexChannels () function.

Server side — demultiplexing

Now we can take care of creating the server side of the application (server. js), where we
demultiplex the streams from the remote connection and pipe them into two different files.
Let's start by creating a function called demultiplexChannel ():

const net = require('net');
const fs = require('fs');

function demultiplexChannel (source, destinations) {
let currentChannel = null;
let currentLength = null;

source
.on('readable', () => { // 1]
let chunk;
if (currentChannel === null) { //12]
chunk = source.read(1l);

currentChannel = chunk && chunk.readUInt8 (0);
}

if (currentLength === null) { // 3]
chunk = source.read(4);
currentLength = chunk && chunk.readUInt32BE(0);

[185]

Coding with Streams

if (currentLength === null) {
return;

t
t
chunk = source.read(currentLength); //14]
if (chunk === null) {

return;
t
console.log('Received packet from: ' + currentChannel);
destinations[currentChannel] .write (chunk) ; // 5]
currentChannel = null;

currentLength = null;

})

.on('end', ()=> { //16]
destinations.forEach (destination => destination.end());
console.log('Source channel closed');

)i

t

The preceding code might look complicated but it is not; thanks to the pull nature of
Node.js Readable streams, we can easily implement the demultiplexing of our little protocol
as follows:

1. We start reading from the stream using the non-flowing mode.

2. First, if we have not read the channel ID yet, we try to read 1 byte from the
stream and then transform it into a number.

3. The next step is to read the length of the data. We need 4 bytes for that, so it's
possible (even if unlikely) that we don't have enough data in the internal buffer,
which will cause the this.read () invocation to return null. In such a case, we
simply interrupt the parsing and retry at the next readable event.

4. When we finally can also read the data size, we know how much data to pull
from the internal buffer, so we try to read it all.

5. When we read all the data, we can write it to the right destination channel,
making sure that we reset the currentChannel and currentLength variables
(these will be used to parse the next packet).

6. Lastly, we make sure to end all the destination channels when the source channel
ends.

[186]

Coding with Streams

Now that we can demultiplex the source stream, let's put our new function to work:

net.createServer (socket => {
const stdoutStream = fs.createWriteStream('stdout.log');
const stderrStream = fs.createWriteStream('stderr.log');
demultiplexChannel (socket, [stdoutStream, stderrStream]);
}).1listen (3000, () => console.log('Server started'));

In the preceding code, we first start a TCP server on the port 3000, then for each connection
that we receive, we will create two Writable streams pointing to two different files, one for
the standard output and another for the standard error; these are our destination channels.
Finally, we use demultiplexChannel () to demultiplex the socket stream into
stdoutStreamand stderrStream

Running the mux/demux application

Now, we are ready to try our new mux/demux application, but first let's create a small
Node.js program to produce some sample output; let's call it generateData. js:

console.log("outl");
console.log ("out2");
console.error ("errl");
console.log ("out3");
console.error ("err2");

Okay, now we are ready to try our remote logging application. First, let's start the server:

node server

Then the client, by providing the file that we want to start as child process:

node client generateData.js

The client will run almost immediately, but at the end of the process the standard input and
standard output of the generateData application have traveled through one single TCP
connection and then, on the server, have been demultiplexed into two separate files.

Please make a note that, as we are using child_process. fork ()
(http://nodejs.org/api/child_process.html#child _process_ch
ild_process_fork_modulepath_args_options), our client will be
able to launch only other Node.js modules.

[187]

Coding with Streams

Multiplexing and demultiplexing object streams

The example that we have just shown demonstrated how to multiplex and demultiplex a
binary/text stream, but it's worth mentioning that the same rules apply also to object
streams. The greatest difference is that, using objects, we already have a way to transmit the
data using atomic messages (the objects), so multiplexing would be as easy as setting a
property channelID into each object, while demultiplexing would simply involve reading
the channelID property and routing each object towards the right destination stream.

Another pattern involving only demultiplexing consists of routing the data coming from a
source depending on some condition. With this pattern, we can implement complex flows,
such as the one shown in the following diagram:

~
\ \
/ \ Reptiles \ :
—I\' /.'I Stream ,.'—. Lizard
//%\ B
[) Animals |) F \ Amphibians \ F
(| stream ‘In—p Lizard Whale 0g | ——p DEMUX \ ,'I S ,||—> og
i e (eRo s ey S
{ \. Mammals \
| fll Stream / Whale
S

The demultiplexer used in the system described by the preceding diagram, takes a stream
of objects representing animals and distributes each of them to the right destination stream
based on the class of the animal: reptiles, amphibians, and mammals.

Using the same principle, we can also implement an i f. . . else statement for streams; for
some inspiration, take a look at the ternary-stream package (https://npmjs.org/pack
age/ternary-stream) that allows us to do exactly that.

[188]

https://npmjs.org/package/ternary-stream
https://npmjs.org/package/ternary-stream

Coding with Streams

Summary

In this chapter, we have shed some light on Node.js streams and their use case, but at the
same time this should have thrown open a door to a programming paradigm with virtually
unlimited possibilities. We learned why streams are so acclaimed by the Node.js
community and we mastered their basic functionality, enabling us to discover more and
navigate comfortably in this new world. We analyzed some advanced patterns and started
to understand how to connect streams together in different configurations, grasping the
importance of interoperability which is what makes streams so versatile and powerful.

If we can't do something with one stream, we probably can do it by connecting other
streams together, and this works great with the one thing per module philosophy. At this
point, it should be clear that streams are not just a good to know feature of Node.js; they are,
instead, an essential part of this, a crucial pattern to handle binary data, strings, and objects.
It's not by chance that an entire chapter was dedicated to them.

In the next chapter, we will focus on the traditional object-oriented design patterns. But
don't be fooled; even though JavaScript is to some extent an object-oriented language, in
Node,js the functional or hybrid approach is often preferred. Get rid of every prejudice
before reading the next chapter.

[189]

Design Patterns

A design pattern is a reusable solution to a recurring problem; the term is really broad in its
definition and can span multiple domains of an application. However, the term is often
associated with a well-known set of object-oriented patterns that were popularized in the
90s by the book, Design Patterns: Elements of Reusable Object-Oriented Software, Pearson
Education, by the almost legendary Gang of Four (GoF): Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides. We will often refer to these specific sets of patterns as
traditional design patterns, or GoF design patterns.

Applying this set of object-oriented design patterns in JavaScript is not as linear and formal
as it would be in a classical object-oriented language. As we know, JavaScript is multi-
paradigm, object-oriented, and prototype-based, and has dynamic typing; it treats functions
as first-class citizens, and allows functional programming styles. These characteristics make
JavaScript a very versatile language, which gives tremendous power to the developer but at
the same time it causes a fragmentation of programming styles, conventions, techniques,
and ultimately the patterns of its ecosystem. There are so many ways to achieve the same
result using JavaScript that everybody has their own opinion on what the best way is to
approach a problem. A clear demonstration of this phenomenon is the abundance of
frameworks and opinionated libraries in the JavaScript ecosystem; probably no other
language has ever seen so many, especially now that Node.js has given new astonishing
possibilities to JavaScript and has created so many new scenarios.

In this context, the traditional design patterns are affected by the nature of JavaScript too.
There are so many ways in which they can be implemented that their traditional, strongly
object-oriented implementation means they cease to be patterns. In some cases, they are not
even possible, because JavaScript, as we know, doesn't have real classes or abstract
interfaces. What doesn't change though is the original idea at the base of each pattern, the
problem it solves, and the concepts at the heart of the solution.

Design Patterns

In this chapter, we will see how some of the most important GoF design patterns apply to
Node.js and its philosophy, thus rediscovering their importance from another perspective.
Among these traditional patterns, we will also have a look at some “less traditional” design
patterns generated within the JavaScript ecosystem.

The design patterns explored in this chapter are as follows:

e Factory

e Revealing constructor
e Proxy

e Decorator

e Adapter

e Strategy

e State

e Template

e Middleware

e Command

This chapter assumes that the reader has some notion of how inheritance
works in JavaScript. Please also be advised that throughout this chapter
we will often use generic and more intuitive diagrams to describe a
pattern in place of standard UML, since many patterns can have an
implementation based not only on classes, but also on objects and even
functions.

Factory

We begin our journey starting from what is probably the most simple and common design
pattern in Node js: factory.

A generic interface for creating objects

We already stressed the fact that, in JavaScript, the functional paradigm is often preferred to
a purely object-oriented design, for its simplicity, usability, and small surface area. This is
especially true when creating new object instances. In fact, invoking a factory, instead of
directly creating a new object from a prototype using the new operator or

Object.create (), is so much more convenient and flexible in several respects.

[191]

Design Patterns

First and foremost, a factory allows us to separate the object creation from its
implementation; essentially, a factory wraps the creation of a new instance giving us more
flexibility and control in the way we do it. Inside the factory, we can create a new instance
leveraging closures, using a prototype and the new operator, using Object.create (), or
even returning a different instance based on a particular condition. The consumer of the
factory is totally agnostic about how the creation of the instance is carried out. The truth is
that, by using new, we are binding our code to one specific way of creating an object, while
in JavaScript we can have much more flexibility, almost for free. As a quick example, let's
consider a simple factory that creates an Image object:

function createlImage (name) {
return new Image (name);

}

const image = createlmage ('photo.jpeg');

The createImage () factory might look totally unnecessary; why not instantiate the Image
class by using the new operator directly? Something like the following line of code:

const image = new Image (name);

As we already mentioned, using new binds our code to one particular type of object; in the
preceding case, to objects of type Image. A factory instead gives us much more flexibility;
imagine that we want to refactor the Image class, splitting it into smaller classes, one for
each image format that we support. If we exposed a factory as the only means to create new
images, we can simply rewrite it as follows, without breaking any of the existing code:

function createlImage (name) {
if (name.match (/\.jpegs$/)) {
return new Jpeglmage (name) ;
} else if (name.match(/\.gif$/)) {
return new GifImage (name);
} else if (name.match (/\.png$/)) {
return new PnglImage (name) ;
} else {
throw new Exception ('Unsupported format');
}
}

Our factory also allows us to not expose the constructors of the objects it creates, and
prevents them from being extended or modified (remember the principle of small surface
area?). In Node,js, this can be achieved by exporting only the factory, while keeping each
constructor private.

[192]

Design Patterns

A mechanism to enforce encapsulation

A factory can also be used as an encapsulation mechanism, thanks to closures.

Encapsulation refers to the technique of controlling the access to some
internal details of an object by preventing the external code from
manipulating them directly. The interaction with the object happens only
through its public interface, isolating the external code from the changes in
the implementation details of the object. This practice is also referred to as
information hiding. Encapsulation is also a fundamental principle of
object-oriented design, together with inheritance, polymorphism, and
abstraction.

As we know, in JavaScript, we don't have access level modifiers (for example, we can't declare
a private variable), so the only way to enforce encapsulation is through function scopes and
closures. A factory makes it straightforward to enforce private variables; consider the
following code for example:

function createPerson (name) {
const privateProperties = {};

const person = {
setName: name => {
if (!name) throw new Error ('A person must have a name');
privateProperties.name = name;
}I
getName: () => {
return privateProperties.name;
}
bi

person.setName (name) ;
return person;

}

In the preceding code, we leverage closures to create two objects: a person object which
represents the public interface returned by the factory, and a group of
privateProperties that are inaccessible from the outside and that can be manipulated
only through the interface provided by the person object. For example, in the preceding
code, we make sure that a person's name is never empty; this would not be possible to
enforce if name was just a property of the person object.

[193]

Design Patterns

Factories are only one of the techniques that we have for creating private
members; in fact, other possible approaches are as follows:

Defining private variables in a constructor (as recommended by Douglas
Crockford: http://javascript.crockford.com/private.html).
Using conventions, for example, prefixing the name of a property with an
underscore “_" or the dollar sign “$” (this however, does not technically
prevent a member from being accessed from the outside)

Using ES2015 WeakMaps: (http://fitzgeraldnick.com/weblog/53
/).

A very complete article on this subject was published by Mozilla: https:/
/developer.mozilla.org/en-US/Add-ons/SDK/Guides/Contribut
or_s_Guide/Private_Properties.

Building a simple code profiler

Now, let's work on a complete example using a factory. Let's build a simple code profiler, an
object with the following properties:

e A start () method that triggers the start of a profiling session
® An end () method to terminate the session and log its execution time to the
console

Let's start by creating a file named profiler. js, which will have the following content:

class Profiler {
constructor (label) {
this.label = label;
this.lastTime = null;
}

start () |
this.lastTime = process.hrtime();
}
end () |
const diff = process.hrtime(this.lastTime);

console.log(
“Timer "S$S{this.label}" took ${diff[0]} seconds and S${diff[1]}
nanoseconds.
)i
}

[194]

http://javascript.crockford.com/private.html
http://fitzgeraldnick.com/weblog/53/
http://fitzgeraldnick.com/weblog/53/
https://developer.mozilla.org/en-US/Add-ons/SDK/Guides/Contributor_s_Guide/Private_Properties
https://developer.mozilla.org/en-US/Add-ons/SDK/Guides/Contributor_s_Guide/Private_Properties
https://developer.mozilla.org/en-US/Add-ons/SDK/Guides/Contributor_s_Guide/Private_Properties

Design Patterns

There is nothing fancy in the preceding class; we simply use the default high resolution
timer to save the current time when start () is invoked, and then calculate the elapsed
time when end () is executed, printing the result to the console.

Now, if we are going to use such a profiler in a real-world application to calculate the
execution time of the different routines, we can easily imagine the huge amount of logging
we will generate to the standard output, especially in a production environment. What we
might want to do instead is redirect the profiling information to another source, for
example, a database, or alternatively, disable the profiler altogether if the application is
running in production mode. It's clear that if we were to instantiate a Profiler object
directly by using the new operator, we would need some extra logic in the client code or in
the Profiler object itself in order to switch between the different logics. We can instead
use a factory to abstract the creation of the Profiler object, so that, depending on whether
the application runs in production or development mode, we can return a fully working
Profiler object, or alternatively, a mock object with the same interface, but with empty
methods. Let's do this then in the profiler. js module, instead of exporting the Profiler
constructor, we will export only a function, our factory. The following is its code:

module.exports = function(label) {
if (process.env.NODE_ENV === 'development') {
return new Profiler (label); // 1]
} else if (process.env.NODE_ENV === 'production') {
return { //12]
start: function() {},
end: function() {}
}
} else {
throw new Error ('Must set NODE_ENV');
}
}i

The factory that we created abstracts the creation of a Profiler object from its
implementation:

e If the application is running in development mode, we return a new, fully
functional Profiler object

e If instead the application is running in production mode, we return a mock object
where the start () and stop () methods are empty functions

[195]

Design Patterns

The nice feature to highlight is that, thanks to JavaScript dynamic typing, we were able to
return an object instantiated with the new operator in one circumstance and a simple object
literal in the other (this is also known as duck typing https://en.wikipedia.org/wiki
/Duck_typing). Our factory is doing its job perfectly; we really can create objects in any
way that we like inside the factory function, and we can execute additional initialization
steps or return a different type of object based on particular conditions, and all of this while
isolating the consumer of the object from all these details. We can easily understand the
power of this simple pattern.

Now we can play with our profiler; this is a possible use case for the factory that we just
created earlier:

const profiler = require('./profiler');

function getRandomArray (len) {

const p = profiler('Generating a ' + len + ' items long array');
p.start ();
const arr = [];

for (let 1 0; 1 < len; i++) |
arr.push (Math.random());

}
p.end();

}

getRandomArray (1e6) ;
console.log('Done');

The p variable contains the instance of our Profiler object, but we don't know how it's
created and what its implementation is at this point in the code.

If we include the preceding code in a file named profilerTest. js, we can easily test
these assumptions. To try the program with profiling enabled, run the following command:

export NODE_ENV=development; node profilerTest

The preceding command enables the real profiler and prints the profiling information to the
console. If we want to try the mock profiler instead, we can run the following command:

export NODE_ENV=production; node profilerTest

The example that we just presented is just a simple application of the factory function
pattern, but it clearly shows the advantages of separating an object's creation from its
implementation.

[196]

https://en.wikipedia.org/wiki/Duck_typing
https://en.wikipedia.org/wiki/Duck_typing

Design Patterns

Composable factory functions

Now that we have a good idea about how factory functions can be implemented in Node.js,
we are ready to introduce a new advanced pattern that has recently been getting traction in
the JavaScript community. We are talking about composable factory functions, which
represent a particular type of factory function that can be “composed” together to build
new enhanced factory functions. They are especially useful for allowing us to construct
objects that “inherit” behaviors and properties from different sources without the need for
building complex class hierarchies.

We can clarify this concept with a simple and effective example. Let's assume we want to
build a videogame in which the characters on the screen can have a number of different
behaviors: they can move on the screen; they can slash and shoot. And yes, to be a character
they should have some basic properties such as life points, position on the screen, and
name.

We want to define several types of character, one for every specific behavior:

e Character: base character that has life points, a position, and a name
e Mover: character that is able to move

o Slasher: character that is able to slash

¢ Shooter: character that is able to shoot (as long as it has bullets!)

Ideally we would be able to define new types of characters, combining different behaviors
from the existing ones. We want absolute freedom and, for example, we would like to
define these new types on top of the existing ones:

e Runner: a character that can move
e Samurai: a character that can move and slash
¢ Sniper: a character that can shoot (it doesn't move)

Gunslinger: a character that can move and shoot

Western Samurai: a character that can move, slash, and shoot

As you can see, we want total freedom in combining the features of every basic type, so it
should now be obvious that we cannot easily model this problem using classes and
inheritance.

[197]

Design Patterns

So instead, we are going to use composable factory functions and in particular we are going
to use the stamp specificationas implemented by the stampit module: (https://www.np
mjs.com/package/stampit).

This module offers an intuitive interface for defining factory functions that can be
composed together to build new factory functions. Basically, it allows us to define factory
functions that will generate objects with a specific set of properties and methods, by using a
handy fluent interface to describe them.

Let's see how easily we can define our basic types for our game. We will start with the basic
character type:

const stampit = require('stampit');
const character = stampit ().
props ({
name: 'anonymous',
lifePoints: 100,
x: 0,
y: 0

)i

In the previous snippet of code, we defined the character factory function, which can be
used to create new instances of basic characters. Every character will have these properties:
name, lifePoints, x, and y and the default values will be respectively anonymous, 100, 0,
and 0. The props method of stampit allows us to define these properties. To use this
factory function, we can do something like this:

const ¢ = character();

c.name = 'John';

c.lifePoints = 10;

console.log(c); // { name: 'John', lifePoints: 10, x:0, y:0 }

Now let's define our mover factory function:

const mover = stampit ()
.methods ({
move (xIncr, yIncr) {
this.x += xIncr;
this.y += yIncr;
console.log (" ${this.name} moved to [${this.x}, ${this.y}]");
t
)i

[198]

https://www.npmjs.com/package/stampit)
https://www.npmjs.com/package/stampit)
https://www.npmjs.com/package/stampit)

Design Patterns

In this case, we are using the methods function of stampit to declare all the methods
available in the objects produced by this factory function. For our Mover definition, we have
a move function that can increase the x and the y position of the instance. Notice that we can
access instance properties with the keyword this from inside a method.

Now that we have understood the basic concepts, we can easily add the factory function
definitions for the slasher and shooter types:

const slasher = stampit ()
.methods ({
slash (direction) {
console.log (' ${this.name} slashed to the ${direction}’);
}
)i

const shooter = stampit ()

.props ({

bullets: 6
)
.methods ({

shoot (direction) {

if (this.bullets > 0) {
-—this.bullets;
console.log(${this.name} shoot to the ${direction}’);

P i
Notice how we are using both props and methods to define our shooter factory function.

Ok, now that we have all our base types defined, we are ready to compose them to create
new powerful and expressive factory functions:

const runner = stampit.compose (character, mover);

const samurai = stampit.compose (character, mover, slasher);
const sniper = stampit.compose (character, shooter);

const gunslinger = stampit.compose (character, mover, shooter);
const westernSamurai = stampit.compose (gunslinger, samurai);

The method stampit .compose defines a new composed factory function that will produce
an object based on the methods and properties of the composed factory functions. As you
can tell, this is a powerful mechanism that gives us a lot of freedom and allows us to reason
in terms of behaviors rather than in terms of classes.

[199]

Design Patterns

To wrap up our example, let's instantiate and use a new westernSamurai.

const gojiro = westernSamurai ();
gojiro.name = 'Gojiro Kiryu';
gojiro.move (1,0);
gojiro.slash('left');
gojiro.shoot ('right');

This will produce the following output:

Yojimbo moved to [1, O]
Yojimbo slashed to the left
Yojimbo shoot to the right

More details about the stamp specification and the ideas behind it can be
found in this post written by Eric Elliot, the original author of the
specification: https://medium.com/javascript-scene/introducing
—the-stamp-specification-77£8911c2fee.

In the wild

As we said, factories are very popular in Node.js. Many packages offer only a factory for
creating new instances; some examples are the following:

¢ Dnode (https://npmjs.org/package/dnode): This is a Remote Procedure
Call (RPC) system for Node.js. If we look into its source code, we will see that its
logic is implemented into a class named D; however, this is never exposed to the
outside as the only exported interface is a factory, which allows us to create new

instances of the class. You can take a look at its source code at:
https://github.com/substack/dnode/blob/34d1c%9aa%9696f13bdf8fb99d

9d039367ad873£90/index.js#L7-9.

e Restify (https://npmjs.org/package/restify): Thisis a framework for
building REST APIs that allow us to create new instances of a server using the
restify.createServer () factory, which internally creates a new instance of
the Server class (which is not exported). You can take a look at its source code

at: https://github.com/mcavage/node-
restify/blob/5f31e2334b38361lac7aclab5e5d852b7206ef7d94/1ib/index
.Jjs#L91-116.

[200]

https://medium.com/javascript-scene/introducing-the-stamp-specification-77f8911c2fee
https://medium.com/javascript-scene/introducing-the-stamp-specification-77f8911c2fee
https://npmjs.org/package/dnode
https://cdp.packtpub.com/github.com/substack/dnode/blob/34d1c9aa9696f13bdf8fb99d9d039367ad873f90/index.js#L7-9
https://cdp.packtpub.com/github.com/substack/dnode/blob/34d1c9aa9696f13bdf8fb99d9d039367ad873f90/index.js#L7-9
https://npmjs.org/package/restify

Design Patterns

Other modules expose both a class and a factory, but document the factory as the main
method —or the most convenient way —to create new instances; some of the examples are as
follows:

e http-proxy (https://npmjs.org/package/http-proxy): Thisis a
programmable proxying library, where new instances are created with
httpProxy.createProxyServer (options)

¢ The core Node.js HTTP server: This is where new instances are mostly created
using http.createServer (), even though this is essentially a shortcut for new
http.Server ()

® bunyan (https://npmjs.org/package/bunyan): This is a popular logging
library; in its readme file the contributors propose a factory,
bunyan.createlLogger (), as the main method to create new instances, even
though this would be equivalent to running new bunyan ()

Some other modules provide a factory to wrap the creation of other components. Popular
examples are through2 and from2 (we saw them in Chapter 5, Coding with Streams),
which allow us to simplify the creation of new streams using a factory approach, freeing the
developer from explicitly using inheritance and the new operator.

Finally, to see some packages that are using the stamp specification and composable factory
functions internally, you can have a look at react-stampit
(https://www.npmjs.com/package/react-stampit), which brings the power of
composable factory functions to the frontend allowing you to easily compose widget
behaviors and remitter (https://www.npmjs.com/package/remitter), a pub/sub
module based on Redis.

Revealing constructor

The revealing constructor pattern is a relatively new pattern that is gaining traction in the
Node.js community and in JavaScript, especially because it's used within some core libraries
such as Promise.

We have already implicitly seen this pattern in Chapter 4, Asynchronous Control Flow
Patterns with ES2015 and Beyond, while exploring promises, but let's get back to it and
analyze the Promise constructor to embrace it in greater detail:

const promise = new Promise (function (resolve, reject) {
//
)i

[201]

https://npmjs.org/package/http-proxy
https://npmjs.org/package/bunyan
https://www.npmjs.com/package/react-stampit
https://www.npmjs.com/package/remitter)
https://www.npmjs.com/package/remitter)

Design Patterns

As you can see, Promise accepts a function as a constructor argument, which is called the
executor function. This function is called by the internal implementation of the Promise
constructor and it is used to allow the constructing code to manipulate only a limited part
of the internal state of the promise under construction. In other words, it serves as a
mechanism to expose the resolve and reject functions so that they can be invoked to
change the internal state of the object.

The advantage of this is that only the constructing code has access to resolve and reject
and once the promise object is constructed, it can be passed around safely; no other code
will be able to call reject or resolve and change the internal state of the promise.

That is exactly the reason why this pattern has been named “revealing constructor” by
Domenic Denicola in one of his blog posts.

The full post by Domenic is extremely interesting and also analyzes the
historical origins of the pattern and compares some aspects of this pattern
with the template pattern used by node streams, or with other
construction patterns used by earlier implementation, of the Promise
libraries. You can read it here: https://blog.domenic.me/the-reveal
ing-constructor—-pattern/.

A read-only event emitter

In this paragraph, we are going to use the revealing constructor pattern to build a read-only
event emitter, a special kind of event emitter in which is not possible to call the emit method
(apart from within the function passed to the constructor).

Let's write the code for the Roee (read-only event emitter) class in a file called roee. js:

const EventEmitter = require('events');
module.exports = class Roee extends EventEmitter {
constructor (executor) {
super () ;
const emit = this.emit.bind(this);
this.emit = undefined;

executor (emit) ;
}
bi

In this simple class, we are extending the core EventEmitter class and accepting an
executor function as the only constructor argument.

[202]

https://blog.domenic.me/the-revealing-constructor-pattern/
https://blog.domenic.me/the-revealing-constructor-pattern/

Design Patterns

Inside the constructor, we invoke the super function to be sure to initialize the event
emitter properly by calling its parent constructor, then we save a backup of the emit
function and we remove it by assigning unde fined to it.

Finally, we call the executor function by passing the emit method backup as argument.

What is important to understand here is that after undefined is assigned to the emit
method, it won't be possible to call it anymore from other parts of our code. Our backup
version of emit is defined as a local variable that will be forwarded only to the executor
function. This mechanism allows us to be able to use emit only within the executor
function.

Now let's use this new class to create a simple ticker, a class that emits a tick every second
and keeps the count of all the ticks emitted. This will be the content of our new ticker. js
module:

const Roee = require('./roee');
const ticker = new Roee((emit) => {
let tickCount = 0;
setInterval (() => emit ('tick', tickCount++), 1000);
}) i
module.exports = ticker;

As you can see here, the code is very trivial. We instantiate a new Roee and we pass the
logic of event emission within the executor function. Our executor function receives emit as
argument so we can use it to emit a new tick event every second.

Now let's see a quick example on how to use this ticker module:
const ticker = require('./ticker');

ticker.on('tick', (tickCount) => console.log(tickCount, 'TICK'));
// ticker.emit ('something', {}); <-- This will fail

We use the ticker object the same as any other event emitter-based object, and we can
attach any number of listeners with the on method, but in this case, if we try to use the emit
method, our code will fail by triggering a TypeError: ticker.emit is not a
function error.

[203]

Design Patterns

Even if this example plays a nice role in showing how the revealing
constructor pattern can be used, it is worth mentioning that this read-only
functionality for the event emitter is not completely bulletproof and it is
still possible to bypass it in several ways. For example, we can still emit an
event on our ticker instance by using the original emit prototype

directly, as follows:
require ('events') .prototype.emit.call (ticker,
'someEvent', {});

In the wild

Even if this pattern is quite interesting and clever, it is really hard to find common use cases
apart from the Promise constructor.

It's worth mentioning that there is a new specification for streams under development that
tries to adopt this pattern as a better alternative to the currently used template pattern to be
able to describe the behavior of various stream objects: https://streams.spec.whatwg.
org.

Also it's important to point out that we already used this pattern in Chapter 5, Coding with
Streams when we implemented the ParallelStream class. This class accepts as constructor
argument the userTransform function (the executor function).

Even if in this case the executor function is not called at construction time, but in the
internal _transform method of the stream, the general concept of the pattern remains
valid. In fact, this approach allows us to expose some internals of the stream (for example,
the push function) only to the specific logic of the transformation that we want to specify at
construction time when creating a new instance of ParallelStream.

[204]

https://streams.spec.whatwg.org/
https://streams.spec.whatwg.org/

Design Patterns

Proxy

A proxy is an object that controls access to another object, called a subject. The proxy and
the subject have an identical interface and this allows us to transparently swap one for the
other; in fact, the alternative name for this pattern is surrogate. A proxy intercepts all or
some of the operations that are meant to be executed on the subject, augmenting or
complementing their behavior. The following figure shows a diagrammatic representation:

Proxy Subject
» methodA()- » -}:1- ------------ | methodA()
Client
»| methodB(»-» -]:1- ------------ | methodB()

The preceding figure shows us how the Proxy and the Subject have the same interface, and
how this is totally transparent to the client, who can use one or the other interchangeably.
The Proxy forwards each operation to the subject, enhancing its behavior with additional
pre-processing or post-processing.

It's important to observe that we are not talking about proxying between
classes; the proxy pattern involves wrapping actual instances of the
subject, thus preserving its state.

A proxy is useful in several circumstances; for example, consider the following ones:

¢ Data validation: The proxy validates the input before forwarding it to the subject

¢ Security: The proxy verifies that the client is authorized to perform the operation
and it passes the request to the subject only if the outcome of the check is positive

¢ Caching: The proxy keeps an internal cache so that the operations are executed
on the subject only if the data is not yet present in the cache

e Lazy initialization: If the creation of the subject is expensive, the proxy can delay
it to when it's really necessary

¢ Logging: The proxy intercepts the method invocations and the relative
parameters, recoding them as they happen

¢ Remote objects: A proxy can take an object that is located remotely, and make it
appear local

[205]

Design Patterns

Of course, there are many more applications for the proxy pattern, but these should give us
an idea of the extent of its purpose.

Techniques for implementing proxies

When proxying an object, we can decide to intercept all of its methods or only some of
them, while delegating the rest of them directly to the subject. There are several ways in
which this can be achieved; let's analyze some of them.

Object composition

Composition is a technique whereby an object is combined with another object for the
purpose of extending or using its functionality. In the specific case of the proxy pattern, a
new object with the same interface as the subject is created, and a reference to the subject is
stored internally in the proxy in the form of an instance variable or a closure variable. The
subject can be injected from the client at creation time or created by the proxy itself.

The following is one example of this technique using a pseudo class and a factory:

function createProxy (subject) {
const proto = Object.getPrototypeOf (subject);

function Proxy (subject) {
this.subject = subject;
}

Proxy.prototype = Object.create (proto);

//proxied method
Proxy.prototype.hello = function() {
return this.subject.hello() + ' world!’';

}i

//delegated method
Proxy.prototype.goodbye = function () {
return this.subject.goodbye
.apply (this.subject, arguments);
bi

return new Proxy (subject);

}

module.exports = createProxy;

[2061

Design Patterns

To implement a proxy using composition, we have to intercept the methods that we are
interested in manipulating (such as hello ()), while simply delegating the rest of them to
the subject (as we did with goodbye ()).

The preceding code also shows the particular case where the subject has a prototype and we
want to maintain the correct prototype chain, so that executing proxy instanceof
Subject will return t rue; we used pseudo-classical inheritance to achieve this.

This is just an extra step, required only if we are interested in maintaining the prototype
chain, which can be useful in order to improve the compatibility of the proxy with code
initially meant to work with the subject.

However, as JavaScript has dynamic typing, most of the time we can avoid using
inheritance and use more immediate approaches. For example, an alternative
implementation of the proxy presented in the preceding code might just use an object literal
and a factory:

function createProxy (subject) {

return {
//proxied method
hello: () => (subject.hello() + ' world!"),

//delegated method
goodbye: () => (subject.goodbye.apply (subject, arguments))
i

If we want to create a proxy that delegates most of its methods, it would
be convenient to generate these automatically using a library, such as
delegates (https://npmjs.org/package/delegates).

Object augmentation

Object augmentation (or monkey patching) is probably the most pragmatic way of
proxying individual methods of an object and consists of modifying the subject directly by
replacing a method with its proxied implementation; consider the following example:

function createProxy (subject) {
const helloOrig = subject.hello;
subject.hello = () => (helloOrig.call(this) + ' world!'");

return subject;

}

[207]

https://npmjs.org/package/delegates

Design Patterns

This technique is definitely the most convenient one when we need to proxy only one or a
few methods, but it has the drawback of modifying the subject object directly.

A comparison of the different techniques

Composition can be considered the safest way of creating a proxy, because it leaves the
subject untouched without mutating its original behavior. Its only drawback is that we have
to manually delegate all the methods, even if we want to proxy only one of them. If needed,
we might also have to delegate the access to the properties of the subject.

The object properties can be delegated using
Object.defineProperty (). Find out more at:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/R
eference/Global_Objects/Object/defineProperty.

Object augmentation, on the other hand, modifies the subject, which might not always be
what we want, but it does not present the various inconveniences related to delegation. For
this reason, object augmentation is definitely the most pragmatic way to implement proxies
in JavaScript, and it's the preferred technique in all those circumstances where modifying
the subject is not a big concern.

However, there is at least one situation where composition is almost necessary; this is when
we want to control the initialization of the subject, to, for example, create it only when
needed (lazy initialization).

It is worth pointing out that by using a factory function (createProxy ()
in our examples), we can shield our code from the technique used to
generate the proxy.

Creating a logging Writable stream

To see the proxy pattern in a real example, we will now build an object that acts as a proxy
to a Writable stream, by intercepting all the calls to the write () method and logging a
message every time this happens. We will use an object composition to implement our
proxy; this is how the loggingWritable. js file looks:

function createloggingWritable (writableOrig) {
const proto = Object.getPrototypeOf (writableOriqg);

function LoggingWritable (writableOrig) |

[208]

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty

Design Patterns

}

this.writableOrig = writableOrig;

LoggingWritable.prototype = Object.create (proto);

LoggingWritable.prototype.write = function (chunk, encoding, callback) {
if(!'callback && typeof encoding === 'function') {
callback = encoding;
encoding = undefined;
t
console.log('Writing ', chunk);
return this.writableOrig.write (chunk, encoding, function() {
console.log('Finished writing ', chunk);
callback && callback();
)i
i

LoggingWritable.prototype.on = function() {
return this.writableOrig.on
.apply (this.writableOrig, arguments);
i

LoggingWritable.prototype.end = function() {
return this.writableOrig.end
.apply (this.writableOrig, arguments);
i

return new LoggingWritable (writableOriqg);

In the preceding code, we created a factory that returns a proxied version of the writable
object passed as an argument. We provide an override for the write () method that logs a
message to the standard output every time it is invoked and every time the asynchronous
operation completes. This is also a good example of creating proxies of asynchronous
functions, which makes proxying the callback necessary as well; this is an important detail
to be considered in a platform such as Node.js. The remaining methods, on () and end (),
are simply delegated to the original writable stream (to keep the code leaner we are not
considering the other methods of the writable interface).

We can now include a few more lines of code into the 1loggingWritable. js module to test
the proxy that we just created:

const fs = require('fs');

const writable = fs.createWriteStream('test.txt');
const writableProxy = createloggingWritable (writable);

[209]

Design Patterns

writableProxy.write ('First chunk');
writableProxy.write ('Second chunk');
writable.write('This is not logged');
writableProxy.end();

The proxy did not change the original interface of the stream or its external behavior, but if
we run the preceding code, we will now see that every chunk that is written into the stream
is transparently logged to the console.

Proxy in the ecosystem — function hooks and
AOP

In its numerous forms, proxy is quite a popular pattern in Node.js, as well as in the
ecosystem. In fact, we can find several libraries that allow us to simplify the creation of
proxies, most of the time leveraging object augmentation as an implementation approach.
In the community, this pattern can also be referred to as function hooking, or sometimes as
Aspect-Oriented Programming (AOP), which is actually a common area of application for
proxies. In AOP, these libraries usually allow the developer to set pre- or post-execution
hooks for a specific method (or a set of methods) that allow us to execute custom code
before and after the execution of the advised method, respectively.

Sometimes proxies are also called middleware, because, as it happens in the middleware
pattern (which we will see later in the chapter), they allow us to pre-process and post-
process the input/output of a function. Sometimes, they also allow the registering of
multiple hooks for the same method using a middleware-like pipeline.

There are several libraries on npm that allow us to implement function hooks with little
effort. Among them there are hooks (https://npmjs.org/package/hooks), hooker
(https://npmjs.org/package/hooker), and meld
(https://npmjs.org/package/meld).

ES2015 Proxy

The ES2015 specification introduced a global object called Proxy, which is available in
Node,js starting from version 6.

The Proxy API contains a Proxy constructor that accepts a target and a handler as
arguments:

const proxy = new Proxy(target, handler);

[210]

https://npmjs.org/package/hooks
https://npmjs.org/package/hooker
https://npmjs.org/package/meld

Design Patterns

Here, target represents the object on which the proxy is applied (the subject for our
canonical definition), while handler is a special object that defines the behavior of the

proxy.

The handler object contains a series of optional methods with predefined names called
trap methods (for example, apply, get, set, and has) that are automatically called when
the corresponding operations are performed on the proxy instance.

To better understand how this API works, let's see an example:

const scientist = {
name: 'nikola',
surname: 'tesla'

}i

const uppercaseScientist = new Proxy(scientist, {
get: (target, property) => target[property].toUpperCase ()
P

console.log (uppercaseScientist.name, uppercaseScientist.surname);
// prints NIKOLA TESLA

In this example, we are using the Proxy API to intercept all access to the properties of the
target object, scientist, and convert the original value of the property to an uppercase
string.

If you look carefully at this example, you can probably notice something very peculiar
about this API: it allows us to intercept access to the generic attribute in the target object.
This is possible because the API is not just a simple wrapper to facilitate the creation of
proxy objects, like the ones we defined in the previous sections of this chapter; instead it is a
feature deeply integrated into the JavaScript language itself, which enables developers to
intercept and customize many operations that can be performed on objects. This
characteristic opens up new interesting scenarios that were not easily achievable before
such as meta-programming, operator overloading, and object virtualization.

Let's see another example to clarify this concept:

const evenNumbers = new Proxy([], {

get: (target, index) => index * 2,

has: (target, number) => number % 2 === 0
)i
console.log (2 in evenNumbers); // true
console.log (5 in evenNumbers); // false
console.log (evenNumbers[7]); // 14

[211]

Design Patterns

In this example, we are creating a virtual array that contains all the even numbers. It can be
used as a regular array, which means we can access items in the array with the regular array
syntax (for example, evenNumbers [7]), or check the existence of an element in the array
with the in operator (for example, 2 in evenNumbers). The array is considered virtual
because we never store data in it.

Looking at the implementation, this proxy uses an empty array as the target and then
defines the traps get and has in the handler:

e The get trap intercepts access to the array elements, returning the even number
for the given index

¢ The has trap instead intercepts the usage of the in operator and checks whether
the given number is even or not

The Proxy API supports a number of other interesting traps such as set, delete, and
construct, and allows us to create proxies that can be revoked on demand, disabling all
the traps and restoring the original behavior of the target object.

Analyzing all these features goes beyond the scope of this chapter; what is important here is
understanding that the Proxy API provides a powerful foundation for taking advantage of
the Proxy design pattern when you need it.

If you are curious to know more about the Proxy API and discover all its
capabilities and trap methods, you can read more in this article by Mozilla:
https://developer.mozilla.org/it/docs/Web/JavaScript/Refe

rence/Global_Objects/Proxy. Another good source is this detailed
article from Google: https://developers.google.com/web/updates/
2016/02/es2015-proxies.

In the wild

Mongoose (http://mongoosejs.com) is a popular Object-Document Mapping (ODM)
library for MongoDB. Internally, it uses the hooks package
(https://npmjs.org/package/hooks) to provide pre-and post-execution hooks for the
init, validate, save, and remove methods of its Document objects. Find out more with
the official documentation at http://mongoosejs.com/docs/middleware.html.

[212]

https://developer.mozilla.org/it/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/it/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developers.google.com/web/updates/2016/02/es2015-proxies
https://developers.google.com/web/updates/2016/02/es2015-proxies
http://mongoosejs.com/
https://npmjs.org/package/hooks
http://mongoosejs.com/docs/middleware.html

Design Patterns

Decorator

Decorator is a structural pattern that consists of dynamically augmenting the behavior of an
existing object. It's different from classical inheritance, because the behavior is not added to
all the objects of the same class, but only to the instances that are explicitly decorated.

Implementation-wise, it is very similar to the Proxy pattern, but instead of enhancing or
modifying the behavior of the existing interface of an object, it augments it with new
functionalities, as described in the following figure:

Decorator Component
» methodA()------------f------- > methodA()
Client
»{ methodB(}------------1------- » methodB()
» methodC()

In the previous figure, the Decorator object is extending the Component object by adding
the methodcC () operation. The existing methods are usually delegated to the decorated
object, without further processing. Of course, if necessary we can easily combine the Proxy
pattern so that the calls to the existing methods can be intercepted and manipulated as well.

Techniques for implementing Decorators

Although Proxy and Decorator are conceptually two different patterns with different
intents, they practically share the same implementation strategies. Let's review them.

Composition

Using composition, the decorated component is wrapped around a new object that usually
inherits from it. The Decorator in this case simply needs to define the new methods, while
delegating the existing ones to the original component:

function decorate (component) {
const proto = Object.getPrototypeOf (component) ;

function Decorator (component) {
this.component = component;

}

[213]

Design Patterns

Decorator.prototype = Object.create (proto);

//new method
Decorator.prototype.greetings = function() {
return 'Hi!';

bi

//delegated method
Decorator.prototype.hello = function() {
return this.component.hello.apply (this.component, arguments);

bi

return new Decorator (component) ;

Object augmentation

Object decoration can also be achieved by simply attaching new methods directly to the
decorated object, as follows:

function decorate (component) {
//new method
component.greetings = () => {
Y
}i
return component;

}

The same caveats discussed during the analysis of the Proxy pattern are also valid for
Decorator. Let's now practice the pattern with a working example!

Decorating a LevelUP database

Before we start coding the next example, let's say a few words about LevelUP, the module
that we are now going to work with.

[214]

Design Patterns

Introducing LevelUP and LevelDB

LevelUP (https://npmjs.org/package/levelup) is a Node.js wrapper around Google's
LevelDB, a key/value store originally built to implement IndexedDB in the Chrome
browser, but it's much more than that. LevelDB has been defined by Dominic Tarr as the
“Node.js of databases” because of its minimalism and extensibility. Like Node.js, Level DB
provides blazingly fast performance and only the most basic set of features, allowing
developers to build any kind of database on top of it.

The Node.js community, and in this case Rod Vagg, did not miss the chance to bring the
power of this database into Node.js by creating LevelUP. Born as a wrapper for LevelDB, it
then evolved to support several kinds of backend, from in-memory stores, to other NoSQL
databases such as Riak and Redis, to web storage engines such as IndexedDB and
localStorage, allowing us to use the same API on both the server and the client, opening up
some really interesting scenarios.

Today, there is a fully-fledged ecosystem around LevelUP made of plugins and modules
that extend the tiny core to implement features such as replication, secondary indexes, live
updates, query engines, and more. Also, complete databases were built on top of LevelUP,
including CouchDB clones such as PouchDB (https://npmjs.org/package/pouchdb)
and CouchUP (https://npmjs.org/package/couchup), and even a graph database,
levelgraph (https://npmjs.org/package/levelgraph), which can work both on
Node.js and the browser!

Find out more about the LevelUP ecosystem at:
0 https://github.com/rvagg/node-levelup/wiki/Modules.

Implementing a LevelUP plugin

In the next example, we are going to show how we can create a simple plugin for LevelUP
using the Decorator pattern, and in particular, the object augmentation technique, which is
the simplest but nevertheless the most pragmatic and effective way to decorate objects with
additional capabilities.

For convenience, we are going to use the level package
(http://npmjs.org/package/level), which bundles both 1evelup
and the default adapter called 1eveldown, which uses LevelDB as the
backend.

[215]

https://npmjs.org/package/levelup
https://npmjs.org/package/pouchdb
https://npmjs.org/package/couchup
https://npmjs.org/package/levelgraph
https://github.com/rvagg/node-levelup/wiki/Modules
http://npmjs.org/package/level

Design Patterns

What we want to build is a plugin for LevelUP that allows us to receive notifications every
time an object with a certain pattern is saved into the database. For example, if we subscribe
to a pattern such as {a: 1}, we want to receive a notification when objects such as {a: 1,
b: 3}or{a: 1, c: 'x'} aresaved into the database.

Let's start to build our small plugin by creating a new module called 1evelSubscribe. js.
We will then insert the following code:

module.exports = function levelSubscribe (db) {
db.subscribe = (pattern, listener) => { // 1]
db.on('put', (key, val) => { //12]
const match = Object.keys (pattern) .every (
k => (pattern[k] === vallk]) // 131

)
if (match) {
listener (key, val); // 4]
}
)i
}i

return db;
}i

That's it for our plugin, it's extremely simple. Let's briefly see what happens in the
preceding code:

1. We decorated the db object with a new method named subscribe (). We simply
attached the method directly to the provided db instance (object augmentation).
2. We listened for any put operation performed on the database.

3. We performed a very simple pattern-matching algorithm, which verified that all
the properties in the provided pattern are also available on the data being
inserted.

4. If we have a match, we notify the listener.

Let's now create some code—in a new file named levelSubscribeTest.js—to try out
our new plugin:

const level = require('level'); // 111
const levelSubscribe = require('./levelSubscribe'); //12]
let db = level(__dirname + '/db', {valueEncoding: 'json'});

db = levelSubscribe (db);

db.subscribe (

[216]

Design Patterns

{doctype: 'tweet', language: 'en'}, //13]
(k, val) => console.log(val)
)i
db.put ('1', {doctype: 'tweet', text: 'Hi', language: 'en'}); //[4]
db.put ('2', {doctype: 'company', name: 'ACME Co.'});

This is what we did in the preceding code:

1. First, we initialize our LevelUP database, choosing the directory where the files
will be stored and the default encoding for the values.

2. Then, we attach our plugin, which decorates the original db object.

3. At this point, we are ready to use the new feature provided by our plugin, the
subscribe () method, where we specify that we are interested in all the objects
with doctype: 'tweet' and language: 'en'.

4. Finally, we save some values in the database using put. The first call will trigger
the callback associated to our subscription and we will see the stored object
printed in the console. This is because in this case the object matches the
subscription. Instead, the second call will not generate any output because the
stored object will not match the subscription criteria.

This example shows a real application of the decorator pattern in its simplest
implementation: object augmentation. It might look like a trivial pattern, but it has
undoubted power if used appropriately.

For simplicity, our plugin will work only in combination with the put
operations, but it can be easily expanded to work even with the batch
operations (https://github.com/rvagg/node-levelup#batch).

In the wild

For more examples of how Decorator is used in the real world, we might want to inspect the
code of some more LevelUP plugins:

® level-inverted-index
(https://github.com/dominictarr/level-inverted—-index): Thisis a
plugin that adds inverted indexes to a LevelUP database, allowing us to perform
simple text searches across the values stored in the database

e level-plus (https://github.com/eugeneware/levelplus): Thisis a
plugin that adds atomic updates to a LevelUP database

[217]

https://github.com/dominictarr/level-inverted-index
https://github.com/eugeneware/levelplus

Design Patterns

Adapter

The Adapter pattern allows us to access the functionality of an object using a different
interface. As the name suggests, it adapts an object so that it can be used by components
expecting a different interface. The following diagram clarifies the situation:

Adapter Adaptee
» methodA()zzz---------f------- + methodC()
Client Bttty
» methodB()-------=--=--}-—-ZZ= =3 methodD()

The preceding diagram shows how the Adapter is essentially a wrapper for the Adaptee,
exposing a different interface. The diagram also highlights the fact that the operations of the
Adapter can also be a composition of one or more method invocations on the Adaptee.
From an implementation perspective, the most common technique is composition, where
the methods of the Adapter provide a bridge to the methods of the Adaptee. This pattern is
pretty straightforward, so let's immediately work on an example.

Using LevelUP through the filesystem API

We are now going to build an Adapter around the LevelUP AP]I, transforming it into an
interface that is compatible with the core £s module. In particular, we will make sure that
every call to readFile () and writeFile () will translate into calls to db.get () and
db.put (); this way we will be able to use a LevelUP database as a storage backend for
simple filesystem operations.

Let's start by creating a new module named fsAdapter. js. We will begin by loading the
dependencies and exporting the createFsAdapter () factory that we are going to use to
build the adapter:

const path = require('path');
module.exports = function createFsAdapter (db) {

const fs = {};
//...continues with the next code fragments

[218]

Design Patterns

Next, we will implement the readrile () function inside the factory and ensure that its
interface is compatible with one of the original functions from the £s module:

fs.readFile = (filename, options, callback) => {
if (typeof options === 'function') {
callback = options;
options = {};
} else if (typeof options === 'string') {
options = {encoding: options};
}
db.get (path.resolve (filename), { // 1]

valueEncoding: options.encoding
I

(err, value) => {
if (err) |
if (err.type === 'NotFoundError') { //12]
err = new Error ('ENOENT, open "${filename}"");
err.code = 'ENOENT';
err.errno = 34;
err.path = filename;

}

return callback && callback (err);

}
callback && callback(null, value); //13]

}
)
bi

In the preceding code, we had to do some extra work to make sure that the behavior of our
new function is as close as possible to the original fs.readfFile () function. The steps
performed by the function are described as follows:

1. To retrieve a file from the db class, we invoke db.get (), using filename as a
key, by making sure to always use its full path (using path.resolve ()). We set
the value of valueEncoding used by the database to be equal to any eventual
encoding option received as an input.

2. If the key is not found in the database, we create an error with ENOENT as the
error code, which is the code used by the original £s module to indicate a missing
file. Any other type of error is forwarded to callback (for the scope of this
example, we are adapting only the most common error condition).

3. If the key/value pair is retrieved successfully from the database, we will return
the value to the caller using the callback.

[219]

Design Patterns

As we can see, the function that we created is quite rough; it does not want to be a perfect
replacement for the £s.readFile () function, but it definitely does its job in the most
common situations.

To complete our small adapter, let's now see how to implement the writeFile () function:

fs.writeFile = (filename, contents, options, callback) => {
if (typeof options === 'function') {
callback = options;
options = {};
} else if (typeof options === 'string') {
options = {encoding: options};

db.put (path.resolve (filename), contents, {
valueEncoding: options.encoding
}, callback);
}

Also, in this case, we don't have a perfect wrapper; we will ignore some options such as file
permissions (options.mode), and we will forward any error that we receive from the
database as it is.

Finally, we only have to return the £s object and close the factory function using the
following line of code:

return fs;

}

Our new adapter is now ready; if we now write a small test module, we can try to use it:

const fs = require('fs');
fs.writeFile('file.txt', 'Hello!', () => {
fs.readFile('file.txt', {encoding: 'utf8'}, (err, res) => {

console.log(res);
}) i
}) i

//try to read a missing file
fs.readFile('missing.txt', {encoding: 'utf8'}, (err, res) => {
console.log(err);

)i

[220]

Design Patterns

The preceding code uses the original £s API to perform a few read and write operations on
the filesystem, and should print something like the following to the console:

{ [Error: ENOENT, open 'missing.txt'] errno: 34, code: 'ENOENT', path:
'missing.txt' }
Hello!

Now, we can try to replace the £s module with our adapter, as follows:

const levelup = require('level');

const fsAdapter = require('./fsAdapter');

const db = levelup('./£fsDB', {valueEncoding: 'binary'});
const fs = fsAdapter (db);

Running our program again should produce the same output, except for the fact that no
parts of the file that we specified is read or written using the filesystem; instead, any
operation performed using our adapter will be converted into an operation performed on a
LevelUP database.

The adapter that we just created might look silly; what's the purpose of using a database in
place of the real filesystem? However, we should remember that LevelUP itself has adapters
that enable the database to also run in the browser; one of these adapters is level. js
(https://npmjs.org/package/level-js). Now our adapter should make perfect sense;
we can think of using it to share with the browser code, which relies on the £s module! For
example, the web spider that we created in Chapter 3, Asynchronous Control Flow Patterns
with Callbacks, uses the £s API to store the web pages downloaded during its operations;
our adapter will allow it to run in the browser by applying only minor modifications! We
will soon realize that Adapter is also an extremely important pattern when it comes to
sharing code with the browser, as we will see in more detail in Chapter 8, Universal
JavaScript for Web Applications.

In the wild

There are plenty of real-world examples of the Adapter pattern: we list some of the most
notable examples here for you to explore and analyze:

e We already know that LevelUP is able to run with different storage backends,
from the default LevelDB to IndexedDB in the browser. This is made possible by
the various adapters that are created to replicate the internal (private) LevelUP

API. Take a look at some of them to see how they are implemented:
https://github.com/rvagg/node-levelup/wiki/Modules#storage-back

—ends.

[221]

https://npmjs.org/package/level-js

Design Patterns

* jugglingdb is a multi-database ORM and of course, multiple adapters are used
to make it compatible with different databases. Take a look at some of them at:
https://github.com/1602/jugglingdb/tree/master/lib/adapters.

¢ The perfect complement to the example that we created is 1evel-filesystem
(https://www.npmjs.org/package/level-filesystem), which is the proper
implementation of the £s API on top of LevelUP.

Strategy

The Strategy pattern enables an object, called the Context, to support variations in its logic
by extracting the variable parts into separate, interchangeable objects called Strategies. The
context implements the common logic of a family of algorithms, while a strategy
implements the mutable parts, allowing the context to adapt its behavior depending on
different factors such as an input value, a system configuration, or user preferences. The
strategies are usually part of a family of solutions and all of them implement the same
interface, which is the one that is expected by the context. The following figure shows the
situation we just described:

Strategy A

Context

v Strategy B

Client

i
h
4

Strategy C

The preceding figure shows how the context object can plug different strategies into its
structure, as if they were replaceable parts of a piece of machinery. Imagine a car; its tires
can be considered its strategy for adapting to the different road conditions. We can fit
winter tires to go on snowy roads thanks to their studs, while we can decide to fit high-
performance tires for traveling mainly on motorways, for a long trip. On the one hand, we
don't want to change the entire car for this to be possible, and on the other, we don't want a

[222]

https://github.com/1602/jugglingdb/tree/master/lib/adapters
https://www.npmjs.org/package/level-filesystem

Design Patterns

car with eight wheels so that it can go on every possible road.

We quickly understand how powerful this pattern is; not only does it help with separating
the concerns within an algorithm, but it also enables it to have better flexibility and adapt to
different variations of the same problem.

The Strategy pattern is particularly useful in all those situations where supporting
variations of an algorithm requires complex conditional logic (lots of i f..else or switch
statements), or mixing together different algorithms of the same family. Imagine an object
called order that represents an online order of an e-commerce website. The object has a
method called pay () that, as it says, finalizes the order and transfers the funds from the
user to the online store.

To support different payment systems, we have a couple of options, as follows:

e Use an if..else statement in the pay () method to complete the operation-based
on the chosen payment option

¢ Delegate the logic of the payment to a strategy object that implements the logic
for the specific payment gateway selected by the user

In the first solution, our Order object cannot support other payment methods unless its
code is modified. Also, this can become quite complex when the number of payment
options grows. Instead, using the Strategy pattern enables the Order object to support a
virtually unlimited number of payment methods and keeps its scope limited to only
managing the details of the user, the purchased items, and relative price, while delegating
the job of completing the payment to another object.

Let's now demonstrate this pattern with a simple, realistic example.

Multi-format configuration objects

Let's consider an object called Config that holds a set of configuration parameters used by
an application, such as the database URL, the listening port of the server, and so on. The
Config object should be able to provide a simple interface to access these parameters, but
also a way to import and export the configuration using a persistent storage, such as a file.
We want to be able to support different formats to store the configuration, for example,
JSON, INI, or YAML.

By applying what we learned about the Strategy pattern, we can immediately identify the
variable part of the Config object, which is the functionality that allows us to serialize and
deserialize the configuration. This is going to be our strategy.

[223]

Design Patterns

Let's create a new module called config. js, and let's define the generic part of our
configuration manager:

const fs = require('fs');
const objectPath = require('object-path');

class Config {
constructor (strategy) {
this.data = {};
this.strategy = strategy;

get (path) {
return objectPath.get (this.data, path);
}
//... rest of the class

In the preceding code, we encapsulate the configuration data into an instance variable
(this.data) and then we provide the set () and get () methods that allow us to access
the configuration properties using a dotted path notation (for example,
property.subProperty) by leveraging npm library called object-path
(https://npmjs.org/package/object—path). In the constructor, we also take in a
strategy as input, which represents an algorithm for parsing and serializing the data.

Let's now see how we are going to use st rategy, by writing the remaining part of the
Config class:

set (path, wvalue) {
return objectPath.set (this.data, path, value);
}

read (file) {
console.log(' Deserializing from ${file});
this.data = this.strategy.deserialize (fs.readFileSync(file, 'utf-8'));

save (file) {
console.log (' Serializing to ${file}’);
fs.writeFileSync(file, this.strategy.serialize(this.data));

}

module.exports = Config;

[224]

https://npmjs.org/package/object-path

Design Patterns

In the previous code, when reading the configuration from a file, we delegate the
deserialization task to the st rategy; then, when we want to save the configuration into a
file, we use strategy to serialize the configuration. This simple design allows the Config
object to support different file formats when loading and saving its data.

To demonstrate this, let's create a couple of strategies in a file called strategies. js. Let's
start with a strategy for parsing and serializing JSON data:

module.exports.json {

deserialize: data => JSON.parse (data),

serialize: data => JSON.stringify(data, null, ' ')
}

Nothing really complicated! Our strategy simply implements the agreed interface, so that it
can be used by the Config object.

Similarly, the next strategy we are going to create allows us to support the INI file format:

const ini = require('ini'); //-> https://npmjs.org/package/ini
module.exports.ini = {

deserialize: data => ini.parse(data),

serialize: data => ini.stringify (data)

}

Now, to show you how everything comes together, let's create a file named
configTest.Js, and let's try to load and save a sample configuration using different
formats:

const Config = require('./config');
const strategies = require('./strategies');

const jsonConfig = new Config(strategies.json);
jsonConfig.read('samples/conf.json');
jsonConfig.set ('book.nodejs', 'design patterns');
jsonConfig.save ('samples/conf_mod. json');

const iniConfig = new Config(strategies.ini);
iniConfig.read('samples/conf.ini'");
iniConfig.set ('book.nodejs', 'design patterns');
iniConfig.save ('samples/conf_mod.ini'");

[225]

Design Patterns

Our test module reveals the properties of the Strategy pattern. We defined only one Config
class, which implements the common parts of our configuration manager, while changing
the strategy used for serializing and deserializing allowed us to create different Config
instances supporting different file formats.

The preceding example shows only one of the possible alternatives that we had for selecting
the strategy. Other valid approaches might have been the following:

¢ Creating two different strategy families: one for the deserialization and the other
for the serialization. This would have allowed reading from a format and saving
into another.

¢ Dynamically selecting the strategy, depending on the extension of the file
provided; the Config object could have maintained a map
extension->strategy and used it to select the right algorithm for the given
extension.

As we can see, there are several options for selecting the strategy to use and the right one
only depends on our requirements and the trade-off in terms of features/simplicity we want
to obtain.

Also, the implementation of the pattern itself can vary a lot; for example, in its simplest
form, the context and the strategy can both be simple functions:

function context (strategy) {...}

Even though the preceding situation might seem insignificant, it should not be
underestimated in a programming language, such as JavaScript, where functions are first-
class citizens and used as much as fully-fledged objects.

Between all these variations, though, what does not change is the idea behind the pattern;
as always the implementation can slightly change but the core concepts that drive the
pattern are always the same.

[226]

Design Patterns

In the wild

Passport.js (http://passportjs.org) is an authentication framework for Node.js
which allows support for different authentication schemes on a web server. With Passport,
we can provide a login with Facebook or login with Twitter functionality to our web
application with minimal effort. Passport uses the Strategy pattern to separate the common
logic required during an authentication process from the parts that can change, namely the
actual authentication step. For example, we might want to use OAuth in order to obtain an
access token to access a Facebook or Twitter profile, or simply use a local database to verify
a username/password pair. For Passport, these are all different strategies for completing the
authentication process and, as we can imagine, this allows the library to support a virtually
unlimited number of authentication services. Take a look at the number of different
authentication providers supported at http://passportjs.org/guide/providers to
get an idea of what the strategy pattern can do.

State

State is a variation of the Strategy pattern where the strategy changes depending on the
state of the context. We have seen in the previous section how a strategy can be selected
based on different variables such as user preferences, a configuration parameter, and the
input provided, and once this selection is done, the strategy stays unchanged for the rest of
the lifespan of the context.

Instead, in the State pattern, the strategy (also called state in this circumstance) is dynamic
and can change during the lifetime of the context, thus allowing its behavior to adapt
depending on its internal state, as shown in the following figure:

State A ' State B ' State C
e |
Context ! Context ! Context
Strategy A i Strategy B i Strategy C
g N J

[227]

http://passportjs.org/
http://passportjs.org/guide/providers

Design Patterns

Imagine that we have a hotel booking system and an object called Reservation that
models a room reservation. This is a classical situation where we have to adapt the behavior
of an object based on its state. Consider the following series of events:

1. When the reservation is initially created, the user can confirm (using confirm())
the reservation; of course, they cannot cancel it (using cancel ()), because it's
still not confirmed. They can however delete it (using delete ()) if they change
their mind before buying.

2. Once the reservation is confirmed, using the confirm () function again does not
make any sense; however, now it should be possible to cancel the reservation but
no longer delete it, because it has to be kept for the record.

3. On the day before the reservation date, it should not be possible to cancel the
reservation; it's too late for that.

Now, imagine that we have to implement the reservation system that we described in one
monolithic object; we can already picture all the i f..else or switch statements that we
would have to write to enable/disable each action depending on the state of the reservation.

The State pattern instead is perfect in this situation: there will be three strategies, all
implementing the three methods described (confirm(), cancel (), and delete ())and
each one implementing only one behavior, the one corresponding to the modeled state. By
using this pattern, it should be very easy for the Reservation object to switch from one
behavior to another; this will simply require the activation of a different strategy on each
state change.

The state transition can be initiated and controlled by the context object, by the client code,
or by the state objects themselves. This last option usually provides the best results in
terms of flexibility and decoupling, as the context does not have to know about all the
possible states and how to transition between them.

Implementing a basic fail-safe socket

Let's now work on a concrete example so that we can apply what we learned about the State
pattern. Let's build a client TCP socket that does not fail when the connection with the
server is lost; instead, we want to queue all the data sent during the time in which the server
is offline and then try to send it again as soon as the connection is re-established. We want
to leverage this socket in the context of a simple monitoring system, where a set of machines
sends some statistics about their resource utilization at regular intervals; if the server that
collects these resources goes down, our socket will continue to queue the data locally until
the server comes back online.

[228]

Design Patterns

Let's start by creating a new module called failsafeSocket. js that represents our
context object:

const OfflineState = require('./offlineState');
const OnlineState = require('./onlineState');

class FailsafeSocket{
constructor (options) { // 111

this.options = options;

this.queue = [];

this.currentState = null;

this.socket = null;

this.states = {
offline: new OfflineState (this),
online: new OnlineState (this)

}i

this.changeState('offline');

changeState (state) { //121]
console.log('Activating state: ' + state);
this.currentState = this.states[state];
this.currentState.activate();

send (data) { // 131
this.currentState.send(data);

module.exports = options => {
return new FailsafeSocket (options);
}i

The FailsafeSocket class is made of three main elements:

1. The constructor initializes various data structures, including the queue that will
contain any data sent while the socket is offline. Also, it creates a set of two
states, one for implementing the behavior of the socket while it's offline, and
another one when the socket is online.

2. The changestate () method is responsible for transitioning from one state to
another. It simply updates the currentstate instance variable and calls
activate () on the target state.

3. The send () method is the functionality of the socket this is where we want to

have a different behavior based on the offline/online state. As we can see, this is
done by delegating the operation to the currently active state.

[229]

Design Patterns

Let's now see what the two states look like, starting from the offlineState. js module:
const jot = require('json-over-tcp'); // 1]
module.exports = class OfflineState {

constructor (failsafeSocket) {
this.failsafeSocket = failsafeSocket;

}

send (data) { //12]
this.failsafeSocket.queue.push (data);
}

activate () { //131]
const retry = () => {
setTimeout (() => this.activate(), 500);
}
this.failsafeSocket.socket = jot.connect (
this.failsafeSocket.options,
(0 =>A

this.failsafeSocket.socket.removelistener ('error', retry);
this.failsafeSocket.changeState('online');
}
)i
this.failsafeSocket.socket.once('error', retry);
}
bi

The module that we created is responsible for managing the behavior of the socket while it's
offline; this is how it works:

1. Instead of using a raw TCP socket, we will use a little library called json-over-
tcp (https://npmjs.org/package/json-over—tcp), which will allow us to
easily send JSON objects over a TCP connection.

2. The send () method is only responsible for queuing any data it receives; we are
assuming that we are offline, so that's all we need to do.

3. The activate () method tries to establish a connection with the server using
json-over~-tcp. If the operation fails, it tries again after 500 milliseconds. It
continues trying until a valid connection is established, in which case the state of
failsafeSocket is transitioned to online.

[230]

https://npmjs.org/package/json-over-tcp

Design Patterns

Next, let's implement the onlineState. js module, and then let's implement the
onlineState strategy, as follows:

module.exports = class OnlineState {
constructor (failsafeSocket) {
this.failsafeSocket = failsafeSocket;

send (data) { // 1]
this.failsafeSocket.socket.write (data);
}i

activate () { //12]
this.failsafeSocket.queue.forEach (data => {
this.failsafeSocket.socket.write (data);
)i
this.failsafeSocket.queue = [];

this.failsafeSocket.socket.once('error', () => {

this.failsafeSocket.changeState ('offline');

)i
}

}i

The onlinestate strategy is very simple and is explained as follows:

1. The send () method writes the data directly into the socket, as we assume we are
online.

2. The activate () method flushes any data that was queued while the socket was
offline and it also starts listening for any error events; we will take this as a

symptom that the socket went offline (for simplicity). When this happens, we
transition to the off1ine state.

That's it for our failsafeSocket; now we are ready to build a sample client and a server
to try it out. Let's put the server code in a module named server. js:

const jot = require('json-over-tcp');
const server = jot.createServer (5000);
server.on ('connection', socket => {
socket.on('data', data => {
console.log('Client data', data);
}) i
}) i
server.listen (5000, () => console.log('Started'));

[231]

Design Patterns

Then the client-side code, which is what we are really interested in, goes into client. js:

const createFailsafeSocket = require('./failsafeSocket');
const failsafeSocket = createFailsafeSocket ({port: 5000});

setInterval (() => {
//send current memory usage
failsafeSocket.send (process.memoryUsage ());
}, 1000);

Our server simply prints any JSON message it receives to the console, while our clients are
sending a measurement of their memory utilization every second, leveraging a
FailsafeSocket object.

To try the small system that we built, we should run both the client and the server, then we
can test the features of failsafeSocket by stopping and then restarting the server. We
should see that the state of the client changes between online and offline and that any
memory measurement collected while the server is offline is queued and then resent as
soon as the server goes back online.

This sample should be a clear demonstration of how the State pattern can help increase the
modularity and readability of a component that has to adapt its behavior depending on its
state.

The FailsafeSocket class that we built in this section is only for
demonstrating the state pattern and doesn't want to be a complete and
100%-reliable solution for handling connectivity issues within TCP
sockets. For example, we are not verifying that all the data written into the
socket stream is received by the server, which would require some more
code not strictly related to the pattern that we wanted to describe.

[232]

Design Patterns

Template

The next pattern that we are going to analyze is called Template and it also has a lot in
common with the Strategy pattern. Template consists of defining an abstract pseudo class
that represents the skeleton of an algorithm, where some of its steps are left undefined.
Subclasses can then fill the gaps in the algorithm by implementing the missing steps, called
template methods. The intent of this pattern is to make it possible to define a family of
classes that are all variations of a similar algorithm. The following UML diagram shows the
structure that we just described:

Template
+ fool)
+hbar()
+templateMethod()
Extends Exte|nds ExtenK
ConcreteA ConcreteB ConcreteC
+ templateMethod() + templateMethod() + templateMethod()

The three concrete classes shown in the previous diagram, extend Template and provide an
implementation for templateMethod (), which is abstract or pure virtual, to use the C++
terminology; in JavaScript this means that the method is left undefined or is assigned to a
function that always throws an exception, indicating the fact that the method has to be
implemented. The Template pattern can be considered more classically object-oriented than
the other patterns we have seen so far, because inheritance is a core part of its
implementation.

[233]

Design Patterns

The purpose of Template and Strategy is very similar, but the main difference between the
two lies in their structure and implementation. Both allow us to change some parts of an
algorithm while reusing the common parts; however, while Strategy allows us to do it
dynamically and possibly at runtime, with Template the complete algorithm is determined
the moment the concrete class is defined. Under these assumptions, the Template pattern
might be more suitable in those circumstances where we want to create prepackaged
variations of an algorithm. As always, the choice between one pattern and the other is up to
the developer, who has to consider the various pros and cons for each use case.

A configuration manager template

To have a better idea of the differences between Strategy and Template, let's now re-
implement the Config object that we defined in the section about the Strategy pattern, but
this time using Template. Like in the previous version of the Config object, we want to
have the ability to load and save a set of configuration properties using different file
formats.

Let's start by defining the template class; we will call it ConfigTemplate:

const fs = require('fs');
const objectPath = require('object-path');

class ConfigTemplate {

read(file) A

console.log(' Deserializing from ${file});

this.data = this._deserialize(fs.readFileSync(file, 'utf-8'));
t

save (file) {
console.log (' Serializing to ${file});
fs.writeFileSync (file, this._serialize(this.data));

}

get (path) {
return objectPath.get (this.data, path);
}

set (path, wvalue) {
return objectPath.set (this.data, path, value);
}

_serialize() {
throw new Error('_serialize () must be implemented');

[234]

Design Patterns

_deserialize () {
throw new Error('_deserialize () must be implemented');

}

module.exports = ConfigTemplate;

The new ConfigTemplate class defines two template methods: _deserialize () and
_serialize (), which are needed to carry out the loading and saving of the configuration.
The underscore at the beginning of their names indicates that they are for internal use only,
an easy way to flag protected methods. Since in JavaScript we cannot declare a method as
abstract, we simply define them as stubs, throwing an exception if they are invoked (in
other words, if they are not overridden by a concrete subclass).

Let's now create a concrete class using our template, for example, one that allows us to load
and save the configuration using the JSON format:

const util = require('util');
const ConfigTemplate = require('./configTemplate');

class JsonConfig extends ConfigTemplate {

_deserialize (data) {
return JSON.parse (data);
bi

_serialize(data) {
return JSON.stringify(data, null, ' Y

}

module.exports = JsonConfig;

The JsonConfig class extends from our template, the ConfigTemplate class, and
provides a concrete implementation for the _deserialize () and _serialize () methods.

The JsonConfig class can now be used as a standalone configuration object without the
need to specify a strategy for serialization and deserialization, as it is baked in the class itself:

const JsonConfig = require('./JjsonConfig');

constjsonConfig = new JsonConfig();
jsonConfig.read('samples/conf.json');
jsonConfig.set ('nodejs', 'design patterns');
jsonConfig.save ('samples/conf_mod. json');

[235]

Design Patterns

With minimal effort, the Template pattern allowed us to obtain a new, fully-working
configuration manager by reusing the logic and the interface inherited from the parent
template class and providing only the implementation of a few abstract methods.

In the wild

This pattern should not sound entirely new to us. We already encountered it in Chapter 5,
Coding with Streams, when we were extending the different stream classes to implement our
custom streams. In that context, the template methods were the _write (), _read(),
_transform(), or _flush () methods, depending on the stream class that we wanted to
implement. To create a new custom stream, we needed to inherit from a specific abstract
stream class, providing an implementation for the template methods.

Middleware

One of the most distinctive patterns in Node.js is definitely middleware. Unfortunately, it's
also one of the most confusing for the inexperienced, especially for developers coming from
the enterprise programming world. The reason for the disorientation is probably connected
to the meaning of the term middleware, which in enterprise architecture jargon represents
the various software suites that help to abstract lower-level mechanisms such as OS APlIs,
network communications, memory management, and so on, allowing the developer to
focus only on the business case of the application. In this context, the term middleware
recalls topics such as CORBA, Enterprise Service Bus, Spring, JBoss, but in its more generic
meaning it can also define any kind of software layer that acts like a glue between lower-
level services and the application (literally the software in the middle).

Middleware in Express

Express (http://expressijs.com) popularized the term middleware in the Node.js world,
binding it to a very specific design pattern. In Express, in fact, middleware represents a set
of services, typically functions, that are organized in a pipeline and are responsible for
processing incoming HTTP requests and relative responses.

Express is famous for being a very non-opinionated and minimalist web framework. Using
the middleware pattern is an effective strategy for allowing developers to easily create and
distribute new features that can be easily added to the current application, without the need
to grow the minimalistic core of the framework.

[236]

http://expressjs.com/

Design Patterns

An Express middleware has the following signature:

function(req, res, next) { ... }

Here, req is the incoming HTTP request, res is the response, and next is the callback to be
invoked when the current middleware has completed its tasks and that in turn triggers the
next middleware in the pipeline.

Examples of the tasks carried out by Express middleware include the following:

e Parsing the body of the request

e Compressing/decompressing requests and responses
e Producing access logs

e Managing sessions

e Managing encrypted cookies

Providing Cross-site Request Forgery (CSRF) protection

If we think about it, these are all tasks that are not strictly related to the main functionality
of an application, nor essential parts of a minimal core of a web server; rather, they are
accessories, components providing support to the rest of the application and allowing the
actual request handlers to focus only on their main business logic. Essentially, those tasks
are software in the middle.

Middleware as a pattern

The technique used to implement middleware in Express is not new; in fact, it can be
considered the Node.js incarnation of the Intercepting Filter pattern and the Chain of
Responsibility pattern. In more generic terms, it also represents a processing pipeline,
which reminds us about streams. Today, in Node.js the word middleware is used well
beyond the boundaries of the Express framework, and indicates a particular pattern
whereby a set of processing units, filters, and handlers, under the form of functions, are
connected to form an asynchronous sequence in order to perform the preprocessing and
postprocessing of any kind of data. The main advantage of this pattern is flexibility; in fact,
this pattern allows us to obtain a plugin infrastructure with incredibly little effort,
providing an unobtrusive way for extending a system with new filters and handlers.

[237]

Design Patterns

If you want to know more about the Intercepting Filter pattern, the
following article is a good starting point:
http://www.oracle.com/technetwork/java/interceptingfilter

-142169.html. A nice overview of the Chain of Responsibility pattern is
available at this URL:

http://java.dzone.com/articles/design—-patterns—uncovered-
chain-of-responsibility.

The following diagram shows the components of the middleware pattern:

use()

Middleware Manager
______ v

Input : : i | Output
e Middleware A Middleware B Middleware C ------ » Middleware D ————

The essential component of the pattern is the Middleware Manager, which is responsible
for organizing and executing the middleware functions. The most important
implementation details of the pattern are as follows:

e New middleware can be registered by invoking the use () function (the name of
this function is a common convention in many implementations of this pattern,
but we can choose any name). Usually, new middleware can only be appended at
the end of the pipeline, but this is not a strict rule.

¢ When new data is received for processing, the registered middleware is invoked
in an asynchronous sequential execution flow. Each unit in the pipeline receives
the result of the execution of the previous unit as input.

¢ Each piece of middleware can decide to stop further processing of the data by
simply not invoking its callback or by passing an error to the callback. An error
situation usually triggers the execution of another sequence of middleware that is
specifically dedicated to handling errors.

[238]

http://www.oracle.com/technetwork/java/interceptingfilter-142169.html
http://www.oracle.com/technetwork/java/interceptingfilter-142169.html
http://java.dzone.com/articles/design-patterns-uncovered-chain-of-responsibility
http://java.dzone.com/articles/design-patterns-uncovered-chain-of-responsibility

Design Patterns

There is no strict rule on how the data is processed and propagated in the pipeline. The
strategies include:

e Augmenting the data with additional properties or functions
¢ Replacing the data with the result of some kind of processing

e Maintaining the immutability of the data and always returning fresh copies as
result of processing

The right approach depends on the way the Middleware Manager is implemented and on
the type of processing carried out by the middleware itself.

Creating a middleware framework for GMQ

Let's now demonstrate the pattern by building a middleware framework around the OMQ
(http://zeromg.org) messaging library. OMQ (also known as ZMQ, or ZeroMQ)
provides a simple interface for exchanging atomic messages across the network using a
variety of protocols; it shines for its performance, and its basic set of abstractions are
specifically built to facilitate the implementation of custom messaging architectures. For this
reason, OMQ is often chosen to build complex distributed systems.

In Chapter 11, Messaging and Integration Patterns, we will have the chance
0 to analyze the features of IMQ in more detail.

The interface of IMQ is pretty low-level; it only allows us to use strings and binary buffers
for messages, so any encoding or custom formatting of data has to be implemented by the
users of the library.

In the next example, we are going to build a middleware infrastructure to abstract the
preprocessing and post processing of the data passing through a @MQ socket, so that we
can transparently work with JSON objects, but also seamlessly compress messages traveling
over the wire.

native libraries following the instructions at this URL:
http://zeromg.org/intro:get-the-software. Any version in the 4.0

0 Before continuing with the example, please make sure to install the @MQ
branch should be enough to work on this example.

[239]

http://zeromq.org/
http://zeromq.org/intro:get-the-software

Design Patterns

The Middleware Manager

The first step toward building a middleware infrastructure around IMQ is to create a
component that is responsible for executing the middleware pipeline when a new message
is received or sent. For this purpose, let's create a new module called
zmgMiddlewareManager. js and let's define it:

module.exports = class ZmgMiddlewareManager {
constructor (socket) {

this.socket = socket;

this.inboundMiddleware = []; // 1]

this.outboundMiddleware = [];

socket.on ('message', message => { // 2]

this.executeMiddleware (this.inboundMiddleware, {

data: message
P) i
P) i

send (data) {
constmessage = {
data: data
}i

this.executeMiddleware (this.outboundMiddleware, message,
0 =>A
this.socket.send(message.data);
}
)

use (middleware) {
if (middleware.inbound) {
this.inboundMiddleware.push (middleware.inbound) ;
}
if (middleware.outbound) {
this.outboundMiddleware.unshift (middleware.outbound) ;

executeMiddleware (middleware, arg, finish) {
function iterator (index) {
if (index === middleware.length) {
return finish && finish{();
}
middleware[index].call (this, arg, err => {
if (err) {

[240]

Design Patterns

return console.log('There was an error: ' + err.message);

}

iterator.call (this, ++index);
)i
t

iterator.call (this, 0);
t
bi

In the first part of the class, we define the constructor for this new component. It accepts a
OMQ socket as an argument and:

1. Creates two empty lists that will contain our middleware functions, one for the
inbound messages and another one for the outbound messages.

2. It immediately starts listening for new messages coming from the socket by
attaching a new listener to the 'message' event. In the listener, we process the
inbound message by executing the inboundMiddleware pipeline.

The next method of the zmgMiddlewareManager class, send, is responsible for executing
the middleware when a new message is sent through the socket.

This time the message is processed using the filters in the outboundMiddleware list and
then passed to socket.send () for the actual network transmission.

Now, let's talk about the use method. This method is necessary for appending new
middleware functions to our pipelines. Each middleware comes in pairs; in our
implementation it's an object that contains two properties, inbound and outbound, that
contain the middleware functions to be added to the respective list.

It's important to observe here that the inbound middleware is pushed to the end of the
inboundMiddleware list, while the outbound middleware is inserted (using unshift) at
the beginning of the outboundMiddleware list. This is because complementary
inbound/outbound middleware functions usually need to be executed in an inverted order.
For example, if we want to decompress and then deserialize an inbound message using
JSON, it means that for the outbound, we should instead first serialize and then compress.

It's important to understand that this convention for organizing the
middleware in pairs is not strictly part of the general pattern, but only an
implementation detail of our specific example.

[241]

Design Patterns

The last function, executeMiddleware, represents the core of our component, it's the
function that is responsible for executing the middleware functions. The code from this
function should look very familiar; in fact, it is a simple implementation of the
asynchronous sequential iteration pattern that we learned in Chapter 3, Asynchronous
Control Flow Patterns with Callbacks. Each function in the middleware array received as
input is executed one after the other, and the same arg object is provided as an argument to
each middleware function; this is the trick that makes it possible to propagate the data from
one middleware to the next. At the end of the iteration, the finish () callback is invoked.

For brevity we are not supporting an error middleware pipeline.
Normally, when a middleware function propagates an error, another set of
middleware specifically dedicated to handling errors is executed. This can
be easily implemented using the same technique that we are
demonstrating here.

A middleware to support JSON messages

Now that we have implemented our Middleware Manager, we can create a pair of
middleware functions to demonstrate how to process inbound and outbound messages. As
we said, one of the goals of our middleware infrastructure is to have a filter that serializes
and deserializes JSON messages, so let's create new middleware to take care of this. In a
new module called jsonMiddleware. js, let's include the following code:

module.exports.json = () => {
return {
inbound: function (message, next) {
message.data = JSON.parse (message.data.toString());
next () ;
}I
outbound: function (message, next) {
message.data = new Buffer (JSON.stringify (message.data));
next ();
}
}
}i

The json middleware that we just created is very simple:
¢ The inbound middleware deserializes the message received as an input and

assigns the result back to the data property of message, so that it can be further
processed along the pipeline

¢ The outbound middleware serializes any data found into message.data

[242]

Design Patterns

Please note how the middleware supported by our framework is quite different from the
one used in Express; this is totally normal and a perfect demonstration of how we can adapt
this pattern to fit our specific need.

Using the AMQ middleware framework

We are now ready to use the middleware infrastructure that we just created. To do that, we
are going to build a very simple application, with a client sending a ping to a server at
regular intervals and the server echoing back the message received.

From an implementation perspective, we are going to rely on a request/reply messaging
pattern using the req/rep socket pair provided by GMQ
(http://zguide.zeromg.org/page:all#Ask-and-Ye-Shall-Receive). We will then
wrap the sockets with our zmgMiddlewareManager to get all the advantages from the
middleware infrastructure that we built, including the middleware for
serializing/deserializing JSON messages.

The server

Let's start by creating the server side (server. js). In the first part of the module, we
initialize our components:

const zmg = require('zmqg');

const ZmgMiddlewareManager = require('./zmgMiddlewareManager');
const JjsonMiddleware = require('./JjsonMiddleware');
const reply = zmqg.socket ('rep');

reply.bind('tcp://127.0.0.1:5000");

In the preceding code, we loaded the required dependencies and bind a @MQ ' rep' (reply)
socket to a local port. Next, we initialize our middleware:

const zmgm = new ZmgMiddlewareManager (reply);
zmgm.use (jsonMiddleware.json ());

We created a new ZmgMiddlewareManager object and then added two items of
middleware, one for compressing/decompressing the messages and another one for
parsing/serializing JSON messages.

For brevity, we did not show the implementation of the z1ib middleware,
but you can find it in the sample code that is distributed with the book.

[243]

Design Patterns

Now we are ready to handle a request coming from the client; we will do this by simply
adding more middleware, this time using it as a request handler:

zmagm.use ({
inbound: function (message, next) {
console.log('Received: ', message.data);
if (message.data.action === 'ping') {
this.send({action: 'pong', echo: message.data.echo});
}
next () ;
}
)i

Since this last item of middleware is defined after the z1ib and json middleware, we can
transparently use the decompressed and deserialized message that is available in the
message.data variable. On the other hand, any data passed to send () will be processed
by the outbound middleware, which in our case will serialize then compress the data.

The client

On the client side of our little application, 'client. js', we will first have to initiate a new
@MQ'req' (request) socket connected to the port 5000, the one used by our server:

const zmg = require('zmqg');

const ZmgMiddlewareManager = require ('./zmgMiddlewareManager');
const JjsonMiddleware = require('./jsonMiddleware');

const request = zmg.socket ('req');

request.connect ('tcp://127.0.0.1:5000");

Then, we need to set up our middleware framework in the same way that we did for the
server:

const zmgm = new ZmgMiddlewareManager (request);
zmgm.use (jsonMiddleware.json());

Next, we create an inbound item of middleware to handle the responses coming from the
server:

zmgm.use ({
inbound: function (message, next) {
console.log('Echoed back: ', message.data);
next () ;

[244]

Design Patterns

In the preceding code, we simply intercept any inbound response and print it to the
console.

Finally, we set up a timer to send some ping requests at regular intervals, always using the
zmgMiddlewareManager to get all the advantages of our middleware:

setInterval (() => {
zmgm. send ({action: 'ping', echo: Date.now()});
}, 1000);

Note that we are defining all our inbound and outbound functions explicitly using the
function keyword, avoiding the usage of the arrow function syntax. This is intentional
because, as we learned in Chapter 1, Welcome to the Node.js Platform, the arrow function
declaration blocks the function scope to its lexical scope. Using call on a function defined
with an arrow function will not alter its internal scope. In other words, if we use an arrow
function, our middleware will not recognize this as an instance of
zmgMiddlewareManager and a "TypeError: this.send is not a function" will be
raised.

We can now try our application by first starting the server:
node server
We can then start the client with the following command:
node client
At this point, we should see the client sending messages and the server echoing them back.

Our middleware framework did its job; it allowed us to decompress/compress and
deserialize/serialize our messages transparently, leaving the handlers free to focus on their
business logic!

Middleware using generators in Koa

In the previous paragraphs we saw how it's possible to implement the middleware pattern
with callbacks and an example applied to a messaging system.

As we saw when we introduced it, the middleware pattern really shines in web frameworks
as a handy mechanism to build “layers” of logic that can deal with input and output as data
flows throughout the core of the application.

[245]

Design Patterns

Apart from Express, another web framework which makes heavy use of the middleware
pattern is Koa (http://koajs.com/). Koa is an extremely interesting framework mostly
because of its radical choice to implement the middleware pattern only using ES2015
generator functions rather than using callbacks. We will see in a moment how this choice
dramatically simplifies the way middleware can be written, but before moving to some
code let's picture another way to visualize the middleware pattern, specific for this web
framework:

inbound - Core outbound

Request > Reponse

Middleware 2

Middleware 1

In this representation, we have an incoming request that, before getting into the core of our
app, traverses a number of middlewares. This part of the flow is called inbound or
downstream. After the flow reaches the core of the app, it traverses all the middlewares
again, but this time in an inverse order. This allows the middlewares to perform other
actions after the main logic of the app has been executed and the response is ready to be
sent to the user. This part of the flow is called outbound or upstream.

The representation above is sometime called “the onion” among programmers because of
the way middleware wraps the core app, which reminds us of the layers of an onion.

Now let's create a new web application with Koa to see how we can easily write a custom
middleware with generator functions.

Our app will be a very simple JSON API that returns the current timestamp in our server.

[246]

http://koajs.com/)
http://koajs.com/)

Design Patterns

First of all, we need to install Koa:

npm install koa

Then we can write our new app. js:
const app = require('koa') ();

app.use (function * () {
this.body = {"now": new Date() };
)i

app.listen(3000);

It's important to notice that the core of our application is defined with a generator function
within an app . use call. We will see in a moment that middlewares are added to the app in
the exact same way and we will realize that the core of our app is, nonetheless, the last
middleware added to the application (and which doesn't need to yield to another following
item of middleware).

The first draft of our app is ready. We can now run it:

node app.Jjs
We then point our browser to http://localhost:3000 to see it in action.

Notice that Koa takes care of converting the response to a JSON string and adds the correct
content-type header when we set a JavaScript object to be the body of the current
response.

Our API works great, but now we might decide that we would like to protect it from people
abusing it and make sure people don't make more than one request in less than one second.
This logic can be considered external to the business logic of our API, so we should add it
by simply writing a new dedicated item of middleware. Let's write it as a separate module
called rateLimit.ds:

const lastCall = new Map();
module.exports = function * (next) {
// inbound
const now = new Date();

if (lastCall.has(this.ip) && now.getTime () -
lastCall.get (this.ip) .getTime () < 1000) {
return this.status = 429; // Too Many Requests

[247]

Design Patterns

yield next;

// outbound

lastCall.set (this.ip, now);

this.set ('X-Ratelimit-Reset', now.getTime () + 1000);
ti

Our module exports a generator function that implements the logic for our middleware.

The first thing to notice is that we are using a Map object to store the time we received the
last call from a given IP address. We will use this Map as a sort of in-memory database to be
able to check whether a specific user is overloading our server with more than one request
per second. Of course this implementation is just a dummy example and it's not ideal in a
real case scenario, where it is better to just use external storage such as Redis or Memcache
and a more refined logic to detect overloads.

We can see that the body of the middleware is divided in two logical parts, inbound and
outbound, separated from the yield next call. In the inbound part, we haven't hit the core
of the application yet, so it's the place where we need to check whether the user is exceeding
our rate limit. If that is the case, we simply set the HTTP status code of the response to 429
(too many requests) and we return to stop the execution of the flow.

Another way we can progress to the next item of middleware is by calling yield next.
This is where the magic happens: using generator functions and yield, the execution of the
middleware is suspended to execute all the other middlewares in the list sequentially and
only when the last item of middleware is executed (the real core of the app) the outbound
flow can start and control is given back to every middleware in an inverted order, until the
first middleware is called again.

When our middleware again receives control and the generator function is resumed, we
take care of storing the timestamp for the successful call, and adding a Xx-RateLimit—
Reset header to the request, to signal when the user will be able to make a new request.

If you need a more complete and reliable implementation of rate-limit
middleware, you can have a look at the koajs/ratelimit module:
https://github.com/koajs/ratelimit

To enable this middleware, we need to add the following line in our app . js before the
existing app . use which contains the core logic of our app:

app.use (require ('./rateLimit'));

[248]

https://github.com/koajs/ratelimit

Design Patterns

Now to see our new app in action, we need to restart our server and open our browser
again. If we refresh the page quickly a few times, we will probably hit the rate limit and we
should see the descriptive error message “Too Many Requests”. This message is
automatically added by Koa as a consequence of setting the status code to 429 and having
an empty response body.

If you are interested in reading the actual implementation of the
middleware pattern, based on generators used within the Koa framework,
you can have a look at the koajs/compose repository (https://github
.com/koajs/compose), which is the core module used to transform an

array of generators into a new generator which executes the original ones
in a pipeline.

Command

Another design pattern with huge importance in Node.js is Command. In its most generic
definition, we can consider a Command as any object that encapsulates all the information
necessary to perform an action at a later time. So, instead of invoking a method or a
function directly, we create an object representing the intention to perform such an
invocation; it will then be the responsibility of another component to materialize the intent,
transforming it into an actual action. Traditionally, this pattern is built around four major
components, as shown in the following figure:

Client / Invoker \ Target

Command » Command |-- e]

\ J _ / \ J

[249]

https://github.com/koajs/compose
https://github.com/koajs/compose

Design Patterns

The typical organization of the Command pattern can be described as follows:

e Command: This is the object encapsulating the information necessary to invoke a
method or function.

e Client: This creates the command and provides it to the Invoker.
e Invoker: This is responsible for executing the command on the target.

e Target (or Receiver): This is the subject of the invocation. It can be a lone function
or the method of an object.

As we will see, these four components can vary a lot depending on the way we want to
implement the pattern; this should not sound new at this point.

Using the Command pattern instead of directly executing an operation has several
advantages and applications:

e A command can be scheduled for execution at a later time.

¢ A command can be easily serialized and sent over the network. This simple
property allows us to distribute jobs across remote machines, transmit commands
from the browser to the server, create RPC systems, and so on.

¢ Commands make it easy to keep a history of all the operations executed on a
system.

e Commands are an important part of some algorithms for data synchronization
and conflict resolution.

¢ A command scheduled for execution can be cancelled if it's not yet executed. It
can also be reverted (undone), bringing the state of the application to the point
before the command was executed.

¢ Several commands can be grouped together. This can be used to create atomic
transactions or to implement a mechanism whereby all the operations in the
group are executed at once.

e Different kinds of transformation can be performed on a set of commands, such
as duplicate removal, joining and splitting, or applying more complex algorithms
such as Operational Transformation (OT), which is the base for most of today's
real-time collaborative software, such as collaborative text editing.

A great explanation of how OT works can be found at
http://www.codecommit.com/blog/Jjava/understanding—and-—

applying-operational-transformation.

[2501]

http://www.codecommit.com/blog/java/understanding-and-applying-operational-transformation
http://www.codecommit.com/blog/java/understanding-and-applying-operational-transformation
http://www.codecommit.com/blog/java/understanding-and-applying-operational-transformation
http://www.codecommit.com/blog/java/understanding-and-applying-operational-transformation

Design Patterns

The preceding list clearly shows us how important this pattern is, especially in a platform
such as Node.js where networking and asynchronous execution are essential players.

A flexible pattern

As we already mentioned, the Command pattern in JavaScript can be implemented in many
different ways; we are now going to demonstrate only a few of them just to give an idea of
its scope.

The task pattern

We can start off with the most basic and trivial implementation: the task pattern. The
easiest way in JavaScript to create an object representing an invocation is, of course, by
creating a closure:

function createTask (target, args) {
return () => {
target.apply (null, args);
}
}

This should not look new at all; we have used this pattern already so many times
throughout the book, and in particular in Chapter 3, Asynchronous Control Flow Patterns
with Callbacks. This technique allowed us to use a separate component to control and
schedule the execution of our tasks, which is essentially equivalent to the Invoker of the
Command pattern. For example, do you remember how we were defining tasks to pass to
the async library? Or even better, do you remember how we were using thunks in
combination with generators? The callback pattern itself can be considered a very simple
version of the Command pattern.

A more complex command

Let's now work on an example of a more complex command; this time we want to support
undo and serialization. Let's start with the target of our commands, a little object that is
responsible for sending status updates to a service like Twitter. We use a mock-up of such a
service for simplicity:

const statusUpdateService = {
statusUpdates: {},
sendUpdate: function(status) {
console.log('Status sent: ' + status);

[251]

Design Patterns

let id = Math.floor (Math.random() * 1000000);
statusUpdateService.statusUpdates[id] = status;
return id;

}I

destroyUpdate: id => {
console.log('Status removed: ' + id);
delete statusUpdateService.statusUpdates[id];
t
ti

Now, let's create a command to represent the posting of a new status update:

function createSendStatusCmd (service, status) {
let postId = null;

const command = () => {
postId = service.sendUpdate (status);
}i

command.undo = () => {
if (postId) {
service.destroyUpdate (postId);
postId = null;
}
bi

command.serialize = () => {
return {type: 'status', action: 'post', status: status};

}i

return command;

}

The preceding function is a factory that produces new sendStatus commands. Each
command implements the following three functionalities:

1. The command itself is a function that, when invoked, will trigger the action; in
other words, it implements the task pattern that we have seen before. The
command when executed will send a new status update using the methods of the
target service.

2. An undo () function, attached to the main task, that reverts the effects of the
operations. In our case, we are simply invoking the destroyUpdate () method
on the target service.

3. A serialize () function that builds a JSON object that contains all the necessary
information to reconstruct the same command object.

[252]

Design Patterns

After this, we can build an Invoker; we can start by implementing its constructor and its
run () method:

class Invoker {

constructor () {
this.history = [];
}

run (cmd) {
this.history.push(cmd);
cmd () ;
console.log('Command executed', cmd.serialize());

}

The run () method that we defined earlier is the basic functionality of our Invoker; itis
responsible for saving the command into the history instance variable and then triggering
the execution of the command itself. Next, we can add a new method that delays the
execution of a command:
{
setTimeout (() => {
this.run (cmd) ;
}, delay)
}

delay (cmd, delay)
)

Then, we can implement an undo () method that reverts the last command:

undo () {
const cmd = this.history.pop();
cmd.undo () ;
console.log('Command undone', cmd.serialize());

}

Finally, we also want to be able to run a command on a remote server, by serializing and
then transferring it over the network using a web service:

runRemotely (cmd) {
request.post ('http://localhost:3000/cmd',
{json: cmd.serialize()},
err => {
console.log('Command executed remotely', cmd.serialize());

[253]

Design Patterns

Now that we have the Command, the Invoker, and the Target, the only component missing
is the Client. Let's start with instantiating Invoker:

const invoker = new Invoker();

Then, we can create a command using the following line of code:

const command = createSendStatusCmd (statusUpdateService, 'HI!');

We now have a command representing the posting of a status message; we can then decide
to dispatch it immediately:

invoker.run (command) ;

Oops, we made a mistake; let's revert to the state of our timeline as it was before sending
the last message:

invoker.undo () ;

We can also decide to schedule the message to be sent in an hour from now:

invoker.delay (command, 1000 * 60 * 60);

Alternatively, we can distribute the load of the application by migrating the task to another
machine:

invoker.runRemotely (command) ;

The little example that we have just created shows how wrapping an operation in a
command can open a world of possibilities, and that's just the tip of the iceberg.

As the last remarks, it is worth noticing that a fully-fledged Command pattern has been
used only when really needed. We saw, in fact, how much additional code we had to write
to simply invoke a method of statusUpdateService; if all that we need is only an
invocation, then a complex command would be overkill. If, however, we need to schedule
the execution of a task, or run an asynchronous operation, then the simpler task pattern
offers the best compromise. If instead, we need more advanced features such as undo
support, transformations, conflict resolution, or one of the other fancy use cases that we
described previously, using a more complex representation for the command is almost
necessary.

[254]

Design Patterns

Summary

In this chapter, we learned how some of the traditional GoF design patterns can be applied
to JavaScript and, in particular, to the Node.js philosophy. Some of them were transformed,
some were simplified, others renamed or adapted as part of their assimilation by the
language, the platform, and the community. We emphasized how simple patterns such as
factory can greatly improve the flexibility of our code and how with Proxy, Decorator, and
Adapter we can manipulate, extend, and adapt the interface of existing objects. Strategy,
State, and Template, instead, have shown us how to split a bigger algorithm into its static
and variable parts, allowing us to improve the code reuse and extensibility of our
components. By learning the Middleware pattern, we are now able to process our data
using a simple, extensible, and elegant paradigm. Finally, the Command pattern provided
us with a simple abstraction to make any operation more flexible and powerful.

Apart from observing the JavaScript reincarnation of these widely accepted design patterns,
we also discovered some new design patterns born and raised specifically in the JavaScript
community, such as the Revealing constructor and the Composable factory function patterns.
These patterns help to deal with specific aspects of the JavaScript language such as
asynchronicity and prototype-based programming.

Finally, we acquired more evidence of how JavaScript is about getting things done and
building software by composing different reusable objects or functions instead of extending
many little classes or interfaces. Also, for developers coming from other object-oriented
languages, it might have looked weird to see how different some design patterns become
when implemented in JavaScript; some might feel lost knowing that there might not be only
one, but rather many different ways of implementing a design pattern.

JavaScript is a pragmatic language, we said; it allows us to get things done quickly,
however, without any kind of structure or guidelines, we are asking for trouble. That's
where this book and, in particular, this chapter comes in useful. It tries to teach the right
balance between creativity and rigor. It shows not only that there are patterns that can be
reused to improve our code, but also that their implementation is not the most important
detail; it can vary a lot, or even overlap with other patterns. What really matters is the
blueprint, the guidelines, and the idea at the base of the pattern. This is the real reusable
piece of information that we can exploit to design better Node.js applications in a fun way.

In the next chapter, we will analyze some more design patterns by focusing on one of the
most opinionated aspects of programming: how to organize and connect modules together.

[255]

Wiring Modules

The Node.js module system brilliantly fills an old gap in the JavaScript language: the lack of
a native way of organizing code into different self-contained units. One of its biggest
advantages is the ability to link these modules together using the require () function (as
we have seen in Chapter 2, Node.js Essential Patterns), a simple yet powerful approach.
However, many developers new to Node.js might find this confusing; one of the most
frequently asked questions is in fact: what’s the best way to pass an instance of component X into
module Y?

Sometimes, this confusion results in a desperate quest for the Singleton pattern in the hope
of finding a more familiar way to link our modules together. On the other hand, some
might overuse the Dependency Injection pattern, leveraging it to handle any type of
dependency (even stateless) without a particular reason. It should not be surprising that the
art of module wiring is one of the most controversial and opinionated topics in Node.js.
There are many schools of thought influencing this area, but none of them can be
considered to possess the undisputed truth. Every approach, in fact, has its pros and cons
and they often end up mixed together in the same application, adapted, customized, or
used in disguise under other names.

In this chapter, we're going to analyze the various approaches for wiring modules and
highlight their strengths and weaknesses so that we can rationally choose and mix them
together depending on the balance between simplicity, reusability, and extensibility that we
want to obtain. In particular, we're going to present the most important patterns related to
this topic, which are as follows:

Hardcoded dependency
Dependency Injection

Service locator

Dependency Injection containers

Wiring Modules

We will then explore a closely related problem, namely, how to wire plugins. This can be
considered a specialization of module wiring and it mostly presents the same traits, but the
context of its application is slightly different and presents its own challenges, especially
when a plugin is distributed as a separate Node.js package. We will learn the main
techniques to create a plugin-capable architecture and we will then focus on how to
integrate these plugins into the flow of the main application.

At the end of this chapter, the obscure art of Node.js module wiring should not be a
mystery to us anymore.

Modules and dependencies

Every modern application is the result of the aggregation of several components and, as the
application grows, the way we connect these components becomes a win or lose factor. It's
not only a problem related to technical aspects such as extensibility, but it's also a concern
with the way we perceive the system. A tangled dependency graph is a liability and it adds
to the technical debt of the project; in such a situation, any change in the code aimed to
either modify or extend its functionality can result in tremendous effort.

In the worst case, the components are so tightly connected together that it becomes
impossible to add or change anything without refactoring or even completely rewriting
entire parts of the application. This, of course, does not mean that we have to over-engineer
our design starting from the very first module, but surely finding a good balance from the
very beginning can make a huge difference.

Node.js provides a great tool for organizing and wiring the components of an application
together: it's the Common]JS module system. However, the module system alone is not a
guarantee of success; if on the one hand, it adds a convenient level of indirection between the
client module and the dependency, then on the other, it might introduce a tighter coupling if
not used properly. In this section, we will discuss some fundamental aspects of dependency
wiring in Node.js.

The most common dependency in Node.js

In software architecture, we can consider any entity, state, or data format which influences
the behavior or structure of a component as a dependency. For example, a component might
use the services offered by another component, rely on a particular global state of the
system, or implement a specific communication protocol in order to exchange information
with other components, and so on. The concept of dependency is very broad and sometimes
hard to evaluate.

[257]

Wiring Modules

In Node.js, though, we can immediately identify one essential type of dependency, which is
the most common and easy to identify; of course, we are talking about the dependency
between modules. Modules are the fundamental mechanism at our disposal to organize
and structure our code; it's unreasonable to build a large application without relying on the
module system at all. If used properly to group the various elements of an application, it
can bring a lot of advantages. In fact, the properties of a module can be summed up as
follows:

¢ A module is more readable and understandable because (ideally) it's more
focused

¢ Being represented as a separate file, a module is easier to identify
¢ A module can be more easily reused across different applications

A module represents the perfect level of granularity for performing information hiding
and offers an effective mechanism to expose only the public interface of a component (using
module.exports).

However, simply spreading the functionality of an application or a library across different
modules is not enough for a successful design—it has to be done right. One of the fallacies
is ending up in a situation where the relationship between our modules becomes so strong
we create a unique monolithic entity, where removing or replacing a module would
reverberate across most of the architecture. We are immediately able to recognize that the
way we organize our code into modules and the way we connect them together play a
strategic role. And, as with any problem in software design, it's a matter of finding the right
balance between different measures.

Cohesion and coupling

The two most important properties to balance when building modules are cohesion and
coupling. They can be applied to any type of a component or subsystem in software
architecture, so we can use them as guidelines when building Node.js modules as well.
These two properties can be defined as follows:

e Cohesion: This is a measure of the correlation between the functionalities of a
component. For example, a module that does only one thing, where all its parts
contribute to that one single task has a high cohesion. A module that contains
functions to save any type of object into a database—saveProduct (),
saveInvoice (), saveUser (), and so on has a low cohesion.

[258]

Wiring Modules

¢ Coupling: This measures how much a component is dependent on the other
components of a system. For example, a module is tightly coupled to another
module when it directly reads or modifies the data of the other module. Also, two
modules that interact via a global or shared state are tightly coupled. On the
other hand, two modules that communicate only via the passing of parameters
are loosely coupled.

The desirable scenario is to have a high cohesion and a loose coupling, which usually
results in more understandable, reusable, and extensible modules.

Stateful modules

In JavaScript, everything is an object. We don't have abstract concepts such as pure
interfaces or classes; its dynamic typing already provides a natural mechanism to decouple
the interface (or policy) from the implementation (or detail). That's one of the reasons why
some of the design patterns that we have seen in Chapter 6, Design Patterns, looked so
different and simplified compared to their traditional implementation.

In JavaScript, we have minimal problems in separating interfaces from implementations;
however, by simply using the Node.js module system, we are already introducing a
hardcoded relationship with one particular implementation. Under normal conditions,
there is nothing wrong with this, but if we use require () toload a module that exports a
stateful instance, such as a db handle, an HTTP server instance, the instance of a service, or
in general any object which is not stateless, we are actually referencing something very
similar to a Singleton, thus inheriting its pros and cons, with the addition of some caveats.

The Singleton pattern in Node.js

A lot of people new to Node.js get confused about how to implement the Singleton pattern
correctly, most of the time with the simple intent of sharing an instance across the various
modules of an application. However, the answer in Node js is easier than what we might
think; simply exporting an instance using module.exports is already enough to obtain
something very similar to the Singleton pattern. Consider, for example, the following line of
code:

//'db.js' module
module.exports = new Database ('my—app-db');

[259]

Wiring Modules

By simply exporting a new instance of our database, we can already assume that within the
current package (which can easily be the entire code of our application), we are going to
have only one instance of the db module. This is possible because, as we know, Node.js will
cache the module after the first invocation of require (), making sure to not execute it
again at any subsequent invocation, returning instead the cached instance. For example, we
can easily obtain a shared instance of the db module that we defined earlier, with the
following line of code:

const db = require('./db'");

But there is a caveat; the module is cached using its full path as lookup key, therefore it is
guaranteed to be a Singleton only within the current package. We saw in Chapter 2,
Node.js Essential Patterns, that each package might have its own set of private dependencies
inside its node_modules directory, which might result in multiple instances of the same
package and therefore of the same module, with the result that our Singleton might not be
single anymore. Consider, for example, the case where the do module is wrapped into a
package named mydb. The following lines of code will be in its package. json file:

{
"name": "mydb",
"main": "db.js"

}
Now consider the following package dependency tree:

app/
" —— node_modules
| -— packageA
| ' —— node_modules
| ' —— mydb
' —— packageB
" —— node_modules
" —— mydb

Both packageA and packageB have a dependency on the mydb package; in turn, the app
package, which is our main application, depends on package? and packageB. The scenario
we just described will break the assumption about the uniqueness of the database instance;
in fact, both packagea and packageB will load the database instance using a command
such as the following:

const db = require('mydb');

[260]

Wiring Modules

However, package? and packageB will actually load two different instances of our
pretending Singleton because the mydb module will resolve to a different directory
depending on the package it is required from.

At this point, we can easily say that the Singleton pattern, as described in the literature,
does not exist in Node.js, unless we don't use a real global variable to store it, something such
as the following;:

global.db = new Database ('my—-app-db');

This would guarantee that the instance will be the only one and shared across the entire
application, not just the same package. However, this is a practice to avoid at all costs; most
of the time, we don't really need a pure Singleton, and anyway, as we will see later, there
are other patterns that we can use to share an instance across the different packages.

Throughout this book, for simplicity, we will use the term Singleton to
describe a stateful object exported by a module, even if this doesn't
represent a real Singleton in the strict definition of the term. We can surely
say, though, that it shares the same practical intent with the original
pattern: to easily share a state across different components.

Patterns for wiring modules

Now that we have discussed some basic theory around dependencies and coupling, we are
ready to dive into some more practical concepts. In this section, in fact, we are going to
present the main module wiring patterns. Our focus will be mainly pointed towards the
wiring of stateful instances, which are, without any doubt, the most important type of
dependencies in an application.

Hardcoded dependency

We start our analysis by looking at the most conventional relationship between two modules,
which is the hardcoded dependency. In Node.js, this is obtained when a client module
explicitly loads another module using require (). As we will see in this section, this way of
establishing module dependencies is simple and effective, but we have to pay additional
attention to hardcoding dependencies with stateful instances, as this would limit the
reusability of our modules.

[261]

Wiring Modules

Building an authentication server using hardcoded
dependencies

Let's start our analysis by looking at the structure represented by the following figure:

DB

Y

AuthService

A 4

AuthController

The preceding figure shows a typical example of layered architecture; it describes the
structure of a simple authentication system. AuthController accepts the input from the
client, extracts the login information from the request, and performs some preliminary
validation. It then relies on AuthService to check whether the provided credentials match
with the information stored in the database; this is done by executing some specific queries
using the db module handle, as a means to communicate with the database. The way these
three components are connected together will determine their level of reusability,
testability, and maintainability.

The most natural way to wire these components together is by requiring the db module
from AuthService and then requiring AuthService from AuthController. This is the
hardcoded dependency that we are talking about.

Let's demonstrate this in practice by actually implementing the system that we just
described. Let's then design a simple authentication server, which exposes the following
two HTTP APIs:

e POST '/login': This receives a JSON object that contains a username and
password pair to authenticate. On success, it returns a JSON Web Token (JWT),
which can be used in subsequent requests to verify the identity of the user.

JSON Web Token is a format for representing and sharing claims between
parties. Its popularity is growing with the explosion of Single Page
Applications and Cross-origin resource sharing (CORS) as a more
flexible alternative to cookie-based authentication. To know more about
JWT, you can refer to its specification (currently in draft) at
http://self-issued.info/docs/draft-ietf-oauth-json-web-to
ken.html

[262]

http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html

Wiring Modules

® GET '/checkToken': This reads a token from a GET query parameter and
verifies its validity.

For this example, we are going to use several technologies; some of them are not new to us.
In particular, we are going to use express (https://npmjs.org/package/express) to
implement the Web APl and levelup (https://npmjs.org/package/levelup) to store
the user's data.

The db module

Let's start by building our application from the bottom up; the very first thing we need is a
module that exposes a 1eve1Up database instance. Let's do this by creating a new file
named 1ib/db. js and including the following content:

const level = require('level');
const sublevel = require('level-sublevel');
module.exports = sublevel (

level ('example-db', {valueEncoding: 'json'})

)i

The preceding module simply creates a connection to a Leve1DB database stored in the

. /example~-db directory, then it decorates the instance using the sublevel plugin
(https://npmjs.org/package/level-sublevel), which adds the support to create and
query separate sections of the database (it can be compared to a SQL table or MongoDB
collection). The object exported by the module is the database handle itself, which is a
stateful instance; therefore, we are creating a singleton.

The authService module

Now that we have the db singleton, we can use it to implement the 1ib/authService. js
module, which is the component responsible for checking a user's credentials against the
information in the database. The code is as follows (only the relevant parts are shown):

//

const db = require('./db');

const users = db.sublevel ('users');

const tokenSecret = 'SHHH!';

exports.login = (username, password, callback) => {
users.get (username, function(err, user) {

//
1)

[263]

https://npmjs.org/package/express
https://npmjs.org/package/levelup
https://npmjs.org/package/level-sublevel

Wiring Modules

bi

exports.checkToken = (token, callback) => {
//
users.get (userData.username, function (err, user) {

//
1)
bi

The authService module implements the 1ogin () service, which is responsible for
checking a username/password pair against the information in the database, and the
checkToken () service, which takes in a token and verifies its validity.

The preceding code also shows the first example of a hardcoded dependency with a stateful
module. We are talking about the db module, which we load by simply requiring it. The
resulting db variable contains an already initialized database handle that we can use
straight away to perform our queries.

At this point, we can see that all the code that we created for the authservice module
does not really necessitate one particular instance of the db module—any instance will
simply work. However, we hardcoded the dependency to one particular db instance, and
this means that we will be unable to reuse authService in combination with another
database instance without touching its code.

The authController module

Continuing to go up in the layers of the application, we are now going to see what the
lib/authController. js module looks like. This module is responsible for handling the
HTTP requests, and it's essentially a collection of the Express routes; the module's code is
the following;:

const authService = require('./authService');
exports.login = (req, res, next) => {
authService.login(req.body.username, req.body.password,
(err, result) => {
//
t
)i
i
exports.checkToken = (req, res, next) => {
authService.checkToken (reqg.query.token,
(err, result) => {
//

[264]

Wiring Modules

}
)
bi

The authController module implements two Express routes: one for performing the
login and returning the corresponding authentication token (1ogin ()) and another for
checking the validity of the token (checkToken ()). Both the routes delegate most of their
logic to authService, so their only job is to deal with the HTTP request and response.

We can see that, in this case too, we are hardcoding the dependency with a stateful module:
authService. Yes, the authService module is stateful by transitivity because it depends
directly on the db module. With this, we should start to understand how a hardcoded
dependency can easily propagate across the structure of the entire application: the
authController module depends on the authService module, which in turn depends
on the do module; transitively, this means that the authService module itself is indirectly
linked to one particular db instance.

The app module

Finally, we can put all the pieces together by implementing the entry point of the
application. Following the convention, we will place this logic in a module named app. js,
sitting in the root of our project as follows:

const express = require ('express');

const bodyParser = require ('body-parser');
const errorHandler = require('errorhandler');
const http = require('http');

const authController = require('./lib/authController');

const app = module.exports = express();
app.use (bodyParser.json());

app.post ('/login', authController.login);
app.get ('/checkToken', authController.checkToken);

app.use (errorHandler ());
http.createServer (app) .1isten (3000, () => {

console.log ('Express server started');
P

[265]

Wiring Modules

As we can see, our app module is really basic; it contains a simple Express server, which
registers some middleware and the two routes exported by authController. Of course,
the most important line of code for us is where we require authController to create a
hardcoded dependency with its stateful instance.

Running the authentication server

Before we can try the authentication server that we just implemented, we advise you to
populate the database with some sample data using the populate_db. js script, which is
provided in the code samples. After doing this, we can fire up the server by running the
following command:

node app

We can then try to invoke the two web services that we created; we can use a REST client to
do this or, alternatively, the good old curl command. For example, to execute a login, we
can run the following command:

curl -X POST —-d '{"username": "alice", "password":'"secret"}'
http://localhost:3000/1login -H "Content-Type: application/json"

The preceding command should return a token that we can use to test the /checkLogin
web service (just replace <TOKEN HERE> in the following command):

curl -X GET -H "Accept: application/json"
http://localhost:3000/checkToken?token=<TOKEN HERE>

The preceding command should return a string such as the following, which confirms that
our server is working as expected:

{"ok":"true", "user": {"username":"alice"}}

Pros and cons of hardcoded dependencies

The sample we just implemented demonstrates the conventional way of wiring modules in
Node,js, leveraging the full power of its module system to manage the dependencies
between the various components of the application. We exported stateful instances from
our modules, letting Node.js manage their life cycle, and then we required them directly
from other parts of the application. The result is an immediately intuitive organization, easy
to understand and debug, where each module initializes and wires itself without any
external intervention.

[2661

Wiring Modules

On the other hand, however, hardcoding the dependency on a stateful instance limits the
possibility of wiring the module against other instances, which makes it less reusable and
harder to unit test. For example, reusing authService in combination with another
database instance would be close to impossible, as its dependency is hardcoded with one
particular instance. Similarly, testing authService in isolation can be a difficult task
because we cannot easily mock the database used by the module.

As a last consideration, it's important to see that most of the disadvantages of using
hardcoded dependencies are associated with stateful instances. This means that if we use
require () toload a stateless module, for example, a factory, constructor, or a set of
stateless functions, we don't incur the same kind of problems. We will still have a tight
coupling with a specific implementation, but in Node.js, this usually does not impact the
reusability of a component, as it does not introduce a coupling with a particular state.

Dependency Injection

The Dependency Injection (DI) pattern is probably one of the most misunderstood
concepts in software design. Many associate the term with frameworks and DI containers
such as Spring (for Java and C#) or Pimple (for PHP), but in reality it is a much simpler
concept. The main idea behind the Dependency Injection pattern is the dependencies of a
component being provided as input by an external entity.

Such an entity can be a client component or a global container, which centralizes the wiring
of all the modules of the system. The main advantage of this approach is an improved
decoupling, especially for modules depending on stateful instances. Using DI, each
dependency, instead of being hardcoded into the module, is received from the outside. This
means that the module can be configured to use any dependency, and therefore can be
reused in different contexts.

To demonstrate this pattern in practice, we are now going to refactor the authentication
server that we built in the previous section, using DI to wire its modules.

[267]

Wiring Modules

Refactoring the authentication server to use DI

Refactoring our modules to use DI involves the use of a very simple recipe: instead of
hardcoding the dependency to a stateful instance, we will instead create a factory, which
takes a set of dependencies as arguments.

Let's start immediately with this refactoring; let's work on the 1ib/db. js module, given as
follows:

const level = require('level');
const sublevel = require('level-sublevel');

module.exports = dbName => {
return sublevel (
level (dbName, {valueEncoding: 'json'})
)
Y

The first step in our refactoring process is to transform the db module into a factory. The
result is that we can now use it to create as many database instances as we want; this means
that the entire module is now reusable and stateless.

Let's move on and implement the new version of the 1ib/authService. js module:

const jwt = require('jwt-simple');
const bcrypt = require('bcrypt');

module.exports = (db, tokenSecret) => {
const users = db.sublevel ('users');
const authService = {};

authService.login = (username, password, callback) => {
//...same as in the previous version
}i

authService.checkToken = (token, callback) => {
//...same as in the previous version

}i

return authService;

}i

[268]

Wiring Modules

Also, the authService module is now stateless; it doesn't export any particular instance
anymore, just a simple factory. The most important detail, though, is that we made the db
dependency injectable as an argument of the factory function, removing what was
previously a hardcoded dependency. This simple change enables us to create a new
authService module by wiring it to any database instance.

We can refactor the 1ib/authController.js module in a similar way as follows:

module.exports = (authService) => {
const authController = {};

authController.login = (req, res, next) => {
//...same as in the previous version

}i

authController.checkToken = (req, res, next) => {
//...same as in the previous version

}i

return authController;

}i

The authController module does not have any hardcoded dependency at all, not even
stateless! The only dependency, the authService module, is provided as input to the
factory at the moment of its invocation.

Okay, now it's time to see where all these modules are actually created and wired together;
the answer lies in the app . js module, which represents the topmost layer in our
application. Its code is the following:

//

const dbFactory = require('./lib/db'); // 111
const authServiceFactory = require('./lib/authService');

const authControllerFactory = require('./lib/authController');
const db = dbFactory ('example-db'); //12]
const authService = authServiceFactory(db, 'SHHH!');

const authController = authControllerFactory(authService);

app.post ('/login', authController.login); //[3]
app.get ('/checkToken', authController.checkToken);
//

[269]

Wiring Modules

The previous code can be summed up as follows:

1. Firstly, we load the factories of our services; at this point, they are still stateless
objects.

2. Next, we instantiate each service by providing the dependencies it requires. This
is the phase where all the modules are created and wired.

3. Finally, we register the routes of the authController module with the Express
server as we would normally do.

Our authentication server is now wired using DI and ready to be used again.

The different types of DI

The example we just presented demonstrated only one type of DI (factory injection), but
there are a couple more worth mentioning:

e Constructor injection: In this type of DI, the dependencies are passed to a
constructor at the moment of its creation; one possible example can be the
following;:

const service = new Service (dependency?A, dependencyB);

¢ Property injection: In this type of DI, the dependencies are attached to an object
after its creation, as demonstrated by the following code:

const service = new Service(); //works also with a factory
service.dependencyA = anInstanceOfDependencyA;

Property injection implies that an object is created in an inconsistent state because it's not
wired to its dependencies, so it's the least robust, but it may sometimes be useful when
there are cycles between the dependencies. For example, if we have two components, A and
B, both using factory or constructor injection and both depending on each other, we cannot
instantiate either of them because both would require the other to exist in order to be
created. Let's consider a simple example, as follows:

function Afactory(b) {
return {
foo: function () {
b.say();
}I
what: function() {
return 'Hello!';

}

[270]

Wiring Modules

}

function Bfactory(a) {
return {
a: a,
say: function() {
console.log('I say: ' + a.what);
t
t
t

The dependency deadlock between the two preceding factories can be resolved only using
property injection, for example, by first creating an incomplete instance of B, which then can
be used to create A. Finally, we will inject A into B by setting the relative property as
follows:

const b = Bfactory(null);
const a Afactory (b) ;
a.b = b;

In some rare circumstances, a cycle in the dependency graph is not easily
avoidable; however, it is important to remember that often it is a symptom
of bad design.

Pros and cons of DI

In the authentication server example using DI, we were able to decouple our modules from
a particular dependency instance. The result is that we can now reuse each module with
minimal effort and without any change in their code. Testing a module that uses the DI
pattern is also greatly simplified; we can easily provide mocked dependencies and test our
modules in isolation from the state of the rest of the system.

Another important aspect to be highlighted from the example we presented earlier is that
we shifted the dependency wiring responsibility from the bottom to the top of our
architecture. The idea is that high-level components are by nature less reusable than low-
level components, and that's because the more we go up in the layers of an application, the
more a component becomes specific.

[271]

Wiring Modules

Starting from this assumption, we can then understand that the conventional way to see an
application architecture where high-level components own their lower-level dependencies
can be inverted, so that the lower-level components depend only on an interface (in
JavaScript, it's just the interface that we expect from a dependency), while the ownership of
defining the implementation of a dependency is given to the higher-level components. In
our authentication server, in fact, all the dependencies are instantiated and wired in the
topmost component, the app module, which is also the less reusable and so is the most
expendable in terms of coupling.

All these advantages in terms of decoupling and reusability, though, come with a price to
pay. In general, the inability to resolve a dependency at coding time makes it more difficult
to understand the relationship between the various components of a system. Also, if we
look at the way we instantiated all the dependencies in the app module, we can see that we
had to follow a specific order; we practically had to manually build the dependency graph
of the entire application. This can become unmanageable when the number of modules to
wire becomes high.

A viable solution to this problem is to split the dependency ownership between multiple
components, instead of having it centralized all in one place. This can reduce the complexity
involved in managing the dependencies exponentially, as each component would be
responsible only for its particular dependency subgraph. Of course, we can also choose to
use DI only locally, just when necessary, instead of building the entire application on top of
it.

We will see later in the chapter that another possible solution to simplify the wiring of
modules in complex architectures is to use a DI container, a component exclusively
responsible for instantiating and wiring all the dependencies of an application.

Using DI surely increases the complexity and verbosity of our modules, but as we saw
earlier, there are many good reasons for doing this. It is up to us to choose the right
approach, depending on the balance between simplicity and reusability that we want to
obtain.

DI is often mentioned in combination with the Dependency Inversion
principle and Inversion of Control; however, they all are different concepts
(even though correlated).

[272]

Wiring Modules

Service locator

In the previous section, we learned how DI can literally transform the way we wire our
dependencies by obtaining reusable and decoupled modules. Another pattern with very
similar intent is service locator. Its core principle is to have a central registry in order to
manage the components of the system and to act as a mediator whenever a module needs to
load a dependency. The idea is to ask the service locator for the dependency instead of
hardcoding.

It is important to understand that by using a service locator, we are introducing a
dependency on it, so the way we wire it to our modules determines their level of coupling
and, therefore, their reusability. In Node.js, we can identify three types of service locators,
depending on the way they are wired to the various components of the system:

e Hardcoded dependency on service locator
e Injected service locator
e Global service locator

The first is definitely the one offering the fewest advantages in terms of decoupling, as it
consists of directly referencing the instance of the service locator using require (). In
Node,js, this can be considered an anti-pattern because it introduces a tight coupling with
the component supposedly meant to provide a better decoupling. In this context, a service
locator clearly does not provide any value in terms of reusability, only adding another level
of indirection and complexity.

On the other hand, an injected service locator is referenced by a component through DI. This
can be considered a more convenient way of injecting an entire set of dependencies at once,
instead of providing them one by one. And as we will see its advantages do not end here.

The third way of referencing a service locator is directly from the global scope. This has the
same disadvantages as that of the hardcoded service locator, but since it is global, it is a real
singleton and can therefore be easily used as a pattern for sharing instances between
packages. We will see how this works later in the chapter, but for now we can certainly say
that there are very few reasons for using a global service locator.

The Node.js module system already implements a variation of the service
locator pattern, with require () representing the global instance of the
service locator itself.

All the considerations discussed here will become clearer once we start using the service
locator pattern in a real example. Let's now refactor the authentication server again to apply
what we learned.

[273]

Wiring Modules

Refactoring the authentication server to use a service
locator

We are now going to convert the authentication server to use an injected service locator. To
do this, the first step is to implement the service locator itself; we will use a new module,
lib/serviceLocator. js:

module.exports = function() {
const dependencies = {};
const factories = {};
const servicelLocator = {};

servicelocator.factory = (name, factory) => { //11]
factories[name] = factory;

bi

servicelocator.register = (name, instance) => { //12]
dependencies[name] = instance;

bi

servicelocator.get = (name) => { //13]

if (!dependencies|[name]) |
const factory = factories[name];
dependencies[name] = factory && factory(serviceLocator);
if (!dependencies|[name]) A

throw new Error ('Cannot find module: ' + name);

}

}

return dependencies[name];

bi

return servicelocator;

i
Our serviceLocator module is a factory returning an object with three methods:

e factory () is used to associate a component name against a factory.
e register () isused to associate a component name directly with an instance.

e get () retrieves a component by its name. If an instance is already available, it
simply returns it; otherwise, it tries to invoke the registered factory to obtain a
new instance. It is very important to observe that the module factories are
invoked by injecting the current instance of the service locator
(serviceLocator). This is the core mechanism of the pattern that allows the
dependency graph for our system to be built automatically and on-demand. We
will see how this works in a moment.

[274]

Wiring Modules

A simple pattern, closely resembling a service locator, is to use an object as
a namespace for a set of dependencies:

const dependencies = {};

const db = require('./lib/db'");

const authService = require('./lib/authService');
dependencies.db = db();

dependencies.authService = authService (dependencies);

Let's now convert the 1ib/db. js module straight away to demonstrate how our
serviceLocator works:

const level = require('level');
const sublevel = require('level-sublevel');
module.exports = (servicelocator) => {

const dbName = servicelocator.get ('dbName');

return sublevel (
level (dbName, {valueEncoding: 'json'})
)i
}

The db module uses the service locator received in input to retrieve the name of the
database to instantiate. This is an interesting point to highlight; a service locator can be used
not only to return component instances but also to provide configuration parameters that
define the behavior of the entire dependency graph that we want to create.

The next step is to convert the 1ib/authService. js module:

//
module.exports = (serviceLocator) => {
const db = servicelocator.get('db');
const tokenSecret = servicelocator.get ('tokenSecret');

const users = db.sublevel ('users');
const authService = {};

authService.login = (username, password, callback) => {
//...same as in the previous version

authService.checkToken = (token, callback) => {
//...same as in the previous version

return authService;

}i

[275]

Wiring Modules

Also, the authService module is a factory that takes the service locator as the input. The
two dependencies of the module, the db handle and tokensSecret (which is another
configuration parameter), are retrieved using the get () method of the service locator.

In a similar way, we can convert the 1ib/authController. js module:

module.exports = (serviceLocator) => {
const authService = servicelocator.get ('authService');
const authController = {};

authController.login = (req, res, next) => {
//...same as in the previous version

bi

authController.checkToken = (req, res, next) => {
//...same as in the previous version

}i

return authController;

}

Now we are ready to see how the service locator is instantiated and configured. This
happens, of course, in the app . js module:

Y

const svclLoc = require('./lib/serviceLocator') (); //11]
svcLoc.register ('dbName', 'example-db'); //12]
svcLoc.register ('tokenSecret', 'SHHH!');

svcLoc.factory ('db', require('./lib/db'));

svcLoc.factory ('authService', require('./lib/authService'));
svcLoc.factory ('authController', require('./lib/authController'));
const authController = svcLoc.get ('authController'); //13]

app.post ('/login', authController.login);
app.all('/checkToken', authController.checkToken);
//

[276]

Wiring Modules

This is how the wiring works using our new service locator:

1. We instantiate a new service locator by invoking its factory.

2. We register the configuration parameters and module factories against the service
locator. At this point, all our dependencies are not instantiated yet; we just
registered their factories.

3. Weload authController from the service locator; this is the entry point that
triggers the instantiation of the entire dependency graph of our application.
When we ask for the instance of the authController component, the service
locator invokes the associated factory by injecting an instance of itself, then the
authController factory will try to load the authservice module, which in
turn instantiates the db module.

It's interesting to see the lazy nature of the service locator; each instance is created only
when needed. But there is another important implication: we can see, in fact, that every
dependency is automatically wired without the need to manually do it in advance. The
advantage is that we don't have to know in advance what the right order for instantiating
and wiring the modules is—it all happens automatically and on-demand. This is much more
convenient compared to the simple DI pattern.

Another common pattern is to use an Express server instance as a simple
service locator. This can be achieved using expressApp. set (name,
instance) to register a service and expressApp.get (name) to then
retrieve it. The convenient part of this pattern is that the server instance,
which acts as a service locator, is already injected into each middleware
and is accessible through the request . app property. You can find an
example of this pattern in the samples distributed with the book.

Pros and cons of a service locator

Service locator and Dependency Injection have a lot in common: both shift the
dependency ownership to an entity external to the component. But the way we wire the
service locator determines the flexibility of our entire architecture. It is not by chance that
we chose an injected service locator to implement our example, as opposed to a hardcoded
or global service locator. These last two variations almost nullify the advantages of this
pattern. In fact, the result would be that, instead of coupling a component directly to its
dependencies using require (), we would be coupling it to one particular instance of the
service locator. It's also true that a hardcoded service locator will still give more flexibility in
configuring what component to associate with a particular name, but this still does not give
any big advantage in terms of reusability.

[277]

Wiring Modules

Also, like DI, using a service locator makes it harder to identify the relationship between the
components as they are resolved at runtime. In addition, it also makes it more difficult to
know exactly what dependency a particular component is going to require. With D], this is
expressed in a much clearer way: by declaring the dependencies in the factory or
constructor arguments. With a service locator, this is much less clear and would require a
code inspection or an explicit statement in the documentation explaining what
dependencies a particular component will try to load.

As a final note, it is important to know that often a service locator is incorrectly mistaken for
a DI container because it shares the same role of service registry with it; however, there is a
big difference between the two. With a service locator, each component loads its
dependencies explicitly from the service locator itself. When using a DI container instead,
the component has no knowledge of the container.

The difference between these two approaches is noticeable for two reasons:

¢ Reusability: A component relying on a service locator is less reusable because it
requires that a service locator is available in the system

* Readability: As we have already said, a service locator obfuscates the
dependency requirements of a component

In terms of reusability, we can say that the service locator pattern sits inbetween hardcoded
dependencies and DI. In terms of convenience and simplicity, it is definitely better than
manual DI, as we don't have to manually take care of building the entire dependency
graph.

Under these assumptions, a DI container definitely offers the best compromise in terms of
reusability of the components and convenience. We are going to better analyze this pattern
in the next section.

Dependency Injection container

The step to transform a service locator into a Dependency Injection (DI) container is not big,
but as we have already mentioned, it makes a huge difference in terms of decoupling. With
this pattern, in fact, each module doesn't have to depend on the service locator, it can
simply express its need in terms of dependencies and the DI container will do the rest
seamlessly. As we will see, the big leap forward of this mechanism is that every module can
be reused even without the container.

[278]

Wiring Modules

Declaring a set of dependencies to a DI container

A DI container is essentially a service locator with the addition of one feature: it identifies

the dependency requirements of a module before instantiating it. For this to be possible, a

module has to declare its dependencies in some way, and as we will see, we have multiple
options for doing this.

The first, and probably the most popular, technique consists of injecting a set of
dependencies based on the arguments' names used in a factory or constructor. Let's take, for
example, the authService module:

module.exports = (db, tokenSecret) => {
/...
}

As we defined it, the preceding module will be instantiated by our DI container using the
dependencies with names db and tokenSecret —a very simple and intuitive mechanism.
However, to be able to read the names of the arguments of a function, it's necessary to use a
little trick. In JavaScript, we have the possibility to serialize a function, obtaining at runtime
its source code; this is as easy as invoking toString () on the function reference. With
regular expressions, obtaining the arguments list is certainly not black magic.

This technique of injecting a set of dependencies using the names of the
arguments of a function was popularized by AngularJS
(http://angularjs.org), a client-side JavaScript framework developed
by Google and entirely built on top of a DI container.

The biggest problem of this approach is that it doesn't play well with minification, a
practice used extensively in client-side JavaScript which consists of applying particular code
transformations to reduce to the minimum the size of the source code. Many minificators
apply a technique known as name mangling, which essentially renames any local variable
to reduce its length, usually to a single character. The bad news is that function arguments
are local variables and are usually affected by this process, causing the mechanism that we
described for declaring dependencies to fall apart. Even though minification is not really
necessary in server-side code, it's important to consider that often Node.js modules are
shared with the browser, and this is an important factor to consider in our analysis.

[279]

http://angularjs.org

Wiring Modules

Luckily, a DI container might use other techniques to know which dependencies to inject.
These techniques are given as follows:

e We can use a special property attached to the factory function, for example, an
array explicitly listing all the dependencies to inject:

module.exports = (a, b) => {};
module.exports._inject = ['db', 'another/dependency'];

e We can specify a module as an array of dependency names followed by the
factory function:

module.exports = ['db', 'another/depencency', (a, b) => {}1];

e We can use a comment annotation that is appended to each argument of a
function (however, this also doesn't play well with minification):

module.exports = function(a /*db*/, b /*another/depencency*/) {};

All these techniques are quite opinionated, so for our example, we are going to use the most
simple and popular, which is to obtain the dependency names using the arguments of a
function.

Refactoring the authentication server to use a DI
container

To demonstrate how a DI container is much less invasive than a service locator, we are now
going to again refactor our authentication server, and to do so we are going to use as a
starting point the version in which we were using the plain DI pattern. In fact, what we are
going to do is just leave untouched all the components of the application except for the

app . js module, which is going to be the module responsible for initializing the container.

But first, we need to implement our DI container. Let's do that by creating a new module
called diContainer. js under the 1ib/ directory. This is its initial part:

const fnArgs= require ('parse-fn-args');

module.exports = function() {
const dependencies = {};
const factories = {};
const diContainer = {};
diContainer.factory = (name, factory) => {
factories[name] = factory;

[280]

Wiring Modules

bi

diContainer.register = (name, dep) => {
dependencies|[name] = dep;

bi

diContainer.get = (name) => {
if (!dependencies[name]) {
const factory = factories[name];
dependencies|[name] = factory &&
diContainer.inject (factory);
if (!dependencies[name]) {
throw new Error ('Cannot find module: ' + name);

}
}

return dependencies[name];
ti

//...to be continued

The first part of the diContainer module is functionally identical to the service locator we
have seen previously. The only notable differences are:

¢ We require a new npm module called args-1ist
(https://npmjs.org/package/args—1ist), which we will use to extract the
names of the arguments of a function

e This time, instead of directly invoking the module factory, we rely on another
method of the diContainer module called inject (), which will resolve the
dependencies of a module and use them to invoke the factory

Let's see how the diContainer.inject () method looks:

diContainer.inject = (factory) => {
const args = fnArgs(factory)
.map (dependency => diContainer.get (dependency));
return factory.apply(null, args);
bi

}; //end of module.exports = function() {

[281]

https://npmjs.org/package/args-list

Wiring Modules

The preceding method is what makes the DI container different from a service locator. Its
logic is very straightforward:

1. We extract the arguments list from the factory function we receive as the input,
using the parse-fn-args library.

2. We then map each argument name to the correspondent dependency instance
retrieved using the get () method.

3. At the end, all we have to do is just invoke the factory by providing the
dependency list that we just generated.

That's really it for our diContainer. As we saw, it's not that much different from a service
locator, but the simple step of instantiating a module by injecting its dependencies makes a
dramatic difference (as compared to injecting the entire service locator).

To complete the refactoring of the authentication server, we also need to tweak the app. js
module:

//

const diContainer = require('./lib/diContainer"') ();
diContainer.register ('dbName', 'example-db');

diContainer.register ('tokenSecret', 'SHHH!');

diContainer.factory('db', require('./lib/db'));

diContainer.factory ('authService', require('./lib/authService'));
diContainer.factory ('authController', require('./lib/authController'));

const authController = diContainer.get ('authController');

app.post ('/login', authController.login);
app.get ('/checkToken', authController.checkToken);
//

As we can see, the code of the app module is identical to the one that we used to initialize
the service locator in the previous section. We can also notice that to bootstrap the DI
container, and therefore trigger the loading of the entire dependency graph, we still have to
use it as a service locator by invoking diContainer.get ('authController'). From that
point on, every module registered with the DI container will be instantiated and wired
automatically.

[282]

Wiring Modules

Pros and cons of a DI container

A DI container assumes that our modules use the DI pattern and therefore inherit most of
its pros and cons. In particular, we have an improved decoupling and testability, but on the
other hand more complexity, because our dependencies are resolved at runtime. A DI
container also shares many properties with the service locator pattern, but it has on its side
the fact that it doesn't force the modules to depend on any extra service except its actual
dependencies. This is a huge advantage because it allows each module to be used even
without the DI container, using a simple manual injection.

That's essentially what we demonstrated in this section: we took the version of the
authentication server where we used the plain DI pattern, and then without modifying any
of its components (except for the app module), we were able to automatize the injection of
every dependency.

On npm, you can find a lot of DI containers to reuse or take inspiration

from at
https://www.npmjs.org/search?gq=dependency%20injection.

Wiring plugins

The dream architecture of a software engineer is the one having a small, minimal core,
extensible as needed through the use of plugins. Unfortunately, this is not always easy to
obtain, since most of the time it has a cost in terms of time, resources, and complexity.
Nonetheless, it's always desirable to support some kind of external extensibility, even if
limited to just some parts of the system. In this section, we are going to plunge into this
fascinating world and focus on a dualistic problem:

¢ Exposing the services of an application to a plugin
e Integrating a plugin into the flow of the parent application

Plugins as packages

Often in Node.js, the plugins of an application are installed as packages into the
node_modules directory of a project. There are two advantages for doing this. Firstly, we
can leverage the power of npm to distribute the plugin and manage its dependencies. And
secondly, a package can have its own private dependency graph, which reduces the chances
of having conflicts and incompatibilities between dependencies, as opposed to letting the
plugin use the dependencies of the parent project.

[283]

https://www.npmjs.org/search?q=dependency%20injection
https://www.npmjs.org/search?q=dependency%20injection

Wiring Modules

The following directory structure gives an example of an application with two plugins
distributed as packages:

application

'-— node_modules
| -— pluginA
'-— pluginB

In the Node.js world, this is a very common practice. Some popular examples are express
(http://expressis.com) with its middleware, gulp (http://gulpjs.com), grunt
(http://gruntjs.com), nodebb (http://nodebb.org), and docpad
(http://docpad.org).

However, the benefits of using packages are not only limited to external plugins. In fact, one
popular pattern is to build entire applications by wrapping their components into packages,
as if they were internal plugins. So, instead of organizing the modules in the main package of
the application, we can create a separate package for each big chunk of functionality and
install it into the node_modules directory.

A package can be private and not necessarily available on the public npm
registry. We can always set the private flag into the package. json to
prevent accidental publication to npm. Then, we can commit the packages
into a version control system such as git or leverage a private npm server
to share them with the rest of the team.

Why follow this pattern? First of all, convenience: people often find it impractical or too
verbose to reference the local modules of a package using the relative path notation. Let's,
for example, consider the following directory structure:

application
| —— componentA
| '—— subdir
| '—-— moduleA
'—— componentB
'-— moduleB

If we want to reference moduleB from moduled, we have to write something like this:

require('../../componentB/moduleB"') ;

[284]

http://expressjs.com
http://gulpjs.com
http://gruntjs.com
http://nodebb.org
http://docpad.org

Wiring Modules

Instead, we can leverage the properties of the resolving algorithm of require () (as we
have studied it in Chapter 2, Node.js Essential Patterns) and put the entire componentB
directory into a package. By installing it into the node_modules directory, we can then
write something such as the following (from anywhere in the main package of the
application):

require ('componentB/module') ;

The second reason for splitting a project into packages is, of course, reusability. A package
can have its own private dependencies, and it forces the developer to think in terms of what
to expose to the main application and what instead to keep private, with beneficial effects
on the decoupling and information hiding of the entire application.

Pattern
Use packages as a means to organize your application, not just for
distributing code in combination with npm.

The use cases we have just described make use of a package not just as a stateless, reusable
library (like most of the packages on npm), but more as an integral part of a particular
application, providing services, extending its functionality, or modifying its behavior. The
main difference is that these types of packages are integrated inside an application rather
than just used.

For simplicity, we will use the term plugin to describe any package meant
to integrate with a particular application.

As we will see, the common problem that we are going to face when deciding to support
this type of architecture is exposing parts of the main application to plugins. In fact, we
cannot think of only stateless plugins—this is, of course, the aim for a perfect extensibility,
because sometimes the plugin has to use some of the services of the parent application in
order to carry out its tasks. This aspect might depend a lot on the technique used to wire
modules in the parent application.

[285]

Wiring Modules

Extension points

There are literally infinite ways to make an application extensible. For example, some of the
design patterns we studied in Chapter 6, Design Patterns, are meant exactly for this: using
Proxy or Decorator we are able to change or augment the functionality of a service; with
Strategy, we can swap parts of an algorithm; with middleware, we can insert processing
units in an existing pipeline. Also, streams can provide great extensibility thanks to their
composable nature.

On the other hand, EventEmitters allow us to decouple our components using events and
the publish/subscribe pattern. Another important technique is to explicitly define in the
application some points where new functionalities can be attached or the existing ones
modified; these points in an application are commonly known as hooks. To summarize, the
most important ingredient to support plugins is a set of extension points.

The way we wire our components also plays a decisive role because it can affect the way we
expose the services of the application to the plugin. In this section, we are mainly going to
focus on this aspect.

Plugin-controlled vs application-controlled
extension

Before we go ahead and present some examples, it is important to understand the
background of the technique we are going to use. There are mainly two approaches for
extending the components of an application:

e Explicit extension
¢ Extension through Inversion of Control (IoC)

[286]

Wiring Modules

In the first case, we have a more specific component (the one providing the new
functionality) explicitly extending the infrastructure, while in the second case, it is the
infrastructure to control the extension by loading, installing, or executing the new specific
component. In the second scenario, the flow of control is inverted, as shown in the
following image:

Explicit extension
Specific component |——Extension flow of control—»{ rasuuctural
g P P ension Tiow or contro componcnt
The component mémmmmm
providing the) . receiving the
extension Extension through Inversion of Control e_xlension
Specific component [«——Extension flow of control—— e
P p * : W component

IoC is a very broad principle that can be applied not only to the problem of application
extensibility. In fact, in more general terms it can be said that by implementing some form
of IoC, instead of the custom code controlling the infrastructure, the infrastructure controls
the custom code. With IoC, the various components of an application trade off their power
of controlling the flow in exchange for an improved level of decoupling. This is also known
as the Hollywood principle or “don’t call us, we’ll call you”.

For example, a DI container is a demonstration of the IoC principle applied to the specific
case of dependency management. The Observer pattern is another example of IoC applied
to state management. Template, Strategy, State, and Middleware are also more localized
manifestations of the same principle. The browser implements the IoC principle when
dispatching Ul events to the JavaScript code (it's not the JavaScript code actively polling the
browser for events), and guess what, Node.js itself follows the IoC principle when
controlling the execution of the various callbacks for us.

To know more about the IoC principle, we advise you to study the topic
directly from the words of its master, Martin Fowler, at
http://martinfowler.com/bliki/InversionOfControl.html.

[287]

http://martinfowler.com/bliki/InversionOfControl.html
http://martinfowler.com/bliki/InversionOfControl.html

Wiring Modules

Applying this concept to the specific case of plugins, we can then identify two forms of
extension:

¢ Plugin-controlled extension
¢ Application-controlled extension (IoC)

In the first case, it is the plugin that taps into the components of the application to extend
them as needed, while in the second case, the control is in the hands of the application,
which integrates the plugin into one of its extension points.

To make a quick example, let's consider a plugin that extends the Express application with a
new route. By using a plugin-controlled extension, this would look like the following:

//in the application:
const app = express();
require ('thePlugin') (app) ;

//in the plugin:
module.exports = function plugin (app) {

app.get ('/newRoute', function(req, res) {...})
bi

If, instead, we want to use an application-controlled extension (IoC), the same preceding
example would look like the following;:

//in the application:

const app = express();

const plugin = require('thePlugin') ();
applplugin.method] (plugin.route, plugin.handler);

//in the plugin:
module.exports = function plugin() {
return {
method: 'get',
route: '/newRoute',
handler: function(req, res) {...}

}

In the last code fragment, we saw how the plugin is only a passive player in the extension
process; the control is in the hands of the application, which implements the framework to
receive the plugin.

[288]

Wiring Modules

Based on the preceding example, we can immediately identify a few important differences
between the two approaches:

¢ Plugin-controlled extension is more powerful and flexible, as often we have
access to the internals of the application and we can move freely as if the plugin
was actually a part of the application itself. However, this sometimes can be more
of a liability than an advantage. In fact, any change in the application would have
repercussions on the plugins more readily, requiring constant updates as the
main application evolves.

¢ Application-controlled extension requires a plugin infrastructure in the main
application. With a plugin-controlled extension, the only requirement is that the
components of the application are extensible in some way.

e With a plugin-controlled extension, it becomes essential to share the internal
services of the application with the plugin (in the preceding small example, the
service to share was the app instance); otherwise, we would not be able to extend
them. With an application-controlled extension, it might still be necessary to
access some of the services of the application, not to extend but rather to use
them. For example, we might want to query the db instance in our plugin or
leverage the logger of the main application, just to name a few scenarios.

This last point should allow us to think about the importance of exposing the services of an
application to the plugin—that's what we are mainly interested in exploring. The best way
of doing this is to show a practical example of a plugin-controlled extension, which requires
minimal effort in terms of infrastructure and we can emphasize more on the problem of
sharing the application's state with the plugins.

Implementing a logout plugin

Let's now start to work on a small plugin for our authentication server. With the way we
originally created the application, it is not possible to explicitly invalidate a token; it simply
becomes invalid when it expires. Now we want to add support for this feature, namely
logout, and we want to do that by not modifying the code of the main application but rather
delegating the task to an external plugin.

To support this new feature, we need to save each token in the database after it is created
and then check for its existence every time we want to validate it. To invalidate a token, we
simply need to remove it from the database.

[289]

Wiring Modules

To do this, we are going to use a plugin-controlled extension to proxy the calls to
authService.login () and authService.checkToken (). We then need to decorate the
authService with a new method called 1ogout (). After doing this, we also want to
register a new route against the main Express server to expose a new endpoint (/Logout),
which we can use to invalidate a token using an HTTP request.

We are going to implement the plugin we just described in four different variations:

¢ Using hardcoded dependencies
¢ Using dependency injection

¢ Using a service locator

e Using a DI container

Using hardcoded dependencies

The first variation of the plugin we are now going to implement covers the case in which
our application mainly uses hardcoded dependencies for wiring its stateful modules. In this
context, if our plugin lives in a package under the node_modules directory, to use the
services of the main application we have to gain access to the parent package. We can do
this in two ways:

e Using require () and navigating to the application's root using relative or
absolute paths.

e Using require () by impersonating a module in the parent application —usually
the module instantiating the plugin. This will allow us to easily gain access to all
the services of the application by using require (), as if it was invoked by the
parent application and not from the plugin.

The first technique is less robust as it assumes that the package is aware of the position of
the main application. The module impersonation pattern can instead be used regardless of
where the package is required from, and for this reason, this is the technique that we are
going to use to implement the next demo.

[290]

Wiring Modules

To build our plugin, we first need to create a new package under the node_modules
directory, named authsrv-plugin-logout. Before we start coding, we need to create a
minimal package . json to describe the package, filling in only the essential parameters
(the complete path to the file is : node_modules/authsrv-plugin-
logout/package. json):

{
"name": "authsrv-plugin-logout",
"version": "0.0.0"

}

Now we are ready to create the main module of our plugin, we will use the file index. js,
as it is the default module that Node.js will try to load when requiring the package (if no
main property is defined in the package. json). As always, the initial lines of the module
are dedicated to loading the dependencies; pay attention to how we are going to require
them (file node_modules/authsrv-plugin-logout/index.js):

const parentRequire = module.parent.require;

const authService = parentRequire('./lib/authService');
const db = parentRequire('./lib/db'");
const app = parentRequire('./app');

const tokensDb = db.sublevel ('tokens');

The first line of code is what makes the difference. We obtain a reference to the require ()
function of the parent module, which is the one that loads the plugin. In our case, the
parent is going to be the app module in the main application, and this means that every
time we use parentRequire (), we are loading a module as if we were doing it from
app.js.

The next step is creating a proxy for the authService.login () method. After studying
this pattern in Chapter 6, Design Patterns, we should already know how it works:

const oldLogin = authService.login; // 1]
authService.login = (username, password, callback) => {
oldLogin (username, password, (err, token) => { //12]
if (err) return callback (err); // 3]
tokensDb.put (token, {username: username}, () => {

callback (null, token);
)i
)i

[291]

Wiring Modules

In the preceding code, the steps performed are explained as follows:

1. We first save a reference to the old 1ogin () method and we then override it with
our proxied version.

2. In the proxy function, we invoke the original 1ogin () method by providing a
custom callback so that we can intercept the original return value.

3. If the original 1ogin () returns an error, we simply forward it to the callback;
otherwise, we save the token into the database.

Similarly, we need to intercept the calls to checkToken () so that we can add our custom
logic:

const oldCheckToken = authService.checkToken;

authService.checkToken = (token, callback) => {
tokensDb.get (token, function(err, res) {
if (err) return callback (err);

oldCheckToken (token, callback);
P
}

This time, we first want to check whether the token exists in the database before giving
control to the original checkToken () method. If the token is not found, the get ()
operation returns an error; this means that our token was invalidated and so we
immediately return the error back to the callback.

To finalize the extension of the authService, we now need to decorate it with a new
method, which we will use to invalidate a token:

authService.logout = (token, callback) => {
tokensDb.del (token, callback);
}

The logout () method is very simple: we just delete the token from the database.

Finally, we can attach a new route to the Express server to expose the new functionality
through a web service:

app.get ('/logout', (req, res, next) => {
authService.logout (req.query.token, function() |
res.status (200) .send ({ok: true});
P
P

[292]

Wiring Modules

Now our plugin is ready to be attached to the main application. To do this we just need to
go back to the main directory of the application and edit the app . js module:

//
let app = module.exports = express();
app.use (bodyParser.json());

require ('authsrv-plugin-logout');

app.post ('/login', authController.login);
app.all('/checkToken', authController.checkToken);
//

As we can see, to attach the plugin we only need to require it. As soon as this
happens—during the startup of the application—the flow of control is given to the plugin,
which in turn will extend the authService and the app modules, as we saw earlier.

Now our authentication server also supports the invalidation of the token. We did that in a
reusable way, the core of the application remained almost untouched, and we were able to
easily apply the Proxy and Decorator patterns to extend its functionalities.

We can now try to start the application again:
node app

Then, we can verify that the new /logout web service actually exists and works as
expected. Using curl, we can now try to obtain a new token using /login:

curl -X POST —-d '{"username": "alice", "password":'"secret"}'
http://localhost:3000/login -H "Content-Type: application/json"

Then, we can check whether the token is valid using /checkToken:

curl -X GET -H "Accept: application/json"
http://localhost:3000/checkToken?token=<TOKEN HERE>

Then, we can pass the token to the /1logout endpoint to invalidate it; with curl, this can be
done with a command such as this:

curl -X GET -H "Accept: application/json"
http://localhost:3000/logout?token=<TOKEN HERE>

Now, if we try to check the validity of the token again, we should get a negative response,
confirming that our plugin is working perfectly.

[293]

Wiring Modules

Even with a small plugin like the one we just implemented, the advantages of supporting
plugin-based extensibility are clear. We also learned how to gain access to the services of
the main application from another package using the module impersonation.

The module impersonation pattern is used by quite a few NodeBB plugins;
you might want to check a couple of them in order to have an idea of how
this is used in a real application. These are the links to some notable
examples:

nodebb-plugin-poll:
https://github.com/Schamper/nodebb-plugin-poll/blob/b4a4d6
561aff279e19c23b7¢c635fda5037¢534b84/1ib/nodebb. js
nodebb-plugin-mentions:
https://github.com/julianlam/nodebb-plugin-mentions/blob/
9638118fa7e¢06a05ceb24eb521427440abd0dd8a/library. js#L4-13

Module impersonation is, of course, a form of hardcoded dependency and shares with it
strengths and weaknesses. From one side, it allows us to access any service of the main
application with little effort and minimal infrastructural requirements, but from the other, it
creates a tight coupling, not only with a particular instance of a service but also with its
location, which more easily exposes the plugin to changes and refactoring in the main
application.

Exposing services using a service locator

Similar to module impersonation, the service locator is also a good choice if we want to
expose all the components of an application to its plugins, but on top of that, it has a major
advantage, because a plugin can use the service locator to expose its own services to the
application or even to other plugins.

Let's now refactor our logout plugin again to use a service locator. We'll refactor the main
module of the plugin in the node_modules/authsrv-plugin-logout/index. js file:

module.exports = (servicelLocator) => {
const authService = servicelocator.get ('authService');
const db = servicelocator.get('db');
const app = servicelocator.get('app');

const tokensDb = db.sublevel ('tokens');

const oldLogin = authService.login;
authService.login = (username, password, callback) => {
//...same as in the previous version

}

[294]

https://github.com/Schamper/nodebb-plugin-poll/blob/b4a46561aff279e19c23b7c635fda5037c534b84/lib/nodebb.js
https://github.com/Schamper/nodebb-plugin-poll/blob/b4a46561aff279e19c23b7c635fda5037c534b84/lib/nodebb.js
https://github.com/julianlam/nodebb-plugin-mentions/blob/9638118fa7e06a05ceb24eb521427440abd0dd8a/library.js#L4-13
https://github.com/julianlam/nodebb-plugin-mentions/blob/9638118fa7e06a05ceb24eb521427440abd0dd8a/library.js#L4-13

Wiring Modules

const oldCheckToken = authService.checkToken;
authService.checkToken = (token, callback) => {
//...same as in the previous version

}

authService.logout = (token, callback) => {
//...same as in the previous version

}

app.get ('/logout', (req, res, next) => {
//...same as in the previous version
1)
i

Now that our plugin receives the service locator of the parent application as the input, it can
access any of its services as needed. This means that the application does not have to know
in advance what the plugin is going to need in terms of dependencies; this is surely a major
advantage when implementing a plugin-controlled extension.

The next step is to execute the plugin from the main application, and to do that, we have to
modify the app. js module. We will use the version of the authentication server already

based on the service locator pattern. The required changes are given in the following block
of code:

//

const svclLoc = require('./lib/serviceLocator') ();
svcLoc.register(...);

//

svcLoc.register ('app', app);
const plugin = require ('authsrv-plugin-logout');
plugin (svcLloc) ;

//
The changes are highlighted in the preceding code; those changes enabled us to:

¢ Register the app module itself in the service locator, as the plugin might want to
have access to it

¢ Require the plugin
e Invoke the plugin's main function by providing the service locator as an
argument

[295]

Wiring Modules

As we already said, the main strength of the service locator is that it provides a simple way
to expose all the services of an application to its plugins, but it can also be used as a
mechanism for sharing services from the plugin back into the parent application or even
other plugins. This last consideration is probably the main strength of the service locator
pattern in the context of plugin-based extensibility.

Exposing services using DI

Using DI to propagate services to a plugin is as easy as using it in the application itself. This
pattern becomes almost a requirement if it's already the main method for wiring
dependencies in the parent application, but nothing prevents us from using it when the
prevalent form of dependency management is hardcoded dependencies or a service locator.
Dl is also an ideal choice when we want to support an application-controlled extension
because it provides better control over what is shared with the plugin.

To test these assumptions, let's immediately try to refactor the logout plugin to use DI. The
changes required are minimal, so let's start from the main module of the plugin
(node_modules/authsrv-plugin-logout/index. js):

module.exports = (app, authService, db) => {
const tokensDb = db.sublevel ('tokens');

const oldLogin = authService.login;
authService.login = (username, password, callback) => {
//...same as in the previous version

}

let oldCheckToken = authService.checkToken;
authService.checkToken = (token, callback) => {
//...same as in the previous version

}

authService.logout = (token, callback) => {
//...same as in the previous version

}

app.get ('/logout', (req, res, next) => {
//...same as in the previous version
)i
}i

All we did is wrap the plugin's code into a factory that receives the services of the parent
application as the input; the rest of it remains unchanged.

[2961

Wiring Modules

To complete our refactoring, we also need to change the way we attach the plugin from the
parent application; let's then change that one line where we require the plugin in the
app . js module:

//

const plugin = require ('authsrv-plugin-logout');
plugin(app, authService, authController, db);

//

We intentionally didn't show how these dependencies were obtained. In fact, it doesn't
really make any difference, any method will equally work; we might use hardcoded
dependencies or obtain the instances from factories or from a service locator —it doesn't
really matter. This proves that DI is a flexible pattern when wiring plugins that can be used
regardless of the way we wire the services in the parent application.

But the differences are much more profound. DI is definitely the cleanest way of providing
a set of services to a plugin, but most importantly, it offers the best level of control over
what's exposed to it, resulting in better information hiding and better protection against
overly aggressive extensions. However, this can be also considered a drawback, because the
main application can't always know what services the plugin is going to need, so we end up
either injecting every service, which is impractical, or only a subset of them, for example,
only the essential core services of the parent application. For this reason, DI is not the ideal
choice if we mainly want to support plugin-controlled extensibility; however, the use of a
DI container can easily solve these issues.

Grunt (http://gruntjs.com), a task runner for Node.js, uses DI to
provide each plugin with an instance of the core Grunt service. Each
plugin can then extend it by attaching new tasks, using it to retrieve the
configuration parameters, or running other tasks. A Grunt plugin looks

like the following:
module.exports = function (grunt) {
grunt.registerMultiTask ('taskName', 'description',
function(...) {...}

)
bi

[297]

http://gruntjs.com

Wiring Modules

Exposing services using a DI container

Taking the previous example as a starting point, we can use a DI container in combination
with our plugin by applying a small change to the app module, as shown in the following
code:

//

const diContainer = require('./lib/diContainer') ();
diContainer.register(...);

//

//initialize the plugin

diContainer.inject (require ('authsrv-plugin-logout'));

/7

After registering the factories or the instances of our application, all we have to do is
instantiate the plugin, which is done by injecting its dependencies using the DI container.
This way, each plugin can require its own set of dependencies without the parent
application needing to know. All the wiring is again carried out automatically by the DI
container.

Using a DI container also means that each plugin can potentially access any service of the
application, reducing the information hiding and the control over what can be used or
extended. A possible solution to this problem is to create a separate DI container registering
only the services that we want to expose to plugins; this way, we can control what each
plugin can see of the main application. This demonstrates that a DI container can also be a
very good choice in terms of encapsulation and information hiding.

This concludes our last refactoring of the logout plugin and the authentication server.

Summary

The topic of dependency wiring is certainly one of the most opinionated in software
engineering, but in this chapter, we tried to keep the analysis as factual as possible to give
an objective overview of the most important wiring patterns. We cleared some of the most
common doubts around Singletons and instances in Node.js, and we learned how to
connect modules using hardcoded dependencies, DI, and service locators. We practiced
each technique using the authentication server as a playground, allowing us to identify the
pros and cons of each approach.

[298]

Wiring Modules

In the second part of the chapter, we learned how an application can support plugins, but
most importantly, how we can wire those plugins into the main application. We applied the
same techniques presented in the first part of the chapter but analyzed them from another
perspective. We discovered how important it can be for a plugin to have access to the right
services of the main application and how much this can impact its capabilities.

By the end of this chapter, we should feel comfortable in choosing the best approach for the
level of decoupling, reusability, and simplicity we want to obtain in our application. We can
also consider using more than one pattern in the same application. For example, we can use
hardcoded dependencies as the main technique and then use a service locator when it
comes to linking plugins; there are really no limits to what we can do now that we know the
best use case for each approach.

So far in this book, we have focused our analysis on highly generic and customizable
patterns, but from the next chapter onwards, we will shift our attention to solving more
specific technical problems. What comes next is, in fact, a collection of recipes which can be
used to solve specific issues related to CPU-bound tasks, asynchronous caching, and
sharing code with the browser.

[2991]

Universal JavaScript for Web
Applications

JavaScript was born in 1995 with the original goal of giving web developers the power to
execute code directly in the browser and build more dynamic and interactive websites.

Since then, JavaScript has grown up a lot and it is today one of the most famous and
widespread languages in the world. If, at the very beginning, JavaScript was a very simple
and limited language, today it can be considered a complete general purpose language that
can be used even outside the browser to build almost any kind of application. In fact,
JavaScript now powers frontend applications, web servers, and mobile applications, as well
as embedded devices such as wearable devices, thermostats, and flying drones.

This availability across platforms and devices is fostering a new trend among JavaScript
developers, which is being able to simplify code reuse across different environments in the
same project. The most meaningful case in relation to Node.js regards the opportunity to
build web applications where it is easy to share code between the server (backend) and the
browser (frontend). This quest for code reuse was originally identified with the term
Isomorphic JavaScript, but it's now widely recognized as Universal JavaScript.

In this chapter, we are going to explore the wonders of Universal JavaScript, specifically in
the field of web development, and discover many tools and techniques to be able to share
most of our code between the server and the browser.

In particular, we are going to learn how modules can be used both on the server and the
client and how to use tools such as Webpack and Babel to package them for the browser.
We will adopt the React library and other famous modules to build the web interface and
share the state of the web server with the frontend, and finally we are going to explore some
interesting solutions to enable universal routing and universal data retrieval within our

apps.

Universal JavaScript for Web Applications

At the end of this chapter, we should be able to write React-powered Single-Page
Applications (SPAs) that reuse most of the code that is already present in our Node.js
server, resulting in applications that are consistent, easy to reason about, and easy to
maintain.

Sharing code with the browser

One of the main selling points of Node.js is the fact that it's based on JavaScript and runs on
V8, an engine that actually powers one of the most popular browsers: Chrome. We might
think that that's enough to conclude that sharing code between Node.js and the browser is
an easy task; however, as we will see, this is not always true, unless we want to share only
small, self-contained, and generic fragments of code. Developing code for both the client
and the server requires a non-negligible level of effort in making sure that the same code
can run properly in two environments that are intrinsically different. For example, in
Node.js we don't have the DOM or long-living views, while in the browser we surely don't
have the filesystem or the ability to start new processes. Moreover, we need to consider that
we can safely use many of the new ES2015 features in Node.js. We cannot do the same in
the browser, as the majority of browsers are still stuck with ES5, and running ES5 code in
the client will remain the safest option for a relatively long time before ES2015-enabled web
browsers are ubiquitous.

So, most of the effort required when developing for both platforms is making sure to reduce
those differences to a minimum. This can be done with the help of abstractions and patterns
that enable the application to switch, dynamically or at build time, between the browser-
compatible code and the Node.js code.

Luckily, with the rising interest in this new mind-blowing possibility, many libraries and
frameworks in the ecosystem have started to support both environments. This evolution is
also backed by a growing number of tools supporting this new kind of workflow, which
over the years have been refined and perfected. This means that if we are using an npm
package on Node.js, there is a good probability that it will work seamlessly on the browser
as well. However, this is often not enough to guarantee that our application can run without
problems on both the browser and Node.js. As we will see, a careful design is always
needed when developing cross-platform code.

In this section, we are going to explore the fundamental problems we might encounter
when writing code for both Node.js and the browser, and we are going to propose some
tools and patterns that can help us in tackling this new and exciting challenge.

[301]

Universal JavaScript for Web Applications

Sharing modules

The first wall we hit when we want to share some code between the browser and the server
is the mismatch between the module system used by Node.js and the heterogeneous
landscape of the module systems used in the browser. Another problem is that in the
browser, we don't have a require () function or the filesystem from which we can resolve
modules. So, if we want to write large portions of code that can work on both platforms and
we want to continue to use the CommonJS module system, we need to take an extra
step—we need a tool to help us in bundling all the dependencies together at build time and
abstracting the require () mechanism on the browser.

Universal Module Definition

In Node.js, we know perfectly well that the Common]S modules are the default mechanism
for establishing dependencies between components. The situation in browser-space is
unfortunately way more fragmented:

e We might have an environment with no module system at all, which means that
globals are the main mechanism to access other modules

e We might have an environment based on an Asynchronous Module Definition
(AMD) loader, for example, Require]S (http://requirejs.org)

¢ We might have an environment abstracting the Common]S module system

Luckily, there is a pattern called Universal Module Definition (UMD) that can help us
abstract our code from the module system used in the environment.

Creating an UMD module

UMD is not quite standardized yet, so there might be many variations that depend on the
needs of the component and the module systems it has to support. However, there is one
form that is probably the most popular and also allows us to support the most common
module systems, such as AMD, Common]S, and browser globals.

Let's see a simple example of how it looks. In a new project, let's create a new module called
umdModule. js:

(function (root, factory) { // 1]
if (typeof define === 'function' && define.amd) { //12]
define (['mustache'], factory);
} else if (typeof module === 'object' && //13]
typeof module.exports === 'object') {
var mustache = require ('mustache');

[302]

http://requirejs.org

Universal JavaScript for Web Applications

module.exports = factory (mustache);
} else { // 4]
root .UmdModule = factory (root.Mustache);
t
} (this, function (mustache) { //15]
var template = '<hl>Hello <i>{{name}}</i></hl1>";

mustache.parse (template);

return A
sayHello: function (toWhom) {
return mustache.render (template, {name: toWhom});

)i

The preceding example defines a simple module with one external dependency: mustache
(http://mustache.github.io), which is a simple template engine. The final product of
the preceding UMD module is an object with one method called sayHello () that will
render a mustache template and return it to the caller. The goal of UMD is integrating the
module with other module systems available on the environment. This is how it works:

1. All the code is wrapped in an anonymous self-executing function, very similar to
the Revealing Module pattern we have seen in Chapter 2, Node.js Essential
Patterns. The function accepts a root that is the global namespace object available
on the system (for example, window on the browser). This is needed mainly for
registering the dependency as a global variable, as we will see in a moment. The
second argument is factory () of the module, a function returning an instance
of the module and accepting its dependencies as input (Dependency Injection).

2. The first thing we do is check whether AMD is available on the system. We do
this by verifying the existence of the define function and its amd flag. If found, it
means that we have an AMD loader on the system, so we proceed with
registering our module using define and requiring the dependency mustache
to be injected into factory ().

3. We then check whether we are in a Node.js-flavored Common]S environment by
checking the existence of the module and module.exports objects. If that's the
case, we load the dependencies of the module using require () and provide
them to the factory (). The return value of the factory is then assigned to
module.exports.

4. Lastly, if we have neither AMD nor Common]S, we proceed with assigning the
module to a global variable, using the root object, which in a browser
environment will usually be the window object. In addition, you can see how the
dependency, Mustache, is expected to be in the global scope.

[303]

http://mustache.github.io

Universal JavaScript for Web Applications

5. As a final step, the wrapper function is self-invoked, providing the this object as
root (in the browser, it will be the window object) and providing our module
factory as a second argument. You can see how the factory accepts its
dependencies as arguments.

It's also worth underlining that in the module, we haven't used any ES2015 feature. This is
to guarantee that the code will run fine even in the browser without any modification.

Now, let's see how we can use this UMD module in both Node.js and the browser.
First of all, we create a new testServer. js file:

const umdModule = require ('./umdModule');
console.log (umdModule.sayHello ('Server!'));

If we execute this script, it will output the following:

<hl>Hello <i>Server!</i></hl>

If we want to use our freshly baked module on the client as well, we can create a
testBrowser.html page with the following content:

<html>
<head>
<script src="node_modules/mustache/mustache.js"></script>
<script src="umdModule.js"></script>
</head>
<body>
<div id="main"></div>
<script>
document.getElementById('main') .innerHTML =
UmndModule.sayHello ('Browser!"'");
</script>
</body>
</html>

This will produce a page with a big fancy Hello Browser! as the title of the page.

What has happened here is that we included our dependencies (mustache and our
umdModule) as regular scripts in the head of the page and we then created a small inline
script that uses UmdModule (available as a global variable in the browser) to generate some
HTML code that was then placed inside the main block.

[304]

Universal JavaScript for Web Applications

In the code examples available for this book on the Packt Publishing
website, you can find other examples showing how the UMD module we
just created can also be used in combination with an AMD loader and a
Common]S system.

Considerations on the UMD pattern

The UMD pattern is an effective and simple technique used for creating a module
compatible with the most popular module systems out there. However, we have seen that it
requires a lot of boilerplate, which can be difficult to test in each environment and is
inevitably error-prone. This means that writing the UMD boilerplate manually can make
sense for wrapping a single module which has already been developed and tested. It is not
a practice to use when we are writing a new module from scratch; it is unfeasible and
impractical, so in these situations, it is better to leave the task to tools that can help us
automate the process. One of those tools is Webpack, which we will use in this chapter.

We should also mention that AMD, Common]JS, and browser globals are not the only
module systems out there. The pattern we have presented will cover most of the use cases,
but it requires adaptations to support any other module system. For example, the ES2015
module specification is something that we are going to discuss in the next section of the
chapter as it offers a number of advantages over other solutions and it is already part of the
new ECMAScript standard (even if at the time of writing it is not natively supported in
Node.js).

You can find a broad list of formalized UMD patterns at
https://github.com/umdjs/umd.

ES2015 modules

One of the features introduced by the ES2015 specification is a built-in module system. This
is the first time we will encounter it in this book because, unfortunately, at the time of
writing, ES2015 modules are still not supported in the current version of Node.js.

We will not describe this feature in detail here but it is important to know about it because it
will most likely become the go-to module syntax for years to come. Apart from being
standard, ES2015 modules introduce a nicer syntax and a number of advantages over the
other module systems we just discussed.

[305]

https://github.com/umdjs/umd

Universal JavaScript for Web Applications

The goal for ES2015 modules was to take the best out of CommonJS and AMD modules:

e Like Common]S, this specification provides a compact syntax, a preference for
single exports, and support for cyclic dependencies

e Like AMD, it offers direct support for asynchronous loading and configurable
module loading

Moreover, thanks to the declarative syntax, it is possible to use static analyzers to perform
tasks such as static checking and optimizations. For instance, it is possible to analyze the
dependency tree of a script and create a bundled file for the browser where all the unused
functions of the imported modules are stripped, thus providing a more compact file on the
client and reducing load times.

at the ES2015 specification: http://www.ecma-international.org/ec

To learn more about the syntax of the ES2015 modules you can have a look
0 ma-262/6.0/#sec—-scripts—and-modules.

Today, you can also use the new module syntax in Node.js, adopting a transpiler such as
Babel. Actually, many developers are advocating it while presenting their own solutions for
building Universal JavaScript apps. It's generally a good idea to be future-proof, especially
because this feature is already standardized and will eventually be part of the Node.js core.
For the sake of simplicity, we will stick to the Common]S syntax also all over this chapter.

Introducing Webpack

When writing a Node.js application, the last thing we want to do is to manually add
support for a module system different from the one offered as default by the platform. The
ideal situation would be to continue writing our modules as we have always done, using
require () and module.exports, and then use a tool to transform our code into a bundle
that can easily run in the browser. Luckily, this problem has already been solved by many
projects, among which Webpack (https://webpack.github.io) is one of the most
popular and broadly adopted.

Webpack allows us to write modules using the Node.js module conventions, and then,
thanks to a compilation step, it creates a bundle (a single JavaScript file) that contains all the
dependencies our modules need for working in the browser (including an abstraction of the
require () function). This bundle can then be easily included into a web page and
executed inside a browser. Webpack recursively scans our sources and looks for references
of the require () function, resolving and then including the referenced modules into the
bundle.

[3061

http://www.ecma-international.org/ecma-262/6.0/#sec-scripts-and-modules
http://www.ecma-international.org/ecma-262/6.0/#sec-scripts-and-modules
https://webpack.github.io

Universal JavaScript for Web Applications

Webpack is not the only tool we have for creating browser bundles from
Node.js modules. Other popular alternatives are Browserify (http://br
owserify.org), RollupJs (http://rollupjs.org) and Webmake
(https://npmjs.org/package/webmake). In addition, require.js
allows us to create modules for both the client and Node.js but it uses
AMD in place of Common]JS
(http://requirejs.org/docs/node.html).

Exploring the magic of Webpack

To quickly demonstrate how this magic works, let's see how umdModule, we created in the
previous section looks, if we use Webpack. First, we need to install Webpack itself; we can
do so with a simple command:

npm install webpack -g

The ~g option will tell npm to install Webpack globally so that we can access it using a
simple command from the console, as we will see in a moment.

Next, let's create a fresh project and let's try to build a module equivalent to the umdModule
we created before. This is how it looks if we had to implement it in Nodejs (file
sayHello.js):

var mustache = require('mustache');
var template = '<hl>Hello <i>{{name}}</i></hl>";
mustache.parse (template);
module.exports.sayHello = function (toWhom) {

return mustache.render (template, {name: toWhom});

bi

Definitely simpler than applying a UMD pattern, isn't it? Now, let's create a file called
main. js, thatis, the entry point of our browser code:

window.addEventListener ('load', function () {

var sayHello = require('./sayHello') .sayHello;

var hello = sayHello(Browser!');

var body = document.getElementsByTagName ("body") [0];
body.innerHTML = hello;
P

In the preceding code, we require the sayHello module in exactly the same way as we
would do in Node.js so, no more annoyances for managing dependencies or configuring
paths; a simple require () does the job.

[3071]

http://browserify.org
http://browserify.org
http://rollupjs.org
https://npmjs.org/package/webmake
http://requirejs.org/docs/node.html

Universal JavaScript for Web Applications

Next, let's make sure to have mustache installed in the project:

npm install mustache

Now comes the magical step. In a terminal, let's run the following command:

webpack main.js bundle.js

The previous command will compile the main module and bundle all the required
dependencies into a single file called bundle. js, which is now ready to be used in the
browser!

To quickly test this assumption, let's create an HTML page called magic.html that contains
the following code:

<html>
<head>
<title>Webpack magic</title>
<script src="bundle.js"></script>
</head>
<body>
</body>
</html>

This is enough for running our code in the browser. Try to open the page and see it with
your eyes. Boom!

During development, we don't want to manually run Webpack at every
change we make to our sources. What we want instead is an automatic
mechanism to regenerate the bundle when our sources change. To do that,
we can use the ——watch option when running the Webpack command.
This option will keep Webpack running continuously and it will take care
to re-compile our bundle every time one of the related source files
changes.

The advantages of using Webpack

The magic of Webpack doesn't stop here. This is a (incomplete) list of features that make
sharing code with the browser a simpler and seamless experience:

e Webpack automatically provides a version for many of the Node.js core modules
that are compatible with the browser. This means that we can use modules such
as http, assert, or events, and many more, in the browser!

[308]

Universal JavaScript for Web Applications

The £s module is among those not supported.

If we have a module that is incompatible with the browser, we can exclude it
from the build or replace it with an empty object or with another module
providing an alternative and browser-compatible implementation. This is a
crucial feature and we will have the chance to use it in the example we are going
to see shortly.

Webpack can generate bundles for different modules.

Webpack allows us to perform additional processing of the source files using
third-party loaders and plugins. There are loaders and plugins for almost
everything one might need, from CoffeeScript, TypeScript, or ES2015
compilation, to support for loading AMD, Bower (http://bower.io), and
Component (http://component .github.io) packages using require (), from
minification to the compilation and bundling of other assets such as templates
and stylesheets.

We can easily invoke Webpack from task managers such as Gulp
(https://npmjs.com/package/gulp-webpack) and Grunt (https://npmis.
org/package/grunt-webpack).

Webpack allows you to manage and pre-process all your project's resources, not
just JavaScript files but also stylesheets, images, fonts, and templates.

We can also configure Webpack to split the dependency tree and organize it into
different chunks that can be loaded on demand whenever the browser needs
them.

The power and flexibility of Webpack are so captivating that many developers started to
use it even to manage client-side only code. This is also made possible by the fact that many
client-side libraries are starting to support Common]S and npm by default, opening new
and interesting scenarios. For example, we can install jQuery as follows:

npm install jquery

And then, we can load it into our code with a simple line of code:

const $ = require('jquery');

You will be surprised at how many client-side libraries already support Common]S and

Webpack.

[3091

http://bower.io
http://component.github.io
https://npmjs.com/package/gulp-webpack
https://npmjs.org/package/grunt-webpack)
https://npmjs.org/package/grunt-webpack)

Universal JavaScript for Web Applications

Using ES2015 with Webpack

As we said in the previous paragraph, one of the main advantages of Webpack is the ability
to use loaders and plugins to transform the source code before bundling it.

Throughout this book we have been using many of the new handy features offered by the
ES2015 standard, and we would love to keep using it even when working on a universal
JavaScript application. In this section, we are going to see how to leverage the loader feature
of Webpack to re-write the previous example using the ES2015 syntax within our source
modules. With the proper configuration, Webpack will take care to transpile the resulting
code for the browser to ES5 to guarantee the maximum compatibility with all the currently
available browsers.

First of all, let's move our modules to a new src folder. This will make it easier for us to
organize our code and separate the transpiled code from the original source code. This
separation will also make it easier for us to configure Webpack properly and simplify the
way we invoke Webpack from the command line.

Now we are ready to rewrite our modules. The ES2015 of our src/sayHello.js will look
like this:

const mustache = require('mustache');
const template = '<hl>Hello <i>{{name}}</i></hl1>";
mustache.parse (template);
module.exports.sayHello = toWhom => {

return mustache.render (template, {name: toWhom});
}i

Notice that we are using const, let, and the arrow function syntax.

We can now update our src/main. js file to ES2015. Our src/main. js file instead can be
re-written as follows:

window.addEventListener ('load', () => {
const sayHello = require('./sayHello') .sayHello;
const hello = sayHello ('Browser!');

const body = document.getElementsByTagName ("body") [0];
body.innerHTML = hello;
P

Now we are ready to define the webpack.config. js file:

const path = require('path');
module.exports = {
entry: path.join(__dirname, "src", "main.js"),

[310]

Universal JavaScript for Web Applications

output: {
path: path.join(__dirname, "dist"),
filename: "bundle.js"

s

module: {
loaders: [

{
test: path.join(__dirname, "src"),
loader: 'babel-loader',
query: A

presets: ['es2015']

t

t

]
t
bi

This file is a module that exports a configuration object that will be read by Webpack when
we invoke it from the command line without any argument.

In the configuration object, we are defining the entry point as our src/main. js file and the
destination for our bundle file as dist /bundle. js.

This part was quite self-explanatory, so let's now have a look at the loaders array. This
optional array allows us to specify a set of loaders that can alter the content of our source
files while Webpack constructs our bundle file. The idea is that every loader represents a
specific transformation (in this case, ES2015 to ES5 using babel-loader) and it is applied
only if the current source file matches the specific test expression defined for the loader. In
this example, we are telling Webpack to use babel-loader on all the files coming from our
src folder and to apply the es2015 preset as Babel option.

Now we are almost ready; the only missing step before running Webpack is to install Babel
and the ES2015 preset with the following command:

npm install babel-core babel-loader babel-preset-es2015

Now, to generate your bundle, you can simply run:

webpack

Remember to reference the new dist/bundle. js in your magic.html file. You should be
able to open it in the browser and see that everything is still working properly.

If you are curious, you can read the content of the freshly generated bundle file and you
will discover that all the ES2015 features we used in the source files have been converted to
the equivalent code valid in ES5, which every browser on the market can execute just fine.

[311]

Universal JavaScript for Web Applications

Fundamentals of cross-platform
development

When developing for different platforms, the most common problem we have to face is
sharing the common parts of a component while providing different implementations for
details that are platform-specific. We will now explore some of the principles and the
patterns to use when facing this challenge.

Runtime code branching

The most simple and intuitive technique for providing different implementations based on
the host platform is to dynamically branch our code. This requires that we have a
mechanism to recognize at runtime the host platform and then switch dynamically the
implementation with an if..else statement. Some generic approaches involve checking
global variables that are available only on Node.js or only in the browser. For example, we
can check the existence of the window global:

if (typeof window !== "undefined" && window.document) {
//client side code
console.log('Hey browser!');
} else {
//Node.js code
console.log('Hey Node.js!');
}

Using a runtime branching approach for switching between Node.js and the browser is
definitely the most intuitive and simple pattern we can use for the purpose; however, there
are some inconveniences:

e The code for both the platforms is included in the same module and therefore in
the final bundle, increasing its size with unreachable code.

e If used too extensively, it can considerably reduce the readability of the code, as
business logic would be mixed with logic meant only to add cross-platform
compeatibility.

[312]

Universal JavaScript for Web Applications

¢ Using dynamic branching to load a different module depending on the platform
will result in all the modules being added to the final bundle regardless of their
target platform. For example, if we consider the next code fragment, both
clientModule and serverModule will be included in a bundle generated with
Webpack, unless we don't explicitly exclude one of them from the build:

if (typeof window !== "undefined" && window.document) {
require ('clientModule');
} else {

require ('serverModule');

}

This last inconvenience is due to the fact that bundlers have no sure way of knowing the
value of a runtime variable at build time (unless the variable is a constant), so they include
any module regardless of whether it's required from reachable or unreachable code.

A consequence of this last property is that modules required dynamically using variables
are not included in the bundle. For example, from the following code, no module will be
bundled:

modulelist.forEach (function (module) {
require (module) ;

)i

It's worth underlining that Webpack overcomes some of these limitations and, under certain
specific circumstances, it is able to guess all the possible values for a dynamic requirement.
For instance, if you have a snippet of code like the following:

function getController (controllerName) A
return require("./controller/" + controllerName);

}
It will put all the modules available in the controller folder.

It's heavily recommended to have a look at the official documentation to understand all the
supported cases.

Build-time code branching

In this section, we are going to see how to use Webpack to remove, at build time, all the
parts of the code that we want only the server to use. This allows us to obtain lighter bundle
files and to avoid accidentally exposing sensible code that should live only on the server.

[313]

Universal JavaScript for Web Applications

Apart from loaders, Webpack also offers support for plugins, which allows us to extend our
processing pipeline used to build the bundle file. To perform build-time code branching, we
can use a pipeline of two built-in plugins called DefinePlugin and UglifyJsPlugin.

DefinePlugin can be used to replace specific code occurrences in our source files with
custom code or variables. Instead, UglifyJsPlugin allows us to compress the resulting
code and remove unreachable statements (dead code).

Let's see a practical example to better understand these concepts. Let's assume we have the
following content in our main. js file:

if (typeof __BROWSER__ !== "undefined") {
console.log('Hey browser!');
} else {

console.log('Hey Node.js!');
}

Then, we can define the following webpack.config. js file:

const path = require('path');
const webpack = require ('webpack');

const definePlugin = new webpack.DefinePlugin ({
"__ BROWSER__": "true"
3}

const uglifyJsPlugin = new webpack.optimize.UglifyJsPlugin ({
beautify: true,
dead_code: true

}) i

module.exports = {
entry: path.join(__dirname, "src", "main.js"),
output: {

path: path.join(__dirname, "dist"),
filename: "bundle.js"
I
plugins: [definePlugin, uglifyJsPlugin]
}i

The important parts of the code here are the definition and configuration of the two plugins
that we introduced.

[314]

Universal JavaScript for Web Applications

The first plugin, DefinePlugin, allows us to replace specific parts of the source code with
dynamic code or constant values. The way it is configured is a bit tricky but this example
should help with understanding how it works. In this case, we are configuring the plugin to
look for all the occurrences of _ BROWSER___ in the code and to replace them with t rue.
Every value in the configuration object (in our case, "t rue" as a string and not as a
boolean) represents a piece of code that will be evaluated at build time and then used to
replace the currently matched snippet of code. This allows us to put in the bundle external
dynamic values containing, for instance, the content of an environment variable, the current
timestamp, or the hash of the last git commit. After occurrence of _ BROWSER___ is replaced,
the first i f statement will internally look like i1 f (true !== "undefined"), but
Webpack is smart enough to understand that this expression will always be evaluated as
true, so it transforms the resulting code againtobe i £ (true).

The second plugin (UglifyJsPlugin) is instead used to obfuscate and minify the
JavaScript code of the bundle file using Uglify]Js (https://github.com/mishoo/UglifyJ
S). With the dead_code option provided to the plugin, Uglify]s is able to remove all the
dead code, so our currently processed code that will look like this:

if (true) {

console.log('Hey browser!');
} else {

console.log('Hey Node.js!');

}

can be easily converted only in:

console.log('Hey browser!');

The beautify: true option is used to avoid removing all the indentation and whitespaces
so that, if you are curious, you can go and read the resulting bundle file. When creating
bundles for production, it is better to avoid specifying this option, which is by default
false.

In the example code that you can download in addition to this book, you
will find an extra example that will show you how to use the

Webpack DefinePlugin to replace specific constants with dynamic
variables such as the timestamp of bundle generation, the current user,
and the current operative system.

Even if this technique is way better than runtime code branching because it produces much
leaner bundle files, it can still make our source code cumbersome when abused. You don't
want to have statements that branches your server code from your browser code all around
your application, right?

[315]

https://github.com/mishoo/UglifyJS
https://github.com/mishoo/UglifyJS

Universal JavaScript for Web Applications

Module swapping

Most of the time, we already know at build time what code has to be included in the client
bundle and what shouldn't. This means that we can take this decision upfront and instruct
the bundler to replace the implementation of a module at build time. This often results in a
leaner bundle, as we are excluding unnecessary modules, and a more readable code because
we don't have all the 1 f..else statements required by runtime and build-time branching.

Let's find out how to adopt module swapping with Webpack with a very simple example.

We are going to build a module that exports a function called alert, which simply shows an
alert message. We will have two different implementations, one for the server and one for
the browser. Let's start with alertServer.js:

module.exports = console.log;
Then, with the alertBrowser. js:
module.exports = alert;

The code is super simple. As you can tell, we are just using the default functions
console. log for the server and alert for the browser. They both accept a string as an
argument, but the first prints the string in the console while the seconds displays it in a
window.

Now let's write our generic main. js code, which by default, uses the module for the server:

const alert = require('./alertServer');
alert ('"Morning comes whether you set the alarm or not!');

There's nothing crazy here—we are just importing the alert module and using it. If we
run:

node main.js
it will just print Morning comes whether you set the alarm or not! in the console.

Now comes the interesting part, let's see how our webpack.config. js should look to be
able to swap the require of alertServer with alertBrowser when we want to create the
bundle for the browser:

const path = require('path');
const webpack = require ('webpack');

const moduleReplacementPlugin =
new webpack.NormalModuleReplacementPlugin(/alertServer.js$/,

[316]

Universal JavaScript for Web Applications

'./alertBrowser.js');

module.exports = {
entry: path.join(__dirname, "src", "main.js"),
output: {

path: path.join(__dirname, "dist"),
filename: "bundle.js"

}I
plugins: [moduleReplacementPlugin]

bi

We are using the NormalModuleReplacementPlugin, which accepts two arguments. The
first argument is a regular expression and the second one is a string representing a path to a
resource. At build time, if a resource matches the given regular expression, it is replaced
with the one provided in the second argument.

In this example, we are providing a regular expression that matches our
alertServer module and replaces it with alertBrowser.

Notice that we used the const keyword in this example but for the sake of
simplicity, we didn't add the configuration to transpile ES2015
functionalities to the equivalent ES5 code, so with the current
configuration the resulting code might not work with old browsers.

Of course, we can use the same swapping technique also with external modules fetched
from npm. Let's improve the previous example to see how to use one or more external
modules together with module swapping.

Nobody wants to use the alert function today, and for good reason. This function in fact
displays a very bad looking window, which blocks the browser until the user dismisses it. It
would be much nicer to use a fancy toast popup to display our alert message. There are a
number of libraries on npm that provide this toast functionality, and one of these is toastr
(https://npmjs.com/package/toastr), which provides a very simple programmatic
interface and an enjoyable look and feel.

toastr relies on jQuery, so the first thing that we need to do is to install both with:
npm install jQuery toastr

Now we can rewrite our alertBrowser module to use toastr instead of the native alert
function:

const toastr = require('toastr');
module.exports = toastr.info;

[317]

https://npmjs.com/package/toastr

Universal JavaScript for Web Applications

The toastr.info function accepts a string as an argument and it will take care to display
the given message as a box in the top right corner of the browser window once invoked.

Our Webpack configuration file remains the same but, this time, Webpack will resolve the
full dependency tree for the new version of the alertBrowser module, thus
including jQuery and toastr in the resulting bundle file.

In addition, the server version of the module and the main. js file remained unchanged,
and this proves how this solution makes our code much easier to maintain.

To make this example work nicely in the browser, we should take care to
add the toastr CSS file to our HTML file.

Thanks to Webpack and the module replacement plugin, we can easily deal with structural
differences between platforms. We can focus on writing separate modules that are meant to
provide platform-specific code and we can then swap Node.js—only modules with
browser-specific ones in the final bundle.

Design patterns for cross-platform development

Now that we know how to switch between Node.js and browser code, the remaining pieces
of the puzzle are how to integrate this within our design and how we can create our
components in such a way that some of their parts are interchangeable. These challenges
should not sound new to us at all; in fact, all throughout the book we have seen, analyzed,
and used patterns to achieve this very purpose.

Let's revise some of them and describe how they apply to cross-platform development:

¢ Strategy and Template: These two are probably the most useful patterns when
sharing code with the browser. Their intent is, in fact, to define the common steps
of an algorithm, allowing some of its parts to be replaced, which is exactly what
we need! In cross-platform development, these patterns allow us to share the
platform-agnostic part of our components, while allowing their platform-specific
parts to be changed using a different strategy or template method (which can be
changed using runtime or compile-time branching).

[318]

Universal JavaScript for Web Applications

e Adapter: This pattern is probably the most useful when we need to swap an
entire component. In Chapter 6, Design Patterns, we have already seen an
example of how an entire module, incompatible with the browser, can be
replaced with an adapter built on top of a browser-compatible interface. Do you
remember the LevelUP adapter for the fs interface?

e Proxy: When code meant to run in the server runs in the browser, we often expect
things that live on the server to be available in the browser as well. This is where
the remote Proxy pattern comes into place. Imagine if we wanted to access the
filesystem of the server from the browser: we could think of creating an £s object
on the client that proxies every call to the £s module living on the server, using
Ajax or Web Sockets as a way of exchanging commands and return values.

¢ Observer: The Observer pattern provides a natural abstraction between the
component that emits the event and those that receive it. In cross-platform
development, this means that we can replace the emitter with its browser-specific
implementation without affecting the listeners and vice versa.

¢ DI and service locator: Both DI and service locator can be useful to replace the
implementation of a module at the moment of its injection.

As we can see, the arsenal of patterns at our disposal is quite powerful, but the most
powerful weapon is still the ability of the developer to choose the best approach and adapt
it to the specific problem at hand. In the next section, we are going to put into action what
we have learned, leveraging some of the concepts and patterns we have seen so far.

Introducing React

From this point on in the chapter, we are going to use React (sometimes referred to as
React]s), a JavaScript library originally released by Facebook
(http://facebook.github.io/react/) and focused on providing a comprehensive set
of functions and tools to build the view layer in our applications. React offers a view
abstraction focused on the concept of components, where a component could be a button, a
form input, a simple container such as an HTML div, or any other element in your user
interface. The idea is that you should be able to construct the user interface of your
application by just defining and composing highly reusable components with specific
responsibilities.

[319]

http://facebook.github.io/react/

Universal JavaScript for Web Applications

What makes React different from other view implementations for the web is that it is not
bound to the DOM by design. In fact, it provides a higher level abstraction called virtual
DOM that fits very well with the web but that can also be used in other contexts, for
example, building mobile apps, modeling 3D environments, or even defining the interaction
between hardware components.

“Learn it once, use it everywhere”
- Facebook

This is the motto often used by Facebook to introduce React. It intentionally mocks the
famous Java motto, “Write once, run it everywhere,” with the clear intention to take distance
from it and to state that every context is different and needs its own specific implementation
but, at the same time, you can re-use some convenient principles and tools across contexts
once you learn them.

If you are interested in looking at the applications of React in contexts not
strictly related to the field of web development, you can have a look at the
following projects:

React Native for mobile apps
(https://facebook.github.io/react-native)

React Three to create 3D scenes
(https://github.com/Izzimach/react-three)

React Hardware (https://github.com/iamdustan/react-hardware)

The main reason why React is so interesting in the context of Universal JavaScript
development is because it allows you to render the view code both from the server and on
the client using almost the same code. To put it in another way, with React we are able to
render all the HTML code that is required to display the page that the user requested
directly from a Node.js server, and then, when the page is loaded, any additional
interaction and rendering will be performed directly in the browser. This allows us to build
Single-Page Applications (SPAs), where most of the things happen on the browser and only
the part of the page that needs to be changed is refreshed. At the same time, this gives us
the benefit of serving the first page loaded by the user straight off from the server, thus
resulting in a faster (perceived) loading time and in a greater and easier indexability of the
content for search engines.

[320]

https://facebook.github.io/react-native
https://github.com/Izzimach/react-three)
https://github.com/iamdustan/react-hardware

Universal JavaScript for Web Applications

It's also worth mentioning that React Virtual DOM is capable of optimizing the way
changes are rendered. This means that the DOM is not rendered in full after every change,
and instead React uses a smart in-memory diffing algorithm that is able to pre-calculate the
minimum number of changes to apply to the DOM in order to update the view. This results
in a very efficient mechanism for fast browser rendering, and that's probably another
important reason why React is gaining a lot of traction over other libraries and frameworks.

Without further ado, let's start to use React and jump to a concrete example.

First React component

To start playing with React, we are going to build a very simple widget component to show
a list of elements in our browser window.

In this example, we will use some of the tools we have already seen throughout this
chapter, such as Webpack and Babel, so before starting to write some code, let's install all
the dependencies we are going to need:

npm install webpack babel-core babel-loader babel-preset-es2015

We also need React and the Babel preset to turn React code into the equivalent ES5 code:

npm install react react-dom babel-preset-react

Now we are ready to write our first react component in a module called
src/joyceBooks. Js:

const React = require('react');

const books = [
'Dubliners’,
'A Portrait of the Artist as a Young Man',
'Exiles and poetry',
'Ulysses',
'Finnegans Wake'
17

class JoyceBooks extends React.Component {
render () A
return (
<div>

<h2>James Joyce's major works</h2>

<ul className="books">{
books.map ((book, index) =>
<li className="book" key={index}>{book}</1i>

[321]

Universal JavaScript for Web Applications

)
}
</div>
)i
}
}

module.exports = JoyceBooks;

The first part of the code is very trivial; we are just importing the React module and
defining a books array that contains book titles.

The second part is the most interesting one: it's the core of our component. Beware —if this
is the first time you are looking at React code, it might look weird!

So, to define a React component, we need to create a class that extends from
React .Component. This class must define a function called render, which is used to
describe the part of the DOM for which the component is responsible.

But what is inside our render function? We are returning some sort of HTML with some
sort of JavaScript code inside and we are not even wrapping all of it with quotes. Yes, in
case you were wondering, this is not JavaScript, but it is JSX!

JSX, what?!

As we said before, React provides a high level API for generating and manipulating the
virtual DOM. The DOM is a great concept by itself and it can be easily represented with
XML or HTML, but if we have to dynamically manipulate its tree dealing with low level
concepts such as nodes, parents, and children, it might quickly get very cumbersome. To
deal with this intrinsic complexity, React introduced JSX as an intermediate format
designed to describe and manipulate the virtual DOM.

Actually, JSX is not a language on its own, and it is in fact a superset of JavaScript that
needs to be transpiled to plain JavaScript to be executed. However, it still gives the
developer the advantage of using an XML-based syntax with JavaScript. When developing
for the browser, JSX is used to describe the HTML code that defines our web components
and, as you have seen in the previous example, we can put HTML tags directly in the
middle of our JSX code as if they are a part of this enhanced JavaScript syntax.

This approach offers an intrinsic advantage, that is, our HTML code is now dynamically
validated at build time and we will get an ahead of time error if we forgot, for instance, to
close one tag.

[322]

Universal JavaScript for Web Applications

Let's now analyze the render function from the previous example to understand some
important details of JSX:

render () A
return (
<div>
<h2>James Joyce's major works</h2>
<ul className="books">{
books.map ((book, index) =>
<1li className="book" key={index}>{book}</1i>
)
}
</div>
)
}

As you saw, we can insert a piece of HTML code at any point of our JSX code without
having to put any particular indicator or wrapper around it. In this case, we simply defined
a div tag, which acts as a container for our component.

We can also put some JavaScript logic within this HTML block; notice the curly brackets
within the ul tag. This approach allows us to define parts of the HTML code dynamically in
a similar fashion to what you can do with many templating engines. In this case, we are
using the native JavaScript map function to iterate over all the available books in the array,
and for every one of them we create another piece of HTML to add the book name to the
list.

The curly brackets are used to define an expression within an HTML block, and the
simplest use case is to use them to print the content of a variable, like we are doing here
with {book}.

Finally, notice that we can again put another block of HTML code within this JavaScript
content, so that HTML and JavaScript content can be mixed and nested at any level to
describe the Virtual DOM.

It is not mandatory to use JSX when developing with React. JSX is just a nice interface on
top of the React Virtual DOM JavaScript library. With some additional effort, you can
achieve the same results by calling these functions directly and completely skipping JSX
and its transpilation step. Just to give you an idea about how React code looks without JSX,
have a look at the transpiled version of the render function of our example:

function render () {
return React.createElement (
'div',
null,

[323]

Universal JavaScript for Web Applications

React.createElement (
lh2l’
null,
'James Joyce's major works'
)I
React.createElement (
'ul',
{ className: 'books' },
books.map (function (book) {
return React.createElement (
llil’
{ className: 'book' 1},
book

As you can see, this code looks much less readable and more prone to errors, so most of the
time it is better to rely on JSX and use a transpiler to generate the equivalent JavaScript
code.

To complete our quick overview of JSX, let's have a look at how this code will be finally
rendered to HTML when executed:

<div data-reactroot="">
<h2>James Joyce's major works</h2>
<ul class="books">
<1li class="book">Dubliners</1li>
<1li class="book">A Portrait of the Artist as a Young Man
<1li class="book">Exiles and poetry
<1li class="book">Ulysses
<1li class="book">Finnegans Wake

</div>

One last thing to notice here is that in the JSX/JavaScript version of the code, we used the
attribute className and it was here converted to class. It's important to underline that
when we work with the virtual DOM, we must use the DOM equivalent attributes for
HTML attributes; React will then take care to convert them when rendering the HTML
code.

[324]

Universal JavaScript for Web Applications

A list with all the supported tags and attributes in React is available in the
official documentation at https://facebook.github.io/react/docs/
tags—-and-attributes.html.

If you are interested in knowing more about JSX syntax, you can read the
official specification provided by Facebook:
https://facebook.github.io/jsx.

Configuring Webpack to transpile JSX

In this section, we will see an example of Webpack configuration that we can use to be able
to transpile JSX code to JavaScript code that can be executed in the browser:

const path = require('path');

module.exports = {
entry: path.join(__dirname, "src", "main.js"),
output: {

path: path.join(__dirname, "dist"),
filename: "bundle.js"

}I

module: |

loaders: [
{
test: path.join(__dirname, "src"),
loader: 'babel-loader',
query: A
cacheDirectory: 'babel_cache',
presets: ['es2015', 'react']

}

}
}i

As you might have noticed, this configuration is almost identical to the one we saw in the
previous ES2015 Webpack example. The only relevant differences are as follows:

e We are using the react preset in Babel.

e We are using the option cacheDirectory. This option allows Babel to use a
specific directory as a cache folder (in this case, babel_cache) and be faster

while building the bundle file. It is not mandatory but highly encouraged to
speed up the development.

[325]

https://facebook.github.io/react/docs/tags-and-attributes.html
https://facebook.github.io/react/docs/tags-and-attributes.html
https://facebook.github.io/jsx

Universal JavaScript for Web Applications

Rendering in the browser

Now that we have our first React component ready, we just need to use it and render it in
the browser. Let's create our src/main. js JavaScript file to use our JoyceBooks
component:

const React = require('react');
const ReactDOM = require ('react-dom');
const JoyceBooks = require('./JjoyceBooks');

window.onload = () => {
ReactDOM. render (<JoyceBooks/>, document.getElementById('main'))

bi

The most important part of the code here is the ReactDOM. render function call. This
function takes as arguments a JSX code block and a DOM element, and it will take care to
render the JSX block to HTML code and apply it to the DOM node given as a second
argument. Also notice that the JSX block we are passing here contains only a custom tag
(JoyceBooks). Every time we require a component, it will be available as a JSX tag (where
the name of the tag is given by the class name of the component) so that we can easily insert
a new instance of this component in other JSX blocks. This is the base mechanism that
allows the developer to split the interface into several cohesive components.

Now the last step we need to perform to see our first React example live is to create an
index.html page:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>React Example - James Joyce books</title>
</head>
<body>
<div id="main"></div>
<script src="dist/bundle.js"></script>
</body>
</html>

This is very simple and doesn't require much explanation. We are just adding our
bundle. js file to a plain HTML page which contains div with the ID main that will act as

a container for our React application.

You can now just launch webpack from the command line and then open the index.html
page in your browser.

[326]

Universal JavaScript for Web Applications

What is important to understand is what happens with client-side rendering when the user
loads the page:

1. The HTML code of the page is downloaded by the browser and then rendered.
2. The bundle file is downloaded and its JavaScript content is evaluated.

3. The evaluated code takes care to generate the real content of our page
dynamically and updates the DOM to display it.

This means that if this page is loaded by a browser which has JavaScript disabled (for
example, a search engine bot), our webpage will look like a blank webpage without any
meaningful content. This might be a very serious problem, especially in terms of SEO.

Later in this chapter, we will see how to render the same React component from the server
to overcome this limitation.

The React Router library

In this section, we will improve our previous example of building a very simple navigable
app consisting of several screens. We will have three different sections: an index page, the
page of the books by James Joyce, and the page of the books by H. G. Wells. We will also
have a page to show when the user tries to access a URL that does not exist.

To build this app, we will use the React Router library, (nttps://github.com/reactjs/r
eact-router), a module that makes it easy to have navigable components in React. So, the
first thing we need to do is to download React Router in our project with:

npm install react-router

Now we are ready to create all the components needed to build the sections of this new
app. Let's start with src/components/authorsIndex. js:

const React = require('react');
const Link = require('react-router') .Link;

const authors = [

{id: 1, name: 'James Joyce', slug: 'joyce'},

{id: 2, name: 'Herbert George Wells', slug: 'h-g-wells'}
1i

class AuthorsIndex extends React.Component {
render () {
return (
<div>
<hl1>List of authors</hil>

[327]

https://github.com/reactjs/react-router)
https://github.com/reactjs/react-router)

Universal JavaScript for Web Applications

{
authors.map(author =>
<1li key={author.id}><Link to={'/author/${author.slug} }>
{author.name}</Link></1i>

)
}
</div>

}
module.exports = AuthorsIndex;

This component represents the index of our application. It displays the name of the two
authors. Notice that, again, to keep things simple, we are storing the data necessary to
render this component in authors, an array of objects, each one representing an author.
Another new element is the Link component. As you might have guessed, this component
comes from the React Router library and allows us to render clickable links that can be used
to navigate through the available sections of the app. What is important to understand is the
property to of the Link component. It is used to specify a relative URI that indicates the
specific route to display when the link is clicked. So, it is not very different than a regular
HTML <a> tag, the only difference is that, instead of moving to a new page by refreshing
the full page, React Router will take care to dynamically only refresh the part of the page
that needs to be changed to display the component associated with the new URIL We will
see better how this mechanism works when we write the configuration for our router. For
now, let's focus on writing all the other components that we want to use in our app. So, now
let's rewrite our JoyceBooks components that, this time, will be stored in
components/joyceBooks. js:

const React = require('react');
const Link = require('react-router') .Link;

const books = [
'Dubliners’',
'A Portrait of the Artist as a Young Man',
'Exiles and poetry',
'Ulysses',
'Finnegans Wake'
1;

class JoyceBooks extends React.Component {
render () A
return (
<div>
<h2>James Joyce's major works</h2>
<ul className="books">{

[328]

Universal JavaScript for Web Applications

books.map ((book, key) =>
<li key={key} className="book">{book}</1i>
)

}
<Link to="/">Go back to index</Link>
</div>
)i
t
t
module.exports = JoyceBooks;

As we might have expected, this component looks very similar to its previous version. The
only notable differences are that we are adding Link to go back to the index at the end of
the component and that we are using the attribute key inside our map function. With this
last change, we are telling React that the specific element is identified by a unique key (in
this case, we are using the index of the array for simplicity) so that it can perform a number
of optimizations whenever it needs to re-render the list. This last change is not mandatory
but it is heavily recommended, especially in larger applications.

Now following the same schema, we can write our components/wellsBooks.Jjs
component:

const React = require('react');
const Link = require('react-router') .Link;

const books = [
'The Time Machine',
'The War of the Worlds',
'The First Men in the Moon',
'The Invisible Man'

1;

class WellsBooks extends React.Component {
render () A
return (
<div>
<h2>Herbert George Wells's major works</h2>
<ul className="books">{
books.map ((book, key) =>
<1li key={key} className="book">{book}</1i>
)
r
<Link to="/">Go back to index</Link>
</div>
)

[329]

Universal JavaScript for Web Applications

module.exports = WellsBooks;

This component is almost identical to the previous one and, of course, this should ring a
bell! We could build a more generic AuthorPage component and avoid code duplication,
but this will be the topic for the next section, here we want to focus only on routing.

We also want to have a components/notFound. js component that just displays an error
message. We will skip this trivial implementation for the sake of brevity.

So, now let's move to the interesting part—the routes. js component which defines the
logic of our routing;:

const React = require('react');

const ReactRouter = require('react-router');

const Router = ReactRouter.Router;

const Route = ReactRouter.Route;

const hashHistory = ReactRouter.hashHistory;

const AuthorsIndex = require('./components/authorsIndex');
const JoyceBooks = require('./components/joyceBooks');
const WellsBooks = require('./components/wellsBooks');
const NotFound = require ('./components/notFound');

class Routes extends React.Component {
render () A
return (
<Router history={hashHistory}>
<Route path="/" component={AuthorsIndex}/>
<Route path="/author/joyce" component={JoyceBooks}/>
<Route path="/author/h-g-wells" component={WellsBooks}/>
<Route path="*" component={NotFound} />
</Router>

}

module.exports = Routes;

The first thing to analyze here is the list of modules that we need to implement the routing
component of our app. We are requiring the react-router, which in turn contains three
modules that we want to use: Router, Route, and hashHistory.

[330]

Universal JavaScript for Web Applications

Router is the main component that holds all the routing configuration. It's the element we
use as the root node for our Routes component. The property history specifies the
mechanism used to detect which route is active and how to update the URL in the browser
bar every time the user clicks on a link. There are commonly two strategies: hashHistory
and browserHistory. The first one uses the fragment part of the URL (the one delimited
by the hash symbol). With this strategy, our links will look like this:
index.html#/author/h-g-wells. The second strategy does not use the fragment but
leverages the HTMLS5 history API (https://developer.mozilla.org/en-US/docs/We
b/API/History_API) to display more realistic URLs. With this strategy, every path has its
own full URI, such as http://example.com/author/h-g-wells.

In this example, we are using the hashHistory strategy as it is the simplest to set up and
doesn't require a web server to refresh the page. We will have chance to use the
browserHistory strategy later in this chapter.

The Route component allows us to define an association between a path and a component.
This component will be rendered when the route is matched.

Inside our render function, we are summarizing and composing all these concepts and,
now that you know the meaning of every component and option, you should be able to
make sense of it.

What is important to understand here is the way the Router component works with this
declarative syntax:

e It acts as a container; it doesn't render any HTML code but contains a list of
Route definitions.

¢ Every Route definition is associated to a component. This time, the component is
a graphical component, meaning that it will be rendered in the HTML code of the
page, but only if the current URL of the page matches the route.

¢ Only one route can be matched for a given URIL In ambiguous cases, the router
prefers the less generic routes (for example, /author/joyce over /author).

e Itis possible to define a catch-all route with *, which is matched only when all
the other routes are not matched. We are using it here to display our “not found”
message.

e Now the last step to complete this example is to update our main. js to use the
Routes component as the main component of our application:

const React = require('react');
const ReactDOM = require ('react-dom');
const Routes = require('./routes');

[331]

https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API

Universal JavaScript for Web Applications

window.onload = () => {
ReactDOM. render (<Routes/>, document.getElementById('main'))

bi

Now we just need to run Webpack to regenerate our bundle file and open the index.html
to see our new app working.

Try to click around and see how the URL gets updated. Also, if you use any debug tool, you
will notice how the transition between one section and another doesn't fully refresh the
page neither trigger a new request. The app is in fact completely loaded when we open the
index page and the router is used here to basically show and hide the right component
given the current URIL. Anyway, the router is smart enough that if we try to refresh the page
with a specific URI (for example, index.html#/author/joyce), it will immediately
display the correct component.

React Router is a very powerful component and it has a number of interesting features. For
example, it allows you to have nested routes to represent multi-level user interfaces
(components with nested sections). We will also see in this chapter how it can be extended
to load components and data on demand. In the meantime, you can have a break and read
the official documentation of the component to discover all the available features.

Creating a Universal JavaScript app

At this stage of the chapter, we should have got most of the basics that we need to
transform our sample app into a full Universal JavaScript app. We met Webpack, React]s,
and analyzed most of the patterns that help us to uniform and differentiate the code
between platforms as needed.

In this section, we will keep improving our example by creating reusable components, by
adding universal routing and rendering, and finally universal data retrieval.

Creating reusable components

In the previous example, we created two very similar components: JoyceBooks and
WellsBooks. These two components are almost identical; the only difference between them
is that they use different data. Now imagine a real case scenario where we might have
hundreds or even thousands of authors... Yes, it wouldn't make much sense to keep having
a dedicated component for every author.

[332]

Universal JavaScript for Web Applications

In this section, we are going to create a more generic component and update our routing to
be able to have parameterized routes.

Let's start by creating the generic components/authorPage. js component:

const React = require('react');
const Link = require('react-router') .Link;
const AUTHORS = require('../authors');

class AuthorPage extends React.Component {
render () A
const author = AUTHORS[this.props.params.id];
return (
<div>
<h2>{author.name}'s major works</h2>
<ul className="books">{
author.books.map((book, key) =>
<li key={key} className="book">{book}</1i>
)
r
<Link to="/">Go back to index</Link>
</div>
)

}

module.exports = AuthorPage;

This component is, of course, very similar to the two components it is replacing. The two
major differences here are that we need to have a way to fetch the data from within the
component and a way to receive a parameter that indicates which author we want to
display.

For the sake of simplicity, we require authors. js here, a module that exports a JavaScript
object containing data about the authors that we use as a simple database. The variable
this.props.params.id represents the identifier of the author we need to display. This
parameter is populated by the router and we will see exactly how in a minute. So, we use
this parameter to extract the author from the database object and then we have everything
we need to render the component.

Just to make you understand how we are fetching the data, here is an example of how our
authors. js module might look:

module.exports = {
'joyce': |
'name': 'James Joyce',

[333]

Universal JavaScript for Web Applications

'books': [
'Dubliners’',
'A Portrait of the Artist as a Young Man',
'Exiles and poetry',
'Ulysses',
'Finnegans Wake'

]

s

'h-g-wells': {
'name': 'Herbert George Wells',
'books': [
'The Time Machine',
'The War of the Worlds',
'The First Men in the Moon',
'The Invisible Man'

}
bi

It's a very simple object that indexes authors by a mnemonic string identifier.

Now the final step is to review our routes. js components:

const React = require('react');

const ReactRouter = require('react-router');

const Router = ReactRouter.Router;

const hashHistory = ReactRouter.hashHistory;

const AuthorsIndex = require('./components/authorsIndex');
const AuthorPage = require('./components/authorPage');
const NotFound = require('./components/notFound');

const routesConfig = [
{path: '/', component: AuthorsIndex},
{path: '/author/:id', component: AuthorPage},
{path: '*', component: NotFound}

1;

class Routes extends React.Component {

render () A
return<Router history={hashHistory} routes={routesConfig}/>;
}
}
module.exports = Routes;

[334]

Universal JavaScript for Web Applications

This time, we are using the new generic AuthorPage component in place of the two specific
components we had in the previous example. We are also using an alternative configuration
for the router; this time, we are using a plain JavaScript array to define our routes instead of
putting the Route components within the render function of the Routes component. The
object is then passed to the routes attribute of the Router component. This configuration
is totally equivalent to the tag-based one we saw in the previous example and is sometimes
easier to write. Other times, for instance when we have many nested routes, the tag-based
configuration might be more comfortable to work with. The important change here is our
new /author/:id route that is linked to our new generic component and which replaced
our old specific routes. This route is parameterized (named parameters are defined with the
“column-prefixed-syntax,” as you can see here) and will match both our old

routes /author/joyce and /author/h-g-wells. Of course, it will match any other route
of this kind and the matched string for the id parameter is directly passed to the
component, which will be able to access it by reading props.params. id.

This completes our example; to run it, you just need to regenerate the bundle file using
Webpack and refresh the index.html page. This page and main. js remains unchanged.

Using generic components and parameterized routes, we have great flexibility and we
should be able to build quite complex apps.

Server-side rendering

Let's make another small step forwards in our journey through Universal JavaScript. We
said that one of the most interesting features of React is the ability to render components
even on the server side. In this section, we are going to leverage this feature to update our
simple app and render it directly from the server.

We are going to use Express (http://expressjs.com) as the web server and ejs
(https://npmjs.com/package/ejs) as the internal template engine. We will also need to
run our server script on top of Babel to be able to leverage JSX, so the first thing we need to
do is to install all these new dependencies:

npm install express ejs babel-cli

All our components remain the same as they were in the previous example, so we are going
to focus on the server. In the server, we will need to access to the routing configuration so,
to make this task simpler, we are going to extract the routing configuration object from the
routes. js file to a dedicated module called routesConfig. js:

const AuthorsIndex = require('./components/authorsIndex');
const AuthorPage = require ('./components/authorPage');

[335]

http://expressjs.com
https://npmjs.com/package/ejs
https://npmjs.com/package/ejs

Universal JavaScript for Web Applications

const NotFound = require ('./components/notFound');

const routesConfig = [
{path: '/', component: AuthorsIndex},
{path: '/author/:id', component: AuthorPage},
{path: '*', component: NotFound}

1;

module.exports = routesConfig;

We are also going to transform our static index . html file into an ejs template called
views/index.ejs:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>React Example - Authors archive</title>
</head>
<body>
<div id="main">
<%- markup —-%>
</div>
<!--<script src="dist/bundle.]js"></script>-->
</body>
</html>

Everything is simple here; there are only two details worth underlining:

e The <%~ markup -%> tagis the part of the template that will be dynamically
replaced with the React content that we will render on the server side before
serving the page to the browser.

e We are commenting the inclusion of the bundle script for now because in this
section we want to focus only on the server-side rendering. We will integrate a
complete universal rendering solution in the next sections.

e We can now create our server. js script:

const http = require('http');

const Express = require ('express');

const React = require('react');

const ReactDom = require('react-dom/server');

const Router = require('react-router');

const routesConfig = require('./src/routesConfig');

const app = new Express{();
const server = new http.Server (app);

[336]

Universal JavaScript for Web Applications

app.set ('view engine', 'ejs');

app.get ('*', (req, res) => {
Router.match (
{routes: routesConfig, location: reqg.url},
(error, redirectLocation, renderProps) => {
if (error) {
res.status (500) .send (error.message)
} else if (redirectLocation) {
res.redirect (302, redirectLocation.pathname +
redirectLocation.search)
} else if (renderProps) {
const markup = ReactDom.renderToString (<Router.RouterContext
{...renderProps} />);
res.render ('index', {markup});
} else {
res.status (404) .send ('Not found')

server.listen (3000, (err) => {
if (err) |
return console.error (err);

}

console.info ('Server running on http://localhost:3000");

)i

The important part of this code is the Express route defined with app.get (' *', (req,
res) => {...}).Thisisan Express catch-all route that will intercept all the GET requests
to every URL in the server. Inside this route, we take care of delegating the routing logic to
the React Router that we setup before for the client-side application.

Pattern

The server router component (Express built-in router) is here replaced by a
universal router (React Router) that is able to match the routes both on the
client and on the server.

To adopt the React Router in the server, we use the function Router.match. This function
accepts two parameters: the first one is a configuration object and the second is a callback
function. The configuration object must have two keys:

e routes: This is used to pass the React Router routes configuration. Here, we are
passing the exact same configuration that we used for the client-side rendering,
and that's the reason why we extracted it into a dedicated component at the

[3371]

Universal JavaScript for Web Applications

beginning of this section.

e location: This is used to specify the currently requested URL on which the
router will try to match one of the previously defined routes.

The callback function is called when a route is matched. It will receive three

arguments, error, redirectLocation, and renderProps, that we will use to determine
what exactly the result of the match operation was. We can have four different cases that we
need to handle:

e The first case is when we have an error during the routing resolution. To handle
this case, we simply return a 500 internal server error response to the browser.

e The second case is when we match a route that is a redirect route. In this case, we
need to create a server redirect message (302 redirect) to tell the browser to go to
the new destination.

¢ The third case is when we match a route and we have to render the associated
component. In this case, the argument renderProps is an object that contains
some data we need to use to render the component. This is the core of our server-
side routing mechanism and we use the ReactDOM. renderToString function to
be able to render the HTML code that represents the component associated to the
currently matched route. Then, we inject the resulting HTML into the index.ejs
template we defined before to obtain the full HTML page that we send to the
browser.

e The last case is when the route is not matched, and here we simply return a 404
not found error to the browser.

So, definitively, the most important part of this code is the following line:

const markup = ReactDom.renderToString(<Router.RouterContext
{...renderProps} />

Let's see better how the renderToString function works:

e This function comes from the module react-dom/server and it is capable of
rendering any React component to a string. It is used to render the HTML code in
the server to be immediately sent to the browser, speeding up the page load time
and making the page SEO friendly. React is smart enough that if we call
ReactDOM. render () for the same component in the browser, it will not render
the component again, it will just attach the event listeners to its existing DOM
nodes.

[338]

Universal JavaScript for Web Applications

e The component we are rendering is RouterContext (contained in the react-
router module), which is responsible for rendering the component tree for a
given router state. We pass to this component a set of attributes that are all the
fields inside the renderProps object. To expand this object, we are using the JSX-
spread attributes operator
(https://facebook.github.io/react/docs/jsx-spread.html#spread-a
ttributes), which extracts all the key/value pairs in the object to component
attributes.

Now we are ready to run our server. js script with:

node server

Then, we can open the browser and point it to http://localhost:3000 to see our server-
rendered app up and running.

Remember that we disabled the inclusion of the bundle file, so at the moment, we have no
client-side JavaScript code running and every interaction triggers a new server request that
refreshes the page entirely. This is not so cool, right?

In the next section, we will see how to enable both client and server rendering, adding to
our sample app an effective universal routing and rendering solution.

Universal rendering and routing

In this paragraph, we will update our sample app to leverage both server- and client-side
rendering and routing. We have already shown the individual parts working, so now it's
just a matter of polishing things up a bit.

The first thing that we are going to do is to uncomment the bundle. js inclusion in our
main view file (views/index.ejs).

Then, we need to change the history strategy in our client-side app (main. js). Do you
remember that we were using the hash history strategy? Well, this strategy doesn't play
well with universal rendering because we want to have the exact same URLs both in the
client and the server routing. In the server, we can only use the browser history strategy, so
let's rewrite the routes. js module to use it in the client as well:

const React = require('react');

const ReactRouter = require('react-router');

const Router = ReactRouter.Router;

const browserHistory = ReactRouter.browserHistory;
const routesConfig = require('./routesConfig');

[339]

https://facebook.github.io/react/docs/jsx-spread.html#spread-attributes
https://facebook.github.io/react/docs/jsx-spread.html#spread-attributes

Universal JavaScript for Web Applications

class Routes extends React.Component {
render () A
return<Router history={browserHistory} routes={routesConfig}/>;
}
}

module.exports = Routes;

As you can see, the only relevant change is that we are now requiring the
ReactRouter.browserHistory function and passing it to our Router component.

We are almost done; there is only a small change that we need to perform in our server app
to be able to serve the bundle. js file to the client from our server as a static asset.

To do this, we can use the Express.static middleware that allows us to expose the
content of a folder as static files from a specific path. In our case, we want to expose the
dist folder, so we just need to add the following line before our main server routing
configuration:

app.use ('/dist', Express.static('dist'));

And that's pretty much it! Now to see our app live, we just need to regenerate our bundle
file with Webpack and restart our server. Then you will be able to navigate through your
apponhttp://localhost:3000 as you were doing before. Everything will look the
same, but if you use an inspector or a debugger, you will notice that, this time, only the first
request will be fully rendered by the server, while others will be managed by browser. If
you want to keep playing a bit, you can also try to force refresh the page on specific URIs to
also test that the routing is working seamlessly both on the server and on the browser.

Universal data retrieval

Our sample app is now starting to get a solid structure in order to grow and become a more
complete and scalable app. However, there is still a very fundamental point that we haven't
yet addressed properly, and that is, data retrieval. Do you remember that we used a module
that just contains JSON data? Currently, we use that module as a sort of database, but of
course, this is a very suboptimal approach for a number of reasons:

e We are sharing the JSON file everywhere in our app and accessing the data
directly across frontend, backend, and in every React component.

[340]

Universal JavaScript for Web Applications

¢ Given that we access the data also on the frontend, we end up putting the full
database also in the frontend bundle. This is risky because we might accidentally
expose any sensitive information. Also, our bundle file will grow with the growth
of our database and we will be forced to recompile it after every change on the
data.

It's obvious that we need a better solution—a more decoupled and scalable one.

In this section, we will improve our example by building a dedicated REST API server that
will allow us to fetch the data asynchronously and on demand: only when it is really
needed and only the specific subset of data that we want to render to the current section of
the app.

The API server

We want the API server to be completely separated by our backend server; ideally, it should
be possible to scale this server independently from the rest of the application.

Without further ado, let's see the code of our apiServer. js:

const http = require('http');
const Express = require ('express');

const app = new Express();
const server = new http.Server (app);
const AUTHORS = require('./src/authors'); // [11]

app.use((req, res, next) => { // [2]
console.log(Received request: S${reg.method} ${reg.url} from
${reg.headers|['user—-agent']}");
next ();
P

app.get ('/authors', (req, res, next) => { // [3]
const data = Object.keys (AUTHORS) .map (id => {
return <
'id': id,
'name': AUTHORS[id] .name
bi
P

res.json (data);
)i

app.get ('/authors/:id', (req, res, next) => { // [4]

[341]

Universal JavaScript for Web Applications

if (!'AUTHORS.hasOwnProperty (reqg.params.id)) {
return next ();

}

const data = AUTHORS[reqg.params.id];
res.json (data);

1)

server.listen (3001, (err) => {
if (err) {
return console.error (err);

}
console.info ('API Server running on http://localhost:3001"');

1)

As you can see, we are again using Express as a web server framework, but let's still
analyze the main parts of this code:

¢ Our data still lies in a module as a JSON file (src/authors. js). This is, of
course, only for simplicity and works for the sake of our example, but in a real
world scenario, it should be replaced with a real database such as MongoDB,
MySq]l, or LevelDB. In this example, we will access the data directly from the
required JSON object, while in a real case app we will make queries to the
external data source when we want to read the data.

e We are using a middleware that prints in the console some useful information
every time we receive a request. We will see later that these logs can help us to
understand who is calling the API (the frontend or the backend) and to verify
that the whole app is behaving as expected.

e We expose a GET endpoint identified by the URI /authors that returns a JSON
array containing all the available authors. For every author, we are exposing the
fields' id and name. Again, here, we are extracting data directly from the JSON
file we imported as database; in a real-world scenario, we would prefer to
perform a query to a real database here.

e We are also exposing another GET endpoint on the URI /authors/:id, where
:1d is a generic placeholder that will match the ID of the specific author for
which we want to read the data. If the given ID is valid (there is an entry in our
JSON file for that ID), the API returns an object containing the name of the author
and an array of books.

We can now run our API server with:

node apiServer

[342]

Universal JavaScript for Web Applications

It will be now accessible on http://localhost:3001, and if you want to test it, you can
try to make a couple of curl requests:

curl http://localhost:3001/authors/
[{"id":"Jjoyce", "name" :"James Joyce"},{"id":"h-g-wells", "name":"Herbert
George Wells"}]

curl http://localhost:3001/authors/h-g-wells
{"name" :"Herbert George Wells","books":["The Time Machine","The War of the
Worlds","The First Men in the Moon","The Invisible Man"]}

Proxying requests for the frontend

The API we just built should be accessible for both the backend and the frontend. The
frontend will need to call the API with an AJAX request. You are probably aware of the
security policies that allow the browser to make AJAX requests only to URLs in the domain
where the page was loaded. That means that if we run our API server on localhost:3001
and our web server on localhost:3000, we are actually using two different domains and
the browser will fail to call the API endpoints directly. To overcome this limitation, we can
create a proxy within our web server that will take care to expose the same endpoints of the
API server locally using an internal convenience route (Localhost :3000/api), as shown
in the following picture:

localhost:3000

- ™

Web Server

localhost:3001

Browser Api Server
localhost:3000/api

Api Proxy

N\ 4

To build the proxy component in our web server, we are going to use the excellent ht tp-
proxy module (https://npmjs.com/package/http-proxy), so we need to install it with
npm:

npm install http-proxy

[343]

https://npmjs.com/package/http-proxy

Universal JavaScript for Web Applications

We will see in a moment how it will be included in the web server and configured.

Universal API client

We will call the API using two different prefixes given the current environment:

® http://localhost:3001 when we call the API from the web server
e /api when we call the API from the browser

We also need to consider that in the browser we have only the XHR/AJAX mechanism to
make asynchronous HTTP requests, while on the server we have to use a library like
request or the built-in http library.

To overcome all these differences and build a universal API client module, we can use a
library called axios (https://npmjs.com/package/axios). This library works both on
the client and on the server and abstracts the two different mechanisms that each
environment uses to make HTTP requests to a single uniform APL

So, we need to install axios with:

npm install axios

Then, we also need to create a simple wrapper module that takes care to export a
configured instance of axios. We call this module xhrClient. js:

const Axios = require('axios');

const baseURL = typeof window !== 'undefined' ? '/api'
'http://localhost:3001";

const xhrClient = Axios.create ({baseURL});

module.exports = xhrClient;

In this module, we are basically checking if the window variable is defined to detect whether
we are running the code on the browser or on the web server so that we can set the proper
API prefix accordingly. Then, we simply export a new instance of the axios client,
configured with the current value of the base URL.

Now we can simply import this module in our React components, and depending on
whether they are executed on the server or on the browser, we will be able to use a
universal interface and all the intrinsic differences of the two environments will be hidden
within the code of the module.

[344]

https://npmjs.com/package/axios

Universal JavaScript for Web Applications

Other widely appreciated universal HTTP clients are superagent (https
://npmijs.com/package/superagent) and isomorphic—fetch (https
://npmijs.com/package/isomorphic-fetch)

Asynchronous React components

Now that our components will have to use this new set APIs, they will need to be
asynchronously initialized. To be able to do so, we can use an extension of the React Router
called async-props (https://npmjs.com/package/async—props).

So, let's install this module with:

npm install async-props

Now we are ready to rewrite our components to be asynchronous. Let's start with
components/authorsIndex. js:

const React = require('react');
const Link = require('react-router') .Link;
const xhrClient = require('../xhrClient');

class AuthorsIndex extends React.Component {
static loadProps (context, cb) {
xhrClient.get ('authors')
.then (response => {
const authors = response.data;
cb(null, {authors});
})

.catch (error => cb(error))

}

render () A
return (
<div>
<h1>List of authors</hil>
{
this.props.authors.map (author =>
<1li key={author.id}>
<Link to={'/author/${author.id} }>{author.name}</Link>
</1li>
)
r
</div>

[345]

https://npmjs.com/package/superagent
https://npmjs.com/package/superagent
https://npmjs.com/package/isomorphic-fetch
https://npmjs.com/package/isomorphic-fetch
https://npmjs.com/package/async-props

Universal JavaScript for Web Applications

}

module.exports = AuthorsIndex;

As you can see, in this new version of the module we require our new xhrClient in place
of the old module containing the raw JSON data. Then, we add a new method in the
component class called 1oadProps. This method accepts as arguments an object containing
some context parameters that will be passed by the router (context) and a callback
function (cb). Inside this method, we can perform all the asynchronous actions needed to
retrieve the data necessary to initialize the component. When everything is loaded (or in
case there is an error), we execute the callback function to propagate the data and notify the
router that the component is ready. In this case, we are using xhrClient to fetch the data
from the authors endpoint.

In the same fashion, we also update the components/authorPage. js component:

const React = require('react');
const Link = require('react-router') .Link;
const xhrClient = require('../xhrClient');

class AuthorPage extends React.Component {
static loadProps (context, cb) {
xhrClient.get (" authors/${context.params.id}")
.then (response => {
const author = response.data;
cb (null, {author});
})

.catch (error => cb(error))

render () A
return (
<div>
<h2>{this.props.author.name}'s major works</h2>
<ul className="books">{
this.props.author.books.map((book, key) =>
<li key={key} className="book">{book}</1i>
)
P
<Link to="/">Go back to index</Link>
</div>
)

}

module.exports = AuthorPage;

[346]

Universal JavaScript for Web Applications

The code here follows the same logic described in the previous component. The main
difference is that, this time, we are calling the authors/:id APl endpoint and we are
taking the ID parameter from the context .params. id variable that will be passed by the
router.

To be able to load these asynchronous components correctly, we need to also update our
router definition for both the client and the server. For now, let's focus on the client and see
how the new version of routes. js will look:

const React = require('react');
const AsyncProps = require('async-props') .default;
const ReactRouter = require('react-router');

const Router = ReactRouter.Router;
const browserHistory = ReactRouter.browserHistory;
const routesConfig = require('./routesConfig');

class Routes extends React.Component {
render () A
return <Router
history={browserHistory}
routes={routesConfig}
render={ (props) => <AsyncProps {...props}/>}
/>;
t
t

module.exports = Routes;

The two differences from the previous version are that we require the async-props
module and that we are using it to redefine the render function of the Router component to
use it. This approach actually hooks the logic of async-props module within the rendering
logic of the router, enabling the support for asynchronous behavior.

The web server

Finally, the last task we need to complete in this example is to update our web server in
order to use the proxy server to redirect the API calls to the real API server and to render
the router using the async-props module.

We renamed our server. js to webServer. js to clearly distinguish it from the API server
file. This will be the content of the new file:

const http = require('http');

const Express = require ('express');
const httpProxy = require ('http-proxy');
const React = require('react');

[347]

Universal JavaScript for Web Applications

const AsyncProps = require('async-props') .default;
const loadPropsOnServer = AsyncProps.loadPropsOnServer;
const ReactDom = require ('react-dom/server');

const Router = require('react-router');

const routesConfig = require('./src/routesConfig');

const app = new Express();
const server = new http.Server (app);

const proxy = httpProxy.createProxyServer ({
target: 'http://localhost:3001"'

3
app.set ('view engine', 'ejs');
app.use ('/dist', Express.static('dist'));
app.use('/api', (req, res) => {
proxy.web (req, res, {target: targetUrl});
3
app.get ('*', (req, res) => {
Router.match ({routes: routesConfig, location: reqg.url}, (error,
redirectLocation, renderProps) => {
if (error) {
res.status (500) .send (error.message)
} else if (redirectLocation) {
res.redirect (302, redirectLocation.pathname +
redirectLocation.search)
} else if (renderProps) {
loadPropsOnServer (renderProps, {}, (err, asyncProps, scriptTag) => {
const markup = ReactDom.renderToString (<AsyncProps {...renderProps}
{...asyncProps} />);
res.render ('index', {markup, scriptTag});
3
} else {
res.status (404) .send ('Not found')
t
)i
)i
server.listen (3000, (err) => {

if (err) {
return console.error (err);
t
console.info ('WebServer running on http://localhost:3000");

1)

[348]

Universal JavaScript for Web Applications

Let's analyze one-by-one the changes from the previous version:

e First of all, we need to import some new modules: ht tp-proxy and async-
props.

e We initialize the proxy instance and we add it to our web server through
middleware mapped to the requests that matches/api.

¢ We change the server-side rendering logic a bit. This time, we cannot directly call
the renderToString function because we must ensure that all the asynchronous
data has been loaded. The async-props module offers the function
loadPropsOnServer to serve this purpose. This function executes all the
necessary logic to load the data from the currently matched component
asynchronously. When the loading finishes, a callback function is called, and only
within this function is it safe to call the renderToString method. Also notice
that, this time, we are rendering the AsyncProps component instead
of RouterContext, passing it a set of synchronous and asynchronous attributes
with the JSX-spread syntax. Another very important detail is that, in the callback,
we are also receiving an argument called scriptTag. This variable will contain
some JavaScript code that needs to be placed in the HTML code. This code will
contain a representation of the asynchronous data loaded during the server-side
rendering process, so that the browser will be able to directly access this data and
will not need to make a duplicated API request. To put this script in the resulting
HTML code, we pass it to the view along with the markup obtained from the
component rendering process.

Our views/index.ejs template was also slightly modified to display the scriptTag
variable we just mentioned:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8"/>
<title>React Example - Authors archive</title>
</head>
<body>
<div id="main"><%- markup $%></div>
<script src="/dist/bundle.]js"></script>
<%— scriptTag %>
</body>
</html>

As you can see, we are adding the scriptTag before closing the body of the page.

[349]

Universal JavaScript for Web Applications

Now we are almost ready to execute this example; we just need to regenerate our bundle
with Webpack and to start the web server with:

babel-cli server.js

Finally, you can open your browser and point it to http://localhost :3000. Again,
everything will look the same, but what happens under the hood is now completely
different. Open your inspector or debugger on the browser and try to figure out when an
API request is made by the browser. You can also check the console where you started the
API server and read the logs to understand who is requesting the data and when.

Summary

In this chapter, we explored the innovative and fast-moving world of Universal JavaScript.
Universal JavaScript just opened up a lot of new opportunities in the field of web
development, but it is still quite a fresh and immature field.

In this chapter, we focused on introducing all the basics of this subject, discussing topics
such as component-oriented user interfaces, universal rendering, universal routing, and
universal data retrieval. Throughout the process, we built a very simple application that
demonstrates how to combine together all these concepts. We also added to our belt a new
chain of powerful tools and libraries, such as Webpack and React.

Even though we discussed a lot of topics, we barely scratched the surface of this wide topic,
and you should have gained all the necessary knowledge to keep exploring this world on
your own if you are interested in knowing more. Given this immaturity, tools and libraries
will probably change a lot in the next few years, but all the basic concepts should stay as
they are, so don't be ashamed to keep exploring and experimenting. To become an expert
on this topic is now just a matter of using the acquired knowledge to build a first real-world
app with real, business-driven use cases.

It's also worth underlining that the knowledge acquired here might be useful for projects
that cross the boundaries of web development, like mobile app development. If you are
interested in this topic, React Native might be a good starting point.

In the next chapter, we are going to strengthen our knowledge of asynchronous design
patterns and address some specific scenarios such as asynchronously initialized modules
and asynchronous batching and caching. Are you ready for some more advanced and
exciting topics?

[350]

Advanced Asynchronous
Recipes

Almost all the design patterns we've seen so far can be considered generic and applicable to
many different areas of an application. There is, however, a set of patterns that are more
specific and focused on solving well-defined problems; we can call these patterns recipes. As
in real-life cooking, we have a set of well-defined steps to follow that will lead us to an
expected outcome. Of course, this doesn't mean that we can't use some creativity to
customize the recipes to match the taste of our guests, but the outline of the procedure is
usually the one that matters. In this chapter, we are going to provide some popular recipes
to solve some specific problems we encounter in our everyday Node.js development. These
recipes include the following:

¢ Requiring modules that are initialized asynchronously

e Batching and caching asynchronous operations to get a performance boost in
busy applications, using only minimal development effort

¢ Running synchronous CPU-bound operations that can block the event loop and
cripple the ability of Node.js to handle concurrent requests

Requiring asynchronously initialized
modules

In chapter 2, Node.js Essential Patterns, when we discussed the fundamental properties of
the Node.js module system, we mentioned the fact that require () works synchronously
and that module.exports cannot be set asynchronously.

Advanced Asynchronous Recipes

This is one of the main reasons for the existence of synchronous API in the core modules
and many npm packages, they are provided more as a convenient alternative, to be used
primarily for initialization tasks rather than a substitute for asynchronous APIL

Unfortunately, this is not always possible; a synchronous API might not always be
available, especially for components using the network during their initialization phase, for
example, to perform handshake protocols or to retrieve configuration parameters. This is
the case for many database drivers and clients for middleware systems such as message
queues.

Canonical solutions

Let's take an example: a module called db, which connects to a remote database. The db
module will be able to accept requests only after the connection and the handshake with the
server have been completed. In this scenario, we usually have two options:

¢ Making sure that the module is initialized before starting to use it, otherwise wait
for its initialization. This process has to be done every time we want to invoke an
operation on the asynchronous module:

const db = require('aDb'); //The async module

module.exports = function findAll (type, callback) {
if (db.connected) { //is it initialized?
runFind () ;
} else {
db.once ('connected', runFind);
3
function runFind () {
db.findAll (type, callback);
)i
bi

¢ Use Dependency Injection (DI) instead of directly requiring the asynchronous
module. By doing this, we can delay the initialization of some modules until their
asynchronous dependencies are fully initialized. This technique shifts the
complexity of managing the module initialization to another component, usually
the parent module. In the following example, this component is app. js:

//in the module app.js
const db = require('aDb'); //The async module
const findAllFactory = require('./findAll'");
db.on ('connected', function() {

const findAll = findAllFactory (db);

[352]

Advanced Asynchronous Recipes

)i

//in the module findAll.]s
module.exports = db => {
//db is guaranteed to be initialized
return function findAll (type, callback) {
db.findAll (type, callback);
}
}

We can immediately see that the first option can become highly undesirable, considering
the amount of boilerplate code involved.

Also, the second option, which uses DI, is sometimes undesirable, as we have seen in
Chapter 7, Wiring Modules. In big projects, it can quickly become over-complicated,
especially if done manually and with asynchronously initialized modules. These problems
would be mitigated if we were using a DI container designed to support asynchronously
initialized modules.

As we will see, though, there is a third alternative that allows us to easily isolate the module
from the initialization state of its dependencies.

Preinitialization queues

A simple pattern to decouple a module from the initialization state of a dependency
involves the use of queues and the Command pattern. The idea is to save all the operations
received by a module while it's not yet initialized and then execute them as soon as all the
initialization steps have been completed.

Implementing a module that initializes asynchronously

To demonstrate this simple but effective technique, let's build a small test application;
nothing fancy, just something to verify our assumptions. Let's start by creating an
asynchronously initialized module called asyncModule. js:

const asyncModule = module.exports;

asyncModule.initialized = false;

asyncModule.initialize = callback => {
setTimeout (function () {

asyncModule.initialized = true;
callback () ;

[3531]

Advanced Asynchronous Recipes

}, 10000);
bi

asyncModule.tellMeSomething = callback => {
process.nextTick (() => {
if (lasyncModule.initialized) {
return callback(
new Error ('I don't have anything to say right now')
)i
}

callback (null, 'Current time is: ' + new Date());
)i
bi

In the preceding code, asyncModule tries to demonstrate how an asynchronously
initialized module works. It exposes an initialize () method, which after a delay of 10
seconds, sets the initialized variable to t rue and notifies its callback (10 seconds is a lot
for a real application, but for us it's great for highlighting any race conditions). The other
method, tellMeSomething (), returns the current time, but if the module is not yet
initialized, it generates an error.

The next step is to create another module depending on the service we just created. Let's
consider a simple HTTP request handler implemented in a file called routes. js:

const asyncModule = require('./asyncModule');

module.exports.say = (req, res) => {
asyncModule.tellMeSomething((err, something) => {
if (err) |
res.writeHead (500) ;
return res.end('Error:' + err.message);
}
res.writeHead (200);
res.end('I say: ' + something);
)i
}i

The handler invokes the tel1MeSomething () method of asyncModule, then it writes the
result into an HTTP response. As we can see, we are not performing any checks on the
initialization state of asyncModule, and as we can imagine, this will likely lead to
problems.

[354]

Advanced Asynchronous Recipes

Now, let's create a very basic HT'TP server using nothing but the core http module (the
app. js file):

const http = require('http');

const routes = require('./routes');
const asyncModule = require('./asyncModule');
asyncModule.initialize (() => {

console.log('Async module initialized');
)i

http.createServer ((req, res) => {
if (reg.method === 'GET' && req.url === '/say') {
return routes.say(req, res);

}
res.writeHead (404);
res.end('Not found');
}).listen (8000, () => console.log('Started'));

The preceding small module is the entry point of our application, and all it does is trigger
the initialization of asyncModule and create an HTTP server that makes use of the request
handler we created previously (routes.say ()).

We can now try to fire up our server by executing the app . js module as usual. After the
server is started, we can try to hit the URL, http://localhost:8000/say, with a browser
and see what comes back from our asyncModule.

As expected, if we send the request just after the server is started, the result will be an error
as follows:

Error:I don't have anything to say right now

This means that asyncModule is not yet initialized, but we still tried to use it. Depending
on the implementation details of the asynchronously initialized module, we could have
received a graceful error, lost important information, or even crashed the entire application.
In general, the situation we just described has to always be avoided. Most of the time, a few
failing requests might not be a concern or the initialization might be so fast that, in practice,
it would never happen; however, for high load applications and cloud servers designed to
autoscale, both of these assumptions might quickly get obliterated.

[3551

Advanced Asynchronous Recipes

Wrapping the module with preinitialization queues

To add robustness to our server, we are now going to refactor it by applying the pattern we
described at the beginning of the section. We will queue any operations invoked on
asyncModule during the time it's not yet initialized and then flush the queue as soon we
are ready to process them. This looks like a great application for the State pattern! We will
need two states, one that queues all the operations while the module is not yet initialized,
and another that simply delegates each method to the original asyncModule module, when
the initialization is complete.

Often, we don't have the chance to modify the code of the asynchronous module; so, to add
our queuing layer, we will need to create a proxy around the original asyncModule
module.

Let's start to work on the code; let's create a new file named asyncModuleWrapper. js and
let's start building it piece-by-piece. The first thing that we need to do is to create the object
that delegates the operations to the active state:

const asyncModule = require('./asyncModule');
const asyncModuleWrapper = module.exports;

asyncModuleWrapper.initialized = false;
asyncModuleWrapper.initialize = () => {

activeState.initialize.apply(activeState, arguments);
bi

asyncModuleWrapper.tellMeSomething = () => {
activeState.tellMeSomething.apply (activeState, arguments);
bi

In the preceding code, asyncModulelirapper simply delegates each of its methods to the
currently active state. Let's see then what the two states look like, starting from
notInitializedState

const pending = [];
const notInitializedState = {

initialize: function (callback) {
asyncModule.initialize (() => {
asyncModuleWrapper.initalized = true;
activeState = initializedState; // 1]

pending. forEach (req => { /7121
asyncModule [reg.method] .apply (null, reg.args);
1)

[3561

Advanced Asynchronous Recipes

pending = [];

callback () ; // 3]
1) i
}’

tellMeSomething: callback => {
return pending.push ({
method: 'tellMeSomething',
args: arguments
H) i
}
i

When the initialize () method is invoked, we trigger the initialization of the original
asyncModule module, providing a callback proxy. This allows our wrapper to know when
the original module is initialized and consequently triggers the following operations:

1. Updates the activeState variable with the next state object in our
flow—initializedState.

2. Executes all the commands that were previously stored in the pending queue.
3. Invokes the original callback.

As the module at this point is not yet initialized, the tel1MeSomething () method of this
state simply creates a new Command object and adds it to the queue of the pending
operations.

At this point, the pattern should already be clear when the original asyncModule module is
not yet initialized, our wrapper will simply queue all the received requests. Then, when we
are notified that the initialization is complete, we execute all the queued operations and
then switch the internal state to initializedState. Let's see then, what this last piece of
the wrapper looks like:

let initializedState = asyncModule;

Without (probably) any surprise, the initializedState object is simply a reference to the
original asyncModule! In fact, when the initialization is complete, we can safely route any
request directly to the original module. Nothing more is required.

At last, we have to set the initial active state, which of course will be
notInitializedState:

let activeState = notInitializedState;

[3571]

Advanced Asynchronous Recipes

We can now try to launch our test server again, but first, let's not forget to replace the
references to the original asyncModule module with our new asyncModuleWrapper
object; this has to be done in the app. js and routes. js modules.

After doing this, if we try to send a request to the server again, we will see that during the
time the asyncModule module is not yet initialized, the requests will not fail; instead, they
will hang until the initialization is completed and will only then be actually executed. We
can surely affirm that this is a much more robust behavior.

Pattern
If a module is initialized asynchronously, queue every operation until the
module is fully initialized.

Now, our server can start accepting requests immediately after it's started and it guarantees
that none of these requests will ever fail because of the initialization state of its modules. We
were able to obtain this result without using DI or requiring verbose and error-prone checks
to verify the state of the asynchronous module.

In the wild

The pattern we just presented is used by many database drivers and ORM libraries. The
most notable is Mongoose (http://mongoosejs. com), which is an ORM for MongoDB.
With Mongoose, it's not necessary to wait for the database connection to open in order to be
able to send queries, because each operation is queued and then executed later when the
connection with the database is fully established. This clearly boosts the usability of its API.

Take a look at the code of Mongoose to see how every method in the
native driver is proxied to add the preinitialization queue (it also
demonstrates an alternative way of implementing this pattern). You can
find the code fragment responsible for implementing the pattern at https
://github.com/LearnBoost/mongoose/blob/21f16c62e2f3230feb
16745a40f22b4385a11bl1/1ib/drivers/node-mongodb—native/co
llection.js#L103-138.

[3581

http://mongoosejs.com
https://github.com/LearnBoost/mongoose/blob/21f16c62e2f3230fe616745a40f22b4385a11b11/lib/drivers/node-mongodb-native/collection.js#L103-138
https://github.com/LearnBoost/mongoose/blob/21f16c62e2f3230fe616745a40f22b4385a11b11/lib/drivers/node-mongodb-native/collection.js#L103-138
https://github.com/LearnBoost/mongoose/blob/21f16c62e2f3230fe616745a40f22b4385a11b11/lib/drivers/node-mongodb-native/collection.js#L103-138
https://github.com/LearnBoost/mongoose/blob/21f16c62e2f3230fe616745a40f22b4385a11b11/lib/drivers/node-mongodb-native/collection.js#L103-138

Advanced Asynchronous Recipes

Asynchronous batching and caching

In high-load applications, caching plays a critical role and is used almost everywhere in the
web, from static resources such as web pages, images, and stylesheets, to pure data such as
the result of database queries. In this section, we are going to learn how caching applies to
asynchronous operations and how a high request throughput can be turned to our
advantage.

Implementing a server with no caching or
batching

Before we start diving into this new challenge, let's implement a small demo server that we
will use as a reference to measure the impact of the various techniques we are going to
implement.

Let's consider a web server that manages the sales of an e-commerce company, in particular,
we want to query our server for the sum of all the transactions of a particular type of
merchandise. For this purpose, we are going to use LevelUP again for its simplicity and
flexibility. The data model that we are going to use is a simple list of transactions stored in
the sales sublevel (a section of the database), which is organized in the following format:

transactionId {amount, item}

The key is represented by t ransactionId and the value is a JSON object that contains the
amount of the sale (amount) and the item type.

The data to process is really basic, so let's implement the API immediately in a file named
totalSales.js, which will be as follows:

const level = require('level');
const sublevel = require('level-sublevel');
const db = sublevel (level ('example-db', {valueEncoding: 'json'}));

const salesDb = db.sublevel('sales');

module.exports = function totalSales (item, callback) {
console.log('totalSales () invoked');
let sum = 0;
salesDb.createValueStream() // (1]
.on('data', data => {
if(!item || data.item === item) { // [2]

sum += data.amount;
t
)

[3591]

Advanced Asynchronous Recipes

.on('end', () => {

callback (null, sum); // 3]
)i
bi

The core of the module is the totalsales function, which is also the only exported API;
this is how it works:

1. We create a stream from the salesDb sublevel that contains the sales
transactions. The stream pulls all the entries from the database.

2. The data event receives each sale transaction as it is returned from the database
stream. We add the amount value of the current entry to the total sum value, but
only if the item type is equal to the one provided in the input (or if no input is
provided at all, allowing us to calculate the sum of all the transactions, regardless
of the item type).

3. At last, when the end event is received, we invoke the callback () method by
providing the final sum as result.

The simple query that we built is definitely not the best in terms of performance. Ideally, in
a real-world application, we would have used an index to query the transactions by the
item type, or even better, an incremental map/reduce to calculate the sum in real time;
however, for our example, a slow query is actually better as it will highlight the advantages
of the patterns we are going to analyze.

To finalize the total sales application, we only need to expose the totalsales API from an
HTTP server; so, the next step is to build one (the app. js file):

const http = require('http');
const url = require('url');
const totalSales = require('./totalSales');

http.createServer ((req, res) => {
const query = url.parse(req.url, true).query;
totalSales (query.item, (err, sum) => {
res.writeHead (200) ;
res.end (" Total sales for item ${query.item} is ${sum}’);
}) i
}).listen (8000, () => console.log('Started'));

[360]

Advanced Asynchronous Recipes

The server we created is very minimalistic; we only need it to expose the totalSales APL

Before we start the server for the first time, we need to populate the database with some
sample data; we can do this with the populate_db. js script that is found in the code
samples dedicated to this section. The script will create 100 K random sales transactions in
the database.

Okay! Now, everything is ready. In order to start the server, as usual, we execute the
following command:

node app

To query the server, simply navigate with a browser to the following URL:

http://localhost:8000?item=book

However, to have a better idea of the performance of our server, we will need more than
one request; so, we will use a small script named loadTest. js, which sends requests at
intervals of 200 ms. The script can be found in the code samples of the book and it's already
configured to connect to the URL of the server, so, to run it, just execute the following
command:

node loadTest

We will see that the 20 requests will take a while to complete; take note of the total
execution time of the test, because we are now going to apply our optimizations and
measure how much time we can save.

[361]

Advanced Asynchronous Recipes

Asynchronous request batching

When dealing with asynchronous operations, the most basic level of caching can be
achieved by batching together a set of invocations to the same API. The idea is very simple:
if we are invoking an asynchronous function while there is still another one pending, we
can attach callback to the already running operation, instead of creating a brand new
request. Take a look at the following figure:

Client A Client B AsyncOperation AsyncOperation

» !
»

h 4

The previous image shows two clients (they can be two different objects, or two different
web requests) invoking the same asynchronous operation with exactly the same input. Of
course, the natural way to picture this situation is with the two clients starting two separate
operations that will complete at two different moments, as shown by the preceding image.
Now, consider the next scenario, depicted in the following figure:

[362]

Advanced Asynchronous Recipes

Client A Client B AsyncOperation

» ! s
>

Queue

v

This second image shows us how the two requests—which invoke the same API with the
same input—can be batched, or in other words, appended to the same running operation.
By doing this, when the operation completes, both the clients will be notified. This
represents a simple, yet extremely powerful, way to optimize the load of an application
while not having to deal with more complex caching mechanisms, which usually require an
adequate memory management and invalidation strategy.

Batching requests in the total sales web server

Let's now add a batching layer on top of our totalsales API The pattern we are going to
use is very simple: if there is already another identical request pending when the APl is
invoked, we will add the callback to a queue. When the asynchronous operation completes,
all the callbacks in its queue are invoked at once.

Now, let's see how this pattern translates in code. Let's create a new module named
totalSalesBatch. js. Here, we're going to implement a batching layer on top of the
original totalsales API:

const totalSales = require('./totalSales');

const queues = {};

module.exports = function totalSalesBatch(item, callback) {
if (queues[item]) { // 111

[3631

Advanced Asynchronous Recipes

console.log('Batching operation');
return queues|[item] .push (callback);

}

queues [item] = [callback]; // 2]
totalSales (item, (err, res) => {
const queue = queues[item]; // 13]
queues[item] = null;

queue.forEach (cb => cb(err, res));
)i
bi

The totalSalesBatch () function is a proxy for the original totalSales () API and it
works as follows:

1. If a queue already exists for the item type provided as the input, it means that a
request for that particular item is already running. In this case, all we have to do
is simply append the callback to the existing queue and return from the
invocation immediately. Nothing else is required.

2. If no queue is defined for the item, it means that we have to create a new request.
To do this, we create a new queue for that particular item and we initialize it
with the current callback function. Next, we invoke the original totalsales ()
APL

3. When the original totalSales () request completes, we iterate over all the
callbacks that were added in the queue for that specific item and invoke them
one by one with the result of the operation.

The behavior of the totalSalesBatch () function is identical to that of the original
totalsales () API with the difference that, now, multiple calls to the API using the same
input are batched, thus saving time and resources.

Curious to know what the performance improvement compared to the raw, non-batched
version of the totalSales () APlis? Let's then replace the totalsales module used by
the HTTP server with the one we just created (the app. js file):

//const totalSales = require('./totalSales');
const totalSales = require('./totalSalesBatch');

http.createServer (function(req, res) {

//

[364]

Advanced Asynchronous Recipes

If we now try to start the server again and run the load test against it, the first thing we will
see is that the requests are returned in batches. This is the effect of the pattern we just
implemented and it's a great practical demonstration of how it works.

Besides that, we should also observe a considerable reduction in the total time for executing
the test; it should be at least four times faster than the original test performed against the
plain totalSales () API!

This is a stunning result, confirming the huge performance boost we can obtain by just
applying a simple batching layer, without all the complexity of managing a full-fledged
cache, and more importantly, without worrying about invalidation strategies.

The request-batching pattern reaches its best potential in high-load
applications and with slow APIs, because it's exactly in these
circumstances that we can batch together a high number of requests.

Asynchronous request caching

One of the problems with the request-batching pattern is that the faster the API, the fewer
batched requests we get. One can argue that if an API is already fast, there is no point in
trying to optimize it; however, it still represents a factor in the resource load of an
application that, when summed up, can still have a substantial impact. Also, sometimes we
can safely assume that the result of an API invocation will not change so often; therefore, a
simple request batching will not provide the best performance. In all these circumstances,
the best candidate to reduce the load of an application and increase its responsiveness is
definitely a more aggressive caching pattern.

The idea is simple: as soon as a request completes, we store its result in the cache, which can
be a variable, an entry in the database, or in a specialized caching server. Hence, the next
time the API is invoked, the result can be retrieved immediately from the cache, instead of
spawning another request.

The idea of caching should not be new to an experienced developer, but what makes this
pattern different in asynchronous programming is that it should be combined with the
request batching, to be optimal. The reason is because multiple requests might run
concurrently while the cache is not set, and when those requests complete, the cache will be
set multiple times.

[365]

Advanced Asynchronous Recipes

Based on these assumptions, the final structure of the asynchronous request-caching pattern
is shown in the following figure:

Client A Client A Client B AsyncOperation
Queue =
E . Queue Batching
; Set cache \ /
- o BRESR : £ (===

: e i

; ' T Caching

i : 1,@6E from cache

A

The preceding figure shows us the two phases of an optimal asynchronous caching
algorithm:

e The first phase is totally identical to the batching pattern. Any request received
while the cache is not set will be batched together. When the request completes,
the cache is set, once.

e When the cache is finally set, any subsequent request will be served directly from
it.

Another crucial detail to consider is the unleashing Zalgo anti-pattern (we have seen it in
action in Chapter 2, Node.js Essential Patterns). As we are dealing with asynchronous APIs,
we must be sure to always return the cached value asynchronously, even if accessing the
cache involves only a synchronous operation.

[3661

Advanced Asynchronous Recipes

Caching requests in the total sales web server

To demonstrate and measure the advantages of the asynchronous caching pattern, let's now

apply what we've learned to the totalSales () APL Asin the request-batching example,
we have to create a proxy for the original API with the sole purpose of adding a caching
layer.

Let's then create a new module named totalSalesCache. js that contains the following
code:

const totalSales = require('./totalSales');
const queues = {};
const cache = {};

module.exports function totalSalesBatch(item, callback) {
const cached = cache[item];
if (cached) {
console.log('Cache hit');
return process.nextTick (callback.bind(null, null, cached));

}
if (queues[item]) {
console.log('Batching operation');
return queues[item] .push (callback);
}
queues [item] = [callback];
totalSales (item, (err, res) => {
if (lerr) {
cache[item] = res;
setTimeout (() => {

delete cache[item];
}, 30 * 1000); //30 seconds expiry

}
const queue = queues|[item];
queues [item] = null;

queue.forEach (cb => cb(err, res));
}) i
}i

[367]

Advanced Asynchronous Recipes

We should straight away see that the preceding code is in many parts identical to what we
used for the asynchronous batching. In fact, the only differences are the following ones:

e The first thing that we need to do when the APl is invoked is to check whether
the cache is set and if that's the case, we will immediately return the cached value
using callback (), making sure to defer it with process.nextTick ().

¢ The execution continues in batching mode, but this time, when the original API
successfully completes, we save the result into the cache. We also set a timeout to
invalidate the cache after 30 seconds. A simple but effective technique!

Now, we are ready to try the totalSales wrapper we just created; to do that, we only
need to update the app. js module as follows:

//const totalSales = require('./totalSales');
//const totalSales = require('./totalSalesBatch');
const totalSales = require('./totalSalesCache');

http.createServer (function(req, res) {

/..

Now, the server can be started again and profiled using the 1oadTest . js script as we did
in the previous examples. With the default test parameters, we should see a 10% reduction
in the execution time as compared to simple batching. Of course, this is highly dependent
on a lot of factors; for example, the number of requests received, and the delay between one
request and the other. The advantages of using caching over batching will be much more
substantial when the amount of requests is higher and spans a longer period of time.

Memoization is the practice of caching the result of a function invocation.
In npm, you can find many packages to implement asynchronous
memoization with little effort; one of the most complete packages is
memoizee (https://npmjs.org/package/memoizee).

Notes about implementing caching mechanisms

We must remember that in real-life applications, we might want to use more advanced
invalidation techniques and storage mechanisms. This might be necessary for the following
reasons:

¢ A large amount of cached values might easily consume a lot of memory. In this
case, a Least Recently Used (LRU) algorithm can be applied to maintain constant
memory utilization.

[3681

https://npmjs.org/package/memoizee

Advanced Asynchronous Recipes

e When the application is distributed across multiple processes, using a simple
variable for the cache might result in different results to be returned by each
server instance. If that's undesired for the particular application we are
implementing, the solution is to use a shared store for the cache. Popular
solutions are Redis (http://redis.io) and Memcached
(http://memcached.org).

¢ A manual cache invalidation, as opposed to a timed expiry, can enable a longer-
living cache and at the same time provide more up-to-date data, but, of course, it
would be a lot more complex to manage.

Batching and caching with promises

In Chapter 4, Asynchronous Control Flow Patterns with ES2015 and Beyond, we saw how
promises can greatly simplify our asynchronous code, but they offer an even more
interesting application when dealing with batching and caching. If we recall what we said
about promises, there are two properties that can be exploited to our advantage in this
circumstance:

e Multiple then () listeners can be attached to the same promise.

e The then () listener is guaranteed to be invoked at most once, and it works even
if it's attached after the promise is already resolved. Moreover, then () is
guaranteed to be invoked asynchronously, always.

In short, the first property is exactly what we need for batching requests, while the second
means that a promise is already a cache for the resolved value and offers a natural
mechanism for returning a cached value in a consistent asynchronous way. In other words,
this means that batching and caching are extremely simple and concise with promises.

To demonstrate this, we can try to create a wrapper for the totalSales () API, using
promises, and see what it takes to add a batching and caching layer. Let's see then what this
looks like. Let's create a new module named totalSalesPromises. js:

const pify = require('pify'); // 1]
const totalSales = pify(require('./totalSales'));

const cache = {};
module.exports = function totalSalesPromises (item) {
if (cache[item]) { // (2]

return cachel[item];

}

cache[item] = totalSales (item) // [3]

[3691

http://redis.io
http://memcached.org

Advanced Asynchronous Recipes

.then(res => { /7 [4]
setTimeout (() => {delete cache[item]}, 30 * 1000); //30s expiry
return res;
})
.catch(err => { // [5]
delete cache[item];
throw err;

1)

return cachel[item]; // [6]

bi

The first thing that strikes us is the simplicity and elegance of the solution we implemented
in the preceding code. Promises are indeed a great tool, but for this particular application
they offer a huge, out-of-the-box advantage. This is what happens in the preceding code:

1. First, we require a small module called pify (https://www.npmjs.com/packag
e/pify) that allows us to apply a promisification to the original totalsales ().
After doing this, totalsales () will return a ES2015 promise instead of
accepting a callback.

2. When the totalSalesPromises () wrapper is invoked, we check whether a
cached promise already exists for the given item type. If we already have such a
promise, we return it back to the caller.

3. If we don't have a promise in the cache for the given item type, we proceed to
create one by invoking the original (promisified) totalsales () APL

4. When the promise resolves, we set up a time to clear the cache (after 30 seconds)
and we return res to propagate the result of the operation to any other then ()
listener attached to the promise.

5. If the promise rejects with an error, we immediately reset the cache and throw the
error again to propagate it to the promise chain, so any other listener attached to
the same promise will receive the error as well.

6. At last, we return the cached promise we just created.

Very simple and intuitive, and more importantly, we were able to achieve both batching
and caching.

If we now want to try the totalSalesPromise () function, we will have to slightly adapt
the app. js module as well, because now, the API is using promises instead of callbacks.
Let's do it by creating a modified version of the app module named appPromises. js:

const http = require('http');
const url = require('url');
const totalSales = require('./totalSalesPromises');

[370]

https://www.npmjs.com/package/pify
https://www.npmjs.com/package/pify

Advanced Asynchronous Recipes

http.createServer (function(req, res) {
const query = url.parse(req.url, true).query;
totalSales (query.item) .then (function (sum) {
res.writeHead (200);
res.end(Total sales for item ${query.item} is ${sum}’);

3
}).1listen (8000, () => console.log('Started'));

Its implementation is almost identical to the original app module, with the difference that
now we use the promise-based version of the batching/caching wrapper; therefore, the way
we invoke it is also slightly different.

That's it! We are now ready to try this new version of the server by running the following
command:

node appPromises

Using the 1loadTest script, we can verify that the new implementation is working as
expected. The execution time should be the same as when we tested the server using the
totalSalesCache () APL

Running CPU-bound tasks

The totalsales () API even though expensive in terms of resources, was not affecting the
ability of the server to accept concurrent requests. What we learned about the event loop in
Chapter 1, Welcome to the Node.js Platform, should provide an explanation for this behavior:
invoking an asynchronous operation causes the stack to unwind back to the event loop,
leaving it free to handle other requests.

However, what happens when we run a long, synchronous task that never gives back the
control to the event loop? This kind of task is also known as CPU-bound, because its main
characteristic is that it is heavy on CPU utilization rather than being heavy on I/O
operations.

Let's work immediately on an example to see how these types of task behave in Node.js.

[371]

Advanced Asynchronous Recipes

Solving the subset sum problem

Let's now choose a computationally expensive problem to use as a base for our experiment.
A good candidate is the subset sum problem that consists of deciding whether a set (or
multiset) of integers contains a non-empty subset that has a sum equal to zero. For example,
if we had as input the set [1, 2, -4, 5, -3], the subsets satisfying the problem are [1, 2, -3] and
[2,-4,5,-3].

The simplest algorithm is the one that checks every possible combination of subsets of any
size, and it has a computational cost of O(2"), or in other words, it grows exponentially with
the size of the input. This means that a set of 20 integers would require up to 1,048,576
combinations to be checked, not bad for testing our assumptions. Of course, the solution
might be found a lot sooner than that; so, to make things harder, we are going to consider
the following variation of the subset sum problem: given a set of integers, we want to
calculate all the possible combinations whose sum is equal to a given arbitrary integer.

Let's then work to build such an algorithm; let's create a new module called subsetSum. js.
We will start by creating a class called SubsetSum:

const EventEmitter = require('events').EventEmitter;

class SubsetSum extends EventEmitter {
constructor (sum, set) {

super () ;
this.sum = sum;
this.set = set;

this.totalSubsets = 0;
}
/...

The Subsetsum class is extending from the EventEmitter class; this allows us to produce
an event every time we find a new subset matching the sum received as input. As we will
see, this will give us a lot of flexibility.

Next, let's see how we can generate all the possible combinations of subsets:

_combine (set, subset) {
for(let 1 = 0; i < set.length; i++) {
let newSubset = subset.concat (set[i]);
this._combine (set.slice(i + 1), newSubset);
this._processSubset (newSubset) ;

}

[372]

Advanced Asynchronous Recipes

We will not go into too much detail about the algorithm, but there are two important things
to notice:

e The _combine () method is completely synchronous; it recursively generates
every possible subset without ever giving back the control to the event loop. If we
think about it, this is perfectly normal for an algorithm not requiring any 1/O.

¢ Every time a new combination is generated, we provide it to the
_processSubset () method for further processing.

The _processSubset () method is responsible for verifying that the sum of the elements of
the given subset is equal to the number we are looking for:

_processSubset (subset) {
console.log('Subset', ++this.totalSubsets, subset);

const res = subset.reduce((prev, item) => (prev + item), 0);
if (res == this.sum) {
this.emit ('match', subset);

}
}

Trivially, the _processSubset () method applies a reduce operation to the subset in order
to calculate the sum of its elements. Then, it emits an event of type 'match' when the
resulting sum is equal to the one we are interested in finding (this. sum).

Finally, the start () method puts all the preceding pieces together:

start () |
this._combine (this.set, []);
this.emit ('end');

}

The preceding method triggers the generation of all the combinations by invoking
_combine (), and lastly, emits an 'end"' event signaling that all the combinations were
checked and any possible match has already been emitted. This is possible because
_combine () is synchronous; therefore, the 'end' event will be emitted as soon as the
function returns, which means that all the combinations were calculated.

Next, we have to expose the algorithm we just created over the network, as always we can
use a simple HTTP server for the task. In particular, we want to create an endpoint in the
format /subsetSum?data=<Array>&sum=<Integer> that invokes the Subset Sum
algorithm with the given array of integers and sum to match.

[373]

Advanced Asynchronous Recipes

Let's then implement this simple server in a module named app. js:

const http = require('http');

const SubsetSum = require('./subsetSum');
http.createServer ((req, res) => {
const url = require('url') .parse(reg.url, true);
if (url.pathname === '/subsetSum') {

const data = JSON.parse(url.query.data);
res.writeHead (200) ;
const subsetSum = new SubsetSum(url.query.sum, data);
subsetSum.on('match', match => {
res.write('Match: ' + JSON.stringify(match) + '\n');

3
subsetSum.on('end', () => res.end());
subsetSum.start () ;

} else {
res.writeHead (200) ;
res.end('I\m alive!\n');

}
}).listen (8000, () => console.log('Started'));

Thanks to the fact that the Subset Sum object returns its results using events, we can stream
the matching subsets as soon as they are generated by the algorithm, in real time. Another
detail to mention is that our server responds with the text I'm Alive! every time we hit a
URL different from /subsetSum. We will use this for checking the responsiveness of our
server, as we will see in a moment.

We are now ready to try our subset sum algorithm. Curious to know how our server will
handle it? Let's fire it up then:

node app

As soon as the server starts, we are ready to send our first request; let's try with a set of 17
random numbers, which will result in the generation of 131,071 combinations, a nice
amount to keep our server busy for a while:

curl -G http://localhost:8000/subsetSum —-data-urlencode "data=[116,
119,101,101,-116,109,101,-105,-102,117,-115,-97,119,-116,-104,-105,115]" ——
data-urlencode "sum=0"

We will start to see the results streaming live from the server, but if we try the following
command in another terminal while the first request is still running, we will spot a huge
problem:

curl -G http://localhost:8000

[374]

Advanced Asynchronous Recipes

We will immediately see that this last request hangs until the subset sum algorithm of the
first request has finished; the server is unresponsive! This was kind of what we expected.
The Node.js event loop runs in a single thread, and if this thread is blocked by a long
synchronous computation, it will be unable to execute even one more cycle in order to
respond with a simple I'm alive!

We quickly understand that this behavior does not work for any kind of application meant
to serve multiple requests. But don't despair in Node.js, we can tackle this type of situation in
several ways. Let's analyze the two most important ones.

Interleaving with setimmediate

Usually, a CPU-bound algorithm is built upon a set of steps. It can be a set of recursive
invocations, a loop, or any variation/combination of those. So, a simple solution to our
problem would be to give back the control to the event loop after each one of these steps
completes (or after a certain number of them). This way, any pending I/O can still be
processed by the event loop in those intervals where the long-running algorithm yields the
CPU. A simple way to achieve this is to schedule the next step of the algorithm to run after
any pending I/O requests. This sounds like the perfect use case for the set Immediate ()
function (we already introduced this APl in Chapter 2, Node.js Essential Patterns).

Pattern
Interleave the execution of a long-running synchronous task with
setImmediate ().

Interleaving the steps of the subset sum algorithm

Let's now see how this pattern applies to the subset sum algorithm. All we have to do is
slightly modify the subsetSum. js module. For convenience, we are going to create a new
module called subsetSumDefer. js, taking the code of the original subsetSum class as a
starting point.

The first change we are going to make is to add a new method called
_combineInterleaved (), which is the core of the pattern we are implementing:

_combinelInterleaved(set, subset) {
this.runningCombine++;
setImmediate (() => {

this._combine (set, subset);
if (-——this.runningCombine ==

= 0) A

[375]

Advanced Asynchronous Recipes

this.emit ('end');

1)
}

As we can see, all we had to do is defer the invocation of the original (synchronous)
_combine () method with set Immediate (). However, now it becomes more difficult to
know when the function has finished generating all the combinations because the algorithm
is not synchronous anymore. To fix this, we have to keep track of all the running instances
of the _combine () method using a pattern very similar to the asynchronous parallel
execution we have seen in Chapter 3, Asynchronous Control Flow Patterns with Callbacks.
When all the instances of the _combine () method have finished running, we can emit the
end event notifying any listener that the process has completed.

To finalize the refactoring of the subset sum algorithm, we need a couple more tweaks.
First, we need to replace the recursive step in the _combine () method with its deferred
counterpart:

_combine (set, subset) {
for(let 1 = 0; i < set.length; i++) {
let newSubset = subset.concat (set[i]);
this._combineInterleaved(set.slice(i + 1), newSubset);
this._processSubset (newSubset) ;
t
t

With the preceding change, we make sure that each step of the algorithm will be queued in
the event loop using set Immediate () and therefore executed after any pending I/O
request instead of running synchronously.

The other small tweak is in the start () method:

start () |
this.runningCombine = 0;
this._combineInterleaved(this.set, []);

}

In the preceding code, we initialize the number of running instances of the _combine ()
method to 0. We also replaced the call to _combine () with a call to
_combineInterleaved () and removed the emission of the 'end' event, because now this
is handled asynchronously in _combineInterleaved/().

With this last change, our subset sum algorithm should now be able to run its CPU-bound
code in steps interleaved by intervals where the event loop can run and process any other
pending request.

[376]

Advanced Asynchronous Recipes

The last missing bit is updating the app . js module so that it can use the new version of the
Subsetsum APL This is actually a trivial change:

const http = require('http');
//const SubsetSum = require('./subsetSum');
const SubsetSum = require ('./subsetSumDefer');

http.createServer (function(req, res) {

//

We are now ready to try this new version of the subset sum server. Let's start the app
module by using the following command:

node app

Then, try to send a request again to calculate all the subsets matching a given sum:

curl -G http://localhost:8000/subsetSum —--data-urlencode "data=[116,
119,101,101,-116,109,101,-105,-102,117,-115,-97,119,-116,-104,-105,115]" -—-
data-urlencode "sum=0"

While the request is running, we might now want to see whether the server is responsive:

curl -G http://localhost:8000

Cool! The second request now should return immediately, even while a Subset Sum task is
running, confirming that our pattern is working well.

Considerations on the interleaving pattern

As we saw, running a CPU-bound task while preserving the responsiveness of an
application is not that complicated, it just requires the use of set Immediate () to schedule
the next step of an algorithm after any pending I/O. However, this is not the best pattern in
terms of efficiency; in fact, deferring a task introduces a small overhead that, multiplied by
all the steps that an algorithm has to run, can have a significant impact. This is usually the
last thing we want when running a CPU-bound task, especially if we have to return the
result directly to the user, which should happen in a reasonable amount of time. A possible
solution to mitigate the problem would be using set Immediate () only after a certain
number of steps—instead of using it at every single step—but still this would not solve the
root of the problem.

[377]

Advanced Asynchronous Recipes

Bear in mind that this does not mean that the pattern we have just seen should be avoided
at all costs, in fact, if we look at the bigger picture, a synchronous task does not necessarily
have to be extremely long and complex to create troubles. In a busy server, even a task that
blocks the event loop for 200 milliseconds can create undesirable delays. In those situations
where the task is executed sporadically or in the background and does not have to run for
too long, using set Immediate () to interleave its execution is probably the simplest and
most effective way to avoid blocking the event loop.

process.nextTick () cannot be used to interleave a long-running task.
As we saw in Chapter 1, Welcome to the Node.js Platform, nextTick ()
schedules an operation before any pending 1/O, and this can eventually
cause I/O starvation in the case of repeated calls. You can verify that by
yourself by replacing set Immediate () with process.nextTick () in
the previous sample. You might also want to know that this behavior was
introduced with Node.js 0.10; in fact, with Node.js 0.8,
process.nextTick () can still be used as an interleaving mechanism.
Take a look at this GitHub issue to know more about the history and
motivations of this change at https://github.com/joyent/node/issu
es/3335.

Using multiple processes

Deferring the steps of an algorithm is not the only option we have for running CPU-bound
tasks; another pattern for preventing the event loop from blocking is using child processes.
We already know that Node.js gives its best when running I/O-intensive applications such

as web servers, which allows us to optimize resource utilization thanks to its asynchronous
architecture.

So, the best way we have to maintain the responsiveness of an application is to not run
expensive CPU-bound tasks in the context of the main application and instead, use separate
processes. This has three main advantages:

¢ The synchronous task can run at full speed, without the need to interleave the
steps of its execution

e Working with processes in Node.js is simple, probably easier than modifying an
algorithm to use set Immediate (), and allows us to easily use multiple processors
without the need to scale the main application itself

e If we really need maximum performance, the external process might be created in
lower-level languages, such as good old C (always use the best tool for the job!)

[378]

https://github.com/joyent/node/issues/3335
https://github.com/joyent/node/issues/3335

Advanced Asynchronous Recipes

Node.js has an ample tool belt of APIs for interacting with external processes. We can find
all we need in the child_process module. Moreover, when the external process is just
another Node.js program, connecting it to the main application is extremely easy and we
don't even feel like we are running something external to the local application. The magic
happens thanks to the child_process.fork () function, which creates a new child
Node.js process and also automatically creates a communication channel with it, allowing
us to exchange information using an interface very similar to an EventEmitter. Let's see
how this works by refactoring our subset sum server again.

Delegating the subset sum task to other processes

The goal for the refactoring of the Subset Sum task is to create a separate child process
responsible for handling the synchronous processing, leaving the event loop of the server
free to handle requests coming from the network. This is the recipe we are going to follow
to make this possible:

1. We will create a new module named processPool. js that will allow us to
create a pool of running processes. Starting a new process is expensive and
requires time, so keeping them constantly running and ready to handle requests
allows us to save time and CPU. Also, the pool will help us limit the number of
processes running at the same time to avoid exposing the application to denial-
of-service (DoS) attacks.

2. Next, we will create a module called subsetSumFork. js responsible for
abstracting a Subset Sum task running in a child process. Its role will be
communicating with the child process and exposing the results of the task as if
they were coming from the current application.

3. Atlast, we need a worker (our child process), a new Node.js program with the
only goal of running the subset sum algorithm and forwarding its results to the
parent process.

A DoS attack is an attempt to make a machine or network resource
unavailable to its intended users, such as to temporarily or indefinitely
interrupt or suspend services of a host connected to the Internet.

[379]

Advanced Asynchronous Recipes

Implementing a process pool
Let's start by building the processPool. js module piece by piece:

const fork = require('child_process').fork;

class ProcessPool {

constructor (file, poolMax) {
this.file = file;
this.poolMax = poolMax;
this.pool = [];
this.active = [];
this.waiting = [];

}

/] ...

In the first part of the module, we import the child_process. fork () function that we
will use to create new processes. Then, we define the ProcessPool constructor that accepts
a file parameter representing the Node.js program to run and the maximum number of
running instances in the pool (poolMax). We then define three instance variables:

* pool is the set of running processes ready to be used
e active contains the list of the processes currently being used

* waiting contains a queue of callbacks for all those requests that could not be
fulfilled immediately because of the lack of an available process

The next piece of the ProcessPool class is the acquire () method, which is responsible for
returning a process ready to be used:

acquire (callback) {
let worker;
if (this.pool.length > 0) { // (1]
worker = this.pool.pop();
this.active.push (worker);
return process.nextTick (callback.bind(null, null, worker));

}

if (this.active.length >= this.poolMax) { // [2]
return this.waiting.push(callback);

}

worker = fork(this.file); // [3]
this.active.push (worker);
process.nextTick (callback.bind(null, null, worker));

[380]

Advanced Asynchronous Recipes

Its logic is very simple and is explained as follows:

1. If we have a process in pool ready to be used, we simply move it to the active
list and then return it by invoking callback (in a deferred fashion... remember
Zalgo?).

2. If there are no available processes in pool and we already have reached the
maximum number of running processes, we have to wait for one to be available.
We achieve this by queuing the current callback in the waiting list.

3. If we haven't yet reached the maximum number of running processes, we will
create a new one using child_process. fork (), add it to the active list, and
then return it to the caller using the callback.

The last method of the ProcessPool class is release (), whose purpose is to put a process
back in pool:

release (worker) {
if(this.waiting.length > 0) { // [1]
const waitingCallback = this.waiting.shift ();
waitingCallback (null, worker);
}
this.active = this.active.filter (w => worker !== w); // [2]
this.pool.push (worker);

}
The preceding code is also very simple and its explanation is as follows:

o If there is a request in the waiting list, we simply reassign the worker being
released by passing it to the callback at the head of the waiting queue.

¢ Otherwise, we remove the worker from the active list and put it back into pool.

As we can see, the processes are never stopped but just reassigned, allowing us to save time
by not restarting them at each request. However, it's important to observe that this might
not always be the best choice and this greatly depends on the requirements of our
application. Possible tweaks for reducing long-term memory usage and adding robustness
to our process pool are as follows:

¢ Terminate idle processes to free memory after a certain time of inactivity

¢ Add a mechanism to kill non-responsive processes or restart those that have
simply crashed

But in this example, we will keep the implementation of our process pool simple, as the
details we might want to add are really endless.

[381]

Advanced Asynchronous Recipes

Communicating with a child process

Now that our ProcessPool class is ready, we can use it to implement the Subset SumFork
wrapper whose role is to communicate with the worker and expose the results it produces.
As we said, starting a process with child_process.fork () also gives us a simple
message-based communication channel, so let's see how this works by implementing the
subsetSumFork.js module:

const EventEmitter = require('events').EventEmitter;
const ProcessPool = require('./processPool');
const workers = new ProcessPool (__dirname + '/subsetSumWorker.js', 2);

class SubsetSumFork extends EventEmitter {
constructor (sum, set) {

super () ;
this.sum = sum;
this.set = set;
}
start () |
workers.acquire ((err, worker) => { // 111

worker.send ({sum: this.sum, set: this.set});

const onMessage = msg => {
if (msg.event === 'end') { // 3]
worker.removelistener ('message', onMessage);
workers.release (worker) ;

this.emit (msg.event, msg.data); // [4]
Vi
worker.on ('message', onMessage); // (2]
P
}
}
module.exports = SubsetSumFork;

The first thing to notice is that we initialized a ProcessPool object using a file named
subsetSumiWorker. js as the target which represents our child worker. We also set the
maximum capacity of the pool to 2.

[382]

Advanced Asynchronous Recipes

Another point worth mentioning is that we tried to maintain the same public API of the
original SubsetSum class. In fact, Subset SumFork is an EventEmitter whose constructor
accepts sum and set, while the start () method triggers the execution of the algorithm,
which runs on a separate process this time. This is what happens when the start ()
method is invoked:

1. We try to acquire a new child process from the pool. When this happens, we
immediately use the worker handle to send the child process a message with the
input of the job to run. The send () APl is provided automatically by Node.js to
all processes that start with child_process. fork (), this is essentially the
communication channel that we were talking about.

2. We then start listening for any message returned from the worker process, using
the on () method to attach a new listener (this is also a part of the communication
channel provided by all processes that start with child_process.fork()).

3. In the listener, we first check whether we received an end event, which means
that the Subset Sum task has finished, in which case we remove the onMessage
listener and release the worker, putting it back into the pool.

4. The worker produces messages in the format {event, data} allowing us to
seamlessly re-emit any event produced by the child process.

That's it for the Subset SumFork wrapper; let's now implement the worker application.

It is good to know that the send () method available on a child process
instance can also be used to propagate a socket handle from the main
application to a child process (look at the documentation

at: http://nodejs.org/api/child_process.html#child_process_
child_send_message_sendhandle). This is actually the technique used
by the cluster module to distribute the load of an HTTP server across
multiple processes (as of Node.js 0.10). We will see this in more detail in
the next chapter.

Communicating with the parent process

Let's now create the subset SumiWorker. js module, our worker application, the entire
content of this module will run in a separate process:

const SubsetSum = require('./subsetSum');

process.on('message', msg => { // [11]
const subsetSum = new SubsetSum(msg.sum, msg.set);

[383]

http://nodejs.org/api/child_process.html#child_process_child_send_message_sendhandle
http://nodejs.org/api/child_process.html#child_process_child_send_message_sendhandle

Advanced Asynchronous Recipes

subsetSum.on ('match', data => { // 2]
process.send({event: 'match', data: data});

b

subsetSum.on ('end', data => {
process.send({event: 'end', data: data});

P

subsetSum.start () ;

1)

We can immediately see that we are reusing the original (and synchronous) Subset Sum as
it is. Now that we are in a separate process, we don't have to worry about blocking the
event loop anymore, all the HTTP requests will continue to be handled by the event loop of
the main application, without disruptions.

When the worker is started as a child process, this is what happens:

1. It immediately starts listening for messages coming from the parent process. This
can be easily done with the process.on () function (also, a part of the
communication API provided when the process starts using
child_process. fork ()). The only message we expect from the parent process
is the one providing the input to a new SubsetSum task. As soon as such a
message is received, we create a new instance of a Subset Sum class and register
the listeners for the match and end events. Lastly, we start the computation with
subsetSum.start ().

2. Every time an event is received from the running algorithm, we wrap it in an
object with the format, {event, data}, and send it to the parent process. These
messages are then handled in the subset SumFork. js module, as we have seen
in the previous section.

As we can see, we just had to wrap the algorithm we already built, without modifying its
internals. This clearly shows that any portion of an application can be easily put in an
external process by simply using the pattern we have just seen.

[384]

Advanced Asynchronous Recipes

When the child process is not a Node.js program, the simple
communication channel we just described is not available. In these
situations, we can still establish an interface with the child process by
implementing our own protocol on top of the standard input and standard
output streams, which are exposed to the parent process.

To find out more about all the capabilities of the child_process API,
you can refer to the official Node.js documentation at http://nodejs.or
g/api/child_process.html.

Considerations on the multiprocess pattern

As always, to try this new version of the subset sum algorithm, we simply have to replace
the module used by the HTTP server (file app. js):

const http = require('http');

//const SubsetSum = require('./subsetSum');
//const SubsetSum = require('./subsetSumDefer');
const SubsetSum = require ('./subsetSumFork');
/...

We can now start the server again and try to send a sample request:

curl -G http://localhost:8000/subsetSum —--data-urlencode
"data=[116,119,101,101,-116,109,101,-105,-102,117,-115,-97,119,-116,-104, -1
05,115]" —--data-urlencode "sum=0"

Similar to the interleaving pattern we have seen before, with this new version of the
subset Sum module the event loop is not blocked while running the CPU-bound task. This
can be confirmed by sending another concurrent request as follows:

curl -G http://localhost:8000

The preceding command line should immediately return a string as follows:

I'm alive!

More interestingly, we can also try to start two subset Sum tasks concurrently, we can see
that they will use the full power of two different processors in order to run (if our system
has more than one processor, of course). Instead, if we try to run three subset Sum tasks
concurrently, the result should be that the last one to start will hang. This is not because the
event loop of the main process is blocked, but because we set a concurrency limit of two
processes for the subset Sum task, which means that the third request will be handled as
soon as at least one of the two processes in the pool becomes available again.

[385]

http://nodejs.org/api/child_process.html
http://nodejs.org/api/child_process.html

Advanced Asynchronous Recipes

As we saw, the multiprocess pattern is definitely more powerful and flexible than the
interleaving pattern; however, it's still not scalable as the amount of resources offered by a
single machine is still a hard limit. The answer in this case is to distribute the load across
multiple machines, but this is another story and falls under the category of distributed
architectural patterns which we will explore in the next chapters.

It is worth mentioning that threads can be a possible alternative to
processes when running CPU-bound tasks. Currently, there are a few npm
packages that expose an API for working with threads to userland
modules; one of the most popular is webworker—threads
(https://npmijs.org/package/webworker-threads). However, even
if threads are more lightweight, fully-fledged processes can offer more
flexibility and a better level of isolation in the case of problems such as
freezing or crashing.

Summary

This chapter added some great new weapons to our tool belt, and as we can see, our
journey is getting more focused on specific problems and we have started to delve deeply
into more advanced solutions. Often, we reused some of the patterns we have analyzed in
the previous chapters: State, Command, and Proxy to provide an effective abstraction for
asynchronously initialized modules, asynchronous control flow patterns to add batching
and caching to our APIs, deferred execution and events to help us run CPU-bound tasks.

This chapter gave us not only a set of recipes to reuse and customize for our needs, but also
some great demonstrations of how mastering a few principles and patterns can help us
tackle the most complex problems in Node.js development.

The next two chapters represent the peak of our journey. After studying the various tactics,
we are now ready to move to the strategies, and explore the patterns for scaling and
distributing our Node.js applications.

[3861

https://npmjs.org/package/webworker-threads

10

Scalability and Architectural
Patterns

In its early days, Node.js was mainly a non-blocking web server; its original name was in
fact web.js. Its creator, Ryan Dahl, soon realized the potential of the platform and started
extending it with tools to enable the creation of any type of server-side application on top of
the duo JavaScript/non-blocking paradigm. The characteristics of Node.js were perfect for
the implementation of distributed systems, made of nodes orchestrating their operations
through the network. Node.js was born to be distributed. Unlike other web platforms, the
word scalability enters the vocabulary of a Node.js developer very early in the life of an
application, mainly because of its single-threaded nature, incapable of exploiting all the
resources of a machine, but often there are more profound reasons. As we will see in this
chapter, scaling an application does not only mean increasing its capacity, enabling it to
handle more requests faster; it's also a crucial path to achieving high availability and
tolerance to errors. Amazingly, it can also be a way to split the complexity of an application
into more manageable pieces. Scalability is a concept with multiple faces, six to be precise,
as many as the faces of a cube—the scale cube.

In this chapter, we will learn the following topics:

e What the scale cube is
¢ How to scale by running multiple instances of the same application

How to leverage a load balancer when scaling an application

What a service registry is and how it can be used

How to design a microservice architecture out of a monolithic application

¢ How to integrate a large number of services through the use of some simple
architectural patterns

Scalability and Architectural Patterns

An introduction to application scaling

Before we dive into some practical patterns and examples, it is worth saying a few words
about the reasons for scaling an application and how it can be achieved.

Scaling Node.js applications

We already know that most of the tasks of a typical Node.js application run in the context of
a single thread. In Chapter 1, Welcome to the Node.js Platform, we learned that this is not
really a limitation but rather an advantage, because it allows the application to optimize the
usage of the resources necessary to handle concurrent requests, thanks to the non-blocking
I/O paradigm. A single thread fully exploited by non-blocking I/O works wonderfully for
applications handling a moderate number of requests per second, usually a few hundred
per second (this greatly depends on the application). Assuming we are using commodity
hardware, the capacity that a single thread can support is limited no matter how powerful a
server can be, therefore, if we want to use Nodejs for high-load applications, the only way
is to scale it across multiple processes and machines.

However, workload is not the only reason to scale a Node.js application; in fact, with the
same techniques, we can obtain other desirable properties such as availability and
tolerance to failures. Scalability is also a concept applicable to the size and the complexity
of an application; in fact, building architectures that can grow big is another important
factor when designing software. JavaScript is a tool to be used with caution, the lack of type
checking and its many gotchas can be an obstacle to the growth of an application, but with
discipline and an accurate design, we can turn this into an advantage. With JavaScript, we
are often pushed to keep the application simple and split it into manageable pieces, making
it easier to scale and distribute.

The three dimensions of scalability

When talking about scalability, the first fundamental principle to understand is load
distribution, the science of splitting the load of an application across several processes and
machines. There are many ways to achieve this, and the book The Art of Scalability by Martin
L. Abbott and Michael T. Fisher proposes an ingenious model to represent them, called the
scale cube. This model describes scalability in terms of the following three dimensions:

e x-axis: Cloning
e y-axis: Decomposing by service/functionality
e z-axis: Splitting by data partition

[388]

Scalability and Architectural Patterns

These three dimensions can be represented as a cube, as shown in the following figure:

Cloned, Decomposed,
and Partitioned application
, O
|
I
I
4 |
|
:
Y Axis - Decomposing ;
by service/functionality s
e Z Axis - Splitting by
v O data partition
Monolithic, single instance
application
< >
X Axis - Cloning

The bottom-left corner of the cube represents the applications having all their functionalities
and services in a single codebase (monolithic applications) and running on a single instance.
This is a common situation for applications handling small workloads or at the early stages
of development.

The most intuitive evolution of a monolithic, unscaled application is moving right along the
x— axis, which is simple, most of the time inexpensive (in terms of development cost), and
highly effective. The principle behind this technique is elementary, that is, cloning the same
application n times and letting each instance handle 1/nth of the workload.

[3891]

Scalability and Architectural Patterns

Scaling along the y-axis means decomposing the application based on its functionalities,
services, or use cases. In this instance, decomposing means creating different, standalone
applications, each with its own codebase, sometimes with its own dedicated database, or
even with a separate Ul For example, a common situation is separating the part of an
application responsible for the administration from the public-facing product. Another
example is extracting the services responsible for user authentication, creating a dedicated
authentication server. The criteria to split an application by its functionalities depend
mostly on its business requirements, the use cases, the data, and many other factors, as we
will see later in this chapter. Interestingly, this is the scaling dimension with the biggest
repercussions, not only on the architecture of an application, but also on the way it is
managed from a development perspective. As we will see, microservice is a term that at the
moment is most commonly associated with a fine-grained y-axis scaling.

The last scaling dimension is the z-axis, where the application is split in such a way that
each instance is responsible for only a portion of the whole data. This is a technique mainly
used in databases and also takes the name of horizontal partitioning or sharding. In this
setup, there are multiple instances of the same application, each of them operating on a
partition of the data, which is determined using different criteria. For example, we could
partition the users of an application based on their country (list partitioning), or based on the
starting letter of their surname (range partitioning), or by letting a hash function decide the
partition each user belongs to (hash partitioning). Each partition can then be assigned to a
particular instance of our application. The use of data partitions requires each operation to
be preceded by a lookup step to determine which instance of the application is responsible
for a given datum. As we said, data partitioning is usually applied and handled at the
database level because its main purpose is overcoming the problems related to handling
large monolithic datasets (limited disk space, memory, and network capacity). Applying it
at the application level is worth considering only for complex, distributed architectures or
for very particular use cases as, for example, when building applications relying on custom
solutions for data persistence, when using databases not supporting partitioning, or when
building applications at Google scale. Considering its complexity, scaling an application
along the z-axis should be taken into consideration only after the x-and y-axes of the scale
cube have been fully exploited.

In the next sections, we will focus on the two most common and effective techniques to
scale Node.js applications, namely, cloning and decomposing by functionality/service.

[390]

Scalability and Architectural Patterns

Cloning and load balancing

Traditional, multithreaded web servers are usually scaled only when the resources assigned
to a machine cannot be upgraded any more or when doing so would involve a higher cost
than simply launching another machine. By using multiple threads, traditional web servers
can take advantage of all the processing power of a server, using all the available processors
and memory. However, with a single Node.js process it is harder to do that, being single-
threaded and having by default a memory limit of 1.7 GB on 64-bit machines (which needs
a special command-line option called --max_old_space_size to be increased). This
means that Node.js applications are usually scaled much sooner compared to traditional
web servers, even in the context of a single machine, to be able to take advantage of all its
resources.

In Nodejs, vertical scaling (adding more resources to a single machine)
and horizontal scaling (adding more machines to the infrastructure) are
almost equivalent concepts; both in fact involve similar techniques to
leverage all the available processing power.

Don't be fooled into thinking about this as a disadvantage. On the contrary, being almost
forced to scale has beneficial effects on other attributes of an application, in particular
availability and fault-tolerance. In fact, scaling a Node.js application by cloning is relatively
simple and it's often implemented even if there is no need to harvest more resources, just
for the purpose of having a redundant, fail-tolerant setup.

This also pushes the developer to take into account scalability from the early stages of an
application, making sure the application does not rely on any resource that cannot be
shared across multiple processes or machines. In fact, an absolute prerequisite to scaling an
application is that each instance does not have to store common information on resources
that cannot be shared, usually hardware, such as memory or disk. For example, in a web
server, storing the session data in memory or on disk is a practice that does not work well
with scaling; instead, using a shared database will assure that each instance will have access
to the same session information, wherever it is deployed.

Let's now introduce the most basic mechanism for scaling Node.js applications: the
cluster module.

[391]

Scalability and Architectural Patterns

The cluster module

In Node js, the simplest pattern to distribute the load of an application across different
instances running on a single machine is by using the cluster module, which is part of the
core libraries. The cluster module simplifies the forking of new instances of the same
application and automatically distributes incoming connections across them, as shown in
the following figure:

Server machine

Worker
process

Worker
process

Master
process

Incoming |
requests

Worker
process

The Master process is responsible for spawning a number of processes (workers), each
representing an instance of the application we want to scale. Each incoming connection is
then distributed across the cloned workers, spreading the load across them.

[392]

Scalability and Architectural Patterns

Notes on the behavior of the cluster module

In Node.js 0.8 and 0.10, the c1luster module shares the same server socket across the
workers and leaves to the operating system, the job of load-balancing incoming connections
across the available workers. However, there is a problem with this approach; in fact, the
algorithms used by the operating system to distribute the load across the workers are not
meant to load-balance network requests, but rather to schedule the execution of processes.
As a result, the distribution is not always uniform across all the instances; often, a fraction
of workers receive most of the load. This type of behavior can make sense for the operating
system scheduler because it focuses on minimizing the context switches between different
processes. The short story is that the cluster module does not work at its full potential in
Node.js <=0.10.

However, the situation changes starting from version 0.11.2, where an explicit round robin
load-balancing algorithm is included inside the master process, which makes sure the
requests are evenly distributed across all the workers. The new load-balancing algorithm is
enabled by default on all platforms except Windows, and it can be globally modified by
setting the variable cluster.schedulingPolicy, using the constants
cluster.SCHED_RR (round robin) or cluster.SCHED_NONE (handled by the operating
system).

The round robin algorithm distributes the load evenly across the available
servers on a rotational basis. The first request is forwarded to the first
server, the second to the next server in the list, and so on. When the end of
the list is reached, the iteration starts again from the beginning. This is one
of the simplest and most used load balancing algorithms; however, it's not
the only one. More sophisticated algorithms allow assigning priorities,
selecting the least loaded server or the one with the fastest response time.
You can find more details about the evolution of the cluster module in
these two Node.js issues:
https://github.com/nodejs/node-v0.x-archive/issues/3241
https://github.com/nodejs/node-v0.x—-archive/issues/4435

Building a simple HTTP server

Let's now start working on an example. Let's build a small HTTP server, cloned and load-
balanced using the cluster module. First of all, we need an application to scale; for this
example we don't need too much, just a very basic HTTP server.

[3931]

https://github.com/nodejs/node-v0.x-archive/issues/3241
https://github.com/nodejs/node-v0.x-archive/issues/4435

Scalability and Architectural Patterns

Let's create a file called app. js containing the following code:

const http = require('http');
const pid = process.pid;

http.createServer ((req, res) => {
for (let i = 1e7; i> 0; i--) {}
console.log(Handling request from ${pid}");
res.end (" Hello from ${pid}\n’);
}).listen (8080, () => {
console.log (' Started ${pid}’);
)i

The HTTP server we just built responds to any request by sending back a message
containing its PID; this will be useful to identify which instance of the application is
handling the request. Also, to simulate some actual CPU work, we perform an empty loop
10 million times; without this, the server load would be almost nothing considering the
small scale of the tests we are going to run for this example.

The app module we want to scale can be anything and can also be
implemented using a web framework, for example, Express.

We can now check if all works as expected by running the application as usual and sending
arequest to http://localhost:8080 using either a browser or curl.

We can also try to measure the requests per second that the server is able to handle using
only one process; for this purpose, we can use a network benchmarking tool such as siege
(http://www.joedog.org/siege-home) or Apache ab
(http://httpd.apache.org/docs/2.4/programs/ab.html):

siege —c200 -t10S http://localhost:8080
With ab, the command line would be very similar:

ab -c200 -t10 http://localhost:8080/

The preceding commands will load the server with 200 concurrent connections for 10
seconds. As a reference, the result for a system with 4 processors is in the order of 90
transactions per second, with an average CPU utilization of only 20%.

[394]

http://www.joedog.org/siege-home
http://httpd.apache.org/docs/2.4/programs/ab.html

Scalability and Architectural Patterns

Please remember that the load tests we will perform in this chapter are
intentionally simple and minimal and are provided only for reference and
learning purposes. Their results cannot provide a 100% accurate
evaluation of the performance of the various techniques we are analyzing.

Scaling with the cluster module

Let's now try to scale our application using the cluster module. Let's create a new module
called clusteredApp. js:

const cluster = require('cluster');
const os = require('os');

if (cluster.isMaster) {
const cpus = os.cpus () .length;
console.log(Clustering to ${cpus} CPUs");
for (let i = 0; i<cpus; i++) { // [11]
cluster.fork () ;

}
} else {

require ('./app'); /7 12]
}

As we can see, using the cluster module requires very little effort. Let's analyze what is
happening:

e When we launch clusteredapp from the command line, we are actually
executing the master process. The cluster.isMaster variable is set to t rue and
the only work we are required to do is forking the current process using
cluster. fork (). In the preceding example, we are starting as many workers as
the number of CPUs in the system to take advantage of all the available
processing power.

e When cluster. fork () is executed from the master process, the current main
module (clusteredApp) is run again, but this time in worker mode
(cluster.isWorker is set to true, while cluster.isMaster is false). When
the application runs as a worker, it can start doing some actual work. In our
example, we load the app module, which actually starts a new HTTP server.

It's important to remember that each worker is a different Node.js process
with its own event loop, memory space, and loaded modules.

[3951

Scalability and Architectural Patterns

It's interesting to notice that the usage of the cluster module is based on a recurring
pattern, which makes it very easy to run multiple instances of an application:

if (cluster.isMaster) {
// fork()

} else {
//do work

}

Under the hood, the cluster module uses the child_process.fork()
API (we already met this APl in Chapter 9, Advanced Asynchronous
Recipes), therefore, we also have a communication channel available
between the master and the workers. The instances of the workers can be
accessed from the variable cluster.workers, so broadcasting a message

to all of them would be as easy as running the following lines of code:
Object.keys (cluster.workers) .forEach (id => {
cluster.workers[id] .send('Hello from the master');

P

Now, let's try to run our HTTP server in cluster mode. We can do that by starting the
clusteredApp module as usual:

node clusteredApp

If our machine has more than one processor, we should see a number of workers being
started by the master process, one after the other. For example, in a system with four
processors, the terminal should look like this:

Started 14107
Started 14099
Started 14102
Started 14101

If we now try to hit our server again using the URL http://localhost:8080, we should
notice that each request will return a message with a different PID, which means that these
requests have been handled by different workers, confirming that the load is being
distributed among them.

Now we can try to load test our server again:

siege -c200 -t10S http://localhost:8080

[3961

Scalability and Architectural Patterns

This way, we should be able to discover the performance increase obtained by scaling our
application across multiple processes. As a reference, by using Node.js 6 in a Linux system
with 4 processors, the performance increase should be around 3x (270 trans/sec versus 90
trans/sec) with an average CPU load of 90%.

Resiliency and availability with the cluster module

As we already mentioned, scaling an application also brings other advantages, in particular
the ability to maintain a certain level of service even in the presence of malfunctions or
crashes. This property is also known as resiliency and it contributes towards the availability
of a system.

By starting multiple instances of the same application, we are creating a redundant system,
which means that if one instance goes down for whatever reason, we still have other
instances ready to serve requests. This pattern is pretty straightforward to implement using
the cluster module. Let's see how it works!

Let's take the code from the previous section as the starting point. In particular, let's modify
the app. js module so that it crashes after a random interval of time:

//
// At the end of app.js
setTimeout (() => {

throw new Error ('Ooops');
}, Math.ceil (Math.random() * 3) * 1000);

With this change in place, our server exits with an error after a random number of seconds
between 1 and 3. In a real-life situation, this would cause our application to stop working,
and of course, serve requests, unless we use some external tool to monitor its status and
restart it automatically. However, if we only have one instance, there may be a non-
negligible delay between restarts caused by the startup time of the application. This means
that during those restarts, the application is not available. Having multiple instances instead
will make sure we always have a backup system to serve an incoming request even when
one of the workers fails.

With the cluster module, all we have to do is spawn a new worker as soon as we detect
that one is terminated with an error code. Let's then modify the clusteredApp.js module
to take this into account:

if (cluster.isMaster) {

//

cluster.on('exit', (worker, code) => {

[3971]

Scalability and Architectural Patterns

if (code != 0 && !worker.suicide) {
console.log('Worker crashed. Starting a new worker');
cluster.fork () ;
t
)i
} else {
require ('./app');

}

In the preceding code, as soon as the master process receives an 'exit ' event, we check
whether the process is terminated intentionally or as the result of an error; we do this by
checking the status code and the flag worker.exitedAfterDisconnect, which indicates
whether the worker was terminated explicitly by the master. If we confirm that the process
was terminated because of an error, we start a new worker. It's interesting to notice that
while the crashed worker restarts, the other workers can still serve requests, thus not
affecting the availability of the application.

To test this assumption, we can try to stress our server again using siege. When the stress
test completes, we notice that among the various metrics produced by siege, there is also
an indicator that measures the availability of the application. The expected result would be
something similar to this:

Transactions: 3027 hits
Availability: 99.31 %
[...1]

Failed transactions: 21

Bear in mind that this result can vary a lot; it greatly depends on the number of running
instances and how many times they crash during the test, but it should give a good
indicator of how our solution works. The preceding numbers tell us that despite the fact
that our application is constantly crashing, we only had 21 failed requests over 3,027 hits. In
the example scenario we built, most of the failing requests will be caused by the
interruption of already established connections during a crash. In fact, when this happens,
siege will print an error like the following;:

[error] socket: read error Connection reset by peer sock.c:479: Connection
reset by peer

Unfortunately, there is very little we can do to prevent these types of failures, especially
when the application terminates because of a crash. Nonetheless, our solution proves to be
working and its availability is not bad at all for an application that crashes so often!

[3981

Scalability and Architectural Patterns

Zero-downtime restart

A Node.js application might also need to be restarted when its code needs to be updated.
So, also in this scenario, having multiple instances can help maintain the availability of our
application.

When we have to intentionally restart an application to update it, there is a small window
in which the application restarts and is unable to serve requests. This can be acceptable if
we are updating our personal blog, but it's not even an option for a professional application
with a Service Level Agreement (SLA) or one that is updated very often as part of a
continuous delivery process. The solution is to implement a zero-downtime restart where
the code of an application is updated without affecting its availability.

With the cluster module, this is again a pretty easy task; the pattern consists of restarting
the workers one at a time. This way, the remaining workers can continue to operate and
maintain the services of the application available.

Let's then add this new feature to our clustered server; all we have to do is add some new
code to be executed by the master process (the clusteredApp. js file):

if (cluster.isMaster) {

//

process.on('SIGUSR2', () => { //I[1]
const workers = Object.keys(cluster.workers);

function restartWorker (i) { //[2]
if (i >= workers.length) return;
const worker = cluster.workers[workers[i]];
console.log (' Stopping worker: ${worker.process.pid}’);
worker.disconnect (); //[3]

worker.on ('exit', () => {
if (!worker.suicide) return;
//14]

const newWorker = cluster.fork
newWorker.on('listening', () =
restartWorker (i + 1); //[5]
)i
)i
t
restartWorker (0) ;
)i
} else {
require ('./app');

}

()
>

[3991

Scalability and Architectural Patterns

This is how the preceding block of code works:

1. The restarting of the workers is triggered on receiving the SIGUSR2 signal.

2. We define an iterator function called restartWorker (). This implements an
asynchronous sequential iteration pattern over the items of the
cluster.workers object.

3. The first task of the restartwWorker () function is stopping a worker gracefully
by invoking worker.disconnect ().

4. When the terminated process exits, we can spawn a new worker.

5. Only when the new worker is ready and listening for new connections can we
proceed with restarting the next worker by invoking the next step of the iteration.

As our program makes use of UNIX signals, it will not work properly on
Windows systems (unless you are using the recent Windows subsystem
for Linux in Windows 10). Signals are the simplest mechanism to
implement our solution. However, this isn't the only one; in fact, other
approaches include listening for a command coming from a socket, a pipe,
or the standard input.

Now we can test our zero-downtime restart by running the clusteredApp module and
then sending a SIGUSR2 signal. However, first we need to obtain the PID of the master
process; the following command can be useful to identify it from the list of all the running
processes:

ps af

The master process should be the parent of a set of node processes. Once we have the PID
we are looking for, we can send the signal to it:

kill -SIGUSR2 <PID>

Now the output of the clusteredapp application should display something like this:

Restarting workers
Stopping worker: 19389
Started 19407
Stopping worker: 19390
Started 19409

[400]

Scalability and Architectural Patterns

We can try to use siege again to verify that we don't have any considerable impact on the
availability of our application during the restart of the workers.

pm2 (https://github.com/Unitech/pm2) is a small utility, based on
cluster, which offers load balancing, process monitoring, zero-downtime
restarts, and other goodies.

Dealing with stateful communications

The cluster module does not work well with stateful communications where the state
maintained by the application is not shared between the various instances. This is because
different requests belonging to the same stateful session may potentially be handled by a
different instance of the application. This is not a problem limited only to the cluster
module, but in general it applies to any kind of stateless, load balancing algorithm.
Consider, for example, the situation described by the following figure:

————— @ authenticated:[john’]

Authenticate _ Load
“\\ balancer
John !
Instance B |----- @ authenticated:[]

. ————— @® authenticated:['john’]
% Request

Load
halancer

v

John

InstanceB fp----- ® authenticated:[]

[401]

https://github.com/Unitech/pm2

Scalability and Architectural Patterns

The user John initially sends a request to our application to authenticate himself, but the
result of the operation is registered locally (for example, in memory), so only the instance of
the application that receives the authentication request (Instance A) knows that John is
successfully authenticated. When John sends a new request, the load balancer might
forward it to a different instance of the application, which actually doesn't possess the
authentication details of John, hence refusing to perform the operation. The application we
just described cannot be scaled as it is, but luckily, there are two easy solutions we can
apply to solve the problem.

Sharing the state across multiple instances

The first option we have to scale an application using stateful communications is sharing the
state across all the instances. This can be easily achieved with a shared datastore, as, for
example, a database such as PostgreSQL (http://www.postgresql.org), MongoDB
(http://www.mongodb.org), or CouchDB (http://couchdb.apache.org), or even
better, we can use an in-memory store such as Redis (http://redis.io) or Memcached
(http://memcached.org).

The following diagram outlines this simple and effective solution:

fi Authenticate L
Load ~ : ‘ '
> hi :[‘johi
balancer /.aut enticated:[‘john’]

John
Instance B

’ \

Load
balancer

h 4

ﬁ Request

John

“@authenticated:[john']

Instance B

[402]

http://www.postgresql.org
http://www.mongodb.org
http://couchdb.apache.org
http://redis.io
http://memcached.org

Scalability and Architectural Patterns

The only drawback of using a shared store for the communication state is that it's not
always possible, for example, we might be using an existing library that keeps the
communication state in memory; anyway, if we have an existing application, applying this
solution requires a change in the code of the application (if it's not already supported). As
we will see next, there is a less invasive solution.

Sticky load balancing

The other alternative we have to support stateful communications is having the load
balancer always routing all of the requests associated with a session always to the same
instance of the application. This technique is also called sticky load balancing.

The following figure illustrates a simplified scenario involving this technique:

Associate the new
session with an
instance

Session | Server
XYZ123

Instance A

----- ® authenticated:['john’]

Authenticate

(session XYZ123) Load

balancer

h 4

John :
Instance B | ----- ® authenticated:[]

Get the instance
associated to the
session

Session | Server
X¥Z123 |Instance A

————— @ authenticated:['john’]

Request
(session XYZ123)

Load
balancer

h 4

John)
InstanceB |----- ® authenticated:[]

[403]

Scalability and Architectural Patterns

As we can see from the preceding figure, when the load balancer receives a request
associated with a new session, it creates a mapping with one particular instance selected by
the load-balancing algorithm. The next time the load balancer receives a request from that
same session, it bypasses the load-balancing algorithm, selecting the application instance
that was previously associated with the session. The particular technique we just described
involves the inspection of the session ID associated with the requests (usually included in a
cookie by the application or the load balancer itself).

A simpler alternative to associate a stateful connection to a single server is by using the IP
address of the client performing the request. Usually, the IP is provided to a hash function
that generates an ID representing the application instance designated to receive the request.
This technique has the advantage of not requiring the association to be remembered by the
load balancer. However, it doesn't work well with devices that frequently change IP as, for
example, when roaming on different networks.

Sticky load balancing is not supported by default by the cluster module;
however, it can be added with an npm library called sticky-session
(https://www.npmjs.org/package/sticky—-session).

One big problem with sticky load balancing is the fact that it nullifies most of the
advantages of having a redundant system, where all the instances of the application are the
same, and where an instance can eventually replace another one that stopped working. For
these reasons, the recommendation is to always try to avoid sticky load balancing and
building applications that maintain any session state in a shared store or that don't require
stateful communications at all (for example, by including the state in the request itself) are
preferred.

For a real example of a library requiring sticky load balancing, we can
mention Socket.io
(http://socket.io/blog/introducing-socket—io-1-0/#scalabil

ity).

Scaling with a reverse proxy

The cluster module is not the only option we have to scale a Node.js web application. In
fact, more traditional techniques are often preferred because they offer more control and
power in highly available production environments.

[404]

https://www.npmjs.org/package/sticky-session
http://socket.io/blog/introducing-socket-io-1-0/#scalability
http://socket.io/blog/introducing-socket-io-1-0/#scalability

Scalability and Architectural Patterns

The alternative to using cluster is to start multiple standalone instances of the same
application running on different ports or machines, and then use a reverse proxy (or gateway)
to provide access to those instances, distributing the traffic across them. In this
configuration, we don't have a master process distributing requests to a set of workers, but
a set of distinct processes running on the same machine (using different ports) or scattered
across different machines inside a network. To provide a single access point to our
application, we can then use a reverse proxy, a special device or service placed between the
clients and the instances of our application, which takes any request and forwards it to a
destination server, returning the result to the client as if it was itself the origin. In this
scenario, the reverse proxy is also used as a load balancer, distributing the requests among
the instances of the application.

For a clear explanation of the differences between a reverse proxy and a
forward proxy, you can refer to the Apache HTTP server documentation
at
http://httpd.apache.org/docs/2.4/mod/mod_proxy.html#forwa
rdreverse.

The next figure shows a typical multiprocess, multimachine configuration with a reverse
proxy acting as a load balancer on the front:

O

Load
balancer

Server #17==7

Application Application Application Application Application Application

instance instance instance instance instance instance

Server #2 Server #3 Server #4

[405]

http://httpd.apache.org/docs/2.4/mod/mod_proxy.html#forwardreverse
http://httpd.apache.org/docs/2.4/mod/mod_proxy.html#forwardreverse

Scalability and Architectural Patterns

For a Node.js application, there are many reasons to choose this approach in place of the
cluster module:

¢ A reverse proxy can distribute the load across several machines, not just several
processes

e The most popular reverse proxies on the market support sticky load balancing

¢ A reverse proxy can route a request to any available server, regardless of its
programming language or platform

e We can choose more powerful load balancing algorithms

e Many reverse proxies also offer other services such as URL rewrites, caching, SSL
termination point, or even the functionality of fully-fledged web servers that can
be used, for example, to serve static files

That said, the cluster module could also be easily combined with a reverse proxy if
necessary; for example, using cluster to scale vertically inside a single machine and then
using the reverse proxy to scale horizontally across different nodes.

Pattern
Use a reverse proxy to balance the load of an application across multiple
instances running on different ports or machines.

We have many options to implement a load balancer using a reverse proxy; some popular
solutions are the following;:

e Nginx (http://nginx.org): This is a web server, reverse proxy, and load
balancer, built upon the non-blocking I/O model.

e HAProxy (http://www.haproxy.org): This is a fast load balancer for
TCP/HTTP traffic.

¢ Node.js-based proxies: There are many solutions for the implementation of
reverse proxies and load balancers directly in Node.js. This might have
advantages and disadvantages, as we will see later.

¢ Cloud-based proxies: In the era of cloud computing, it's not rare to utilize a load
balancer as-a-service. This can be convenient because it requires minimal
maintenance, it's usually highly scalable, and sometimes it can support dynamic
configurations to enable on-demand scalability.

In the next few sections of this chapter, we will analyze a sample configuration using
Nginx, and later on, we will also work on building our very own load balancer using
nothing but Node.js!

[406]

http://nginx.org
http://www.haproxy.org

Scalability and Architectural Patterns

Load balancing with Nginx

To give an idea of how dedicated reverse proxies work, we will now build a scalable
architecture based on Nginx (http://nginx.org), but first we need to install it. We can do
that by following the instructions at http://nginx.org/en/docs/install.html.

On the latest Ubuntu system, you can quickly install Nginx with the
command:

sudo apt-get install nginx

On Mac OS X, you can use brew (http://brew.sh):

brew install nginx

As we are not going to use cluster to start multiple instances of our server, we need to
slightly modify the code of our application so that we can specify the listening port using a
command-line argument. This will allow us to launch multiple instances on different ports.
Let's then consider again the main module of our example application (app. js):

const http = require('http');
const pid = process.pid;

http.createServer ((req, res) => {
for (let i = 1e7; i> 0; i--) {}
console.log(' Handling request from ${pid}");
res.end(Hello from ${pid}\n’);
}) .listen (process.env.PORT || process.argv([2] || 8080, () => {
console.log(Started ${pid}’);
)i

Another important feature we lack by not using cluster is the automatic restart in case of
a crash. Luckily, this is easy to fix by using a dedicated supervisor, which is an external
process monitoring our application and restarting it if necessary. Possible choices are the
following;:

¢ Node.js-based supervisors such as forever
(https://npmjs.org/package/forever) Or pm2
(https://npmjs.org/package/pm2)

¢ OS-based monitors such as upstart (http://upstart.ubuntu.com), systemd
(http://freedesktop.org/wiki/Software/systemd)orrunit (http://sma
rden.org/runit/)

[407]

http://nginx.org
http://nginx.org/en/docs/install.html
http://brew.sh
https://npmjs.org/package/forever
https://npmjs.org/package/pm2
http://upstart.ubuntu.com
http://freedesktop.org/wiki/Software/systemd
http://smarden.org/runit/
http://smarden.org/runit/

Scalability and Architectural Patterns

¢ More advanced monitoring solutions such as monit
(http://mmonit.com/monit) or supervisor (http://supervisord.orq)

For this example, we are going to use forever, which is the simplest and most immediate
for us to use. We can install it globally by running the following command:

npm install forever —-g

The next step is to start the four instances of our application, all on different ports and
supervised by forever:

forever start app.js 8081
forever start app.js 8082
forever start app.js 8083
forever start app.js 8084

We can check the list of the started processes using the command:

forever list
Now it's time to configure the Nginx server as a load balancer.

First, we need to identify the location of the nginx. conf file that can be found in one of the
following locations, depending on your system /usr/local/nginx/conf, /etc/nginx, or
/usr/local/etc/nginx.

Next, let's open the nginx.conf file and apply the following configuration, which is the
very minimum required to get a working load balancer:

http {
#
upstream nodejs_design_patterns_app {
server 127.0.0.1:8081;

server 127.0.0.1:8082;
server 127.0.0.1:8083;
server 127.0.0.1:8084;
}
#
server |
listen 80;
location / {
proxy_pass http://nodejs_design_patterns_app;
}
}
#

[408]

http://mmonit.com/monit
http://supervisord.org

Scalability and Architectural Patterns

The configuration needs very little explanation. In the upstream
nodejs_design_patterns_app section, we are defining a list of the backend servers used
to handle the network requests, and then, in the server section, we specify the
proxy_pass directive, which essentially tells Nginx to forward any request to the server
group we defined before (nodejs_design_patterns_app). That's it, now we only need to
reload the Nginx configuration with the command:

nginx -s reload

Our system should now be up and running, ready to accept requests and balance the traffic
across the four instances of our Node.js application. Simply point your browser to the
address http://localhost to see how the traffic is balanced by our Nginx server.

Using a service registry

One important advantage of modern cloud-based infrastructures is the ability to
dynamically adjust the capacity of an application based on the current or predicted traffic;
this is also known as dynamic scaling. If implemented properly, this practice can reduce the
cost of the IT infrastructure enormously while still keeping the application highly available
and responsive.

The idea is simple: if our application is experiencing a performance degradation caused by a
peak in the traffic, we automatically spawn new servers to cope with the increased load. We
could also decide to shut down some servers during certain hours, for example, at night,
when we know that the traffic will be less, and restarting them again in the morning. This
mechanism requires the load balancer to always be up-to-date with the current network
topology, knowing at any time which server is up.

A common pattern to solve this problem is to use a central repository called a service
registry, which keeps track of the running servers and the services they provide. The next
figure shows a multiservice architecture with a load balancer on the front, dynamically
configured using a service registry:

[409]

Scalability and Architectural Patterns

Service R egistr y example.com

Load
balancer

apil.example.com:8080

API apil.example.com:8081
api2.example.com.8080 [¢——Reads the topology

WebApp webl.example.com:80

API Server | | API Server API Server WebApp
Server
apil.example.com api2.example.com web1.example.com

g J I

Register their services

The preceding architecture assumes the presence of two services, API and WebApp. The load
balancer distributes the requests arriving on the /api endpoint to all the servers
implementing the APT service, while the rest of the requests are spread across the servers
implementing the WebApp service. The load balancer obtains the list of servers using the
service registry.

For this to work in complete automation, each application instance has to register itself to
the service registry the moment it comes up online, and unregister itself when it stops. This
way, the load balancer can always have an up-to-date view of the servers and the services
available on the network.

Pattern (service registry)
Use a central repository to store an always up-to-date view of the servers
and the services available in a system.

[410]

Scalability and Architectural Patterns

This pattern can be applied not only to load balancing, but also more generally as a way to
decouple a service type from the servers providing it. We can look at it as a service locator
design pattern applied to network services.

Implementing a dynamic load balancer with http-proxy
and Consul

To support a dynamic network infrastructure, we can use a reverse proxy such as Nginx or
HAProxy; all we need to do is update their configuration using an automated service and
then force the load balancer to pick the changes. For Nginx, this can be done using the
following command line:

nginx -s reload

The same result can be achieved with a cloud-based solution, but we have a third and more
familiar alternative that makes use of our favorite platform.

We all know that Node js is a great tool to build any sort of network application; as we said,
this is exactly one of its main design goals. So, why not build a load balancer using nothing
but Node.js? This would give us much more freedom and power, and would allow us to
implement any sort of pattern or algorithm straight into our custom-built load balancer,
including the one we are now going to explore, dynamic load balancing using a service
registry. In this example we are going to use Consul (https://www.consul.io) as the
service registry.

For this example, we want to replicate the multiservice architecture we saw in the figure of
the previous section, and to do that, we are going to mainly use three npm packages:

e http-proxy (https://npmjs.org/package/http-proxy): This is a library to
simplify the creation of proxies and load balancers in Node.js

e portfinder (https://npmjs.com/package/portfinder): This is a library
that allows a free port in the system to be discovered

e consul (https://npmjs.org/package/consul): This is a library that allows
to services to be registered in Consul

[411]

https://www.consul.io
https://npmjs.org/package/http-proxy
https://npmjs.com/package/portfinder)
https://npmjs.com/package/portfinder)
https://npmjs.org/package/consul

Scalability and Architectural Patterns

Let's start by implementing our services. They are simple HTTP servers like the ones we
have used so far to test cluster and Nginx, but this time we want each server to register
itself into the service registry the moment it starts.

Let's see how this looks (file app. js):

const http = require('http');

const pid = process.pid;

const consul = require('consul') ();

const portfinder = require('portfinder');
const serviceType = process.argv|[2];

portfinder.getPort ((err, port) => { /7 111
const serviceld = serviceType+port;
consul.agent.service.register ({ // [2]

id: serviceld,
name: serviceType,

address: 'localhost',
port: port,
tags: [serviceType]
oo => A
const unregisterService = (err) => { // [3]
consul.agent.service.deregister (serviceld, () => {
process.exit(err 2 1 : 0);

)i
bi

process.on('exit', unregisterService); // [4]
process.on ('SIGINT', unregisterService);
process.on ('uncaughtException', unregisterService);

http.createServer ((req, res) => { // 15]
for (let i = 1e7; i> 0; 1i--) {}
console.log(Handling request from ${pid}");
res.end (" ${serviceType} response from ${pid}i\n’);
}) .listen (port, () => {
console.log (' Started ${serviceType} (${pid}) on port ${port}’);

[412]

Scalability and Architectural Patterns

In the preceding code, there are some parts that deserve our attention:

e First, we use port finder.getPort to discover a free port in the system (by
default, port finder starts to search from port 8000).

¢ Next, we use the Consul library to register a new service in the registry. The
service definition needs several attributes: id (a unique name for the service),
name (a generic name that identifies the service), address and port (to identify
how to access the service), tags (an optional array of tags that can be used to
filter and group services). We are using serviceType (that we get as a
command-line argument) to specify the service name and to add a tag. This will
allow us to identify all the services of the same type available in the cluster.

e At this point we define a function called unregisterService that allows us to
remove the service we just registered in Consul.

e We use unregisterService as a cleanup function, so that when the program is
closed (either intentionally or by accident), the service is unregistered from
Consul.

e Finally, we start the HTTP server for our service on the port discovered by
portfinder.

Now it's time to implement the load balancer. Let's do that by creating a new module called
loadBalancer. js. First, we need to define a routing table to map URL paths to services:

const routing = [

{
path: '/api',

service: 'api-service',
index: 0
}I
{
path: '/',
service: 'webapp-service',

index: 0
}
1;

Each item in the routing array contains service used to handle the requests arriving on
the mapped path. The index property will be used to round robin the requests of a given
service.

Let's see how this works by implementing the second part of loadbalancer. js:

const http = require('http');
const httpProxy = require('http-proxy');

[413]

Scalability and Architectural Patterns

const consul = require('consul') (); // [1]

const proxy = httpProxy.createProxyServer ({});

http.createServer ((req, res) => {

let route;

routing.some (entry => { // [2]
route = entry;
//Starts with the route path?
return reqg.url.indexOf (route.path) === 0;

)i

consul.agent.service.list ((err, services) => { // [3]
const servers = [];

Object.keys (services) .filter (id => { //
if (services[id].Tags.indexOf (route.service) > -1) {
servers.push ("http://${services[id] .Address}:${services[id] .Port}")
t
)i

if (!servers.length) {
res.writeHead (502);
return res.end('Bad gateway');

}

o

route.index = (route.index + 1) % servers.length; // [4]
proxy.web (req, res, {target: servers[route.index]});

)i
}).1listen (8080, () => console.log('Load balancer started on port 8080'"'));

This is how we implemented our Node.js-based load balancer:

1. First, we need to require consul so that we can have access to the registry. Next,
we instantiate an ht tp-proxy object and start a normal web server.

2. In the request handler of the server, the first thing we do is match the URL
against our routing table. The result will be a descriptor containing the service
name.

3. We obtain from consul the list of servers implementing the required service. If
this list is empty, we return an error to the client. We use the Tag attribute to
filter all the available services and find the address of the servers that implements
the current service type.

4. Atlast, we can route the request to its destination. We update route.index to
point to the next server in the list, following a round robin approach. We then use
the index to select a server from the list, passing it to proxy.web () along with
the request (req) and the response (res) objects. This will simply forward the
request to the server we chose.

[414]

Scalability and Architectural Patterns

It is now clear how simple it is to implement a load balancer using only Node.js and a
service registry and how much flexibility we can have by doing so. Now we should be
ready to give it a go, but first, let's install the consul server by following the official
documentation at: https://www.consul.io/intro/getting-started/install.html.

This allows us to start the consul service registry in our development machine with this
simple command line:

consul agent -dev
Now we are ready to start the load balancer:

node loadBalancer

Now if we try to access some of the services exposed by the load balancer, we will notice
that it returns an HTTP 502 error, because we didn't start any server yet. Try it yourself:

curl localhost:8080/api
The preceding command should return the following output:
Bad Gateway

The situation will change if we spawn some instances of our services, for example, two
api-service and one webapp-service:

forever start app.js api-service
forever start app.js api-service
forever start app.js webapp-service

Now the load balancer should automatically see the new servers and start distributing
requests across them. Let's try again with the following command:

curl localhost:8080/api
The preceding command should now return this:

api-service response from 6972

By running it again, we should now receive a message from another server, confirming that
the requests are being distributed evenly among the different servers:

api-service response from 6979

[415]

https://www.consul.io/intro/getting-started/install.html

Scalability and Architectural Patterns

The advantages of this pattern are immediate. We can now scale our infrastructure
dynamically, on demand, or based on a schedule, and our load balancer will automatically
adjust with the new configuration without any extra effort!

Peer-to-peer load balancing

Using a reverse proxy is almost a necessity when we want to expose a complex internal
network architecture to a public network such as the Internet. It helps hide the complexity,
providing a single access point that external applications can easily use and rely on.
However, if we need to scale a service that is for internal use only, we can have much more
flexibility and control.

Let's imagine having a Service A which relies on a Service B to implement its functionality.
Service B is scaled across multiple machines and it's available only in the internal network.
What we have learned so far is that Service A will connect to Service B using a reverse
proxy, which will distribute the traffic to all the servers implementing Service B.

However, there is an alternative. We can remove the reverse proxy from the picture and
distribute the requests directly from the client (Service A), which now becomes directly
responsible for load balancing its connections across the various instances of Service B. This
is possible only if Server A knows the details about the servers exposing Service B, and in
an internal network, this is usually known information. With this approach we are
essentially implementing peer-to-peer load balancing.

The following diagram compares the two alternatives we just described:

[416]

Scalability and Architectural Patterns

Centralized load balancing Peer-to-peer load balancing

Service A

Service A

(Client) (Client)

Load
Balancer

v

Service B Service B Service B Service B Service B Service B

This is an extremely simple and effective pattern that enables truly distributed
communications without bottlenecks or single points of failure. Besides that, it also does the
following;:

¢ Reduces the infrastructure complexity by removing a network node

¢ Allows faster communications, because messages will travel through one fewer
node

e Scales better, because performances are not limited by what the load balancer can
handle

On the other hand, by removing the reverse proxy, we are actually exposing the complexity
of its underlying infrastructure. Also, each client has to be smarter by implementing a load-
balancing algorithm and, possibly, also a way to keep its knowledge of the infrastructure
up-to-date.

Peer-to-peer load balancing is a pattern used extensively in the GMQ
(http://zeromg.org) library.

[417]

http://zeromq.org

Scalability and Architectural Patterns

Implementing an HTTP client that can balance requests
across multiple servers

We already know how to implement a load balancer using only Node.js and distribute
incoming requests across the available servers, so implementing the same mechanism on
the client side should not be that different. All we have to do in fact is wrap the client API
and augment it with a load-balancing mechanism. Take a look at the following module
(balancedRequest. js):

const http = require('http');
const servers = [
{host: 'localhost', port: '8081'},
{host: 'localhost', port: '8082'}
1i
let 1 = 0;

module.exports = (options, callback) => {
i = (i + 1) % servers.length;
options.hostname = servers[i].host;
options.port = servers[i].port;

return http.request (options, callback);
i

The preceding code is very simple and needs little explanation. We wrapped the original
http.request APIso that it overrides the hostname and port of the request with those
selected from the list of available servers using a round robin algorithm.

The new wrapped API can then be used seamlessly (client. js):

const request = require('./balancedRequest');
for(let 1 = 10; i>= 0; i--) |
request ({method: 'GET', path: '/'}, res => {
let str = '';
res.on('data', chunk => {
str += chunk;
}).on('end', () => {

console.log(str);

1)
}) .end();
¥

To try the preceding code, we have to start two instances of the sample server provided:

node app 8081
node app 8082

[418]

Scalability and Architectural Patterns

Followed by the client application we just built:

node client

We should notice how each request is sent to a different server, confirming that we are now
able to balance the load without a dedicated reverse proxy!

An improvement to the wrapper we created before would be to integrate a
service registry directly into the client and obtain the server list
dynamically. You can find an example of this technique in the code
distributed with the book.

Decomposing complex applications

So far in the chapter, we have mainly focused our analysis on the x-axis of the scale cube.
We saw how it represents the easiest and most immediate way to distribute the load of an
application, also improving its availability. In the following section, we are now going to
focus on the y-axis of the scale cube, where applications are scaled by decomposing them
by functionality and service. As we will learn, this technique allows us to scale not only the
capacity of an application, but also, and most importantly, its complexity.

Monolithic architecture

The term monolithic might make us think of a system without modularity, where all the
services of an application are interconnected and almost indistinguishable. However, this is
not always the case. Often, monolithic systems have a highly modular architecture and a
good decoupling between their internal components.

A perfect example is the Linux OS kernel, which is part of a category called monolithic
kernels (in perfect opposition with its ecosystem and the Unix philosophy). Linux has
thousands of services and modules that we can load and unload dynamically even while
the system is running. However, they all run in kernel mode, which means that a failure in
any of them might bring the entire OS down (have you ever seen a kernel panic?). This
approach is opposite to the microkernel architecture, where only the core services of the
operating system run in kernel mode, while the rest run in user mode, usually each one
with its own process. The main advantage of this approach is that a problem in any of these
services would more likely cause it to crash in isolation instead of affecting the stability of
the entire system.

[419]

Scalability and Architectural Patterns

The Torvalds-Tanenbaum debate on kernel design is probably one of the
most famous flame wars in the history of computer science, where one of
the main points of dispute was exactly monolithic versus microkernel
design. You can find a web version of the discussion (it originally
appeared on Usenet) at
https://groups.google.com/d/msg/comp.os.minix/wlhwl6QWltI
/P81isWhz8PJ8J.

It's remarkable how these design principles, more than 30 years old, can still be applied
today and in totally different environments. Modern monolithic applications are
comparable to monolithic kernels; if any of their components fail, the entire system is
affected, which, translated into Node.js terms, means that all the services are part of the
same codebase and run in a single process (when not cloned).

To make an example of a monolithic architecture, let's take a look at the following figure:

E-commerce application

f 3
Store front-end Admin
front-end
: J
Authentication
Products Cart Checkout Search and
Users
b 4

Datastore

The preceding figure shows the architecture of a typical e-commerce application. Its
structure is modular; we have two different frontends, one for the main store and another
for the administration interface. Internally, we have a clear separation of the services
implemented by the application, each one responsible for a specific portion of its business
logic: Products, Cart, Checkout, Search, and Authentication and Users. However, the
preceding architecture is monolithic; every module, in fact, is part of the same codebase and
runs as part of a single application. A failure in any of its components, for example, an
uncaught exception, can potentially tear down the entire online store.

[420]

https://groups.google.com/d/msg/comp.os.minix/wlhw16QWltI/P8isWhZ8PJ8J
https://groups.google.com/d/msg/comp.os.minix/wlhw16QWltI/P8isWhZ8PJ8J

Scalability and Architectural Patterns

Another problem with this type of architecture is the interconnection between its modules;
the fact that they all live inside the same application makes it very easy for a developer to
build interactions and coupling between modules. For example, consider the use case when
a product is being purchased: the Checkout module has to update the availability of the
Product object, and if those two modules are in the same application, it's too easy for a
developer to just obtain a reference to a Product object and update its availability directly.
Maintaining a low coupling between internal modules is very hard in a monolithic
application, partly because the boundaries between them are not always clear or properly
enforced.

A high coupling is often one of the main obstacles to the growth of an application and
prevents its scalability in terms of complexity. In fact, an intricate dependency graph means
that every part of the system is a liability; it has to be maintained for the entire life of the
product, and any change should be carefully evaluated because every component is like a
wooden block in a Jenga tower: moving or removing one of them can cause the entire tower
to collapse. This often results in the building of conventions and development processes to
cope with the increasing complexity of the project.

The microservice architecture

Now we are going to reveal the most important pattern in Node.js to write big applications:
avoid writing big applications. This seems like a trivial statement, but it's an incredibly
effective strategy to scale both the complexity and the capacity of a software system. So
what's the alternative to writing big applications? The answer is in the y-axis of the scale
cube, decomposition and splitting by service and functionality. The idea is to break down
an application into its essential components, creating separate, independent applications. It
is practically the opposite of monolithic architecture. This fits perfectly with the Unix
philosophy, and the Node.js principles we discussed at the beginning of the book, in
particular “make each program do one thing well”.

Microservice architecture is today, probably the main reference pattern for this type of
approach, where a set of self-sufficient services replace big monolithic applications. The
prefix micro means that the services should be as small as possible, but always within
reasonable limits. Don't be misled by thinking that creating an architecture with a hundred
different applications exposing only one web service is necessarily a good choice. In reality,
there is no strict rule on how small or big a service should be. It's not the size that matters in
the design of a microservice architecture; instead, it's a combination of different factors,
mainly loose coupling, high cohesion, and integration complexity.

[421]

Scalability and Architectural Patterns

An example of microservice architecture

Let's now see what the monolithic e-commerce application would look like, using a
microservice architecture:

Store front-end application Admin front-end application
Store front-end Admin front-end
Products service Cart service Checkout service Search service Authszrrlf?cgsers
Authentication
Products Cart Checkout Search and
Users

Datastore Datastore Datastore Datastore Datastore

As we can see from the previous figure, each fundamental component of the e-commerce
application is now a self-sustaining and independent entity, living in its own context, with
its own database. In practice, they are all independent applications exposing a set of related
services (high cohesion).

[422]

Scalability and Architectural Patterns

The data ownership of a service is an important characteristic of microservice architecture.
This is why the database also has to be split to maintain the proper level of isolation and
independence. If a unique shared database is used, it would become much easier for the
services to work together; however, this would also introduce a coupling between the
services (based on data), nullifying some of the advantages of having different applications.

The dashed line connecting all the nodes tells us that, in some way, they have to
communicate and exchange information for the entire system to be fully functional. As the
services do not share the same database, there is more communication involved to maintain
the consistency of the whole system. For example, the Checkout application needs to know
some information about Products, such as the price and restrictions on shipping, and at the
same time, it needs to update the data stored in the Products service, for example, the
product availability when the checkout is complete. In the preceding figure, we tried to
keep the way the nodes communicate abstract. Surely, the most popular strategy is using
web services, but as we will see later, this is not the only option.

Pattern (microservice architecture)
Split a complex application by creating several small, self-contained
services.

Pros and cons of microservices

In this section we are going to highlight some of the advantages and disadvantages of
implementing a microservice architecture. As we will see, this approach promises to bring a
radical change in the way we develop our applications, revolutionizing the way we see
scalability and complexity, but on the other hand, it introduces new nontrivial challenges as
well.

Martin Fowler wrote a great article about microservices that you can find
athttp://martinfowler.com/articles/microservices.html.

[423]

http://martinfowler.com/articles/microservices.html

Scalability and Architectural Patterns

Every service is expendable

The main technical advantage of having each service living in its own application context is
that crashes, bugs, and breaking changes do not propagate to the entire system. The goal is
to build truly independent services that are smaller, easier to change, or even rebuild from
scratch. If, for example, the Checkout service of our e-commerce application suddenly
crashes because of a serious bug, the rest of the system would continue to work as normal.
Some functionality may be affected, for example, the ability to purchase a product, but the
rest of the system would continue to work.

Also, imagine if we suddenly realized that the database or the programming language we
used to implement a component was not a good design decision. In a monolithic
application, there would be very little we could do to change things without affecting the
entire system; instead, in a microservice architecture, we could more easily re-implement
the entire service from scratch, using a different database or platform, and the rest of the
system would not even notice it.

Reusability across platforms and languages

Splitting a big monolithic application into many small services allows us to create
independent units that can be reused much more easily. Elasticsearch
(http://www.elasticsearch.org) is a great example of a reusable search service; also,
the authentication server we built in Chapter 7, Wiring Modules, is another example of a
service that can be easily reused in any application, regardless of the programming
language it's built in.

The main advantage is that the level of information hiding is usually much higher
compared to monolithic applications. This is possible because the interactions usually
happen through a remote interface such as a web service or a message broker, which makes
it much easier to hide the implementation details and shield the client from changes in the
way the service is implemented or deployed. For example, if all we have to do is invoke a
web service, we are shielded from the way the infrastructure behind is scaled, from what
programming language it uses, from what database it uses to store its data, and so on.

A way to scale the application

Going back to the scale cube, it's clear that microservices are equivalent to scaling an
application along the y-axis, so it's already a means for the distribution of the load across
multiple machines. Also, we should not forget that we can combine microservices with the
other two dimensions of the cube to scale the application even further. For example, each
service could be cloned to handle more traffic, and the interesting aspect is that they can be
scaled independently, allowing better resource management.

[424]

http://www.elasticsearch.org

Scalability and Architectural Patterns

The challenges of microservices

At this point, it would look like microservices are the solution to all our problems; however,
this is far from being true. In fact, having more nodes to manage introduces a higher
complexity in terms of integration, deployment, and code sharing; it fixes some of the pains
of traditional architectures but it also opens up many new questions. How do we make the
services interact? How can we deploy, scale, and monitor such a high number of
applications? How can we share and reuse code between services? Fortunately, cloud
services and modern DevOps methodologies can provide some answers to those questions,
and also, Node.js can help a lot. Its module system is a perfect companion to share code
between different projects. Node.js was made to be a node in a distributed system such as
those implemented using a microservice architecture.

Although microservices can be built using any framework (or even just the
core Node.js modules), there are a few solutions specialized for this
purpose; among the most notable, we have Seneca (https://npmjs.org
/package/seneca), AWS Lambda
(https://aws.amazon.com/lambda), IBM OpenWhisk
(https://developer.ibm.com/openwhisk) and Microsoft Azure
Functions (https://azure.microsoft.com/en-us/services/functi
ons). A useful tool to manage the deployment of microservices is Apache
Mesos (http://mesos.apache.org).

Integration patterns in a microservice
architecture

One of the toughest challenges of microservices is connecting all the nodes to make them
collaborate. For example, the Cart service of our e-commerce application would make little
sense without some Products to add, and the Checkout service would be useless without a
list of products to buy (a cart). As we already mentioned, there are also other factors that
necessitate an interaction between the various services. For example, the Search service has
to know which Products are available and must also ensure it keeps its information up-to-
date. The same can be said about the Checkout service, which has to update the
information about Product availability when a purchase is completed.

When designing an integration strategy, it's also important to consider the coupling that it's
going to introduce between the services in the system. We should not forget that designing
a distributed architecture involves the same practices and principles that we use locally
when designing a module or subsystem, therefore, we also need to take into consideration
properties such as the reusability and extensibility of the service.

[425]

https://npmjs.org/package/seneca)
https://npmjs.org/package/seneca)
https://aws.amazon.com/lambda)
https://aws.amazon.com/lambda)
https://developer.ibm.com/openwhisk)
https://developer.ibm.com/openwhisk)
https://azure.microsoft.com/en-us/services/functions
https://azure.microsoft.com/en-us/services/functions
http://mesos.apache.org

Scalability and Architectural Patterns

The API proxy

The first pattern we are going to show makes use of an API Proxy (also commonly
identified as an API Gateway), a server that proxies the communications between a client
and a set of remote APIs. In a microservice architecture, its main purpose is to provide a
single access point for multiple API endpoints, but it can also offer load balancing, caching,
authentication, and traffic limiting, all features that prove to be very useful to implement a
solid API solution.

This pattern should not be new to us; we already saw it in action when we built the custom
load balancer with ht tp-proxy and consul. For that example, our load balancer was
exposing only two services, and then, thanks to a Service Registry, it was able to map a URL
path to a service and hence to a list of servers. An API proxy works in the same ways; it is
essentially a reverse proxy and often also a load balancer, specifically configured to handle
API requests. The next figure shows how we can apply such a solution to our e-commerce
application:

APi Proxy :
I [
Products service Cart service Checkout service Search service AUthsan?Cgsers
Authentication
Products Cart Checkout Search and
Users

[426]

Scalability and Architectural Patterns

From the preceding figure, it should be clear how an API proxy can hide the complexity of
its underlying infrastructure. This is really handy in a microservice infrastructure, as the
number of nodes may be high, especially if each service is scaled across multiple machines.
The integration achieved by an API Proxy is therefore only structural; there is no semantic
mechanism. It simply provides a familiar monolithic view of a complex microservice
infrastructure. This is opposed to the next pattern we are going to learn, where the
integration is semantic instead.

API orchestration

The pattern we are going to describe next is probably the most natural and explicit way to
integrate and compose a set of services, and it's called API orchestration. Daniel Jacobson,
VP of Engineering for the Netflix API, in one of his blog posts
(http://thenextweb.com/dd/2013/12/17/future—-api-design-orchestration-la
ver), defines API orchestration as follows:

“An API Orchestration Layer (OL) is an abstraction layer that takes generically-modeled
data elements and/or features and prepares them in a more specific way for a targeted
developer or application.”

The generically modeled elements and/or features fit the description of a service in a
microservice architecture perfectly. The idea is to create an abstraction to connect those bits
and pieces to implement new services specific to the application.

[427]

http://thenextweb.com/dd/2013/12/17/future-api-design-orchestration-layer
http://thenextweb.com/dd/2013/12/17/future-api-design-orchestration-layer

Scalability and Architectural Patterns

Let's make an example using the e-commerce application. Refer to the following figure:

Store front-end application

-

Checkout service

Checkout

Store front-end
N, o
& N
completeCheckout() EcanceICheckout() addToCart() A
UmmeseNmms i B e e y
\ = e
(1)checkoutService/pay
(2)cartService/delete
tsService/update

Cart service

Cart

Products service

Products

[428]

Scalability and Architectural Patterns

The preceding figure shows how the Store front-end application uses an orchestration
layer to build more complex and specific features by composing and orchestrating existing
services. The described scenario takes as example, a hypothetical completeCheckout ()
service that is invoked the moment a customer clicks the Pay button at the end of the
checkout. The figure shows how completeCheckout () is a composite operation made of
three different steps:

1. First, we complete the transaction by invoking checkoutService/pay.

2. Then, when the payment is successfully processed, we need to tell the cart service
that the items were purchased and they can be removed from the cart. We do that
by invoking cartService/delete.

3. Also, when the payment is complete, we need to update the availability of the
products that were just purchased. This is done through
productsService/update.

As we can see, we took three operations from three different services and we built a new
API that coordinates the services to maintain the entire system in a consistent state.

Another common operation performed by the API Orchestration Layer is data aggregation,
in other words, combining data from different services into a single response. Imagine if we
wanted to list all the products contained in a cart. In this case, the orchestration would need
to retrieve the list of product IDs from the Cart service and then retrieve the complete
information about the products from the Products service. The ways in which we can
combine and coordinate services are really infinite, but the important pattern to remember
is the role of the orchestration layer, which acts as an abstraction between a number of
services and a specific application.

The orchestration layer is a great candidate for a further functional splitting. It is in fact very
common to have it implemented as a dedicated, independent service, in which case it takes
the name of API Orchestrator. This practice is perfectly in line with the microservice
philosophy.

[429]

Scalability and Architectural Patterns

The next figure shows this further improvement of our architecture:

Store front-end application
Store front-end
A
API Orchestrator
4 API Orchestration Layer)
completeCheckout() | : cancelCheckout() addToCart() [---]
_____________________________ >
tsService/update
Checkout service Cart service Products service
Checkout Cart Products

[430]

Scalability and Architectural Patterns

Creating a standalone orchestrator, as shown in the previous figure, can help in decoupling
the client application (in our case, the Store front-end) from the complexity of the
microservice infrastructure. This reminds us about the API Proxy; however, there is a
crucial difference; an orchestrator performs a semantic integration of the various services;
it's not just a naive proxy, and it often exposes an API that is different from the one exposed
by the underlying services.

Integration with a message broker

The orchestrator pattern gave us a mechanism to integrate the various services in an explicit
way. This has both advantages and disadvantages. It is easy to design, easy to debug, and
easy to scale, but unfortunately, it has to have a complete knowledge of the underlying
architecture and how each service works. If we were talking about objects instead of
architectural nodes, the orchestrator would be an anti-pattern called God Object, which
defines an object that knows and does too much, which usually results in high coupling,
low cohesion, but most importantly, high complexity.

The pattern we are now going to show tries to distribute, across the services, the
responsibility of synchronizing the information of the entire system. However, the last thing
we want to do is create direct relationships between services, which would result in high
coupling and a further increase in the complexity of the system, due to the increasing
number of interconnections between nodes. The goal is to have each service maintain its
isolation; they should be able to work even without the rest of the services in the system or
in combination with new services and nodes.

The solution is to use a message broker, a system capable of decoupling the sender from the
receiver of a message, allowing us to implement a centralized publish/subscribe pattern, in
practice an observer pattern for distributed systems (we will talk more about this pattern
later in the book). The following diagram shows an example of how this applies to the e-
commerce application:

[431]

Scalability and Architectural Patterns

Store front-end application

Store front-end

(1)checkoutService/pay

Checkout service

Checkout

Cart service

Cart

(2){

A

(3N

Products service

Products

event: ‘purchased’,
cartld: *---",
products: [---]

event: ‘purchased’,

v!

}

A

(4){
event: ‘purchased’,

}

Message broker

As we can see, the client of the Checkout service, which is the frontend application, does
not need to carry out any explicit integration with the other services. All it has to do is
invoke checkoutService/pay to complete the checkout and take the money from the

customer; all the integration work happens in the background:

1. The Store front-end invokes the checkoutService/pay operation on the

Checkout service.

[432]

Scalability and Architectural Patterns

2. When the operation completes, the Checkout service generates an event,
attaching the details of the operation, that is, the cart Id and the list of products
that were just purchased. The event is published into the message broker. At this
point, the Checkout service does not know who is going to receive the message.

3. The Cart service is subscribed to the broker, so it's going to receive the
purchased event that was just published by the Checkout service. The Cart
service reacts by removing from its database, the cart identified with the ID
contained in the message.

4. The Products service was subscribed to the message broker as well, so it receives
the same purchased event. It then updates its database based on this new
information, adjusting the availability of the products included in the message.

The whole process happens without any explicit intervention from external entities such as
an orchestrator. The responsibility for spreading the knowledge and keeping information in
sync is distributed across the services themselves. There is no god service that has to know
how to move the gears of the entire system; each service is in charge of its own part of the
integration.

The message broker is a fundamental element to decouple the services and reduce the
complexity of their interaction. It might also offer other interesting features, such as
persistent message queues and guaranteed ordering of the messages. We will talk more
about this in the next chapter.

Summary

In this chapter, we learned how to design Node.js architectures that scale both in capacity
and complexity. We saw how scaling an application is not only about handling more traffic
or reducing the response time, but it's also a practice to apply when we want better
availability and tolerance to failures. We saw how these properties often are on the same
wavelength and we understood that scaling early is not a bad practice, especially in
Node.js, which allows us to do it easily and with few resources.

[433]

Scalability and Architectural Patterns

The scale cube taught us that applications can be scaled across three dimensions. We dived
into the two most important of them, the x-and y-axes, allowing us to discover two essential
architectural patterns, namely, load balancing and microservices. We should know by now
how to start multiple instances of the same Node.js application, how to distribute the traffic
across them, and how to exploit this setup for other purposes such as fail tolerance and
zero-downtime restarts. We also analyzed how to handle the problem of dynamic and
autoscaled infrastructures; we saw that a service registry can really come in useful for those
situations. However, cloning and load balancing cover only one dimension of the scale
cube, so we moved our analysis to another dimension, studying in more detail what it
means to split an application by its constituent services, by building a microservice
architecture. We saw how microservices enable a complete revolution in how a project is
developed and managed, providing a natural way to distribute the load of an application
and split its complexity. However, we learned that this also means shifting the complexity
from how to build a big monolithic application to how to integrate a set of services. This last aspect
is where we focused the last part of our analysis, showing some of the architectural
solutions to integrate a set of independent services.

In the next chapter, we will have the chance to analyze in more detail, the messaging
patterns we discussed in this chapter in addition to more advanced integration techniques,
useful when implementing complex distributed architectures.

[434]

11

Messaging and Integration
Patterns

If scalability is about splitting, systems integration is about rejoining. In the previous
chapter, we learned how to distribute an apfunction is a simple iteration over all the
connected clientsplication, fragmenting it across several machines. In order for it to work
properly, all those pieces have to communicate in some way and, hence, they have to be
integrated.

There are two main techniques to integrate a distributed application: one is to use a shared
storage as a central coordinator and keeper of all the information, the other one is to use
messages to disseminate data, events, and commands across the nodes of the system. This
last option is what really makes the difference when scaling distributed systems, and it's
also what makes this topic so fascinating and sometimes complex.

Messages are used in every layer of a software system. We exchange messages to
communicate on the Internet, we can use messages to send information to other processes
using pipes, we can use messages within an application as an alternative to direct function
invocation (command pattern), and also device drivers use messages to communicate with
the hardware. Any discrete and structured data that is used as a way to exchange
information between components and systems can be seen as a message. However, when
dealing with distributed architectures, the term messaging system is used to describe a
specific class of solutions, patterns, and architectures that are meant to facilitate the
exchange of information over the network.

Messaging and Integration Patterns

As we will see, there are several traits that characterize these types of systems. We might
choose to use a broker versus a peer-to-peer structure, we might use a request/reply or one-
way communication, or we might use queues to deliver our messages more reliably; the
scope of the topic is really broad. The book Enterprise Integration Patterns by Gregor Hohpe
and Bobby Woolf gives you an idea about the vastness of the topic. It is considered the Bible
of messaging and integration patterns and has more than 700 pages describing 65 different
integration patterns. This chapter explores the most important of those well-known
patterns, considering them from the perspective of Node.js and its ecosystem.

To sum up, in this chapter, we will learn about the following topics:

¢ The fundamentals of a messaging system
¢ The publish/subscribe pattern

e Pipelines and task distribution patterns

¢ Request/reply patterns

Fundamentals of a messaging system

When talking about messages and messaging systems, there are four fundamental elements
to take into consideration; these are as follows:

¢ The direction of the communication, which can be one-way only or a
request/reply exchange

¢ The purpose of the message, which also determines its content

e The timing of the message, which can be sent and received immediately or at a
later time (asynchronously)

e The delivery of the message, which can happen directly or via a broker

In the sections that follow, we are going to formalize these aspects in order to provide a
base for our later discussions.

One-way and request/reply patterns

The most fundamental aspect in a messaging system is the direction of the communication,
which often also determines its semantics.

[436]

Messaging and Integration Patterns

The most simple communication pattern is when the message is pushed one-way from a
source to a destination; this is a trivial situation, and it doesn't need much explanation:

Initiator

push

A typical example of one-way communication is an e-mail or a web server that sends a
message to a connected browser using WebSockets, or a system that distributes tasks to a
set of workers.

The request/reply pattern is, however, far more popular than the one-way only
communication; a typical example is the invocation of a web service. The following figure
shows this simple and well-known scenario:

Initiator
(1) Request

(2) Reply

[437]

Messaging and Integration Patterns

The request/reply pattern might seem a trivial pattern to implement; however, we will see
that it becomes more complicated when the communication is asynchronous or involves
multiple nodes. Take a look at the example in the following figure:

(1) Request (2) Request

h 4

(3) Reply

With the setup shown in the preceding diagram, we can appreciate the complexity of some
request/reply patterns. If we consider the direction of the communication between any two
nodes, we can surely say that it is one-way. However, from a global point of view, the
initiator sends a request and in turn receives an associated response, even if from a different
node. In these situations, what really differentiates a request/reply pattern from a bare one-
way loop is the relationship between the request and the reply, which is kept in the
initiator. The reply is usually handled in the same context of the request.

Message types

A message is essentially a means to connect different software components and there are
different reasons for doing so: it might be because we want to obtain some information held
by another system or a component, to execute operations remotely, or to notify some peers
that something has just happened. The message content will also vary depending on the
reason for the communication. In general, we can identify three types of messages,
depending on their purpose:

¢ Command Message
¢ Event Message
¢ Document Message

[438]

Messaging and Integration Patterns

Command Message

The Command Message is already familiar to us; it's essentially a serialized command
object as we described it in Chapter 6, Design Patterns. The purpose of this type of message
is to trigger the execution of an action or a task on the receiver. For this to be possible, our
message has to contain the essential information to run the task, which is usually the name
of the operation and a list of arguments to provide when it's executed. The Command
Message can be used to implement Remote Procedure Call (RPC) systems, distributed
computations, or more simply used to request some data. RESTful HTTP calls are simple
examples of commands; each HTTP verb has a specific meaning and is associated with a
precise operation: GET, to retrieve the resource; POST, to create a new one; PUT, to update
it; and DELETE, to destroy it.

Event Message

An Event Message is used to notify another component that something has occurred. It
usually contains the type of the event and sometimes also some details such as the context,
the subject, or the actor involved. In web development, we are using an Event Message in
the browser when using long-polling or WebSockets to receive notifications from the server
that something has just happened, as, for example, changes in the data or, in general, the
state of the system. The use of events is a very important integration mechanism in
distributed applications, as it enables us to keep all the nodes of the system on the same

page.

Document Message

The Document Message is primarily meant to transfer data between components and
machines. The main characteristic that differentiates a document from a command (which
might also contain data) is that the message does not contain any information that tells the
receiver what to do with the data. On the other hand, the main difference from an Event
Message is mainly the absence of an association with a particular occurrence, with
something that happened. Often, the replies to the Command Messages are Document
Messages, as they usually contain only the data that was requested or the result of an
operation.

Asynchronous messaging and queues

As Node.js developers, we should already know the advantages of executing asynchronous
operations. For messaging and communications, it's the same story.

[439]

Messaging and Integration Patterns

We can compare synchronous communication to a phone call: the two peers must be
connected to the same channel at the same time and they should exchange messages in real
time. Normally, if we want to call someone else, we either need another phone or to close
the ongoing communication in order to start a new one.

Asynchronous communication is similar to an SMS: it doesn't require the recipient to be
connected to the network the moment we send it, we might receive a response immediately
or after an unknown delay, or we might not receive a response at all. We might send
multiple SMSes to multiple recipients one after the other, and receive their responses (if
any) in any order. In short, we have a better parallelism with the use of fewer resources.

Another important advantage of asynchronous communications is that the messages can be
stored and then delivered as soon as possible or at a later time. This might be useful when
the receiver is too busy to handle new messages or when we want to guarantee delivery. In
messaging systems, this is made possible using a message queue, a component that
mediates the communication between the sender and the receiver, storing any message
before it gets delivered to its destination, as shown in the following figure:

Sender Message queue Receiver

If for any reason the receiver crashes, disconnects from the network, or experiences a
slowdown, the messages are accumulated in the queue and dispatched as soon as the
receiver comes online and is fully working. The queue can be located in the sender, or split
between the sender and receiver, or live in a dedicated external system acting as
middleware for the communication.

Peer-to-peer or broker-based messaging

Messages can be delivered directly to the receiver, in a peer-to-peer fashion or through a
centralized intermediary system called a message broker. The main role of the broker is to
decouple the receiver of the message from the sender. The following figure shows the
architectural difference between the two approaches:

[440]

Messaging and Integration Patterns

Peer-to-peer Message Broker

Message

Broker

In a peer-to-peer architecture, every node is directly responsible for the delivery of the
message to the receiver. This implies that the nodes have to know the address and port of
the receiver and they have to agree on a protocol and message format. The broker
eliminates these complexities from the equation: each node can be totally independent and
can communicate with an undefined number of peers without directly knowing their
details. A broker can also act as a bridge between the different communication protocols, for
example, the popular RabbitMQ broker (http://www.rabbitmg.com) supports Advanced
Message Queuing Protocol (AMQP), Message Queue Telemetry Transport (MQTT), and
Simple/Streaming Text Orientated Messaging Protocol (STOMP), enabling multiple
applications supporting different messaging protocols to interact.

MQTT (http://mgtt.orqg) is a lightweight messaging protocol,
specifically designed for machine-to-machine communications (Internet of
Things). AMQP (http://www.amgp.org) is a more complex protocol,
which is designed to be an open source alternative to proprietary
messaging middleware. STOMP (http://stomp.github.io)isa
lightweight text-based protocol, which comes from the HTTP school of
design. All three are application layer protocols, and based on TCP/IP.

[441]

http://www.rabbitmq.com
http://mqtt.org
http://www.amqp.org
http://stomp.github.io

Messaging and Integration Patterns

Besides the decoupling and the interoperability, a broker can offer more advanced features
such as persistent queues, routing, message transformations, and monitoring, without
mentioning the broad range of messaging patterns that many brokers support out of the
box. Of course, nothing stops us from implementing all these features using a peer-to-peer
architecture, but unfortunately there is much more effort involved. Nonetheless, there
might be different reasons to avoid a broker:

¢ Removing a single point of failure

e A broker has to be scaled, while in a peer-to-peer architecture we only need to
scale the single nodes

¢ Exchanging messages without intermediaries can greatly reduce the latency of
the transmission

If we want to implement a peer-to-peer messaging system, we also have much more
flexibility and power, because we are not bound to any particular technology, protocol, or
architecture. The popularity of OMQ (http://zeromg.org), which is a low-level library
for building messaging systems, is a great demonstration of the flexibility that we can have
by building custom peer-to-peer or hybrid architectures.

Publish/subscribe pattern

Publish/subscribe (often abbreviated to pub/sub) is probably the best-known one-way
messaging pattern. We should already be familiar with it, as it's nothing more than a
distributed observer pattern. As in the case of observer, we have a set of subscribers
registering their interest in receiving a specific category of messages. On the other side, the
publisher produces messages that are distributed across all the relevant subscribers. The
following figure shows the two main variations of the pub/sub pattern, the first peer-to-
peer, the second using a broker to mediate the communication:

[442]

http://zeromq.org

Messaging and Integration Patterns

Peer-to-peer Pub/Sub Pub/Sub with a broker

Broker

What makes pub/sub so special is the fact that the publisher doesn't know who the
recipients of the messages are in advance. As we said, it's the subscriber which has to
register its interest to receive a particular message, allowing the publisher to work with an
unknown number of receivers. In other words, the two sides of the pub/sub pattern are
loosely coupled, which makes this an ideal pattern to integrate the nodes of an evolving
distributed system.

The presence of a broker further improves the decoupling between the nodes of the system
because the subscribers interact only with the broker, not knowing which node is the
publisher of a message. As we will see later, a broker can also provide a message queuing
system, allowing reliable delivery even in the presence of connectivity problems between
the nodes.

Now, let's work on an example to demonstrate this pattern.

Building a minimalist real-time chat application

To show a real example of how the pub/sub pattern can help us integrate a distributed
architecture, we are now going to build a very basic real-time chat application using pure
WebSockets. Then, we will try to scale it by running multiple instances and using a
messaging system to put them in communication.

[443]

Messaging and Integration Patterns

Implementing the server side

Now, let's take one step at a time. Let's first build our chat application; to do this, we will
rely on the ws package (https://npmjs.org/package/ws), which is a pure WebSocket
implementation for Node.js. As we know, implementing real-time applications in Node.js is
pretty simple, and our code will confirm this assumption. Let's then create the server side of
our chat; its content is as follows (in the app. js file):

const WebSocketServer = require('ws').Server;

//static file server

const server = require ('http').createServer (// 1]
require ('ecstatic') ({root: "${__dirname}/www' })

)i

const wss = new WebSocketServer ({server: server}); //12]

wss.on ('connection', ws => {
console.log('Client connected');
ws.on ('message', msg => { // 3]
console.log(Message: ${msg}’);
broadcast (msg) ;
)i
)i

function broadcast (msg) < //14]
wss.clients.forEach(client => {
client.send(msqg);
)i
}

server.listen (process.argv[2] || 8080);

That's it! That's all we need to implement our chat application on the server. This is the way
it works:

1. We first create an HTTP server and attach middleware called ecstatic
(https://npmjs.org/package/ecstatic) to serve static files. This is needed
to serve the client-side resources of our application (JavaScript and CSS).

2. We create a new instance of the WebSocket server and we attach it to our existing
HTTP server. We then start listening for incoming WebSocket connections, by
attaching an event listener for the connection event.

3. Each time a new client connects to our server, we start listening for incoming
messages. When a new message arrives, we broadcast it to all the connected

[444]

https://npmjs.org/package/ws
https://npmjs.org/package/ecstatic

Messaging and Integration Patterns

clients.

4. The broadcast () function is a simple iteration over all the connected clients,
where the send () function is invoked on each one of them.

This is the magic of Node.js! Of course, the server that we implemented is very minimal and
basic, but as we will see, it does its job.

Implementing the client side

Next, it's time to implement the client side of our chat; this is also a very small and simple
fragment of code, essentially a minimal HTML page with some basic JavaScript code. Let's
create this page in a file named www/index.html as follows:

<html>
<head>
<script>

var ws = new WebSocket ('ws://' + window.document. location.host);

ws.onmessage = function (message) {
var msgDiv = document.createElement ('div');
msgDiv.innerHTML = message.data;
document .getElementById('messages') .appendChild (msgDiv) ;

}i

function sendMessage () {
var message = document.getElementById('msgBox') .value;
ws.send (message) ;
}
</script>
</head>
<body>
Messages:
<div id='messages'></div>
<input type='text' placeholder='Send a message' id='msgBox'>
<input type='button' onclick='sendMessage()' value='Send'>
</body>
</html>

The HTML page we created doesn't really need many comments; it is just a piece of
straightforward web development. We use the native WebSocket object to initialize a
connection to our Node.js server, and then start listening for messages from the server,
displaying them in new div elements as they arrive. For sending messages, instead, we use
a simple textbox and a button.

[445]

Messaging and Integration Patterns

When stopping or restarting the chat server, the WebSocket connection is
closed and it will not reconnect automatically (as it would be using high-
level libraries such as Socket . i0). This means that it is necessary to
refresh the browser after a server restart, to re-establish the connection (or
implement a reconnection mechanism, which we will not cover here).

Running and scaling the chat application

We can try running our application immediately; just launch the server with a command

such as the following:

node app 8080

To run this demo, you will need a recent browser which supports native
WebSockets. There is a list of compatible browsers here:
http://caniuse.com/#feat=websockets.

Pointing a browser to http://localhost:8080 should present an interface similar to the

following;:

Jf ' localhosk:8080

x ‘\

-
-

T

€ 3 C

Messages:
Hello!
Node.js

[localhost:8080

Send

thﬂpjﬂDCMhDEESDSDf

e,

Tt

localhost2080

€

x

Messages:
Hello!
Node.js

[Dezign Patterns

| Send |

What we want to show now is what happens when we try to scale our application by
launching multiple instances. Let's try to do this, let's start another server on another port:

node app 8081

[446]

http://caniuse.com/#feat=websockets

Messaging and Integration Patterns

The desired outcome of scaling our chat application should be that the two clients
connecting to the two different servers should be able to exchange chat messages.
Unfortunately, this is not what happens with our current implementation; we can try that
by opening another browser tab to http://localhost:8081.

When sending a chat message on one instance, we broadcast a message locally, distributing
it to only the clients connected to that particular server. In practice, the two servers don't
talk to each other. We need to integrate them.

In a real application, we will use a load balancer to distribute the load
across our instances, but for this demo, we will not use one. This allows us
to access each server in a deterministic way to verify how it interacts with
the other instances.

Using Redis as a message broker

We start our analysis of the most important pub/sub implementations by introducing Redis
(http://redis.io), which is a very fast and flexible key/value store, also defined by many
as a data structure server. Redis is more a database than a message broker; however, among
its many features there is a pair of commands specifically designed to implement a
centralized pub/sub pattern.

Of course, this implementation is very simple and basic, compared to more advanced
message-oriented middleware, but this is one of the main reasons for its popularity. Often,
in fact, Redis is already available in an existing infrastructure, for example, as a caching
server or session store; its speed and flexibility make it a very popular choice for sharing
data in a distributed system. So, as soon as the need for a publish/subscribe broker arises in
a project, the most simple and immediate choice is to reuse Redis itself, avoiding the need to
install and maintain a dedicated message broker. Let's work on an example to demonstrate
its simplicity and power.

This example requires a working installation of Redis, listening on its
default port. You can find more details at
http://redis.io/topics/quickstart.

Our plan of action is to integrate our chat servers using Redis as a message broker. Each
instance publishes any message received from its clients to the broker, and at the same time
it subscribes for any message coming from other server instances. As we can see, each
server in our architecture is both a subscriber and a publisher. The following figure shows a
representation of the architecture that we want to obtain:

[447]

http://redis.io
http://redis.io/topics/quickstart

Messaging and Integration Patterns

1 2
Chat Server

“

By looking at the preceding figure, we can sum up the journey of a message as follows:

1. The message is typed into the textbox of the web page and sent to the connected
instance of our chat server.

2. The message is then published to the broker.

3. The broker dispatches the message to all the subscribers, which in our
architecture are all the instances of the chat server.

4. In each instance, the message is distributed to all the connected clients.

Redis allows publishing and subscribing to channels, which are identified
by a string, for example, chat .nodejs. It also allows us to use glob-style
patterns to define subscriptions that can potentially match multiple
channels, for example, chat . *.

[448]

Messaging and Integration Patterns

Let's see in practice how this works. Let's modify the server code by adding the
publish/subscribe logic:

const WebSocketServer = require('ws').Server;

const redis = require("redis"); // [1]
const redisSub = redis.createClient();

const redisPub = redis.createClient();

//static file server

const server = require('http').createServer (
require ('ecstatic') ({root: "${__dirname}/www’ })

)i

const wss = new WebSocketServer ({server: server});

wss.on ('connection', ws => {

console.log('Client connected');
ws.on('message', msg => {
console.log(Message: ${msg}’);

redisPub.publish('chat_messages', msqg); // 121
P
P
redisSub. subscribe ('chat_messages'); // 131
redisSub.on('message', (channel, msg) => {
wss.clients.forEach((client) => {

client.send(msqg);
)i
)i

server.listen (process.argv[2] || 8080);

The changes that we made to our original chat server are highlighted in the preceding code;
this is how it works:

1. To connect our Node.js application to the Redis server, we use the redis package
(https://npmjs.org/package/redis), which is a complete client that
supports all the available Redis commands. Next, we instantiate two different
connections, one used to subscribe to a channel, the other to publish messages.
This is necessary in Redis, because once a connection is put in subscriber mode,
only commands related to the subscription can be used. This means that we need
a second connection for publishing messages.

[449]

https://npmjs.org/package/redis

Messaging and Integration Patterns

2. When a new message is received from a connected client, we publish a message
in the chat_messages channel. We don't directly broadcast the message to our
clients because our server is subscribed to the same channel (as we will see in a
moment), so it will come back to us through Redis. For the scope of this example,
this is a simple and effective mechanism.

3. As we said, our server also has to subscribe to the chat_messages channel, so
we register a listener to receive all the messages published into that channel
(either by the current server or any other chat server). When a message is
received, we simply broadcast it to all the clients connected to the current
WebSocket server.

These few changes are enough to integrate all the chat servers that we might decide to start.
To prove this, we can try starting multiple instances of our application:

node app 8080
node app 8081
node app 8082

We can then connect multiple browsers' tabs to each instance and verify that the messages
we send to one server are successfully received by all the other clients connected to different
servers. Congratulations! We just integrated a distributed real-time application using the
publish/subscribe pattern.

Peer-to-peer publish/subscribe with GMQ

The presence of a broker can considerably simplify the architecture of a messaging system;
however, there are circumstances where it is not an optimal solution, such as, for example,
when latency is critical, when scaling complex distributed systems, or when the presence of
a single point of failure is not an option.

[450]

Messaging and Integration Patterns

Introducing GMQ

If our project falls in the category of possible candidates for a peer-to-peer message
exchange, the best solution to evaluate is certainly OMQ (http://zeromg.org, also
known as zmq, ZeroMQ, or OMQ); we already mentioned this library earlier in the book.
@MQ is a networking library that provides the basic tools to build a large variety of
messaging patterns. It is low-level, extremely fast, and has a minimalistic API but it offers
all the basic building blocks of a messaging system, such as atomic messages, load
balancing, queues, and many more. It supports many types of transport, such as in-process
channels (inproc://), inter-process communication (ipc: //), multicast using the PGM
protocol (pgm: // or epgm: //), and, of course, the classic TCP (tcp://).

Among the features of IMQ, we can also find tools to implement a publish/subscribe
pattern, exactly what we need for our example. So, what we are going to do now is remove
the broker (Redis) from the architecture of our chat application and let the various nodes
communicate in a peer-to-peer fashion, leveraging the publish/subscribe sockets of IMQ.

provides additional abstractions to help implement the most common
messaging patterns. For example, we can find sockets designed to

0 A OMQ socket can be considered a network socket on steroids, which
implement publish/subscribe, request/reply, or one-way communications.

Designing a peer-to-peer architecture for the chat
server

When we remove the broker from our architecture, each instance of the chat application has
to directly connect to the other available instances in order to receive the messages they
publish. In IMQ, we have two types of sockets specifically designed for this purpose: PUB
and SUB. The typical pattern is to bind a PUB socket to a port that will start listening for
subscriptions coming from the other SUB sockets.

A subscription can have a filter that specifies what messages will be delivered to the SUB
sockets. The filter is a simple binary buffer (so it can also be a string), which will be
matched against the beginning of the message (which is also a binary buffer). When a
message is sent through the PUB socket it is broadcast to all the connected SUB sockets, but
only after their subscription filters are applied. The filters will be applied to the publisher
side only if a connected protocol is used, such as, for example, TCP.

[451]

http://zeromq.org

Messaging and Integration Patterns

The following figure shows the pattern applied to our distributed chat server architecture
(with only two instances, for simplicity):

Message
e
‘ __________________
Subscription
1 3
Chat Server Chat Server

PUB : SUB

PUB | SUB

The preceding figure shows us the flow of information when we have two instances of the
chat application, but the same concept can be applied for N instances. The architecture tells
us that each node must be aware of the other nodes in the system, to be able to establish all
the necessary connections. It also shows us how the subscriptions go from a SUB socket to a
PUB socket, while messages travel in the opposite direction.

To run the example in this section, you need to install the native GMQ
binaries on your system. You can find more information at
http://zeromg.org/intro:get-the-software. Note: this example
was tested against the 4.0 branch of IMQ.

Using the @MQ PUB/SUB sockets

Let's see how this works in practice by modifying our chat server (we will show you only
the changed parts):

/] ...
const args = require('minimist') (process.argv.slice(2)); // 1]
const zmg = require('zmqg');

[452]

http://zeromq.org/intro:get-the-software

Messaging and Integration Patterns

const pubSocket = zmg.socket ('pub'); // 121
pubSocket .bind (tcp://127.0.0.1:${args['pub']}");

const subSocket = zmg.socket ('sub'); //13]
const subPorts = [].concat (args['sub']);
subPorts.forEach(p => {
console.log (" Subscribing to ${p}’);
subSocket.connect (“tcp://127.0.0.1:${p}) ;
1) i

subSocket.subscribe ('chat');

//

ws.on ('message', msg => { // 4]
console.log(Message: S${msg}’');
broadcast (msg) ;
pubSocket.send (' chat ${msg}’);

)i

/)

subSocket.on ('message', msg => { //[5]
console.log('From other server: ${msg}’);
broadcast (msg.toString () .split (' ") [1]);

1)

VA

server.listen(args['http'] || 8080);

The preceding code clearly shows that the logic of our application became slightly more
complicated; however, it's still straightforward considering that we are implementing a
distributed and peer-to-peer publish/subscribe pattern. Let's see how all the pieces come
together:

1. We require the zmqg package (https://npmjs.org/package/zmqg), which is
essentially the Node.js binding for the @MQ native library. We also require
minimist (https://npmjs.org/package/minimist), which is a command-
line argument parser; we need this to be able to easily accept named arguments.

2. We immediately create our PUB socket and bind it to the port provided in the —-
pub command-line argument.

3. We create the SUB socket and we connect it to the PUB sockets of the other
instances of our application. The ports of the target PUB sockets are provided in
the ——sub command-line arguments (there might be more than one). We then
create the actual subscription, by providing chat as a filter, which means that we
will receive only the messages beginning with chat.

[4531]

https://npmjs.org/package/zmq
https://npmjs.org/package/minimist

Messaging and Integration Patterns

4. When a new message is received by our WebSocket, we broadcast it to all the
connected clients but we also publish it through our PUB socket. We use chat as a
prefix followed by a space, so the message will be published to all the
subscriptions using chat as a filter.

5. We start listening for messages that arrive at our SUB socket, we do some simple
parsing of the message to remove the chat prefix, and then we broadcast it to all
the clients connected to the current WebSocket server.

We have now built a simple distributed system, integrated using a peer-to-peer
publish/subscribe pattern!

Let's fire it up, let's start three instances of our application by making sure to connect their
PUB and SUB sockets properly:

node app —--http 8080 —-pub 5000 —--sub 5001 —--sub 5002
node app —--http 8081 —-pub 5001 --sub 5000 —--sub 5002
node app —--http 8082 —-pub 5002 --sub 5000 —--sub 5001

The first command will start an instance with an HTTP server listening on port 8080, while
binding a PUB socket on port 5000 and connecting the SUB socket to ports 5001 and 5002,
which is where the PUB sockets of the other two instances should be listening at. The other
two commands work in a similar way.

Now, the first thing we can see is that @MQ will not complain if a port corresponding to a
PUB socket is not available. For example, at the time of the first command, there is nobody
listening on ports 5001 and 5002; however, IMQ is not throwing any error. This is because
@MQ has a reconnection mechanism that will automatically try to establish a connection to
these ports at regular time intervals. This feature also comes in particularly handy if any
node goes down or is restarted. The same forgiving logic applies to the PUB socket: if there
are no subscriptions, it will simply drop all the messages, but it will continue working.

At this point, we can try to navigate with a browser to any of the server instances that we
started and verify that the messages are properly broadcast to all the chat servers.

In the previous example, we assumed a static architecture, where the
number of instances and their addresses are known in advance. We can
introduce a service registry, as explained in the previous chapter, to
connect our instances dynamically. It is also important to point out that
@MQ can be used to implement a broker using the same primitives we
demonstrated here.

[454]

Messaging and Integration Patterns

Durable subscribers

An important abstraction in a messaging system is the message queue (MQ). With a
message queue, the sender and the receiver(s) of the message don't necessarily need to be
active and connected at the same time to establish a communication, because the queuing
system takes care of storing the messages until the destination is able to receive them. This
behavior is opposed to the set and forget paradigm, where a subscriber can receive
messages only during the time it is connected to the messaging system.

A subscriber that is able to always reliably receive all the messages, even those sent when
it's not listening for them, is called a durable subscriber.

The MQTT protocol defines a level of Quality of Service (QoS) for the
messages exchanged between the sender and receiver. These levels are
also very useful to describe the reliability of any other messaging system
(not only MQTT). These are as follows:

¢ Qo0S0, at most once: Also known as set and forget, the message is not persisted,
and the delivery is not acknowledged. This means that the message can be lost in
cases of crashes or disconnections of the receiver.

* Qo0S1, at least once: The message is guaranteed to be received at least once, but
duplicates might occur if, for example, the receiver crashes before notifying the
sender. This implies that the message has to be persisted in the eventuality it has
to be sent again.

* Qo0S2, exactly once: This is the most reliable QoS; it guarantees that the message
is received once and only once. This comes at the expense of a slower and more
data-intensive mechanism for acknowledging the delivery of messages.

Find out more in the MQTT specifications at
http://public.dhe.ibm.com/software/dw/webservices/ws-mgtt

/mgtt-v3rl.html#gos-flows.

[455]

http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#qos-flows
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#qos-flows

Messaging and Integration Patterns

As we said, to allow durable subscribers, our system has to use a message queue to
accumulate the messages while the subscriber is disconnected. The queue can be stored in
memory or persisted on disk to allow the recovery of its messages even if the broker restarts

or crashes. The following figure shows a graphical representation of a durable subscriber
backed by a message queue:

Normal operations

Subscriber not
available, messages
accumulate in the queue

Subscriber comes back
online, the queue
is drained

The durable subscriber is probably the most important pattern enabled by a message queue,
but it's certainly not the only one, as we will see later in the chapter.

[456]

Messaging and Integration Patterns

The Redis publish/subscribe commands implement a set and forget
mechanism (QoS0). However, Redis can still be used to implement a
durable subscriber using a combination of other commands (without
relying directly on its publish/subscribe implementation). You can find a
description of this technique in the following blog posts:
http://davidmarquis.wordpress.com/2013/01/03/reliable-del
ivery-message—queues-with-redis
http://www.ericjperry.com/redis—-message—queue

@IMQ defines some patterns to support durable subscribers as well, but it's
mostly up to us to implement this mechanism.

Introducing AMQP

A message queue is normally used in situations where message can't be lost, which includes
mission-critical applications such as banking or financial systems. This usually means that
the typical enterprise-grade message queue is a very complex piece of software, which
utilizes bulletproof protocols and persistent storage to guarantee the delivery of the
message even in the presence of malfunctions. For this reason, enterprise messaging
middleware has been, for many years, a prerogative of giants such as Oracle and IBM, each
one of them usually implementing its own proprietary protocol, resulting in a strong
customer lock-in. Fortunately, it's been a few years now since messaging systems entered
the mainstream, thanks to the growth of open protocols such as AMQP, STOMP, and
MQTT. To understand how a message queuing system works, we are now going to give an
overview of AMQP; this is fundamental to understand how to use a typical API based on
this protocol.

AMQP is an open standard protocol supported by many message-queuing systems. Besides
defining a common communication protocol, it also provides a model for describing
routing, filtering, queuing, reliability, and security. In AMQP, there are three essential
components:

* Queue: The data structure responsible for storing the messages consumed by the
clients. The messages from a queue are pushed (or pulled) to one or more
consumers essentially, our applications. If multiple consumers are attached to the
same queue, the messages are load balanced across them. A queue can be one of
the following:

¢ Durable: This means that the queue is automatically recreated if
the broker restarts. A durable queue does not imply that its
contents are preserved as well; in fact, only messages that are
marked as persistent are saved to the disk and restored in case of a
restart.

[457]

http://davidmarquis.wordpress.com/2013/01/03/reliable-delivery-message-queues-with-redis
http://davidmarquis.wordpress.com/2013/01/03/reliable-delivery-message-queues-with-redis
http://www.ericjperry.com/redis-message-queue

Messaging and Integration Patterns

¢ Exclusive: This means that the queue is bound to only one
particular subscriber connection. When the connection is closed,
the queue is destroyed.

¢ Auto-delete: This will cause the queue to be deleted when the last
subscriber disconnects.

¢ Exchange: This is where a message is published. An exchange routes the
messages to one or more queues depending on the algorithm it implements:
¢ Direct exchange: It routes the messages by matching an entire
routing key (for example, chat .msg).

¢ Topic exchange: It distributes the messages using a glob-like
pattern matched against the routing key (for example, chat . #
matches all the routing keys starting with chat).

¢ Fanout exchange: It broadcasts a message to all the connected
queues, ignoring any routing key provided.

¢ Binding: This is the link between exchanges and queues. It also defines the
routing key or the pattern used to filter the messages that arrive from the
exchange.

These components are managed by a broker, which exposes an API for creating and
manipulating them. When connecting to a broker, a client creates a channel —an abstraction
of a connection—which is responsible for maintaining the state of the communication with
the broker.

In AMQP, the durable subscriber pattern can be obtained by creating any
type of queue that is not exclusive or auto-delete.

[458]

Messaging and Integration Patterns

The following figure shows us all these components put together:

D=
D=

Exchange
(topic or direct)

Exchange
(fanout)

The AMQP model is way more complex than the messaging systems we have used so far
(Redis and OMQ); however, it offers a set of features and a reliability that would be very
hard to obtain using only primitive publish/subscribe mechanisms.

You can find a detailed introduction to the AMQP model on the
RabbitMQ website:
https://www.rabbitmg.com/tutorials/amgp—concepts.html.

Durable subscribers with AMQP and RabbitMQ

Let's now practice what we learned about durable subscribers and AMQP and work on a
small example. A typical scenario where it's important to not lose any message is when we
want to keep the different services of a microservice architecture in sync; we already
described this integration pattern in the previous chapter. If we want to use a broker to keep
all our services on the same page, it's important that we don't lose any information,
otherwise we might end up in an inconsistent state.

[4591]

https://www.rabbitmq.com/tutorials/amqp-concepts.html

Messaging and Integration Patterns

Designing a history service for the chat application

Let's now extend our small chat application using a microservice approach. Let's add a
history service that persists our chat messages inside a database, so that when a client
connects, we can query the service and retrieve the entire chat history. We are going to
integrate the history service with the chat server using the RabbitMQ broker
(https://www.rabbitmg.com)and AMQP.

The next figure shows our planned architecture:

. RabbitMQ broker
3 chat_srv_8080'

chat_srv_8081'

Ly Pttt [111

Publish
messages
from clients

chat_history'l@

‘ : History
0 0 N RO o NPT VPR L s L SN N O 0 : Service

As described in the preceding architecture, we are going to use a single fanout exchange; we
don't need any particular routing, so our scenario does not require any exchange more
complex than that. Next, we will create one queue for each instance of the chat server. These
queues are exclusive; we are not interested in receiving any missed message when a chat
server is offline, that's the job of our history service, which eventually can also implement
more complicated queries against the stored messages. In practice, this means that our chat
servers are not durable subscribers and their queues will be destroyed as soon as the
connection is closed.

On the contrary, the history service cannot afford to lose any messages; otherwise, it would
not fulfill its very purpose. The queue we are going to create for it has to be durable, so that
any message that is published while the history service is disconnected will be kept in the
queue and delivered when it comes back online.

[460]

https://www.rabbitmq.com

Messaging and Integration Patterns

We are going to use the familiar LevelUP as the storage engine for the history service, while
we will use the amgplib package (https://npmjs.org/package/amgplib) to connect to
RabbitMQ using the AMQP protocol.

The following example requires a working RabbitMQ server, listening on
its default port. For more information, please refer to its official
installation guide at http://www.rabbitmg.com/download.html.

Implementing a reliable history service using AMQP

Let's now implement our history service! We are going to create a standalone application (a
typical microservice), which is implemented in the module historySvc. js. The module is
made up of two parts: an HTTP server to expose the chat history to clients, and an AMQP
consumer which is responsible for capturing the chat messages and storing them in a local
database.

Let's see what this looks like in the code that follows:

const level = require('level');

const timestamp = require ('monotonic-timestamp') ;
const JSONStream = require ('JSONStream');

const amgp = require('amgplib');

const db = level('./msgHistory"');

require ('http') .createServer ((req, res) => {
res.writeHead (200);
db.createValueStream/()
.pipe (JSONStream.stringify ())
.pipe(res);
}).1listen (8090);

let channel, queue;

amgp
.connect ('amgp://localhost") // [1]
.then (conn => conn.createChannel ())
.then(ch => {

channel = ch;

return channel.assertExchange ('chat', 'fanout'); // [2]
)
.then(() => channel.assertQueue('chat_history')) // [3]
.then((g) => {

queue = g.queue;

return channel.bindQueue (queue, 'chat'); // 4]
)
.then(() => {

[461]

https://npmjs.org/package/amqplib
http://www.rabbitmq.com/download.html

Messaging and Integration Patterns

return channel.consume (queue, msg => { // [5]
const content = msg.content.toString();
console.log(Saving message: ${content}’);
db.put (timestamp (), content, err => {
if ('err) channel.ack (msqg);
)i
)i
})
.catch(err => console.log(err));

We can immediately see that AMQP requires a little bit of setting up, which is necessary to
create and connect all the components of the model. It's also interesting to observe that
amgplib supports Promises by default, so we leveraged them heavily to streamline the
asynchronous steps of the application. Let's see in detail how it works:

1. We first establish a connection with the AMQP broker, which is RabbitMQ in our
case. Then, we create a channel, which is similar to a session that will maintain
the state of our communications.

2. Next, we set up our exchange, named chat. As we already mentioned, it is a
fanout exchange. The assertExchange () command will make sure that the
exchange exists on the broker, otherwise it will create it.

3. We also create our queue, called chat_history. By default, the queue is durable;
not exclusive and not auto-delete, so we don't need to pass any extra
options to support durable subscribers.

4. Next, we bind the queue to the exchange we previously created. Here, we don't
need any other particular option, for example, a routing key or pattern, as the
exchange is of the type fanout, so it doesn't perform any filtering.

5. Finally, we can begin to listen for messages coming from the queue we just
created. We save every message that we receive in a LevelDB database using a
monotonic timestamp as key
(https://npmjs.org/package/monotonic—timestamp), to keep the messages
sorted by date. It's also interesting to see that we are acknowledging every
message using channel.ack (msg), and only after the message is successfully
saved into the database. If the ACK (acknowledgment) is not received by the
broker, the message is kept in the queue for being processed again. This is
another great feature of AMQP for bringing the reliability of our service to a
whole new level. If we are not interested in sending explicit acknowledgments,
we can pass the option {noAck:true} to the channel.consume () APL

[462]

https://npmjs.org/package/monotonic-timestamp

Messaging and Integration Patterns

Integrating the chat application with AMQP

To integrate the chat servers using AMQP, we have to use a setup very similar to the one
we implemented in the history service, so we are not going to repeat it here in full.
However, it's still interesting to see how the queue is created and how a new message is
published into the exchange. The relevant parts of the new app. js file are the following:

/] ...
.then(() => {

return channel.assertQueue (' chat_srv_S${httpPort} , {exclusive: true});
)
/] ...
ws.on ('message', msg => {

console.log(Message: ${msg}’);
channel.publish('chat', '', new Buffer (msqg));

1)
//

As we mentioned, our chat server does not need to be a durable subscriber, a set and forget
paradigm is enough. So when we create our queue, we pass the option
{exclusive:true}, indicating that the queue is scoped to the current connection and
therefore it will be destroyed as soon as the chat server shuts down.

Publishing a new message is also very easy; we simply have to specify the target exchange
(chat) and a routing key, which in our case is empty (' ') because we are using a fanout
exchange.

We can now run our improved chat architecture; to do that, let's start two chat servers and
the history service:

node app 8080
node app 8081
node historySvc

It is now interesting to see how our system, and in particular the history service, behaves in
case of downtime. If we stop the history server and continue to send messages using the
web Ul of the chat application, we will see that when the history server is restarted, it will
immediately receive all the messages it missed. This is a perfect demonstration of how the
durable subscriber pattern works!

It is nice to see how the microservice approach allows our system to
survive even without one of its components —the history service. There
would be a temporary reduction of functionality (no chat history
available) but people would still be able to exchange chat messages in real
time. Awesome!

[463]

Messaging and Integration Patterns

Pipelines and task distribution patterns

In Chapter 9, Advanced Asynchronous Recipes, we learned how to delegate costly tasks to
multiple local processes, but even though this was an effective approach, it cannot be scaled
beyond the boundaries of a single machine. In this section, we are going to see how it's
possible to use a similar pattern in a distributed architecture, using remote workers located
anywhere in a network.

The idea is to have a messaging pattern that allows us to spread tasks across multiple
machines. These tasks might be individual chunks of work or pieces of a bigger task split
using a divide and conquer technique.

If we look at the logical architecture represented in the following figure, we should be able
to recognize a familiar pattern:

task1

Producer task?2 »

task3

N

As we can see from the preceding diagram, the publish/subscribe pattern is not suitable for
this type of application, as we absolutely don't want a task to be received by multiple
workers. What we need instead is a message distribution pattern similar to a load balancer,
that dispatches each message to a different consumer (also called worker, in this case). In
the messaging system terminology, this pattern is known as competing consumers,

fanout distribution, or ventilator.

[464]

Messaging and Integration Patterns

One important difference with the HTTP load balancers we have seen in the previous
chapter is that, here, the consumers have a more active role. In fact, as we will see later,
most of the time it's not the producer that connects to the consumers, but the consumers
themselves that connect to the task producer or the task queue in order to receive new jobs.
This is a great advantage in a scalable system as it allows us to seamlessly increase the
number of workers without modifying the producer or adopting a service registry.

Also, in a generic messaging system, we don't necessarily have a request/reply
communication between the producer and workers. Instead, most of the time, the preferred
approach is to use one-way asynchronous communication, which enables a better
parallelism and scalability. In such an architecture, messages can potentially always travel
in one direction, creating pipelines, as shown in the following figure:

Distribution(fan-out) Aggregation (fan-in)

Pipelines allow us to build very complex processing architectures without the burden of a
synchronous request/reply communication, often resulting in lower latency and higher
throughput. In the preceding figure, we can see how messages can be distributed across a
set of workers (fanout), forwarded to other processing units, and then aggregated into a
single node (fanin), usually called sink.

In this section, we are going to focus on the building blocks of these kinds of architectures,
by analyzing the two most important variations: peer-to-peer and broker-based.

The combination of a pipeline with a task distribution pattern is also called
a parallel pipeline.

[465]

Messaging and Integration Patterns

The GMQ fanout/fanin pattern

We have already discovered some of the capabilities of IMQ for building peer-to-peer
distributed architectures. In the previous section, we used PUB and SUB sockets to
disseminate a single message to multiple consumers; now we are going to see how it's
possible to build parallel pipelines using another pair of sockets called PUSH and PULL.

PUSH/PULL sockets

Intuitively, we can say that the PUSH sockets are made for sending messages, while the PULL
sockets are meant for receiving. It might seem a trivial combination; however, they have
some nice characteristics that make them perfect for building one-way communication
systems:

e Both can work in connect mode or bind mode. In other words, we can build a
PUSH socket and bind it to a local port listening for the incoming connections
from a PULL socket, or vice versa, a PULL socket might listen for connections from
a PUsH socket. The messages always travel in the same direction, from PUSH to
PULL; it's only the initiator of the connection that can be different. The bind mode
is the best solution for durable nodes, such as, for example, the task producer and
the sink, while the connect mode is perfect for transient nodes, such as, for
example, the task workers. This allows the number of transient nodes to vary
arbitrarily without affecting the more durable nodes.

e If there are multiple PULL sockets connected to a single PUSH socket, the messages
are evenly distributed across all the PULL sockets; in practice, they are load
balanced (peer-to-peer load balancing!). On the other hand, a PULL socket that
receives messages from multiple PUSH sockets will process the messages using a
fair queuing system, which means that they are consumed evenly from all the
sources—a round robin applied to inbound messages.

¢ The messages sent over a PUSH socket that doesn't have any connected PULL
socket do not get lost; they are instead queued up on the producer until a node
comes online and starts pulling the messages.

We are now starting to understand how IMQ is different from traditional web services and
why it's a perfect tool for building any kind of messaging system.

[4661

Messaging and Integration Patterns

Building a distributed hashsum cracker with GMQ

Now it's time to build a sample application to see in action the properties of the PUSH/PULL
sockets we just described.

A simple and fascinating application to work with would be a hashsum cracker, a system that
uses a brute-force technique to try to match a given hashsum (MD5, SHA1, and so on) to
every possible variation of characters of a given alphabet. This is an embarrassingly parallel
workload (http://en.wikipedia.org/wiki/Embarrassingly_parallel), whichis
perfect for building an example demonstrating the power of parallel pipelines.

For our application, we want to implement a typical parallel pipeline with a node to create
and distribute tasks across multiple workers, plus a node to collect all the results. The
system we just described can be implemented in @MQ using the following architecture:

Result
Collector
(sink)

Variations
Generatior
(ventilator)

Message —p

----- Connect--->>

In our architecture, we have a ventilator generating all the possible variations of characters
in a given alphabet and distributing them to a set of workers, which in turn calculate the
hashsum of every given variation and try to match it against the hashsum given as the
input. If a match is found, the result is sent to a results collector node (sink).

The durable nodes of our architecture are the ventilator and the sink, while the transient
nodes are the workers. This means that each worker connects its PULL socket to the
ventilator and its PUSH socket to the sink; this way, we can start and stop how many
workers we want without changing any parameter in the ventilator or the sink.

[467]

http://en.wikipedia.org/wiki/Embarrassingly_parallel

Messaging and Integration Patterns

Implementing the ventilator

Now, let's start to implement our system by creating a new module for the ventilator, in a
file named ventilator. js:

const zmg = require('zmqg');
const variationsStream = require('variations-stream');
const alphabet = 'abcdefghijklmnopgrstuvwxyz';

const batchSize = 10000;
const maxLength = process.argv[2];
const searchHash = process.argv[3];

const ventilator = zmg.socket ('push'); // [1]
ventilator.bindSync ("tcp://*:5000");

let batch = [];
variationsStream(alphabet, maxLength)
.on('data', combination => {
batch.push (combination) ;

if (batch.length === batchSize) { // 12]
const msg = {searchHash: searchHash, variations: batch};
ventilator.send (JSON.stringify (msqg));
batch = [];

}

)
.on('end', () => {
//send remaining combinations
const msg = {searchHash: searchHash, variations: batch};

ventilator.send (JSON.stringify (msqg));
)i

To avoid generating too many variations, our generator uses only the lowercase letters of
the English alphabet and sets a limit on the size of the words generated. This limit is
provided in input as a command-line argument (maxLength) together with the hashsum to
match (searchHash). We use a library called variations-stream
(https://npmjs.org/package/variations-stream) to generate all the variations using
a streaming interface.

But the part that we are most interested in analyzing is how we distribute the tasks across
the workers:

1. We first create a PUSH socket and we bind it to local port 5000; this is where the
PULL socket of the workers will connect to receive their tasks.

[468]

https://npmjs.org/package/variations-stream

Messaging and Integration Patterns

2. We group the generated variations in batches of 10,000 items each and then we
craft a message that contains the hash to match and the batch of words to check.
This is essentially the task object that the workers will receive. When we invoke
send () over the ventilator socket, the message will be passed to the next
available worker, following a round robin distribution.

Implementing the worker

Now it's time to implement the worker (worker. js):

const zmg = require('zmqg');

const crypto = require('crypto');

const fromVentilator = zmg.socket ('pull');
const toSink = zmg.socket ('push');

fromVentilator.connect ('tcp://localhost:5016");
toSink.connect ('tcp://localhost:5017");

fromVentilator.on ('message', buffer => {
const msg = JSON.parse (buffer);
const variations = msg.variations;
variations.forEach(word => {
console.log(Processing: ${word}");
const shasum = crypto.createHash('shal');
shasum.update (word) ;
const digest = shasum.digest ('hex');
if (digest === msg.searchHash) {
console.log (' Found! => ${word}");
toSink.send (" Found! ${digest} => ${word});

As we said, our worker represents a transient node in our architecture, therefore, its sockets
should connect to a remote node instead of listening for the incoming connections. That's
exactly what we do in our worker, we create two sockets:

e A PULL socket that connects to the ventilator, for receiving the tasks
e A pUSH socket that connects to the sink, for propagating the results

Besides this, the job done by our worker is very simple: for each message received, we
iterate over the batch of words it contains, then for each word we calculate the SHA1
checksum and we try to match it against searchHash passed with the message. When a
match is found, the result is forwarded to the sink.

[4691

Messaging and Integration Patterns

Implementing the sink

For our example, the sink is a very basic result collector, which simply prints the messages
received by the workers to the console. The contents of the file sink.js are as follows:

const zmg = require('zmg');
const sink = zmg.socket ('pull');
sink.bindSync ("tcp://*:5017");

sink.on ('message', buffer => {
console.log('Message from worker: ', buffer.toString());
)i

It's interesting to see that the sink (as the ventilator) is also a durable node of our
architecture and therefore we bind its PULL socket instead of connecting it explicitly to the
PUSH socket of the workers.

Running the application

We are now ready to launch our application; let's start a couple of workers and the sink:

node worker
node worker
node sink

Then it's time to start the ventilator, specifying the maximum length of the words to
generate and the SHA1 checksum that we want to match. The following is a sample list of
arguments:

node ventilator 4 £8e966d1e207d02c44511a58dccff2£5429%e9a3b

When the preceding command is run, the ventilator will start generating all the possible
words that have a length of, at most, four characters, distributing them to the set of workers
we started, along with the checksum we provided. The results of the computation, if any,
will appear in the terminal of the sink application.

Pipelines and competing consumers in AMQP

In the previous section, we saw how a parallel pipeline can be implemented in a peer-to-
peer context. Now we are going to explore this pattern when applied to a fully-fledged
message broker, such as RabbitMQ.

[470]

Messaging and Integration Patterns

Point-to-point communications and competing
consumers

In a peer-to-peer configuration, a pipeline is a very straightforward concept to picture in
mind. With a message broker in the middle though, the relationship between the various
nodes of the system are a little bit harder to understand; the broker itself acts as an
intermediary for our communications and, often, we don't really know who is on the other
side listening for messages. For example, when we send a message using AMQP, we don't
deliver it directly to its destination, but instead to an exchange and then to a queue. Finally,
it will be for the broker to decide where to route the message, based on the rules defined in
the exchange, the bindings, and the destination queues.

If we want to implement a pipeline and a task distribution pattern using a system like
AMQP, we have to make sure that each message is received by only one consumer, but this
is impossible to guarantee if an exchange can potentially be bound to more than one queue.
The solution, then, is to send a message directly to the destination queue, bypassing the
exchange altogether; this way, we can make sure that only one queue will receive the
message. This communication pattern is called point-to-point.

Once we are able to send a set of messages directly to a single queue, we are already half-
way to implementing our task distribution pattern. In fact, the next step comes naturally:
when multiple consumers are listening on the same queue, the messages will be distributed
evenly across them, implementing a fan-out distribution. In the context of message brokers,
this is better known as the competing consumers pattern.

Implementing the hashsum cracker using AMQP

We just learned that exchanges are the point in a broker where a message is multicast to a
set of consumers, while queues are the place where messages are load balanced. With this
knowledge in mind, let's now implement our brute-force hashsum cracker on top of an
AMQP broker (such as, for example, RabbitMQ). The following figure gives an overview of
the system we want to obtain:

[471]

Messaging and Integration Patterns

Broker

Jobs queue

Variations
Generatior
(producer)

Results queue

Results
collector

__

As we discussed, to distribute a set of tasks across multiple workers, we need to use a single
queue. In the preceding figure, we called this the jobs queue. On the other side of the jobs
queue, we have a set of workers, which are competing consumers; in other words, each one
will pull a different message from the queue. The result is that multiple tasks will execute in
parallel on different workers.

Any result generated by the workers is published into another queue, which we called

the results queue, and then consumed by the results collector; this is actually equivalent to a
sink, or fanin distribution. In the entire architecture, we don't make use of any exchange; we
only send messages directly to their destination queue, implementing a point-to-point
communication.

Implementing the producer

Let's see how to implement such a system, starting from the producer (the variation
generator). Its code is identical to the sample we saw in the previous section except for the
parts concerning the message exchange. The producer. js file will look as follows:

const amgp = require('amgplib');

/.

let connection, channel;
amgp

[472]

Messaging and Integration Patterns

.connect ('amgp://localhost"')
.then (conn => {

connection = conn;

return conn.createChannel ();
H)
.then(ch => {

channel = ch;

produce () ;
})

.catch(err => console.log(err));

function produce () {
YA
variationsStream(alphabet, maxLength)
.on('data', combination => {
YA
const msg = {searchHash: searchHash, variations: batch};
channel. sendToQueue (' jobs_queue',
new Buffer (JSON.stringify(msg)));
YV
})
YA
t

As we can see, the absence of any exchange or binding makes the setup of an AMQP
communication much simpler. In the preceding code, we didn't even need a queue, as we
are interested only in publishing a message.

The most important detail, though, is the channel.sendToQueue () APL which is actually
new to us. As its name says, that's the API responsible for delivering a message straight to a
queue— jobs_queue in our example—bypassing any exchange or routing.

Implementing the worker

On the other side of jobs_queue, we have the workers listening for the incoming tasks.
Let's implement their code in a file called worker. js, as follows:

const amgp = require('amgplib');

/.

let channel, queue;
amgp
.connect ('amgp://localhost")
.then (conn => conn.createChannel ())
.then(ch => {
channel = ch;

[473]

Messaging and Integration Patterns

return channel.assertQueue ('jobs_queue');
})
.then (g => {

queue = J.queue;

consume () ;

H)
/]

function consume () {
channel.consume (queue, msg => {
YA
variations.forEach (word => {
YA
if (digest === data.searchHash) {
console.log (' Found! => ${word}");
channel.sendToQueue ('results_qgqueue',
new Buffer ('Found! ${digest} => S${word}));
t
/]
1) i

channel.ack (msqg) ;
1) i
ti

Our new worker is also very similar to the one we implemented in the previous section
using IMQ, except for the part related to the message exchange. In the preceding code, we
can see how we first make sure that jobs_queue exists and then we start listening for
incoming tasks using channel.consume (). Then, every time a match is found, we send the
result to the collector via results_queue, using again a point-to-point communication.

If multiple workers are started, they will all listen on the same queue, resulting in the
messages being load balanced between them.

Implementing the result collector

The results collector is again a trivial module, simply printing any message received to the
console. This is implemented in the collector. js file, as follows:

/] ...
.then(ch => {

channel = ch;

return channel.assertQueue ('results_queue');
)
.then (g => {

queue = J.queue;

[474]

Messaging and Integration Patterns

channel.consume (queue, msg => {
console.log('Message from worker: ', msg.content.toString());
H) i
H)
/...

Running the application

Now everything is ready to give our new system a try, we can start by running a couple of
workers, which will both connect to the same queue (jobs_gueue), so that every message
will be load balanced between them:

node worker
node worker

Then, we can run the collector module and then producer (by providing the maximum
word length and the hash to crack):

node collector
node producer 4 £8e966d1e207d02c44511a58dccff2£5429e9a3b

With this, we implemented a message pipeline and the competing consumers pattern using
nothing but AMQP.

Request/reply patterns

Dealing with a messaging system often means using a one-way asynchronous
communication; publish/subscribe is a perfect example.

One-way communications can give us great advantages in terms of parallelism and
efficiency, but alone they are not able to solve all our integration and communication
problems. Sometimes, a good old request/reply pattern might just be the perfect tool for the
job. Therefore, in all those situations where an asynchronous one-way channel is all that we
have, it's important to know how to build an abstraction that allows us to exchange
messages in a request/reply fashion. That's exactly what we are going to learn next.

Correlation identifier

The first request/reply pattern we are going to learn is called correlation identifier and it
represents the basic block for building a request/reply abstraction on top of a one-way
channel.

[475]

Messaging and Integration Patterns

The pattern consists of marking each request with an identifier, which is then attached to
the response by the receiver; this way, the sender of the request can correlate the two
messages and return the response to the right handler. This elegantly solves the problem
with the presence of a one-way asynchronous channel, where messages can travel in any
direction at any time. Let's take a look at the example in the following figure:

Replier

Requestor

RO Jl ID: 1 I Request J >
() { ID:2 | Request | g
....... ® < i Response | ID:2 }

A\ 4

{ ID: 3 | Request J

P < I Response | D1
.................. ® < { Response | ID:3 |

Correlations ===-=====----

Messages ——»

The preceding scenario shows how using a correlation ID allows us to match each response
with the right request, even if those are sent and then received in a different order.

Implementing a request/reply abstraction using
correlation identifiers

Let's now start working on an example by choosing the most simple type of one-way
channel, one that is point-to-point (which directly connects two nodes of the system) and
full-duplex (messages can travel in both directions).

[476]

Messaging and Integration Patterns

In the simple channel category, we can find, for example, WebSockets: they establish a point-
to-point connection between the server and browser, and the messages can travel in any
direction. Another example is the communication channel that is created when a child
process is spawned using child_process. fork (); we should already know about it, we
saw this APl in Chapter 9, Advanced Asynchronous Recipes. This channel too is
asynchronous: it connects the parent only with the child process and it allows messages to
travel in any direction. This is probably the most basic channel of this category, so that's
what we are going to use in our next example.

The plan for the next application is to build an abstraction in order to wrap the channel
created between the parent and child processes. This abstraction should provide a
request/reply communication by automatically marking each request with a correlation
identifier and then matching the ID of any incoming reply against the list of request
handlers awaiting a response.

From Chapter 9, Advanced Asynchronous Recipes, we should remember that the parent
process can access the channel with the child using two primitives:

e child.send (message)

e child.on ('message',callback)

In a similar way, the child can access the channel to the parent process using;:

® process.send (message)

® process.on('message',callback)

This means that the interface of the channel available in the parent is identical to the one
available in the child; this will allow us to build a common abstraction, so that the requests
can be sent from both ends of the channel.

Abstracting the request

Let's start building this abstraction by considering the part responsible for sending new
requests; let's create a new file called request. js:

const uuid = require ('node-uuid');

module.exports = channel => {
const idToCallbackMap = {}; // [1]
channel.on('message', message => { // (2]

const handler = idToCallbackMap[message.inReplyTo];
if (handler) {

[477]

Messaging and Integration Patterns

handler (message.data);
t
1) i

return function sendRequest (req, callback) { // [3]
const correlationId = uuid.v4();
idToCallbackMap|[correlationId] = callback;

channel.send ({
type: 'request',
data: req,

id: correlationId
1) i
bi

bi

This is how our request abstraction works:

1. The one that follows is a closure created around our request function. The
magic of the pattern lies in the idToCallbackMap variable, which stores the
association between the outgoing requests and their reply handlers.

2. Assoon as the factory is invoked, the first thing we do is start listening for
incoming messages. If the correlation ID of the message (contained in the
inReplyTo property) matches any of the IDs contained in the idToCallbackMap
variable, we know that we just received a reply, so we obtain the reference to the
associated response handler and we invoke it with the data contained in the
message.

3. Finally, we return the function we will use to send new requests. Its job is to
generate a correlation ID using the node-uuid package
(https://npmjs.org/package/node—uuid) and then wrap the request data in
an envelope that allows us to specify the correlation ID and the type of the
message.

That's it for the request module; let's move to the next part.

Abstracting the reply

We are just a step away from implementing the full pattern, so let's see how the counterpart
of the request . js module works. Let's create another file called reply. js, which will
contain the abstraction for wrapping the reply handler:

module.exports = channel =>
{
return function registerHandler (handler) {
channel.on('message', message => {

[478]

https://npmjs.org/package/node-uuid

Messaging and Integration Patterns

if (message.type !== 'request') return;
handler (message.data, reply => {
channel.send ({
type: 'response',
data: reply,
inReplyTo: message.id
1) i
)i
1) i
ti
bi

Our reply module is again a factory that returns a function to register new reply handlers.
This is what happens when a new handler is registered:

1. We start listening for incoming requests and, when we receive one, we
immediately invoke the handler by passing the data of the message and a
callback function to collect the reply from the handler.

2. Once the handler has done its work, it will invoke the callback that we provided,
returning its reply. We then build an envelope by attaching the correlation ID of
the request (the inReplyTo property), then we put everything back into the
channel.

The amazing thing about this pattern is that in Node.js, it comes very easily; everything for
us is already asynchronous, so an asynchronous request/reply communication built on top
of a one-way channel is not very different from any other asynchronous operation,
especially if we build an abstraction to hide its implementation details.

Trying the full request/reply cycle

Now we are ready to try our new asynchronous request/reply abstraction. Let's create a
sample replier in a file named replier. js:

const reply = require('./reply') (process);

reply((req, cb) => {
setTimeout (() => {
cb ({sum: reg.a +

}, reqg.delay);
P i

req.b});

Our replier simply calculates the sum between the two numbers received and returns the
result after a certain delay (which is also specified in the request). This will allow us to
verify that the order of the responses can also be different from the order in which we sent
the requests, to confirm that our pattern is working.

[479]

Messaging and Integration Patterns

The final step to complete the sample is to create the requestor in a file named
requestor. js, which also has the task of starting the replier using
child_process.fork():

const replier = require('child_process')
.fork (" ${__dirname}/replier.js";
const request = require('./request') (replier);

request ({a: 1, b: 2, delay: 500}, res => {
console.log ('l + 2 = ', res.sum);
replier.disconnect () ;

)i

request ({a: 6, b: 1, delay: 100}, res => {
console.log('6 + 1 = ', res.sum);
)i

The requestor starts the replier and then passes its reference to our request abstraction. We
then run a couple of sample requests and verify that the correlation with the response they
receive is right.

To try out the sample, simply launch the requestor. js module; the output should be
something similar to the following:

7

+ 1
+ 2 3

6

1
This confirms that our pattern works perfectly well and that the replies are correctly
associated with their own requests, no matter in what order they are sent or received.

Return address

The correlation identifier is the fundamental pattern for creating a request/reply
communication on top of a one-way channel; however, it's not enough when our messaging
architecture has more than one channel or queue, or when there can be potentially more
than one requestor. In these situations, in addition to a correlation ID, we also need to know
the return address, a piece of information which allows the replier to send the response back
to the original sender of the request.

[480]

Messaging and Integration Patterns

Implementing the return address pattern in AMQP

In AMQP, the return address is the queue where the requestor is listening for incoming
replies. Because the response is meant to be received by only one requestor, it's important
that the queue is private and not shared across different consumers. From these properties,
we can infer that we are going to need a transient queue, scoped to the connection of the
requestor and that the replier has to establish a point-to-point communication with the
return queue, to be able to deliver its responses.

The following image gives us an example of this scenario:

Requestor
A

Requests queue

—» [Replier

Requestor
B

To create a request/reply pattern on top of AMQP, all that we need to do is to specify the
name of the response queue in the message properties; this way, the replier knows where
the response message has to be delivered. The theory seems very straightforward, so let's
see how to implement this in a real application.

[481]

Messaging and Integration Patterns

Implementing the request abstraction

Let's now build a request/reply abstraction on top of AMQP. We will use RabbitMQ as a
broker, but any compatible AMQP broker should do the job. Let's start with the request

abstraction (implemented in the amgpRequest . js module); we will show here only the
relevant parts.

The first interesting thing to observe is how we create the queue to hold the responses; this
is the code responsible for that:

channel.assertQueue('', {exclusive: true});

When we create the queue, we don't specify any name, which means that a random one will
be chosen for us; in addition to this, the queue is exclusive, which means that it's bound to
the active AMQP connection and it will be destroyed when the connection closes. There is
no need to bind the queue to an exchange, as we don't need any routing or distribution to
the multiple queues; this means that the messages have to be delivered straight into our
response queue.

Next, let's see how we can generate a new request:

classAMQPRequest {

/)

request (queue, message, callback) {
const id = uuid.v4();
this.idToCallbackMap[id] = callback;
this.channel.sendToQueue (queue, new Buffer (JSON.stringify (message)),

{correlationId: id, replyTo: this.replyQueue}

)i

}

The request () method accepts as input, the name of the request queue and the message
to send. As we learned in the previous section, we need to generate a correlation ID and
associate it to the callback function. Finally, we send the message, specifying the
correlationIdand the replyTo property as metadata.

It's interesting to see that for sending the message we are using the
channel.sentToQueue () APl instead of channel.publish (); this is because we are not
interested in implementing any publish/subscribe distribution using exchanges, but a more
basic point-to-point delivery straight into the destination queue.

[482]

Messaging and Integration Patterns

In AMQP, we can specify a set of properties (or metadata) to be passed to
the consumer, together with the main message.

The last important piece of our amgpRequest prototype is where we listen for incoming
responses:

_listenForResponses () {
return this.channel.consume (this.replyQueue, msg => {
const correlationId = msg.properties.correlationId;

const handler = this.idToCallbackMap[correlationId];
if (handler) {
handler (JSON.parse (msg.content.toString()));

}
}, {noAck: true});

}

In the preceding code, we listen for messages on the queue we created explicitly for
receiving responses, then for each incoming message we read the correlation ID and we
match it against the list of handlers awaiting a reply. Once we have the handler, we only
need to invoke it by passing the reply message.

Implementing the reply abstraction

That's it for the amgpRequest module; now it's time to implement the response abstraction
in a new module named amgpReply. js.

Here, we have to create the queue that will receive the incoming requests; we can use a
simple durable queue for this purpose. We won't show this part, since it's again all AMQP
boilerplate. What we are interested in seeing instead is how we handle a request and then
send it back to the right queue:

class AMQPReply {
/] ...

handleRequest (handler) {
return this.channel.consume (this.queue, msg => {
const content = JSON.parse (msg.content.toString());
handler (content, reply => {
this.channel.sendToQueue (
msg.properties.replyTo,
new Buffer (JSON.stringify (reply)),
{correlationId: msg.properties.correlationId}
)i
this.channel.ack (msqg);

[483]

Messaging and Integration Patterns

When sending back a reply, we use channel. sendToQueue () to publish the message
straight into the queue specified in the replyTo property of the message (our return
address). Another important task of our amgpReply objectis to seta correlationIdin the
reply, so that the receiver can match the message with the list of pending requests.

Implementing the requestor and the replier

Everything is now ready to give our system a try, but first, let's build a sample requestor
and replier to see how to use our new abstraction.

Let's start from the module replier.js:

const Reply = require('./amgpReply');
const reply = Reply('requests_qgueue');

reply.initialize().then(() => {
reply.handleRequest ((req, cb) => {
console.log('Request received', req);
cb ({sum: reg.a + req.b});
)i
)i

It's nice to see how the abstraction we built allows us to hide all the mechanisms that handle
the correlation ID and the return address; all we need to do is to initialize a new reply
object, specifying the name of the queue where we want to receive our requests

(' requests_queue'). The rest of the code is just trivial; our sample replier simply
calculates the sum of the two numbers received as input and sends back the result using the
provided callback.

On the other side, we have a sample requestor implemented in the requestor. js file:

const req = require ('./amgpRequest') ();
req.initialize () .then(() => {
for (let i = 100; i> 0; i--) {

sendRandomRequest () ;
}
)i

function sendRandomRequest () A
const a = Math.round(Math.random() * 100);

[484]

Messaging and Integration Patterns

const b = Math.round (Math.random() * 100);
req.request ('requests_queue', {a: a, b: b},
res => {
console.log(${a} + ${b} = ${res.sum}’);
t
)i
t

Our sample requestor sends 100 random requests to the requests_queue queue. In this
case too, it's interesting to see that our abstraction is doing its job perfectly, hiding all the
details of the asynchronous request/reply pattern.

Now, to try out the system, simply run the replier module followed by the requestor
module:

node replier
node requestor

We will see a set of operations published by the requestor and then received by the replier,
which in turn will send back the responses.

Now we can try other experiments. Once the replier is started for the first time, it creates a
durable queue; this means that, if we now stop it and then run the requestor again, no
request will be lost. All the messages will be stored in the queue until the replier is started
again!

Another nice feature that we get for free using AMQP is the fact that our replier is scalable
out-of-the-box. To test this assumption, we can try to start two or more instances of the
replier, and watch the requests being load balanced between them. This works because,
every time a requestor starts, it attaches itself as a listener to the same durable queue, and as
a result, the broker will load balance the messages across all the consumers of the queue
(competing consumers pattern). Sweet!

@MQ has a pair of sockets specifically meant for implementing
request/reply patterns (REQ/REP); however, they are synchronous (only
one request/response at a time). More complex request/reply patterns are
possible with more sophisticated techniques. For more information, you
can read the official guide at
http://zguide.zeromg.org/page:all#advanced-request-reply.

[485]

http://zguide.zeromq.org/page:all#advanced-request-reply

Messaging and Integration Patterns

Summary

We have reached the end of this chapter. Here, we learned the most important messaging
and integration patterns and the role they play in the design of distributed systems. We
made our acquaintance with the three major types of message exchange patterns:
publish/subscribe, pipelines, and request/reply, and we saw how they can be implemented
using a peer-to-peer architecture or a message broker. We analyzed their pros and cons, and
we saw that by using AMQP and a fully-fledged message broker, we can implement
reliable and scalable applications with little developmental effort but at a cost of having one
more system to maintain and scale. Also, we saw how IMQ allows us to build distributed
systems where we can have total control over every aspect of the architecture, fine tuning
its properties around our very own requirements.

This chapter also closes the book; by now, we should have a tool belt full of patterns and
techniques we can go and apply in our projects. We should also have a deeper
understanding of how Node.js development works and what its strengths and weaknesses
are. Throughout the book, we also had the chance to work with a myriad of packages and
solutions developed by many extraordinary developers. In the end, this is the most
beautiful aspect of Node js: its people, a community where everybody plays their part in
giving back something.

I hope you enjoyed our small contribution.

[4861

A

Adapter
about 218
LevelUP, using 218, 219, 220,221
real-world examples 221
Advanced Message Queuing Protocol (AMQP)
about 441, 457
binding 458
chat application, integrating with 463
exchange 458
queue 457
reference link 441, 459
used, for implementing reliable history 461
using, with AMQP 459
amgqplib package
reference link 461
AngularJS
reference link 279
Apache ab
reference link 394
Apache HTTP
server documentation, reference link 405
Apache Mesos
reference link 425
API Gateway 426
API orchestration
about 427
reference link 427
application scaling
about 388
Node.js applications, scaling 388
scalability dimensions 388
application-controlled extension
about 289
versus plugin-controlled extension 286, 287,
288

Index

args-list module
URL 281
arrow function 15, 16
Aspect-Oriented Programming (AOP) 210
async await
cons 137
pros 137
URL 134
with Babel 134
async library
about 97
cons 136
limited parallel execution 101
parallel execution 100
pros 136
sequential execution 97
sequential execution, of known tasks 98, 100
sequential iteration 100
URL 97
asynchronous batching 359
asynchronous caching 359
asynchronous continuation-passing style 36, 37
asynchronous control flow, with streams
ordered parallel execution 172, 173
sequential execution 165, 166
unordered limited parallel execution 171,172
unordered parallel execution 167
asynchronous function
deferred execution 42
synchronous API, using 40, 41, 42
unpredictable function 38
Zalgo, unleashing 39, 40
asynchronous programming
callback hell 76, 77
difficulties 73
web spider, creating 73, 74
asynchronously initialized modules

canonical solutions 352 URL 201

module, implementing 353, 355 busy-waiting 26
preinitialization queues 353
requiring 351, 352 C
wrapping, with preinitialization queues 356, 358 caching
authentication server considerations 368, 369
app module 265, 266 with promise 369, 370
authController module 264 callback conventions
authService module 263 as last argument 43
building 262 errors handling 44
db module 263 errors, propagating 44
executing 266 exceptions, handling 45, 46, 47
refactoring, for Dependency Injection (DI) callback hell 76, 77, 104
container 280, 282 callback pattern
refactoring, for DI 268,269, 270 about 35
refactoring, for service locator 274, 277 asynchronous function 38
AWS Lambda continuation-passing style (CPS) 35
reference link 425 conventions 43
synchronous function 38
B Chain of Responsibility pattern
Babel about 237
about 300 URL 238
async await 134 chance module
executing 135 URL 152
installing 135 Checkout module 421
URL 136 Checkout service 424
batching child process
with promise 369, 370 about 378
binary buffer 451 URL 383
binding, AMQP 458 class syntax 17,18
blocking I/0 24, 25 closures
Bluebird about 35
URL 108 URL 35
Bower cluster module
URL 309 about 392, 396
brew availability 397
reference link 407 behavior 393
Browserify Master process 392
URL 307 reference link 393
buffered API resiliency 397
used, for Gzipping 142 simple HTTP server, building 393
buffering stateful communication, dealing with 401
versus streaming 140, 141 used, for scaling 395
bundle 306 zero-downtime restart 399, 400
bunyan package co-limiter

[488]

URL 130
co
URL 125
using 125
code profiler
building 194, 195, 196
cohesion 258
combine-stream package
URL 175
combined stream
implementing 175
Command
about 249, 250
complex command, example 251, 254
flexible pattern 251
task pattern 251
CommonJS modules 438
competing consumers 464, 471
competitive race 90
complex applications
decomposing 419
microservice architecture 421
monolithic architecture 419
Component
URL 309
composable factory functions
about 197
defining 198,199, 200
const keyword 13,14
constructor injection 270
Consul
reference link 411, 415
used, for implementing dynamic load balancer
411
continuation-passing style (CPS)
about 35
asynchronous continuation-passing style 36, 37
non-continuation-passing style callbacks 38
synchronous continuation-passing style 35, 36
correlation identifier
about 475
used, for implementing request/reply abstraction
476
CouchDB
reference link 402

[489]

CouchUP
URL 215
coupling 259
CPU-bound tasks
executing 371
subset sum problem, solving 372, 373, 374,
375
Cross-origin resource sharing (CORS) 262
cross-platform development
build-time code, branching 313, 314, 315
design patterns 318, 319
fundamentals 312
module, swapping 316, 318
runtime code, branching 312, 313
Cross-site Request Forgery (CSRF) 237

D

decorator
about 213
example 214
implementing 213
implementing, via object augmentation 214
deep-freeze module
URL 14
deferreds
about 109
URL 109
delegates library
URL 207
demultiplexing 182
denial-of-service (DoS) attacks 379
dependency graph 257
Dependency Injection (DI) container
about 278
authentication server, refactoring 280, 282
dependencies, declaring 279, 280
pros and cons 283
URL 283
Dependency Injection (DI)
about 267, 352
authentication server, refactoring 268, 269,
270
constructor injection 270
property injection 270
prosandcons 271,272

dependency
about 257
between modules 258
in Node.js 257
design pattern 190
direct style 36
distributed application
integrating 435
distributed hashsum cracker
application, running 470
building, with GMQ 467
sink, implementing 470
ventilator, implementing 468
worker, implementing 469
Dnode package
about 200
URL 200
docpad
URL 284
Don't Repeat Yourself (DRY) principle 10
duck typing
about 196
reference link 196
Duplex stream 158
durable subscribers
about 455
AMQP 457
using, with RabbitMQ 459
dynamic scaling 409

E

ecstatic
reference link 444
Elasticsearch
reference link 424
encapsulation 193
enhanced object literals 18
epoll 31
ES2015 12
ES2015, features
arrow function 15, 16
class syntax 16,17,18
const keyword 13, 14
enhanced obiject literals 18
ES2015 Proxy 210

[4901]

ES2015 WeakMaps, URL 194

let keyword 13, 14

other features 23

promise 105

set collection 20

template literals 22

URL 23

WeakMap collection 21

WeakSet collection 21
Event Demultiplexer 30
event demultiplexing 27
event loop 27
Event Loop 37
event notification interface 27
Event Queue 30
EventEmitter class

about 63

combining, with callbacks 70

creating 64, 65

error event 65

fileread event 65

found event 65

using 64, 65

versus callbacks 68, 69
exchange, AMQP

direct exchange 458

fanout exchange 458

topic exchange 458
executor function 202
exports

versus module.exports 51
Express

middleware 236, 237

URL 236

F

factory injection 270
factory
about 191
code profiler, building 194, 195, 196

composable factory functions, defining 197,

198,199,200
encapsulation 193

objects, creating with generic interface 191, 192

packages 200, 201

Fibers
URL 137
forever
reference link 407
from2
URL 164
fstream package
URL 179
function hooks 210

G

generators
about 119
as iterators 121
basic concepts 119, 120
cons 137
download tasks concurrency, limiting 133
example 120
limited parallel execution 130
parallel execution 128,129, 130
producer-consumer pattern 131, 132, 133
pros 137
sequential execution 126, 127
used, with middleware 245, 246,247,248
values, passing 121
God Object 431
Grunt
about 297
URL 284,297,309
Gulp
URL 284,309

H

HAProxy
reference link 406
hardcoded dependency
about 261
authentication server, building 262, 263
pros and cons 266,267
hashsum cracker
application, running 475
implementing, with AMQP 471
producer, implementing 472
result collector, implementing 474
worker, implementing 473

high coupling 421
horizontal partitioning 390
horizontal scaling 391
http-proxy

URL 201,411

I/O Completion Port (IOCP) 31
IBM OpenWhisk
reference link 425
IndexedDB 215
information hiding 193, 258
integration pattern, microservice architecture
APl orchestration 427, 429, 431
API proxy 426
message broker, integrating with 431, 433
Intercepting Filter pattern
about 237
URL 238
Inversion of Control (IoC)
URL 287
Isomorphic JavaScript 300

J

JSON Web Token (JWT)
about 262
URL 262
json-over-tcp library
about 230
URL 230
JSX
about 322
URL 325
jugglingdb
about 222
URL 222

K

Keep It Simple, Stupid (KISS) principle 11
Koa

about 246

URL 125, 246
koajs/compose repository

URL 249

[491]

koajs/ratelimit module
URL 248
kqueue 31

L

Least Recently Used (LRU) 368
let keyword 13, 14
level package
URL 215
level-filesystem package
URL 222
level-inverted-index plugin
about 217
URL 217
level-plus plugin
about 217
URL 217
level.js package
URL 221
LevelDB 215
levelgraph
URL 215
LevelUP
about 215
decorating 214
plugin, implementing 215,216
reference link 215
URL 215
libuv
about 31
URL 31
limited parallel execution
about 92
concurrency, limiting 93
concurrency, limiting globally 94
queues 94
web spider 95, 96, 97
load distribution 388
logout plugin
DI container, using 298
DI, using 296, 297

hardcoded dependencies, using 290, 291, 294

implementing 289, 290
service locator, using 294, 296
lookup step 390

[492]

map collection 20
Memcached
reference link 402
URL 369
memoization 368
memoizee
URL 368
merge-stream package
URL 181
message 438
message broker 440
message queue (MQ) 455
Message Queue Telemetry Transport (MQTT)
about 441
reference link 441
specifications, reference link 455
message types
Command Message 439
Document Message 439
Event Message 439
messaging system
about 435
asynchronous messaging 439, 440
broker-based messaging 441
considerations 436
message types 438
one-way pattern 437
peer-to-peer messaging 440
queues 440
request/reply pattern 437
microservice architecture
about 421
Cart service 425
challenges 425
Checkout service 425
cons 423,424
designing, factors 421
example 422
integration patterns 425
pros 423,424
reference link 423
Search service 425
Microsoft Azure Functions

reference link 425
Middleware Manager 238
middleware

about 210, 236

as pattern 237, 238

creating 239

implementing, with generators in Koa 245, 246,

247,249
in Express 236, 237
JSON messages, processing 242
Middleware Manager 240, 241

@MQ middleware framework, using 243

minificators 279
minimalist real-time chat application
building 443
client side, implementing 445
running 446
scaling 446
server side, implementing 444
minimist
reference link 453
module definition patterns
about 56
constructor, exporting 58, 59, 60
function, exporting 57, 58
global scope 61
instance, exporting 60, 61
module, modifying 61
named exports 56
module impersonation pattern 290, 294
module system
about 47
circular dependencies 55
globals, defining 51
homemade module loader 48, 49
module cache 54
module definition patterns 56
module, defining 50
module.exports, versus exports 51
require function 52
resolving algorithm 52, 53
revealing module pattern 47
module wiring
about 256
Dependency Injection (DI) 267

hardcoded dependency 261

patterns 261

service locator 273
module.exports

versus exports 51
modules

about 257

cohesion 258

coupling 258

stateful modules 259
MongoDB

about 358

reference link 402
Mongoose

about 212

reference link 358

URL 212, 358
monit

reference link 408
monkey patching 61, 207
monolithic kernels 419
monotonic timestamp

reference link 462
multipipe package

URL 175
multiple checksum generator

implementing 178
multiplexing 182
multistream package

URL 181
multistream-merge package

URL 181

N

name mangling 279
Nginx
reference link 406, 407
used, for load balancing 407
node-core JavaScript library 31
node-uuid package
reference link 478
Node.js6 12
Node.js application, scaling
availability feature 388
cloning 390

[4931]

decomposing 390

scalability dimensions 390

tolerance to failures 388
Node.js application

cloning 391

load balancing 391

scaling 388
Node.js, philosophy

about 9

pragmatism 11, 12

simplicity 11, 12

small core 9

small module 10

small surface area 11
Node.js

about 387

platform, building 31, 32
nodebb

URL 284
non-blocking IO 26
non-continuation-passing style callbacks 38
npm packages

consul 411

http-proxy 411

portfinder 411

O

object augmentation
used, for implementing proxy 207
versus object composition 208
object composition
used, for implementing proxy 206, 207
object streams
demultiplexing 188
multiplexing 188

Object-Document Mapping (ODM) library 212

object-path library
URL 224
Object.freeze() method
reference link 14
observer pattern
about 62, 63
asynchronous events 67
errors, propagating 65
EventEmitter class 63

observable object, creating 66
synchronous events 67

operating modes

Binary mode 1438
Object mode 148

Operational Transformation (OT)

about 250
URL 250

P

packet switching 183
parallel execution

about 86, 87, 88

concurrent tasks, executing 90
pattern 89

web spider 88, 89

parallel pipeline 465
Passport.js

about 227
URL 227

peer-to-peer architecture

designing, for chat server 451

peer-to-peer load balancing

about 416
HTTP client, implementing 418

pify

URL 370

pipeline 237
pipelines and task distribution patterns

about 464, 465
pipelines and completing consumers 470
@MQ fanout/fanin pattern 466

piping patterns

about 173

demultiplexing 182
multiplexing 182

streams, combining 174,175
streams, forking 177

streams, merging 179

plain JavaScript

[494]

callback discipline 77, 78

callback discipline, applying 78, 80
cons 136

limited parallel execution 92
parallel execution 86, 87, 88

sequential execution 80, 81
using 77
plugin-controlled extension 289
plugins
as packages 283, 285
extension points 286
logout plugin, implementing 289, 290
plugin-controlled extension, versus application-
controlled extension 286, 287
wiring 283
pm2
reference link 401, 407
point-to-point communication pattern 471
portfinder
reference link 411
PostgreSQL
reference link 402
PouchDB
URL 215
private variables
reference link 194
producer-consumer pattern 130
promise
about 105,107
asynchronous control flow 122,124,125
batching 369, 371
caching 369,371
callbacks 117
cons 137
control flow, usingco 125
limited parallel execution 115
Node.js style function 109, 110
parallel execution 114
pros 137
public APl 117
sequence execution 111,112
sequential iteration 112
sequential iteration, pattern 113
Promises/A+
about 107
implementing 108
URL 107
promisification 109
property injection 270
Proxy API

[495]

references 212
proxy, use case

caching 205

data validation 205

lazy initialization 205

logging 205

remote objects 205

security 205
proxy

about 205

Aspect-Oriented Programming (AOP) 210

ES2015 Proxy 210

function hooks 210

implementing 206

implementing, with object augmentation 207

logging Writable stream, creating 208, 209

object composition 206, 207
pseudo-classical inheritance 207
publish/subscribe pattern

about 431,442,443

durable subscribers 455

minimalist real-time chat application, building

443
peer-to-peer publish/subscribe pattern with GMQ
450

Redis, using as message broker 447, 448, 450

pyramid of doom 76

Q

Q

URL 108
Quality of Service (QoS) 455
queue, AMQP

auto-delete 458

durable 457

exclusive 458

R

RabbitMQ
URL 441,460,461
React Hardware
URL 320
React Native
URL 320
React Three

URL 320
react-stampit package

URL 201
React
about 319, 320, 321
JSX 322,323
URL 319

widget component, building 321
reactor pattern

about 475
correlation identifier 475
reference link 485
return address 480
require.js
URL 307
resolving algorithm
core modules 53
file modules 53

about 24,29 package modules 53
blocking I/0 24, 25 URL 53

defining 30 Restify package

event demultiplexing 27 about 200

libuv 31 URL 200

non-blocking /0 26 return address pattern

slow I/0O 24 about 480

using 30 implementing, in AMQP 481

read-only event emitter 202, 204 replier, implementing 484

Readable stream reply abstraction, implementing 483
about 149 request abstraction, implementing 482
flowing mode 150 requestor, implementing 484

implementing 151, 153
non-flowing mode 149, 150
redis package
reference link 449
Redis
about 448
reference link 402, 447
URL 369
using, as message broker 447
reduce algorithm 85
remitter package
URL 201
remote logger
building 183
demultiplexing 185, 186, 187
executing 187
multiplexing 183, 184, 185

Remote Procedure Call (RPC) system 200

request/reply abstraction

full request/reply cycle, trying 479
implementing, with correlation identifiers 476

reply, abstracting 478
request, abstracting 477
request/reply pattern

revealing constructor
about 201
read-only event emitter 202
URL 202
use cases 204
revealing module pattern 47
reverse proxy
cloud-based proxies 406
HAProxy 406
Nginx 406
Node.js-based proxies 406
used, for scaling 404
RollupJs
URL 307
RSVP
URL 108
runit
reference link 407

S

scalability dimensions
x-axis 389
y-axis 389
z-axis 389

[4961

scale cube 387, 388
semi-coroutines 119
Seneca
reference link 425
sequential execution
about 80, 81
tasks, executing 81
sequential iteration
about 82
pattern 85, 86
sequential crawling, of links 83
web spider version 2 82, 83
Service Level Agreement (SLA) 399
service locator
about 273
authentication server, refactoring 274, 277
pros and cons 277
service registry
dynamic load balancer, implementing with
Consul 411
dynamic load balancer, implementing with http-
proxy 411
using 409
set collection 20
sharding 390
siege
reference link 394
Simple/Streaming Text Orientated Messaging
Protocol (STOMP)
about 441
reference link 441
Single Page Applications 262
Single Responsibility Principle (SRP) 58
sink 465
Socket.io
reference link 404
software development philosophies
reference link 9
stamp specification
about 198
reference link 200
stampit module
URL 198
State
about 227,228

basic fail-safe socket, implementing 228, 232

stateful communications

dealing with 401
state, sharing across multiple instances 402
sticky load balancing 403

stateful modules

about 259
Singleton pattern 259, 260, 261

sticky load balancing

reference link 404

Store front-end application 429
Strategy

about 222,223
multi-format configuration objects 223, 224,
225,226

streaming

versus buffering 140, 141

Streamline

URL 137

streams, importance

composability 146, 147
discovering 139

spatial efficiency 142

time efficiency 143, 145, 146

streams

about 147

anatomy 148

connecting, with pipes 162, 163
Duplex stream 158

from package, using 164
Readable stream 149

through package, using 164
Transform stream 158

used, for Gzipping 143

Writable stream 153

strict mode 12
subject 205
sublevel plugin

URL 263

subset sum problem

[497]

child process, communicating 382, 383
considerations, on interleaving pattern 377, 378
interleaving 375

multiple processes, using 378

multiprocess pattern, considerations 385

parent process, communicating 383, 385
process pool, implementing 380, 381
processes, delegating 379
setimmediate, interleaving with 375
solving 372,373, 374,375
substack pattern 57
sudo apt-get install nginx 407
supervisor 408
surrogate 205
suspend
URL 125
synchronous continuation-passing style 35, 36
synchronous event demultiplexer 27
systemd
reference link 407

T

tar package
URL 179
tarball
creating, from multiple directories 179
technical debt 257
template literals 22
template methods 233, 236
Template
about 233
configuration manager template 234, 235
ternary-stream package
URL 188
threads 386
through2
URL 164
thunkify
URL 125
toastr library
URL 317
total sales application
asynchronous requests, batching 362
asynchronous requests, caching 365, 366
implementing, without caching and batching
359, 361

requests, batching in total sales web server 363,

365

requests, caching in total sales web server 367,

368

[498]

Transform stream
about 158
implementing 159, 161
trap methods 211

U

UglifyJs
about 315
URL 315
Universal JavaScript 300
unordered parallel stream
implementing 167, 169
upstart
reference link 407

URL status monitoring application

implementing 169, 170

\'

V8 31
variations-stream

reference link 468
ventilator 464
vertical scaling 391
virtual DOM 320
vm module

URL 48
Vow

URL 108

w

WeakMap collection 21
WeakSet collection 21
web browsers
reference link 446
Webmake
URL 307
Webpack
about 300, 306
advantages 308, 309
ES2015, using 310
installing 307
URL 306
webworker-threads
URL 386

When.js @MQ binaries

URL 108 reference link 452
Writable stream @MQ fanout/fanin pattern
about 153 about 466
back-pressure 155 distributed hashsum cracker, building 467
implementing 156 PUSH/PULL sockets 466
writing 153 @MQ library
ws package reference link 417
reference link 444 ZMQ middleware framework
client, creating 244, 245
Z using 243
Zalgo @MQ PUB/SUB sockets
about 40 using 452
unleashing 39, 40 amMQ
zmq package about 239, 451
reference link 453 reference link 442, 451
URL 239, 243
Q used, for working with peer-to-peer

publish/subscribe pattern 450

	Cover
	Copyright
	Credits
	About the Authors
	Acknowledgments
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Welcome to the Node.js Platform
	The Node.js philosophy
	Small core
	Small modules
	Small surface area
	Simplicity and pragmatism

	Introduction to Node.js 6 and ES2015
	The let and const keywords
	The arrow function
	Class syntax
	Enhanced object literals
	Map and Set collections
	WeakMap and WeakSet collections
	Template literals
	Other ES2015 features

	The reactor pattern
	I/O is slow
	Blocking I/O
	Non-blocking I/O
	Event demultiplexing
	Introducing the reactor pattern
	The non-blocking I/O engine of Node.js-libuv
	The recipe for Node.js

	Summary

	Chapter 2: Node.js Essential Patterns
	The callback pattern
	The continuation-passing style
	Synchronous continuation-passing style
	Asynchronous continuation-passing style
	Non-continuation-passing style callbacks

	Synchronous or asynchronous?
	An unpredictable function
	Unleashing Zalgo
	Using synchronous APIs
	Deferred execution

	Node.js callback conventions
	Callbacks come last
	Error comes first
	Propagating errors
	Uncaught exceptions

	The module system and its patterns
	The revealing module pattern
	Node.js modules explained
	A homemade module loader
	Defining a module
	Defining globals
	module.exports versus exports
	The require function is synchronous
	The resolving algorithm
	The module cache
	Circular dependencies

	Module definition patterns
	Named exports
	Exporting a function
	Exporting a constructor
	Exporting an instance
	Modifying other modules or the global scope

	The observer pattern
	The EventEmitter class
	Creating and using EventEmitter
	Propagating errors
	Making any object observable
	Synchronous and asynchronous events
	EventEmitter versus callbacks
	Combining callbacks and EventEmitter

	Summary

	Chapter 3: Asynchronous Control Flow Patterns with Callbacks
	The difficulties of asynchronous programming
	Creating a simple web spider
	The callback hell

	Using plain JavaScript
	Callback discipline
	Applying the callback discipline
	Sequential execution
	Executing a known set of tasks in sequence
	Sequential iteration
	Web spider version 2
	Sequential crawling of links
	The pattern

	Parallel execution
	Web spider version 3
	The pattern
	Fixing race conditions with concurrent tasks

	Limited parallel execution
	Limiting the concurrency
	Globally limiting the concurrency
	Queues to the rescue
	Web spider version 4

	The async library
	Sequential execution
	Sequential execution of a known set of tasks
	Sequential iteration

	Parallel execution
	Limited parallel execution

	Summary

	Chapter 4: Asynchronous Control Flow Patterns with ES2015 and Beyond
	Promise
	What is a promise?
	Promises/A+ implementations
	Promisifying a Node.js style function
	Sequential execution
	Sequential iteration
	Sequential iteration – the pattern

	Parallel execution
	Limited parallel execution
	Exposing callbacks and promises in public APIs

	Generators
	The basics of generators
	A simple example
	Generators as iterators
	Passing values back to a generator

	Asynchronous control flow with generators
	Generator-based control flow using co

	Sequential execution
	Parallel execution
	Limited parallel execution
	Producer-consumer pattern
	Limiting the download tasks concurrency

	Async await using Babel
	Installing and running Babel

	Comparison
	Summary

	Chapter 5: Coding with Streams
	Discovering the importance of streams
	Buffering versus streaming
	Spatial efficiency
	Gzipping using a buffered API
	Gzipping using streams

	Time efficiency
	Composability

	Getting started with streams
	Anatomy of streams
	Readable streams
	Reading from a stream
	The non-flowing mode
	Flowing mode

	Implementing Readable streams

	Writable streams
	Writing to a stream
	Back-pressure
	Implementing Writable streams

	Duplex streams
	Transform streams
	Implementing Transform streams

	Connecting streams using pipes
	Through and from for working with streams

	Asynchronous control flow with streams
	Sequential execution
	Unordered parallel execution
	Implementing an unordered parallel stream
	Implementing a URL status monitoring application

	Unordered limited parallel execution
	Ordered parallel execution

	Piping patterns
	Combining streams
	Implementing a combined stream

	Forking streams
	Implementing a multiple checksum generator

	Merging streams
	Creating a tarball from multiple directories

	Multiplexing and demultiplexing
	Building a remote logger
	Client side – multiplexing
	Server side – demultiplexing
	Running the mux/demux application

	Multiplexing and demultiplexing object streams

	Summary

	Chapter 6: Design Patterns
	Factory
	A generic interface for creating objects
	A mechanism to enforce encapsulation
	Building a simple code profiler
	Composable factory functions
	In the wild

	Revealing constructor
	A read-only event emitter
	In the wild

	Proxy
	Techniques for implementing proxies
	Object composition
	Object augmentation

	A comparison of the different techniques
	Creating a logging Writable stream
	Proxy in the ecosystem – function hooks and AOP
	ES2015 Proxy
	In the wild

	Decorator
	Techniques for implementing Decorators
	Composition
	Object augmentation

	Decorating a LevelUP database
	Introducing LevelUP and LevelDB
	Implementing a LevelUP plugin

	In the wild

	Adapter
	Using LevelUP through the filesystem API
	In the wild

	Strategy
	Multi-format configuration objects
	In the wild

	State
	Implementing a basic fail-safe socket

	Template
	A configuration manager template
	In the wild

	Middleware
	Middleware in Express
	Middleware as a pattern
	Creating a middleware framework for ØMQ
	The Middleware Manager
	A middleware to support JSON messages
	Using the ØMQ middleware framework
	The server
	The client

	Middleware using generators in Koa

	Command
	A flexible pattern
	The task pattern
	A more complex command

	Summary

	Chapter 7: Wiring Modules
	Modules and dependencies
	The most common dependency in Node.js
	Cohesion and coupling
	Stateful modules
	The Singleton pattern in Node.js

	Patterns for wiring modules
	Hardcoded dependency
	Building an authentication server using hardcoded dependencies
	The db module
	The authService module
	The authController module
	The app module
	Running the authentication server

	Pros and cons of hardcoded dependencies

	Dependency Injection
	Refactoring the authentication server to use DI
	The different types of DI
	Pros and cons of DI

	Service locator
	Refactoring the authentication server to use a service locator
	Pros and cons of a service locator

	Dependency Injection container
	Declaring a set of dependencies to a DI container
	Refactoring the authentication server to use a DI container
	Pros and cons of a DI container

	Wiring plugins
	Plugins as packages
	Extension points
	Plugin-controlled vs application-controlled extension
	Implementing a logout plugin
	Using hardcoded dependencies
	Exposing services using a service locator
	Exposing services using DI
	Exposing services using a DI container

	Summary

	Chapter 8: Universal JavaScript for Web Applications
	Sharing code with the browser
	Sharing modules
	Universal Module Definition
	Creating an UMD module
	Considerations on the UMD pattern

	ES2015 modules

	Introducing Webpack
	Exploring the magic of Webpack
	The advantages of using Webpack
	Using ES2015 with Webpack

	Fundamentals of cross-platform development
	Runtime code branching
	Build-time code branching
	Module swapping
	Design patterns for cross-platform development

	Introducing React
	First React component
	JSX, what?!
	Configuring Webpack to transpile JSX
	Rendering in the browser
	The React Router library

	Creating a Universal JavaScript app
	Creating reusable components
	Server-side rendering
	Universal rendering and routing
	Universal data retrieval
	The API server
	Proxying requests for the frontend
	Universal API client
	Asynchronous React components
	The web server

	Summary

	Chapter 9: Advanced Asynchronous Recipes
	Requiring asynchronously initialized modules
	Canonical solutions
	Preinitialization queues
	Implementing a module that initializes asynchronously
	Wrapping the module with preinitialization queues

	In the wild

	Asynchronous batching and caching
	Implementing a server with no caching or batching
	Asynchronous request batching
	Batching requests in the total sales web server

	Asynchronous request caching
	Caching requests in the total sales web server
	Notes about implementing caching mechanisms

	Batching and caching with promises

	Running CPU-bound tasks
	Solving the subset sum problem
	Interleaving with setImmediate
	Interleaving the steps of the subset sum algorithm
	Considerations on the interleaving pattern

	Using multiple processes
	Delegating the subset sum task to other processes
	Implementing a process pool
	Communicating with a child process
	Communicating with the parent process

	Considerations on the multiprocess pattern

	Summary

	Chapter 10: Scalability and Architectural Patterns
	An introduction to application scaling
	Scaling Node.js applications
	The three dimensions of scalability

	Cloning and load balancing
	The cluster module
	Notes on the behavior of the cluster module
	Building a simple HTTP server
	Scaling with the cluster module
	Resiliency and availability with the cluster module
	Zero-downtime restart

	Dealing with stateful communications
	Sharing the state across multiple instances
	Sticky load balancing

	Scaling with a reverse proxy
	Load balancing with Nginx

	Using a service registry
	Implementing a dynamic load balancer with http-proxy and Consul

	Peer-to-peer load balancing
	Implementing an HTTP client that can balance requests across multiple servers

	Decomposing complex applications
	Monolithic architecture
	The microservice architecture
	An example of microservice architecture
	Pros and cons of microservices
	Every service is expendable
	Reusability across platforms and languages
	A way to scale the application
	The challenges of microservices

	Integration patterns in a microservice architecture
	The API proxy
	API orchestration
	Integration with a message broker

	Summary

	Chapter 11: Messaging and Integration Patterns
	Fundamentals of a messaging system
	One-way and request/reply patterns
	Message types
	Command Message
	Event Message
	Document Message

	Asynchronous messaging and queues
	Peer-to-peer or broker-based messaging

	Publish/subscribe pattern
	Building a minimalist real-time chat application
	Implementing the server side
	Implementing the client side
	Running and scaling the chat application

	Using Redis as a message broker
	Peer-to-peer publish/subscribe with ØMQ
	Introducing ØMQ
	Designing a peer-to-peer architecture for the chat server
	Using the ØMQ PUB/SUB sockets

	Durable subscribers
	Introducing AMQP
	Durable subscribers with AMQP and RabbitMQ
	Designing a history service for the chat application
	Implementing a reliable history service using AMQP
	Integrating the chat application with AMQP

	Pipelines and task distribution patterns
	The ØMQ fanout/fanin pattern
	PUSH/PULL sockets
	Building a distributed hashsum cracker with ØMQ
	Implementing the ventilator
	Implementing the worker
	Implementing the sink
	Running the application

	Pipelines and competing consumers in AMQP
	Point-to-point communications and competing consumers
	Implementing the hashsum cracker using AMQP
	Implementing the producer
	Implementing the worker
	Implementing the result collector
	Running the application

	Request/reply patterns
	Correlation identifier
	Implementing a request/reply abstraction using correlation identifiers
	Abstracting the request
	Abstracting the reply
	Trying the full request/reply cycle

	Return address
	Implementing the return address pattern in AMQP
	Implementing the request abstraction
	Implementing the reply abstraction
	Implementing the requestor and the replier

	Summary

	Index

